
FUZZY SIMILARITY MEASURE AND ITS 

APPLICATION TO HIGH RESOLUTION COLOUR 

REMOTE SENSING IMAGE PROCESSING

Yu Li, B. Sc. 

XiDian University, X i’an, CHINA, 1984

A Thesis Submitted to the School of Graduate Studies at Ryerson University 

in Partial Fulfillment of the Requirements for the Degree of 

Master of Applied Science 

in the Program of Civil Engraining

Toronto, Ontario, Canada 

©Yu Li, 2004

RYERc'"- '10 j.-.



UMI Number: EC53467

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

UMI'
UMI Microform EC53467 

Copyright 2009 by ProQuest LLC 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for 

the purpose of sch- l̂arlv research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by 

other means, in total or in part, at the request of other institutions or individuals for the 

purpose of scholarly research.

Yu Li

Department of Civil Engineering 

Ryerson University 

September 16, 2004

n



ABSTRACT

Fuzzy Similarity Measure and Its Application to 

High-resolution Colour Remote Sensing Image Processing 

Yu Li, MASc 

Civil Engineering, Ryerson University, Toronto, 2004

The focus of the study in this thesis is placed on developing basic algorithms and tools 

for high-resolution colour remote sensing image processing tasks such as colour 

morphology, multivariate clustering, and multivariate filtering.

First, the fuzzy similarity measure (FSM) among vectors in a vector space is introduced. 

This measure is based on two assumptions for the relationship among vectors: short- 

range ordering and fuzzification. Second, based on the FSM, the colour morphology, 

multivariate fuzzy clustering, and multivariate filtering are defined. The performances of 

all proposed methods will be evaluated numerically and subjectively. Third, this study 

also places more emphases on solving some applied problems related to recognizing 

colour edges, detecting and extracting complex road network and building rooftops, and 

reducing noise in high-resolution remote sensing images such as QuickBird, Ikonos, and 

aerial images. The results obtained in the study demonstrate the effectiveness and 

efficacy of the FSM and the proposed methods.
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1 INTRODUCTION

Remote sensing images acquired from aircraft and spacecraft platforms provide much 

more useful information of the earth’s surface and atmosphere, and play an increasingly 

important role in a broad range of applications ranging from geology (Reeves, 1999), 

geography (Bo et al, 2001), agriculture (Richards, 1993), forestry (Neville and Till, 

1991; Goodenough et al, 2003), environmental monitoring (Ehlers et al, 2003), 

transportation (Georgopoulos et al, 1995), and so on. Consequently, remote sensing 

image processing techniques to extract, analyze, process, and interpret the information 

included in remote sensing images require knowledge from several disciplines such as 

computer vision, digital image processing and pattern recognition (Richards, 1999).

1.1 Motivations

Since the early 1960s, numerous satellite sensors have been launched into orbit around 

the earth to observe and monitor the Earth and its environment (Fu and Cazenave, 2001). 

Most early satellite sensors acquired data for meteorological purposes (Carleton, 1991; 

Bader, 1995). The advent of earth resources satellite sensors (those with a primary 

objective of mapping and monitoring land cover) occurred when the first Landsat satellite 

was launched in 1972 (Short, 1982). Currently, many types of orbiting satellites provide 

data to improve the knowledge of the earth’s atmosphere, oceans, ice and snow, and land 

(Lowman, 2002; Verstraete, 2000). With the development of satellite imaging sensor

1



techniques for earth observation (Jacobsen, 1998; Kllston, 1998), the new generation of 

very high spatial resolution commercial imaging satellite sensors such as Ikonos (Dial et 

al., 2003) and QuickBird (http://www.digitalglobe.com) has shown that images acquired 

from these satellite sensors can provide a viable alternative to aerial images for mapping 

the earth’s surface. However, due to the lack of intelligent and fast image processing 

algorithms and tools, it is difficult to apply these data to landuse management, urban 

mapping, city planning, environmental study and transportation planning (Stafford, 

1991).

The work presented in this thesis was motivated by developing efficient image processing 

techniques to analyze and interpret high-resolution remote sensing images.

1.2 Goals and Key Issues

In this thesis, three aims are focused on. First of all, a mathematic foundation for other 

works in this thesis is attempted to establish. This work is accomplished by studying the 

similarity among vectors in a vector space and defining the fuzzy similarity measure 

(FSM) between two vectors. The second aim of this thesis is to develop efficient and 

powerful tools for high-resolution remote sensing image processing tasks such as colour 

morphology, fuzzy clustering and multivariate filtering. The last one is to solve some 

applied problems in Geomatics such as colour edge extraction, road and building 

extraction and noise reduction from high-resolution remote sensing images such as 

Ikonos, QuickBird, and aerial images.

http://www.digitalglobe.com


The following key issues will be studied in this thesis.

•  Fuzzy similarity measure (FSM)

o Definition of the FSM 

o Analysis of numerical properties of the FSM 

o Case study: colour similarity

• Colour morphology

o Definition of colour morphology based on the FSM 

o Analysis of properties of the colour morphology 

o Case study: color edge extractor based on the colour morphology

• Fuzzy Clustering

o The fuzzy c-partition algorithm based on the FSM 

o Definition of colour histogram

o Colour image segmentation method based the fuzzy c-partition algorithm 

and colour histogram 

o Case study: road and building extraction

• Multivariate filtering

o Definition of the multivariate filtering method based on the FSM 

o Analysis of properties of the proposed filtering technique 

o Case study: noise reduction



1.3 Methodologies

Remote sensing images are generally available in discrete digital format and represent the 

spatial distribution of energy emanating from the earth’s surface in a sensible range of 

wavelengths. Consequently, remote sensing images are usually originated in multivariate 

forms such as multispectral and multitemporal images. As a result, processing 

multivariate images is much more complicated due to the increased dimensions and the 

needs for extracting and exchanging information from and among all components. 

Therefore, it is important to organize components as one entity because both within and 

between components correlations will be used. Toward this end, it is convenient to treat 

all components of each pixel in a multivariate image as a vector, called the feature vector 

corresponding to the pixel. Mathematically, all possible feature vectors form a vector 

space, called feature vector space.

In vector-based multivariate image processing, an important measure between two 

vectors is the similarity measure that can be used to compare two vectors and determine 

whether and how they are related to each other. The frizzy similarity measure (FSM) that 

computes the fuzzy-based similarity of two vectors in a feature vector space is defined by 

using a fuzzy similarity function, which uses the distance and angle of two vectors and is 

based on two basic assumptions, i.e., the short-range ordering and fuzzification on vector 

similarity.



The first application of the FSM is to define colour morphology. The developed 

morphology is under following assumption, i.e., the pixels of an object in a colour image 

have the similar colours. The purpose of the defined colour morphology is to recognize 

the shape of objects in a colour image by smoothing the colours in each object and 

shrinking or expanding objects.

In fuzzy clustering algorithm based on the FSM, the FSM is used to compute the fuzzy c- 

partition matrix. The colour histogram defined in this thesis is employed to determinate 

the number of the clusters in a colour image. The segmentation algorithm based on the 

fuzzy clustering and colour histogram can be modeled a combinational optimum 

problem.

Following the FSM, a fuzzy similarity filter (FSF) is developed. Unlike the commonly 

used vector-based filtering techniques which always select so-called the most central 

vector as the output of filters, the FSF chose the most central vector or the original 

vectors as the output if the late is similar to the most central vector under a given 

threshold.

1.4 Organization of the Thesis

The thesis is organized as follows. Chapter 2 provides basic knowledge which will be 

used throughout this thesis, for example, the background notions on colour spaces, 

similarity measure, mathematical morphology, fiizzy set theory, and vector-based filter.



In Chapter 3, the discussion will be focused on the definition of the FSM and the analysis 

of its properties. An example is provided to show how to apply the proposed similarity 

measure to compare colour similarity in RGB colour space. In chapter 4, the basic colour 

morphological operations such as dilation, erosion, closing, and opening based on the 

FSM will be introduced. And the application of the colour morphology to colour edge 

extraction will also be given. In Chapter 5, the FSM is applied to designing a fuzzy 

clustering algorithm. A histogram-based colour segmentation method is also introduced 

and is employed to design object extractor to extract the road networks and building 

roofs. In Chapter 6, a novel multivariate filter based on the FSM, called fuzzy similarity 

filter (FSF), is introduced. The application of the FSF to detecting and removing noise 

from corrupted remote sensing images is also described. The performances of the FSF 

and other vector-based filters such as vector median filter (VM F), vector directional filter 

(VDF), and distance-direction filter (DDF) are compared in Chapter 6. Chapter 7 draws 

conclusions on the findings from the research and gives some recommendations for 

future research.



2 PRELIMINARIES

In this chapter, some basic knowledge which will be used throughout this thesis is 

mentioned. In particular, colour space, similarity measure, mathematical morphology, 

fuzzy set theory, and vector based filtering technique are discussed.

2.1 Colour Space

Colour is the perceptual result of light in the visible region of the electromagnetic 

spectrum, having wavelengths in the region of 0.4 -  0.7 fim, as shown in Figure 2.1 

(Wyszecki and Stiles, 1967; Gonzalez and Woods, 1992; Fairchild, 1998).

Red Green Blue

0.4 urn 0.7 um
Fig. 2.1 Visible electromagnetic spectrum.

Psychophysiology studies have shown that colour information is generally tri-variant 

(Boynton, 1979). The reason is that the human retina has three types of colour 

photoreceptor cells, called cones, which have peak sensitivities in the red, green and blue 

portions of the electromagnetic spectrum, respectively. Therefore, a colour can be 

specified by a tri-components vector. The set of all colours forms a vector space, called



colour space or colour model. Three components of colours can be defined in many 

different ways, which lead to various colour spaces such as RGB (Red, Green, Blue), HSI 

(Hue, Saturation, Intensity), CMY (Cyan, Magenta, Yellow), L*u*v*, and L*a*b*, etc. 

For simplification, only RGB and L*u*v* colour spaces are introduced in this section 

because they will be used later.

2.1.1 RGB Colour Space

In RGB colour space, a colour is represented by the combination of its three primaries 

(Red, Green, Blue). This model uses a rectangular coordinate system with three 

coordinate axes assigned to each of three primaries to indicate their intensities which start 

at the origin and increase along each axis (Wyszecki and Stiles, 1967). This colour space 

is illustrated in Figure 2.2.

Blue
Blue

Green

Red

Green

Fig. 2.2 RGB colour space.

Red

Because each colour in RGB colour space can only has the discrete values between zero 

and some maximum intensity (255 for 8-bit length), the resulting structure of this colour 

space is a cube. Any colour can be simply defined by giving its red, green, and blue
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values or coordinates within the colour cube. These coordinates are usually represented 

as an ordered triplet (r, g, b).

RGB colour space is an additive colour space. Its origin starts at black and all other 

colours are derived by adding various amounts of the primary colours. It is the natural 

choice for computer display where black or no light intensity is the starting point and the 

increasing intensities of the red, green, and blue electron guns provide the range of 

colours. RGB colour system is also used as a physical colour model which is utilized to 

digitize colour images. Recently, many colour image processing algorithms have been 

developed for this space. However, RGB representation is far from the one used for the 

human sensation of colours and colour features in RGB colour space are highly 

correlative.

2.1.2 Uniform Colour Space

In spite of all useful characteristics of the chromaticity diagram, it lacks a very important 

characteristic. That is, even though the spatial distance between two colour points in this 

diagram equals that between other two colour points, their perceived distances must not 

be the same. In the worst case, for two pairs of colour points in this diagram with the 

same perceived distance, their spatial distances can differ as much as 20 times. In order to 

correct this difference, researchers have been trying to find a perceptually uniform colour 

space. Unfortunately, it has still not been found. Commission Internationale de 

l'Eclairage (CIE) proposed two alternatives as improvements compared with CIE X Y Z



space. They are L*u*v* and L*a*b* colour spaces. Although the two colour spaces are 

referred to as perceptually uniform colour spaces by some authors (Wyszecki and Stiles, 

1967), they are not. Just for comparison, two pairs of colour pionts with an equal distance 

in perceptual can differ in the L*u*v* distance as much as four times. This is a 

significant improvement compared to twenty times in the original space, but it is still not 

perfect.

Converting the representation of colours from the linear RGB colour space to L*u*v* 

colour space is based on CIE X Y Z space and a white reference, see Jain (1989) and Pratt 

(1991) for details.

The RGB values in the range [0, 1] can be converted to the corresponding CIE X Y Z  

values in the range [0, 1] by using the following matrix transformation (Pratt, 1991):

' x~ "0.4125 0.3576 0.1804" r

Y = 0.2127 0.7152 0.0722 8 (2.1)
Z 0.0193 0.1192 0.9502 b_

And the reference point [X„, T„, Z„] to express the special X Y Z value when (r, g, 6) = (1, 

1,1) should be used (see Pratt, 1991).

The conversion between CIE X Y Z and L*u*v* is defined with the formulas, which can 

be described as follow.
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The lightness component L* of L*u*v* colour space is defined by CIE as the modified 

cube root of luminance Y in CIE XYZ space (Hill et al, 1997; Hall, 1999):

L *  =

116
Y

-1 6 , if — >0.008856

903.3

(2.2)

otherwise

Computations of u* and v* involve the intermediates u, v', and v„' defined by

AX
u =■

X +15K  + 3Z
(2.3)

97
V  = ■

X + 157 + 3Z
(2.4)

47
=

" Z„+157„+3Z„
(2.5)

v '= _____ 2 ^ _____
" X„+157„+3Z„

(2.6)

The formulas for u* and v* are given by

u* = \3L*(u'-u„') (2.7)
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V* =  13L *  (v’-v„ ’) (2.8)

2.2 Similarity Measures among Vectors

To determine the relationship between two objects or events is of importance in various 

applications such as information retrieval (Frakes and Baeza, 1992), pattern recognition 

(Li and Cheng, 2002), data mining (Erlich et al., 2002), image retrieval (Zhao et al., 

2003), and so on. The most important and useful relationships among objects include the 

degree to which they are similar, called similarity measure, the degree to which they 

differ, called dissimilarity measure, and the degree to which the features of one object 

completely encompass those of another, called compatibility measure (Cross and 

Sudkamp, 2002). Among these measures, similarity measure is often used and is 

difficultly quantified. In vector analysis, the spatial distance and the relative direction of 

two vectors are often used to measure and judge similarity (Stark and Yang, 1998).

Let V be a vector space and R be the set of real numbers. A norm on F  is a function that 

assigns a real number, denoted by || v ||, to each vector v in V such that

• II V II > 0  and || v || = 0 if and only if v = 0

•  II av II = I a III V II, Va e ^  and v e V

• II v + M ||< ||v || + ||a  II, Vv,ue V
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The vector space V  together with the norm || • || is called a normed vector space, denoted 

by (V, I I -11).

Let 1< p < 0 0  and V. = [ V ^ , , g , thep-norm of V/ is defined by

n\p

r m \

Z K r
Vt=i y

Mp
(2.9)

and

I|y ,IL = m a x {|V , 1,1 V, | ,A , |y ,J ) (2.10)

then (/?'", II • lip) is a normed vector space. When p = 2, the norm || • H2 is called the 

Euclidean norm.

It is obvious that the norms defined in Equations (2.9) and (2.10) can be considered as the 

measures of the magnitude of vectors in a normed vector space.

Let Vj,Vj e (y  ,|| • ||), the distance between Vi and Vj can be defined by

d (v ,,y ,)= K -y , (2.11)

Let V,,Vj e (/?",|| • ||^), the distance between V/ and Vj can be defined by
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r  m prf,(v„v,)= 2 ]v ; .-V j ,n  (2.12)
U=i J

and

d.(V ,.V ,)  = maxil V„ -V j ,  |,| V„ - V „  |,A ,|V^ || (2.13)

When p = \, di(Vi, Vj) is the sum of absolute displacements, called city block distance. 

When p = 2, diiVi, Vj) is the straight line distance, called Euclidean distance. When p = 

00, dajVi, Vj) is the so-called chessboard distance.

Another useful distance measure is the weighted distance measure. Let 

w, , ^ 2  ,A ,w^e R ,  then the weighted distance measure is defined as.

<(.,(V ,.V ,.)=  (2.14)
\k=\ J

where wi, W2 , . . . ,  w,„ are called the weighting factor and satisfy ^  w,- = 1.
/=!

It is obvious that the distance measures defined above can be used as similarity measures 

between two vectors. In this case, the shorter distance between two vectors means the 

larger similarity between them.
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The angle between two vectors can also be used as a similarity measure.

Let <V„ Vj> be the inner product between V, and Vj, || V, || and || V; || be the norms of Vi­

and Vj, respectively. The correlation of V, and Vj, r (V„ V/), is defined by

r(V.,Vj) = < V r V j >
l|v,llllvj| (2.15)

The inner product in R'" is defined by

< V , . V j
k=\

(2.16)

whereV, =[\^,,V;.2 ,A ,V ,J \V , =[V,„Vy„A ,Vj„VeR"'

It is clear that < V,-, V,- > = ||V,|| for V,- e R

Let Ô be the angle between V,- and Vj in R'", then

cos^ = r(V,-,Vy) = < V n V j >

■LhlL
Jt=l

V /= ! J

1/ 2 / 1/2

V y=i y

(2.17)
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where 6 e [0, n)

It is worthy of note that as a similarity measure, the angle measure, r(V,-, Vj) = cos(0), 

only considers the relative direction of the two vectors and neglects the distance of them.

2.3 Mathematical Morphology

Mathematical morphology was developed by Matheron (1975) and Serra (1982) as a 

geometry-based technique for image processing and analysis. This section briefly 

introduces some basic concepts of mathematical morphology which are often used in 

binary morphology, grayscale morphology, fuzzy-based grayscale morphology, and 

colour morphology.

2.3.1 Binary Morphology

Mathematical morphology was initially developed for binary imagery, caUed binary 

morphology, which uses the set operators such as union, intersection, complementation, 

and translation, while a binary image is represented as a set.

Let E  be the Euclidean space R or the discrete integer space Z” , a binary image can be 

represented as a subset of £  or a mapping/: E  —> {0, 1}.
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The translation operator, Ta, which translates the set of object vectors, OV c  £ ,  by a 

constant vector, a e E , is defined as

T^{OV) = {o v+a :o veO V }  (2.18)

The reflection or symmetry operator, - ,  of OV is defined as

- O V  = { -o v :o veO V }  (2.19)

Definition 2.1 Let B I c. E  he a binary image and SE cz E he a binary structuring 

element. The binary dilation , erosion , closing and opening of B I  by SE 

are binary images given by:

(B I) = [ae E :T ^ ( -S E )n B I  (2.20)

el^(BI) = {a e E :T ^ (S E )Q B I}  (2.21)

= (2-22)

o U B I )  = S^(e^sABD) (2.23)
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Generally, the binary dilation typically will extend the contours of the objects in an 

binary image, while the binary erosion will reduce them. Furthermore, the dilation will 

fill up small gaps and narrow channels, while the erosion will eliminate small foreground 

details, enlarge gaps and broadens channels. The binary opening will suppress small 

peaks and eliminates other small details, while the binary closing will fill up narrow 

channels and small gaps. It is notable that in contrast to the binary dilation and binary 

erosion, the size of larger structures or objects isn’t really affected by binary closing and 

binary opening.

2.3.2 Grayscale Morphology

Binary morphology has been successfully extended to grayscale morphology. Such 

extension requires rules for the combination of different grayscale values. There are 

several approaches which are used to extent binary morphology to grayscale morphology, 

for example, the umbra approach (Heijmans, 1996), the threshold set approach (Maragos 

and Ziff, 1990), the complete lattice approach (Ronse, 1990), and the fuzzy logic 

approach (Goetcherian, 1980).

For the complete lattice approach, its mathematical fundament is the complete lattice 

theory. This grayscale morphology follows on the assumption that the set of all possible 

grayscale images constitutes a complete lattice.
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A nonempty set L with a partial ordering < is called a complete lattice if every subset 

M  Ç L has an infimum UM  and a supremumDM in L. Suppose that L and M  are two 

complete lattices, an operator f . L - ^ M \ s ,  said to be increasing if U  < L2 implies that 

y/(L\) < y/(L2), for Li, L2 UL.

Definition 2.2 An operator J: M  L is called dilation if Y A/ ,)=  Y 5{M,) for every
jej jej

collection {A/: \ : ^ j cM] . An operator e: L M  is called erosion if £( I L,)= I eiLA for
jeJ JeJ

every collection {L̂  Two operators e: L M  and S: M  —* L are said to be an

adjunction between L and M \ ï  Ô (M,) < Li *-*Mi < e (L/), for any Li UL and A/,- DM, i.e., 

0{Mi) is an infimum of L if and only if M, is an infimum of M. (e, ô) is used to denote an 

adjunction between L and M.

Definition 2.3 I f  (e, 5) is an adjunction between L and M, then the composition eô is a 

closing on M  and ôe is an opening on L.

2.3.3 Fuzzy Morphology

Fuzzy morphology means the grayscale morphology defined on fuzzy logical and fuzzy 

sets. It is another alternative extension of binary morphology to grayscale morphology. In 

this technique, concepts from fuzzy logic and fuzzy sets are used for designing 

morphological operators rather than representing grayscale image as a fuzzy set.
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Several researchers have made their contributions to fuzzy morphology. Goetcherian 

(1980) first applied the concepts from fuzzy logic to grayscale morphology. This 

technique has also been advocated by several other researchers, for example, Sinha and 

Dougherty (1993), Bloch and Maitre (1995), De Baets (1997), and Nachtegael and Kerre 

(2001). De Baets (1997) developed a general logical framework which induces previous 

results as special cases. His idea was to ftizzificate the logical operations, i.e.. Boolean 

conjunction and Boolean implication, to obtain a successful fuzzification. In other words, 

his work was based on the notions of negator, conjunctor and implicator on the unit 

interval.

Definition 2.4 A unary operator Neg\ [0, 1] ^  [0, 1] is called a negator if it is decreasing 

on [0, 1] and satisfies Neg (0) = 1 and Neg (1) = 0 (De Baets, 1997).

Definition 2.5 A binary operator Conj: [0, 1] x [0, 1] —» [0, 1] is a conjunctor if it is 

increasing on [0, 1] and satisfies Conj (0, 0) = Conj (0, 1) = Conj ( 1 ,0 )=  1 and Conj (1, 

1) = 0 (De Baets, 1997).

Definition 2.6 A binary operator Imp: [0, 1] x [0, 1] —> [0, 1] is called an implicator if it 

is hybrid monotonous on [0, 1], that is, decreasing with first argument and increasing 

with second argument, and satisfies Imp (0, 0) = Imp (0, 1) = Imp (1, 1) = 1 and Imp (1, 

0) = 0 (De Baets, 1997).
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According to the above definitions, every implicator Imp induces the negator Negi 

defined by TVigg, (x) = V% e [0,1]. Similarly, given a conjunctor one can

construct an implication from the conjuntor, and vice versa (De Baets, 1997). Using these 

extended logical operators, the basic fuzzy morphological operators are defined as 

follows.

Definition 2.7 Let Conj be a conjunctor on [0, 1 ]\ Imp be an implicator on [0, i f ,  GI be 

a grayscale image (GI: R'" —* [0, 1]), and be a grayscale structuring element (SE: /?'" 

—» [0, 1]). The fuzzy dilation and the fuzzy erosion are the grayscale images 

defined by

sup Conj(SE(x-y),GI(y))  (2.24)
X€T,{cI,)

sup Imp(SE(x-y),G I(y))  (2.25)
XGTy{dg)

where dA and ds are the domains of image GI and structuring element SE, respectively, 

and are defined by

d ^ = { z e R " ' \  (3t e [0,l])(G /(z) = 0 ) (2.26)

d , = { z &  i?"- |(3 te [0 ,l])(5 £ (z ) = /)} (2.27)
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T y {ds) is the translation operation of dg by the vector w e  R"',

T ^ X d s ) =  { z & R ”' \ z - w e S E ]  (2.28)

Definition 2.8 Let Conj be a conjunctor on [0, 1]̂ , Imp be an implicator on [0, 1]̂ , GI be 

a grayscale image, and SE he a grayscale structuring element. The fiizzy closing Zconj.imp

and the fuzzy opening Oco„jjmp are the grayscale images defined by

Xconjjmp -  ^Imp i^Conj ) (2.29)

(2.30)

2.3.4 Colour Morphology

Similar to the extension from binary morphology to grayscale morphology, in order to 

extend the concepts of grayscale morphology to colour morphology, one needs some 

rules to organize colour values. The complete lattice has been used in colour morphology, 

because it retains the basic properties of its grayscale counterpart. However, when 

employing the theory of complete lattice, an inherent difficulty is that there is no obvious 

and unambiguous method of fully ordering colours (vectors).
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So far, there is no unified colour morphology theory, due to the variety of vector ordering 

schemes and colour spaces that can be used. Approaches to defining colour morphology 

can be categoried by the vector ordering schemes. They are marginal morphology 

(Beacher, 1996), partial morphology (Meyer, 1996), and reduced morphology (Serra, 

1982).

2.4 Fuz^ Set Theory

This section reviews some basic notions about fuzzy set theory, which will be used later. 

More information on fuzzy set theory can be found in Gottwald (1979), Dubois and 

Prade, (1980), Zhang, (1980), George and Bo (1995).

The concepts of fuzzy sets and fuzzy logic were first introduced by Zadeh ( 1965) to deal 

with problems involving knowledge expressed in vague, linguistic terms. Classically, a 

set is defined by its members. In traditional (crisp or point) set theory, an object (or 

element) may be either a member or a non-member of a set. Mathematically, the set t/, 

called universe of discourse, can be represented by its indicator function, or charateristic 

function, //

As an extension of classical set theory, a fiizzy set can also be characterized by its 

charateristic function, called membership degree function, which maps U into the interval
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[0, 1]. The value 0 of the membership degree means that the member is not included in 

the given set. The value 1 of the membership degree describes a fully included member 

(these behaviours correspond to classical set theory). A value between 0 and 1 

characterizes the degree to which a member belongs to the universe.

Definition 2.9 A fuzzy subset F  on U can be described by its characteristic function hf 

which is a mapping from U to [0, 1], i.e.,

^f: U - * [ 0 , \ ]  (2.32)

Generally, there are two notations for fuzzy set, F  stands for the actual fuzzy set, while 

//F, which is always a function from U to [0, 1], means a degree assigned to each member 

of [/, called the membership degree. All fuzzy sets on U form a set denoted by F(U). Like 

the crisp set theory, some operations between two fuzzy sets on F(U), such as union, 

intersection, and complement, can be defined by using their characteric functions.

Definition 2.10 Let ( / be a universal set, F\ and F2 be two fuzzy subsets on U, and their 

characteristic functions be //f, and jufï, then union v , intersection a of F, and F2 , and 

complement ' on F\ are defined by

W  = max{//f_ i x ) ] y x e  U (2.33)

= min{//f^ (x),/ip^ (x)},Vxe U (2.34)
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W,V%6 U (2.35)

2.5 Vector-based Filters

Let n m-dimensional vectors in the vector set V = {V\, V2, •••, V„] be arranged in 

ascending order according to some ordering criterion as follows

<A  <V(„) (2.36)

the ith vector V(/) in this sequence is called /th order statistic. The minimum vector V(i), 

maximum vector F(„), and median vector V([„æj) are the most important order statistics, 

resulting in the min, max, and median filters, respectively.

Unfortunately, ordering multivariate vectors is not straightforward, because there is no 

notion of the natural order in a vector space as in one dimension case. Although there is 

no unambiguous scheme for ordering multivariate vectors, many works have been done 

to order multivariate data. Barnett (1976) proposed the sub-ordering principles to rule the 

ordering. In general, the sub-ordering principles are divided into four classes: marginal 

ordering (M-ordering), condition ordering (C-ordering), partial ordering (P-ordering), and 

reduced ordering (R-ordering) or aggregate ordering.
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In the M-ordering scheme, vectors in V  are ordered along each of components 

independently. The ;th marginal order statistic is the vector Vo) = [V(i)i, V(i)2, •••, V(\y, 

V(i)m]̂ . where V(/) j is the ith largest element in the jth component. The marginal order 

statistic V(/) may not correspond to any original vector in V as it does in the one 

dimension case. This ordering scheme is equivalent to a separating method in which each 

component of a vector is processed independently and new vectors may be resulted in.

In the P-ordering scheme, the objective is to partition vectors into groups such that these 

groups can be distinguished with respect to order, rank, or extremeness. For example, 

subsets of vectors are grouped together forming minimum convex hulls. The first convex 

hull is formed such that its perimeter contains a minimum number of vectors and the final 

hull contains all other vectors in V. However, to determine the convex hull is a difficult 

task if the dimensions of V are more than two. Another drawback associated with P- 

ordering scheme is that there is no ordering within the groups and this scheme is not 

easily expressed in analytical terms. Thus, P-ordering is still rather infeasible for 

implementation in color image processing.

In the C-ordering scheme, vectors are ordered conditionally on some specified 

component. Thus, after the component is ranked other components of each vector are 

listed according to the position of the ranked component. This scheme has a disadvantage 

in multivariate image processing, i.e., only the information in one channel is used. It 

seems that this ordering scheme is suitable for ordering colours in HSI colour space in 

which the components of colours have less correlation.
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In general, the R-ordering scheme reduces a vector to a scalar value according to a given 

criterion. Mardia (1976) further developed the subclasses of R-ordering scheme: measure 

ordering and projection ordering. The measure ordering refers to the use of any specific 

measures among vectors, such as distance and angle measures. It is obvious that R- 

ordering scheme is easier to be used in multivariate image processing than other vector 

ordering schemes.

By using the distance measure d(Vi, Vj) defined in Section 2.2 for two vectors Vi and Vj 

in V, the aggregation distance Z)(V,) associated with each vector V,- can be calculated by

D(Vi) = t .d (y i ,V j ) ,  fo r /=  1,2, .. .,n (2.37)
y=i

If  the aggregation distances of all vectors in V are arranged in ascending order, i.e..

D(F(,) ) < D(V(2) ) <,a  , < D(V(,) ) <,A , < Z)(V(„) ) (2.38)

then the same ordering to all vectors in V is implied, i.e..

V(,) <,A ,<V(,) < A  (2.39)
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In the ordered sequence presented in Equation (2.39), V(d is the minimum vector. It is 

defined as the vector in V whose aggregation distance is minimum. This ordering results 

in the vector median filter (VMF).

Like distance measure of vectors, the angle measure between two vectors can also be 

used to order the vectors in V. Using the angle measure a(V/, Vj) described in Section 2.2, 

the aggregation angle A( V,) associated with the vector V,- can be calculated as follows

MVi ) = Z  aiVi^Vj ) ,  for 1 = 1 , 2 , . . . , »  (2.40)

Similarly, the order of the vectors in Equation (2.39) can also be implied, if the 

aggregation angle defined in Equation (2.40) follows the order,

A(V(,)) < A(F(2)) ,<  A(F(,.)) <,A ,<  A(V(„)) (2.41)

In this case, V(i) in Equation (2.39) results in another kind of vector filter, the basic vector 

directional filter (BVDF).

To take advantage of both distance and angle measures, the R-ordering scheme based on 

the so-called distance-angle measure is introduced.

Generally, the product of the aggregation distance and aggregation angle for V,- is defined 

as
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DA(Yi) = Z ^ (V i^ y j)Z d (y i ,V j)  (2.42)
j=\ 7=1

where d(Xj ,Xj )anda(Vj ,Vj )are  the angle and distance measures between V,- and V}, 

respectively.

From Equation (2.42), an ascending ordering of the products D /l(V ,)’s is assumed, i.e.,

DA(F(,)) < £>A(V(2)) £>A(V(,.)) <,A ,< DA(V(„)) (2.43)

then the order implies the same ascending order to the corresponding vectors V,’s, i.e.,

V(,) <V(2) ,<V(,) <.A ,<V(„) (2.44)

By using F(i) in Equation (2.44), the filter, called directional-distance filter (DDF), can be 

constructed.
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3 FUZZY SIMILARITY MEASURE

The similarity measure is an important concept in multivariate data analysis (Bouchon et 

al., 1996; Santini and Jain, 1999; Yeung and Tsang, 1997). Such a measure can be used 

to compare two vectors in a vector space and to determine how they are similar to each 

other. In a vector space, both the spatial distance and the relative direction of two vectors 

are the similarity measures (Stark and Yang, 1998).

In this chapter, a new similarity measure between two vectors in a vector space, called 

fuzzy similarity measure (FSM), is introduced. It is based on both distance and direction 

of vectors and address the rationale of the proposed measure from the short-range 

ordering and fuzzification perspectives.

This chapter consists of four sections. In Section 3.1, the definition of the FSM is given. 

In Section 3.2, the numerical properties of the FSM are analyzed. In Section 3.3, an 

example to show how to use the FSM to compare the colour similarity in RGB colour 

space is presented. A summary about the study is given in Section 3.4.

3.1 Definition of FSM

The FSM is based on two basic assumptions: (1) short-range ordering, and (2) 

fuzzification on similarity relationships among vectors. The idea behind the short-range
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ordering similarity among vectors is sparked by the same concept from solid physics. It is 

well known that the atom structure in an amorphous is short-range ordering. This 

phenomenon can be explained as that the interaction among atoms in an amorphous just 

exists among those atoms that are concentrated in a small neighbor. In other words, an 

atom in the amorphous is just correlated with those atoms in a neighbor around it. 

Similarly, this phenomenon also happens for vectors in some feature vector spaces. For 

example, depending on the human perception, similar colours in RGB colour space 

concentrate on a small neighbourhood. In addition to the short-range ordering, the 

similarity among vectors in some feature vector spaces is difficult to quantify and shows 

much more uncertainty, so the best way to characterize the similarity is to use a fuzzy 

based measure.

Instead of directly using both distance and angle between two vectors as their similarity 

measures like stated in Chapter 2, this chapter introduces the FSM which uses the 

distance and angle of two vectors simultaneously and models the concept of the short 

rank ordering and fuzzification on similarity among vectors.

Definition 3.1 Let V be a vector set. A fuzzy membership function //,

/ / :V x F ^ [0 , l ]  (3.1)

is called a fuzzy-based similarity measure among vectors in V if n satisfies the following 

conditions:
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(a) Ascending

(b) Convex

(c) Identical

(d) Symmetric.

For (a) and (c), it is easy to understand that the similarity measure between two vectors 

should has a larger value if they are more similar (ascending), and the measure value 

should be equal to 1 when two vectors are the same (identical). Convexity is explained as 

that given two vectors, if there exist other two vectors that locate between them, then the 

similarity between the latter is larger than that for the former. Symmetry emphasizes that 

two vectors should has the same similarity no matter their order.

In order to define a reasonable and reliable similarity measure, it is necessary to indicate 

the meaning of the similarity between two vectors by considering the contribution of the 

distance and angle between them. There may be many different ways to explain the 

similarity. In this study, two vectors in a vector space are considered to be similar if they 

have both a short distance and a small angle. Based on this idea, the fuzzy membership 

function described in Equation (3.1) can be defined by a mapping from the distance and 

angle of two vectors to the unit interval [0, 1], i.e.,

//(V ,,v p  : {d (y .,V j) ,0 (y ,,V j))  [o,i], v y ,,y . e v  (3.2)
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where d (V,-, Vj) and 6 (V,-, Vj) are distance measure and angle measure between V,- and Vj, 

respectively.

And the above conditions for n can be further stated as follows

(e) n{Vi,Vj) <M(Vk,V,), \fd(Vi,Vj) > d(Vk,V,) and e(Vi,Vj) > 6{Vk,V,), V V,. Vj, V,, 

V i & V

if))i{Vi,Vj) < n ( y M ,  V,,V^,V„V, e /?" and V„V, e [V,,Vj]

(g) // (0, 0) = 1, and (oo, 0) = 0, and

(h)MiVi,Vj) = M(Vj,Vi), V V ,,y . 6 V

There exist many convex functions that satisfy the conditions (e)-(h) and can be selected 

as the fuzzy membership functions. The following equation is used in this study as the 

FSM.

M(V,,Vj) = e-'‘'‘‘ '̂'‘-''^^cos{k^0(y.,Vj)) (3.3)

where ki = [0, oo) and kz = [0, 1], and d{Vi, V,) and 6(Vi, Vj) are distance and angle 

between V,- and Vj defined in Equations (2.15) and (2.21), respectively.

It is obvious that Equation (3.3) satisfies the above conditions (e) and (g) directly. It is 

also worthy of note that if Equation (3.3) is used as the definition of the FSM the 

condition (h) is also naturally satisfied.
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Figure 3.1 explains the convexity of the FSM in 2-D  case. For any two vectors V,- and V} 

corresponding to points A and B in quadrant I  with the distance |AB| and angle AAOB 

between them. I f  there are other two vectors V* and Vi corresponding to points C and D 

on AB, it is obvious that the distance |CD| and the angle ACOD between Vjt and V/ are 

less then |AB| and AAOB, i.e., d{Vk, Vi) < diVi, Vj) and 6{Vk, Vi) < 6{Vi, Vj), respectively. 

By Equation (3.3), it can be concluded that //(%, Vj) < ju (Vjt, Vi). It means that Vjt and V, 

are more similar than V, and Vj are. Then the convexity is proved.

► %

Fig. 3.1 Convexity of FSM in 2-D case.

3.2 Numerical Properties of FSM

In this section the numerical properties of the FSM is discussed. The impact of the 

parameter on the FSM when ^ 2  = 1 is illustrated in Figure 3.2.
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Fig. 3.2 Impact of k\ on FSM when A:] = 1.

(0

When k\ = 0, the FSM defined in (3. 3) depends only on the angle and is decreasing on 9. 

This case is shown in Figure 3.2(a). Figure 3.2 also illustrates that the value of the FSM is 

sensitive to the change of k\. It implies that the values of the FSM have a rapid 

attenuation with the slight increase of k\ as shown in Figures 3.2(b)-(f). So the parameter 

k\ can be used to decide how two vectors are similar when they are gapped by a distance 

d.
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Figure 3.3 illustrates the impact of the parameter k2 on the FSM when &i = l.
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Fig. 3.3 Impact of k2 on FSM when &,= !.

4

When kz = 0, the fuzzy similarity measure depends only on the distance, which is shown 

in Figure 3.3(a). In this case, the values of the FSM have no relation to the angle measure 

9. Figure 3.3 shows that the FSM decreases as the angle and kz increase.

Figure 3.4 shows the change of the FSM with the change of the parameters k\ and ki, 

where d -  0.5 and 6 = ;r/4. Comparing with Figure 3.3, it can be observed that the value 

of the FSM is much more sensitive to the change of k\ because has more pronounced 

attenuation with the increase of k\.
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IS. 0.6

Fig. 3.4 Impact of t, and ki on FSM, when d =  1,0 = tt/4.

It can be concluded from the analysis of the numerical properties that the FSM can 

adequately characterize the short-range ordering and fuzzification of the similarity. The 

short-range ordering of the similarity can be explained by selecting a threshold to 

characterize the degree under which vectors are considered to be dissimilar or non­

correlative. For each vector in a vector space there is its neighbour in which its similarity 

values to other vectors are larger than the given threshold. As a result, the neighbour can 

be called the range in which the vectors are similar. On the other hand, the range of the 

neighbour can be determined by the parameters k\ and kt. It means that the neighbor 

restricted by a certain threshold will change with the different combinations of the 

parameters k\ and fe. This can be explained as the uncertainty of the similarity.
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3.3 Colour Similarity in RGB Colour Space: An Example

In this section, the FSM is applied to measure the colour similarity in RGB colour space. 

RGB colour space is an additive colour space. Its three primary colours (r, g, b) are 

combined additively to produce any desired colour. Each component of a colour is 

represented by a value between 0 and 255. For example, RGB value (255, 255, 255) 

indicates white, and (0, 0, 0) indicates black. This representation leads itself to be easily 

manipulated by computer systems. It also means that 16,777,216 (=255^ = 255 x 255 x 

255) colours can be represented in such a RGB colour space.

In order to demonstrate the similarity among colours, the similarity measures between the 

colour (204, 102, 153) and colours in three typical groups (see Figures 3.5-B.7) in RGB 

colour space are calculated.

The colours in Group 1 are sampled from whole RGB space by evenly dividing the RGB 

cube into eight bins and taking colours corresponding to the nodes of each bin. In Figure 

3.5, the gray cube denotes the RGB cube, the planes surrounded by white lines are the 

slicing planes to cut the cube, and the planes I, II, and II I  are the colour planes consisted 

of those selected colours.

The colours in Group 2 are from a colour subspace in which the red changes from 153 to 

255, the green from 51 to 153, and the blue from 102 to 204. It means that the colour 

subspace is a 102̂  cube. By evenly dividing the RGB colour subspace into eight bins and
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taking colours according to the nodes of each bin the colours for Group 2 can be 

obtained. In Figure 3.6, the gray cube denotes the RGB colour subspace, the planes 

rounded by white lines are the slicing planes to divide the cube, and the planes, II, and II I  

are the colour planes consisted of selected colours.

Fig. 3.5 Colours in Group 1.

204 153 102 51 153

Fig. 3.6 Colours in Group 2.
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The colours in Group 3 are obtained with the same way as for Group 2. The only 

difference is that the colour subspace for Group 3 locates from 187 to 221 for red, from 

85 to 119 for green, and from 134 to 170 for blue, see Figure3.7.

170 153 136102 187

Fig. 3.7 Colours in Group 3.

The similarities between the colour (204, 102, 153) and each of selected colours are 

measured by the FSM. The computational results are given in Tables 3.1 and 3.2.

For all selected colours, the similarities are first computed with parameters k\ = 0.001 and 

k2 = 0.2. The results are listed in Table 3.1. The aim of this experiment is to exanimate 

whether colours similarity measured by the proposed similarity measure conforms to the 

human perception. Table 3.1 also shows those selected colours. By observation, the 

results obtained in general conform to the human perception. Of course, the human 

perception on colour similarity is subjective and sometimes application dependent. In 

Table 3.1, the colours in Group 3 have larger similarity values to the colour (204, 102,
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153) than that of the colours in Group 2, since the colour subspace from which colours in 

Group 3 are obtained is totally embedded in that colour subspace from which colours in 

Group 2 are taken. As a result, the colours in Group 3 are more similar to the colour (204, 

102, 153) than those in Group 2 in vision.

Table 3.1 Similarity measure values and colours in Groups I, 2, and 3.

Group 3 Group 2 Group 1
S R .O .B  C S R,G ,B C S R ,G ,B C
1.0000 204,102,153 g g 1.0000 204,102,153 1 0.9389 255,127,127
0.9831 221,102,153 I B 0.9501 255,102,153 1 0.9172 127,127,127
0.9831 187,102,153 m 0.9499 204,102,204 1 0.8895 255,127,255
0.9831 204,102,170 m 0.9499 153,102,153 1 0.8865 255,0,127
0.9831 204, 102,136 m 0.9498 204,153,153 1 0.8749 127,0,127
0.9831 204,119,153 m i 0.9497 204,102,102 1 0.8747 127,127,255
0.9831 204,85,153 m 0.9496 204,51,153 1 0.8553 255,0,255
0.9762 221, 102,170 m 0.9303 255,102,204 1 0.8468 255,255,127 |
0.9762 187,102,136 m 0.9301 255,153,153 1 0.8435 255,127,0 1
0.9762 221,119, 153 m 0.9301 153,102,102 1 0.8432 127,0,255 1
0.9762 187,85,153 0 0 0.9299 204,153,204 B 1 0.8352 127,255 127 |
0.9762 204,119,170 I M 0.9297 153,51,153 1 0.8337 127,127,0 1
0.9761 204,85,136 0 0 0.9294 255,51,153 1 0.8251 255,255,255 |
0.9761 221,85,153 0 0 0.9294 204,51,102 1 0.8174 255,0,0 1

0.9761 204,85,170 0 0 0.9293 204,51,204 1 0.8148 127,255,255 |
0.9761 221,102,136 0 H 0.9293 255,102,102 0 0 0.8105 127,0,0

0.9761 187, 119,153 1 ^ 1 0.9291 153, 102,204 0.8010 0,127,127

0.9761 187, 102, 170 0 0 1 0.9291 204,153,102 1 0.7936 255,255,0 1

0.9761 204,119,136 0.9291 153,153,153 :ir̂ l 0.7837 0,127,255 1

0.9710 221,119,170 0 0 0.9154 255,153,204 '."•B 0.7835 127,255,0 1

0.9710 187,85,136 0 0 0.9152 153,51, 102
H

0.7797 0,0,127 1

0.9708 221,85,170 W ÊM 0.9145 255,51,204 m 1 0.7640 0,0,255 1

0.9708 187, 119,136 1 ^ 0.9141 255,153, 102 0.7599 0,255,127 1H
0.9708 221,119,136 1  0 0.9138 153,153,204 0.7588 0 ,0 ,0  1

0.9708 187,85,170 0 0 0.9136 153,153,102 0.7521 0,127,0

0.9708 187,119,170 0 0 0.9136 255,51,102
H

0.7488 0,255,255

0.9708 221,85,136 1 ^ 0 0.9135 153,51,204 ■ 1 0.7218 0,255,0

Table 3.2 lists the values of the similarities between colour (204, 102, 153) and each 

colourin Group 3 with the different combinations of the parameters k\ and kz, i.e., k\ = 

0.001 and k2 = 0.2, k] = 0.01 and k2 = 0.2, and k\ = 0.0001 and k2 = 0.8. The results in 

Table 3.2 indicate that the similarity measure decreases as k, (or kz) is increasing and 

more detail can be identified.
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Table 3.2 Similarity measure values and colours in Group3.

k, = 0.001, k2 = 0.2 k| = 0.1, kz = 0.2 k, -0 .001, k z - 0.8 Colours

*S *R, *G. *B S R .G .B S R. G,B

1.0000 204,102,153 1.0000 204,102, 153 1.0000

0.9831 221, 102, 153 0.1827 221. 102, 153 0.9827

0.9831 187,102,153 0.1827 187,102, 153 0.9826

0.9831 204,102,170 0.1827 204, 102, 170 0.9824

0.9831 204, 102,136 0.1827 204,102,136 0.9823

0.9831 204,119, 153 0.1827 204,119,153 0.9822

0.9831 204,85,153 0.1827 204,85,153 0.9821

0.9762 221. 102.170 0.0903 221,102,170 0.9759

0.9762 187,102,136 0.0903 187, 102,136 0.9758

0.9762 221,119,153 0.0903 221,119,153 0.9755

0.9762 187, 85,153 0.0903 187,85,153 0.9752

0.9762 204,119,170 0.0903 204,119,170 0.9750

0.9761 204, 85,136 0.0903 204,85,136 0.9747

0.9761 221,85,153 0.0903 221,85,153 0.9741

0.9761 204, 85,170 0.0903 204,85,170 0.9740

0.9761 221,102,136 0.0903 221,102,136 0.9740

0.9761 187,119,153 0.0903 187,119,153 0.9739

0.9761 187,102,170 0.0903 187,102,170 0.9739

0.9761 204,119.136 0.0903 204,119,136 0.9739

0.9710 221,119,170 0.0526 221,119,170 0.9708

0.9710 187,85,136 0.0526 187,85, 136 0.9707

0.9708 221,85,170 0.0526 221,85,170 0.9687

0.9708 187,119, 136 0.0526 187,119,136 0.9681

0.9708 221,119,136 0.0526 221,119,136 0.9680

0.9708 187, 85,170 0.0526 187, 85,170 0.9676

0.9708 187,119,170 0.0526 187, 119, 170 0.9676

0.9708 221,85, 136 0.0526 221,85,136 0.9674

* S = Similarity; R = Red; G = Green; B = Blue.

Comparing the similarity values of columns 1, 4, and 7 in Table 3.1 and selecting a 

threshold (for example, 0.97), if the values of the similarities is smaller than this 

threshold the colours are considered to be dissimilar, then the range of short-range 

ordering for the similarity can be determined to be the cube corresponding to the colours 

in Group 1. And by observing the similarity measures in columns 1, 3, and 5 in Table 3.2,
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the similarity measures change for the same colour. The phenomenon indicates the 

fuzzification of the FSM.

3.4 Chapter Summary

In this chapter, the scheme for measuring the similarity among vectors in a feature vector 

space has been presented. Under two basic assumptions on similar relationship of 

vectors: short-range ordering and fuzzification and by using both distance and angle of 

vectors, the similarity measure between two vectors is defined and its numerical 

properties are studied. Experimental results have shown that the similarities for colours in 

RGB colour space obtained by the similarity measure coincide with that from human 

perception. In the following chapters of this thesis the proposed similarity measure will 

be used to define colour morphology, fuzzy clustering and multivariate filtering 

algorithms.
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4 COLOUR MORPHOLOGY BASED ON FSM

In this chapter, the colour morphology is defined by using the FSM proposed in the 

previous chapter. The properties of the colour morphology are also given. To demonstrate 

the application of the colour morphology to colour image processing, an edge extractor 

focused on the detection of colour edges is designed.

4.1 Introduction

Mathematical morphology has been wildly used in image processing community (Serra, 

1982; Sternberg, 1986; Dougherty, 1992; 1994; Haralick et al., 1992). This is not only 

due to its rigorous mathematical theory (Heijmans and Ronse, 1990), such as set theory 

(Tourlakis, 2003), fuzzy set theory (George and Bo, 1995; Klir and Yuan, 1995), 

topology (Cain, 1994), and lattice theory (Wechler, 1992), but also its powerful utilities 

in image analyses, such as image filtering (Heijmans, 1996b; Pessoa and Maragos, 1996; 

Schonfeld, 1996; Mehnert and Jackway, 2000), image segmentation (Beacher, 1996; 

Meyer, 1996; Bieniek and Moga, 1998; D ’Ornellas and Boomgaard, 2000; Pesaresi and 

Benediktsson, 2000), image measurement (Serra, 1982), image sequence analysis 

(Demarty, 1996; Gu, 1996), and image texture analysis (Auber et al., 2000). Generally 

speaking, mathematical morphology uses morphological operations to analyze and 

recognize geometric properties and structures of objects in images. Mathematical 

morphology has been well developed and used as a complete and efficient tool to analyze
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the spatial organization in binary and grayscale images. It can be categorized into binary 

morphology and grayscale morphology.

From both practical and theoretical point of view, colour morphology should be of great 

interest. Firstly, it is well known that colours play a significant role in human visual 

perception and is heavily relevant to remote sensing image processing when multi- 

spectral and hyper-spectral images become widely available (Sharma and Trussel, 1997). 

By contrast with binary and grayscale imagery, colour imagery contains more 

information which can be used to simplify image analysis, e.g., object identification and 

extraction based on colour attributes (Ohta et al., 1980). Therefore, it is necessary to 

develop efficient techniques to analyze colour images directly. Secondly, since both 

binary and grayscale morphology are intended to analyze binary and grayscale imagery, 

respectively, it would be of interest, from the theoretical point of view, to extend 

morphological theory to colour morphology fro directly processing of colour imagery.

The simplest scheme for extending grayscale morphology to colour morphology is to 

treat a colour image as three independent monochrome images corresponding to its three 

components, and then to utilize grayscale morphological operators to deal with each 

colour component. Unfortunately, this procedure has some drawbacks. For example, it 

produces new colours that are not contained in the original image and losses the 

correlations among the components. Vector morphological techniques involving these 

correlations have been developed (Comer and Del, 1998; Talbot et al., 1998; Vardavoulia 

et al., 2002). These algorithms are based on the concepts of ranking multivariate data
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(Barnett, 1976; Mardia, 1976; Mardia et al., 1979). In other words, they require an 

appropriate colour ordering scheme to define colour morphological operations that can 

retain the basic properties of their grayscale counterparts. Unfortunately, ordering vectors 

is not straightforward, because there is no notion of the natural ordering in a vector space 

as in one dimension case. On the other hand, it seems that the similarity is more essential 

and significant than the order to characterize the correlation between vectors in a feature 

vector space.

In this chapter, novel colour morphology is introduced. The proposed colour morphology 

is based on the assumption, i.e., the colours represent an object in colour imagery are 

much more similar than those for other objects. In fact, it is true for most of scenes. 

Under the above assumption, the proposed morphological operations should be able to 

smooth the colours in the same object and at the same time “shrink” or “expand” the 

objects to detect their geometric structure. By using the FSM proposed in Chapter 3, the 

infimum and supremum operations are firstly defined. On the basis of the infimum and 

supremum operators, the fundamental colour morphological operations (erosion, dilation, 

opening, and closing) are defined. As an application of the proposed colour morphology, 

edge detectors for extracting edges in colour images are designed by using the colour 

morphological operations and post-processing algorithms.
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4.2 Infimum and Supremum Operators Based on FSM

Let X  represent an arbitrary m-dimensional vector subset of a vector set V on R '", which 

includes n vectors, i.e., X  =  {%,, ... , X „  . . . , X „ ] ,  X-, = [X -,u  Xa, ...,X, m]. The most

dissimilar vector pair, called max-min vector pair ( X , ^ ,  X ,„in), induced in X ,  consists of 

two vectors between which the value of the FSM is minimum comparing to the values for 

all possible vector pairs in % x %, that is,

The maximum vector X,„ax and minimum vector X,„i„ in the max-min vector pair (A",„ 

Xmin) are defined as one with larger magnitude and another with smaller magnitude, i.e..

^max - (4.2)

^min -

where || • || is a norm chosen as the measure of the magnitude of a vector.

According to the FSM proposed in Chapter 3 and the maximum and minimum vectors 

defined above, all vectors in X  can be classified as two classes CLl and C L 2 , called the 

similar vector class. For any vector X -  & X  , if the value of the FSM between X-, and X,„in
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is larger than that between Xi and Xmax, then AT,- belongs to CLl. Otherwise, the vector 

belongs to CL2, i.e..

(4.4)

CL2 -  ( % , L( ).V % ,e % } (4.5)

The most similar vectors X cl\ in CLl and X cu . in CL2 are determined by

^cLi — \CL\\ |riLl|
XieCLX and max { E

(4.6)

|ri,2|
and I . f H X , . X j ) =  max (

j - \  lS t^ |rL 2 | y = l

(4.7)

where |CL1| and |CL2| are the numbers of vectors in CLl and CL2, respectively.

Figure 4.1 provides the illustration of above definitions on max-min vector pair, similar 

vector classes, and the most similar vectors. The vector subset used in this example 

consists of 16 2-D vectors. In this example, only the direction and length of vectors are 

considered as the features to judge the similarity. The colours of vectors are just for the 

purpose of the explanation.
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Fig. 4.1 Definitions of max-min vector pair, similar 
vector classes, and the most similar vectors.

As shown in Figure 4.1, the bold blue and bold red vectors are two most dissimilar 

vectors in terms of their length and direction in all possible vector pairs. Then the two 

vectors are selected as the max-min vector pair. In this vector pair, the red vector is 

longer than the blue one, so the red vector is defined as the maximum vector and blue one 

as the minimum vector. It is obvious that all blue vectors are more similar to the 

minimum vector and all red ones are more similar to the maximum vector with respect to 

both their lengths and directions. Therefore, all blue vectors belong to CL\ and all red 

vectors belong to CL2. According to the defined similarity measure, the light blue vector 

has the maximum aggregation similarity with all other seven vectors in CLl, so the 

vector is the most similar vector in CLl. Similarly, the light red vector is the most similar 

vector in CL2.

Using the most similarity vectors in two vector classes described above, the infimum 

operator a  in A' can be defined by
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a X  = a [ X „ X ^ , K , X J  =  X clx (4.8)

From Equation (4.8), it is obvious that the operator a  outputs the so-called “most 

centrally located” vector in CL\, which has the maximum sum of the values of the FSM 

between Xcu and each vector in CLl.

In the same way, the supremum operator v is defined by

v X  = v ( X „ X „ A , X ^ }  = X^^2 (4.9)

Thus, the v operator results in the most centrically located vector in CL2, which has the 

minimal sum for the values of the FSM between Xca  and each vector in CL2.

The infimum and supremum operators defined above are vector preserving, i.e.,

VX c F ,  3 X c u y ^ c L 2  s  such that a  X  = X̂ ,̂, and v X  = X q ,2 (4.10)

Furthermore, the two operators can be used to define the colour morphological 

operations, which will be discussed in next section.
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4.3 Colour Morphological Operations

4.3.1 Definition

According to the supremum and infimum operators defined above, the colour 

morphological operations can be defined as follows.

Defînition 4.1 Let Cl be a colour image and Wbe a window centered at pixel p and the 

colours of all pixels in W form the vector subset Wp. The colour dilation , erosion ,

closing , and opening of Cl are the colour images given respectively by

S ĵ’ = { v W ^ y p G C I }  (4.11)

= [ A W p , V p e C I ]  (4.12)

Z c l'^ ^ c n ^ c n  (4.13)

=S^I’ (£^n  (4.14)

The overall characteristics of the colour morphological operations are similar to that in 

grayscale case. For example, the colour erosion eliminates ‘dark’ details, enhances ‘light’ 

details, reduces ‘dark’ objects and enlarges ‘light’ objects, while the colour dilation
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eliminates ‘light’ details, enhances ‘dark’ details, reduces ‘light’ objects, and enlarges 

‘dark’ objects. The colour opening typically eliminates ‘dark’ details, and the colour 

closing eliminates ‘light’ objects

4.3.2 Illustration

In this section, the proposed morphological operations are illustrated (see Figure 4.2). For 

simplification, all operations are just used on a small region. The window size for all 

morphological operations is 3x3. The parameters fciand k2 for the FSM are 0.001 and 0.8, 

respectively.

Figure 4.2a shows a colour aerial image with the size of 150 x 150 pixels and 1 m 

resolution. Figure 4.2b 1 is the small region centred at pixel point (30, 100) with the size 

of 15 X 15 pixels framed by the red square shown in Figure 4.2a. This region is enlarged 

by increasing the area of each pixel to 10 x 10 = 100 times (see Figure 4.2b2) and 

increasing the number of pixels to 10 x 10 = 100 pixels by interpolating pixels (see 

Figure 4.2b3). The scene in this small region consists of four colour objects. The gray 

corresponds to roads, the white to curbs, the dark green to trees, and the black to 

shadows. Figures 4.2c 1, d l, el, and fl show the results of the colour morphological 

operations: dilation, erosion, closing, and opening, respectively. And also, these images 

are enlarged by the same ways as Figure 4.2b 1 and the enlarged images are shown in 

Figures 4.2c2 and c3, d2 and d3, e2 and e3, and f2 and f3, respectively.
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Fig. 4.2 Illustration of proposed morphological operations

It is observed from Figures 4.2c 1, c2, and c3 that after dilation shadows (in black) expand 

toward trees (in green), trees expand toward curbs (in white), and roads (in gray) also 

expand toward curbs. As a result, curbs are compressed. On the other hand, the colours of 

each object look much smoother. Figures 4.2dl, d2, and d3 show the results from the 

erosion operation that is the reverse process from the dilation operation. Curbs expand 

toward both roads and trees, and trees expand toward shadows. It can also be observed 

that the colours become smoother in each object. The closing (opening) operation is 

similar to the dilation (erosion) operation (see Figures 4.2el, e2, e3, 3fl, 12, and f3).
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4.3.3 Properties

In order to evaluate the impact of the parameters k\ and k2 in Equation (3.3) on the 

performance of the colour morphological operators, the different combinations of the 

parameters k\ and kz are used for all colour morphological operators.

Figure 4.3 shows a colour Ikonos image with the size of 150 x 150 pixels and 1 m 

resolution, which covers a typical residential area in Toronto, Ontario.

Fig. 4.3 Colour Ikonos image.

Figures 4.4 - 4.7 show the results obtained by using the colour morphological operations 

on Figure 4.3 with the different combinations of the parameters k\ and kz listed in Table 

4.1.

Table 4.1 Parameters used in colour morphological operators

Parameters Figures 4.4 -■4.7
al a2 a3 bl b2 b3 cl c2 c3

0.01 0.01 0.01 0.005 0.005 0.005 0.001 0.001 0.001
ki 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
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9 S
Fig. 4.4 Dilation with parameters in Table 4.1.

The results reveal the effects of the parameters k\ and kz on the colour morphological 

operators. Though the colour morphological operators are based on the same concept, 

they have different results when using different parameters. The simple reason is that the 

different similarity degrees can be available under different combinations of the 

parameters to quantify similarity among the colour vectors.
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Fig. 4.5 Erosion with parameters in Table 4.1.

For the results presented in Figures 4.4 - 4.7, the following conclusions can be drawn by 

subjective evaluation.

• All four morphological operators (dilation, erosion, closing, and opening) are 

optimum when k\ = 0.001, kz = 0.8 (see Figures 4.4 (c3) - 4.7 (c3)) from the point 

of view of smoothing objects and preserving edges.
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•  With the decrease of and the increase of fe, the performances of all 

morphological operators can be improved evidently and they are more sensitive to 

the change of k\ than the change of k2 .

•  With decrease of k\ and the increase of kz the similarity between the dilation 

image and erosion image increases.

•  The objects are shrank or expanded and the colours in an object become smoother 

after the colour morphological operations.

Fig. 4.6 Closing with different parameters listed in Table 4.1.
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Fig. 4.7 Opening with parameters in Table 4.1.

4.4 Colour Edge Detection

In this section, a colour edge detection method based on the colour morphological 

operations is presented. The proposed method creates a binary edge image that results 

from the similarity between a pair of morphological images. In this method, colour edges 

are detected by three consequent stages. In the first stage, a pair of morphological 

operations are chosen, which extends and reduces the contours of objects in the colour 

image efficiently. In the second stage, the similarity between the resultant images of two

58



chosen operations is calculated by using the FSM between two colour images. In the last 

stage, a threshold, which controls the dissimilarity between two colour vectors, is 

determined to extract colour edges. A block diagram for the proposed colour edge 

extractor is shown in Figure 4.8.

Determine a threshold parameter

Extract edges

Calculate the similarity between resultant images

Thin filtered edge images

Perform morphological operations

Overlay thinned edge image on original images

Input colour image

Filter edge images

Fig. 4.8 Block diagram of the colour edge extractor.

4.4.1 Defînition of Colour Edge

Generally, the edges of the objects in a grayscale image can be defined as the 

discontinuities of the brightness. However, the situation is different in colour images. 

Several definitions of colour edges have been proposed (Pratt, 1991). First, a colour edge 

can be said to exist if and only if the luminance field contains an edge, i.e., the 

discontinuities of the luminances. This definition ignores discontinuities in the hue and
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saturation that occur in regions of constant luminance. The second way to define colour 

edges is to check if the edges exist in any primary components. The third definition is 

based on forming the sum of the gradients of the primary values. A colour edge is said to 

exist if the gradient exceeds a threshold. In this study, a potential colour edge is defined 

as the discontinuities of neighbor vectors in the vector field representing the colour image 

shown in Figure 4.9, in which pink line and orange line indicate two typical colour edges.

Fig. 4.9 Definition of colour edge.

Grayscale erosion and dilation have been successfully applied to extract the edges in 

grayscale images based on the subtraction of these two morphological images (Lee et al., 

1987; Dougherty, 1994). However, these algorithms cannot be applied directly to colour 

images by means of the difference of colour erosion and dilation, since the subtraction of 

two colours in RGB colour space does not make sense. In order to define an efficient 

colour edge extractor by using the colour morphological results, it is necessary to 

introduce the method to compare two colour images.
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4.4.2 Similarity Measure between Two Colour Images

According to the similarity measure between two colour vectors, the similarity measure 

between two images can be stated as follows.

Let fiiYi, Vj) be the value of the FSM between two colour vectors V,- and Vj in RGB 

colour space and C/1 and C/ 2  be two colour images with n pixels denoted by the vector

sets ={V0i,Vc„,A  ,Vc/il and Fez = .F ô z )» respectively. The

similarity measure between Vc/i and Vcn is defined as a scalar set on [0 , 1], called 

similarity set M .

^(l^C/l’l̂ C/2 ) ~ ’^n } ( 4  15)
= {M(VcmycnlMiVc]^,V^n\A JU(VcmV^n)>}

where Mp, p = 1,2, ..., n, is the value of the FSM between two colour vectors from C/1 

and C/2 for pixel p.

4.4.3 Fuzzy Similarity Edge Extractor

Based on the previous discussion on the similarity measure between two colour images, 

the fuzzy similarity edge extractor (FSEE) is constructed by thresholding the values of 

the similarity measure between two morphological images.
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Let a  e [0,1] be the threshold to indicate the similarity between two colour vectors. The 

FSEE is defined as the scalar set as follows.

FSEE = {FSEEi\FSEEi = h if  M , and FSEE, =0, if  M , > a ]  (4.16)

where FSEE-, = 1 indicates colour edges.

Figure 4.10 illustrates the rationality of the extractor. The colour image shown in Figure 

4.10a consists of two objects (one in red and another in blue). Though the colours of the 

single object are not very smooth, they still have much more similarities to each other 

compared to the colours of another object. The green line is the edge or boundary of two 

objects. When considering an edge, the pixels corresponding to the edge is dependent 

upon the size of a used window. For example, if a 3 x 3 window is used those pixels 

beside the two sides of a boundary will be processed as the so-called edge pixels (for 

example, pixels 2 and 3 in Figure 4.10). Other pixels except for edge pixels are called 

object pixels (pixels 1 and 4). For simplification, four typical pixels, framed by light blue 

lines, are chosen to make the illustration. Figures 4.10b and 4.10c show the results of 

dilation and erosion, respectively. For object pixels, though the two dual morphological 

operations chose different pixels in the windows around the object pixels (for example, 

the windows framed by yellow lines in Figure 4.10) as their outputs, the two kinds of 

resultant pixels are still very similar because they belong to the same object, for example, 

the pixel lb (see Figure 4.10b) and the pixel Ic (see Figure 4.10c), the pixel 4b (see 

Figure 4.10b) and the pixel 4c (see Figure 4.10c). For edge pixels, the situation would be
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totally different. I f  a morphological operation tries to select the pixel belonging to one 

object its dual one will select other one belonging to another object, because the pixels in 

the window corresponding to an edge pixel come from two objects separated by the edge. 

As a result, the resultant pixels of two dual operations have less similarity to each other. 

The examples are the pixel 2b (see Figure 4.10b) and the pixel 2c (see Figure 4.10c), the 

pixel 3b (see Figure 4.10b) and pixel 3c (see Figure 4.10c).

Fig. 4.10 Illustration of FSEE. 
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4.4.4 Experimental Results and Discussions

Experiments using QuickBird, Ikonos, and aerial images have been conducted. Three test 

images are shown in Figure 4.11. Each has 24 bits per pixel and 150x150 in size. The 

window size for morphological operations is 3x3.

Â
Fig. 4.11 Original images: (a) QuickBird, (b) Ikonos, and (c) aerial images.

In this experiment, parameters k\ and hi for all morphological operators are taken as 

0 . 0 0 1  and 0 .2 , and ki and ki for similarity measures between images are also set as 0 . 0 0 1  

and 0.2, respectively, to design the FSEE.

To design an edge detector, the first step is to select a pair of suitable morphological 

operations. According to the resultant images of morphological operations shown in 

Figure 4.12, the pair of dilation-original images is chosen to construct the FSEE. In 

Figure 4.12, (a), (b), and (c) show QuickBird, Ikonos, and aerial images, respectively, 

while (1), (2), (3), and (4) show the results of dilation, erosion, closing, and opening, 

respectively.
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Fig. 4.12 Result of morphological operations.

By using Equation (4.15), the similarity set for the selected image pair can be calculated. 

Actually, this set includes all information about the edges in the processed image from 

similarity point of view. The set is shown in two ways. In the profile curve (see Figure 

4.13), the value of the colour similarity corresponding to each pixel is demonstrated by a 

height. In the grayscale image (see Figure 4.14), the values are used to indicate a 

grayscale.
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Fig. 4.13 Profile curves of similarity measure between selected images pair for (a) QuickBird, (b) 
Ikonos, and (c) aerial images.

i
ê 0.0

Fig. 4.14 Grayscale images of similarity measure between selected images pair for (a) 
QuickBird, (b) Ikonos, and (c) aerial images.

In order to extract the edges of interest, it is necessary to give a suitable threshold. For 

comparison, three thresholds are chosen to extract different edge details. Table 4.2 lists 

the selected morphological operation pairs and thresholds obtained by analyzing the 

results illustrated in Figures 4.13 and 4.14.

Table 4.2 Morphological operation pairs and thresholds

Colour images Morphological operation pair Thresholds

QuickBird Dilation-Original 0.5, 0.6, and 0.7

Ikonos Dilation-Original 0.5, 0.6, and 0.7

Aerial Dilation-Original 0.5, 0.6, and 0.7
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Using these thresholds listed in Table 4.2 to Equation (4.16), the FSEE can be 

constructed. The edge images of the test images obtained by the FSEE are shown in 

Figures 4.15. It can be obverted from Figure 4.15 that more and more edges can be 

detected with the increase of the thresholds. In Figures 4.15, 4,16, and 4.17, (a), (b), and 

(c) show the results on QuickBird, Ikonos, and aerial images, respectively, and the results 

of ( 1 ), (2), and (3) are obtained by using thresholds 0.5, 0.6, and 0.7, respectively.

T-

Fig. 4.15 Binary edge images.

In order to eliminate noises (i.e., non-edge pixels), the directly binary morphological 

dilation operator using a structuring element of 3 x 1 pixels is applied (Li et al., 2002).
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This operation deletes isolated pixels. The results are shown in Figure 4.16, which are 

obtained by filtering the binary images shown in Figure 4.15.

4?

J

Fig. 4.16 Results of directly binary morphological dilation of edge images.

To recognize exact edges, a thinning algorithm (Zhang and Suen, 1984) is used. Figure 

4.17 shows the extracted object edges after applying the thinning algorithm.
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In image processing, the subjective evaluation constitutes a very important criterion to 

assess the performance of any operator. Consequently, the extracted edges (see Figure 

4.17) are overlaid on the original images for the verification purpose (see Figure 4.18). A 

visual evaluation gives the impression that the FSEE performs well for edge detection 

and is less sensitive to small texture variations. In all cases the extracted edges are in 

good agreement with the subjective criteria for colour edges.

TT

Fig. 4.17 Extracted object edges.
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Fig. 4.18 Overlaying edges (in red) on original images.

4.5 Chapter Summary

In this chapter, a new framework that extends the concepts of morphology to colour 

image processing based on the FSM has been presented. Its foundational and secondary 

operations, colour erosion, dilation, opening, and closing have been defined, and their 

basic properties have been examined. The new approach is vector preserving. The 

defined morphological operations have been used to design colour edge extractor and the 

results of the extractor have revealed the applicability and efficiency of the colour 

morphology.
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5 FUZZY CLUSTERING BASED ON FSM

Clustering is one of the most fundamental problems in pattern recognition (Tou and 

Gonzalez, 1974; Zeng and Starzyk, 2001), image segmentation (Liew and Yan, 2001), 

unsupervised learning (Langan et al., 1998), and data compression (Zhong et al., 2000). It 

plays a key role in assessing the relationships among the patterns of data sets.

Given a finite vector set, a clustering procedure organizes the vectors in the vector set 

into groups or clusters based on similarity or dissimilarity among vectors such that the 

vectors within a cluster show a greater similarity. There are two distinct families of 

clustering schemes. One is the crisp-based clustering algorithm (Anderberg, 1973; 

Hartigan, 1975) and the other is the fuzzy-based clustering algorithm (Bezdek, 1981; Sato 

et al., 1997; Hoppner et al., 1999). The latter has been proved to be well suited to deal 

with the imprecise and uncertain nature of vector sets, such as multivariate remote 

sensing images. This chapter presents a fuzzy clustering method based on the FSM. In 

this method the clustering procedure is modeled as a combinational optimum problem. 

And then a colour image segmentation method is proposed by using the fuzzy cluster 

algorithm. The use of the proposed segmentation algorithm for automated extraction of 

roads and buildings from high-resolution remote sensing imagery has also been 

investigated

This chapter consists of five sections. In Section 5.1, the fuzzy c-partition algorithm 

based on the FSM is proposed. In Section 5.2, the colour histogram is defined. In Section
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3, the segmentation method based on the proposed fijzzy c-partition algorithm and the

defined colour histogram is developed. In section 5.4, the segmentation method is used to

design the road and building extractors, respectively. The section 5.5 is the summary of 

this chapter.

5.1 Fuzzy C-Partition Algorithm Based on FSM

Consider a vector set V  formed by n vectors in /n-dimensional real number space R i.e., 

V =  {Vi, V2, ... , Vj = [V/i, Vfz, ..., Vjm] and j  = 1, 2 , ..., n, a fuzzy c-partition on V  is 

represented by

P = [Pij]y / = 1,2,A ,c and y = l,2 ,A  ,n (5.1)

where f  is a fuzzy partition matrix and satisfies

= 1 , for ally = 1, 2, . . . ,  n (5.2)
1=1

0 < ^ P j j < n ,  for all / = 1 , 2 , ... , c (5.3)
y=i
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where c is the positive integer to indicate the number of the clusters in the partition, and 

Pi] G [0 ,1] is the fuzzy membership value of V j  belonging to ith cluster (George and Bo, 

1995).

The above clustering process is generally completed as follows. First, each cluster is 

associated with a vector, called centre vector, and all c centre vectors form a vector set, 

called centre vectors set VC = {VC], VC2, ..., VCc}- Second, the similarity between VC,- 

and Vj to characterize the fuzzy membership value of Vj belonging to /th cluster is 

calculated by

<5.4)

k = \

where ju(VCi, VJ) is a similarity measure between two vectors defined on R and 

represents a similarity relationship between them, [!,<») is the weighting exponent 

on each fuzzy membership. The larger m is the fuzzier the partition is.

Briefly, fuzzy clustering can be considered to find an associated centre vector set and 

calculate a fuzzy c-partition matrix by using this set. To evaluate the effectiveness of a 

fuzzy c-partition, an objective function is required. Generally, the objective function 

expresses that the relationship among the vectors is strong if these vectors are within the 

same cluster and it would be weak if they are in different clusters. Give a fuzzy c-
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partition matrix P  and a centre vector set VC, the objective ftinction, J,„(P,VC), is defined 

by

7 ,(P ,V C ) = £ £ p ,jA (V C ,,V p  (5.5)
/=! y=i

where py is the weight of similarity measure p (VC-,, Vj) and calculated by Equation (5.4).

In order to obtain the best fuzzy c-partition, the number of the clusters should be first 

given, and then a searching process controlled by J,„ should be designed carefully to find 

the best VC corresponding to the best fuzzy c-partition. In this study, the former is 

accomplished by a histogram-based method and the later is modeled as an integer 

programming (IP) problem.

Given a vector set F  = {Vi, V2 , •••, V„}, and the number of the clusters c.

Max

J.{P .V C ) = Y ^ p ,J U < y C „V j)  (5.6)
1=1 7=1

Subject to

V C . e V  (5.7)
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//(vc,,yp = cos(k,e(yc,,Vj)) (5.8)

.  ;\''2
<i(yc„vp= SKii-Vy.

î=l
(5.9)

6(yCi,V j) = arccos
I,vc,v,
it=l

I m m

i=l
Jt

*=l y

(5.10)

where 7  (= 1 , 2 , . . . ,  n) is the index of vectors in V, i (= 1 , 2 , . . . ,  c) is the index of vectors 

in VC, and k(=  1 ,2 , . . . ,  m) is the index of vector’s dimensions in Vj.

After finding the best centre vector set VC^ ={VC^|,VC^2 ’^  the best fuzzy c-

partition matrix is calculated as follows

Pb=iPbij'\^ i = l,2,A ,c and y = l,2,A ,11 (5.11)

1
m-\M(VC,nVtj)

P b i j = - - - - - - - - - - - - - - - - - - -  _ L (5.12)

t=i
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As stated early, the fuzzy c-partition algorithm requires the desired number of clusters 

specified in advance. Unfortunately, in most of situations, the number of clusters is 

unknown a prior and sometimes it is difficult to specify any desired number of clusters. 

For example, the situations often happen in the segmentations of remote sensing images, 

because the ground truth is always not available for these images. In the following 

segmentation method, a histogram-based procedure is used to obtain the number of the 

cluster c and the initial centre vector set VCq.

5.2 Colour Histogram

Colour histogram is an important technique in colour image analysis, because of its 

efficiency, effectiveness and triviality in computation (Pratt, 1991). Generally speaking, a 

colour histogram represents the statistical distribution of the colours in a colour image on 

all colours in a colour space. From the view of the applicability and computation, this 

kind of histogram is unnecessary and impossible. The general way is to divide a colour 

space into some bins and calculate the colour distribution on those bins.

Given a colour space divided into /  colour bins, the colour histogram of the colour image 

Cl with n pixels is represented as a vector H  = [ho, hi, ..., hj.\], in which each entry hi 

indicates the statistical figures of the colours in the colour image which belong to the ith 

bin, i.e..
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hj — —  , i = 0, 1, I  -1 
n

(5.13)

where m is the number of pixels with colours in the ith colour bin.

In this chapter, RGB colour space is represented with 24 bits ( 8  bits for each component). 

Each colour corresponds to a point in RGB colour space. In order to obtain a colour 

histogram, pixels of a colour image distributed on all bins should be accounted for.

Let RGB colour space be discretized along the R, G, and B axes by the numbers Nr, Ng, 

and Nr, respectively. Then the total N (= NrX Ncx Nr) bins are available. These bins are 

coded in such a sequence from R to G and then from G to B. According to the specified 

discretizing and coding scheme the index of each bin can be represented as

i = R + N ^ x G  + N / x B (5.14)

whereR = 0, 1, ... , Nr-1, G = 0, 1, ..., Ng~U and B = 0, 1, ..., Nr—I.

Then the pixel (r ,̂ gp, bp) will be in the bin with the index ip,

rpNp
+ N q X gp^G + Ng X

. 256 _ 256 _ . 256 _
(5.15)

where [  J is an integral operator.
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Figure 5.1 shows an example of the divided RGB colour space with N r  =  N g  — N b = 4  and 

the codes of all bins. In this example, a total of 64 (=4 x 4 x 4) bins can be obtained.

3

1/2

1/  /  /  /  y /—0 "7̂ "

0 1 2 3

r =
1 2 3

r =
1 2 3

r =
I 2 3

r =
1 2 3

K =

0 0 1 2 3 0 16 17 18 19 0 32 33 34 35 0 48 49 50 51

1 4 5 6 7 1 20 21 22 23 1 36 37 38 39 1 53 53 54 55

2 8 9 10 11
8 -

2 24 25 26 27
R -

2 40 41 42 43
8 -

2 56 57 58 59

3 12 13 14 15 3 28 29 30 31 3 44 45 46 47 3 60 61 62 63

b = 0 b=  1 b = 2 b = 3

Fig.5.1 Discretization of RGB colour pace and codes of bins.

5.3 Segmentation Based on Fuzzy C-Partition Algorithm

To solve the optimization model introduced in the previous section, there are many 

methods, such as a branch-and-bound approach (Winston, 1991), and genetic algorithms 

(Goldberg, 1989). However, they are very time consuming and not practical in the real 

world. Therefore, the use of a heuristic, which gives a good but sometimes not optimal or 

the best solution, is necessary. The approach consists of three steps: (1) Pre-clustering.

78



This process includes determining of the number of clusters, finding an initial centre 

vector set VCo, and indicating the ranges in which the centre vectors are chosen in the 

following optimal procedure. This procedure is finished by using a histogram-based 

technique. (2) Searching the best fuzzy c-partition. It is realized by solving an integer 

programming problem to find a good fuzzy c-partition. (3) Post-processing. It means a 

defizzification procedure to convert the fuzzy c-partition matrix to the crisp c-partition 

matrix. In this section, only steps (1) and (3) are emphasized.

5.3.1 Pre-clustering Procedure

For the given colour image Cl, the colour histogram H {Cl) can be obtained in terms of 

the definition of colour histogram discussed in the previous section. It is obvious that if 

an image is composed of distinct objects with different colours, its colour histogram 

usually shows different peaks. Each peak corresponds to one object and adjacent peaks 

are likely to be separated by a valley. The height of a peak implies the number of the 

pixels falling in the bin corresponding to the location of the peak.

The pre-clustering procedure is carried out by thresholding the colour histogram of a 

colour image. For a selected threshold, the peaks having higher magnitudes than the 

threshold can be detected. The number of all detected peaks is chosen as the number of 

clusters, and the bins corresponding to the detected peaks determine the ranges in which 

the centre vectors are investigated for the purpose of the optimization. The initial centre
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vectors consist of the minimum vectors of all bins. On the other hand, they can also be 

produced randomly, as long as they are located in the selected bins.

The threshold is determined by either a manual or an automatic way. In the manual case, 

the number of clusters is determined by observing the colour image and the colour 

histogram of the image. In the automatic case, the criterion to determine the threshold 

should be given first. For example, the mean of all peaks can be used as the criterion. It 

means that the peaks with the higher magnitudes than the mean are valid.

5.3.2 Post processing Procedure

In order to obtain the segmented image, it is necessary to transform the fuzzy c-partition 

matrix to the crisp partition matrix. In this study, the following defuzzification scheme is 

used.

Let P  = \p,j\ i = 1, 2, ..., c and j  = 1,2, ..., n be the fuzzy c-partition matrix, it is well 

known that p,y presents the membership grade for pixel j  belonging to cluster i. A percent 

partition matrix, Pp, is defined as

(5.16)

'^P ij

In terms of the percent partition, the crisp partition matrix, Pc, is defined as
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Pc = [Pcÿ] I Pcij = 1. if Ppij = m^(Ppÿ). else p̂ -. = 0 (5.17)

It is clear that in the crisp-partition matrix each pixel belongs to a certain cluster.

5.3.3 Experiment and Results

The purpose of the experiment is to illustrate the procedure of the segmentation method 

and show its performance. In this experiment, colour QuickBird, Ikonos, and aerial 

images are used. They are shown in Figure 5.2. Each colour image has 24 bits per pixel 

and 128 X 128 pixels in size and 1 m resolution.

Fig. 5.2 Test images: (a) QuickBird, (b) Ikonos, and (c) aerial images.

The pre-clustering procedure determines the number of clusters, finds the appropriate 

initial centre vector for each cluster, and gives the ranges (bins) in which the optimal 

centre vectors corresponding to the clusters are searched. This procedure is completed by 

using the histogram-based technique discussed in the previous section. In colour 

histogram analysis, a suitable discretization is crucial. It depends on the compromise
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between the appropriate initial centre vectors and the adequate search space, of course, 

and the search time. In this experiment, the interval for discretizing each colour 

component is 32. It means that the total 512 (= (256/32)^ = 8 )̂ bins can be obtained.

Figure 5.3 shows the colour histograms for the three types of colour images shown in 

Figure 5.2. It is observed from Figure 5.3 that the colour histograms are multimodal with 

planes. In this case, the bins can be grouped into different regions by those planes. For 

example, in Figure 5.3 (a), the bins are divided in 8  regions, i.e., [0, 49], [50, 99], [100, 

199], [200, 249], [250, 349], [350, 399], [400, 499], and [500, 511]. The number of all 

segmented regions is taken as the number of clusters.

■I'

■ 1 1 1

:
1

r
j

1*“ 1
t 1 . .1, J 1,1 , 7 i 'i . 1. .1 , ll. .. ,
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Fig. 5.3 Colour histograms of (a) QuickBird, (b) Ikonos, and (c) aerial images.

In each given region, the bin with the maximum peak is selected as the searching range of

centre vector corresponding to the cluster. The minimum vectors in selected bins are

taken as the initial centre vectors. The number of clusters, the selected bins, and the initial 

centre vectors are summarized in Table 5.1.

After searching the best centre vector set, the optimal centre vectors and the

corresponding fuzzy c-partition are obtained. The optimal centre vectors for the different
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test images are listed in the last column of Table 5.1. Figures 5.4 - 5.9 show the profile 

curves and the pseudo-colour images of fuzzy c-partition matrix of different clusters for 

the test images, where (a)-(h) are the results of Clusters 1-8, respectively. They indicate 

the membership degree of each pixel belonging to corresponding clusters. In profile 

curves, the membership values are denoted by the heights of curves. In pseudo colour 

images, they are represented by some specified colours. It seems that the pseudo colours 

give a much more intuitive representation of the fuzzy c-partition matrix.

Table 5.1 Results of pro-clustering and optimal centre vectors

Image

QuickBird

Ikonos

Aerial

Number of 

luster
Bins for searching centre vectors

fiW , ={(32, 0 ,0 ), (63,31,31)1

6/^2=1(224, 64 ,0), (255, 95,31)1

8/yV3={(224, 160,0), (255, 191, 3)}

8/A'4={(I28, 64 ,0 ) (159,95, 31)1

6//V;=((96, 160, 0), (127, 191, 31))

6 /N 6=((0 ,64 ,0), (31,95,31)1

6/A/7={(I92, 128,0), (223, 159,31)1

B lN iM i160, 224,0), ( 191, 255, 3 1) 1

6//V|={(96, 32 ,0), (127,63, 31)1

6//Vj={(32, 160,0), (63, 191,31)1

B//V3={(224, 192,0), (255, 233, 31)1

B///4={(224, 96 ,0), (255, 127,31)1

B///5=((128, 192,0), (159, 223,31)1

B//V6={(32, 96,0), (63, 127,31)1

B//V7=((224, 128,0), (255, 159,31)1

6 //V |= ((3 2 ,0 ,0 ),(6 3 ,3 1 ,3 1 )l

B/A^2={(32, 128, 0), (63, 159,31)1

B//V3=I(0, 224,0), (31,255,31)1

6/Af4=((l92, 96 ,0), (223, 127,31)1

6//V;=((128, 192,0), (159, 223,31)1

BIN6={(32, 96 ,0 ), (63, 127,31)1

Initial centre vectors

k,o=(32,0, 0)

V2o=(224, 64, 0)

V3o=(224, 160,0)

V'4o=(128, 64,0)

V5o=(96, 160,0)

Vw=(0,64, 0)

V7o=(192, 128,0)

Vso=(160, 224,0)

V',o=(96, 32 ,0)

V2o=(32, 160, 0)

k3o=(224, 192, 0)

V4o= (2 2 4 , 96 ,0)

k«o=(32, 96, 0)

V,o=(32,0 ,0 )

V2o=(32, 128, 0)

V3o=(0,224,0)

k4o=(192,96 ,0)

Vm=(32, 96 ,0)

* Each bin is indicated by its left lowest and right highest points.

V'5o=(128, 192,0)

k7o=(224, 128,0)

V50=(128, 192,0)

Optimal centre vectors

1 V,=(41,20, 16) H H

1 V:=(233,78,4)

1 V3=(248,164,13)

1 V4=(I55,78,9)

1 V,=(98, 181,20)

1 V6=(23, 94, 11)

1 V'7=(194. 155,9)

^«=(177, 249, 2)

1 V'|=(97,41,23)

1 V2=(35, 189, 14)

V3=(255,205,25)

I  V4=(225, 115,12)

1 V5=( 147,199,26)

1 V6=(34, 103, 15)

1 ^7=1254,130,14)

1 y,=(45,5,31)

1 Vi=(49,136,27) E B
1 V'j=(24, 246,0)

1 V4=(220, 119,15)

1 V,=( 144,204,12)

Vfi=(37, 121,28)

83



T" " V * . ~ :  /  ' t  / -  ^

5.4 Profile curves of fuzzy c-partition matrix of QuickBird image.
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Fig. 5.5 Pseudo colour images of fuzzy c-partition matrix of QuickBird image.

Fig. 5.6 Profile curves of 
ftizzy c-partition matrix of 
Ikonos image.
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"' Fig. 5.7 Pseudo colour
' image of fuzzy c-partition

matrix of Ikonos image.
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Fig. 5.8 Profile curves of fuzzy c-partition matrix of aerial image.

Fig. 5.9 Pseudo colour image of fuzzy c-partition matrix of aerial image.
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Referring to Figure 5.2c, optimum centre vectors for the aerial image and their colours 

listed in Table 5.1, and the pseudo colour image of its fuzzy c-partition matrix (Figure 

5.9), the meaning of ftizzy c-partition matrix can be explained as follows. The Cluster 1 

centred at the vector (45, 3, 31) include shadow (in black) pixels representing shadows 

(in black) in original image, since they have larger membership values. These pixels are 

indicated by red in pseudo colour image of ftizzy c-partition matrix (see Figure 5.9a). 

Cluster 4 with centre vector (220, 119, 15) trend to cover the circle (in light pink) 

correspondingly, the colours (dark red) in this cluster have larger membership values (see 

Figure 5.9d). Other clusters can also be explained in the same way.

By calculating the crisp-partition matrix for each test image and assigning the pseudo 

colour for each cluster, the segmented images can be obtained (see Figure 5.10). It can be 

observed that the crisp-partition matrix gives the obvious classifications of different 

objects such as building roof, road, grass, shadow, and so on.

Fig. 5.10 Segmented images: (a) QuickBird, (b) Ikonos, and (c) aerial.
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5.4 Object Extraction Application

In this section, the proposed segmenting algorithm is applied to the road and building 

extraction. The results demonstrate that the proposed method is efficient for high- 

resolution remote sensing image processing tasks.

5.4.1 Road Centreline Extraction

Extracting road networks from high-resolution remote sensing images, such as Ikonos, 

QuickBird, and aerial images, is particularly motivated by the increasing demand for 

accurate and timely information for the applications ranging from urban planning, traffic 

flow analysis and simulation, estimations of air and noise pollutions, road maintenance 

and upgrading, and the telecommunication. Many road extraction algorithms using 

satellite or aerial images have been developed in the past years (Trinder and Wang, 1998; 

Lee et al., 2000; Dell’Acqua and Gamba, 2001; Hinz et al., 2001).

In this section, the segmentation method based on the fuzzy c-partition algorithm is 

utilized to extract road centrelines from high-resolution remote sensing images. The 

overall flow of the extracting procedure is illustrated in Figure 5.11. It consists of three 

main steps: ( 1) segmenting colour images based on the above segmentation method; (2 ) 

detecting road networks from segmented images; (3) delineating road centrelines from 

the extracted road networks. The discussions are mainly focused on the Steps 2 and 3.

87



Filtering road networks

Overlaying centerlines on original image

Segmentation

Detecting road regions

Delineating centerlines of roads

Input colour image

Fig. 5.11 Road extraction strategy.

5.4.1.1 Extraction of Road Networks

Once the pseudo-colour segmented images are obtained by the above segmentation 

method, the binary road network image can be extracted from it by selecting the pseudo­

colour corresponding to the road regions. In general, the roads in the binary image are 

corrupted by noise objects, which have the similar colours to roads. In order to clear the 

road regions, it is necessary to filter the corrupted road network image. To this end, 

binary morphological operations are used. For example, depending on the shapes of noise 

objects, the appropriate combinations of binary dilation, erosion, opening, and closing 

should be chosen.
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5.4.1.2 Delineation of Road Centrelines

An important process for representing the structural shape of the detected road regions is 

to reduce it to a graph. This work can be accomplished by a thinning algorithm. The 

thinning algorithm developed by Zhang and Suen (1984) for thinning binary regions is 

utilized in this study. It is assumed that the road pixels in the binary road network images 

have value 1 (black), and those background (non-road) pixels have the value 0  (white).

The method consists of the successive passes of two basic steps applied to the contour

pixels of the given images, where a contour pixel is any pixel with value 1 and has at 

least one 8 -neighour value 0. With reference to the 8 -neighbourhood definition shown in 

Figure 5.12, the first step indicates a contour pixel p for deletion (from black to white) if 

the following conditions are satisfied:

• 2 < N  (p)<6

• S (p)=  \

•  Po Pi P3 = 0

• Pi P5 P7 = 0

where N (p) is the number of nonzero neighbors of p, i.e..

^ ( p ) = X f , (5.18)
1=0
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and S(p) is the number of 0-1 transitions in the ordered sequence o fpo, p i , p e ,  Pi.

P i Po Pi

P6 P P i

P5 P4 P3

Fig. 5.12 Neighborhood arrangement.

In the second step, first two conditions remain the same, but the last two conditions are 

changed to

•  Po'Pi P7 = 0

• Po'P 5 ’ Pi = 0

5.4.1.3 Experiments and Results of Road Extraction

The proposed road extraction algorithm has been tested on three types of high-resolution 

remote sensing images, including (a) QuickBird, (b) Ikonos, and (c) aerial images (see 

Figure 5.13). All test images have a size of 150 x 150 pixels and 1 m resolution.
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Fig.5.13 Original images: (a) aerial, (b) Ikonos, and (c) QuickBird images.

The pseudo-colour segmented images generated from the original images shown in

Figure 5.13 are given in Figure 5.14.

Fig.5.14 Segmented images: (a) aerial, (b) Ikonos, and (c) QuickBird images.

Figure 5.15 shows the binary images of the road networks after the segmentation of the 

colour images shown in Figure 5.14. It can be observed in all three images shown in 

Figure 5.15 that the segmented road networks are corrupted by the objects with similar 

colours to roads. For example, the pillars supporting the highways, see Figures 5.13 (a), 

5.14a, and 5.15a exhibit this characteristic.

i
Fig.5.15 Binary images of road regions: (a) aerial, (b) Ikonos, (c) QuickBird from segmented images.
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Figure 5.16 shows the road regions obtained after filtering the segmented images 

depicted in Figure 5.15 using the binary morphological operators. A visual comparison of 

the images clearly favours the filtered images (see Figure 5.16) over the segmented 

images (see Figure 5.15). Figure 5.16a shows the results obtained by filtering Figure 

5.15a using the combinations of the binary closing, dilating, and erosion, followed by 

another dilating, where the size of the structuring elements are 2  x 2  for all morphological 

operators. Figure 5.16b shows the results obtained by dilating Figure 5.15b with a 

structuring element of 3 x 3, followed by eroding with a structuring element of 5 x 5. 

Figure 5.16c shows the results obtained by dilating Figure 5.15c with a structuring 

element of 3 x 3 and eroding with a structuring element of 5 x 5.

Fig.5.16 Filtered road network images; (a) aerial, (b) Ikonos, and (c) QuickBird images.

The road centrelines are delineated using the thinning algorithm discussed above, and the 

results are shown in Figure 5.17.

Fig.5.17 Road centerlines: (a) aerial, (b) Ikonos, and (c) QuickBird.
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In order to illustrate the accuracy, the extracted road centrelines are overlaid on the 

original image, see Figure 5.18. In the overlay images the thin red lines indicate the road 

centerlines, while the narrow white regions indicate the roads. It can be obverted in 

Figure 5.18 that most centrelines match well their roads, though they do not locate 

accurately on the centres in some parts of the roads. Those situations occur because of 

either the existence of cars on the road or the irregularities of the roads.

Fig.5.18 Road centerlines (in red) overlaid on original images: (a) aerial, (b) Ikonos, and (c) QuickBird.

5.4.2 Building Extraction

Building extraction from high-resolution remote sensing images is of great practical 

interest in applications such as data acquisition and update of GIS databases or site 

models. This section presents the application of the ftizzy c-partition based segmentation 

method to building roof extraction. Figure 5.19 shows the building extraction strategy. 

The strategy for extracting building roofs is similar to that for the road extraction 

described in Section 5.4.1. The difference between the two methods is that the latter 

extracts the road regions from segmented images according to the colour features of the
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roads and then uses a thinning algorithm to decline the extracted roads to the centrelines, 

but the former needs to extract the building regions according to the colour features of the 

buildings and uses an edge extraction algorithm to detect the skeletons of the detected 

buildings. To this end, a boundary extractor is designed and described in this section.

Edge Creation

Segmentation

Building Extraction

Filtering

Overlaying for Verification

Inputing colour image

Fig. 5.19 Building extraction strategy

Following the definition of 8 -neighborhood shown in Figure 5.12, the boundary pixel for 

building is determined if it is a contour pixel and satisfies the following condition:

• 0 < N ( p ) < S  

where N  (p) is the number of nonzero neighbors of pixel p.
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Three types of test images, including (a) QuickBird, (b) Ikonos, and (c) aerial images (see 

Figure 5.20), are used to test the proposed building extraction method. All images have 

the sizes of 150 x 150 pixels and 1 m resolution.

Fig 5.20 Test Images: (a) QuickBird, (b) Ikonos, and (c) aerial images.

Figure 5.21 shows the results of the segmentation of the three test images using the 

proposed segmenting method.

Fig 5.21 Segmented images: (a) QuickBird, (b) Ikonos, and (c) aerial images.

The binary images of building regions generated from the segmented images are shown 

in Figure 5.22.
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Fig 5.22 Detected buildings: (a) QuickBird, (b) Ikonos, and (c) aerial images.

The filtered results of the binary images of the detected building roofs by using the binary 

morphological operations are shown in Figure 5.23. Figure 5.23a shows the results 

obtained by erosion with a structuring element of 2 x2  followed by dilation with a 

structuring element of 4x4. Figure 5.23b shows the results obtained by closing with a 

structuring element of 4x4. Figure 5.23c shows the results obtained by erosion with a 

structuring element of 3x3 followed by closing with a structuring element of 4x4.

c
Fig. 5.23 Building roof regions after filtering: (a) QuickBird, (b) Ikonos, and (c) aerial images.

Figure 5.24 shows the edges of the extracted building roofs using the proposed boundary 

extractor described above.

96



W  f r  I I

&DDaDgooof̂ o ^

q Q

Fig. 5.24DeIineating building roofs: (a) QuickBird, (b) Ikonos, and (c) aerial images.

For the purpose of verification, the extracted building roofs (in red) are overlaid on the

corresponding original images shown in Figure 5.25. A visual evaluation gives the

impression that the detected building roofs match the shapes of the building very well and

the proposed method produces thinner edges.

Fig 5.25 Building edges (in red) overlaid on original images: (a) QuickBird, (b)Ikonos, and 
(c)aerial images.

5.5 Chapter Summary

Colour image segmentation is crucial in many colour image processing applications such 

as object detection and extraction. Usually, it is the first task of any colour image analysis 

process, and other steps rely heavily on the quality of segmentation. A new colour image 

segmentation technique has been presented in this chapter. It is based on the fuzzy 

similarity measure proposed in Chapter 3. Using the proposed segmentation algorithm,
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the approaches of road centrelines and building edges extraction are also proposed. The 

results of the automated extraction of road centrelines and building roofs show that the 

proposed colour image segmentation method is very effective.
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6 MULTIVARIATE FILTERING BASED ON FSM

Multivariate filtering play a very important role in multichannel remote sensing image 

processing, especially in reducing noise which is introduced by sensor malfunction, 

imperfect optics, electronic interference, or flaws in the data transmission procedure 

(Pitas and Venetsanopoulos, 1990). Recently, a number of non-linear multivariate filters, 

which utilize the correlations among multivariate vectors, have been proposed. Among 

them, the vector-based filter is the popular one. Many vector-based filters are designed by 

ordering vectors in the vector set corresponding to a predefined moving window 

according to the distance measure and angle measure. The output of these filters is 

defined as the lowest ranked vectors. Good examples for this kind of filters are vector 

median filters (VMF) (Astola et al., 1990), vector directional filters (VDF) (Trahanias 

and Venetsanopoulos, 1993), and directional-distance filters (DDF) (Karakos and 

Trahanias, 1995). It is no doubt that these standard filters detect and reduce noisy pixels 

well, but their property of preserving pixels which were not corrupted by the noise 

processes needs to be improved. The purpose of this chapter is to construct a simple, 

efficient filter based on the FSM presented in Chapter 3, called fuzzy similarity filter 

(FSF), which has the ability of generating a compromise between preserving original 

pixels and removing disturbed pixels.
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6.1 Fuzzy Similarity Filter

Unlike the vector-based filters that rely on the distance, angle, or both of them between 

vectors in a vector space, the fuzzy similarity filter is designed by utilizing the FSM 

presented in Chapter 3. The fuzzy similarity function to determinate the similarity 

between two vectors %, and Xj in a vector set % = [% ,, %2, . X„] on R’" can be rewritten 

as

/ly = / / ( % , ,  % .̂ ) =  c o s k ^ (% ,.,% ^ .)) (6 .1)

where k\ = [0, oo), k2 = [0, 1], d and 6 are the distance and angle between Xi and Xj, 

respectively

Based on the FSM, the fuzzy relation FR  among vectors in X  is constructed as follows

(6.2)

where n is the number of vectors in X.

It is clear that the fuzzy relation defined by Equation (6.2) is a fuzzy compatibility 

relation because it satisfies the following conditions

• Reflexivity, //,, = 1, for / = 1 ,2 ,...., n.
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Symmetry, ///,=//;/, for /, j  = 1, 2 , n.

The aggregate similarity for the vector Xi in X  can be represented as

j )  (6.3)

It is clearly that the aggregate similarity of AT,- describes the degree to which %, is similar 

to all vectors in X. According to the aggregate similarity, the maximum similar vector 

Ximtxs, which has the maximum aggregate similarity ̂ max, can be written as

X ^ „  = X , \ M X , )  = Mn^=rr^ax[MX,) , \ /X ,  e X ]  (6.4)

It means that the maximum similar vector most concertedly located in the vector set X  

according to both distance and direction.

From the definition of the fuzzy compatibility relation in Equation (6.2), it can be noticed 

that the compatibility class of X,„axs induced in terms of a specified membership a defines 

the crisp subset Xa on X, called a-cut, in which the vectors are similar to Xmaxs under the 

degree larger than a, i.e.,

X„ = { X . \ n { X ^ ^ , X . , ) > a , ' i X , e X ]  (6.5)
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Using the compatibility class of X̂ axs, the FSF is defined as follows.

Definition 6.1 Let be a window on a multivariate image centred at the pixel p with 

pixel vector Xp and all pixel vectors in the window form the vector set X. The output of 

the FSF, FSF(X), is defined as

where 0 < a < 1, X,„axs is the maximum similar vector in X, and Xa is the a-cut.

The most crucial step in the design of the FSF is to select the parameters k\ and k2 

presented in Equation (6.1) and the parameter a used to determinate the a-cut. These 

three parameters are the designing parameters and vary in applications.

It is obvious that k\ determinates the degree to which how the two vectors are similar 

from the distance point of view. When is equal to zero, it means that all vectors are the 

same regardless of the distance between them if they align the same angle. In this case, 

the designed filter behaviours like a VDF. On the other hand, if = oo, any two different 

vectors are totally dissimilarity. Similarly, k2 determinates the degree to which how the 

two vectors are similar from the angle point of view. If  k2 = 0, the designed filter acts as a 

VMF. It is expected that a can determinate the degree to which pixels are kept during the 

filtering process. The following example explains how the FSF works.
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Example 6.1 The test image selected (see Figure 6.1) is a pansharpened Ikonos colour 

image with 1 m resolution in Toronto, Ontario. The vector set X  taken from the image is 

formed by the 3x3 window around the pixel at (50, 1 0 0 ) as follows.

# 2

0

Fig. 6.1 Test image.

X  =

"35 47 49
X , 232 236 236

X , 85 97 99
29 34 43

= 143 145 147
9 23 45

143 137 146

^ 8 56 59 70

.^ 9 . 1 2 18 41

(6.7)

In X, the centre pixel vector Xp is put on X\, that is, Xp = X\.

The fuzzy relation FR induced in X  is computed by Equation (6.2) and represented by the 

membership matrix in Equation (6 .8 ). In this example, k\ = 0.001 and k2 = 0.2.
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FR =

X,
1.0000 
0.7180 
0.9169 
0.9845 
0.8386 
0.9618 
0.8426 
0.9683 
0.9599

0.7180
1.0000
0.7832
0.7076
0.8561
0.6920
0.8515
0.7409
0.6903

0.9169
0.7832
1.0000
0.9035
0.9145
0.8839
0.9187
0.9455
0.8816

X,
0.9845
0.7076
0.9035
1.0000
0.8265
0.9748
0.8307
0.9553
0.9748

0.8386
0.8561
0.9145
0.8265
1.0000
0.8080
0.9920
0.8653
0.8061

0.9618
0.6920
0.8839
0.9748
0.8080
1.0000
0.8121
0.9343
0.9927

X,
0.8426
0.8515
0.9187
0.8307
0.9920
0.8121
1.0000
0.8698
0.8104

Xs
0.9683
0.7409
0.9455
0.9553
0.8653
0.9343
0.8698
1.0000
0.9326

"9
0.9599
0.6903
0.8816
0.9748
0.8061
0.9927
0.8104
0.9326
1.0000

X,
X,
X,

X,

(6.8)

After summing all elements of each row vector in F R ,  the sum vector S V ,  in which each 

element corresponds to the aggregate similarity of each pixel vector in X ,  is given by,

S V  =  [8.1907, 7.0397, 8.1479, 8.1577, 7.9071, 8.0597, 7.9279, 8.2120, 8.0484] (6.9)

In S V ,  the maximum aggregate similarity = 8.2120. Corresponding to this maximum 

aggregate similarity, the maximum similar vector Xmaxs is determined as X,„axs = X g .

For the maximum similar vector X&, the similarity measures between and each vector 

in X  can be obtained from the eighth row of Equation (6 . 8 ), i.e., {0.9683, 0.7409, 

0.9455, 0.9553, 0.8653, 0.9343, 0.8698, 1.000, 0.9326}. I f  a = 0.8, then the compatibility 

class for is

■X’a=0.8 = (%1, %3, X 4, %6, X s , %9) (6.10)

Because the centre pixel vector X \  is included in X a , the filter takes the centre pixel 

vector as its output, i.e..
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FSF(X) = X, (6.11)

This result indicates that the FSF chooses the original pixel as output instead of using the 

most similarity vector %g. It shows the FSF’s ability of preserving pixels.

If  a = 0.97, then

ĉt=o.8 =  (6 .12)

In this case, the output of the FSF is

FSF(X)=Xs  (6.13)

The result shows the ability of the FSF to find the most similar vectors.

6.2 Simulation Results

The evaluation of filtering techniques is a complicated task not only because different 

criteria employed by filter designers can lead to different assessment results for the 

performance of designed filters, but also it is difficult to characterize the capabilities of 

replacing the corrupted pixels and preserving the uncorrupted pixels. The subjective and
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objective measures are often used by filter designers to evaluate the performance of their 

filters (Pratt, 1991).

A variety of objective measures can be utilized for quantitatively comparing the 

performance of different filters. All of them provide some measures of proximity 

between two digital images by exploiting the differences in the statistical distributions of 

the pixel values (Eskicioglo et al., 1995). In this chapter, the normalized mean square 

error (NMSE) is used as the objective measure of the two compared images and is 

defined by

N, AT,

--------------------  (6.14)

1=1 j  = l

where N\, N2 are the dimensions of the images, V(i,f) denotes the pixel vector at the point 

( i, j)  in the original image and V  (/, j )  is its estimation.

Another objective measure, normalized colour difference (NCD) quantifying the 

perceptual error between images in the perceptually L*u*v* colour space (Wyszecki and 

Stiles, 1982; Hall, 1999), is also used for the evaluation purpose.

In L*u*v* uniform colour space, the perceptual colour error between two colour vectors 

is defined as the Euclidean distance given below

1 0 6



Il ^L u v  11= [(AL*)^ +(Am*)^ +(Av*)^]2 (6.15)

where ||AÆ̂t,,y|| is the colour error and AL*, Am*, and Av* are the differences in the L*, m*, 

and V * components.

Once each ÊÆu,v is calculated, the NCD is estimated according to

AT,

Z Z I K w

  (S-16)
ZZKII
1=1 7=1

where Eu.. = [{L*Y +{u*Y +{y*Ÿ]^'^ is the norm or magnitude of the uncorrupted

pixel vector in an original image.

A set of experiments have been conducted in order to evaluate the FSF and to compare its 

performance against the performances of the VDF, VMF, and DDF.

The pansharpaned colour Ikonos image (see Figure 6.1) is used in the experiments. In 

order to evaluate the performance of the FSF under different noise distributions, the test 

image is contaminated using Gaussian noise, impulsive noise, and both of them. The 

noise models and their parameters are listed in Table 6.1. The noise images contaminated 

by different models are shown in Figure 6.2, where Figure 6.2(a)-(d) correspond to noise
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models 1-4, respectively. The original image and their noisy versions are represented in 

RGB colour space.

Table 6.1 Noise models and distributions

Number Noise Model

1 Gaussian ((/ = 200)

2 Gaussian (</ = 200), Impulsive (2%)

3 Impulsive (2%)

4 Impulsive (2%), Gaussian (ô  = 200)

Fig. 6.2 Noisy images.

6.2.1 Impact of Parameters on Performances of FSF

There are three parameters that need to be set in the construction of the FSF before it can 

be used. They are k\, k2 , and a. In addition, the size of moving window also plays an 

important role during the design of filters.
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In order to evaluate the impact of the parameter k\ on the performance of the FSF in the 

presence of different noise models listed in Table 6 .1 , the simulation experiments are 

conducted when ki varies from 0  to 1 0 0  while ki = 0 . 2  and a = 0 .9 .
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Fig. 6. 3 NMSE of FSF, Jti from Oto 100.^2 = 0.2, and a = 0.9.
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Figures 6.3 and 6.4 illustrate the results of the NMSE and NCD measures. From the 

simulation experiments it is obvious to conclude that the performance of the FSF is the 

best for all noise models when k\ is equal to 0.02. Another obvious observation from the 

results shown in Figures 6.3 and 6.4 is that the FSF gives the best filtering performance 

for the impulsive noise (Model 3).
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Fig. 6.4 NCD of FSFs, k\ from 0 to 100, X:2 = 0.2, and a = 0.9.
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When varying kt in the interval [0, 1], the filtering results of the FSF are shown in Figure 

6.5, where k\ = 0.02 and a = 0.9, respectively. From NCD measure results shown in 

Figure 6.5, it can be seen that there is minimal impact of ki on the performance of the 

FSF for all noise models. From the analysis of the NMSE measures, the impart of kz 

seems to be larger, this phenomena may be caused by the representation of the images in 

different colour spaces. The results from both measures show that the parameters of the 

FSF have the same effect on the performances of the FSF for all noise models. For 

example, for Model 1 and Model 4 noises, their NMSEs and NCDs reduce as kz 

increases. For Model 3 noise, they increase with the decrease of k2 when k2 is larger than 

0.3. For Model 2 noise, both measures illustrate that k2 has a trivial effect on the 

performance of the FSF.
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Fig. 6.5 NMSE and NCD of FSF, kz from Oto = 0.02, and a  = 0.9.

The parameter a is used to adjust the degree of holding a pixel during filtering. The 

filtering results for FSF under a = [0, \ ] , k \ =  0.02, and k2 = 0.2 are shown in Figure 6.6. 

From the results, it can easily be seen that there is no effect on the performance of the
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FSF when a is less than 0.7. The results in Figure 6.6 also show that the FSF has the best 

performance when a = 0.9 for all noise models.
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Fig. 6.6 NMSE and NCD of FSF, a from 0 to 1, A, = 0.02, and kz = 0.2.

Figure 6.7 shows the filtered images of four types of noise images by the FSF with k\ = 

0.02, kz = 0.2, a = 0.9, where Figures 6.7a-d correspond to noise models 1-4. The 

subjective evaluation gives the impression that the FSF works well under all noise 

models.

# : #2
Fig. 6.7 Images after Filtering by the FSF.

During above simulation for evaluating the effects of the parameters, all experiments are 

conducted with a 3x3 processing window. Figure 6.8 illustrates the effect of window

1 1 2



size on the performance of the FSF, where the window sizes vary from 2x2 to 7x7, while 

ki = 0.02, k2 = 0.2, and a = 0.9. From the results of NCD measures for the FSF, it can be 

observed that the performances of the FSF are improved with the decreasing of the 

window sizes. The NMSE measures almost give the same results expected for the 2 x 2 

window.
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Fig. 6.8 NMSE and NCD of FSF with different window sizes.

6.2.2 Comparison of Performances

In this section, the performance of the proposed FSF and the well-known multivariate 

filters such as the vector median filter (VMF), the vector directional filter (VDF), and the 

distance-direction filter (DDF) has been compared. The FSF is designed with k\ = 0,02, 

kz = 0.2, and a = 0.9. The NMSE and NCD measures are used for this purpose. The 

results of both measures for all kinds of the filters are shown in Figures 6.9 and 6.10, 

where (a)-(d) correspond to the noise models 1-4. It follows from Figures 6.9 and 6.10 

that the performance of the FSF is better than that of the VMF, VDF, and DDF.

113



005

0045

—  VDF 
‘ DDF 

- e -  FSF004

I
0035

100 250 300 350

(a)

0 045

004 DDF 
-& • FSF

0 035

003

% corruption

(c)

0048

0044

0042 VDF

0.04 -e -  FSF

0.036j

0034

0032

300 350 400100 150 200 250

(b
0.048

0.046

0.044

0 042

- e -  FSF

I  0.030 

0.036'

0 034

0.032

% corruption

(d

Fig. 6.9 NMSEs of VMF, VDF, DDF, and FSF.

0066

0064 VDF
...I... DDF 

FSF0062

I
0.056

0054

0.052

005

100 150 350 400

(a)
0.075

-H - VDF 

- 8 -  FSF007

8
006

0.055

05 1.5 35
% corruption

0064

0.062

0.056

DDF

150 200 250 300 350
rf
(a)

VDF

- e -  FSF

0.062

s 0.058

0.056

1.5 25 35

(a)

% corruption

(a)

Fig. 6.10 NCDf of VMF, VDF, DDF, and FSF.

114



The filtered images by VMF, VDF, DDF, and FSF for all noise models are presented in 

Figures 6.11 to 6.14 for visual and qualitative comparison, since in many cases they are 

the best measures of performance. All filters operate using a 3x3 window. The FSF 

preserves edges and smooth noise under different scenarios and outperforms the other 

filters. A comparison of the filtered images clearly favours the FSF over the VDF, DDF, 

and VDF. The FSF efficiently removes impulses, smoothes out nominal noise and 

preserves edges, details, and colour uniformity.

# 2

Fig. 6.11 Filtered images of Model 1 noise image by (a) VMF, (b) VDF, (c) DDF, and (d) FSF.

m

Fig. 6.12 Filtered images of Model 2 noise image by (a) VMF, (b) VDF, (c) DDF, and (d) FSF.

#2# 2

Fig. 6.13 Filtered images of Model 3 noise image by (a) VMF, (b) VDF, (c) DDF, and (d) FSF.
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Fig. 6.14 Filtered images of Model 4 noise image by (a) VMF, (b) VDF, (c) DDF, and (d) FSF.

6.3 Chapter Summary

A novel nonlinear multivariate filter, called ftizzy similarity filter (FSF), has been 

presented in this chapter. This filter is designed based on the FSM defined in Chapter 3. 

The behaviours of the FSF are analyzed and their performance is compared to that of the 

most commonly used nonlinear multivariate filters, such as the VMF, VDF, and DDF by 

using objective measures NMSE and NCD and subjective evaluation.

The FSF not only has the rigid theoretical foundation but a promising performance in a 

variety of noise characteristics. The simulation results and the subjective evaluation of 

the filtered colour images indicate that the FSF is comparable with other filters used in 

the study. As seen from filtered images, the FSF possesses the abilities of noise 

attenuation and edges or detail preservation but also preserves.
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7 CONCLUSIONS AND RECOMMENDATIONS

Motivated by the development of effective multivariate image processing techniques for 

analyzing, interpreting high-resolution remote sensing images, this study is focus on the 

definitions and analyses of the fuzzy similarity measure, colour morphology, multivariate 

clustering, and multivariate filter. In this chapter, the major achievements of the study are 

summarized in Section 7.1. The conclusions of this study are drawn in Section 7.2. 

Finally, recommendations for further research are given in Section 7.3.

7.1 Summary

The main contributions of this thesis can be summarized as:

The fuzzy similarity measure(FSM), which can be used to measure the similarity between 

vectors in a vector space, is introduced. The FSM employs the concepts of the short- 

range ordering and fuzzification inspired by the same concepts from solid physics and 

fuzzy mathematics. The results of similarity measures among colours calculated by the 

FSM shown that it behaves like human perception on colour similarity.

Based on the FSM, three image processing tools, colour morphology, multivariate 

clustering, and multivariate filtering, have been developed to meet the requirements of 

high-resolution remote sensing image processing.
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Three practical problems arising from engineering applications such as colour edge 

extraction, road and building extraction, and noise reduction, have been solved by using 

the developed tools.

7.2 Conclusions

The new finding on the four key issues studied can be summarized as follows.

7.2.1 Fuzzy Similarity Measure

Inspired by the ideas of short-range ordering and fuzzification from solid physics and 

fuzzy mathematics, the short-range ordering and fuzzification for the relationship among 

vectors in a vector space are employed as basic assumptions to define the FSM. Based on 

both distance and angle measures the FSM is presented, which is different from previous 

methods that use either distance or angle measure only. The exponential function is 

employed to characterize the contribution of distance between two vectors, and the cosine 

function is utilized to describe the contribution of their angle. The impact of the distance 

on the FSM can be controlled by the parameter k\. The larger the parameter k\ is the 

stronger its impacts on the similarity are. Similarly, another parameter kz is used to 

manage the impact of the angle. The FSM shows the potential for vector-based image 

processing. It will bring new developments to colour morphology, multivariate 

clustering, and multivariate filtering.
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7.2.2 Colour Morphology

A new framework that extends the concepts of grayscale morphology to colour image 

processing has been developed, which is based on the FSM. The basic operations of 

colour morphology such as erosion, dilation, opening, and closing have been defined and 

their basic properties have been analyzed. The results of the applications of these 

operations to colour images also have been illustrated. Moreover, it is convenient to 

apply the new morphology to colour image processing such as colour image edge 

detection.

7.2.3 Fuzzy Clustering

Remote sensing image segmentation is often accomplished by clustering, in particular, 

when ground truth is not available to provide samples to train a supervised classifier. The 

fuzzy clustering is proved to be well suited to deal with the imprecise nature of remote 

sensing data. According to the fuzzy clustering framework, each cluster is a fuzzy set, 

and each pixel in the image has a membership value associated to each cluster, which 

measure how the pixel belongs to that particular cluster. In this thesis, a new fuzzy 

clustering algorithm, which is based on the FSM, is presented. The new algorithm is 

obtained by solving a combinational optimum problem. The effectiveness of the proposed 

clustering algorithm is demonstrated by extracting the road and building from high- 

resolution remote sensing images such as QuickBird, Ikonos, and aerial images.
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7.2.4 Multivariate Filtering

A novel nonlinear multivariate filter, called ftizzy similarity filter (FSF), has been 

proposed in this thesis. This filter is also based on the FSM which combines both distance 

and direction criteria. Simulation results and subjective evaluations of the filtered images 

indicate that the new filter outperform all other filters used in the study (vector median 

filter (VM F), vector directional filter (VDF), and distance-direction filter (DDF)). 

Moreover, as seen from images filtered by the FSF, the FSF possesses the capabilities of 

noise attenuation and edge or detail preservation.

7.3 Recommendations for Future Research

In addition to spectral data, remote sensing data also include spatial and temporal data of 

the earth’s surface, such as maps that show simply topography or more especially 

geophysical measurements for regions of interest and multitemporal images that provide 

the spatial distribution of energy coming from the earth during several different periods. 

Labeling pixels by drawing inferences from several available sources of data, i.e., mixed 

data types, is an open question. In many cases, the problem is complex, especially when 

the data are quite different from each other. A feasible scheme is to model each data type 

in mixed data sources as an attribute and organizes all attributes as an attribute space in 

which each attribute is multidimensional. For example, for a mixed data consisting of 

colour image and geographical map, colour and map attributes both are three-
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dimensional. The former includes brightness, saturation, and hue and the latter consists of 

latitude, longitude, and altitude. In order to characterize the relationship between 

variables with multiattribute, similarity between them is perhaps the most basic approach. 

Similarity in this case should be complex, should also be sensitive to all attitudes.

Another interesting topic is to study the fuzzy geometry and fuzzy topology and to 

provide their applications to the geomatics community. The digital geometry plays a key 

role in calculating geometrical measures of objects such as area, perimeter, diameter, 

compactness etc. Since the objects in an image have ill-defined or non-crisp boundaries, 

it would be a good idea to consider them as fuzzy sets. In addition, it is important to 

represent, store, query, and manipulate spatial information for many non-standard 

database applications. Specialized systems like geographical information systems (GIS), 

spatial database systems and image database systems to some extent need model spatial 

phenomena and their topological relationships through vague or fuzzy concepts due to 

indeterminate boundaries.
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