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ABSTRACT

Selecting a Mix of Dispatching Rules For a Job Shop by Using

Artificial Neural Networks 

@ Publisher Pramit Shah, 2004 

Master of Applied Science 

In the program of Mechanical and Industrial Engineering 

Ryerson University

Dispatching rules are a popular and commonly researched technique for 

scheduling tasks in job shops. Much of the past research has looked at the performance of 

various dispatching rules when a single rule is applied in common on aU machines 

However, better schedules can frequently be obtained if the machines are allowed to use 

different rules from one another. This research investigates an intelligent system that 

selects dispatching rules to use on each machine in the shop, based on a statistical 

description of the routings, processing times and mix of the jobs to be processed. 

Randomly generated problems are scheduled using permutations of three different 

dispatching rules on five machines. A neural network is then trained by using a 

commercial package to associate the statistical description of each problem with its best 

solution. Once trained, a network is able to recommend for new problems a dispatching 

rule to use on each machine. Two networks were trained separately for minimizing 

makespan and the total flowtime in the job shop. Test results showed that the 

combination of dispatching rules suggested by the trained networks produced better 

results for both objectives than the alternative of using the one identical rule on all 

machines.
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Dispatching rules

Rules based on the smallest processing time or least work remaining

LWKR: - Select the job with the least total work remaining work 

S P T S e le c t  the job with the least intermediate processing time 

TFT : - Select the job with least total processing time 

Rules based on the largest processing time or most work content 

LPT:- Select the job with the most intermediate processing time 

LOPNR: - Select the job whose least number of operations remaining 

MOPNR: - Select the job whose most number of operations remaining.

MWKR:- Select the job with the most total work remaining work 

MWKR-P;- Jobs ranked by MWKR after the present scheduling operation 

MWKR/P: - Jobs ranked by the greatest ratio of total remaining work to processing time 

of schedulable operation 

Rules based on due date

DS: - Select the job with the smallest slack, where slack is the due date less the total work 

remaining. This is also called as the dynamic slack.

DDT / EDD: - Jobs ranked according to their earliest due date

SLK/RO: - Select the job wit the smallest ratio of its dynamic slack to the number of

remaining operations

Rule based on arrival

AT: - Select the job based on earliest arrival time
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FIFO: - First in first out 

LIFO: - Last in first out 

RAN: - Select the job randomly 

Rule based on queue status

WINQ: - Select the job based whose workload in the next queue is least

NINQ: - Select the job based on the number of jobs waiting in the queue of the next

machine.
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C H A PT E R  1 

Introduction and Background

1.1 Introduction

In real world applications, one of the most important aspects of competitiveness 

and success o f an organization is efficient production management and timely decisions. 

Such decisions are often constrained by specific objectives and requirements. These 

constraints are frequently incompatible in nature, and as the number of such constraints 

increases, the decision process becomes more complex. Scheduling decisions are an 

important component of overall operational control in any manufacturing system.

The decision-making requirements for scheduling production systems have been a 

fascinating research topic for more than three decades. The goal of scheduling is to 

ensure that production objectives are met optimally. Researchers have developed 

numerous models and methodologies for the planning and scheduling control of 

production activities for different manufacturing layouts. Two of the most researched 

models are flow shop and job shop.

A flow shop is a model in which machines are arranged in series. In this system, 

jobs flow from an initial machine (resource), through several intermediate machines, and 

ultimately to a final machine. A job may skip a particular machine, but all jobs must be 

processed according to a fixed route. The job shop differs from the flow shop in one 

important aspect: the flow of work is not unidirectional, meaning that jobs need not visit 

the machines in the same order. The problem in the job shop is to schedule n jobs on m



machines such that one or more performance objectives is optimized. Each job requires7 

number of operations (tasks) that are to be processed on these machines. Generally, a job 

may not require all the machines and it may visit the same machine more than once.

A scheduling problem in a job shop is defined by several attributes, namely, the 

number of jobs; the number of machines; the processing order of the jobs on the 

machines (or routing); processing time of each job on different machines; job arrival 

times, and last but not the least, the performance objective to be achieved. Figure 1.1 

displays a general job shop model. It illustrates the routes taken by two different jobs 

through the shop. In this instance both the jobs visit machine number three after 

completion of two operations as per their respective job routes. Supposing Job 1 

completes both its operations prior to job 2 , then job 2  may have to wait in the machine 

buffer (or queue) if the machine is still busy with job 1 .

A Job shop Layout

M a c hi n e  3

M a c h i n e  5

M ac h i n e  1B u ffe r 1

B u ffe r 3

B u ffe r 5

M a c h i n e  4^  M a c h i n e  2

Mater i al  
Handl i ng  s y s t e m B u ffe r  4B u ffe r 2

Job 1 route is 1 -2 -3 -5 -4 .a n d  job 2 is 5 -4 -3 -1 -2

Fig 1.1 Schematic layout o f a job  shop, illustrating the routes follow ed by two different jobs.



For scheduling n jobs on a single machine there are n! possible schedules, but in the

case of a job shop the number of possible combinations is (n!)^, when each job has one 

and only one operation on each machine (Conway, ] 967). For example with 10 jobs on 5 

machines there are 6.92x10^^ possible number of schedules. Thus, job shop scheduling is 

a NP-hard problem (Pinedo, 1995) and, consequently, it is not practical to search for a 

global optimal solution other than for very small problems.

A general job shop problem can be either static or dynamic. The static job shop 

assumes that all jobs are available at the beginning of the planning phase. On the other 

hand, the dynamic job shop problem assumes that the arrival times of the jobs are 

unknown, and that jobs arrive at random intervals throughout the production cycle. A 

schedule can be evaluated by its ability to meet production objectives like minimizing the 

make span (or completion time), the mean flow time and mean tardiness. A schedule that 

results in minimum completion time for a particular problem does not necessarily 

minimize the mean flowtime in that problem. Hence, the aim of the scheduling is to find 

a schedule for processing all jobs, such that one or more specified performance measures 

are optimized.

A number o f job shop scheduling techniques have been developed for solving static 

and dynamic problems. Among these are the dispatching rules, which are a popular and 

commonly researched technique for scheduling tasks in a job shop. A dispatching rule 

(DR) is used to select the next job to be processed from a set of jobs waiting in the queue 

(or buffer) when a machine becomes free. The simplicity and ease in application of 

dispatching rules (DRs) have made them a practical tool for scheduling in the real world. 

However, there are some shortcomings in the use of dispatching rules. First, none o f the 

dispatching rules dominates the others for the important performance criteria like mean



flow time, mean tardiness, etc. This implies that DRs are problem dependent, and one DR 

that gives a good result for one problem may not give an equally good result in another. 

Due to the dynamic and changing characteristics of the jobs as they are processed, a job 

shop may be able to meet the performance objectives better by judiciously changing the 

DR on individual machines over time, or by using a combination of different rules for the 

machines.

As a result of the scheduling complexity in modem manufacturing systems, 

Artificial Intelligence (Al) techniques have been considered as a scheduling decision 

tool; one technique that has shown promise is the Artificial Neural Network (ANN). In 

simple terms. Artificial Neural Networks apply knowledge gained from past experience 

to new problems or situations. An ANN looks for pattems in “training” sets of data, 

learns these pattems and develops the ability to correctly classify new pattems. This 

approach in a job shop that uses dispatching ml es requires the neural network to be 

prepared by selecting a set of training examples for different performance measures, and 

finding from simulation (or other) studies the optimal mles to use in these examples. 

Information from these optimal solutions is then used to “teach” the network to select the 

most appropriate dispatching rule from several candidate / mles. Once this procedure is 

completed, the trained neural network is capable of providing faster solutions to new 

problems which were previously unseen by the net'vork.

This research addresses the problem of an appropriate selection of dispatching 

mles (in this case from three altematives) to use for each of the machines in a job shop by 

using artificial neural networks. Two separate artificial neural networks are developed for 

the performance criteria of minimizing makespan and minimizing mean flowtime. Each 

of these criteria have a different set of competing DRs to choose from.



1.2 Problem Definition

A job shop problem of interest is a 5-machine job shop. In actual manufacturing 

systems, particularly those that follow a group technology concept, the number of 

machines used can be reasonably expected to be between 3 to 10. Also, it seems to be a 

consensus among researchers that a four-machine job shop is adequate to represent the 

complexity involved in a large job shop (Kiran et al. 1984). Thus, the number of 

machines chosen for this study is 5 machines, with number of jobs ranging from 10 jobs 

to a maximum of 1 0 0 .

In this study, a static job shop is considered with arrival time = 0  for all the jobs.

Thus, all the jobs that are to be processed are available at the start o f the scheduling 

period. It has been assumed that all the jobs have two sets of attributes. The first one is 

the work flow Q-j  ̂ pattern (or route), that is machine k's order in job f s  route. At the

beginning of the schedule, each job’s flow pattern is defined with the condition that each 

job visits all machines once. In other words, each job has a specific precedence order of 

operations, which has to be followed before exiting from the system. For example, a 

specific job i may have the precedence order 4 ^ 5 ^ 3 ^ 2  ^ 1,

indicating that

job f s  first operation must be done on machine 4, its second operation on machine 

5, and so on.

The second characteristic is the processing time (Pjjjç) representing th e o p e r a t io n

of job i on machine k. The time needed by each operation j  o f job i on machine k is 

known in advance. In this study, deterministic processing times for these operations are 

generated from the discrete uniform distribution U (10, 99) integer time units. For



example, a specific job on 5 machines may have processing times of 45-95-61-20-35 

corresponding to the machines on the job’s route.

Once operation j  of job ; has been completed, it will be transferred with the help 

of a material handling system to the next machine, as per the job’s route for the next 

operation7 +1 if that machine is free, or to a buffer for that machine otherwise. It has been 

assumed that the transfer time between machines is negligible and that the material 

handling system is always available whenever required. Hence, jobs are either in process 

on a machine, or waiting in a buffer for processing.

“Schedules are generally evaluated by aggregate quantities that involve 

information about all jobs, resulting in one-dimensional performance measures” (Baker, 

2002). The following two perfonnance measures or criteria or objectives are considered 

in this study.

a) Makespan: The makespan measures the total time taken by a given schedule to 

complete the set of available jobs. In other words, it is the time at which the last job exits 

from the shop. This measure is defined, for a sequence of n jobs, by

^ m a x  ~  m a x j { C j }  —  (2 .1)

Where = Completion time of job i = 1,2,3.... n

The objective of scheduling the jobs in a way that minimizes the makespan is an 

important one, because it reduces throughput time for processing a batch of different jobs.

b) Mean Flowtime: Flowtime represents the total time spent in a job shop. This includes 

actual machine processing time plus time spent waiting in buffers.

The mean flowtime is given by:

F = - Î F i  ... .  (2 .2)
n ; = 1



Where Fj -  Flow time or the time spent by job / in the system

The objective o f minimizing the mean flowtime is a common objective in

scheduling, because it acts to reduce work-in process and inventory levels.

The job shop model considered in this study is based on the following explicit

assumptions:

• Jobs are independent and consist o f strictly ordered operational sequences (or job 

routes). Furthermore, all jobs have equal weights (importance).

• Job pre-emption or cancellation is not allowed. Once the processing of any operation 

has started on a machine, it cannot be interrupted before its completion, and then 

resumed at a later time.

• There is only one machine of each type in the shop, and operations for two different 

jobs cannot be processed simultaneously on the same machine.

• Set up time is negligible.

• An operation may not begin until its predecessor is complete.

• Each machine is continuously available for production; machine breakdown or

downtime is not considered.

• There are no alternate routes for any job.

• The buffer capacity is unlimited and machine blocking does not occur.

1.3 Dispatching Rules (DRs)

Dispatching rules or (priority rules) refer to the procedure used to prioritize the jobs

that are waiting in queue for a machine. The dispatching rule therefore picks the next job



to load on the resources or machine. There are more than 100 dispatching rules surveyed 

by Panwalkar and Iskander. (1977). Dispatching rules use job specific information snch 

as processing time, due date, remaining number of operations, etc. The rules considered 

in this study are;

a) R ules b ased  on sh ortest p rocessin g  tim e

• Shortest processing time (SPT): - Priority is given to the job with the shortest 

immediate processing time (i.e., smallest processing time on the current resource).

• Least work remaining (LWKR): - Priority is given to the job with the least sum of 

remaining operation processing times.

b) R u les b ased  on L o n g est p rocessin g  tim e

• Longest processing time (LPT): - Priority is given to the job with the longest 

immediate processing time (i.e., largest processing time on the current resource).

• Most work remaining (MWKR) -  Priority is given to the job with the total work 

remaining processing times.

c) R u le  based  on  Q u eu e  status

• Work in the next queue (WfNQ + PT): - Priority is given to the job with the least 

workload in the next queue it will visit, plus the processing time on the current 

resource.

The Following Tablel.l summarizes the job shop problem parameters considered 

in this research.



Number of jobs From 10 to 100

Number of machines 5

Job arrival times All jobs are available at the start of schedule

Flow pattern Process routes

Processing time Deterministic integers drawn from U (10,99)

Performance measures
1 ) Minimizing makespan 

2) Minimizing mean flowtime

Dispatching rules SPT. LPT, MWKR, LWKR, WINQ+PT

Job shop scheduling technique
Selection of dispatching rules by a trained neural 

network

T able 1.1 C haracteristic o f the job  shop problem  under consideration .

1.4 Thesis outline

The rest of the thesis is organized as follows; Chapter 2 provides a detailed 

literature review on the dispatching rules, neural networks for scheduling, and past 

research in selecting combinations o f dispatching rules by different techniques. Chapter 3 

presents a background introduction to neural networks. Chapter 4 provides a step-by-step 

guideline on building a feed fon\'ard back-propagated supervised neural network for 

selecting dispatching rule combinations. Chapter 5 analyses the output generated from the 

trained network and examines the generalization capability of the trained network. 

Chapter 6  provides a summary and a conclusion, and discusses further research scope.



CHAPTER 2 

Literature Review

2.1 Literature Review

Scheduling jobs is an important aspect of a job shop manufacturing system 

environment, for it can have a deep impact over the system’s performance efficiency. Job 

shop scheduling has been studied extensively over the last three decades. Many 

approaches have been developed to solve the static job shop scheduling problem, and 

some of the well-known approaches can be found in French, (1982) and Pinedo, (1995).

However, for a practical application, scheduling decisions are usually taken in real 

time considering existing constraints. Some of such constraints are the state of the shop 

floor (e.g., availability of resources), characteristics of the production program (e.g., part 

routing, due date of jobs) and production objectives (e.g., minimizing makespan) to be 

achieved. Nevertheless, some of the uncertain variables such as breakdown / failures of 

resources, new jobs prompted during a production cycle, etc. also need to be considered. 

For these reasons many researchers tend to approach the job shop scheduling issue 

through the acceptance of heuristic dispatching rules rather than seeking a deterministic 

optimal solution to the problem.

This literature review reports on various job shop scheduling approaches. Both 

Jones and Rabelo, (1996) and Blazewicz et al, (1996) have done detailed surveys on 

various job shop scheduling techniques, which can be categorized mainly as either exact 

or approximation methods.

10



The category of exact methods includes all the mathematical models. These 

guarantee optimal solutions for a job shop problem. However, their application is limited 

to a smaller numbers of jobs and resources. This is due to some of the limitations like 

computational requirements for obtaining an optimal solution, difficulty in formulation of 

material flow constraints, etc. Also, the development in computational power o f the 

computer has sharply improved the use of such approaches, but nevertheless its 

utilization remains limited.

Branch and bound is one such mathematical technique that deals with NP- hardness 

o f scheduling problems by decomposition into smaller sub problems that may be solved 

for optimality. Blazewicz et al, (1996) presented a detailed discussion on the success and 

the limitations o f this method in job shop problems.

The category of approximation methods includes numerous algorithms and 

techniques that are developed for producing good solutions, which can be reasonably 

close to optimal results. These techniques can be further categorized as dispatching / 

priority rules. Artificial Intelligence (Al) techniques and other heuristie methods. They 

are used either to obtain a best sequence of jobs for the desired perfonnanee objective, or 

to select from various dispatching rules ones to apply on the maehines, based on the 

current or prevailing conditions.

One of the most common approaches to dynamically schedule jobs is to use 

dispatching rules (DRs). These rules are sometimes ealled scheduling rules, or priority 

rules. They are defined by Blackstone et al, (1982) as a “Rule used to select the next job 

to process from jobs awaiting service.” Dispatching rules are widely used in practice and 

a considerable body of research exists because of their ease of implementation and their 

substantially redueed computational requirements.

11



The most well known and comprehensive survey of scheduling heuristics is by 

Panwalker and Iskander (1977) where more than 100 dispatching rules were presented, 

reviewed and classified based on their processing time, arrival time, queue status, etc. A 

survey of 34 dispatching rules could also be found in Blackstone et al, (1982). A common 

conclusion found in both surveys is that no single priority rule dominates and provides 

consistently best results for different job shop situations. There have also been many 

instances where combinations of rules have been successfully used in job shop 

scheduling (Blackstone et al, 1982). This approach has two or more dispatching rules 

dynamically selected for each of the machines based on the shop floor’s prevailing 

conditions.

Review of literature related to dispatching rules in job shop schedules reveals a 

focus either to introduce new dispatching rules to optimize the shop floor performance or 

to review and test the existing ones, both for different shop configurations and 

performance objectives. Advanced simulation tools have been widely adopted for this 

purpose. For instance, in the simulation study done by Waikar et al, (1995), ten different 

dispatehing rules (FIFO, SPT, DDT, LWK_R, MWKR, MWKR-P, MWKR/P, MOPNR, 

SLK/RO and RAN) were tested for different shop loads ranging from 70 to 85 %, with 

job arrival and processing times following exponential and normal distributions 

respectively. Waikar et al, (1995) considered two different sets of performance criteria 

based on the flow-time and tardiness. The results of this study showed that both SPT and 

LWKR perform well under different shop loads not only for mean flowtime, which 

resulted in lowering in proeess inventories, but also for total queue time and time spent in 

the system.
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On the other hand, a comparative study done by Chang et al, (1996) evaluated the 

performance of 42 different dispatching rules using a linear programming model. These 

rules were broadly categorized in six different categories based on the smallest 

processing time, the largest processing time, due date, number of operations, random rule 

and lastly on the queue status. In order to evaluate all the dispatching rules, seven 

different performance objectives were considered, which were further divided into two 

sets, based on completion time and tardiness. Their analysis indicated that the shortest 

processing time (SPT) related rules consistently performed well, while the longest 

processing time based rules consistently performed badly.

Similarly, Rajender and Holthaus, (1999) carried out two different types of 

comparative studies of dispatching rules in both flow shops and job shops. In the first 

study, operations were performed on all the machines, but missing operations were 

allowed for both the shops in the second study. The job shop studied had len machines, 

number of operations ranging from ( 2  . . . 1 0 ), processing times uniformly distributed 

between (1,49), shop loads ranging from 80 to 95% and exponentially distributed 

interarrival time. In their study, thirteen different dispatching rules such as (FIFO, AT, 

FDD, SPT, PT+WINQ, etc) consisting of both existing and new rules proposed by 

Rajender and Hohhaus, (1999) were evaluated for seven different performance objectives. 

The objectives were based either on flow time or on tardiness. The results showed that for 

the mean flowtime critenon SPT, PT+WfNQ and RR (a rule by Raghu and Rajendran, 

1993) perfonTied consistently well under different shop loads. For the same criteria with 

missing operations. PT+WfNQ rules emerged on average to be the best. The study also 

showed that for a higher shop load PT+WINQ performs significantly better than the SPT 

rule.
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Almost all the papers cited above either introduced new dispatching rules or tested 

existing rules based on a validated simulation model developed to test the rule itself. 

Thus, simulation is one of the most common tools widely used by many researchers for 

testing new or existing dispatching rules.

Although for many years the only practical approximation methods were priority/ 

dispatching rules, the introduction of more powerful computers, as well as an emphasis 

on carefully designed, analyzed and implemented algorithms has allowed more novel 

approaches to be developed for solving job shop problems. One example of such an 

approach is the use of artificial intelligence (Al). Al is a sub field of computer science 

that is concerned with integrating biological and computer intelligence. It has 

fundamental origins from biological understanding and uses principles in nature to find 

solutions for various complex problems. There are a number of classes of Al techniques, 

some of which are expert/knowledge-based system, neural networks (training and 

learning), fuzzy logic, genetic algorithm search, etc.

As the development in solving job shop scheduling problems increased, the degree 

of intelligence and the knowledge required for solving such problems also increased. 

Figure 2.1 presents the degree of artificial intelligence required by different scheduling 

approaches (Sim et al, 1994).

Expert / knowledge based systems mainly consist of knowledge and an inference 

engine to operate on that knowledge base. The application of such systems can be seen in
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Pierreval, (1992), who demonstrated its use for selecting priority rules in a two machine 

flow shop model o f a flexible manufacturing system, with the shop load of 83%. Two 

different dispatching rules (SPT and HDD) for five  different criteria (based on flow time 

and tardiness) were examined. The results showed that expert system (ES) provided on 

average good results for the perfonnance criteria of mean flowtime and average waiting 

time as compared to SPT on both machines. Also, ES achieved the best performance 

among SPT-EDD and SPT-SPT combinations on the two machines for mean tardiness 

criteria.

Sim et al, (1994) developed an expert neural system in order to overcome some of 

the limitations with the expert system and for solving job shop problems for objectives 

related to tardiness. The artificial neural network was based on the back propagation feed 

forward neural network (BPNN) with the generalized delta rule as a learning algorithm 

and the sigmoid curve as the activation function. This model consisted of an input array
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of 14 neurons, sixteen sub-networks embedded in expert system and a single output node, 

which determined jobs to be processed first, based on the lowest output value. The job 

shop had nine resources, job arrivals following a Poisson distribution with an average rate 

of 0.6 to 0.775. Each job had 3-6 operations and processing time of 1-4 time units per 

operation and the performance objectives of minimizing lateness and tardiness. The first 

10 input neurons represented different dispatching rules (such as SPT, LPT. EDD, etc) 

and the remaining neurons represented the arrival rate of jobs in the neural network. The 

results showed that the performance of this system was able to match the performance of 

the best dispatching rule used in training for both the performance objectives. Although 

the BPNN required a lengthy training process, once trained, the network only requires a 

single forward pass of computation (from the input nodes to the output node) to schedule.

Production demands are often cyclic in nature, and if  the pattern of such demands 

can be recognized, then systems can respond to seasonal and sudden ehanges. Thus, a 

system that is able to recognize such patterns is in a position to update scheduling 

deeisions effectively. Artificial neural networks, fuzzy logic and genetic algorithm are 

some of the methods that can be used in order to develop such systems.

Fuzzy logic application in dynamic selection of dispatching rules was examined by 

Subramaniam et al, (2000) for the performance objective of minimizing makespan in len- 

job, /en-machine job shop problems. The proposed approach carefully selects ihree 

normalized input units, based on the conditions prevailing in the job shop, and a fuzzy 

seheduler seleets an appropriate dispatehing rule from the available eandidates SPT, 

WFNQ, MWKR to use for the individual machines. The results showed that the best 

makespan was obtained with the use of a eombination of dispatehing rules as compared 

to using a single dispatehing rule such as SPT, LPT, MWKR, LWKR, FIFO, LIFO,
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MOPNR, LOPNR, NINQ, WINQ. The fuzzy scheduler is a one-pass approach and 

requires the same order of computation time as the simple dispatching rule.

On the other hand, both Kumar & Srinivsan, (1996) and Chryssoluris & 

Subramaniam, (2001) used genetic algorithms (GA) for dynamic selection of dispatching 

rules in job shop scheduling problems. In the former, a genetic search procedure for a real 

world combinatorial optimization problem was considered. The job shop had eighty jobs 

and fifty-nine  machines, with the number of operations ranging from (2, 37). Some jobs 

could visit a machine more than once. Genetic algorithms use the idea of survival o f the 

fittest by progressively accepting better solutions to the problems. In this case randomly 

generated strings o f dispatching rules had a length of ten. The GA method generated a 

better makespan as compared to using any one of the seven different dispatching rules 

(SPT, LPT, TPT, RPT, DS, EDD, RS, FIFO) on all machines. The proposed algorithm 

yielded an improvement o f about 3% in makespan over the best (SPT) among the seven 

rules tested, but the computation time required by the genetic algorithm (998 sec) was 

very large as compared to generating makespan by using a single dispatching rule (3.32 

sec).

In the GA study by Chryssoluris & Subramaniam, (2001), the dynamic job shop 

had six machines, fixed job arrival times, from three to six operations and processing time 

ranging uniformly from U [1,100] and unifonuly distributed due date of L [-100,1500] 

(loose) and U [-100,500] (tight). The study also considered machine breakdowns and 

repair, and jobs could visit the same resource more than once. The performance 

objectives were minimizing cost and tardiness. The proposed GA outperformed the other 

dispatching rules. Varying due dates did not seem to have any effect on the relative
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variation of the results. The computation time for this GA approach was about 2 orders of 

magnitude larger than for a simple dispatching rule.

An artificial neural network (ANN) has the capability to recognize and learn new 

patterns to generalize for any measurable function. ANN has been employed in a number 

of real world applications in manufacturing, finance, stock market, medical field, national 

security, etc. Zhang and Hung, (1995) provided a detailed survey on the neural networks 

in manufacturing with the applications in the areas of process planning, quality assurance, 

engineering design, scheduling, process control, etc.

There are various types of neural networks proposed and developed for solving 

scheduling problems. It has been observed in the literature that job shop scheduling 

problems were solved by neural networks either to obtain optimal sequence of jobs or to 

make a dynamic selection of dispatching rules based on the prevailing conditions of shop 

floor; so that the desired performance objective could be satisfied. For the purpose of 

research review, the various types of neural network that are of interest, viz;

1 ) Hopfield network and other optimizing networks

2) Multi-layer preceptrons (Back propagation networks)

Sabunguoglu, (1998) presented a detailed survey on using neural networks 

exclusively for scheduling applications. He proposed two different classifications, based 

on the types of neural networks used and the application area.

Hopfield networks were the first type of artificial neural network used for solving 

job shop scheduling problems. Too and Takeji, (1988a, 1988b) proposed a Hopfield 

network with only input and output neurons. They mapped the problem on a two 

dimensional matrix of neurons with (nm + 1 ) rows and (mn) columns, where m is the 

number of machines and n is the number of jobs. A Simulated annealing process was then
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applied to the model in order to force the network out of local minima. The method was 

successful for a 4-job, 3-machine problem, but it had several limitations, such as the 

number o f jobs must be greater than the number of machines. The proposed network in 

this method is not practical for large size problems and there is no guarantee of an 

optimal solution. Furthermore, computation time, even for a small problem is excessive.

Satake et al, (1994) used a Hopfield network for minimizing the makespan in a job 

shop by obtaining an optimal sequence of jobs. In this case, a Boltzmann mechanism was 

used in order to avoid local minima. Various problems were considered ranging from 4 - 

jobs/3-machines to 10-jobs/l 0-machines. The proposed network produced optimal or 

near optimal schedules within a reasonable amount of time. Further development in the 

application of Hopfield networks for solving a job shop problem can be obtained from 

(Sabunguoglu, 1998) and (Jain and Meeran, 1998).

The conclusions drawn from the review of Hopfield networks are that they require 

an excessive number o f neurons and interconnections and can get easily trapped in local 

minima. For these reasons, they are suitable only for small size problems.

It has been obserx'ed in the literature that back propagation (BP) networks have 

drawn the attention o f many researchers. One of the reasons for this interest is that BP 

network provides an increased speed for the selection process that may be needed in real 

world applications. Jones and Rableo, (1990) were the first to use the back propagated 

neural network in a proposed integrated (expert and AFTN) scheduling system for ranking 

a set o f dispatching rules based on the current shop status and job characteristics such as 

job types, arrival patterns, process plans. The output of the neural network was evaluated 

by an expert system, which then generated a schedule for the performance objective o f
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minimizing tardiness. In their results, the BP network was able to predict correct results 

90% of the time.

Pierreval et al, (1992) used both neural networks and simulation for selecting 

dispatching rules dynamically in a m-’o-machine flow shop. In this study,//ve different 

dispatching rules and five different performance criteria were considered based on DR 

were considered. In this proposed hack propagated neural network, there were 4 input 

units representing mean arrival rate of jobs, mean expected processing time on each 

machine and processing time variance, and a total of 19 output units representing a 

combination of five dispatching rules on both the machines. A trial and error approach 

determined 16 hidden neurons for a single hidden layer. A total of 500 training sets were 

used for training the network. The trained network was capable of selecting the 

dispatching rules based on the performance criteria. In a comparison of results between 

neural network (NN) and simulation, the authors highlighted that NN had the advantage 

of computational time over simulation for decision making in real time scheduling and, 

also, memory required by NN was less as compared to the simulations using SIMAN IV 

and GPSS packages. In a comparison between NN and expert system, the expert system 

required expertise to develop larger knowledge bases, and this was difficult to obtain in 

the case of selection of scheduling heuristics. The learning capabilities of NN avoid these 

problems.

During the literature review it has been observed that although neural networks 

were used in selection of dispatching rules in flow shops, there have been no 

investigations of their use in dynamic selection of combinations of dispatching rules in 

job shops.
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Thus, in the current research an artificial neural network to select combinations of 

dispatching rules is investigated. The task o f the neural network is to pick an appropriate 

DR from a number o f alternatives, given an instantaneous environment in the job shop. 

(Pierreval, 1992) Also, it is desired to test the suggestion of and Sabunguoglo, (1998) 

regarding the generalization property of back propagated networks for solving large size 

problems, having learned to solve small size problems.
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CHAPTER 3

Artificial Neural Networks

The objective of this chapter is to provide background information on artificial 

neural network, types of neural networks and a detailed description of a back propagated 

neural network (BPNN).

3.1 Introduction to Artificial Neural Networks (ANN)

A job shop problem can be solved by several methodologies including 

mathematical programming, simulation, priority/dispatching rules, expert system, 

artificial intelligence (Al) etc. An Artificial Neural Network (ANN), which is one of the 

Al techniques, is an information-processing paradigm. The inspiration of using neural 

networks lies in its ability to extract information from complex data, similar to the 

biological nervous systems, and how the brain processes information. The key element of 

this paradigm is the novel structure of the information processing system. It is composed 

of a large number of highly interconnected processing elements (neurons) working in 

harmony to solve specific problems. ANN systems, like people, learn by examples and 

dynamically modify themselves to fit the data presented.

3.1.1 Basic Concepts

The basic building block of any ANN is the neuron, which is the fundamental cell 

of the brain or simply the processing unit of our brain. These neurons have three principal
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components; dendrites, the cell body and an axon, which are presented in Fig 3.1. The 

dendrites are tree like receptive networks of nerve fibers that carry electrical signals into 

the cell body. The cell body effectively sums and thresholds these incoming signals. The 

axon is a single long fiber that carries the signal from the cell body out o f other neurons. 

The point of contact between axon of one cell and a dendrite of another cell is called a 

synapse. Learning process in the brain occurs due to the strengthening and weakening of

synapses (Reinhardt, 1990).

O

o

P ig  3.1 B asic features o f a single b iological neuron (based on G arson, 1998).

3.1 .2  Architecture o f  A N N

ANNs are composed of basic units called processing elements (PE), which are also 

called as nodes or neurons. For example, in the back propagation (feed forward) network 

the PE are arranged in layers referred to as input, hidden and output layers. Each PE
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receives an input from every other neuron a, which is multiplied by corresponding 

weights. The aggregate input signal to the PE. Net, is calculated as the sum of these 

weighted inputs. (Smith, 1999).

The resulting signal is then passed through an activation function, which could be 

linear, logistic, step, ramp, sigmoidal or hyperbolic tangent depending on the problem to 

be solved. The output of the PE neuron is therefore 0^ -  f  (Net).

In simple terms, neurons multiply an input by a set of weights, then combine these 

weighted inputs into an internal activity level by adding them together. The resulting 

signal is then modified by the transfer function of the PE to produce the output. Figure 

3.2 shows the structure of a PE. The power of neural computation comes from the 

immense number of interconnections between the PEs, which share the load of the 

overall processing task, and also from the adaptive nature of the parameters (weights) that 

interconnect the PEs. (Garson, 1998).

Activation
-EuQction

Summation

Output

net

Weights

bias
Inputs

Fig 3.2 Processing elem ents (G arson, 1998).
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3 .1 .3  C lassification o f  Neural Network Architectures

There are several neural network architectures, which are used not only for solving 

job shop scheduling, but also for several other applications. Figure.3.3 provides 

classifications within the field o f neural computing. Jain and Meeran (1998) have 

presented details about each of the different tN̂ Des of neural networks. There are several 

different neural architectural models, but most of these can be divided into two main 

categories viz. feed forward and feedback.

Neural Network Architectures

Supervised Training

Supervised Training

Unsupervised Training

Multi-layer Perceptron

Fixed Waght-Recurrent Networks 

Auto-Assodalive Memories

Qassification and clustering Models

Error Correction networks 
e.g Backpropagation

Protoabilistic networks 
e.g Simulated Annealing

Searching networks 
e.g Hopfield

. . Self-Organizing or
Unsupervised Training oorrpeting networks

F ig .3 .3  C lassification  o f com m on neural nerw’ork architectures (Jain and M eeran , 1998).

3.1 .4  Feed Forward Neural Network

Processing elements are usually organized in layers. These layers can be connected 

in a number o f different ways. A neural network with more than one layer is called a 

multi-layer neural network. Figure 3.4 shows the architecture o f a multi-layer neural 

network. As can be seen in this network, the output from each layer feeds the next layer
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of units in a forward direction and there is no feedback connection between the layers, 

that is, the information is processed from left to right only. Garson (1998) describes this 

network as one that “has one or more inputs which are propagated through one or more 

number of hidden layers. Each layer contains a variable number of nodes, which finally 

reaches the output layer containing one or more output nodes”.

Weights

Ouput Layer

Hidden Layer

input Layer

Fig 3.4 M ulti-layer feed forward neural network (based on G arson, 1998).

3.1.5 Learning Rule

There are several learning rules, such as Hebb's rule, the Delta rule, Gradient 

Descent rule, etc. The choice of learning rule depends to some extent on the chosen 

architecture (Smith, 1999). For instance, in case of back propagation, the Delta rule is 

mostly used for generalization of errors. Learning rules can be divided into two main 

types: supervised and unsupervised learning (Smith, 1999).
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a) Supe)-\>ised learning in simple tenns is defined as ‘learning with teacher’ (Smith, 1999). 

In this case, the network is trained with the correct/desired responses for given inputs. 

During the learning process global infonnation may be required. Usually, superx'ised 

learning is done off-line i.e. the network can be trained separately and later on the trained 

network is used for obtaining solutions to new problems (Garson. 1998).

b) Unsupervised learning. In this situation there is no external teacher used by the neural 

network for training. In other words, the desired output for the input is either unknown or 

does not exist, and learning is based on local information. Usually unsupervised learning 

is performed on-line (Smith, 1999).

3.2 Neural Network training by Back Propagation (BPN N )

Back propagation Neural Networks are a class of feed forward neural networks 

with supervised learning rules. In order to train a neural network to perform a certain task 

the weights of each unit must be adjusted in such a way that the error between the desired 

output and the actual output is reduced. The actual response of the network is subtracted 

from a target response to produce an error signal. The dérivâtes of the output error are 

passed back to the hidden layer using the original weighted connections. Each hidden 

node then calculates the weighted sum of the back-propagated errors to find its indirect 

contribution to the known output errors. After each output and hidden node finds its error 

values, the weights are adjusted to reduce the errors. This process requires that the neural 

network compute the error derivate o f the weights.

The back propagation algorithm is the most widely used method for determining 

error dérivâtes o f the weights. For the present research different BPNN networks are built

for different performance objectives. There are a few important parameters and
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guidelines required while building the BPNN network, the details of which are provided 

below;

3.2.1 Scaling Function

Scaling function is used in the input layer to scale the data from their numeric range 

into a range that the network deals with efficiently. In case of supervised feed forward 

back propagation neural network the output patterns also require normalized or scaled 

value in the same range as of input. Common ranges for scaling are either 0 toi or -1 to 1. 

In this study both the input and output patterns for neural network training are scaled 

between 0 and 1 (Neuroshell 2 manual; Swing!er, 1999).

3.2.2 Transfer Function

In simple terms, the transfer function, which is also called as transformation, 

squashing, activation or threshold is a mathematical formula that determines the output of 

a processing neuron. In most areas of research the Sigmoid or S-shaped function is more 

popular as compared to other functions such as hyperbolic, tangent, step, ramping, arc tan 

or linear. For sigmoid function, the output varies continuously but not linearly as the 

input changes. According to Swing]er (1999), the activation ifrnctions are “necessary to 

introduce non-linearity in the network. This non-linearity makes it possible to learn non­

linear functions”. Sigmoid functions are more inclined to vary an output than threshold 

functions, because threshold functions usually are not sensitive to small changes in 

weights. For this reason, sigmoid functions are used in neuron activations for the 

proposed BPNN for job shop dispatching rules selection model (Garson, 1998).
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3.2.3 D elta Rule

For a given input vector, the output vector is compared to the correct answer. If 

the difference is zero no learning takes place; otherwise, the weights are adjusted to 

reduce this difference (Garson, 1998). The change in weight w for output layer neuron a 

with respect to input layer neuron b is the learning rate r times the activation function (f) 

for neuron a times c, the correct desired output of neuron a:

^ ^ ’ab^^fab^a  (3.1)

is the difference between the expected and actual output. During this learning 

the delta weight as shown in the equation is added to the existing weight More 

details about the rule can be obtained from (Garson, 1998).

3.2.4 T ype o f  Datasets

It is important to define and discuss the various types and sets o f data. Data for 

neural networks are an input-output model. “Inputs are the presumed predictor variables, 

while outputs are the neural model’s estimates of the dependent variable or variables” 

(Garson, 1998). In simple terms the data set is a set of examples for learning, which is 

nothing, but a “training set”. The neural modeling software uses this set to compute 

model weights. Garson, (1998) defined the test data set as “the set of data to which the 

final neural model, and its associated weights, is applied for purposes of generalization.”

There is a distinction in types of data sets between test sets and validation sets. 

According to Garson (1998), a test set is a collection of data that is used for testing the 

performance measure without changing any of the parameters, while a validation data set 

is used to tune the parameters. However, Garson, (1998) also mentioned that the test data
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sets are used for validation in the final stage of development of a neural model and thus, 

test data sets are sometime referred to as validation data sets. In this study only training 

and testing data sets are considered.

3.2.5 Learning Rate and Momentum

The learning rate (p) controls the magnitude of the adjustments to the network's 

weights in response to the error. Each time a pattern is presented to the network, the 

weights leading to an output node are modified so as to produce a smaller error the next 

time the same pattern is presented. The magnitude of the weight adjustments is 

determined by the relationship: learning rate times the error. In most neural packages the 

learning rate is between 0.1 and 1. In Neuroshell 2 the default value is 0.1. A high 

learning rate might lead the local minimum to be overstepped constantly, causing 

oscillation from side to side, and never reaching convergence to the lower error state 

(Garson, 1998).

One way to allow faster learning without oscillation is to make the weight change a 

function of the previous weight change in order to provide a smoothing effect. The 

momentum (a) factor determines the proportion of the last weight change that is added 

into the new weight change (Garson, 1998). The Momentum, which causes the weight 

changes to be affected by the size of previous weight changes, is used to avoid local 

minima. Typically a is selected in the range of 0 < « < 1 ” (Swingler, 1999). The default 

momentum value in Neuroshell 2 is 0.1.
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3.2 .6  Initial W eights

Al] network weights must be set to initial values before training starts. If weights 

are too large then the network might become unstable and the nodes saturated, and if  

weights are too small then weight changes will be slow. The choice o f initial weights is 

dependent upon the problem and nonnalization o f variables (Swingler, 1999). Generally, 

weights are chosen randomly. The default initial weight value in Neuroshell 2 is 0.3.

3.2.7 Neural Network Training

Garson, (1998) defines training as, “the process of refining the weights in a neural 

model through a process in which training data set are fed into the model, analyzed and 

reprocessed through a number o f iterations.” The objective o f training a neural network is 

to adjust the weights so that application o f a set of inputs produces the desired set of 

outputs. Training assumes that each input vector is associated with an output vector.

In brief, training a feed-forward neural network with supervised learning consists o f 

the following procedure, adapted from Garson (1998).

• Select a training pair from the training set and apply the input vector to the network 

input.

• Calculate network output using a forward pass. Calculation of network output is 

accomplished by using a feed-forward process and application of an activation

function for each layer in the network.

• Compute the difference between network output and the desired target value from the 

training pair output value.

• Change the network weights in a way that minimizes the error.
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This chapter has provided a detailed description of BPKN along with different 

parameters to be considered while designing BPNN for solving the job shop problem for 

two different performance objectives. The next chapter describes building a BPNN for 

selecting appropriate dispatching rules in a 5-machine job shop.
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CH APTER 4 

M ethodology and Design of BPNN

This chapter introduces the methodology for constructing a back propagation neural 

network (BPNhJ) that selects a combination of dispatching rules to use in a job shop 

problem.

4.1 D esign ing a BPNN for job shop scheduling

In order to build a BPNN, there are some common steps that should be followed for 

achieving desired objectives. Baily and Thompson, (1993) provided detailed guidance on 

how to build neural networks along with the design decisions to be considered for 

commonly used neural paradigms like BPNN, Boltzman machines, Hopfield network, etc. 

Likewise, Kaastra and Boyd, (1996) provided a step-by-step guide for building a BPNN 

forecasting model. Based upon both these references, Figure. 4.1 is constructed to 

highlight the main steps required in designing a BPNN. The procedure is not usually a 

single pass process and some of the steps like training and testing may need to be carried 

out several times.

The material in this section is organized based on the design steps of Figure. 4.1. 

The detailed explanation is presented for a BPNN with regards to the performance 

criterion o f minimizing makespan. This same procedure can be used for other 

performance criteria, as will be illustrated for minimizing the mean flowtime in section 

4.7 o f this chapter.
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Fig 4.1 Design m ethodology for building ANN.
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4.2  Problem A nalysis

The definition, nature and scope of the job shop problem along with the type of 

neural network recommended for solving it have been discussed in chapter one. The case 

o f a 5-machine job shop is considered, although a similar approach can be used for job 

shops having different numbers of machines. The objective is to select for each machine, 

one o f three alternative dispatching rules so that a given performance criterion is 

optimized for the problem on hand.

4.3 Data A cquisition and Preparation

In building an effective ANN, the researcher has to decide what kind of data are to 

be used, namely either historical or constructed data. If historical data are being used, 

then they must be sorted or filtered from noisy data, if any. A format and range for each 

input and output are then selected and the data are expressed in a manner that can be 

presented to the BPNN. This usually takes form of a data vector as follows:

<lnput 1, input 2, input 3 , input Nj, output 1, output 2, output 3 output N q>

Where Nj and N q represents number of input and output nodes respectively.

Before the data are collected, it is necessary to decide which of the job shop 

attributes will be used in the input layer and what output information is desired of the 

network.

4.3.1 Input Variable Selection

Input variables must be selected very carefully, taking into account the given 

performance objective to be achieved. Here, the objective considered is to minimize
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makespan, which mainly depends on the job’s processing times {Pijf) and the routes

^Qik )• However, in a case where every job visits each machine once, the subscript j  can

be dropped and the processing time represented as (Pjjr.)- The number of units in the input

vector is dictated by the specific representation adopted for the schedule of the job shop 

problem. In the proposed representation, it is desired to characterize the job shop in terms 

of machine loads, dispersion of machine processing times and mean routing order on 

each machine. This is achieved by a total of 15 input units for a 5-machine job shop. The 

information carried in each of these units is organized as follows:

Input 1 Total processing time on machine 1 = .... (4.1)
1=1

n

Input 2; - Total processing time on machine 2 = %]Ti2 .... (4.2)
1=1

Input 3: - Total processing time on machine 3 .... (4.3)
1=1

Input 4: - Total processing time on machine 4 = .... (4.4)
/=i

Input 5: - Total processing time on machine 5 ~ .... (4.5)
i= l

"Sfn-(Sfn)’
Input 6 : - Variance of processing time for machine 1 = — ----------- ------- .... (4 .6 )

n(n - 1)

Input 7: - Variance of processing time for machine 2 = ----   .... (4 .7 )
n(n - 1)

"XPi3-(XPi3)'
Input 8 : - Variance of processing time for machines = —̂ --------- id  ( 4  g'v

n (n - l )
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H I)

. 3

Input 9: - Variance of processing time for machine 4 =  —-------- .... (4.9't
n ( n - ] )

Input 10 ; - Variance of processing time for machine 5 = —̂ ^ -------  ( 4  ] 0")
« ( « - 1) ■■■■ ■ ^

1 »i
Input 11; - Mean routing order of machine 1 = = - ^ Q . ,  . . . .  (4.11)

n , = i  

1 "
Input 12; - Mean routing order o f  machine 2 = R ,̂ 2̂ . . . .  (4.12)

n i= l

1 ”Input 13: - Mean routing order of machine 3 = R ,^=3 = - ^ Q j j  .... (4.13)
^ 1=1

1 "Input 14: - Mean routing order of machine 4 = R^^4  .... (4.14)
n 1=1

1 "Input 15; - Mean routing order of machine 5 = R^=5 = - ^ Q j 5 .... (4.15)
n i= l

4.3 .2  Construction o f  an Input Vector

A single input vector represents a job shop problem. This section gives detailed 

illustration of how an input vector is computed for a randomly selected 10-job, 5-machine 

example. Table 4.1 depicts the raw data for this problem, identified as N10M265 - 10 

denotes a 10-job problem; M represents the makespan criterion and 265 the problem 

number. (Mote this example problem is taken from a set o f 2494 random problems 

generated for training the network). The details of how each o f the input units is 

constructed is explained hereafter.
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Job
N o

Routes Processing time (f^^.) time units

1 3 1 4 5 2 47 67 43 74 57

2 3 4 5 2 1 47 44 72 74 60

3 4 1 2 5 3 46 85 84 69 30

4 3 4 5 2 1 43 31 55 51 85

5 1 4 5 3 2 77 24 55 40 88

6 1 4 5 3 2 95 17 78 52 63

7 1 4 5 3 2 64 48 53 33 49

8 4 1 2 5 3 41 66 66 53 37

9 3 5 1 2 4 52 64 95 60 21

10 3 4 5 2 1 46 52 64 53 85

Tabic 4.1 Raw data o f sample problem N10M265.

Input units 1 through 5 (Total processing times);

The total processing time on a given machine is the summation of proeessing time 

requirements on that machine. This measure helps to identify whieh maehine is a 

bottleneek and to what degree. Total load on each of the machines is obtained by adding 

the proeessing time of all the jobs visiting that machine. The bottleneck machine is that 

which has the highest load. Applying equations 4.1 through 4.5 for the data of Table 4.1 

results in total machine loadings given in the third column in Table 4.2. Here, maehine 1 

with a total load of 780 (time) units, is the bottleneck machine.

Input unit Machine Total load Normalized value
1 1 780 1
2 2 645 0.827
3 3 427 0.547
4 4 367 0.471
5 5 637 0.817

Max Value (H) = 780

Table 4.2 D eterm ining inputs 1 to 5 for example no. NM 10265.

The next step is to eonvert the machine loads in the range (0, 1). This is necessary 

beeause the input layer must have continuous values between 0  and 1 whenever the 

sigmoid aetivation funetion is used. This ean be aehieved by ealeulating a relative 

pereentage for eaeh load with respect to the highest load. Thus, for a given range of data 

with maximum values= H, a speeific normalized value V is ealculated by V / H. The
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normalized machine loads for the example job shop of Table 4 . 1  are given in the last 

column o f Table 4.2

Input units 6  through 10 (Variance of processing time);

As different jobs have different processing times on a given machine, it is useful to 

have an indication of the spread (dispersion) of these times about the mean. This is 

achieved by calculating variance^ which is a measure of this spread for each machine. 

The variances for the sample problem in Table 4.1 are computed by using equations 4.6 

to 4.10. The data are formatted in the range 0 to 1 by dividing them by the maximum 

varianee among the five machines. Table 4.3 shows the variance for the five machines of 

the problem given in Table 4.1 and the normalized values used for input units 6  through 

10 .

Input unit M achine Variance N orm alized  value
6 1 169.56 0 .92
7 2 184.28 1.00
8 3 57.34 0.311
9 4 154.23 0 .837
10 5 87 .56 0 .4 75

M a x  V  alue = 184.28

T ab le  4.3 Inputs 6 to 10 for exam ple problem  N 10M 265.

Input Units 11 through 15 (Mean order of routing (R^):

The purpose of this measure is to characterize the prevailing flow pattern, if  

any, due to the combination of job routes for the problem to be scheduled. The mean 

routing order (Rj^) for each machine k is calculated as follows: -

(4.16)

Where, = machine k's, order in job f’s route. 

A'=1,2,..,5
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The minimum value for Qn̂  is 1 and the maximum is 5 (because 5 machines are

visited by each job). A lower value for g,* indicates that machine k is visited

predominantly by jobs during the earlier stages in their routes, while higher values 

suggest that the machine is visited more towards the later operations o f the job’s 

processing orders. Tlie mean routing order for five machines based on the problem of 

Table 4.1 is given in column 3 of Table 4.4

Input unit Machine Mean routing order Normalized Value

]] 1 2.7 0.54

12 2 4.2 0.84

13 3 2.7 0.54
14 4 2.2 0.44
15 5 3.2 0.64

Max Value = 4.2

4 E x a m p l e  o f  n o r m a l iz e d v a lu e  fo r  in p u t s  11 t h r o u g h  15  f o r  e x a m p l e  p r oT a b l e  4 /

From Table 4.4 it is seen, for example, that the mean routing order for machine 2 is 

4.2. This indicates that machine 2 is predominately visited towards the end of the routes 

in most of the jobs. The mean routing orders are normalized between 0 and 1 by dividing 

Qjf̂  for each machine by the number of machines (5 in this case).

Once all the input data computations are done, the input vector can be prepared. 

The 15 input units representing the 10-job problem in Table 4.1 is constructed by using 

the normalized values from the last columns of Table 4.2, 4.3 and 4.4. This result is 

shown in Table 4.5.

Data 
Set No.

Total Processing time Variance o f  Processing time Routing C omplexity V

Input
units

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 1.0 0.827 0.547 0.471 0.817 0.92 1.0 0.311 0.837 0.475 0.54 0.84 0.54 0.44 0.64

T a b le  4 .5  15 U n it  in p u t  v e c t o r  r e p r e s e n t in g  j o b  s h o p  p r o b l e m  o f  T a b l e  4 .1 .

The input vector in Table 4.5 can be interpreted to describe the job shop problem, 

for instance, as one where the machine 1 is a strong bottleneck. Machines 1 , 2  and 4  have
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a wider range o f processing (imes as compared lo the other two machines; and finally 

machine 2  is visited last or near last by most o f the jobs.

4 .3 .3  Output Layer

For solving the makespan minimization problem the three dispatching rules SPT, 

LPT and MWKR are considered. Past research by Kumar & Srinivsan, (1996) and by 

Subramaniam et al, (2000) has showed rules SPT, LPT and MWKR are among a few 

rules effective in minimizing makespan. The neural network’s task is to select one o f 

these dispatching rules for each of the five machines. Therefore, the output layer has been 

designed with 15 units (3 rules x 5 machines). Each unit represents a dispatching rule for 

a machine. The higher the value o f an output unit, the higher is the desirability o f using 

the dispatching rule associated with that unit on the corresponding machine.

4 .3 .4  Data C ollection

Now that the input units and the desired output have been defined, the next step is 

to collect data for training and testing the network. A total o f 7500 job shop problems 

were generated randomly using n=10, 15 and 20 jobs in equal quantities. A C++ program 

(see Appendix A l) is used for this purpose. The processing times u%ed for the problems 

are uniformly distributed between U (10,99) integer time units. The number o f different 

job routes in each problem is between 5 and 11, selected randomly from the 120 (or 5!) 

possible routes in a 5-machine job shop. This range for the routes is used to ensure that 

several jobs have identical routes in order to simulate more realistic situations. It is
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unlikely in a real world application, particularly within group technology settings, for 

most if not all jobs to have different routes from one another.

The optimal combination of dispatching rules that minimizes makespan for a given 

5 -machine job shop problem is found by enumerating all possible combinations, a total of 

243 possibilities of dispatching rules (3^ combinations) for the three dispatching rules 

SPT, LPT and MWKR. The neural output assumes values between 0 and 1.0; the 

maximum value “1 .0 ” suggests undisputed preference for the specific dispatching rule 

represented by the unit. As the output value reduces, the preference for the corresponding 

dispatching rule diminishes proportionately. In supervised learning, desired (or target) 

outputs are needed in training the network. The target outputs for the proposed network 

are extracted from the optimal rule combinations in the following fashion, using data 

from Table 4.1 to illustrate the procedure.

The optimal selection of dispatching rules for the problem N10M265 gives a 

makespan of 826. Two different optimal combinations of the three rules exist for this 

problem as shown in Table 4.6

M/C 1 M/C 2 M/C 3 M/C 4 M/C 5
M WKR SPT M WKR LPT LPT
MW KR MWKR MW KR LPT LPT

Tab le 4.6 Optimal rule com binations for example problem N10M 265,

In order to represent DR combination, the data of Table 4.6 are presented in a 

numerical form suitable for the output vector. The number of times a rule appears in an 

optimal combination is computed in each machine. For example, in machine 2 (Table 

4.6) both SPT and MWKR (but not LPT) appear once in the optimal result. A similar 

calculation for the other machines is done and the final counts are given in Table 4.7.
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D R M .C 1 M /C  2 M /C  3 M /C  4 M /C  5
SPT 0 1 0 0 0
LPT 0 0 0 2 2

M W K R 2 1 2 0 0
T a b le  4 .7  N um erica representation  for optim al rule com bination  o f  T able 4.6.

In order lo normalize the outpui results of Table 4.7 between 0 and 1, the entries 

in Table 4.7 are divided by the total number of optimal results (2) for the problem. The 

resulting output (o/p) vector is shown in Table 4.8, which represents the target output 

pattern that would be associated for training purposes with the input vector of Table 4.5.

M a c h in e ] M achine2 M a c h in e ] M achine4 M a c h in e s

S P T  L P T  M W K R S P T  L PT  M W K R SPT LPT M W K R S P T  L P T  M W K R SPT LPT  M W K R

0 . 0 0 0  0 .0 0 0  1 .0 0 0 0 .5 0  0 .0 0  0 .5 0 0 .0 0  0 .0 0  1.00 0 .0 0 0  1 .00 0  0 .0 0 0 0 .0 0  1 .00 0  0 .0 0

As can be seen from the output vector above, a minimum makespan can be 

obtained by using MWKR on machines 1 and 3; LPT on machine 4 and 5; and either SPT 

or MWKR with equal favor on machine 2. Table 4.9 shows a sample o f several pairs o f 

training patterns generated from the training problems where number of jobs (n) is 1 0 . 

The optimal combinations of dispatching rule in each problem are used for training. In 

order to compute the neural input and output (optimal combinations o f dispatching rule 

for each problem) vectors are computed by using a program in C++ (see Appendix A2). 

The back propagation neural network model proposed for selecting one of the three DRs 

for each of the machines in a 5 -machine job shop appears as shown in Figure 4.2.

4.3 .5  V alidation o f  Training data set output

In order to validate the makespan results obtained from the C++ program of 

Appendix A2, a simulation model o f a 5 -machine job shop was developed with a student
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Input 1

Input 2

Input 15

Input Layer

Error Back propagation Output Comparision

Information Propagation

Hidden Layer

W eights

Fig. 4.2 Structure o f  ANN proposed for the 5-m achine job shop.

/

S P T  on M /C  1

O utput 1

M W K R  on M /C  5

Output 15

Ouput Layer
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Data Set Total Processing time Variance o f  Processing time M ean Routing order

N um bers Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10 Input 11 Input 1 I Input 13 Input 14 Input 15

N 1 0 M 3 0 I 0 .50 0.71 0 .80 0.93 1.00 0 .75 0.98 0.51 1.00 0 .46 0.46 0 .60 0 .76 0 .60 0.58

N 1 0 M 3 0 2 0 .92 1.00 &87 0.90 &88 0 .32 1.00 0.67 0.55 0.59 0.48 0 .72 0.46 0 .80 0 .54

N 1 0 M 3 0 3 0.75 0 .35 1.00 0.67 0.72 0.64 1.00 0.58 0 .54 0 .42 &68 0 J6 0.50 0.58 0 .88
N 1 0 M 3 0 4 0.71 0 .54 0.57 1.00 0 .70 0.79 1.00 0.89 &88 0 .36 0.66 0 .50 0 .7 6 0 .72
N 1 0 M 3 0 5 1.00 &88 0.63 0.94 0 .82 0 .74 0.97 1.00 0.60 0 .77 0J2 0.60 0 .60 0 .76 0.72
N 1 0 M 3 0 6 0.53 0 J8 0.97 1.00 0 .48 0 .43 0.47 0.22 1.00 0 .37 0.52 0.64 0.62 0 .66 0 .56
N 1 0 M 3 0 7 0.48 1.00 OTW 0.84 0.53 0 .76 0.77 0J9 0.44 1.00 0 48 0.88 0.52 0 J2 0 .80
N 1 0 M 3 0 8 0 .87 0 .87 1.00 0.98 0 .40 0.48 0.69 0 63 0.58 1.00 0 .46 0.60 0J8 0.44 0.72
N 1 0 M 3 0 9 OTW 0.74 1.00 0.55 0 .63 &88 0 .77 &84 &84 1.00 &72 0.68 0 .50 0 .54 0 .56
N 1 0 M 3 1 0 1.00 0.66 0.81 0 63 0.91 0 .76 0.61 1.00 0 .47 0 .52 0.62 0.72 0 .38 0 .74 0 .54
N 1 0 M 3 11 0.52 &78 0.95 1.00 0.63 0 .20 0.68 0 .70 1.00 0.71 0.68 0.60 0.64 0 .44 0 .64

N 1 0 M 3 1 2 OT^ 0.75 1.00 0.94 0.93 1.00 0.48 &69 0.55 0.96 0 52 0.56 0 .76 0 .60 0 .56
N 1 0 M 3 1 3 0.80 0.95 0.79 0.57 1.00 &88 0.15 0.51 1.00 OTW &66 0.54 0 .60 0.54 0 .6 6
N 1 0 M 3 I 4 0.75 &66 0.61 0 .96 1.00 1.00 0.85 0.72 OTW 0.77 0 .30 0 .76 0 .68 0.68 0.58

T a r g e t  O u tp u t P a ttern s
Data Set M achine 1 Machinc2 M achine3 Machinc4 M acliinc5

N um ber o/p 1 o/p 2 o/p 3 o/p 4 o/p 5 o/p 6 o/p 7 o/p 8 o/p 9 o/p 10 o/p 11 o/p 12 o/p 13 o/p 14 o/p 15

N 10 M 30 1 0 .0 0 0 0 .000 1.000 0 .0 00 1.000 0 .000 0 .000 0 .000 1.000 1.000 0 .000 0 .0 00 0 .00 0 0 .0 0 0 1.000

N 1 0 M 3 0 2 0 .0 00 1.000 0 .000 0 .00 0 1.000 0 .000 0 .000 1.000 0 .000 0 .000 0 .500 0 .500 0 .0 0 0 1.000 0 .0 00

N 1 0 M 3 0 3 0 .3 3 0 0 .3 30 0 .3 30 0 .0 00 0 .860 0 .140 1.000 0 .00 0 0 .000 0 .430 0 .290 0 .290 0 .0 00 0.430 0 .5 7 0

N 1 0 M 3 0 4 1.000 0 .000 0 .000 0 .3 30 0 .330 &330 0.400 0 .200 0.400 0 .000 0 .000 1.000 0 .00 0 0 .6 0 0 0 .4 0 0

N 1 0 M 3 0 5 0 .0 00 0 .000 1.000 0 .35 0 0.300 0 .350 0 .300 0 .250 0.450 0 .000 0 .000 1.000 0 .1 50 0 .4 5 0 0 .4 0 0

N 1 0 M 3 0 6 0 .50 0 0 .080 0 .420 0 .330 0 .330 0 .330 0 .42 0 0 .000 0.580 0 .000 0 .420 0 .5 80 0 .33 0 0 .3 30 0 .3 3 0

N 1 0 M 3 0 7 0 .31 0 0 .380 0 .310 0 .080 0 .460 0 .460 0 .460 0 .00 0 0 .540 0 .000 0 .00 0 1.000 0 .33 0 0 .3 30 0 .3 3 0

N 1 0 M 3 0 8 1.000 0 .000 0 .000 0 .50 0 0.000 0 .500 0 .000 0 .500 0 .500 1.000 0 .000 0 .000 0 .3 30 0 .3 3 0 0 .3 3 0

N 1 0 M 3 0 9 0 .37 0 0 .370 &260 &260 0.320 0 .420 0 .000 0 .000 1.000 0 .550 0 .180 0 .260 0 .500 0 .1 6 0 0 .3 40

N 1 0 M 3 I 0 0 .33 0 0 .000 0 .67 0 0 .3 30 0 .330 0 .330 0 .000 0.330 0.670 0.330 0 .330 0 .330 0 .00 0 0 .0 0 0 1.000

N 10M 3 11 0 .3 30 0 .3 30 0 .3 30 0 .14 0 0 .430 0.430 0 .430 0 .290 0 .290 0.000 0 .000 1.000 0 .330 0 .3 3 0 0 .33 0

N 1 0 M 3 1 2 0 .4 8 0 0.260 0 .26 0 0 .3 20 0 .550 0 .130 0.420 0.100 0 .480 0 .520 0 .130 0 .3 50 0 .19 0 0.000 0.810
N 1 0 M 3 1 3 0 .50 0 0 .2 50 0 .25 0 1.000 0 .000 0.000 0 .170 0.170 0 .670 0 .420 0 .170 0 .420 0 .00 0 0.000 1.000
N 1 0 M 3 1 4 1.000 0 .0 00 0 .0 00 0 .33 0 0 .330 0 .330 0 .000 0 .000 1.000 0 .000 0.000 1.000 0 .0 00 0.000 1.000

Tab e 4.9 Sam ple o f  input and output pattern pairs.
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version o f the simulation software package Arena (Kelton et al, 2002). This model is given in 

Appendix B.

Randomly selected problems from the training (data) set were tested using this Arena job 

shop model for all the combinations of the three dispatching rules on the 5 machines. It was seen 

that the simulation output from the Arena simulations matched the results from the C++ program.

Table 4.10 presents the different dispatching rules tested by the arena model for the 

performance objective o f minimizing the makespan.

Arena 5-machine Job shop simulation Model
D isp a tc h in g  rules Q ueue Ranking Rule Expression/Attribute

S P T

L P T

M W K R

Least V a lu e  First 

H igh V alue First

High V alu e  First

Processing  l im e (Pjjj^) 

Processing l im e (Pjjj^)

R em ain ing  time
II f  y.r-s \

^ ( ^ i . i k ) ~  (^Ki-i)k)
1=1 \j.k=\ /

Table 4.10 A ttrib utes used in job  shop Arena m odel.

4.3 .6  Data sorting

As seen in Table 4.9, several of the output patterns show that more than one dispatching rule 

is favored on one or more of the machines. This arises when there exists more than one 

combination of dispatching rules that produce the lowest makespan. For example, in data set 

N10M306, in Table 4.9, the three output units for machine 2 show equal values of 0.330. This 

indicates that all three dispatching rules appear with equal frequencies in the multiple 

combinations that yield minimum makespan for this problem. Using data from a problem such as 

this to train a network is not helpful because it introduces conflicting information and prevents the 

network from detecting the useful relationships between input data and optimal outputs. Therefore, 

i f  the network is trained without sorting and screening the input data, then chances are that the
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network will not learn properly and may not select the best dispatching rules. The sorting is done 

conveniently, using Structure Query Language (SQL).

SQL has the capabilities to sort the data considering multiple criteria at a time. In this case 

there are 3 outputs for each machine. There are two different sorting criteria considered;

A sorting index of 5 identifies the problem whose output units for all the five machines is 

either (1,0,0), (0,1,0,) or (0,0,1). For example referring to the problem number N10M301 of Table 

4.9 the output value of each machine satisfies the sorting criteria for a sorting index of 5.

A sorting index of 4 identifies the problem whose output units for any four out of the five 

machines is either (1,0,0), (0,1,0,) or (0,0,1). For the remaining machine the value of the output 

unit is treated as zero while sorting; resulting in the sum of sorting index as 4. For example, for the 

problem number N101V1302 of Table 4.9 the sorting index is 4 because four out of the five 

machines satisfy the sorting criteria. Likewise the patterns can be sorted for sorting indices of 3, 2 ,

1 and 0 .

The data is sorted in the descending order having the maximum sorting index (5 in this 

case). The sorting procedure is illustrated in Table 4.11 , after the same patterns of Table 4.9 are 

sorted. The first column in the target output patterns of Table 4.11 lists the sorting index for each 

problem. The number of outputs (equivalent to the sorting index) satisfied by the respective 

problems is highlighted in Table 4.11 .

For all of the 7500 training problems (as explained in section 4.3.4) data are sorted 

simultaneously. For training the network it is not advisable to use only data whose sorting index is 

5. This is because many problems exhibit multiple optimal combinations, and to help the network 

deal with such cases it is a good idea to incorporate some data having characteristics where more
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Data Set Total Processing time Variance o f  Processing time Mean Routing order

Numbers Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10 Input 11 Input 12 Input 13 Input 14 Input 15

N10M 301 0,50 0.71 0.80 0.93 1.00 0.75 0.98 0.51 1.00 0.46 0.46 0.60 0.76 0 .60 0.58

N 10M 302 0.92 1.00 OTD 0.90 0.88 032 1.00 047 045 0.59 ■ 0.48 0.72 0.46 040 0.54

N 10M 3 14 0 75 0.35 1.00 0.67 0.72 044 1.00 0.58 0.54 0.42 0.68 0 .36 0.50 048 048
N 10M 304 0.71 0.54 0.57 0.86 1.00 0.70 039 1.00 049 048 0.36 0.66 0.50 0.76 0.72
N 10M 305 1.00 0.88 0.63 0.94 0.82 0.74 0.97 1.00 040 0.77 0.32 0.60 0.60 0.76 0.72
N 10M 308 0.53 0J8 0.97 1.00 048 0.43 0 4 7 0,22 1.00 0.37 0.52 0.64 042 046 0.56
N 10M 313 0.48 1.00 OTW OTW 0.53 0J6 0.77 0.39 0.44 1.00 0.48 048 042 0.32 0.80
N 10M 303 OTD 0.87 1.00 0 98 0.40 048 049 0.63 048 1.00 0.46 0.60 0.78 0.44 0.72
N 10M 307 0.84 0.74 1.00 0.55 043 048 0.77 0.84 044 1.00 0.72 048 0.50 044 0.56
N 10 M 30 9 1.00 0.66 0.81 0.63 0.91 0.76 0.61 1.00 0.47 042 042 0.72 048 0.74 0.54

N 1 0 M 3 10 0.52 0.78 0.95 1.00 043 030 0.68 0.70 1.00 0.71 0.68 0.60 0.64 0.44 0.64

N 1 0 M 3 1 1 0 66 0.75 1.00 0 94 043 1.00 0.48 049 045 046 0.52 0.56 0.76 040 0.56

N 10M 3 06 &80 0.95 0J9 0.57 1.00 048 0.15 0.51 1.00 0.64 0.66 0.54 0.60 0.54 046
N 10M 312 0.75 0.66 0.61 0.96 1.00 1.00 0.85 0.72 0.84 0.77 1 0.30 0.76 0.68 0.68 048

Target Output Patterns
Sorting Data Set Machine! Machine] M achine] Machinc4

^ 4
0.000 0.500

0.000

0.000

0.170

0.290

0.000

0.420

Machine5

Index Number o/p 1 o/p 2 o/p 3 o/p 4 o/p 5 o/p 6 o/p II o/p li o/p 13 o/p 14 p/p I

5
4

4

2
2
2
2
1

1
1
1
1
0
0

N 10M 30I

N I0M 3 02
N 1 0 M 3 I4

N 10M 304

N I0 M 3 0 5

N I0M 3 08

N 1 0M 3 I3

N 10M 303
N I0 M 3 0 7

N10M 309
N 10M 310

N 10M 31I
N 10M 306

N 10M 312

0.250

1.006;
0.000
0.000
0.000

0.500

0.330

0.310

0.370

0.330

0.330

0.500

0.480

0.000 0.000
0.000 0.000
0.330 0.330 0.330

0.330 0 .330 0.330
0.350 0.300 0.350

0.500 0.000 0.500

# # # (  0.000 0.000
0.000 0.860 0.140

0.080 0.460 0.460

0.260 0.320 0.420

0.330 0.330 0.330

0.140 0.430 0.430

0.330 0.330 0.330

0.320 0.550 0.130

0.000
0.000
0.000
0.400

0.300

0.000
0.170

# #
0.460

0.000
0.000
0.430

0.420

0.420

0.000
0.500

#  0.000 
0.000
0.000 
0.330  

0.290  

0.000 
0.100

0.000
0.420

0.290
BET

0.670

0.290

0.580

0.480

0.260

0.330

0.580

0.350

0.000
0.000
0.000
0.000
0.150

0.330
0.000
0.000
0.330

0.500

0.000
0.330
0.330

0.190

0.000

n.noo
0.600

0.450

0 J 3 0
0.000
0.430

0.330

0.160

0.000
0 J 3 0
0.330
0.000

0.000

r'-T.OOO
0,40(1
0.400

0.330

0.570

0.330

0.340

0.330

0.330
0.810

Table 4.11 Input and output patterns of Table 4.9 after sorting.
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than one dispatching rules is favored by one of the machines. This will help the network 

to leam the stronger relationships between input and output patterns. On the other hand, 

using patterns with lower sorting indices could hamper the learning. Therefore, it was 

decided to incorporate only those patterns with sorting indices 4 and above for the 

training. Thus, ignoring all the data having a sorting index of less than 4, the result is a 

2494 training data set extracted from the 7500 original problems for training the neural 

network.

4.4 Design o f  Neural Network

Once the pre-processing (sorting) of the data is done, the next step is to train the 

neural network. However, the final number of units for the hidden layer still needs to be 

decided.

4.4.1 Hidden Layer

The hidden layer is mainly required to overcome the non-linear learning problem. It 

is also where the network learns interdependencies in the model. Figure 4.3 provides 

some detail into what goes on inside a hidden node. Fleurons of the hidden layer receive 

inputs from neurons of the input layer, depending on the sum of the input weights that 

produce an output. The output is then further transferred to units of the output layer.

Garson, (1998) states that “if the problem has a linear solution then it may not be 

appropriate to use hidden layers. In theory, a neural network with at least one layer and 

adequate number of hidden units is capable of solving most problems. However, in 

practice one or more layers may be used depending on the complexity o f a problem (such
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Fig. 4.3 Details of a hidden node

as complicated function fitting problems) and cost and resources. As the number of 

hidden layers increase, the meaningfulness of the back propagated error term decreases. 

Moreover, the training time increases by an order of the magnitude for each additional 

hidden layer.” Thus, considering all the above-mentioned factors, only one hidden layer 

is considered for building the neural network.

4.4 .2  Hidden Units (neurons)

In most situations, there is no magic fonnula that finds the best number of hidden 

units without training several networks and estimating the generalization error o f each. If 

only a few hidden units are considered, then the network may not train well because the 

model lacks sufficient complexity to reflect input-output patterns in the training set. On 

the other hand, if  too many hidden units are used, then the network may overtrain and 

generalization will suffer as the network simply memorizes the input-output patterns in 

the training set.

Some researchers have developed a heuristic approach to determine the best

number o f hidden neurons, (Smith, 1999). Two examples of these are the following.
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If the input patterns are o f  dimension N and the output o f  K neurons, then the number

of hidden layers would be J  = JNxK neurons.

• Another approximation \sJ = ^ ( N  + K) + -Ip  . where P is the number of patterns in

the training set. Tins is the default formula used in the commercial neural network 

package Neuroshell 2.

• On the other hand (Baily and Thompson, (1990)) suggest that the number of hidden 

neurons in a three layer neural network, which include input, output and hidden layers 

should be 75% of the number of neurons in the input layer.

Most of the above heuristics are based on the assumptions that the training set is at 

least twice as large as the number of weights and preferably at least four or more times 

larger than the number of weights. If the same is not the case, then the number of hidden 

neurons will be affected by the number of training sets. Moreover, there are some other 

factors like the amount of noise in the test patterns, the complexity of the function or 

classification to be learned, the architecture, etc. that will also have impact on the number 

of hidden neurons. A trial and error approach is often taken starting with a modest 

number of hidden neurons and gradually increasing this number until the network fails to 

reduce its error Kaastra and Boyd, (1996) and Garson, (1999). This last approach is the 

one adopted in this study for determining the number of units.

4.4.3 Training Stopping Criteria

A neural network is trained in epochs, where each epoch represents a complete pass 

of the training set through the network. When each training pattern is presented to the

51



network, the error between the actual outputs in the training pattern and the network's 

predictions for eacii o f the network's outputs is computed. The total error for each pattern 

is the sum o f the squares of the differences. At the end of each epoch the average error 

over all training patterns is computed. As the epochs progress and the training continues, 

the network learning improves, i.e.. the enor on the training and test sets decreases. For 

the test set, however, there comes a point where the error in the test examples starts to 

increase with additional training. While training a neural network, one expects to obtain a 

network with optima] generalization performance. Thus, the question of when to end the 

training is a critical one. There are different choices for stopping criteria for both training 

and testing sets adopted from Neuroshell 2, which are based on:

• The average error in the training set. End training when the lowest value for the

average error in the training set is reached.

•  The largest average error in the training set. This is the network's latest computation 

for the difference between the network's predictions and the actual predictions for 

data in the training set.

• The events since the minimum average error in the testing set. An event is the

presentation of a single training pattern to the neural network.

Additionally, Neuroshell 2 offers two options about automatic saving of the training 

based on:

• Best training set saves the network every time it reaches a new minimum average 

error for the training set.

• Best testing set saves the network every time it reaches a new minimum average 

error for the test set.
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4.4.4 Training Procedure

The following steps are used in order to achieve a generalization capability in the 

performance of a trained neural network.

• Step J: Train the network with the training patterns and monitor the minimum 

average error. Once a new minimum average error is observed, then interrupt the 

training. Save the neural weights and go to step 2.

• Step 2: Apply the partially trained network to the test set and compute the 

performance measure (using the C++ program of Appendix A3). If the performance 

measure (either total makespan or total mean flowtime) is improved upon from the 

previous trial, then return to step 1. Otherwise proceed to step 3.

• Step 3: Save the current weights as a final trained network.

4.4.5 To Find optimal number o f  Hidden neurons (units)

In order to find the best number of hidden neurons, a trial and error approach is 

carried out involving 6  to 18 hidden neurons using the above-mentioned training stopping 

criteria. The smallest number represents too few and the highest number too many hidden 

neurons. The training trials were done using the commercial software “Neuroshell 2”, and 

with the parameters listed in Appendix C l.

A new set of 1200 randomly generated test problems (having random seeds 

different than the training data set) were used. The original 2494 training patterns (as 

explained in the section 4.3.6) are considered for training. The objective is to find the size 

of the hidden layer that minimizes the obtained makespan for the test set (refer step 2  of 

the training procedure).
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Once the training is completed the test job shop problems are run (using the C++ 

program of Appendix A3) to see how accurately the neural network has assigned the 

priority rules. The neural network’s final performance for each trial with a different 

number o f hidden neurons is tabulated in Table 4.12, which expresses the BPNN results 

in terms of the total makespans of the test set problems. This is further illustrated 

graphically in Figure 4.4.

Experiment
N um ber

N um ber o f  

H idden N eurons
Total

M akespan
M inim um  

A verage Error
1 6 1 39 8179 1.447
2 8 1 39 4552 1.456
3 9 1 3 9 3 3 7 8 1.437
4 10 1 39 5058 1.439
5 15 1 39 71 99 1.457
6 18 1 39 75 33 1.482

T abic 4 .12 T otal m akespan using BPNN w ith various num ber o f hidden neurons.
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F ig.4 .4  E ffect o f num ber o f h idden neuron on the m inim um  average error for m akespan.

When the number o f hidden neurons is small, the corresponding minimum average 

error (see section 4.4.3) is also low. However, the BPNN results are not the best. Figure 

4.3 shows that the BPNN performs best, and the minimum average error is lowest when 

the number o f hidden neurons is 9. With a higher number of hidden neurons, the network 

appears to memorize rather than leam the patterns. So, the chosen network has a 15-9-15 

structure. The next section explains in greater detail the training of the 15-9-15 network.
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It is noteworthy that the same training process, training data and parameters described in 

the next section were also used in the trials to determine the number o f hidden neurons, 

presented in Table 4.12.

4.5 Training the BPNN

A total of 2494 training patterns extracted from problem instances combining n=10, 

15, 20 for the five machines is considered for training the network. Similarly, a test data 

set of 1 2 0 0  problems with the same combinations of n as the training set is generated 

separately. As explained in the preceding chapter, the default values of Neuroshell 2 for 

training are a learning rate = 0.1, momentum = 0.1 and initial weights = 0.3. The training 

was performed on AMD 900MHz Presario personal computer. The training is carried out 

and the total of the makespans for the test set is recorded for every epoch that produces 

further reduction in the minimum average error (see section 4.4.3). The training results 

are tabulated as shown in Table 4.13. The training procedure is extended from 

generalization test number 9 to 16 (refer to the first column of Table 4.13) in order to 

observe the behavior of the neural network on the test set, if the training is continued 

beyond a certain point. In other words, to observe what happens when the neural network 

is over trained.

Figure 4.5 presents the behavior of the minimum average error on the training set 

and the corresponding neural network results on the test set. It can be seen that as the 

minimum average error is reduced, the BPNN results improve correspondingly up to a 

certain point (generalization test number 8 in this case), beyond which the results start
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deteriorating. It is at this point that the network generalizes best, and no further 

improvement is possible with continued training.

Generalization
Test

M in im um  
A verage Error

Epoch
Learning

Event
Tim e
(Sec)

B P N N
Suggested

DR
] 1.5517 2 49 8 8 3 1449074
2 1.5295 5 12470 K 1439644
3 1.4938 12 29928 17 1 41 4140
4 1.4906 14 34 91 6 19 1410225
5 1.4760 18 44892 25 1409133
6 1.4711 21 52374 30 1400621
7 1.4558 23 57362 33 1403802
8 1.4372 38 9 2 2 7 8 52 1 39 3378
9 1 .4358 4 6 114724 65 1398482
10 1.4336 50 124700 70 1 39 96 88
] ] 1 .4238 75 187050 105 1 3 9 8 5 7 0
12 1.4196 80 199520 113 1 40 09 44
13 1.4051 148 36 91 12 213 14 0 1 9 0 5
14 1.3890 214 5 33 71 6 315 1405274

15 1.3857 4 0 7 1015058 583 1 40 06 72

16 1 .3776 642 1 1601148 1002 1 40 23 33

T able 4.13 T rain in g  and generalization  results for m inim izing m akespan .

4 .6  Implementation

Once the training of the proposed network is completed, the next step is to see how well 

the neural network performs in selecting dispatching rules. In order to explain how the 

neural network assigns a dispatching rule to each machine, an example o f 20 jobs on 5 

machines is given in Table 4.14. The above example data are converted to a neural 

network input representation by following the procedure explained in section 4.3.2. The 

resulting 1 f-unit input vector is given in Table 4.15.
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Fig. 4.5 BPNN generalization V/S minimum average error for makespan.

Job
no Routes Processing time

1 2 1 4 3 5 52 60 94 33 23
2 2 1 5 3 4 58 41 20 34 57
3 5 4 3 1 2 51 77 33 74 37
4 5 2 4 3 1 46 34 92 62 53
5 5 4 3 1 2 46 92 58 63 35
6 5 2 4 3 1 37 66 61 29 55
7 5 2 4 3 1 53 68 90 34 63
8 5 4 3 1 2 28 84 45 70 46
9 1 4 3 5 2 68 87 42 49 32
10 5 2 4 3 1 22 53 92 46 50
11 2 1 4 3 5 61 67 64 24 53
12 5 2 4 3 1 26 57 63 32 76
13 3 1 4 2 5 41 68 65 67 38
14 2 1 4 3 5 36 37 95 47 45
15 5 2 4 3 1 40 66 67 30 71
16 2 1 5 3 4 61 40 15 58 69
17 3 1 4 2 5 55 61 91 59 14
18 1 4 3 5 2 65 84 52 38 67
19 1 4 3 5 2 42 82 26 16 32
20 2 1 4 3 5 51 45 80 45 51

Table 4.14 A 20-job exam ple problem.
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Set N o . '] otal Processing time Variance o f  Processing time Mean routing order
Input 1 2 3 4  5 6 7 8 9 10 11 12 13 14 15

N 20E1 0.74  0 .65 0 .52  1.0 0 .45 0 .792  0.91 0 .69  0 .8 6  1 0 .61 0 .5 6 0 .6 8 0 .58 0 .57
T a b ic  4 .15  In p u t vector for exam ple problem  o f Table 4.14.

A trained network generates output in response to the data vector presented to it at 

the input layer. Wlien the input vector of Table 4.15 is introduced to the BPNN, which 

has been just been trained for the minimization of makespan. a feed forward set of 

computations produces the output vector given in Table 4.16.

M a c h in e  1 M achine2 MacliineS M a c li in e 4 M ach in es

Dutput 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S P T L P T M W K R SPT LPT M W K R SPT LPT  M W K R SPT L P T M W K R SPT LPT M W K R

B P N N 0 .3 3 2 0 . 2 0 6 0 .4 4 9 0 .4 6 2 0 .117 0.411 0 J 9 6 0 .39 4  I 0 .2 6 6 0 259 0 .0 6 2 0 .694 0 .5 0 7 0 .2 2 8 0 .2 29

The maximum value in each set of 3 units associated with each machine is 

identified. The dispatching rule corresponding to those units (highlighted in the Table 

4.16) is then assigned to the machines. In the above example, the neural network’s choice 

for the first machine is MWKR; the second machine is SPT; the third machine is LPT; 

the fourth machine is MWKR; and the last machine is SPT. Applying this allocation o f 

dispatching rules, the makespan for the problem is found to be 1652. This compares to a 

minimum makespan of 1628 for the optimal rule combination of SPT-SPT-LPT-MWKR- 

SPT applied on machines 1 to 5 respectively. The neural network’s suggested 

combination of dispatching rules deviates from the optimal combination only for the first 

machine, where instead o f SPT, the BPNN applies MWKR. Moreover, if all the machines 

use only a single rule for all machines (either SPT, LPT or MWKR), then the resulting 

makespans are 1720, 1699, and 1651 respectively.
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4.7 BPNN model for minimizing mean flowtime criteria

For (he performance criterion of minimizing (he mean flowtime, a BPKN model is 

constructed by the same methodology as used for minimizing makespan. The only 

difference however, lies in the 3 dispatching rules, where SPT, PT+WINQ and LWKR 

are considered for the flowtime objective. This is because past research shows that all 

these rules are effective in minimizing mean flowtime (Waikar et al, 1995 and Rajender 

and Holthaus, 1999).

In order to find an optimal number of hidden neurons, some modification was done 

in the step used for the makespan BPNN. A total of 2636 training patterns were extracted 

from problems of n=10, 15 and 20. The same 1200 test data set used for makespan was 

also used in the flowtime case. The NN parameters used for finding optimal number of 

hidden neurons is given in Appendix C2.

Table 4.17 represents neural network results for seven different numbers of hidden 

neurons and Figure 4.6 depicts the effect of the number of different hidden neurons on 

the neural network and the minimum average error. Hence, the network used for 

minimizing the mean flowtime has a 15-20-15 structure.

Experiment
Number

Number o f  

Hidden Neurons
Total Mean 

Flowtime
Minimum  

Average Error
1 10 873181 .62 1.700

15 872529 .56 1.671
3 17 872254.31 1.668
4 18 871955 1.641
5 19 871687.81 1.659
6 20 8 7 1 6 6 9 3 1 1.594 " '
7 25 871967 .44 1.655

Table 4.17 Total mean flowtimes for BPNN with various num bers o f hidden neurons.
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In order illustrate how the trained network selects dispatching rules to minimize 

flowtime, the same example problem of Table 4.14 is considered. The input vector is the 

same; however, the output vector represents different rules. Output resulting from the 

feed forward processing induced by the application of input vector of table 3.16 to the 

BPKN (15-20-15) trained for flowtime minimization is given in Table 4.18.

Output M a ch in e! M ach in e] M achines M achine4 MacVlines

D R
SPT

w r N O
+P T L W K R SPT

w r N Q
+P T L W K R SPT

W IN Q
+PT L W K R SPT

W ID O
+PT L W K R SPT

w r N O
+P T L W K R

Output 0 .1 6 7 0 .0 7 0 0 .7 3 7 0 .014 0 .1 5 0 0 .776 0 .216 0 .239 0 .5 5 6 0 .9 5 6 0.0 0.041 0 .0 7 ^ 0 .2 2 8 0 .70 8

The above neural network’s recommendations (highlighted in the Table 4.18) are

LWKR for the first, second and third machines, SPT for the fourth machine and LWKR

for the last machine. This combination results in a mean flowtime of 936.65, which

compares to a possible minimum of 921.45. The neural network’s suggested combination

o f dispatching rule deviates from the optimal combination only for the last machine,

where instead o f WITJQ+PT, the BPNN suggests LWKR. On the other hand, if all the

machines applied only one of SPT, WINQ+PT or LWKR dispatching rules on all the

machines, then the mean flowtimes are 989.95, 1031.55, and 952.85 respectively.

60



In this chapter, a detailed description of the design of BPNN for two different 

performance criteria is described. For the makespan, a BPNN model of 15-9-15 was 

designed and for the mean flowtime a BPNN model of 15-20-15. For both the 

performance criteria, the trained network suggested a combination of dispatching rules 

that were reasonably close to the optimal combinations. The next chapter will test the 

generalization capabilities of both trained networks for problems with the number of jobs 

ranging between a minimum of 1 0  to a maximum of 1 0 0  jobs.
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CH APTER 5 

Analysis and Discussion

In this chapter, the generalization capability of the BPNN and its effectiveness in 

providing results to new problems (unseen during the neural network’s training) will be 

examined for the performance objectives of minimizing makespan and mean flowtime. 

This will be followed by a discussion on the results and an analysis of variance.

5.1 A nalysis o f  Trained Neural Network

Once the training of the neural network as explained in the previous chapter is 

completed, it is necessary to test how well the neural network’s suggested combination of 

dispatching rules perform in new problems.

5.1.1 Neural Network W eights

The trained neural network holds its knowledge in the weights between the nodes. 

The final weights from the training process using Neuroshell 2 (as explained in the 

section 4.4.4) are provided in Appendix D1 and D2 for the makespan and mean fiowtime 

networks respectively.

5.2 Test Problems

A total o f fourteen different sets o f new problems with the job numbers (n) ranging 

from 1 0  to 1 0 0  jobs is created using the same parameters used for the testing sets in the
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previous chapier. hach set contains fifty test problems generated randomly using different 

random seeds for each different category of n. Altogether, 700 problems are generated 

using the C program of Appendix A4.

5.3 Test Results for Minimizing Makespan

Once the generation of the various problems is completed as mentioned above, the 

next step is to obtain and compare the total makespan in each set. Each set of fifty 

problems is tested 4 times. In the first trial, the SPT rule is applied on all five machines 

and the total makespan is recorded. In the second and third trials, the LPT and MWKR 

rules are tested respectively, in a similar fashion. Finally, the BPNN is used in the fourth 

trial to select dispatching rule combinations for the test problems. The BPNN generates 

the preferred dispatching rule for each machine by feed forward processing identical to 

that described for the example problem in section 4.7.

Table 5.1 presents the total of the makespans in each of the trials for all 14 sets of 

test problems. In order to evaluate how well the neural network’s (BPNN) suggested 

combination of dispatching rules perfonns, a comparison with the makespans produced 

by optimal combinations of the dispatching rules is also presented in Table 5.1.

As can be seen from the results of Table 5.1, the trained neural network generates 

better total makespan results as compared to using the same dispatching rule on all the 

machines. Furthermore, the percentage deviation of the neural network (BPNN) results 

from the optimal is close.

Deviation is calculated by using equation 5.1. The deviation of BPNN from 

optimal results ranged from a minimum of 0 .3 % to a maximum of 3 .0 %.
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T est  

Set no.
D ispatch ing  rule (time units) D ev ia tion  (%) 

(Eq. N o . 5 .1 )n SPT LPT M W K R B PN N Optimal Results
1 10 4 1 3 1 7 4 2 9 6 2 38 56 5 38 46 0 37337 3 .008
2 15 6 0 8 2 6 62951 58414 57405 55987 2 .533
3 20 76971 80 0 7 5 74785 73939 7 24 98 1.988
4 25 94 89 4 98 38 4 9 2 8 0 0 91082 90547 0.591
5 3 0 112414 116351 110828 109676 107831 1.711
6 35 131193 133983 128464 127539 126307 0 ,9 75

7 4 0 143277 146885 141227 139827 138829 0 .7 1 9
1 8 45 165143 169518 163726 162822 160345 1.545

9 50 18 0936 186490 179384 177479 176721 0 .4 2 9
10 55 2 0 4 6 9 6 2 0 9 0 7 6 20 3 6 7 9 20 10 29 199326 0 .85 4
11 60 22 0 1 5 4 2 2 3 8 9 9 2 17 27 8 215592 2 1 4 8 9 8 0 .32 3
12 75 2 7 4 7 3 6 27 7 6 3 2 2 7 5 3 4 3 2 71 62 6 2 6 8 8 1 8 1.045
13 85 3 0 7 1 7 7 31 3 2 0 2 3 0 7 2 9 6 304342 30 3 3 9 2 0 .313
14 100 3 5 6 9 6 2 3 6 1 6 7 3 3 5 5 8 8 9 353841 35 27 14 0 .3 2 0

T able 5.1 Sum m ary o f total m akespan in sets o f 50 test problem  for various n.

Deviation (%)= {b p n n  -  o p t i m a l ) *100 (5.1)
OPTIMAL

As a sample, results for all the 50 problems of test set no. 9 (n=50) are presented 

in Table 5.2. These results show that there is not much difference between the neural 

network’s performance and the optimal combination of dispatching rules, as further 

illustrated in Figure 5.1. The neural network achieved optimal results in 80% of the test 

problems and deviated by an average of 2.1 % from the optimal in the rest. For 

comparison SPT, LPT and MWKR matched the optimal result in 14%, 35% and 4% 

respectively o f the test problems. Similar comparisons between optimal and BPNN 

results for individual problems in the other thirteen sets are attached in the Appendix E l .

5.4 Test Results for M inimizing Mean Flowtime

The same sets o f test problems used for testing the makespan are also used for

testing the generalization capability and the effectiveness o f the neural network that has

been trained to minimize mean flowtime. This neural network is tested in the same

manner as the previous network used for testing makespan. In the first three trials each
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Data set 

No.

Dispatching rule (time units) Data set 

No.

Dispatching rule (time units)

SPT LPT MWKR BPN N Optimal SPT LPT M W KR B PN N Optimal
50N1 2087 2181 2087 2087 2087 50N26 3017 3224 3190 2993 2993
50N2 3358 3379 3355 3239 3234 50N27 3971 3999 3881 3881 3881
50N3 2S17 2669 2449 2449 2449 50N28 3406 3322 3189 3189 3189
50N4 3S20 3571 3508 3508 3508 50N29 3654 3614 3540 3540 3540
50N5 3719 3774 3677 3677 3677 50N30 4119 4154 3986 3986 3986
50N 6 3 80S 3754 3754 3754 3754 50N31 3548 3648 3503 3503 3503
50N7 3427 3569 3406 3406 3406 50N32 3911 4014 3874 3874 3874
50N8 3748 3769 3620 3620 3620 50N33 3632 3629 3482 3482 3482
50N 9 4349 4743 4134 4134 4134 50N34 3821 4106 4035 3920 3689

SON 10 39S4 3957 3856 3856 3856 50N 35 3887 3994 3885 3885 3856
SO N ll 37S9 3887 3739 3584 3568 50N 36 3324 3351 3221 3183 3183
SON 12 3144 3360 3143 3143 3055 50N37 3946 3982 3774 3774 3774
SON 13 3138 3321 3104 3104 3104 50N38 3317 3551 3325 3287 3287
SON 14 3993 4043 4001 4001 3993 50N39 4049 4159 3946 3946 3946
SON IS 3814 4025 4115 3865 3645 50N40 3849 3994 3845 3845 3845
SON 16 3952 4152 4002 3952 3952 50N41 3433 3562 3515 3462 3433
SON 17 3546 3919 3635 3546 3546 50N 42 3688 3799 3683 3683 3683
SON 18 4029 4214 3835 3835 3835 50N43 3740 3828 3590 3590 3590
SON 19 3612 3826 3572 3572 3572 50N44 3720 3814 3960 3699 3601
S0N 20 3248 3396 3163 3163 3163 50N45 3940 3917 3798 3798 3798
50N21 3713 3705 3566 3566 3566 50N 46 3516 3408 3408 3408 3408
50N 22 3534 3626 3409 3409 3409 50N 47 3331 3379 3263 3263 3263
50N 23 3451 3558 3451 3451 3451 50N48 3862 3876 3719 3719 3719
50N 24 3751 4017 3743 3743 3743 50N 49 3313 3419 3156 315 6 3156
50N 2S 4037 4080 3978 3978 3978 50N 50 3737 4252 4314 3771 3737

Total 180936 186490 179384 177479 176721
problems for n=50 (set no. 9 in Table 5 .]).

3 9 0 0  -

2 4 0 0  -

1900

c  3 4 0 0  -II
g  2 9 0 0

t'y W VAî\

-  optim al - N e u ra l Network

11 13 15 17 19 21 23 25 27 29 31 33 35  37 39 41 4 3  4 5  47 49

Fig 5.1 BPNN makespan compared to makespans from optimal rule com binations for n=50.
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set IS tested using SPT, WINQ+PT and LWKR respectively on all machines. BPNN is 

tested in the fourth trial. Tlie results (expressed as total of mean flowtime) are given in 

Table 5.3.

Test D ispatch ing  rule (t ime units) D eviation  (%)
Set no. n SPT W lN Q + P T LW KR B P N N Optimal (Eq. N o .  5 .1)

] 10 2 7 44 6 .3 2 7 5 9 6 2 6 83 1 .5 2 68 89 .2 26075.1 3.122
2 15 3 7 6 7 7 .4 7 3 7 7 0 9 .0 7 3 6 2 8 0 .7 3 3 6 1 9 1 ,9 3 3 455 8 .2 4 .7 27
3 20 4 5 7 3 4 .4 6 4 5676 .21 4 3 9 3 5 .9 4 438 4 2 .5 1 4 3 0 5 3 .4 8 1,833
4 25 5 5 2 1 1 .6 5 5 0 25 .8 5 2 7 7 2 .5 5 52316 .51 5 1 5 1 6 .5 6 1.553
5 3 0 6 4 1 0 6 .9 9 6 3 3 4 5 .3 9 6 0 8 9 7 .4 4 6 0 2 5 5 .6 3 5 9 3 8 6 .8 2 1.463
6 35 7 4 3 2 2 .5 6 7 2 8 0 3 .3 4 7 0 2 1 4 .7 3 6 9 6 2 3 .4 2 6 8 4 6 9 .2 3 1.686
7 4 0 8 0 2 6 4 .6 6 7 8 44 1 .74 7 5 3 7 3 .9 7 4 9 7 5 .3 8 7 3 5 7 3 .3 3 1.906
8 45 9 3 7 5 4 .3 3 9 0 8 8 7 .7 8 8 6 9 7 7 .5 2 8 6 0 7 3 .4 9 8 4 8 9 7 .6 5 1.385
9 50 101784.1 9 8 2 5 9 .6 9 9 4 9 2 2 .1 5 9 4 0 2 1 .8 9 9 2 6 2 4 .7 8 1.508
10 55 113 80 0 .9 109890 .98 106158 .4 104845 .4 1 0 3 7 8 5 .0 8 1.022
11 60 120913 .9 117916 .74 113117 .8 11 1846.1 1 1 0 3 64 .7 5 1.342
12 75 14 99 77 .6 146410 .08 1396 55 .6 137759 .3 1 3 6 2 8 6 .2 6 1.081
13 85 17 05 45 .7 16 2467 .98 156726 .2 1 5 4 9 07 .9 15 29 3 8 .7 6 1.288
14 100 1936 58 .7 188070 .2 179319 .3 176437 .4 17 46 9 5 .0 8 0 .99 7

T able 5.3 Sum m arj' o f  total m ean fiow tim e results o f  test sets consisting o f  50 problem s each.

Once again, the neural network results are better as compared to using either SPT, 

WINQ+PT or LWKR common on all five machines. The network’s results deviate from 

the optimal by an average of 1.74% (having a minimum of 1.0 to a maximum of 4.7%). 

SPT, PT+WINQ and LWKR results deviate on average by 9.9%, 6.25% and 2.52 % 

respectively from optimal results.

Similarly, results for all the 50 problems in test set no. 9 (n-50) are presented in 

Table 5.4. Also, the comparison between BPNN and optimal mean fiowtime is shown 

graphically in Figure 5.2. It can be observed that BPNN achieves optimal results in 20% 

of the problems, but deviates by an average of 2.3% from optimum in the remainder. 

Similar comparisons between optimal flowtimes and BPNN results for individual 

problems in the other thirteen sets are attached in the Appendix E2.
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Data
SCI

Dispatching rule d im e unitsj Data
set

Dispatching rule (time units)

No. .SP'J W l.N O ’ P'l LWKR BPNN Optimal No. SPT W INO+PT LWKR B P N N Optimal

30F) 1258.62 1126.34 1111.6 1111.6 1092.82 50F26 1774.12 1679.06 1540.98 1540.98 1540.98

50F2 1822.46 1783.34 1756.04 1700.62 1680.32 50F27 2363.84 2250.56 2129.72 2129.72 2105.04

50F3 1442.54 1378.4 1347.78 1347.78 1272.62 50F28 1851.14 1728.36 1666.48 1715.28 1662.92

50F4 2051.6 1902.76 1826.3 1826.3 1810.28 50F29 1947.46 1977.44 1876.34 1814.5 1804.70

50F5 2032.9 2030.58 1962.68 1985.78 1930.58 50F30 2052.44 2139.38 2073.84 2006.34 2004.38

50F6 2205 2092.04 2011.22 1928.54 1920.02 50F31 1917.3 1962.5 1810.08 1775.84 1775.84

50F7 1779.68 1827.26 1749.02 1673.34 1673.34 50F32 2280.92 2073.72 2086.36 2265 .38 2070.38

50F8 2192.38 1949.8 1941.28 1941.28 1914.10 50F33 1852.84 1900.9 1897.68 1821.36 1810.70

50F9 2491.36 2301.16 2388.74 2388.74 2276.36 50F34 2115.08 2027.34 1994.06 1994.06 1942.26

50F10 2022.3 1987.08 1960.96 1878.02 1877.92 50F35 2281.58 2254.2 2054.12 2054.12 2052.00

50F11 2111.84 2004.24 1970.34 1975.08 1952.14 50F36 1789.68 1854.4 1727.32 1727.32 1663.20

50F12 1701.34 1779.46 1637.22 1637.22 1579.18 50F37 2082.58 2091.44 2040.54 1958.48 1958.48

50F13 1801.34 1656.96 1638.82 1638.82 1630.08 50F38 1961.8 1853.54 1772.26 1772.26 1720.42

50F14 2254.12 2201.16 2160.08 2071.16 2071.16 50F39 2150.1 2139.1 2153.04 2038 .56 2033.08

50F15 2042.28 2055.64 1940.16 1940.16 ' 1886.16 50F40 2329.06 2134.48 2089.64 2089 .64 2080.86

50F16 2327.5 2147.8 2092.14 2134.22 2062.82 50F41 2040.58 1939.46 1863.86 1863.86 1856.58

50F17 2073.26 1922.46 1878.52 1935.8 1871,16 50F42 2162.28 2011.5 1990.16 1966.62 1966.62

50F18 2326.98 2236.56 2066.92 2067.68 2066.92 50F43 2208.6 2020.3 . 1956.88 1981.08 1946.96

50F19 2121.58 1973.62 1962.84 1962.84 1926.58 50F44 2138.88 2041.98 1982.9 1982.9 1982.90

50F20 1847.28 1929.04 1695.08 1651.9 1651.90 50F45 2351.62 2151.16 2042 2045 .08 2016.58

50F21 2062.26 1979.3 1884.82 1857.3 1857.30 50F46 1921.72 1867.52 1812.36 1830.46 1798.40

50F22 1796.18 1902.14 1837.14 1730.46 1729.62 50F47 1858.82 1884.4 1745.54 1688.36 1681.46

50F23 1916.54 1930.78 1873.16 1727.46 1727.46 50F48 2229.18 2051 .36 1984.04 2011 1972.10

50F24 2302 2102.06 2088.08 2088.08 2060.26 50F49 1799.56 1677.2 1708.88 1669.98 1642.24

50F25 2214.38 2212.34 2125.26 2055.04 2055.04 50F50 2125.22 2136.08 2016.88 2023 .5 1959.56

Total 101784.1 98259.69 94922 .15 94 02 1 .89 92624.78

Table 5.4 Mean flowtim e for individual test problems for n=50 (set no. 9 in Table 5.3).

g  1550 -

H f« V
-  optim al •BPNN I

I___________ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33  35 37 39 41 4 3  45 47 49

Fig. 5.2 BPNN mean flowtim e compared to mean flowtime from  optim al rule com binations for n=50.
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5.5 Funher Discussion on Results

Computational results from Table 5.1 and Appendix El indicate that the trained 

neural network has the capability of seleeting an appropriate combination of dispatching 

rules in more than 75% of all the 700 problem instances for the performance criterion of 

minimizing makespan. Moreover, the neural network provides the required result more 

quickly as compared to enumerating all possible combinations. Further, the efficacy of 

the proposed neural network approach to find the best combination of dispatching rules 

does not significantly decrease as the number of jobs increase. Figure 5.3 compares 

BPKN results with the total makespan of the optimal combinations carried out for the 

various number of jobs (n) (ranging from a minimum of 10 to a maximum 100) for a 5- 

machine job shop. It can be seen that BPNN performed consistently better than the three 

other dispatching rules for all n.

Figure. 5.3 portrays that, as the number of jobs increases, the difference between 

BPNN and other dispatching rules decreases (particularly in the case with SPT). This 

explains SPT’s improved performance under higher shop congestion levels; however, this 

does not imply that the trained network is weakening. In case of SPT, the job with the 

smallest processing time is given preference over other jobs so that the amount o f time 

and the number o f jobs waiting in the queue are reduced, and thus the desired objective o f 

minimizing makespan is achieved well.

Further observations from Figure 5.3 show that, as the number o f jobs increases, 

SPT also improves in comparison to MWKR. This is because jobs with a larger total 

remaining processing time may be waiting in queue for a longer time as compared to the 

jobs with the smallest processing time when SPT is used. Also, the neural network can be
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seen as gradually losing ils advantage for the larger number of jobs due to the improved 

performance of SPT for larger n.

For the performance objective of minimizing the mean fiowtime, a study is 

carried out using the results from Table 5.3. The difference between optimal and BPFTN 

mean fiowtime for the number of jobs (n) ranging from a minimum of 1 0  to a maximum 

of 100 is presented in Figure 5.4 (on the next page).

It is evident from Figure 5.4 that the neural network’s effectiveness is still 

maintained for large size problems. It is also observed that LWKR works well for both 

small and large size problems. However, the trained neural network proves that a 

combination of three competing dispatching rules in the job shop generate better mean 

fiowtime for both small and large size problems. It is also evident from this study that the 

neural network is fairly consistent while others tend to improve only when n gets bigger.

From Figures 5.3 and 5.4 there is some indication that MWKR (for makespan 

minimization) and LWKR (for fiowtime minimization) become more competitive with 

respect to the BPNN as n grows large. Therefore, it is of interest to determine whether the 

difference between these dispatching rules and BPNN is significantly different in job 

shops processing a large number of jobs. This is done by means of ANOVA for the 

results from the largest problems tested, the 1 0 0 -job problems.

5.6 Analysis Of Variance (ANOVA)

The trained neural network is tested with different sets of jobs. It is desirable to test 

the significance in the difference between the observ ed results. The technique used on the 

post-trained neural network is a one factor ANOVA where a comparison of all means is
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done separately for the two objectives o f minimizing makespan and mean flowtime.This 

means to formulate a hypothesis test and to decide whether or not there is sufficient 

evidence to reject a null hypothesis that there is no significant difference between the 

means.

While designing the experiment, the objective was to compare the performances of 

dispatching rules, which includes either single or a combination of dispatching rules. The 

between dispatching rules” source of variation, which may be assumed to be due to 

changes in dispatching rules or a combination of dispatching rules, is o f  a different kind 

from that due to sampling and analytical errors. Following are the assumptions 

considered while carrying out the one factor ANOVA.

5.6.1 Assum ptions

• The population from which the samples obtained are normally distributed.

• The populations have the same standard deviation ( cr ).

5.6.2 Data Representation

In this case, there are four different treatments (X=4), the first three representing 

different dispatching rules and the fourth one representing a neural combination of 

dispatching rules. Consider 10 different random samples. Each sample is composed o f 50 

problems for n=100 (as explained previously in section 5.6). Each entry is categorized as

a value o f x y  , which is the average makespan or fiowtime on th e /^ ’ individual problem 

taken from sample.



5.6.3 General Logic - Analysis Of Variance

]n analy.sis of variance, between-group variance (difference between treatments) is 

tested for dissimilarity from within group variance. If the null hypothesis is true, both the 

above-mentioned variances are about the same, and all the variation can be attributed to 

random variation. On the other hand, if the between-group variance in comparison to the 

within-group is larger, then chances are that the samples do not come from populations 

with equal means. Together, the within-group and between-group variations are the two 

sources that contribute to the total variation. F is  a statistic that represents ratio of two 

variances;

^  _ B e t w e e n  - gro u p  V a r ia n ce  2^

'■«"o W ith in  - grou p  V a r ian ce

If the group means are equal, then F will equal 1.0 and the null hypothesis can be

accepted. However, when the sample means are different, the difference can be attributed

to the effect of the independent variable plus the sampling error. Thus,

_  E ffec t  o f  in d ep en d en t  v ar iab le -f  S a m p l in g  error .

S a m p l in g  error

5.6.4 ANOVA Calculations

A one-way ANOVA studies the effect of a single independent variable on a 

dependent variable. The computational formula for the involves the sum of

squares, which is the sum of squared deviations around the mean. There are two sum of 

squares that are considered: ( 1) the total of the sum of squares within the groups (SS,oiai); 

this is based on the deviation between each observation and X , and (2 ) the sum of

squares for the group mean relative to the grand mean (SSgmup). Thus,
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(a)SS,„,„ = .... (5.4)

(b) (SSgroup) = -  A' y . ... (5.5)

Where, X  is the grand mean.

X^  is the group mean.

(c) Tlie total variance is composed of SSgmup & SSerror, so that

SSerroT~ SSjoial” SSgroup .... (5.6)

Next is the computation of mean square obtained by dividing the sum of the 

squared deviations by the degrees o f freedom. Thus,

S S  group

(d ) M S g r o u p =  d fgrou p  ••••

S S erro r

(e) MSerror = dfe^ror

The degrees o f freedom are;

(f) dfgroup = K -  1 degrees o f freedom between groups.

(g) d f loiai = N -  1 degrees o f freedom within groups.

( h )  d fe rro r  =  N  -  K

The F. statistic is the ratio of the group mean square to the mean square error.

Thus,

yr _ -  ^^group ..... ( 5 .9 )
MSerror
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5.6.5 l^ypothesis

For the one factor ANOVA the null hypothesis is that the population means (/;) are 

equal, which is staled as follows;

H„: fJ, = /V; = ... = A

And the alternative hypothesis is:

Hp At least two means are significantly different.

There are several alternative ways in which the null hypothesis may be false. For 

example, only pi ^ p2 or p3 # or all four population means are unequal, and so on. 

The alternative hypothesis does not distinguish among these various possibilities, but 

rather asserts that a relationship exists between the independent and dependent variables 

such that the population means are not equal.

5.7 ANOVA Results For Makespan

The experiment is carried out with 10 samples, each sample consisting of fifty 

100-job problems. Thus, 500 problems are considered for this experiment. Table 5.5 

presents the average makespan in each of the samples, where three independent 

dispatching rules are applied exclusively, along with the combination of dispatching rules 

suggested by the neural network (BPNN).

The ANOVA is performed using the single factor ANOVA function in Microsoft 

Excel with a level of significance a  = 0.05. Table 5.6 displays the ANOVA results.

From the above results, the F  ̂ statistic, F > Fo,o5,3,36 , and therefore the null 

hypotheses Hq can be rejected. It may be concluded that a significant difference exists 

among the dispatching rules for the performance objective of minimizing makespan.
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Sam ple  N o . SPT LPT MW KR B P N N
] 7133.1 7247.74 7142.52 7082 .22
2 7 2 3 6 .6 6 7336 .36 7288 .96 7218 .88
3 7 1 9 0 .4 8 7310.94 7230.04 7144 .34
4 7 2 47 .6 4 7377.3 7246 .56 7202 .06
5 7 1 0 0 .54 724 6 .58 7238.24 7116 .42
6 7 09 0 .24 7234 .74 7202.48 7082 .54
7 7 2 5 7 .3 6 7367.54 7231 .96 7185 .02
8 7 15 7 .24 7237.14 7197.3 7 11 6 .6
9 7 2 28 .2 2 7369 .08 7232 .66 7165 .82
10 7 1 8 8 .8 8 7 3 12 .9 6 7231,38 717 2 .62

Table 5.5 Experimental data for ANOVA (average makespan).

SUMMARY

Groups Couni Sum Average Variance
SPT 10 7 1 8 3 0 .3 6 7 1 83 .0 36 3 6 9 7 .7 9 4 6 4 9
LPT 10 7 3 0 40 .3 8 7304 .038 3 39 4 .51 99 51

M W K R 10 72242.1 7224.21 1 44 1 .70 95 33
B P N N 10 7148 6 .5 2 7148 .652 2316.1 17351

ANOVA

Source  o f  
Variation

SS d f M S F P-value F crit

B etw een
Groups

1 3 4 3 6 3 .4 2 9 2 3 4 4 7 8 7 .8 0 9 7 3 16.51141962 6 .5 0 68 E -0 7 2 .8 6 6 2 6 5 4 4 7

Within
Groups

9 7 6 5 1 .2 7 3 3 6 36 2712 .53 53 71

Total 2 3 2 0 1 4 .7 0 2 6 39
Table 5.6 ANOVA results for the performance objective of minimizing makespan.

However, it is still unknown which rules are significantly different from the others. 

Therefore, a multiple comparison procedure using Fisher’s Least Significant Difference 

(LSD) method (also referred to as the protected t-test) is carried out to compare two 

group means simultaneously. This tests the significant difference between the means. The 

formula for the LSD procedure is:

k  - ^ 2 ) .... (5.10)t -

 ̂ 1 ] ^
— I- —

M, n\ ' 2 V

Wliere .v,,X; = mean for group] and group 2  respectively.

MSgjTor = mean square within groups (from ANOVA result).
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n,. n, - Sample sizes for group] and 2.

In this case BPNN results are compared with the results of all three different 

dispatching rules and the computation of Fisher’s LSD is presented in Table 5.7

BPN N SPT LPT MWKJR
M ean y ,  = 7148.652 y ,  =7183 .036 y ,  =730 4 .03 8 y ,  =7224.21

Sam ple  size n, = 10 n2 = 10 n^ = 10 n^= 10

^ ^ e r r o r 2712.535371

Pairs Calculation o f  protected t

B PN N  and 
SPT

(7148.652-7183.036)
/ = --------- :------------------ =---------  ̂ = -1 .476

2*2712.535
V 10

B P N N  and 
LPT

(7148.652-7304.38)
/ =  --------;---------:-----:------- r---- - = -6.671

(2*2712.535 
V 10

BPN N  and 
MWKR

(7148.652-7224.21)/ =  --------= = = —  ̂ = -3 .244
2*2712.535

10

Table 5.7 LSD calculations for the minimization of makespan experiment.

The critical value for t at a significance level a = .05 and df = 36 is t -  2.02 (from 

the standard t distribution table) (Montgomery, 1997).

The protected t-tests show significant differences between LPT and MWKR with 

respect to BPNN. On the other hand, there is no evidence of a significant difference 

between the group mean of SPT and BPNN. This means that SPT might be improving as 

the problem size increases. The results could also indicate that the neural network may be 

getting weaker as n grows. Similarly, it has been observed that there is a significant 

difference between other groups of means such as MWKR and LPT, except between SPT 

and MWKR. Thus, it is further evident that SPT improves as the number of jobs increase, 

as compared to both BPNN and MWKR.
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5.8 A N O V A  Results For Mean Fiowtime

A similar ANOVA analysis is also carried out for the mean fiowtime result. The 

details o f the experiment and the ANOVA results are presented in Table 5.8 and Table 

5.9 respectively.

Sam ple  N o, SPT W I N O - P T LWKR B P N N
1 3827 ,6104 3 7 2 1 .1 7 1 6 3 5 6 3 .1 4 3 2 35 12 .4 94
2 3 90 2 .2484 3 7 6 2 .8 8 3 4 3 5 9 7 .3 0 1 8 354 5 .12 2
3 3 9 0 0 .6 86 8 378 0 .11 84 36 46 .3 35 4 3 5 83 .5 27
4 3 9 4 4 .2 47 6 3 7 7 3 .6 7 1 8 3 6 1 9 .7 9 7 2 3 5 7 8 .5 2 6
5 3 9 3 1 .0 57 6 3 8 3 8 .7 0 3 2 3 6 5 5 .1 48 4 36 05 .34 8
6 39 63 .72 54 3 8 2 7 .3 9 7 6 3 6 77 .5 54 3 6 1 7 .0 2 5
7 3 86 1 .4982 3 7 3 4 ,0 1 1 6 3 5 6 7 .4 5 7 8 3 5 2 5 .1 53
8 3 8 7 9 .2 9 6 6 3 7 7 3 ,5 4 2 4 3 5 9 4 .8 1 6 3535 .001
9 39 24 .7 20 4 3 7 8 3 .5 3 8 8 3634 .7 3 3 5 7 7 .8 5 8
10 3 9 1 3 .9 4 5 6 3 7 6 7 .9 3 9 6 36 24 .6 55 4 3 5 6 5 .2 1 3

Table 5.8 ANOVA experimental data (average mean fiowtime).

SUMMARY

Groups C oum Sum A verage Variance
SP T 10 3 9 0 4 9 .0 3 7 3 9 0 4 .9 0 3 7 1633 .9 18 55 4

W I N O + P T 10 3 7 7 6 2 .9 7 8 4 3 7 7 6 .29 78 4 12 95 .9 9 6 3 2 8
L W K R 10 3 6 1 8 0 .9 3 9 2 3 6 1 8 .0 9 3 9 2 1 39 8 .51 13 58
B P N N 10 3 5 6 4 5 .2 6 5 4 3 5 6 4 .5 2 6 5 4 1 18 4 .8 5 0 0 2 6

ANOVA

S o urce  o f  
V ariation

SS d f MS F P-value F cril

B e tw e e n
Groups

7 1 8 5 0 2 .3 9 0 5 3 2 3 9 5 0 0 .7 9 6 8 173 .7629571 1 .8 16 6E -2 ] 2 .8 6 6 2 6 5 4 4 7

W ithin
Groups

4 9 6 1 9 .4 8 6 4 36 13 78 .3 1 9 0 6 7

Total
7 6 8 1 2 1 .8 7 6 9 39

Table 5.9 ANOVA results for the performance objective of minimizing mean fiowtime.

From the ANOVA results, since F > Fq.qs.s.bô. null hypothesis can be rejected 

and it can be concluded that there is a significant difference among the mean of different 

dispatching rules and BPNN in minimizing the mean fiowtime. Fisher s LSD procedure 

is also carried out and Table 5.10 depicts these calculations. 

The protected t-tests show that there is a significant difference between BPNN on
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B PN N SPT W INQ +PT LWKR

M ean y ,  = 3564.53 =3904 .90 V, = 3 776 .29 = 3 6 1 8 .0 9

Sam ple  Size n| = 10 02 = 10 n^ = 10 " 4 =  10

M Serror 1378.319

Pairs Calculation o f  protected 1

BPN N  and 
SPT

(3564.53-3904.90)

1^1378.319
\l 10

BPN N  and 
WINQ+PT

(3564.53-3776.29)
/ =  -------:----- -̂----- r ^ - --------^ = - 1 2 .7 5 5

[2*1378.319
V 10

B PN N  and 
LWKR

(3564.53-3618.09)
/ =  -------P = - V =  -3 .226

2*1378.319 
V 10

Table 5.10 LSD calculations for the mean fiowtim e experim ent.

one hand, and all three dispatching rules, SPT, WhNQ+FT and LWKR on the other.

In this chapter, the performances of different dispatching rules including BPNN 

are compared with the optimal results for various problem sizes. The results show that 

BPNN performs better than individual dispatching rules. The BPNN results were close to 

optimal for both minimizing makespan and mean fiowtime. Also, for larger size problems, 

ANOVA tests were performed on both the performance objectives separately. This was 

for examining significant differences between different groups of means. The results 

show that for the makespan criterion, in the larger size problem, there is a significant 

difference between means of BPNN and LPT, and BPNN and MWKR, but not between 

SPT and BPNN. On the other hand, for the mean fiowtime criterion, ANOVA shows a 

significant difference among all the dispatching rules and BPNN, for the large size 

problem. In the next chapter, a summary of the results, followed by the conclusion and 

further research, is discussed.
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C H A PT E R  6 

Conclusion and Further research

6.1 Summary

This research has considered the problem of selecting an appropriate combination 

o f dispatching/priority rules for scheduling job shops. The dispatching rule selection 

problem is shown to be a prediction problem that can be successfully solved using a 

proposed neural network. For building the neural network, simulations were carried out 

to constitute a training set. Once the network was trained, it was shown to be able to 

select well-suited dispatching rules for new problems. Computational results showed that 

the proposed neural network correctly predicted makespan in more than 7 5 % of the 

problem instances. Further, the effectiveness and generalization capability of the 

proposed neural network was retained with increase in the number of jobs. Results 

indicated that, for the problem situation considered, the concept of using a combination 

of dispatching rules for different situations (number of jobs) in a neural network yields 

better results than using a single dispatching rule. Tlte proposed neural network for 

minimizing the makespan criterion produced an average improvement of about 1.5% over 

MWKR (the best competing individual rule) and 6 % over LPT (the poorest performer 

among the three rules considered), as seen in Table 5.1. On the other hand, for 

minimizing the mean flowtime objective, the proposed neural network performed better 

by an average of 1 % over the best competing individual rule (LWKR), and by 6.5% over 

SPT (the poorest performing rule considered), according to the results in Table 5.3.
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In this siudv. the test problems were randomly generated, and a small fraction of 

the 1 2 0  possible job routes for five machines were considered in each problem instance. 

This simulates a realistic scenario where jobs with the same routes belong to either a part 

family or a group, and have similar sequences of operations but different processing

times.

6.2 Conclusion

The proposed neural network is an input-output model. In this researeh the input to 

the proposed network consists of total processing time, variance of processing time and 

the mean routing order on each machine. The trained neural network identifies such 

characteristics and quickly assigns one of three dispatching rules to use on each machine. 

It has been obser\'ed during the study that if only a single dispatching rule like smallest 

processing time (SPT) is applied on all five machines, than the optimality of the desired 

performance objective (in this case minimizing makespan) is not always achieved in the 

shop. On the other hand, if neural selections of dispatching rules are applied to each of 

the machines, then better results are obtained as compared to using a single dispatching 

rule.

Although the neural network was trained with small job numbers, the efficacy of 

the trained neural network for larger size problems appears to be maintained. For 

example, the BPNN results deviate only 0.429 % from the total of the makespans 

achieved by the optimal mix of the three dispatching rules for job shops with n=50.

Hence, the BPNN, from a practical application point of view, can be used as a tool 

to aid scheduling decisions in a plant, or can be embedded in a production computer 

integrated manufacturing system for automated and dynamic selection of appropriate
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priority rules. The developed model offers significant advantages regarding time 

consumption and simplicity for scheduling new job shop problems.

6.3 Further Research

The suggested methodology is not restricted to a static job shop model, but there 

are a number o f fruitful directions that can be identified for further research from this 

study, some of which are:

1 ) Dynamic job shop problems.

2) Different performance objectives.

3) Relaxation o f assumptions.

4) Number o f dispatching rules.

5) Job shops with more machines.

The details o f each future direction are as follows:

The present study can be extended to consider a dynamic job shop problem,

where the arrival times of jobs are not known (in advance) before scheduling. The jobs

may arrive at any time; in such a real-world situation, the job characteristics are fed to the

neural network. The trained network can decide in real-time when to change rules on

specific machines in response to the changing characteristics o f the work-in process so as

to better meet the performance objectives. It is worth investigating how this network

trained for a static job shop, will perform when subjected to a dynamic environment.

A similar neural network approach can be used for other performance objectives

where the jobs will have an additional characteristic such as due date, like minimizing

mean tardiness, minimizing number o f tardy jobs or minimizing the cost. The current

study made some assumptions, like no machine breakdowns, material-handling systems
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arc available ai all limes, etc. The neural network can be trained by relaxing such 

assumptions in order to capture more realistic real world situations. In a flexible 

manufacturing system that resembles the job shop model, if one of the material handling 

systems breaks down, then in such a situation an intelligent neural network can optimize 

the job sequence and thus the desired perfonnance objective.

In the present study, a set of three dispatching rules was considered for two 

different perfonnance objectives, minimizing makespan and mean flowtime. The study 

can be extended to test the possibilities of getting better solutions if combinations of more 

than three dispatching rules are used for the same or different performance objectives.

In the present study, a five-machine job shop problem was considered; a similar 

approach can be extended to a higher number of machines, for example, ten machines for 

the same or different performance objectives.

Summing up, the objective/purpose of this research was to develop and train an 

artificial neural network to select the best combination among three dispatching rules for 

a five-machine job shop problem and two different performance criteria. Experimental 

results showed that the trained neural network was able to successfully predict good rules 

to use on each machine, leading to better satisfaction of the performance criteria when 

compared with the alternative of using one identical rule on all machines.
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Appendix A l: Problem generation

^include -'sidio.h>  
f/include ''sidlib.h^
//include ''iimc.h>

main(void)
;
FILE '*scheda.’*combo; 
float TF.RDD,UL;
int Y | 101 ][21 ].P[2 1 J.route choice[26],load_dist[ 16],routes,Counter; 
int i,k.n.m.r.reps.Z,X,Wf,Wt.PP,g,q,Liner,lcounter,al,a2,a3,a4,a5;  
char FFname( 12].dest[30],Fdat[ 12],gstr[4],strl [ 10],str2[ 10];

if((combo = fopen(”c:\\tcWbin jobshops\\perm5!.dat","r")) =  FFULL) 
I fprintf(stderr."Cannot open output file . \n"); 
return I ;

for( i- l ; i< = 10 0;+ + ij
for(k=];k<=21;++k)

y [ i ] [k ]  = 0;

printfC'What is the number o f  JOBS ? \n"); 
scanf("%d",&n);

printfC’H o w  many test problems ? \n");
scanf( ”%d " ,&reps) ;
m=5;
srand(]2l);

for{g=l;g<=reps;++g)

strcpy(strl ,"t"); 
itoa(g,gstr,10); 
strcat(strl,gstr); 
strcpy(Fdat.strl); 
strcat (Fdat,".dat"); 

strcpy(dest."c:\\tc\\bin\\jobshops\\daia\\");
strcat(dest,Fdat); 

if((scheda = fopen(dest,"w")) == NULL)
{ fprintf(stderr,"Cannot open output file . \n"); 
return 1;

routes = random(6)+5;
for(k= 1 ; k < = 2 1 ; ++k)

P[k] =  0: 
for(p=0;r<=25;++r)

route_choice[r] =  0; 
for(r= I ;K=routes;++r) 
route_choice(r] =  random(l21);  

for(r=0;r<=15;++r) 
load_dist[r] -  0; 

for(r=];r<=m;++r) 
load_dist[r] = random(49)+]0;  

fprintf(scheda,"%d %d \n", n,m); 
for(i=l ;i<=n;++j)
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for(k= 1 ;k<=m:-"+k)
■:

Y (i][k ]  =  random (41) -  load_distJk]; 
P[k] = P [ k ] - Y [ i ] ( k ] :

for(i= 1 ; i<=n; + + i )
.1

Z = ) 0 0 0 ;
lcounter=0;
Liner =  rou ie_cho ice[ran d om (rou tes)+1 ]; 
while(  Liner ! -  Icounter)

{ fscanf(com bo,"% d %d %d %d %d \n" ,& al,& a2 ,& a3 ,& a4 ,& a5);  
++lcounter; ) 

fprintf(scheda,"%d %d %d %d %d ",aLa2,a3,a4,a5);  
rew ind(com bo);  
fprintf(scheda,"%d " ,Y [i][a l  ]); 
fprinif(scheda,"%d ”,Y [i][a2]);  
fprintf(scheda,"%d ”,Y[i][a3]);  
fprintf(scheda,"%d ",Y[i][a4]);  
f^rimf(scheda,"%d ",Y(i][a5]);  

fprintf(scheda,"\t %d ",Z); 
fprintf(scheda,"\n”);

i

fprintf(scheda,"\n\n");
fc ]ose(sch ed a):

++Counter;

printf("counter iss  : %d\n".Counter); 
fc ]o se (com b o );
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Appendix A2; Training set generation

Winclude <sld io.h>  

«include ^stdlih.h>  
«include ''tim c.h >  

«include <m ath.h>  
«include <string.h>  
struct table

I
int jobno; 
int protime: 
int duedatc; 
int slack; 
int slackp; 
int flow t; 
int tarwt; 
float ncuro;

I  •

struct measures 
I
float flw tim e; 
float meantard; 
int numtar; 
float m axtar; 
float makespan;

I i
struct picks

int partno;
float Costco;

) .) »
struct probdata

1
int jobno;
int operation! 11];
int m achine no[11 ]:
int Due;
int elapsed;
int route track;
int flow t;
int tarwt;
int totalwk;

\  . 
f  ’

struct timetrack 

{
int endtime; 
int partnum;
int machine;

1 .I 5
Struct ed a ta  

1
int jobindex; 
int completion; 
int duedate; 
int elapsed; 
in t flow t; 
int tarwt;

r .
) •

struct bufs
1

int queue[102]; 
int maxcap;
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flo:u L O A IJ ( 1 i 1 11 .m axload:
.struct m easures M M [  lOJ: 
struct b u fs  b u t’ie r |  I 1]; 

struct tim e lrae k  event[2 I 1]; 
struct ctlata sink] 111];

struct probdata I 'R l  1102];lnt dispatching rule] 16];
int objsel.con.sel;

int T IM E N O W .d d .b s i;

float T a rd in c ss .T T ard .B c o st.C C o st:
int C o u n t=0 ,m ach in es ,h .v ; 
char n cat[3 ]; 
int d ro u tp u t[31 ]; 
in a in (v o id j

I
F IL E  *c o m b o .*s in p u t.’*sou tpu t.’ neu in put.’ neuoui:

struct tabic sp t_son().cd d_son ().m slk_so n(j.lp t_sort().in s lp_ .son ().w spt_scrt();
struct tabic  c le a r jo b (),u p d a te jo b s ().ra n d o m _ s o r t();
struct m easures calculate_ineasurcs(),calculate_cost(),.schedulc_costs();
struct edata fin d  schedO;
struct bufs

spt_buf(),ipt_buf().twspt_buf().CD().tspt_buf0.edd_buf().slack_buf().covert_buf(),mdd_buf(),lwkr_bufi:),twk_bufO;
struct bufs .sn q _buf().w inq_bu f().app end _to _bu ffe r(),un load_m ach in e();
int c o m b o x [2 4 4 ][6 ] ,k  I ,k 2 .k 3 .k 4 .k 5 jj,c o m b in a tio n ;
flo at m c square] I l] ,m ax s td ev ;
flo at best resu lt.perform ancc;

int re m o v e J o b (),m a x _ p ro t(),m a x _ d a te ,m e m b e r_ o f(),A v e rto t;  
flo at M f lo w ,B f lo w ;

int i,k .k i,u ,n ,p ,q ,r ,t,y j.jo b ,se q u e n ce ,n e x l_m acx u n n ac ,b es t_ ta rd y ; 
in t p lace.fou nd;

int best_tardine.ss,best_flow ,besi_com bo,m ac_candidate[14],m incostjob,torpro,m incostdue,m ondue;
int B E S T [3 0 0 ] [ l l ] ,n jo b s [3 ] ;
int greater o f(),c o u n te r,tie  counter;
char F F n a m e [1 2 ],W W R [4 4 ].d e s t2 [3 0 ].d e s tl[3 0 ].d e s t[3 0 ].F d a t[1 2 ];
ch ar *s tr l ;
in t co m b o co u n te i=0 ;

if((so u tp u t =  fopenC'ctW tcWbinWjobshopsWdataWresult.dat'V'w")) = =  N U L L )
] fp rin tf(s td err,"C an n o t open output file  . \n"); 

return 1;
))

if((n e u in p u t =  fo pen("c;\\tcV 'b in \\jobshops\\da ta \\neu job .inp","a")) = =  N U L L )
Î fp rin tf(.stderr,"C annoi open output f i le  . \n "); 

re tu m  1;
)

fp rin tf(so u tp u t," \n  M /C  1 M /C  2 M /C  3 M /C  4 M / C 5 \ n " ) ;
fp rin tffso u tp u t,"  — -------   in ");

I *
p rin tfC 'S elec t an O b je c tiv e  Function  ; \n \n " ); 
p r in t f (" l .  M in im iz in g  M e a n  F lo u iim e  \n "): 
p r in tf(" 2 . M in im iz in g  M akesp an  n"); 
s c a n f("% d ".& o b js e l); * /  

objse) =  2; 
if (o b js e l= = l )

if((n e u o u t =  fo p en ("c ;\\tc \\b in \\jo b sh o p s \\d a ta \\n eu jo b f.o u t’',"a")) = =  N U L L )

{ fp rin tf(s td err,"C an n o t open output f i le  . \n"); 
re tu m  1;

1J1I
else

if((n eu o u t =  fo p en ("c ;\\tc \\b in \\jo b sh o p s \\d a ta \\n eu jo b m .o u t" ,'a  ) )  = =  N U L L )  

j ip rin tf(s td err,"C an n o t open output file . W ) ;  

return 1;
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for(k=l;l<^=30;++k)
ciroulput|k]=0;

besi result = 999999999 .9;

jj= > ;
M k l  =  ] ; k K = 3 ; + + k j )  

fo r(k 2 = l:k 2 < = 3 ;+ + k 2 }  

fo r(k 3 = l;k 3 < = 3 ;+ + k 3 )  
fo r(k 4 = l;k 4 < = 3 ;+ + k 4 )

fo K k 5 = !;k 5 < = 3 ;+ + k 5 )
I com box[jj]l l ] = k l  ; 

co m b ox[jj](2 ]=k2 ; 
co m b ox(jj](3 ]=k3 ; 
co m b ox[jj](4 ]=k4 ; 
co m b ox[jj][5 ]=k5 ;

!
fo r(com bination=l ;com binalion<=243;++com bination)
I
-^com bocouruer;

strl = "T30.dat"; 
stpcpy(FFnam e.sirl); 

strcpy(desl,"c:\\tc\\bin\\jobshops\\data\V);

sircai<desi.strl ); 
if((sinput = fopen(dest,"r")) = =  N U L L )

{  fp rim f(s iderr,”C annoi open input file  . \n"); 
return 1 ;

!
fscanf(sinpui,"% d % d",& C oun l,& m achines); 
for(k=0;k<=IO;++k)

buffer[k].m axcap =  0; 
fo r (k = 0 ;k < = l5 ;+ + k )

dispatching ru le[k] =  0;

fo r(k=  ! ;k<=m achines;++k)
dispatching ru le[k] =  com box[com bination][k];

* for(k=l;k<=5;++k)
I prin tf("% d*".d ispatch ing_ru le[k]); if< d is p a ic h in g _ ru le [k ]= 0 ) getchar();}

fo r ( i= l; i< = 2 1 0 ;+ + i)  
event[i].endtim e = event[i].pannum  = event[ i].m achine =  0;

fo r ( i= l; i< = 1 0 ;+ + i)
fo r(j=0; j< = 1 0 1 ;+ + j)  

bufTer[i].queue[j] =  0; 
fo r { i= l; i< = llO ;+ + i)  

sink[i].jobindex = sink[i].com pletion = sink[i],duedate =  sink[i].elapsed =  0; 
fo r(i= l;i< = C o u n t;+ + i)  

fo r(k = 0 ;k < = 1 0 ;+ + k )
{  P R T[i].op eratio n[k ] = 0; P R T[i].m ach ine_no[k] =  0; m c_square[k]=0; j 

fo r ( i= l;i< = C o u n t;+ + i)

{
toqjro =  0;

fo r(k = l ;k<=m achines;++k)

fscanf(sinput,"% d " ,& P R T li].m ach in e _n o [k ]);
1
»

fo r(k = l ;k<=m achines;++k)

{
fscanf(sinpui."% d ".& P R T [i].o p e ra tio n [P R T [i].m a ch in e_ n o [k ]]);
toqjro =  totpro +  P R T [i].o p era lio n [P R T [i].m ach in e_n o [k ]];>

P R T[i].op eratio n[0 ] =  totpro;
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P R T (i] .io ia lw k  = totpro; 
P R T (i] .io b n n  = i;
PR 11 i].elapsed =  0;

PR t| i] route track = 0 ;
P R T | i] Pdwt = 1 ;
P R T (i] .ia rw t =  | ;

fscanf(sinput," % d " .& P R T | i].D u e ); 
LO A D [Tnachines] = 0; 
fo r(k =  1 ;k <=m ach in es;++k )

L O A D [k ]  = 0:

fo r (k =  1 :k ^ = n iac h in e s :+ + k )  

fo K i=  1 ;i< = C o u n t;+ + i)

L O A D [k ]  = L O A D [k ]  -+ P R T |i] .o p e ra tio n [k ];  
m axload = 0;
fo r(k =  1 ;k<=m ach in es:++k ) 

i f (L O A D [k ]  >  m ax lo ad) m axload = L O A D [k ];  
fo r (k = l  ;k < =m ac h in es ;+ + k ) 

fprinti"(neuinpuU " % 5 .3 f  " ,L O A D [k ]/m a x lo a d );  
m axstd ev = 0 .0 ;  

fo r (k =  1 ;k < =m a c h in e s ;+ + k )
J
fo r ( i= l  ;i< = C o u n i;+ + i)

m c_square[k] =  m c_square[k] + P R T (i].o p e ra tio n [k ]*P R T [i].o p e ra iio n [k );  
m c_square[k] = (  (m c_square[k] -  L O A D [k ]* L O A D [k ] /C o u n i) /(C o u n i- l)  ); 
if(m c_sq u are [k ] >  m axsidev) m axstdev =  m c_square[k];

V)
fo r(k = );k < = m a c h in e s :+ + k )

fp rin tf(neu inp ut,'' % 5 .3 fm c _ s q u a re [k ] /m a x s td e v );  
fo r (k = l  ;k < =m ac h in es;++k )

p lace=0 ;
forO’=  1 d < = C o u n !;+ + j)

{

fo r (p = l ;p <=m ach in es:++p )
if(P R T (j].m a c h in e _ n o [p ] = =  k )

{++p lace; break;] 
else ++place;

)]3rintf(neuinpui.'' % 5 .3 f  " ,(flo at)p lacey(C oun t*m achin es));
I)

fp rin tf(n eu in p u i,"  \n '');
fc lose(s input);
fd o se (n e u in p u t);

/ * * *  Assign all jo b s  to th e ir in itia l bufl'ers and in itia lize  event tracking * » * * • » » » /  

fo r ( i= l  ; i< = C o u n t; + + i)

{
fo un d  =  0;
fo r  (k =  1 ; k<=m ach ines; + + k )

if(P R T [i] .o p e ra tio n [k ] != 0 & &  found =  0 )

I
a p p e n d _ to _ b u ffe r(P R T [i].m ach in e_ n o Ik ],i);

+ + P R T [i] .ro u te _ tra c k ;  

found =  1 ;
)II)

fo r (k =  1 ;k < =m ac h in es ;+ + k )  
i f (b u fle r [k ] .q u e u e [l]  !=  0 ) 

add e v en t(0 ,0 ,k );
/♦*♦♦♦*»*»»•»*♦*•*»**•**♦***»**♦***•»•»».*•*****•**»*••**••**•***•*••*••*/

T I M  E N O W  = 0 ; 
w h ile (e v e n l[l].T n a c h in e  !=  0 )
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>.

scqucncc= I’RTlevcni( I ].pannuiT)].route_track; 
curmac = event] I].machine: 
job=eveni| 1],partnum:

/»  p rin tfC 'T IM E  : % d - E V E N T  on m achine % d for P A R T  %d
\n".event] 1 ].cndtim e.evcnl] 1 ].m achine.event] 1 ].partnum);

printf("TIMENOW = %d\n",event]]].endtime); */

T IM E N O W  = event] l].endtim e;

j = ' ;
w h ile(cvcnty].m achine != 0 )

evenly],cndtim e =  eventy].endlim e - T IM E N O W :

-+j:

fo rti= ';j'^=C oun i;-^+ j)

PRTy],elapsed = PR T y].elapsed +  T IM ENO W ;
P R T yj .D u e  = P R T y ] .D u e  - TIM ENOW :

T IM E N O W  = 0; 
update event list(): 
ifyob != 0)

/ *  move jo b  to the next m achine’s buffer * /  
found = 0;

i f( P R Tyob],operation] sequence+1 ] != 0 & &  fo u n d = 0  )

n e x tm a c  =  P R Tyob].m achine_no[sequence+l];
unload_machine{curmac);
append_to_buffer(next_m acjob);
++P R Tyob].rou te_track; 
if(buffer[next_m ac].queue[0] = =  0)

load_m achine(next_mac,dispatching_Tule[next_Tnac]); 
a d d _ e v e n t(T lM E N O W  +

PRT[buffer[next_m ac].queue] O ]].operation[next_m ac],buffer[next_m ac].queue[0],next_m ac);

fo u n d = l:

if(found = =  0)

ad d _ to _s in k yo b ,T lM E N O W ,0 );
unload_m achine(curm ac);

I
f

load_machine(curmac,dispatching_rule[ curm ac]); 
if(buffer]curm ac],queue]0] != 0 ) 

add e v e n t(T IM E N O W  + 

P RT]buffer]curm ac].queue]0]].operation]currnac],buffer]curm ac].queue]0],curm ac);

else

load_m achine(curm ac,dispatching_rule]cunTiac]); 
a d d _e ven t(T lM E N O W  +

PRT]buffer]curmac].queue]0]].operation]cuiTnac],buffer]cunnac].queue]0],curmac);)
J

] / *  end o f combination for loop * 1
schedule_costs():

I *  pn'ntfC’mean flo w tim e = % 7 .2 f \n " ,M M ] l ] .flw tim e): 
printfC’makespan = % 7 .2 f  \n " .M M ] 1],makespan); 
printf("num ber o f jobs tardy =  % d '\n " ,M M ]l].n u m ta r); 
printfC 'm axim um  jo b  tardiness =  % 7 .2 f  \n " ,M M ]l] .m a x ta r );  
printfi["'\n");
fcr(i=) ; i<=machines; ++i)
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prinifCThc maximum queue length in buffer %d = %d unints\n".i, buffct1i].maxcap); 
prinlfC n"); *!

iKdbjsel 1 ) pedomiancc = MM[ 1 ].llwiimc: 
else perfonnance = MM[1],makespan; 

if( performance < best result - 0.00001)
1 best result = perfonnanee; 
tie counter = I; 
for( u= 1 ;u<=machines;++u)

BEST|tie_counter][u] = dispatching ruleju]; | 
else if (perfonnance > best rcsult-O.OOOOl && performance < hest result+O.OOOOl)

-^-rtic counter;
for( u= 1 ;u<=machincs;+-t-u)

BEST|tie_counter]|u] = dispatching rule|u]; |
I /***» end o f the main while * ••* /  

for(p= 1 ;p<=tie_counter;++p)

for( u= 1 ;u<=machines;++u)
J

if(BEST[p][u] == I ) ) lprintf(soutput,'' SPT "); ++ d ro u {p u l[3 *u -2 ]; J 
if(BEST[p][u] == 2) 1 f^rintffsoutput," LPT "); -h - d ro u tp u t[3 *u - l] ;  J 
if(BEST[p][u] == 3) 1 fprintffsoutpui," M W K R  "); ++ d ro u tp u t[3 *u ]; }

I
fprintf(soutpul,"\n ");
1)

fprintf(soutput,"\n ----------------------------   \n");
iffobjsel == I )

fjprinff(soutpul," mean flowtime = % 7.2f ",best_result); 
else

fjprintffsoutput," makespan = % 7.2f ",best_result);

for(i= I ;i<=3*machines;++i)
fprintf(neuout," % 5.2f ",(float)droutpui[i]/tie_counter); 

fjprinif(neuGut,"\n ”); 
fclose(neuout); 
fclose(com bo); 
fclosefsoutput); 
retum(O);
i

struct bufs append_to_buffer(bnum jobnum ) 
int bnum, jobnum;

int i= l ;
w h ile (b u ffe r[b n u m ].q u e u e [i] !=  0 )

I
++i;
\ .) *
if  (i > bufTer[bnum].maxcap)

buffer[bnum].maxcap = i; 
buffer[bnum].queue[i] = jobnum; 

return:
t

/* ' Function ; unload_machi( ) This function removes a job from machine (t) */
struct bufs unload machinefftnmac) 
int finmac;
{
int i.finjob;
fm job= buffer[fmtnac].queue[0];
L O A D jf in m a c ] =  L O A D (f in m a c ]  -  PRT[finjob].operation[ftnmac]; 
P R T [fin jo b ].o p e ra tio n [0 ] =  P R T [f in jo b ].o p e ra tio n [0 ] -  P R T Ifin jo b ].o p e ra tic n (fin m a c ];  

b u ffe r[fin m a c ].q u e u e [0 ] =  0; 

re tu m ;

}
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a(id_cvcni(iimejob.mac) 
ill! limcjob.mac;

ini i= 1 ; 
ini p.spoi;
while (cveni|i].machine )=() && evenl(i].cndiime < lime)

I
++i;

I  !

spol = i;
while (cvcnti i],machine !=())

++i;
for(p=i;p>=spot;-p)

eveni|p]= eveni|p-l];

cvenl|spol).endiime= lime; 
cvcnl(spot].pannum = job; 
eventl spol].machine = mac; 
relum;

load_machine(mac,selecied) 
ini mac,selected;
)
int i=l;
if(bufrer[mac].queue[2] != 0)

1
if(selected == 1) spt_buf(mac); 
if(selected == 2) lpt_buf(mac); 
i{(selected == 3) mwkr_bufi(mac); 
if]selected —  4) winq_buf(mac); 
if] selected == 5) lwkr_buf]mac);

1
do

bufTer[mac).queue[i-l] = buffer[mac].queue[i]; 
++i;

J

while (buffer[mac].queue[i-1 ] != 0); 
retum;1I
update_eveni_list()
{
int i= I ; 
do

event[i-l] = event[i];
++i:I)

while (event]i-l].machine != 0);
retum;
))
add_to_sink(.iobno,eomp.due) 
int jobno,eomp,due;
{
int u=l;
while]sink] uj.jobindex != 0)

++u;) .
I »

sink]u].iobindex = jobno; 
sink]u].compleiion = comp; 
sinkju].duedate= due; 
sinkjuj-flowt = PRT[jobnG].flowt; 
sinkjui.tarwi = PRT[jobno].tarwt;
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sink] u],elapsed PRT[sink[ u].jobindcx].elapsed + comp;
return;

disinis.s_job(_j) 
int J:

int i;

for (!=l;j<=machines;++i) ,
PRT[j].operationli] = 0;

P R T [j] .D u e  =  0; 

P R T L i].flo w t =  P R T |j] .ta rw t = 0;
PRTLi].jobno = 0;

rcium(O);
\
i

struct bufs spt buffbufiio) 
int bufno;
{

n d e fiiie  F A L S E  0 

“ d e fin e  T R U E  1

int j.k . sorted = FALSE; 
float trigl,trig2; 
int temp;

int n = 1 ;
while(buffer[bufno].queue[n] !=0)

++n;
-n ;

while (! sorted)

sorted = TRUE; 
for (.1= 1; j<n; ++])

i f  (PRT[buffer[bufno].queue[j]].operation[buffio] > PRT[bufrer[bufno].queue[j+I]].cperation[bufno]) 
{ temp = buffer[bufho].queue[j];

bufrer[bufno].queue|j]=bufrer[bufno].queue[j+1 ];
buffer[bufno].queue|_j+l]=temp;
sorted =  F A L S E ;

retum;
1i

struct bufs lpt_buf(bufno) 
int bufno:
{

jfdefine FALSE 0
^define TRUE I
int j,k, sorted = FALSE;
float trigl.trig2;
int temp;
int n = 1 :
while(buffer{bufnol,queue[n] !=0)

++n;
-n ;

while (Isorted)

sorted = TRUE; 
fo r (j= l;j< n ;+ + j)

if (P R T [b u ffe r[b u fh o ].q u e u e [j]] .o p e ra tio n [b u fn o ] <  P R T [b u ffe r[b u fn o ].q u e u e [j+ l]].c p c ra tio n [b u fn o ])

temp = buffer[bufno].queue[j];
b u ffe r[b u fn o ].q u e u e lj]= b u ffe ttb u fn o ].q u e u e (j+ 1 ]; 

b u ffe r[b u fn o ].q u e u e [j+ 1 ]= ie m p ;

sorted =  FALSE;

AlO



return;
!

struct bufs mwkr_buf(bufno) 
int bufno;

«define FALSE 0 
«define TRUE 1

int j ,  sorted = FALSE; 
int temp;

int n = 1;
whilc(huffer|hufno].queuc|n] !=())

++n;
-n ;

while (Isoned)
{
sorted = TRUE; 
for(j= l; j<n;++j)

if  (PRT[buffer[bufno].queue[j]].operation(0] < PRT(buffer[bufno].queue(j+l]].operation[0])
I

temp = bufTer[bufno].queue[j]; 
buffer(bufno].queue|j]=buffer[bufno].queue[j+l]; 
buffer[bufno].queue[j+1 ]=temp; 
sorted = FALSE;

J

J

return;
J

struct bufs winq_buf{ bufno) 
int bufno;
{

«define FALSE 0 
«define TRUE!

int j,k, sorted = FALSE; 
int temp;

int n = 1;
while(buffer[bufno].queue[n] !=0)

++n;
-n ;

while (Isoned)
I
soned = TRUE; 
forCi=l; j<n; ++j)

if (work_in_next_queue( buffer[bufrio].queue|j], bufno) > work_in_next_queue( 
bufTer[bufho].queue[j+l], bufno))

(
temp = buffer{bufho].queueü]; 
bufrer[bufno].queue[j]=buffer[bufno].queue[j+1 ]; 
buffer(bufTio].queue[j+1 ]=temp; 
soned = FALSE;

retum;
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w ork in_ncxl_quLuc( i()bnum bcr,prcscnl_m ac) 
in i io h n u m h cr. present m ac:

{ ' ’ \  : X
in i q.k 1 .num b.v. y iiinp_ |o b .next_m ac,w o rk inqu euc=0;

fo r lq -  I :q<=C()un l:-' + q ) 
if {P R T [q ].jo b n o  ==  jobnu m b cr) break;

fo r(k  1 =  1 ;k 1 <m ach incs;+^  k 1 ) 
if(P  R T | q] m acbine no |k  I ] = =  prcseni mac’)

•1
num b = 1 ; 

ncxi m ac -  l'R T |q ],m a c h in e  nn|k 1 + 1 ];
w h ild b u ffe r j next m ac].queue]num b] ’.= ())

]
w a i i in g J o b =  buffer] nexi_m ac].queuelnum b];

wrjrkinqueue = workinqueue+ PRT]wailing_job].operaiion(nexl_inac];
+ + n u m b ; |
workinqueue= workinqueue+ PRT(q].operationlPRTjq].machine_no[kl]]; 

reium(workinqueue);

else
retum(O);

I
j

struct bufs lwkr_buf(bufno) 
int bufno;
]

#define FALSE 0 
#define TRUE 1

int j , sorted = FALSE: 
int temp;

int n = 1 ;
whi)e(buffer[bufno].queue]n] !=0)

++n;
- n ;

while (Isorted)

sorted = TRUE; 
for (.]= I ; j<n; ++j)

i f  (P R T [b u fT er[b u fn o ].q u e u e[j]].o p e ra tio n [0 ] >  P R T Ib u fre r]b u fn o ].q u e u e [j+ l]].operation[0])

]
temp = bufTer[bufno].queue[j]; 
buffer[bufno].queue[j]=bufrei{bufno].queueO+]]; 
buffer[bufno].queue[j+1 ]=temp;
sorted = FALSE;

return:
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Appendix A3: Comparison o f  NN results with other dispatching rule results

«include '^sidio.h> 
«include <stdlib.h> 
«include <time.h> 
«include <math.h> 
«include <siring.h> 
«include <neuro.h> 
siruci table

int jobno; 
int protime; 
ini duedate: 
ini slack; 
int slackp; 
int flowt; 
int tarwt; 
float neuro:

struct measures 
{
float flwtime; 
float meantard; 
int numtar; 
float maxtar; 
float makespan;

I . 
i >

struct picks
I
int partno; 
float Costco;I.) >

struct probdata 
{

int jobno;
int operation[l 1];
int machine_no[l 1];
int Due;
int elapsed;
int route track;
int flowt;
int tarwt;
int totalwk;

\ .
J  '

Struct timetrack 
{
int endtime; 
int pannum; 
int machine;

I.
J >

struct edata
{

int jobindex; 
int completion; 
int duedate; 
int elapsed; 
int flowt; 
int tarwt;I.

)  •

struct bufs 
{
intqueue[l02]; 
int maxcap;
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float L O A D | 1 1 ] ,P L 0 A D | 1 l],m a x lo a d ;  
struct m easures M M |  10]: 
struct bufs b u lTcr|21]: 
struct tim etrack event12 t 1]; 
struct edata sink| 111]:

struct probdata P R T | 101 ];in t dispatching rulcj 16];
int ru lesel.consel;
int T I M  E N O W ,d d .b s t;

float Ta rd incss .T Tard .B cost.C C ost;
int C o u n t=0 .m a c liin es .h .v ;
char n eat]3];
int d ro u tp u i[3 1 ];
m a in fv o id  )
I
F IL E  *s in p u i.*so u tp u i:

struct table  spt_sort().edd_sort(),m ,slk_sort( ).lpt_sort().m slp_.sort(),wspt_.son();
struct table  c le a r jo b ().u p d a te jo b s ().ra n d o m _ s o rt();

struct m easures ca lculate tTteasures().calculate cost().schedule_cosls();
struct edata fin d  schedf);
struct bufs

s p t_ b u f().lp t_ b u f().tw s p t_ b u f().C D ().ts p t_ b u f().e d d _b u f(),s lac k_b u f().co vert_ b u fi[),m d d _b u f(),lw k r_b u f(),tw k_b u fl[);
struct bufs s n q _ b u f(),a w in q _ b u f() .a p p e n d jo _ b u ffe r() .u n lo a d _ m a c h in e ();
in t c o m b o x J 2 4 4 ][6 ],k l ,k2 .k 3 .k 4 .k 5 J j.c o m b in a tio n ;
flo a t m c _sq u a re ]l l],m axvar.m akesp an s ,flo w tim es;
float best resu lt.perform ance;

int re m o v e_ jo b ().m ax _p ro t().m ax _d a te .m em b er_o f().A verto t; 
flo at M f lo w .B f lo w ;
d o ub le  n_vector[ 1 6 ],n ou tput] 16].m axou t:
in t i,k .k i,u ,n ,p ,q ,r ,t ,y j job.sequence.next_m ac,curm ac,best_tardy;
in t p lace.fou nd;
int best_tardiness,best_flow .best_com bo.m ac_candidate[14],m incostjob.totpro ,m incostdue.n iondue;
in t B E S T [3 0 0 ] [ l l ] ,n jo b s [3 ] ;
int grea ter_o f().cou nte r,tie_coun ter;
char F F n a m e ]l2 ].W W R [4 4 ].d e s t2 [3 0 ],d e s tl[3 0 ] .d e s t[3 0 ],F d a t[1 2 ];
char *s tr l ;
in t co m b oco un ter=0;

if((s in p u t =  fo p en ("c ;\\tc \\b in '\jo b sh o p s \\d a ta \\m u ltes t.d a t" ."r" )) = =  N U L L )
] fp rin tf(s td err."C an n ct open output file  . \n "); 

re tu m  1;

if((so utp u t =  fo p en ("c ;\\tc \\b in \\io b sh o p s \\d a ta \\m u ltes t.o u t","w ")) = =  NULL) 
{ fp rin tffs td err,"C an n o t open output f ile  . \n"); 

re tum  1;

)
prin tfC 'S elec t D isp atch in g  R u le  P olicy : \n \n"); 
p rin tff"  I . S P T  fo r a ll m achines \n "); 
p rin tf("3 . L W K R  fo r all m achines \n "); 
p rin tf("2 . L P T  fo r a ll m achines \n "); 
p r in tff"4. N eu ra l S election \n "); 
s c an f("% d ",& ru le se l);
iffm le se l !=  1 & &  rulesel != 2  & &  rulesel 1=3 & &  rulesel 1=4)

{ p rin tfC 'L eav in g  the program  . \n "); 
re tu m  1 ;

I
»

i f f  ru lesel =  1) 
fo r (k =  1 ;k < = m a c h in e s ;+ + k ) dispatching_rule[k]=  

iffru lese l = =  2 )  
fo r (k = l ;k < =m a c h in e s ;+ + k ) d ispatch ing_ru le[k ]=2  

iffru lese l = =  3) 
fo r(k =  1 ;k < = m a c h in e s ;+ + k ) d ispa tch ing_ru le [k ]=3  

m akespans =  flo w tim es  =  0; 
w h il e( 1 fe o ffs in p u t))

{
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rscanf(sifipui."%d "/<.d".&Count,&.machines); 
if(lcoflsinpul)) 

break;
)or(k=0;l<-^=l();-^+k)

buffer] k],maxcap = 0; 
for(k=0:k<= l5;++k)

' dispaiching_rule(k] = 0; n_vecioiik]=0.0: | 
for(k= l;k‘==machines;++k)

dispatching_rulc[k] = rulesel: 
for(i= 1 :i'^=2IO;++i) 

event[i]endtime = event] i],pannum = event] i].machiiic = 0;
(br(i=l:i''=10;^+ij

forfj-O; j-^=l01; ++j) 
buffer] ij.queue[j) = 0; 

for(i=l;i<=l Kk++i)
stnkli].johindcx = sink[t].completion = sink]i].duedate = sink[i].elapsed = 0; 

for(i=0;i<=Count;++i) 
ror(k=0;k<=10;++k)

] PRTJij.operationfk] = 0; PRTli].machine_no(k] = 0; mc_square[k]=0; | 
for(i=l ;i<=Count;++i)
1

totpro = 0;
for(k= 1 ;k<=machines;++k)

fscanf(sinput,"%d ''.&PRT[i].machine_no[k]);
i)

for(k= 1 ;k<=machines;++k)
i
fscanf(sinput/’%d ".&PRT(i].operation[PRT[i].machine_no[k]]); 
totpro = totpro + PRT]i].operation[PRT[t].machine no[k]];

f
PRT[i].operation[0] = totpro;
PRT[i].total'wk = totpro;
PRT]i] jobno = i;
PRT]i].elapsed = 0;
PRT[i].route_track =0;
PRT]i].llowi = 1;
PRT] ij.tarwt = 1;
fscanf(sinput,” %d”,&PRT]i].Due);

)
for(k=l;k<=machines:++k)

LOAD[kl=0; 
for(k= 1 ;k<=machines;++k) 

for(i=l :i<=Count;++i)
LOAD]k] = LOAD]k] + PRT]i].operation]k]; 

maxload = 0;
for(k= 1 ;k<=machtnes++k) 

if(LOAD]k] > maxload) maxload = LOADJk]; 
for(k= 1 ;k<=machines;++k)

n_vector]k]= LOAD]k]/ma.sload;
maxvai^O.O:
for(k= 1 ;k<=machines;++k)

{
for(i= 1 ;i<=Count;++i)

mc_square]k] = mc_square]k] + PRT[i].operation]k]*PRT]i].operaiionlk]; 
Tnc_square]k] =(mc_square]k] - LOAD]k]*LOADlk]/Count)/(Count-l); 

if(,mc_square]k] > maxvar) maxvar = mc_square]k];

for(k=macliines+l;k<=2*machines;++k)
n_vector]k] = mc_squarelk-machines]/maxvar; 

for(k= 1 ;k<=machines;-H-k)
{

place=0;
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f o r ( i=  1 • j< = C o u n f ,+ + j )

:
for(p= 1 ;p<=machines;++p)

if(PRT[j].machine_nolp] =  k)
{-^-placc; break;! 

else — p̂i ace;

n_vecior(2*machines+k] = (floai)place/(Couni*machines);It
for(p=];p<=15;++p)

n_vecior(p-l] = n_vec(or[p]: 
if(rulescl == 4)

:
neuro_dispaich(n_vecior.n_ompuO; 

for(k= I ;k<=machines:-r+k) 
i

m axout-0.0: 
for(p=0;p<3:--rp) 

if(n_output[3*(k-l)+p] > maxout)
i maxout = n_output[3*(k-l)+p]; dispatching_rule(k] = p + l; |

for(i= I ;i<=machines;++i) 
fprintf(soutput,”%d ”,dispatching_rule[i]);

/*** Assign all jobs to their initial buffers and initialize event tracking ********/

R e f e r  A p p e n d i x  A 2

A16



Appendix A4; Test Problem generation

^include <sldio.h>
//include <sidiib.h>
//include <tim e.h>
/* generates test problems for use by appendix D *! 
m ain(void)
{
PILE *scheda.*com bo; 
float TE.RDD.UL;
int y [ 101 ]121 ] ,P |2 1 ].route_choice[26],load_dist| 16],routes,Counter; 
int i,k ,n ,m ,r.reps.Z ,X .W f.W t.PP,g,qX iner,lcounter,al.a2,a3,a4,a5; 
if((scheda = ropen("c:''tc AbinV\jobshopsV\dataWmultest.dat","w")) == fW L L )

{ fprintf(stderr,"Cannot open output file . \n ”); 
return 1 ;

t
I

if((com bo = fopen( "c : \ \tcWbin\y obshopsWpermS ! .dat" ,"r")) =  fW L L )
{ fprintf(stderr,"Cannot open output file . An"); 
return I ;

for(i= l;i< = 100;+ + i)
for(k=];k<= 2];++ k)

Y [i][k] = 0; 
printfC'What is the number o f  JOBS ? \n"); 
scanf("%d",&n);
printfC'How many test problems ? \n");
scanf("%d".&reps);
m =5;
srand(2177); 
for(g= I ;g<=reps;++g)

{
routes = random(6)+5; 
for(k= ] ; k < = 21 ; ++k)

P[k] = 0; 
for(r=0 ;r<=2 5 ;++r)

route_choice[r] =  0; 
for(r=l ;r<=routes;++r) 
route_choice[r] = random(121); 

for(r=0;r<=15;++r)
Ioad_dist[r] =  0; 

for(r=l;r<=m ;++r) 
load_dist[r] = random(49)+10; 

fprintf(scheda,"%d %d \n", n.m); 
for(i=];i<=n;++i) 

for{k=l ;k<=m;++k)
{
Y [i][k] =  random(41) + load_dist[k]; 
P[k] =  P[k] + Y [i][k ];

for(i= l; i<=n; ++i)
I

Z =1000;
lcounter=0;

Liner =  route_choice[random (routes)+1 ];
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w hile( Liner != Icounter)
I fscanf(com bo."% d %d %d %d %d \n" .& al,& a2.& a3.& a4.& a5);  
+ + Icounter; |

fprinif(scheda,"Vod %d %d %d %d " .a l,a2 ,a3 ,a4 ,a5); 
rew ind (com bo);

fprinif(scheda,"% d ”,Y [i] (a l] );  
fprin if(scheda/'% d " ,Y [i](a2]); 
fprinif(scheda,"% d " ,Y [i][a3]); 
fprinif{scheda,"% d ”,Y [i] |a 4 ]);  
fprin if(sch ed a;’% d ’L Y [i](a5]);

fprintf(scheda,"\t %d ",Z); 
fprintf(scheda."\n");

fprintf(scheda,"\n\n");
++C ounler:

printfC 'counter is s  : % d\n",Counter);
fc lo se (co m b o );
fc lo se (sch ed a );
1
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Appendix B: Arena simulation model
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Appendix Cl : Determining number o f  hidden neurons for performance 

objective o f  M inimizing Makespan

Number of hidden layer 1
Learning rate 0.1
Momentum 0.1

Initial Weights 0.3
Pattern Selection Random
Weights updates Vanilla

Number of training patter 2494
Number of test 1200, combination of n = l0,15,20

Number of hidden neurons 6 to 18
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Appendix C2; Determining number o f  hidden neurons for performance 

objective o f Minimizing Mean Flowlime

Number of hidden layer 1
Learning rale 0.05
Momentum 0.05

Initial Weights 0.3
Pattern Selection Rotational
Weights updates Turboprop

Number of training patter 2636
Number of test 1200, combination of n= l0,15,20

Number of hidden neurons 10 to 25
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Appendix D1 ; Neural Weights for Makespan network

r  In scn  this code im o your C  program lo  fire  ihe C :\N S H E L L 2 \S P T & L P T < S ^ M W K R  network * /
T h is  code is designed to be sim ple atid fast for porting to anv m achine * !

I *  1 hcre fore  a ll code and wetghts are tnhne wtthoul looping or data storage 
/»  w h ich  m ig h t be harder to port between com pilers. * /

ffincludc < m ath .h >

void  neuro d ispa lchfdou ble  *inarray. double ’ ou iarray)

doub le  netsutn; 
doub le fe a tu re 2 |9 ];

/ *  in a rra y [0 ] is total processing tim e on m achine I ’ /
/ *  inarray} 1 ] is total processing tim e on m achine 2 * /
I *  in a rra y [2 ] is total processing tim e on m achine 3 * !
/ *  in array l 3 ] is total processing tim e on m achine A  * J  
/ *  in a rra y [4 ] is total processing tim e on m achine 5 * /
/ *  in a rra y [5 ] is variance processing tim e on m achine I * /
/ *  in a rra y [6 ] is variance processing tim e on m achine 2 * /
/ *  inarray[7] is variance processing time on machine 3 * /
/ *  in a rra y l8 ] is variance processing tim e on m achine 4 * /
/ *  in a rra y [9 ] is variance processing tim e on m achine 5 * /
/* in array} 10] is mean routing order of machine 1 */
/ *  inarray} 1 1 ] is tnean rou ting  order o f  m achine 2 * /
I *  inarrayl 12] is mean routing order o f machine 3 */
/* inarray} 13] is mean routing order of machine 4 */
/* inarrayl 14] is mean routing order o f machine 5 */
/* outarray|0] is SPT on machine 1 */
/* outarrayl 1] is LPT on machine 1 */
/* outarray[2] is MWKR on machine 1 *1 
/* outarray|3] is SPT on machine 2 */
/* outarray|4] is LPT on machine 2 */
/* outarray|5] is MWKR on machine 2 */
/* outarray|6] is SPT on m achines */
/* outarrayl?] is LPT on machine 3 */
/* outarrayl8] is MWKR on machine 3 */
/* ouiarray[9] is SPT on machine 4 */
/* outarrayl 10] is LPT on machine 4 *!
/* outarrayl 11 ] is MWKR on machine 4 */
/* outarrayl 12] is SPT on machine 5 */
I* outarrayl 13] is LPT on machine 5 */
/* outarrayl 14] is MWKR on machine 5 */

inarrayl0] = 1 .0 /(1 .0  + exp( -( inarray[0] - .8072053) / .1779804 )); 

inarrayl 1] = 1.0 / (1.0 + exp( -( inarrayl 1] - .7982979) / .1812125 )); 

inarrav|2] = 1.0 / ( 1.0 + e x p (-( inarray|2] - .8054764) / .1795151 )). 

inarray|3] = 1.0 / (1.0 + exp( -( inarray|3] - .8004816) / .  1790274 )), 

inarray|4] = 1.0 /  (1.0 + e x p (-( inarray|4] - .8064976) / .1814937 )); 

inarray[5] = 1.0 /  (I.O + exp( -( inarray|5] - .771103) / .1943457 )). 

inarray|6] = 1 .0 / (1.0 + exp( -( inarray[6] - .7586824)/.1922863  )1. 

inarrayl7] = 1 .0 / (1.0 + exp( -( inarray[7] - .7655738) / .1942723 )). 

inarrayl8] = 1.0 /  (1.0 + exp( -( inarrayl8] - .769994) / .1929265 ));
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inarray(9]= 1 .0 /(  1.0  ̂ exp (- { inarrayl 9 ] -  .7713] 15)/.1924995 )); 

inarrayl 10]= 1 () / ( 1.0 * t-xp( -( inarrayl 10] - .5963829) / .  1359357 )); 

inarrayl 11]= 1.0/(I .O - exp(-( inarrayl 11] - .598911 )/ .1376096)); 

inarrayl 1 2 ]=  1 .0 / ( I .O  -  e x p ( -( in a rra y |1 2 ]- .6040698) /  .137564 )); 

inarray|13]= 1 .0 /( 1.0 -  exp (-( inarrayl 13] - 596164) / .137554 )); 

inarray|14]= 1.0 / ( 1 0 * cxp (-( inarray] 14] - .6044775) / .1383298 ));

neisum = .2456497; 
netsum += inarray|0] * 2.046942; 
neisum += inarrayl 1 ] • -1.739467E-02; 
neisum += inarray[2] * 1.950621; 
netsum += inarrayl3] * .7895958; 
netsum += inatrayl4] * -4.393935; 
netsum-̂ = inarrayl5] * .6341079; 
netsum-t= inarrayl6] • .7639786; 
netsum -*■= inarray[7] • -.3696065; 
netsum -*-= inarray[8] * .1025962; 
netsum -*■= inarray[9] * .2775704; 
netsum-*•= inarrayllO] * 2.588418E-03; 
netsum -*•= inarrayl 11] * -.1057494; 
netsum+= inarrayl 12] * 1.179916; 
netsum+= inarrayl 13] * .2022499; 
netsum -*•= inarrayl l4] * -.2809177; 
feature210] =1 / (I + exp(-netsum));

netsum =  
netsum -+= 
netsum -+= 
netsum ■ + =  
netsum -+= 
netsum += 
netsum += 
netsum += 
netsum += 
netsum -+= 
netsum += 
netsum -*•= 
netsum -+= 
netsum -*-= 
netsum -*-= 
netsum -*•= 
feature2]l

netsum = . 
netsum -*•= 
netsum -t-= 

netsum 
netsum -*■= 
netsum + =  
neisum -r=  

netsum +=  
netsum -+= 
netsum 
netsum -*•= 
netsum -r= 

netsum +=  
netsum -*■=

.7736111; 
narraylO] * 
n a rra y ll] *  
narrayl2] *  
narrayl3] * 
narrayl4] *  
narraylS] *

.2019996; 

.1082652; 
9.714916E-02; 
.8964988; 
.9009568; 
1.312576E-02; 

narrayl6]*-1.136535E-03; 
narrayl7] *  .5345301; 
narrayl8] *  .429602; 
narrayl9] *  .6620308; 
narrayllO ] *  .3335176;

.4408983; 
.8332653; 
1.068497; 
.8551623;

narrayll 1] *  
n a rra y ll2] *  ■ 
narrayl 13] * 
n a rray ll4] *

] = 1 / (1 -t- e.xp(-netsum));

2736917; 
narrayl 0 ] *  
narrayl 1] * 
narrayl2 ] *  -, 
narrayl 3] *  
narrayl4] *  
narrayl5] *  
narrayl6 ] *  

narrayl 7] *  - 
narrayl 8] *  
narrayl9] *  

narrayl 10] * 
narrayl 11 ] »  
narrayl 12] »

1.667238; 
1.011702; 
6062995; 

-.4746662; 
■6.320269E-02; 
-.3131128; 
.4646354; 
.4525496; 
.4268539; 
.153007; 

2.659758; 
-1.245716; 
6.91551 lE-02;

D2



neisum += inarray[ 13] * -1.128644; 
netsum inarray[ 14] * 1. ] 68092; 
featurc2|2] = 1 / (I + cxp(-netsum));

netsum = , 
netsum += 
netsum 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum 
netsum += 
netsum ->■= 
netsum += 
netsum += 
netsum += 
netsum +=

4272505; 
narrayl 0] ■ 
narrayl 1 ] 
narrayl 2]  ̂
narrayl 3] 
narray[4] 
narray|5] ’ 
narrayl6]  ̂
narrayl 7] ’ 
narray|8] ' 
narray|9] ^

.7500188  
1.000085 

-1.751807  
.2685844  
1.027902 
.6474725  
.1521454 
.2068681 

-.5180956  
.1931846

narrayl 10] * -1.069892
narrayl 11 ] 
narrayl 12] 
narrayl 13] 
narrayl 14]

.6269137
1.828143

-1.174372
.3147894

feature2[3] = 1 / (I + exp(-net.sum));

neisum = 1 
netsum += 
netsum += 
netsum -+= 
netsum -*-= 
netsum -*-= 
netsum -+= 
netsum -*-= 
netsum += 
netsum -+= 
netsum -*■= 
netsum += 
netsum -+= 
netsum += 
netsum += 
netsum -*-= 
feature2|4]

netsum = 1 
neisum -+= 
netsum -*-= 
netsum -*-= 
netsum += 
neisum -r= 
netsum -*-= 
netsum -*-= 
netsum -*-= 
netsum -+= 
netsum += 
netsum -t-= 
netsum -t-= 
netsum -<-= 
netsum += 
netsum += 
feature2[5]

.253435; 
narraylO] * 
narrayl 1 ] * 
narray[2] * 
narray[3] * 
narray[4] * 
narrayl 5] * 
narrayl 6] * 
narrayl?] * 
narrayl 8] * 
narray[9] * 
narrayl 10] ' 
narrayl 1 1]  ̂
narrayl 12]  ̂
narrayl 13]  ̂
narrayl 14] ’

.4281614;

.263829;

.7757708;

.8198949;

.4531571;

.7415228;
.3905536;
.5716818;
.5664634;
.4108108;

‘ 1.020716;
■ .6482075;
■ .3916479;
■ .82701;
 ̂ .5516309;

= 1 / ( I  + exp(-netsum));

.020303; 
narraylO]  ̂
narrayl 1 ]  ̂
narray|2]  ̂
narray|3] ' 
narray[4] ■ 
narray|5] ' 
narrayl 6] ' 
naM y|7] ' 
narrayl 8] 
narray[9] ^

.6176658;
-.1641615;
.6528724;
.5118068;
1.187099;
.357643;
.5779907;
.6766816;
.337665;
.5777485;

narrayl 10] * .7961912; 
narrayl I I ] *  .6893328; 
narrayl 12] * .5017431; 
narrayl 13] * -.2587531; 
narrayl 1 4 ]*  .545307;
= 1 /(1  + exp(-netsum));

netsum = -.857754; 
netsum += inarrayl0] * -.7458848; 
netsum -+= inarrayl 1] * -1.533975; 
netsum += inarray|2] * -1.908274;
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netsum ’ = 
neisum -*̂= 
neisum s = 
neisum s = 
neisum += 
neisum += 
neisum += 
netsum += 
netsum + = 
netsum += 
netsum + = 
netsum += 
)'eature2[6]

netsum = 
netsum -<-= 
neisum += 
netsum += 
netsum += 
neisum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
neisum += 
netsum += 
netsum += 
neisum += 
feature2[7]

netsum = . 
netsum += 
netsum += 
neisum += 
netsum += 
netsum += 
neisum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
feaiure2f8]

inarrayl 3] * 6.414888; 
inarray|4] * -1.083793: 
inarray|5] * -.1197345; 
inarrayjO] * .1958044; 
inarrayl7] * .4577059; 
inarray|8] * -.8148838; 
inarray|9] * -.3346533; 
inarrayl 10] *-.4140265; 
inarrayl 11]* -.9390895; 
inarrayl 12] * .1293133; 
inarrayl 13] * -.2089598; 
inarrayl 14] * -.150009;

1 / (1 + cxp(-nelsum));

9072358;
narraylO] * -4.788719; 
narrayl 1 ] * 1.544868; 
narray[2] * 2.137923; 
narray[3] * .6501429; 
narray|4] * 1.509744; 
narray[5] * -.552145; 
narrayl6] * .7359388; 
nairay(7] * -.3814477; 
narray[8] * .207289; 
narray[9] * -.3526275; 
narrayl 10] * .7480308; 
narrayl 11] * -.7977181; 
narrayl 12] * 1.289536; 
narrayl 13]* .1694474; 
narray|14] *-.1155627;
= 1 / (1 + exp(-netsum));

2858913;
narraylO] * -1.584813; 
narrayll]* 3.49939; 
narray|2] * -1.439081; 
narrayl 3] * .1945082; 
narray[4] * -2.07647; 
narrayl5] * -6.070224E-03; 
narrayl6] * -.3148423; 
narray|7] • .3856115; 
narrayl8] * -.1825979; 
narray[9] * .2919024; 
narrayllO] * -.3072858; 
narrayll 1]* 1.34602; 
narrayl 12] * -.3143554; 
narrayl 13] * -.6019555; 
narrayl 14] * -.4247503;
= I / (I + exp(-netsum));

netsum = -.3141774; 
neisum += feature2|0] * .2389331; 
netsum += feature2[l] *-.54418; 
netsum += feature2[2] * -1.70218; 
neisum += feaiure2[3] * 1.199972; 
netsum += feature2|4] * -.4256195; 
netsum += feature2[5] * -.2628123; 
netsum+= feature2[ 6] * .1917116; 
netsum+= feature2[7] * 1.139177; 
netsum += feature2|8] * .2864685; 
outarrayl0] =  1 / (1 -I- exp(-netsum));
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neisum  =

neisum  fca iu re210] » -.6 884 778 ;  
neisum  +=  lc a iu re 2 | 1] *  -.1 268 542 ; 
neisum  + =  1cature212] *  .4580247; 
neisum  + =  fe a lu rc 2 [3 ] *  -1 .403 934 ; 
netsum  + =  fc a iu rc 2 |4 ] *  -5 .4 9 1 5 6 9 E -0 2 ;  
netsum  + =  fe a tu re 2 |5 ] *  -.1 763 379 ; 
n e ts u m + =  featu re216 ] *  .2373756; 
n e ts u m + =  featu re2( 7] *  1.29709; 
n e ts u m + =  featu re218] .2638615;
o u ta ir a y l l ]  = 1 /  ( I  + exp(-net.sum));

netsum  = .1 4 5 7 0 9 1 ;  

n e ts u m + =  fe a lu re 2 (0 ] *  .5011446  
neisum  + =  l'eature2[ 1 ] *  .217678; 
netsum  + =  fe a iu re 2 [2 ] *  1.359661  

n e ts u m + =  featu re2( 3 ] *  .0896292  
netsum  fe a iu rc 2 |4 ]  *  -.1 9 4 5 1 1 4  

neisum  + =  fc a lu re 2 [5 ] *  .34 491 56  
netsum  + =  fe a tu re 2 [6 ] *  -.4 215 003  
netsum  + =  fe a tu re 2 [7 ] *  -2 .235 487  

netsum  + =  fe a tu re 2 [8 ] *  -.5 8 5 3 0 0 1 ; 
o u ta rray [2 ] =  1 /  (1 +  exp(-netsum ));

neisum = -.593361 3; 
netsum += feature2[0] * .1887896; 
netsum += feature2[l] " -.4963281; 
netsum += feature2[2] * 1.171266; 
netsum += feature2[3] * -.2313004; 
netsum += feature2[4] * -.127795; 
netsum += feature2[5] * -8.012733E-02; 
netsum += feature2[6] * .5547236; 
neisum += feature2[7] * .5958884; 
netsum += feature2[8] * -1.437345; 
outarray[3] = 1 / (1 + exp(-netsum));

netsum = -2.756067E-Ü3; 
netsum += feature2[0] * -.2146351; 
netsum += feature2[l] * .4711423; 
neisum += feaiure2[2] * -1.461678; 
netsum += feature2[3] * -.1164255; 
netsum += feature2[4] * 5.208082E-02; 
netsum += feature2[5] * .4290704; 
netsum += feature2[6] * 5.005599E-02; 
netsum += feature2[7] * -.7152472; 
netsum += feature2[8] * -.4304705; 
outarray[4] = 1 / (1 + exp(-netsum));

netsum = -.1631336; 
netsum += feature2[0] * -9 .1 12045E-03; 
netsum += feature2[l] * ;.1418273; 
netsum += feaiure2[2] * .3139661; 
netsum += feature2[3] * .4594962; 
netsum += feature2[4] ♦ -.5077903; 
netsum += feature2[5] * -.7215487; 
netsum += feature2[6] * -.6620205; 
netsum += feature2[7] * .1405424; 
netsum += feature2[8] * 1.835448; 
outairay[5] = 1 /(1  + exp(-netsum));

netsum = .1286572;
netsum += feature2[0] * -1.496963;
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netsum += fcaiurc2( 1 ] * .6675627; 
netsum + - fcaiurt2[2] * 3.4672}i9E-02; 
netsum feaiure2[3] * -.211388; 
ncisum *= lcaiure2(4] * .4022121; 
neisum f'ealure2[5]  ̂ 9.279378E-02; 
neisum -+= lealure2|6] * .221469; 
neisum feaiurc2[7] * -1.08096; 
netsum *= fealure2|8] * .5696868; 
outarray(6)= 1 / ( M  exp(-nelsum));

neisum -  -.307033; 
neisum -= feature2[0] * -.2450359; 
neisum *= feaiure2| 1]*-1.057701; 
neisum -=  I'eaiurc2(2] * .643006: 
neisum -=  fealure2|3] * 1.318899; 
neisum -̂ = feaiurc2[4] * -.593664; 
ncisum -=  fcaiurc2f5] * -.3161325; 
neisum -̂ = feaiure2|6] * .6486963; 
neisum -̂ = fealure2[7] * -.2953574; 
ncisum feaiurc2[ 8] * .2141867; 
oularray[7]= 1 /( I  + exp(-nelsum));

neisum = -2.572132E-03; 
neisum -+= feaiurc2[0] * 1.719462; 
neisum -*■= feaiure2[l] * -.3831635; 
neisum -+= fealure2[2] * -.6865217; 
neisum -*■= feaiure2[3] * -1.433495; 
neisum -+= feaiure2[4] * -.1088401; 
neisum-•■= feaiure2[5] * 1 501535E-02; 
neisum -+= fealure2[6] * -.8874764; 
neisum -*■= feaiure2[7] * 1.299559; 
neisum -+= feaiure2[8] * -.7590157; 
ouiarray[8] = 1 / (1 + exp(-neisum));

neisum = -.3838195; 
neisum -*-= feaiure2[0] *-.1236574; 
neisum -+= feaiure2[l] * -.9973538; 
neisum-•■= feaiure2[2] * .7501443; 
neisum -+= feaiure2[3] * 1.06568; 
neisum -̂= feaiure2[4] * -.3194561; 
neisum -+= feaiure2[5] * .4040247; 
neisum -*-= feaiure2[6] *-1.106399; 
neisum += feaiure2[7] * -.2665701 ; 
neisum -+= feaiure2[8] * .2000748; 
ouiarray[9] = 1 /( I  -t- exp(-neisum));

neisum = .253037; 
neisum feaiurc2[0] * .0630246; 
neisum feaiure2[l] * .3430368; 
neisum fealure2[2] * -.9319632; 
neisum -)-= feaiure2[3] * -.5230323; 
neisum-•■= feaiure2[4] * .1765063; 
netsum ■•■= feature2[5] * -.2045487; 
neisum += feature2[6] * -1.250098; 
neisum -«-= feature2[7] * 4.259654E-02; 
neisum+= feaiure2[8] *-.1516763; 
ouiarray[ 10] = 1 / (1 -i- exp(-neisum));

netsum = -.5481886; 
n e isu m fea tu re2 [0 ] * .1021582; 
netsum += feature2[ 1 ] * .2943085; 
netsum ■•■= feature2[2] * .166375;
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ncisum -+: 
netsum -+-■ 
netsum 
ncisum +■ 
neisum +■ 
ncisum + 
ouiarray[

neisum = ■ 
ncisum += 
ncisum += 
ncisum += 
ncisum += 
netsum += 
netsum += 
ncisum +- 
neisum += 
neisum += 
outarray[l

neisum = ■ 
netsum += 
netsum + -  
netsum += 
netsum += 
netsum += 
netsum +- 
netsum += 
netsum += 
neisum += 
outarray[ 1

= ic a lu rc 2 [3 ]  
fe a lu rc 2 [4 ]  

= fc a tu rc 2 |5 ]  

: Ic a lu rc 2 |6 ]  
= fc a iu rc 2 |7 ]  

= fe a iu rc 2 |8 ]
1] = 1 /(W

-.1036133;
- fcaturc2|0] 
: feaiurc2[ 1 ] 
= featurc2(2] 
= feature]13] 
= fcaiurc2[4] 
= featurc2|5] 
= featurc2|6] 
= feaiurc2[7] 

feature2[8]
2] = 1 /(] +

-.2633717;
: feature2[0] 
: feature2[l] 
: feature2[2] 
: feaiure2[3] 
: fealure2|4] 
: feaiure2[5]
■ feature2[6] 
: feaiure2[7] 
' feature2[8] 
3 ]=  1 / ( H -

netsum = -.1 887729; 
netsum -*-= feature2[0] 
netsum -*-= feaiure2[l] 
neisum += feaiure2[2] 
netsum += feaiure2[3] 
netsum -t-= feaiure2[4] 
netsum += feature2[5] 
netsum += feaiure2[6] 
netsum += feaiure2[7] 
netsum += feature2[8] 
outarray[14] = 1 / (I +

* -.4570191;
* - .25,356;
* -.6339683;
’ 2.116526;
’ .342081;
’ -.1411358; 
exp(-netsum));

’ 1.514996; 
*-.5X60161;
* -.473146;
* -.5940139;
* .2028816;
* -.1521696;
* .1656087;
* -.2721972;
* .3705154; 
exp{-netsum));

* .9698912;
* -.680374;
* .3501442; 
’ -.4401273;
* -.3729998;
* -.5060975;
* .1538693;
* -.320682;
* .2357144; 
exp(-netsum));

* -2.338608;
* .5265903;
* .0815384;
* .7473056; 
*-.1151378;
* .6119967; 
*-.3616328;
* .5329512; 
*-.6226013; 
exp(-netsum));

outarray[0] = (ouiarray[0] - .1) /  .8 ; 
i f  (ouiarray[0]< 0) outarray[0] = 0; 
i f  (outairay[0]> 1 ) outarray[0] = 1 ;

outarray[l]= (ouiarray[ 1] - .  1) /  .8 ; 
if  (outarray[ 1 ]< 0) ouiarray[ 1 ] = 0; 
if  (outarray[ I ]> 1 ) outarray[ I ] = I ;

outarray[2] = (outairay[2] - .  1 ) / .8 ; 
i f  (outarray[2]< 0) outarray[2] = 0; 
i f  (outarray[2]> 1 ) outarray[2] = 1 ;

outarray[3] = (outairay[3] - .  1 ) / .8 ; 
if  (outarray[3]< 0) ouiarray[3] = 0; 
i f  (outairay[3]> 1 ) outarray[3] = 1 ;

outarray[4] = (outarray[4] - .1) / .8 ;
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i l  ( ( > u l i i r T a y [ 4  ] •  ( I )  o u l a r i a y l ^ J  U.

i l  ( ( i u l a r i a \ [ 4 ]  ■ I ) ( i u l ; ; r r a y ( 4 ]  -  i .

ouiiirrayl5] = (outarrayl 5] - . 1 ) / ;
if (outarraylS]-" 0) outarraylfi] = 0;
if (outarrayjS]-'1 ) outarray[5] = 1;

outarray|6] = (ouiarray|6] - .1) / .8 ; 
if (outarray|6]< 0) outarrayl6] = 0: 
if(outarray|6]> I) outarrayl6] = I;

outarrayl?] = (outarrayl?] - . ) ) /  .8 : 
if (outarray|?]< 0) outarrayl?] = 0; 
if  (outarray[?]> 1 ) outarrayl?] = 1;

outarrayl 8 ]=  (outarrayl 8] - .1) / .8 : 
if (outarray|8]< 0) outarrayl8] = (j; 
if  (outarray|8]> 1 ) oularray|8] = 1;

outarray|9]= (outarrayl9] - .1) / .8 : 
if (outarray|9]< 0) outarray|9] = 0; 
if (outarrayl9]> I ) outarray[9] = 1 ;

outarray] 10] = (outarray] 10] - . 1 ) / .8 ; 
if (outarrayl 10]< 0) outarrayl 10] = 0; 
if (outarrayl 10]> 1 ) outarrayl 10] = 1 ;

outarrayl II ] = (outarrayl I! ] - .  1 ) / .8 ; 
if (outarrayl 11]< 0) outarrayl 11]= 0; 
if (outarrayl 11]> 1 ) outarrayl 11] = 1;

outarrayl 12] = (outarrayl 12] - .1) / .8 ; 
if (outarrayl 12]< 0) outarrayl 12]= 0; 
if (outarrayl 12]> 1 ) outarrayl 12]= 1 ;

outarrayl 13] = (outarrayl 13] - . 1 ) / .8 ; 
if  (outarrayl 13]< 0) outarrayl 13] = 0; 
if (outarrayl 13]> 1) outarrayl 13]= 1 ;

outarrayl 14] = (outarrayl 14] - .1 ) / .8  ; 
if (outarrayl 14]< 0) outarrayl 14] = 0; 
if (outarrayl 14]> 1) outarrayl 14] = 1;
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Appendix D2: Neural Weights for Mean Flowlim e network

/» Inscn ihis code mu. your C program lo fire theC:\NSHELL2'SPT&PTWIN0&LWKR network • 
/* This code is designed to he simple and fast for porting to any machine */
/ Therefore all code and weights are inline without looping or data storage */
/* which might he harder to pon between compilers.

A'includc <math.li>

void neuro dispatchldouble *inarray, double •outarrayl
t
double netsum; 
double fcature2(20];

/* inarrayl0] is B */
/* inarrayl I ] is C */ 
f* inarray[2] is D */
/* inarrayl 3] is E */
/* inarrayl4] is F */
/* inarraylS] is G */
/* inarraylô] is H */
/* inarrayl?] is 1 */
/* inarraylS] is J */
/* inarrayl9] is K */
I* inarrayl 10] is L */
/* inarrayl 1 1] is M */
/* inarrayl 12] is N */
/* inarrayl 13] is O */
/* inarrayl 14] is P */
/* outarraylO] is Q */
/* outarrayl I ] is R */
/* outarrayl2] is S */
/* outarraylS] is T */
/* outarrayl4] is U */
/* outarraylS] is V */
/* outarrayl 6] is W */
/*  outarrayl?] is X */
/*  outarraylS] is Y  */
/* outarrayl9] is Z */
/* outarrayl 10] is AA */
/* outarrayl 11] is AB */
/* outarrayl ] 2] is AC */
/* outarrayl 13] is AD */
/* outarrayl 14] is AE */

if  (inarraylO]< -33) inarraylO] = .33: 
if  (inarrayl0]> 1 ) inarraylO] = 1 ; 
inarraylO] = (inarraylO] - .33) / .6?;

if  (inarrayl 1 ]< .3 1 ) inarrayl 1 ] = .31; 
i f  (inarrayl 1]> I) inarrayll]=  I; 
inarrayl 1 ] = (inarrayl 1 ] - .3 1 ) /  .69;

if  (inarrayl2]< .32) inarrayl?] ~  32: 
if  (inarrayl2]> 1) inarrayl?] = I; 
inarrayl?] = (inarrayl?] - .32) / .68:

if  (inarrayl3]< .31) inarrayl3] = .31; 
i f  (inarrayl3]> 1 ) inarrayI3] =  1 ; 
inarrayl3] = (inarray[3] - .3 1 ) / . 69;

i f  (inarrayl4]< .34) inarrayl4] = .34;
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if (inarray[4]> I) inarray|4] = 1; 
inarray(4] = (inarray[4] - .34) / ,66;

i) (inarrayI5]< .49) inarraylS] = .49; 
if (inarray|5]> 1) inarrayjS] = 1; 
inarraylS] = (inarraylS] - .49) / .SI ;

if (inarrayl6]< SI) inarrayl6]  ̂ -51; 
if (inarrayl 6]> I) inarrayl 6] = I; 
inarrayl6] = (inarrayl6] - .S I ) / .49;

il (inairay[7]-r .53) inarrayl?] = .53; 
if (inarrayl7]> I) inarrayl?] = 
inarrayl?] = (inarrayl?] - .S3) / .47;

if (inarrayl8]< ,SS) inarraylS] = -55; 
if (inarrayl 8]> 1) inarraylS] = I: 
inarraylS] = (inarraylS] - .55)/.45;

if (inarrayl9]< .5?) inarrayl9] = .57; 
if (inarrayl9]> I) inarrayl9] = I; 
inarray]9] = (inarrayl9] - .57) / .43;

if (inarrayl 10]< -22) inarrayllO] = .22; 
if (inarrayl 10]> 93) inarrayllO] = .93; 
inarrayl 10] = (inarrayllO] - .22) / .71;

if  (inarrayl I -25) inarrayl 1 '] = -25; 
if (inarrayl ' l]> -92) inarrayl 11] = .92; 
inarrayl 11] = (inarrayl 11] - 25 )/.67 ;

if  (inarrayl ' 2]< .22) inarrayl 12] = .22; 
if (inarrayl ' 2]> .96) inarrayl 12] = .96; 
inarrayl 12] = (inarrayl 12] - -22)/.74;

if  (inarrayl 13]< -22) inarrayl 13] = -22; 
if  (inarrayl ' 3]> .95) inarrayl ' 3] = .95; 
inarrayl 13] = (inarrayl i 3] - .22) / .73;

if (inarrayl I4]< -23) inarrayl 14] = -23; 
if (inarrayl I4]> -96) inarrayl 14] = .96; 
inarrayll4] = (inarrayll4] - .23) / .73;

netsum = -2.127025; 
neisum -»-= inarraylO] * -1.534661; 
netsum -+= inarrayl I ]*  1.385606; 
netsum - t - =  inarrayP] * -1.67123; 
netsum += inarrayP] * -.2299798: 
netsum inarrayl4] * 5.66486; 
netsum += inarraylS] * -.4372981; 
neisum -+= inarrayl6] * -.5978695; 
netsum - t - =  inarrayl?] * -.5532722; 
netsum += inarraylS] * -.4884661 ; 
netsum += inarrayl9] * -.6174343; 
netsum -t-= inarrayllO] * -.3179735; 
netsum-t-= inarrayl 11] * -.7406918; 
netsum += inarrayl 12] * -.3327855; 
netsum - t - =  inarrayj 13] * -.5212398; 
netsum - t - =  inarrayl 14] * -1.144423; 
feature210] = 1 / (I -t- exp(-netsum));

netsum = .1270918;
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ncisum -f = 
netsum -• = 
netsum += 
netsum += 
netsum += 
netsum += 
netsum +- 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
features 11

narraylO] * 5.035597E-02; 
narrayll]»  2.101648; 
narray|2] » -.3158018; 
narrayl3] » -.2156307; 
narray[4] * .2873424; 
narray|5] » -7 .687316E-02; 
narray|6] » -8.572415E-02; 
narrayl7] » -.2063143; 
narrayl 8] » -.2226138; 
narrayl9] » -.2139049; 
narrayl 10] * -.2817429; 
narrayl 11]* .1300127; 
narrayl 12] » 4.634594E-02; 
narrayl 13] *-8.277769E-02; 
inarrayl 14] * .2510398;

] = 1 / (1 + cxp(-netsum));

netsum = -. 
netsum -r= 
netsum += 
neisum += 
neisum += 
netsum += 
netsum -r- 
netsum += 
netsum -+= 
netsum += 
netsum += 
netsum += 
netsum += 
neisum += 
netsum -r= 
netsum -r= 
features 12]

3106934; 
narraylO] 
narrayl 1 ] 
narray[2] 
narray[3] ' 
narray[4] 
narrayl 5] 
narray[6] 
narrayl 7] 
narrayl 8] '

-.3552261; 
.1258201; 
.2594771; 
.1737312; 

-7.878974E-02; 
-.1456324;
. 1960943; 
.2037766; 

-.2186606; 
narrayl9] * 5 .458169E-02; 
narrayl 10] » .22 76493; 
narrayl 11] » .1183151; 
narrayl 12] * .1211713; 
narrayl 13] *-5 .5655295-02; 
narrayl 14] * -.2561574;
= 1 / ( I  + exp(-netsum));

netsum = - 1  
netsum - t - =  

netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum -+= 
netsum += 
netsum += 
netsum += 
netsum -+= 
netsum += 
netsum += 
netsum ■+= 
netsum -t= 
featureS[3]

.454346;
narraylO] * -1.93679; 
narrayl 1] » -3.000002; 
narray[2] * -1.563219; 
narray|3] * -1.450586; 
narray|4] * 6.923056; 
narray[5] *-7.124248E -02; 
narray|6] * -.2007552; 
narray[7] * 7.105684E-02; 
narray|8] *-.3891807; 
n array |9 ]* -9.084614E-02; 
narrayl 10] * -.2354679; 
narrayll 1] * .1472126; 
narrayl 12] » -.3897824; 
narrayl 13] * -.4571439; 
narrayl 14] » -.9498448;
= 1 / ( 1 -t- exp(-netsum));

netsum =  
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum += 
netsum +=

4064647; 
narrayl 0] * 
narrayll] * 
narrayl 2] * 
narray[3] * 
narray[4] * 
narray[5] * 
narray|6] * 
narray[7] *

6.080595E-02;
.5041848;

-8.277338E-02;
-4.359403;
.2567576;

-.1333682;
-.1788362;
-6.317507E-03;
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ncisum •*= inarrayl8] * 3.I8I77IE-02; 
neisum += inarray(9] * -2.644823E-03; 
ncisum-r= inarrayl 10] * -.4072654; 
ncisum •*= inarrayl 11] * .2850039: 
netsum+= inarrayl 12] * -1.406715E-02; 
ncisum -+= inarrayl 13) ’ 1.495292; 
netsum += inarray] 14] * -6.633072E-03; 
fcalure2|4] = 1 / (1 + exp(-neisum)j;

nct.sum = 3.044856; 
netsum+= inarraylO] ’ 2.98366: 
netsum inarray] 1] ’ 9.195838E-02; 
netsum -+= inarray] 2] ’ -.8917376; 
neisum + - inarray]3] ’ -.5956516; 
ncisum-+= inarrayl 4] * .4019775; 
ncisum += inarray]5] ’ -.2431124; 
neisum += inarray] 6] ’ -.4644013; 
neisum += inarray[7] ’ -.4797978; 
neisum += inarray] 8] ’ 5.842389E-02; 
netsum -+= inarray[9] ’ -.5646109; 
netsum ■+= inarrayl 10] * -.4507366; 
netsum -+= inarrayl 11] * -.3701822; 
netsum -+= inarray] 12] * -4.062822E-02; 
neisum += inarray] 13] ’ -.3810509; 
neisum += inarray] 14] * -.4784395; 
feaiurc2[5] = 1 / (1 -*■ exp(-netsum));

neisum = 4.163668; 
neisum += inarrayJO] * 4.272491; 
netsum += inarray] 1] * -2.513001; 
neisum -+= inarray]2] * -2.495854; 
netsum += inarray[3] * -1.830051; 
netsum inarray]4] * -1.775271 ; 
netsum += inarray[5] ’  -.3403684; 
neisum -+= inarray]6] * -.1819456; 
netsum += inarray]7] * -.2830323; 
neisum -*■= inarray]8] * -.4010035; 
netsum+= inarray]9] * .247472; 
netsum += inarray] 10] ’ -3.256461; 
netsum += inarray] 11] * -1.079243; 
netsum -t-= inarray] 12] * -.4956464; 
netsum + -  inarray] 13] * -.6977581 ; 
netsum+= inarray] 14] *-.744369; 
feaiure2]6] = 1 / (1 + exp{-netsum));

netsum = -1 .064907; 
netsum inarray]0] ’  -1 .259773; 
neisum -^= inarray] 1] * -1 .361285 ; 
netsum +=  inarray]2] ’  -1 .633782; 
netsum ■ + =  inarray]3] * 4 .440379; 
netsum +=  inarray]4] •  -1 .530057; 
netsum + =  inarray]5] •  .023477; 
neisum + =  inarray]6 ] * -.5001901; 
neisum + =  inarray]?] *  -.4571561; 
netsum + =  inarray]8] *  -6 .4 8 3 155E-02; 
neisum + =  inarray[9] *  .3028651 ; 
netsum +=  inarray] 10] ’  -.4103746 ; 
netsum + =  inarray] 11] *  .1935083; 
netsu m +=  inarrayj 1 2 ] *  ,2063555; 
netsum + =  inarray] 13] *  -.3256872 ; 
neisum + =  inarray] 14] *  -.2339511 ; 
feature2]7] =  1 / (1 +  exp(-netsum ));
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ncisum  =  .1 4 4 7 3 2 7 ;  

ncisum  + =  inarray lO ] » 1.208711 E -02 ; 
neisum  + =  in a r ra y [ l]  * -1 .8 4 3 1 ; 

neisum  ■!■= in a rray [2 ] » 9 .9 3 1 1 9 8 : 
ncisum  + =  in a rra y [3 ] *  .7 8 592 21 ;  

neisum  + =  in a rra y |4 ] *  -.7 3 4 3 2 2 8 ; 
neisum  + =  in a rra y j5 ] *  -.5 4 3 7 3 3 5 ; 
ncisum  + =  in a rra y j6] *  -.2 2 3 2 1 4 1 ; 
ncisum  + =  in a rra y j7] *  -.4 1 3 9 3 1 4 ; 
neisum  + =  in a rra y l8] *  -3 .6 5 9 9 6 ; 
neisum  + =  in array ]9 ] *  1 .675354; 
ncisum  + =  inarray l 10] *  -.2 9 0 1 0 7 2 ;  
ncisum  + =  in array l "  ] *  - 32 6509 ; 
netsum  in array l 12] *  -.4 6 3 6 9 5 ;  

neisum  in array j 13] *  -9 .9821 81 E -02; 
netsum  + =  inarray] 14] » -.2 5 7 8 9 6 3 ; 
ie a tu rc 2 [8 ] =  1 /  ( I  +  exp (-ne isum ));

netsum = 
netsum 4-= 
neisum 4-= 
netsum 4-= 
neisum 4 -=  

neisum 4 -=  

neisum 4 -=  

neisum 4 -=  

neisum 4 -=  

netsum 4 -=  

netsum 4 -=  

neisum 4 -=  

neisum 4 -=  

neisum 4 -=  

neisum 4-= 
neisum += 
feaiure2[9]

.6833475; 
narray[0] 
narrayjl] 
narray[2] 
narray[3] 
narrayl4]
narrayjs] * -.6763925  
narray[6] * -.4754021 
narray[7] * 
narray[8] * 
narrayjo] *

.5996841;
8.933963E-02;

-.1969835;
.2354695;
2.379485;

narrayl 10] 
narrayl 11 ] 
narrayl 12] 
narrayl 13] 
narrayjl4]

6.257617E-02; 
.5929466;
7 .1 18178E-02;
' -.4555093;
' -.3480999;
' -.2399379; 
-4.061316E-02; 
-5.547979E-02;

= 1 / (1 4- exp(-netsum));

neisum = 2.05816; 
neisum 4-= inarraylO] * 2.053436; 
netsum 4-= inarrayl 1] * -.544432; 
neisum 4-= inarrayl2] * .4541343; 
neisum 4-= inarrayl3] * -.1915346; 
netsum 4-= inarrayl4] * -.3568715; 
netsum 4-= inarrayl5] * -.2190787; 
netsum 4-= inarrayl6] * -.5233611; 
neisum 4-= inarrayj] * -.274958; 
neisum 4-= inarrayj8] * -.3953035; 
neisum 4-= inarrayl9] * -.3348909; 
neisum 4-= inarrayl >0] * -.4108803; 
neisum 4-= inarrayl 11] * -.1989731; 
neisum 4-= inarrayj 12] * -.377194; 
neisum 4-= inarrayl 13] * 3.258267E-02; 
neisum 4-= inarrayl 14] * 8.858351 E-02; 
feature2110] = 1 / ( 1 4 -  exp(-netsum));

neisum = -.4608839; 
neisum 4-= inarraylO] * -.5784227; 
neisum 4-= inarrayl 1] * -.4134966; 
netsum 4-= inarrayI2] * -.2498437; 
netsum 4-= inarrayl3] * 7.369254E-02; 
netsum 4-= inarrayI4] * ,4111851; 
neisum 4-= inarray[5] * -.645071;
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ncisum += inarrayl6] * -.2638208; 
ncisum += inarrayl?] * -8.220226E-02; 
ncisum += inarrayl8] * .2338365. 
ncisum -t= inarray|9] * -.4312649: 
ncisum -+- inarrayl 10] * 1.318989; 
ncisum -1= inarrayl I I ] '  -.6365233; 
ncisum += inarrayl 12] * .390272; 
ncisum += inarrayl 13] '  1.793994; 
ncisum += inarrayl 14] * -.3162842; 
fcalurc2|l I] -  I /( I  -i cxp(-ncisum|):

ncisum = 2 .085266; 
ncisum += inarraylO] '  1.929439: 
ncisum + =  inarrayl I ]  *  .4223873: 
neisum + =  inarray l2] '  9 .1 13403E-02; 
ncisum += in array |3] '  4 .3 0 I0 2 IE -0 2 ;  
neisum += inarray |4] '  -5 .955182: 
ncisum +=  inarray |5] '  -1 .8 9 8 I4 2 E -0 2 ; 
neisum + =  inarray |6] '  .2580843; 
neisum ■ + =  in array l7] * -.1405491; 
netsu m +=  inarray |8] * .198081; 
ncisum +=  inarray |9] '  -6 .756395E -02; 
neisum +=  inarrayf 10] *  -2 .512729; 
neisum -r= inarray] 11] *  -1 .975562; 
ne isu m +=  inarrayl 12] * .2905951; 
neisum +=  inarrayl 13] * .3234188; 
ne isu m + =  inarrayl 14] * 1.691879; 
fe a iu re 2 [l2 ] =  1 /  ( I  -i- exp(-neisum));

neisum = -.1084178;
neisum += 
neisum -+= 
neisum -r= 
neisum 
neisum += 
neisum += 
neisum += 
neisum -+= 
neisum += 
neisum += 
neisum += 
neisum 
neisum += 
neisum -+= 
neisum -+=

narraylO] * -.2052653; 
narrayll]» .1929678; 
narray|2] * .2697195; 
narray[3] * .7687581; 
narray[4] » -8.798962E-02; 
narray|5] * -.038018; 
narray|6] * -.1868947; 
narrayl?] » -.2239236; 
narrayl8] * -8.798546E-03; 
narray[9] * .1866033; 
narrayllO] » -4.679623E-02; 
narrayll 1] '-5.749673E-02; 
narrayl 12]» 1.084791 E-02; 
narray[13]* 2.286516E-02; 
narrayl 14] » -.3621812;

feaiure2[13] -  1 / (I -r exp(-nelsum));

neisum = - 
neisum -+= 
neisum -+= 
neisum -+= 
neisum += 
neisum += 
neisum += 
neisum += 
neisum 
neisum 
netsum += 
neisum += 
neisum -+= 
neisum -+= 
netsum +=

.368212; 
narraylO] * 
narrayl 1 ] » 
narray|2] * 
nanay|3] * 
narray|4] » 
narray|5] » 
narray[6] * 
narrayl?] * 
narrayl 8] * 
narrayl 9] * - 
narrayl 10] 
narrayl 11 ] 
narrayl 12] * 
narrayl 13] *

1.516386; 
1.312811; 
3.834776; 
1.949248; 

•1.077547; 
■9.715545E-02; 
■2.381796E-02; 
.239951; 
■9.391313E-03; 
5.044011 E-02; 
.190827; 
4.736579E-02; 

-.2320667; 
-.1441375;
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neisum  ̂= inarrayl 14] » -2.8520(J6E-02; 
Icaiurc2[l4] = ] / ( ]  -  cxp(-nen-um));

netsum = 
ncisum * 
netsum -  
neisum + 
netsum -+ 
ncisum  ̂
neisum  ̂
ncisum 
netsum 
neisum 
ncisum  
ncisum -  
ncisum -  
neisum  ̂
neisum 
neisum + 
fealure2[

.6073152; 
inarraylO] * 
inarrayj 1 ] * 

= inarrayl2] * 
= inarrayj 3] * 
= inanay|4] * 
= inarrayjS] ’ 
= inarrayj 6] * 
= inarrayj 7] ’ 
= inarrayj 8] ’ 
= inarrayj9] * 
= inarrayj 10] 

inarrayj 11] 
= inarrayj 12] 
= inarrayj 13] 
= inarrayj 14] 
15 ] =  1 / ( I  -

-.2516953;
-.4811573:
.242735:
1-989832:

-.609577;
-.4903045:
.3586577:

-.0742056;
' -.1698011;
■ 5.020628E-02:
* .2822423;
* -9 .924112E-02;
* -.3541629:
* -.1074304; 
*-.2848581; 
exp(-netsum));

neisum  =  - .1 9 3 6 4 ;  

netsum  -t-= in array jO ] *  .22 150 94 ; 
neisum  -^= in a rra y j 1] *  2 .6 6 2 2 5 2 E -0 2 ;  
netsum -t-=  in a rra y [2 ] *  4 .8 3 0 1 8 3 ;  

neisum  -^= in a rra y [3 ] *  -.2 9 1 5 3 2 3 ;  
netsum  -+= in a rra y [4 ] *  -1 .9 6 7 8 5 6 ; 
n e isu m -t-=  in a rra y jS ] *  .25 771 11 : 
netsum  + =  in a rra y [6 ] *  - .1 6 7 8 6 2 5 :  
neisum  + =  in a rra y [7 ] *  .18 382 87 ; 
neisum  + =  in a rra y j8] *  .04 581 ; 
netsum  -t-= in a rra y j9 ] *  - .1 4 1 6 8 5 9 ;  
netsum -t-=  in a rra y j 10] *  .17 417 06 ;  
netsum  -t-= in a rra y j 1 1] *  .3 0 4 1 2 9 7 ;  
netsum  + =  in a rra y j 12] *  -2 .2 0 9 :  
netsum  + =  in array j 13] *  - .3 3 1 4 4 9 7 ;  
netsum  + =  in a rra y j 14] *  .14 751 25 ; 
fe a tu re 2 [1 6 ] =  1 / ( I  + exp(-netsum ));

netsum = -2.626755; 
netsum -t-= 
netsum -*-= 
netsum -*■= 
netsum -t-= 
netsum -<■= 
netsum -i-= 
netsum -̂ = 
netsum - =  
netsum += 
neisum -*-= 
netsum -t-= 
netsum -i-= 
netsum ■+- 
netsum  
netsum +=

narrayjO] * -2.363863; 
narrayjl] * 1.01529: 
narray|2] *-.213787: 
narrayj3] * -.2568656: 
narray|4] * -.1444943: 
narrayjS] * .1128776; 
narray|6] * .1793339; 
narray[7] *-1.73572SE-02; 
narrayjS] * -.303 7648; 
narray[9] * -5.242693E-02; 
narrayl 10] * .3987421: 
narrayjl 1] * .4650992: 
narray[12] * -.34305: 
narrayjl3] * -.3603955; 
narrayjl4] * 6 .268135E-02;

feaiure2jl7] = 1 / (1 + exp(-netsum));

netsum = .5671079; 
neisum += inarrayjO] * .7906501: 
netsum += inarrayj 1] * -2.482796: 
netsum -t-= inarrayj2] * .2383201; 
netsum -+= inarrayj3] * 1.422667;
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netsum += inarray[4] * 1.250559; 
netsum += inarrayl5] *-.2164256; 
netsum += inarrayl6] * -.2014819; 
ncisum ■+= inarrayl?] * ,3662656; 
ncisum •+= inarrayl8] * .1328816; 
ncisum ■+= inarrayl9] * 3.565036E-02; 
netsum += inarrayl 10] * -.2044796; 
ncisum -t= inarrayl 11]* -.1553417; 
neisum += inarray] 12] * .6052962; 
ncisum-r= inarrayl 13] * .1387127: 
ncisum •+= inarrayl 14] * -.1252561 ; 
fcalurc2| 18] = 1/ (1 + exp(-neisum));

ncisum = -.3439 108 ; 
ncisum •+= inarraylO] *  -.2622799; 
n c isu m += inarrayl 1] *  .6619859; 
neisum •+= inarray[2] * -.2700452; 
neisum +=  inarray[3] * 5 .9 999 15E -02; 
ncisum ■ + =  in array |4] * 4 .309079; 
neisum +=  inarray[5] * -3 .464 223E -02; 
neisum -+= in array l6] * -.177265; 
neisum -r=  inarray l?] * .2377198; 
neisum -r= in a rray l8] * 1.981383; 
ncisum -+= in array l9] * 5 .538443E -02; 
n e isu m +=  inarray] 10] * 2 .151327E -02; 
n e is u m in a r r a y l  11] * .1784591; 
neisum -r= inarrayl 12] * .2804021; 
ne isu m += inarrayl 13] * .1073797; 
neisu m + =  inarrayl 14] * 1.576134E -02; 
feaiurc2|19] =  1 / ( 1  +  exp(-netsum ));

neisum = -.4018244; 
neisum += feaiure2|0] * -.6004633; 
neisum-r= feaiurc2|l] * .1079664; 
neisum -+= feaiure2|2] * -5.970221 E-02; 
neisum -+= feaiure2|3] * -.2646531; 
neisum -+= feaiure2|4] * -.8192776; 
neisum •+= feaiure2|5] * -.2910616; 
neisum += feaiure2|6] * 3.688971; 
neisum -t-= feaiure2|7] * -2.120626; 
neisum+= feaiure2|8] * .5011812; 
neisum += feaiure2[9] * -.2401061; 
neisum+= feature2| 10] *-.1371416; 
neisum -+= feaiure2[l 1] * .3884444; 
netsum += feature2[12] » -3.652697E-02; 
neisum += feaiure2[ 13]* -.4143871; 
neisum •+= feaiure2[14] * -1.290449; 
netsum •+= feaiure2|15] * .1108165; 
neisum -t-= featuré2[16] » -.3153532; 
neisum 4-= feaiure2[17] * 9.063054; 
neisum += feaiu;e2[18] * .2038849; 
neisum += feaiure2[19] * -.3027286; 
ouiarray[0] = 1 / (1 + exp(-neisum));

neisum = .3021354; 
neisum += feaiure2|0] * .5562754; 
neisum -r= feaiure2[l] * -3.721453E-02; 
neisum += feaiure2[2] * .1274372; 
neisum -t̂ = feaiure2[3] * -.2567498; 
neisum += feature2|4] * -.7406126; 
neisum += feaiure2|5] * -.5004629; 
netsum += feaiure2(6] * -1.118358;
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ncisum += Icaiure2j7] * -.<120098: 
ncisum •+= icaturc2|8] * .3554352; 
netsum -+= fcalurc2|9] * -.2985365: 
ncisum 4= fcaturc2[H)] * -.5600451: 
netsum += fcaturc2| 11]» .1336511 ; 
neisum += fcaturc2[ 12] * -.37)0997: 
netsum += featurc2113] * -7.074618E-02: 
netsum += fcaturc2[ 14] * .834084; 
netsum += )cature2| 15] * .5622373; 
netsum += feaiure2[16] * -.2662526; 
netsum-t-= fcature2[ 17] * 5.237437: 
netsum += fcaturc2| I 8] * -.3949004; 
netsum += featurc2[ 19] * -.3496082; 
outarray] 1] = 1 / (1 + exp(-netsum));

netsum = -2.538008E-02; 
netsum -+= feature2(0] * -1.063961 E-02; 
netsum += Ieaturc2[l] * .1183521; 
netsum += feature2[2] * .1714737; 
netsum += feature2[3] * .3209237: 
netsum += feature2[4] * 1.463832; 
netsum += feature2[5] * .2554799; 
netsum += feature2[6] * -3.548389; 
netsum += feature2[7] * 1.80822: 
netsum += feature2[8] * -.590492: 
netsum += feature2[9] * .289912; 
netsum += feature2[ 10] * .9830801; 
netsum += feature2f 11] * -.5915321; 
netsum += feature2[12] * .3082871; 
netsum += feature2[13] * 4.501532E-02: 
netsum += feature2[14] * .7100854; 
netsum -1-= feature2[15] * 3.106604E-02: 
netsum += feature2[16] * -.1417924; 
netsum += feature2[17] * -16.6156; 
netsum += feature2[18] * -7.406253E-02; 
netsum += feature2[19] *-.1195654; 
outarray[2] = 1 / (1 + exp(-netsum));

netsum  =  -4 .3 4 7 9 0 8 ;  
netsum  + =  fe a tu re 2 [0 ] *  -4 .4 7 9 0 7 ;  

netsum  + =  featu re2[ 1] *  1 .432947; 
netsum  + =  fe a tu re 2 [2 ] *  .571112; 
netsum + =  fe a tu rc 2 [3 ] *  .6055597; 
netsum  + -  fe a tu re 2 [4 ] *  .3752851 ; 
n e ts u m + =  fe a tu re 2 [5 ] *  - .1 6 8 3 2 6 5 ; 
netsum  + =  fe a tu re2 [6 ] *  -.7 0 2 5 5 7 1 ; 
netsum  + =  fe a tu re 2 [7 ] *  -1 .9 6 4 3 3 5 ; 
netsum  + =  fe a tu re 2 [8 ] *  -.3 3 9 6 9 1 8 ; 
netsum  + =  fe a tu re 2 [9 ] *  6 .7 5 8 4 7 7 E -0 3 ;  
netsum  + =  fe a iu re2 f 10] *  -.3 0 6 9 9 5 5 ; 
n e ts u m + =  fe a tu re 2 [l 1] *  1 .882676; 
netsum  + =  fe a tu re 2 [1 2 ] *  .15 437 72 ; 
netsum  + =  fe a tu re 2 [1 3 ] *  -.3 0 9 0 7 5 1 ; 
netsum  + =  fe a tu re 2 [1 4 ] *  -2 .5 2 0 8 7 2 ; 
netsum  + =  fe a tu re 2 [1 5 ] *  - 1 .2 6 1 7 2 7 E -0 2 ;  
netsum  + =  fe a tu re2 [16 ] *  3 .6 6 1 9 7 2 E -0 3 ; 
netsum  -*-= feature2[ 1 7] *  11 .65454; 
netsum  + =  fe a tu re 2 [l8 ]  *  -1 .1 6 9 3 9 1 ;  

netsum  -*•= fe a tu re2 [19 ] *  3 .6 6 3 8 0 5 ; 
ou ta rray [3 ] =  1 /  { I  +  exp(-netsum ));

netsum = .770401;
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ncisum -̂ = 
ncisum 
netsum 
ncisum -> = 
netsum += 
ncisum -* = 
ncisum += 
ncisum += 
ncisum += 
ncisum += 
ncisum -*•= 
ncisum -* = 
ncisum ~ = 
ncisum -+= 
ncisum -r= 
ncisum -+ = 
neisum -+- 
neisum += 
ncisum += 
neisum -*•= 
ouiarray[4]

feaiurc2[0] * .991416; 
fcaiurc2( I] *-1.889331;
fcaiurc2(2] * 
fcalurc2|3] * 
fcaiure2[4] * 
fcaiurc2[5] *

-.139139;
.4393654;
-.5469683;
-.3776391;

fcaiurc2[6] * -.1153614; 
featurc2[7] * .454)5;
feaiurc2[8] * 
feaiure2[9] * 
fcaiurc2[ 10] 
fcaiurc2[ 11] 
fcalure2[l2] 
fcalurc2( 13] 
fcaiurc2[ 14] 
fcaiurc2[ 15] 
feaiurc2[ 16] 
fealure2[ 17] 
feaiure2[18] 
feaiurc2[ 19]

5 .244106E-02; 
.2061416; 
.1450569; 

-1.786922; 
-.4290357; 
-.3400771; 
.3615972;
3.215213E-Ü2; 
.2886165; 

-8.394811; 
.9913402; 

-.3295543;
1 / ( 1 +  exp(-neisum))

ncisum = 
ncisum += 
netsum += 
ncisum + -  
neisum += 
neisum += 
ncisum += 
neisum += 
neisum += 
neisum += 
neisum += 
netsum += 
neisum += 
neisum += 
netsum += 
netsum += 
neisum += 
neisum += 
neisum += 
netsum += 
neisum += 
ouiarray[5]

neisum = 
neisum += 
neisum += 
neisum += 
neisum += 
neisum += 
neisum += 
neisum += 
neisum += 
neisum += 
neisum += 
neisum += 
netsum += 
neisum += 
neisum += 
neisum += 
neisum +=

3.686605;
' fcaiure2[0] *
■ fealure2[l] * 
feaiure2[2] * 
feaiure2[3] * 
feaiure2[4] * 
feaiure2[5] • 
feaiure2[6] * 
feaiure2[7] * 
feaiure2[8] * 
feaiure2[9] * 
feaiure2[ 10] 
feaiure2[l1] 
feaiure2[12] 
feaiure2[ 13] 
feaiure2[ 14] 
feature2[15] 
feature2[16] 
feaiure2[17] 
feature2[ IS] 
fealure2[19]
= 1/ (1 + exp(

3.340854;
-.3266241;
-.383816;
-.9007248;
2.365861 E-02;

-1.179796;
3.917684 E-02; 
1.091974; 
.1532727; 
.2134319;

* .1552497;
' -.130137;
' .1949993;
' -.2376275;
* 1.101267;
* -.0493302;
' -.2057998; 
*-12.09187;
* -9.530596E-02; 
*-2.167364;

-netsum));

.2261838; 
feaiure2[0] * 
feaiure2[l] * 
feaiure2[2] * 
feaiure2[3] * 
featurc2[4] * - 
feature2[5] * 
feature2[6] * 
feature2[7] * 
feature2[8] * 
feature2[9] » 
feaiuTe2[10] * 
feaiure2[ 11]* 
feature2[12] * 
feature2[13] * 
fealurc2[14] » 
feature2( 15] *

.6117795; 

.2556338; 

.1104424; 
1.76116; 
.8814707; 
.1399774; 
.1515178; 
.2513995; 
.2032537; 
.2282047; 

.1178242; 
9.989554 E-02; 

-.1187363; 
-.1588543; 
8.299998; 

-.4917489;
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neisum *= 1'caiurc2( 16] * -1.272974  
ncisum -=  fcaiurc2[17] * -4.948971 
netsum += l'caturc2| 18] ♦ .2373703 
ncisum -=  (eaiutc2| 19] * -.1382861 
oularray[6]= 1 /  (I + ex p(-neisum))

netsum = .7143841; 
n etsu m += feaiurc2[0] * .9115762; 
ncisum += feature2[l] * -7.350495E-02; 
netsum += featurc2[2] * -.4 156601; 
netsum += fcature2[3] * -.7382054; 
netsum *= feature2|4] * -.5534458; 
netsum feature2[5] * .1255922: 
netsum -̂ = feature2[6] * .4917387; 
neisum feature2[7] * .1844895; 
neisum += feaiure2[8] * -.5002103; 
netsum += feature2[9] * -4.216522E-02; 
netsum += feature2[10] * -.4226763; 
n etsu m += fcature2[l 1] * .1202922; 
netsum += feature2[12] * -.1485279; 
netsum += feature2[13] * -.1823302; 
netsum += featurc2[ 14] * -1.62964; 
netsum -+= feature2[15] * -.2875343; 
netsum += feature2[16] * -.3986559; 
netsum += feature2[17] * -3.04541; 
netsum += feature2[18] * -1 .760078E-02; 
netsum += feature2[ 19] * -.4441942; 
outarray[7] = 1 / (I + exp(-netsum));

netsum = -1.106611 ; 
netsum += feature2[0] * -1.257366; 
netsum += feature2[l] * -5.262233E-02; 
n etsu m += feature2[2] * .1283339; 
netsum += feature2[3] * 1.897849; 
netsum += feature2[4] * 1.263269; 
netsum += feature2[5] * -.0826937; 
netsum += feature2[6] * -4 .663133E-02; 
netsum += feature2[7] * .1077188; 
netsum-i-= feature2[8] * .9141859; 
netsum += feature2[9] * -1.942981 E-02: 
netsum += feature2[10] * -.0170227; 
netsum += feature2[l 1] * -.5775023; 
netsum += feature2[12] * 6.083321 E-02; 
netsum += feature2[13] * .44481; 
netsum += feature2[14] * -7.26222; 
n etsu m += feaiure2] 15] * .454815: 
n etsu m += feature2[ 16] * 1.172065; 
n etsu m += feature2[ 17] ’  6.179174; 
netsum += feature2[18] * -.2194533; 
netsum += feature2[19] * 2 .9 2 8 195E-03: 
outarray] 8] = 1 / ( 1  + exp(-netsum)):

netsum = -.557344; 
netsum += feature2[0] * -.8355444; 
netsum += feature2[ 1] * -.7298361 ; 
netsum += feature2[2] * -9 .9 0 8 194E-02: 
netsum += fealure2[3] * -1.338743; 
netsum += feature2[4] * 2.726421; 
netsum -t-= fealure2[5] * -.3369063; 
netsum -t-= feature2[6] * -1.602735; 
netsum-i-= feature2[7] * 5.736315; 
netsum += feaiure2[8] * .4491995;
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ncisum += reaiurc2(9] * -.26771; 
ncisum += fcniurc2| 10] ’ -.3346169; 
ncisum -•■= fcaiurc2[ I I ] '  .1424053; 
ncisum -1= fc;iiurc2[ 12] '  -.2673492; 
ncisum -+= fcaiurc2( 13] * 9.440368E-02; 
ncisum += fcaiurc2|l4] ’ -1.682431; 
ncisum -+= fcaiurc2| 15] ' -6.7I9103E-02; 
ncisum fcaiurc2( 16] * -.2724702; 
ncisum += f'caiurc2( 17] '  -8.343706; 
ncisum -!■= feaiurc2[ 18] '  .4701097; 
ncisum ■+= feaiurc2[ 19] '  -4.028329E-02; 
ouiarray[9] = I / ( M  cxp(-nclsum));

ncisum -  .7294881; 
n c i s u m f c a i u r c 2 | 0 ]  '  .478992; 
ncisum f'caiurc2( I] * -.1699279; 
ncisum -+= Ieaiurc2|2] '  -.2918522; 
ncisum -*■= fcalurc2[3] * -.1400667; 
ncisum += fcalurc2[4] * .3066254; 
neisum 4-= fealurc2[5] * ,2507746; 
ncisum += feaiurc2[6] * -.719865; 
ncisum += fealurc2[7] * -1.083979; 
ncisum 4-= feaiurc2[8] * -.3014532; 
neisum 4-= fealurc2[9] * -.300752; 
neisum 4-= fealure2[IO] * 2.493552E-02 
neisum 4-= feaiure2[11] * -5.258249E-02 
neisum 4-= feaiure2[l2] ’ 7.411258E-02 
neisum 4-= fcalure2[13] * -.1965154; 
neisum 4-= fealure2[l4] * .4011763; 
neisum 4-= feaiure2[l5] * -1.669259; 
neisum 4-= fealure2[l6] ’ -3.424472E-02; 
neisum 4-= feaiure2[ 17] * -7.968295; 
neisum 4-= feaiure2[l8] * -.602005; 
neisum 4-= fealure2[l9] * -6.404935E-02; 
outarray] 10] = I / (I 4- exp(-neisum));

neisum = .362788; 
neisum 4-= feaiure2[0] * .0981926; 
neisum 4-= feaiure2[l] » 2.843576E-02; 
neisum 4-= feature2[2] * -.1703628; 
neisum 4-= fealure2[3] * .8380809; 
neisum 4-= fealure2[4] •  -2.949265; 
neisum 4-= feaiure2[5] * .2401737; 
neisum 4-= feaiure2[6] * 1.392454; 
neisum 4-= feaiure2[7] * -5.736626; 
neisum 4-= fealure2[8] * -.3045191; 
neisum 4-= fealure2[9] * 7.248948E-02; 
neisum += fealure2( 10] * -.2216617; 
neisum 4-= fealure2[l 1] * 5.055316E-03; 
neisum 4-= feaiure2[12] » .1508938; 
neisum 4-= fealure2[13] * .1570011; 
neisum 4-= feaiure2[14] * .8849996; 
neisum 4-= feaiure2[15] * 1.165793; 
neisum 4-= feaiure2[ 16]* .1073198; 
neisum 4-= feaiure2[ 17]* 10.06857; 
neisum 4-= fealure2[ 18] * 2.068069E-02; 
neisum 4-= feaiure2[19] * .2028647; 
ouiarray] 11] = 1 / (1 -f exp(-neisum));

neisum = .8200681;
netsum 4-= feature2[0] * .9755294;
netsum 4-= feature2]l] * -.2646338;
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netsum 4- =
netsum + -
netsum + =
netsum +=
netsum + =
netsum +=
netsum 4- =
netsum +=
netsum +=
netsum + =
netsum + =
netsum 4- =

netsum 4- =
netsum 4-=
neisum 4 -=

netsum 4-=
netsum 4-=
neisum 4-=

featurc2|2] * -.3214362; 
fcaturc2[3] » 3.809073; 
feature2[4] * -.6226831; 
icature2|5] =* -8.820433E-02;

feaiure2[8] * -9.658501 E-Ü3; 
featurc2|9] * -.6434142; 
fcaiure2110] * -.3066177; 
fcature2[l 1] =* - 1.086938E-02; 
feature2[12] =* .9212445; 
fcaturc2[ 13] * -.5968158; 
fcaiurc2[14] =* -1.807871;

= ieaiure2[15] * 3 .398166E-02; 
-  ure2[]6] * .2398897;

ure2[ 17] * -5 .194323; 
ure2[18] » -.1639087; 
urc2(19] * -.1660768; 

outarrayl 1 2 ] =  1 / ( 1 +  exp(-neisum)):

netsum = -3 .7 1 4 1 14E-04; 
netsum -t-= fealure2(0] * -.3926134; 
neisum += feature2[l] * -.4836594; 
netsum += feaiure2[2] * 2 .0 1 1262E-02; 
netsum += feature2[3] * -.6448963; 
netsum += feaiure2[4] * -.2702846; 
netsum += feature2[5] * -3.63141 lE-02; 
netsum += feature2[6] * -.6800619; 
netsum -+= feature2[7] * -.5383763; 
netsum += feature2[8] * -9.367502E-03; 
netsum -t-= feature2[9] * -.4512094; 
netsu m += feature2[ 10] * .7111861;  
netsum -t-= feaiure2[l 1] *-1.238454; 
netsum-t-= feature2[ 12] * .7630368; 
netsum += feaiure2[13] * 5.750604E-02; 
netsum += feature2[14] * -.9760057; 
netsum ■+= featurc2[15] * .3790655; 
netsum -t-= feature2[16] * -5.644364E-02; 
netsum += feature2[17] * -.5015465; 
netsum += feature2[ 18] * -.4474064; 
netsum += feature2[19] * -.3726536; 
outaTTay[ 13] = 1/ ( 1  -t- exp(-netsum));

netsum =  -1.24 7646; 
netsum -+= feature2[0] * -1.071091; 
netsum += feature2[l] * -2.893961 E-02; 
netsum += feature2[2] * -2.861611 E-02; 
netsum -t-- feature2[3] * -3.618598; 
netsum += feaiure2[4] * .6013362; 
netsum += feature2[5] * .1153496; 
netsum += feature2[6] * 1.41837; 
netsum += feature2[ 7] * 1.492391 ; 
netsum -t-= feature2[8] * -.2125802; 
netsum feature2[9] * 1.506482; 
netsum -+= feature2[10] * .3234671; 
n etsu m += feature2[l 1] * .3145125; 
netsum += feature2[12] * -1.559603; 
netsum += feature2[13] * 7 .990149E-02; 
netsum += feature2[ 14] * 2.460018; 
netsum += feature2[15] * .2015774; 
netsum += feature2[16] * -.3996591; 
n etsu m += feature2[ 17] * 7.581014;
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neisum += fealurc2[ I >i] * .205i5034; 
netsum += feaiure2( 19] " .2459512; 
outarrayl 14] = 1 / (I -* cxp(-netsum));

outarrayl 9] = (ouiarraylü] - .1 ) /  .8 ; 
if(outarray[0]< 0) outarray|0] = 0; 
if (outarray|0]> 1) outarray|0] = 1;

outarrayl I] = (outarrayl I] - .1 ) / . 8  ; 
if (outarrayl l]-^ 0) outarrayl I] = 0: 
if (outarrayl 1 ]> 1 ) outarrayl 1 ] = I;

outarray|2]= (outarray|2] - . I ) / ,8 ; 
if (outarray|2]< 0) outarray|2] = 0; 
if (outarray|2]> 1 ) outarray|2] = I ;

outarrayl3 ]=  (outarray|3] - . ) ) / . 8  ; 
if (outarray|3]< 0) outarray|3] = 0; 
if (outarray|3]> 1) outarray|3] = I;

outarray|4]= (outarray|4] - . ]  ) /  .8 ; 
if (outarray|4]< 0) outarray|4] = 0; 
if (outarray|4]> 1 ) outarray|4] = 1 ;

outarrayl5 ]=  (outarray|5] - .1 ) / .8 ; 
if (outarray|5]< 0) outarray|5] = 0; 
if (outarray|5]> 1) outarray|5] = 1;

outarrayl6] = (outarray|6] - .1 ) /  .8 ; 
if (outarray|6]< 0) outarray|6] = 0; 
if  (outarray|6]> ! ) outarray[6] = 1 ;

outarrayl?] = (outarray|7] - .1 ) /  .8 ; 
if  (outarray|7]< 0) outarray|7] = 0; 
if (outarray|7]> 1 ) outarrayl?] = 1 ;

outarrayl8] = (outarray|8] - . 1) / . 8 ; 
if (outarray|8]< 0) outarray|8] = 0; 
if (outarray[8]> 1 ) outarrayjS] = 1 ;

outarrayl9] = (outarray|9] - .1) / .8 ; 
if  (outarray|9]< 0) outarrayl9] = 0; 
if  (outarray|9]> 1) outarrayl9] = 1;

outarrayl 10] = (outarrayl 10] - .1) / .8 ; 
if (outarrayl 10]< 0) outarrayl 10]= 0; 
if (outarrayl 10]> 1 ) outarrayl 10]= I ;

outarrayl 11]= (outarrayl 11 ] - .  1 ) / .8 ; 
if (outarrayl 11 ]< 0) outarrayl 11]= 0; 
if (outarrayl 11 ]> 1 ) outarrayl 11 ] = 1; 
outarrayl 12] = (outarrayl 12] - . 1) /  .8 ; 

if (outarrayl 12]< 0) outarrayl 12] = 0; 
if  (outarrayl 12]> 1 ) outarrayl 12]= 1 ; 
outarrayl 13] = (outarrayl 13] - . 1) /  .8 ; 

if (outarrayl 13]< 0) outarrayl 13]= 0; 
if (outarrayl 13]> 1 ) outarrayl 13]= 1 ; 
outarrayl 14] = (outarrayl 14] - .1) /  .8 ; 

if  (outarrayl 14]< 0) outarrayl 14] = 0; 
i f  (outarrayl 14]> 1) outarrayl 14]= 1;t

I
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Appendix E l: -Comparison o f  BPNN with makespans from optimal njle combinations for n= 10 to 100

n=10 Optimal BPNN n=10 Optimal BPNN n=15 Optimal BPNN n=15 Optimal BPNN

N10M1 845 845 N10M26 701 712 N15M1 1221 1272 N 15M 26 1235 1235
N 10M 2 819 819 N10M27 872 890 N15M2 1151 1151 N 15M 27 1272 1463

N 10M 3 842 880 N10M28 604 661 N15M3 1127 1127 N 15M 28 1081 1111
N10M4 762 762 N10M29 793 793 N15M4 1014 1014 N15M29 1125 1125
N10M5 604 604 N10M30 747 865 N 15M 5 1184 1184 N 15M 30 1055 1113
N10M6 815 815 N10M31 834 838 N15M6 1238 1248 N15M31 1030 1051

N10M7 723 753 N10M32 722 781 N15M7 1216 1232 N15M32 1064 1102
N10M8 862 862 N10M33 547 567 N15M8 1205 1286 N 15M 33 1040 1040
N10M9 868 899 N10M34 847 922 N15M9 1103 1103 N15M34 1146 1146

N10M10 766 766 N10M35 734 774 N15M10 1078 1088 N 1 5 M 3 5 ’ 1184 1190
N10M11 800 931 N 10M 36 786 825 N15M11 1175 1281 N 15M 36 1185 1219
N10M12 827 828 N10M37 822 825 N15M12 1124 1124 N 15M 37 1141 1166
N10M13 849 849 N10M38 785 795 N15M13 781 781 N15M38 1295 1295
N10M14 658 658 N10M39 763 811 N15M14 887 926 N15M39 1273 1285
N10M15 620 626 N10M40 540 573 N15M15 1141 1226 N 15M 40 1218 1218
N10M16 801 801 N10M41 694 733 N15M16 1083 1089 N15M41 1140 1140

N10M17 555 555 N10M42 743 770 N15M17 1293 1293 N15M42 957 957

N10M18 773 319 N10M43 731 736 N15M18 1218 1286 N15M43 1199 1280

N10M19 535 535 N10M44 690 690 N15IVI19 1089 1165 N15M44 1116 1170

N10M20 872 878 N10M45 722 722 N15M20 1169 1228 N 15M 45 1159 1207

N10M21 757 757 N10M46 923 958 N15M21 974 994 N15M46 979 979

N10M22 592 592 N10M47 777 820 N15M22 1067 1067 N15M47 1299 1300

N10M23 629 641 N10M48 716 737 N15M23 844 852 N15M48 876 918

N10M24 811 901 N10M49 843 862 N15M24 1093 1129 N15M49 1155 1181

N10M25 693 693 N10M50 723 731 1 N15M25 1042 1122 N15M50 1246 1246
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n=20 Optimal BPNN n=20 Optimal BPNN n=25 Optimal BPNN n=25 Optimal BPNN

N20M1 1532 1532 N20M26 1450 1450 N25M1 1982 2028 N25M26 1598 1598

N20M2 1426 1426 N20M27 1196 1196 N25M2 1646 1654 N 25M 27 2003 2003

N20M3 1167 1354 N20M28 1492 1492 N25M3 1870 1870 N 25M 28 2015 2039

N20M4 1566 1566 N20M29 1368 1370 N25M4 1949 1949 N 25M 29 1538 1538

N20M5 1476 1490 N20M30 1200 1307 N25M5 1903 1903 N25M30 2033 2050

N20M6 1710 1748 N20M31 1634 1641 N25M6 1680 1680 N25M31 2042 2042

N20M7 1772 1781 N20M32 1482 1482 N25M7 1838 1838 N25M32 1878 1878

N20M8 1468 1468 N20M33 1508 1543 N25M8 1978 1978 N25M33 2021 2021

N20M9 1455 1455 N20M34 1740 1827 N25M9 2023 2023 N25M34 1556 1556

N20M10 1639 1800 N20M35 1441 1441 N25M10 1727 1727 N25M35 1656 1656

N20M11 1137 1196 N20M36 1115 1167 N25M11 1817 1890 N25M36 1894 1895

N20M12 1643 1802 N20M37 1386 1386 N25M12 1810 1810 N25M37 1708 1708

N20M13 1476 1476 N20M38 1557 1557 N25M13 1373 1439 N25M38 1501 1542

N20M14 1194 1199 N20M39 1446 1448 N25M14 1980 1980 N25M39 1846 1864

N20M15 1351 1351 N20M40 1493 1493 N25M15 1693 1693 N25M40 1824 1824

N20M16 1617 1617 N20M41 1313 1313 N25M16 2019 2019 N25M41 1826 1881

N20M17 1435 1474 N20M42 1476 1476 N25M17 2058 2058 N25M42 1586 1586

N20M18 1462 1462 N20M43 1665 1666 N25M18 1889 1889 N 25M 43 1817 1817

N20M19 1496 1654 N20M44 1482 1627 N25M19 1788 1899 N25M44 1743 1743

N20M20 1441 1441 N20M45 1336 1336 N25M20 1950 1950 N 25M 45 1880 1888

N20M21 1327 1327 N20M46 1626 1697 N25M21 1985 1985 N 25M 46 1900 1900

N20M22 1445 1474 N20M47 1624 1682 N25M22 1864 1864 N 25M 47 1587 1587

N20M23 1270 1270 N20M48 1592 1592 N25M23 1611 1611 N 25M 48 1877 1877

N20M24 1059 1059 N20M49 1490 1490 N25M24 1769 1769 N 25M 49 1695 1695

N20M25 1288 1304 N20M50 1534 1534 N25M25 1709 1776 N 25M 50 1612 1612
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n=30 Optimal BPNN n=30 Optimal BPNN n=35 Optimal BPNN n=35 Optimal BPNN

N30M1 2270 2332 N30M26 2254 2254 N35M1 2787 2793 N 35M 26 2741 2741

N30M2 2097 2097 N30M27 2325 2325 N35M2 2561 2561 N35M27 2712 2712

N 30M 3 1788 1788 N 30M 28 2282 2282 N35M3 2745 2789 N35M 28 2595 2595

N30M4 1971 1971 N30M29 2051 2057 N35M4 2361 2361 N35M29 2020 2020

N30M 5 2280 2280 N30M30 2136 2136 N35M5 2727 2727 N35M30 2808 2808

N30M 6 2229 2385 N30M31 1981 2075 N35M6 2707 2743 N35M31 2705 2705

N30M7 2016 2016 N30M32 1973 1973 N35M7 2602 2772 N35M 32 2218 2218

N30M8 2426 2675 N30M33 2047 2047 N35M8 2768 2768 N35M33 2062 2174

N30M9 2219 2219 N30M34 2238 2238 N35M9 2666 3099 N35M34 2643 2685

N30M10 1778 1790 N30M35 2046 2050 N35M10 2622 2622 N35M35 2544 2544

N30M11 2113 2166 N30M36 2456 2456 N35M11 2749 2749 N35M36 2654 2654

N30M12 2149 2149 N30M37 2271 2271 N35M12 2334 2355 N35M37 2066 2166

N30M13 2171 2171 N30M38 2181 2319 N35M13 2716 2716 N35M38 2623 2623

N30M14 2151 2151 N30M39 2238 2299 N35M14 2743 2743 N35M39 2569 2569

N30M15 2053 2053 N30M40 2172 2309 N35M15 2482 2482 N35M40 2241 2241

N30M16 2009 2045 N30M41 2377 2377 N35M16 2459 2459 N35M41 2636 2636

N30M17 2104 2130 N30M42 2076 2091 N35M17 2654 2654 N35M42 2397 2502

N30M18 2367 2367 N30M43 2278 2391 N35M18 2308 2308 N35M43 2123 2129

N30M19 2227 2356 N30M44 2005 2005 N35M19 2585 2585 N35M44 2592 2749

N30M20 2251 2273 N30M45 2347 2628 N35M20 2670 2670 N35M45 2496 2496

N30M21 2049 2049 N30M46 2132 2192 N35M21 2308 2308 N35M46 2604 2604

N30M22 2359 2359 N30M47 2078 2078 N35M22 2254 2254 N 35M 47 2192 2192

N30M23 2300 2300 N30M48 2302 2391 N35M23 2555 2555 N35M48 2255 2255

N30M24 2444 2444 N30M49 2150 2252 N35M24 2725 2725 N35M49 2613 2613

N30M25 1650 1650 N30M50 1964 1964 N35M25 2405 2405 N35M50 2705 2705
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n=40 Optimal BPNN n=40 Optimal BPNN n=45 Optimal BPNN n=45 Optimal BPNN

N40M1 2797 2797 N40M26 3033 3033 N45M1 3674 4104 N45M26 3274 3455

N40M2 2621 2621 N40M27 3072 3072 N45M2 3348 3374 N45M27 3301 3301

N40M3 3079 3079 N40M28 3252 3456 N45M3 3298 3298 N45M28 2902 2902

N40M4 3040 3040 N40M29 2882 2882 N45M4 2883 2883 N45M29 3531 3531

N40M5 2674 2752 N40M30 2999 3005 N45M5 3251 3251 N45M30 3297 3297

N40M6 2852 2862 N40M31 3120 3120 N45M6 3456 3456 N45M31 2846 2931

N40M7 2111 2111 N40M32 2664 2681 N45M7 2899 2899 N45M32 3599 3637

N40M8 2153 2183 N40M33 3065 3065 N45M8 3446 3446 N45M33 3394 3400

N40M9 2670 2670 N40M34 2901 2906 N45M9 3206 3206 N45M34 3047 3047

N40M10 2364 2364 N40M35 2981 2981 N45M10 2484 2484 N45M35 3763 3922

N40M11 2952 2952 N40M36 2789 2789 N45M11 3034 3034 N45M36 3135 3158

N40M12 2314 2314 N40M37 3080 3138 N45M12 2532 2638 N45M37 2829 2829

N40M13 2445 2445 N40M38 2511 2511 N45M13 2953 2953 N 45M 38 3382 3382

N40M14 2693 2693 N40M39 2722 2722 N45M14 3256 3310 N45M39 3228 3228

N40M15 2078 2241 N40M40 1979 1979 N45M15 3727 3792 N45M40 3676 3676

N40M16 3062 3062 N40M41 2321 2321 N45M16 3399 3415 N45M41 2927 2927

N40M17 2636 2636 N40M42 3003 3003 N45M17 3060 3060 N45M42 2894 2894

N40M18 2706 2727 N40M43 3107 3123 N45M18 2749 2749 N45M 43 3280 3352

N40M19 3112 3112 N40M44 3101 3101 N45M19 3425 3425 N45M 44 2917 2917

N40M20 2843 2843 N40M45 2944 2944 N45M20 3060 3060 N 45M 45 3400 3400

N40M21 2900 2900 N40M46 3264 3450 N45M21 3456 3456 N 45M 46 2771 2781

N40M22 2232 2232 N40M47 2953 2976 N45M22 3268 3268 N 45M 47 3410 3845

N40M23 3059 3059 N40M48 3254 3254 N45M23 3580 4289 N 45M 48 3374 3374

N40M 24 2710 2713 N40M49 2388 2566 N45M24 3469 3469 N 45M 49 3468 3481

N40M25 2512 2512 N40M50 2829 2829 N45M25 2504 2553 N 45M 50 3283 3283
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n=55 Optimal BPNN n=55 Optimal BPNN n=60 Optimal BPNN n=60 Optimal BPNN

N55M1 4111 4111 N605M 26 3706 3706 N60M1 4001 4001 N 60M 26 4500 4500

N55M2 4382 4407 N55M27 4209 4209 N60M2 4556 4556 N 60M 27 4218 4218

N55M3 3786 3786 N55M28 3855 3855 N60M3 4562 4562 N 60M 28 3348 3348

N55M4 3898 4090 N55M29 4124 4124 N60M4 4197 4197 N 60M 29 4755 4811

N55M 5 4084 4084 N55M30 4135 4138 N60M5 3927 3927 N60M30 4669 4669

N55M 6 3742 4037 N55M31 4088 4173 N60M6 4801 4801 N60M31 4134 4134

N55M7 3956 3970 N55M32 3734 3753 N60M7 3915 3915 N60M32 4556 4556

N55M8 3531 3531 N55M33 4282 4282 N60M8 4523 4523 N60M33 4406 4420

N55M9 4015 4015 N55M34 4303 4303 N60M9 3733 3733 N60M34 3492 3495

N55M10 3625 3625 N55M35 3761 3761 N60M10 4697 4697 N60M35 4583 4583

N55M11 4113 4113 N55M36 4225 4225 N60M11 3876 3876 N60M36 3821 3821

N55M12 3964 3981 N55M37 3919 3919 N60M12 4546 4546 N60M37 4292 4292

N55M13 4413 4531 N55M38 3914 3914 N60M13 4148 4148 N60M38 4451 4451

N55M14 3586 3586 N55M39 4060 4060 N60M14 4585 4585 N60M39 4260 4260

N55M15 4321 4698 N55M40 3487 3487 N60M15 3186 3186 N60M40 4659 4659

N55M16 3771 3906 N55M41 3820 3820 N60M16 4599 4599 N60M41 4558 4627

N55M17 3950 4060 N55M42 3984 3984 N60M17 4225 4225 N60M42 4243 4243

N55M18 4205 4205 N55M43 3955 3955 N60M18 4443 4490 N60M43 4535 4535

N55M19 4281 4281 N55M44 4325 4325 N60M19 4135 4135 N60M44 4547 4773

N55M20 3670 3670 N55M45 3961 3965 N60M20 4060 4060 N60M45 4660 4660

N55M21 3920 3920 N55M46 4256 4256 N60M21 4770 4770 N60M46 3935 3935

N55M22 3461 3461 N55M47 4011 4011 N60M22 4460 4460 N 60M 47 4657 4657

N55M23 4282 4282 N55M48 4220 4220 N60M23 3591 3703 N60M48 4552 4552

N55M24 3600 3600 N55M49 3768 3768 N60M24 4304 4304 N60M49 4274 4441

N55M25 4451 4760 N55M50 4106 4106 N60M25 4574 4574 N60M50 4379 4379
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n=75 Optimal BPNN n=75 Optimal BPNN n=85 Optimal BPNN n=85 Optimal BPNN

N75M1 5568 5568 N75M26 5264 5264 N85M1 5950 5950 N85M26 6316 6316

N75M2 5536 5969 N75M27 5836 5836 N85M2 5819 5819 N85M27 6457 6457

N75M3 5246 5246 N75M28 4985 4985 N85M3 6523 6523 N85M 28 5559 5559

N75M4 4936 4936 N75M29 5962 5962 N85M4 6274 6274 N85M29 5553 5553

N75M5 5544 5907 N75M30 3991 3991 N85M5 5745 5745 N85M30 6054 6054

N75M6 5820 6161 N75M31 5220 5220 N85M6 6642 6642 N85M31 5892 5892

N75M7 4026 4055 N75M32 5792 5792 N85M7 5748 5806 N85M32 6046 6046

N75M8 5602 5602 N75M33 5161 5161 N85M8 6781 6962 N85M33 5660 5660

N75M9 5890 5890 N75M34 5413 5436 N85M9 5835 5835 N85M34 5871 5871

N75M10 5433 5433 N75M35 5526 5526 N85M10 6740 6740 N85M35 6243 6243

N75M11 5794 5794 N75M36 5372 5372 N85M11 5526 5526 N85M36 6169 6169

N75M12 5503 5503 N75M37 5155 5157 N85M12 6446 6446 N85M37 6412 6504

N75M13 5153 5153 N75M38 4822 5010 N85M13 6242 6242 N85M38 6272 6272

N75M14 5244 5244 N75M39 5823 5823 N85M14 5973 5973 N85M39 6263 6263

N75M15 4750 5270 N75M40 5714 5714 N85M15 6231 6231 N85M40 4396 4464

N75M16 5737 5737 N75M41 5215 5215 N85M16 6485 6485 N85M41 6259 6259

N75M17 5947 5974 N75M42 5706 5751 N85M17 5512 5512 N85M42 6206 6206

N75M18 5712 5712 N75M43 5154 5154 N85M18 6100 6100 N 85M 43 6564 6564

N75M19 5479 5479 N75M44 5815 6093 N85M19 6345 6345 N85M44 6727 6741

N 75M 20 5364 5881 N75M45 4914 4914 N85M20 6447 6447 N 85M 45 5081 5081

N75M21 5870 5881 N75M46 4343 4343 N85M21 5815 5815 N 85M 46 5842 5842

N75M22 4265 4265 N75M47 5651 5651 N85M22 6603 6603 N85M47 6706 6706

N75M23 5619 5650 N75M 48 5427 5427 N85M23 6513 6513 N 85M 48 5983 5983

N75M24 5692 5692 N75M49 5779 5779 N85M24 5571 6108 N85M49 4801 4801

N75M25 5470 5470 N 75M 50 5578 5578 N85M25 6056 6056 N85M 50 6138 6138
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n=100 Optimal BPNN n=100 Optimal BPNN

N100M1 5379 5849 N100M 26 7279 7279

N100M 2 7571 7571 N100M 27 7116 7116
N 100M 3 7187 7324 N 100M 28 6991 6991
N 100M 4 6445 6445 N 100M 29 5654 5654

N 100M 5 7727 7727 N100M 30 7737 7737
N 100M 6 7382 7408 N100M31 6685 6685
N100M 7 7605 7605 N100M32 7244 7244

N100M8 7616 7616 N100M 33 7410 7411

N100M 9 6866 6866 N100M34 7427 7427
N100M 10 7940 7952 N100M35 6858 7113
N100M11 7810 7810 N100M36 7497 7497
N100M 12 6931 6931 N100M 37 7739 7739
N 100M 13 7705 7705 N100M38 7571 7571
N100M 14 7183 7183 N100M39 7709 7709
N100M 15 6204 6204 N100M40 5503 5516
N100M 16 6479 6479 N100M41 7707 7707
N100M17 5926 5926 N100M42 7178 7178
N100M 18 6189 6189 N100M43 6310 6491
N100M 19 7839 7839 N100M44 7210 7210
N100M 20 7360 7388 N100M45 5799 5799
N100M21 6124 6124 N100M46 7897 7901
N100M 22 6901 6901 N100M47 7037 7037

N100M23 6862 6862 N100M48 7212 7212
N100M24 7667 7667 N100M49 7526 7526

N100M25 6276 6276 N100M50 7244 7244
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Appendix E2: -Comparison o f  BPNN with Mean Flowtimes for optimal rule combinations for n=10 to 100

n=10 Optimal BPNN n=10 Optimal BPNN n=15 Optimal BPNN n=15 Optimal 1 BPNN

N10F1 560.5 563.6 N10F26 471.2 475.3 N15F1 782.69 794.67 N15F26 791.67 807.73

N10F2 518 554.6 N10F27 671.3 708.3 N15F2 678.67 679.27 N15F27 798.8 814.33

N10F3 559.2 569.1 N10F28 445.7 487.7 N15F3 754.87 781.67 N15F28 670.53 689.4

N10F4 539.7 588.6 N10F29 502.6 512.2 N15F4 623.13 631.2 N15F29 659,33 659.33

N10F5 400.8 409.4 N10F30 533.3 544.9 N15F5 750.53 756.53 N15F30 704.13 748.67

N10F6 599.7 599.7 N10F31 585.1 595.8 N15F6 770.13 776.67 N15F31 649.33 649.33

N10F7 510.7 519.8 N10F32 525.6 555.7 N15F7 774.13 783.73 N15F32 737.73 737.73

N10F8 621.2 633 N10F33 371.2 386.5 N15F8 816.87 823.33 N15F33 687.6 707.27

N10F9 605.9 605.9 N10F34 590.2 619.6 N15F9 674.67 702.93 N15F34 770.67 757.73

N10F10 534.6 534.8 N10F35 514.7 544.1 N15F10 701.33 707 N15F35 672 798.93

N10F11 569.5 579.9 N10F36 592.3 612.1 N15F11 709.2 732.4 N15F36 586.53 758.2

N10F12 535.4 562.7 N10F37 539.8 550.8 N15F12 656.47 656.47 N15F37 600.8 732.07

N10F13 583.1 591.5 N10F38 560.4 591 N15F13 492.13 515.2 N15F38 612.4 799.6

N10F14 475.1 479.9 N10F39 523.1 527.5 N15F14 536.4 538.53 N15F39 819 785.93

N10F15 464.7 469.2 N10F40 391.1 391.1 N15F15 713.53 720.6 N15F40 651.13 830.67

N10F16 536.7 536.7 N10F41 453.5 459 N15F16 687.07 698.87 N15F41 707.33 713.67

N10F17 404.7 419.6 N10F42 546.3 555.5 N15F17 798.13 834.07 N15F42 799.13 637.67

N10F18 554.6 573.4 N10F43 531.4 531.4 N15F18 741.2 744.2 N15F43 594.2 816.67

N10F19 394.1 406.2 N10F44 461.2 503.2 N15F19 688.93 720.13 N15F44 721.6 669.33

N10F20 633 648.8 N10F45 508.9 522.5 N15F20 762.47 800.6 N15F45 632.67 775.87

N10F21 508.2 583 N10F46 641.7 658.9 N15F21 625.87 646.47 N15F46 716.13 646.93

N10F22 403.4 417.9 N10F47 560.6 560.6 N15F22 659.73 684.33 N15F47 726.47 815.2

N10F23 387.1 ' 397.7 N10F48 524 541.5 N15F23 564.6 568.93 N15F48 509.13 583

N10F24 558 590.8 N10F49 582 609.2 N15F24 721.33 744.13 N15F49 558.07 731.4

N10F25 500.4 511.6 N10F50 489.6 497.4 N15F25 633.87 656.73 N15F50 807.93 826.6



n=20 Optimal BPNN n=20 Optimal BPNN n=25 Optimal BPNN n=25 Optimal 1 BPNN

N20F1 933.35 945.95 N20F26 867.25 876.15 N25F1 1186 1187.4 N 25F26 963.16 966.4

N20F2 896.5 897.8 N20F27 703.8 703.8 N25F2 961.2 974.48 N 25F27 1152.88 1168.36

N20F3 705.75 738.45 N20F28 923.1 923.1 N25F3 1025.92 1026.92 N25F28 1112 1120.12
N20F4 864.75 867.45 N2CF29 826.55 846.6 N25F4 1142.08 1210.16 N 25F29 824.96 827.2

N20F5 827.85 852.7 N20F30 777.1 803.95 N25F5 1107.44 1125.52 N 25F30 1185.56 1209.96

N20F6 969.2 1050.05 N20F31 952.35 955.3 N25F6 972.08 972.08 N25F31 1083.92 1098.64

N20F7 1052,35 1052.35 N20F32 902.9 950.9 N25F7 1101.2 1106.04 N 25F32 1080.92 1086.4

N20F8 824.4 830.15 N20F33 862 866.3 N25F8 1082.12 1092.48 N25F33 1259.16 1297.28
N20F9 848.05 923.05 N20F34 1019.8 1053.4 N25F9 1148.68 1160.12 N25F34 866.6 870

N20F10 1013.83 1051.9 N20F35 823.55 823.55 N25F10 1023.4 1038.76 N25F35 958.72 970.8
N20F11 710.45 713.55 N20F36 660.6 665.75 N25F11 1025.56 1025.56 N 25F36 989.76 1030
N20F12 1000.95 1018.25 N20F37 780.35 787.9 N25F12 979.28 992.44 N25F37 996.12 1002,04

N20F13 881.3 932.2 N20F38 973.85 983.55 N25F13 820.08 837.04 N25F38 846.08 880.6
N20F14 747.4 747.4 N20F39 819.2 821.55 N25F14 1191 1226.6 N25F39 1018.76 1028.96

N20F15 766.55 767.15 N20F40 870.7 882.85 N25F15 967.72 967.72 N25F40 1000.52 1000.68

N20F16 966.95 976,65 N20F41 756.4 767.15 N25F16 1145.16 1147.64 N25F41 1041.16 1056.24

N20F17 870.6 É70.6 N20F42 858.35 858.35 N25F17 1144.44 1163.16 N25F42 908.8 927.16

N20F18 857.15 859.45 N20F43 1014.4 1051.8 N25F18 1029.08 1075.64 N25F43 946.68 999.04

N20F19 917.7 917.7 N20F44 908.6 910.9 N25F19 1031.52 1034.12 N25F44 1036.6 1055.48

N20F20 859.3 873.9 N20F45 787.4 808.5 N25F20 1096.28 1096.28 N25F45 1056.16 1109.72

N20F21 746.75 753.7 N20F46 1034.45 1064.1 N25F21 1094 1101 N25F46 1090 1135.52

N20F22 907.95 932.35 N20F47 860.7 873.2 N25F22 1006.16 1014 N25F47 948.72 979.84

N20F23 743.8 743.8 N20F48 910.55 910.55 N25F23 933.92 933.92 N25F48 1058 1082.72

N20F24 640.7 649.3 N20F49 900.35 900.35 N25F24 991.76 991.76 N25F49 951.84 958.4

N 20F25 802.25 876.2 N20F50 903.35 910.9 N25F25 1034.84 1044.8 N25F50 898.56 909.32

E9



n=30 Optimal BPNN n=20 Optimal BPNN n=35 Optimal 1 BPNN n=25 Optimal BPNN

N30F1 1221.53 1234.8 N30F26 1216,9 1228,13 N35F1 1455.86 1463.54 N35F26 1547.09 1551.91

N30F2 1087.5 1092,3 N30F27 1230,47 1234,4 N35F2 1369.2 1377.2 N35F27 1390.77 1390.77

N30F3 1045.73 1174.57 N30F28 1264,03 1266.67 N35F3 1530.29 1575.51 N35F28 1466.71 1480.31

N30F4 1127.37 1127,37 N30F29 1099 1099 N35F4 1302 1306.31 N35F29 1062.49 1070.43

N30F5 1251.67 1270.87 N30F30 1189.37 1192.7 N35F5 1537.71 1557.34 N35F30 1507.97 1507.97

N30F6 1258.93 1334.33 N30F31 1128.33 1128.4 N35F6 1492,11 1528.63 N35F31 1452.63 1464.26

N30F7 1058.77 1062.97 N30F32 1166.37 1172.33 N35F7 1545.17 1545.17 N35F32 1129.31 1135.46

N30F8 1289.8 1305.67 N30F33 1127.9 1149.87 N35F8 1449.03 1462.89 N35F33 1043.17 1049.11

N30F9 1292.3 1294.5 N30F34 1277.67 1277.67 N35F9 1393.49 1430.4 N35F34 1482.43 1521.03

N30F10 970,67 970.67 N30F35 1168.63 1197.93 N35F10 1431.09 1460.29 N35F35 1337.23 1363.14

N30F11 1132.1 1168.67 N30F36 1337.2 1349.87 N35F11 1491.49 1512.31 N35F36 1567 1570.06

N30F12 1165.13 1176.07 N30F37 1205.57 1205.57 N35F12 1273.09 1308.4 N35F37 1184.31 1199.46

N30F13 1130 1148.23 N30F38 1147.43 1192.17 N35F13 1497.54 1527.37 N35F38 1353.23 1353.23

N30F14 1184.73 1206 N30F39 1262.7 1266.5 N35F14 1472.49 1481.06 N35F39 1381.89 1455.71

N30F15 1116.33 1116.8 N30F40 1194.5 1195.83 N35F15 1318.34 1325.09 N35F40 1214.06 1260

N 30F16 1100 1110.5 N30F41 1306.77 1342 N35F16 1329 1365.71 N35F41 1483.97 1517.6

N30F17 1219,7 1250.63 N30F42 1189.57 1229.03 N35F17 1367,89 1373.83 N35F42 1303.6 1360.29

N30F18 1362.57 1368.73 N30F43 1239,2 1251.37 N35F18 1298.31 1348.09 N35F43 1136.23 1138.4

N30F19 1270.97 1328.4 N30F44 1065.47 1065.47 N35F19 1382.11 1384.29 N35F44 1443.6 1459.37

N30F20 1343.87 1350.87 N30F45 1292.53 1316.83 N35F20 1421.09 1540.4 N35F45 1334.06 1390.03

N30F21 1113.03 1113.03 N30F46 1141.07 1180.23 N35F21 1209.46 1209.46 N 35F46 1414.83 1422.31

N30F22 1306.07 1306.17 N 30F47 1089.97 1111.5 N 35F22 1241.66 1286.06 N 35F47 1149.26 1159.4

N30F23 1229.43 1235.97 N30F48 1236.2 1288.9 N 35F23 1372.74 1391.91 N 35F48 1262.11 1305.97

N30F24 1374.87 1388.67 N30F49 1148.43 1161.77 N 35F24 1447.29 1456.03 N 35F49 1400.86 1469,4

N30F25 932.17 938.43 N30F50 1076.3 1076.3 N35F25 1320.83 1320.83 N35F50 1471.14 1489.69

E t O



n=40 Optimal BPNN n=40 Optimal BPNN n=45 Optimal BPNN n=45 Optimal BPNN

N40F1 1497.88 1529.03 N40F26 1535.4 1543.82 N45F1 2025.58 2053.73 N 45F26 1719.53 1741.91

N40F2 1441.12 1457.12 N40F27 1664.8 1697.7 N45F2 1745.09 1771.33 N45F27 1779.11 1792.64

N40F3 1579.18 1579.18 N40F28 1685.53 1699 N45F3 1638.73 1642.69 N45F28 1530.4 1540.64
N40F4 1633.62 1647.25 N40F29 1578.85 1628.7 N45F4 1464.33 1464.33 N45F29 1827.78 1827.78
N40F5 1419.3 1505.28 N40F30 1604.07 1776.43 N45F5 1727.36 1729.22 N45F30 1699.36 1729.6
N40F6 1487.9 1603.5 N40F31 1629.6 1629.6 N45F6 1826.71 1849.04 N45F31 1607.87 1677.02
N40F7 1062.43 1062.43 N40F32 1512.62 1547.32 N45F7 1508.8 1527.11 N45F32 1852 1875.42
N40F8 1210.72 1248.15 N40F33 1638.45 1719.32 N45F8 1914.78 1947.49 N45F33 1839.73 1845.76
N40F9 1367.9 1380.8 N40F34 1504.07 1506.7 N45F9 1623.09 1624.98 N45F34 1605.84 1651.53

N40F10 1216 1216 N40F35 1638.35 1716.32 N45F10 1371.76 1378.56 N45F35 1986.38 1986.38
N40F11 1479.68 1481.12 N40F36 1551.5 1603.8 N45F11 1661.07 1721.38 N 45F36 1590.53 1594.31
N 40F12 1224.03 1271.3 N40F37 1729.65 1763.22 N45F12 1358.78 1424.36 N45F37 1495.73 1530.24

N 40F13 1279.03 1281.3 N40F38 1211.12 1223.6 N45F13 1639.4 1644 N45F38 1661.24 1669.29
N40F14 1435.18 1448.35 N40F39 1407.9 1434.53 N45F14 1732.96 1757.8 N45F39 1689.51 1689.73

N40F15 1117.43 1132.47 N40F40 1058.75 1065.72 N45F15 1862.67 1892.04 N45F40 1979.67 2028.33

N40F16 1693.2 1716.45 N40F41 1199.78 1202.78 N45F16 1758.11 1799.38 N45F41 1611.31 1642.44

N40F17 1410.09 1457.03 N40F42 1579.95 1590.5 N45F17 1655.44 1697.91 N45F42 1509.69 1571.18

N40F18 1475.73 1502.85 N40F43 1632.35 1668.97 N45F18 1370.36 1376.64 N45F43 1740.67 1788.6

N40F19 1649.03 1671.22 N40F44 1633 1649.25 N45F19 1835.53 1849.73 N45F44 1566.33 1615.44

N40F20 1554 1585.2 N40F45 1540.35 1540.35 N45F20 1605.04 1617.78 N45F45 1821.58 1831.22

N40F21 1509.62 1532.5 N40F46 1766.22 1821.53 N45F21 1823.44 1843.67 N45F46 1491.69 1527.8

N40F22 1198.72 1261.85 N40F47 1552.55 1554.35 N45F22 1696.71 1712.38 N 45F47 1872.42 1877.51

N40F23 1567.7 1568.57 N40F48 1726.55 1726.82 N45F23 1920.98 1956.64 N45F48 1867.93 1922.84

N40F24 1516.28 1540.7 N40F49 1214.72 1216.7 N45F24 1799.69 1809.87 N45F49 1875.16 1895.2

N40F25 1340.5 1357.8 N40F50 1410.88 1410.88 N45F25 1 1384.47 1384.47 N45F50 1725.31 1744.11

Ell



n=55 Optimal BPNN n=55 Optimal BPNN n=60 Optimal 1 BPNN n=60 Optimal BPNN
N55F1 2097.36 2130.89 N55F26 1942.71 2025.45 N60F1 2086.93 2126.2 N60F26 2242.73 2244.63
N55F2 2272.09 2288.35 N55F27 2272.96 2352.35 N60F2 2236.13 2238.17 N60F27 2101.72 2116.62
N55F3 1949.64 1949.64 N55F28 2063.78 2113.98 N60F3 2400.28 2400.28 N60F28 1724.43 1760.8
N55F4 2103.84 2115,02 N55F29 2141.93 2240.38 N60F4 2147.48 2150.03 N60F29 2368.58 2380
N55F5 2154.02 2159.02 N55F30 2137.78 2137.78 N60F5 2054.78 2059.48 N60F30 2507.32 2555.77
N55F6 1980.65 1980.65 N55F31 2201.27 2212.6 N60F6 2465.25 2471.83 N60F31 2169.57 2239.82
N55F7 1970.53 2040.47 N55F32 1970.87 1990.71 N60F7 1922.17 1922.17 N60F32 2318.53 2429.42
N55F8 1766.71 1766.71 N55F33 2272.6 2279.85 N60F8 2204.28 2204.28 N60F33 2386.35 2477.6
N55F9 2062.84 2070.75 N55F34 2114.49 2117.05 N60F9 1910.17 2031.88 N60F34 1885.15 1902.03

N55F10 1892.93 1892.93 N55F35 1920.04 1924.13 N60F10 2463.3 2475.5 N60F35 2260.57 2262.43
N55F11 2187.91 2211.98 N55F36 2281.33 2281.33 N60F11 1925.38 1925.38 N60F36 2011 2012.07
N55F12 2028.45 2028.45 N55F37 2046.85 2087.64 N60F12 2320.52 2320.52 N60F37 2163.82 2164.8
N55F13 2375.44 2475.16 N55F38 1945.4 1947.93 N60F13 2201.5 2312.03 N60F38 2312.53 2474.52
N55F14 1936.8 2016.31 N55F39 2085.22 2086.2 N60F14 2247.55 2247.55 N60F39 2197.25 2199.28
N 55F15 2334.51 2356.69 N55F40 1751.87 1773.6 N60F15 1718.22 1737.62 N60F40 2373.08 2386.22
N55F16 2046.67 2111.53 N55F41 1959.18 1960.85 N60F16 2250.02 2258.02 N60F41 2428.48 2438.78
N55F17 1959.47 1972.11 N55F42 1940.84 1972.98 N60F17 2278.28 2279.2 N60F42 2256 2335.1
N55F18 2180.58 2180.58 N55F43 1954.76 1970.87 N60F18 2434.25 2502.22 N60F43 2361.22 2363.17

N55F19 2227.65 2283.24 N55F44 2290.8 2294.85 N60F19 2136.57 2147.62 N60F44 2225 2227.68
N55F20 1934.2 1967.02 N55F45 2104.71 2104,71 N60F20 1966.78 1966,78 N60F45 2294.48 2296.52

N55F21 1950.02 1954.8 N55F46 2216.45 2216.45 N60F21 2397.02 2397.43 N60F46 1973.8 1974.53
N55F22 1924.73 1925 N55F47 2059.38 2060.58 N60F22 2278.28 2344.5 N60F47 2406,68 2416.08

N55F23 2252.87 2244.16 N55F48 2321.11 2351.49 N60F23 1921.82 1952.1 N60F48 2357 2378.88

N55F24 1857 1857.55 N55F49 1900.27 1900.27 N60F24 2141.77 2143.7 N60F49 2274.28 2309.03

N 55F25 2358.55 2379.04 N55F50 2083.02 2083.02 N60F25 2383.47 2401.17 N60F50 2272.98 2484.62

E 1 2



n=75 Optimal BPNN n=75 Optimal BPNN n=85 Optimal BPNN n=85 Optimal BPNN

N75F1 2851.16 2991.17 N75F26 2766.87 2884,39 N85F1 3047.98 3089.78 N 85F26 3317.27 3348.74

N75F2 2888.11 2901.88 N75F27 3013.07 3061.61 N85F2 2961.82 3006,07 N85F27 3097.36 3110.96
N75F3 2748.17 2766.13 N75F28 2570.76 2588.56 N85F3 3330.11 3402.32 N85F28 2798.93 2803.38
N75F4 2511.31 2541.51 N75F29 3018.77 3027.73 N85F4 3181.13 3229.29 N85F29 2765.48 2766.25
N75F5 2890.39 2998.4 N75F30 1921.05 1924,57 N85F5 2815.17 2828.29 N85F30 2939.81 3114.24

N75F6 2969.59 3030.85 N75F31 2699.79 2719.08 N85F6 3370.56 3370.56 N85F31 3002.96 3115.6

N75F7 2138.59 2141.04 N75F32 2848.44 2848.65 N85F7 2951.12 2962.91 N85F32 3118.47 3283.88
N75F8 2887 2887 N75F33 2565.6 2620.24 N85F8 3414.59 3414.79 N 85F33 2959.16 2979.38
N75F9 2931.55 2974.96 N75F34 2694.89 2694.89 N85F9 3014.12 3019,28 N85F34 2877.71 2887,12

N75F10 2832.8 2854.69 N75F35 2804.84 2804.84 N85F10 3445,29 3507.76 N 85F35 3084.39 3107,14

N75F11 2987.37 2993,48 N75F36 2678.88 2686.32 N85F11 2862.02 2872.59 N85F36 3203.53 3241,13
N75F12 2734.88 2735.2 N75F37 2617.49 2695.67 N85F12 3295.66 3295.66 N85F37 3169.92 3172.2

N75F13 2700.99 2730.56 N75F38 2482.28 2584.56 N85F13 3244.08 3305.55 N 85F38 3077.67 3095,65
N75F14 2603.77 2612 N75F39 3022.65 3022.65 N85F14 2891.46 3021.85 N85F39 3191.71 3250,72
N75F15 2494.01 2528 N75F40 2823.95 2828.83 N85F15 3142.85 3186,96 N85F40 2162.98 2214,61
N75F16 2908.52 3025.49 N75F41 2642.83 2712.24 N85F16 3305.38 3357.52 N85F41 3208.14 3251,32

N75F17 2986 3003.8 N75F42 2881.43 2883.49 N85F17 2817.04 2884.08 N85F42 3119.93 3188,22

N75F18 2805.21 2805.21 N75F43 2592.92 2602.95 N85F18 3112,8 3182.36 N85F43 3175.6 3177,66

N75F19 2698.67 2698.67 N75F44 2848.63 2882.16 N85F19 3078,24 3080.74 N85F44 3428.38 3432.4

N75F20 2769.4 2793.55 N75F45 2391.95 2396.99 N85F20 3182.84 3313.68 N85F45 2586.18 2606,24

N75F21 3021.55 3129.35 N75F46 2172.41 2175.57 N85F21 2965.42 2977.95 N85F46 2878.28 2878.28

N75F22 2088.49 2088.49 N75F47 2736.45 2736.45 N85F22 3296.13 3309.12 N85F47 3301.33 3301.33

N75F23 3021.55 2880.2 N75F48 2582.29 2583.37 N85F23 3155.89 3228.99 N85F48 3093.54 3093.54

N75F24 2932.59 2956.39 N75F49 2949.23 3048.27 N85F24 2856.11 2872.75 N85F49 2417.16 2433.12

N75F25 2834.67 2954.33 N75F50 2722.45 2722.89 N85F25 3075.45 3118.69 N85F50 3149.61 3215,18

E13



n=100 Optimal BPNN n=100 Optimal BPNN
N100F1 2585.32 2655.24 N100F26 3458.92 3458.92
N100F2 3678.62 3679.99 N100F27 3429.26 3430.57
N100F3 3461.73 3464.72 N100F28 3469.93 3473.85
N100F4 3218,08 3218.08 N100F29 2853.93 2861
N100F5 3923.19 4086,99 N100F30 3919.49 3955.75
N100F6 3646.68 3646.68 N100F31 3305.1 3305.1
N100F7 3827.34 3926.24 N100F32 3643.62 3709.39
N100F8 3718.65 3718.65 N100F33 3583.86 3593.1
N100F9 3457.39 3495.47 N100F34 3709.51 3711.48

N100F10 3971.52 4000.86 N100F35 3433.84 3444.6
N100F11 4022.08 4062.28 N100F36 3671.19 3678.15
N100F12 3397.91 3520.62 N100F37 3775.62 3775.62
N100F13 3803.01 4071.1 N100F38 3850.58 3861.1
N100F14 3546 3616 N100F39 3770.58 3770.58
N100F15 3084.2 3137.01 N100F40 2721.59 2835,38
N100F16 3128.92 3143.04 N100F41 3809.51 3812.03
N100F17 3063.13 3075.42 N100F42 3603.32 3614.64
N100F18 3170.24 3175.86 N100F43 3237,57 3241.3
N100F19 3792.36 3808.72 N100F44 3614.89 3702.32
N100F20 3734.7 3763.04 N100F45 2764.21 2777.81
N100F21 2913.15 2913.15 N100F46 4021.82 4093.29
N100F22 3267.38 3267.38 N100F47 3508.76 3577.05
N100F23 3305.38 3312.41 N100F48 3509.49 3517.79
N100F24 3933.6 4016.9 N100F49 3790.38 3821.67

N100F25 2985.09 2990.76 N100F50 3602.44 3648.29

E 1 4


