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Abstract

A Framework for Estimating Relative Depth in Video

Richard Rzeszutek

Doctor of Philosophy, Electrical and Computer Engineering

Ryerson University, Toronto, Ontario, Canada, 2014

This dissertation proposes a novel framework for recovering relative depth maps from a video.

The framework is composed of two parts: a depth estimator and a sparse label interpolator. These

parts are completely separate from one another and can operate independently. Prior methods

have tended to heavily couple the interpolation stage with the depth estimation, which can assist

with automation at the expense of flexibility. The loss of this flexibility can in fact be worse than

any advantage gained by coupling the two stages together. This dissertation shows how by treating

the two stages separately, it is very easy to change the quality of the results with little effort. It

also leaves room for other adjustments.

The depth estimator is based upon well-established computer vision principles and only has

the restriction that the camera must be moving in order to obtain depth estimates. By starting

from first principles, this dissertation has developed a new approach for quickly estimating relative

depth. That is, it is able to answer the question, “is this feature closer than another,” with relatively

little computational overhead. The estimator is designed using a pipeline-style approach so that

it produces sparse depth estimates in an online fashion; i.e. a depth estimate is automatically

available for each new frame presented to the estimator.

Finally, the interpolator applies an existing method based upon edge-aware filtering to generate

the final depth maps. When temporal filters are used, the interpolation stage is able to very easily

handle frames without any depth information, such as when the camera was stationary. However,

unlike the prior work, this dissertation establishes the theoretical background for this type of

interpolation and addresses some of the associated numerical problems. Strategies for dealing with

these issues have also been provided.
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Chapter 1

Introduction

V
ideo provides a rich source of information about the depth in a scene. Unlike still images,

where perspective cues can be either misleading or completely wrong, the motion of the camera

itself provides a great deal of information and can help resolve many ambiguous situations. For

instance, the simple phenomenon of parallax can very definitively indicate if an object is close or

far from the camera. Intuitively an object moving very slowly is likely to be farther away than one

moving more quickly. Granted, this makes a number of assumptions about the camera and scene

but the point is still valid.

Collectively, image or video features that provide information about the underlying scene depth

are known as, unsurprisingly, “depth cues” [1]. These are a number of different elements, such

as vanishing lines, increasing texture frequency, fog, relative object size, etc., that all contribute

to understand the spatial relationships between objects in a scene. With still images, there is no

other information to go on. But with video, provided that nothing in the scene moves, the relative

motion of features between frames provides a good indication of how far they are from the camera.

In fact, the way in which features appear to move is well-defined. Since features are tracked across

multiple frames it is possible to aggregate/integrate the information over multiple frames to help

resolve ambiguities.

Having depth information is useful for a number of different reasons. Among other things, it

makes it possible to know how far an object was from the camera and the relative ordering of objects,

with respect to the camera. A good example is foreground/background object segmentation. Given

some user input it is possible to obtain a reasonable segmentation [2, 3] simply because the strong

edges near the user’s labelling tend to be those of the foreground object. However, without any

labelling the best that one can hope for, without any prior knowledge, is to ensure that visually

distinct regions are grouped together [4, 5]. However when depth information is available it makes

the task significantly easier, particularly in automated applications. The reason is quite simple:

foreground objects are, by definition, closer to the camera. This information, coupled with edge

information, can simplify the segmentation problem.
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1.1 Representing Depth

Depth information, either for images or video, is represented through depth maps. These are

monochromatic images that relate how close, or how far, a pixel is from the camera. Figure 1.1

shows an example disparity map for an image. A disparity map is not quite a depth map though,

they are directly related; this will be elaborated upon in Chapter 3. However, as can be seen,

brighter points are closer to the camera while darker points are farther away. The black “shadows”

present in the disparity map are artifacts from how the map was obtained1.

(a) Image (b) Disparity Map

Figure 1.1: An example of depth representation. Points closer to the camera are represented as
brighter regions in Figure 1.1b while those farther away are darker. The “shadows” are artifacts
from the capture system. Both the image and disparity map have been obtained from [7] and are
publicly available at vision.middlebury.edu/stereo.

Disparity/depth maps are important because they provide information about dense depth in

the scene for the particular camera position. They are not the same as a 3D reconstruction which

is, more or less, a complete 3D model of the scene. For stereo applications they are extremely

important because they relate the stereo images to one another.

It should be noted that a disparity/depth map is not the only method to represent depth. For

instance, layered depth images [8] represent depth information as a series of layers with associated

colour data and were intended to simplify the representation of complex scenes and rendering

of novel viewpoints. That said, for the purposes of this dissertation, only depth maps will be

considered.

Finally, the terms “depth” and “disparity” will be used more or less interchangeably. From a

strictly semantic viewpoint, “depth” refers to the distance from the camera to a particular object

1 The disparity map was obtained using structured light [6] and no disparity information is available for where
shadows were cast.

2
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while “disparity” is the apparent observed offset of that object when the camera’s position is

changed. The reason for this is that, generally speaking, disparity is inversely proportional to

depth. Sometimes, however, the two will refer to different concepts but in these instances the usage

will be clarified to avoid confusion.

1.2 Motivation

The primary motivation behind this dissertation is to address a number of issues with respect to

depth estimation. In many cases, such as foreground/background segmentation, there is no need to

have knowledge of the absolute depth. Instead the relative depth is sufficient. This is true in other

applications as well, such as 2D-to-3D image conversion where rendering novel viewpoints is done

under the assumption that the original depth information is unknown. Namely this dissertation

will focus on a novel method for estimating relative depth in a much more computationally efficient

and simpler way than with existing methods. This is intended to complement the existing work

rather than replace it. As such, the method in this dissertation is presented in the context of a

more general framework.

The need for this type of depth estimation was driven, primarily, by the author’s prior work

in 2D-to-3D image conversion [9, 10, 11]. Semi-automatic conversion is a relatively straightforward

process as all it requires is that the user indicate the relative depths for different regions in a

scene. However doing this for video is extremely time consuming because it requires labelling, if

not every frame, a rather large number of them. While the depth maps are intended for conversion

purposes, they can be used in other situations as well, e.g. applying depth-dependent effects such

as depth-of-field. The fact that this dissertation is primarily presented in the context of 2D-to-3D

conversion is not a limitation.

Currently, many estimation methods attempt to generate a full reconstruction of the observed

scene. That is, the method will find the actual 3D structure of the scene, up to some scale and

rotation factor (since these are impossible to determine without taking physical measurements of

the scene itself). Obtaining a depth map from the reconstruction is very simple because it becomes

a matter of determining where the camera had been located and measuring the distance from

the camera to the scene element. However, as will be argued in this dissertation, this level of

information is unnecessary in cases where only relative depth information is needed, such as with

depth-based image rendering.

There are a number of different approaches for extracting depth information, all with their own

particular benefits and drawbacks. There are two common, somewhat related, requirements that

these methods must meet. The first is that the relationship between cameras must be known in ad-

vance. For instance, the vast majority of disparity estimation methods in stereo vision require that

the cameras be parallel to one another since it simplifies the estimation procedure. This procedure

is either done manually by physically ensuring the camera alignment or as a post-processing step

3



later on; this ties into the second requirement.

Alternatively, instead of knowing the camera relationship ahead of time a depth estimation

method requires that the relationship between the camera views can be established later on; i.e. it

is possible to find a transform that moves the camera from one position to another. For video, or

large image collections for that matter, this means that there must be a large number of features

that can be detected and tracked between frames. How this is done depends on the method and

is usually straightforward tracking [12], some form of feature detection and matching [13,14,15] or

a combination of the two [16, 17]. The purpose is to establish relationships between cameras and

it often requires a minimum number of feature correspondences. Furthermore, feature detection is

inherently noisy so the majority of these methods are statistical in nature and the more available

features, the better likelihood of obtaining a good estimate.

The proposed method will be subject to the second requirement because of the nature of the

geometry that is produced by multiple cameras or views. This is an inherent limitation in any sort

of automatic depth estimation. Certain approaches such as one proposed by Torresani et al [18]

can handle this but they are significantly different from more conventional methods and outside of

the scope of this dissertation.

1.3 Dissertation Objectives

In keeping with the original research motivation, the primary goal of the dissertation has been to

develop a depth estimation technique capable of being integrated into a semi-automated conversion

framework. However, the depth maps can in fact be applied elsewhere, not just in 2D-to-3D

conversion. The advantage of this approach is that the results of the proposed method can be

adjusted/corrected by the user at some later time. This is only something that has been explored

recently by other researchers.

There are a number of secondary objectives for the dissertation as well. The first of these is

to develop a computationally efficient online approach to generating dense depth maps. Existing

approaches2 tend to be, almost exclusively, in the domain of offline processing. That is, they require

complete access to all of the frames in a video sequence and perform multiple passes over the data.

With the proliferation of mobile computing platforms with limited memory and computational

power it makes it very difficult to use these methods with these devices3. It is beneficial to develop

methods and techniques to work in these conditions since these algorithms will also be significantly

faster on traditional desktop computers.

The other objective was to obtain relative depth in such a way that it requires minimal infor-

mation about the camera used to image the scene. In existing approaches, the internal parameters

2More information on these approaches will be presented in Chapter 2.
3Some recent work, as of the time of writing, uses sensor fusion to speed up the process but it is still quite

computationally difficult.
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of the camera must either be determined ahead of time or estimated through a process known

as “calibration” (Chapter 2.1.1). This is necessary when finding the true 3D reconstruction but

unnecessary for simply finding the relative depth.

1.4 Contributions

This dissertation makes a number of contributions to the existing body of literature that are

summarized here. These contributions represent the concrete solutions to the objectives outlined

in the previous section (Chapter 1.3). They are as follows:

A novel depth estimation method.

Chapter 4 presents a novel method for estimating sparse, relative depth. The method is

straightforward to apply to video and produces depth estimates very similar to more compli-

cated approaches. The key to the method is that short term feature tracks provide enough

information on their own to provide an estimate of depth at any particular frame. A full

reconstruction is unnecessary for this.

Decoupling depth map generation from depth estimation.

In much of the prior work, estimating sparse depth and obtaining the dense depth maps was

done jointly. That is, any initial sparse depth estimates were used as just one of several con-

straints in a large optimization problem. The depth maps cannot be generated independently

from those initial estimates. Some recent 2D-to-3D work (as this dissertation was being writ-

ten) have attempted to separate the two but there is still a tendency to treat estimation and

generation as being intimately connected. Here these are treated as two, completely unrelated

problems and it leads into the next contribution.

An extensible framework for depth map generation.

Because depth estimation and map generation are essentially two separate problems, the work

in this dissertation is more properly a framework rather than any single algorithm or method.

There is no requirement on how the sparse depths are estimated or on how the maps are

created. This flexibility is demonstrated in Chapter 7 where the quality of the output can be

selectively changed.

A framework for online depth map generation.

The sparse depth estimation in particular is designed specifically for online processing. The

total memory and processing requirements, per frame, are relatively constant during process-

ing. It should be stressed here that “online” simply means that only access to the current

video frame is required; it does not necessarily mean that the method is “real-time” (though

there is no reason why it cannot be). But because it is online, it can process video one frame

at a time without requiring the entire video to be loaded into memory.
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Providing a method for user-guided corrections.

While the proposed framework is completely automatic, its design makes it amenable to user-

guided corrections. This is made possible through the use of edge-aware filters and does not

require any modifications to the framework itself. Rather all it requires is just a second pass

through the frame sequence after the user has provided their corrections. This does require

that the original depth estimates are stored but as they are sparse estimates, they require

substantially less storage than the video being processed.

Providing a theoretical background for filter-based sparse label propagation.

While the method used for sparse propagation is not new, the theoretical justification for

this particular approach is lacking. While it has been shown that edge-aware filtering can

simulate anisotropic diffusion, this argument fails to take into account the fact that images

are discrete-space signals. As such, there are certain practical numerical issues that need

to be considered when using this particular technique. This dissertation will discuss these

problems in a theoretical context as well as providing a way to compensate for them.

1.5 A Note on Notation

To avoid ambiguity, there are a few things that should be mentioned about the notation used in

this dissertation. First, vectors are treated as tuples so that

~v = (v0, v1, . . . , vN−1),

where N is the dimensionality of the vector. Conversely, N ×M matrices are represented as

M =


m00 · · · m0(M−1)

...
. . .

...

m(N−1)0 · · · m(N−1)(M−1)

 .
In both cases zero-indexing is used rather than one-based indexing. This indexing style is used in

other contexts as well unless otherwise specified.

It is useful to mix vectors and matrices together when performing computations. For this reason,

in matrix form, a vector is defined as a single-column matrix

~v =


v0

v1

...

vN−1

 .
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Therefore taking the transpose of a vector is

~v T =
[
v0 v1 · · · vN−1

]
.

This is simply treating the N -length tuple as a 1×N matrix. Finally, some vectors are represented

as ṽ rather than ~v. The ‘∼’ is used to indicate that the vector has been augmented (it contains an

extra dimension). They are still treated as column matrices but will have added properties that

are discussed in detail later in the dissertation.
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Chapter 2

Related Work

M
ost work into video depth map estimation has been done from a computer vision perspec-

tive. That is, the maps are typically recovered in order to obtain high-quality depth data

that can then later be used to recover the full 3D structure of a scene. These methods are effective

and well-known. Less work has been done from an image processing perspective. This may seem

like a somewhat arbitrary division but the two related fields have different aims.

Image processing, a sub-field of signal processing, applies operators to a signal in order to

transform it into some other representation or form. Several operators can be chained together in

complex ways to produce an output that is best suited to the particular application. Computer

vision is much more focused. Given an image of the world captured by a camera (or some other

imaging device), computer vision methods seek to extract some information about what is being

seen. Image processing methods are often used because that is the way in which computer vision

is accomplished.

A classic computer vision problem is recovering a feature’s 3D position and the orientation of

the camera that took the image, i.e. its pose. This is known as Structure from Motion (SfM) and

can be described as the solution to

argmin
Pi

∑
i

D(~xi,Pi
~X).

Given a 2D feature position ~xi = (x, y) in image i, SfM attempts to find the true 3D position of

the feature ~X = (X,Y, Z). This is done by minimizing the distance D(·) between a projection of

~X onto image i and the feature’s position in the image, ~xi.

The utility of computer vision methods, such as SfM, is that once the structure and poses

are recovered, the depth information for any particular image in the set of images can be found

fairly easily. The biggest hurdle is always establishing those initial spatial relationships between

the cameras and the feature positions. In the context of 2D-to-3D conversion, this has been used

by a number of recent methods as a way of “bootstrapping” the initial depth maps.
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The related work can be loosely categorized into the following groups:

Disparity Estimation

Direct measurement of the differences between two or more camera views, with the multiple

(more than two) view case being referred to as Multiview Stereo (MVS).

Structure from Motion (SfM)

Recovering the structure (3D feature positions) and motion (camera positions and orienta-

tions) from known feature correspondences.

Edge-aware Filtering

A class of blurring filters that are sensitive to strong edges in an image.

2D-to-3D Conversion

Generating perceptually consistent depth maps/estimates either automatically or from user

input for the purpose of generating novel views.

The categories above are not mutually exclusive, but rather serve to provide some structure for

how the rest of this chapter is organized. For instance, SfM is often used with MVS because it can

obtain the information necessary to correctly perform disparity estimation. The same is true with

2D-to-3D conversion. As will be discussed, some methods used SfM to provide constraints that are

later coupled with user input to produce depth maps.

2.1 Disparity Estimation

Conceptually, disparity estimation is very similar to optical flow [19]. Optical flow seeks to find

argmin
~u(~x)

{
I ′(~x)− I(~x− ~u(~x))

}
,

where ~u(~x) is a flow field indicating the mapping between I(x, y) and I ′(x, y). If ~x = (x, y) and

~u(~x) =
(
u(x, y), v(x, y)

)
then disparity estimation can be described as optical flow with v(x, y) = 0. This small assumption

is crucial as it make an implicit assumption regarding the underlying camera geometry, namely

that it only varies only the horizontal axis. Optical flow assumes that the motion is completely

arbitrary while disparity estimation assumes that the observed motion is due to a particular camera

configuration (discussed in Chapter 3). This makes disparity estimation the solution to

argmin
d(x,y)

{
IR(x, y)− IL(x− d(x, y), y)

}
,
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where d(x, y) is the disparity map that relates the two views.

This has a number of implications in how disparity estimation algorithms work and is why they

are mechanically quite different from optical flow algorithms. Scharstein and Szeliski established

a basic taxonomy of disparity estimation techniques [20] to better categorize the different types of

available techniques. They define the following categories:

• Local Methods (also known as “Winner Take All”)

• Global or Semi-global Optimization

• Dynamic Programming

• Cooperative Algorithms

Essentially, all disparity estimation methods generate a “cost space” C(x, y, d) where for each pixel

(x, y) there is a cost to assigning disparity d for that pixel.

Local methods are mostly brute-force matching techniques that look for regions in the other

image that best match some neighbourhood around a pixel in the current image. That is, they

minimize C(x, y, d) separately for each pixel. While these methods may sound simplistic, they can

actually be quite sophisticated, such as using adaptive matching windows [21] or plane-fitting [22]

on a per-pixel basis. The more sophisticated local methods begin to resemble the other class of

stereo methods: global optimization.

Global optimization approaches try to find a “globally optimal” value for d(x, y). Solutions to

this problem are usually found through methods based on belief propagation [23] or graph cuts [24].

Semi-global approaches attempt to do the same except on a more limited scale; semi-global matching

by Hirschmuller [25] is an excellent example of such a technique. Dynamic programming and

cooperative algorithms are both types of optimizations however Scharstein and Szeliski differentiate

between the two because they operate differently from traditional global optimization techniques.

More recently, Lang et al [26] have proposed a dense disparity estimation technique based on

sparse feature matching. This is significantly faster than prior approaches because the map is

generated by interpolating the sparse estimates through a non-linear filter. A similar approach was

taken by Hosni et al [21] where non-linear filters were used to estimate disparity maps in a “winner

take all” framework. It should be noted that the work by Hosni et al is slower than that of Lang

et al because it relies on dense matching. There will be more discussion on these filters in Section

2.3.

2.1.1 Image Rectification

An important component of disparity estimation is image rectification. Rectification is a pre-

processing step that aligns two views such that they appear, after the transformation, they were

taken with parallel cameras. This means that the camera lines of sight are parallel to one another.
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This is illustrated in Figure 2.1. In this configuration the depth of a pixel becomes inversely

proportional to its observed disparity.

Point of Convergence

Left Camera
Right Camera

(a) Verged Cameras

Left Camera Right Camera

(b) Parallel Cameras

Figure 2.1: An example of misaligned (verged) and aligned (parallel) cameras. Here “misaligned”
simply means that the cameras’ principle axes are not parallel.

Rectification schemes [27,28,29] generally produce a set of linear transforms H such that

H =
{
Hi|i ∈ [0, NV − 1]

}
,

where NV is the number of views. In the stereo case, there are just two transforms produced but

more may be generated when dealing with multiview stereo. Regardless, the result of applying

the transforms is a virtual alignment of the cameras so that rows in one view are aligned with

rows in another. The main drawback to this approach is the case where the camera has moved

forwards or backwards. The transforms in H represent rotations in three-dimensional space and a

forwards/backwards motion cannot be expressed like this. Non-linear warping schemes have been

developed [30, 31] to accommodate for this type of motion. Unlike the linear schemes, applying

them to images is significantly more complicated but it is much easier to find the transform.

If the intrinsic parameters of the cameras are known, i.e. they are “calibrated”, then it is very

simple to establish a relationship between point correspondences. This reduces the complexity of

the problem because there is now a well-defined relationship between what is seen by the camera

and the actual features in 3D space. If the cameras are uncalibrated then this adds an extra layer

of complexity. For instance, Fusiello et al [28] derived a simple closed-form for the rectification

transforms. But in [29], where the cameras are uncalibrated, Fusiello et al solve a large least-

squares optimization problem because the camera parameters must be estimated along with their

orientation. Non-linear rectification schemes warp the images based on the observed geometry

without any knowledge of the underlying camera and therefore are not as sensitive to uncalibrated

cameras. But as previously stated, being a non-linear warping, the methods are more difficult to

apply to the images.
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2.1.2 Multiview Stereo

The previously mentioned methods have all been for stereoscopic disparity estimation. That means

each “image” has two views: a left and a right view. However, the idea of disparity can be

extended to N -views (multiview). These methods are similar to stereo disparity except that they

construct C(x, y, d) across many images. They also differ in that they do not necessarily rectify the

images beforehand (it can be problematic in certain cases) and instead search along epipolar lines

directly [32].

A key difference with two-view stereo is that the end result of many MVS methods is often

a 3D model of the scene [33]. That is because the images have been taken at multiple positions

around the scene and so it may be more useful to obtain a single 3D model instead of N depth

maps. However, this is not to say that all MVS methods generate 3D models. For instance, this

is one way to obtain depth maps from misaligned cameras without having to perform rectification

first [34]. It also allows the information from multiple cameras to be combined to produce a single

depth map.

2.2 Structure from Motion

Structure from Motion (SfM) is a relatively broad term that describes the process of extracting

three-dimensional coordinates (structure) from the observed differences caused by a change in a

camera’s position (motion). SfM is an extremely versatile technique and has been used in a number

of different scenarios ranging from 3D reconstruction from unstructured photograph collections

[32,35,36] to robotic navigation1 [37, 38].

The method can be loosely summarized as follows:

1. Find two initial views that have a sufficiently large baseline (they were taken relatively far

apart).

2. Find initial 3D coordinates through triangulation [39].

3. Update camera pose and feature position estimates based on other camera views through

bundle adjustment [40,41].

4. If the cameras were uncalibrated, use feature correspondences and camera pose estimates to

autocalibrate [42,43] the cameras.

The final step takes the reconstruction from a projective reconstruction to a metric reconstruc-

tion. Without this last step the reconstruction will appear distorted, e.g. features that should

1 In robotics, SfM is often referred to as “Visual Simultaneous Localization and Mapping” (V-SLAM). The
techniques are identical but the application is focused specifically on building a model of a robot’s environment, as
opposed to a more general theoretical problem.
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be parallel to one another will not be. A metric reconstruction is the observed scene up to some

similarity transformation (rotation and scaling). For a more complete description of the procedure,

please refer to [44].

A variety of methods exist for performing SfM. For instance, Parallel Tracking and Mapping

(PTAM) by Klein and Murray [45, 46] is able to reconstruct a scene in real-time by progressively

re-running the bundle adjustment in parallel with the tracking. This is an online approach as it

tracks features over many frames and once tracking has been performed long enough, it sends them

to the bundle adjustment module to update the reconstruction. Newer approaches, such as the

one by Tanskanen et al [47], incorporate information from a mobile phone’s sensor to improve the

reconstruction accuracy by providing hints on the camera’s orientation and position.

These are examples of online processing because the features are updated incrementally as new

images are made available. This approach is quite useful if the images are “structured”, i.e. there

is a well-defined relationship between them. For video it is reasonable to assume that there is little

change between frames and so makes tracking straightforward. This is much more difficult to do

with the images are “unstructured”, such as a random collection of images from the internet with

different resolutions.

A good example of offline processing is the photo tourism project2 by Snavely et al [36,48,49].

Because the photos can come from anywhere, sparse feature matching has to be used instead of

tracking. The reconstruction itself can be updated incrementally but the initial feature matching

must be done on every image in the database. Adding new images may or may not update the

reconstruction because it will depend on whether or not existing features are matched to the new

ones.

Regardless of how the feature detection is done, the underlying process is still the same: obtain

features, initialize reconstruction, add new cameras and refine the estimation. In order to produce

a proper metric reconstruction, as it is often the desired result, these methods require the intrinsic

properties of the camera. Namely, they need the focal lengths and the amount barrel distortion.

Knowing the focal length makes it possible to convert a projective reconstruction into a metric one.

Knowing the barrel distortion ensures that straight features map to straight lines in the images. If

they do not, there will be error in the resulting reconstructions.

There are several ways to obtain the camera intrinsics. First, they can be calibrated beforehand;

tools are available to do this. Second, they can be autocalibration can recover them from a projective

reconstruction [39] (Ch. 19). Finally, image metadata, such as EXIF tags, can provide information

such as focal length. Please note that these are not mutually exclusive. For example, photo tourism

uses the EXIF data to provide a set of initial values and further refines them. The Autodesk 123D R©
Catch service3 can generate a 3D model from multiple images with enough fidelity to be used with

a 3D printer.

2Better known by its commercial name, “Photosynth” (http://photosynth.net).
3http://www.123dapp.com/catch (Retrieved July 29, 2013)
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While SfM can produce very impressive results, it comes at a high computational cost. Photo

tourism required a tremendous amount of computing resources to produce its reconstructions [50].

The feature matching alone turned into what could be termed as a “big data” problem. Similarly,

even though Klein and Murray were able to port PTAM onto a second-generation iPhone (iPhone

3G), they had to make a number of concessions in the process [46]. While Tanskanen et al was aided

by the sensors on a high-end mobile device, it was still not enough to run in real time (between

two and three seconds to generate a reconstruction).

2.2.1 Feature Detection and Tracking

As alluded to in the previous section, processing video with SfM is a slightly simpler problem than

with unstructured image collections. This is because with video, it can be assumed that features in

one frame are most likely going to be visible in the next frame. Therefore, feature correspondences

do not have to be re-established each time. Instead, they can be updated (tracked) from the current

frame to the next one.

Methods designed specifically for video, such as [51], work in much the same way as PTAM.

Given the current set of features, when a new frame arrives they look for where the features should

be in the new frame. For image collections, feature detection methods, such as SIFT [13] and

SURF [14], are the only truly effective way to match features in one image to another. With video,

however, a simple KLT tracker [12] can often be more than sufficient.

In practice KLT loses features very quickly as they move out of the frame, are occluded or

experience tracking errors for one reason or another. For this reason video-based SfM methods

generally spend a fair bit of time ensuring high quality tracking because it greatly improves the

final SfM results. In an SfM context, tracking methods attempt to find and track the features that

are most representative of the scene’s structure. This can be done in two ways.

First, the tracking can be done in tandem with the SfM estimation; this is what PTAM does.

A similar approach was done by Cordes et al [17], where pairwise matching was performed using

SIFT. The descriptors were stored so that if a feature became occluded, it could be queried later

on to determine if it had reappeared. To ensure good tracking quality, features that did not respect

the current estimate of the scene structure were treated as outliers and rejected.

Alternatively, the long-range and short-range tracking approaches can be hybridized, as done

Zhang et al [16]. Feature matching is used across the entire sequence but over short time periods

(10 to 20 frames), KLT tracking is used instead. To ensure that the features being matched were

“reasonable”, they perform planar motion segmentation on the tracks and attempt to transform

features in one frame to the other. This ensures that features on the same surface move together.

Because, like Cordes et al, they have SIFT features for each track, they can join features from

multiple videos or cameras to extend their tracks even further.
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2.2.2 Factorization

An important method related to SfM is projective factorization [52, 53]. This is a “simplified”

version of SfM and can be somewhat viewed as a precursor to modern bundle adjustment-based

approaches. It relies on the observation that

λi~xi = Pi
~X ∀ ~i,

or that for each projection of ~X onto image i, ~xi, it is really a scaled version of ~X. Unlike SfM,

projective factorization offers a closed form estimate of the scene’s structure. This makes it rather

simple to implement when given a set of feature tracks, such as those available from video. However,

it requires that the tracks are dense (all features must be visible) and is less extensible than bundle

adjustment, in the sense that new features cannot be easily added to refine an existing SfM estimate.

Factorization is mentioned simply because of how it deals with tracks is relevant to this disser-

tation. In particular, Triggs introduced the notion of “parallel” and “serial” chains in [53]. These

are important because these methods are used as part of the depth estimation procedure in this

dissertation.

2.3 Edge-preserving Filters

Edge-preserving filters are important to disparity estimation because they are often used to filter

the “cost volume”, an N -dimensional space that relates the cost of assigning a particular disparity

value for each pixel. While there are a number of different filter types, they all share the following

property: the filter kernel is dependent on the image content. That is, the filter changes itself so

that strong edges are preserved while spurious features are smoothed out. An advantage to this

approach is that these filters can use another image to control the filter kernel instead of the image

being filtering; this is often known as “guided” or “joint” filtering.

The best known edge-preserving filter is the bilateral filter [54]. It is defined as

If (~x) =
1

W (~x)

∑
~p∈Ω

Gσs(‖~x− ~p‖)Gσr(|I(~x)− I(~p )|)I(~x),

where W (~x) is a normalization constant so the weights of the filter sum up to ‘1’. The terms

Gσs(·) and Gσr(·) are known as the spatial and range terms, respectively. They are both zero-mean

Gaussian functions with different values of σ that control how wide the Gaussian is in the spatial

and range domains. The spatial parameter σs ensures that the filter response decreases the farther

away from the current pixel ~x. The range parameter σr controls the strength of the filter with

respect to the difference in pixel values. If |I(~x) − I(~p )| is very large (indicating a strong edge),

then the corresponding filter weight will be small to avoid affecting it. Conversely, if the difference
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is small, it implies the region is homogeneous and safe to filter. Because the range term does not

have to be derived from the image being filtered, the edge information in one image can be used to

control the filtering in another.

While the bilateral filter is probably the best known of the edge-preserving filters, it is not

the only one. One particular problem with the bilateral filter is that a naive implementation is

quite slow. As such, work has gone into making it faster [55]. Unfortunately this requires making

an approximation to the filter. A variety [56, 57, 58] of edge-preserving filters have been recently

proposed in order to avoid this problem, two of which will be discussed here.

He et al [58] proposed their “Guided Image Filters” that can be efficiently implemented using

nothing more than integral images [59] and element-wise arithmetic. The filters assumed that

images are locally linear (little variation in colour around a pixel) and so it attempts to enforce

that constraint. Alternatively, Gastal and Oliveira [57] proposed filters based on a so-called “domain

transform” that would make similar colours spatially closer in a transformed domain (hence the

name). Unlike the guided image filter, the Domain Transform (DT) filter is only defined on one

dimension and is explicitly designed as a separable filter. Because the filter is non-linear, it requires

multiple vertical-horizontal passes. The advantage, though, is that it requires very little memory

to run and is very fast.

2.4 2D-to-3D Conversion

2D-to-3D conversion attempts to create stereoscopic (left-right image pairs) or multi-view images

from monoscopic (single-view) images or video. There are a variety of different ways to perform

conversion but the basic process is this:

1. Obtain a depth map for particular image.

2. Render a new image from the depth map to simulate the view from a slightly different camera

position.

The second step is known as Depth-based Image Rendering (DBIR) [60]. DBIR is the last part

of conversion where the single-view image or video is converted into its stereoscopic or multi-view

form. It is essentially a warping with some inpainting to fill in regions that were exposed after the

warping was performed.

More interesting, and relevant to this dissertation, is the first stage where the depth map is

produced or generated. The depth map is key to conversion because it controls how the novel views

are generated. What is particularly surprising about conversion is that the depth maps do not have

to be accurate, merely plausible [61]. This has created a large group of methods where the depth

maps produce pleasing stereo pairs but have no relationship to reality. Alternatively there are a

class of methods that use computer vision-based approaches to obtain the depth map.
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Conversion can be grouped into two relevant categories: semi-automated and automated. Semi-

automated methods are those that rely on some degree of user input and generate maps from that.

Automated methods are those that attempt to obtain the maps without any user input. Recently a

group of methods half-way between semi-automated and fully-automated have been proposed but

for the purposes of this discussion they will be considered to be semi-automated.

2.4.1 Automated Methods

Automated methods generate depth maps without any guidance at all from a user. The complexity

depends on the quality of the results and the current state of the art is lacking in many ways. Part

of the problem is that automated methods cannot be (easily) corrected if any errors are spotted.

The only way to affect the outcome is to adjust the runtime settings and hope for the best.

Some of the more image processing-based methods have used information in the image as a

proxy for depth. For instance, Tam et al [62] used the Cr chroma channel in a YCbCr image as a

depth map. Similarly, Angot et al [63] performed joint bilateral filtering with a very simple depth

map and an image so that the image edges would be visible in the depth map4. In both cases, the

goal was not to create a real depth map, simply one that would look plausible.

Another approach has been to use machine learning methods to use depth cues (shading, van-

ishing lines, etc) in an image. Make3D by Saxena et al [64] trained a classifier using data from a

laser range finder to determine how visual features were correlated to depth. Also, it is possible

to learn depth from existing stereo sequences [65]. More recently, Karsch et al [66] and Konrad et

al [67] have used nearest-neighbour matching to find images with known depths and merge them

together to obtain a depth map for an image with unknown depth. It should be pointed out that

visual cues can also be used directly without any machine learning, such as what was done by Tian

et al [68].

Computer vision methods can be applied directly to this problem too. Knorr et al [69] used

SfM to obtain camera positions from a video and rendered novel views by warping existing frames.

Something similar was done around the same time by Zhang et al [70]. However, neither method

actually generated a depth map and so if the existing footage is not conducive to generating new

frames then even if the reconstruction was good, the result will not. An example was provided

in [70].

However, other methods have generated depth maps using SfM/MVS. The most well-known

of these is the work by Zhang et al [71] on consistent depth recovery from video. They first

perform a sparse reconstruction using SfM and use MVS to estimate the dense disparity at each

frame. A global optimization is used to enforce temporal and photometric consistency for the entire

video. They used this method for depth-based effects rendering [72] with a post-processing step to

accommodate for errors in the depth maps caused by moving objects.

4Depth edges must match object edges for the depth to appear plausible.
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2.4.2 Semi-automated Methods

Semi-automated methods accept user input and generate a depth map from that. These methods

are conceptually similar to user-guided image segmentation and for a good reason: depth map gen-

eration can be viewed as a labelling problem. In fact, this is how disparity estimation is formulated.

Each pixel has a particular cost of being labelled with a particular disparity value and disparity

estimation seeks to find the best label for each pixel. The difference is that disparity estimation is

wholly automatic and does not need any user input.

There have been several semi-automated methods proposed recently, of which Guttmann et

al [61] was the first. Their approach was to have a user mark up select frames in a video and

then interpolate them through a combination of solving a weighted least squares problem and a

support vector machine classifier. Since then a number of different approaches have been developed.

The StereoBrush method by Wang et al [73] interpolates user-provided strokes by solving a sparse

linear system. Phan et al [74] combined Graph Cuts [2] and Random Walks [3] to perform the

interpolation and also allowed for temporal propagation similar to Guttman et al. These methods

can all be traced back to the colourization work of Levin et al [75] where sparse user inputs were

used to add colour to black-and-white images and video.

The main problem with semi-automated methods is the label process itself, specifically when

working with video. Generally speaking the labelling itself needs to be available for each frame or

a “ghosting” effect can occur [9]. Doing this for video can be quite time-consuming, even if it is

easier than doing the conversion completely manually.

As such there have been several methods proposed recently to help with this. The first such

method is Depth Director by Ward et al [76]. Depth Director is built around Graph Cuts image

segmentation. The user is able to extract different scene elements in order to change their depth.

To ease the burden on the user, the footage can be first passed through an SfM stage to generate

some preliminary depth labels that can be adjusted later.

Video Stereolization by Liao et al [77] does much the same thing as Depth Director except

that it attempts to extract depth information from the optical flow as well as what SfM produces.

Constraints can then be added by the user to provide extra cues on what the depth should be.

Movie Dimensionalization by Becker et al [78] also uses SfM as an input prior but can revert to

user labels if need be.

Of what has been discussed in this Chapter, this dissertation is conceptually similar to Depth

Director, Video Stereolization and Movie Dimesionalization. However, this is not quite correct.

The method is built to be autonomous-first with an option for user correction later on. This makes

it more flexible in how it operates and allows it to handle footage that SfM methods cannot. It can

also produce high-quality depth maps without any costly global optimizations. However, unlike

those methods, it is not a full conversion pipeline as it omits the DBIR step and does not focus on

user interaction.
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Chapter 3

An Introduction to Projective

Geometry

P
rior to discussing how depth information is encoded inside of a video, it is important to

formally define what occurs when a camera images a scene. The subject is known as “pro-

jective geometry” as it describes the effects of projecting a higher dimensional space onto a lower

dimensional space. Specifically, as releated to this dissertation, the goal is to examine what happens

when a 3D scene is imaged on a 2D plane. Hartley and Zisserman [39] provide an excellent, in

depth overview of the math behind projective geometry. A similarly good overview is provided by

Szeliski [79]. This section is mainly intended to gently introduce the reader to the topic and not

replace those resources.

3.1 Pinhole Cameras

The vast majority of footage being captured is done with cameras that are well-represented by the

pinhole camera model [79](Ch. 2, pp. 49–50). A nice feature of the model is that the front end of

the human visual system, i.e. our eyes, are essentially pinhole cameras. The model itself is quite

simple and is is illustrated in Figure 3.1.

The pinhole camera model is very simple: an imaging surface rests behind an opaque barrier

with only a single, infinitely small opening (the pinhole). The purpose of the pinhole is to avoid

all possible light rays from intersecting the imaging surface. Instead, the pinhole only allows a

single light ray to enter into the camera and hit the imaging surface. This mirrors the image in

both the horizontal and vertical axes but it is trivial to correct. For completeness, it should be

noted that in practice the pinhole has some measurable diameter known as the “aperture”. How

exactly the aperture effects the resulting image is beyond the scope of this dissertation but it can

be loosely summarized as, “the smaller the aperture, the sharper the image.” For readers familiar

with photography, this is corresponds to an aperture of f/∞.

19



Pinhole
Scene

Camera

Focal
Length

Figure 3.1: A basic illustration of a pinhole camera. In this model, the camera is an enclosed
volume with a single, infinitely small “pinhole” to allow in light from the scene. The scene itself is
projected onto the rear surface of the camera. The camera’s focal length is defined as the distance
from the imaging surface to the pinhole.

An observation of the model is that the rays from the object to the imaging surface form similar

triangles. That is, the triangle from the object to the pinhole is a scaled version of the triangle

from the pinhole to the imaging surface. Furthermore, it is convenient to consider that the object

is behind the imaging surface rather than in front if it. This effectively makes the pinhole the origin

of a coordinate system and the imaging surface a plane some fixed distance from the origin. This

is shown in Figure 3.2. As seen in the figure, the camera points down the positive z-axis1. The

convention that the image y-axis (y′ in the figure) points also poses no problems; it just requires

mirroring the image along the y-axis.

Image
Plane

Camera

Point

x'
y'

x

y

z

Principle
Axis

Projected
Feature

Figure 3.2: The camera coordinate system. The direction towards the imaging surface is considered
to be in the +z direction. This is also considered to be the camera’s principle axis.

The advantage to this approach is that determining where a point ~p = (x, y, z) in the scene

will be projected onto the image, ~q, becomes very straightforward. Figure 3.3 shows the geometry

1The choice of sign is completely arbitrary; it simply determines the handedness of the coordinate system. For
instance, OpenGL uses the convention that −z is in front of the camera (a right-handed coordinate system).
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of projection for a single dimension. Because this configuration produces similar triangles, the

mapping of ~p→ ~q is

~q =
f

z
(x+ cx, y + cy), (3.1)

where cx and cy is the camera’s optical centre in image coordinates. In other words, ~q is a scaled

and shifted version of ~p with the last coordinate being dropped. The shift is necessary because the

convention for images is that the image origin is the top-left corner.

Camera
f

z

~p

~q

Figure 3.3: Similar triangles produced by the pinhole camera model.

Two things should be noted about (3.1). First, f and ~c = (cx, cy) are independent of the scene;

they are properties of the camera itself. As such, these parameters are known as the intrinsic

parameters2 of the camera. Second, the total amount of scaling is inversely proportional to the

distance of the point from the camera. The result is that points far from the camera appear close

together and points close to the camera have an almost one-to-one mapping. This is what causes the

effect of parallel lines appearing to meet at infinity (Figure 3.4). The focal length, in particular,

is an important parameter because it affects how much perspective distortion is observed. The

relationship is very simple: the greater the focal length, the less distortion observed.

3.2 Homogeneous Coordinates

The “division by z” is formally described using homogeneous coordinates where a homogeneous

vector ~x is defined as

x̃ = (x, y, w), (3.2)

where w is an arbitrary scale factor. The complementary inhomogeneous form is given by

~x =
( x
w
,
y

w

)
. (3.3)

2Also considered as an intrinsic parameter is the lens distortion. This is a non-linear effect caused by the camera
optics that makes straight lines appear curved and is generally most noticeable with wide-angle lenses. It will not be
discussed here because it is corrected through pre-processing and would unnecessarily complicate the camera model.
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(a) Overhead View (b) Camera View

Figure 3.4: An example of perspective distortion. In the overhead view (Figure 3.4a), all lines are
either parallel or perpendicular to one another. However, from the camera’s perspective (Figure
3.4b), the lines remain straight but are no longer parallel. Points farther away from the camera
appear to be closer together.

This essentially states that x̃ and ~x only differ by scale. Note that this is very similar to (3.1) where

the division by z occurs due to the similar triangles in Figure 3.3. For this reason homogeneous

coordinates are used to represent the relationship between the world and what has been imaged by

a camera.

Homogeneous coordinates also have some very useful properties besides being able to represent

projective geometry. First, any point (x, y) can be trivially converted to a homogeneous form by

x̃ = (x, y, 1). (3.4)

This is computationally/mechanically useful in that it makes it possible to include a translation as

part of a linear transform. Consider an invertible 2× 2 matrix A and some vector ~t. When using

inhomogeneous coordinates, transforming and translating a point (x, y) is[
x′

y′

]
= A

[
x

y

]
+

[
tx

ty

]
. (3.5)

The disadvantage to this form is that the translation is separate from the rotation/scaling operation.

Because both are linear operations, it would be convenient to represent the transformation as a

single invertible transform H. However, by using homogeneous coordinates, this is trivial to do. If

H =

[
A ~t

0 1

]
(3.6)

22



then x
′

y′

w′

 = H

xy
1

 , (3.7)

where 0 is an N ×M matrix of zeros to “pad” the row and columns. Another advantage to this

representation is that H can represent any invertible transform. This introduces the notion of a

“homography” or a transformation between planes. Note that in the general case the homogeneous

coordinate does not have to be ‘1’ for either x̃ or x̃ ′.

Another important property of homogeneous coordinates is that they allow points and lines to

be represented in exactly the same manner. Consider the standard form for the equation of a line

ax+ by + c = 0, (3.8)

where a, b and c are constants. In homogeneous vector form (3.8) becomes

l̃ · x̃ = 0, (3.9)

where l̃ = (a, b, c) and ‘·’ is the dot-product operator. Therefore, if for any given x̃ (3.9) is 0 then

x̃ can be said to be a point on that line. Similarly, finding the intersection between two lines can

now be done using this vector notation. Given two lines l̃a and l̃b, the two will intersect at some

point ĩ. Therefore ĩ must satisfy

l̃a · ĩ = 0 (3.10)

and

l̃b · ĩ = 0. (3.11)

Intuitively, this means that ĩ is vector perpendicular to both l̃a and l̃b. This is, by definition, the

vector cross-product where the result is a vector orthogonal to two other vectors. Therefore ĩ is

given by

ĩ = l̃a × l̃b, (3.12)

where ‘×’ is the vector cross-product operator. By the same logic, given two points x̃a and x̃b, the

line through though the points is found by

l̃ = x̃a × x̃b. (3.13)

The ability to swap between lines and points is known as duality [39](Ch. 2, pp. 29–30) and is

useful in a number of different situations.

One thing that should be noticed, particularly about (3.12), is that when using homogeneous

coordinates an intersection point can be found for any set of lines, even parallel lines. This is
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somewhat counter-intuitive but can actually be explained as a property of projective geometry:

given a set of parallel lines, they can be said to intersect “at infinity”. Consider again (3.1). As

z increases, the apparent distance between points will begin to decrease. For parallel lines, there

will eventually be a point where they appear to meet3. Therefore, if w = 0 then it can be said that

the point exists “at infinity”. Furthermore, due to the division by zero, there is no inhomogeneous

representation4. This makes it possible to use homogeneous coordinates to represent situations not

normally possible with inhomogeneous coordinates.

3.3 Relating Multiple Cameras

In and of itself, projective geometry is useful because it relates the location of scene features to those

imaged by a camera; however, it can be used to relatesthe scene as viewed by multiple cameras.

This makes it possible to extract depth information based upon how the apparent position of a

scene feature change between views.

Describing a camera is done through its camera matrix

P =

[
K 0

0 1

][
R ~t

0 1

]
=

[
KR K~t

0 1

]
, (3.14)

where R and ~t are the camera’s rotation matrix (orientation) and translation vector (position) in

the world coordinate frame, respectively. The matrix K is the camera’s calibration matrix and

is defined as

K =

f 0 cx

0 f cy

0 0 1

 . (3.15)

It should be noted that there are alternate definitions of K, particularly ones that do not assume

that the focal length is the same for both the horizontal and vertical axes. This occurs when the

image has been scaled non-uniformly.

The purpose of P is two-fold. First, it positions the camera correctly in 3D space, relative to

the observed features. Second, it ensures that a scaling and translation are done to account for the

camera itself, as in (3.1). In other words, it directly models the effect of projecting ~p to ~q such that

q̃ = Pp̃, (3.16)

where q̃ is the homogeneous form5 of ~q and p̃ = (x, y, z, 1), or the homogeneous form of ~p. The

3This point is known as a “vanishing point” and exists on the “vanishing line” or plane, depending on the nature
of the scene.

4These points are formally known as “ideal points” in the literature.
5Here q̃ is properly a 4-vector but because the use of homogeneous coordinates for p̃ is for mathematical conve-
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homogeneous form is used simply to make the math convenient and P invertible.

When given two cameras there will be two camera matrices, Pa and Pb, describing them. This

in turn will mean that the feature p̃ will be projected onto two separate locations such that

q̃a = Pap̃, (3.17a)

q̃b = Pbp̃. (3.17b)

However, it is useful to also know how to map q̃a → q̃b and vice-versa. This can be done very

simply back-projecting q̃a to p̃ and projecting that result to q̃b. Let

p̃ = P−1
a q̃a. (3.18)

Therefore,

q̃b = Pbp̃

= Pb

(
P−1
a q̃a

)
=
(
PbP

−1
a

)︸ ︷︷ ︸
H

q̃a. (3.19)

Here H = PbP
−1
a is a homography, or general transformation, that maps points in the image plane

of camera a to points in the image plane of camera b. Since the last row of P is
[
0 1

]
, H represents

a straightforward affine transformation between the two image planes in 3D space. But, due to the

effects of the projection, the result is a distortion from the perspective of the cameras. Furthermore

it can be an arbitrary 2D homography, i.e. a 3× 3 matrix, without requiring any knowledge of the

cameras. Unless otherwise stated, H is assumed to refer an arbitrary 2D homography rather than

a 3D transformation.

Something that a homography cannot do is adequately explain the observed scene because it

maps planes to planes. More specifically, the homography derived in (3.19) relates the image planes

to one another. That means that if the actual features are not coplanar then it will not properly

transfer features from one image plane to another. This is problematic during estimation because it

implies a homography can only describe the relationship between certain types of scenes. What is

needed is some method that will explain how features move between cameras for arbitrary scenes.

Figure 3.5 shows the geometry when two cameras image a scene. These can be either separate

cameras or the same camera at different positions in time. Both are equivalent provided that the

scene itself does not change, e.g. there are no moving objects. Let ~ca be the location of camera

‘A’, ~cb be the location of camera ‘B’ and ~p is the location of the feature. All of the vectors are

inhomogeneous and are expressed in the world coordinate frame. The first thing to observe is that

nience, the fourth element is ignored.
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Camera A Camera B

Figure 3.5: Geometry of a two-camera setup. The cameras can either be separate cameras or the
same camera in two different positions; both are equivalent provided that the scene is static.

~ca ↔ ~p ↔ ~cb forms a triangle and the line ~ca → ~p, l̃ap, is visible from camera ‘B’. Another thing

is that the line from ~cb → ~ca intersects with the image plane of ‘B’ at ẽb (the point of intersection

does not actually have to be present inside the boundary of the image). Finally, l̃ap passes through

both the point of intersection and the location of the projected feature.

The main element that can be inferred from these observations is that the location of ~p, as

seen by camera ‘B’, is located somewhere along the line from camera ‘A’ to ~p projected onto

the image plane of ‘B’. This is known as the epipolar constraint and defines how features are

transferred between cameras. l̃ap is known as an epipolar line because it represents the geometric

interpretation of the constraint.

The relationship can be formalized as follows. First let

ẽb = Pbc̃a, (3.20)

where c̃a is just the homogeneous form of ~ca. To find l̃ap, (3.13) can be used so that

l̃ap = ẽb × q̃b. (3.21)

The cross-product can actually be represented by a skew-symmetric matrix [79](p. 42) where if

~x = (x, y, z) then
[
~x
]
× is defined as

[
~x
]
× =

 0 −z y

z 0 −x
−y x 0

 . (3.22)

Therefore (3.21) becomes

l̃ap =
[
ẽb
]
×q̃b. (3.23)
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However, because of the relationship derived in (3.19) it is possible to say that

l̃ap · q̃b = 0

l̃ Tap (Hq̃a) = 0([
ẽb
]
×q̃b

)T
(Hq̃a) = 0

q̃ Tb
[
ẽb
]T
×Hq̃a = 0. (3.24)

Recall that
[
·
]
× is skew-symmetric and therefore

[
·
]T
× = −

[
·
]
×. Since the right side of the equation

is zero, the negative sign (and by extension the transpose) can be ignored. Therefore the expression

becomes

q̃ Tb Fq̃a = 0, (3.25)

where

F =
[
ẽb
]
×H (3.26)

is known as the fundamental matrix.

F is important because it relates how features in one image are transferred to another image.

Unlike a homography, F maps points to lines rather than points to points. This can be seen in

(3.25) where q̃b rests on the line given by

l̃ap = Fq̃a. (3.27)

In practical terms, F is a point-to-line transformation that indicates the region where the corre-

sponding feature, q̃b, will be found. This is particularly important for disparity estimation because

it restricts the search space when looking for the correspondence. Another useful feature of F is

that it is symmetric, or given F from a known q̃a → q̃b mapping, the reverse mapping is simply

q̃ Ta FT q̃b = 0. (3.28)

This can be seen from the fact that (3.25) can be viewed as a dot product

q̃b · (Fq̃a) = 0 (3.29)

and since the dot product is commutative

q̃b · (Fq̃a) = (Fq̃a) · q̃b
. . . = (Fq̃a)

T q̃b

. . . = q̃ Ta FT q̃b, (3.30)
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which is the same result as (3.28).

An important element of this derivation is it does not directly depend on the camera intrinsics,

i.e. K is unknown. H was assumed to be a generic homography between image planes. Because the

camera information is not available, the best it can do is provide a projective reconstruction

where the relative distances will be correct but the absolute distances and angles between lines will

not. If K is known, it is possible to obtain a metric reconstruction by upgrading an existing

projective reconstruction so that the features will be identical to their actual 3D locations up to

some rotation and scaling. In this case F is known as the essential matrix and has a slightly

different form from (3.26).

One parameter that F is sensitive to is the offset between the cameras ~b = ~cb − ~ca, more

commonly known as the baseline. If the magnitude ‖~b‖ is too small then the cameras are more

or less in the same position. This means that there simply is not enough difference between the

two images for F to be useful. F maps points to lines and so is a much weaker constraint than a

homography which maps points to points, i.e. a one-to-many versus a one-to-one mapping.

Something that has not been mentioned yet is the nature of the camera projection from (3.20).

This is a special construction known as an epipole and is the point where all of the epipolar lines

intersect, i.e. they form a pencil of epipolar lines. Put another way, the lines “radiate” from the

epipole. By definition the epipole is subject to

q̃TFẽb = 0 ∀ q̃ ∈ Image B. (3.31)

Because this is a dot product, this implies that Fẽb = ~0 and therefore ẽb is the (right) nullspace of

F. This same procedure can be used to show that ẽa is the left nullspace of F. Since the mapping

between ‘A’ and ‘B’ is easily swapped by transposing F, the image that the epipole maps to depends

on the convention being used. This also means that once F is known, finding the epipoles is simply

a matter of finding its nullspaces, something that is easily done using a singular value decomposition

(SVD) [39,79]

3.4 Relationship Between Depth and Disparity

The exact relationship between disparity and depth has not yet been properly introduced. As

was alluded to in Chapter 1.1, depth is inversely proportional to disparity, where disparity is the

measured offset in feature correspondences in two or more images. This statement, however, is

only true under a very specific set of circumstances and is why rectification (Chapter 2.1.1) is so

important to disparity estimation.

First, assume two arbitrarily positioned cameras as was shown in Figure 3.5 and that they

have identical calibration matrices Ka = Kb = K. Also assume that camera ‘A’ is located at the

origin of the world’s coordinate system, i.e. Pa = K. If camera ‘B’ has some arbitrary rotation
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R and translation ~b (the baseline) then its camera matrix has the same form as (3.14). With this

information the feature point ~p = (x, y, z) is

~p = zK−1q̃a. (3.32)

This can be shown by rewriting (3.1). If ~qa = (xa, ya) then

xa =
f

z
(x+ cx) (3.33a)

ya =
f

z
(y + cy). (3.33b)

Reversing this it becomes

x =
z

f
(xa − cx) (3.34a)

y =
z

f
(ya − cy). (3.34b)

Therefore (3.32) is just the matrix form of the above expressions. An important point is that

q̃a = (xa, ya, 1), or its homogeneous coordinate is ‘1’; this is fixed because ~qa is the 2D feature

coordinate in the image itself. This is also true for q̃b, the location of the feature in camera ‘B’.

Therefore it can also be said that

p̃ = zP−1
b q̃b, (3.35)

or

zq̃b = Pbp̃. (3.36)

Again, as with the derivation of H in (3.19), q̃b and p̃ are nominally 4-vectors but the fourth

dimension will be ignored at the end. This is a consequence of Pb being 4× 4 and the last row of

the matrix being
[
0 1

]
for mathematical convenience. However, (3.36) can be expanded into a

more explicit representation with only 3-vectors by

zq̃b = KR~p+ K~b. (3.37)

By substituting (3.32) into (3.37) it becomes

zq̃b = zKRK−1q̃a + K~b

q̃b = KRK−1q̃a + K
~b

z
. (3.38)

The term KRK−1 is known as the infinite homography, H∞, and has a special meaning that

will be discussed shortly (Section 3.4.1).
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The expression in (3.38) relates the observation of ~p in camera ‘A’ and ‘B’ to its distance from

the camera, z. An important feature of (3.38) is that it is the expression of depth for general

motion. That is, there is some arbitrary rotation R between the two viewpoints. However, if there

is no rotation, R = I, then the expression reduces to

q̃b = q̃a + K
~b

z
. (3.39)

If the movement is further restricted such that it is only along the image’s x-axis, i.e. yb − ya = 0,

then the expression is further reduced to

xb = xa + f
bx
z
. (3.40)

With some simple re-arranging it finally becomes the traditional disparity expression6

d = f
b

z
, (3.41)

where b = bx and d = xb− xa. Restricting motion to be along the x-axis is purely a computational

convenience; it is much easier to search along horizontal rows than lines with arbitrary slopes. This

also replicates the nature of the human visual system, where our eyes are horizontally offset. Image

rectification is then simply the procedure that takes R→ I to align the rows. Put another way, it

makes the epipolar lines parallel to one another.

3.4.1 The Infinite Homography

The statement, “depth is inversely proportional to disparity,” is a result of (3.41). But, as stated at

the beginning of this section, this is only true if the motion is purely translational. This has a few

other implications as well, such as the fact that (nominally) disparity values for translational motion

cannot be negative since it implies that the imaged feature is somehow behind the camera!7 However,

if R 6= I then d < 0 is a valid solution. In fact, in the rectified case d = 0 implies that z →∞ while

for general motion d = 0 is the plane of convergence. This is illustrated in Figure 3.6.

Essentially, there is some surface [80] where d = 0 and where objects behind the surface have

negative disparity and those in front of the surface have positive disparity. The surface is not

necessarily planar but provided that the degree of vergence is not too large, it will be approximately

planar. If the convergence surface is interpreted as a display device, such as a 3DTV or other

stereoscopic-capable device, then d < 0 would appear to be inside the screen while d > 0 would

appear to be outside the screen. One thing to note is that this assumes a left-to-right camera

6The camera centre has been ignored because the camera parameters do not change and is essentially a constant
offset.

7As stated before (Section 3.1) the sign depends on the choice of coordinate system. Here it is such that z = 0 is
the location of the camera and z > 0 is in the direction of the scene.
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d > 0
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Figure 3.6: The basic disparity relationship in the case of general motion. The camera (or cameras)
have undergone general motion with some arbitrary rotation.

motion. If the camera moves in the opposite direction then how the signs are interpreted must be

reversed. This is important when attempting to automate the process of depth estimation.

The convergence surface is special in that it is a direct result of the infinite homography. Without

any rotation, H∞ = I has no effect. The result is that the cameras’ lines of sight are converging

“at infinity” and so there is a simple, inverse relationship between depth and disparity. But the

moment there is a rotation, the convergence point is no longer at infinity and so the relationship

breaks down. Once the surface is a finite distance from the camera, it is possible for things to be

behind it. Essentially H∞ is the equivalent of a vanishing line in 3-space8. This causes what is a

flat plane in projective 3-space (really a higher-order 4-space) to be curved in 3-space.

One other important aspect of H∞ is that it is generated for any camera rotation, even if it

is just about its own axis. A practical example of this would be a camera, mounted on a tripod.

Rotating the camera on the tripod would produce a non-identity value for R and so a non-identity

value of H∞. However, because the tripod has not been moved, i.e. ~b = ~0, there is no disparity

information. In this case (3.38) becomes

q̃b = H∞q̃a, (3.42)

which is identical to (3.19). To put it plainly: there are certain cases where it is impossible to find

the depth of a scene even if the camera is moving. There will always be cases, particularly for hand

held camera footage, where no good estimate of F exists because ~b = ~0 but H∞ 6= I. Fortunately

it is possible to detect these degenerate conditions and such a method will be presented in Chapter

4.

8It is relatively straightforward to define a projective 3-space like the projective 2-space discussed in this section.
Please refer to [39](Ch. 3) for more details.
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Chapter 4

Depth from Motion

D
epth information is contained in, and can be extracted from, the relationship between features

tracked over multiple frames. For instance, as something moves away from the camera, it

becomes smaller. Similarly, something far away from the camera will move slower than an object

close to it. While these are just some heuristics that could be applied to obtaining this information,

it is far more useful to understand exactly how an imaged scene changes as a camera moves. As

was discussed in Chapter 3, there is a well-defined relationship between apparent motion and depth

for a moving camera. This relationship can be used to directly extract depth information.

Detect Features

New Frame Depth Map

Update Tracker 
State

Estimate Sparse 
Depth

Track 
Available?

Interpolate

Yes

No

Tracking  and Estimation

Figure 4.1: A high-level overview of the proposed depth estimation framework.

A flowchart of the proposed depth estimation method is shown in Figure 4.1. The depth

estimation is intended to be online so that the only information required is the current frame in

a video sequence. The framework does not require access to any prior frames. Instead, it buffers

feature tracks for a set number of frames and once a set of tracks is complete, it estimates the

sparse depth for the current frame. Once the sparse estimate is complete the system can then send

the sparse estimates off for interpolation or storage.
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This chapter will focus on how the depth estimates are obtained; interpolation will be left for

Chapter 5. The method superficially resembles, and was inspired by, SfM but is quite different.

Depth is being obtained through rectification directly instead of estimating the scene geometry first

and then getting the depth. The argument being made is that by working from first principles it

is possible to obtain those depth values directly. In other words, it is possible to skip a costly SfM

reconstruction to generate depth maps that a user can modify or correct later on [76,77,78].

4.1 Feature Tracking

There are a number of different strategies for feature tracking, each with their own benefits and

drawbacks. There is no one “right” way to do it. Tracking very much depends on the computer

vision algorithm being implemented. When tracking for video-based SfM, for instance, these meth-

ods [16,17] need to keep track of features across the entire sequence. As such, they need to be able

to recover feature tracks even if a feature has been occluded or is temporarily outside of the frame

boundaries. This is helpful for bundle adjustment as it provides more observations of a feature’s

position.

However, when estimating depth, long-term tracks, i.e. tracks that span tens or even hundreds

of frames and may have even been occluded, are not as important. Because the goal is to determine

the depth of a point for a particular camera view, whether or not a feature has been occluded at

some point is irrelevant. The depth of the point depends entirely on the observed offset between

views, as was explained in Section 3.4.

Therefore, so long as the tracks are long enough to establish a suitable baseline, then a simple

KLT tracking scheme will be sufficient. Occlusion will still be an issue but mainly in that it restricts

the length of the tracks. The proposed tracking framework is intended for short to medium range

(10 to 30 frames) tracks. This is mainly to provide enough time for tracking while at the same time

minimizing the total amount of buffering time. The main property of the tracker is that it maintains

tracking for multiple frames in parallel and is the key to performing online depth estimation.

4.1.1 Detecting and Tracking Features

A video can be considered to be an ordered set of images

I = {I0, I1, I2, . . . , INF−1} , (4.1)

where Ik is any particular frame and NF is the number of total frames in the sequence. For a video

stream, i.e. such as a television broadcast, NF is simply a very large number and can be considered,

for all practical purposes, infinite.

When performing feature tracking, the tracker must first be initialized with a set of features

that can be reliably tracked. Generally, these are well-defined corners surrounded by texture [81].
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Figure 4.2: An overview of the parallel tracking procedure. Each incoming frame starts a new track
and all existing tracks are updated together. The earliest tracking buffer is marked as ready after
NT frames.

The detector used in this work is the FAST corner detector [82] as that has been shown to obtain

a large number of high-quality corners very quickly.

The tracking procedure, outlined in Figure 4.2, works as follows. First, the feature detector (e.g.

FAST) generates a set of features ~pk|0[n] ∈ f0, where ~pk|i[n] is the 2D position of the n-th feature

in frame k + i (the purpose of this notation will become clear shortly). This set of features then

becomes the first entry in the next available tracking buffer Fb = {f0}, where b ∈ [0, NT −1]. When

frame k+ 1 arrives, the features in f0 are tracked using KLT to produce the new set of features f1.

Tracking errors are quite common because features become occluded or leave the frame. Han-

dling errors is straightforward and there is a well-established method for doing this1. First, bi-

directional tracking is used to verify that a feature tracked from k → (k + 1) returns back to its

original position if tracked from (k + 1) → k. If it does not then the feature is rejected. Next,

patches around the feature in k and k + 1 are compared using their L2-norm. If the norm is too

large then that feature is rejected. This is repeated NT − 1 times until buffer b is filled with a set

of features

Fb = {f0, f1, . . . , fNT−1} . (4.2)

After Fb has been filled, it will contain a set of feature tracks that terminate early due to

features being rejected by the error handling step. Only tracks that are contiguous and are NT

1This verification strategy is actually built into off-the-shelf tracking packages such as Matlab’s Computer Vision
Toolbox (www.mathworks.com/help/vision/index.html) or OpenCV (www.opencv.org).
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frames long are of interest. Therefore a new set Tb is created such that

Tb = {t0, t1, . . . , tNT−1} , (4.3)

where ~pk|i[n] ∈ ti if and only if that feature was present in all of the entries of Fb.

4.1.2 Tracking Pipeline

The tracker is designed to operate as a pipeline in the sense that each frame has its own set of

tracks Tb running NT frames into the future. This is done by generating a new set of features Fb
for each frame and storing them into a circular buffer B. When the next frame arrives, each feature

set stored in B is updated, in parallel, using the KLT tracker. The process is illustrated in Figure

4.3. As shown, after waiting NT frames for the first frame’s buffer to fill up, the tracks leading up

to frame NT − 1 will be available.

Frame

Buffer

0 1 2 3 4 5 6 7 8 9

B0

B1

B2

First Frame
Arrives

Frame 0 
Ready

Frame 1 
Ready

Frame 2 
Ready

Tracking
Direction

Processing
Direction

...

Figure 4.3: The tracker’s processing timeline. Each frame is assigned its own buffer Fb to store
feature tracks that originate from it. At each frame the positions are updated inside the buffer.
After waiting NT frames, here NT = 4, the first buffer has been filled and is ready for processing.
The features from k +NT − 1 then replace the entry for frame k.

There are two things that should be noted about this tracking scheme. First, the number of

frames to store in the buffer is NT − 1. This is because a track will be ready on the NT -th frame.

Once that initial buffering is finished, a new set of tracks will be available for each future frame.

Second is that the buffers need to be a uniform length. If the NT was different for each track, or

more specifically if it terminates early, then it would cause a “stall” in the pipeline. This means

that NT should be chosen so that it is long enough establish a baseline but not so long that it

results in a very long buffering time.
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4.2 Sparse Depth Estimation

Depth estimation is performed through a modified version Pollefeys’ epipolar rectification [30]

to sparse feature correspondences. The goal of the exercise, like all rectification methods, is to

artificially align the cameras such that R = I (Section 3.4). If the camera parameters do not

change2 between the two frames then the effect is that, after rectification, the infinite homography

becomes negligible, i.e. H∞ = I. This makes the observed offset inversely proportional to depth,

as given by (3.41). While the exact scaling will be unknown, the relative depths can now be found.

4.2.1 Sparse Epipolar Rectification

Let ~pk and ~pl be two features matched3 in frames k and l. Given these correspondences, provided

that there were enough of them and sufficient camera motion, it is possible to obtain the funda-

mental matrix Fk,l between the two views. An important feature of Fk,l, as discussed in Section

3.3, is that it maps points in one image to (epipolar) lines in another. Because the relationship

is symmetric, the point-line relationship applies to both images equally. Or, put another way, the

epipolar lines themselves can be mapped to one another. Rectification is the process of finding this

mapping.

Epipolar rectification [30] does this through a simple Cartesian-to-polar coordinate transforma-

tion. The epipoles are contained in the fundamental matrix so that Fk,l → {~ek, ~el}, where ~ek is the

epipole in frame k and ~el is the epipole in frame l. Please note that the inhomogeneous4 form is

being used. Because, by definition, all epipolar lines intersect at an epipole, they can be viewed as

the origin of a coordinate system. A transformed vector ~ρk can be defined as

~ρk = (ρk, θk) , (4.4)

where

ρk = ‖~pk − ~ek‖, (4.5)

θk = ∠ (~pk − ~ek) . (4.6)

The same definition is used for frame l. This is a simple transformation that converts the feature

positions into a polar coordinate system with the image’s epipole at the centre. However, in the

transformed space, the epipolar lines are now parallel to one another. Because this transform is

2This is a reasonable assumption for video particularly when it comes to hand-held camera footage. The focal
length on mobile phone cameras is fixed and any zooming, if done, is a post-processing effect that scales the frame
uniformly.

3These features can be obtained either through tracking or through direct feature matching; it is not relevant at
this point in the discussion.

4Fk,l is 3× 3 so when the nullspaces are initially obtained, they are represented by homogeneous vectors.

36



Frame

~ek~el

Subtended Angle

Figure 4.4: Angles subtended by the set of all possible epipolar lines. The maximum and minimum
angles depend on how close an epipole is to the image boundaries. Therefore the range of angles is
smaller for a more distant epipole and vice-versa.

obtained from the epipoles themselves, there are no singularities if the epipoles are inside of the

image boundaries, something that can happen with planar homographies.

The original epipolar rectification method operated directly on the images and much of the

work in [30] was rendering the transformed/rectified images and establishing a way to map the

results back into the original image coordinate system. Here the downside of a non-linear approach

becomes apparent: while finding the transform is trivial, applying it is quite difficult. Fortunately

this problem is non-existent when working with sparse features. Because a direct mapping between

the features already exists, the mapping is still maintained after the transformation.

With sparse rectification, the angular component θk has no impact on the actual disparity. The

radial component ρk encodes how far a feature is from the image’s epipole. Therefore, the disparity

between features in k and l is defined as

∆k,l = ρl − ρk. (4.7)

While there is a difference between θk and θl, it is of the form

θl = aθk + b, (4.8)

where a and b are some constant scaling and translation factors. Consider the case where the

epipoles have the same vertical coordinate but different horizontal coordinates; this is illustrated

in Figure 4.4. The angles subtended by the epipolar lines differ but their average value does not.

Aligning the epipolar lines is a matter of scaling and offsetting the values of θk so that it equals θl.

But when sparse matches are available, that alignment is unnecessary.
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While the transformation is insensitive to the epipole locations, the values of ∆k,l unfortunately

are not. Specifically, an epipole’s homogeneous coordinate is ẽ = (x, y, w) and for an image pair

that is already rectified, w ≈ 0. This is a consequence of the epipolar lines already being parallel.

By definition the epipole is the intersection of all epipolar lines and if the lines are parallel, then

that epipole is an ideal point (Section 3.2). The problem this poses is that the epipoles can be

either on the same side of the image or on opposite sides; both are “infinitely” far away and so

result in parallel epipolar lines.

To accommodate for this, a simple transformation can be applied to the values of ρk. This is

defined as

ρ′k =

2µρ − ρk
{
|∠(~ek)| < π

2

}
⊕
{
|∠(~el)| < π

2

}
ρk Otherwise

, (4.9)

where µρ is the mean value of the set of ρk values and ⊕ is the exclusive-or operator. This mirrors

ρk around the centre of the point cloud so that it creates the effect of both epipoles being on the

same side of the image. However, this can still result in the disparity magnitudes being inverted

between frames because the epipole position depends on the estimate of Fk,l and is notoriously

inconsistent5. One final adjustment can be applied to the disparity values themselves to ensure

that the magnitudes are consistent. Specifically, if the ~ek is not located on the right side of the

Cartesian plane then the values of ∆k,l are inverted (mirrored) by

∆′k,l =

max(∆k,l) + min(∆k,l)−∆k,l |∠(~ek)| < π
2

∆k,l Otherwise
. (4.10)

While this can result in the disparity estimates being the inverse of what they should be (large

values are farther than small values), it at least ensures that the estimates are stable so long as the

camera motion itself does not change.

4.2.2 Two-frame Example

Consider the image pair shown in Figure 4.5. Here the camera has undergone a non-trivial motion,

i.e. more than just a translation. Therefore, the disparity values will be both positive and negative

and the epipolar lines will not be parallel.

Figure 4.6 shows the Fk,l-estimate inliers from the SURF [14] feature correspondences. The

complex motion is evident in how the features move differently depending on their position in the

frame. The purpose here of using sparse feature matching instead of the feature tracking (Section

4.1) is simply to illustrate that how the matches are obtained is not particularly relevant to the

depth estimation. More detail on how Fk,l is estimated will be given in Section 4.2.3 but for now

5The fundamental matrix is rank-deficient and has no inverse. The result is that for any given set of matches
between k and l, there can be multiple solutions to Fk,l, even if no actual solution exists (such as with pure rotation).
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(a) Frame 80 (b) Frame 93

Figure 4.5: Two frames from the “Inuksuk” sequence. The camera motion is non-trivial, meaning
that it underwent more than just a translation.

Figure 4.6: Inlier SURF correspondences for the image pair in Figure 4.5. The coloured dots
indicate the position of the feature in Figure 4.5b.

it is sufficient to know that the estimation procedure segments the feature matches into inliers and

outliers.

The locations of the features, both before and after rectification, are shown in Figure 4.7. In

this example, both epipoles are located outside of the image boundaries (Figure 4.7a) but are close

enough to cause a noticeable distortion in the rectified results (Figure 4.7b). Note that because of

the epipole positions, the range of potential angles is larger in the target frame (Frame 93) than

those in the reference frame (Frame 80). It is also slightly “off angle” and so there is a minor

difference in the average value of θ between the two rectified feature sets.

The final disparity estimate for the frame pair is shown in Figure 4.8. For this example the

magnitude of the disparity estimates correspond to the expected scene depth: features with a

greater disparity are closer to the camera. If the reference and target frames were swapped then

small disparity values would correspond to features closer to the camera from the simple fact that

it would effectively negate6 the values of ∆k,l

6Even though the Fk,l would be different, the epipole locations in the images would remain relatively constant
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Figure 4.7: Original feature positions versus rectified positions for correspondences in Figure 4.6.
The positions of the original features are given in pixels while the for the rectified features, ρ is in
pixels and θ is in radians.

200 400 600 800 1000 1200 1400

80

100

120

140

160

0

200

400

600

 

Horizontal Pixel Coordinate
Measured Disparity

 

V
e

rt
ic

a
l 
P

ix
e

l 
C

o
o

rd
in

a
te

(a) Oblique View

0 200 400 600 800 1000 1200 1400

90

100

110

120

130

140

150

160

170

0

200

400

600

800

Horizontal Pixel Coordinate

Measured Disparity

V
e
rt

ic
a
l 
P

ix
e
l 
C

o
o
rd

in
a
te

(b) Top-down View

Figure 4.8: The spatial distribution of the final disparity measurements. The colour coding is such
that dark red corresponds to small values and bright yellow/white are large values. Two views have
been provided to better demonstrate the approximate 3D structure of the scene.

Please note that for the scatterplots in Figure 4.8, that the value of δk,l has been used as the

z-coordinate value. This leads to a somewhat distorted view of the scene, e.g. the inuksuk should

be perpendicular to the ground. However, this clearly shows that the relative depth ordering has

been successfully recovered.

since they are a result of the camera geometry.
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4.2.3 Fk,l-estimation and Model Verification

So far there has been no discussion on exactly how Fk,l is obtained. Finding it is a well-studied

problem [39, 83, 84, 85, 86] but the various methods can all be summarized as such: given two sets

of point correspondences, fk and fl, find Fk,l such that

p̃Tl Fk,l p̃k = 0 ∀ p̃k ∈ fk and p̃l ∈ fl. (4.11)

This is simply ensuring that the epipolar constraint is satisfied for all point matches. The minimum

number of matches is between 5 and 8, depending on the exact method being used.

In Section 3.3, Fk,l was shown to be a mapping between points in one image to lines in another

image. As such, F−1
k,l does not exist because the fundamental matrix is of rank-2 [39](Table 9.1).

It is for the same reason why the reverse mapping is given by the transpose FT
k,l instead of the

actual matrix inverse. Because the mapping is not one-to-one (point-to-point), estimates of Fk,l

are quite sensitive to noisy feature matches. Specifically the detected features ~p d will be related to

the feature’s true location by

~p d = ~p+ ~ε, (4.12)

where ~ε ∼ N(~0,Σ). Therefore the epipolar line for ~p will be

l̃ = Fk,lp̃
d

= Fk,l (p̃+ ε̃) . (4.13)

While the location of the epipole will not change, the angle of l̃ through the epipole will. This in

turn defines an envelop of potential epipolar lines for ~p d. A full treatment of this subject can be

found in [39](pp. 298–302). This however, is for the ideal case where the ground truth, or a very

good approximation to the ground truth, Fk,l is available. During estimation ~ε makes finding an

accurate Fk,l more difficult. The question then becomes how to best find Fk,l when the data is

known to be corrupted.

To find the best possible Fk,l given noisy data, robust estimators are often used [87]. One of the

most common and well-known methods is Random Sample Consensus (RANSAC) [88]. RANSAC

is a relatively simple iterative procedure that randomly generates a model from a small subset of a

larger dataset and determines how much of the remaining dataset agrees with the model. Features

that agree with the dataset are called “inliers” while features that do not agree with the model

are “outliers”. A datum is said to “agree” with a model when the error between it and the model

is less than some threshold or confidence value. Generally RANSAC is terminated once enough

inliers have been found, i.e. there is a high confidence that model describes the dataset well.

In the context of computer vision, a well-fitting estimate of Fk,l is one where the majority of

features in frame l are close to the epipolar lines generated by features in frame k. RANSAC
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tends to find these high-quality models, provided that there are enough samples. The approach is

generally very effective and not only used widely throughout the literature it is also implemented

in many popular computer vision packages.

As stated in Section 3.4.1, the features are transferred from one image to another by the

translation of the camera (the baseline ~b) and its rotation (the infinite homography H∞). If ‖~b‖ is

small then H∞ will dominate and there will be little to no usable depth information. However, if

‖~b‖ is suitably large, but not so large that most of the features are no longer visible, then H∞ will

not be a good model of the observed motion. In fact, Fk,l will provide a much better model because

it encodes the notion of features moving relative to their distance from the camera. This poses a

problem when estimating Fk,l because while RANSAC can obtain an estimate for any frame pair,

it does not mean that the estimate will be of any use. All it guarantees is that this estimate is the

one that produces the best model given the data. If the data cannot be modelled by the method

RANSAC is using then that model will be useless.

However, there is a well-known method developed by Torr et al [89, 90, 91] to handle such a

problem. The Geometrically Robust Information Criterion (GRIC) can be used to score models,

such as a fundamental matrix, and assess how well they fit the given data. Applying GRIC for

model selection is done as follows:

1. Obtain an initial estimation of Fk,l through RANSAC.

2. From the inliers of Fk,l, generate a homography Hk,l that provides a one-to-one mapping of

the inliers in k to the inliers in l.

3. Generate GRIC(Fk,l) and GRIC(Hk,l) from the two models.

4. Reject Fk,l if GRIC(Fk,l) > GRIC(Hk,l).

It is important to use the obtained inliers because if all of the features were used then Hk,l

would always be the better model. This is a consequence of it being a point-to-point mapping.

What this will specifically detect are cases where ‖~b‖ is too small for Fk,l to be reliable. This is

intended to reduce the likelihood of poor Fk,l estimates from being used in the disparity estimation.

A summary of how the GRIC scores are obtained can be found in Appendix A.

It should be noted that this procedure is the simplest possible application of GRIC-style model

selection. It is common in SfM methods to also check the quality of the estimated camera projection

matrices [35, 69, 92]. This is mainly to minimize the effect of dominant planes during bundle

adjustment. But because the camera pose, i.e. P, is not crucial to estimating the depth discussed

in Section 4.2.1, this is not as much of a problem.
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4.3 Track Processing and Depth Aggregation

Once a track is available, the frames are processed in a pair-wise fashion using what is essentially

a parallel chain [53]. This term comes from a structure recovery method known as “projective

factorization”7. A parallel chain refers to the fact that pairs are processed “in parallel”, in the

sense that the sequence will be k → k + 1, k → k + 2, k → k + 3, etc. This is in contrast to a

serial chain where the processing is performed with neighbouring frames, i.e. k → k + 1, k + 1→
k + 2, k + 2 → k + 3, etc. The advantage, in this case, of using a parallel chain is that each pair

gradually increases in temporal distance. For instance if the camera is moving slowly, it is unlikely

that there will be enough motion between neighbouring frames. However, by using more distant

frames, there is a better likelihood that there will be enough motion.

Frame
1

Frame
2

Frame
3

Frame
4

Time

Figure 4.9: Track processing as a parallel chain. Processing is performed forwards in time where
the current frame (the last frame in the track) is used as the reference frame.

An outline of the parallel chain being used is shown in Figure 4.9. The last frame in the chain

is used as as the reference frame as it corresponds to the latest available frame. This is mainly to

ensure that the convention for depth established in Section 4.2 is maintained. This will produce a

set of sparse disparity estimates for frame k

Dk =
{

∆k−1,k,∆k−2,k, . . . ,∆k−(NT−1),k

}
. (4.14)

Because the model selection/verification from Section 4.2.3 will reject frames if Fk,l does not ad-

equately describe the motion between the frame pair, the number of elements in Dk will often be

less than NT −1. In some cases, it is even possible that Dk will contain no disparity measurements.

This is simply a limitation of the proposed method; if the camera does not move over the duration

of the tracking window then that frame will not have any depth information.

Once Dk is available, the disparity measurements need to be aggregated into a single set of

sparse depth estimates so that a dense depth map can be generated. Prior to the aggregation,

however, it is useful to first standardize the elements of Dk such that

∆′k−i,k =
∆k−i,k − µk−i,k

σk−i,k
, (4.15)

7Projective factorization recovers structural information like SfM but it is a fundamentally different method. A
brief discussion is provided in Section 2.2.2.
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where µk−i,k and σk−i,k are the mean and standard deviation of the elements in ∆k−i,k, respectively.

Please note that 0 ≤ i ≤ (NT − 1). This is done so that the standardized depth ∆′k−i,k has zero

mean and unit variance. In other words, this is computing the z-score of ∆k−i,k.

Figure 4.10 shows why this is done. As the temporal distance increases, so will the magnitudes

of ∆k−i,k. Disparity is a measurement of distance between corresponding features and so as they

grow further apart, so will ∆k−i,k. Another is that the variability of the epipole locations can result

in the magnitudes of ∆k−i,k to, in some cases, become completely unrelated to the actual motion.

This is evident in Figure 4.10a. This mainly occurs when the motion is purely translational and

the epipoles are located very far from the image boundaries.
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(b) Standardized Dk

Figure 4.10: Comparison between the original and standardized Dk values. The magnitudes of the
disparity measurements can vary wildly depending on the epipole locations and the overall motion.
After calculating their z-scores, the estimates are now mainly in agreement.

The purpose of using z-scores, as opposed to scaling the values to be on 0 ≤ ∆′k−i,k ≤ 1, is that

after standardization, each set of ∆′k−i,k values is guaranteed to have the same scaling and offset

after the transformation. This is not true if the values were normalized to be on [0, 1] because

both the variance and mean would be different for each set of ∆′k−i,k. This in turn would skew the

results of the aggregation stage and potentially create outliers where there were none. Recall from

(3.41) that

d = f
b

z
. (4.16)

The assumption when performing the tracking is that z and f are constant since one is a property

of the scene and the other is a property of the camera optics. However, the camera is moving and

so the baseline will vary, i.e. d ∝ b. Computing the z-score is removing the effect of the b on the

disparity measurements. This ensures that when the aggregation is performed that the disparity

estimates, now depth estimates, are scaled properly.

Calculating the aggregated depth is done by taking the median value of each set of standardized
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(b) Top-down View

Figure 4.11: Aggregated depth estimates. The aggregation is performed by applying (4.17) to the
tracks.

measurements along a particular track. The final depth estimate for the n-th feature in frame k is

defined as

dk[n] = median
(
D′k[n]

)
, (4.17)

where D′k[n] is the set of D′k values associated with the n-th feature. The advantage to this is that

it is very simple to implement and the median operator is highly effective at removing outliers.

In the case where there are two clusters of depth candidates, the median will choose the larger of

the two clusters as this is the more likely depth value. This particular technique has been used

in a machine learning context to produce a new depth map by combining several candidate depth

maps [67].

Figure 4.11 shows the resulting depth estimates after the aggregation has been performed. As

expected, this is also similar to the pairwise results presented Figure 4.8. The differences stem from

the use of the FAST corner detector to obtain the features being tracked; it looks for image corners

while the SURF detector in the earlier example looks for blobs.
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Chapter 5

Depth Map Generation

O
nce the sparse depth estimates have been obtained they can be used to generate dense depth

maps based on the underlying image content. The goal is to produce a depth map similar

to what was shown in Figure 1.1 back in Chapter 1. Typically this problem is formulated as a

form of anisotropic diffusion [93] where some input labelling is propagated throughout an image

using strong edges as natural boundaries between labels or smoothly varying between labels in

homogeneous regions.

The following definitions will be used throughout this chapter. First, let

Ds(x, y) =

dk[n] if feature n is located at (x, y)

Dun Otherwise
(5.1)

be a “sparse labelling image”. This is an image where only a subset of the pixels have known depth

values. Dun is a placeholder value that is used to indicate that the pixel at (x, y) has no associated

depth value. Next, let

C(x, y) =

1 Ds(x, y) 6= Dun

0 Otherwise
, (5.2)

be an indicator map (binary-valued image) that indicates where pixels have known and unknown

depth values. Note that while Ds(x, y) implicitly defines C(x, y), it is convenient to define it

directly. Finding the dense depth D(x, y) is then the process of creating some operator O that,

given Ds(x, y), will estimate a depth value for each possible value of (x, y) using the information

provides in the image I(x, y).

This is in fact a well-studied problem in image processing: user-guided, or supervised, image

segmentation. A user provides some seed labelling to indicate objects of interest in an image and

the algorithm will propagate the labelling in such a way that some cost function, often based on

image edge information or colour distribution, is minimized. This idea has already been exploited
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mainly for used-guided depth map generation [9, 61, 74, 76], including in the author’s own prior

work in [9, 11].

5.1 Label Propagation Methods

This section will discuss two strategies for propagating the sparse labels in Ds(x, y) in order to

produce a dense depth map. The first strategy is to use regularization, also known as variational

methods. These are quite popular in image processing as they are able to find globally optimal

solutions by by minimizing some energy functional E(~x), where ~x is the state vector, or solution

being sought. The other strategy is to use edge-aware filters to perform the propagation. This is a

consequence of these filters having a strong relationship to anisotropic diffusions. However, as will

be shown, not all edge aware filters are appropriate for this task.

5.1.1 Regularization

In [9] and [11], user labels were converted into dense depth maps using a combination of Ran-

dom Walks [3] and Graph Cuts [2]. These are global optimization techniques that minimize some

objective function by using the user labelling as a set of initial conditions1. As demonstrated by

Couprie et al [94], both Graph Cuts and Random Walks are ultimately part of the same class of

Markov Random Fields (MRF) problems. Their formulation is slightly different than the conven-

tional variational approach as they examine the problem from a graph-theory/combinatorics angle.

The resulting system of equations is the same, however.

If the image is an undirected, N -connected graph G = (V,E) composed of vertices (pixels)

vi ∈ V and edges ei,j ∈ E then the Graph Cuts/Random Walks problem class is defined as the

solution to

argmin
~x

∑
vi∈V

wpi |xi − yi|
q

︸ ︷︷ ︸
Data Term

+λ
∑
ei,j∈E

wpi,j |xi − xj |
q

︸ ︷︷ ︸
Smoothness Term

, (5.3)

where ~x is the solution vector, e.g. D(x, y), and λ > 0. Here, wi,j is the weight of ei,j while wi

represents the affinity of a particular label to a given vertex (yi is the label value assigned to vi).

Often this is a binary value where wi = 1 if the pixel is labelled and wi = 0 if it is not.

The p and q terms are special in that they chose what algorithm is being performed. Table 1

in [94] summarizes the effects of these parameters. Of particular interest is the case when q = 2 and

p > 0 and finite (Couprie et al provide further information on the other cases). Here the solution

to (5.3) becomes

M~x = ~b, (5.4)

1Specifically, Random Walks is a solution to the combinatorial Dirichlet problem while Graph Cuts solves the
“max-flow/min-cut” problem.

47



where M is derived from the graph Laplacian2 and ~b is a vector with the boundary conditions. The

exact contents of M and ~b will depend on the constraints being imposed on the system.

The key advantage to regularization, i.e. global optimization, is that it is relatively straightfor-

ward to impose a variety of different constraints on the final solution. For instance, StereoBrush [73]

uses the same basic setup as Random Walks along with two other constraints. First, the relative

influence of a label is reduce the farther an unlabelled pixel is from a labelled pixel. Second, edge

discontinuities are explicitly modelled as part of the minimization so that propagating a label across

a strong edge becomes extremely unlikely. Similarly, Liao et al [77] and Guttmann et al [61] use

the Random Walks constraints along with constraints based on optical flow to adjust the depth of

moving objects as part of the optimization.

5.1.2 Filtering

An alternative to regularization is edge-aware filtering. Edge-aware filters, the bilateral filter [55]

in particular, have been shown to have a strong connection to anisotropic diffusion [95]. However,

the propagation process itself does not require edge-aware filters. Using an edge-aware filter is in

order to ensure that the underlying image content guides how the labels are propagated, similar to

how anisotropic diffusion operates.

Filter-based propagation can be traced back to the Inverse Distance Weighting (IDW) method

proposed by Shepard et al [96]. Fattal et al [56], Gastal and Oliveira [57] and Lang et al [26]

modified the IDW approach to use general filters, in more or less the same way. This type of

interpolation is similar to traditional interpolation (upsampling) in signal processing except that in

upsampling the samples are uniformly spaced on a regular lattice. In filter-based propagation this

is not the case and the known values are positioned randomly.

To understand this type of propagation, it is easier to first consider the one-dimensional case.

Let x[n] ∈ R be a real-valued, discrete signal and let h{x[n]} be a linear filter that can operate on

x[n]. It should be noted that no restriction is made on h{·} being translation invariant and so the

filtered output is y[n] = h{x[n]} and not y[n] = x[n] ∗ h[n], where h[n] is some convolution kernel3.

The labelling signal can then be defined as

si[n] = Liδ[n− pi], (5.5)

where Li ∈ R is the value of the particular seed label, pi ∈ Z is position of the label and δ[n] is the

Kronecker delta, defined as

δ[n] =

1 n = 0

0 n 6= 0
. (5.6)

2The graph Laplacian is defined as L = deg(A) −A, where A is the graph’s adjacency matrix and deg(A) is a
diagonal matrix containing the degree of each node in the graph.

3This is equally applicable to an IIR filter. What has been shown here is a generic FIR filter.
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In filter-based propagation, as with regularization, the goal is to obtain some new signal s′i[n]

where each value of n has been assigned a label. This can be done as follows. Because h{·} is

not translation-invariant, its filter response is different for each value of n. However, because it is

linear, then it will follow that the filtered signal f [n] will be

f [n] = h{si[n]}

= h{Liδ[n− pi]}

= Lih{δ[n− pi]}. (5.7)

The response of the filter at pi, the h{δ[n− pi]} term, will vary depending on pi. For the purposes

of interpolation, it is desirable to remove it from the final result. Therefore a second, “confidence”

signal can be defined as

ci[n] = δ[n− pi]. (5.8)

By inspection it can be seen that the filtered output g[n] = h{ci[n]} is h{δ[n − pi]}. Finally, the

labelling can be propagated by

s′i[n] =
f [n]

g[n]

=
Lih{δ[n− pi]}
h{δ[n− pi]}

= Li. (5.9)

The filtered confidence signal g[n] acts like a normalization term that indicates how far the particular

label was propagated. Divided the filtered confidence by the filtered signal removes the effect of

the original filter. As can be seen by the result in (5.9), the process propagates the label value Li

to all values of n.

This result can easily be generalized to multiple labels with varying confidence values4. Let

s[n] =
∑
i

CiLiδ[n− pi] (5.10)

and

c[n] =
∑
i

Ciδ[n− pi], (5.11)

where Ci ∈ [0, 1] and indicates the weight of the particular label. For instance, a low value of Ci

will result in it contributing less to the overall normalization. Following the same derivation as in

4This indicates how much influence each label has. An example of how this can be applied can be found in [26].
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(5.9), the multi-label result s[n] is

s′[n] =
1∑

iCih{δ[n− pi]}
∑
i

CiLih{δ[n− pi]}. (5.12)

This is possible because the filter is linear and so h{s[n]} can be written as

h

{∑
i

CiLiδ[n− pi]

}
=
∑
i

CiLih{δ[n− pi]}. (5.13)

The same is also true for h{c[n]}. This result can be easily extended into the N -dimensional case

as it only relies on the properties of linear filters.

To better illustrate the propagation process, a simple example will be provided. Figure 5.1

shows the labelling that is to be interpolated. Figure 5.1a shows the labelling signal such that

s[2] = 2 and s[7] = 1. All other values are set to 0 to indicate that they are unlabelled. Figure 5.1b

shows the confidence signal derived from this labelling.

0 1 2 3 4 5 6 7 8 9
n

0.0

0.5

1.0

1.5

2.0

s[
n
]

(a) Labelling

0 1 2 3 4 5 6 7 8 9
n

0.0

0.5

1.0

1.5

2.0

c[
n
]

(b) Confidence

Figure 5.1: A simple 1D label signal. Both the labelling and its associated confidence signal are
shown. The labelling is explicitly defined as s[n] = 2δ[n− 2] + δ[n− 7].

For the choice of a propagation filter, let h{·} be a simple N -element box filter

h{x[n]} =
1

N

bN/2c∑
i=−bN/2c

x[n− i]. (5.14)

This is a true LTI filter but, as previously discussed, translation-invariance is not a necessary

requirement. The results of filtering the signals in Figure 5.1 with h{·} are shown in Figure 5.2 for

filter widths of N = 5 and N = 7, with the final propagated results shown in 5.3.

The filter widths were chosen so that in the N = 5 case there would be no overlap between
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Figure 5.2: Filtered labelling and confidence signals. The top row ((a) and (b)) shows the results
when filtering with a box kernel of width 5. The bottom row ((c) and (d)) shows the results for a
kernel width of 7.

the filter kernels and while in the N = 7 case there would be. When N = 5, the unscaled filter

responses, specifically the h{δ[n− pi]} terms in (5.12), are wide enough to cover all of the values of

n. However, when N = 7, there is a slight overlap at n = 4 and n = 5. The fact that s′[4] = s′[5] is

an artifact of the box filter itself; another filter could easily produce s′[4] = 1.67 and s′[5] = 1.33.

The key factor is that there is a smooth transition between the two regions.

The filter used in this example has been a simple FIR box filter. As such, finding the optimal

filter width requires manual tuning. In the IDW case, a distance transform is used because it ensures

that the finally label boundaries are midway between any two labels (a Voronoi tessellation). If

the labels are being distributed based on the content of an image, or some other signal, then an

edge-aware filter can be used to automatically control the filter width. In a homogeneous region

the filter kernel can be made wide while when near an edge the filter can be made more narrow.

This process then emulates anisotropic diffusion.
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Figure 5.3: Propagated labelling from Figure 5.1. The result in (a) shows the propagation when
the filter has a width of 5 and the result in (b) is for when the filter width is 7.
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Figure 5.4: Example of the 0/0 condition in a one-dimensional signal. Not only do the labels not
propagate far enough but the gaps between labels are undefined (numerically they are evaluated
as NaN or “not a number”).

What has not been mentioned up to this point is what happens when the denominator of (5.12)

becomes zero. Consider the case when N = 3, the results of which are shown in Figure 5.4. Because

the filter was not wide enough to cover the gap between the labelling regions, there are still values

in both f [n] and g[n] that are zero. These regions are therefore ambiguous in terms of the labelling.

No mention of this issue has been made of in the literature. Either the spacing between labels was

quite close [26] or an IIR-like filter [57] was used. In both cases, this zero-over-zero condition was

unlikely to occur. Therefore strategies for handling this situation will be provided in Section 5.3.
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5.1.3 Choice of Approach

Given that there are two classes of propagation methods, which one could be considered best suited

for propagating the sparse depth labels obtained from Chapter 4? At first glance regularization

would appear to be the better choice. Expressing the propagation as a regularization problem

is straightforward, it provides a globally optimal solution and through the use of robust penalty

functions can work well with noisy image data. And, as discussed earlier, much of the prior work

has taken this approach.

However, regularization assumes that the labels are all correct. While some methods, namely

[94], attempt to be robust against errors in the position of the labels5, the label values themselves

are always assumed to be correct. A particular problem occurs when one feature has a noticeably

different depth than other nearby features; i.e. it is an outlier. It is possible to incorporate some

sort of confidence measure into the regularization by adjusting the label affinity wi in (5.3). Because

user input should always be respected, user labels can always have wi = 1 while the sparse depths

can have their value of wi set by the confidence term. However, finding an appropriate confidence

term is non-trivial.

An alternative is to use filter-based propagation. Unlike regularization, filter-based propagation

does not attempt to make the results as close as possible to the original labelling. If there is an

outlier than it will be removed during the filtering process. While a confidence term can be included,

it is not necessary.

(a) Image (b) Random Walks (c) Filtering

Figure 5.5: Comparison between propagation methods. The original image (a) has two homoge-
neous regions where the depths should be 1 and 0, respectively. The labels are one pixel in size
and have been exaggerated for clarity. Two outlier labels, one with a value of 0.6 and 0.3, have
been added in the regions. The regularization-based approach (b) has a noticeable artifact at the
outlier while the filter-based approach (c) does not.

Figure 5.5 shows how filtering can handle outliers without any special considerations. The

DT-NC filter was used to produce Figure 5.5c. More information will be given in Section 5.2.

5Because [94] is intended for segmentation, it is useful to ensure that slight differences in label placement do not
cause large changes in the segmentation boundary.
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Consider the left-hand side of the test image. Because the labelling is also the boundary

conditions for the regularization (Figure 5.5b), the original labels are visible in the final result. The

depth farther away from the labels becomes close to the average of the labels (approximately 0.86).

However, when filtering is used (Figure 5.5c) the depths in that region is completely flat. The

outlier does cause the depth value to be less than one but this can be easily fixed through intensity

adjustment. Furthermore, as has been discussed, the actual depth values are not important. Rather,

it is their ordering.

Therefore, for this particular application, filter-based propagation is in fact preferable to reg-

ularization. As will be shown in Chapter 6, filtering can be easily modified to enforce temporal

consistency and allow for user interaction. While regularization is preferable if all of the labels are

from the user, filtering is better when some of the labels may in fact be incorrect.

5.2 Propagation Through Edge-aware Filters

Using edge-aware filters for label propagation is straightforward. Let EF {A(x, y)|J(x, y)} be an

edge-aware filter that filters an image A(x, y) using another image J(x, y) to provide the edge

information for the filter. This is known as joint filtering and J(x, y) is referred as a “guidance

image” because it guides the filter as it processes A(x, y). Propagating depth labels is then done

by

D(x, y) =
EF {C(x, y)Ds(x, y)|Ik(x, y)}

EF {C(x, y)|Ik(x, y)}
, (5.15)

where Ik(x, y) is the image for frame k. Note that this is the exact same form as (5.12) and so

division and multiplication are done per-pixel (element-wise).

Figure 5.6: Labelling example image.
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Figure 5.6 shows the image and sparse depth labels used for the remainder of this chapter.

These are the same labels generated at the end of Chapter 4, as shown in Figure 4.11. The same

“heat map” colouring has been used so that brighter labels indicate closer depths. The size of the

labels have been exaggerated for visualization purposes.

5.2.1 Choice of Filter

A variety of edge-aware filters have been proposed [55,56,57,58], with the venerable bilateral filter

being the best known. In principle any edge-aware filter could be used for propagation, however in

practice this is not the case. As was discussed in Section 5.1.2, the filter is assumed to be linear

and many edge-aware filters are not. This has an important consequence when using a non-linear

edge-aware filter.

(a) Bilateral Filter (b) Guided Image Filter

(c) DT-NC

Figure 5.7: Comparisons between different edge-aware filters. The red regions indicate where (5.15)
has become 0/0. The filtering parameters were: bilateral filter, σs = 30, σr = 0.1 and a filter radius
of 180; Guided Image Filter (GIF), r = 100 and ε = 0.1; DT-NC, σs = 1000 and σr = 4. The
parameters were chosen to provide the best results for each filter.

Figure 5.7 compares three edge-aware filters: the bilateral filter [55], He et al’s GIF [58] and

Gastal and Oliveira’s Domain Transform (DT) filter [57]. Both the bilateral filter (Figure 5.7a) and

GIF (Figure 5.7b) are non-linear and so structure (edges and surface texture) in Ik(x, y) appears in
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the depth map. This is because both filters are structure preserving and so tend to transfer edges

and texture from the guidance image.

Conversely, the DT filter (Figure 5.7c) is a linear, but translation-varying, filter and so does

not exhibit this transferring property. This was noted, but not elaborated upon, by Lang et al

in [26] when they found that the bilateral filter produced mediocre results when propagating sparse

optical flow estimates. Any linear, translation-varying filter could be used, such as edge-avoiding

wavelets [56]. However, the DT filter has a number of useful properties, such as converging to a

Gaussian filter response in homogeneous regions, that makes it appropriate for this task.

5.2.2 Domain Transform Filter

The DT filter, as proposed by Gastal and Oliveira, has three major variants, two of which will

be discussed. The domain transform is designed so that similar pixels will be close together and

dissimilar pixels will be far apart. The different variants arise from the different filters applied

to the transformed image. It is important to note that the filters are all LTI in the transformed

domain but translation-varying in the original domain. For more information about the filter and

how it operates, please refer to Appendix B.

Of specific interest are the Normalized Convolution (DT-NC) and Recursive Form (DT-RF)

variants. The Interpolated Convolution (DT-IC) variant is a minor modification to the DT-NC

filter and produces very similar results. A comparison between the DT-NC and DT-RF is shown in

Figure 5.8 for various values of σr. The σr parameter controls the filter width in the transformed

domain and so larger values correspond to a greater edge-smoothing effect. The σs term, which

has been held fixed at σs = 1000, controls the filter’s spatial extent. For interpolation, σs should

be set to a reasonably large value; it has little effect on the results unless it is very small6.

A key observation between the DT-NC and DT-RF filters is that the DT-RF filter, being an

IIR filter and so has infinite extent, is less prone to the 0/0 condition. However, it also exhibits a

greater smoothing effect, something that is undesirable when the propagation should respect strong

edge boundaries. For depth maps in particular, there should be little depth variation within objects

but a strong different between objects.

The DT-NC filter better fits this criteria as it is less likely to smooth over edges. But, it is also

more susceptible to 0/0’s as it is a variable-width FIR filter. This can be mitigated with a large

value of σr bit it also increases the amount of smoothing. Therefore the remainder of this chapter

will primarily focus on strategies to make the DT-NC filter more robust against the 0/0 condition

and allow for the use of small values of σr.

6The filter has the property that σs →∞ does not cause unbounded smoothing provided that σr is a finite value.
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(a) DT-NC (σr = 0.5) (b) DT-RF (σr = 0.5)

(c) DT-NC (σr = 1) (d) DT-RF (σr = 1)

(e) DT-NC (σr = 2) (f) DT-RF (σr = 2)

(g) DT-NC (σr = 4) (h) DT-RF (σr = 4)

Figure 5.8: Comparison between the DT-NC and DT-RF filters for varying values of σr. The value
of σs = 1000 for all examples as it controls the size of the filter kernel in the spatial domain. The
red areas indicate where (5.15) becomes 0/0.
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5.3 Augmented Filtering Strategies

Two separate strategies will be proposed: iterative propagation and propagation by resampling.

The iterative approach applies the propagation method multiple times to propagate information into

the 0/0 regions as this just another type of label propagation problem. The resampling approach is

somewhat different. It assumes that the input labelling is spread too far apart and so it is necessary

to bring the features closer together spatially. The two methods are not mutually exclusive and the

resampling approach in fact uses the iterative propagation as a final step. In both instances the

objective is to completely label each image pixel while minimizing the amount of blurring done by

the filters.

5.3.1 Iterative Propagation

The premise behind the iterative propagation approach is simple: after the initial application of

(5.15), apply it again on any pixels that are 0/0, using the previous results as the labelling for the

next iteration. The key to this approach is generating a new confidence map, Cint(x, y), based on

the unknown pixels and then using the known pixels as the input labelling to (5.15). Specifically,

the per-iteration confidence is defined as

Cint(x, y) =

1 D
(i−1)
int (x, y) is not 0/0

0 Otherwise
. (5.16)

Specifically detecting the 0/0 condition is done with a system-dependent IsNaN(·) function that

produces a binary image indicating if a pixel had a 0/0 value. This is because the 0/0 condition

will manifest itself as a floating-point error7. Logically inverting the output of the function will

then indicate which values in the map have been properly labelled.

The whole method can be outlined as follows:

1: D
(0)
int (x, y)← D(x, y) // Initialize by using (5.15) to obtain D(x, y).

2: i← 0

3: repeat

4: i← i+ 1

5: Cint(x, y)← ¬ IsNaN(D
(i−1)
int (x, y)) // Negate output of IsNan(·).

6: Df (x, y)← DT{D(i−1)
int (x, y)|Ik(x, y)}

7: Cf (x, y)← DT{Cint(x, y)|Ik(x, y)}
8: D

(i)
int(x, y)← Df (x, y)/Cf (x, y)

9: until ZeroCount(Cint(x, y)) < Nun // Finish when enough pixels are labelled.

10: Dint(x, y)← D
(i)
int(x, y)

7Either the numerator and denominator both become vanishingly small and so the fraction approaches 0/0 or only
the denominator becomes very small and so the fraction becomes “infinite”.
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(a) i = 0 (b) i = 1 (c) i = 2

(d) i = 3 (e) i = 4 (f) i = 5

Figure 5.9: Label propagation using the iterative approach. The subfigures show how more and
more of the unlabelled regions are filled in with each iteration i. The DT-NC filter parameters used
were σr = 1000 and σs = 0.5.

While this loop can continue as long as there are unlabelled pixels, in practice it should be

terminated after a set number of iterations as there may be several pixels that can never filled in.

However, if the number of unlabelled pixels is less than some acceptable threshold Nun then the

loop should be terminated. It should be noted that prior to filtering any indeterminate values (i.e.

0/0) in D
(i−1)
int (x, y) are set to zero to avoid propagating8 the floating-point errors throughout the

image.

Figure 5.9 shows how the map is progressively filled-in over several iterations. Because the

filtering is applied to the entire image, not just the unlabelled areas, it helps in smoothing out any

artifacts from using very small values of σs. Furthermore it tends to finish covering the entire image

very quickly as re-filtering the previous results allows them to diffuse into the unknown regions.

A direct comparison between the iteratively filtered result and using a very large filter kernel

is shown in Figure 5.10. Not only does the iterative approach preserve more structural detail than

using a large σr value, there are no large, unlabelled regions. While there are still a few pixels in

Figure 5.10b that are unlabelled, they can be easily filled in using a median filter. However, when

combined with resampling, this will be unnecessary.

8Operations with NaNs will cause the result to also have a NaN value. Please see Section 6.2 of the IEEE-754
floating point standard [97].
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(a) Large Filter Kernel

(b) Iterative Filtering

Figure 5.10: Comparison between using a large filter kernel and the iterative approach. Please note
that (a) is the same image as in Figure 5.8g. The DT-NC filter was used to produce the images.
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5.3.2 Label Resampling

The second proposed approach is to propagate on a subsampled version of the image and then

upsample the result (i.e. resampling). The goal is to reduce the spatial distance between features

since interpolating on the downsampled version and upsampling effectively increases the size of the

filter kernel. First, the features are scaled so that

~qn =
~pn
K
, (5.17)

where ~pn is the position of the feature associated with dk[n] and K is the sampling factor. If any

features map to the same pixel then the median depth value is used. The downsampled image is

then

Jk(u, v) = Ik

( x
K
,
y

K

)
. (5.18)

Downsampling the image is performed using bicubic interpolation to avoid aliasing (this is purely

an implementation choice, any anti-aliasing filter would work).

After downsampling, a dense depth map Dsub(u, v) is generated from ~qn, with Jk(u, v) as the

guidance image, using (5.15) without any modifications. The downsampling brings the feature

locations closer together along with removing small-scale image features such as weak edges. Up-

sampling is performed using a modified version of (5.15) that is defined as

D(x, y) =
DT {Dup(Ku,Kv)|Ik(x, y)}

DT {Cup(x, y)|Ik(x, y)}
, (5.19)

where

Dup(x, y) =

Dsub(u, v) if (x, y) = (Ku,Kv)

0 if (x, y) 6= (Ku,Kv) or Dsub(u, v) 7→ 0/0
(5.20)

and

Cup(x, y) =

1 if (x, y) = (Ku,Kv)

0 if (x, y) 6= (Ku,Kv) or Dsub(u, v) 7→ 0/0
. (5.21)

Essentially Dup(x, y) and Cup(x, y) define a uniform lattice where the features in the subsampled

image map to the full-resolution version. Because the 0/0 condition is always possible, the NaN

values should not be propagated and so are ignored. As well, because the distance between known

values when upsampling is constant (it is a lattice), the 0/0 is less likely to occur. Essentially, there

is a higher likelihood that the filter responses will overlap as shown in Figure 5.3b.

However, it is still possible that a 0/0 region remains even after the upsampling is complete.

This can occur when there is a large region of the image that is has no features and so no information

is propagated there during the initial filtering stage. To address this, the iterative method from

Section 5.3.1 can be applied to fill in these regions. Because the regions should be relatively small,
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(a) DT-NC

(b) DT-RF

Figure 5.11: Comparison between the DT-NC and DT-RF filters when applying the two-stage
interpolation with K = 8, σr = 1 and σs = 1000. The results are similar but the DT-NC filter (a)
better preserves edges. These correspond to (c) and (d) in Figure 5.8.
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the number of required iterations will be less than if that method was applied directly.

Figure 5.11 shows the interpolation method when resampling is used. The figures can be directly

compared to Figures 5.8c and 5.8d as the only difference between them was the use of intermediate

resampling step. Note that in both cases there is better definition in the large-scale edges, such

as boundary of the inukshuk, and the objects are smoother internally. The difference is that, as

mentioned, the DT-NC filter preserves edges better then the DT-RF filter.

5.3.3 Choice of Propagation Method

The choice between the iterative and resampling methods is not a binary one as both have their

advantages and disadvantages. The iterative method is slower than resampling, taking Niter × T
time to generate a depth map (T is the time required to filter the image). The resampling method,

however, takes constant time, T +T/K2, as the DT filter processing time is linear in the number of

pixels. It also produces cleaner results (object surfaces are smoother) than those from the iterative

method but it has less small-scale detail.

A direct comparison between the two methods is shown in Figure 5.12. In this particular

example, the resampling method does appear qualitatively better. The area around the inuksuk is

clearer and the edges are more distinct. However, more detail is preserved in the ground for the

iterative method.

For the remainder of this dissertation, a hybrid approach will be used as this tends to produce

the best quality results. The image will first be subsampled by K and then the iterative method

will be applied to obtain the map at the lower scale. The map will then be upsampled using the

resampling procedure. This reduces the risk of a 0/0 occurring at the lower scale while also not

requiring such a large value of K.
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(a) Iterative Propagation

(b) Propagation by Resampling

Figure 5.12: Comparison between the iterative and resampling propagation methods. The iterative
example is from Figure 5.10b and the resampling example is from Figure 5.11a. While the DT-NC
filter was used for both examples, the parameters are different (please see the respective figures).
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Chapter 6

Post-processing

A
s presented, this dissertation is a purely online1 system. A frame goes in and a depth map

comes out. The system has an internal state (the tracking system from Section 4.1) but that

is it. This means that it can be applied directly onto a video stream, e.g. TV broadcast, and it

will continuously produce depth maps. But there are more than a few benefits for performing the

processing offline.

Unlike online processing, offline processing, really post-processing, requires that all of the frames

in the video be available. It does not necessarily have to be random access, i.e. being able to retrieve

any frame at random, but it should be possible to run through the frames more than once. This

type of access makes available certain types of processing that are not possible if a method is

purely online. One particularly interesting ability is temporal filtering, and by extension temporal

interpolation.

This chapter will cover a variety of techniques that can be used as a post-processing step

for the output of either the depth estimation system (Chapter 4) or the maps produced by that

system (Chapter 5). Namely it will discuss, among other things, how user-correction actually

works, temporal interpolation and enforcing temporal-consistency as a post-processing step. The

underlying assumption between all of these techniques is that the depth estimation has already

been performed. All of the processing is then applied to those results and requires no modification

as to how the depths are obtained.

6.1 User-guided Corrections and Adjustments

The output of the depth estimation front-end (Section 4.3) is as set of sparse depth estimates

Dk = {dk[n] : n ∈ [0, Np)} , (6.1)

1Here “online” means that processing only requires access to the current frame.
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where NP is the number of features that are in frame k. Each of the individual dk[n] values are

located at some position ~pk[n]. The values do not become a depth map until (5.1) has been applied

to generate the initial sparse depth map.

Section 5.3 presented two methods for improving the quality of the initial map generation by

performing multiple filtering passes. These two methods were designed to mitigate the effects of

a low labelling density. However, these methods cannot add depths where none were found and

will dutifully propagate those values into regions where they are inappropriate. An example of this

problem is shown in Figure 6.1. Because of the poor contrast in the shadowed area, there were no

features to track and so the best depth labels came from the monument and not the wall.

This type of error is due to two things. First, feature detectors, specifically corner-based de-

tectors such as FAST, require regions with relatively high local contrast to detect features. Low

contrast or homogeneous regions, by definition, do not have any features. This poses no problems

with the depth estimation because there were enough features elsewhere to get a good estimate.

This leads into the second factor: sparse interpolation. Because that region is unlabelled, depth

information from nearby regions are used instead. The end result is that the left-half of the depth

map is incorrect.

One way to avoid this is to instead use dense disparity methods. Instead of operating on point

sets, frames along a track could be buffered, epipolar rectification applied to the images as per [30],

and a multi-view method used to obtain the final disparity maps. This circumvents the lack of labels

because the depth is estimated on a per-pixel basis. However, using dense methods is actually not a

good solution in this case, as will be demonstrated in Chapter 7. Namely, if there are independently

moving objects then sparse propagation produces less artifacts.

But because generating the depth maps is defined to be a label propagation problem it is

straightforward to modify that labelling with corrections. Figure 6.2 shows how the depth map in

Figure 6.1 can be corrected with some user-provided strokes. The resulting depth map in Figure

6.2b is now more consistent with the expected depth (the monument is perceptually “half-way”

between the camera and the wall).

Choosing the appropriate depth values can be somewhat tricky. The depths have been estimated

automatically and so their values may not match up with what the user expects them to be. This

is really a user interface problem and is only briefly considered here. One possible solution is to

provide a “depth picker” tool so that the user can select correct depths and use those elsewhere.

This insures the values are both numerically and perceptually consistent without the user having

to guess what the depth values should be.

66



(a) Sparse Depth Estimates

(b) Generated Depth Map

Figure 6.1: Depth map obtained without any user input. Because there are no depth estimates on
the left side of the image, the depth in that region is a mixture of whatever the depth was on the
“boundary” of the region. The iterative method from Section 5.3.1 was used to generate the depth
map in (b). Brighter colours in (a) indicate larger, i.e. closer, depth values. The sparse depths
were obtained using the method of Chapter 4.
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(a) User-corrected Sparse Depth

(b) Generated Depth Maps

Figure 6.2: Depth map example from Figure 6.1 with user correction. The two strokes correct the
depth of the wall behind the monument and the depth on the left side of the monument itself.
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6.2 Enforcing Temporal Consistency

Neither the depth estimator or map generator attempt to enforce temporal consistency. Each track

is processed independently and so the depth estimates for one frame have nothing to do with those

at another frame. If the camera is moving consistently (same direction and no sudden changes

in velocity) then the results themselves be mostly consistent from frame to frame. This is just

a consequence of footage itself. However, should the camera’s motion change then it’s possible

for depth values to vary wildly from one frame to another. Similarly, small changes in the image

content can cause the generated maps, even if the depths are correct, to appear slightly different

from frame to frame. Individually the depth maps may appear to be “good” but taken together

the result is a noticeable flickering.

6.2.1 Long-range Optical Flow

Detect Features

Frame k

More
Tracks?

Track k

Track k-i

Track Features

yes, i = i+1

Append to
Buffer

i=1

Track k-NT -1

no

Update
Track k-i

Depth Feature Tracking

Frame k-1

Detect Features

Features k-1

Track Features Track Features

Difference Difference

Flow k to k-1 Flow k-1 to k

Figure 6.3: Augmented tracker for generating per-frame sparse optical flow.

There are two ways to enforce temporal consistency and they both rely on the long-range

optical flow method proposed by Lang et al [26]. This method relies on sparse feature interpolation

using the domain transform filter and so is a natural fit for the proposed framework. Their long-

range temporal filtering method applies the DTNC filter both spatially and temporally with the
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slight modification that the temporal filtering is done along optical flow vectors. This ensures that

filter’s temporal paths are consistent with how objects in the scene move instead of indiscriminately

filtering all pixels equally.

Applying their method is relatively straightforward because this is the type of application that

they had in mind when they developed their method. The first step is to generate the optical flow

vectors for the image sequence. This can be done by augmenting the tracking system (Section 4.1)

in the manner shown in Figure 6.3.

The tracker is modified so that it also buffers the previous frame, Ik−1(x, y), and not just the

feature points. Two sets of flow vectors,

Ufk = {~uf [n] : n ∈ [0, NP )} (6.2a)

Urk = {~ur[n] : n ∈ [0, NP )}, (6.2b)

are generated by using the existing FAST+KLT tracking framework. Here ~u = (u, v) is an optical

flow vector with u and v being the horizontal and vertical offsets, respectively.

The tracking is bidirectional and so this is why the current and previous frame need to be

buffered. The sparse forward flow, mapping features in (k − 1) to features in k, is stored Ufk .

Similarly, Urk stores the sparse reverse flow that maps k → (k − 1). This occurs each time a new

frame is presented and occurs in parallel with the feature tracking and depth estimation. The maps

themselves are then generated using the interpolation methods presented in Chapter 5.

This approach is different from how Lang et al performed their tracking. Their approach was

to extract SIFT [13] descriptors from regions surrounding features detected using a Harris corner

detector2 and then perform brute-force feature matching between frames. The matching score

would then be used for the confidence map in the interpolation stage. While this is effective, nearly

identical results are achieved using the much faster KLT tracker.

This setup allows optical flow estimation to be independent from the depth estimation and

feature tracking. In fact, it can be enabled and disabled as needed without effecting how the

depths themselves are obtained. However, because the flow sequence has been generated from

sparse estimates it suffers from the same problems as the depth maps. Therefore, as suggested by

Lang et al, the flow sequence itself should be filtered temporally. This ensures that the optical flow

is stable over long periods of time and allows for better filtering later on.

2Lang et al call these “Lucas-Kanade” features but they are the same thing.
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The actual filtering is an iterative process with a single iteration described as follows. As before,

the superscript (i) indicates the value for the particular iteration.

1. Compute a confidence map (occlusion penalty) O(x, y) from ~u
(i−1)
f (x, y) and ~u

(i−1)
r (x, y).

2. Generate a five-channel image sequence such that each frame k is

~Vk(x, y) = O(x, y)

(
~u

(i−1)
f (x, y), ~u (i−1)

r (x, y), O(x, y)

)
.

The confidence term is O(x, y) ∈ [0, 1] and so it scales, i.e. weighs, each channel based how

likely it is to be accurate. It is chosen so that occluded regions are considered to be very

inaccurate and non-occluded regions as very accurate.

3. Perform a temporal filtering pass by filtering along the flow vectors in ~uf (x, y).

4. Perform the horizontal and vertical spatial passes for each frame in the sequence.

5. Obtain the iteration result by

~V ′k (x, y) =
~Vk(x, y)

O(x, y)
.

The values of ~u
(i)
f (x, y) and ~u

(i)
r (x, y) are extracted from ~V ′k (x, y). Because O(x, y) is recal-

culated at the start of each iteration that channel can be discarded.

The confidence term O(x, y) measures the degree of mismatch between ~uf (x, y) and ~ur(x, y).

Theoretically, ‖~uf (x, y) + ~ur(x, y)‖ should be zero because the forward flow is just the reversal of

the reverse flow and vice-versa. In practice, however, there will be significant disagreement where

pixels are occluded by a foreground object. These pixels can then considered to be “unreliable”

and so they can be assigned a very low weight in the interpolation equation (5.15). In fact, the

temporal filter is just an extension of the propagation process described in Section 5.2.

Occlusion Penalty

The occlusion penalty used by Lang et al [26] is

O(x, y) =
(
1− ‖~uf (x, y) + ~ur(x, y)‖

)θ
, (6.3)

where θ controls the shape of the penalty curve (in [26] θ = 5). While this does properly impose

an occlusion penalty it suffers from a serious numerical problem. Namely, how do you handle the

case when ‖~uf (x, y) + ~ur(x, y)‖ > 1? Sparse estimates are not always well behaved and so the

magnitude of the summed vectors in those regions can become quite large. One option is to scale

the magnitudes so that

0 ≤ ‖~uf (x, y) + ~ur(x, y)‖ ≤ 1 (6.4)
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though now this becomes very sensitive to outliers as not enough of a penalty will be applied to

“moderate” errors. Alternatively, it can be clamped so that it never exceeds 1 and applies constant

penalty after a certain point. Unfortunately this still does not address the one very serious numerical

issue with this occlusion penalty: it creates a condition where the temporal filtering is now prone

to the 0/0 condition described in Section 5.1.2.

The best way to address this problem is to use an alternate occlusion penalty that is more

tuneable and will not experience the 0/0 condition. One such option, as was used by Phan et

al [98], is to use a sigmoidal function rather than an exponential one. The specific occlusion

penalty is

O(x, y) =
2

1 + exp
(
θ‖~uf (x, y) + ~ur(x, y)‖

) . (6.5)

Unlike (6.3), the sigmoidal function does not have this ambiguity with what to do if the magnitude

of the vector sum is greater than one. Furthermore, the value of θ can be chosen so that the

magnitude will need to be very large before c(x, y) is even close to zero. This effectively mitigates

many of the numerical issues. A comparison between the two confidence measures is shown in

Figure 6.4.
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Figure 6.4: Comparison between exponential and sigmoidal confidence terms. The sigmoidal curve
(dashed line) decays more slowly than the exponential term (solid line) but always remains positive.

In summary, the sigmoidal penalty has a number of desirable properties. First and foremost, it

is a monotonically decreasing function. This is unlike the polynomial cost function, which will be

non-monotonic if θ is even. Second, the sharpness of the curve can be better controlled. Finally, it

will always be a positive value, which is possible for the polynomial cost if θ is odd.

Path-based Filtering

The rules used for the path-based filtering are the same as the ones used by Lang et al. The

following summary is provided for completeness, but for more information the reader is asked to

refer to [26]. The process finds a space-time path through the sequence using the forward optical

flow.
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All paths are initialized so that each pixel in the first frame k = 0 is the start of a path

pi = {~p [0]}, where ~p [0] = (x, y) is the 2D coordinate of the i-th pixel in the image using row-major

indexing. The path position in frame k + 1 is found according to the rule

~p [k + 1] = ~p [k] + ~uf (~p [k]) , (6.6)

where ~uf (·) is the optical flow vector field that maps frame k → k + 1.

The value of ~p [k + 1] is not immediately appended to pi, though. Instead it is necessary to

verify that the path can in fact be propagated to that position. The process for determining this

is as follows:

1. If ~p [k + 1] is outside of the frame boundaries then pi will be considered as “terminated” and

no longer updated.

2. If ~p [k + 1] had no another pixel from k mapped to it then it is appended to pi and extends

the path into frame k + 1.

3. If another pixel in k had already been mapped to that position in k + 1 then the path is

terminated and no further mapping will occur for that path.

4. If the pixel position ~p [k] = (x, y) did not have any points from k − 1 mapped to it (previous

steps) then a new path pj = {~p [k]} is started for that pixel.

Rules 1 through 3 are straightforward: only propagate the path if the new position is inside of

the frame boundaries and that the particular pixel is not already on an existing path. Handling

the case of unmapped pixels (rule 4) is more complicated as there is valid image information in

the preceding frames. It is important that the filtering utilizes this information so for any path

that does not start at the first frame the path is tracked backwards through the sequence. Here

the reverse flow is quite useful because it provides this mapping. These new positions, found by

~p [k − 1] = ~p [k] + ~ur(~p [k]), are prepended to pi. Therefore, any path that does not start at k = 0

will be

pi = {. . . , ~p [k − 2], ~p [k − 1], ~p [k]} (6.7)

before the paths are propagated to the next frame.

The purpose of the backtracking is that it allows the filter to be “primed”, i.e. the filter is setup

correctly within the transformed domain, prior to actually filtering the pixel where path actually

begins. While Lang et al do not specify how far to backtrack, they instead keep tracking until the

filter is the proper width in the transformed domain, in practice limiting the backtracking to ten

frames appears to be sufficient. The fact is that while this may cause the filter to be too narrow, it

is directly related to how much variation there is along the path. If there is a lot of motion then the

width will be relatively narrow and conversely it will be very wide if there is not. Finally, because
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the filtering is iterative, and the paths change upon each iteration, the effect of the multiple filter

passes will dwarf the small effect caused by the truncated backtracking.

An example of how the temporal filtering can improve and stabilize the optical flow is shown

in Figure 6.5. The frame-to-frame optical flow can be quite erratic and it is due to a variety of

different factors; in this case the footage was taken with a hand held camera and is quite unsteady.

However, after filtering, the flow becomes much more consistent over the course of the sequence.

Please keep in mind that this is somewhat hard to demonstrate with static images and so the

unfiltered flow may appear better in this particular instance. Furthermore, this flow is used for the

processing done in the next section.
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Figure 6.5: An example of temporally filtered optical flow. The top contains the original frames,
the middle row contains the unfiltered forward flow and the bottom row contains filtered forward
flow. The optical flow is visualized using an HSV colour scheme. The hue represents the vector’s
angle and the value (brightness) represents its magnitude with dark being equal to zero magnitude.

6.2.2 Temporal Feature Propagation

Temporal consistency is enforced by making the propagation itself temporal. This is simple to do

for both the iterative (Section 5.3.1) and resampling (Section 5.3.2) methods. In fact, no changes

whatsoever have to be made for the iterative method; just use a “temporally-aware” version of

the DT-NC filter instead of the standard spatial version. For the resampling method, the only

consideration that has to be made is to ensure that the resampling is only performed along the

spatial dimensions. The temporal dimension should remain untouched. This avoids any ambiguities

that could arise from downsampling and upsampling in time. Furthermore, the temporal filtering

propagates information very effectively between frames and so is able to fill in missing depth values

from frames with those values.

In both cases, the temporal filtering is quite simple to do. First, apply the DT-NC filter along
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the temporal direction by following paths obtained from the filtered optical flow (Section 6.2.1).

After that, perform the normal horizontal and vertical spatial passes. Unlike the optical flow

filtering, the paths will never change and so they will not have to be recomputed each filtering

iteration. This makes the actual filtering processing very fast and very easy to parallelize.

An example of the temporal propagation’s ability to fill in missing information is shown in Figure

6.6. With online-only processing, the first several frames of a sequence have no depth information.

This also occurs when there is insufficient motion and the model verification step (Section 4.2.3)

fails. This particular example was generated using the resampling-based propagation method for

both the online and temporal results.
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Figure 6.6: An example of temporal propagation for “Inuksuk”. While no depth information is
available for first dozen frames, temporal propagation is able to fill in the missing frames because
it can propagate them using the optical flow sequence.

One final thing to mention: it is possible to also enforce temporal consistency on a set of

dense maps. This is just a matter of applying the temporal DT-NC filter onto the dense sequence

using the original frames as the guidance sequence. However, this does not possess the ability to

propagate information; it can only smooth out differences between frames. It is analogous to joint

filtering in images. Because post-filtering an existing depth map sequence requires extra work (the

maps have to be generated in the first place), this will not be considered as temporal propagation

is more flexible.

6.3 Depth Range Scaling

On their own, the obtained depth values are not particularly useful. They are unitless values based

on the statistical distribution of the original disparity estimates. However, as they represent relative

depth, it is convenient to rescale them so D(x, y) ∈ [0, 1] where zero is considered far and one is
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considered close. It is first useful to consider how the depth values are distributed.

In Section 4.3, the final depth estimates were standardized prior to aggregation. However,

maximum and minimum values can vary quite a bit. In fact, the values are scaled relative to the

magnitude of the measured disparity. Essentially, features that had very large disparities (i.e. they

were close to the camera) would have large depth values relative to other frames. However, if the

scene depth stayed the same over the course of the sequence then the range will stay relatively

consistent. This is demonstrated in Figure 6.7
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(b) Post-interpolation

Figure 6.7: Depth ranges pre and post-propagation. Temporal propagation was used to illustrate
how the propagation process can effect the depth ranges.

For the “Inuksuk” footage, the camera stays at roughly the same distance from the inuksuk.

So, overall, the maximum and minimum depth values stay more or less the same (Figure 6.7a).

However, because each frame is handled independently, there is some variation with small outliers

causing noticeable “spikes” in the plot. Temporal propagation (Figure 6.7b) is able to correct this,

removing the large differences so that depth varies smoothly over time. It also keeps the depth

fixed for those first thirty frames where the camera is stationary and the average depth, while not

zero anymore, is still constant3 over the course of the sequence.

In general, the scaling can be done by

Dsc(x, y) = clamp

(
D(x, y)− rmin
rmax − rmin

)
, (6.8)

3The small up-tick in the average depth at the end of the sequence, which occurs as the camera is moving away
and so the mean should be decreasing, is caused by the depths becoming inverted. This will be discussed in more
detail in Chapter 7.
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where rmax and rmin control the scaling and clamp(·) is

clamp(x) =


0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

. (6.9)

This just ensures that the scaled values are in [0, 1]. The choice of rmax and rmin controls how

the sequence is scaled. For online processing, the only possible choice is rmax = max
(
D(x, y)

)
and

rmin = min
(
D(x, y)

)
. This causes the nearest object to have a depth of ‘1’ and the farthest to

have a depth of ‘0’. But because this is per-frame, it can cause flickering because the average depth

(brightness) depends on the range of depth values. That means that over the course of a sequence

the relative position of objects over time is not respected.

Alternatively, and this is only possible with offline processing, is to let rmin and rmax be the

minimum and maximum depths over the course of the entire sequence. This shifts the average

brightness (depth) of all frames by the same amount and so the depth of objects between frames

is respected. The effect is that the closest scene object has a depth of ‘1’ and the farthest a depth

of ‘0’. Sometimes this may not be desirable because the depths are too noisy, such as if online

interpolation will be used. Here, rmin and rmax can be set to something that will ignore outliers.

For example, by visually inspecting Figure 6.7b, it appears that rmin = −3 and rmax = 3 would be

good scaling parameters. This can be confirmed by inspecting Figure 6.7b where rmin ≈ −3 and

rmax ≈ 2.5.
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Chapter 7

Results and Discussion

T
he proposed framework is intended to act as a drop-in replacement for SfM in 2D-to-3D

conversion methods that use SfM to obtain their initial depth estimates, such as Depth Director

[76]. On its own it is not a 2D-to-3D conversion method. It accepts in video and produces depth

maps. Therefore it is necessary to see that the framework is able to produce similar depth maps

to those obtained using more sophisticated techniques (SfM/MVS).

7.1 Test Sets

(a) Inuksuk (b) Quad (c) Structure (d) Development

(e) Residence (f) Street (g) Flowers (h) Road

Figure 7.1: Test sequences used for the comparison between the proposed method and ACTS.

Figure 7.1 shows frames from the set of primary test samples. With the exception of “Flowers”

and “Road”, which are from [71], these samples were all captured with a consumer-grade DSLR

camera at 24 frames-per-second. The resolution ranges from 480p SD to 720p HD, with the sequence

length and resolution presented in Table 7.1. These samples were all compared against the depth

recovery method of Zhang et al [71]. Visual results are provided at the end of this chapter.
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(a) Plant (Kinect) (b) Bar (Kinect)

Figure 7.2: Test sequences captured using a Kinect depth camera.

Also provided is a secondary test set, the samples having been obtained using a first-generation

Microsoft Kinect depth camera1. Figure 7.2 shows a frame from each of the secondary samples.

This allows for a “closer to ground truth” evaluation than against [71]. However, there are some

limitations to the Kinect device that will be discuss in Section 7.2.1 in order to better understand

those results.

Table 7.1: Resolution and duration of all of the test sequences. The “Flowers” and “Road” se-
quences are from [71]. Result samples are available at the end of this chapter.

Sequence Resolution Frames Figure

Inuksuk 1280× 720 230 7.10
Quad 1280× 720 315 7.11
Structure 1280× 720 368 7.12
Development 852× 480 200 7.13
Residence 852× 480 215 7.14
Street 852× 480 240 7.15
Flowers 960× 540 101 7.16
Road 960× 540 120 7.17
Plant (Kinect) 640× 480 81 7.18
Bar (Kinect) 640× 480 36 7.19

All of the primary sequences were processed by the proposed framework and by the ACTS

software package2. ACTS implements Zhang et al’s SfM [51] and depth recovery [71] methods and

so makes it a useful tool for benchmarking the performance of the proposed framework. Specifically,

it makes it possible to see how close the depth estimates produced by the front-end (Chapter 4) are

to those obtained through SfM. There will be some crucial differences as ACTS uses dense disparity

estimation to generate depth maps while the back-end (Chapter 5) uses sparse propagation. The

secondary Kinect sequences were only processed using the temporal version of the proposed method.

Processing parameters for the different sequences are given in Table 7.2. Both online and

temporal propagation were used in order to provide a comparison between the two approaches. For

1This is officially known as the “XBox 360 Kinect”.
2Available at www.zjucvg.net/acts/acts.html; accessed May 12, 2014.

79

www.zjucvg.net/acts/acts.html


Table 7.2: Processing settings used for the test sequences in Table 7.1. The number of DT filter
iterations is N = 3 and the maximum number of iterations for iterative propagation (Section 5.3.1)
is Niter = 10. The σst and σrt control the DT filter during temporal filtering.

Sequence σs σr σst σrt θ K KT

Inuksuk 1000 0.7 8 0.9 3 16 4
Quad 1000 0.7 8 0.9 3 16 4
Structure 1000 0.7 8 0.9 3 16 4
Development 500 0.9 8 0.9 3 4 2
Residence 500 0.9 8 0.9 3 4 2
Street 500 0.9 8 0.9 3 4 2
Flowers 800 0.9 8 0.9 3 4 2
Road 800 0.9 8 0.9 3 4 2
Plant (Kinect) 500 0.7 5 0.9 3 – 1
Bar (Kinect) 500 0.7 5 0.9 3 – 1

online propagation, the map was generated as soon as an estimate was available while the estimates

were stored and propagation performed after a first pass through the footage. In both cases, the

propagation method was done as mixture of the iterative and resampling approaches:

1. Downsample the frame and depth estimates by a factor K (or the sequence by a factor KT ).

2. Apply iterative propagation at the lower scale.

3. Upsample to obtain depth maps back at the original resolution.

Different values of K were used for temporal propagation because it is far more resilient to

missing data. In fact, it was found that it performed better when Fk,l-outlier rejection was turned

on. The online method required that outlier rejection be disabled otherwise the loss of so many

features tended to produce maps of very poor quality.

7.1.1 Buffering Track Length Selection

The main parameter that controls the tracking scheme is NT . While the KLT tracker and the

corner detector have their own parameters, for the most part they can be left alone. This is mainly

a consequence of the default parameters used in off-the-shelf implementations and the literature

being appropriate for most cases. It is also often the case that there is not a simple relationship

between the obtained results and the parameters, a situation very similar to hyperparameter tuning

in machine learning [99,100].

In the ideal case, NT = 2 since two frames should be sufficient enough to establish a proper

baseline. In practice, however, unsteady camera handling, insufficient motion and other factors

make this unlikely to produce good results. One option would be to set NT to be very large to
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ensure a sufficient baseline but this in fact creates its own problems. First, it would make the

buffering period extremely long. Second, the number of features still remaining at the end of the

track may be very low, negating the benefit of the long duration tracking. Therefore there is a

trade-off between these two factors when choosing NT .
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(a) Individual Feature Retention
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(b) Median Retention

Figure 7.3: The relative feature count RC(NT ) with respect to track length. Lines with the same
colour come from the same test sequence. RC(NT ) decreases monotonically with NT and the
median rate is approximately linear.

To find an “optimal” NT , it is useful to see how features are lost over time, i.e. the feature

retention rate. Figure 7.3 shows how relative number of features decreases as the track length NT

increases. These figures show the ratio of features after i frames to the number of features that

were originally detected, i.e.

RC(i) =
NP (i)

NP (0)
. (7.1)

NP (i) is simply the number of features still being tracked after i frames. Figure 7.3a was obtained

by starting the tracking at four, equally-space positions from the different test footage (same colour

means the tracks came from the same footage). Figure 7.3b shows the median count of the different

plots in Figure 7.3a.

There are two key observations: how fast features are lost varies wildly, even within the same

video, and the overall loss rate is linear. Ideally NT = 2 but because nothing is known about the

footage, this will unlikely be long enough to provide enough of a baseline for the depth estimation.

A good trade-off will be an NT that tracks long enough for a good baseline while not losing too

many features. From Figure 7.3, NT = 10 is a good choice because in most cases only about 5%

of the features will be lost while in the worst case half will still be available. It also corresponds to

an initial buffering period of about one-third of a second for 24 fps footage.

It should be stated that this choice of NT is best-suited for footage similar to the test footage

in this chapter. For slow-moving cameras, this value may be too small and so the tracking length
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would be insufficient. The choice of NT will depend on the footage itself but given the intuitive

nature of the parameter, it is relatively easy to pick an appropriate value.

7.1.2 Filtering Parameters

Unlike the feature tracking, the propagation stage is fairly robust against changes to the filtering

parameters. That is, the filter parameters can be changed by a large degree without producing

noticeable changes in the output. This has already been addressed in Chapter 5. Of the different

parameters, only σr, σrt and K will produce any noticeable effects. The parameters in Table 7.2

were determined by manual tuning. The relationship between these parameters is described below.

The domain transform that the DT filter receives its name from is derived from the L1 norm

between RGB colour vectors. The range parameter σr controls the total amount of edge smoothing.

When σr < 1 the filter shows better edge discrimination while when σr > 1 it tends to blur edges.

Similarly, σrt controls the temporal smoothing so that when σrt � 1 there will be almost no

temporal smoothing and vice versa. And, as discussed previously, the spatial term σs has little

effect provided that σs � 1. Generally speaking, σr was chosen so that strong edges were not

blurred and σrt chosen so that σrt ≈ 1, with slight adjustments to avoid too much temporal

smoothing. For both parameters, so long as they are not too small or too large, they can be set to

any value that provides an adequate result (this will depend on the application).

The value of K has a much greater effect than σr and σrt. Because this is the amount by which

the image is downsampled, it cannot be so large that the image is reduced to a handful of pixels.

This in turn means that an appropriate value of K depends on the resolution. That is why the

lower-resolution sequences use a smaller value of K. If temporal filtering is used then K can also

be made small as the temporal filter can propagate information over multiple frames. Without

temporal filtering, a larger value needs to be used as the 0/0 condition becomes more likely (less

information) but at the expense of image detail.

7.2 Discussion

Evaluating the results will be done using both objective and subjective methods. Because no ground

truth depth information exists for these sequences, it is not possible to say that the maps being

produced are completely accurate and in fact it has been stated multiple times in this dissertation

that this is not the case. What these different evaluations will do is determine how effective the

proposed method is at depth recovery and how effective it is at being able to handle difficult

situations, such as multiple independently moving objects.
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Table 7.3: Mean, absolute cross-correlation scores for each test sequence. The standard deviation
of the absolute cross-correlation scores is shown inside the brackets.

Sequence Online Temporal

Inuksuk 0.75 (0.32) 0.87 (0.16)
Quad 0.82 (0.16) 0.89 (0.02)
Structure 0.60 (0.20) 0.68 (0.16)
Development 0.70 (0.17) 0.78 (0.13)
Residence 0.70 (0.27) 0.78 (0.12)
Street 0.56 (0.21) 0.69 (0.12)
Flowers 0.85 (0.03) 0.94 (0.02)
Road 0.84 (0.24) 0.92 (0.02)
Plant (Kinect) – 0.78 (0.03)
Bar (Kinect) – 0.56 (0.02)

7.2.1 Correlation Scores

The mean, absolute cross-correlation between the ACTS/ground truth depth maps was used to

validate that the proposed method is in fact obtaining realistic relative depth estimates. This

strategy has been used before [67] because a measure like PSNR or RMSE will not adequately

describe the similarity between the two depth maps. One is not the noisy version of the other

but rather they are two different images representing the same underlying data: scene depth.

The sign of the correlation is ignored as it implies that the signal is simply the negative3 of the

other. Because of the depth-reversal phenomenon (Section 7.2.2), taking the absolute value allows

a “reversed” depth map to be compared with one that is not.

Comparing against ACTS does not necessarily indicate that the depth information is represen-

tative of the real world. Therefore, it is also instructive to compare the Kinect depth maps to those

produced by the temporal version of the proposed method. The data has to first be processed

because the depth-sensing camera is physically offset from the RGB camera and so must be post-

processed so that the RGB and depth images are properly aligned [101]. The Kinect flags unknown

depths and all unknown pixels in the Kinect map are ignored while computing the correlation. This

is necessary as the unknown pixels cannot be compared to anything. While the Kinect depth data

can be post-processed even further [26], this can potentially add another source of error.

Table 7.3 shows the correlation scores for the different samples. Both the online and temporal

versions were used when comparing against ACTS. Ideally all matches should be close to 1 but

due to the inherent differences in sparse propagation versus dense estimation, this is not the case.

However, the following can be said from these results. First, the output of the proposed method

strongly correlates with the output of ACTS. Therefore the depth being obtained is very similar

3Given two signals x(t) and y(t), a correlation close to 1 implies that x(t) ≈ y(t) while a correlation close to -1
implies that x(t) ≈ −y(t).

83



to what an SfM-based method would obtain. Second, temporal propagation greatly improves the

matching score because it reduces the variations between frames, something that can be seen from

the scores’ standard deviations. The results from the Kinect data back up the assertion that the

depth is in fact representative of the actual scene depth. The low matching score for the “Bar”

sample is due to the lack of good features for tracking, particularly on the lower portion of the

frame.

7.2.2 Depth Reversal

Depth reversal occurs when the camera moved opposite to how it is implicitly assumed to be

moving: forwards or to the right. An example of this can be seen in the “Road” sample in Figure

7.17 where the camera moves to the left. Fixing this is trivial for the user and produces the expected

results, as shown in Figure 7.4. This can become problematic for purely automated methods as

it can negatively impact the temporal propagation. If the camera reverses direction through the

scene then even though the actual depths do not change, the reversal will cause the overall depth

to go towards zero.
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Figure 7.4: An example of depth reversal and its correction. The results are shown for the same
frames as in Figure 7.17.

The depth reversal phenomenon is an artifact of using disparity as a proxy for depth. At its

most fundamental, disparity is simply

d = xtgt − xref (7.2)

where xref and xtgt are the horizontal positions of a feature in the reference and target images. So

if the feature moved left then xtgt > xref and d > 0. However, if it moved right then xtgt < xref

and d < 0.

For rectified cameras, the sign will always be the same and detecting this condition is straight-

forward: most of all of the disparity values will be negative. But this is much more difficult for

general motion due to the effect of the infinite homography (Section 3.4). In that case disparity

values can be both positive and negative and the sign depends on which side of the convergence
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surface they are on. Therefore a large number of disparities may be negative even if no depth

reversal has occurred.

As it is designed right now, the framework requires that the user recognize that a depth reversal

has occurred and fix it. Because the reversal either happens or it does not then flagging the event

is easy for a user to do. However, it would be beneficial to detect or correct automatically and this

will be the focus of future work.

7.2.3 Robustness and User Correction

There are a few places where the proposed framework can do better than ACTS and this is due to

how propagation is done. ACTS is a purely automated approach with the depth maps generated

through a form of multiview stereo. MVS generally uses dense (per-pixel) estimation, using camera

poses to determine how to search along epipolar lines. This is a very accurate technique, as shown

in Figure 7.5.

(a) Proposed (b) ACTS

Figure 7.5: Comparison between dense and sparse propagation. The samples are both from “Quad”.
Dense propagation can better extract details on the the right side of the image as it is not reliant
on just whatever was tracked by the feature tracker.

However, what is shown in Figure 7.5 is actually a fairly “easy” sequence to process. The scene

is completely static, there are many good features to track (helpful with SfM) and there are few

motion artifacts such as motion blur. The moment this is not the case, dense estimation performs

quite poorly. That is because a dense method cannot ignore any data; an estimate is found for

each pixel. An example of this is Figure 7.6.

While the sparse propagation is not as detailed as what ACTS produces, it is noticeably more

consistent with what one would expect of the scene depth. ACTS’ dense estimation method pro-

duces noticeable artifacts where the pedestrians are. The proposed method, because any features

tracked on the pedestrians were flagged as outliers or too few were tracked to effect the propaga-

tion, are nearly invisible. The street depth is somewhat inconsistent but that is mainly due to an

insufficient number of features being tracked. This is on top of the fact that the fast camera motion
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(a) Proposed (b) ACTS

Figure 7.6: Comparison between dense and sparse estimation for “Street”. Dense propagation has
noticeable artifacts caused by the moving pedestrians.

and strong motion blur corrupt the overall results obtained by ACTS. Even the online propagation

is able to better handle this.

Because of how dense estimation is performed, it is possible for ACTS to experience some rather

strange artifacts if the scene is not “perfect”. For example, the camera in the “Inuksuk” sequence

is stationary for about thirty frames and there is no usable depth information during that time.

With temporal propagation this is not a problem and it produces perfectly useful depth maps. As

evident in Figure 7.7, this is in stark contrast with what ACTS produces.

(a) Proposed (b) ACTS

Figure 7.7: Depth map anomalies that occur with insufficient camera motion.

Some of the anomalies are due to how ACTS performs dense matching. Mean shift [102]

is applied to each frame and the segments are treated as 3D planes. For thin regions that are

traditionally hard to segment, such as the tree branches in the “Condo Development” sequence,

the foreground and background can get grouped together. The result is that the thin structures are

“thickened”. This can be best seen in Figure 7.13. Therefore, methods not reliant on segmentation

may handle this better.
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One other type of anomaly is caused by reflective or shiny4 surfaces. These surfaces can cause

inconsistencies when constructing a cost volume such as those used by dense disparity methods.

For example, a reflection will move with the camera even if the scene is completely static. This is

something that breaks the assumption of how features are supposed to be moving and is an inherent

problem with dense estimation.

Proposed ACTS

Figure 7.8: An example of how dense estimation has difficulty with reflections. Frame 60 from the
“Residence” sequence was used for this example.

Figure 7.8 shows how sparse propagation can do a better job at handling these situations.

Because the reflections end up being part of the cost volume, they produce depths inconsistent

with the scene geometry. The sparse propagation is able to better match the scene since it is

simply less likely to track these features or consider them inliers. In the rare case that it does, it is

possible to remove them manually.

The main advantage to the proposed approach is the ability to adjust the generated depth

estimates at some later time. An example of this is shown in Figure 7.9 that provides some frames

the “Condo Development” sequence. During tracking, features on the pedestrians were not flagged

as outliers and so became part of the depth estimates. Because the pedestrians are moving as fast

as the camera, the features have zero disparity. This is seen by both the proposed approach and

ACTS. However, with the proposed approach these erroneous features can be removed by the user

and new “correct” maps can be generated from the modified labels.

7.2.4 Processing Times

Processing times for all of the different samples are shown in Table 7.4. All of the processing

was performed on a desktop PC with a Intel Core i7-4771 3.5 GHz quad-core processor with 16

GB of RAM and an Nvidia Geforce GTX 660 Ti GPU with 2 GB of on-board memory. The

tracking and depth estimation code is implemented in Matlab using functionality provided by the

Computer Vision toolbox. The optical flow and propagation (both versions) were implemented as

4These are technically known as “non-Lambertian” surfaces.
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Figure 7.9: An example of correcting a video sequence. In the original sequence, features were
tracked on the pedestrians and so have incorrect depth estimates. After having the features man-
ually removed, the result is noticeably more consistent with the scene depth. The ACTS results
have been provided for comparison.
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Table 7.4: Running times for the primary test sequences. All times are in minutes. The ACTS
runtime has been included as well, however it is just for the depth recovery (map generation) portion
as the SfM times are not reported by the software. ACTS runtimes for the samples from [71] are
not provided as those depth maps are available from the authors.

Temporal

Sequence Online Total Estimation Interpolation ACTS

Inuksuk 21.1 84.1 81.3 2.8 110.8
Quad 23.1 107.5 103.9 3.6 158.1
Structure 30.6 72.8 68.4 4.4 168.7
Development 9.9 29.8 27.5 2.3 39.4
Residence 11.6 24 21.5 2.5 51.9
Street 10.7 18.5 16 2.5 51.9
Flowers 8.6 15.1 14.4 0.7 -
Road 4.7 13.2 11.8 1.4 -

OpenMP-accelerated MEX functions.

It should be pointed out that the implementation is not optimized for speed. The tracking front-

end has a number of different operations occurring in parallel5 and at the moment those are being

done one at a time. The filtering functions, used for optical flow and propagation use OpenMP

to run faster however they could very easily be implemented to run on a GPU using CUDA6 or

OpenCL.

Even with these caveats, the proposed framework is still faster. ACTS, which is GPU-accelerated,

reports the time for obtaining the depth maps. In terms of the framework, this is analogous to

propagation for the temporal method. Even including the tracking time, the proposed method is

much faster and could be made to be even faster.

5In that the optical flow and depth estimation can both be done at the same time.
6Gastal and Oliviera reported a 23× speed up in [57] when using CUDA.
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Figure 7.10: Sample frames for the “Inuksuk” sequence.
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Figure 7.11: Sample frames for the “Quad” sequence.
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Figure 7.12: Sample frames for the “Ryerson Structure” sequence.
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Figure 7.13: Sample frames for the “Condo Development” sequence.
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Figure 7.14: Sample frames for the “Residence” sequence.
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Figure 7.15: Sample frames for the “Street” sequence.
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Figure 7.16: Sample frames for the “Flowers” sequence.
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Figure 7.17: Sample frames for the “Road” sequence.
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Figure 7.18: Sample frames for the “Plant (Kinect)” sequence.
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Figure 7.19: Sample frames for the “Bar (Kinect)” sequence.
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Chapter 8

Conclusion

T
his dissertation has presented a method for automatically extracting relative depth from a

video sequence. By applying well-established computer vision methods, the method can be

applied to a wide variety of footage with only one restriction: the camera must have some transla-

tional motion. By using sparse interpolation it is able to handle complex scenes (i.e. independently

moving objects) better then with dense estimation. While this may result in a loss of detail in

certain cases, its flexibility outweighs this downside.

The main contribution of this dissertation is a novel method for estimating depth in a relatively

simple fashion. It produces depth estimates in agreement with those produced using more complex

methods, namely SfM. As with some recent work [76, 77, 78], the method seeks to decouple depth

estimation from the map generation. However, as they are complete 2D-to-3D pipelines, [76]

and [77] specifically, there is a fair degree of interdependence between the different stages.

The proposed framework completely separates the depth estimation from map generation and

so is quite flexible. In fact the quality can be changed at will, as was demonstrated in Chapter 7.

The advantages to the proposed framework are that it is

• computationally efficient and simple to implement;

• amenable to user corrections;

• can be easily reconfigured to change the results quality or even use different methods for

depth estimation or map generation;

• comparable to SfM/MVS-based techniques when the scene is static and well-captured;

• can tolerate stationary or rotating cameras;

• and produces subjectively better results than a method such as ACTS when the scene is

dynamic or poorly captured.
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For the “ideal” case, where nothing moves and the scene has been perfectly captured, SfM

and MVS will produce superior depth maps. They are mature techniques specifically designed

to recover high-quality depth information. However, the moment this assumption breaks, which

is quite often, the results are less than stellar. Furthermore, if something does break, it is very

difficult to correct it. The proposed framework is able to generate depth maps when the scene has

been poorly captured and can be corrected very easily.

Future work can be divided into three sections: tracking, algorithm and evaluation. These

reflect the major areas where the proposed method can be improved upon and extended.

Tracking

The actual tracking framework is quite simple and relies on basic feature detection and

tracking using FAST features and KLT. As such, it will work quite poorly if the scene has

few “good” features to track since both RANSAC (for estimating the fundamental matrix)

and the feature interpolator works best if more features are available. This can be somewhat

alleviated through user input but it is not an adequate solution.

One potential alternative is to use dense optical flow as the basis for the feature tracker,

potentially something similar to Particle Video [103]. In fact, this was done in the earliest

form of this dissertation [104] but abandoned due to the overhead imposed by having to

pre-compute the optical flow. But recent research into fast dense optical flow [105] could

help replace the KLT feature tracker with something that could better handle scenes that are

difficult to track.

It should be pointed out that this would not require any major changes to the tracking

framework from Chapter 4.1. The only difference would be how the features are generated

and propagated. The buffering strategy (Chapter 4.1.2) would not need to change at all

and it would still be amenable to online processing. Because this could potentially generate

and retain more features, it could also improve the quality of the depth maps generated in

“online” mode.

Algorithm

The algorithm that obtains the actual sparse depth estimates has one major problem: depth

reversal. This is trivial for a user to fix but it is problematic for automated processing. Due

to the infinite homography (Chapter 3.4.1) there is no easy way to determine how to properly

interpret the magnitudes of the disparity values, i.e. if large values are close and small values

are far or vice-versa.

There are two possible ways to approach this. One would be to perform some sort of limited

reconstruction to “guess” the structure. This would not need to be a full SfM-based approach;

just something capable of discerning overall motion in order to decide how the magnitude

should be interpreted. However, because the optical flow information, in one form or another,
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is available, then it could be possible to use that as a hint for correcting for a depth reversal.

The method used by Liao et al [77] to correct for perspective motion could potentially be

used here.

Being able to correct for motion would actually enable the framework to do something new:

fast depth estimation for unstructured image collections. Due to the depth reversal, the

framework cannot work well with unstructured image collections because the depth values

for one image pair will be the inverse of those for another image pair. When this happens,

the aggregated depth effectively becomes zero and so is not particularly useful. Detecting the

depth reversal would allow all of the depth magnitudes to have the same meaning and allow

the aggregation stage to work properly.

Evalution

The proposed framework was mainly compared against Zhang et al’s [71] video depth recovery.

This comparison was designed to determing if the novel depth estimation algorithm from

Chapter 4 could provide depth values similar to ones obtained using SfM. All of the primary

test footage was captured using a hand-held camera with constant camera parameters. This

type of footage is well-suited for SfM and is why it was used for the comparison. This made

it possible to claim that the depths obtained by the proposed method were similar to SfM.

Ideally the evaluations should be made against ground truth data for a variety of different

footage. Unfortunately, obtaining ground truth depth data is notoriously difficult and often

requires specialized equipment. For example, the Make3D project [64] used laser range finders

to obtain accurate depth information but the captured resolution was quite low.

A Microsoft Kinect is another option (the method used to obtain the secondary samples) but

the processing required to make a valid comparison can impact the final results. The RGB

camera quality is poor and the depth and RGB image are not registered, with large regions of

the image having no depth information. Furthermore, the device does not work well outdoors.

An better solution is to use purely synthetic data, i.e. computer generated imagery or CGI.

The quality of modern CGI is such that it can provide a more than sufficient surrogate for

“real” imagery. In fact, this has been used to create an optical flow benchmarking suite [106].

The main issue for creating such a test set is more practical than theoretical. For instance,

the optical flow test suite was created using the sources for “Sintel”, an open-source CGI

movie where the source files (art assets, 3D models, scene files, etc) were all made publicly

available and released under a Creative Commons licence1. It would be beneficial to create

a test suite from a variety of films to provide a wide sampling of different types of footage.

While the licencing issues will need to be sorted out, creating such a test suite would be quite

useful for future researchers.

1http://www.sintel.org/sharing/; Accessed July 2, 2014.
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Appendix A

Geometrically Robust Information

Criterion

A
particular problem with estimating something such as the fundamental matrix is that there

is no guarantee that it will properly describe the observed motion. Namely, the fundamental

matrix is rank-deficient1 and so has no inverse. Intuitively this can be understood by the fact that

it maps points to lines. A feature in one image has (potentially) infinitely many correspondences

in the other image. This makes it inherently less stable than a homography that maps points to

points and is invertible.

This particular problem was studied by Torr et al [89,90,91] in order to determine if a particular

estimate of F was reliable. The actual problem being solved is one of model selection: given

a homography or a fundamental matrix, which one describes the observed motion better. This

is done by scoring the two models such that the model with the lower score provides a better

explanation of the observed data. The method used to assign this score is called the Geometrically

Robust Information Criterion (GRIC).

GRIC is a scoring method that looks at how well the model itself fits the given data while

applying a penalty relative to its degrees of freedom. This is necessary to prevent over-fitting since

a model with a higher degree of freedom will always be able to better fit a model with a lower

degree of freedom. The GRIC score is defined as

GRIC =

n−1∑
i=0

ρ(e2
i ) + λ1dn+ λ2k, (A.1)

where

ρ(e2) = min

{
e2

σ2
, λ3(r − d)

}
(A.2)

1Specifically, rank (F) = 2. This is a result of
[
ẽb
]
× from (3.26) having det(

[
ẽb
]
×) = 0. Skew symmetric matrices

have a determinant of zero and multiplication with another matrix causes the result to also have a zero determinant.
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is a robust penalty function. The constants are defined [107](Sec. 7.3.2) as follows:

n the number of feature matches

ei the error or residual between the measurement and the model

d dimensionality of the model (2 for homographies, 3 for fundamental matrices)

k number of model parameters (8 for homographies, 7 for fundamental matrices)

r dimensionality of the data (for 2D features, twice the number of views)

σ standard deviation of the measurement error

The λ∗ terms, where ∗ ∈ {1, 2, 3}, are defined as

λ1 = log(4), (A.3a)

λ2 = log(4n), (A.3b)

λ3 = 2. (A.3c)

While the σ term is in theory obtained from the measurement error, it can be difficult to obtain

in practice. That is because it requires knowing how much error there is in the measurement,

which is not actually possible short of creating a complete mathematical model of how the feature

correspondences are generated. In the GRIC formulation, it is assumed that the models were found

using a Maximum Likelihood Estimate (MLE) and so there is an underlying assumption on the

distribution of the noise. As such it must be treated as a tuneable parameter. Therefore if Fk,l is

generated using an MLE-based approach, that value of σ must be used. However if an MLE-based

approach is not used2 then σ controls the “sensitivity” of GRIC.

A very small value of σ implies that the data is nearly noise-free while a large value assumes

a high-degree of corruption. It controls how likely any particular value of ei will be declared an

outlier, i.e. given a cost of λ3(r−d). In this case this simplest option is to let σ = 1 or not scale the

residuals. Because the residuals, as will be defined shortly, are based on geometric measurements,

this corresponds to a standard deviation of about ±1 pixel.

The choice of model residual depends on the model being tested. For homographies the mea-

sure is straightforward: just use the sum-of-squares distance between the actual feature and the

transformed feature from the other image. This is

DH(~x, ~y) = ‖~x ′ − ~y‖2, (A.4)

where ~x ′ is Hx̃ after a division by w. Note that if H perfectly describes the mapping of ~x → ~y

then DH(~x, ~y) = 0. This definition is not symmetric since it only deals with the forward mapping.

2RANSAC is not based on MLE, though it does have an MLE variant [108].
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This is corrected by

D′H(~x, ~y) = DH(~x, ~y) +DH−1(~y, ~x) (A.5)

so that the total error is the error from mapping ~x→ ~y as well as ~y → ~x.

The definition of the residual for the fundamental matrix is a bit different but the most straight-

forward approach3 is the use the distance to the nearest epipolar line, which measures how well a

feature matches the epipolar constraint. This is defined as

DF(~x, ~y) =
(ỹ TFx̃)2

(l̃~x(0))2 + (l̃~x(1))2
, (A.6)

where

l̃F = Fx̃ =
[
l̃~x(0) l̃~x(1) l̃~x(2)

]T
(A.7)

This expression is just the point-line distance from ~y to the line generated by Fx̃. Again, like (A.5),

this only finds the error from the ~x→ ~y and not vice-versa. This error is made symmetric4 by

D′F(~x, ~y) = DF(~x, ~y) +DFT (~y, ~x).

= (ỹ TFx̃)2

{
1

(l̃~x(0))2 + (l̃~x(1))2
+

1

(l̃~y(0))2 + (l̃~y(1))2

}
, (A.8)

where

l̃FT = FT ỹ =
[
l̃~y(0) l̃~y(1) l̃~y(2)

]T
. (A.9)

Once the error terms have been calculated, using GRIC is straightforward. Simply compare the

scores and the model with the lower score can be assumed to better describe the observed motion.

This does not guarantee that the model is in fact the true model, just that it is the better of the

two being compared.

3There are alternate distance measures, such as Sampson distance/error, but for the purposes of model verification
the epipolar distance is sufficient.

4Because ~y TF~x = ~xTFT ~y, as shown in (3.28), this term only needs to be computed once. This is often how the
symmetric epipolar distance is presented in the literature.
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Appendix B

Domain Transform Filtering

N
on-linear filters, specifically edge-aware filters, are good candidates for problems such as

sparse, non-linear interpolation. The most well-known of these is the bilateral filter [54],

though it requires a fair degree of modification in order to run quickly [55]. The Domain Transform

(DT) filter [57] described here is used in this dissertation because it provides a good trade-off

between results quality and simplicity of the implementation.

To begin, the domain transform filter proposes that there is a transformation T (·) that will take

some original one-dimensional input x(u) and transform it into y(v) such that the distance between

samples in the transformed domain is proportional to |x′(u)| where x′(u) is the derivative of x(u).

In other words, it compresses x(u) based on the L1-norm. Specifically the transform is written as

T (v) =

∫ v

0

(
1 +

σs
σr

D∑
c=1

|~x ′c(u)|

)
du, (B.1)

where σs and σr are the filter’s spatial and range parameters, respectively. If the input is vector-

valued, i.e. a colour image, then the individual D channels are summed together. The spatial

parameter effectively controls the filters spatial extent while the range parameter controls the

sensitivity of the filter to x′(u). Please note that (B.1) is defined as a continuous function as this

was how it is presented in [57]. A more appropriate form of the transform is

T [n] =

n∑
i=0

{
1 +

σs
σr

D∑
c=1

∣∣∣~xc[i]− ~xc[i− 1]
∣∣∣} (B.2)

as a digital image is by definition a discrete signal.

The transform T [n] is unique to the particular signal. Again, that is because it depends on

the L1-norm (absolute value of the derivative) of x[n]. An example of the transform is shown in

Figure B.1. The original signal, shown in Figure B.1a, is a series of pulses of differing amplitudes.

A corrupted version, xn[n] = x[n] + N(0, 1), is also shown to demonstrate how the transform is
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signal-dependant. The two transforms x[n] → T [n] and xn[n] → Tn[n], are shown in Figure B.1b.

There are clear “jumps” in the transform for x[n] while they are less clear in the transform for

xn[n]. This is the effect of the noise on the derivative.
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Figure B.1: An example of the domain transform. The transform is shown for two signals: a set
of pulses of varying heights and the same signal but corrupted with zero-mean additive Gaussian
noise with unit variance. The transform for the corrupted signal is noticeably different and this
is due to the effect of the noise on the L1-norm. The transform parameters were chosen so that
σs/σr = 10.

The signals in the transformed domains are shown in Figure B.2. The transformation does not

affect the signal amplitudes. Rather it transforms the spacing between samples by T [n]→ k so that

if there is little change in the signal then those samples will be close in the transformed domain

x[k]. Conversely, if there is a large difference between samples then the samples will be far apart in

the transformed domain. This is why the pulses are more “pinched” in the original signal (Figure

B.2a) versus those in the noisy signal (Figure B.2b). It is also why the range of the domain is

0 ≤ T [n] ≤ 1300 for the clean signal and 0 ≤ Tn[n] ≤ 3600 for the noisy one.

The purpose of the domain transform is so that a normal, linear filter can be applied in the

transformed domain instead of the signal’s original domain. Because edges are expanded in the

transformed domain, a low-pass filter, for instance, will not affect the edges as much as in homo-

geneous regions. An example of this is shown in Figure B.3. The two signals were filtered in the

transformed domain using a box filter with a radius r = 20
√

3. This value is obtained from the

parameters used to generate the domain transform and will be elaborated upon shortly.

As defined, the DT filter can only be applied to one-dimensional signals. In fact, as noted by

Gastal and Oliviera it is impossible to find this type of domain transform in higher dimensions (refer

to [57] for more information). However, Gastal and Oliviera provide a solution to this: iteratively

filter an image I(x, y) while treating the DT filter itself as a standard separable filter. Therefore
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Figure B.2: Signals in the transformed domain. The distance between samples in the transformed
domain is proportional to their L1-distance.
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Figure B.3: Signals after filtering in the transformed domain. The edges in the signal are preserved
but, as can be seen in the corrupted version, the noise is smoothed out.

filtering is done as follows:

1. Filter I(x, y) horizontally to produce I ′(x, y).

2. Filter I ′(x, y) vertically to produce Ifilt(x, y).

3. Let I(x, y) = Ifilt(x, y) and return to step 1; repeat N times.

I(x, y) is the image being filtered and I ′(x, y) is the intermediate filter result. Computationally

this is very efficient because each row/column is processed independently and can be parallelized.

Gastal and Oliviera showed that after five iterations there is no noticeable change in the results

and that three iterations are often sufficient.
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The actual filtering is not performed in the transformed domain; the example shown in Figure

B.3 was simply meant to be illustrative. Rather, the general approach is to use the transform

domain to control the size of the filter kernel, whatever it may be, back in the original image

domain. The original paper proposed three different types of DT filters: Normalized Convolution

(DT-NC), Recursive Form (DT-RF) and Interpolated Convolution (DT-IC).

The DT-NC filter is defined as a straightforward box (moving average) filter in the image domain

such that

y[n] =
1

j − i

j∑
m=i

x[m], (B.3)

where i and j are determined by (
T [j]− T [i]

)
= 2r. (B.4)

Note that this definition is symmetric in the transformed domain but asymmetric in the original

image domain. This results from the fact that in order for (B.4) to be satisfied, T [j] − T [n] =

T [n]− T [i] for any value of r. Since T [n] is monotonic, the only way for this to happen is if T [n] is

equidistant from T [i] and T [j]. However, this condition does not apply in the original domain and

so while T [j]− T [i] is constant, j − i is not. The DT-IC filter is similarly defined except that it is

a continuous convolution of the form

y(u) =
1

2r

∫ T (u)+r

T (u)−r
X(v)dv, (B.5)

where X(v) is the transformed signal. This definition somewhat complicates the implementation

because it requires not only generating X(v), which is done through interpolation, but also approx-

imating the integral.

The DT-RF filter is a simple, first order IIR filter defined as

y[n] = (1− ad)x[n]− ady[n− 1], (B.6)

where d = T [n]−T [n−1]. This makes the filter’s decay rate proportional to the L1-distance so that

more filtering is done when there is less of a change in the input signal. Unlike the DT-NC and DT-

IC filters, the DT-RF filter is not symmetric and so has to be applied twice for each row/column:

once in the forward direction (n increases) and once in the reverse direction (n decreases).

In the example presented earlier, the filter radius was chosen to be r = 20
√

3 and said to be

related to the filter parameters that generated the domain transform. Because the filter is iterative,

Gastal and Oliviera adjust the filter radius through

σHi =
σs
σr

√
3

2N−i√
4N − 1

, (B.7)
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where N is the number of iterations and 1 ≤ i ≤ N is the current iteration. This expression

halves the variance of the filter in the transform domain each iteration so that as i→∞, the filter

converges to a stable result instead of completely blurring the image. The DT-NC and DT-IC

filters then define their radius’ by

r = σHi

√
3. (B.8)

The DT-RF filter uses the σHi to control its pole/zero locations in tandem with the derivative of

T [n]. Specifically, the amount of feedback is defined as

a = exp

(
−
√

2

σHi

)
. (B.9)

Since the term inside of the exponential is negative, the filter is guaranteed to be stable.

While any of the DT filter variants would work, the DT-NC filter was chosen for this dissertation

because of its strong edge response. Unlike the DT-IC and DT-RF variants, the DT-NC filter will

respect strong edges to the point where there is a negligible amount of smoothing across the edge.

To demonstrate this, Figure B.4 was filtered using the DT-NC and DT-RF filter variant using the

exact same parameters. The results are shown in Figure B.5.

Figure B.4: A photo of Vancouver’s historic Gastown district.
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(a) DT-NC

(b) DT-RF

Figure B.5: A comparison between the DT-NC and DT-RF filters. Figure B.4 was filtered using
the DT-NC and DT-RF filter variants, both with the exact same parameters (σs = 100, σr = 1
and N = 3).
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What can be noticed when comparing the two versions is that the DT-RF image (Figure B.5b)

appears to be slightly more blurry then the DT-NC image (Figure B.5a). While many of the smaller

features are suppressed/filtered, the edges are less distinct in the DT-RF image. In [57] the authors

argue that the DT-RF is best suited for propagating sparse information because it will spread the

information through out the entire image as it is an IIR filter. While this is true, this property can

arguable make the DT-RF filter undesirable for interpolation, particularly with depth maps. It is

better for the depth maps to have strong edges as there is generally very little intra-object depth

variation but large amounts of inter-object variation, particularly when it comes to the background.
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Appendix C

List of Publications

The publications listed below were produced either directly in development of this dissertation or

as work done in parallel with what has been presented here.

Conference Publications

• R. Rzeszutek, R. Phan, and D. Androutsos, “Depth estimation for semi-automatic 2d to

3d conversion,” in Proceedings of the 20th ACM international conference on Multimedia, ser.

MM ’12. New York, NY, USA: ACM, 2012, pp. 817-820.

• R. Rzeszutek and D. Androutsos, “Efficient automatic depth estimation for video,” Digital

Signal Processing (DSP), 2013 18th International Conference on , vol., no., pp.1,6, 1-3 July

2013

• R. Rzeszutek and D. Androutsos, “Label propagation through edge-preserving filters,”

Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on,

vol., no., pp.599,603, 4-9 May 2014.

Journal Publications

• R. Rzeszutek and D. Androutsos, “A Framework for Estimating Relative Depth in Video”,

submitted to Computer Vision and Image Understanding. Manuscript Number: CVIU-14-

390.

Other Publications

• R. Rzeszutek, D. Tian and A. Vetro, “Disparity estimation of misaligned images in a

scanline optimization framework,” Acoustics, Speech and Signal Processing (ICASSP), 2013
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IEEE International Conference on , vol., no., pp.1523,1527, 26-31 May 2013

• M. Fawaz, R. Phan, R. Rzeszutek and D. Androutsos, “Adaptive 2D to 3D image conversion

using a hybrid Graph Cuts and Random Walks approach,” Acoustics, Speech and Signal

Processing (ICASSP), 2012 IEEE International Conference on , vol., no., pp.1441,1444, 25-30

March 2012

• R. Rzeszutek, R. Phan, and D. Androutsos, “Semi-automatic synthetic depth map gener-

ation for video using random walks,” in Multimedia and Expo (ICME), 2011 IEEE Interna-

tional Conference on, July 2011, pp. 16.

• R. Phan, R. Rzeszutek, and D. Androutsos, “Semi-automatic 2d to 3d image conversion

using a hybrid random walks and graph cuts based approach,” in Acoustics, Speech and

Signal Processing (ICASSP), 2011 IEEE International Conference on, 2011, pp. 897900.

• R. Phan, R. Rzeszutek, and D. Androutsos, “Semi-automatic 2d to 3d image conversion

using scale-space random walks and a graph cuts based depth prior,” in Image Processing

(ICIP), 2011 18th IEEE International Conference on, sept. 2011, pp. 865868.

• R. Rzeszutek, D. Androutsos, M. Kyan, “Self-Organizing Maps for Topic Trend Discovery”,

IEEE Signal Processing Letters, Vol. 17, No. 6, pp. 607-610. June 2010.

• R. Rzeszutek, T. El-Maraghi, D. Androutsos, S. Zhou, “An Advantageous Rotoscoping

Method,” Signal Processing Magazine, IEEE, vol.27, no.2, pp.34-39, March 2010.
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