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Abstract 

Data Denoising by Noise Invalidation 

© Nima Nikvand, 2008 

Master of Applied Science (MASc) 

Department of Electrical and Computer Engineering 

Ryerson University 

In this thesis, the problem of data denoising is studied, and two new denoising ap­
proaches are proposed. Using statistical properties of the additive noise, the meth­
ods provide adaptive data-dependent soft thresholding techniques to remove the 
additive noise. The proposed methods, Point-wise Noise Invalidating Soft Thresh­
olding (PNIST) and Accumulative Noise Invalidation Soft Thresholding (ANIST), 
are based on Noise Invalidation. The invalidation exploits basic properties of the 
additive noise in order to remove the noise effects as much as possible. There are 
similarities and differences between ANIST and PNIST. While PNIST performs 
better in the case of additive white Gaussian noise, ANIST can be used with both 
Gaussian and non Gaussian additive noise. As part of a data denoising technique, a 
new noise variance estimation is also proposed. The thresholds proposed by NIST 
approaches are comparable to the shrinkage methods, and our simulation results 
promise that the new methods can outperform the existing approaches in various 
applications. 

We also explore the area of image denoising as one of the main applications of 
data denoising and extend the proposed approaches to two dimensional applica­
tions. Simulations show that the proposed methods outperform common shrinkage 
methods and are comparable to the famous BayesShrink method in terms of Mean 
Square Error and visual quality. 
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Chapter 1 
Introduction 

Data denoising is a well-known problem that is the concern of diverse applica­

tion areas. For example, for generations, communication system designers have 

been trying to implement techniques to get rid of the natural nuisance and in­

terference that corrupts the message signal; Thermal noise exists in all electronic 

elements, furthermore, channel introduces degradation to message signal, and de­

fective instruments and data acquisition systems affect the quality of the observed 

data as welL Thus denoising is a necessary process in the receiver of all mod­

ern communication systems. Linear filters like Wiener filters are among the most 

simply implemented denoising methods [21]. More complicated methods may in­

troduce nonlinearity to Wiener filters [44] or use other nonlinear techniques such 

as Median filters [44, 24]. A relatively new approach is called Wavelet Shrinkage 

and is based on rejecting those wavelet coefficients of the observed data that are 

smaller than a certain threshold value [10]. The principle behind this method is 

that wavelet transforms enable us to represent the signal with a high degree of 

sparsity [10]. Sparsity of wavelet coefficients, meaning that most of the signal in­

formation in wavelet expansion is conveyed by a relatively small number of large 

coefficients, helps us find an estimate of the signal after rejecting some of the coef­

ficients considered as noise and yet keeping most of the information carried by the 

signal in the remaining coefficients [10, 5, 12]. Using wavelet transforms as a tool 

for denoising of signals has drawn a lot of research attention in the past decade 

leading to the famous shrinkage algorithms[10, 8, 3, 36, 2]. The first method pro­

posed based on Wavelet Shrinkage was Visu Shrink[10]. VisuShrink proposed by 
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Donoho and Johnstone applies a universal threshold that depends only on noise 

variance and data length. SureShrink, proposed by the same authors, minimizes 

Stein's Unbiased Risk Estimator (SURE) to find a threshold [8]. In BayesShrink, 

an important image denoising approach, a threshold that minimizes Bayesian Risk 

is found based on the assumption that the image has the properties of a Gener­

alized Gaussian signal [3]. Another recently introduced thresholding technique is 

called Minimum Description Length (MDL) [36]. MDL chooses a threshold that 

minimizes Normalized Maximum Likelihood (NML) of the noisy data in each sub­

space, and Minimum Noiseless Description Length (MNDL) suggests choosing a 

subspace which minimizes description length of the noiseless data [2]. 

In this thesis we propose two new thresholding methods based on Noise Invalida­

tion. It is shown that a proper threshold can be found based on Gaussian invalida­

tion of coefficients or a function of coefficients out of the noise region. In chapter 

two a brief review on one dimensional and two dimensional wavelet transforms 

and a survey of related shrinkage methods are provided. The Shrinkage methods, 

originally proposed by Donoho and Johnson [10, 8], play a key role in data de­

noising. Some of these methods are designed to apply a threshold based on limit 

theorem and some others assume a prior for the noiseless data and minimize the 

error using the prior such as bayeshrink[3]. BayesShrink, a thresholding method 

originally proposed for Image denoising applications, is applied to one dimensional 

signals in this research and it shows acceptable results for those signals that follow 

a Gaussian distribution. Working with noisy part of the signal in MNDL inspired 

us to examine the statistical properties of noise and noisy coefficients of a sorted 

signal, which led to the introduction of two novel soft thresholding methods in 

chapter three. 
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Chapter three introduces the two novel thresholding techiques and compares 

the results to other shrinkage methods. Based on statistical properties of noise and 

noisy parts of the signal, it is shown that a Gaussian approximation can be used to 

invalidate signal coefficients or a function of sum of square added coefficients of the 

observed signal at each point. Thanks to the fact that we are using a summation 

of weakly independent random variables in one of our methods, we can benefit 

from results of Central Limit Theorem for weakly dependent variables and apply 

the method for non Gaussian noise situations as well. Chapter four proposes a 

novel noise variance estimation method. Estimation of noise variance is crucial to 

any denoising algorithm and the literature on this subject is limited. While most 

methods pick the fine scale coefficients through an ad-hoc threshold to estimate 

noise, the novel method proposed in this research uses autocovariance properties 

of Gaussian noise combined with sparsity of wavelet coefficients to propose esti­

amte of the noise variance. In chapter four, properties of Gaussian signals are also 

studied and it is shown that a large class of signals, like Mishmash signal follow 

Guassian distribution and have similar behavior in the eye of the two proposed 

methods in chapter three. Using this fact, we propose a data and subband rejec­

tion criterion that ensures the share of noiseless signal is larger than the share of 

noise in the observed set of data with at least fifty percent probability. This gives 

us a data rejection criterion which is more conservative than that of BayesShrink. 

The proposed criterion ensures that a set of observed data or a subband of the 

data is worth going through the rest of the denoising procedure and can be used 

as a pre-processing condition. Chapter five applies the proposed thresholding tech­

niques to images and compares the results with the mentioned methods. In this 

chapter, wavelet transform of noisy images are found and after pre-processing with 

the novel data rejection criterion proposed in chapter four, a global threshold is 
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found through either of the proposed thresholding methods. This threshold is then 

applied to soft thresholding function and the smoothed data is then taken for in­

verse wavelet transform and the denoised Image is reconstructed. The rest of the 

chapter compares other shrinkage methods in terms of mean square error and visual 

quality to the proposed methods and performance of the methods are compared 

for standard Images such as Barbara, Cameraman, Einstein and Lena. 
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Chapter 2 
Background 

The main idea of Data Denoising is to find a basis which represents the data better 

than the noisy data itself. One of the useful orthonormal bases is Fourier Trans­

form {FT). Fourier transform provides us with frequency components of a signal 

which prove to be invaluable in many applications including, linear time invariant 

analysis. However, Fourier transform is unable to provide information in time and 

frequency domain simultaneously. This means that Fourier transform provides us 

with the frequency components, but it does not tell us when they happen in time 

domain. This is not an issue in many applications where only frequency compo­

nents are needed such as speech processing. However, in some applications such as 

Image processing, we need to have time and frequency information of the signal 

simultaneously. To solve this problem, a general idea would be to divide the signal 

into different parts and analyze frequency components of these parts separately. 

One of the early solutions to this problem was Short Term Fourier Transform 

{STFT) [15]. STFT proposes moving a window across the signal to analyze the 

frequency domain of the signal for each part. The problem still remains since STFT 

has a fixed resolution. This property is due to Heisenberg's uncertainty principle, 

which states the product of the standard deviation in time and frequency is lim­

ited. Thus measuring frequency and time can not be done simultaneously at a 

desired resolution. A wide window gives better frequency resolution but poor time 

resolution. A narrower window, on the other hand, gives good time resolution but 

poor frequency resolution. 
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FIGURE 2.1. Short Time Fourier Transform windows, narrow in time domain means 
wide in frequency domain and the opposite. Image source: [27). 

2.1 Wavelet Transform 

Wavelet Transform (WT) was proposed as a solution to this problem. Wavelet 

transform uses a scalable modulated window to move across the signal. Using a 

small scale for high frequency parts and a big scale for low frequency parts enables 

wavelet transform to provide a good time and frequency resolution. This cycle is 

repeated and each time a slightly smaller or bigger window is selected. The result 

of the process will be a set of time frequency representations of the signal with 

different resolutions. These representations are called scale-time representations as 

opposed to frequency representations in Fourier transform. 

2.1.1 Continuous Wavelet Transform (CWT) 

Continuous wavelet transform is defined as: 

-y(s, r) = 1: j(t)if!;,r(t)dt (2.1) 

Where \ll s,T is a dilated and translated wavelet function made of the mother 

wavelet function as the following: 

\lf = ~"''(t- T) 
S,T r;_ 'f/ 

yS S 
(2.2) 

where ~(t) is the mother wavelet function. Finally the Inverse CWT is defined as: 

(2.3) 
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The two main properties of wavelet functions are admissibility and regularity. It 

can be shown that a square integrable function such as w(t), can be used to de­

compose and then reconstruct a signal when w(t) meets the admissibility condition 

stated as follows[38]: 

1oo jw(w)l2 
-oo lwl dw < oo (2.4) 

admissibility condition implies: 

(2.5) 

This also requires the mother wavelet signal to have a zero average across time. 

In other words 1 : 1: W(t)dt = 0 (2.6) 

Regularity means the wavelet function should have smoothness and concentra-

tion in both frequency and time domains [27, 28]. 

2.1.2 Discrete Wavelet Transform (DWT) 

To implement wavelet transform, we have to overcome some barriers. The first and 

the most important of these barriers is redundancy of CWT. Wavelet transform is 

calculated by constantly shifting a continuously scalable function over the signal 

and finding the correlation with different parts of the signal. It is shown that these 

scalable functions are not orthogonal [17, 11]. Thus the resulting coefficients are 

redundant. In practical applications this redundancy must be removed. Another 

problem is that for many signals wavelet transform has no analytical solution and 

must be calculated numerically. To overcome these problems, Discrete Wavelet 

1 This is where the name wavelet is coming from as zero average across time domain means being oscillatory 
or a wave 
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Transform {DWT) was proposed. DWT is achieved by changing the wavelet of 

CWT in equation 2.2 to: 

\I!j,k(t) = Vs£1 'J!(t- ~Tos&) 
SJ So 

0 

(2.7) 

DWT reduces the number of wavelets and ensures that under certain conditions, 

the resulting coefficients can be used to reconstruct the original data[6]. 

To remove redundancy, wavelets can be selected as orthogonal to their own scales 

and shifted versions. Thus we choose: 

1oo { 1 if j = m & k = n, 
\I! j,k( t) w:n,n ( t)dt = 

-oo 0 if j f. m, or k f. n. 
(2.8) 

Discrete wavelet coefficients are found: 

"((j, k) = 1: f(t)IJ!j,k(t)dt (2.9) 

and the original signal can be reconstructed: 

J(t) = L -y(j, k)wj,k(t) (2.10) 
j,k 

Wavelets have band pass spectrum in frequency domain, and from Fourier trans-

form we know that dilation in time domain will act as compression in frequency 

domain. This gives us the idea to implement DWT as a bank of filters. DWT of a 

digital signal x can be found as the following: 

00 

Ylow[n] = L x[k]g[2n- k] (2.11) 
k=-00 

00 

Yhigh[n] = L x[k]h[2n - k] (2.12) 
k=-oo 

Where h is impulse response of a high-pass filter and g is impulse response of a 

low-pass filter. These filters are quadrature mirror filters of the original bandpass 

8 



~ l\pprollimation coefficiffits 

x[nJ -L~ ~taileo~icients 

FIGURE 2.2. Block diagram of filters equivalent to wavelet decomposition. Image 
source: [42). 

filter of the wavelet [27, 42]. Figure 2.2 shows the implementation of filters for one 

level decomposition. 

For a multi level decomposition we can implement a filter bank shown in Figure 

2.3. Signal is passed through each stage of low pass and high pass filters and the 

result is subsampled by two at the end of the stage. The high pass filter output, 

which is called detail subband, is the result of decomposition at each stage. Output 

of the low pass filter which is called approximate sub band is then taken for further 

filtering stages. 

x[n] 

FIGURE 2.3. Block diagram of filters banks for multilevel wavelet decomposition. Image 
source: [42). 

A similar process is used for images as for two dimensional data. It consists of 

alternating one decomposition by rows and another one by columns, repeating the 

procedure on the low-pass sub-image[27, 28, 30, 42]. Thus an image produces four 

subbands at every level. Figure 2.4 shows a four level decomposition of Einstein 

using "Haar" wavelet. 
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FIGURE 2.4. Four level Decomposition of Einstein. 

In this thesis, we concentrate on using the wavelet transform as an orthonormal 

basis, however, the study can be generalized to any other orthonormal basis such 

as Fourier transform. 

2.2 Wavelet Shrinkage 

Wavelet Shrinkage (WS) is a nonlinear and nonparametric signal denoising technique[lO]. 

Based on the sparsity of wavelet coefficients, we know that most of the informa-

tion in a signal is carried by a small number of large coefficients, and the rest of 

the coefficients carry little or no information[lO, 30]. Thus by selecting orthogonal 

wavelets, this method attempts to discard the small coefficients in the orthogonal 

transformation of data that tend to be attributed to noise. 

There are two major thresholding techniques, namely Soft and Hard threshold-

ing. Hard thresholding is simply setting to zero all the coefficients that are smaller 

than a certain value (threshold) . Soft thresholding is an extension of hard thresh-

olding which sets the coefficients smaller than the threshold to zero and reduces 
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Hard Thresholding 

80 100 

FIGURE 2.5. Left: Hard thresholding, Right: Soft thresholding. 

the remaining coefficients by the threshold value. Figure 2.5 depicts output of hard 

and soft thresholding techniques. 

Hard thresholding is defined as: 

(2.13) 

and soft thresholding is: 

I (2.14) 

Some denoising methods use hard thresholding, and some are proper for soft 

thresholding. Hard thresholding, however, is not used for applications such as image 

denoising since it introduces artifacts to the result and is not appealing in terms 

of visual quality. 
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2.3 Data Denoising 

Success of the thresholding technique in different applications depends on the 

choice of threshold. Thus choosing the proper threshold is crucial to a successful 

denoising. In the following sections some of the most famous threshold selection 

methods are reviewed. 

2.3.1 VisuShrink 

VisuShrink also known as Universal Threshold is the best known approach sug-

gested by Donoho and Johnstone [10]. VisuShrink proposes a threshold that is 

dependent on the length of the data: 

(2.15) 

Where a; is noise variance and N is the Data length. 

However, VisuShrink is known to produce over smoothed. results due to the 

fact that the threshold is dependent on data length and increases with number of 

samples under the same noise variance[18]. 

2.3.2 SureShrink 

Another well known method proposed by Donoho is based on minimizing Stein's 

Unbiased Risk Estimator {SURE) and is called SureShrink[8]. SURE is an esti­

mator that is used to find an unbiased estimate of llt1- p,jj 2 where p, = (Mi : i = 

1, · · · , N) is a vector of length Nand Y = {yi} (Yi rv N(O, 1)) is a vector of multi-

variate normal observations with mean vector p,. In our case J1 = Y and p, = Yarig· 

The risk for E(JJY- Yarigll 2
) is found to be: 

N 

SU RE(T, y) = N- 2.#{i: IYil:::; T} + L min(JyiJ, T) 2 (2.16) 
i=l 

and the threshold is selected as: 

Tsure = arg min SU RE(T, y) 
O<T<yhlog(N) 

(2.17) 
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SureShrink is a subband dependent thresholding technique, which means it pro-

poses a different threshold for each subband of data. Thus N in equation (2.17) 

is the number of coefficients in the corresponding subband. However, the thresh-

old proposed by SURE has serious drawbacks in sparse subbands, thus a hybrid 

threshold of SURE and Visu is applied: 

{J = { TJTsure (B) if (Jv 2:: "fN 

rJTvisu (B) if (Fv < "fN 

(2.18) 

2 LN-1 ((P-1) log (N)2/3 . . 
where (N = J- N 3 and rN = 2v'N . Hybnd thresholding solves one prob-

lem to add another as SureShrink risks the over smoothing problem in VisuShrink 

due to hybrid thresholding. 

2.3.3 BayesShrink 

Different denoising methods assume different distributions for the noiseless data 

or its subbands[29, 30, 4, 3, 27] . The choice of a prior usually helps solving the 

optimum threshold problem through a Maximum A Posteriori (MAP) strategy 

or minimizing the risk function[19, 22, 20, 30, 4, 3]. In BayesShrink, proposed 

by Chang, we assumes a Generalized Gaussian Distribution {GGD) prior for the 

noiseless data and find a threshold for each subband[3]. 

The GGD is given by: 

(2.19) 

where -oo < .T < oo and {3 > 0 with: 

(2.20) 

C( {3) = {J.a(ax, {3) 
ax, 2f(~) (2.21) 
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and 

(2.22) 

Assuming f3 (which is called Shape Parameter) has a range of 0.5 to 1, it has 

been observed that most noiseless images follow this distribution[3, 39, 40, 34]. 

Using a GGD prior, we can now minimize Bayesian Risk which is defined as the 

expected value of the mean square error[37, 43, 3]: 

(2.23) 

where X is estimate of noiseless data (X = TJr(Y)) and Y is the observed data 

(YIX"' N(x, a 2
)) with X"' GGDaxJ3· The optimal threshold is found as: 

TBayes = arg min r(T) 
T 

(2.24) 

However, there is no close form solution for equation (2.24) thus; numerical solu-

tions are used, and it is observed that: 

is closest to the optimum [3]. 

2 
T* =an 

ao 
(2.25) 

We need to have an and a0 to find T*. Noise variance a; is usually estimated 

using Robust Median Estimator: 

(B)= Medianl8nl 
an 0.675 l8nl E HH1 (2.26) 

Variance of the observed data is estimated as: 

1 N 
a~= N L B(i,j)2 

i,j=l 

(2.27) 
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with N being data length or number of pixels in the considered subband. Since 

the problem assumes noiseless data, X, to be independent of noise we have: 

(2.28) 

thus: 

(2.29) 

and by replacing the results from equations (2.29) and (2.26) in equation (2.25), 

we can find the closest proposed threshold to the optimum. 

2.3.4 Minimum Noiseless Description Length (MNDL) 

Minimum Noiseless Description Length (MNDL) is a new approach to subspace 

selection proposed by Beheshti and Dahleh[2]. MNDL's idea was inspired by Min­

imum Description Length(MDL)[36] However, in MNDL, length of noiseless data 

is estimated in every subspace, and the subspace with minimum noiseless data 

description length is selected as the optimum subspace. 

When Gaussian noise is added to the noiseless data vector yN = [y(1), y(2), · · · , y(N)]T, 

the joint probability distribution function of noisy data yN = [y(1), y(2), · · · , y(n)]T 

can be found as follows: 

(2.30) 

and data description length is defined as: 

However, equation (2.31) is not available in practical situations as noiseless data 

vector yN is unavailable, and we can attempt only to estimate noiseless data de-

scription length for different data representations. 
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(2.32) 

Thus it is zsm = ~llYN- yfm II~ that we need to estimate to find the minimum 

description length and the optimum subspace. Note that zsm is a sample of random 

variable Z sm. 

It is clear that if we find boundaries for Zsm we can choose the subspace which 

minimizes the upper bound of data description length as the optimum subspace. 

It is shown that Zsm follows Chi-square distribution[2] and: 

(2.33) 

obviously, Dsm is a function of p1 , and we can find an upper and lower bound on 

Zsm assuming E(Zsm) or its bounds are available. 

(2.34) 

However, it is shown that E(Zsm) is unavailable and is dependent on another 

variable estimated by Xsm = ~llYN - yfm II where xsm is a sample of random 

variable X sm. Through validation, we can find upper and lower bounds of the this 

random variable: 

(2.35) 

and finally the bounds for Zsm are found with relationships that are dependent 

on PI and P2 probabilities: 

(2.36) 

and the optimum subspace is selected as: 

(2.37) 
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The optimum threshold proposed by MNDL is found by comparing the nested 

subspaces of different orders. The absolute value of noisy coefficients are sorted 

in decreasing order. This provides a nested set of subspaces, and the optimum 

subspace provides the threshold: 

T* = m~n l8(i)l, i E Jisi E s:n. 
t 

(2.38) 

However, MNDL-SS assumptions for the additive noise are not working in thresh-

olding because sorting the coefficients provides subspaces that are no longer inde-

pendent and the noise vectors of the nested subspaces are correlated. MNDL-SS 

assumes random choice of subspaces which leads to independent additive noise vee-

tors. It is later shown in MNDL thresholding [13] that by estimating the noisy part 

of Zsm through square adding sorted coefficients of a certain number of generated 

noise vectors in ascending order, we can provide a better estimate of E ( Z sm) in 

thresholding applications. 

2.4 Concluding Remarks 

In this chapter, wavelet transform, wavelet shrinkage and popular wavelet shrink-

age methods were reviewed. Wavelet shrinkage is a non linear, non parametric, 

approach to data denoising. VisuShrink and MNDL are usually used for one dimen-

sional data but can be extended for two dimensional data as well. SureShrink and 

BayesShrink are commonly applied to images. BayesShrink outperforms SureShrink 

and other methods in image denoising and is a suitable solution for daily image 

denoising applications. 
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Chapter 3 
Thresholding Method 

3.1 Problem Statement 

Noiseless data f)= [fJ1 , y2 , • · · , iJN]T of length N has been corrupted by an additive 

noise: 

y[n] = y[n] + w[n] (3.1) 

where wN = [w[1], w[2], · · · , w[N]]T is an independent and identically distributed 

(i.i.d) Gaussian random process with zero mean and variance a 2
. In the denoising 

process, we first project the noisy data into an orthogonal basis. The considered 

orthogonal basis sis are orthonormal and we have: 

- { 1 if 'l = j, 
< Si, Sj >-

Q if i =I= j. 
(3.2) 

and < si, Sj > is the inner product of vectors, si and Sj· The ith coefficient of yN 

is: 

(3.3) 

and we have: 

O[i] = O*[i] + Ow[i] (3.4) 

where 0* is the desired coefficient of the noiseless data: 

N N 

f) = I: 0* ( i)si, y = I: 0( i)si (3.5) 
i=l i=l 

and noise coefficients vector, o;: = [Ow[1], Ow[2], · · · , Ow[N]], is a white Gaussian 

random process with the same mean and variance of wN due to the orthonormality 
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of the bases : 

E(Bw) = 0, var(Bw) =a~ (3.6) 

In a denoising approach, the available coefficients of noisy data are thresholded 

with the purpose of providing the best estimate of the noiseless data coefficients. 

As was mentioned in chapter two, there are two main types of thresholding, hard 

thresholding and soft thresholding. Although we briefly studied the hard thresh-

olding approach, our focus in this thesis is on soft thresholding approaches. We 

denote the thresholded coefficients with soft threshold T8 , as B(: 

,... { sgn(B(i))(l B(i) I -Ts) if j8(i)j 2:: Ts, 
f)((i) = 

0 otherwise 
(3.7) 

where ( is the number of non-zero coefficients resulted from thresholding with 

( = #{ B[i], 1 ~ i ~ N : j8[i] I 2:: Ts} (3.8) 

The estimate of the noiseless data with this threshold is denoted by: 

N 

[}( = 2::: Bdi]si (3.9) 
i=l 

Based on selected coefficients by thresholding function , equation (3.9) provides 

an estimation of the noiseless data. 

3.1.1 Quality of the Thresholding Approaches 

For comparison and evaluation of the thresholding approaches we consider the 

measure of quality as mean squared error (MSE): 

(3.10) 
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(the equality of errors in data and bases spaces is a direct result of Parseval's 

theorem.) An estimator with smaller MSE is considered as a better estimator. 

3.2 Accumulative Noise Invalidating Soft 
Thresholding (ANIST) Method 

After finding the coefficients for the observed data and sorting them in ascending 

order, we define a new variable, 7/Jm such that it is the sum of squared version of 

the first "m" values: 

m m 

7/Jm = L IBsort[n]l 2 = L IB;ort[n] + v[n]l 2 (3.11) 
n=l n=l 

where Bsort is the set of ascending sorted version of coefficients based on the absolute 

value of the coefficients, and 0* and v are the corresponding noiseless and noise 

parts of Bsort· Here, v[n] is a sample of random variable V[n] and 7/Jm is a sample of 

random variable W m· In the following sections we are looking for the proper values 

of m for soft thresholding and present a new approach by noise invalidation. Note 

that since the coefficients are sorted in an ascending order, the value of m, in our 

method provides the ( in equation (3.8) with the following relation: 

(=N-m (3.12) 

3.2.1 Expected Value and Variance of Noise Effects in the 
Absence of Data 

Here we study the properties of the additive noise in 7/Jm as a function of m. If the 

discarded coefficients in the thresholding process with T8 are only noise, then we 

denote 7/Jm in (3.11) with 7/J~ . In this case, 7/J~ is a sample of random variable w~ 

with the following expected value and variance: 

m 

E(w~) = E(L V 2 [n]) (3.13) 
n=l 
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m 

(3.14) 
n=l 

The expected value of noisy part of 'l/Jm and its variance play key roles in our 

analysis, and exact calculation of these variables can be cumbersome. However, in 

this scenario with B* [n] = 0; 1 ~ n ~ m, the ascending coefficients of noisy data 

are exactly the ascending coefficients of the noise. This will allow us to estimate the 

expected value and variance by generating L samples of Gaussian random vectors 

of length m and averaging them, assuming vf[n] denotes the sorted version of the 

'ith set of the Gaussian noise: 

(3.15) 

(3.16) 

3.2.2 Noise Statistics in ANIST 

As we sort and add squared coefficients of generated noise samples ( 'l/J"/n), we observe 

that as m increases, the random variable begins to behave similar to Gaussian 

distribution and can be well approximated by that. This can be seen by generating 

and plotting the histogram for a large number of samples of this random variable. 

Figure 3.1 and Figure 3.2 show that the histogram starts with a shape that is 

similar to chi-square distribution. However, as m grows, the distributions are very 

similar to that of Gaussian. Thus, the distribution of the sum of sorted squared 

noise tends to normality as degree of freedom approaches infinity or m increases. 

This property can be used to probabilistically invalidate the signal from noise and 

find the proper threshold. 

To elaborate this property more precisely, Figures 3.3 and 3.4 display normal 

probability plot of the data. Normal probability plot determines if the sample data 
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FIGURE 3.1. Histogram of noise for a 2 = 1 at Top left: m = 1, Top right: m = 2, 
Bottom left m = 3, Bottom right m = 4. 

follows Gaussian distribution. When the data is Gaussian, sample data displayed 

with ( +) symbol follows the line that is connecting first and third quartiles of the 

data. Other distributions will cause curvature in the plot. 

3.2.3 Noise Invalidation in ANIST 

The observation of the behavior of 7/J":n indicates that there is a weak dependence 

among the v[n]s and therefore, for the summation of 2:::;:1 v
2 [n] the use of the 

Central Limit Theorem(CLT) for large enough values of m is valid [14, 7]: 

(3.17) 

where error function is: 

1 {X 2 

er f(x) = fi Jo e-t dt (3.18) 
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FIGURE 3.2. Histogram of noise for a 2 = 1 at Top left: m = 10, Top right: m = 20, 
Bottom left: m = 100, Bottom right: m = 1000. 
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FIGURE 3.3. Noise behavior for a 2 = 1 Top left: Histogram at m = 10, Bottom left: 
Norm plot at m = 10, Top right: Histogram at m = 20, Bottom right: Norm plot at 
m=20. 
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FIGURE 3.4. Noise behavior for a 2 = 1 Top left: Histogram at m = 100, Bottom left: 
Norm plot at m = 100, Top right: Histogram at m = 1000, Bottom right: Norm plot at 
m = 1000. 

Figure 3.5 Shows E(w~) and its upper and lower bounds provided by standard 

deviation for Gaussian noise with unit variance. If A is selected large enough, all 

noise cases fall between these two bounds with a close to one probability. 

On the other hand, for a given data, the '1/Jm in equation (3.11) is available. We 

can use the available property of '1/J":n in Figure 3.5 to check for which m, the available 

'1/Jm is in the range of '1/J":n with probability er f(.X/ .;2). As Figure 3.6 shows, the 

'1/Jm will leave the boundaries of 't/J":n once the presence of the noiseless coefficients 

is effective. Therefore, the invalidation criterion in this case is 

(3.19) 

and the desired m* is found by checking the following condition: 

m* = argmin({3[m] 2: 1) (3.20) 
m 
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Thus m* is the index where the 'l/Jm crosses the upper bound of 'l/J":n and the 

corresponding threshold with invalidation probability er f(,\/ J2) is: 

TANIST = IBsort[m*] I (3.21) 

which provides the number of coefficients ( = N- m* in equation (3.8). 

FIGURE 3.5. E(w~) and upper and lower bounds for ,\ = 5, CJ
2 = 1. 

We denote this method as Accumulative Noise Invalidating Soft Thresholding 

and simply refer to it as ANIST [1]. 

3.2.4 Selection of a Proper A 

The value of,\ is responsible for our measure of certainty in the invalidation process, 

and it should be selected carefully as it is a sensitivity factor in our method. From 

the normal curve table we know that usually,\ = 3.9 is translated into probability 

0.9. Thus, we expect that by choosing,\ to be in a range of 3.5 to 7, we are ensuring 

that with a close to one probability, the condition of equation (3.20) is met out of 
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FIGURE 3.6. 'l/Jm of contaminated Blocks signal crossing upper bound of Invalidation 
region @ m* = 956 in decimal plot. Shaded area is Gaussian noise region with a 2 = 4. 

noise invalidation process. For example, we have: 

er f(3/v'2) = 0.997300203937, er f(5/v'2) = 0.999999426697 (3.22) 

On the other hand, if the selected value for A is too large, the invalidation region 

is larger and the sensitivity of the method is lost. To find the optimum value of A, 

we compare the MSE results for a range of A values in different noise variances. 

For this study we consider a Blocks signal seen in Figure 3. 7 with five level Haar 

wavelet decomposition. 

3.5 4 4.5 5 5.5 6 
a 2 = 1 0.49 0.37 0.26 0.20 0.26 0.32 
a 2 = 4 1.28 0.92 0.81 0.73 0.89 1.05 
a 2 = 9 1.78 1.29 1.12 0.91 0.97 1.31 

TABLE 3.1. MSE by different ..\ values. 
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Table 3.1 shows that in most cases A = 5 provides optimum results1. A similar 

procedure can be taken to show that A= 5 is proper for Mishmash signals. 

3.2.5 Simulation Results for ANIST 

We continue with the simulation for standard Blocks signal and mishmash signal, 

which are provided in MATLAB R2007b and were used as test signals in (10]. 

Wavelet transform is selected as the orthogonal basis for analysis and Blocks and 

Mishmash are selected as test signals. The two signals can represent two extreme 

cases. The Blocks signal has very small non-zero coefficients and Mishmash has 

no zero coefficients, thus they can present a very good test package between two 

#300 03-04-2010 12:50PM 
Item(s) checked out to Abdullah, Alaa. 

1n Noise (AWGN) was added to original signals with data 

TITLE: Data deno is ing by noise invalidat 
CALL#: TK7867.5 .N55 2008 
BARCODE: 0010149751934 
DUE DATE: 06-12-1 0 

Check You r Fi le: 
http://www.library.ryerson.ca/ 

~ variances of a 2 = 1, 4, 9 were tested. Figure 3. 7 shows 

ir noisy versions. Five level decomposition with "Haar" 

.his experiment. Figure 3.8 shows test signals with their 

esult of one set of observed data. For this observation, the 

:.20) is met in m* = 12 and the desired subspace will be 

the first 1012 (( = N- m*) thresholded coefficients of noisy signal in descending 

order. 

Figure 3.10 shows noisy Blocks signal crossing the upper bound in m* = 986. 

Proper threshold is selected at m * = 986 and the value of this threshold is: 

TANIST = 1Bsort(986) I 

1The results are based on statistical average for L = 1000 generations. 
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FIGURE 3.7. Test signals and their noisy forms. Top left: Blocks signal, Top right: 
Mishmash signal, Bottom left: Noisy Blocks with 0"

2 = 1, Bottom right: Noisy Mishmash 
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2 = 1. 
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FIGURE 3.8. Test signals and their wavelet coefficients. Top left: Blocks signal, Top right: 
Mishmash signal, Bottom right: Blocks coefficients, Bottom left: Mishmash coefficients. 
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FIGURE 3.9. 1/Jm and E( '1/J'!/n) for Blocks, a 2 = 1. The cross point is at m* = 12. 

thus the desired subspace will be the first 38 thresholded coefficients in descend-

ing order. 

Figure 3.11 shows noisy Mishmash signal crossing the upper bound in (a) and a 

zoom in of crossing point in (b). 

We compare the performance of the proposed method with some of the existing 

methods, SureShrink[8], MNDL thresholding[2], BayesShrink[3] and VisuShrink[10]. 

BayesShrink, originally proposed as a soft thresholding Image denoising approach, 

is applied to one dimensional data in this simulation. 

I OPTIMUM I SURE I MNDL I BAYES I VISU I ANIST 

a 2 = 1 2.69 2.91 2.7112 0.58 3.10 2.13 
a 2 = 4 6.57 7.08 6.02 2.27 6.78 2.31 
a 2 = 9 9.59 10.12 10.04 5.12 10.21 3.74 

TABLE 3.2. Proposed Thresholds by each method for Blocks test signal. Optimum 
threshold is the best threshold possible. 
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FIGURE 3.10. 'l/Jm and E('l/;'!/n) for Blocks, a 2 = 4. The cross point is at m* = 986. 
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FIGURE 3.11. Top: E('lf;'!/n) and 'l/Jsm for Mishmash, a 2 = 1, Bottom: zoomed version of 
top figure. The cross point is at m * = 22. 

Table 3.3 provides the results with soft thresholding and compares ANIST with 

existing methods. As the table shows, ANIST outperforms other shrinkage methods 

and provides acceptable results in comparison with MNDL and BayesShrink. 
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Blocks I SURE! MNDL I BAYES I VISU I ANIST I 
(j'l. = 1 0.48 0.45 0.42 0.35 0.20 
(j2 = 4 0.91 0.71 0.86 0.96 0.73 
(j2 = 9 1.19 1.02 1.26 1.32 0.94 

I Mishmash I 
(j2 = 1 1.48 1.28 1.12 1.59 1.32 
(j2 = 4 4.02 3.99 3.54 4.31 3.34 
(j2 = 9 6.11 5.63 5.32 6.78 5.21 

TABLE 3.3. MSE for different Methods compared. 

3.3 Point-wise Noise Invalidating Soft 
Thresholding (PNIST) Method 

A similar approach can be used to invalidate sorted coefficients directly instead 

of working with a summation of squared, sorted coefficients. To work with sorted 

coefficients directly, we define a new random variable, 'Ym such that: 

"!m = IBsort[m]l = je;ort[m] + z[m)l (3.23) 

Where e sort is the set of ascending sorted version of coefficients and ()* and z are 

noiseless and noise parts of e sort. 

3.3.1 Expected Value and Variance of Noise Effects in the 
Absence of Data 

If discarded coefficients in the thresholding process with Ts are only noise, we 

denote 'Ym in equation (3.23) with "f:n_. In this case ,:n, is a sample of the random 

variable r~ with the following expected value: 

E(r~) = E(Z) (3.24) 

and its variance will be: 

var(r~) = E(r~- E(r~)) 2 = E(Z- E(f~))2 (3.25) 
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Similar to the situation in ANIST, the expected value of this noise, and its variance 

are crucial to our method and an exact calculation of these values can be quite 

cumbersome. However, the fact that ascending coefficients of noisy data are exactly 

the ascending coefficients of a Gaussian noise in the absence of noiseless data 

coefficients can be used to estimate the expected value and variance by generating 

J samples of sorted Gaussian random variable and averaging them. Consider z~, 

the ith sample of a sorted Gaussian noise, then we have: 

- 1 J 
E(r~) ~ J I: z7[m] 

i=l 

(3.26) 

J 
- 1 -var(r~) ~ J _ 

1 
l:(z;[m]- E(r~)) 2 

i=l 

(3.27) 

where Z represents the random variable with sample z[n]. 

3.3.2 Noise Statistics in PNIST 

To find the distribution of sorted noise coefficients (r~) at each m we simulate J 

samples of Gaussian random vectors and look at the histograms at each m,. 

As it can be seen in Figures 3.12, 3.13, 3.14 and 3.15, the distribution behaves 

like Gaussian distribution as m increases. 

In this case, order statistics can be used to analyze the probability distribu-

tion function of the r~. Since the additive noise of coefficients ( Bws in equation 

(3.4)) are independent, identically distributed (i.i.d) random variables which fol-

low Gaussian probability distribution ~-t(O, a-2
) and are sorted in ascending order, 

thus the probability distribution function for r~ can be found as follows (Proof in 

Appendix A): 

( 
n -1) fzm(x) = nf(x) F(x)m-1(1- F(x))n-m 
m-1 

(3.28) 
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Where f(x) is probability distribution function (pdf) of Gaussian distribution 

J.L(O, o-2
) and F(x) is the cumulative distribution function (CDF). 

Using equation (3.28), we can compare probability distribution function of r:n 
with Gaussian probability distribution function at different m's and ensure that 

the observed results in histograms are accurate. 

FIGURE 3.16. Probability distribution function of r~ at m = 20 compared with Gaus­
sian probability distribution function of the same mean and variance. 

Figure 3.16 shows probability distribution function of r:n at m, = 20 for o-2 = 1 

compared to a Gaussian distribution function of the same mean and variance. The 

histogram of this distribution can be seen in Figure 3.12. 

The small deviation from the Gaussian distribution form= 20 is evident in the 

histogram and pdf shown in Figure 3.14. However, Figure 3.17 shows the proba-

bility distribution function acts closely like Gaussian as m increases to 100. Thus, 

as expected and seen in the histograms and probability distribution function, by 

increasing m, the distribution of r:n tends to behave similar to a Gaussian distri-
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FIGURE 3.17. Probability distribution function of r~ at m = 100 compared with Gaus­
sian probability distribution function of the same mean and variance. 

bution. This behavior can be used to probabilistically invalidate signal coefficients 

out of noise region and find the proper threshold similar to the case in ANIST. 

3.3.3 Noise Invalidation in PNIST 

Figure 3.18 shows E(r~) and its upper and lower bounds provided by standard 

deviation for Gaussian noise with unit variance. 

Since r~ approximately follows Gaussian distribution, the probability of a 1:n 

being bounded in a certain confidence interval such as Figure 3.18 can be approx-

imated using Gaussian error function: 

Pr{ l!:n- E(r~)l < 1} ~ er f( ~) 
-\vfvar(r~) - V2 

(3.29) 

where the error function is: 

1 {X 2 

er f(x) = fi Jo e-t dt (3.30) 
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If A is selected large enough, with close to one probability all noise cases fall 

between the two bounds. On the other hand, for a given data, the "Ym in the 

equation (3.23) is available. We can use the available property of ry:n shown in 

Figure 3.18 to check for which m the available "Ym is in the range of 1:-n with 

probability er j(A/V2). As Figure 3.19 shows, the '"Ym will leave the boundaries 

of ry:n once the presence of the noiseless coefficients is effective. Therefore, the 

invalidation criterion in this case is: 

(3.31) 

To find the proper threshold using noise invalidating the proportion proposed 

in 3.31 is calculated at each m. Similar to ANIST, the desired m* is found by 

checking the following condition: 

m* = arg min( a[m] ~ 1) (3.32) 
m 

Thus m* is the index where "Ym crosses the upper bound of the noise mean for 

Gaussian invalidation, and the corresponding sorted coefficient at this point is the 

proper threshold. 

TPNIST = IBsort[m,*]l (3.33) 

A table similar to table 3.1 can be produced to find the proper A in this case. 

Simulation results show that A = 5 provides acceptable results for this approach 

as well. Thus, we keep our selection of A= 5. 

We denote this approach as Point-wise Noise Invalidating Soft Thresholding 

(PNIST). 
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FIGURE 3.18. E(r~) and its upper and lower bounds for A = 5. 

3.3.4 Simulation Results for PNIST 

We use the same test signals and add AWGN to original signals with a data length 

of 1024 and ,\ = 5 similar to the simulation for ANIST. 

Figure 3.20 shows !m crossing the upper bound of noise average for a 2 = 1 at 

m* = 862. Figure 3.21 shows !m crossing the upper bound for a 2 = 1. 

Blocks I SURE I MNDL I BAYES I VISU I (1) I (2) I 
a'2 = 1 0.48 0.45 0.42 0.35 0.20 0.18 
a 2 = 4 0.91 0.71 0.86 0.96 0.73 0.76 
a 2 = 9 1.19 1.02 1.26 1.32 0.94 0.90 

I Mishmash I 
a'2 = 1 1.48 1.28 1.12 1.59 1.32 1.24 
a 2 = 4 4.02 3.99 3.54 4.31 3.34 3.29 
a 2 = 9 6.11 5.63 5.32 6.78 5.21 5.27 

TABLE 3.4. MSE for different Methods compared.(l)ANIST (2) PNIST. 

Table 3.4 provides the results with soft thresholding and compares PNIST with 

ANIST and other existing methods. As the table shows, PNIST outperforms 
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ANIST and provides acceptable results in comparison with other shrinkage meth-

ods. 

3.4 Concluding Remarks 

As mentioned before, ANIST uses a function of square added sorted coefficients 

and its noise statistics to invalidate signal out of noise region. As a result of us-

ing accumulation in noise estimation, Central Limit Theorem (CLT) allows us to 

implement ANIST for additive noises other than Gaussian. 

Our simulations also demonstrate this important property. Figure 3.22 shows 

zero mean uniform noise with a 2 = 4. Figure 3.23 shows '1/J":n for this noise with 

M = 10000 generations. It is evident that due to CLT, distribution of \II~ can be 

approximated by Gaussian distribution. 

In another example with additive Laplacian noise, we compared the resulting 

MSE of BayesShrink and MNDL with that of ANIST for a Blocks signal con-
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FIGURE 3.23. 'l/J"/n histogram and normplot for cr2 = 4 at m = 100 and m = 1000. Note 
that sample data falls exactly on the straight line. 

taminated with Laplacian noise with variance of a 2 = 4. The ANIST proposed 

threshold results in M SE = 0.27 while the MSE is 0.65 in BAYES and 0.39 in 
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MNDL. This shows the method's robustness towards various noise behavior. Table 

3.5 shows MSE results for Blocks signal contaminated by uniform noise. 

I Uniform I MNDL I BAYESI VISU I ANIST I PNIST I 
a 2 = 1 1.19 2.17 3.21 0.26 0.48 
a 2 = 4 2.89 3.87 5.12 0.89 1.29 
a 2 = 9 3.90 3.98 5.98 0.97 1.72 

TABLE 3.5. MSE by Method for Blocks signal contaminated by uniform noise. 

While this property does not hold true for PNIST method, PNIST provides 

better results in most cases when the additive noise is Gaussian, and the rate 

of convergence of noise distributions to Gaussian is faster in PNIST compared to 

ANIST. This can be seen graphically by comparing Figure 3.14 to Figure 3.3 where 

~~ performs better in normal plots compared to 1/J":n at m = 10 and m = 100. It 

can also be seen in Table 3.4 that Mean Square Error(MSE) results of PNIST 

outperform those of ANIST in most cases, when additive noise follows Gaussian 

distribution. 
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Chapter 4 
Additive Noise in Denoising 

The main goal of denoising is to recover the original noiseless data from the ob­

served data. Many algorithms have been proposed for this purpose, and all of them 

require the value of noise variance. Thus, estimation of the noise variance is cru­

cial to the denoising methods. Here, we propose a new noise variance estimation 

algorithm based on properties of the observed data. The literature on noise vari­

ance estimation is limited, and the existing algorithms use many assumptions on 

the data which makes their implementation limited to particular applications. For 

example, one of the first methods proposed to estimate variance of noise in speech 

processing assumes the uncontaminated signal to be Auto Regressive (AR) [33]. 

The method uses AR parameters to estimate noise variance. The drawback here is 

that not all the signals can be considered as AR, and thus the method is limited 

only to special applications. In another speech enhancement method, the white 

noise variance is estimated from preceding silent portions of speech [25]. However, 

this method has two major drawbacks. First, detection of silent portions is very 

difficult in low SNR situations. Second, the estimated variance can be used in other 

segments only if the noise is of stationary nature. 

Another method that can be applied to both lD and 2D data is based on esti­

mation of the scatter of normally distributed data with high level of outliers [26]. 

The method is based on the shortest half sample method. In this method, the 

length of the shortest half sample is used as an estimation of standard deviation 

of the uncontaminated data. One disadvantage of this method is that the method 
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is applicable only to data with the majority of the data points having no signal 

present. 

Another widely used method suggests estimating the variance using the median 

of absolute value of normalized, fine-scale wavelet coefficients [9, 8, 3]. Maximum 

Likelihood (ML) estimators provide another class of methods [23]. In other variance 

estimation methods, a primary threshold or filter is first chosen to pick the fine­

scale wavelet coefficients and suppress the effect of unknown noiseless data [35, 

32]. The noise variance is then estimated using the remaining coefficients. The 

sensitivity of these approaches to the choice of the first threshold or filter, which 

estimates the noise variance, is not known. These methods are successful only if 

enough of the coefficients can be assumed to be entirely noise dependent. 

4.1 Noise Estimation in MNDL Approach 

Minimum Noiseless Description Length (MNDL) proposes another variance esti­

mation method that estimates the noise variance during the denoising process [2]. 

In MNDL, the noiseless data "Description Length" (DL) is a function of noise vari­

ance. To estimate noise variance, MNDL finds the optimum subspace as a function 

of the noise variances for a considered range of variances. For any noise variance, 

the bounds on the reconstruction error provide bounds on the description length. 

To estimate the noise variance, MND L suggests choosing the noise variance that 

minimizes the noiseless data DL. From equation (2.34) we know that bounds for 

reconstruction error provide bounds for data description length: 

( 4.1) 

where the DL is defined in equation (2.32). Thus we have: 

(4.2) 
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and finally noise variance is estimated as the variance which minimizes MNDL in 

the optimum subspace: 

a~ = arg m~n M N D L(yN; a~) 
Uw 

(4.3) 

However, it can be shown that in many cases, equation ( 4.3) fails to provide a 

global minimum. In most situations, it leads to a graph of several local minimums 

that do not provide us with the necessary information to estimate the variance. 

For example, Blocks signal contaminated with Gaussian noise of a 2 = 2 was tested 

on MNDL noise estimation. As Figure 4.1 shows, minimum description length 

happens at a 2 = 5.5, thus; the estimate of MNDL is 5.5. However, the true noise 

is much smaller, and the description length graph fails to give a global minimum. 
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4.2 Proposed Noise Variance Estimation 
Method 

To estimate the variance of noise, we propose a new approach that is based on 

the fact that autocovariance of a zero mean Gaussian noise vector is zero at any 

point other than the origin, whereas the autocovariance of the noiseless signal is 

impulse at the origin and non-zero at other points. This property is one of the main 

differences between the noiseless signal and noise part that has been considered 

in all denoising approaches. Thus, we expect the autocovariance of noise vector to 

have a spike at the origin and to be negligible at other points. 

Autocovariance of a zero mean Wide Sense Stationary (W.S.S) random variable 

X is defined as 

c(m,) = E(X(n + m)X(n)) (4.4) 

This autocovariance can be estimated by a sample data of the random variable, x 

with length of N, as follows: 

{ 

_1_ ~N_=-Iml-1 X(n + m)X(n) 
C(m) = N-m L...m-0 

C*(-m) 

m~O 

m<O 
(4.5) 

Figure 4.2 shows the autocovariance of a Gaussian noise vector. As signal is added 

to the noise, we expect the random behavior of the autocovariance graph to change 

and the area under its curve to increase. Autocovariance of a noisy Blocks signal 

can be seen in Figure 4.3. 

Let us demonstrate the new approach with an example. Consider the case that 

the true variance is a 2 = 9. We want to estimate the variance using the mentioned 

autocovariance property. To do this, we start by selecting a range of values for the 

variance, hoping the true variance falls within this range. In this case we select our 

range to be a test = [1 : 0.5 : 16], which means that starting from 1 we increase our 

test variance by a step of 0.5 to 16. 
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FIGURE 4.2. Autocovariance of noise. 

FIGURE 4.3. Autocovariance of noisy signal. 

For each test variance, a proper threshold is calculated using the PNIST or 

ANIST (even MNDL) approaches, and the threshold is applied to acquire an es-

timate of the noiseless data. This estimate can be used to find an estimate of the 

noise vector: 

Wutest [n] = y[n] - Yutest [n] (4.6) 
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FIGURE 4.4. Autocovariance graph for different test variances, from left to right: (a) 
a 2 = 1 (b) a 2 = 4 (c) a 2 = 9 (d) a 2 = 16. True noise variance is a 2 = 9. 

Where y is the vector of observed data and f) is an estimate of noiseless data. The 

estimate of the autocovariance of this noise is 

{ 

1 ""N -lml-1 ( ) ( ) C ( ) = N -m wn=O WeTt es t n + m WeTt es t n 
CTt est m 

c;test ( -m) 
(4.7) 

m<O 

Autocovariance of the estimated noise for some of the test variances is shown in 

Figure 4.4. The area under the autocovariance curve can be estimated using the 

following relation for different values of O"test : 

1
00 

A2 = C2 dt CTt est CTtest 
-oo 

(4.8) 

In discrete cases such as our example, l2-norm of the estimated noise vector can 

be used as a measure of the area under the curve: 
N 

A 2 
,_ """ C2 [k] CTtest ,_ L......t CTtest (4.9) 

k=1 

As test variance increases, we observe an increase in the area under the curve 

of autocovariance of the weTtest, which is due to the presence of noiseless signal 
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I 

coefficients. To find the best estimate of the noise vector, we need to eliminate the 

signal coefficients as much as possible. Therefore, the proper estimate of the noise 

vector, and the proper estimate of the noise variance happens where the area under 

the curve of the autocovariance of the noise estimate sees a jump in value due to 

presence of signal coefficients. This sudden increase in the area under the curve of 

the autocovariance can be detected with an experimental sensitivity condition 

H[ ] _ A(atest + 0.5) 
atest - A( ) a test 

(4.10) 

For example in our observations we noticed that the jumping ratio of 10 would 

provide a reasonable estimate of the noise variance and variance is estimated as: 

aw = arg min{ a test! H[atest] ~ 10} ( 4.11) 
Utest 

Figure 4.5 shows a variance estimation scenario with Mishmash signal, where the 

true noise is a 2 = 4, and the method of denoising is PNIST. The estimated variance 

Figure 4.6 shows an estimation case where a Blocks signal was contaminated by 

Gaussian noise with a variance of a 2 = 8, and the denoising method is PNIST. 

It can be seen that the l2-norm value leaves zero axis at around a 2 = 7, and 

the estimate in this case is a 2 = 7.5. Table 4.1 shows the result of our variance 

estimation method in PNIST for a Blocks signal compared to MNDL variance 

estimation for different noise powers. 

4.3 Noiseless Data with Gaussian Properties 

In image denoising applications, usually a threshold is found for each subband 

assuming a Generalized Gaussian Distribution (GGD), and in general, a large 

class of noiseless signals show Gaussian behavior [3]. One example of this class 
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I True Variance I Proposed I MND L 
a'2 = 1 2.5 5.5 
a 2 = 3 2 8 
a 2 = 4 3.5 12 
a 2 = 5 7.5 10 
a 2 = 6 9 13.5 
a 2 = 9 11 14 

TABLE 4.1. Estimated variance by the proposed method. 

is the Mishmash signal, which is zero mean and has a large number of non-zero 

coefficients that follow the behavior of the Gaussian distribution as shown in Figure 

4. 7. The figure shows the histogram of Mishmash signal coefficients. As the figure 

depicts, the distribution of the coefficients is very similar of that of a Gassuian 

signal of the same length and same power(variance). Figures 4.8 and 4.9 show 

sorted coefficients of a noisy Mishmash signal and sorted coefficients of a signal 

with Gaussian distribution with the same energy. As can be seen, the two sorted 

signals nearly overlap. The overlap becomes more evident when more data are used 

as sample data length is increased from 210 in Figure 4.8 to 220 in Figure 4.9. 

This property inspires us to study in depth the behavior of a random Gaussian 

signal contaminated by a Gaussian noise; this can be a general problem of any 

signal of Gaussian class contaminated by noise. Note that the analysis is point 

wise as we know that the signal of image correlation makes it a well colored signal 

compared to the white additive noise. 

4.3.1 Conditional Distributions and Data Denoising 

Consider the following observed noisy signal 

y=x+n (4.12) 

Where both the noiseless signal x and the noisy part n are zero mean Gaussian 

signals with variances a; and a; respectively. Therefore, the noisy signal y itself is 
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FIGURE 4.7. Histogram of Mishmash coefficients. 

10
1 

FIGURE 4.8. Noisy Gaussian signal, noisy Mishmash signal and Gaussian noise com­
pared with 210 samples. 

a Gaussian signal with variance a;. 
(4.13) 
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FIGURE 4.9. Noisy Gaussian signal, noisy Mishmash signal and Gaussian noise com­
pared with 220 samples. 

In this case, given the observed y =a, we calculate the conditional density of the 

noiseless data, f(xly =a) 

f(x,y =a) f(x)f(n =a-x) 
f(xly =a) = f(y =a) = f(y =a) (4.14) 

(4.15) 

The conditional distribution is 

( 4.16) 

2 

which is a Gaussian distribution with the mean of J.lxJy = a~ and the standard 
Uy 

deviation of O"xJy = u;~x. A Complete proof may be found at Appendix B. Similarly 

53 



a 
2 Jlxjy 

FIGURE 4.10. Distribution of f(nly =a) & f(xly =a). 

the conditional distribution of the noise part is: 

( 4.17) 

2 

which is a Gaussian distribution with mean of f.-Lnly = a~ and std a-nly = ~. 
ay ay 

Therefore, we can check for which cases the probability that x ~ n given an 

observed data y =a is larger than 0.5. 

and we have 

P(x > njy =a) 2: 50% 

a 1 
P(x > n) =p(x >a-x) =p(2x >a) =p(x > 2) 2:2 

a a 1 a 
p(x > 2) = p(x- 2 > 0) 2: 2 => 2 - 1-lxiy ~ 0 

and the criterion is found as: 

(4.18) 

(4.19) 

( 4.20) 

( 4.21) 

Note that the condition is independent of the observation value, and it means 

that if we want to be at least 50% sure that the original signal coefficient is larger 
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than the noise coefficient, we should check the condition proposed in equation 

(4.21). Therefore, this condition can be used to reject the data that is too noisy to 

be denoised. 

4.4 Concluding Remarks 

In this chapter a new variance estimation method was proposed. The method is 

applicable for the proposed NIST methods as well as for MNDL denoising. Also, 

the Gaussian noiseless signals were studied and based on an analytical approach, an 

important data rejection condition in data denoising was provided. The method 

can provide not only the condition to detect whether the data can be denoised 

but also provides the condition of subband rejection in wavelet denoising. This 

condition provides a more conservative criterion for subband rejection of noisy 

data than that of BayesShrink. 
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Chapter 5 
Image Denoising 

In this chapter we compare the performance of the proposed algorithms, PNIST 

and ANIST, with the existing algorithms for an example of two dimensional data in 

image denoising. Soft thresholding was used for all algorithms as soft thresholding 

has better results visually, and it is proved that soft thresholding achieves nearly 

Minimax error rate in most cases [9]. Similar to the simulation in previous chapters, 

Haar wavelet with five level of decomposition is used. 

Some methods propose a different threshold for every sub band. This is called sub­

band dependent thresholding and is commonly used in BayesShrink and SureShrink. 

However, as we are dealing with noise invalidation in PNIST and ANIST and the 

properties of noise do not vary from one subband to another, these approaches 

provide a global threshold for the image and pre-process every subband of the 

denoised image using equation (4.21). The pre-processing rejects those subbands 

which are too noisy and contain little information about original data. 

Figure 5.1 shows an image of Barbara, a noisy version of Barbara and Barbara 

denoised by ANIST and PNIST. 

Figure 5.2 shows the famous Cameraman image denoised by BayesShrink, SureShrink, 

PNIST and ANIST. The visual quality of the denoised images by PNIST and 

ANIST clearly outperform the SureShrink image and are comparable with those 

of BayesShrink and MNDL. 

MSE comparison of the proposed methods for Cameraman and Barbara can be 

found in Table 5.1. As the table shows both PNIST and ANIST provide acceptable 

results compared to other shrinkage methods. 
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Original 

PNIST ANIST 

FIGURE 5.1. Barbara denoised by ANIST and PNIST, a~= 225. 

I Cameraman I SUREI MNDL I BAYES I PNIST I ANIST I 
a'2 = 25 n 18.3 15.9 17.1 16.2 17.9 

a 2 = 100 n 52.9 49.2 48.2 46.9 47.8 
a 2 = 225 n 93.8 95.1 101.9 90.2 107.3 

Barbara 

a 2 = 25 n 19.1 18.9 16.7 17.3 17.7 
a 2 = 100 n 59.9 51.6 48.3 49.5 47.6 
a 2 = 225 n 118.1 89.2 86.7 91.2 101.8 

TABLE 5.1. MSE for different Methods compared. 

Einstein and Lena denoised by common methods can be found in Figures 5.3 

and 5.4. 
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Original BayesShrink 

MNDL PNIST ANIST 

FIGURE 5.2. Cameraman denoised, CT; = 100. 

While PNIST outperforms ANIST in terms of MSE in most cases, it can be seen 

in Figures 5.1 and 5.3 that ANIST seems to have a more pleasing visual quality. 
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Original BayesShrink 

MNDL PNIST ANIST 

FIGURE 5.3. Lena denoised, a~ = 400. 
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Original Noisy, an =30 BayesShrink 

MNDL PNIST ANIST 

FIGURE 5.4. Einstein denoised, a;_ = 900. 
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Chapter 6 
Conclusion 

Two new thresholding techniques based on noise invalidation were proposed. The 

new methods, ANIST and PNIST, are based on Gaussian invalidation of coeffi­

cients of the observed data out of the noise region, where the coefficients represent 

the transformation of the data with a set of orthonormal bases. It was shown that 

the behavior of sorted absolute coefficients in PNIST and sorted square added coef­

ficients in ANIST can be approximated with Gaussian distribution. This property 

was used to select a threshold as the first coefficient that is out of the noise region 

with high certainty. We studied ANIST and PNIST in terms of their performance 

for two classes of signals: Blocks signal as the representative of signals with a high 

number of zero coefficients and Mishmash signal as the representative of signals 

with a high number of non-zero coefficients. Our study shows that ANIST and 

PNIST can perform acceptably regardless of the original signal type in comparison 

with other shrinkage methods. We proposed a new noise variance estimation tech­

nique and showed that the method provides acceptable results and outperforms 

the recently proposed MNDL noise variance estimation method. 

We extended the methods to two dimensional data, and the proposed image 

denoising methods were compared with other shrinkage methods. It was shown that 

ANIST and PNIST have comparable Mean Error Square (MSE) with BayesShrink 

and outperform other methods with a pleasing visual quality. 

Future research could focus on extending ANIST for Magneto Resonance Images 

(MRI). It is a very well documented fact that MR images are corrupted by Rician 

noise due to defects in imaging instruments [31, 16]. As was shown ANIST can 
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be a solution to non Gaussian noise problems; thus ANIST can be extended as a 

general solution for this type of problems as well as any other applications where 

Gaussian noise solutions can not be applied. 
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Appendix 

A Distribution of Order Statistics of a Random 
Variable 

Let X 1 , X2 , • · · , Xn be independent identically distributed random variables, and 

X(1), X(2) , · · · , X(n) be the corresponding order statistics. Assuming f(x) is proba­

bility distribution function of random variable Xi and F(X) is the corresponding 

cumulative distribution function, then probability distribution function of x(k) is: 

d d d 
fx(k) = -Fx(k) = -d P(X(k) ~ x) = -P(at least k of the n Xs are ~ x) 

dx x dx 

= d~ P("?. k success inn trials) 

= d~ t ( ~) P(X1 ~ x)i(1- P(Xi ~ x))(n-i) 
j=k J 

= d~ t ( ~ ) F(x)i(1- F(x))n-j 
j=k J 

n ( n- 1 ) = L(n . F(x)i-1 (1 - F(x))n-j 
j=k J- 1 

( 
n -1) - n j F(x)'(l- F(x))n-H)j(x) 

n-1 ( 1 ) = nf(x)( L n ~ F(x)i(1- F(x))(n-l)-j 
j=k-1 J 

n-1 ( 1 ) - L n ~ F(x)i(1- F(x))(n-l)-i) 
j=k J 
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(A-4) 

(A-5) 

(A-6) 



After simplifying the results, all terms cancel out each other except the first and 

the last, thus we have: 

( n-1) = nf(x)( F(x)k- 1(1- F(x))(n-l)-(k-l) 
k-1 

( n-1) - n F(x)n(l- F(x))(n-1)-n) (A-7) 

and the term over underbrace is zero thus: 

( n-1) fx(k)(.rr) = nf(.rr) F(.rr)k-1(1- F(x))n-k 
k-1 

(A-8) 
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B Gaussian Data with Additive Noise 

f(xly =a)= J(x, y =a) = f(x)f(n =a-x) 
· J(y =a) J(y =a) 

(B-1) 

(B-2) 

(B-3) 

(B-4) 

We have: 

a2 = a2 + a2 y x n (B-5) 

thus: 

(a2a2 - a2a2) = -a4 
X n X y X 

(B-6) 

(a2a2 + a2a2) = a4 n y y x y (B-7) 

and by replacing equation (B-6) and equation (B-7) in equation (B-4) we have: 

(B-8) 

1 
= e 
27r~ 

(B-9) 
Uy 

2 

and J(xly = a) follows Gaussian distribution with J-lxiy=a = a~ and axly=a = 
y 
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