Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2009
RFID Security : Tiny Encryption Algorithm And
Authentication Protocols

Shirley. Gilbert
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Gilbert, Shirley., "RFID Security : Tiny Encryption Algorithm And Authentication Protocols” (2009). Theses and dissertations. Paper
1093.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1093?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

RFID SECURITY: TINY ENCRYPTION
ALGORITHM AND AUTHENTICATION
PROTOCOLS

Shirley Gilbert

A project
presented to Ryerson University
in partial fulfillment of the
requirement for the degree of
Masters in Engineering

in the program of Electrical and Computer Engineering

Toronto, Ontario, Canada, 2009
© Shirley Gilbert 2009

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

I hereby declare that | am the sole author of this project.

I authorize Ryerson University to lend this project to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this project by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Shirley Gilbert

ii

RFID Security: Tiny Encryption Algorithm and Authentication

Protocols
Shirley Gilbert,
Masters in Electrical Engineering, 2009,
Electrical and Computer Engineering,
Ryerson University
Abstract

With recent advancement in Radio Frequency Identification (RFID) technology, in
addition to reduction in cost of each unit, security has emerged as a major concern. Since
an RFID tag has limited resources like memory, power and processing capabilities,
authentication must be provided by encryption and decryption procedures that are
lightweight consuming minimal resources. This report investigates some relevant RFID
encryption algorithms and their possible implementations with respect to security, cost
and performance. A survey and brief comparison of the algorithms are performed and the
Tiny Encryption Algorithm (TEA) is selected as a feasible solution for encryption and
decryption with an acceptable level of security. TEA is implemented on an FPGA (Field
Programmable Gate Array) platform. After investigating several state-of-the-art
authentication approaches, two protocols are designed incorporating TEA and
implemented using VHDL. Simulations corroborate the functionality of the protocols and
the two techniques are compared in terms of timing, cost, security and performance.
Potential improvements to enhance the security and strengthen RF communication

during authentication are explored.

iii

Acknowledgements

The author would like to thank the supervising professor Dr. Gul Khan for providing
guidance and support for the successful completion of the project. The author would also

like to thank the review committee members for their suggestions and valued opinions.

v

Dedication

I would like to dedicate this work to my parents for their constant love, support and

encouragement without which I would not be where I am today.

Table of Contents

L. IIEOUMCTION. crmvesvnnrsnrmressmsomsaxsannssanssansssassrsssssrassessassssessasssassessner sanesmannns 1
T R U TITRTNR 05 6 e R A A S S S 1
e s eI L T —— 2
1.3 Original ContribUtIONS.........cvuvvvreeeeeieeeerssrssrsssnsnsssssssssssssssraseeeeseemsnnes 3
1.4 Organization Of TRESIS....cuiieiieuuuiieiiiieiieeeciee e e e e e e aenaaes 3

2. RFID Security and Encryption Algorithms...........cccceveviinniiinieciennne. 4
2.1 Encryption Preliminari€s.......covuuruururreussseeasieeeeersrressssmsssmmnmserensssesssnns 4
2.2 Advanced Encryption Standard (AES)..c.vivassisisssssmmssvnsssvvasnsovosnossiiasins 5
2.3 Scalable Encryption Algorithm (SEA)....cc.eeiuiiiiieeiiieeiiiieieeeeeeeiieeeenes 6
2.4 International Data Encryption Algorithm (IDEA).......ccovvuueiiiiiiriviiennniiinnn. 8
2.5 Tiny Enctyption Algomithin (TEA)..couwsessanssissimsmamscsimssisiiss 9
2.6 Extended Tiny Encryption Algorithm (XTEA)......ccccvvvrmreerrrrrsnnrerenenenns 12

3. RFID Authentication Protocol.: uwmasisssonsmamssswreviiivia 15
1 10 o 15
3.2 Attacks t0 RFID SYStEM...uuuuuurrrrvrrrreresrssssssssresseeeeeseerssessssssesssnsssmsnssses 16
3.3 Fundamental Approaches in Authentication............coceeeererreeiiereieeeeneeeenn. 17
3.4 Authentication for Location Privacy and Forward-Security...........c..ccevue. 19
3.5 Authentication for LOW-COSt Ta@S........ccvevrverriruirieieenierseeeereeerresresssennn. 21

4. Implementation of Tiny Encryption Algorithm (TEA).........cccuoc........ 24
4.1 OVEIVIEW...uuereeserenmsrareonrensessassnanasassesssasasssssssassrssssvansnssersnnsnnnsassssoss 24
4.2 Functional Requirements of TEA........ccccovuiiiiiiieiiie e e 24
4.3 Input/Output Requirements of TEA............ccvcvveeeeiiiiirinnineeeesesssnneeescnnns 25

Vi

4.4 Design of Encryption/Decryption Modules.........eeeeeeeeevrvnneennisineesieesienns 26

4.5 Tastingand Veritieation Resalls:....owwssmammousosasmassmm s ssvossss 29
4.6 Integrating Hardware Encryption and Software Decryption modules......... 31
4.7 Variable Rounds of Tiny Encryption Algorithm...........ceeeeeeiieiiieirienneennn. 33
5. Improvements in REID Se0Uity: . uommsmmnmumsmsanmmvmmssimmsmassa 35
5.1 TTOAUCHION, 1oecncsnssssrnsesssmersassrssassssnnsnssonssansesnonsonssnansanorssenmsrssnpssassons 35
5.2 Variable Key Scheme (Modified TEA)........cocviviiiimriniiieieeieenieeeeienenennns 36
5.3 Variable Round Scheme (Modified TEA).......cccueeiiiimmmmeieeieermrniiseereenens 38
5.4 HDL Implementation of Variable Key Scheme.........cccoeeveeerieriirreernnnnnn. 40
5.5 HDL Implementation of Variable Round Scheme............cccveeeieiriuvineennns 43

5.6 Comparison of Variable Key and Variable Round Authentication
TECRNIQUES. ..vevveriieireeeeeesieeeeeesieeseeeeeeeaeeesrerssasssssnerseeeeeesssresseresrneeees 45
6. ‘Coticlusion snd Futite Wotkiuussmsmnmnsonmsssnmmnannsisas 438
BB T T TN IR s oo o S A S e SRS SRS A S S 50
APPENDIXA —TEA (VHDL, CO08E)mmmipssminsmsosomasassiming 54
APPENDIX B — Variable Key Scheme (VHDL)........ccccovvveevvrecnieennne. 62
APPENDIX C — Variable Round Scheme (VHDL).........cccccceevveerennnen. 83

vii

List of Figures

Figure 2.1 Structure of the AES Algorithm

Figure 2.2 Encrypt/Decrypt Rounds in SEA

Figure 2.3 Encryption Round of IDEA

Figure 2.4 Two Feistel rounds (One round of TEA)

Figure 2.5 Feistel Structure for XTEA for two rounds

Figure 3.1 Basic Hash-Locking based Scheme [15]

Figure 3.2 Pseudo-Random Function (PRF) Block

Figure 3.3 Randomized Hash locking Scheme [15]

Figure 4.1 Block Diagram for TEA algorithm

Figure 4.2 TEA Flowchart

Figure 4.3 State Diagram for TEA Implementation

Figure 4.4 TEA Simulation waveform illustrating transition of states

Figure 4.5 TEA Simulation - First 9 rounds of encryption cycle

Figure 4.6 TEA Simulation Waveform - Output after 32 rounds

Figure 4.7 TEA Simulation Waveform - Output after 32 rounds of Decryption
Figure 4.8 System generated by SoPC (System on a Programmable Chip) Builder
Figure 4.9 TEA Top-Level Module Design

Figure 4.10 Waveform - New Delta Value Calculation for Decryption

Figure 4.11 Waveform - Output of Encryption after 50 rounds

Figure 4.12 Waveform — Output of Decryption after 50 rounds

Figure 5.1 Proposed Authentication Scheme for Variable Keys

Figure 5.2 Proposed Authentication Scheme for Variable Rounds

Figure 5.3 General Setup for Hardware/Software Implementation of Variable Key and
Variable Rounds approaches

Figure 5.4 Components and their Interface for Variable Keys Authentication
Figure 5.5 Simulation of the Variable Key Authentication protocol

Figure 5.6 Components and their Interface for Variable Round Authentication

Figure 5.7 Simulation of the Variable Round Authentication protocol

viii

List of Tables

Table 2.1 Comparison of Implementation Results of TEA and XTEA
Table 5.1 Comparison of Variable Key and Variable Round Authentication

ix

Glossary of Acronyms

AES — Advanced Standard Encryption

ANSI — American National Standards Institute

CLB - Configurable Logic Block

CMOS — Complementary Metal Oxide Semiconductor
CRC — Cyclic Redundancy Check

DB — Database

DES — Data Encryption Standard

DOS — Denial of Service

DSP — Digital Signal Processor

EPC — Electronic Product Code

FPGA - Field Programmable Gate Array

FSM - Finite State Machine

HDL — Hardware Description Language

[/O — Input/Output

ID — Identification

IDE — Integrated Development Environment

IEEE — Institute of Electrical and Electronics Engineers
I[P Core — Intellectual Property Core

ISO — International Organization for Standardization
JTAG — Joint Test Action Group

LSB — Least Significant Bit

MSB — Most Significant Bit

NIST — U.S National Institute of Standards and Technology
p-box — Permutation Box

PID — Pseudo-ID

PRF — Pseudo Random Function

PRNG — Pseudo Random Number Generator

RISC — Reduced Instruction Set Computer

RFID — Radio Frequency Identification

RNG — Random Number Generator

RAM — Random Access Memory

s-box — Substitution Box

SEA — Scalable Encryption Algorithm

SoPC — System on a Programmable Chip

TEA — Tiny Encryption Algorithm

UART - Universal Asynchronous Receiver-Transmitter

UHF — Ultra High Frequency

VHDL — Very High Speed Integrated Circuit Hardware Description Language
XTEA — Extended Tiny Encryption Algorithm

xi

Chapter 1

Introduction

1.1 Background

Radio Frequency Identification (RFID) is a rapidly developing field and technology that
emerged in the last decade. This technology is employed by using implantable microchip
devices also known as RFID tags (transponders); these tags communicate with a central
unit/general purpose computer often called a Reader or an interrogator for exchange of
information. With a plethora of applications ranging from supply chain management,
retailing, theft prevention, access control and people tagging as a few examples, the need
to explore factors of cost, security, performance and efficiency become imperative.
Moreover, since this technology is implemented on an embedded platform, it must be
accomplished by optimizing features like hardware, area, cost and latency which need to
be satisfied by the available resources. It is estimated that the cost of an RFID tag is few
cents and occupies an area of less than 1mm® (approx 0.4 mmz) [16], which will
significantly contribute to the rise of its use in the coming years. An RFID tag has limited
features which include minimal memory resources and power capabilities. Transponders
are attached to a small antenna to transmit and receive radio waves and are equipped to
operate in a wide range of frequencies from low frequency (120 KHz) to ultra high
frequency (960 MHz). They are usually classified as active and passive tags, depending
on their available resources. Active tags possess a battery and higher processing abilities
as opposed to passive tags which have very limited resources and no battery. A passive
tag derives its power from the radio waves generated by the reader during interrogation.
Due to their restricted capabilities passive tags warrant encryption algorithms with
minimal computational complexity. In addition to the tag and the reader, the entire
system comprises a backend server that is employed to store all vital information
including details of all tags being used. Several algorithms have been investigated,
developed and compared for performance [1]. Most of these are adopted by standardizing

organizations like the IEEE, the American National Standards Institute (ANSI),

(International Organization for Standardization) ISO and the U.S National Institute of
Standards and Technology (NIST). Currently, it is proposed to eliminate electronic bar
code systems and replaced with passive RFID tags of EPC (Electronic Product Code).
These are passive UHF tags that are equipped with certain functions like anti-collision, a
10-bit pseudo random number generator (PRNG) and cyclic redundancy check (CRC).
The current research is focussed on how to optimize the available resources on a tag to

achieve a good balance of cost and security.

1.2 Motivation for Research

Most of the RFID applications are sensitive to protecting the information being
exchanged, issues of security and privacy must be carefully planned. Moreover, the
weakest link in communication is the wireless channel link between the reader and the
tag. Security is assured by ensuring that the information exchange between the tag and
the reader is not revealed to an unauthorized entity or eavesdropper. Several
authentication protocols have been researched and put forth in literature in addition to

encryption and decryption algorithms.

Once algorithms and circuits are tested for functionality, hardware area consumption and
latency of the design is deemed suitable, a CMOS (semiconductor-chip) implementation
of the design is adopted for mass production. Although a plethora of platforms for
implementation exist to choose from, there are two ways to implement an encryption
algorithm - either in hardware or software. Both realms have different characteristics and
performance measurement metrics. Software implementations are compared based on
their memory consumption and clock cycles whereas hardware implementations are
evaluated based on the gate-count (area) and clock cycles for computation [1]. In order to
be adopted as a standard, a particular algorithm is thoroughly analyzed by using fewer
rounds or invocations to find a short-cut attack and then extended to the full version of
the algorithm [3]. In addition, safety, performance and availability of the algorithm are
considered. Availability signifies whether or not the algorithm is accessible in public
domain or patented by the algorithm’s designer. Safety of an algorithm is typically cited

by the designer in terms of number of rounds for which the algorithm is guaranteed to

withstand any attack. Performance comparisons are also made on different platforms such
as Pentium processors, RISC processors, microcontrollers, Digital Signal Processors
(DSPs) and Field Programmable Gate Arrays (FPGAs) since this metric can greatly vary
on the platform selected for implementation. It is clear that establishment of security and
privacy in conjunction with minimal consumption of hardware to resources are
requirements crucial to a secure RFID system. In order to satisfy the requirement of
security and privacy, it is imperative to study and explore authentication protocols in
RFID systems, and to meet the requirement of low consumption of resources use of light-

weight encryption algorithms is essential.

1.3 Original Contributions

This report presents detailed implementation of the Tiny Encryption Algorithm (TEA)
using an FPGA platform. Investigation of authentication protocols leads to the
development of two authentication protocols with slight modifications to TEA in order to
increase security and enhance resistance to attacks in an RFID system. Comparison of
these two protocols is made in terms of cost and security. Furthermore, results of the
implementation of these authentication protocols are presented to verify functionality of

the proposed schemes.

1.4 Organization of Thesis

Chapter 2 provides a brief survey of the most widely used and researched cryptographic
encryption algorithms with their advantages and disadvantages. Chapter 3 discusses the
various significant authentication protocols recently researched with respect to RFID
systems. Chapter 4 presents details on the implementation of the Tiny Encryption
Algorithm (TEA) on a hardware platform (FPGA). Chapter 5 includes possible
improvisations to strengthen security in communication between a transponder and the
reader and Chapter 6 draws conclusion to the research and provides suggestions for

future work. The Appendix includes source code (C, VHDL) for implementation of TEA
(as discussed in Chapter 5).

Chapter 2

RFID Security and Encryption Algorithms

The following sections outline various algorithms and encryption methods recently put
forth in literature. Encryption methods are briefly classified as symmetric and asymmetric
algorithms; where the former uses the same key for encryption and decryption as opposed
to the latter approach. Moreover symmetric algorithms are further classified as stream
and block ciphers. Stream ciphers operate on certain data to produce an encrypted bit at a
time at the output whereas block ciphers operate on a block of data to produce an
encrypted block of the cipher text. Symmetric methods are far less demanding in terms of

hardware and software resources and hence draw focus in the context of this research.

2.1 Encryption Preliminaries

In cryptography, the basic elements of logic that are used to develop an algorithm are the
XOR function, hash function and substitution/permutation boxes. XOR function is very
critical in cryptography; if R is a randomly generated string, C is cipher-text and P is a
plain string, we can generate C = (P XOR R) and recover P = (C XOR R). Hash functions
can be either cryptographic or plain; cryptographic hash functions produce an output
called ‘message digest’ or simply ‘digest’ based on plaintext input where each block of
data produces a particular string of bits based on a complex function (e.g. checksums or
CRC). A plain hash function on the other hand maps the possible blocks of input data to a
hash-table. A substitution box (s-box) is an element that accepts an input of ‘n’ bits and
generates an m-bit output based on a carefully designed look-up table to resist
cryptanalysis. A permutation box (p-box) is a technique used to shuffle bits across an s-
box in order to produce an obscure relation between the input and output. The use of s-
boxes and p-boxes are necessitated to follow the two most important criteria in
cryptography. Shannon’s property of confusion and diffusion is defined as the complexity

between the key and hash value (in context of hashing) and complexity between plaintext

and cipher-text (in the context of encryption) respectively [4]. Another common concept
is that of a Feistel structure, which is a symmetric structure used in encryption and
decryption and it consists of a series of rounds of either bit-shuffling, use of s-boxes or
XOR operations. The following section briefly analyzes the various implementations and
indicates the most feasible preference for a lightweight encryption algorithm that satisfies
the requirements of a small embedded platform then different comparable encryption

algorithms and their advantages and disadvantages are surveyed.

2.2 Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is an encryption algorithm that is widely selected
to replace its predecessor Data Encryption Standard (DES) in the U.S by the National
Institute of Standards and Technology (NIST) [3]. AES proved itself as a strong
symmetric key algorithm with a block size of 128 bits and keys of sizes 128, 192 and 256
respectively. AES is available world-wide and it is royalty free. Although this might
seem surprising to be adopted by the U.S government; in order to be adopted
commercially the algorithm must be available freely. Moreover, security of AES depends
on how secret the key is kept. AES uses both s-boxes and p-boxes in its implementation
and a normal round is composed of four different transformations: SubByte, ShifiRow,
MixColumn and AddRoundKey. The final round is equal to the normal round except that
MixColumn is eliminated. As depicted in Figure 2.1, ‘SubByte’ is a non-linear
substitution step where each byte is replaced with another according to a lookup table.
‘ShiftRows’ is a transposition step where each row of the state is shifted cyclically for a
certain number of steps. ‘MixColumns’ performs mixing operation which operates on the
columns of the state, combining the four bytes in each column. ‘4ddRoundKey’ is a state
where each byte of the state is combined with the round key where each round key is
derived from the cipher key using a key schedule. Different approaches for
implementation based on required design criteria are explained in [10] classified as
pipelining and sub-pipelining. Pipelining increases the speed of execution by processing
multiple blocks of data simultaneously. Sub-pipelining inserts registers between a set of
subsequent computations to obtain higher speed proportional to sets of stages; however

there is control and area overhead associated with the use of extra registers and the

increase in speed depends on the number of stages chosen. Since there are a lot of

resources consumed in the AES, it is not suitable for a light weight application in RFID

tags.

2.3 Scalable Encryption Algorithm (SEA)

Round 1~Nr-1

Plaintext

Add Round Key

Round
SubByte

ShiftRow
MixColumn
AddRoundKey

Master key

4

Key Expansion

Nikey Nit+1 key

b 4

Final Round
SubByte
ShiftRow
AddRoundKey

Key Register
Round
key

Final Round Key

o

Y

Cipher

Figure 2.1 Structure of the AES Algorithm [9]

Scalable Encryption Algorithm was mainly designed to target microcontroller embedded

applications [2]. As its name indicates, its most important feature is its scalability; SEA is

an encryption algorithm designed to be parameterized according to processor size and

plaintext and key-size. Parameterization is based on the assumption that key and text

block sizes are the same and in multiples of six word lengths. Although this was

originally tested and developed for platforms in embedded software applications using

microcontrollers, recent investigation in hardware implementation has been accomplished
[2]. Its performance has been compared to AES and it is based on Feistel structure with
variable number of rounds. A SEA algorithm is denoted by SEA,, , where n is the
plaintext size and key size and b is the processor and word size. The operations involved
in SEA are bit-wise XOR, word rotation, inverse word rotation and substitution (s-box)
box and addition mod 2°. The main advantage of SEA algorithm is its parameterization
for different platforms. SEA is proven to withstand linear and differential cryptanalysis
provided that the number of rounds is greater than or equal to 3n/4. The suggested
number of rounds for optimum security is a minimum of (3n/4 + 2), where the second
term ensures complete diffusion. A typical evaluation of consumed resources is, SEAp
occupies 4nb words in RAM, nb + 3 registers and (n; — 1) x (22nb + 29) + 20nb + 18
operations for encryption and decryption which is based on its implementation for
Atmel’s microcontroller platform (n, refers to the number of rounds). Although proven
robust to a series of attacks, the trade-off is the consumption of resources in hardware. It
is estimated that execution of SEA, for example on a RISC processor with 128-bit key,

can take upto a few milliseconds and it requires a few hundred bytes of memory.

L Ri

(D

#

3

|

7
5
3

o

S—]
I ¢ I N
Lie1 Ris1 KL:+t KRis1

Figure 2.2 Encrypt/Decrypt Rounds in SEA

Figure 2.2 illustrates encrypt, decrypt and key round functions where:

Encrypt round performs Ri;; = R(L;) @ r(S(R;BK})); Lis; =R;

Decrypt round performs R = R'I(Li ® r(S(RiEBK))) ; Li+s1 =Ri.
Key round consists of KR;+; = KL; ® R(r(S(KR;BC)))) ; KL;+; =KR;
C refers to ciphertext, K is the key, R is the word rotation and r is the bit rotation function

respectively.

Implementation results in hardware (Xilinx FPGA) corroborate that as long as the
processor size is not a limiting factor for the frequency of operation, increasing the word
size leads to the most efficient implementation for both area and throughput [2]. A
disadvantage of this approach is the use of s-box that consumes considerable amount of
memory and is not desirable for lightweight encryption algorithm applications. SEA
employs a 3-bit substitution box; its use is not a major disadvantage and can be
accommodated if the tag possesses sufficient memory. Flexibility of SEA is its most
important characteristic, which can be an advantage due to the variety of implementation
options (code size is different in each case). However, it can also be a disadvantage in
some cases where a processor or platform prefers to use fixed size algorithms in order to
consume fixed number of clock cycles. Due to the restrictions in hardware for RFID tags,

the above mentioned reasons present limitations in hardware implementation.

2.4 International Data Encryption Algorithm (IDEA)

International Data Encryption Algorithm was developed by Xuejia Lai and James Massey
in 1991[26]. The algorithm was intended as a replacement for the DES. It uses
elementary operations like bit-wise XOR, addition modulo 2'® (square symbol) and
multiplication modulo 2% + 1 (denoted by a dot in circle symbol) as shown in Figure 2.3.
IDEA operates on 64-bit plaintext block data and produces cipher text of 64 bits using a
128-bit key. The group of 64-bit data input is divided into four 16-bit sub-groups X, X»,
X3 and X4, which are fed to the first round, and there are a total of eight rounds. The four
sub-groups are XORed, added, and multiplied with one another and with six 16-bit sub-
keys in each round. Between the rounds, the second and the third sub-blocks are
swapped. Finally, the four sub-blocks after the eighth round are collected and combined

with four sub-keys in an output transformation. Fifty two sub-keys are needed in eight

rounds and output transformation, which are generated by the sub-key generator. One of
the advantages of this technique is the lack of need for s-boxes and its robustness. IDEA
is a patented and universally applicable block algorithm which permits effective
protection of transmitted and stored data against unauthorized access by third parties. It is

widely adopted in various fields like financial sectors, broadcasting, etc.

X, X, X; X,

m‘—g) 1T T @)k

N
D

" r

Figure 2.3 Encryption Round of IDEA

2.5 Tiny Encryption Algorithm (TEA)

Tiny Encryption Algorithm is a cryptographic algorithm developed by David Wheeler
and Roger Needham in 1994 [27], in an attempt to establish lightweight encryption and
decryption. TEA uses symmetric encryption; more specifically block ciphers where it
encrypts a block of data (64 bits) at a time using a 128-bit key as shown in Figure 2.4.
The basic operations that constitute the algorithm are bit-wise shifts and rotations,
exclusive or and modulo 2** addition operations. The thirty-two bit addition is an
inexpensive operation and is done by chaining four 8-bit additions in the order of least
significant byte to the most significant byte. These operations satisfy the Shannon’s two
properties of diffusion and confusion without the explicit need of complex substitution

boxes (s-boxes) and permutation boxes (p-boxes). Feistel ciphers are employed in TEA,

which is a special class of iterated block ciphers. The cipher text is calculated from the
plain text by repeated application of the same transformation or round function. In a
Feistel cipher, the text being encrypted is split into two halves. The round function, F is
applied to one half using a sub key and the output of F is XORed with the other half. The
two halves are then swapped. Each round follows the same pattern except for the last

round where there is no swap. This is illustrated in detail in Figure 2.4. The value of delta
in the algorithm is derived from the golden number, delta = (\/g —1)2°! that is
represented as 0x9E3779B9 (Hex). It is known that TEA has certain weaknesses which
are accounted for by the designers of this algorithm in an extension to the TEA algorithm
called XTEA [6]. One of TEA’s major weaknesses is that it suffers from equivalent keys.
Each key is equivalent to three others, and this reduces the effective key size to only 126
bits. The related key attacks are possible even though the construction of 2* texts under

two related keys seems impractical.

Left(i) Right (i)
K(0)
=
Deltai
. FE
LY \1}‘ L]
Uﬁ: >>5
e e
K[2]
i}. << 4
Delta,
M A
o
K[3]
Left (i+1) Right (i+1)

Figure 2.4 Two Feistel rounds (One round of TEA)

10

TEA is highly resistant to differential cryptanalysis and claims to provide optimum
security. Differential cryptanalysis is a means of studying different methods of obtaining
the hidden meaning behind the encrypted information (without access to the secret key).
This is done by studying how differences in input can affect the resultant difference in the
output.

The pseudo code of the algorithm is shown below.

Encode Routine
void code(long* v, long* k) {

unsigned long y=v[0],z=v([1l], sum=0, /* set up */

delta=0x9%e3779b9, /* a key schedule constant */
n=32;
while (n-->0) ({ /* basic cycle start */

sum += delta;
Y += ((z<<4)+k[0]) ~ (z+sum) ~ ((z>>5)+k[1]);
z += ((y<<4)+k([2]) ~ (y+sum) ~ ((y>>5)+k[3]):
} /* end cycle */
v[0l=y ; v[l]l=z ;}

It is seen from the source code, that decryption is essentially the same as the encryption
procedure with a reversal of steps.

Decode Routine
void code(long* v, long* k) {
unsigned long n=32, sum, y=v[0],z=v[1],
delta=0x%e3775b9,
sum=delta<<5;
/*start cycle */
while (n-->0) {
z == ((y<<4)+k[2]) © (y+sum) ~ ((y>>5)+k[3]);
y == ((z<<4)+k([0]) *~ (z+sum) ~ ((z>>5)+k[1]);
sum-=delta;
} /* end cycle */
v[0]l=y ; v[ll=z ;}

TEA is arguably neither the fastest nor the shortest algorithm however it provides a

perfect balance between ease of implementation, consumption of minimal resources and

11

compromise between safety and size of implementation. Due to which it is an ideal

choice for deployment in RFID systems.

2.6 Extended Tiny Encryption Algorithm (XTEA)

As pointed out earlier, TEA presented certain weaknesses which were taken care of by
introducing certain changes in the original algorithm resulting in its extended version
called XTEA [6]. A block diagram of XTEA is depicted in Figure 2.5.
Whilst maintaining the simplicity of the algorithm two tasks are performed:

e Adjust the key schedule

e To introduce the key material more slowly

left(i) right(i)

Delta,.,

=3
s—l:i-— Subkey A

tHh A m
[N

L/ ks lj‘

<4

¥

>>5 le

[L:,_.z |/
>>5
left(i+1) right(i+1)

Figure 2.5 Feistel Structure for XTEA for two rounds

There is a re-arrangement of add, XOR and shift operations in order to induce a more

complex key schedule. This is illustrated in the source code given below.

12

XTEA Encode Routine (Pseudo code)
void encipher (unsigned long* v, unsigned long* k) {
unsigned long vO0=v([0], vl=v([1l], 1i;
unsigned long sum=0, delta=0x9e377%9b9;
for(i=0; 1i<32; i++) {
vl += ((vl << 4 ~ vl >> 5) + vl) ~ (sum + k[sum & 3]);

sum+=delta;

vl 4= ((v0 << 4 ~ v0 >> 5) + v0) *~ (sum + k[sum>>11 & 3]);

}
v[0]=v0; v[l]=vl;

The changes due to XTEA bring about the following advantages:

e It corrects the mixing proportion of TEA

e Eliminates the key-related attacks due to key equivalence classes
A hardware implementation of XTEA was performed using multiplexors and registers to
perform the 32-bit operations [7]. The sequence of operations is controlled by a finite
state machine, which generates the required control signals to drive the datapath. A
comparison of TEA and XTEA is made to compare the area consumption of different
units like the adder, shifter, controller, etc. as shown in Table 2. [7]. The results clearly
show that the area consumption of both approaches are nearly the same. XTEA on the
other hand consumes more clock cycles (e.g. 705 clock cycles for XTEA and 289 for

TEA) compared with TEA and also consumes more power (3.86pA compared with

3.79uA) [7].

Table 2.1 Comparison of Implementation Results of TEA and XTEA

Module/component Chip area

(GE) (%)
Eight 32-bit register 1,592 60.4
Arithmetic-logic unit (ALU) 347 13.2
Constant 5 0.2
Shifter 179 6.8
Multiplexer 180 6.8
Controller (FSM) 258 9.8
Others 73 28
XTEA toral 2,636 100
TEA roral 2,633 99.9

XTEA thus resolves the weaknesses of TEA; however both algorithms claim to provide

13

extremely lightweight application and acceptable (medium) security for use in the

industry.

14

Chapter 3

RFID Authentication Protocols

3.1 Introduction

Development of robust authentication protocols is imperative in today’s applications; a
common example is “key-less entry” in cars where the RFID tag in the key is activated as
the driver approaches to open doors and control the ignition system. Other critical
examples include potential applications in RFID enabled passports and human
implantation for health monitoring. An authentication protocol is a safe way to identify if
a particular RFID tag is genuine and belongs to the system. This is very crucial in order
to avoid common problems such as replay attack, eavesdropping, cloning, counterfeiting,
spoofing, jamming attack, etc. Moreover, it is important to ensure confidentiality,
message integrity and availability of the system [12]. The major challenge in designing
an authentication protocol is to find a compromise between security and cost. The
classification of authentication protocols can be based on three points as given below

e Underlying algorithm used in the protocols.

e Procedure of message exchange.

e Secure combination of above two.
The first point has been discussed in detail in the second chapter. Chapter 5 will present
possible approaches to accomplish the last goal with respect to a light-weight symmetric
encryption algorithm such as TEA. Design of an optimum authentication protocol forms
the crux of security and privacy of an RFID system. An authentication protocol precisely
deals with the second point; specifically, the message exchange has to be performed
securely or in a ‘secret’ manner over a wireless medium. Primitive forms of
authentication include a challenge-response method between a reader and a tag. An RFID
reader initializes a challenge request and a tag responds with a secret value (computed
from the key — typically symmetric) and sends this result to the reader as a response. The

reader verifies this result from its database to verify the authenticity of the tag.

15

There have been several approaches put forward recently by researchers addressing
issues mentioned beforehand, and techniques to overcome them; specifically where a
reader must authenticate a tag before exchange of data and also methods where a tag
needs to authenticate a reader to ensure privacy [20],[28]. Moreover, mutual
authentication protocols also exist, where the tag authenticates validity of a reader in
addition to tag-reader authentication. The following sub sections explain various
proposals and evolution of authentication protocols as of today in light of requirements

such as cost and security and also resistance to various attacks.

3.2 Attacks to RFID System

An authentication protocol is mainly judged by its ability to provide resistance against
common attacks encountered by the system. Several attacks are possible and are taken
into consideration while designing an authentication procedure. Eavesdropping is a
familiar attack where an adversary intercepts a response from the tag during wireless
communication between a tag and the reader, and tries to extract critical information like
the tag’s ID or the secret key used for secure communication [19]. This is mainly
established through cryptanalysis. Replay attack is another form whereby an adversary
intercepts response from the tag and relays it to the reader; response from the reader can
be later used in another session by the impersonated tag [14]. Location tracking is an
issue where if the information of a tag (such as its ID) is leaked and becomes available to
the adversary, further responses from the tag can be easily tracked thereby revealing the
location of the tag. Denial of Service (DOS) is a type of attack caused by an adversary to
disrupt handshake between reader and a tag by intercepting or blocking the wireless
transmission [19]. This leads to de-synchronization in the communication between a tag
and the reader. It is thus important to keep track if a session has been terminated correctly
or not. Cloning attack is a common form and can be accomplished in different possible
ways. For example, physically cloning the contents of the tag or impersonating the
original tag from its responses. Other forms of attack (counterfeiting, spoofing, etc.) more

or less arise from or are closely related to the above mentioned attacks.

16

Other metrics include Forward Security where the contents of communication prior to
being attacked should be safe; i.e. by finding key information from a transaction, the
adversary can recalculate the key value and verify contents of the previous session.
Moreover in case of a compromise, further transactions must be ensured security. This is
normally established by varying the key value. In the design and analysis of any protocol
(current or new) security and privacy analysis is executed by keeping these measures
under consideration. The more types of attacks a particular protocol can prohibit or at

least provide high resistance to, the more secure is the protocol’s design.

3.3 Fundamental Approaches in Authentication

This section briefly describes the primitive approaches to establish authentication in a
system. A hashed value of key is stored in the tag’s memory called metalD, either
wirelessly or over a secure channel and this process is termed ‘locking’ [15]. Once locked
the tag remains in this state until it is queried by a legitimate reader to unlock it, and gain
access to its contents. The reader queries the tag and gets the metalD as a response. The
reader now acquires the correct ID from its back-end database and sends it wirelessly to
the tag. It is clear from this simple protocol shown in Figure 3.1 that the key could be

easily intercepted by an eavesdropper and the tag could be spoofed.

d Qum,
S—— metalD metalD
Database (key.ID) Reader key Tag
D
S A —

Figure 3.1 Basic Hash-Locking based Scheme [15]

Another approach that follows as an improvement to this method is the randomized
access control [15]. In this method, the tag is equipped with a pseudo-random number
generator. A random number ‘R’ is generated by the tag in response to a query and the
value (R, h(ID || R)) is transmitted to the reader as shown in Figure 3.3. Here, ‘h’ isa

hash function and || refers to concatenation operation. The reader uses the ‘R’ value to

17

perform calculation of h(ID || R) in a brute-force manner till it finds a match. To further
improve the algorithm and provide a strong mode of secrecy a provision can be made
where keys are only stored at the back-end database. In this case, the tags are equipped
with a Pseudo-Random Function (PRF). A PREF is essentially a deterministic function or
a module that accepts a variable number x and a constant seed (hidden value) & to
produce a function f(x, k) or fi(x). In terms of implementation, a PRF block can be

designed as a look-up table as shown in Figure 3.2.

v — [7] — A

|

k
Figure 3.2 Pseudo-Random Function (PRF) Block

There is significant amount of research and probabilistic study to ensure that the PRF
generates all values to be randomized and to gauge if a particular PRF is a ‘good’ or a
‘bad’ function. The tag is equipped to generate fi(x) and now responds with (R, (ID ||
h(ID)) @ fi(R)). As mentioned in section 1.3, if A ® B = C then knowing C and A, B can
be recovered using the operation C® A=BorC ® B=A (if C and B are known). Now

the reader calculates fi(r) and XORs it with (ID || h(ID)) @ f(R) to get (ID || h(ID)). This

value is searched among a list to find a match. This method is useful because an

eavesdropper getting any information from the transaction will not be able to acquire the

tag’s actual ID without the PRF generated key.

s e

\"H—.____,__r/”
el R.h(IDk || R)
Database |ID1, ID2. IDn| Reader Tag
Dk
for

\.____,./) . M

Figure 3.3 Randomized Hash locking Scheme [15]

18

In order to reduce computational complexity at the back-end database due to brute force
search method, a slight modification was proposed by Li et al. [18]. The tag sends (R,
h(ID || R), h(Py || R) where Py is some product information (for example, product category
code) where instead of the tag replying to a query with only (R, h(ID || R)). This enables
the database to decode the value of Py so that instead of searching the entire system of
records, it can search for the ID within the product code category. This is a significant

improvement for applications in retail management and stock inventory.

It is thus apparent how authentication procedures have evolved to suffice some of the
basic requirements of RFID system by providing tag authentication to the reader without
the exchange of the actual key. Based on research, simulations for authentication
protocols in software hardly exist to the best of our knowledge, although real simulation
of an RFID environment using hardware is executed in few research spaces around the

world and is a far more expensive approach.

3.4 Authentication for Location Privacy and Forward-Security

Although the above mentioned techniques are developed such that the key remains
unexposed during wireless transmission, there are other possible attacks that may arise
leading to a compromise in authentication. For example Kim et al. and others analyze the
importance of protecting the tag identifier (ID) [13]. This value is typically encoded by a
manufacturer and it is embedded in the tag’s memory. Since it is unchanged throughout
the tag’s lifetime, location tracking may occur if information is leaked thus leading to a
compromise in security. A method to update the key during each transaction has been put
forth recently [13]. The main assumptions of this work are that the tag possesses an ID
that is unique, a secret key (key) and has an encryption function (E). Moreover, the
encryption scheme used here is a stream cipher. The reader is equipped with a pseudo-
random number generator (PRNG), E and the back-end database stores details of all pairs
of ID, key and E’|p, R’; where E’|p refers to the encrypted tag ID using the current key by

an operation done in the database and R’ refers to random bit streams generated in the

database.

19

The reader generates a random number S and sends it to the tag. The tag now generates
AID || key) which is generated in the form of streams R, Ry, R3 and Ry; from this the
unique ID in the tag is XORed with R, which gives Ejp. Tpag is a flag kept to know
whether the last authentication transaction is successful or not. If Tp,g is 0 it means the
authentication is successful and if this is a non-zero number it means otherwise. In the
latter case, R and R; are re-generated from f{ID @ key) || key © S) while R; and R4 remain
the same. The tag now sends Ry, Eip, Tpag and S to the reader which recognizes S and
therefore the validity of the tag. Also, these values are passed on by the reader to the
database for verification. Meanwhile, the tag changes the value of Tg,e to a non-zero
random number to indicate that a response from the database is awaited. The database
checks the value of Tp,g in its records; if this is zero, then the following procedure for
updating the key value is performed.

Procedure Challenge Responded (Pseudo Code) [13]
Input: R1, EID, Tflag, S
If Tflag == 0 Then Search E’ID == EID
If E'ID.count > 0
Repeat 1 € 1 + 1
If R'1 == R1
Lkey € Ckey
Ckey € R'3
LR2 € R'2
Until i <= E'ID.count
Return 0

In case Thag has a random value, it is implied that the authentication in the previous
transaction is not completed successfully leading to a loss of synchronization between the
tag and the database. A new procedure is executed to establish a temporary value of Riemp
and Eempip till it finds the original ID.

Procedure Challenge Incomplete (Pseudo Code) [13]
Input: R1, EID, Tflag, S
If Tflag != 0 Then
Generate Rtemp, EtempID
Search EtempID == EID
If EtempID.count >0

Repeat i € i + 1

20

If Rtemp == R1
Return EtempID
Until i <= EtempID.count

Return 0O

This protocol contends to provide security against replay attack (man-in-the-middle
attack). Since the value of ID characterizes the response as being from the tag, the
database rejects any replay of the message sent by the tag. Moreover, since the ID is
encrypted an adversary cannot gain this value through cryptanalysis.

As put forth by Kim et al., a symmetric algorithm is employed for location privacy and
forward security, however it adds a huge computation load on the back-end server in case
of large number of tags. It is also contented that in addition to excessive calculations,

replay attack may be possible through counting statistics [14].

3.5 Authentication for Low-cost tags

This section analyzes a protocol put forth very recently by Li, with a goal of lowering the
cost of RFID tag production [17]. Since the area and power consumption of the circuit are
directly affected by the number of gates in the system, the protocol is designed to keep
computational complexity to a minimum. This is accomplished by eliminating encryption
and hash functions and utilizing simple operations such as XOR and modulo 2 additions.
This system assumes that a tag is equipped with a pseudo-ID (PID) which is subject to
frequent changes (updates) and a permanent ID stored in its memory. Moreover, it
possesses two keys K1 and K2 (which will also be updated). The database stores PID, 1D,
K1 and K2 for all tags in the system. Initially, the reader sends a hello message to the tag
which is responded by PID from the tag. The reader finds (K1 || K2) corresponding to this
PID value from the database and generates a random number » and computes A and B
and sends them to the tag. The tag decodes the random number value from A and B using
the secret keys K1 and K2. If both the random number values from A and B are the same
(which they should be), the tag computes C and sends it back to the reader. The reader
checks if there is a valid ID from the message C it just received. If it is not, then the
operation is aborted otherwise it continues to the next phase of updating the keys and
PID. A snapshot of the protocol’s pseudo code is illustrated below.

Tag identification:

21

Reader = Tag: hello

Tag = Reader: PID(n)tag(i)
SLMAP mutual authentication:
Reader =2 Tag: A||B

Tag = Reader: C (C')

where:

A PID(n)tag(i) ® Kl(n)tag(i) + r

B = PID(n)tag(i) + K2(n)tag(i) ® r

G (PID(n)tag(i) + IDtag(i) @ r) ® (Kl(n)tag(i) + K2(n)tag(i) + r)

After authentication of reader and tag, the keys are updated as follows,
PID(n+l)tag(i) = (PID(n)tag(i) + Kl(n)tag(i)) ® r + (IDtag(i) +
K2(n)tag(i)) @ r

Kl(n+l)tag(i) = Kl(n)tag(i) ® r + (PID(n+l)tag(i) + K2(n)tag(i) +

IDtag(i))

K2 (n+l) tag (i) K2(n)tag(i) @ r + (PID(n+l)tag(i) + Kl(n)tag(i) +

IDtag(i))

In case of a synchronization loss due to an attack, status information of previous protocol
run is stored in a flag. It also establishes confidentiality since a nearby eavesdropper may
capture the message but would not get any information without the actual key values as
well as tag/reader authenticity (reader-to-tag and tag-to-reader due to exchange of
messages A, B and C). Moreover, this algorithm may not provide the highest possible
level of security. It establishes a light-weight authentication protocol with minimal
number of gates (less than 300) as opposed to a few thousand gates as required by

techniques employing encryption algorithms by using bit-wise operations.

The techniques for authentication studied here present a design to overcome a single or a
combination of attacks in a system. The most commonly used components are hash-
function generators and XOR gates as they consume very little hardware. Complex
components can be integrated in the system depending on the level of security desired.
Liu presents an eleven-step protocol that employs a stream cipher to overcome replay

attack, loss of synchronization, wiretapping and provide security measures like forward

22

security, indistinguishability and synchronization between the database and the tag [19].
It is always aimed to design a protocol that provides a compromise between the cost and

security.

23

Chapter 4

Implementation of Tiny Encryption Algorithm

4.1 Overview

TEA was originally implemented in software (comparable to the performance of DES)
however, it has conveniently migrated to hardware platforms mainly due to the ease of
implementation despite restricted resources in hardware. A hardware implementation of
TEA could be designed as an intellectual property (IP) core. Requirements of the design
can be specified and classified as functional requirements which entail the width of input
data, latency of encryption, number of gates consumed by the design, power

consumption, etc.

The design is developed using a hardware description language specific to a platform
(e.g. Xilinx, Altera FPGA) and tested using waveform simulations. There are several
CAD tools available to establish and test the design including Active HDL, Altera
Quartus and Xilinx ISE for (Hardware Description Language) HDL simulations to verify
functionality of the system. There are different methods in which the system can be
designed e.g. either by separating the control path and data path or using a finite state
machine (FSM) to control the flow of both. Hardware implementation of TEA has been
accomplished in the past using HDL leading to CMOS implementation ([6], [8]) and
using a microcontroller [30]. Tiny encryption algorithm is one of the simplest algorithms
to be implemented in hardware. It can be employed, where time is a constraint, 1.e. a
trade-off can be made between the levels of security desired and the time to encrypt or

decrypt, in terms of number of cycles.

4.2 Functional Requirements of TEA

The functionality of TEA must be verified using a simulator to validate the operation of
both the encryption and decryption schemes using waveforms. We have used Active

HDL 7.1 simulator which is chosen due to its simplicity and ease of generating and

24

applying test vectors. It must occupy minimum number of gates or configurable logic
blocks (CLBs). Plaintext must be successfully converted to encrypted cipher text in
accordance with the algorithm after 64 rounds or 32 clock cycles. The encrypted output

when fed back to the decryptor must successfully retrieve the original plaintext.

4.3 Input/Output Requirements of TEA
The input signals of TEA are specified as following:

e (4-bit input data (plaintext)

e 128-bit key (symmetric)

e Reset signal

e Clock signal (for synchronization)

e Input data rate (32 kbps or 64 kbps)
The outputs must include the following:

e 64-bit Encrypted data (cipher text)

e Ready signal

e Qutput data rate (32 kbps or 64 kbps)

The block diagram of Figure 4.1 illustrates various I/O signals required for TEA
implementation. Clock is necessary for synchronization between encryption and
decryption modules. Ready is needed to specify validity of the output at the end of
encryption/decryption. The input vector data refers to plaintext, key is 128 bit long and
the output ‘Data’ refers to the cipher text. We have opted for the encryption
implementation in hardware using VHDL and decryption in software using C language in

Altera Nios II IDE. Details of the block diagram are explained in the following section.

Data =0
Key —> TEA et Phalis
Reset — Encryption/Decryption

Clseh i > Ready

Figure 4.1 Block Diagram for TEA algorithm

25

4.4 Design of Encryption/Decryption Modules

TEA can be represented as a flowchart as illustrated in Figure 4.2, where v[0] and v[1]

are 32-bit plaintext inputs and ‘n’ represents the number of rounds. The cipher text result

is available after 32 rounds are completed.

Plamntext
v{0]. v{1]

y
I..], .

y=v[0]. z=v[1]
delta = 0x9e3779b9
n=32. sum=0

Y

n< y

".‘:I Yes
v

Encoding

y +=(z<<4)tk[0]) ® (z+sum) ® (z>>5)y+k[1]):

z = ((y<<4ytk[2]) ® (y+sum) ® ((>>5)+k[3]):

y

n<32

lNo

Final Round
V0l =y.v{1]=2 €

!

Ciphertext
v{0]. v{1]

No

Figure 4.2 TEA Flowchart

26

The input data of 64 bits is split into two halves Y and Z of 32 bits each, where Y is the
most significant bit (MSB) and Z is the least significant bit (LSB). The 128-bit key is also
divided into four blocks of 32 bits each; k[0], k[1], k[2] and k[3] for internal calculations.
The encryption module is designed as a finite state machine (FSM) having 18 states as
illustrated in Figure 4.3. All the states are synchronized using the clock signal and the

entire process contains clock and reset signals in its sensitivity list of inputs.

wait state

Z>>3 +k[1] (Rshifizkl

L=Z<<d +kf0] +Z+sum+Z>>5+k[]]

updates ¥ Updatel
Fe<4g value

Figure 4.3 State Diagram for TEA Implementation

The symbol >> is used to indicate right shift and symbol << is used to indicate left shift
respectively. Beginning with the initialization (init state) where all intermediate values
are properly initialized, including key and input data values. The next state (updatesum)
keeps track of the number of rounds (if less than 32) proceeds to the next state
(fourbitLSZ) else moves to the state done. State fourbitLSZ performs a 4-bit left shift of
the 32-bit LSB (Z). The next state, LshiftZk0 calculates ((Z << 4) + k[0]) where k[0] is a
32-bit MSB of the 128 bit key. After this, the state fivebitRSZ performs a 5-bit right shift

operation of Z and the state machine transits to the next state RshifiZkl that calculates ((Z

27

>> 5) + k[1]). The next state CalcY computes the term L = ((Z << 4) + k[0]) + (Z + sum)
+ ((Z >> 5) + k[1]), where L is an intermediate register used as a buffer. Following this
calculation the state UpdateY evaluates

Y +=({(Z<<4+k[0])®(Z+sum)e (Z>>5+Kk[1]))

or Y = Y+L in accordance with the TEA encryption source code. The newY state updates
the newly calculated value of Y to be carried forward in the next round of encryption.

This completes the first round.

The second round of the encryption algorithm, begins with the state fourbitLSY which
calculates 4-bit left shifted value of Y. State Lshift Yk2 computes ((Y << 4) + k[2]). This
is followed by fivebitRSY which performs a 5-bit right shift operation on Y. State
RshiftYk3 determines ((Y >> 5) + k[3]). CalcZ is the next state in sequence that estimates
the value of R, where R is a temporary register used to store the value of R = ((Y <<4) +
k[2]) + (Y + sum) + ((Y >> 5) + k[3]). The next state (UpdateZ) assess the value of the
following, Z += ((Y <<4) +k[2]) @ (Y +sum)e (Y >>5 +Kk[3])) where Z=Z +R.
newZ is the next state that updates the recently calculated value of Y from the second
round. The next state in sequence checkrounds checks if 32 cycles are completed based
on a counter. If so, it moves to the delay state otherwise it transits to the updatesum state
to begin the next set of rounds in the cycle. The purpose of the delay state is to ensure
enough time for the output to stabilize before it can be passed to the decryptor entity and

consumes only one extra clock cycle. This completes the encryption cycle.

The decryption is implemented and tested in two ways. The first is the hardware
approach using VHDL similar to the encryption implementation. This approach also
utilizes 18 states in a finite state machine (FSM) to perform all the operations mentioned
earlier, in the reverse order. The reason for so many states between different calculations
is to ensure that the all values are updated at the rising edge of the clock cycle. The
second implementation that has been accomplished is a software approach using Altera
Nios II IDE. This is relatively simple to execute since the source code is readily available
[27], [30]. It must be noted that the code is implemented using small C library in order to

minimize the memory footprint for the FPGA platform (Altera NIOSII).

28

4.5 Testing and Verification Results

One of the first steps in testing the functionality of the circuit is verification using
waveforms. Active HDL 7.1 provides a simple method of applying stimulus to input
vectors by using a macro file (source code in Appendix) which basically defines the clock
frequency, assertion of reset and duration of the simulation. The clock frequency used is
2 MHz i.e. 500 ns clock period. For example, an input of 0x0123456789abcdef (64 bits)
is provided and the encrypted value received after 32 rounds (~1090 clock cycles) is
0x126CB92C0653A3E. The key value used is 0x00112233445566778899aabbccddeeff
(128 bits). The encryption cycle proceeds through an FSM as described in section 4.4 and
results shown in Figure 4.4. A zoomed-out version of the process presented is (first 9
rounds) in Figure 4.5. Every signal can be monitored and internal counters (counter and

counterl) are employed for the left and right shift operations.

N-m-ye Am & |Qﬁm![‘ﬁIﬁl-@-:Zﬁl-S-uS,ﬁ|-_i-|¢,5|»§.|5_5:-5-:65:»?”?:‘5...3.
o R End s iy Tl En e ig gl Wely iyl
& ¥ deta_copy SE377989 | (UUDUULLUYSERHTSES
& ar kg 00112233 | {Uuuuuu Xoor2as
w kg 4556677 | (UUDLLLUYassfesTT
By, {889344BB | (UUUUUULUYBe)
k3 CCDDEEFF_| {UUUUUULL CCODEEFF
P ste widesn | (@ | Yoo Yo Y e Y|
@ [shitedz 00000000 | {00600000 X eaceoms
W pshiftedz 00000000 00000000 X ssaacs
47 [shiftedy woooow! GooOOOQOO__
47 rshiftedy (TTATTAVININE & (YT
Farp 00000000 £00000000)
F g 00000000 | {00006000
M rounds 0 (0 X
wary 01234567 | {01204567
warz BIABCDEF | {ESABCOEF
©© encypt opuMSBLY 00000000 | fooosoo0 |
0 encrypt_outputl SB_Z (00000000 : {00000000

Figure 4.4 TEA Simulation waveform illustrating transition of states

29

4A1D2687

49558333

(4] 87 frhitedy C4529FCB Ty 627FB 892B7FEB 1DEBIALE AEEZ4ZER WCOAEJE MCAMBITE WTIFIMB
(4 ar pghiftedy CFFBCBTS !

Wl |8D6720F9

@R |FBO78260

‘!Jl‘(B3BBEFS1

furz BOFFB4GC GIABCOEF _ YaD6BBEA_ XeorsoaDl T2FSZBC__ MOFFEGAS) (CFF80D (CDOAAFCC CZISBéFA

Figure 4.5 TEA Simulation - First 9 rounds of encryption cycle

After 32 rounds the output produced can be seen in Figure 4.6 as encrypt outputMSB Y

and encrypt_outputLSB_Z. For the purpose of testing the correctness of the encryption,
after the output 0x126CB92C0653A3E is obtained it is passed on to the decryption

module. If the output retrieved is the original plaintext, then this confirms the

functionality of the encryption module. This is verified as shown in Figure 4.7. It is

observed that after around 1090us the output is the same as the input i.e.

0x123456789abcdef.

ll'Slabe L de }.-,y , o - - :

W |shiftedz 51BB92F3 :Xsmu YSeFEAFD2 Y7AE0SI03 K5IEBSZF3 Jsemsera K7aE05303](SE
& shiftadz 447E IBAF 3«:4m::F5 JaereEDO0D K4e92CEOF KI4TEIBAF HA4TEIBAF A 4892CE0F]@
& A [shiftedy AFB0B3DB | 6B H963DCFBB 516108 YizseecoB K WAFG053DE J1236ECDB §(51361708

& pshiftedy CD715258 | B3sBE7 HCOEACH KDwizaD3s KCeazeeA0 WCD7I5258 JCEAZEEAD KD4423036
Gar | DICC7770 | | fwse4msos YcBAFors Yacwaoso X BOIAS332 \BDSDBIF2 F27E204D
[+ ar R BB4A9332 | SCOASE _ (BGFAGZEF)(F27E204D (BDGDBOFZ__ X(|(00000000 WDSCC7770 J4cieeDsD YC
[# & rounds 2 29) p €l a2 i Yz X3 ;
Io-ll'Y ... 125[:5392 e s e e — &
g CO065343F EMCFDE X552E02C0 qu:r:n: 0y Xosiaa70C Eww\roc J4TACF3IA Ys52EDRC!
#® encrypt_outputMSB_Y 126C6B32 / == N Encrypted Output —
0 encypt_oulpull SB_Z | COB53A3E Nyoosone 7~

30

Figure 4.6 TEA Simulation Waveform - Output after 32 rounds of Encryption

Name Value s[.mpo.mo.nogu.m,ao.mn.u:_so.m_aa.n?u.wpo.saao.noo
o ck 1 R e T B R I R
[& delta_copy SE377989
00112233
44556677
a2 83334488
A k3 CCDDEEFF
» State delay o8 08 | | y 4 . 28 &
.:.;.'"LsHtedz 51BB92F3 HFFIEB303]@"PFmsa) SR }(:;;ggzn .Dsct:‘ssm }(SA_CE IIIIII
[+ 87 rshiftedz 447E3BAF | DBF5 K4AD52D3F K(49555993 AFAOEE30E K487S2ECT (46400400 } (e
'_:.":']w;edy AFEOG3DB | CA84BI7B CsAlE38B AEs2e26B KIDE53A6B 89287FEB _ YFICe2iFB
f»l-' rshiftedy CD715258]{EE"EEm ACD7Eraie HCOvoE4B Heo2es4Cs (DIDES7ES HD4S3853D
+u|_ D9CC7770 | | FOmDsEF NeFFatsBA NEBCEDIC? X3336888B XsseDsec? IBFEMB
&R BB4AS332 | MDD Y300E2D5F X01BIFADA Yos03D08s Yes4BsBAs YESSESSTF YFsers2e0
¥ M rounds 32 X28 ¥29 30 Y31 Y32
Ay 126C6B92 | EC _ XH10838D YiesEeses J0954BeFE (E009IDS3 YFeB2c7Ds Yo1204567
warZ COE5343€ | | XCFFeDSOD XsFFEE4S3 YB12Fs2sc ¥B3Fs0A01 X3psesnA
@ encrypt_outputMSB_Y {126C6B92
2 encrypt_outputLSB_2Z L‘0553A3E i

Figure 4.7 TEA Simulation Waveform - Output after 32 rounds of Decryption

In this way, the functionality of the algorithm is corroborated using a hardware

description language and verified using Active HDL.

4.6 Integrating Hardware Encryption and Software Decryption Modules

As mentioned earlier, there are many ways to implement the decryption module one of
which is hardware. This is the first step to verify the functionality of encryption block.
The second method can be a software approach. In order to emulate an RFID system
consisting of a reader and a tag, where a tag would typically encrypt a certain value and
the reader would decrypt it after receiving it over a wireless interface, the encryption
block is implemented in hardware while decryption is performed in software. Since HDL
code for hardware must be tested, the evaluation tool is migrated to Altera Quartus from

Active HDL and a C application is developed in Altera Nios II IDE.
In order to facilitate the interaction between these two modules, the System-on-a-

Programmable-Chip (SoPC) Builder is used to generate the system. The system consists

of a 32-bit RISC Nios II processor, JTAG UART for downloading the program to SoPC,

31

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2009

	RFID Security : Tiny Encryption Algorithm And Authentication Protocols
	Shirley. Gilbert
	Recommended Citation

