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ABSTRACT 

 

Mahmoud Abd Rabbou 

 

INTEGRATION OF MULTI-COSNTELLATION GNSS PRECISE POINT 

POSITIONING AND MEMS-BASED INERTIAL SYSTEM FOR PRECISE 

APPLICATIONS  

Ph.D. of Civil Engineering, Ryerson University 

2015 

  

This dissertation develops a low-cost integrated navigation system, which integrates multi-

constellation global navigation satellite system (GNSS) precise point positioning (PPP) with 

a low-cost micro-electro-mechanical sensor (MEMS)-based inertial system for precise 

applications. Both undifferenced and between-satellite single-difference (BSSD) ionosphere-

free linear combinations of pseudorange and carrier phase measurements from three GNSS 

constellations, namely GPS, GLONASS and Galileo, are processed. An improved version of 

the PF, the unscented particle filter (UPF), which combines the UKF and the PF, is developed 

to merge the corrected GNSS satellite difference observations and inertial measurements and 

estimate inertial measurements biases and errors. The performance of the proposed integrated 

system is analyzed using real test scenarios. 

A tightly coupled GPS PPP/MEMS-based inertial system is first developed using EKF, which 

shows that decimeter-level positioning accuracy is achievable with both undifferenced and 

BSSD modes. However, in general, better positioning precision is obtained when BSSD 

linear combination is used. During GPS outages, the integrated system shows submeter-level 

accuracy in most cases when a 60-second outage is introduced. However, the positioning 
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accuracy is improved to a few decimeter- and decimeter-level accuracy when 30- and 10-

second GPS outages are introduced, respectively. The use of UPF, on the other hand,  reduces 

the number of samples significantly, in comparison with the traditional PF. Additionally, in 

comparison with EKF, the use of UPF improves the positioning accuracy during the 60-

second GPS outages by 14%, 13% and 15% in latitude, longitude and altitude, respectively.  

The addition of GLONASS and Galileo observations to the developed integrated system 

shows that decimeter- to centimeter-level positioning accuracy is achievable when the GNSS 

measurement updates are available. In comparison with the GPS-based integrated system, the 

multi-constellation GNSS PPP/MEMS-based inertial system improves the latitude, longitude 

and altitude components precision by 24%, 41% and 41%, respectively. In addition, the use 

of BSSD mode improves the precision of the latitude, longitude and altitude components by 

23%, 15% and 13%, respectively, in comparison with the undifferenced mode. During 

complete GNSS outages, the developed integrated system continues to achieve decimeter-

level accuracy for up to 30 seconds, while it achieves submeter-level accuracy when a 60-

second outage is introduced. 
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1. Introduction 

This chapter introduces the work included in this dissertation. Section 1.1 summarizes the 

necessary background for this research with emphasis on the limitations of previous work.  

Section 1.2 describes the motivations of this research. Section 1.3 describes the objectives of 

this research. Section 1.4 highlights the contributions of this research. Section 1.5 briefly 

outlines the contents of Chapters 2 to 6. 

1.1. Background  

Most current integrated GNSS/INS systems employ differential GPS (DGPS), along with 

high-end inertial sensors, such as navigation and tactical grades, for precise positioning and 

navigation applications (El-Sheimy et al., 1995; Brzezinska et al., 1998; Petovello, 2003; 

Nassar, 2003). The GPS positioning solution is obtained through carrier-phase observables in 

differential mode, involving two or more GPS receivers. Unfortunately, the requirement of a 

base station is usually problematic for some applications, as it controls the operational range 

of the system and increases the system cost and complexity. However, these problems can 

potentially be overcome through the use of a precise point positioning (PPP) technique. 

 Commonly, precise point positioning (PPP) employed undifferenced ionosphere-free linear 

combinations of GPS code and phase measurements to cancel out the first-order ionospheric 

delay. The satellite orbit and clock errors are typically accounted for through the use of IGS 

orbital and clock products. The tropospheric error component can sufficiently be accounted 

for using an empirical model, such as the Saastamoinen or the Hopfield model (Hofmann et 

al., 2007). Alternatively, a regional tropospheric correction model such as the NOAATrop 

model can be used (Gutman et al., 2003). The effects of ocean loading, earth tide, carrier-

phase windup, sagnac, relativity, and satellite antenna phase-center variations can be 



2 

 

rigorously modeled (see, for example, Kouba, 2009). Based on the quality of observations, 

satellite availability and geometry, as well as the correct resolution of the integer ambiguity 

parameters, centimeter- and decimeter-level positioning accuracy can be achieved in static 

and kinematic modes, respectively, using GPS PPP. However, as a result of the limited 

satellite availability, GPS PPP solution may not always be available in urban canyons and the 

downtown core. As well, a drawback of the PPP technique is the relatively long convergence 

time, which the PPP solution takes to reach a sub-decimeter level positioning accuracy. This 

is mainly attributed to the poor satellite geometry and the existence of un-calibrated errors 

and biases, such as the satellite and receiver code biases. 

The above limitations, however, can partially be overcome through the addition of more 

observations from other GNSS constellations, such as GLONASS and Galileo. The 

importance of using multi-constellation GNSS is mainly noticed in challenging 

environments, such as urban areas, where the signals are either partially blocked by urban 

obstacles or are contaminated by multipath interference. In addition, the measurements from 

multiple GNSS constellations not only improve the satellite geometry, but also increase the 

redundancy, which in turn improves the positioning accuracy and convergence time. 

However, the additional GNSS observations introduce additional biases such as inter-system 

biases, which can be treated as additional unknowns in the estimation filter. The drawback of 

this strategy is that the number of unknowns will be increased by one for each GNSS system 

added. For GNSS applications in dense areas, increasing the number of unknowns might be 

critical in obtaining a good solution. As well, additional un-calibrated GNSS biases such as 

receiver and satellites differential code biases will be encountered, which, unless properly 

handled, will degrade the positioning accuracy.  

To enhance the GNSS PPP positioning accuracy and convergence time, the uncalibrated 

biases should be taken into considerations.  These biases are typically combined with the 
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ambiguity parameters, which slow down their convergence to the correct values. In the 

absence of a multipath, the receiver-related biases can be removed from the code and phase 

GNSS observations by using per-constellation between-satellite-single-difference (BSSD) 

linear combinations. However, in BSSD PPP, the ambiguity parameters might still be 

affected by the dissimilarities of the satellite code biases, which result from employing 

different spectral methods in the filtering and correlation processes (Phelts, 2007). 

Although it improves the accuracy and availability of the positioning solution, multi-

constellation PPP may still suffer from limitations (e.g., when the signal is completely 

blocked as a result of passing under a bridge). The addition of an environmental-independent 

system such as the inertial system can help overcome these limitations. As indicated above, 

high-end inertial sensors have traditionally been used to bridge the complete GNSS outages 

for precise applications (see, for example, Cannon, 1992; Schwarz  et al., 1993,  El-Sheimy et 

al. 1995; Brzezinska et al. 1998; Nassar and El-Sheimy 2003). The availability of high-end 

INS position and velocity information can shorten the ambiguity search time after short GPS 

data outages by feeding GPS with accurate position and position variance-covariance matrix 

(Sukkarieh, 2000; Petovello, 2004). Unfortunately, as stated earlier, these systems typically 

use differential GPS techniques, which limit the range of the system and increase its cost and 

complexity. 

Recent advances in micro-electro-mechanical sensors (MEMS) provide the development of a 

generation of low-cost inertial sensors which make them attractive to many users. However, 

in general, MEMS inertial sensors have poorer performance and stability than high-end INS 

due to the high noise level and severe biases and drifts affecting the MEMS-based inertial 

sensors. A number of researchers have investigated the integration of GPS with MEMS-based 

inertial sensors (e.g., Nayak, 2000; Shin, 2005; Mezentsev, 2005; Abdel-Hamid, 2005; 

Godha, 2006). However, several meter-level accuracy are obtained during the complete GPS 
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outages. This is mainly attributed to the large gyros drift biases. As such, these developed 

systems are not suitable for precise applications.  

To overcome the limitations of the performance of the low cost inertial sensors during GPS 

outages, more attention should be given to the inertial sensor’s biases and errors through the 

estimation filtering technique employed. Commonly, the extended Kalman filter (EKF) is 

considered as the estimation filter for GPS/INS integration (e.g., Petovello, 2004; Nassar, 

2005; Abd Rabbou and El-Rabbany, 2014). In EKF, the nonlinear system and observation 

models are linearized at the updated dynamic navigation parameters using the first-order 

Taylor series expansion under the assumption that the noise is Gaussian. However, as a result 

of neglecting higher order terms, the EKF might fail to produce a reliable estimation solution, 

especially during GPS outages. This is particularly the case when low-cost MEMS-based 

inertial measurement units (IMU) are used. To enhance the navigation system performance, 

alternatives to the standard EKF should be considered. The unscented Kalman filter (UKF) 

was introduced by Julier et al. (1995) as a linear regression estimation filter. Shin (2005) used 

the UKF to develop a low-cost INS aided by DGPS measurements. Unfortunately, similar to 

EKF, the UKF algorithm also assumes the Gaussian distribution for the probability density 

function of both motion and measurement systems, which sometimes cannot simulate the real 

probability distribution of the motion model. This is particularly the case during GNSS 

outages with the low performance MEMS-based sensors. In contrast to linearization filters, a 

particle filter (PF) avoids the linearization of the system models. It rather obtains an 

approximate estimation solution for the nonlinear motion and measurement models  (e.g., Yi 

and Brzezinska 2006; Giremus et al. 2005; Caron et al. 2007; Georgy et al. 2010). A 

drawback of the PF, however, is that it involves  a large computational cost, which represents 

the main limitation in practical use.  
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To overcome the computational cost of the particle filter, Georgy et al. (2010) applied an 

improved version of PF, known as mixture particle filter, for low-cost INS/Odometer/GPS 

integration in land vehicles.  Recent research focused on fusing the PF with either of the EKF 

or the UKF to form the extended particle filter (EPF) or the unscented particle filter (UPF) 

(Haug, 2005; Simon, 2006). Haug (2005) used EKF and UKF to produce a posteriori mean 

and covariance estimates, which are then employed to produce the PF importance density 

function for particle generation. In addition, the particle normalized importance weights are 

calculated to refine the system a posteriori estimates. Although this technique significantly 

reduces the number of particles and processing time compared with the traditional PF, it 

confines the PF importance density function to a Gaussian distribution. As such, the expected 

enhancement can be considered limited (Zhou et al. 2010). According to Simon (2006), a 

bank of EKFs or UKFs can used for each particle, combined with the likelihood function, to 

derive the system a posteriori estimates. This technique can significantly reduce the number 

of needed particles while respecting the non-Gaussian nature of the system noise.  

Recently, PPP was introduced into tightly-coupled integration systems with a tactical grade 

INS (Zhang and Gao, 2005, Roesler and Martell 2009). The reported positioning accuracy of 

these systems is about 10 cm and 15 cm for the horizontal and vertical directions, 

respectively. More recently, the PPP technique was used for tightly-coupled integration with 

MEMS-based INS (Du, 2010, Abd Rabbou and El-Rabbany 2014 and Abd Rabbou and El-

Rabbany 2015). Du (2010) proposed a new cycle slip detection technique based on MEMS-

based INS in a tightly-coupled PPP/INS integration mode. Abd Rabbou and El-Rabbany 

(2014) introduced the between satellite single difference (BSSD)-based PPP into the tightly 

coupled PPP/MEMS-based INS integrated system. In addition, they introduce the unscented 

particle filter (UPF) for their developed PPP/MEMS-based INS integrated system (Abd 
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Rabbou and El-Rabbany, 2015). However, the related studies were limited to the GPS-only 

observations. 

Considering the recent advances in MEMS-based accelerometers, the up to date GNSS 

constellations and the advances in PPP techniques, this research aims to develop a new 

integrated navigation system for precise positioning and navigation applications. MEMS-

based accelerometers equipped with fiber optic gyros, which limit the orientation errors 

during the complete GNSS outages, are used.  GNSS-based PPP including GPS, GLONASS 

and Galileo systems observations are used to update the system through a tightly coupled 

mechanism. Additionally, for further confining the positioning errors during the GNSS 

complete outages, a UPF is developed, based on the approach proposed by Simon (2006), to 

merge the GNSS measurements, through undifferenced PPP technique and the inertial sensor 

measurements. The performance of the developed filter is compared with that of the common 

filters, including the standard EKF, UKF and PF, both when GNSS is available and when 

there is a complete outage. The contribution of the developed PPP techniques, nonlinear 

estimation filters and the additional GNSS observations obtained from GLONASS and 

Galileo is assessed using real trajectory data in urban areas.     

1.2. Research Objectives 

The main objective of this research is to develop algorithms and estimation methodologies 

for a GNSS PPP/MEMS-based inertial system, which meets the accuracy requirements for 

precise navigations applications. This will be fulfilled through a number of tasks, which can 

be summarized as follows: 

1. Developing GPS PPP models considering rigorous deterministic and stochastic modelling 

of different GPS errors. Both undifferenced and between-satellite-single-difference 

ionosphere-free PPP techniques are developed.      
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1.1.Developing GPS PPP/MEMS-based inertial sensors for precise applications 

considering the developed GPS PPP techniques and rigorous stochastic models for 

inertial sensors biases and scale factors.  

2. Enhancing the developed integrated system performance and alternative to the standard 

extended Kalman filter (EKF) are investigated. This includes 

2.1.Comparing between the traditional linear and nonlinear estimation filters such as the 

EKF, unscented Kalman filter UKF and particle filter PF. 

2.2.Developing the integrated unscented particle filter (UPF) which integrates the UKF 

and PF. 

2.3.Investigating the real performance of the proposed estimated filters during GPS 

outages using real test scenarios.   

3. Developing combined GNSS PPP models for kinematic applications including GPS, 

GLONASS and Galileo satellite navigation systems. This includes 

3.1.Investigating the contribution of the additional GNSS observations on PPP positioning 

accuracy compared with the traditional GPS PPP.  

3.2.Studying the GNSS inter-system biases stability. 

3.3.Developing between-satellite-single-difference GNSS PPP technique and investigate 

its positioning accuracy compared with undifferenced ionosphere-free GNSS 

technique. 

4. Developing GNSS PPP/MEMS-based inertial sensors integrated navigation system model 

considering the GNSS PPP techniques developed. The process and measurement models 

are extended to include the additional GNSS biases. 

1.3. Research Contributions 

This research aims to develop an integrated system, which integrates a multi-constellation 

GNSS, including GPS, GLONASS and Galileo, and MEMS-based inertial sensors for precise 
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positioning and navigation applications. The major contributions of this research can be 

summarized as follows: 

1. Development of tightly coupled integration algorithms for the integrated PPP 

GPS/MEMS-based inertial systems. The algorithms are developed for both undifferenced 

and between-satellite single difference ionosphere-free PPP techniques. The EKF is used 

as the estimation filter to merge the GPS PPP observations and inertial sensor records. 

This research contribution is published in  

Abd Rabbou, M. and El-Rabbany, A, (2014), Tightly coupled integration of GPS precise 

point positioning and MEMS- based inertial systems. GPS solution, doi:10.1007/s10291-014-

0415-3 

2. Development of tightly coupled integration algorithms for the integrated PPP 

GPS/MEMS-based inertial systems with nonlinear estimation techniques. An unscented 

particle filter which integrates both unscented Kalman filter and particle filter is 

developed to merge the GPS PPP observations and inertial sensors record. The developed 

estimation filter is compared with the traditional estimation filters such as the standard 

EKF, UKF and PF. The contribution of the new developed estimation filter is shown 

during GPS availability and outages. 

This research contribution is published in 

Abd Rabbou, M., and El-Rabbany, A. (2015). Integration of GPS Precise Point Positioning 

and MEMS-Based INS Using Unscented Particle Filter. Sensors, 15(4), 7228-7245. 

3. Development of multi-constellation GNSS PPP for precise kinematic applications 

combining observations from three GNSS systems, namely GPS, GLONASS and Galileo. 

Both undifferenced and between-satellite single difference GNSS PPP techniques are 

developed and compared. The inter-system biases between the GPS and other GNSS 

systems are also studied.  



9 

 

This research contribution is published in 

Abd Rabbou, M., and  El-Rabbany, A. (2015). Precise Point Positioning using Multi-

Constellation GNSS Observations for Kinematic Applications. Journal of Applied Geodesy, 

9(1), 15-26. 

4. Development of tightly coupled integration algorithms for the integrated multi-

constellation GNSS PPP/MEMS-based inertial systems. The algorithms are developed for 

both undifferenced and between-satellite single difference ionosphere-free PPP 

techniques. The EKF is used as the estimation filter to merge the GPS PPP observations 

and inertial sensor records. The contribution of the additional GNSS observations is 

investigated during GNSS observations availability and complete outages with two sets of 

trajectory data. 

This research contribution is submitted in 

Abd Rabbou and M., El-Rabbany, A, (2014), Integration of Multi-Constellation GNSS 

Precise Point Positioning and MEMS-Based Inertial Systems Using Tightly Coupled 

Mechanization, Sensor, submitted. 

1.4. Dissertation Outlines 

This dissertation follows a manuscript style approach, with each chapter representing a 

published  paper. 

Chapter 1 presents an introduction, dissertation motivations, objectives, contribution, 

outlines, and literature review. 

This dissertation is based on the following publications: 

Chapter 2 Abd Rabbou, M., El-Rabbany, A, (2014), Tightly coupled integration of GPS 

precise point positioning and MEMS- based inertial systems. GPS solution, 

doi:10.1007/s10291-014-0415-3. 
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Chapter 3 Abd Rabbou, M., and El-Rabbany, A. (2015). Integration of GPS Precise Point 

Positioning and MEMS-Based INS Using Unscented Particle Filter. Sensors, 15(4), 7228-

7245. 

Chapter 4 Abd Rabbou, M., and El-Rabbany, A. (2015). Precise Point Positioning using 

Multi-Constellation GNSS Observations for Kinematic Applications. Journal of Applied 

Geodesy, 9(1), 15-26. 

Chapter 5 Abd Rabbou, M. and El-Rabbany, A, (2014), Integration of Multi-Constellation 

GNSS Precise Point Positioning and MEMS-Based Inertial Systems Using Tightly Coupled 

Mechanization, Sensors, Submitted. 

Chapter 6 presents general conclusions of this research, and suggests some 

recommendations for future research. 

It should be pointed out that modifications to the original manuscript were made only for 

proper identification of sections, figures and tables to assure uniformity within this 

dissertation. 

 

 

 

 

 

 



11 

 

2. Tightly Coupled Integration of GPS Precise Point Positioning and MEMS-Based 

Inertial Systems 

© 2014 by the authors; licensee Springer Berlin Heidelberg 

In this chapter, tightly-coupled integration algorithms for PPP GPS/MEMS-based inertial 

systems are developed. The algorithms are developed for both undifferenced and between-

satellite single difference ionosphere-free modes. EKF is used as the estimation filter to 

merge the GPS observations and inertial sensor records. 

The following manuscript was originally published as:  

 

Abd Rabbou, M. and El-Rabbany, A, (2014), Tightly coupled integration of GPS precise 

point positioning and MEMS- based inertial systems. GPS solution, doi: 10.1007/s10291-

014-0415-3 

 

Modifications to the original manuscript were made only for proper identification of sections, 

figures and tables to assure uniformity within this dissertation. 
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Tightly Coupled Integration of GPS Precise Point Positioning and MEMS-Based 

Inertial Systems 

Abstract   

We develop a new integrated navigation system, which integrates GPS Precise Point 

Positioning (PPP) with low-cost micro-electro-mechanical sensors (MEMS) inertial system, 

for precise positioning applications. Currently, most common GPS PPP techniques employ 

undifferenced ionosphere-free (IF) linear combination. In this work, both undifferenced and 

between-satellite-single-difference (BSSD) IF linear combinations of pseudorange and carrier 

measurements are considered. IGS precise orbital and clock products are used to correct for 

satellite orbit and clock errors. Rigorous models are used to account for tropospheric delay, 

ocean loading, earth tide, carrier phase windup, relativity, and satellite antenna phase-center 

variations. To integrate GPS PPP and MEMS-based inertial systems, the process and 

measurement models are developed. Tightly coupled mechanization is adopted, which is 

carried out in the raw measurements domain. Extended Kalman filter is developed to merge 

the corrected GPS satellite difference observations and inertial measurements and estimate 

inertial measurements biases and errors. A Matlab-based computer program is developed to 

carry out the tightly coupled integration. The performance of the proposed integrated system 

is analyzed using a real test situation. It is shown that decimeter-level positioning accuracy is 

achievable with both undifferenced and BSSD integrated systems. However, in general better 

positioning accuracy is obtained with BSSD integrated system 

Keywords; GPS, PPP, GPS/INS integration, Extended Kalman Filter, Tightly Coupled 

Integration. 

2.1. Introduction  

Global positioning system (GPS) and inertial navigation system (INS) integrated system has 

been investigated for several decades in different applications. Most of the integrated 
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GNSS/INS systems implement differential GPS due to its inherent high accuracy (El-Sheimy 

et al. 1995, Brzezinska et al. 1998, Petovello et al. 2004, Nassar and El-Sheimy 2003). A 

number of researchers have investigated this topic considering high-end inertial sensors, for 

example, navigation-grade (El-Sheimy et al. 1995 and Brzezinska et al. 1998) and tactical-

grade inertial systems (Petovello et al. 2004, Nassar and El-Sheimy 2005). Generally, high–

end INS was used to enhance the GPS solution such as speeding up the integer ambiguity 

resolution. Owing to their price and size, high-end INS is generally confined to only high-

accuracy applications. The great advances in micro-electro-mechanical sensors (MEMS) 

provide the development of a generation of low cost inertial sensors. MEMS sensors are 

characterized by light weight, small size and low cost compared with high-end inertial 

sensors. Generally, MEMS sensors have poorer performance and stability compared with 

high-end INS due to the high noise level and severe biases and drifts affecting the MEMS-

based inertial sensors. Several researchers have investigated the integration of GPS system 

with MEMS-based inertial sensors such as Shin et al. (2005), Mezentsev (2005), Abdel-

Hamid et al. (2006) and Godha and Cannon (2007). In those studies differential GPS (DGPS) 

was used to update the low-cost MEMS measurements to achieve acceptable accuracy.  

However, the requirement of a base station is usually problematic for some applications as it 

limits the operational range of the system to about 15 km and increases the system cost and 

complexity. Comparable positioning accuracy, without requiring extra infrastructure, can be 

achieved through a technique commonly known as precise point positioning (PPP). PPP uses 

undifferenced or between-satellite difference carrier phase and pseudorange observations 

from a single receiver, in addition to precise orbit and clock data. PPP processing technique 

was introduced by Zumberge et al. (1997) and was further developed by Kouba and Heroux 

(2001). Zumberge et al. (1997) proposed a method for calculating the clock data and orbit 

using a subset of International GNSS Service (IGS) network. Their research focused on the 
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use ionosphere-free linear combinations of pseudorange and carrier phase observations. They 

used precise satellite clock and orbital data with intervals of 30 seconds and 15 minutes, 

respectively, and were able to achieve promising results. At present, several organizations, 

such as IGS and Jet Propulsion Laboratory (JPL), provide precise GPS orbit and clock 

products. 

In this research, GPS PPP is integrated with low-cost MEMS inertial system. Both 

undifferenced and between-satellite single-difference (BSSD) ionosphere-free (IF) linear 

combinations of pseudorange and carrier phase measurements are considered. Precise error 

mitigation models, including correction models for tropospheric delay, ocean loading, earth 

tide, carrier phase windup, relativity, and satellite antenna phase-center variations, are used to 

correct the raw GPS measurements. In addition, IGS final products for precise satellite orbit 

and clock are used. It is shown that decimeter-level positioning accuracy and centimeter-level 

velocity accuracy are achievable with both undifferenced and BSSD IF integrated systems. 

The following sections briefly describe the measurement and process models for the proposed 

integrated system and show the trajectory test results and analysis. 

2.2. GPS-PPP Ionosphere-free Linear Combinations 

The most widely used PPP model is the undifferenced ionosphere-free combination of code 

pseudorange and carrier phases (Hofmann-Wellenhof et al. 2008). The mathematical model 

for ionosphere-free PPP can be written as: 

2 2

1 1 2 2

3 3 32 2

1 2

s r s

r P P P3

f P f P
P= =ρ +c(dt -dt )+T+c(B -B )+e

f f




                2.1 

2 2

1 1 2 2

3 2 2

1 2

s r s

r Φ3 Φ3 Φ3

f Φ f Φ
Φ = =ρ +c(dt -dt )+T+c(B -B )+λN+e

f f




  2.2 

where 𝑃1 and 𝑃2 are pseudorange measurements on L1 and L2, 𝛷1 and 𝛷2 are the carrier 

phase measurements on L1 and L2 in meters, 𝑑𝑡𝑟 and 𝑑𝑡𝑠  are the clock errors for receiver 
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and satellite, T is the tropospheric delay, 𝐵𝑃3
𝑟 and 𝐵𝑃3

𝑠   are frequency-dependent differential 

code bias (DCB) for receiver and satellite, 𝐵𝛷3
𝑟 and 𝐵𝛷3

𝑠   are frequency-dependent differential 

phase bias (DPB) for receiver and satellite, 𝑒𝑝3, 𝑒𝛷3 are relevant system noise and unmodeled 

residual errors,  and 𝜆𝑁 ̅̅ ̅̅̅is the ambiguity term between the receiver and satellite on phase 

measurements. For the undifferenced ionosphere free linear combination, this term is not 

integer due to the non-integer nature of the combination coefficients, 𝜆𝑁̅̅ ̅̅ =
𝑓1

2𝜆1𝑁1−𝑓2
2𝜆2𝑁2

𝑓1
2−𝑓2

2   

and the lumped receiver and satellite biases, c is the speed of light in vacuum, and ρ is the 

true geometric range from the antenna phase center of the receiver at reception time to the 

antenna phase center of the satellite at transmission time. 

Between-satellite single-difference (BSSD) model is also used in PPP, which represents a 

difference between two-satellite ionosphere-free linear combinations. BSSD has the 

advantage of canceling out the receiver hardware delay, receiver clock error, and the nonzero 

initial carrier phase bias of the receiver oscillator. The ionosphere-free BSSD for satellites (k) 

and (l) can be written as: 
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3 3 3 3

kl kl sl sk k l k l kl

P p p
P c( dt dt ) c( B B ) T T e          2.3 

kl kl sl sk k l k l k l kl

3 Φ3 Φ3 Φ3
Φ =Δρ +c(dt -dt )+c(B -B )+λ(N -N )+T -T +e  2.4 

where 𝐵𝑝3
𝑘  and 𝐵𝑝3

𝑙  are the ionosphere-free differential code bias (DCB) and  𝐵𝛷3
𝑘  , 𝐵𝛷3

𝑙  are 

the ionosphere-free differential phase bias (DPB), respectively. Mathematical correlations are 

produced among the observations when BSSD is performed, which must be taken into 

account when forming the covariance matrix of the observations. 

Assuming that the number of visible satellites is ns, the relative weight matrix PBSSD can be 

described by (Elsobeiey and El-Rabbany 2014): 

2 2
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2 2 2
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1 1 1 1 1
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      

                                                                 2.5 

where σ is the standard deviation of  GPS  measurements. As can be seen in (3.5), the 

observation weight matrix for BSSD at a particular epoch is fully populated. 

2.3. GPS-PPP/MEMS-based IMU Tightly-coupled Implementation 

In this research, the tightly coupled (TC) architecture is implemented adopting an extended 

Kalman filter (EKF). GPS pseudorange, carrier phase and Doppler measurements as well as 

INS-derived observations are processed to produce estimates of the state vector including 

position, velocity and attitude. Final IGS precise orbital and clock products are used to 

correct for satellite orbit and clock errors (Kouba 2009). The UNB3 tropospheric model 

which consists of the Saastamoinen vertical propagation delay model and the Niell mapping 

function is used to account for the tropospheric dry components (Leandro et al. 2008). The 

troposphere wet component is considered as additional unknown in the error state vector. 
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Figure 3.1 shows the tightly coupled GPS PPP/INS implementation flowchart. Given the 

precise GPS Satellites ephemeris, the outputs of position 𝑃𝑛 and velocity 𝑉𝑛 from the INS 

mechanization are used to predict the pseudorange 𝑃𝐼𝑁𝑆, phase 𝛷𝐼𝑁𝑆and Doppler 

𝑃̇𝐼𝑁𝑆measurements. The corrected pseudorange𝑃𝐺𝑃𝑆, phase 𝛷𝐺𝑃𝑆and Doppler 𝑃̇𝐺𝑃𝑆 

measurements from GPS are differenced with the INS-predicted measurements. Then the 

integration filter directly processes those residuals, namely 𝛿𝑃, 𝛿𝛷 and δ𝑃̇, to estimate the 

INS error state vector. Finally, the obtained INS error estimates, i.e., the inertial sensor bias 

drifts 𝛿𝑏𝑎and𝛿𝑏𝑔, and scale factors 𝛿𝑆𝑎and 𝛿𝑆𝑔, are fed back to the INS mechanization to 

correct for the inertial sensor forces 𝑓𝑏and 𝑤𝑏 using the closed loop approach. The estimated 

error states, namely position errors𝛿𝑟𝑛, velocity errors 𝛿𝑣𝑛and attitude errors 𝛿𝜀𝑛 are directly 

applied to the INS-derived position 𝑃𝐼𝑁𝑆
𝑛 , velocity 𝑉𝐼𝑁𝑆

𝑛  and attitude 𝐴𝐼𝑁𝑆
𝑛  solutions.  

 

Figure 2. 1-Tightly coupled GPS-PPP/INS implementation. 

Based on the tightly coupled mechanism, the error state vector is defined and the process and 

measurement models are developed. 
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2.3.1. Process Model 

The basic state vector consists of the nine navigation parameter errors, namely three position 

errors, three velocity errors and three attitude errors. Additional states are added to the INS 

error model in order to account for the effects of the inertial sensor and GPS errors. The 

complete state vector consists of 24 states describing the nine navigation parameter errors, 

twelve inertial sensor errors, namely the bias drift and scale factor errors for accelerometers 

and gyros, and three errors unique to the GPS measurements, namely the troposphere wet 

delay and the receiver clock offset and drift. It should be pointed out that the receiver clock 

offset and drift are cancelled out when forming the BSSD ionosphere-free model. The 

complete state vector can be written as: 

, , , , , , ,T , ,          n n n
a g a g w off drix r v b b S S t t[ ]                                                      2.6 

where 𝛿𝑟𝑛 is a three-dimensional vector representing the positioning errors in latitude, 

longitude and altitude, 𝛿𝑣𝑛 is a three-dimensional vector representing the velocity errors in 

east, north and up, 𝛿𝜀𝑛 is a three-dimensional vector representing the attitude errors in roll, 

pitch and azimuth, 𝛿𝑏𝑎 is a three-dimensional vector representing the accelerometer biases 

drift in x, y and z, 𝛿𝑏𝑔 is a three-dimensional vector representing the gyro biases drift in x, y 

and z, 𝛿𝑆𝑎 is a three-dimensional vector representing the accelerometer  scale factors errors 

in x, y and z,  𝛿𝑆𝑔 is a three-dimensional vector representing the gyro scale factors errors in x, 

y and z. 𝑇𝑤is the troposphere wet delay, 𝛿𝑡𝑜𝑓𝑓 and 𝛿𝑡𝑑𝑟𝑖 are the GPS receiver clock offset and 

drift, respectively. 

The process model can be derived from the perturbations of the INS mechanization 

equations, which can be found, for example, in Jekeli (2001) and Noureldin et al. (2013). The 

process model considering a first order GM process for sensor errors can be represented 

through: 
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where 𝐹𝑟𝑟, 𝐹𝑟𝑣, 𝐹𝑟𝜀, 𝐹𝑣𝑟, 𝐹𝑣𝑣, 𝐹𝑣𝜀, 𝐹𝜀𝑟, 𝐹𝜀𝑣 and 𝐹𝜀𝜀 are system dynamics matrices, which 

represents the relationship between the position, velocity and attitude state errors, 𝑅𝑏
𝑛 is the 

transformation matrix from the body frame to the navigation frame, 𝐹𝑏 is a diagonal matrix 

of the accelerometers forces in body frame and 𝑊𝑏is a diagonal matrix of the gyro forces in 

body frame, w represents the system input white noise, G is the associated coefficient matrix 

and 1/  , where τ is the correlation time for the accelerometers and gyros for first order 

GM process. The full derivation and definition of F elements can be found in Jekeli (2001). 

2.3.2. Measurement Model 

The measurement model of the GPS/INS filter in the tightly coupled architecture has the 

typical form: 

z H x      2.9 

The measurement vector δz consists of the differences between the corrected GPS and the 

predicted INS measurements. The measurement vector when undifferenced ionosphere-free 

model is used can be defined 

 as: 

GPS INS
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GPS INS
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GPS INS
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H is the geometry matrix containing factors defined according to the GPS mathematical 

model used. The geometry matrix is arranged with columns corresponding to the states 

unique to inertial sensors errors such as 𝛿𝑏𝑎, 𝛿𝑏𝑔, 𝛿𝑆𝑎 and 𝛿𝑆𝑔, which are filled with zeroes. 

H can be defined as: 

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

i i

i i

i

A me

B me
H

C
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2.11 

where 𝐴𝑖 =
𝜕𝑃

𝜕𝑥
  , 𝐵𝑖 =

𝜕𝛷

𝜕𝑥
, 𝐶𝑖 =

𝜕𝑃̇

𝜕𝑉
  are the partial derivatives  of the pseudorange, phase and 

Doppler, respectively, with respect to the receiver position X and velocity V; 𝑚𝑒𝑖 =

1

𝑠𝑖𝑛(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)
 is the mapping function for the troposphere wet delay component. The error 

state vector δx is the same as that in (6) with additional states related to the float ambiguity 

parameters Ni, i.e. 

1 2

n n n

a g a g w off dri
x r v b b S S t t, , , , , , ,T , , , N , N , ....          [ ]                                                         2.12 

To form the BSSD measurement model, satellite single-difference matrix (SSDM) should be 

defined based on the selected reference satellite 
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  *BSSD un diffH SSDM H                                                                                                                                      2.14 

 *BSSD un diffZ SSDM Z                                                                                                        2.15 

 * * T
BSSD un diffR SSDM R SSDM                                                                                                         2.16 

where 𝐻𝐵𝑆𝑆𝐷 is the geometric BSSD matrix, 𝛿𝑍𝐵𝑆𝑆𝐷 is the BSSD observation vector and 

𝑅𝐵𝑆𝑆𝐷is the BSSD observation variance-covariance (VC) matrix considering the 

mathematical correlation. The error state vector for BSSD integrated system is defined as: 

 1 1 2[ ]n n n

a g a g w i i ix r , v , , b , b , S , S , T , N , N , ....                                                                    2.17 

where 𝑁1𝑖 and  𝑁2𝑖 are the float single differenced float ambiguity parameters. 

2.4. Trajectory Test and Result Analysis 

Real vehicular test was conducted to evaluate the performance of the developed integrated 

GPS PPP/MEMS-based IMU system. The vehicular test was carried out through in 

downtown Kingston, Ontario (Canada), which was designed to represent challenging 

situations for satellite navigation with actual frequent partial GPS outages of several seconds. 

NovAtel SPAN-CPT system and the Trimble R10 receiver were used to collect the data used 

in this work. The SPAN-CPT system consists of the NovAtel OEM4 receiver and a MEMS-

based IMU, which contains three MEMS-based accelerometers and three fiber optic gyros. 

Only the positioning and velocity performance are assessed in this work. Carrier phase-based 

differential GPS (DGPS) solution is used as a reference. In order to create this reference 

solution, a Trimble R7 receiver was setup at a nearby station with precisely known 

coordinates, which was used as a base station. The raw dual-frequency GPS pseudorange, 

carrier phase and Doppler measurements were collected at a 1 Hz rate, while the IMU raw 

data was logged at a rate of 100 Hz. The duration of the trajectory test was set for about 55 

minutes. The trajectory test area is shown in Figure 2.2 with the locations of simulated 
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outages, Figure 2.3 shows the equipment setup and Figure 2.4 shows the satellite availability 

during the observation time span. 

 

Figure 2. 2-Trajectory test with the locations of simulated GPS outages. 

 

Figure 2. 3-Equipment setup. 
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Figure 2. 4-Number of visible satellites during the test. 

In order to assess the results of our Ryerson PPP models, a comparison was made with 

existing software packages, namely NRCan's GPSPace software and NovAtel Inertial 

Explorer software. In both software packages, only undifferenced ionosphere-free 

observations are employed. The trajectory data are processed using the two software 

packages and their results are compared with our Ryerson undifferenced and BSSD 

ionosphere-free processing results.  Figures 2.5 through 2.8 show the positioning results from 

the various software packages. 
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Figure 2. 5-Undifferenced IF positioning errors from Ryerson model. 

 

Figure 2. 6-Undifferenced IF positioning errors from NRCan's GPSPace forward estimation. 

 

Figure 2. 7-Undifferenced IF positioning errors from NovAtel Inertial Explorer forward  

estimation. 
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Figure 2. 8-BSSD model Positioning errors from Ryerson model. 

As can be seen in Figures 3.5 through 3.8, decimeter-level positioning accuracy is achievable 

through all tested PPP software packages. However, it can be seen that the positioning results 

of the Ryerson PPP/INS model are better than those of existing software packages. It can also 

be seen that the positioning results of BSSD model are better than those of the undifferenced 

model. Table 2.1 summarizes the statistical analysis for each solution. 

Table 2. 1--Statistical analysis of positioning errors during full satellite availability. 

Software Ryerson (undifferenced mode)  NRCan's GPSPace -forward  

Positioning latitude longitude altitude latitude longitude altitude 

RMSE (m) 0.101 0.150 0.103 0.154 0.162 0.181 

Maximum error (m) 0.184 0.303 0.416 0.348 0.324 0.803 

Software IE-Forward Ryerson (BSSD mode) 

Positioning latitude longitude altitude latitude longitude altitude 

RMSE (m) 0.069 0.208 0.160 0.052 0.090 0.082 

Maximum error (m) 0.437 0.419 0.849 0.121 0.179 0.306 

 

As shown Table 2.1, comparing the values of the RMSE of each solution, it can be seen that 

the PPP solution is improved by 35, 7.5 and 43% in the latitude, longitude and altitude, 

respectively, when our Ryerson undifferenced model is used, in comparison with the CSRS 

forward PPP solution. When compared with Inertial Explorer PPP solution, it can be seen that 
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the PPP solution is improved by 27 and 35% in the longitude and altitude, respectively, 

through the Ryerson undifferenced model. However, for latitude, the RMSE is smaller 

through Inertial Explorer, while the maximum error is smaller through Ryerson undifferenced 

model. As can be seen, further improvement is obtained when the Ryerson BSSD IF PPP 

model is used. In comparison with Ryerson undifferenced PPP model, the RMSE values are 

improved by 48, 40 and 20% in the latitude, longitude and altitude components, respectively. 

In addition, the maximum error or the BSSD solution is smaller than that of the undifferenced 

mode. In comparison with the CSRS and Inertial Explorer solutions, Ryerson BSSD solution 

is superior in all components. 

Figures 2.9 and 2.10 show the velocity errors for the BSSD and undifferenced models. The 

Doppler measurements are corrected for the differential tropospheric delay. Final IGS orbital 

and satellite clock correction products are employed to estimate the precise satellites 

velocities. The results show that centimeter/sec accuracy level can be achieved in the velocity 

component using both models. It also can be seen that the results of BSSD and undifferenced 

mode, are comparable, which is expected since the receiver differential code bias which 

cancels by satellite observation differencing, does not exist in the Doppler measurements.  

 

Figure 2. 9--Velocity errors of BSSD model. 
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Figure 2. 10-Velocity errors of undifferenced model. 

To mimic the challenging positioning conditions in urban areas, including complete blockage 

of the GPS satellites, twelve simulated satellite outages of 60s, 30s and 10s were 

introduced. The outages were distributed along the trajectory test as shown in Figure 2 

including vehicle turns.  The data were processed using our Ryerson PPP GPS/INS software 

in the undifferenced and BSSD modes. Figures 2.11 through 2.16 show the positioning errors 

during the outages referenced to carrier-based DGPS solution with full satellite availability. 

As can be seen, both of the undifferenced and BSSD models produce similar positioning 

accuracy during the outages. In the 60-second GPS outage the maximum positioning error 

reached submeter level in most cases, while it reached a decimeter level in 10-seccond 

outage. Figures 2.17 and 2.18 show the average maximum positioning errors in latitude, 

longitude and altitude, respectively during the three simulated GPS outages for both BSSD 

and undifferenced ionosphere-free models. 
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Figure 2. 11-BSSD IF positioning errors with 60 sec GPS outages. 

 

Figure 2. 12-Undifferenced if positioning errors with 60 sec GPS outages. 

 

Figure 2. 13-BSSD IF positioning errors with 30 sec GPS outages. 
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Figure 2. 14-Undifferenced IF positioning errors with 30 sec GPS outages. 

 

Figure 2. 15-BSSD IF positioning errors with 10 sec GPS outages. 

 

Figure 2. 16-Undifferenced IF positioning errors with 10 sec GPS outages. 
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Figure 2. 17-BSSD IF average maximum errors during outages. 

 

Figure 2. 18-Undifferenced IF average maximum errors during outages. 

2.5. Conclusions  

We developed new algorithms for the integration of GPS PPP and MEMS-based inertial 

system. Both undifferenced and between-satellite single-difference ionosphere-free linear 

combinations of carrier phase and code measurements were considered. Tightly coupled 

mechanism was implemented and extended Kalman filter (EKF) technique was developed to 

merge the GPS and inertial measurements. The performance of the newly developed models 

was analyzed using a real test situation. The positioning results of the integrated system 

showed that decimeter-level accuracy is achievable while the velocity results showed that 
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centimeter/sec-level accuracy is possible. Better positioning accuracy was obtained with 

BSSD IF model, in comparison with the undifferenced IF model. During the GPS outages, 

the integrated system showed submeter-level accuracy in most cases when a 60-second 

outage was introduced. However, the positioning accuracy was improved to a few decimeter 

and decimeter-level accuracy when 30- and 10-second GPS outages were introduced, 

respectively. Comparable results were obtained from both BSSD and undifferenced models 

under GPS outages. 
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3. Integration of GPS Precise Point Positioning and MEMS-based INS using 

Unscented Particle filter 

© 2015 by the authors; licensee MDPI, Basel, Switzerland 

 

In this chapter, tightly-coupled integration algorithms for PPP GPS/MEMS-based inertial 

systems with nonlinear estimation techniques are developed. An unscented particle filter, 

which integrates both unscented Kalman filter and particle filter is developed to merge the 

GPS observations and inertial sensor records. The results of the developed estimation filter 

are compared with those of traditional estimation filters such as the standard EKF, UKF and 

PF. The performance of the newly developed estimation filter is examined both when GPS is 

available and during GPS outages. It should be pointed that the trajectory data used to 

validate the developed algorithms is the same as the one used in Chapter two. 

 

The following manuscript was originally published as: 

 

Abd Rabbou, M., and El-Rabbany, A. (2015). Integration of GPS Precise Point Positioning 

and MEMS-Based INS Using Unscented Particle Filter. Sensors, 15(4), 7228-7245. 

 

Modifications to the original manuscript were made only for proper identification of sections, 

figures and tables to assure uniformity within this dissertation. 

 

 

 

 



34 

 

Integration of GPS Precise Point Positioning and MEMS-based INS using Unscented 

Particle filter 

Abstract  

Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) 

integrated system involves nonlinear motion state and measurement models. However, the 

extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to 

solution divergence. This is usually encountered during GPS outages, when low-cost micro-

electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation 

system performance, alternatives to the standard EKF should be considered. Particle filtering 

(PF) is commonly considered as a nonlinear estimation technique to accommodate severe 

MEMS inertial sensor biases and noise behavior. However, the computation burden of PF 

limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is 

utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of 

GPS precise point positioning and MEMS-based inertial systems. The proposed filter is 

examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly 

coupled mechanization is adopted, which is developed in the raw GPS and INS measurement 

domain. Undifferenced ionosphere-free linear combinations of pseudorange and carrier-phase 

measurements are used for PPP. The performance of the UPF is analyzed using a real test 

scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number 

of samples needed to produce an accurate solution, in comparison with the traditional PF, 

which in turn reduces the processing time. In addition, UPF enhances the positioning 

accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters 

produce comparable results when the GPS measurement updates are available.  

Keywords: GPS, PPP, INS, EKF, UKF, UPF, Tightly coupled 
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3.1. Introduction 

 

Traditionally, differential GPS with tactical or high-end inertial sensors are used in Global 

Positioning System (GPS) and Inertial Navigation System (INS) integration for precise 

navigation applications (El-Sheimy et al. 1995, Brzezinska et al. 1998, Petovello 2004 and 

Nassar 2005).  This is mainly due to the inherited high accuracy of differential GPS in 

comparison with standalone GPS mode. Unfortunately, this requires a relatively nearby base 

station, which limits the navigation range and increases the cost and complexity of the 

system. Precise point positioning (PPP) technique is capable of providing decimeter 

positioning accuracy without the need for a base receiver (Zumberge et al. 1997). PPP has 

been the focus of a number of research groups in the last two decades (see for example, 

Kouba and Heroux 2001, Gao and Chen, 2004, Collins et al., 2010). To speed up the PPP 

solution convergence time, a number of PPP ambiguity resolution techniques have been 

developed (Ge et al, 2008, Geng et al., 2012 and Shi et al., 2014). PPP has been used in a 

number of applications, including precise surveying, disaster monitoring, offshore 

exploration, and others (Geng et al., 2013, Xu et al., 2013 and Abd Rabbou and El-Rabbany, 

2015). On the inertial side, recent advances in micro-electro-mechanical sensors (MEMS) 

technology enabled the development of a generation of low-cost inertial sensors. MEMS 

sensors are characterized by their small size, light weight and low cost, in comparison with 

high-end inertial sensors. However, MEMS sensors have generally poorer performance 

compared with high-end inertial navigation unit (IMU) due to the significantly higher biases 

and errors affecting these low-cost inertial sensors.  

Commonly, the extended Kalman filter (EKF) is considered as the estimation filter for 

GPS/INS integration (e.g,, Petovello 2004, Nassar 2005 and Abd Rabbou and El-Rabbany 

2014).  In EKF, the nonlinear system and observation models are linearized around the 

updated dynamic navigation parameters using the first-order Taylor series expansion under 
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the assumption that the noise is Gaussian. However, as a result of neglecting higher order 

terms, EKF might fail to produce a reliable estimation solution, especially during GPS 

outages. This is particularly the case when low-cost MEMS-based inertial measurement units 

(IMU) are used.  The iterated extended Kalman filter (IEKF) was considered by a number of 

researchers, e.g., Teunissen (1991) and Steffen (2008), which attempts to improve the linear 

approximation of the observation model through iterative re-linearization. Unfortunately, the 

IEKF does not overcome the convergence problem completely.  

 The unscented Kalman filter (UKF), on the other hand, was introduced by Julier et al. (1995) 

as a linear regression estimation filter. UKF propagates a deterministically a fixed set of 

sigma points with appropriate weights through the non-linear motion and observation models 

to capture the system a posteriori mean and covariance estimates (Bergman 2001).  However, 

similar to EKF, the algorithm is still dealing with the assumption of Gaussian distribution. In 

contrast to linearization filters, Particle filtering (PF) avoids the linearization of the system 

models. It rather obtains an approximate estimation solution for the nonlinear model.  In 

addition, PF can accommodate non-Gaussian distributions noise. As a result, it can be 

considered as a non-parametric estimation method for non-linear/non-Gaussian applications. 

A drawback of the PF, however, is that it is featured by a large computational cost, which 

represents the main limitation in practical use. Nevertheless, with the advances in computer 

technology, a number of researchers successfully used it for GPS/INS integration (e.g., Yi 

and Brzezinska 2006; Giremus et al. 2005; Caron et al. 2007; Georgy et al. 2010). 

To overcome the linearization and computational cost problems, recent research focused on 

fusing the PF with either of the EKF or UKF to form the extended particle filter (EPF) or the 

unscented particle filter (UPF), respectively (Haug, 2005; Simon, 2006). Haug (2005) used 

EKF or UKF to produce a posteriori mean and covariance estimates, which are then 
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employed to produce the PF importance density function for particle generation. Then, the 

normalized importance weights of the particles are calculated to refine the system posteriori 

estimates. Although, this technique significantly reduces the number of particles and 

processing time compared with traditional PF, it confines the PF importance density function 

to Gaussian distribution.  As such, the expected enhancement can be considered limited 

(Zhou et al. 2010). According to Simon (2006), a bank of EKFs or UKFs can used for each 

particle combined with the likelihood function to derive the system a posteriori estimates.  

This technique can significantly reduce the number of needed particles while reserving the 

non-Gaussian natural of the system noise.  

In this research, a UPF is developed, based on the approach proposed by Simon (2006), to 

merge the GPS measurements, through undifferenced PPP technique and the inertial sensor 

measurements. All of the available GPS observations, including pseudorange, carrier-phase 

and corrected Doppler observations, are used. The performance of the developed filter is 

compared with that of the traditional filters, including the standard EKF, UKF and PF, both 

when GPS is available and when there is a complete outage.  The results show that during the 

GPS availability the estimation filters present comparable positioning accuracy. However, 

during GPS outages the UPF is showing to give superior accuracy compared with the 

tradition estimating filters. The UPF enhances the positioning accuracy by average 15% 

compared with EKF estimation accuracy. In addition, the number of particles needed is 

decreased significantly compared with the traditional PF which reduce the computational cost 

of the Monte Carlo based estimation filtering. 

3.2. GPS PPP/MEMS measurement and motion models 

Tightly coupled (TC) architecture is implemented in this research, adopting a central filter to 

process the GPS raw measurements (pseudorange, carrier-phase and Doppler) and the IMU 
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measurements to produce estimates of the state vector including position, velocity and 

attitude. The mathematical model of the inertial navigation system is commonly described in 

the framework of linear dynamic systems. The dynamic behavior of such systems can be 

described using a state-space representation. For this purpose, a system of nonlinear first-

order differential equations can be described as (Jekeli 2001): 
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                                                                                        3.1 

where, rn is the position vector, latitude, longitude and altitude; Vn is the velocity vector in 

the East, North and Up (ENU) reference frame, V̇n is the kinematic acceleration vector in the 

ENU reference frame;  Ωen
n . Vn represents the effect of the motion of the ENU frame with 

respect to the ECEF frame; 2Ωie
n . Vn is the Coriolis acceleration vector; gn is the gravity 

vector, including the gravitation term and the centripetal term related to the Earth rotation; 

and f b is the specific force vector in the body frame, which is measured by the 

accelerometers. The matrix  Ωie
n  is the skew-symmetric matrix of rotation rate vector of the 

Earth, which can be expressed in the ENU frame as: 
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3.2 

The matrix  Ωen
n   is the skew-symmetric matrix of the rotation rate vector of the ENU frame 

with respect to ECEF frame, expressed in the ENU frame as:  
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                                     3.3 

The matrix Ωib
b  is the skew-symmetric matrix of the rotation rate vector of the body frame 

with respect to the ECI frame ωib
b , expressed in the body reference, which is measured by the 

gyros. The matrix Ωin
b  is the skew-symmetric matrix of the rotation rate of the navigation 

frame with respect to inertial frame ωin
b  expressed in the body frame, which is computed 

combining  ωie
n  and  ωen

n  transforming the result in the body frame as follows: 

b b n n
in n ie enR ( )                                              3.4 

The bias and scale factor drifts are modeled as a first-order Gauss-Markov process, which can 

be formed as follows: 
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where the subscript “i” indicates the axis;  𝜏𝑎 and 𝜏𝑔 are the correlation times for the 

accelerometers and gyros, respectively; and 𝑤𝑎 and  𝑤𝑔 are the Gauss-Markov process 

driving noises, whose spectral densities are  𝑞𝑎  and  𝑞𝑔. The clock errors unique to the GPS 

measurements, including the clock offset and drift are modeled by (Brown and Hwang 1997):  

offset drift offset( c t ) ( c t ) w                    3.9 
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drift drift( c t ) w                 3.10 

where 𝑤𝑜𝑓𝑓𝑠𝑒𝑡 and  𝑤𝑑𝑟𝑖𝑓𝑡 are the clock offset and drift driving noise with spectral 

density 𝑞𝑜𝑓𝑓𝑠𝑒𝑡 and  𝑞𝑑𝑟𝑖𝑓𝑡, respectively. The measurement model of the GPS/INS filter in the 

TC architecture has the typical form: 

k ky h( x ) w                 3.11 

where 𝑦𝑘 is the corrected undifferenced ionosphere-free GPS measurements; h(𝑥𝑘) is the 

nonlinear measurement model which relates the stated vector x with the observation vector y 

and w is the Gaussian white noise with zero mean  and covariance matrix Py.  

The mathematical model for the undifferenced ionosphere-free combination of code and 

carrier phase measurements can be written as: 
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where P1 and P2 are GNSS pseudorange measurements on L1 and L2, respectively; Φ1 and 

Φ2 are the GNSS carrier phase measurements on L1 and L2, respectively; dtr and dts are the 

clock errors for receiver and satellite, respectively; dr and ds are frequency-dependent code 

hardware delay for receiver and satellite, respectively; δr and δs are frequency-dependent 

carrier phase hardware delay for receiver and satellite, respectively; e, ε are relevant system 

noise and un-modeled residual errors; and λN ̅̅ ̅̅  is the ambiguity term for phase measurements. 

For the undifferenced ionosphere free linear combination, this term is not integer due to the 

non-integer nature of the combination coefficients, λN̅̅̅̅ =
f1
2λ1N1−f2

2λ2N2

f1
2−f2

2 , where N1and N2 are 

the L1 and L2 non-integer ambiguity parameters, including the initial phase biases at the 
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satellite and the receiver, respectively; λ1 and λ2 are the wavelengths of the L1 and L2 carrier 

frequencies, respectively; c is the speed of light in vacuum; T is the tropospheric delay 

component; ρ is the true geometric range from the antenna phase center of the receiver at 

reception time to the antenna phase center of the satellite at transmission time. A and B are 

frequency dependent factors A= 
𝑓1

2

𝑓1
2−𝑓2

2 and B = 
𝑓2

2

𝑓1
2−𝑓2

2.  

With the availability of the final IGS orbital products corrected for the effect of earth rotation 

during signal transit, the outputs of position and velocity from the INS mechanization are 

used to predict the pseudorange, phase and Doppler measurements through the nonlinear 

observation equations. The UNB3 tropospheric model, consisting of the Saastamoinen 

vertical propagation delay model and Niell mapping function, is used to account for the 

tropospheric error (Leandro et al.  2008). The effects of ocean loading, Earth tide, carrier-

phase windup, sagnac, relativity, and satellite antenna phase-center variations are accounted 

for using existing models (Kouba 2009).  In addition, the satellite clock error is accounted for 

using the final IGS clock products. Considering the above corrections, the corrected 

pseudorange, carrier phase and Doppler measurements from GPS as well as the INS-

predicted measurements, are processed by the integration filter to estimate the INS state 

vector. Finally, the obtained INS state estimates are fed back to the INS mechanization using 

the closed loop approach. The architecture of the proposed tightly coupled integrated system 

is shown in Figure 3.1.   
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Figure 3. 1-flow chart of the proposed tightly coupled GPS PPP/MEMS integrated system. 

3.3. Estimation Filters 

Nonlinear estimation filtering techniques are employed to estimate the state vector of the 

proposed integrated GPS PPP/MEMS-based inertial system. In this section, the algorithms of 

the UKF and the PF are first briefly described. Then the proposed unscented particle filter 

(UPF) is introduced. 

3.3.1. Unscented Kalman Filter (UKF)  

In UKF, number of points with appropriate weights called sigma points are deterministically 

selected to simulate the system probability density function under the assumption of Gaussian 

distribution. According to Bergman (2001), the sigma points can capture the mean and 

covariance of a random vector up to the third order accuracy. Comparing with the traditional 

EKF, in which the higher order terms in Tylor expansion series are neglected, the UKF 

should provide superior performance in simulating the Gaussian distribution and the 

nonlinearity behavior of the systems. The sigma points with zero mean can be generated 

based on a given squared dimension covariance matrix. As our distribution has a desired 

mean𝑥̅, a symmetric of 2n points is generated around the mean state vector. The generated 
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points are propagated through the motion model yielding the predicted mean and covariance. 

Finally, the updated mean and covariance are estimated based on the GPS observations 

updating. The unscented Kalman filter can be defined according to Bergman (2001) as 

follows: 

1. Initialize with (k=0); 

0 0x E[ x ]  
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Where i=1:n, are the sigma points and n is the dimension of the state 

vector. The parameter λ is a scaling parameter. 

3. Motion model update step; 
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where 𝑥̅0 and 𝑃0 are the initial state vector and variance-covariance matrix, respectively; 𝑥𝑖 

and 𝑍𝑖 are the state and observation vectors for the corresponding sigma points; f and h are 

the nonlinear motion and observation models, respectively; 𝑥𝑘,𝑘−1, 𝑍𝑘,𝑘−1and  𝑃𝑥𝑘,𝑘−1
 are the 

time prediction state vector, observation vector and variance-covariance matrix, 
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respectively;  𝑥𝑘, and  𝑃𝑥𝑘
 are the time update state vector and variance-covariance matrix, 

respectively. 

3.3.2. Particle Filter PF 

In contrast with the deterministic sigma points which are simulating Gaussian probability 

assumption in UKF, PF uses Monte Carlo simulation technique to approximate the non-

Gaussian probability distribution through a set of weighted samples called particles around 

the mean state vector 𝑥̅ (Doucet et al. 2000). The simulated particles are propagated through 

the nonlinear motion model yielding the prior probabilistic density which works as an 

importance density function. Then, the observation probability density function which is 

obtained from passes the predicted particles through the nonlinear observation model is used 

to update the importance density particles. Finally, a resampling step is applied to remove the 

samples with low weights and the posterior probability is redistributed according to the new 

selected weights. The particles and the corresponding weights prediction and updating are 

described as follows: 

1. Initialize with (k=0) 

0 0 0

1ix x , w
N

 
 

For i =1 …N, the filter particles are drawn for 𝐱̅𝟎
𝐢  from prior P(𝐱𝟎); where, 

𝐱̅𝟎 and P(𝐱𝟎) are the initial state vector and variance-covariance matrix. 

2. Importance sampling (k=1: ∞) 

The prior probabilistic motion density is used as an importance density by 

passing the state vector samples through the nonlinear mechanization 

equations 

1 0 1 1 1
i
k ,k t :k :kx q(x : x , y )    

3. Measurement updating 

In the measurements updating step, the time updating samples are passing 

through the nonlinear measurements system to create the observation 

probability density; 

1 1 1 1
i i

k ,k :k :k(Z : z ) P( y : x ) 
 

For i =1 …N, the importance weight is evaluated as follow; 

1 1 1
1

0 1 1 1

i i i
i i k :k t k
k k

k :k :k

p( y : x )p( x : x )
w w *

q(x : x , y )

 


 



 
1 1 10i i

t k k kp( x : x ) Ν(f(x , ), Q )    
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Normalize the importance weights; 

1

1

N
i i i
k k k

i

w w [ w ]



 
 

Estimation the mean state vector; 

11

N i i
k k k ,ki

x w x 
   

4. Resampling step 

In this step, the samples with high weights are selected and redistributed. 

The multinomial distribution resampling technique is applied as pointed out 

by Carpenter et al. (1999). 

 

3.3.3. Unscented Particle Filter (UPF) 

In addition to the computational cost of employing the traditional PF due to the large samples 

needed to fit the posterior probability distribution, the major drawbacks of using the 

traditional PF, is the use of the prior probabilistic motion density as an importance density 

function. The motion importance density may fail to move the weighted particles toward the 

high likelihood regions due to the high drift of low-cost inertial sensors, especially during 

GPS outages. To overcome these limitations, bank of UKFs (sigma points generating) is used 

for each particle to generate the importance density functions.  The UKF based importance 

density is leading to move the particles 𝑥𝑖 towards the high likelihood regions by producing 

new particles 𝑥̅𝑖 with included knowledge about the latest observation. The importance 

sampling step can be modeled as stated below (Simon 2006). 

1. For each particle i=1…N, a set of sigma points are defined for j=1…n as 

follow: 

1 11

1

2

i , j i i i , j
k kkx x ( n )P , w

( n )



     

  

1 11

1

2

i , j n i i i , j
k kkx x ( n )P , w

( n )





     

  
2. Sample propagation for each sigma point (time update)  

2

1 1 1 1

0

n
i, j i , j i , j i , ji , j
k ,k k ,k k ,k k ,k

j

z h( x ), z w y   



    

2

1 1

0

n
i, j i , ji , j
k ,k k ,k

j

x w x 



 
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2
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2

1 1 1 11

0

n
i, j i , j i i T
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j

p w (x x )(x x )   



  
 

 
3. Sample update for each sigma point (measurement update) 

1
1 1

i, j i , ji xz
k k,k zk,kK p P 

   

1 1
i, ji i

k k ,k k k k ,kx x K (z z )   
 

1
i, ji i T

k k,k k kzkP P K P K 
 

0 1 1 1
i
k t :k :kx q(x : x , z )   

 

3.4. Trajectory Test and Result Analysis 

A vehicular test was conducted in downtown Kingston, Ontario, to evaluate the performance 

of the developed integrated GPS-PPP/MEMS-based inertial system. The equipment used 

comprises the NovAtel SPAN-CPT system and the Trimble R10 GNSS receiver. The SPAN-

CPT system consists of NovAtel OEM4 GPS receiver and a MEMS IMU containing three 

MEMS-based accelerometers and three fiber optic gyros. Differential carrier phase-based 

GPS/MEMS-based INS solution was obtained to provide the reference solution. In order to 

create this reference solution, a Trimble R7 GNSS receiver was setup at a point with 

precisely known coordinates, which was used as a base station. Dual-frequency raw GPS 

pseudorange, carrier phase and Doppler measurements were logged at a 1 Hz rate, while the 

IMU raw data were logged at a 100 Hz rate. The duration of the trajectory test was 

approximately 55 minutes. Figure 3.2 shows the trajectory test area. 

2

1 11 1 1

0

n
i, j i , j i , jxz i, j i T
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p w (x x )(z z )   



  
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Figure 3. 2-Vehicle test trajectory and simulated complete GPS outages. 

Figure 3.3 shows the positioning solution of the newly developed integrated system for 

latitude, longitude and altitude, which is compared with the reference solution. As can be 

seen, all filters can achieve decimeter-level positioning accuracy when no GPS outages are 

inserted. The results obtained by the various filters agree to the few-centimeter level, which 

indicate that the effect of nonlinearity on the positioning accuracy is marginal. This means 

that the use of EKF, which is relatively easier to implement, would be advantageous from the 

estimation cost point of view.  
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Figure 3. 3-Positioning errors for various filters, with no GPS outages inserted. a. Positioning 

errors in latitude; b. Positioning errors in longitude; c. Positioning errors in altitude. 

Figure 3.4 shows the velocity errors in east, north and up directions, respectively, using EKF 

as a central filter. In comparison with the differential mode, the results show that 

centimeter/sec-level accuracy can be achieved using a single receiver. Figure 3.5 shows that 

the difference between the east component of the velocity solutions obtained through PF and 
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UKF, respectively, and that of EKF. As can be seen, the solutions agree to millimeter/sec 

level. Similar results are obtained for the other two components.     

 

Figure 3. 4-Velocity estimation errors. 

 

Figure 3. 5-Difference between UKF,PF and UPF east velocity estimation results and the 

altitude estimated using EKF. 

For attitude determination, because of the absence of external aid in our case, its 

accuracy depends mainly on the velocity estimation. This is especially correct for the roll and 

pitch components because of their strong coupling with the horizontal velocities in east and 

north directions. The accuracy of the estimated azimuth depends mainly on the quality of the 

gyros used. Figure 3.6 shows the results of the attitude components, differenced from the 

differential-based solution. As can be seen, both solutions are comparable to a high degree of 

accuracy. 
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Figure 3. 6-Attitude estimation errors using EKF referenced to differential mode based 

integrated system. 

 

Figure 3. 7-Difference between UKF,PF and UPF roll estimation results and the estimated 

roll using EKF. 

The same criteria are applied for the estimation of the attitude using nonlinear filters. Figure 

3.7 compares the results of nonlinear filter with those of EKF. Similar to the velocity 

solution, all three filters provide comparable attitude results. As a result, based on the 

positioning, velocities and attitude results during the GPS observations availability, we can 

conclude that the contribution of using cost computations nonlinear filters such as PF and 

UPF is not significant and it has marginal effect on navigation parameters estimation. In other 

words, EKF is extremely significant and more practical considering the simplicity of the filter 
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implementations, for merge the GPS observations and MEMS reading during the availability 

of GPS observations.   

However, the benefit of using UPF compared to PF is reducing the number of particles 

needed to capture high accurate estimation. Both UPF speeded up the navigation parameters 

estimation with small number of particles needed. Figures 3.8 and 3.9 show the estimation of 

the pitch angle as an example related to the number of samples needed for PF, UPF. While 

500 particles needed for PF to detect the best value for the parameter, the UPF reduced the 

number of particles to only 100 particles. For UPF, increasing the number of particles is not 

significantly enhances the estimation accuracy.  

 

Figure 3. 8-Pitch angle based on PF estimation function of number of samples. 
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Figure 3. 9- Pitch angle based on UPF estimation function of UPF number of samples 

To simulate the challenging conditions of the trajectory trip including high and slow speeds, 

twelve simulated GPS outages of 60 seconds are introduced. The locations of the outages are 

shown in figure 3.2. Figure 3.10 shows the positioning errors during GPS outages 2, 5 and 6 

as examples. It can be clearly note that meter-level positioning accuracy can be fulfilled for 

all estimation filters.    

   

(a) (b) (c) 

   

(d) (e) (f) 
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(g) (h) (i) 

Figure 3. 10- Positioning accuracy during GPS outages for latitude, longitude, and altitude. 

Outage 2 (a, d, g); outage 5 (b, e, h) and outage 6 (c, f, i). 

It can be also seen that the UPF slightly enhanced the positioning accuracy during the GPS 

outages compared with the tradition estimation filters. In addition, the nonlinear estimation 

filters failed to present significant improvement in the positioning accuracy compared with 

the traditional EKF. This is essentially attributed to the use of linear stochastic models, i.e. 

first order Gaussian Markov process, for all filters to present a unified comparison between 

the linear and nonlinear estimation filters. In addition, we used fiber optic gyros, as opposed 

to MEMS-based gyros, which exhibit significantly better behavior. 

Figure 3.11 shows the average of maximum positioning errors referenced to the DGPS 

solution during 60s GPS outages. It can be notes that the UPF enhances the positioning 

accuracy during the GPS outages compared with the EKF by 14%, 13% and 15% in latitude, 

longitude and altitude, respectively. However, compared with PF the improvements are 6%, 

5% and 7% in latitude, longitude and altitude, respectively. It can also be seen that both UKF 

and EKF present comparable positioning accuracy for the three positioning directions. 
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Figure 3. 11-The average of maximum error for different estimation filters during GPS 

outages. 

3.5. Conclusions 

This paper examined the performance of UPF and compared its results with those of UKF, 

traditional nonlinear PF, and the EKF for tightly-coupled PPP GPS/MEMS-based INS 

integration. A field trial was conducted to evaluate the performance of the developed system. 

It has been shown that all estimation filters obtain comparable results in positioning, velocity 

and attitude, as long as no GPS outages are encountered. However, in comparison with the 

traditional PF, the use of UPF significantly reduces the number of particles needed to obtain 

an accurate solution, which speeds up the estimation of navigation parameters. When a 

complete GPS outage is encountered, the use of UPF enhances the positioning accuracy by 

up to average 15%, in comparison with other estimation filters. 
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4. Precise Point Positioning using Multi-Constellation GNSS Observations for 

Kinematic Applications 

© 2015 by the authors; licensee De Gruyter, Berlin, German  

In this chapter, multi-constellation GNSS PPP algorithms for precise kinematic applications, 

which combine observations from three GNSS systems, namely GPS, GLONASS and 

Galileo are developed. Both undifferenced and between-satellite single difference GNSS PPP 

techniques are developed and compared. The inter-system biases between the GPS and other 

GNSS systems are also studied.  
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Precise Point Positioning using Multi-Constellation GNSS Observations for Kinematic 

Applications 

Abstract 

Traditional precise point positioning (PPP) is commonly based on undifferenced ionosphere-

free linear combination of Global Positioning System (GPS) observations. Unfortunately, for 

kinematic applications, GPS often experiences poor satellite visibility or weak satellite 

geometry in urban areas. To overcome this limitation, we developed a PPP model, which 

combines the observations of three global navigation satellite systems (GNSS), namely GPS, 

GLONASS and Galileo. Both undifferenced and between-satellite single-difference (BSSD) 

ionosphere-free linear combinations of pseudorange and carrier phase GNSS measurements 

are processed. The performance of the combined GNSS PPP solution is compared with the 

GPS-only PPP solution using a real test scenario in downtown Kingston, Ontario. Inter-

system biases between GPS and the other two systems are also studied and obtained as a 

byproduct of the PPP solution. It is shown that the addition of GLONASS observations 

improves the kinematic PPP solution accuracy in comparison with that of GPS-only solution. 

However, the contribution of adding Galileo observations is not significant due to the limited 

number of Galileo satellites launched up to date. In addition, BSSD solution is found to be 

superior to that of traditional undifferenced model. 

Keywords: GNSS, GPS, GLONASS, Galileo, PPP, Inter-system bias 

4.1. Introduction 

Precise point positioning (PPP) utilizes observations from a single receiver and can obtain 

positioning accuracy comparable to that of differential positioning. Depending on the quality 

of observations, satellite availability and geometry, and resolution of integer ambiguity 

parameters, centimeter and decimeter level positioning accuracy can be achieved for static 
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and kinematic applications, respectively. Unfortunately, GPS PPP accuracy and solution 

availability are severely degraded in urban canyons and downtown areas as a result of limited 

satellite availability and poor geometry. This limitation, however, can be overcome through 

the addition of more observations from other GNSS systems, such as GLONASS and Galileo.  

With the availability of multi-constellation precise orbit and clock products from the new IGS 

project known as IGS-MGEX (Montenbruck et al.  2014), GNSS PPP, which combines GPS, 

GLONASS, and Galileo observations, becomes feasible. Previous PPP studies combined 

GPS and GLONASS observations using undifferenced ionosphere-free linear combination. 

The results of those studies showed that, when a limited number of GPS satellites were 

visible, the accuracy of kinematic PPP could be improved through the addition of GLONASS 

observations (Cai and Gao 2007 and Choy et al. 2013). However, when enough GPS 

satellites with good geometry were available, the addition of GLONASS satellites had a 

marginal effect on the daily static PPP. 

A number of researchers investigated the contribution of adding Galileo observations on the 

GPS/Galileo ambiguity resolution using simulated Galileo observations (e.g., Zhang et al. 

2003 and Julien et al. 2004). Following the launch of the two experimental Galileo In-Orbit 

Validation Element (GIOVE) satellites, namely GIOVE-A in December 2005 and GIOVE-B 

in April 2008, other researchers investigated the combinations between GPS and GIOVE 

observations (e.g., Píriz et al. 2008; Montenbruck et al. 2011; and Steigenberger et al. 2011). 

The main focus of those studies was on the determination of the GPS/GIOVE time offset 

(GGTO) and inter-system bias (ISB) between the two satellite systems. Due to the limited 

number of Galileo satellites, the expected contribution of adding Galileo satellites on the 

positioning solution was marginal. More recently, four in-orbit validation (IOV) Galileo 

satellites were launched on October 21, 2011 and October 12, 2012, respectively, which 
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allowed for satellite positioning using Galileo-only signals. On August 22, 2014, the first two 

Galileo final operational capability (FOC) satellites were launched. Unfortunately, however, 

due to a launch problem the two satellites were inserted into the wrong orbits. 

In this paper, a PPP model is developed, which combines the observations of GPS, 

GLONASS and Galileo systems, for kinematic applications. Both undifferenced and BSSD 

ionosphere-free linear combinations of pseudorange and carrier phase GNSS measurements 

are processed using precise clock and orbital products obtained from the multi-GNSS 

experiment MGEX (Montenbruck et al.  2014). However, because the unavailability of 

GLONASS satellite clock corrections from the IGS-MGEX on the test day, IGS GLONASS 

satellite clock corrections are used to account for GLONASS satellite clock errors. The 

performance of the developed PPP model is assessed using a kinematic dataset, which was 

collected in downtown Kingston, Ontario. It is shown that the positioning accuracy is 

improved when the observations of the three constellations are combined. In addition, the 

positioning accuracy of BSSD IF model is superior to that of the traditional undifferenced 

model. 

4.2. Multi-constellation GNSS PPP Mathematical Model 

In this research, both undifferenced and between-satellite single difference ionosphere-free 

models are considered. The general ionosphere-free pseudorange and carrier-phase 

observation equations for a GNSS receiver r and a satellite s can be written as (Hofmann-

Wellenhof et. al. 2008): 

2 2

3 2 2

i i j j s si sj
r ri rj

i j

f P f P
P = =ρ +cdt -cdt +T+c(Ad -Bd ) c(Ad -Bd )+e

f f





 4.1 
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2 2

2 2
i i j j s si sj

3 r ri rj

i j

f Φ -f Φ
Φ = =ρ +cdt -cdt +T+c(A -B ) c(A -B )+( N )+

f f
     


 4.2 

where i and j refer to the frequencies used in forming the ionosphere-free linear combination; 

𝑃𝑖 and 𝑃𝑗 are pseudorange measurements on Li and Lj, respectively; 𝛷𝑖 and 𝛷𝑗 are the carrier 

phase on Li and Lj, respectively; 𝑑𝑡𝑟 and 𝑑𝑡𝑠 are the receiver and satellite clock errors, 

respectively; 𝑑𝑟 and 𝑑𝑠 are frequency-dependent code hardware delay for receiver and 

satellite, respectively; 𝛿𝑟 and 𝛿𝑠 are frequency-dependent carrier phase hardware delay for 

receiver and satellite, respectively; e, ε  are relevant system noise and un-modeled residual 

errors; and 𝜆𝑁 ̅̅ ̅̅̅ is ionosphere-free combination of the ambiguity term for phase 

measurements. For the undifferenced ionosphere free linear combination, this term is not 

integer due to the non-integer nature of the combination coefficients, 𝜆𝑁̅̅ ̅̅ =
𝑓𝑖

2𝜆𝑖𝑁𝑖−𝑓𝑗
2𝜆𝑗𝑁𝑗

𝑓𝑖
2−𝑓𝑗

2 , 

where 𝑁𝑖and 𝑁𝑗 are the 𝐿𝑖 and 𝐿𝑗 non-integer ambiguity parameters, including the initial 

phase biases at the satellite and the receiver, respectively; 𝜆𝑖 and 𝜆𝑗 are the wavelengths of the 

𝐿𝑖 and 𝐿𝑗 carrier frequencies, respectively; c is the speed of light in vacuum; T is the 

tropospheric delay component; ρ is the true geometric range from the antenna phase center of 

the receiver at reception time to the antenna phase center of the satellite at transmission time. 

A and B are frequency dependent factors A= 
𝑓𝑖

2

𝑓𝑖
2−𝑓𝑖

2 and B = 
𝑓𝑗

2

𝑓𝑖
2−𝑓𝑗

2. Using Equations (1) and (2) 

and taking the GPS time as the common reference time for all receiver measurements, the 

general ionosphere-free linear combinations of GPS, GLONASS and Galileo observations 

can be written as: 

1 2
3 2

s s s
G G r G G G r1 G r G G GP =ρ  +cdt -cdt +T +c[A d -B d ]-c[A d -B d ]+e   4.3  

1 5
3 5

s s s
E E r E E E r1 E r E E off EP =ρ  +cdt -cdt +T +c[A d -B d ]-c[A d -B d ]+GE e  4.4  

1 2
3 2

s s s
R R r R R R r1 R r R R off RP =ρ  +cdt -cdt +T +c[A d -B d ]-c[A d -B d ]+GR +e  4.5  

1 2

G

s s s
3G G r G G G r1 G r2 G G GΦ =ρ  +cdt -cdt +T +c[A -B ]-c[A -B ]+( N ) +       4.6  
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1 5
3 5

s s s
E E r E E E r1 E r E E E off E EΦ =ρ  +cdt -cdt +T +c[A -B ] -c[A -B ]+GE ( N ) +       4.7  

1 2
3 2

s s s
R R r R R R r1 R r R R off R RΦ =ρ  +cdt -cdt +T +c[A -B ]-c[A -B ]+GR +( N ) +                              4.8 

where G, R and E refer to GPS, GLONASS and Galileo systems, respectively; 𝐺𝑅𝑜𝑓𝑓 and 

𝐺𝐸𝑜𝑓𝑓 are the GPS/GLONASS and GPS/Galileo system offsets, respectively, which result 

from differences in the system time frames. To avoid a rank-defect system, some parameters 

are lumped together in our model. In our combination model, to ensure consistency, only one 

receiver clock error lumped with ionosphere-free combination of GPS differential code bias, 

is considered as unknown for all GNSS systems. Therefore, both 𝐺𝑅𝑜𝑓𝑓and 𝐺𝐸𝑜𝑓𝑓 will be 

lumped with the GPS/GLONASS and GPS/Galileo code biases difference, respectively, 

leading to inter-system code bias 𝐼𝑆𝐶𝐵𝑅and 𝐼𝑆𝐶𝐵𝐸in pseudorange measurement. For phase 

measurements, 𝐺𝑅𝑜𝑓𝑓and 𝐺𝐸𝑜𝑓𝑓 will be lumped to GPS/GLONASS and GPS/Galileo 

receiver phase biases difference, respectively, leading to inter-system phase bias 

𝐼𝑆𝑃𝐵𝑅and 𝐼𝑆𝑃𝐵𝐸. Unfortunately, both 𝐼𝑆𝑃𝐵𝑅and 𝐼𝑆𝑃𝐵𝐸 cannot be estimated separately as 

the system will be underdetermine. Only 𝐼𝑆𝐵𝑅 = 𝐼𝑆𝐶𝐵𝑅and 𝐼𝑆𝐵𝐸 = 𝐼𝑆𝐶𝐵𝐸 will be estimated 

as a common inter-system bias unknowns in both code and phase measurements of 

GLONASS and Galileo, respectively. Also, as the phase and code measurements for the three 

GNSS systems are combined, considering one receiver clock unknown lumped with 

ionosphere-free combination of GPS differential code bias in both measurement types, each 

GNSS ambiguity parameters will be combined with each system ionosphere free combination 

of the receiver code biases. Moreover, considering the IGS satellite clock corrections, which 

are estimated based on code measurements for the three GNSS systems and are combined 

with the satellite code biases, an additional ionosphere-free combination of satellite code 

biases will be lumped with the ambiguity parameters.  With the above considerations, 

Equations (4.3) to (4.8) may be written in a more compact and simplified form as: 
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3
r s s

G G r G G G G GP =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +e  4.9  

3
r s s

E E r G E E E E EP =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +c[ISB ]+e  4.10  

3
r s s

R R r G R R R R RP =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +c[ISB ]+e  4.11  

G

r s s r s
3G G r G G G G GΦ =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +( N+IFBD -IFBD ) +   4.12  

r s s r s
3E E r G E E E E E EΦ =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +c[ISB ]+( N+IFBD -IFBD ) +   4.13  

r s s r s
3R R r G R R E R R RΦ =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +c[ISB ]+( N+IFBD -IFPD ) +                 4.14 

where IFCDr , IFCDs, ISB and IFBDr are different GNSS biases components which described 

on Table 4.1.  

Table 4. 1-Different GNSS biases affecting the GNSS observations and their definitions 

GNSS biases Definition 

1 2
2

r s s s
G G r1 G r G G GIFCD =[A d -B d ] & IFCD [A d -B d ]  

Ionosphere-free differential code biases for 

GPS receiver and satellite, respectively 

1 2
2

r s s s
G G r1 G r G G GIFPD =[A -B ] & IFPD [A -B ]     

Ionosphere-free differential phase biases for 

GPS receiver and satellite, respectively 

1 5
5

r s s s
E E r1 E r E E EIFCD =[A d -B d ] & IFCD [A d -B d ]  

Ionosphere-free differential code biases for 

Galileo receiver and satellite, respectively 

1 5
5

r s s s
E E r1 E r E E EIFPD =[A -B ] & IFPD [A -B ]     

Ionosphere-free differential phase biases for 

Galileo receiver and satellite, respectively 

1 2
2

r s s s
R R r1 R r R R RIFCD =[A d -B d ] & IFCD [A d -B d ]  

Ionosphere-free differential free code biases 

for GLONASS receiver and satellite, 

respectively 
1 2

2
r s s s

R R r1 R r R R RIFPD =[A -B ] & IFPD [A -B ]     
Ionosphere-free differential phase biases for 

GLONASS receiver and satellite, 

respectively  r r
E G E offISPB =[IFPD -IFPD ]+GE  

 

GPS/Galileo inter phase bias 

r r
R G R offISPB =[IFPD -IFPD ]+GR  GPS/GLONASS inter phase bias 

r r
E G E offISB =[IFCD -IFCD ]+GE  GPS/Galileo inter-system bias 

r r
R G R offISB =[IFCD -IFCD ]+GR  GPS/GLONASS inter-system  bias 

r r rIFBD =c[IFPD -IFCD ]  
Difference between ionosphere-free 

differential receiver code and phase biases 

s s sIFBD =c[IFPD -IFCD ]  
Difference between ionosphere-free 

differential satellite code and phase biases 

 

To develop the mathematical equations for BSSD, we refer to the GPS satellite by k, Galileo 

satellite by m, and GLONASS satellite by n. GPS satellite l is taken as the reference satellite 

to form BSSD ionosphere-free linear combination. 

3 3
k l k l s s k s s l k l k l

G G G G G G G G G G G GP -P =ρ -ρ  -c[(dt +IFCD ) -(dt +IFCD ) ]+T -T +e -e  4.15  
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m l m l s s m s s l m l m l
E G E G E E G G E G E E GP -P =ρ - ρ -c[(dt +IFCD ) -(dt +IFCD ) ]+T -T +c[ISB ]+e -e  4.16  

n l n l s s n s s l n l n l
R G R G R R G G R G E R GP -P =ρ - ρ -c[(dt +IFCD ) -(dt +IFCD ) ]+T -T +c[ISB ]+e -e  4.17  

3
k l k l s s k s s l k l
G 3G G G G G G G G G

s k s l k l
G G

Φ -Φ =ρ -ρ  -c[(dt +IFCD ) -(dt +IFCD ) ]+T -T

          +[( λN-IFBD ) -( N-IFBD ) ] -  

 4.18  

m l m l s s m s s l m l
E G E G E E G G E G E

r s m r s l m l
E G E G

Φ -Φ =ρ - ρ -c[(dt +IFCD ) -(dt +IFCD ) ]+T -T +c[ISB ]

          +[( N+IFBD -IFBD ) -( N+IFBD -IFBD ) ] -   

   4.19  

n l m l s s n s s l n l
R G R G R R G G R G R

r s n r s l n l
R G R G

Φ -Φ =ρ - ρ -c[(dt +IFCD ) -(dt +IFCD ) ]+T -T +c[ISB ]

         +[( N+IFBD -IFBD ) -( N+IFBD -IFBD ) ] -   

                       4.20 

Other form of BSSD model may be obtained by taking a reference satellite from each system. 

Unfortunately, due to the limited number of Galileo satellites at present, which was dropped 

to one satellite during our observation time, this way of forming BSSD is not adopted in this 

paper. Also, due to the dissimilarities of GLONASS satellite frequencies, taking a 

GLONASS satellite as a reference will not completely cancel out the GLONASS receiver 

errors and biases. However, as can be seen in Equations 4.15 through 4.20, the receiver-

related errors and biases such as the clock offset and code biases are cancelled out for the 

GPS system observations and are expected to be reduced for GLONASS and Galileo 

observations when forming our BSSD mathematical equations. Nevertheless, forming BSSD 

leads to mathematical correlations among the observations, which must be taken into account 

when the covariance matrix of the observations is formed (El-Sobeiey and El-Rabbany 2014). 

4.3. Sources of GNSS Time Offsets and Biases  

  

Differences in GNSS system time scales and coordinate reference frames, as well as inter-

system biases among the GNSS systems must be taken into account in order to make 

effective use of the additional information. Each GNSS system operates on an independent 

time scale and reference frame. This means that the satellite clock corrections for a particular 

GNSS system are estimated on an individual time scale based on the corresponding broadcast 

ephemeris; thus, creating different receiver clock offsets for each set of GNSS system 
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observations.  In order to deal with this challenge, receiver clock offsets can be estimated for 

each system separately. However, the drawback of this technique is that the number of 

unknowns will be increased by one for each GNSS system added. The minimum number of 

satellites for the combined GNSS solution will be (3+j), where j is the number of systems 

used. For kinematic applications, especially in dense areas, increasing the number of 

unknowns might be critical and might create difficulties in obtaining a good solution.   

Another option is to estimate the satellite clock corrections for all GNSS on a single time 

scale, which avoids differing GNSS time offsets. Fortunately, MGEX precise orbit and clock 

corrections for all GNSS systems are estimated using a single reference time scale and 

reference frame (Steigenberger et al. 2014). However, different time scales are considered 

when the traditional IGS clock products are estimated for GPS and GLONASS systems. 

Figure 4.1.a shows a comparison between IGS and MGEX GLONASS clock correction for 

PRN2 at DOY 1 year 2014 while Figure 4.1.b shows the GPS/GLONASS system time offset 

which obtained from the difference between the two clock correction products for number of 

GLONASS satellites. 

       

Figure 4. 1-Difference between two provider GLONASS satellite clock corrections, a. 

comparison between IGS and MGEX clock corrections for PRN 02 and b. difference between 

the two clock correction products. 
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On the other hand, the user receiver must reference all GNSS signals to the same oscillator 

and receiver clock. Otherwise system biases will result in a different receiver clock offset for 

each system. Fortunately, to the authors’ knowledge, all modernized GNSS receivers 

reference all GNSS measurements to the same receiver clock. As a result, the GNSS time 

scale offsets originated in the GNSS user receiver should be mitigated, up to small residual 

errors, before the GNSS data is processed. 

The signal path through the antenna, splitter, cabling, and amplifier produces hardware signal 

biases; however, these biases can be considered insignificant, especially their effects on the 

system biases. The remaining sources of system biases originate from the GNSS receiver 

processing filtering and correlators differences handling GNSS signal modulation and 

bandwidth dissimilarities (Phelts 2007). These biases are highly aggravated based on the 

receiver characteristics such as receiver type, firmware used, correlation spacing, and receiver 

filter characteristics. Even in a single GNSS system, signals with different frequencies 

produce different receiver biases through receiver filtering processing; thus, creating the bulk 

of receiver code hardware delay, 𝑑𝑟and phase hardware delay 𝛿𝑟. The same criteria are 

applied to the different satellite signals, which lead to the satellite code hardware 

delay, 𝑑𝑠and phase hardware delay 𝛿𝑠 . Although satellite signals have the same frequencies 

in some GNSS systems, such as GPS and Galileo, satellite signal bias exists due to the slight 

spectrum differences of the correlation function for each PRN satellite (Phelts 2007). Both 

the receiver and satellite biases are experienced at much higher values for code compared 

with carrier phase observations.  

As a result, we can conclude that the system biases between different GNSS system 

observations have similar values found in code and carrier observations. These are 

represented in Equations (4.4), (4.5), (4.7) and (4.8) as 𝐺𝑅𝑜𝑓𝑓 and 𝐺𝐸𝑜𝑓𝑓, which represent the 
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GPS/GLONASS and GPS/Galileo system offsets, respectively. Along with employing 

modernized GNSS receivers which reference all GNSS measurements to the same receiver 

clock oscillator, these biases will be existed when multi-time scales based GNSS clock 

corrections are used such as the classic IGS GPS and GLONASS clock products. However, 

these biases are accounted for when IGS-MGEX clock corrections are used for both Galileo 

and GLONASS as only GPS time scale is used as a reference.  As a single receiver clock 

unknown is estimated herein, 𝐺𝑅𝑜𝑓𝑓 and 𝐺𝐸𝑜𝑓𝑓 are lumped with the difference of ionosphere-

free combination of the receiver code biases between GPS and GLONASS, and GPS and 

Galileo, respectively creating 𝐼𝑆𝐵𝑅 and 𝐼𝑆𝐵𝐸  respectively as stated in Equations (4.10), 

(4.11), (4.13) and (4.14) and shown in our results.  

GPS/GLONASS ISB based on PPP estimation with different receiver types was studied by 

Cai and Gao (2008). They confirmed the presence of GPS/GLONASS inter-system bias, 

which varies depending on the receiver type with a discrepancy among the receivers of up to 

170 ns. MGEX has been producing daily GPS/Galileo inter-system bias for its GNSS station 

network, which uses different receiver types. Figure 4.2 shows the inter-system bias for a 

number of MGEX stations for different days in 2012. As shown in Figures 4. 2 a, b, and c, 

the GPS/Galileo ISB is receiver-dependent. Significant ISB increase for all stations is noted 

on December 12, 2012 (DOY 347), as can be seen in Figure 4.2 b. Coincidentally, our 

vehicular test was conducted on the same day, DOY 347. The same ISB was also noted when 

we analyzed our vehicular test data using the newly developed algorithm. To confirm the 

obtained anomalous ISB results, we made a personal contact with the European GNSS 

service center through its website contact form. The center confirmed the anomalous ISB on 

DOY 347 and indicated that Galileo satellites were still completing their in-orbit tests (GSC 

2014). Figure 2.d shows the change of GPS/Galileo ISBs for the same receiver type (Station 

CUT0) over time. It can be seen that both DOY 347 and 355 are featured with significant ISB 
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values, which suggest that these significant values may be a result of the satellite clock 

frequency jumps on that day, which often occur to newly launched systems, as stated in Heo 

et al. (2012).  

    

Figure 4. 2-GPS/Galileo ISBs products published by MGEX-IGS 

4.4. Process Model 

The GNSS raw pseudorange and phase measurements are processed to produce estimates of 

the extended Kalman filter (EKF) state vector. Except for GLONASS, the IGS-MGEX final 

precise orbital and clock products are used to mitigate the satellite orbit and clock errors 

(Montenbruck et al.  2014). The IGS clock products are used to correct for the GLONASS 

clock errors due to the unavailability of MGEX GLONASS clock corrections for the test 

days. The UNB3 tropospheric model, consisting of the Saastamoinen vertical propagation 

delay model and Niell mapping function, is used to account for the dry tropospheric 

component (Leandro et al.  2008). The effects of ocean loading, Earth tide, carrier-phase 

windup, sagnac, relativity, and satellite antenna phase-centre variations are rigorously 
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modeled as detailed in Kouba (2009). EKF is employed to process different GNSS 

measurements as presented in Jekeli (2001). For undifferenced model, the estimation state 

vector consists of the three GNSS receiver positions mainly latitude, longitude, and altitude, 

receiver clock, wet component of zenith tropospheric delay, GPS/GLONASS inter-system 

bias, GPS/Galileo inter-system bias, and the float ambiguity parameters. However in BSSD 

model, the receiver clock is eliminated. Two key steps are applied to EKF: prediction step 

and update step. These steps are described in Jekeli (2001) and are summarized here as 

follows: 

The prediction step is given by  

1 1 1k ,k k ,k kx x      4.1  

1 1 1 1
T

k ,k k ,k k k ,k kP P Q        4.22  

The update step is given by  

1 1
1 1

T T
k k ,k k k k ,k k obsK P H ( H P H P ) 

    4.23  

1k k k k ,kP ( I K H )P    4.24  

1 1k k ,k k k k k ,kx x K ( Z H x )         4.25  

where δxk,k−1is the updated error state vector. The complete state vector for the 

undifferenced model can be written as:  

1 1[ ]k ,k w r R E nx , , h,T , cdt , cISB , cISB , N , .. N                        

4.26 

where δϕ , δλ and δh are a three-dimensional vector representing the positioning errors in 

latitude, longitude and altitude. 𝑇𝑤is the wet component of the tropospheric delay, 𝑑̅𝑡𝑟 is the 

GPS receiver clock offset lumped by the GPS receiver ionosphere-free combination of code 

biases as stated on Section 2. Both 𝑐𝐼𝑆𝐵𝑅and c𝐼𝑆𝐵𝐸 are GPS/GLONASS and GPS/Galileo 

inter-system biases in meters as defined in Table 4.1. However, the GPS/Galileo time offset 
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is eliminated from 𝐼𝑆𝐵𝐸 as IGS MGEX satellite clock corrections are used for Galileo system 

herein. 𝑁̌ is the float ambiguity in meters lumped by receiver and satellite code bias 

combinations terms as described in Section 4.2. 

𝑅𝑘is the covariance matrix for the GNSS measurements state. 𝐾𝑘 is the Kalman gain, where k 

is the epoch number. 𝑃𝑘,𝑘−1is the variance-covariance matrix for the prediction state. 𝑄𝑘 is 

the process noise covariance matrix. 𝛷𝑘,𝑘−1 is the EKF state transition matrix which is 

defined as the identity matrix. The positioning errors, the receiver clock error, troposphere 

wet component and the ISB parameters are modeled as a random walk process (Cai and Gao, 

2008). The initial state vector variances and process noise variances are described in Table 

4.2. The ISBs are estimated as time-varying parameters to examine their stability over time. 

Therefore, they are assigned large process noise variances.  

𝐻𝑘 is the design matrix, which relates the measurement vector by the error state vector for the 

undifferenced model. It is described by:  

10 0 0 0

11 0 0 0

10 1 0 0

10 0 1 0

11 0 0 0

10 1 0 1

G G

R G

E G

k G G

R G

E G

A m

A m

A m

H
B m

B m

B m

 
 
 
 
 
 

  
 
 
 
 
 
 

               4.27 

where 𝐴 =
𝜕𝑃

𝜕𝑝
, 𝐵 =

𝜕𝛷

𝜕𝑝
, are the partial derivatives of the pseudorange and carrier-phase 

measurements, respectively, with respect to the receiver position p. To form BSSD, 

observation single difference should be applied on the design matrix. Also, the mathematical 

correlation between GNSS observations should be taken into account when the relative 

observation variance covariance matrix is formed. Both the BSSD design matrix and 
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observation variance covariance matrix can be defined as in Abd Rabbou and El-Rabbany, 

2014. 

Table 4. 2-EKF state vector initial variances and process noise variances 

States Initial 

variance 

Process noise 

variance 

Latitude 1e-10 𝑟𝑎𝑑2 1e-20 𝑟𝑎𝑑2/𝑠 

Longitude 1e-10 𝑟𝑎𝑑2 1e-20 𝑟𝑎𝑑2/𝑠 

Altitude 1000 𝑚2 50  𝑚2/𝑠 

Receiver clock 100000 𝑚2 100 𝑚2/𝑠 

Troposphere wet 

component  
100 𝑚2 1e-4 𝑚2/𝑠 

GPS/GLONASS ISB 1000𝑚2 10 𝑚2/𝑠 

GPS/Galileo ISB 1000𝑚2 10 𝑚2/𝑠 

Ambiguity parameters 100𝑚2 0 

 

4.5. Kinematic Tand Results Analysis  

 

A vehicular test was conducted in order to evaluate the performance of the developed 

combined GNSS PPP models for kinematic applications. The test was carried out in the 

downtown core of the City of Kingston, Ontario, on December 12, 2012. Trimble R10 GNSS 

receiver was employed to collect the kinematic GNSS observations. The positioning accuracy 

was assessed with reference to the carrier-phase-based differential GNSS (DGNSS) solution. 

In order to create this reference solution, a GNSS Trimble R7 receiver was setup as a nearby 

base station with precisely known coordinates. To investigate the variations in GNSS ISBs 

corresponding to different receiver types both GNSS Trimble R10 kinematic data and GNSS 

Trimble R7 static data are processed. As, the GNSS Trimble R7 is not tracking Galileo 

satellites, a static test was carried out in Toronto, Ontario, on December 13, 2012 using both 

Trimble R10 and Trimble R7 GNSS receivers. The second test was performed to show the 

variation in GNSS ISB corresponding to different days using the same receiver types. The 

raw dual-frequency GNSS pseudorange and carrier phase were collected at a rate of 1 Hz.  

The satellite availability for both kinematic and static tests is shown in Figure 4.3. As can be 
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seen, the satellite availability during the second half of the kinematic test exhibits high 

variations, which is typical in urban areas due to obstructions and signal blockage. 

 

Figure 4. 3-Visible GNSS satellites during the tests: a. Kingston kinematic trajectory test and 

b. Toronto static test 

Figure 4.4 shows the GPS/GLONASS and GPS/Galileo ISBs results based on PPP kinematic 

estimation through our indifference model. Figure 4.4.a and b show the GPS/GLONASS ISB 

for the Kingston data set on DOY 347 and Toronto data set on DOY 348 for GNSS Trimble 

R10 and GNSS Trimble R7, respectively. Figure 4.4.c and d, on the other hand, show the 

GPS/Galileo ISB for GNSS Trimble R10 for the Kingston data sets on DOY 347 and Toronto 

data set on DOY 348, respectively. As shown in Figure 4.4, both GPS/GLONASS and 

GPS/Galileo ISBs are largely stable over the test period, exhibiting small variations with 

RMS values of 2.5 cm and 3.0 cm for the R7 and R10 receivers, respectively. In addition, it 

can be seen through comparison of Figure 4.a and b that GPS/GLONASS ISB has changed 

significantly with different receiver types. It should be emphasized that the GPS/GLONASS 

ISB includes the GPS/GLONASS system offset as the classic IGS GLONASS clock products 

are used, which are referenced to GLONASS time frame. However, as the system time offset 

is almost constant over a short time span and independent of the receiver type, the significant 

difference between the values of the 𝐼𝑆𝐵𝑅 for Trimble R7 and R10 as shown in Figure 4 is 

likely due to the difference in the correlators of the two receiver generations. As well, 

comparing the GPS/Galileo ISB for DOY 348, with Trimble R10 receiver used (Figure 
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4.4.d), with the GPS/Galileo ISB for station CUT0, with Trimble NET R9 receiver used 

(Figure 4.2.c), indicates that GPS/Galileo ISB is also receiver type dependent. Moreover, 

although the same receiver type is used, the GPS/Galileo ISB on DOY 347 is much higher 

than that on DOY 348 (Figure 4.4.c and d), which conforms to the IGS-MGEX ISB 

estimation presented in Section 4.2 (Figure 4.2 b). The high ISB values on DOY 347 are due 

to the Galileo system clock anomaly on that day as outlined in Section 4.3. As well, the 

results of the inter-system biases for two successive days, namely DOY 347 and DOY 348, 

are showing different ISB mean values for the same receiver type which conforms to the 

IGS-MGEX ISB daily estimation presented in Section 4.2 (Figure 4.2 a, b and c).    

  

  

Figure 4. 4-.GNSS ISBs based on PPP estimation 

Figure 4.5 shows the GNSS PPP positioning results for the Kingston data set based on both 

our undifferenced and BSSD ionosphere-free PPP algorithms. Three GNSS combinations 

were studied: GPS only, combined GPS and GLONASS, and combined GPS, GLONASS and 
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Galileo. Figures 5.a, b and c show the GNSS positioning accuracy for latitude and longitude 

and altitude, respectively, using the undifferenced ionosphere-free PPP algorithm, while 

Figures 4.5.d, e and f show the GNSS positioning accuracy for latitude and longitude and 

altitude, respectively, using the BSSD ionosphere-free PPP algorithm. As can be seen, the 

results of both algorithms show decimetre-level positioning accuracy. However, it can be 

seen that the BSSD IF model slightly enhances the positioning accuracy in comparison to the 

undifferenced model.  

As expected, due to the limited number of visible Galileo satellites, which varied between 

one and two satellites during the test, the contribution of Galileo observations is not 

significant. It can also be seen that the accuracy of the PPP solution has improved through the 

addition of GLONASS observations. However, as shown in Figure 4.5, the improvement in 

the PPP solution is not consistent over the test period, which might be attributed to the 

changes in the relative geometry of the visible GPS and GLONASS satellites. 
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Figure 4. 5-Positioning accuracy based on undifferenced and BSSD ionosphere-free PPP 

techniques using GPS only, combined GPS and GLONASS, and combined GPS, GLONASS 

and Galileo. 

Table 4.3 shows the statistical characteristics, including the maximum error, the mean errors, 

and the root mean square errors (RMSE), of the various GNSS combinations for both 

undifferenced and BSSD ionosphere-free PPP solutions for the Kingston data set. Comparing 

the mean errors and the RMSE for all GNSS combinations, it can be seen that the positioning 

precision has generally improved by adding GLONASS and Galileo observations. In 

addition, the BSSD model is found to be superior to that of the traditional undifferenced 

model. 

Table 4. 3-Statistical parameters for GNSS PPP solutions for the Kingston Trajectory 

PPP-Technique undifferenced Ionosphere-free PPP 

GNSS systems GPS+GLONASS+Galileo GPS+GLONASS GPS 

Positioning Latitude longitude Altitude latitude longitude altitude latitude longitude altitude 

max (m) 0.109 0.170 0.226 0.105 0.146 0.238 0.118 0.232 0.268 

mean(m) -0.008 0.016 0.004 -0.019 0.034 0.010 0.011 0.099 0.110 

RMSE(m) 0.029 0.051 0.062 0.036 0.056 0.064 0.042 0.103 0.117 

PPP-Technique BSSSD Ionosphere-free PPP 

GNSS systems GPS+GLONASS+Galileo GPS+GLONASS GPS 

Positioning Latitude longitude Altitude latitude longitude altitude latitude longitude altitude 

max(m) 0.101 0.077 0.093 0.103 0.084 0.075 0.123 0.172 0.255 

mean(m) -0.032 -0.012 -0.043 -0.034 -0.006 -0.054 0.003 0.039 0.029 

RMSE(m) 0.038 0.030 0.057 0.042 0.029 0.062 0.040 0.059 0.074 
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4.6. Conclusions 

 

We developed a PPP model, which combines the observations of multi-constellations GNSS 

systems, including GPS, GLONASS, and Galileo for kinematic applications. Both 

GPS/GLONASS and GPS/Galileo ISBs are studied based on PPP kinematic estimation. The 

results show that both ISBs are system and receiver dependent, with significant differences 

between the ISBs of different receiver types. To examine the contributions of adding 

GLONASS and Galileo observations to existing GPS PPP model, a vehicular test was carried 

out in the downtown core of Kingston, Ontario. Both undifferenced and BSSD ionosphere-

free linear combinations of code and carrier phase measurements are considered. The PPP 

solutions of three GNSS scenarios are examined, namely GPS only, combined GPS and 

GLONASS, and finally combined GPS, GLONASS and Galileo. The results show that the 

contribution of adding Galileo system observations is not significant due to the limited 

number of available Galileo satellites. However, the positioning accuracy is generally 

improved when adding GLONASS observations. The results also indicate that BSSD IF 

model enhances the positioning accuracy in comparison with the undifferenced counterpart. 
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5. Integration of Multi-Constellation GNSS Precise Point Positioning and MEMS-

Based Inertial Systems Using Tightly Coupled Mechanization 

 

In this chapter, tightly-coupled integration algorithms for multi-constellation GNSS 

PPP/MEMS-based inertial systems are developed. The algorithms are developed for both 

undifferenced and between-satellite single difference ionosphere-free PPP techniques. The 

EKF is used as the estimation filter to merge the GNSS observations and inertial sensor 

records. The contribution of the additional GNSS observations from GLONASS and Galileo 

systems is investigated during partial, complete and no outages with two sets of trajectory 

data. 

 

The following manuscript was originally published as: 

 

Abd Rabbou and M., El-Rabbany, A, (2014), Integration of Multi-Constellation GNSS 

Precise Point Positioning and MEMS-Based Inertial Systems Using Tightly Coupled 

Mechanization, Sensors, submitted. 

 

Modifications to the original manuscript were made only for proper identification of sections, 

figures and tables to assure uniformity within this dissertation. 
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Integration of Multi-Constellation GNSS Precise Point Positioning and MEMS-Based 

Inertial Systems Using Tightly Coupled Mechanization 

Abstract: 

We develop a new integrated navigation system, which integrates multi-constellations GNSS 

precise point positioning (PPP), including GPS, GLONASS and Galileo, with low-cost 

micro-electro-mechanical sensor (MEMS) inertial system, for precise positioning 

applications. To integrate GNSS and the MEMS-based inertial system, the process and 

measurement models are developed. Tightly coupled mechanism is adopted, which is carried 

out in the GNSS raw measurements domain. Both undifferenced and between-satellite single-

difference (BSSD) ionosphere-free linear combinations of pseudorange and carrier phase 

GNSS measurements are processed. Rigorous models are employed to correct for GNSS 

errors and biases. The GNSS inter-system biases are considered as additional unknowns in 

the integrated error state vector. The developed stochastic model for inertial sensors errors 

and biases are defined based on first order Gaussian Markov process. Extended Kalman filter 

is developed to integrate GNSS and inertial measurements and estimate inertial 

measurements biases and errors. Two field experiments are executed, which represent 

different real-world scenarios in land-based navigation. The data are processed using our 

developed Ryerson PPP GNSS/MEMS software. The results indicate that the proposed 

integrated system achieves decimeter to centimeter level positioning accuracy when the 

measurement updates from GNSS are available. During complete GNSS outages the 

developed integrated system continues to achieve decimeter level accuracy for up to 30 

seconds, while it achieves meter-level accuracy when a 60-second outage is introduced. 

Keywords: GNSS, GPS, Galileo, GLONASS, MEMS, PPP, Tightly Coupled 
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5.1. Introduction 

Global navigation satellite systems (GNSS) provide worldwide positioning, velocity and time 

synchronization. Traditionally, highly accurate GNSS positioning solution is obtained 

through carrier-phase observables in differential mode involving two or more receivers. 

However, the requirement of a base station is usually problematic for some applications. 

Comparable positioning accuracy, without requiring extra infrastructure, can be achieved 

through precise point positioning (PPP) technique (Zumberge et al. 1997). PPP uses either 

undifferenced or between-satellite single difference carrier-frequency and pseudorange 

observations from a single receiver, in addition to precise orbit and clock products. PPP 

commonly employs undifferenced ionosphere-free linear combination of GPS observations. 

Unfortunately, GPS often experiences poor satellite visibility or weak constellation geometry 

in urban areas. This limitation can be overcome through combining multi-constellation 

GNSS, which is not simply achieved by adding the additional measurements to existing GPS 

observation models. Inter-system biases exist, which must be taken into account in order to 

make effective use of the additional GNSS observation.  

Employing multi-GNSS systems, in contrast to GPS only, decreases the probability of partial 

GNSS outages due to the availability of a large number of satellites observations. However, 

GNSS positioning solution may not always be available due to complete GNSS outages in 

urban canyons. These limitations can be overcome through integrating the GNSS 

observations with a relatively environment-independent system, the inertial navigation 

system (INS). Differential GPS are traditionally used for precise positioning applications with 

different grade levels of inertial sensors such as a navigation grade inertial system (e.g. El-

Sheimy et al., 1995; Brzezinska et al., 1998), and a tactical grade INS (e.g. Petovello, 2003; 
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Nassar, 2003). Typically, previous research employed high-end INS to enhance the GPS 

solution. Petovello (2003) used high-end INS to shorten the ambiguity search time following 

brief GPS data outages by feeding the estimation filter with position and position variance-

covariance matrix.  As well, inertial sensor measurements were used to identify the GPS 

cycle slip, which in turn improves GPS reliability (Cannon, 1992). Unfortunately, high-end 

inertial sensors are expensive and may not provide a cost effective solution. Advances in 

micro-electro-mechanical sensors (MEMS) provide the development of a generation of low-

cost inertial sensors, which make them attractive to many users. However, in general, MEMS 

sensors have poorer performance and stability compared with high-end INS due to the high 

noise level and severe biases and drifts affecting the MEMS-based inertial sensors. A number 

of researchers have investigated the integration of GPS system with MEMS-based inertial 

sensors (e.g. Shin 2005, Mezentsev 2005, Abdel-Hamid 2005 and Abd Rabbou and El-

Rabbany 2014). Most of the previous research either employed the differential or classical 

single point positioning GPS. As such, severe positioning errors were introduced during the 

GPS outages, which restricted the applications of those systems. More recently, Abd Rabbou 

and El-Rabbany (2014) developed a GPS PPP/MEMS-based system for precise positioning 

applications. However, their system was based on the pseudorange and carrier phase 

observations of a single GNSS constellation, namely GPS. 

Considering the recent advances in MEMS-based accelerometers, the up to date GNSS 

constellations and the advances in PPP techniques, this research aims to develop a new 

integrated navigation system for precise positioning and navigation applications. MEMS-

based accelerometers equipped with fiber optic gyros, which limit the orientation errors, are 

used.  GNSS-based PPP including GPS, GLONASS and Galileo systems observations are 

used to update the system through a tightly coupled mechanism. The developed integrated 

system shows decimetre to centimetre level accuracy when GNSS observations are available. 
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It is shown that the additional GNSS observations enhance the positioning accuracy in 

comparison with the traditional GPS kinematic positioning solution. Better positioning 

accuracy was obtained with BSSD ionosphere-free model, in comparison with the traditional 

undifferenced ionosphere-free model. In addition, the developed integrated system continues 

achieve decimeter level accuracy for up to 30 seconds, while it achieves meter-level accuracy 

when a 60-second outage is introduced. 

5.2. Multi-constellation GNSS-PPP Measurement Models 

In this study, both undifferenced and between-satellite single differenced ionosphere-free 

models are considered. Pseudorange and carrier phase observations of three GNSS systems 

are processed, namely GPS, GLONASS and Galileo. Following Hofmann-Wellenhof et al. 

(2008), the general ionosphere-free GPS observation equations for pseudorange and carrier-

phase are extended considering the multi-constellation GNSS systems as follow: 

3
r s s

G G r G G G G GP =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +e  5.1 

3
r s s

E E r G E E E E EP =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +c[ISB ]+e  5.2 

3
r s s

R R r G R R R R RP =ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +c[ISB ]+e  5.3 

3 G

r s s r s
G G r G G G G G=ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +( N+IFCD -IFCD ) +    5.4 

3
r s s r s

E E r G E E E E E E=ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +c[ISB ]+( N+IFCD -IFCD ) +    5.5 

3
r s s r s

R R r G R R E R R R=ρ  +c[dt +IFCD ]-c[dt +IFCD ]+T +c[ISB ]+( N+IFCD -IFCD ) +    5.6 

- G, R and E refer to GPS, GLONASS and Galileo systems observations, respectively. 

-  P3 and Φ3   are the undifferenced ionosphere-free pseudorange and carrier phase 

measurements, respectively. 

-  ρ is the true geometric range from the antenna phase center of the receiver at reception 

time to the antenna phase center of the satellite at transmission time. 

-  𝑑𝑡𝑟 and 𝑑𝑡𝑠  are the clock errors for receiver and satellite, respectively. 

- T is the tropospheric error.  
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- 𝐼𝐹𝐶𝐷𝑟 and  𝐼𝐹𝐶𝐷𝑠 are ionosphere-free differential code bias for the receiver and satellite, 

respectively, which can be expressed as: 

2
r

r1 rIFCD =c[ad -bd ]                                             5.7 

1 2s s sIFCD c[ad -bd ]                              5.8 

where dr and ds are frequency-dependent code hardware delay for receiver and satellite, 

respectively. a and b are frequency dependent factors a = 
𝑓1

2

𝑓1
2−𝑓2

2 and b = 
𝑓2

2

𝑓1
2−𝑓2

2 and c is the 

speed of light. 

- e and 𝜀 are relevant system noise and un-modeled residual errors for undifferenced 

ionosphere-free code and carrier phase measurements, respectively.   

-  𝜆𝑁 ̅̅ ̅̅̅ is the ambiguity term for phase measurements. For the undifferenced ionosphere free 

linear combination, this term is not integer due to the non-integer nature of the 

combination coefficients, 𝜆𝑁̅̅ ̅̅ =
𝑓1

2𝜆1𝑁1−𝑓2
2𝜆2𝑁2

𝑓1
2−𝑓2

2 , where 𝑁1and 𝑁2 are the L1 and L2 non-

integer ambiguity parameters, including the initial phase biases at the satellite and the 

receiver, respectively; 𝜆1 and λ2 are the wavelengths of the L1 and L2 carrier frequencies, 

respectively. 

- 𝐼𝑆𝐵𝐸and 𝐼𝑆𝐵𝑅 are the GPS/GLONASS and GPS/Galileo inter-system biases, respectively. 

These systems biases  can be expressed as 

r r
E G E offISB =[IFCD -IFCD ]+GE               5.9 

r r
R G R offISB =[IFCD -IFCD ]+GR                    5.10 

where 𝐺𝑅𝑜𝑓𝑓 and 𝐺𝐸𝑜𝑓𝑓 are the GPS/GLONASS and GPS/Galileo system time offsets, 

respectively, which result from the differences in the time scales of the GNSS systems. 

To avoid a rank-defect system, some parameters must be lumped together.  The receiver 

clock error  𝑑𝑡𝑟 is lumped with the GPS differential code bias as stated through Equations 

(5.1) to (5.6), leading to a receiver clock offset unknown 𝑑̅𝑡𝑟. The ambiguity term 𝜆𝑁 ̅̅ ̅̅̅ is 
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lumped with the receiver differential code biases 𝐼𝐹𝐶𝐷𝑟 and  𝐼𝐹𝐶𝐷𝑠, creating a float 

ambiguity parameter unknown B. The final IGS GNSS satellite clock corrections are biased 

by the GNSS satellite differential code biases, which are used herein to correct for the 

satellite clock errors. The dry tropospheric delay component as well as other PPP errors such 

as sagnac, relativity, and satellite antenna phase-center variations is rigorously modeled using 

existing models (Kouba, 2009). With the above consideration, the GNSS measurement model 

can be written in more simplified form as: 

2 2 2
3

s s s s
G r G r G r G r G w GP ( x - X ) ( y - Y ) ( z - Z )  cdt m T e       5.11 

2 2 2
3

s s s s
E r E r E r E r E w E EP ( x - X ) ( y - Y ) ( z - Z )  cdt m T c[ISB ]+e       5.12 

2 2 2
3

s s s s
R r R r R r R r R w R RP ( x - X ) ( y - Y ) ( z - Z )  cdt m T c[ISB ]+e       5.13 

2 2 2
3

s s s s
G r G r G r G r G w G GΦ ( x - X ) ( y - Y ) ( z - Z ) cdt m T N         5.14 

2 2 2
3

s s s s
E r E r E r E r E w E E EΦ ( x - X ) ( y - Y ) ( z - Z ) cdt m T +c[ISB ]+N +      5.15 

2 2 2
3

s s s s
R r R r R r R r R w R R RΦ ( x - X ) ( y - Y ) ( z - Z ) cdt m T c[ ISB ]+N +        5.16 

where𝑃̅3 and 𝛷̅̅̅3are the corrected pseudorange and carrier phase measurements, respectively; 

𝑥𝑟, 𝑦𝑟 and 𝑧𝑟 are the receiver unknown coordinates; 𝑋𝑠, 𝑌𝑠 and 𝑍𝑠 are the satellite 

coordinates computed using the  IGS-MEGX orbital products and corrected for the effect of 

earth rotation during signal transit;  𝑑̅𝑡𝑟 is receiver clock error lumped with GPS receiver 

differential code bias;  𝑚𝑠 =
1

𝑠𝑖𝑛(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)
 is the mapping function for the troposphere wet 

delay component 𝑇𝑤. 𝑁̌ is the float ambiguity in meters lumped by receiver and satellite code 

bias combinations terms. 

To develop the mathematical equations for BSSD, we refer to the GPS satellite by k, Galileo 

satellite by h, and GLONASS satellite by o. GPS satellite l is taken as the reference satellite 

to form BSSD ionosphere-free linear combination. 
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2 2 2 2 2 2
3 3
k l k k k l l l
G G r G r G r G r G r G r G

k k k l
G G w G G

P - P ( x - X ) ( y - Y ) ( z - Z ) - ( x - X ) ( y - Y ) ( z - Z )  
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    
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2 2 2 2 2 2
3 3
h l h h h l l l
E G r E r E r E r G r G r G

h l h l
E G w E E G

P P ( x - X ) ( y - Y ) ( z - Z ) - ( x - X ) ( y - Y ) ( z - Z )
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     
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2 2 2 2 2 2
3 3
o l o o o l l l
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o l o l
R G w R R G
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     

  

 5.19 

2 2 2 2 2 2
3 3
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2 2 2 2 2 2
3 3
h l h h h l l l
E G r E r E r E r G r G r G

h l h l h l
E G w E E G E G

Φ Φ ( x - X ) ( y - Y ) ( z - Z ) - ( x - X ) ( y - Y ) ( z - Z )

               ( m m )T c[ISB ]+N -N + - 

     

  
 5.21 
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     

  
 5.22 

It can be seen that the receiver clock offset is cancelled out when forming our BSSD 

mathematical equations. Additionally, the receiver differential code and phase biases are 

cancelled out for the GPS system observations while these receiver biases are reduced 

significantly for GLONASS and Galileo observations. However, forming BSSD leads to 

mathematical correlations among the observations, which must be taken into account when 

the covariance matrix of the observations is formed.  Equations (5.11) through (5.16) and 

(5.17) through (5.22) are used to develop the measurement models of the proposed 

GNSS/INS integrated system for both undifferenced and between satellites single differences 

modes, respectively. 

5.3. GNSS-PPP/MEMS-based IMU Implementation 

To build the proposed GNSS/INS integrated navigation system, tightly coupled architecture 

is implemented adopting extended Kalman filter (EKF). GNSS pseudorange, carrier phase 

and Doppler measurements as well as INS-derived observations are processed to produce 

estimates of the state vector including position, velocity and attitude. Except for GLONASS, 
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the IGS-MGEX final precise orbital and clock products are used to mitigate the satellite orbit 

and clock errors (Montenbruck et al.  2014). The IGS clock products are used to correct for 

the GLONASS clock errors due to the unavailability of MGEX GLONASS clock corrections 

for the test days. The UNB3 tropospheric model, which employs the Saastamoinen vertical 

propagation delay model and the Niell mapping function, is used to account for the 

tropospheric dry components (Leandro et al. 2006). The troposphere wet component 𝑇𝑤 is 

treated as an additional unknown in the error state vector as seen in Equations (5.11) to 

(5.22). The effects of ocean loading, Earth tide, carrier-phase windup, sagnac, relativity, and 

satellite antenna phase-center variations are rigorously modeled using existing models 

(Kouba. 2009). 

The precise GNSS ephemerides as well as the outputs of position 𝑃𝑛 and velocity 𝑉𝑛 from 

the inertial sensors mechanization as described in Jekili (2001) are used to predict the INS 

pseudorange 𝑃𝐼𝑁𝑆, phase 𝛷𝐼𝑁𝑆and Doppler 𝑃̇𝐼𝑁𝑆 measurements. The corrected GNSS 

pseudorange 𝑃𝐺𝑁𝑆𝑆, phase 𝛷𝐺𝑁𝑆𝑆and Doppler 𝑃̇𝐺𝑁𝑆𝑆measurements are differenced with the 

INS-predicted measurements. The residuals 𝛿𝑃, 𝛿𝛷 and δ𝑃̇ are then directly processed by the 

integration filter to estimate the system error state vector. The obtained INS error estimates, 

such as the inertial sensors bias drifts 𝛿𝑏𝑎and𝛿𝑏𝑔, and scale factors 𝛿𝑆𝑎 and 𝛿𝑆𝑔, are fed back 

to the INS mechanization to correct for the inertial sensors forces 𝑓𝑏and 𝑤𝑏 using the closed 

loop approach. The estimated error states such as position errors 𝛿𝑟𝑛, velocity errors 𝛿𝑣𝑛and 

attitude errors 𝛿𝜀𝑛 are directly applied to the INS-derived position 𝑃𝐼𝑁𝑆
𝑛 , velocity 𝑉𝐼𝑁𝑆

𝑛  and 

attitude 𝐴𝐼𝑁𝑆
𝑛  solutions. States unique to GNSS such as the clock offset 𝛿𝑡𝑜𝑓𝑓 , clock 

drift 𝛿𝑡𝑑𝑟𝑖, internal system biases ISB and ambiguity parameters N, are fed back to continue 

correct for the GNSS observations using additional closed loop technique. A priori estimation 

constrains are applied on GPS/GLONASS and GPS/Galileo internal system biases (ISBs) to 
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continue benefits from additional GNSS satellites when the number of GLONASS or Galileo 

satellites drops to one satellite. Figure 5.1 shows the tightly coupled GNSS PPP/INS 

implementation flowchart.  

 

Figure 5. 1-GNSS PPP/MEMS based IMU integration mechanism 

To implement the mechanization of the developed integrated system, two main steps are 

applied on EKF, namely prediction step and update step as described in Jekeli (2001). 

The prediction step; 

1 1 1k ,k k ,k kx F x     5.23 

1 1 1 1
T

k ,k k ,k k k ,k kP F P F Q      5.24 

The update step; 

1 1
1 1

T T
k k ,k k k k ,k k obsK P H ( H P H P ) 

    5.25 

1k k k k ,kP ( I K H )P    5.26 
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1 1k k ,k k k k k ,kx x K ( Z H x )        5.27 

- δxk,k−1 is estimation state vector. The complete state vector consists of 26+n states where 

n is the number of satellites, describing the basic state vector including the nine 

navigation parameter errors, the inertial sensors errors including the bias drift and scale 

factor, and errors unique to the GNSS measurements, which are mainly the receiver clock 

offset and drift, the troposphere wet delay component, the GPS/GLONASS ISB and 

GPS/Galileo ISB with additional n states related to the float ambiguity parameters Bi 

where i is the satellite number. The complete state vector for undifferenced ionosphere-

free technique can be written as. 

      [ ]n n n G E R

a g a g w r dri R E k h o nx r , v , , b , b , S , S ,T , cdt , c t , cISB , cISB , N , N , N .. . N                             5.28  

where 𝛿𝑟𝑛 is a three-dimensional vector representing the positioning errors in latitude, 

longitude and altitude, 𝛿𝑣𝑛 is a three-dimensional vector representing the velocity errors in 

east, north and up, 𝛿𝜀𝑛 is a three-dimensional vector representing the attitude errors in roll, 

pitch and azimuth, 𝛿𝑏𝑎 is a three-dimensional vector representing the accelerometer biases 

drift in x, y and z, 𝛿𝑏𝑔 is a three-dimensional vector representing the gyro biases drift in x, y 

and z, 𝛿𝑆𝑎 is a three-dimensional vector representing the accelerometer  scale factors errors in 

x, y and z,  𝛿𝑆𝑔 is a three-dimensional vector representing the gyro scale factors errors in x, y 

and z. 𝑇𝑤is the wet component of the tropospheric delay, 𝑑̅𝑡𝑟and 𝑐𝛿𝑡𝑑𝑟𝑖 are the GPS receiver 

clock offset and drift in meters, respectively. Both 𝑐𝐼𝑆𝐵𝑅and c𝐼𝑆𝐵𝐸 are GPS/GLONASS and 

GPS/Galileo inter-system biases in meters. It should be pointed out that the receiver clock 

offset and drift are cancelled out when forming BSSD ionosphere-free model. 

- 𝐾𝑘 is the Kalman gain, k is the epoch number, 𝐹𝑘,𝑘−1is the state-transition matrix derived 

from the perturbations of the INS mechanization equations, which can be found, for 

example, in Jekeli (2001) and Noureldin et al. (2013). Equation (29) shows the structure 



92 

 

of the transition matrix, which is extended to include the additional GNSS parameters in 

addition to the float ambiguity terms. 
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where 𝐹𝑟𝑟, 𝐹𝑟𝑣, 𝐹𝑟𝜀, 𝐹𝑣𝑟, 𝐹𝑣𝑣, 𝐹𝑣𝜀, 𝐹𝜀𝑟, 𝐹𝜀𝑣 and 𝐹𝜀𝜀 are system dynamics matrices, which 

represent the relationship between the position, velocity and attitude state errors, 𝑅𝑏
𝑛 is the 

transformation matrix from the body frame to the navigation frame, 𝐹𝑏 is a diagonal matrix 

of the accelerometers forces in body frame and 𝑊𝑏is a diagonal matrix of the gyro forces in 

body frame, w represents the system input white noise, G is the associated coefficient matrix 

and , where τ is the correlation time for the accelerometers and gyros for first order 

GM process. The full derivation and definition of 𝐹𝑘,𝑘−1 elements can be found in Jekeli 

(2001). 

-   𝑃𝑘,𝑘−1 is the variance-covariance matrix for the prediction state, 𝑄𝑘 is the process noise 

variance matrix, and 𝑃𝑜𝑏𝑠is variance covariance matrix for the GNSS measurements state. 

Considering the mathematical correlation between GNSS observations when forming 

BSSD, the relative weight matrix  𝑃𝑜𝑏𝑠 = 𝑃𝐵𝑆𝑆𝐷 can be described as (Elsobeiey and El-

Rabbany 2014): 

1/ 
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5.30 

where σ is the standard deviation of the undifferenced GNSS observations and ns the number 

of visible satellites. Equation (30) shows that the observations relative weight matrix in the 

BSSD mathematical model is no longer diagonal matrix. It is fully populated because of the 

correlation between the observables.  

- δZ is the measurement vector consisting of the differences between the corrected GNSS 

and the predicted INS measurements. When undifferenced ionosphere-free model is used 

δZ can be defined as: 
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- 𝐻𝑘  is the design matrix containing geometry factors defined according to the GNSS 

mathematical model used. The design matrix is arranged with columns corresponding to 

the states unique to inertial sensors errors such as 𝛿𝑏𝑎, 𝛿𝑏𝑔, 𝛿𝑆𝑎 and 𝛿𝑆𝑔which filled with 

zeroes. Hk can be formed as: 
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where 𝐴 =
𝜕𝑃

𝜕𝑥
  , 𝐵 =

𝜕𝛷

𝜕𝑥
, 𝐶 =

𝜕𝑃̇

𝜕𝑉
  are the partial derivatives of the pseudorange, phase and 

Doppler measurements, respectively, with respect to the receiver position X and velocity V.  

To form the BSSD measurement model, between-satellite single difference matrix 𝑀𝑏𝑠𝑠𝑑 

should be defined based on the selected reference satellite. 
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5.34 

 *bssd bssd un diffZ M Z                                                                                                                         

5.35 

where 𝐻𝑏𝑠𝑠𝑑 is the design matrix for BSSD model, 𝛿𝑍𝑏𝑠𝑠𝑑 is the BSSD observation vector. 

The error state vector for BSSD based integrated system is defined as: 
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a g a g w i R E lk lh lox r , v , , b , b , S , S , T , cISB , cISB , N , N , N , ....                       5.36 

where 𝑁̃𝑙𝑖 is the  single differenced float ambiguity terms with reference satellite l. 

5.4. Tests and Results Analysis 

Two real vehicular tests were conducted to evaluate the performance of the developed 

integrated GNSS-PPP/MEMS-based INS system. The vehicular tests were carried out 

through downtown Kingston, Ontario, Canada, which was designed to represent challenging 

situations for real GNSS satellite navigation availability including turns, straight portions, 

high speed, and slow speeds. The NovAtel SPAN-CPT system and the GNSS Trimble R10 

receiver were used to collect the navigation data. The SPAN-CPT system consists of the 

NovAtel OEM4 receiver and a MEMS-based IMU, which contains three MEMS-based 

accelerometers and three fiber optic gyros. Carrier phase-based differential GNSS (DGNSS) 

solution is used as a reference solution. In order to create this reference solution, a GNSS 

Trimble R7 receiver was setup at a nearby station with precisely known coordinates. The raw 

dual-frequency GNSS pseudorange, carrier phase and Doppler measurements were collected 

at a 1 Hz rate, while the IMU raw data was logged at a rate of 100 Hz. The duration of the 

first trajectory test was set for about 55 minutes while the duration of the second test was 34 

minutes. Four scenarios are considered in this research. The traditional GPS-based integrated 

system and the developed GNSS-based integrated system including GPS, GLONASS and 

Galileo, are studied to investigate the contribution of the additional GNSS systems to the 

positioning accuracy of the integrated system. Both undifferenced and BSSD ionosphere-free 

PPP techniques are adopted for GPS-based and GNSS-based integrated systems. To 

investigate the positioning accuracy of the integrated system during complete GNSS outages, 

a number of simulated outages is introduced for each trajectory test. The data were processed 

using our Ryerson PPP GNSS/MEMS software in undifference and BSSD modes. 
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5.4.1. First Trajectory 

The first trajectory test area is shown in Figure 5.2 with the locations of simulated outages. 

Figure 5.3 shows the GNSS satellite availability during the observation time. 

 

Figure 5. 2-Test area and simulated complete GNSS outages for the first trajectory 

 

Figure 5. 3-GNSS satellites availability during the first trajectory test 

Figure 5.4 shows the positioning accuracy of the developed integrated system when the 

observations of all GNSS satellites are included in the solution, i.e., no outages are inserted. It 
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can be seen that the addition of GLONASS and Galileo observations enhances the 

positioning accuracy in comparison with the GPS-only positioning solution. Further 

improvement is attained in the positioning solution through BSSD ionosphere-free linear 

combination model, in comparison with the traditional undifferenced counterpart. 

    

     

Figure 5. 4-Positioning accuracy for the first trajectory with no outages inserted 

Table 5.1 summarizes the statistical characteristics, mainly the root mean square error 

(RMSE) and the maximum error, for the four PPP integrated system scenarios mentioned 

above. Comparing the RMSE values for each scenario, it can be seen that the positioning 

precision is improved by 23%, 41% and 41% for latitude, longitude and altitude in the multi-

constellation GNSS PPP solution compared with the GPS-only PPP solution. In addition, 

using BSSD ionosphere-free PPP technique improves the positioning precision case by 24%, 

15% and 13% for latitude, longitude and altitude, in comparison with the traditional 

undifferenced ionosphere-free PPP technique.   
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Table 5. 1-Statistical analysis of GNSS positioning precision for the first trajectory, with no 

outages inserted 

PPP techniques GPS (un-differenced mode)  GPS (BSSD mode) 

Positioning latitude longitude altitude Latitude Longitude altitude 

RMSE (m) 0.101 0.160 0.103 0.052 0.090 0.082 

Maximum error 0.184 0.303 0.416 0.121 0.179 0.306 

PPP techniques GNSS (un-differenced mode)  GNSS (BSSD mode) 

Positioning latitude longitude altitude Latitude Longitude altitude 

RMSE 0.065 0.094 0.079 0.034 0.059 0.058 

Maximum error 0.108 0.178 0.245 0.072 0.106 0.180 

 

 

Figure 5. 5-Positioning accuracy for the first trajectory with simulated complete GNSS 

outages inserted 

To mimic challenging positioning conditions in urban areas, including complete blockage of 

the GNSS satellites, twelve simulated complete satellite outages of 60s, 30s and 10s were 

introduced in the first trajectory.  Figure 5.5 shows the positioning errors during the various 

outages, referenced to carrier-based DGPS solution with full satellite availability. As can be 

seen, both of the undifference and BSSD models produce similar positioning accuracy during 

the outages. In addition the contribution of the additional GNSS systems observation can be 
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considered marginal, as the positioning error during a complete GNSS outage depends on the 

accuracy of the positioning solution just before the occurrence of outage. As well, the 

additional GNSS observations can only slightly improve the inertial sensor bias estimation, 

compared with that of GPS-only. In the 60-second GNSS outage the maximum positioning 

error reached sub-meter level in most cases, while it reached a decimeter level in 10-seccond 

outage. Table 5.2 shows the average maximum positioning errors in latitude, longitude and 

altitude, respectively, during the three simulated GNSS outages for both BSSD and 

undifferenced ionosphere-free models for the first trajectory.  

Table 5. 2-Average maximum positioning errors during GNSS simulated outages for the first 

trajectory 

 

5.4.2. Second Trajectory 

The second trajectory test area is shown in Figure 5.6 with the locations of simulated outages. 

Similar to the first trajectory, the locations of the simulated outages were selected to present 

different driving conditions. Figure 5.7 shows the satellite availability during the observation 

time. 

PPP technique

outages (sec) 60s 30s 10s 60s 30s 10s 

latitude (m) 0.517 0.334 0.201 0.501 0.327 0.199

longitude (m) 0.716 0.429 0.214 0.699 0.428 0.210

altitude (m) 0.402 0.310 0.159 0.393 0.305 0.160

PPP technique

outages (sec) 60s 30s 10s 60s 30s 10s 

latitude (m) 0.483 0.296 0.175 0.472 0.268 0.146

longitude (m) 0.681 0.396 0.186 0.670 0.363 0.159

altitude (m) 0.376 0.273 0.137 0.357 0.245 0.104

Un-differenced-GPS BSSD-GPS

Un-differenced-GNSS BSSD-GNSS
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Figure 5. 6-Test area and simulated complete GNSS outages for the second trajectory 

 

Figure 5. 7-GNSS satellite availability during the second trajectory test 
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Figure 5. 8-Positioning accuracy for the second trajectory with no outages inserted 

Figure 5.8 shows the positioning accuracy for the developed integrated system when the 

observations of all GNSS satellites are included in the solution, i.e., no outages are inserted. 

Table 5.3 summaries the statistical analysis for the results of the four scenarios, as described 

earlier. It can be seen that the solution characteristics of the second trajectory are similar to 

those of the first trajectory, which confirms the consistency of the positioning solution. 

Table 5. 3-Statistical analysis of GNSS positioning precision for the second trajectory, with 

no outages inserted 

PPP techniques GPS (un-differenced mode)  GPS (BSSD mode) 

Positioning latitude longitude altitude Latitude Longitude Altitude 

RMSE (m) 0.042 0.103 0.117 0.040 0.059 0.074 

Maximum 

error 
0.118 0.232 0.268 0.123 0.172 0.255 

PPP techniques GNSS (un-differenced mode)  GNSS (BSSD mode) 

Positioning latitude longitude altitude Latitude Longitude Altitude 

RMSE 0.029 0.051 0.062 0.038 0.030 0.057 

Maximum 

error 
0.109 0.170 0.226 0.095 0.077 0.093 
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Eight simulated GNSS outages, each with duration of 60 s, 30 s and 10 s, respectively, were 

introduced such that they encompass all conditions of the trajectory, including straight 

portions and turns. Figure 5.9 shows the positioning errors during the GNSS simulated 

outages, which presents comparable positioning accuracy with the results of the first 

trajectory.  

 

  

Figure 5. 9-Positioning accuracy for the second trajectory with simulated complete GNSS 

outages inserted 

Table 5.4 shows the average maximum positioning errors in latitude, longitude and altitude, 

respectively, during the three simulated GNSS outages for both BSSD and undifferenced 

ionosphere-free models for the second trajectory. As can be seen the outputs results of the 

second trajectory confirms the positioning accuracy for the second trajectory during the 

complete GNSS outages, Similar to those of the first trajectory, the average maximum 
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positioning error reached sub-meter level during the 60-second GNSS outage, while it 

reached a decimeter level in 10-seccond outage.   

Table 5. 4-Average maximum positioning errors during GNSS simulated outages for the 

second trajectory 

PPP technique Undifferenced-GPS BSSD-GPS 

outages (sec) 60s  30s 10s  60s 30s  10s  

latitude (m) 0.638 0.414 0.124 0.635 0.412 0.122 

longitude (m) 0.650 0.423 0.127 0.606 0.379 0.083 

altitude (m) 0.675 0.439 0.132 0.632 0.396 0.089 

PPP technique Undifferenced-GNSS BSSD-GNSS 

outages (sec) 60s  30s 10s  60s 30s  10s  

latitude (m) 0.624 0.362 0.108 0.634 0.383 0.104 

longitude (m) 0.637 0.371 0.110 0.606 0.350 0.065 

altitude (m) 0.662 0.387 0.115 0.632 0.368 0.072 

 

5.5. Conclusions 

We developed new algorithms for the integration of multi-constellation GNSS PPP, including 

GPS, GLONASS and Galileo systems, and MEMS-based inertial system. Both undifferenced 

and between-satellite single difference ionosphere-free linear combinations of carrier phase 

and code GNSS measurements were considered. Tightly coupled mechanism was 

implemented and extended Kalman filter (EKF) technique was developed to merge the GNSS 

and inertial measurements. The performance of the newly developed models was analyzed 

using two real trajectory tests. The positioning results of the integrated system showed that 

centimeter to decimeter-level accuracy are achievable when the GNSS satellite were 

available. The addition of GLONASS and Galileo observations enhanced the positioning 

accuracy in comparison with standalone GPS-based solution.  Better positioning accuracy 

was obtained with BSSD IF model, in comparison with the undifferenced IF model for both 

of GPS- and GNSS-based models. During the GNSS outages, the integrated system showed 

submeter-level accuracy in most cases when a 60-second outage was introduced. However, 

the positioning accuracy was improved to a few decimeter and decimeter-level accuracy 
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when 30- and 10-second GPS outages were introduced, respectively. Comparable results 

were obtained from both BSSD and undifferenced models under GNSS outages. 
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6. Conclusions and Recommendations 

6.1. Conclusions 

This dissertation developed new models for an autonomous positioning and navigation 

system, which integrates the measurements of multi-constellation GNSS, including GPS, 

GLONASS and Galileo satellite systems, and MEMS-based inertial sensors. Both 

undifferenced and between-satellite single difference (BSSD) ionosphere-free precise point 

positioning PPP models were developed. A tightly-coupled mechanization was adopted, 

which is carried out in the raw measurements domain. A number of linear and nonlinear 

estimation filters, including the extended Kalman filter (EKF), the unscented Kalman filter 

(UKF), the particle filter (PF), and the unscented particle filter (UPF), were developed to 

merge the corrected GPS satellite difference observations and the inertial measurements. A 

Matlab-based computer program was developed to carry out the tightly-coupled integration. 

The performance of the proposed integrated system was analyzed using real test trajectories 

in Kingston, Ontario. 

It has been shown that the GPS PPP/MEMS-based INS integrated system, with the EKF 

being the estimation filter, achieves decimeter- and centimeter/sec-level accuracy for 

positioning and velocity, respectively. Better positioning precision has been obtained with the 

BSSD IF model, in comparison with the undifferenced IF model. On average, the positioning 

accuracy is improved by 48%, 40% and 20% in the latitude, longitude and altitude 

components, respectively, when the BSSD model is used. This improvement is mainly 

attributed to the elimination of the receiver differential code biases through the BSSD 

technique. During GPS outages, the integrated system showed submeter-level positioning 

accuracy in most cases when a 60-second outage was introduced. However, the positioning 

accuracy was improved to a few decimeters and decimeter-level accuracy when 30- and 10-

second GPS outages were introduced, respectively. Comparable results were obtained from 
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both the BSSD and undifferenced models under GPS outages. The results obtained from three 

nonlinear filters, namely UKF, PF, UPF, were comparable to those of EKF, as long as no 

GPS outages are encountered. When GPS is available, the performance of the integrated 

system depends on GPS positioning accuracy. As such, the contribution of the nonlinear filter 

is expected to be marginal as the effect of the nonlinear terms can be neglected in the 

positioning parameters. In comparison with the traditional PF, the use of UPF significantly 

reduces the number of particles needed to obtain an accurate solution, which speeds up the 

estimation of navigation parameters. During GPS outages, the nonlinearity of the inertial 

sensor records controls the performance of the integrated system. When a complete GPS 

outage is encountered, the use of UPF enhances the positioning accuracy by up to 15%, in 

comparison with the standard EKF. 

 The developed multi-constellation GNSS PPP/MEMS-based inertial sensor integrated 

system achieves centimeter- to decimeter-level accuracy when the GNSS satellite 

observations are available. The addition of GLONASS and Galileo observations enhanced the 

positioning accuracy in comparison with a standalone GPS-based solution. It has been shown 

that the additional GNSS observations improve the positioning accuracy by 24%, 41% and 

41% for latitude, longitude and altitude, respectively, in comparison with the GPS-based 

integrated system. The  positioning accuracy is further enhanced by 23%, 15% and 13% in 

the latitude, longitude and altitude directions, respectively, when the BSSD mode is 

employed. During the GNSS outages, the integrated system showed submeter-level accuracy 

in most cases when a 60-second outage was introduced. However, the positioning accuracy 

was improved to a few decimeter and decimeter-level accuracy when 30- and 10-second GPS 

outages were introduced, respectively. Both the undifferenced and BSSD models produce 

similar positioning accuracy during the outages. In addition, the contribution of the additional 

observations from other GNSS systems can be considered marginal. This is mainly because 
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the positioning error during a complete GNSS outage depends essentially on the accuracy of 

the positioning solution just prior to the occurrence of the outage. As well, the additional 

GNSS observations can only slightly improve the inertial sensor bias estimation, compared 

with that of GPS-only.  

6.2. Recommendations 

To further improve the findings of this dissertation, additional research is needed in the 

following areas: 

 Incorporating the measurements of the Chinese BeiDou GNSS system can potentially 

improve the performance of the GNSS PPP/MEMS-based inertial system. 

 Further research is needed on multi-constellation PPP integer ambiguity resolution, 

which is expected to further improve the system accuracy during the GNSS 

availability. 

 Considering triple-frequency GNSS measurements for the GNSS PPP/MEMS-based 

inertial system can potentially help resolve the integer ambiguity parameters. 

 The stochastic model used in research is limited to, a first-order Gauss-Markov 

process, which is considered to be linear. Considering nonlinear stochastic models or 

higher-order Gauss-Markov stochastic process can enhance the accuracy and 

reliability of nonlinear estimation, compared with the standard EKF. 

 Further research is needed that makes use of low-cost MEMS-based gyros. 

 A very low-cost land navigation system should be developed, which integrates single 

frequency GNSS PPP with reduced inertial systems consisting of two accelerometers 

and one gyro, as well as the vehicle odometer. 

 

 

 



109 

 

 

7. References 

Abdel-Hamid, W., Abdelazim, T., El-Sheimy, N., & Lachapelle, G. (2006). Improvement of 

MEMS-IMU/GPS performance using fuzzy modeling. GPS Solutions, 10(1), 1-11. 

Bergman, N. (2001). Posterior Cramér-Rao bounds for sequential estimation. In Sequential 

Monte Carlo methods in practice. Springer: New York, NY, USA, pp. 321–338. 

Brown, R. G., & Hwang, P. Y. (1992). Introduction to random signals and applied Kalman 

filtering (Vol. 3), John Wiley & Sons: New York, NY, USA.. 

Cai, C., & Gao, Y. (2007). Precise point positioning using combined GPS and GLONASS 

observations. Positioning, 1(11). 

Cai, C., & Gao, Y. (2008, September). Estimation of GPS-GLONASS system time difference 

with application to PPP. Proceedings of the 21st International Technical Meeting of the 

Satellite Division of The Institute of Navigation  Savannah, GA, September 2008, pp. 

2880-2887.  

Cannon, M. E. (1992). Integrated GPS-INS for high-accuracy road positioning.Journal of 

surveying engineering, 118(4), 103-117.  

Cannon, M.E. (1991).  Airborne GPS/INS with an Application to Aero triangulation. UCGO 

Report #20040, Department of Geomatics Engineering, University of Calgary. 

Caron, F., Davy, M., Duflos, E., & Vanheeghe, P. (2007). Particle filtering for multisensor 

data fusion with switching observation models: Application to land vehicle positioning. 

Signal Processing, IEEE Transactions on, 55(6), 2703-2719. 

Carpenter, J., Clifford, P., & Fearnhead, P. (1999). Improved particle filter for nonlinear 

problems. IEE Proceedings-Radar, Sonar and Navigation, 146(1), 2-7. 

Choy, S., Zhang, S., Lahaye, F., & Héroux, P. (2013). A comparison between GPS-only and 

combined GPS+ GLONASS Precise Point Positioning. Journal of Spatial Science, 58(2), 

169-190. 



110 

 

Collins, P., Bisnath, S., Lahaye, F., & Héroux, P. (2010). Undifferenced GPS ambiguity 

resolution using the decoupled clock model and ambiguity datum fixing. Navigation, 

57(2), 123-135.  

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods 

for Bayesian filtering. Statistics and computing, 10(3), 197-208.  

El-Sheimy N, Schwarz K P, Wei M, and Lavigne M (1995, September) VISAT: a mobile city 

survey system of high accuracy. Proc. ION GPS 1995, Institute of Navigation, Palm 

Springs, CA, 1307-1315 

Elsobeiey, M., & El-Rabbany, A. (2013). Efficient between-satellite single-difference precise 

point positioning model. Journal of Surveying Engineering, 140(2). 

European GNSS service center (GSC) (2014) Personal Communication, March 3rd. 

Gao, Y., & Chen, K. (2004). Performance analysis of precise point positioning using rea-time 

orbit and clock products. Journal of Global Positioning System, 3, 95-100. 

Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase 

ambiguities in precise point positioning (PPP) with daily observations. Journal of 

Geodesy, 82(7), 389-399.  

Geng, J., Bock, Y., Melgar, D., Crowell, B. W., & Haase, J. S. (2013). A new seismogeodetic 

approach applied to GPS and accelerometer observations of the 2012 Brawley seismic 

swarm: Implications for earthquake early warning. Geochemistry, Geophysics, 

Geosystems, 14(7), 2124-2142.  

Geng, J., Shi, C., Ge, M., Dodson, A. H., Lou, Y., Zhao, Q., & Liu, J. (2012). Improving the 

estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. 

Journal of Geodesy, 86(8), 579-589. 

Georgy, J., Noureldin, A., Korenberg, M. J., & Bayoumi, M. M. (2010). Low-cost three-

dimensional navigation solution for RISS/GPS integration using mixture particle filter. 

Vehicular Technology, IEEE Transactions on, 59(2), 599-615.  



111 

 

Giremus, A., Tourneret, J. Y., & Djuric, P. M. (2005, June). An improved regularized particle 

filter for GPS/INS integration. In Signal Processing Advances in Wireless 

Communications, 2005 IEEE 6th Workshop on (pp. 1013-1017).  

Grejner-Brzezinska, D. A., Da, R., & Toth, C. (1998). GPS error modeling and OTF 

ambiguity resolution for high-accuracy GPS/INS integrated system. Journal of Geodesy, 

72(11), 626-638. 

Haug, A. J. (2005). A tutorial on Bayesian estimation and tracking techniques applicable to 

nonlinear and non-Gaussian processes. MITRE Corporation, McLean.  

Heo, Y. J., Cho, J., & Heo, M. B. (2012). An approach for GPS clock jump detection using 

carrier phase measurements in real-time. Journal of Electrical Engineering & Technology, 

7(3), 429-435.  

Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation 

satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business 

Media. Chicago  

Jekeli, C., (2001). Inertial navigation systems with geodetic applications. Walter de Gruyter.  

Julien, O., Alves, P., Cannon, M. E., & Lachapelle, G. (2004, January). Improved triple-

frequency GPS/Galileo carrier phase ambiguity resolution using a stochastic ionosphere 

modeling. Proceedings of the 2004 National Technical Meeting of The Institute of 

Navigation, San Diego, CA, pp. 441-452.  

Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (1995, June). A new approach for 

filtering nonlinear systems. Vol. 3, In American Control Conference, Proceedings of the 

1995 Seattle, WA, USA, pp. 1628-1632.  

Kouba, J. (2009). A guide to using International GNSS Service (IGS) products. International 

GNSS. Online Publication at IGS Website, May 2009. Available online: 

ftp://ftp.igs.org/pub/resource/pubs/UsingIGSProductsVer21.pdf. 

Kouba, J., and Héroux, P. (2001). Precise point positioning using IGS orbit and clock 

products. GPS solutions, 5(2), 12-28. 

ftp://ftp.igs.org/pub/resource/pubs/UsingIGSProductsVer21.pdf


112 

 

Leandro, R. F., Langley, R. B., and Santos, M. C. (2008). UNB3m_pack: a neutral 

atmosphere delay package for radiometric space techniques. GPS Solutions, 12(1), 65-70. 

Mezentsev, O. (2005). Sensor Aiding of HSGPS Pedestrian Navigation. PhD Thesis, 

Department of Geomatics Engineering, University of Calgary, Canada 

Montenbruck, O., Hauschild, A., and Hessels, U. (2011). Characterization of GPS/GIOVE 

sensor stations in the CONGO network. GPS solutions, 15(3), 193-205.  

Montenbruck, O., Steigenberger, P., Khachikyan, R., Weber, G., Langley, R, B., Mervart, L., 

and Hugentobler, U. (2014). IGS-MGEX: Preparing the Ground for Multi-Constellation 

GNSS Science, Inside GNSS, 9(1), 42-49.  

Nassar, S., and El-Sheimy, N. (2005). Wavelet analysis for improving INS and INS/DGPS 

navigation accuracy. Journal of Navigation, 58(01), 119-134. 

Nayak, R. A. (2000). Reliable and Continuous Urban Navigation Using Multiple GPS 

Antennas and a Low Cost IMU, MSc Thesis, Department of Geomatics Engineering, 

University of Calgary, Canada. 

Noureldin, A., Karamat, T. B., and Georgy, J. (2012). Fundamentals of inertial navigation, 

satellite-based positioning and their integration. Springer Science & Business Media. 

Petovello, M. G., Cannon, M. E., and Lachapelle, G. (2004). Benefits of Using a Tactical‐

Grade IMU for High‐Accuracy Positioning. Navigation, 51(1), 1-12. 

Phelts, R, E. (2007). Range Biases on Modernized GNSS Codes, Proceedings of European 

Navigation Conference GNSS/TimeNav, Geneva, Switzerland. 

http://waas.stanford.edu/~wwu/papers/gps/PDF/PheltsENC07.pdf.    

Píriz, R., García, Á, M., Tobías, G., Fernández, V., Tavella, P., Sesia, I., and Hahn, J. (2008). 

GNSS interoperability: offset between reference time scales and timing 

biases. Metrologia, 45(6), S87. 

Rabbou, M. A., and El-Rabbany, A. (2014). Tightly coupled integration of GPS precise point 

positioning and MEMS-based inertial systems. GPS Solutions, 1-9, doi:10.1007/s10291-

014-0415-3. 

http://waas.stanford.edu/~wwu/papers/gps/PDF/PheltsENC07.pdf


113 

 

Rabbou, M. A., and El-Rabbany, A. (2015). Integration of GPS Precise Point Positioning and 

MEMS-Based INS Using Unscented Particle Filter. Sensors, 15(4), 7228-7245. 

Rabbou, M. A., and El-Rabbany, A. (2015). Precise Point Positioning using Multi-

Constellation GNSS Observations for Kinematic Applications. Journal of Applied 

Geodesy, 9(1), 15-26. 

Roesler, G.; Martell, H. Tightly Coupled Processing of Precise Point Position (PPP) and INS 

Data. In Proceedings of the 22nd International Meeting of the Satellite Division of the 

Institute of Navigation, Savannah, GA, USA; 2009; pp. 1898–1905. 

Schwarz, K. P. and M. Wei (2000). INS/GPS Integration for Geodetic Applications. ENGO-

623 Lecture Notes, Department of Geomatics Engineering, The University of Calgary, 

Canada.  

Shi, J., and Gao, Y. (2014). A comparison of three PPP integer ambiguity resolution methods. 

GPS Solutions, 18(4), 519-528.  

Shin, E. (2005). Estimation Techniques for Low-Cost Inertial Navigation, PhD Thesis, 

Department of Geomatics Engineering, University of Calgary, Canada. 

Shin, E. H., Niu, X., and El-Sheimy, N. (2001, May). Performance comparison of the 

extended and the unscented Kalman filter for integrated GPS and MEMS-based inertial 

systems. In Proceedings of the 2005 National Technical Meeting of The Institute of 

Navigation, San Diego, pp. 961-969. 

Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. 

John Wiley & Sons,Hoboken, NJ, USA. 

Steffen, R. (2008). A Robust Iterative Kalman Filter Based On Implicit Measurement 

Equations. Technical Report 8, University of Bonn, Department of Photogrammetry, 

Institute of Geodesy and Geoinformation.  



114 

 

Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prang, L., Dach, R., Uhlemann, 

M., Gendt, G., and Montenbruck, O. (2014). Galileo Orbit and Clock Quality of the IGS 

Multi-GNSS Experiment, Advances in Space Research, doi: 10.1016/j.asr.2014.06.030. 

Steigenberger, P., Hugentobler, U., Montenbruck, O., and Hauschild, A. (2011). Precise orbit 

determination of GIOVE-B based on the CONGO network. Journal of Geodesy, 85(6), 

357-365. 

Sukkarieh, S. (2000). Low Cost, High Integrity, Aided Inertial Navigation Systems for 

Autonomous Land Vehicles, Ph.D. Thesis, Australian Centre for Field Robotics, Dept. of 

Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, Australia. 

Teunissen, P., (1991). On the Local Convergence of the Iterated Extended Kalman Filter. 

Available online: 

http://saegnss1.curtin.edu.au/Publications/1991/Teunissen1991local.pdf. 

Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., and Yanagidani, T. (2013). High-rate 

precise point positioning (PPP) to measure seismic wave motions: an experimental 

comparison of GPS PPP with inertial measurement units. Journal of Geodesy, 87(4), 361-

372. 

Yi, Y., and Grejner-Brzezinska, D., A. (2006). Tightly-coupled GPS/INS integration using 

unscented Kalman filter and particle filter. In Proceedings of the 19th International 

Technical Meeting of the Satellite Division of the Institute of Navigation, Fort Worth, 

TX, USA, pp. 2182–2191. 

Zhang, W., Cannon, M, E., Julien, O., and Alves, P. (2003). Investigation of combined 

GPS/GALILEO cascading ambiguity resolution schemes. Proceedings of ION 

GPS/GNSS, Institute of Navigation, Portland, OR, pp. 2599-2610. 

Zhang, Y.; Gao, Y. Performance Analysis of a Tightly Coupled Kalman Filter for the 

Integration of un-Differenced GPS and Inertial Data. In Proceedings of the 2005 National 

Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 24–26 January 

2005; pp. 270–275. 



115 

 

Zhou, J., Knedlik, S., and Loffeld, O. (2010). INS/GPS tightly-coupled integration using 

adaptive unscented particle filter. Journal of Navigation, 63(03), 491-511.  

Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H. (1997). 

Precise point positioning for the efficient and robust analysis of GPS data from large 

networks. Journal of Geophysical Research: Solid Earth (1978–2012), 102(B3), 5005-

5017. 

 

 

 

 


