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Abstract

Signal Processing Techniques for Multimedia
Information Security

© Arunan Ramalingam 2005

Master of Applied Science
Department of Electrical and Computer Engineering
Ryerson University

The digital representation of multimedia and the Internet allows for the unauthorized dupli-
cation, transmission, and wide distribution of copyrighted multimedia content in an effortless
manner. Content providers are faced with the challenge of how to protect their electronic
content. Fingerprinting and watermarking are two techniques that help identify content that
are copied and distributed illegally. This thesis presents a novel algorithm for each of these

two content protection techniques.

In fingerprinting, a novel algorithm that model fingerprints using Gaussian mixtures is
developed for both for audio and video signals. Simulation studies are used to evaluate
the effectiveness of the algorithm in generating fingerprints that show high discrimination
among different fingerprints and at the same time invariant to different distortions of the

same fingerprint.

In the proposed watermarking scheme, linear chirps are used as watermark messages. The
watermark is embedded and detected by spread-spectrum watermarking. At the receiver, a
post processing tool represents the retrieved watermark in a time-frequency distribution and
uses a line detection algorithm to detect the watermark. The robustness of the watermark
is demonstrated by extracting thé watermark after different image processing operations

performed using a third party evaluation tool called checkmark.
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Chapter 1

Introduction

HE electronic distribution of multimedia (EDM) through the Internet offers many
T advantages to content sellers as well as consumers. Due to the digital representation,
sellers face reduced cost of manufacturing, transportation, storage, and display. They can
reach a larger number of users when compared to distributing by compact disc (CD) or
Digital Versatile Disk (DVD). Consumers, apart from the reduced cost, enjoy numerous
benefits. They can have access to large collection of multimedia files, and can purchase
and enjoy multimedia content instantly. Obtaining music online also enables consumers to
have more control over what they listen to. They can buy individual singles rather than the
whole album. By ordering these songs together, consumers can create their own listening
experiences and bypassing the context in which artists envisaged their work would be listened

to when purchased.

Déspite these potential advantages, both the music and the movie industries are reluctant
to distribute multimedia content through Internet. One of the reasons is that these indus-
tries are afraid of change. But these industries will eventually accept that EDM will be a
significant distribution channel in the future. So the main obstacle in the implementation of
EDM is piracy. While there are many advantages associated with digital media and digital
media distribution, clear disadvantages are present. Prior to digital technologies, content
was created, displayed, and stored in analog means. The advent of personal video recorder

in the 1980s presented an opportunity to view video at home; but also provided an oppor-

1



tunity to make an illegal copy. However, when a copy is made from a recorded content, the
new copy is inferior in quality to the original one. Any further copies made from that copy
are very much reduced in quality to be of any commercial use. This discouraged people from
copying and prevented piracy efforts from reaching alarming proportions. The new digital
technologies represent multimedia content in digital format (1s and 0s). These bits can be
efficiently stored in an optical or magnetic media. Since digital recording is a process where
by each bit in the source stream is read and copied to the new medium, an exact replica of
the content is obtained. The digital copies can be created with low cost equipment such as

a CD recorder.

Though the digital representation helped to make identical copies easily, the full resolu-
tion multimedia files comprise large amounts of data. Transferring or storing them took a
large amount of bandwidth. In the beginning of the 1990s, several compression technologies
were developed and new standards such as Motion Picture Experts Group (MPEG) for video
and MPEG 1 Layer - 3 (MP3) for audio reduced the size of the multimedia files by an order
of magnitude. This coupled with the reduction in the cost of storage media allowed PC
users to have thousands of songs or movies stored in their computers. Toward the end of
the 1990s, the increasing availability of high-speed Internet provided an easy and cheap way
of distributing movies and songs. The development of peer-to-peer (P2P) networks (such as
Kazaa [1], BitTorrent [2], eDonkey [3]) to exchange files helped Internet users an easy way
to search and exchange multimedia files effortlessly in the Internet. The illegal sflaring of
multimedia content incurred severe loses to the copyright holders. According to the Record-
ing Industry Association of America (RIAA), the volume of sold audio CDs dropped by 5%
in 2001 [4] and by 11% in the first half of 2002 [5]. Motion Picture Association of America
(MPAA) estimates that the movie industry annually loses US $3 billion through physical
good piracy [6]. This figure does not include Internet piracy. Hence developing digital rights
management (DRM) to protect digital multimedia content is a crucial problem for which

immediate solutions are needed.



1.1 Digital Rights Management

DRM is a collection of commercial, legal, and technical measures that enable technically
enforced licensing of digital information. DRM makes it possible for content distributors to
distribute valuable content electronically, without destroying the copyright holders revenue

stream. There is no unique definition for DRM. Some of the definitions are [7]

‘the technologies, tools and processes that protect intellectual property during

digital content commerce.’

- The Association of American Publishers

‘a system of information technology (IT) components and services that strive

to distribute and control digital products.’

- Gordon

‘digital rights management entails the operation of a control system that can
monitor, regulate, and price each subsequent use of a computer file that contains

media content, such as video, audio, photos, or print.’

- Einhorn

Though DRM can be designed to protect any digital information, in this thesis, the
focus is restricted only on the technologies that are designed to protect multimedia content.
DRM ensures that access to protected content (such as video or audio) is possible only
under the conditions specified by the content owner. Any unauthorized access must be
prevented because such access is an opportunity for an unprotected version of the content
to be obtained. If unprotected content is obtained, then it can be distributed and used
in any manner, bypassing DRM. DRM prevents the creation of unauthorized copies (copy
protection) and provides a mechanism by which copies can be detected and traced (content

tracking). The following section describes the various components of DRM.

3



1.2 Components of DRM

A typical DRM for multimedia has the following components as shown in Figure 1.1. The
figure shows only the technical aspects of DRM. Other than the technical aspects, DRM

includes legislative and regulatory solutions for copy protection and management of digital

rights.

Digital Rights Management

Access Content

Expressi Content Control Identifi- Devi £o s

of Licence Authenti- and cation s “:;c SB illing

Rights cation Copy and - i
Protection Tracing

of of
Digital Rights Rights

Figure 1.1: Components of DRM

Mmaééfheht : Dlgltal ‘Mahgexﬁe;lt
l l Other aspects I

1.2.1 Management of Digital Rights

The management of digital rights include expression of rights and distribution of rights.

e Expression of rights: The content producer expresses the conditions under which
the content can be accessed using rights expression languages (REL) such as the open

digital rights language (ORDL) and the eXtensible rights Markup Language (XrML).
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In DRM the usage rules can be adapted to the business models. For example, access
can be restricted to selected users, a limited time, or a limited number of accesses.
Initial access to the data may even be free (e.g.,the first playback of an audio track),

while subsequent access has to be paid for.

e Licenses: Licenses are used as a mechanism to distribute rights that are expressed in
the rights language. By bringing a license and a digital item together in a device, the

device can inspect the right to see what it may do with the digital item.

1.2.2 Digital Management of Rights

The digital management of rights include

e Content authentication: DRM should protect the authenticity and integrity of the
content. Authenticity is securing the content what it claims to be. Integrity means

securing the content from any alteration during distribution to the consumer.

e Access control and copy protection: DRM controls who has access to the content
and how the content has been used. DRM should prevent the illegal copying of the con-
tent once it has been decrypted. Depending on the usage rules, no/one/several /unlimited
copies of the multimedia data are allowed, with or without the right to produce copies
of the copies. DRM enforces those copy restrictions using sophisticated technology

such as watermarking.

o Identification and tracing: In DRM, the authorized users have access to play the
content. The playback medium is analog and it is possible for the users to make copies
from the analog output. Thus, analog copies in general can hardly be prevented. But
it is possible to identify and trace back analog and digital copies of distributed media.
This can be done by individual digital watermarking (traitor-tracing) of the distributed

data.



1.2.3 Other Aspects

e Device compliancy: DRM rely on device compliancy to function properly. Device
compliancy requires that devices that implement (part of) DRM functionality function
according to the rule imposed by DRM. This means that devices do not access digital
items in case of absence of a license and also that they do not carry out operations
on digital items that are not allowed by the associated rights (e.g., copying or sending

content in the clear over unprotected links).

e Device robustness requirements: Since devices manipulate licenses, rights, and
keys, the manipulation and storage of these items needs to take place in a secure
environment. As a result, DRM imposes hardware and software tamper resistance

requirements on devices.

e Billing systems: The business models for media distribution usually involves mon-
etary transactions. Therefore, DRM should contain mechanisms to perform those
transactions. Billing systems should be able to handle different pricing models such as

pay per use, monthly subscription.

1.3 Technologies for Digital Management of Rights

The technologies used for the digital management of rights include encryption, fingerprinting
and watermarking and are described in the following paragraphs. The technologies used in

a multimedia DRM are shown in Figure 1.2.

1.3.1 Encryption

In DRM, encryption can be used to package the content securely and force all accesses to the
protected content through the rules enforced by DRM. If the content is not packaged securely,
the content could be easily copied. Encryption scrambles the content and renders the content
unintelligible unless a decryption key is known. Once the content has been encrypted, the

encrypted content may be transmitted over a distribution network or recorded onto a media.
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Digital Management of Rights

Authentication Access Control Content
and Identification
Copy Protection and
Tracing

Figure 1.2: DRM technologies

The encrypted content cannot be decoded or displayed without the decryption key. When
the content is to be decoded and displayed, the decryption key is provided to the decoder
only after DRM has verified that the conditions for accessing to the content are satisfied. In
this way, DRM can secure the distribution of content and ensure that access to the content
is consistent with the usage rights. Other examples of using encryption in DRM include

device authentication and the secure exchange of keys and authorization information.

1.3.2 Watermarking

Encryption packages the content securely and provides restricted access to the content. How-
ever, once an authorized user has decrypted the content, it does not provide any protection
to the decrypted content. Encryption does not prevent an authorized user from making and
distributing illegal copies. Watermarking and fingerprinting are two technologies that can
provide protection to the data after it has been decrypted.

A watermark is a signal that is embedded in the content to produce a watermarked

7



content. The watermark may contain information about the owner of the content and the
access conditions of the content. When a watermark is added to the content, it introduces
distortion. But the watermark is added in such a way that the watermarked content is
perceptually similar to the original content. The embedded watermark may be extracted
using a watermark detector. Since the watermark contains information that protects the
content, the watermarking technique should be robust, i.e. the watermark signal should be
difficult to remove without causing significant distortion to the content. Watermarking can

be used in DRM in many ways. Some of the applications include the following [8].

e Copyright or owner identification: The embedded watermark identifies the owner
of the multimedia content. The watermark provides a proof of ownership if the copy-

right notice has been altered or removed.

e Copy protection: The watermark encodes the number of times the multimedia con-
tent may be (legally) copied. A compliant device checks the watermark and determines
whether creating an additional copy is allowed. Each time a copy is made, the water-

marked content is modified to decrement the count of allowable copies.

e Access control: The watermark encodes the usage and access rights that are granted

by the content owner. Compliant devices detect the watermark and complies with the

encoded usage restrictions.

e Content tracking: In many applications the copyrighted content may be distributed
to many users. Some of the users may copy the content and distribute. To identify the
particular user who pirates content, the watermark encodes the identification of the user
or recipient of the video. This implies that each user obtains a unique or personalized
copy of the video. If a copy of the video is found in a suspicious location (such as being

shared by a peer-to-peer program), the embedded watermark can identify the source

of the suspected copies.



1.3.3 Fingerprinting

In watermarking, the embedding process adds a watermark before the content is released.
But watermarking cannot be used if the content has been already released. According to
Venkatachalam et al. [9], there are about 0.5 trillion copies of sound recordings in existence
and 20 billion sound recordings are added every year. This underscores the importance
of securing legacy content. Fingerprinting is a technology to identify and protect legacy
content.

In multimedia fingerprinting !, the main objective is to establish the perceptual equality
of two multimedia objects: not by comparing the objects themselves, but by comparing the
associated fingerprints. The fingerprints of a large number of multimedia objects, along with
their associated meta-data (e.g., name of artist, title, and album, copyright) are stored in
a database. This database is usually maintained online and can be accessed by recording
devices.

Fingerprinting can be used in DRM in many ways. Some of the applications include the

following.

e Copyright or owner identification: When an audio or video content is played in
a compliant device, the device can extract a fingerprint from the content and compare

with the database and retrieve the owner and the copyright information of the content.

e Copy protection: As in copyright identification, a compliant device checks the finger-

print in the database and determines whether creating an additional copy is allowed.

e Filtering: In P2P networks, the exchanged multimedia files can be monitored. The
fingerprints of the shared files are extracted and identified by comparing with the
database. If the exchanged content is a copyrighted one, then the exchange could be

blocked.

1The term “fingerprinting” has also been employed as a special case of watermarking in which each legal
copy of a multimedia content is watermarked uniquely. However, the same term has been used to name
techniques that associate a multimedia signal to a much shorter numeric sequence (the “fingerprint”) and
use this sequence to identify the content. In this thesis, the term fingerprinting refers to the latter meaning.
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1.4 Organization of the Thesis

The main objective of this thesis is to propose novel algorithms to identify and protect
multimedia content from unauthorized use. The remainder of the thesis is organized as

shown in Figure 1.3.

Chapter 2: Content Protection Technologies

Chapter 3: Fingerprinting

e | | Metedata
Training Phase > Database - of the
Multimedia g bt ‘ Content
} Content Feature GMM | .
. (existing/new Extraction Modeling '
contens) ‘ | Metadata of
»  Matching ~— # the unknown
Identification Phase | | Content

Chapter 4: Watermarking

HRT based Estimate

Multimedia -
SS chirp-based -
Content > Wal Xing » TF Analysis »> Detedin: > ofthe
(new contents) ‘Watermark

Figure 1.3: Organization of the thesis

Chapter 2 describes the main content protection technologies such as encryption, fin-
gerprinting and watermarking. Encryption provides security to data during transmission
and storage. Once the content is decrypted, content can be protected by fingerprinting and
watermarking. These two technologies are described in detail along with their applications.

Chapter 3 proposes a novel technique to design fingerprints that are compact, provide
discrimination among different multimedia clips, and at the same time, invariant to the

distorted versions of the same clips. The fingerprints are generated by modeling audio
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or video features using Gaussian mixture models (GMM). Simulation results are used to
demonstrate that the fingerprints are invariant to a wide range of distortions and provide
very good discrimination among different fingerprints.

Chapter 4 proposes a novel robust image watermarking algorithm that embeds multiple
watermark bits in the host image. Linear chirps are embedded as watermark messages, where
the slopes of the chirp on the time-frequency (TF) plane represent watermark messages, such
that each slope corresponds to a unique message. The Hough-Radon transform (HRT) is a
widely used tool to detect directional elements that satisfy a parametric constraint in images.
Since linear chirps are localized as a straight line in the TF plane, the HRT is used to detect
the watermark messages at the receiver. The HRT robustly estimates the slope of the chirps
in the presence of any attacks. Simulation results show the improved performance of the
scheme to a wider variety of distortions such as compression, resampling, and filtering.

Chapter 5 summarizes the important results in the proposed schemes and points out

directions for future research.
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Chapter 2

Content Protection Technologies

HE introduction briefly described about the technologies used for the DRM namely
T encryption, fingerprinting and watermarking. These are essentially content protection
technologies. While encryption protects the content during transmission from the producer
to the consumer, fingerprinting and watermarking protects the content once the content
reaches the consumer. Encryption is a mature area and the interested reader is referred to
the texts [10] and [11]. The remainder of the thesis will focus only on fingerprinting and
watermarking.

From a signal processing perspective, both fingerprinting and watermarking share sim-
ilar steps as shown in Figure 2.1. The objective in both these techniques is to identify a
multimedia signal from a distorted version of the original signal. In fingerprinting, features
are extracted from the original signal and its distorted versions and they are compared to
identify the signal. In watermarking, features are embedded to the original signal. Then,
features are extracted from its distorted versions and compared with the inserted features
to identify the original signal. The remainder of the chapter gives a description of these

technologies and their applications in detail.

2.1 Fingerprinting

The primary objective of fingerprinting is to establish a mechanism to evaluate the per-

ceptual similarity of two multimedia signals by comparing the digests of the signals called

13



Watermarking

Insert

Figure 2.1: Fingerprinting and Watermarking

fingerprints. The fingerprint extraction is done in such a way that each multimedia ob-
ject produces an unique fingerprint. The advantages of using fingerprints for perceptual

comparison instead of the entire signals are:

1. Reduced memory, storage, and processing requirements due to relatively small size of

the fingerprint.

2. Efficient comparison: since the fingerprints hold only the perceptually relevant com-

ponents and any distortion or noise will be removed.
3. Faster searching due to smaller database size.

The overall functionality of fingerprinting is shown in Figure 2.2. From the figure, two

operating modes can be identified in a fingerprinting system.

1. Populating the database: In this stage, the collection of multimedia signals to be
recognized is presented to the system. The system processes the multimedia signals

by extracting unique fingerprints based on the characteristics of the content. This
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Figure 2.2: Overview of fingerprinting

compact and unique representation is stored in a database along with a tag or other

metadata such as artist name, album, and copyright information of each recording.

Identification: The signal that has to be identified is presented to the system. The

signal is processed to extract the fingerprint. The fingerprint is then compared to the

fingerprints of the database. If a match is found, the tag or metadata associated with

the content is obtained from the database. A confidence of the match can also be

provided.

It can be observed that a fingerprinting system consists of two main components:
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e An algorithm to extract fingerprints.
e A search algorithm to efficiently search and match a fingerprint in a database.

These components in are describe in detail in the following sub sections.

2.1.1 Fingerprint Extraction

A fingerprint represents the perceptually relevant portion of an audio or video signal. The

fingerprint extraction usually includes the following steps.

1. Preprocessing: In this stage, the size of the multimedia signal is reduced. In the case
of audio, usually the raw input signal is downsampled to a lower sampling rate. If the
audio has multiple channels, they are averaged to get a single channel. In the case of

video, the frame rate and the size of the video are reduced.

2. Feature Extraction: The audio signals are segmented in to overlapping sections of
few milliseconds. From each of these segments, perceptually significant features are
extracted. For audio signals, features are mainly extracted from the frequency domain
by taking the discrete cosine transform (DCT) or discrete Fourier transform (DFT) of

the segments. For video signals, features from spatial and frequency domain are used.

3. Post-processing: In addition to the absolute features, the derivatives of the features
can be added to better characterize the temporal variations of the signal. The features

are also mean subtracted and normalized.

4. Fingerprint Modeling: In order to capture the underlying statistical variations of the
audio or video segment, some authors model the segment using codebooks generated
by vector quantization (VQ), hidden Markov models (HMM) or GMM.

2.1.2 Fingerprint Matching

In fingerprint matching, a good search scheme is designed to retrieve the best match from

a large database of several millions in a short time. This can be achieved using either
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exact or fuzzy matching. Performing an exact match usually means using a direct table
lookup. approach, which requires that fingerprints generated are invariant to compression
and other common signal processing manipulations — a task almost impossible to achieve.
Therefore it is more realistic to generate fingerprints whose intra-signal (different variants
of the same recording) variation is much smaller than the inter-signal (different variants of
different recordings) variation. A similarity measure is needed to determine the closeness of
the fingerprints. Since the similarity measure is by definition inexact or fuzzy, it requires
computing this measure for every entry in the database to determine the best match. This
process is not practical in large databases. Hence a fingerprint matching scheme should

address the following two important issues:

1. Formulating an intelligent strategy to reduce the search space to a manageable size.

2. Determining an objective measure of match.

2.2 Review

A large number of schemes have been proposed for audio fingerprinting. A good review of
audio fingerprinting schemes can be found in [12]. In [13], Allamanche et al. use loudness,
spectral flatness measure (SFM) and spectral crest factor (SCF) as features and model the
fingerprints using code books generated by VQ. For each of the music items in the database,
the associated code book is generated. In the identification process, the features vectors of
the test item is subsequently approximated by all stored codebooks using some standard
distance metric. The test item is assigned to the music item which yiélds the smallest
accumulated approximation error.

Haitsma et al. [14] use energies in the 33 logarithmic spaced frequency bands as features.
The fingerprints are modeled as the sign of the difference in adjacent frequency band energy
differences between successive time frames. The fingerprint database is a series of binary
vectors. To test an unknown audio, its fingerprint is compared with the database and the

music item which gives a bit error rate below a certain threshold is chosen.
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Cano et al. [15] and Batlle et al. [16] use Mel frequency cepstral coefficients (MFCC) as
features and model fingerprints as a sequence of HMM. Initially, an alphabet of sounds that
best describe the music is extracted in an offline process. These audio units are modeled
with HMM. During the training phase, the set of songs to be identified are decomposed into
these audio units ending up with a database of HMM sequences representing the original
songs. By approximate string matching, the song sequences that best resembles the sequence

of an unlabeled audio is obtained.

Burges et al. [17] argue that the commonly used audio features are heuristic and hence
may not be optimal. They use oriented principal component analysis (OPCA) on the modu-
lated complex lapped transform (MCLT) coefficients of the signal to extract optimal features.
By taking in to account of some predefined distortions, they use OPCA to reduce dimension
and choose features that are invariant to distortions. Sukittanon and Atlas [18] argue that
the spectral features are inadequate when there is frequency distortion. They extract fea-
tures from the joint acoustic and modulation frequency representation of the audio signal.
The music identification is based on the éross—entropy between the test item and the items

in the database.

In [19], Lu proposes features based on the wavelet modulus of the continuous wavelet
transform. Mapelli and Lancini [20] use energies in a single frame and a whole block of
frames as features and model the fingerprint as the sign of energy difference between thé
frame and block energies. In a recent work, Venkatachalam et al. [9] use the mean and
root mean square (RMS) power of the energies in different frequency bands of successive
time frames. To search a fingerprint in a database, they use only a few components of the
fingerprint to get a reduced set of elements and later use all the components to select an

item from the reduced set.

The literature in video fingerprinting is limited when compared to audio fingerprinting,.
Oostveen et al. [21] introduced the concept of video fingerprinting as a tool for video identi-
fication. They use spatial and temporal derivatives as features and quantize them to one-bit

to generate a fingerprint. This binary structure allows them to use a fast retrieval of finger-
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print from the database. However, for severe distortions such as scaling or shifting, the bit
errors in the fingerprints increase and the efficiency of the database search fails. In [22], Joly
et al. propose a scheme based on image local descriptors. The fingerprint extraction includes
a key-frame detection, an interest point detection these key-frames, and the computation of
local differential descriptors around each interest point.

Lancini et al. [23] calculate the variance of the luminance values of the frames. The
fingerprint vector is the minima of the variance values in 16 x 16 blocks of the image. They
show that the scheme is robust to MPEG and DivX compression. Mohan [24] matches videos
based on the similarity of temporal activity instead of matching key frames in a video. He
uses the ordinal measure [25] of the frames as features. Indyk et al. [26] use a fingerprint
based on the shot boundaries of the video and show that the fingerprints are robust to many
types of attacks. Hampapur et al. [27] developed a frame matching algorithm and compared
its robustness to resolution changes in MPEG1 encoding.

The proposed fingerprinting scheme in this thesis uses GMM as a modeling tool. The

algorithm is described in detail in chapter 3.

2.3 Watermarking

A watermark is a signature or message which is imperceptibly added to the host-signal in
order to convey some hidden information. The watermark is added to the host data to
be watermarked such that the watermark is unobtrusive and secure in the watermarked
data but can partly or fully be recovered from the watermarked data later on if the correct
cryptographically secure key needed for fecovery is used. To be effective, watermark should

satisfy the following requirements [28]:
e Unobstructive — that is perceptually imperceptible, when embedded in the host signal.
e Discreet — undetectable to prevent unauthorized removal.

e Robust — depending upon the type of watermarks, watermarks should remain intact

in the host signal when subjected to intentional removal attacks and common signal
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processing manipulations.

e Easily extractable — authorized watermark extraction must be easy and reliable to

prove ownership.

The overall watermarking process is shown in Figure 2.3. Watermarking has two main

processes: watermark embedding and watermark extraction.

Watermark Information I

Original
multimedia signal

- Watermark embedding
algorithm

>

v

Watermarked signal

Key

Watermark Embedding

Watermark Extraction

Original
multimedia signal

Watermark detection
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Figure 2.3: Overview of watermarking

2.3.1 Watermark Embedding
The embedding process involves
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1. Design of the watermark W to be added to the host signal. Typically, the watermark

depends on a key K, watermark information I and host signal X

W = £, (K,I,X). (2.1)

2. Design of the embedding method itself that embeds the watermark signal into the host
signal to get the watermarked data Y

Y = f; (W, X). (2.2)

The embedding process introduces small changes in the host signal. To ensure impercep-
tibility of the modification caused by watermark embedding, perceptual models are used.
These models provide the bound for amount of distortions tolerable by the host signal with-
out showing any perceptible difference. As a consequence of the required imperceptibility,
the individual samples (e.g., pixels or transform coefficients) that are used for watermark
embedding can only be modified by an amount relatively small to their average amplitude.

To ensure robustness despite the small allowed changes, the watermark signal is added
to the perceptually significant regions of the signal. Hence any attempt to remove the
watermark signal severely affects the quality of the signal. Also the watermark information
is usually redundantly distributed over many samples (e.g., pixels) of the host data. This
helps in the recovery of the watermark from a small fraction of the watermarked data.

The security of the system comes from the uncertainty of the key. Without having access

to this key information the watermark cannot be detected or removed.

2.3.2 Watermark Extraction

The watermark extraction process involves

1. Design of the corresponding extraction method that recovers the watermark informa-

tion I’ from the watermarked data Y using the key and with or without the help of
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the original X.

I' = gK,Y).
or
I' = g(K,Y,X). (2.3)

The generic watermark extraction process is depicted in Figure 2.3. At the detector the
watermarked data, the secret or public key, and, depending on the method, the original data
and the original watermark are the inputs. The output of the watermark recovery process
is either the recovered watermark or some kind of confidence measure indicating how likely

it is for the given watermark at the input to be present in the data under inspection.

2.4 Review

In recent years, numerous watermarking techniques have been proposed. In general, the
invisible watermarking schemes can be classified in to fragile watermarking and robust wa-
termarking. Fragile watermarks [29], [30], [31], [32], [33] are added to the host data such
that any unwanted manipulation of the watermarked signal alters the watermarked message
and provides information about the tampering process. In robust watermarking, the wa-
termarks are designed and embedded in such that it cannot be removed by any incidental
signal processing manipulations or intentional watermark removal attacks.

Among these robust watermarking schemes, those requiring both the original data and
the secret keys for the watermark bit decoding are called private watermark schemes (34],
35], [36], [37], [38]. Those requiring the secret keys but not the original data are called public
or blind watermark schemes [39], [40], [41], [42], [43], [44], [45]. Usually, private watermark
schemes are superior in robustness to attacks. However, private schemes are not feasible
in situations such as watermark detection in DVD players, because the original data is not
available. Blind watermark schemes, on the other hand, detect the watermarks without the

original data and are feasible in those situations. The trade-off is that the blind schemes
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are usually less robust and have relatively higher false alarm rate compared with the private
schemes.

The watermarking schemes can also be classified by the number of watermark bits that
can be embedded. Most of the schemes embed single bit [34], [46]. But multiple bit wa-
termarking schemes also exist [47], [48]. In the former case, a single watermark sequence is
embedded and the receiver just detects the presence of watermark. The receiver checks for
a watermark from the set of all possible watermarks. Hence as the size of the watermark set
increases the detection becomes impractical. In the second case, the detector should check
for the preéence of the watermark, and if the watermark is present, the detector should
decode the message correctly.

In a recent work, Erkucuk [49] proposed an audio watermarking algorithm by embedding
chirp signals as watermark and detecting the watermark by using TF analysis followed by
a HRT detector. The algorithm is capable of embedding multiple watermark bits and is
very robust to several attacks. The tests done by the author show that the watermark
is extractable from all the ten attacks used in the experiments. The high robustness and
the capability of carrying multiple bit watermark messages is the motivation to extend the

scheme to images. The proposed image watermarking algorithm is described in chapter 4.

2.5 Applications

Chapter 1 briefly mentioned how fingerprinting and watermarking can be useful in DRM.

This section explains in detail how these technologies are used in DRM. Also the applications

other than DRM are also presented [50].

2.5.1 Digital Rights Management

Proof of Ownership

Content creators are often concerned about the possibility that their work is to be appropri-
ated by another person. Let us consider this example. Let artist A produces and distributes

the content. Another artist B copies the content of artist A and distributes as his own. Now
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there should be a way for artist A to prove that she is indeed the original author of the
content. This problem can be solved by using both fingerprinting and watermarking with
the help of a trusted third party (TTP). A TTP is a usually a government agency that acts
as a repository of content.

In a fingerprinting based solution, the original artist A registers only the fingerprint of
her work with the TTP instead of the whole work. The TTP extracts an unique fingerprint
for each content and stores the fingerprint in a database along with the owner of the content.
Now the TTP can extract the fingerprint from the copy released by artist B and check with
the database to get the original owner artist A.

Watermarking can also be used to solve this problem. The TTP provides a unique key
or signature to each content owner. The content owner embeds the signature as watermark
message in the content. The presence of the signature in the content uniquely identifies the

owner of the content.

Access Control and Copy Protection

When a content producer distributes a content to an user, she specifies a set of rules for
accessing the content. The rules may specify whether the content can be copied and the
number of times it can be copied. These rules are obeyed by compliant devices such as CD
players, computers used at the consumer end. But there should be a way to bind these rules
to the content.

A robust watermark can be used to specify the rules and can be embedded in to the
content. The rules are associated to the content irrespective the format of the content.
Since the watermark is robust, unauthorized removal is not possible. The compliant device
reads the usage rules and complies with it.

In fingerprinting, addition of usage rules to the content is not possible. But the compliant
device can extract of the fingerprint of the content and connect to an online database and
retrieve the usage rules of the particular content. This may sound unrealistic at the present |

time, but with the increasing tendency of electronic devices other than computers to connect
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the Internet, it should not be a problem in the near future.

Filtering

P2P networks are excellent channels for music and movie piracy. During a court battle with
recording industry, Napster, a music sharing service, was forced to filter copyrighted music
files from shared.

A fingerprinting system can be used to filter the copyrighted content. When an user
shares a music file with another, the system extracts a fingerprint from the shared content
and compares with a database to identify the content shared. Once the content is identified,
the copyright information of the shared music is retrieved. If the content is copyrighted the
transfer is prevented or the user is asked to pay a fee for the content. Contents that are
copyrighted are allowed to be shared freely.

In a watermark based system, all copyrighted contents have a watermark. Before a
content is shared, the system checks for the presence of watermark. If a watermark is
present, then the content is considered to be copyrighted. Contents without a watermark

are allowed to be shared.

Content Tracking

Content tracking is the identification of a particular copy of copyrighted content. To illustrate
its importance, let us consider the following example. Suppose a video owner contracts the
services of various mastering and distribution companies to create and distribute the video
on media. Unscrupulous companies or employees may conspire to leak illicit copies to pirates.
So the owner wants to identify the companies that distribute the copies illegally.
Watermarking can be used to identify a particular copy. The owner of the content
embeds a different watermark into the copies she provides to each mastering company. If
illegal copies bearing a specific company’s watermark are found before the official release
of the video, the video owner can extract the watermark from the illegal copy and identify
the mastering company that distributed the video illegally. Then the owner may sue the

company or choose not to deal with that company in the future.
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Fingerprinting is a not suitable for this application since the fingerprints of all the copies

will be the same.

2.5.2 Broadcast Monitoring

A broadcast monitoring system automatically monitors the number of times a commercial,
song or film is broadcasted by radio or TV stations. There are many organizations interested
in broadcast monitoring. Advertisers want to ensure that they receive all of the air time
they purchase from broadcasters. Performers want to ensure that they get the royalties from
advertising firms. Also, broadcast monitoring helps a company to monitor the number of
times and the channels in which its rival’s commercials are broadcasted.

In a fingerprint based broadcast monitoring, the channels are monitored continuously
and fingerprints are generated once a few seconds. The fingerprints are then compared
with the database, and if a match is found then the time, channel of the commercial are
recorded. Here the fingerprint generation and the matching with the database should be
done in real-time which is quite challenging if the database is large.

In a watermarking based broadcast monitoring, each commercial to be monitored is em-
bedded with a unique watermark. The channel is continuously monitored for the watermark.
Here the robustness requirements of the watermarks are less strict than that of the copy-
right applications. However, the watermark should be able to distortions that are common

in broadcasting such as A/D conversion, reshaping, compression, and cropping.

2.5.3 Connected Audio

Connected audio is a general term for consumer applications where music is somehow con-
nected to additional and supporting information. Audio fingerprinting can provide a univer-
sal linking system for audio content. A popular example is to obtain the name and title of
an audio broadcast by recording a small portion of it using a mobile phone and sending it
to a service provider who would identify the audio clip and provide you the details such as

name, artist and where to buy the album.
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From a technical point of view, this application is challenging since the audio signal in
this case is severely degraded due to processing by radio stations, AM/FM transmission,

A/D conversion, speech coding ‘and finally the transmission over the mobile network. The

fingerprints should be robust to these distortions.

2.5.4 Content-related Services

Content information is defined as information about the content that is relevant to the user

or necessary for the intended application. Some of the examples include [50):

e Content information describing an audio excerpt: rhythmic, timbral, melodic or har-

monic description.

e Meta-data describing a musical work, how it was composed and how it was recorded.
For example: composer, year of composition, performer, date of performance, studio

recording/live performance.

e Other information concerning a musical work, such as album cover image, album price

or artist biography.

These information can be usually associated with a file as a header. But once the format
of the content is changed such as encoding to MP3, the encoder does not necessarily attach
these information with the content. Hence it is advantageous to tie these information with
the content. These information can be embedded in to the content as a watermark. But the
information that can be contained in a watermark is usually limited. So fingerprinting is a
better solution for this application. Some of the applications of fingerprinting for providing

content-related services are

1. Automatic Music Library Organization: Nowadays, PC users have a large collec-
tion of songs. These songs are usually obtained from different sources such as ripping
from a CD, downloading from the Internet. Hence the meta-data associated with the

music files are often inconsistent, incomplete or even incorrect. Audio fingerprinting -
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can make the library consistent and allow easy organization based on, for example,

artist or album.

. Media Description Schemes (MDS): The MPEG-7 standard proposes a MDS for
multimedia content based on the Extensible Markup Language (XML) metalanguage
providing for easy data interchange between different equipments. Some fields of an
MDS can be automatically extracted from audio recordings, with greater or lesser
success. This extraction is performed by means of signal processing techniques and
psychoacoustic analysis. Nevertheless, many features, which are important for certain
applications cannot be automatically extracted, such as the title, author, performer
or edition year of a musical work. This information is usually stored externally to
the audio data, either in a database or inserted in the structure of the audio file
or transmitted frame, depending on the communication channel or storage support.
Fingerprinting can then be used to identify a recording and retrieve the cqrresponding
MDS, regardless of support type, file format or any other particularity of the audio
data.

. Quality Assessment: The Music2Share [51] projéct proposes an architecture for
copyright-compliant music sharing based in peer-to-peer protocols, cryptographic al-
gorithms, watermarking and perceptual fingerprinting based music identification. In
Music2Share project, fingerprints are not only used to identify the music content but
also to assess the perceptual quality of the content. A user, for example, should pay

less for a song which is MP3 encoded at 32 kbps than for a song encoded at 192 kpbs.

2.6 Advantages and Disadvantages

The various applications of fingerprinting and watermarking are described in the previous

section. For many applications, both fingerprinting and watermarking provide solutions.

This section presents the relative advantages of fingerprinting and watermarking. Figure 24

summarizes the merits and demerits of these two technologies [50].
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Fingerprinting - Watermarking
Advantages Advantages
e Has no impact on quality * Computationally simple
of the content * Detection complexity
* Works for legacy content is constant
as well as new content * Database connectivity is

* Does not require industry not needed
standardization
e Meta-data of the content

can be very large

Disadvantages Disadvantages

¢ Computational complexity * Does not works for legacy

and memory requirements content
are high for large * Requires industry
databases standardization

¢ Vulnerable to unauthorized

* Detection complexity 4 k
removal of watermar

increases with addition of
new content
* Always needs connectivity
to the database

Figure 2.4: Advantages and disadvantages of fingerprinting and watermarking

1. Modification of Original Signal: In watermarking, the original signal is modified to
embed the watermark information. The power of the watermark is inversely related to
the imperceptibility of the watermark. But the detection performance of the watermark
increases by increasing the power of the watermark. Hence there is a trade-off between
imperceptibility, detection performance, and power of the watermark. In fingerprinting,
there is no such trade-off: the system monitors the content, constructs a description

of it, and searches for a matching description in its database.

2. Information Capacity: The amount of information that can be embedded by water-

marking is dependent on the perceptual capacity of the host content u.e. the number
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of samples of the content that can be altered without causing perceptual change in
the content. Hence the capacity of the watermark is dependent on the nature of the
content and is usually limited. In fingerprinting, since the information is retrieved from

a central database, the amount of information about the content can be very large.

. Legacy Content: The watermark has to be embedded to a content before it is being
distributed. Hence there is no way to embed watermarks to already released content.
Fingerprinting, on the other hand, can be used irrespective of whether the content is

released or not.

. Robustness: In watermark detection, the signal that contains useful information cor-
responds to a small fraction of the signal power as the watermark is much weaker than
the original audio content signal due to the imperceptibility constraint. In addition,
attacks i.e., the unauthorized removal of watermark, can be strong and make the wa-
termark undetectable. In contrast, detection in fingerprinting systems is based on the
content itself, which is strong enough to resist the attacks. As long as the original
content in the database is approximately the same as the content that the system is
monitoring to, their fingerprints will also be approximately the same. The similarity
of the fingerprint depends on the fingerprint extraction procedure and therefore the
robustness of the system will also depend on it. Most fingerprinting systems use a

robust fingerprint extraction procedure and hence they are inherently more robust.

. Requirement of a fingerprint database: Fingerprinting needs a database contain-
ing the fingerprints and the corresponding meta-data. As the number of items in the
database increases, memory requirements and computational costs also grow; thus,
the complexity of the detection process increases with the size of the database. In
contrast, no database is required for detection in a watermarking system, as all the
information associated with the content is contained in the watermark itself. The de-
tector checks for the presence of a watermark and, if one is found, it extracts the data

contained therein. Hence watermarking requires no update as content is added, and
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the complexity of the detection process remains constant irrespective of the number of

content.

6. Industry Standardization: In watermarking, the embedding process is done by
the content owner. Hence for a detector to detect watermarks embedded by different
owners, there should be a standard to specify a common detecting process. However,
in fingerprinting, the detector can choose its own fingerprint extraction method and

still identify the content released by content owners.

This chapter described how fingerprinting and watermarking works and explained how
they can be used to protect multimedia content. Then their applications are discussed along
with their relative advantages. DRM should be able to protect legacy as well as new content.
Hence both fingerprinting and watermarking will be used in DRM. Chapters 3 and 4 present

novel algorithms for fingerprinting and watermarking respectively.
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Chapter 3

Fingerprinting

INGERPRINTING is a tool to evaluate the perceptual similarity of two multimedia
F signals not by comparing the multimedia signals directly but by comparing their finger-
prints or signatures. A fingerprint is a content-based compact representation of a multimedia
signal. These fingerprints are used to identify a piece of audio or video uniquely based on
the content instead of the meta-data. A well designed fingerprint should be able to identify
multimedia files even if they are severely distorted by perceptual coding or common signal
processing operations.

A typical framework of a fingerprinting system is shown in Figure 3.1. A fingerprinting
system basically consists of two parts: fingerprint extraction and a matching algorithm.
The fingerprint extraction derives a set of relevant characteristics of a multimedia object
in a concise and robust form. Given a fingerprint derived from a recording, the matching
algorithm searches a database of fingerprints to find the best match.

One of the critical issues in fingerprinting is the design of fingerprints. The fingerprints

should satisfy the following requirements:
1. Discrimination power over a large number of other fingerprints.
2. Invariance to distortions.
3. Computational simplicity.

4. Smaller size.
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Figure 3.1: Fingerprinting framework

In this work, fingerprints are designed addressing the above issues by modeling an audio
or video clip by GMM [52], [53]. The audio fingerprints are generated using various spectral
and cepstral features. For video fingerprinting, the luminance component of the pixels within
frames and across frames are used as features and the entire video clip is modeled as a single
entity instead of sequence of frames. In the works described in section 2.2, fingerprints are
generated by using modeling tools such as VQ, HMM, or by just quantizing the feaﬁures. In
this work, GMM are used to model the fingerprints. The motivation for using GMM are:

e GMM outperforms many modeling schemes such as VQ, HMM, radial basis function
(RBF), for text-independent speaker identification [54]. Since most of the fingerprinting
techniques are adapted from speech identification research, it is instructive to use GMM

for fingerprinting.

e GMM reduce the dimensionality of the input greatly. Instead of storing the array of

feature vectors, only the GMM parameters have to be stored in the database.

e Fingerprints modeled using GMM are robust to various distortions due to the ap-
proximation of the feature space. Also, if the multimedia clips are known to undergo
some known distortion, then these distortions can be used in the training to make the

fingerprints robust to those distortions.
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3.1 Audio Fingerprinting

The overview of the proposed audio fingerprinting scheme is shown in Figure 3.2. First
the incoming audio clip is preprocessed and features are extracted from them. Then using
these features, the audio clip is modeled using Gaussian mixtures. In the training phase, the
mixture models of all the audio clips are stored in the database along with the meta-data
information. In the identification phase, features from an unknown audio clip are used to
evaluate the likelihood of all the models in the database. Then the model that is most likely

to generate features is identified as the correct audio clip.
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Figure 3.2: Proposed fingerprinting system

3.1.1 Preprocessing

In the first step, the audio signal is converted to a standard format (16 bit, PCM). If the
audio signal is stereo, it is converted to mono by averaging the right and left channels.
Then the signal is downsampled to 11025 Hz and the dynamic range is normalized to -1,
1]. Audio signals are highly non-stationary signals. However, it can be assumed that the
spectral characteristics of the signals does not change over an interval of few milli seconds.

Hence the audio signals are divided in to frames of length 23 ms. To increase robustness to

35



Audio Feaﬁtres I

Spectral Features Cepstral Features Time-domain Features

* Shannon entropy
* Renyi entropy

* Spectral centroid
* Spectral bandwidth

* Spectral flatness measure
* Spectral crest factor

* Spectral roll-off frequency
* Spectral flux

¢ Zero crossing rate

Figure 3.3: Audio features

shifting, the adjacent frames have an overlap of 50%. To reduce discontinuity at the edges,

a Hamming window is applied to the frames.

3.1.2 Feature Extraction

In a typical audio fingerprinting application such as in DRM, the initial fingerprint gener-
ation and the fingerprint matching are done in a server with large computing and memory
resources. In the identification phase, the fingerprint generation is usually done in a client
machine such as a personal computer or a mobile device with limited resources. Hence fea-
tures used to generate fingerprints must be simple to compute. The features used in the
fingerprinting algorithm are shown in Figure 3.3. Though it is possible to extract features
from the TF domain and wavelet domain, these features are not considered as they are com-
putationally complex for real-time multimedia processing tasks.

Spectral Features

Let s,(n) represents the i*" frame of the signal withn = 1,..., N. Let F; = f;(u),u € (0, M),
be the Fourier transform of the i*" frame, where M is the index of the highest frequency
band. To increase the robustness of the fingerprint, features are not extracted on the whole

spectrum but on non-overlapping logarithmically spaced bands. Let [, and u;, be the lower
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and upper edges of the frequency band b. The lower and upper edge frequencies of the bands
are given in Table 3.1. The definition of the features considered in this work are given below.
Some of these features have been used successfully in audio fingerprinting [13] and music

classification [55).

Table 3.1: Frequency bands

Band b | Lower edge (Hz) | Upper edge (Hz)
1 0 62.5
2 62.5 125
3 125 250
4 250 500
5 500 1000
6 1000 2000
7 2000 5512

1. Shannon Entropy (SE): The Shannon entropy of a signal is a measure of its spectral

distribution of the signal. Shannon entropy is defined as

SBy= 3 1fi(w)| gy |f:w)] (31)

u=ly

2. Renyi Entropy (RE): The Renyi entropy of a signal is also a measure of its spectral

distribution. Renyi entropy is defined as

RE;, = 1 —~ log; (Z | f,-(u)r‘) . (3.2)

1- u=ly

3. Spectral Centroid (SC): The spectral centroid is the center of gravity of the magnitude

spectrum of the STFT and is a measure of spectral shape and “brightness” of the -
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spectrum. SC is defined as

Zu—l,, |f1 u)l
Eu—-lb |ft (u) l

SCip = (3.3)

. Spectral Bandwidth (SB): The spectral bandwidth is measured as the weighted average
of the distances between the spectral components and the spectral centroid. SB is

defined as )
Eu-z, (u— SC; b) | fa(u)|

S, 1@

SB;, = (34)

. Spectral Band Energy (SBE): The spectral band energy is the energy in the frequency

bands normalized by the energy in the whole spectrum. SBE is defined as

g, £ (W)

SBE," =
ST

(3.5)

. Spectral Flatness Measure (SFM): The spectral flatness measure quantifies the flatness
of the spectrum and distinguishes between noise-like and tone-like signal. SFM is

defined as
[humwuww
ub-—lb+1 Zu—lb Ift(u)|

SFM;y = (3.6)

. Spectral Crest Factor (SCF): The spectral crest factor is also a measure of the tonality
of the signal. SCF is defined as

max ()f;(w)*)
—— T
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8. Spectral roll-off Frequency (SRF): The spectral roll-off frequency is defined as

SRF; = max (h

‘h M
S A <TH. S fi(u)) , (3.8)

u=0 u=0

where TH is a threshold between 0 and 1. A threshold value of 0.8 is used in this work.

9. Spectral Flux (SF): The spectral flux is defined as

M
SF; =Y |Ilfirr (@) = | fi(w)ll- (3.9)

u=0
Among the spectral features, spectral band energy, spectral flatness measure, spectral crest
factor have been already used for audio fingerprinting. In this thesis, in addition to these fea-
tures novel spectral features such as Shannon entropy, Renyi entropy, spectral centroid, band-

width, spectral roll-off frequency, spectral flux are considered in the fingerprinting scheme.

Cepstral Features

Cepstral features are also extracted from the frequency domain but are based on the log-
amplitude of the spectrum. In this work, only MFCC are considered. MFCC are perceptually
motivated features based on the STFT. After taking the log-amplitude of the magnitude
spectrum, the Fourier transform coefficients are grouped and smoothed according to the
perceptually motivated Mel-frequency scaling. Finally, in order to decorrelate the result-
ing feature vectors, a DCT is performed. In this work, 13 coefficients are used since this

parameterization has been shown to be quite effective for speech recognition and speaker

identification applications [56].
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Time Domain Features
In time domain, only the zero crossing rate (ZCR) is considered. ZCR is a correlate of
the spectral centroid. It is defined as the number of time-domain zero-crossings within the

processing frame.

N-1
ZCR; = % (Z |sign (si(n)) — sign (si(n — 1))|) , (3.10)

i=1
where N is the number of samples in the frame 7 and f, is the sampling freqﬁency.

Let X; be the set of features extracted for the frame i. X can be any one of the features
described above. In order to better characterize the temporal variations of the signal, the

first derivatives of the above features

6; = 6; — bi-1, (3.11)

are also included in the feature matrix. In an audio clip, successive frames are related in
time. To include this time dependency, a time vector is added to the feature matrix. This
time vector is taken as an incremental counter. Thus, the feature matrix of the entire audio
clip can be described as |

Xla‘slatl

Xa, 02,2

Fiy = : (3.12)

XNa(SN’tN

where N is the number of frames in the audio clip. Finally the feature matrix F), is mean
subtracted and component wise variance normalized to get a normalized feature matrix Fu.
3.1.3 Fingerprint Modeling

The feature matrix generated can be used as a fingerprint. The feature matrix is usually
large. Hence it increases the size of the database and the computational complexity during

fingerprint matching. The fingerprint size can be reduced by exploiting the redundancies
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across the audio frames. A modeling tool can be used to generate a concise form of a fin-
gerprint. This work uses GMM for modeling which has been successfully used in audio
classification [55] and content based retrieval [57]. Here GMM is used to model an audio fin-
gerprint as a probability density function (PDF), using a weighted combination of Gaussian
component PDFs (mixtures). GMM are commonly used to model multi-modal, or other
non-Gaussian distributions [58]. A GMM is just a weighted average of several Gaussian
PDFs, called the component PDFs. The density function of a random variable X € R¢ with

a mixture of k Gaussians is defined as:

f(xl6) = Z a; \/2_VI<ITI {—%(m—uj)ﬂ"@;l(x—_ u,-)}, (3.13)

with parameter set 6 = {oy, u;, (I)j};;l having the following parameters:
e weight a; >0, ZJ‘.‘=1 a;j=1
e mean p; € RY, and

e covariance matrix ®;, a d x d positive definite matrix, where d is the dimension of the

feature matrix.

Given a set of feature vectors z;,s...,Zn, the maximum likelihood estimation of @ is:

Opr = arg max L(b|zy, o, .. .,Tn) - (3.14)
= argmax Z log f(z:|0) (3.15)
=1

The Expectation Maximization (EM) algorithm [59] is an iterative method to obtain /.
Given the current estimation of the parameter set 6, each iteration of the EM algorithm

reestimates the parameter set according to the following two steps:
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1. Expectation step:

a; f(xi|ps, ;)

- Ef:l alf(a:i',ul’ (I)l) (316) .
= 1,...,k (3.17)
= 1,...,n. (3.18)

The term w;; is the posterior probability that the feature vector z; was sampled from

the j** component of the mixture distribution.

2. Maximization step:

Zj

1 n
18, (3.19)

n =1

21.1_1 u)i_gxl

i 3.20
Z:i:l Wij ( )
Sy wig (i — ) (i — )" (3.21)
Doy Wij .

The first step in applying the EM algorithm is to initialize the mixture model parameters.

The k — means algorithm [58] is utilized to initialize the values of the parameter set 6. The

covariance matrix in the GMM can be full or diagonal. As the feature vectors in this work

have reasonably uncorrelated components, computationally convenient diagonal covariance

matrices can be used. To reduce the computational complexity, diagonal covariances are

used for each Gaussian mixture. The parameter set 6 is updated repeatedly until the log-

likelihood is increased by less than a predefined threshold from one iteration to the next to

get the maximum likelihood parameters Oa/r. During the training phase, using the feature

matrix Faq, an audio item is modeled as a GMM and the parameter set 6 is stored in the

database along with the meta-data of the audio.
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3.1.4 Fingerprint Matching

The fingerprint matching is based on the log-likelihood value given by Equation (3.15).
The features from the unknown auaio are used to evaluate the log-likelihood value of the
all the models present in the database. If we know that the unknown audio is present in
the database, then we can choose the model that gives the highest log-likelihood. If that
information is not available, then there should be a criteria to reject the audio clips that are
not in the database. An audio clip can be rejected if the log-likelihood is below a certain

threshold. The choice of threshold affects the false positive and false negative values.

3.2 Results and Discussion

A database containing 250 five-second audio clips chosen from the categories of rock, pop,
country, classical, and jazz is used for simulation experiments. The audio clips are chosen
from random portions of songs from CDs. As described in Section 3.1, the audio clips are

modeled as mixture of Gaussian distributions.

3.2.1 Robustness to Undistorted Audio

In order to describe the robustness of the scheme to undistorted audio, the log-likelihood of
each of the 250 clips are evaluated with all the 250 models in the database. The audio clips
used in testing are shifted in time by quarter of the frame width so that all the corresponding
frames in the trainihg and testing phase have only 50% of the samples in common. In this case
there are 250 target/target log-likelihood values and 62250 target/non-target log-likelihood
values. If the log-likelihood values of these two classes are far apart, then using a simple
threshold, these two classes can be separated easily. In Figure 3.4, the solid line shows the
log likelihood values for target/target case sorted in increasing order. The dotted line shows
the highest 250 log likelihood values for target/non-target case sorted in decreasing order. -
From the figure, it is clear that the two categories can be separated with an appropriate

threshold.
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Figure 3.4: Log-likelihood values for target/target and target/non-target cases

3.2.2 Robustness to Distortions

In the previous test, only the undistorted audio clips are used. However, in practical cases,
the test audio clips usually undergo some kind of distortion. The following distorted versions

are used in our tests.

I. Compression ~ 1) MP3 at 32 kbps, 2) Advanced Audio Coding (AAC) at 32 kbps, 3)
Windows Media Audio (WMA) at 32 kbps, 4) Real encoding at 32 kbps.

II. Amplitude distortion — 1) 3 : 1 Compression above 30 dB, 2) 3 : 1 Expander below 10
dB, 3) 3 : 1 compression below 10 dB, 4) Limiter at 9 dB, 5) ‘Super-loud’ amplitude
distortion, 6) Noise gate at 20 dB, 7) De-esser, 8) Nonlinear amplitude distorfion.

III. Frequency distortion — 1) Nonlinear bass distortion, 2) Midrange frequency boost, 3)
Notch Filter, 750 - 1800 Hz, 4) Notch Filter 430 - 3400 Hz, 5) Telephone bandpass,
135 - 3700 Hz, 6) Bass cut, 7) Bass boost.

IV. Change in pitch — 1) Lower pitch 2 - 6 %, 2) Raise pitch 2 - 6 %.
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V. Change in speed — 1) Linear speed increase 2 - 6%, 2) Linear speed decrease 2 - 6%.
VI. Resampling at 8 kHz

VII. Echo addition

Table 3.2: Mean recognition (in % ) rate for distortions. T1: Without using distorted versions in
training, T2: Using some distorted versions in training

T1 | T2
Shannon entropy 91.8 | 98.9
Renyi entropy 94.4 1 96.7
MFCC 87.8 | 97.7
Zero crossing rate - 194.0 | 97.2
Spectral centroid : 99.0 | 99.9
Spectral bandwidth 88.6 | 98.3
Spectral band energy 87.6 | 96.8
Spectral flatness measure | 95.9 | 97.0
Spectral crest factor 96.6 | 99.1
Spectral roll-off frequency | 83.7 | 84.8

Table 3.2 shows the percentage of clips correctly identified for the distortions described
above. The results show that fingerprints using some features such as MFCC, spectral
bandwidth, spectral band energy are not robust to the distortions. To increase the robustness
of the fingerprints, in addition to the original audio, some distorted versions of the audio
are also used in training. The following distorted versions are used in our training: 1)
Undistorted audio, 2) 3 : 1 Compression above 30 dB, 3) Nonlinear amplitude distortion,
4) Nonlinear bass distortion, 5) Midrange frequency boost, 6) Notch Filter, 750 - 1800 Hz,
7) Notch Filter 430 - 3400 Hz, 8) Raise Pitch 1%, 9) Lower Pitch 1%. As a first test, the
log-likelihood of the test clips are evaluated for all the models in the database. Then the
model that gives the highest log-likelihood is taken as the correct match. Thus, this test
assumes the presence of the test clip in the database. Table 3.3 shows the percentage of clips

that are correctly identified for different features for distortions used in training as well as for
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distortions not used in training. The values under the columns ‘Train’ and ‘Test’ represent
the mean recognition rate for distortions used in training and distortions not used in training
respectively. The column ‘Mean’ gives the mean recogntion rate for all the distortions. The
results show that it is not necessary to train the model for all possible distortions. By
training the model to some representative distortions, robustness can be obtained to a wide

variety of distortions.

Table 3.3: Mean recognition rate (in % ) for distortions

< Train | Test | Mean
Shannon entropy 99.2 | 98.6 | 98.8
Renyi entropy 994 | 98.7 | 98.9
MFCC : 98.7 | 96.2 | 96.9
Zero crossing rate 97.7 |1 95.5 | 96.2
Spectral centroid ‘ 99.4 | 98.8 | 99.0
Spectral bandwidth 99.4 | 98.8 | 99.0
Spectral band energy 99.4 | 98.5 | 98.8
Spectral flatness measure | 98.8 | 98.2 | 98.4
Spectral crest factor 99.4 | 98.7 | 98.9
Spectral roll-off frequency | 85.0 | 89.6 | 88.3

3.2.3 False Positive Analysis

In the previous section, it was assumed that the test clip is present in the database. Hence the
model that gives the highest log-likelihood value is identified as the correct match. However,
it is possible that the test clip may not be in the database. So there should be a criteria to
reject the audio clips that are not in the database. A suitable threshold for log-likelihood

can be used to vary the false positive and false negative rates.

Model Order

The false positive rates and the correspondihg identification rates is dependent on the number

of Gaussian mixtures used in the modeling. For example, Figures 3.5 and 3.6 show the iden-
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tification rate curves for spectral centroid and spectral flatness measure. The identification
rate curves for spectral centroid essentially converges for model order greater than 8. Similar
results were obtained for Shannon entropy, Renyi entropy, MFCC, spectral bandwidth, spec-
tral band energy and spectral crest factor. However, for some features like spectral flatness
measure, zero crossing rate, spectral rolloff and spectral flux the curves does not converge.
A higher model order is not used for these features because of the increased computational

complexity and fingerprint size.
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Figure 3.5: Identification rate (in % ) vs. false positive rate for different cluster size using spectral
centroid as feature.
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Figure 3.6: Identification rate (in % ) vs. false positive rate for different cluster size using spectral

flatness measure as feature.
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Identification Rate vs. False Positive Rate

The false positive and the corresponding identification rates are shown in Figures 3.7, 3.8
and 3.9. The percentage of audio clips correctly identified at different false positive rates are
shown in Table 3.4. Among the different features used, spectral centroid gives the highest
identification rate of 99.1% with a false positive rate of 107*. MFCC gives an identification
rate of 79.3% at a false positive rate of 1071, Spectral roll-off frequency and spectral flux

are the two features with very low identification rates.
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Figure 3.7: Identification rates (in % ) at different false positive rates for Shannon entropy, Renyi
entropy, and MFCC
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Figure 3.8: Identification rates (in % ) at different false positive rates for zero crossing rate,
spectral centroid, spectral bandwidth, and spectral band energy
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Figure 3.9: Identification rates at (in % ) different false positive rates for spectral flatness measure,
spectral crest factor, spectral roll-off frequency, and spectral flux

The performance of the algorithm is compared with the results obtained by other au-
thors in Table 3.5. While some authors such as Burges et al. [17] tested the robustness of
the algorithms using a wide range of distortions, most of the authors have tested only for
few distortions such as MP3 compression or equalization. In spite of using a wide range of
distortions, the proposed algorithm is comparable in performance to many of the schemes
except that of Burges [17]. Burges et al. [17] derive optimal features using oriented princi-

pal component analysis (OPCA) which is computationally intensive and hence may not be

Table 3.4: Identification rate (in % ) at different false positive rates

i e B
Shannon entropy 80.8 1 979 ] 99.1
Renyi entropy 97.8 | 98.7 1 99.3
MFCC 79.3 | 81.6 | 8.3
Zero crossing rate 79.2 1 91.7 | 97.0
Spectral centroid 99.1 | 99.2 | 99.7
Spectral bandwidth 95.5 ] 98.1 | 98.9
Spectral band energy 97.1 | 98.3 | 98.9
Spectral flatness measure | 85.1 | 97.0 | 98.7
Spectral crest factor 94.4 1979 ] 98.9
Spectral roll-off frequency | 26.6 | 53.1 | 88.3
Spectral flux 59.1 1 89.9 1] 97.0
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suitable for some applications.

Table 3.5: Comparison of performance with other schemes

Author Distortions | False positive % | Identification rate %
Proposed many .01 99.1
Burges [17] many .0008 99.2
Venkatachalam [9] | MP3 - 32 kbps 0 96.64
Cano [15] MP3 - 32 kbps 0 92.5
Sukittanon [18] Equalization 2.3 98.3

3.3 Video Fingerprinting

In the previous section, audio fingerprints are modeled using Gaussian mixtures. The fin-
gerprints have good discrimination and are invariant to distortions. This motivated us to
extend the scheme to video fingerprinting. This section describes a video fingerprinting al-
gorithm that uses spatio-temporal features and model them using GMM. The robustness of

the fingerprints is evaluated using MPEG compression and other video manipulations.

3.3.1 Feature Extraction

In audio, features extracted from the frequency domain are good in representing the percep-
tual characteristics of the audio. However, in video it is less clear which domain is suitable.
To reduce the computational complexity, features are extracted from the spatio-temporal
domain. The motivation for choosing spatio-temporal domain is to not only capture the
features in the individual frames but also to capture the temporal activity present during
the duration of the clip. |

For each pixel, the luminance value is calculated. This is the first dimension of the feature
vector. In order to include spatial information, the (x,y) position of the pixel is appended
to the feature vector. The time feature ¢ is added next. The time descriptor is taken as an
incremental counter. Following the feature extraction stage, each pixel is represented with

a 4D feature vector, and the image sequence as a whole is represented by a collection of
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feature vectors in the 4D space. The feature matrix is represented as

Li,XvKtl

Li+n’Xa)/)t2

Fig= (3.22)

bl

Li+kn’ X, Y, tN

where L¢ is a vector of luminance values of all the pixels in the frame i, and X,Y are the
and y positions of the pixels respectively, and ¢ is the time index. To reduce the complexity,
one frame every n frames are used in the feature vector. Finally, the feature vector is mean

subtracted and component wise variance normalized to get a normalized feature matrix F4.

3.3.2  Fingerprint Modeling

In [60], Greenspan et al. propose a statistical framework for modeling video content into
coherent space-time segments within the video frames and across frames. They term such
segments “video-regions.” Unsupervised clustering, via Gaussian mixture modeling, enables
the extraction of space-time clusters, or “blobs,” in the representation space. Space and time
are treated uniformly and the video is modeled as a single entity, as opposed to a sequence of
separate frames. Following their approach, the video fingerprints are modeled based on the
features described in the previous section. During the training phase, the GMM parameters
of all video clips are extracted and stored in the database along with the meta-data of the

video clips.

3.3.3 Results and Discussionn

A database containing 100 six-second video clips with a resolution of 288 lines and 352 pixels
per line are used in our tests. The frame rate of the video clips is 15 frames per second. But
only 5 frames per second are used in the feature matrix given by Equation (3.22). During
fingerprint extraction, each video frame is resized to 144 x 176, and are modeled as described

in the previous sections. The tests included the following processing:

1. MPEG1 compression at a bit rate of 1 Mbps
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2. Median filtering using 3 x 3 adjacent pixels

3. Vertical shifting with gray band at the bottom

4. Spatial resizing

5. Spatial Gaussian noise addition with different variance values

The results are shown in Table 3.6 and Figures 3.10 - 3.12. The results show that the
proposed technique is very robust to perceptual coding and median filtering. For bit rates
above 1 Mbps, 100 % recognition rate is obtained for MPEG compression. The results
indicate that the algorithm is robust to processing that are done on a local basis such as
compression and filtering. However, for global geometric operations such as scaling and

resizing, the algorithm is not very robust.

Table 3.6: Recognition rate (in %) for MPEG compression and median filtering.

Original | MPEG 1 | Median filtering
100 98 97

Accuracy %
8
T

Shift %

Figure 3.10: Recognition rate (in %) for vertical shifting.
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Figure 3.11: Recognition rate (in %) for additive white Gaussian noise.
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Figure 3.12: Recognition rate (in %) for spatial resizing.

The performance of the algorithm is comparable to other works such as [22] and [21].
The algorithms is quite robust to MPEG compression when compared to [21]. To resizing
operations the algorithm performs better than [22]. However, the algorithm is less robust to
shifting operations than [22].

This chapter discussed a novel fingerprinting technique that extracts features and models
them using GMM. By modeling the fingerprints by GMM, the size of the fingerprint is
reduced. GMM also provides as approximation of the feature space over the length of the

multimedia clip providing invariance to various distortions. The technique is applied to

53



both audio and video fingerprinting. Spectral features are used in audio fingerprinting and
spatio-temporal features are used in video fingerprinting. The simulation results show that
the algorithm is robust to several distortions. The next chapter describes a novel algorithm

for image watermarking.

54



Chapter 4

Watermarking

The huge success of the Internet allows for the transmission, wide distribution, and access
of electronic data in an effortless manner. Content providers are faced with the challenge of
how to protect their electronic data. One of the possible solutions in the area of copyright
protection is data watermark, which is added to multimedia content by embedding an im-
perceptible and statistically undetectable signature. Thereby, multimedia data creators and
distributors are able to prove ownership of intellectual property rights without forbidding

other individuals to copy the multimedia content itself. The embedded watermark should

be satisfy the following requirements [28):

e Unobstructive — that is perceptually imperceptible, when embedded in the host signal.
e Discreet — undetectable to prevent unauthorized removal.

e Robust — depending upon the type of watermarks, watermarks should remain intact

in the host signal when subjected to intentional removal attacks and common signal

processing manipulations.
e Easily extractable — authorized watermark extraction must be easy and reliable to
prove ownership.

In this chapter, a novel robust image watermarking scheme [61] is developed addressing
the above issues and the performance of the proposed scheme is evaluated using a third party

evaluation tool, the checkmark [62].
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4.1 Proposed Scheme
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Figure 4.1: Overview of the proposed scheme.

The proposed novel robust watermarking scheme is capable of embedding multiple bits
in images. Figure 4.1 shows an overview of the proposed scheme. The motivation for the
proposed image watermarking algorithm is to embed, detect, and reliably extract watermark
messages from a large alphabet even in the presence of bit errors caused by image or channel
manipulations. To achieve this, linear frequency modulation signals (chirps) are embedded
as watermark messages [63]. Different chirp rates, i.e., slopes on the TF plane, represent
watermark messages such that each slope corresponds to a different message. As a result
of any incidental or intentional image manipulations, some message bits of the embedded
chirp, extracted by the detector may be in error potentially resulting in the detection of
the wrong watermark message. Hence the objective is to detect and extract the slope of

the chirp accurately in the presence of noise or discontinuities that could arise as a result
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Figure 4.2: Watermarking system

of bit errors introduced by image manipulations. TF representations combine time-domain
and frequency-domain analysis and hence for non-stationary signals they yield a potentially
more revealing picture of temporal localization of signals spectral components. Chirps are
non-stationary signals and they can be best detected in a TF plane. At the receiver, the HRT
is used to detect the chirp, which appears as a straight line in the irhage of the TF plane.

The individual blocks in the proposed algorithm are described in the following subsections.

4.1.1 Spread Spectrum Watermarking

Watermarking can be thought of a communication problem; communicating the watermark
is analogous to transmission of information through a communication channel as shown in
Figure 4.2. The watermark embedder and watermark detector are similar to the transmitter
and receiver in a communication system. The channel in the communication system is the
original content. After the watermafk is embedded in to the content, the watermarked con-
tent is processed in some way, and the effect of processing can be modeled as the addition of
noise. Hence solutions to communication can be applied to watermarking. Secure commu-
nications systems are important for military communications. In a secure communication
system, first the unauthorized reading of the message by an adversary should be prevented.

Second the adversary should not be able to find out whether there is a message sent through
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the channel. Finally the signal jamming, i.e., the intentional jamming of communication
between two or more people by the adversary, should be prevented. To address these issues,
spread spectrum (SS) communications were developed in the early 1940s and used in the
World War II. Watermarking has also the same requirements. The transmission of informa-
tion through the original content should be invisible to the users and unauthorized removal of
watermark should be prevented. Hence SS techniques are ideal solutions for watermarking.

The next subsection describes the traditional SS communication techniques.

Discrete Spread Spectrum Communication

The discrete SS communication model developed here is based on approach followed by
Flikkema [64]. Let us consider a simple communication system in two forms. In the first case,
the data is transmitted as it is and in the second case data is transmitted by spreading with
a pseudo-random (PN) sequence. First let us consider the non-spread digital communication
model. Let the message sequence be m;, € {%1}. For keeping our discussion simple, message
bits are assumed to be equiprobable. The received sequence is transmitted through the

channel and exposed to additive noise. It can be expressed as
e = Emy + ny, (4.1)

where FE is the energy of the transmitted pulse and ny is the additive white noise added to

the signal. Let the noise n; be a zero mean signal with a auto-covariance
E[nknk.H] = 0’25(l), (42)
where E[ . ] is the expectation operator. The optimal receiver in this case is a level detector:

e > 0; mp=1
e <= 0; my = —1, (43)
My is the estimate of the transmitted bit. 7 is a random variable with mean Em,; and

variance o2. In this case, the probability of bit error is a function of energy of the pulse and
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the variance of the noise [64]:

=0 (§> , (4.4)

where Q(z) = = [° e 37 dy.

Now let us consider a spread spectrum discrete system. In this case, instead of transmit-
ting one bit for a duration of T', N bits b,,n =0, ...N —1 and b, € +1 are transmitted
in the same duration T. b, is obtained by spreading a message bit m; using a spreading
sequence c,.

by = E;myc,, n=0,...N—1 ’ (4.5)

where the energy of the bit is E, = E/N since each bit of b, is transmitted only for a

duration of T/N. The ideal spreading sequence has a mean of

L =
Elen] = > eam0, (4.6)

n=0

and a discrete time autocorrelation of

N-1
1
Elcacnyl] = Nzcncn+l (4.7)

n=0

1 ifl=0
{ 0 if1£0. (4.8)

These two conditions are ideal but can be closely approximated in practice using the tech-
niques described in [65]. For example, in maximal length sequence, the number of +1 bits
differs from the number of bits -1 bits. Hence the mean of the sequence is not exactly zero.
The received sequence r, for the k* transmitted bit with additive white noise j, is given

by
e = Esmpen +jn. n=0,...N—1 (4.9)

The optimal receiver in this case correlates the spreading sequence with the received sequence

and uses a level detector on the correlated value to estimate the transmitted message bit
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my. The decision variable is

N-1
y = Y (Bemucn + jn) cny (4.10)
n=0
N-1
= NEmy+ ) jncn, (4.11)
n=0
and the output of the decision device
. _J1 ify>0

The expected value of the decision variable y in Equation 4.11 is zero as shown in the

following equation.

N-1 :
Ely] = E[NEmy)+E [Z jnc,,] (4.13)
n=0
= NE.mj+0 (4.14)
= Em. ' ' (4.15)

The variance of the decision variable is

Vly] = VI[NEmg]+V

N-1
> jncn] (4.16)

n=0
2

g
= 0+N= (4.17)

= o?, (4.18)

where V[ . ] is the variance operator. Again the probability of bit error depends only

2 and is same as in Equation 4.4. This means that

on the energy E and the variance o
the performance of the non-spread spectrum and spread-spectrum communication systems
are same in the presence of additive white noise in the channel. However, in the military
communications the main concern is the jamming of the signal by the adversary. In a SS
system, the spreading sequence c;, is a broad band signal and its spectrum is like a white noise.
Since the message signal is spread by the spreading sequence, the transmitted signal also has

a spectrum like a white noise. For an adversary, who does not know the secret spreading
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sequence, the transmitted signal looks like a white noise. To jam the transmitted signal, the
adversary can use a high-power narrow band signal, since using a high-power broad-band
signal is practically not possible. SS systems have an inherent property of suppressing a
narrow band interference [64].

Interference Suppression

Let us consider an interferer in the channel: an unknown constant I is added to the received
signal. It can be shown that the decision variable for the non-spread spectrum system has an
expected value of N(E,m;, + I) which will render the system unusable for sufficiently large

|I]. Now for the SS system, the received signal is
rm=Empcy +in+Jn, n=0,...,.N—1 . (4.19)

with i, = I. The decision variable at the receiver is

N-1
y = Z (Ecmicn + in + wy) jn (4.20)
n=0
N-1 N-1
n=0 n=0
N-1 '
~ NEemg+0+ ) jncn. (4.22)
n=0

The decision variable has a mean of Em; and a variance of o2 and the interference is
suppressed by despreading operation. In the above discussion, it was assumed that I is a
constant signal. However, the mean and the variance of the decision variable will be close to
the above mentioned values if the signal I is a narrow band signal. In watermarkirg, most
of the attacks (the unauthorized removal of watermarks) can be modeled as a narrow band

interference. Hence SS techniques are ideally suited for watermarking.

4.1.2 Time Frequency Analysis

The watermark detector has to detect and estimate the slope of the chirp. To detect the chirp,

first the chirp is represented in a TF plane. This section explains why Fourier transform is
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insufficient for representing a chirp and explain the ways of representing a chirp by different

TF distributions.

Fourier transform is a widely used technique to analyze the energy content of the signal
at different frequencies. Fourier transform assumes that the signal to be stationary and
evaluates the frequency content of the whole signal. To demonstrate the need for TF analysis,
consider the representation of two chirps as shown in Figure 4.3. Chirps are non-stationary
signals whose frequency varies with time. In Figure 4.3, two chirps are shown; one chirp
whose frequency increases with time, and another one, whose frequency decreases with time.
The magnitude spectrum of the two chirps are same. The inclusion of phase spectrum of the
two chirps can help us differentiate the chirps, but with the magnitude spectrum alone, it
is not possible to differentiate the chirps. But the TF representation clearly shows how the
frequency of the chirps changes over time. TF representations show the change in frequency

content of the signals over time.
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Short Time Fourier Transform

The simplest TF representation is the STFT. In STFT, a sliding window divides the signal
in to overlapping time segments and evaluates the Fourier transform in each segment. It is

assumed that the signal is stationary for the period of the window. The discrete STFT of

the signal is given by

X(n,w) = i z(n + 7)w(r)e 7, (4.23)

T==00

where w(n) is the window function. X (n,w) is the two dimensional TF representation with
discrete time variable n and frequency variable w. Usually the squared modulus of the STFT,

the spectrogram is used for representation of signals and is defined as
S(n,w) = |X(n,w)|?. (4.24)

In STFT, the size of the window determines the frequency resolution. If the length of the
window is long, the frequency resolution will be good but any changes in the frequency
content of the signal within the period of window will not be captured. On the other hand, a
small window provides a good time resolution at the cost of frequency resolution. The fixed
time and frequency resolution is an important drawback of the STFT. Figure 4.4 shows the
representation of chirp using a spectrogram. Chirps are highly non-stationary signal and
its frequency changes with every time instant. The spectrogram exhibits poor frequency
resolution due to the fixed window size. Though it is possible to identify the presence of a
chirp in a spectrogram, it is not possible to accurately estimate the slbpe of the chirp from
the spectrogram. Hence TF representations with higher frequency and time resolution are

needed for accurate representation of chirp signals.

Wigner-Ville Distribution

The Wigner-Ville Distribution (WVD) has been developed to provide high time as well as

frequency resolution. It is a quadratic distribution and is a special case of Cohen’s class of
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Figure 4.4: Spectrogram representation of the chirp signal

bilinear distribution [66]. The WVD of a signal x(n) is given by

where x*(n) is the complex conjugate of the signal. W(n,w) can be seen as the Fourier
transform of the autocorrelation of x(n). The WVD of a chirp signal is shown in Figure 4.5.
From the figure, it can be clearly seen that the resolution of WVD is much better than the
spectrogram and the chirp itself is represented by a thin line. The main disadvantage of the
WVD is the presence of cross terms for multi-component signals. Cross terms are spurious
oscillating components that occur in the TFD. For a multi-component signal with a frequency
of wy at time n; and ws at time no, the WVD contains a cross term wis (w1 + wy)/2 at
time 7112 (ny + ny)/2. There are many approaches to reduce the cross terms in a TFD
66]. A common approach to reduce the cross terms is to smooth the WVD. Since the cross
terms are highly oscillating in nature, smoothing reduces the cross terms but also affects the
resolution of the TFD. But since our objective is estimate the presence of a mono component
chirp signal, WVD provides a optimal representation of the chirp signal. The next section

describes how to detect and estimate the slope of the chirp from the WVD using the HRT.
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Figure 4.5: Wigner-Ville distribution of the chirp signal

4.1.3 Hough-Radon Transform

The HRT is developed by Rangayyan and Krishnan [67] to detect linear and non-linear
frequency modulated signals from the image of the TFD. The Radon Transform (RT) and
Hough Transform (HT) are described first and the need for a combined HRT is discussed

later.

Radon Transform

The RT is used to identify straight lines in an image or a two-dimensional distribution. It
is widely used in computer tomography [68]. The RT integrates a function over lines in the
plane, mapping a function of position to a function of the parameters of a straight line. The

RT can be expressed as
R{f(z,y)} = / / f(x,y)o(p — (xcosl + ysinb))dxdy. (4.26)

where 6, is the angle of the ray path of integration, p, is the distance of the ray path from the
center of the image, and ¢ is the Dirac delta function. The equation represents integration of
f(z,y) along the line p = xcosf + ysin# as shown in Figure 4.6. Here the function f(z,y)
represents a TFD W (t,w). Basically, the RT adds up the pixel values in the given image or
TFD along a straight line in a particular direction and at a specific displacement. The RT

may be applied to both binary images and gray level of any intensity distribution.
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Figure 4.6: Illustration of the Radon transform

Hough Transform

The HT is a pattern recognition tool invented by Paul Hough and patented by IBM [69].
HT is used to identify lines or curves in a image that satisfy a parametric constraint and it
is widely used in object detection [70], texture analysis [71] and character recognition[72].

The parametric constraint may be expressed as
f(X,4A) =0, (4.27)

where X is a point in the space of possible features and A is a point in a space of para-
meters. The parameter space is commonly referred to as the Hough space. Depending on
the application, the constraint may be a curve, a line, or a surface. Each point Aq in the
parameter space represents a particular constraint that is a particular instance of a curve,

line, or a surface. The constraint may be mapped into the Hough space by evaluating
{X : £(X, &) = 0}. (4.28)
The set of lines or curves that pass through a given feature point X, are given by

{A: f(Xo,A) = 0}. (4.29)
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Given a number of feature points that satisfy a constraint specified by parameters Ag, the
sets generated by Equation 4.29 for each feature will contain the point A,. The feature
points that satisfy a particular constraint will all intersect at a common point capital A,

that gives the parameters of the constraint.

Hough Radon Transform

The combined HRT is proposed by [67] is an extension of the HT. Line detection by the HT
is performed by quantizing the parameter space and by incrementing the accumulator cells
by one value for each pixel on a straight line. HT by itself counts only the number of pixels
in a straight line. The HT is a robust method which is insensitive to missing data, and can
cope well with huge sets of data. The major drawback with the HT is that it is defined for
a binary image and cannot be readily applied to a gray-level image. In RT, the parameter
space quantization of HT is not poss'ible. |

Given the advantages and the drawbacks of the RT and the HT individually, it is appro-
priate to combine the RT with the HT to identify complex TF features with varying gray
level or intensity. In HRT, instead of incrementing each accumulator cell by one value for
each pixel on the straight line, the energy (or gray scale value) of each pixel is added to the
accumulator. This method can be applied to gray level images, and can be implemented to
identify any feature that satisfies a parametric constraint. |
Detection of Chirps
Let us consider the problem of detecting a chirp represented by a TFD W (n,w). The TFD
is treated as a gray scale image and the chirp is identified by detecting a straight line in the

TFD image. The straight line is represented by
zcosf + ysinf = p. (4.30)

The parameter space (p,6), also known as the HT space, is now bounded in § € [0,7] and
p, by the greater of rows and columns (say rows) ®rows/+/2. The HT space is divided into

accumulator cells and the cell at coordinates (4, j) with accumulator value A(%, j) corresponds
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to the partition of the space associated with the parameter coordinates (6;, p;). Initially, the

cells are set to zero.

1.

For every point (ng,ws) in the TF plane, let the parameter 6 equal each of the allowed
subdivision values on the §—axis and solve for the corresponding p using Equation
4.30. The resulting p value is rounded to the nearest allowed value on the p-axis. If a
particular 6; value results in the solution p;, add the gray scale intensity of the pixel

is added to the accumulator A(z, j).

. A specific point W (ny,wy) is represented as a sinusoidal curve in the HT space. All of

the sinusoids resulting from a mapping of a line in the TF plane have a common point
of intersection in the HT space. Thus, the straight line correspond to a high intensity
point in the HT space. A suitable threshold value is chosen for the accumulator cell
values and the straight line (chirp) is declared as detected only at least one of the
accumulator value is above the threshold. The cell with the highest value gives the

parameters of the line.

This section described the components used in the proposed scheme. The following sections

describe the proposed algorithm and results obtained for various robustness tests.

4.2 Watermark Embedding

The overview of the embedding scheme is shown in Figure 4.7. The main steps of the

proposed algorithm are as follows:

1.

2.

Selection of the watermark message.

Generation of watermark, which includes spreading the watermark message bits using

a watermark key to generate a spread spectrum signal.

Finding perceptually significant regions in the images using perceptual models based

on the human visual system.

Embedding the watermark message.
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Figure 4.7: Proposed watermark embedding scheme

4.2.1 Selection of the Watermark Message

As described earlier, linear chirps are used as watermark messages. The watermark message
is the slope of the normalized chirp m on a TF plane, with initial and final frequencies f,
and fy, respectively. Distinct pairs of initial and final frequencies form different watermark
messages, each represented by a unique slope in the TF plane. m is an N,, - sample long

sequence sampled at the sampling frequency f,, and its nt* element m,, is defined as

my, = sin (7r-ij£n2 + 27rf0n> . (4.31)
N
m takes continuous values in the interval [-1,1], and needs to be quantized. m? is the quan-

tized version of m formed according to the sign of the sample values of m, taking values -1

and 1.
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m? = [m{,mf,...,m% ] (4.32)

The WVD of the continuous and quantized versions of the chirps are shown in Figure 4.8.
The quantization introduces additional cross terms in the WVD, but it does not affect the

accuracy of the slope estimation because of the use of HRT in the receiver.
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Figure 4.8: Time-domain and TF representation of chirp signals

4.2.2 Generation of Watermark Message

To embed each watermark message bit in m9 into the image, each bit mZ. is spread with
a cyclic shifted version px of a binary PN sequence with a chip length of N and summed

together to generate the wideband noise vector w.
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M
wW=a Z mgpk, (4.33)
k=0

where M is the number of watermark message bits in m9 and « is a scaling factor which
is chosen appropriately to keep embedded watermark imperceptible. There is always a
possibility to make the trade-off between the embedded data size and robustness of the
algorithm; as the PN length is decreésing, the algorithm is able to add more bits into
the host image but the detection of the hidden bits and resistance to different attacks is
decreased. The wideband noise vector w formed is added to the image in perceptually
significant regions to ensure robustness of the watermark against attacks. The length of w
and hence the number of watermark bits that can be embedded depends on the perceptual

entropy of the image.

4.2.3 Perceptual Model

To find the perceptually significant regions in the image, models that describe the masking
characteristics of the human visual system can be utilized [73]. Among such models, a model
based on the just noticeable difference (JND) paradigm [74] is used. A set of JNDs is associ-
ated with a particular invertible transform T'. Given that a multimedia signal is transformed
using T, the JNDs provide an upper bound on the extent that each of the coeficients can
be perturbed without causing perceptual changes to the signal quality. The set of signal
and transform dependent JNDs can be derived using complex vanalytic models or through
experimentation. The JND parddigm is widely used in image compression, and image water-
marking applications. The JNDs are used to determine the perceptually significant regions
and also t;; find the perceptual entropy of the image. This work uses one such model based
on the DCT, which is discussed in the following paragraphs.

The model used was proposed by Watson [75] that has been applied to JPEG coding.
In this method, the original image is decomposed into non-overlapping 8x8 blocks, and the

DCT is performed independently for every block of data. Let the original image pixels are
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represented as x; jp, where ¢ and j represent the pixel elements in block b, and X, denotes
the DCT coefficients for the basis function located in the position u, v of the block b. A
frequency threshold value is derived for each DCT basis function and in this case result in
an 8x8 matrix of tf, threshold values. These threshold values are determined for various
viewing conditions by Peterson et al. [76]. The visual model used is for a minimum viewing
distance of four picture heights and a D65 monitor white point. Watson further refines this
model by adding a luminance sensitivity and contrast masking component. Luminance sen-

sitivity threshold is estimated by the formula,

Xoos\*
thop =tE, (-—%) , . (4.34)

where Xo, is the DC coefficient of the DCT for block b, Xj, is the DC coefficient cor-
responding to the mean luminance of the display, and a is a parameter which controls the
degree of luminance sensitivity. The authors in [76] suggest to set the value of a to 0.649.
Given a DCT coefficient and a corresponding threshold value derived from the viewing con-

ditions and local luminance masking, a contrast masking threshold is derived as

u,v T—wy,y
180 = max |t [ Kol ™, (t,0) 7], (4.35)

where w,,,, is a number between zero and one, and is empirically derived as 0.7 by the au-
thors in [76]. The contrast masking threshold t,,, is the calculated JND for the image and
represents the extent to which the DCT coefficients can be perturbed without producing any

visual artifacts.

4.2.4 Embedding the Watermark

The watermark embedding scheme is based on the model proposed in [38]. The watermark

encoder for the DCT scheme is described as
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Xuyvyb + tiv,bwu,‘v,by if Xu)vyb > t‘lfv,b;
Xowp = v (4.36)
Xuv,bs otherwise

where X, 5 refers to the DCT coefficients, X; , , refers to the watermarked DCT coefficients,
Wu,v,b is Obtained from the wideband noise vector w, and ¢$ »,p 18 the computed JND calculated

from the visual model described in Equation 4.35.

4.3 Watermark Detection

The received image may be different from the watermarked image due to some intentional
or unintentional image processing operations such as lossy compression, shifting and down-

sampling. Figure 4.9 shows the block diagram of the described watermark decoding scheme.
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Figure 4.9: Proposed watermark detection scheme

The detection scheme for the DCT based watermarking can be expressed as

Xu v,b — X
A L4} u,v,b
Wypp = —g— — (437)

(TRIN]
- . C .
Dypp, I Xypp > uvbs

W= (4.38)
0 otherwise
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where X, , are the coefficients of the received watermarked image, and W is the received

wideband noise vector. The received wideband noise vector can be expressed as

W =w+n, (4.39)

where n is the distortion component resulting from hostile image manipulations and is mod-
eled as a zero-mean random vector uncorrelated with the PN sequence. The watermark key,
i.e., the appropriately circular shifted PN sequence py is used to despread W, and integrate
the resulting sequence to generate a test statistic (W, px). The sign of the expected value of
the statistic depends only on the embedded watermark bit m]. Hence the watermark bits

can be estimated using the decision rule:

+1, if (W,px) > 0;
d (4.40)
-1, if (W,pk) <0.

The bit estimation process is repeated until an estimate of all the transmitted bits are
obtained. Though it is possible to form an estimate of the chirp sequence from the received
bits, as shown in Figure 4.10, the robustness of the detection algorithm is improved by

localizing the chirp in a TFD and detecting the chirp using a line detection algorithm.

g TFD - HRT ——————m

Figure 4.10: Postprocessing of extracted bits
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4.4 Post-processing of the Estimated Bits for Water-
mark Message Extraction

After all watermark bits are extracted, a TFD of the extracted watermark bits in {rhy, k =

1,..., Ny} is constructed. Each TFD is characterized by a different TF resolution [66]. Let

IT=T(ﬁll,...,ﬁ”LNm) (441)

be the I x N image matrix of the TF plane resulting from the TFD of the estimated bits
using the TF representation T. I is the number of rows in I that corresponds to the
number of frequency slots, and N is the number of columns that corresponds to the number
of time slots. A directional element detector can be used to detect time-varying energy val-
ues. The line detector that can satisfy our needs is a detector that uses the combination of
Hough and Radon transforms as proposed in [67]. This detector has been mathematically
proven to be an optimal detector as it provides the maximum likelihood identification of a
chirp signal [77]. Using the combined HRT, the pixels that form a parametric constraint in
a gray level image can be detected. These constraints can be straight lines or curves in the
image of the TF plane. Since linear chirps are embedded, the parametric constraint equa-

tion corresponding to a line equation expressed in terms of the parameter vector © = (p, 8) is

p— (ncosf + ksinf) = 0. (4.42)

With the above constraint equation the HRT can be expressed as [77]
N K

H(©)=> > I(kmn)d(p—ncosd+ksing). (4.43)

n=1 k=1

In the implementation of the HRT, the transform value at some point (po,6p) in the Hough

space contains the total energy in the pixels that satisfy the parameter constraint equation.
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Therefore, a HRT based system can be devised to effectively detect directional elements
defined by parametric equations: the peak values of the HRT will yield the most likely
parameter values. (Figure 4.11 shows the WVD and the Hough space of the linear chirp
received with 19% of the bits in error. The prominence of the global maximum in the HRT
space provides an indication of the presence of chirp in TFD and thereby leading to successful

watermark detection.) There are three main considerations that affect the performance of

rho (pixels from center) theta (deg)

Figure 4.11: Line detection using HRT

the HRT in detecting the chirps:

4.4.1 Selection of the TFD

Since the HRT will operate on I, the choice of the TFD method used will have an influence
on the detection of the chirp. For example, the STFT may have limited TF resolution, and
the WVD may exhibit cross-terms for multi-component signals, which may result in false
detection of the watermark. In this case, as mono component signals are detected, the WVD,

which provides the highest resolution, can be used.
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4.4.2 Quantization of the HRT Parameter Space

Prior to the start of the search for chirp parameters, an appropriate search grid for the
HRT parameter space has to be selected. This is equivalent to determining the proper
quantization level of the HRT parameters that will allow the potential detection of the pa-
rameters of all possible chirps. The approach used by Erkucuk [49] is used to determine
the quantization parameters. Let 6 be the angle occurring from the image of a line with
its initial and end points corresponding to the first and the k%" frequency slots, respectively.

To find the minimum step size for 8, Afy, = 0y — 60—, is evaluated as a function of % such that

Kk k-1
Aek = tan 1 (-]\7> — tan 1 (T) s v (444)

where 1 < k£ < K. The minimum value of Ay is achieved at Ay as shown in Figure 4.12.
Let py be the distance of the line with initial and end points corresponding to the first and
k" frequency slots, measured relative to the center of the image. Then Apy = p — pr—; for
each 1 < k < K is calculated as

K

K N . N .
Apy = [(-5 cos by, — — sin 9k> - (? cosf_; — 5 sin 91:-1)] . (4.45)

The minimum value of Apy, is achieved at Ap; as shown in Figure 4.12. Afx and Ap, are

the largest quantization steps needed to evaluate all possible lines in the K x N image plane.

4.4.3 Threshold Level Selection in the HRT Space

To detect the presence of chirp, the peak value in the Hough space is compared with a
threshold. If the peak value is less than the threshold, the detector concludes that there is
no watermark. Only if the peak value is above the threshold, the parameters of the chirp are
estimated. The choice of the threshold significantly affects the performance of the detector.

If a low threshold value is used, there will be a high probability of false detection. The
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Figure 4.12: Quantization values for 6 and p

analytical expressions showing the relation between the threshold and the probabilities of

correct and false detection are shown in [61].

4.5 Results and Discussion

The proposed scheme is evaluated using the non geometric attacks proposed in the checkmark
benchmark scheme [62] for five different images of size 512x512. The test images are shown
in Figure 4.13. The sampling frequency f, of the watermarks equal 1 kHz. Hence the initial
and final frequencies, fo and f; of the linear chirps representing all watermark messages are
constrained to [0-500] Hz. These chirps are embedded in to the images for a chip length
of N, which depends on the perceptual entropy of the image. It was found experimentally
found that for reliable detection of chirp under various image processing attacks, the chip
length should be at least 10000 samples. If the image can support more 10000 samples, then ‘

multiple chirps can be embedded and the payload can be increased.

In out tests, a single watermark sequence having 32 and 128 message bits is used. For
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im3

im4 im5

Figure 4.13: Test images.

each test, the watermark embedded image X, , is processed to generate the received signal
X;,v resulting from the image manipulation operations described in that checkmark tests.
The watermark extraction algorithm described in Section 4.3 is applied on the received
signal }A(;,,,. Then the 128 x 128 image matrix I is formed. Therefore, the total number of
possible messages is 128%. Due to the size of Iz, § was bounded by £7/4 (i.e., Opmaz = 7/4)
and p by 64 (i.e., Pmac = 64). As a result of the HRT, the global maxima found in thé
HRT spaces exactly corresponded to the frequency parameters of the embedded chirp, thus
resulted in extracting the correct watermark messages. In all the tests performed, it was
assumed that the PN sequences used in the watermark embedding and extraction processes
are synchronized. Table 4.1 and Table 4.2 show the watermark detection results on five

watermarked images after performing the attacks specified in the checkmark benchmark.
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The numbers in the brackets under category ‘Attack’ represent the number of attacks in
that particular class of attacks. The number of attacks for which the watermark is detected

is shown under the ‘Images’ category. The ‘Average’ represents the percentage of attacks for

which the watermark is detected under each class of attacks.

Table 4.1: Watermark detection results for checkmark benchmark attacks with chirp length 32
bits.

Attacks Images
iml | im2 | im3 | im4 | imb | Average (%)
Remodulation(4) | 2 0 4 1 1 40
MAP () 6 16666 100
Copy(1) 1 1 1 1 1 100
Wavelet(10) 9 9 9 9 10 92
JPEG(12) 2 |12 | 12 | 12 | 12 100
ML(7) T 4435 57
Filtering(3) 3 3 3 3 3 100
Resampling(2) 2 2 2 2 2 100
Colour Reduce(2) | 2 0 1 2 1 60

Table 4.2: Watermark detection results for checkmark benchmark attacks with chirp length 128
bits

Attacks Images
iml | im2 | im3 | im4 | imb | Average (%)
Remodulation(4) | 4 2 4 3 2 75
MAP(6) 6 6 6 6 6 100
Copy(1) 1 1 1 1 1 100
Wavelet(10) 10 9 1]10] 9 | 10 96
JPEG(12) 12 [ 12 | 12 | 12 | 12 100
ML(7) 6 4 6 3 5 69
Filtering(3) 3 3 3 3 3 100
Resampling(2) 2 2 2 2 2 100
Colour Reduce(2) | 2 2 1 2 2 90

Table 4.1 presents the results for chirp length 32 bits and Table 4.2 shows the results
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for chirp length 128 bits. As expected, higher detection results are obtained with increasing
chirp length. For comparison, the results of the watermarking scheme proposed by Pereira
(78] are presented in Table 4.3 which can embed 56 bits in the image. Though the number of
bits that can be embedded using our algorithm is lesser than (78], the results are significantly

better than [78].

Table 4.3: Watermark detection results for checkmark benchmark attacks for the scheme proposed
by Pereira et al.

Attacks _ Images
iml | im2 | im3 | im4 | imb | Average (%)
Remodulation(4) | 0 0 0 2 0 10
MAP(6) 1 2 2 5 1 37
Copy(1) 1 1 0 1 0 60
Wavelet(10) 3 6 8 7 7 62
JPEG(12) 12 | 12 ] 12 | 12 | 12 100
ML(7) 0 3 3 3 0 26
Filtering(3) 3 3 3 3 3 100
Resampling(1) 1 1 1 1 1 100
Colour Reduce(2) | 0 1 1 2 0 40

The algorithm performs well for wavelet and JPEG compression attacks. For these
attacks, the bit error rates are quite low, usually less than 20%. Figure 4.14 shows the
successful detection of watermark for an image after wavelet compression. The bit error rate
in this case is 17%. But in the case of maximum likelihood (ML) or remodulation attacks,
the bit error rates are quite high. For example, the Table 4.4 shows the bit error rates for
the image im5 for ML and remodulation attacks. When the bit error rates are higher than
20%, the HRT is unable to detect the chirp.

The performance of the algorithm can be compared with other existing schemes by com-
paring the number of attacks for which the watermark is detected. The checkmark tests
have a total of 230 attacks (46 attacks for each image). The proposed algorithm with a chirp
length of 128 bits is able to detect the watermark for 216 attacks giving a 94% detection

rate. This is better than the detection rates the watermarking schemes proposed by Cox -
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Figure 4.14: Performance of HRT for wavelet compression

[34], Xia [79] whose detection rates are of 90% and 84% respectively. These two schemes
can embed a single bit while the proposed scheme can embed multiple bits. The algorithm
porposed by Pereira [78] can embed 56 watermark bits and gives a detection result of 61%.
However, the algorithm is a blind algorithm which does not use the original image at the
receiver.

In this chapter, a novel watermarking algorithm for images that uses chirp signals as
watermark message is presented. The algorithm uses the traditional SS based watermarking
techniques for embedding and detecting the watermark signals. After the watermark signals
are extracted, they are post processed: first by representing the extracted watermark message
by a TFD and then by detecting the chirp in the image of the TFD by using a line detection
tool, the HRT. The robustness of the algorithm is tested using a standard benchmark called
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Table 4.4: Bit error rates for ML, and Remodulation attacks
Attacks im5
Bit error rates(%) | Detection result after HRL
Remodulation(4)
dprl 10.16 1
dpr2 33.59 0
dprcorrl 11.72 1
dprcorr2 35.16 0
ML(7)

medfiltl 0.78 1
medfilt2 1.2 1
medfilt3 27.18 0
trimmedmeanl 3.90 1
trimmedmean?2 43.75 0
midpointl 0.0 1
midpoint2 39.94 0

checkmark and the algorithm is found to be quite robust to many of the attacks.
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‘Chapter 5

Conclusions and Future Research

5.1 Conclusions

THIS thesis proposed novel solutions for two content protection technologies: finger-
printing and watermarking. The Introduction explained why digital data is susceptible
to piracy and discussed the need for a DRM system to protect digital content and enable its
glectronic distribution. Chapter 2 described how encryption alone is not sufficient to protect
content and explained two technologies namely fingerprinting and watermarking that offer
protection to data after it is decrypted. Chapter 3 pfoposed a novel fingerprinting scheme
that models fingerprints by GMM using spectral features. Chapter 4 proposed a novel SS
based watermarking scheme that includes a post processing stage based on TF analysis and

HRT detector. The summary of the work and future extension of the work are presented in

this chapter.

Fingerprinting

A novel fingerprinting scheme that models audio or video features using Gaussian mixture
models is introduced in this thesis. The fingerprints are compact and are found to be invariant
to various types of distortions. The fingerprints corresponding to different multimedia clips
show excellent discrimination. Under different distortions, the percentage of clips correctly -
identified at different false positive rates are evaluated. A false positive occurs when a

fingerprint of clip matches with the fingerprint of another clip. Based on the simulations
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and the results obtained in chapter 3 the following observations could be made:

e GMM help reduce the dimensionality of the inputs significantly. For example, a 5
second audio clip sampled at 44.1 KHz (5 x 44,100 samples/s = 220,500 samples)
modeled by 16-cluster GMM (16 means + 16 variances + 15 weights = 47 coefficients)

results in a reduction of more that 4600 times.

e The invariance to distortions is due to the modeling by GMM. GMM approximates
the feature space over the entire duration of the clip. This makes it robust to various
distortions. However, this approximation results in reduction in discrimination between

fingerprints of different clips and results in false positives.

e For audio fingerprinting, the fingerprints are modeled using various spectral features.
The performance of the features can be compared by the identification rate vs. false
positive curves. Among the different features used, spectral centroid gives the best
identification rates of 99.1%, 99.2%, 99.7% at false positive rates of 10~%,10~3,10~2
respectively. Spectral roll-off and spectral flux performs poorly and their identification
rates are 26.6% and 59.1% at a false positive rate of 107%. The reason for their poor
performance is because they are scalar features, while the rest of the spectral features

considered are vectors.

e Two novel features Shannon entropy and Renyi entropy are introduced for fingerprint-
ing. Among the two, Renyi entropy performs better than the Shannon entropy. Renyi
entropy performs almost as good as spectral centroid with an identification rate of

97.8% at a false positive rate of 10™.

e The proposed video fingerprinting is very robust to MPEG compression and filtering
operations. The fingerprinting scheme is very tolerant to additive white Gaussian noise
giving an identification rate of 100% up to a noise variance of 16. But the scheme is
not very robust to shifting and resizing operations. When more than 6% of the lines in

the video are shifted up, the performance degrades rapidly. Similarly when the video
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is resized from 0.9% to 1.2%, the identification rate is above 95% beyond which the

performance degrades.

o The identification rate of the proposed audio fingerprinting algorithm is comparable

- or better than other existing audio fingerprinting schemes. While many schemes have
been tested only for a limited number of distortions, the proposed algorithm is robust to

wide variety of distortions. However, the false positive rates of the proposed scheme are
higher than some of the other schemes. The proposed video fingerprinting algorithm
shows a better identification rate for distortions that locally modify the video such as
MPEG compression and filtering. For global distortions, the identification rates are

comparable to other schemes.

Watermarking

A novel robust watermarking scheme for images that uses linear chirp signals as watermark
messages is proposed in this thesis. The watermark messages are embedded to a host image
and retrieved from the image using the traditional SS based techniques. After the watermark
messages are extracted, they are post processed by representing the received watermark
message in a TF plane, and detecting the watermark message using a HRT based detector.
The watermarking scheme is capable of carrying multiple bits in the watermark message.
The performance of the scheme is evaluated by a benchmark called checkmark developed by
Pereira [62]. Based on the research in this area and our experimental results, the following

deductions could be made:

e Among the checkmark tests performed, the remodulation and maximum likelihood
attacks resulted in the maximum bit error rates. A maximum bit error rate of 43.75%
is obtained for a maximum likelihood attack. The simulation results show that the
HRT applied to a TFD generated by a WVD can successfully detect the watermark

and estimate all the bits correctly when the bit error rates are less than 20%.

e The proposed scheme is very robust to JPEG compression, filtering, resampling and
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copy attacks and the HRT is able to detect the watermark and estimate the bits
accurately for all the attacks in these categories and for all the five test images. For
wavelet compression and color reduction, the algorithm is fairly robust, identifying

96% and 90% of attacks correctly.

e The performance of the algorithm depends on the length of the chirp signal embedded.
It is intuitive that higher the length of the chirp better the performance is. The
overall percentage of attacks for which the watermark is detected is 87% with a chirp
length of 32 bits and 94% for a chirp length of 128 bits. Increasingthe chirp length
further increases the performance. But it may also leave some visual artifacts in the

watermarked image.

e The HRT is able suppress the low power cross terms that arise due to the quantization
of the chirp signals. The TFD generated by WVD provide the highest resolution for

the watermark signal and optimal for the detection of watermarks.

e In the proposed watermarking scheme, it was assumed that the PN sequences used in
the receiver and the detector are synchronized. However, attacks like rotation and other
geometric transformations removes the synchronization of the PN sequence. This is an
outstanding issue and is not discussed here since the objective is to show the watermark

detection can be improved by using a TF analysis followed by HRT at the receiver.

e The proposed algorithm has a overall detection rate of 94% for the checkmark tests.
This is better than many single bit non-blind watermarking schemes such as Cox [34]

and Xia [79] and multiple bit blind watermarking schemes such as Pereira [78].

5.2 Future Research
Fingerprinting

In the fingerprinting scheme proposed in chapter 3, there are potential areas that would

improve the performance of the scheme.
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e In this work, different spectral features are used for audio fingerprinting. The features
used are heuristic and are successfully used in music classification, speech/music dis-
crimination and other applications. However, these features may not be optimal for
fingerprinting. One way to extract optimal features is to use OPCA on the DCT co-
efficients as proposed by Burges et al. [17]. Generating fingerprints by modeling these

optimal features using GMM might improve the robustness of the system.

e Since the objective in this thesis is to do a preliminary evaluation of the proposed
scheme, a relatively small database is used. In a typical fingerprinting application
such as broadcast monitoring or mobile music recognition, there will be millions of
multimedia clips in the database. It will be interesting to evaluate the robustness of

the proposed algorithm with a realistic database.

Watermarking

There are potential areas of research in the proposed watermarking algorithm that could

improve its performance and capacity.

e One way to increase the payload of the watermarking algorithm is to use more com-
plex parametric curves such as higher order polynomials as watermark message. This
will increase the payload but also increase the complexity in the HRT detector since
the dimension of the Hough space increases. But by using faster versions of Hough

transform, the complexity can be significantly reduced.

e The empirical limit for the HRT to detect the watermark message is 20% bit error
rate. An analytical expression to determine the performance of the HRT at different

bit error rates can help understand the error-correcting capability of the HRT.
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Appendix A

List of Publications

In this section, the publications resulted from this research work are presented.

Journals

e A. Ramalingam and S. Krishnan, “Robust image watermarking using chirp detection
based technique,” in press, IEE Transactions on Vision, Image and Signal Processing,

scheduled for August 2005.

e A. Ramalingam, and S. Krishnan, “Gaussian Mixture Modeling using Short Time
Fourier Transform Features for Audio Fingerprinting,” submitted to IEEE Transac-

tions on Information Forensics and Security, May 2005.

e A. Ramalingam, and S. Krishnan, “Video fingerprinting using space-time and Gaussian
mixture models,” submitted to JEEE Transactions on Circuits and Systems - II, July

2005.

Conferences/Workshops

e A. Ramalingam and S. Krishnan, “Gaussian Mixture Modeling using Short Time
Fourier Transform Features for Audio Fingerprinting,” in Proceedings of the Inter-

national Conference on Multimedia and Ezpo, Amsterdam, July 2005.
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A. Ramalingam and S. Krishnan, “Video fingerprinting using space-time and Gaussian
mixture models” in Proceedings of the ninth Canadian Workshop on Information Tech-

nology, Montreal, pp. 288 - 291, June 2005.

A. Ramalingam and S. Krishnan, “A Novel Robust Image Watermarking Using a Chirp
Based Technique,” in Canadian Conference on Electrical and Computer Engineering,

Niagara Falls, vol. 4, pp. 1889 - 1892, May 2004.

A. Ramalingam and S. Krishnan, “Multimedia Fingerprinting,” in Micronet Annual

workshop, Ottawa, May 2005.

S. Esmaili, A. Ramalingam and S. Krishnan, “Watermarking and Retrieval of Multi-
media Data Using Advanced DSP Techniques,” in Micronet Annual workshop, Aylmer,
2004. (Best Student Paper Award under systems category)
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