
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2009

RFID Security : Tiny Encryption Algorithm And
Authentication Protocols
Shirley. Gilbert
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Gilbert, Shirley., "RFID Security : Tiny Encryption Algorithm And Authentication Protocols" (2009). Theses and dissertations. Paper
1093.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1093?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1093&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

RFID SECURITY: TINY ENCRYPTION
ALGORITHM AND AUTHENTICATION

PROTOCOLS

By

Shirley Gilbert

A project

presented to Ryerson University

in partial fulfillment of the

requirement for the degree of

Masters in Engineering

in the program of Electrical and Computer Engineering

Toronto, Ontario, Canada, 2009

© Shirley Gilbert 2009

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

I hereby declare that I am the sole author of this project.

I authorize Ryerson University to lend this project to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this project by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Shirley Gilbert

11

RFID Security: Tiny Encryption Algorithm and Authentication

Protocols

Abstract

Shirley Gilbert,

Masters in Electrical Engineering, 2009,

Electrical and Computer Engineering,

Ryerson University

With recent advancement in Radio Frequency Identification (RFID) technology, in

addition to reduction in cost of each unit, security has emerged as a major concern. Since

an RFID tag has limited resources like memory, power and processing capabilities,

authentication must be provided by encryption and decryption procedures that are

lightweight consuming minimal resources. This report investigates some relevant RFID

encryption algorithms and their possible implementations with respect to security, cost

and performance. A survey and brief comparison of the algorithms are performed and the

Tiny Encryption Algorithm (I'EA) is selected as a feasible solution for encryption and

decryption with an acceptable level of security. TEA is implemented on an FPGA (Field

Programmable Gate Array) platform. After investigating several state-of-the-art

authentication approaches, two protocols are designed incorporating TEA and

implemented using VHDL. Simulations corroborate the functionality of the protocols and

the two techniques are compared in terms of timing, cost, security and performance.

Potential improvements to enhance the security and strengthen RF communication

during authentication are explored.

111

Acknowledgements

The author would like to thank the supervising professor Dr. Gul Khan for providing

guidance and support for the successful completion of the project. The author would also

like to thank the review committee members for their suggestions and valued opinions.

lV

Dedication

I would like to dedicate this work to my parents for their constant love, support and

encouragement without which I would not be where I am today.

v

Table of Contents

1. Introduction ... 1

1.1 Background .. 1

1.2 Motivation for Research ... 2

1.3 Original Contributions .. 3

1.4 Organization of Thesis ... 3

2. RFID Security and Encryption Algorithms .. 4

2.1 Encryption Preliminaries .. 4

2.2 Advanced Encryption Standard (AES) .. 5

2.3 Scalable Encryption Algorithm (SEA) .. 6

2.4 International Data Encryption Algorithm (IDEA) 8

2.5 Tiny Encryption Algorithm (TEA) ... 9

2.6 Extended Tiny Encryption Algorithm (XTEA) 12

3. RFID Authentication Protocols ... 15

3 .1 Introduction .. 15

3.2 Attacks to RFID System ... 16

3.3 Fundamental Approaches in Authentication ... 17

3.4 Authentication for Location Privacy and Forward-Security 19

3.5 Authentication for Low-cost Tags .. 21

4. Implementation of Tiny Encryption Algorithm (TEA) 24

4.1 Overview ... 24

4.2 Functional Requirements of TEA ... 24

4.3 Input/Output Requirements of TEA .. 25

Vl

4.4 Design of Encryption/Decryption Modules .. 26

4.5 Testing and Verification Results ... 29

4.6 Integrating Hardware Encryption and Software Decryption modules 31

4.7 Variable Rounds of Tiny Encryption Algorithm 33

5. Improvements in RFID Security ... 35

5.1 Introduction .. 35

5.2 Variable Key Scheme (Modified TEA) ... 36

5.3 Variable Round Scheme (Modified TEA) .. 38

5.4 HDL Implementation of Variable Key Scheme 40

5.5 HDL Implementation of Variable Round Scheme 43

5.6 Comparison of Variable Key and Variable Round Authentication

Techniques ... 45

6. Conclusion and Future Work .. 48

REFERENCES ... 50

APPENDIX A- TEA (VHDL, C Code) ... 54

APPENDIX B- Variable Key Scheme (VHDL) 62

APPENDIX C- Variable Round Scheme (VHDL) 83

Vll

List of Figures

Figure 2.1 Structure of the AES Algorithm

Figure 2.2 Encrypt/Decrypt Rounds in SEA

Figure 2.3 Encryption Round of IDEA

Figure 2.4 Two Feistel rounds (One round of TEA)

Figure 2.5 Feistel Structure for XTEA for two rounds

Figure 3.1 Basic Hash-Locking based Scheme [15]

Figure 3.2 Pseudo-Random Function (PRF) Block

Figure 3.3 Randomized Hash locking Scheme [15]

Figure 4.1 Block Diagram for TEA algorithm

Figure 4.2 TEA Flowchart

Figure 4.3 State Diagram for TEA Implementation

Figure 4.4 TEA Simulation waveform illustrating transition of states

Figure 4.5 TEA Simulation- First 9 rounds of encryption cycle

Figure 4.6 TEA Simulation Waveform- Output after 32 rounds

Figure 4.7 TEA Simulation Waveform- Output after 32 rounds of Decryption

Figure 4.8 System generated by So PC (System on a Programmable Chip) Builder

Figure 4.9 TEA Top-Level Module Design

Figure 4.10 Waveform- New Delta Value Calculation for Decryption

Figure 4.11 Waveform- Output of Encryption after 50 rounds

Figure 4.12 Waveform- Output of Decryption after 50 rounds

Figure 5.1 Proposed Authentication Scheme for Variable Keys

Figure 5.2 Proposed Authentication Scheme for Variable Rounds

Figure 5.3 General Setup for Hardware/Software Implementation of Variable Key and

Variable Rounds approaches

Figure 5.4 Components and their Interface for Variable Keys Authentication

Figure 5.5 Simulation of the Variable Key Authentication protocol

Figure 5.6 Components and their Interface for Variable Round Authentication

Figure 5. 7 Simulation of the Variable Round Authentication protocol

Vlll

List of Tables

Table 2.1 Comparison of Implementation Results of TEA and XTEA

Table 5.1 Comparison of Variable Key and Variable Round Authentication

lX

Glossary of Acronyms

AES - Advanced Standard Encryption

ANSI- American National Standards Institute

CLB - Configurable Logic Block

CMOS -Complementary Metal Oxide Semiconductor

CRC - Cyclic Redundancy Check

DB- Database

DES- Data Encryption Standard

DOS - Denial of Service

DSP- Digital Signal Processor

EPC - Electronic Product Code

FPGA - Field Programmable Gate Array

FSM - Finite State Machine

HDL- Hardware Description Language

110- Input/Output

ID - Identification

IDE - Integrated Development Environment

IEEE - Institute of Electrical and Electronics Engineers

IP Core - Intellectual Property Core

ISO - International Organization for Standardization

JT AG- Joint Test Action Group

LSB - Least Significant Bit

MSB - Most Significant Bit

NIST- U.S National Institute of Standards and Technology

p-box - Permutation Box

PID - Pseudo-ID

PRF - Pseudo Random Function

PRNG- Pseudo Random Number Generator

RISC - Reduced Instruction Set Computer

RFID - Radio Frequency Identification

X

RNG -Random Number Generator

RAM - Random Access Memory

s-box- Substitution Box

SEA - Scalable Encryption Algorithm

SoPC - System on a Programmable Chip

TEA - Tiny Encryption Algorithm

UART - Universal Asynchronous Receiver-Transmitter

UHF - Ultra High Frequency

VHDL- Very High Speed Integrated Circuit Hardware Description Language

XTEA - Extended Tiny Encryption Algorithm

Xl

Chapter 1

Introduction

1.1 Background

Radio Frequency Identification (RFID) is a rapidly developing field and technology that

emerged in the last decade. This technology is employed by using implantable microchip

devices also known as RFID tags (transponders); these tags communicate with a central

unit/general purpose computer often called a Reader or an interrogator for exchange of

information. With a plethora of applications ranging from supply chain management,

retailing, theft prevention, access control and people tagging as a few examples, the need

to explore factors of cost, security, performance and efficiency become imperative.

Moreover, since this technology is implemented on an embedded platform, it must be

accomplished by optimizing features like hardware, area, cost and latency which need to

be satisfied by the available resources. It is estimated that the cost of an RFID tag is few

cents and occupies an area of less than 1mm2 (approx 0.4 mm2
) [16], which will

significantly contribute to the rise of its use in the coming years. An RFID tag has limited

features which include minimal memory resources and power capabilities. Transponders

are attached to a small antenna to transmit and receive radio waves and are equipped to

operate in a wide range of frequencies from low frequency (120KHz) to ultra high

frequency (960 MHz). They are usually classified as active and passive tags, depending

on their available resources. Active tags possess a battery and higher processing abilities

as opposed to passive tags which have very limited resources and no battery. A passive

tag derives its power from the radio waves generated by the reader during interrogation.

Due to their restricted capabilities passive tags warrant encryption algorithms with

minimal computational complexity. In addition to the tag and the reader, the entire

system comprises a backend server that is employed to store all vital information

including details of all tags being used. Several algorithms have been investigated,

developed and compared for performance [1]. Most of these are adopted by standardizing

organizations like the IEEE, the American National Standards Institute (ANSI),

1

(International Organization for Standardization) ISO and the U.S National Institute of

Standards and Technology (NIST). Currently, it is proposed to eliminate electronic bar

code systems and replaced with passive RFID tags of EPC (Electronic Product Code).

These are passive UHF tags that are equipped with certain functions like anti-collision, a

10-bit pseudo random number generator (PRNG) and cyclic redundancy check (CRC).

The current research is focussed on how to optimize the available resources on a tag to

achieve a good balance of cost and security.

1.2 Motivation for Research

Most of the RFID applications are sensitive to protecting the information being

exchanged, issues of security and privacy must be carefully planned. Moreover, the

weakest link in communication is the wireless channel link between the reader and the

tag. Security is assured by ensuring that the information exchange between the tag and

the reader is not revealed to an unauthorized entity or eavesdropper. Several

authentication protocols have been researched and put forth in literature in addition to

encryption and decryption algorithms.

Once algorithms and circuits are tested for functionality, hardware area consumption and

latency of the design is deemed suitable, a CMOS (semiconductor-chip) implementation

of the design is adopted for mass production. Although a plethora of platforms for

implementation exist to choose from, there are two ways to implement an encryption

algorithm - either in hardware or software. Both realms have different characteristics and

performance measurement metrics. Software implementations are compared based on

their memory consumption and clock cycles whereas hardware implementations are

evaluated based on the gate-count (area) and clock cycles for computation [1]. In order to

be adopted as a standard, a particular algorithm is thoroughly analyzed by using fewer

rounds or invocations to find a short-cut attack and then extended to the full version of

the algorithm [3]. In addition, safety, performance and availability of the algorithm are

considered. Availability signifies whether or not the algorithm is accessible in public

domain or patented by the algorithm's designer. Safety of an algorithm is typically cited

by the designer in terms of number of rounds for which the algorithm is guaranteed to

2

withstand any attack. Performance comparisons are also made on different platforms such

as Pentium processors, RISC processors, microcontrollers, Digital Signal Processors

(DSPs) and Field Programmable Gate Arrays (FPGAs) since this metric can greatly vary

on the platform selected for implementation. It is clear that establishment of security and

privacy in conjunction with minimal consumption of hardware to resources are

requirements crucial to a secure RFID system. In order to satisfy the requirement of

security and privacy, it is imperative to study and explore authentication protocols in

RFID systems, and to meet the requirement of low consumption of resources use of light­

weight encryption algorithms is essential.

1.3 Original Contributions

This report presents detailed implementation of the Tiny Encryption Algorithm (TEA)

using an FPGA platform. Investigation of authentication protocols leads to the

development of two authentication protocols with slight modifications to TEA in order to

increase security and enhance resistance to attacks in an RFID system. Comparison of

these two protocols is made in terms of cost and security. Furthermore, results of the

implementation of these authentication protocols are presented to verify functionality of

the proposed schemes.

1.4 Organization of Thesis

Chapter 2 provides a brief survey of the most widely used and researched cryptographic

encryption algorithms with their advantages and disadvantages. Chapter 3 discusses the

various significant authentication protocols recently researched with respect to RFID

systems. Chapter 4 presents details on the implementation of the Tiny Encryption

Algorithm (TEA) on a hardware platform (FPGA). Chapter 5 includes possible

improvisations to strengthen security in communication between a transponder and the

reader and Chapter 6 draws conclusion to the research and provides suggestions for

future work. The Appendix includes source code (C, VHDL) for implementation of TEA

(as discussed in Chapter 5).

3

Chapter 2

RFID Security and Encryption Algorithms

The following sections outline various algorithms and encryption methods recently put

forth in literature. Encryption methods are briefly classified as symmetric and asymmetric

algorithms; where the former uses the same key for encryption and decryption as opposed

to the latter approach. Moreover symmetric algorithms are further classified as stream

and block ciphers. Stream ciphers operate on certain data to produce an encrypted bit at a

time at the output whereas block ciphers operate on a block of data to produce an

encrypted block of the cipher text. Symmetric methods are far less demanding in terms of

hardware and software resources and hence draw focus in the context of this research.

2.1 Encryption Preliminaries

In cryptography, the basic elements of logic that are used to develop an algorithm are the

XOR function, hash function and substitution/permutation boxes. XOR function is very

critical in cryptography; if R is a randomly generated string, C is cipher-text and P is a

plain string, we can generate C = (P XOR R) and recover P = (C XOR R). Hash functions

can be either cryptographic or plain; cryptographic hash functions produce an output

called 'message digest' or simply 'digest' based on plaintext input where each block of

data produces a particular string of bits based on a complex function (e.g. checksums or

CRC). A plain hash function on the other hand maps the possible blocks of input data to a

hash-table. A substitution box (s-box) is an element that accepts an input of 'n' bits and

generates an m-bit output based on a carefully designed look-up table to resist

cryptanalysis. A permutation box (p-box) is a technique used to shuffle bits across an s­

box in order to produce an obscure relation between the input and output. The use of s­

boxes and p-boxes are necessitated to follow the two most important criteria in

cryptography. Shannon's property of confusion and diffusion is defined as the complexity

between the key and hash value (in context of hashing) and complexity between plaintext

4

and cipher-text (in the context of encryption) respectively [4]. Another common concept

is that of a F eistel structure, which is a symmetric structure used in encryption and

decryption and it consists of a series of rounds of either bit-shuffling, use of s-boxes or

XOR operations. The following section briefly analyzes the various implementations and

indicates the most feasible preference for a lightweight encryption algorithm that satisfies

the requirements of a small embedded platform then different comparable encryption

algorithms and their advantages and disadvantages are surveyed.

2.2 Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is an encryption algorithm that is widely selected

to replace its predecessor Data Encryption Standard (DES) in the U.S by the National

Institute of Standards and Technology (NIST) [3]. AES proved itself as a strong

symmetric key algorithm with a block size of 128 bits and keys of sizes 128, 192 and 256

respectively. AES is available world-wide and it is royalty free. Although this might

seem surprising to be adopted by the U.S government; in order to be adopted

commercially the algorithm must be available freely. Moreover, security of AES depends

on how secret the key is kept. AES uses both s-boxes and p-boxes in its implementation

and a normal round is composed of four different transformations: SubByte, ShiflRow,

MixColumn and AddRoundKey. The final round is equal to the normal round except that

MixColumn is eliminated. As depicted in Figure 2.1, 'Sub Byte' is a non-linear

substitution step where each byte is replaced with another according to a lookup table.

'Shift Rows ' is a transposition step where each row of the state is shifted cyclically for a

certain number of steps. 'MixColumns' performs mixing operation which operates on the

columns of the state, combining the four bytes in each column. 'AddRoundKey' is a state

where each byte of the state is combined with the round key where each round key is

derived from the cipher key using a key schedule. Different approaches for

implementation based on required design criteria are explained in [10] classified as

pipelining and sub-pipelining. Pipelining increases the speed of execution by processing

multiple blocks of data simultaneously. Sub-pipelining inserts registers between a set of

subsequent computations to obtain higher speed proportional to sets of stages; however

there is control and area overhead associated with the use of extra registers and the

5

increase in speed depends on the number of stages chosen. Since there are a lot of

resources consumed in the AES, it is not suitable for a light weight application in RFID

tags.

Round l~Nr-1

I Plaintext I

' Add Round Key I
....

Round

Sub Byte

ShiftR.o\v

:Mix Column

jAddRoundKeyj

Final Round

Sub Byte

ShiftR.o\v

jAddRonndKeyj

I Cipher I

A1aster key

Key Expansion!
J~

Nikey Ni+l key

Round
key

,,

Key Register

Final Round Key

....

Figure 2.1 Structure of the AES Algorithm [9]

2.3 Scalable Encryption Algorithm (SEA)

Scalable Encryption Algorithm was mainly designed to target microcontroller embedded

applications [2]. As its name indicates, its most important feature is its scalability; SEA is

an encryption algorithm designed to be parameterized according to processor size and

plaintext and key-size. Parameterization is based on the assumption that key and text

block sizes are the same and in multiples of six word lengths. Although this was

originally tested and developed for platforms in embedded software applications using

6

microcontrollers, recent investigation in hardware implementation has been accomplished

[2]. Its performance has been compared to AES and it is based on Feistel structure with

variable number of rounds. A SEA algorithm is denoted by SEAn,b where n is the

plaintext size and key size and b is the processor and word size. The operations involved

in SEA are bit-wise XOR, word rotation, inverse word rotation and substitution (s-box)

box and addition mod 2b. The main advantage of SEA algorithm is its parameterization

for different platforms. SEA is proven to withstand linear and differential cryptanalysis

provided that the number of rounds is greater than or equal to 3n/4. The suggested

number of rounds for optimum security is a minimum of (3n/4 + 2), where the second

term ensures complete diffusion. A typical evaluation of consumed resources is, SEAn,b

occupies 4nb words in RAM, nb + 3 registers and (nr- 1) x (22nb + 29) + 20nb + 18

operations for encryption and decryption which is based on its implementation for

Atmel's microcontroller platform (nrrefers to the number of rounds). Although proven

robust to a series of attacks, the trade-off is the consumption of resources in hardware. It

is estimated that execution of SEA, for example on a RISC processor with 128-bit key,

can take upto a few milliseconds and it requires a few hundred bytes of memory.

Ll Ri

KL..t KRi

Ci

Figure 2.2 Encrypt/Decrypt Rounds in SEA

Figure 2.2 illustrates encrypt, decrypt and key round functions where:

Encrypt round performs Ri+I = R(Li) EB r(S(Ri83Ki)); Li+I = Ri

7

Decrypt round performs Ri+1 = R-1(Li EB r(S(RiEE3Ki)); Li+1 = Ri.

Key round consists ofKRi+1 = KLi EB R(r(S(KRiEE3Ci))); KLi+1 = KRi

C refers to ciphertext, K is the key, R is the word rotation and r is the bit rotation function

respectively.

Implementation results in hardware (Xilinx FPGA) corroborate that as long as the

processor size is not a limiting factor for the frequency of operation, increasing the word

size leads to the most efficient implementation for both area and throughput [2]. A

disadvantage of this approach is the use of s-box that consumes considerable amount of

memory and is not desirable for lightweight encryption algorithm applications. SEA

employs a 3-bit substitution box; its use is not a major disadvantage and can be

accommodated if the tag possesses sufficient memory. Flexibility of SEA is its most

important characteristic, which can be an advantage due to the variety of implementation

options (code size is different in each case). However, it can also be a disadvantage in

some cases where a processor or platform prefers to use fixed size algorithms in order to

consume fixed number of clock cycles. Due to the restrictions in hardware for RFID tags,

the above mentioned reasons present limitations in hardware implementation.

2.4 International Data Encryption Algorithm (IDEA)

International Data Encryption Algorithm was developed by Xuejia Lai and James Massey

in 1991 [26]. The algorithm was intended as a replacement for the DES. It uses

elementary operations like bit-wise XOR, addition modulo 216 (square symbol) and

multiplication modulo 216 + 1 (denoted by a dot in circle symbol) as shown in Figure 2.3.

IDEA operates on 64-bit plaintext block data and produces cipher text of 64 bits using a

128-bit key. The group of 64-bit data input is divided into four 16-bit sub-groups X1, X2,

X3 and X4, which are fed to the first round, and there are a total of eight rounds. The four

sub-groups are XORed, added, and multiplied with one another and with six 16-bit sub­

keys in each round. Between the rounds, the second and the third sub-blocks are

swapped. Finally, the four sub-blocks after the eighth round are collected and combined

with four sub-keys in an output transformation. Fifty two sub-keys are needed in eight

8

rounds and output transformation, which are generated by the sub-key generator. One of

the advantages of this technique is the lack of need for s-boxes and its robustness. IDEA

is a patented and universally applicable block algorithm which permits effective

protection of transmitted and stored data against unauthorized access by third parties. It is

widely adopted in various fields like financial sectors, broadcasting, etc.

Kl

Figure 2.3 Encryption Round of IDEA

2.5 Tiny Encryption Algorithm (TEA)

Tiny Encryption Algorithm is a cryptographic algorithm developed by David Wheeler

and Roger Needham in 1994 [27], in an attempt to establish lightweight encryption and

decryption. TEA uses symmetric encryption; more specifically block ciphers where it

encrypts a block of data (64 bits) at a time using a 128-bit key as shown in Figure 2.4.

The basic operations that constitute the algorithm are bit-wise shifts and rotations,

exclusive or and modulo 232 addition operations. The thirty-two bit addition is an

inexpensive operation and is done by chaining four 8-bit additions in the order of least

significant byte to the most significant byte. These operations satisfy the Shannon's two

properties of diffusion and confusion without the explicit need of complex substitution

boxes (s-boxes) and permutation boxes (p-boxes). Feistel ciphers are employed in TEA,

9

which is a special class of iterated block ciphers. The cipher text is calculated from the

plain text by repeated application of the same transformation or round function. In a

Feistel cipher, the text being encrypted is split into two halves. The round function, F is

applied to one half using a sub key and the output ofF is XORed with the other half. The

two halves are then swapped. Each round follows the same pattern except for the last

round where there is no swap. This is illustrated in detail in Figure 2.4. The value of delta

in the algorithm is derived from the golden number, delta= (J5 -1) 231 that is

represented as Ox9E3 779B9 (Hex). It is known that TEA has certain weaknesses which

are accounted for by the designers of this algorithm in an extension to the TEA algorithm

called XTEA [6]. One of TEA's major weaknesses is that it suffers from equivalent keys.

Each key is equivalent to three others, and this reduces the effective key size to only 126

bits. The related key attacks are possible even though the construction of 232 texts under

two related keys seems impractical.

Left(i) Right (i)

Left (i+ 1) Right (i+l)

Figure 2.4 Two Feistel rounds (One round of TEA)

10

TEA is highly resistant to differential cryptanalysis and claims to provide optimum

security. Differential cryptanalysis is a means of studying different methods of obtaining

the hidden meaning behind the encrypted information (without access to the secret key).

This is done by studying how differences in input can affect the resultant difference in the

output.

The pseudo code of the algorithm is shown below.

Encode Routine

void code(long* v, long* k) {

unsigned long y=v[O],z=v[1], sum=O, /*set up*/

delta=Ox9e3779b9, /* a key schedule constant */

n=32;

while (n-->0) { /* basic cycle start */

sum += delta;

y + = ((z < < 4) + k [0]) " (z + s urn) " ((z > > 5) + k [1]) ;

z += ((y<<4) + k [2]) " (y+sum) " ((y>>5) + k [3]) ;

/* end cycle */

v[O]=y; v[1]=z ;}

It is seen from the source code, that decryption is essentially the same as the encryption

procedure with a reversal of steps.

Decode Routine

void code(long* v, long* k) {

unsigned long n=32, sum, y=v[O],z=v[1],

delta=Ox9e3779b9,

sum=delta<<5;

/*start cycle */

while (n-->0) {

v[O]=y

z - ((y<<4) +k[2]) " (y+sum) " ((y>>5) +k[3]);

y - ((z < < 4) + k [0]) " (z + s urn) " ((z > > 5) + k [1]) ;

sum-=delta;

/* end cycle */

v[1]=z ; }

TEA is arguably neither the fastest nor the shortest algorithm however it provides a

perfect balance between ease of implementation, consumption of minimal resources and

11

compromise between safety and size of implementation. Due to which it is an ideal

choice for deployment in RFID systems.

2.6 Extended Tiny Encryption Algorithm (XTEA)

As pointed out earlier, TEA presented certain weaknesses which were taken care of by

introducing certain changes in the original algorithm resulting in its extended version

called XTEA [6]. A block diagram ofXTEA is depicted in Figure 2.5.

Whilst maintaining the simplicity of the algorithm two tasks are performed:

• Adjust the key schedule

• To introduce the key material more slowly

left(i) right(i)

left(i+ 1) right(i+ 1)

Figure 2.5 Feistel Structure for XTEA for two rounds

There is a re-arrangement of add, XOR and shift operations in order to induce a more

complex key schedule. This is illustrated in the source code given below.

12

XTEA Encode Routine (Pseudo code)

void e n c ipher(uns i gned l ong * v , unsigned l o n g* k) {

unsigned l ong vO =v [O], v l=v [l], i;

unsigned l ong s um=O , de l t a =Ox9e37 7 9b9 ;

for(i=O ; i <32 ; i ++)

vO += ((v l << 4 A vl >> 5) + vl) A (s um+ k [sum & 3]) ;

sum+=delt a;

v l += ((vO << 4 AvO >> 5) + vO) A (sum + k [sum>>ll & 3]) ;

v [O] =vO ; v [l] =vl;

The changes due to XTEA bring about the following advantages:

• It corrects the mixing proportion of TEA

• Eliminates the key-related attacks due to key equivalence classes

A hardware implementation of XTEA was performed using multiplexors and registers to

perform the 32-bit operations [7]. The sequence of operations is controlled by a finite

state machine, which generates the required control signals to drive the datapath. A

comparison of TEA and XTEA is made to compare the area consumption of different

units like the adder, shifter, controller, etc. as shown in Table 2. [7]. The results clearly

show that the area consumption of both approaches are nearly the same. XTEA on the

other hand consumes more clock cycles (e.g. 705 clock cycles for XTEA and 289 for

TEA) compared with TEA and also consumes more power (3.86f.lA compared with

3.79f.lA) [7].

Table 2.1 Comparison of Implementation Results of TEA and XTEA

~1odule/component

Eight 32-bit .register
Arithm.etic-logk unit (ALU)
Constant
Shifter
~1ultiplexer

Controller (FS~I)
Otbers

XTEA.total
TEA total

Chip area
(GE} (%)

1592 60.4
347 13.2

5 0 .. 2
179 6,8
180 6.8
258 9.8
75 2.8

2,636 100
2;633 99.9

XTEA thus resolves the weaknesses of TEA; however both algorithms claim to provide

13

extremely lightweight application and acceptable (medium) security for use in the

industry.

14

Chapter 3

RFID Authentication Protocols

3.1 Introduction

Development of robust authentication protocols is imperative in today's applications; a

common example is "key-less entry" in cars where the RFID tag in the key is activated as

the driver approaches to open doors and control the ignition system. Other critical

examples include potential applications in RFID enabled passports and human

implantation for health monitoring. An authentication protocol is a safe way to identify if

a particular RFID tag is genuine and belongs to the system. This is very crucial in order

to avoid common problems such as replay attack, eavesdropping, cloning, counterfeiting,

spoofing, jamming attack, etc. Moreover, it is important to ensure confidentiality,

message integrity and availability of the system [12]. The major challenge in designing

an authentication protocol is to find a compromise between security and cost. The

classification of authentication protocols can be based on three points as given below

• Underlying algorithm used in the protocols.

• Procedure of message exchange.

• Secure combination of above two.

The first point has been discussed in detail in the second chapter. Chapter 5 will present

possible approaches to accomplish the last goal with respect to a light-weight symmetric

encryption algorithm such as TEA. Design of an optimum authentication protocol forms

the crux of security and privacy of an RFID system. An authentication protocol precisely

deals with the second point; specifically, the message exchange has to be performed

securely or in a 'secret' manner over a wireless medium. Primitive forms of

authentication include a challenge-response method between a reader and a tag. An RFID

reader initializes a challenge request and a tag responds with a secret value (computed

from the key - typically symmetric) and sends this result to the reader as a response. The

reader verifies this result from its database to verify the authenticity of the tag.

15

There have been several approaches put forward recently by researchers addressing

issues mentioned beforehand, and techniques to overcome them; specifically where a

reader must authenticate a tag before exchange of data and also methods where a tag

needs to authenticate a reader to ensure privacy [20],[28]. Moreover, mutual

authentication protocols also exist, where the tag authenticates validity of a reader in

addition to tag-reader authentication. The following sub sections explain various

proposals and evolution of authentication protocols as of today in light of requirements

such as cost and security and also resistance to various attacks.

3.2 Attacks to RFID System

An authentication protocol is mainly judged by its ability to provide resistance against

common attacks encountered by the system. Several attacks are possible and are taken

into consideration while designing an authentication procedure. Eavesdropping is a

familiar attack where an adversary intercepts a response from the tag during wireless

communication between a tag and the reader, and tries to extract critical information like

the tag's ID or the secret key used for secure communication [19]. This is mainly

established through cryptanalysis. Replay attack is another form whereby an adversary

intercepts response from the tag and relays it to the reader; response from the reader can

be later used in another session by the impersonated tag [14]. Location tracking is an

issue where if the information of a tag (such as its ID) is leaked and becomes available to

the adversary, further responses from the tag can be easily tracked thereby revealing the

location of the tag. Denial of Service (DOS) is a type of attack caused by an adversary to

disrupt handshake between reader and a tag by intercepting or blocking the wireless

transmission [19]. This leads to de-synchronization in the communication between a tag

and the reader. It is thus important to keep track if a session has been terminated correctly

or not. Cloning attack is a common form and can be accomplished in different possible

ways. For example, physically cloning the contents of the tag or impersonating the

original tag from its responses. Other forms of attack (counterfeiting, spoofing, etc.) more

or less arise from or are closely related to the above mentioned attacks.

16

Other metrics include Forward Security where the contents of communication prior to

being attacked should be safe; i.e. by finding key information from a transaction, the

adversary can recalculate the key value and verify contents of the previous session.

Moreover in case of a compromise, further transactions must be ensured security. This is

normally established by varying the key value. In the design and analysis of any protocol

(current or new) security and privacy analysis is executed by keeping these measures

under consideration. The more types of attacks a particular protocol can prohibit or at

least provide high resistance to, the more secure is the protocol's design.

3.3 Fundamental Approaches in Authentication

This section briefly describes the primitive approaches to establish authentication in a

system. A hashed value of key is stored in the tag's memory called metaiD, either

wirelessly or over a secure channel and this process is termed 'locking' [15]. Once locked

the tag remains in this state until it is queried by a legitimate reader to unlock it, and gain

access to its contents. The reader queries the tag and gets the metaiD as a response. The

reader now acquires the correct ID from its back-end database and sends it wirelessly to

the tag. It is clear from this simple protocol shown in Figure 3.1 that the key could be

easily intercepted by an eavesdropper and the tag could be spoofed.

Query

metan> me tall)

(keyJD) Reader key Tag

ID

Figure 3.1 Basic Hash-Locking based Scheme [15]

Another approach that follows as an improvement to this method is the randomized

access control [15]. In this method, the tag is equipped with a pseudo-random number

generator. A random number 'R' is generated by the tag in response to a query and the

value (R, h(ID II R)) is transmitted to the reader as shown in Figure 3.3. Here, 'h' is a

hash function and II refers to concatenation operation. The reader uses the 'R' value to

17

perform calculation ofh(ID II R) in a brute-force manner till it finds a match. To further

improve the algorithm and provide a strong mode of secrecy a provision can be made

where keys are only stored at the back-end database. In this case, the tags are equipped

with a Pseudo-Random Function (PRF). A PRF is essentially a deterministic function or

a module that accepts a variable number x and a constant seed (hidden value) k to

produce a function f(x, k) or fk(x). In terms of implementation, a PRF block can be

designed as a look-up table as shown in Figure 3.2.

X

k

Figure 3.2 Pseudo-Random Function (PRF) Block

There is significant amount of research and probabilistic study to ensure that the PRF

generates all values to be randomized and to gauge if a particular PRF is a 'good' or a

'bad' function. The tag is equipped to generate fk(x) and now responds with (R, (ID II
h(ID)) Ef1 fk(R)). As mentioned in section 1.3, if A Ef1 B = C then knowing C and A, B can

be recovered using the operation C Ef1 A= B or C Ef1 B =A (if C and B are known). Now

the reader calculates fk(r) and XORs it with (ID II h(ID)) Ef1 fk(R) to get (ID II h(ID)). This

value is searched among a list to find a match. This method is useful because an

eavesdropper getting any information from the transaction will not be able to acquire the

tag's actual ID without the PRF generated key.

Query

Get aiiDs R.h(IDk II R)
Reader Tag

IDk

Figure 3.3 Randomized Hash locking Scheme [15]

18

In order to reduce computational complexity at the back-end database due to brute force

search method, a slight modification was proposed by Li et al. [18]. The tag sends (R,

h(ID II R), h(Px II R) where Px is some product information (for example, product category

code) where instead of the tag replying to a query with only (R, h(ID II R)). This enables

the database to decode the value of P x so that instead of searching the entire system of

records, it can search for the ID within the product code category. This is a significant

improvement for applications in retail management and stock inventory.

It is thus apparent how authentication procedures have evolved to suffice some of the

basic requirements of RFID system by providing tag authentication to the reader without

the exchange of the actual key. Based on research, simulations for authentication

protocols in software hardly exist to the best of our knowledge, although real simulation

of an RFID environment using hardware is executed in few research spaces around the

world and is a far more expensive approach.

3.4 Authentication for Location Privacy and Forward-Security

Although the above mentioned techniques are developed such that the key remains

unexposed during wireless transmission, there are other possible attacks that may arise

leading to a compromise in authentication. For example Kim et al. and others analyze the

importance of protecting the tag identifier (ID) [13]. This value is typically encoded by a

manufacturer and it is embedded in the tag's memory. Since it is unchanged throughout

the tag's lifetime, location tracking may occur if information is leaked thus leading to a

compromise in security. A method to update the key during each transaction has been put

forth recently [13]. The main assumptions of this work are that the tag possesses an ID

that is unique, a secret key (key) and has an encryption function (E). Moreover, the

encryption scheme used here is a stream cipher. The reader is equipped with a pseudo­

random number generator (PRNG), E and the back-end database stores details of all pairs

ofiD, key and E' 10, R'; where E' 10 refers to the encrypted tag ID using the current key by

an operation done in the database and R' refers to random bit streams generated in the

database.

19

The reader generates a random number S and sends it to the tag. The tag now generates

j{ID II key) which is generated in the form of streams R1, R2, R3 and~; from this the

unique ID in the tag is XORed with R2 which gives E10. T flag is a flag kept to know

whether the last authentication transaction is successful or not. If T flag is 0 it means the

authentication is successful and if this is a non-zero number it means otherwise. In the

latter case, R1 and R2 are re-generated fromj{ID EB key) II key EB S) while R3 and~ remain

the same. The tag now sends Rt, Em, Tflag and S to the reader which recognizes Sand

therefore the validity of the tag. Also, these values are passed on by the reader to the

database for verification. Meanwhile, the tag changes the value ofT flag to a non-zero

random number to indicate that a response from the database is awaited. The database

checks the value ofT flag in its records; if this is zero, then the following procedure for

updating the key value is performed.

Procedure Challenge Responded (Pseudo Code) [13]

Input: R1, EID, Tflag, S

If Tflag == 0 Then Search E'ID EID

If E'ID.count > 0

Repeat i ~ i + 1

If R'1 == R1

Lkey ~ Ckey

Ckey ~ R' 3

LR2 ~ R' 2

Until i <= E'ID.count

Return 0

In case T flag has a random value, it is implied that the authentication in the previous

transaction is not completed successfully leading to a loss of synchronization between the

tag and the database. A new procedure is executed to establish a temporary value of Rtemp

and EtempiD till it finds the original ID.

Procedure Challenge Incomplete (Pseudo Code) [13]

Input: R1, EID, Tflag, S

If Tflag != 0 Then

Generate Rternp,EternpiD

Search EternpiD == EID

If EternpiD.count >0

Repeat i ~ i + 1

20

If Rtemp == Rl

Return EtempiD

Until i <= EtempiD.count

Return 0

This protocol contends to provide security against replay attack (man-in-the-middle

attack). Since the value of ID characterizes the response as being from the tag, the

database rejects any replay of the message sent by the tag. Moreover, since the ID is

encrypted an adversary cannot gain this value through cryptanalysis.

As put forth by Kim et al., a symmetric algorithm is employed for location privacy and

forward security, however it adds a huge computation load on the back-end server in case

of large number of tags. It is also contented that in addition to excessive calculations,

replay attack may be possible through counting statistics [14].

3.5 Authentication for Low-cost tags

This section analyzes a protocol put forth very recently by Li, with a goal of lowering the

cost ofRFID tag production [17]. Since the area and power consumption of the circuit are

directly affected by the number of gates in the system, the protocol is designed to keep

computational complexity to a minimum. This is accomplished by eliminating encryption

and hash functions and utilizing simple operations such as XOR and modulo 2 additions.

This system assumes that a tag is equipped with a pseudo-ID (PID) which is subject to

frequent changes (updates) and a permanent ID stored in its memory. Moreover, it

possesses two keys K1 and K2 (which will also be updated). The database stores PID, ID,

K1 and K2 for all tags in the system. Initially, the reader sends a hello message to the tag

which is responded by PID from the tag. The reader finds (K1 II K2) corresponding to this

PID value from the database and generates a random number r and computes A and B

and sends them to the tag. The tag decodes the random number value from A and Busing

the secret keys K1 and K2. If both the random number values from A and Bare the same

(which they should be), the tag computes C and sends it back to the reader. The reader

checks if there is a valid ID from the message C it just received. If it is not, then the

operation is aborted otherwise it continues to the next phase of updating the keys and

PID. A snapshot of the protocol's pseudo code is illustrated below.

Tag identification:

21

Reader ~ Tag: hello

Tag~ Reader: PID(n)tag(i)

SLMAP mutual authentication:

Reader ~ Tag: AI I B

Tag ~ Reader: C (C')

where:

A PID(n)tag(i) ffi Kl(n)tag(i) + r

B PID(n)tag(i) + K2 (n)tag(i) ffi r

C (PID(n)tag(i) + IDtag(i) ffi r ffi (Kl(n)tag(i) + K2(n)tag(i) + r)

After authentication of reader and tag, the keys are updated as follows,

PID(n+l)tag(i)

K2 (n)tag(i)) ffi r

(PID(n)tag(i) + Kl(n)tag(i)) ffi r + (IDtag(i) +

Kl(n+l)tag(i) = Kl(n)tag(i) ffi r + (PID(n+l)tag(i) + K2(n)tag(i) +

IDtag(i))

K2(n+l)tag(i)

IDtag(i))

K2(n)tag(i) ffi r + (PID(n+l)tag(i) + Kl(n)tag(i) +

In case of a synchronization loss due to an attack, status information of previous protocol

run is stored in a flag. It also establishes confidentiality since a nearby eavesdropper may

capture the message but would not get any information without the actual key values as

well as tag/reader authenticity (reader-to-tag and tag-to-reader due to exchange of

messages A, Band C). Moreover, this algorithm may not provide the highest possible

level of security. It establishes a light-weight authentication protocol with minimal

number of gates (less than 300) as opposed to a few thousand gates as required by

techniques employing encryption algorithms by using bit-wise operations.

The techniques for authentication studied here present a design to overcome a single or a

combination of attacks in a system. The most commonly used components are hash­

function generators and XOR gates as they consume very little hardware. Complex

components can be integrated in the system depending on the level of security desired.

Liu presents an eleven-step protocol that employs a stream cipher to overcome replay

attack, loss of synchronization, wiretapping and provide security measures like forward

22

security, indistinguishability and synchronization between the database and the tag [19].

It is always aimed to design a protocol that provides a compromise between the cost and

security.

23

Chapter 4

Implementation of Tiny Encryption Algorithm

4.1 Overview

TEA was originally implemented in software (comparable to the performance of DES)

however, it has conveniently migrated to hardware platforms mainly due to the ease of

implementation despite restricted resources in hardware. A hardware implementation of

TEA could be designed as an intellectual property (IP) core. Requirements of the design

can be specified and classified as functional requirements which entail the width of input

data, latency of encryption, number of gates consumed by the design, power

consumption, etc.

The design is developed using a hardware description language specific to a platform

(e.g. Xilinx, Altera FPGA) and tested using waveform simulations. There are several

CAD tools available to establish and test the design including Active HDL, Altera

Quartus and Xilinx ISE for (Hardware Description Language) HDL simulations to verify

functionality of the system. There are different methods in which the system can be

designed e.g. either by separating the control path and data path or using a finite state

machine (FSM) to control the flow of both. Hardware implementation of TEA has been

accomplished in the past using HDL leading to CMOS implementation ([6], [8]) and

using a microcontroller [30]. Tiny encryption algorithm is one of the simplest algorithms

to be implemented in hardware. It can be employed, where time is a constraint, i.e. a

trade-off can be made between the levels of security desired and the time to encrypt or

decrypt, in terms of number of cycles.

4.2 Functional Requirements of TEA

The functionality of TEA must be verified using a simulator to validate the operation of

both the encryption and decryption schemes using waveforms. We have used Active

HDL 7.1 simulator which is chosen due to its simplicity and ease of generating and

24

applying test vectors. It must occupy minimum number of gates or configurable logic

blocks (CLBs). Plaintext must be successfully converted to encrypted cipher text in

accordance with the algorithm after 64 rounds or 32 clock cycles. The encrypted output

when fed back to the decryptor must successfully retrieve the original plaintext.

4.3 Input/Output Requirements of TEA

The input signals of TEA are specified as following:

• 64-bit input data (plaintext)

• 128-bit key (symmetric)

• Reset signal

• Clock signal (for synchronization)

• Input data rate (3 2 kbps or 64 kbps)

The outputs must include the following:

• 64-bit Encrypted data (cipher text)

• Ready signal

• Output data rate (3 2 kbps or 64 kbps)

The block diagram of Figure 4.1 illustrates various I/0 signals required for TEA

implementation. Clock is necessary for synchronization between encryption and

decryption modules. Ready is needed to specify validity of the output at the end of

enr,ryption/decryption. The input vector data refers to plaintext, key is 128 bit long and

the output ' Data' refers to the cipher text. We have opted for the encryption

implementation in hardware using VHDL and decryption in software using C language in

Altera Nios II IDE. Details of the block diagram are explained in the following section.

Data
Key

Reset

Clock

:::> ..
;;:.

TEA
... Encryp tio nfD e c rypti on ..
.... ..

Figure 4.1 Block Diagram for TEA algorithm

25

> ... Data

Ready

4.4 Design of Encryption/Decryption Modules

TEA can be represented as a flowchart as illustrated in Figure 4.2, where v[O] and v[l]

are 32-bit plaintext inputs and 'n' represents the number of rounds. The cipher text result

is available after 32 rounds are completed.

Encoding

Plaintext
v[O]:v[l]

l
Initialization
y =v[O], z=v[l]
delta= Ox9e3 779b9
n= 32, sum.= 0

J,
N<l

y += ((z<<4)+k[O]) $ (z+sum) $ ((z>>5)+k[l]);
z += {(y<<4)+k[2]) $ (y+sum) $ ((y>>5)+k[3])~

Yes

Final Round

v[O] = y, v[l] = z

!
Ciphertext
v[O],v[l]

Figure 4.2 TEA Flowchart

26

The input data of 64 bits is split into two halves Y and Z of 32 bits each, where Y is the

most significant bit (MSB) and Z is the least significant bit (LSB). The 128-bit key is also

divided into four blocks of32 bits each; k[O], k[1], k[2] and k[3] for internal calculations.

The encryption module is designed as a finite state machine (FSM) having 18 states as

illustrated in Figure 4.3. All the states are synchronized using the clock signal and the

entire process contains clock and reset signals in its sensitivity list of inputs.

32 rounds complete 1

Z>>5 + k[l}

L = Z <<4 + k[O] + Z +sum + Z >> 5 + k[1]

R = Y << 4 + k£2] + Y +sum+ Y>> 5 + k£3]

Figure 4.3 State Diagram for TEA Implementation

The symbol>> is used to indicate right shift and symbol<< is used to indicate left shift

respectively. Beginning with the initialization (init state) where all intermediate values

are properly initialized, including key and input data values. The next state (updatesum)

keeps track of the number of rounds (if less than 32) proceeds to the next state

(fourbitLSZ) else moves to the state done. State fourbitLSZ performs a 4-bit left shift of

the 32-bit LSB (Z). The next state, Lshi.ftZkO calculates ((Z << 4) + k[O]) where k[O] is a

32-bit MSB of the 128 bit key. After this, the statefivebitRSZ performs a 5-bit right shift

operation of Z and the state machine transits to the next state Rshi.ftZkl that calculates ((Z

27

>> 5) + k[l]). The next state CaleY computes the term L = ((Z << 4) + k[O]) + (Z +sum)

+ ((Z >> 5) + k[l]), where Lis an intermediate register used as a buffer. Following this

calculation the state Update Y evaluates

Y += ((Z << 4 + k[O]) EB (Z +sum) EB (Z >> 5 + k[l]))

or Y = Y +L in accordance with the TEA encryption source code. The new Y state updates

the newly calculated value ofY to be carried forward in the next round of encryption.

This completes the first round.

The second round of the encryption algorithm, begins with the state fourbitLSY which

calculates 4-bit left shifted value ofY. State LshiftYk2 computes ((Y << 4) + k[2]). This

is followed by fivebitRSY which performs a 5-bit right shift operation on Y. State

RshiftYk3 determines ((Y >> 5) + k[3]). CalcZ is the next state in sequence that estimates

the value ofR, where R is a temporary register used to store the value ofR = ((Y << 4) +

k[2]) + (Y +sum)+ ((Y >> 5) + k[3]). The next state (UpdateZ) assess the value of the

following, Z += ((Y << 4) + k[2]) EB (Y +sum) EB (Y >> 5 + k[3])) where Z = Z + R.

newZ is the next state that updates the recently calculated value of Y from the second

round. The next state in sequence checkrounds checks if 32 cycles are completed based

on a counter. If so, it moves to the delay state otherwise it transits to the update sum state

to begin the next set of rounds in the cycle. The purpose of the delay state is to ensure

enough time for the output to stabilize before it can be passed to the decryptor entity and

consumes only one extra clock cycle. This completes the encryption cycle.

The decryption is implemented and tested in two ways. The first is the hardware

approach using VHDL similar to the encryption implementation. This approach also

utilizes 18 states in a finite state machine (FSM) to perform all the operations mentioned

earlier, in the reverse order. The reason for so many states between different calculations

is to ensure that the all values are updated at the rising edge of the clock cycle. The

second implementation that has been accomplished is a software approach using Altera

Nios II IDE. This is relatively simple to execute since the source code is readily available

[27], [30]. It must be noted that the code is implemented using small C library in order to

minimize the memory footprint for the FPGA platform (Altera NIOSII).

28

4.5 Testing and Verification Results

One of the first steps in testing the functionality of the circuit is verification using

waveforms. Active HDL 7.1 provides a simple method of applying stimulus to input

vectors by using a macro file (source code in Appendix) which basically defines the clock

frequency, assertion of reset and duration of the simulation. The clock frequency used is

2 MHz i.e. 500 ns clock period. For example, an input of0x0123456789abcdef(64 bits)

is provided and the encrypted value received after 32 rounds (~1090 clock cycles) is

Ox126CB92C0653A3E. The key value used is Ox00112233445566778899aabbccddeeff

(128 bits). The encryption cycle proceeds through an FSM as described in section 4.4 and

results shown in Figure 4.4. A zoomed-out version of the process presented is (first 9

rounds) in Figure 4.5. Every signal can be monitored and internal counters (counter and

counter 1) are employed for the left and right shift operations.

Name 1 vatue 1 ~1 I o,5 I • 'i'ioio··~~·1 ~ • ? . I 2,5 I • ~ • I 3,5 I • . ~ • I 4,5 I • ~ • I 5,5 . I • ~ • I s,5 I • ? . I r 5 I • ? .

........ ~ .. ~ ~~i.~l ... :LCLCEi=~:

.~ .. ~ .. ~~!~.~=.~.~.P.~I.~~.?..?.!..~.~.~L.~~.:.~ .. ~~.~~ .. .
[£ M kO1.~~~.~.~~~~1 ... ~~~~~~~~~.~~.~~.~ .. ~:.~
. :~.: .. ~ .. ~~..I.~~~~~~!.!.!.J~~~~~~~.~~.~~ .. ~.S.~.~
L£ M k2l.~~~~~.~l .J~~~~~~~~.~~.~~ .. ~.~~.~
EF M k3 lCCDDEEFF ! Kuuuuuuuuxcc DEEFF :: .. ·:Fs·;~~·~ .. T~~d~~·~·~~~ Tl;~·i~ x ~~~·;~·i·;;~~ -x;~~~; ·~;~·~~·i·;;·~~ x;-~;·~; .. ·x;~;·~·; .. ; 1

Ef M lshiftedz ! 00000000 ! Koooooooo X XSACE0123

l£ M lshiftedy : UUUUUUUU ! ; uuuuuuuu
.. , f .. ·f~ = = :;:: $ = :;:: = = :;:: = = :;:: = = :;:: = = :;:: = = :;:: :;:: = = :;:: :;:: = = :;:: = = :;:: = :;:: = :::
rt.J M rshiftedy jUUUUUUUU j Kuuuuuuuu
································· · ··· · ··· ··············· ·········· ·· ······i········· ··· ·· ······ ·············1···~· ····· · ·" '''''"······· · ········· · ··
[±) M L i 00000000 i KOOOOOOOO ;

... : ~ ... ~

t±: M A ioooooooo i K..._(oo=oo=ooo=o=-+--=====----=--------------------
l'~ .. ;· ;·~·~·~·(~·~ lo T"k~ .. x;

.......... ; ~ ... ~

~.~.!_ ... ___ .. _ .. __ .. _ ... __ ~!~~~~~!.--L~..._~2=~~=~~=~=-.. = .. -~ =- .. =- =-.. = .. -=- =-.. =-.. =-=-.. =- = = =- = .. -= =-= =- =-.. =- =-.. ~- .. =-~ ~-= ~-~-.. ~ ~-~ .. _~_~ .. -~ ... ------~
.r~ .. ~ .. ~ J~~·~·~·~·~·~!J~.~~.~:.~:~
. ~ .. ~ ... ~~~~~~~::.~.~.~~~~·~·~·~·~:.i.~~~~~~~?.!.J~.~~.~~.~~.~
(f -() encrypt_outputLSB_Z ! 00000000 ! Koooooooo .. ; '--..... = = = = = =t = = = = = = = = = = = = = = --..... = --..... = = = = --..... = ~ ~ ~ --..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ... ~ ~ ~ ~ ~ ~. -

Figure 4.4 TEA Simulation waveform illustrating transition of states

29

. ..,..,--.,...,--,---~--,-----c----,-,-~-----,-~------,---,----,---,-,-----,-----·--
' z_o' o I • 3,01: .I • 4.0 o I o ~.0 • I • 6.0 ' I ' 7.0 ' I ~.0 ' I ! 9,0 ! I ' 1QO I ' 110 ' I ' 1.?0 I ' 1~0 I ' 1+0 I • 11)0 Name

... elk

Ltl Ar deka_cop ' E377989

u State fivebitrsz
''''''''''' ' '' ' ' ''''""''' ''' ' ' ' '"''"' ' ''' ' .i, , ,;, , ,,,MO ... OOOOoOOOO

ifJ M sum !2E:2AC136.

:~ ar rounds j10

io
H'J u counter1 :o
l±l •lsh~t~d~---·---r ; ·a096sF3 ·--··ra~~~~~;~·; ~

~i· ;;;·;~hif~~dz .. .J~~-~-~~-~!. --··rEJ:48A2C4ES):4ASA2;;·········~
LtJ AI" lsh~tedJ) ! C4529FCB ··r·~~-;;;-~;·;~~-·--·· *10E53A6B *AE8242EB -*~-~~~;~~-· *CA84~~7B ····-- -~~-3SF274~· .. :: .··::: · :·*--~~~~:~i.~ ·- · .. :::~
r±l Ar r s~ftedy ····rc:-~Ri·c:·8·79.. T K~~~~~~------*~·~;;;~· ····· ::·:: ·. :·::*-§.~~:~i.~~- : ·: .:·_-:]~~?.~-~-~~~-------·--i~~-~~;;~--·-- ····--i~&mss ~04035990 to3909209 ~
t*l M L ! 8D6nDF9 ... :::..r: .. ~~~-~~~~:?.·::· : ··: ·::. : ::x~~-56557F ··--··x294B$8i\S xos090088 Xo181FAOA X300E205F XBASE~~oo xo;~;~-~~-········ -~
FH M R ············;·Fso?s2so : Kuwuwuu xs3sFE34s ·······x~ssossc7 x333ss88s XEscEo1c7 X2FFA74BA XFDirossF xFssoo52E ···xFs5F7~·;; ~
{fj :,.; .. y T638s8F51 I c:=xF682C704 x~~~;1~·~;····~ · .. •mn•·x(;;54~8FB X12£8983 XM10838·~ x~-~~~-~~-~-~~·-······ .. ·xFEA057C~'"'"''' ""X~~-5~·~;~; .. ~· ~

:lfi:·~ ~ . :::·:· .. :::::··· ::·:: .. :! ·~:o.~·F.·~~~-~ :: :: rJ~~~~~:~~~:· : ·::::-:x~:~~~~;i.~::·· ··: .. :: ·:~x.~:;~~:~~:o~: . :: .. :::: :::x~-~~~~~-s.: J~~F~.S.~.~~- ... ·:: .. :::::~:~~-8-~900 xcoOAAFCC ·xc~988~·F·~---· · ·· ... -x;F8020C X

Figure 4.5 TEA Simulation - First 9 rounds of encryption cycle

After 32 rounds the output produced can be seen in Figure 4.6 as encrypt_ outputMSB _ Y

and encrypt_ outputLSB _ Z. For the purpose of testing the correctness of the encryption,

after the output Ox126CB92C0653A3E is obtained it is passed on to the decryption

module. If the output retrieved is the original plaintext, then this confirms the

functionality of the encryption module. This is verified as shown in Figure 4. 7. It is

observed that after around 1 090J.ts the output is the same as the input i.e.

Ox123456789abcdef

M State ! delay

[±] nr lshiftedz i 518 8 92F3
........ ······ ···· ···· · ·········· · ················ · ····· ··· ·· · ······· ·· ····· · ················ · · · ·· · ··--~~~~~~~~~::::=t===~~~~:::::::::~z;:
iB M rshiftedz i 447E38AF

±l nr lshiftedy iAF6063D8
---------------------• ---------~--~- ~~~~~~~~~~~~~~~~~
f+J M rshiftedy i CD 715258

ft.! III L i D9CC7770

f±J 111' R i884A9332
...

-~-~-~----------132 _____ L __ b~9~~~~~~~~~~~~~~~~~~~~~~~~~~~~
i126C6892 i [f.j MY

....JC0653A.3E

r±J -o encrypt_outputMSB_ Y ! 126C6892

l±l -o encrypt_ outputLS 8 _z j C0653A.3E

Figure 4.6 TEA Simulation Waveform- Output after 32 rounds of Encryption

30

Name

rn :::~.=~~~; -- - ~~-!·9E:·;·7·79·9·9·······f ... :r ··

1 cio11.2233"·····TT·· ······································· ··············
.............

lfj M k 1 l 44556677 l i

~-~i~==~==~~~=~====]~~~~~~~~~~~~~~~~~~~~~=~=~~~~=~~~~=~=~=~=~~~=======~=-=-=-=-=-=-=-=-= .. ~=-=-=-=-=-=-=-=-=-=-~-=~=========~~===-=--=-=-~--
ft.] M k3 i CCDDEEFF i i

........... ·· · ··-r···h:. ······~········;;:;········~·······~········F:······ · ·~·· ·· · ···:;::·· ·· · ··~···· · ···~·······;:;;········;;;:····· :::;:::~~~~;::;::~;::;;;::~:::::::::===
M State ~ ...• f-J! • ~~\....JI~II"\..JI~I\...II~II\...Il~·• \...1•~''"\..J 'al..J''-''~'•"\..J I~I"\..JI-.J.....II "\..J~t"\..JIIII.l.....do_nto __

L±.' AT lshiftedz

-~~: .. ~ .. r.~ ~!~.~~~~ ... i.~~7E~-~-~-~ ! ... ~~~-~:.~~-~~ ~:.~~-~~-~~-~ ~:.~~.:.:.~~-~ ~:.~~-~:.:.:~ ~:.~:.~~:.~~ ~:.~.~:.::.:.~
. ~ .. ~-.! ~.~-i_ft·~-~~ -l.~-~-~-~-~-~-~-~ L.f.~.~~-~~-~~ ~.:~.~~.:.~~-~ ~~.:.~:.~:.:.~ ~~~:~.~~.S.~ ~~-~:.~~~.:.~ *-:..~~.S.~.~~~ -................. .
-~~ .. ~ .. r.~ ~!~.~~~~ .. JE~.!..~- -~-~-~-~ J..~~.:.:..:.:.:.~.S. ~~-~~.:.~~-~~ ~~-~~-~:~.:.~ ~~-~:.~~.:.~.S. ~~-~~.:.~~.:.~ ~~~-~~-~~-~~
FfJ M L I D9CC7770 I [XFD1106BF X2FFA74BA XE8CED1C7 X3336888B X468058C7 X._B3_B_FE_34_B __ _

.0::~::~.:::::.:::::::::::::.::.:::::::::::::::·::::::.::::::::J~:~:~:~:~:~:~: : .: : .:r::~~~~:~:~~~~:::::: :: :::: :::g~~~~:~:~~~::::·: :: : ::: :::x~:~i.~~~~:~::: :: :: :: :::: :::x~:~~~~~~:~:::: :: ::: · : : : ·x~~:~~~:~~~::::::::::: : ::::x~~:~~~:~~~::: :: ::: ::·::.
[±] AT rounds ! 32 . X28 X29 X3o X31 X~.--32----------

.~ .. ~.:i. ··: .. ·.:.:::·::::::·... . .. ::::· . :::::.: :.::::::n:~~~:~:~:~~:::::::r:::~~~~:~~-~~:~: :: ::· :: ::: ·:: : : ::~::~~~~~:~~:~:~: : ::::· :: ·::-:x~:~~:~~-~~-~·::::::::::: ::::x~~:~~~:~~:~::: :: : : : : : :::x~:~~:~~:~~:~::· :: :: : ·· ::·:::
[±] AT Z

. ~ ~ - ~~~r~~~~-~-~~~~~-~-~-~.:::~ 1. ~ 26C6892 .l....t;:l ~===~····=··· ··~· · ···=·· · ··=-···=·····=··· ··=···· ·=···· :::::;:::::;:::::;:::::;~:::::;
[£ -~---~~c. rY.~~~-~~-~~~~-~-~-~~~ - --· · ·· ·: c-~-~-~-~~~-- - ·· · ·~---·~· . . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 7::: •... ::::: ... :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ... :::: :::: :::: :::: :::: :::: :::: :::: ~ ~ ~ .•.. :::: :::: .. ---~~-------;;;

Figure 4.7 TEA Simulation Waveform- Output after 32 rounds of Decryption

In this way, the functionality of the algorithm is corroborated using a hardware

description language and verified using Active HDL.

4.6 Integrating Hardware Encryption and Software Decryption Modules

As mentioned earlier, there are many ways to implement the decryption module one of

which is hardware. This is the first step to verify the functionality of encryption block.

The second method can be a software approach. In order to emulate an RFID system

consisting of a reader and a tag, where a tag would typically encrypt a certain value and

the reader would decrypt it after receiving it over a wireless interface, the encryption

block is implemented in hardware while decryption is performed in software. Since HDL

code for hardware must be tested, the evaluation tool is migrated to Altera Quartus from

Active HDL and a C application is developed in Altera Nios II IDE.

In order to facilitate the interaction between these two modules, the System-on-a­

Programmable-Chip (SoPC) Builder is used to generate the system. The system consists

of a 32-bit RISC Nios II processor, JTAG DART for downloading the program to SoPC,

31

and inputs for the system. On chip memory (RAM) is also included (~46 KB) to store the

results of encryption and decryption. The clock frequency is 50 MHz for the NIOS II

CPU system. A snapshot of the system is shown in Figure 4.8. Once the system is

generated successfully, the HDL code for the designed system is compiled (encryption

logic for TEA). Before analysis and synthesis of the system, appropriate pin assignments

are made for system clock, reset, etc. The top-level module in the system integrates the

interaction between the 'nios_system' (nios_system.vhd) generated from SoPC and the

encryption logic (rfid_tea.vhd). It ensures that data is properly passed from the 'rfid_tea'

module to the 'nios_system' CPU module in the system. After completing the analysis

and synthesis process, a configuration bit stream is loaded on the FPGA via JTAG. At

this stage the SoPC system is configured ready and the Nios II software can be

programmed as an application. The software code accepts an input as the encrypted

output from the 'rfid_tea' module which is written to a memory location for the NIOS II

software module. Afterward, the decrypted output is printed to the screen to be displayed.

The output illustrates that both the encryption and decryption algorithm work

synchronously and successfully interact with each other, thereby emulating the

interaction of a reader in software and a tag in hardware.

juse Come ... Module Name

rnstru<mon_master
data_master
jtag_debug~module

El jtag_uart
'--7 avalonjtag_slave

El decJYPt:Jnput1
~ s1

El decryptjnput2
~ s1

l'-J I ---~ El o:~hip_mem

Description

t • . - t

Avalon Memory Mapped fi.\18ster
Avalon Memory Mapped Master
Avalon Memory Mapped SfBve
JTAGUART

Avalon Memory Mapped Slave

. PIO (Pa(Bifell/0)

Avalqn MemoryMappe~ ~fil)re
PIO (ParaHeii!O)
Avalon Memory Mapped Slave

On-Chip Memqry (RAM or ROM)

Avalon MemoryM2Jpped $1aye

Clock Base

elk
IRQ

m

elk i?..f OxOOOOIOOO

elk 0' 0.00000010

elk £ Ox00001020

elk d" Ox00011'000

Figure 4.8 System generated by SoPC Builder

32

End IRQ

0 IP.Q 31~
OxOOODOfff

Ox00000007 ~
OxOIJOOOOH

Ox0000002f

Ox0001b7ff

Clk­
Reset

1
1 :1.--------Tag ___,

Hardware

(did_ tea) L...--------,>
Plain te..~t

I I~ Reset :

> v

encrypte4_MS:)

...___ ____ ___. encrypted_LSB

Reader

Software

(nios~ system)

Figure 4.9 TEA- Top-Level Module Design

4. 7 Variable Rounds of Tiny Encryption Algorithm

Decrypted output (Plain text)

"

It is contented by the authors of TEA that one of its advantages is the fact that the

algorithm can be modified to provide more security by increasing the number of rounds

[27]. To test this, after implementing TEA for 32 rounds, the number of rounds was

modified to a random value of 50. However, the value of delta in decryption must be

changed in accordance to the change in the number of rounds. So if the number of rounds

are 50, the value of delta in decryption (inv _sum) must be (50 x 9E3779B9) or

OxE6D5C622. The HDL code is modified to perform this 32-bit n1ultiplication between

delta and the newly established number of rounds. This is shown in the timing diagram

shown in Figure 4.1 0, where Y _out is the new value of delta to be used in decryption.

This operation takes about 32 clock cycles to be completed. The following waveform

shows that the encryption process works for 50 rounds. The encrypted value is

Ox4B85548CB6A69547 as shown in Figure 4.11.

D- elk l1 .
·iii··~·· ~·~·~·~················· ·· ····r4·F-·;··8·8·co·c·a·.·:·.··l····-r· · ···· ······· ····················· ··········· ······················· · ···· · ···· · ················· ·· ············· ···· · ······· ········ ······· ···

······ ·· ·· · ···· ················· · ·········· ··· · ·:-·· ·························· · ······ ··;·· · · ··~············ · ··· ··· ··············· ············· ······································ ······· · · ·························· ······· ·············· ·· ····· ··· ···· ······ · ················· ·· ······ · · ·· ····· ·· ····

ttl ·•• max_ rounds !50 ! ; 50

~~~~~~~=f~~~-~-;-~-;-=-=-=-=-=-=-=-=-~-=-~-=-=-=-~-=-~-=-~-=-~-=-=-=-=-=-=-=-=-~-~-~-~-~-;-~-=-~-; 
Figure 4.10 Waveform- New Delta Value Calculation for Decryption 

33 



Name 

f±l At sum 

±l liT counter ! 0 

(fl M counter1 ! 0 

ftl liT rounds 

l±l liT tempZ 

IB M tempZ1 ............................... 
rB At tempY 

l±l liT tempY1 

IB M lshiftedz 

:, 
!8&6.69547 

!8&6.69547 

i8B554BCO 

!025C26A4 

......... _ _i 91786F43 

rB AT rshiftedz . ............... : 4C1 E189D 

i±l liT lshifted_y ! 40EEF378 ....................................... 
±I JU rshifted_y · CF36.1 36.3 

ifl liT L 00000000 

:oooooooo 
L4885548C 

!8&6.69547 

J.J -<> encr_ypt_outputM .. i 4885548C 

:+J-<> encr_ypt_outputLS .. i 8&6.69547 

Figure 4.11 Waveform- Output of Encryption after 50 rounds 

Decryption results in the original input are shown in the following waveform of Figure 

4.12 

l:~l- ~-~U..rl1 .... 
1d:l nr counter 

[±] nr counter1 1 0 

:.±1 n:r rounds 

:.±1 n:r tempZ 

f.±l n:r tempZ1 

!50 

. ..i.~BCDEFO 
l 044D5E6F 

....................................• 

'+J nr tempY !01234567 

i±J M tempY1 !01234567 

±l nor l s hift~-~.Z. ............................ :.~.~~-~-~.?~.............. C){FF9EB303 l(FFF7S7S3 )(noA4AF3 l(3FA1C243 J;:oscc35D3 *~9A_c_E_o1_23 ___ _ 

l~1-~_r_S.~if_t~9.Z. ................ :.~~2C4E6 .............. LJ~:5~~~~~~:?.~:~::::::::::::*~:~~:~~:~~~·::: ·:::.:· · ::::*~~:~~~~:~~: . : ··.::::··:*-~:~~:~~~:~~:: ·:::::···.:::*~-~~-~~:~~~--·· ::::·: ···::*~~-~~-~~Es 
1

l+l nr lshiftedy !F3C627FB ~A84B97B J;:c9A1E38B J;:AE8242EB ){1DE53ASB l(s92B7FEB ){F3CS27FB ~-----

.i~l -~ rs~if_t~~.Y i 0..~~~~~~~:::::::·::::.::::.:.:.: ... ~.:=~==~-~-- ··:. :::·:::*~:?.~~:~~:~~:::::::::::::*~~:~~:~:~~:~: · .. ::::.:::~:~.~~-~~.C:~ ........... : .~~~:?.~~.:.=~ ...... :.: .. ::*~~:~~-~~:~~ .. :· ················· 
:.±J ML !B3BFE348 ... Q~~-~~-~~-~~ .. .. ........... 0.~~~~.:.~~~ ............. 0.:.~:.:.~~.:~ ... -.......... x~~-~~-~~-~~ ................ x~~-~~-~~.:~ ............... ~~-~~.~.:.~~-~ ..................................... .. 
:.±J MR !F58F826D 

!89A8CDEF 

!+l -il encrypl_oulpu ... ! 01234567 
·····························································• 

[±] -o en:r~~~~-~.U..~~~~-~-~ .. :.:.1.~~-~-~DEF ..........•....• ~. ====== .... :::: .... :::: .... :::: .... :::: .... :::: .... :::: .... :::: .... :::: ... :::: .... :::: .... :::: .... :::: .... =. ======== .... :::: .... :::: .... :::" .... :::: .... :::: .... :::: .... :::: .... ====""~'====fL--

Figure 4.12 Waveform- Output of Decryption after 50 rounds 

Thus it is corroborated that TEA can be modified for a variable number of rounds and it 

is successfully implemented and illustrated through waveforms. 

34 



Chapter 5 

Improvement in RFID Security 

5.1 Introduction 

Evolution of security is imperative to prevent threats of anti-counterfeiting in several 

applications such as retail and supply-chain management. To supplement this cause, 

authentication is necessary in order to distinguish a genuine product from a fake one [30]. 

The structure employed in TEA has the advantage that encryption and decryption 

operations are very similar, requiring only a reversal of the key-scheduling. This results 

in the size of the code or circuitry required to implement such a cipher is nearly halved. It 

has been widely established that TEA is the fastest and most efficient cryptographic 

algorithms [5, 8]. Moreover, TEA has security comparable to IDEA and performance 

comparable to AES in addition to having small code size compared to other algorithms 

[ 1, 26, 31]. The algorithm can be employed using various authentication procedures like 

Hash based and Randomized access control. Several measures are adopted to strengthen 

the RFID system by providing unauthorized readers to access tag information or fake tags 

to replace authentic tags. The major assumptions in designing an authentication protocol 

are that the reader has a secure connection (possibly wired) to a back-end database as 

eavesdropper may only monitor the forward channel (i.e. reader to tag) and a tag is 

equipped with a ROM to store critical information. The value of key must be kept as 

secure as possible over a wireless channel. This can be accomplished using hash­

functions (one way hash to verify authenticity of the tag by the reader) and possibly two­

way hash functions to authenticate the reader as well. Pseudo random number generation 

can be used to associate with a certain handshake to associate that the encryption 

algorithm is modified in a certain way including number of rounds, key size and so on. It 

is intended to explore different possibilities to establish secure communication between a 

reader and a tag by exploiting available resources to set up a robust RFID system. 

35 



As mentioned earlier, the robustness of an authentication protocol is not just based on the 

encryption algorithm or the procedure of message exchange, but a secure combination of 

the two. The algorithms discussed so far are all symmetric block encryption algorithms. 

The Tiny Encryption Algorithm which belongs to this category is chosen for 

implementation due to its many advantages and lightweight application. On the other 

hand, there are also stream cipher algorithms where stream ciphers encrypt individual 

byte or bit of plaintext one by one, using a simple time-dependent encryption 

transformation (e.g. RC4 [32], A5/1 [33]). Block ciphers simultaneously encrypt groups 

of characters of a plaintext message using a fixed encryption transformation. Stream 

ciphers operate faster but can be cracked by cryptanalysis since it provides very low 

diffusion. A stream cipher algorithm typically performs calculations and produces an 

output one bit at a time whereas a block encryption algorithm operates on a block of data 

(64-bit for TEA) by a series of calculations and then generates the final output. It is 

proposed that a combination of the two techniques could result in merging the advantages 

of both methods of encryption. There have been very few attempts in this area [21], 

however, the following proposed methods are attempted to be customized with respect to 

TEA and derive motivation from this approach. The following sections present a proposal 

of potentially safer mechanisms adapted to TEA. 

5.2 Variable Key Scheme (Modified TEA) 

The many possible attacks to an RFID system have been considered and presented. This 

proposition utilizes TEA to provide security against a few attacks. The XOR is already 

proved as an excellent function to encrypt values with minimal computations. The 

protocol is illustrated below in Figure 5.1. Certain assumptions are made for the system, 

as stated below 

• The connection between the reader and the database is secure. The tag and the 

reader communicate over the vulnerable wireless medium. 

• It is assumed that the tag is equipped to perform encryption/decryption using TEA 

and the XOR operation. 

36 



r 
PID 

· ;>' 

Database Reader 
T(PID ror) 

Tag 
T(PID ro rttM7_k€}~ ... 

. ,. 

Figure 5.1 Proposed Authentication Scheme for Variable Keys 

• ID refers to the unique ID assigned to each tag which may be part of the product 

code. This value remains fixed and is stored in the back-end database (for each 

tag) for verification and also in the ROM of the tag. PID (pseudo-ID) is an 

identifier assigned to the tag that is variable and changes with every protocol run. 

The value of PID can be such that it embeds the value of ID in it to be extracted 

by the reader. 

• The tag also has a re-writable memory to store value of updated keys. 

• The number of rounds of TEA is fixed in this scheme. T() stands for 32-round 

encryption performed using TEA. 

• The reader is also equipped to perform 32 round encryption and decryption. 

The protocol operates as following: 

i) Initially, the reader generates a random number rand sends it to the tag. The tag 

encrypts this value as T(PID@ r) and sends it to reader. 

ii) Decryption is performed by the reader, and PID is obtained by {(PID@ r) EB r} = PID. 

The database checks the PID value and if it finds a match, the tag is authenticated. 

iii) The DB is capable of randomly generating the new key value. One way of doing so is 

performing hash function to generate a new_ key. 

Where new_ key= h(PID EB old key) or can be defined as any other value which is 

updated in its records. 

iv) The reader encrypts (using the old key) the PID, XORs it with the new key and sends 

it to the tag. 

37 



v) The tag receives this and performs decryption to get PID by XORing with the new 

key. Now, {(PID ED new_key) EB PID} = new_key and this value is stored as the updated 

key value by the tag. 

In this way, the reader authenticates the tag. Any query or transaction that follows after 

this session will be encrypted by this new key value and subsequent transactions will use 

key values updated in their previous sessions. The values of old and new keys can be 

saved in the tag and the memory until synchronization is completed. This can be ensured 

by keeping a flag (sync) on either side that indicates completion of the session. Old keys 

can be discarded after synchronization is successful. 

Since the value of key is updated in every session, the response from the tag is different 

in every session. Even if an eavesdropper taps into the tag's response, it cannot relay the 

same response to the reader in the next session. In this way, this scheme provides security 

against replay attack. Moreover, decrypting the tag's response without the key value is 

difficult. Presence of a flag maintains synchronization between the entities of the system 

there by preventing Denial of Service attack. Other attacks like jamming attack and 

location tracking are also counteracted as a result of this design. Since the value of PID 

changes in every session, the ID value is hidden making the protocol more secure. Most 

applications prefer the use of one-way hash functions due to their low computational 

complexity. Common examples are MD5 [34] and SHA-1 [35] that are similar to block 

encryption algorithms and make use of S and P boxes. However, the use of TEA in this 

scenario aims to find a compromise between cost and security. 

5.3 Variable Rounds Scheme (Modified TEA) 

The variable key technique assumes fixed number of rounds in an encryption cycle and 

variable keys. In another scheme we have investigated to keep the value of key fixed and 

vary the number of rounds (nr) in each session. The protocol assumptions are the same as 

in the previous method with the following exceptions: 

• The tag has a pseudo-random number generator (PRNG). 

38 



• TrO is an r round encryption/decryption TEA algorithm where r is a random 

number The protocol is illustrated in Figure 5.2. 

PID 

Database PID,nr Reader 
T(PID) 

Tag 
T(P ID re nr) 

Figure 5.2 Proposed Authentication Scheme for Variable Rounds 

The protocol operates as following: 

i) Initially the Reader generates a Query message for the tag. 

ii) The tag responds with T(PJD) that is an encrypted using 32 rounds (i.e. a default value 

for the first protocol run) and a fixed symmetric key known to the tag and the reader. 

iii) The reader decrypts this value to get the PID and sends it to the database (DB). If the 

DB finds a match, the tag is considered valid and it forwards the PID and nr to the reader. 

iv) The reader encrypts PID using T = (PJD $ nr). 

v) The tag decrypts the received value to get ID $ nr. It uses XOR to retrieve the new 

value for number of rounds from {(PJD $ nr) (f) PID} = nr. 

This value is stored in the tag's memory. The subsequent session will be performed by 

TrO as opposed to the original TO. 

This method also uses sync to provide synchronization between the tag, reader and the 

database in subsequent sessions. Use of sync flag provides resistance against jamming 

attack - where frequency is blocked by the attacker; in this case the flag will indicate the 

loss of synchronization and restore old value of keys until a new session is initiated. 

Replay attack is also counteracted since the number of rounds is variable in each 

transaction and thus the information leaked from a tag's response cannot be traced since 

it is different in each session; this avoids Location tracking. It is also secure from 

eavesdropping since any information received from the tag or reader cannot be easily 

cracked and requires sophisticated methods of cryptanalysis. The only disadvantage in 

this approach is that the tag must be equipped with a PRNG that increases the cost of 

39 



complexity at the tag level; however, changing the number of rounds is far less tedious 

than changing the value of 128-bit key in every cycle. Therefore both methods have their 

own trade-offs but attempt to provide high security. The two protocols are implemented 

using the hardware/software approach similar to TEA's implementation (section 4.6) 

using NIOS II IDE and VHDL (i.e. tag in hardware and reader using software). The 

following figure shows the setup of testing the functionality of the system. 

Host Computer ~ 

(NIOS lliDE) 

JTAG 
FPGA 

(VHDL) 

Figure 5.3 General Setup for Hardware/Software Implementation of Variable Key and 

Variable Rounds approaches 

5.4 HDL Implementation of Variable Key Scheme 

The scheme described in section 5.2 is implemented using VHD L to simulate the 

interaction between the reader and a tag using the variable keys protocol for 

authentication. Two separate components are designed i.e. Reader and Tag and 

encapsulated by a top-level block diagram as shown in Figure 5.4. There are some signals 

that form the interface between the two modules, which are used to emulate the 

behaviour of the system in an RF environment. The top-level design instantiates these 

components and facilitates the behaviour of the entire system with internal signals and 

feedback. Simulation waveforms illustrate the functionality of the system in addition to 

the timing behaviour. Two assumptions are made in the design of the system. First, due to 

the complexity of the system, a random number generator is not used. Random number 

generators can be implemented as a look-up table in HDL, but for purposes of simulation 

and testing, a random number is chosen and applied to the system (e.g. the case where a 

random number is to be generated by tag and the case where a new key is to be computed 

by the reader as a random number). The new key generated by the reader can be 

implemented using many widely used techniques such as a hash function, complex 

40 



random number generating scheme, by using XOR functions or a combination of them 

depending on the level of security desired. 

Reset-+---------------, 

Clock 

Reader Reset 

Ck>ck 

Rrmdom Nrunber 

1----..._l-+--~ Reset 

t-----"--~ Clock 

t========~"-~ Random Nu.tnh<"r v 
") S , 1-------~ Enahlt~ 

Tag 

Lutpnt •• trvi;)e VA'":::=======! 
encrypt_ outputMSB_ Y V tag_ encrypt_ outp1fu\1SB _ Y 

A 
encrypt_outputLSB_Z 'I tag_encrypt_outputLSB_Z 

~======~r..~ Reader Enc.f)'Pt Output Y Reader Encrypt OutputY v 

Reader:: Encrypt Output Z 

Reader ·Output Ready 

Feedbaclc 

M atch ·Fmmd 

" t========~v~ Reader Encrypt Output Z 

t-----~ Readet Output Ready 

~------i OUtput Ready 

Next Key (send_next_ke;;) 1-E'-------l Next key (send_ne:xt_key) 

final_ deayptY 

final_ decryptZ 

New Key Value 

Figure 5.4 Components and their Interface for Variable Keys Authentication 

Since this is ultimately implemented in software on a real RFID system, it can be 

designed to handle much more computational complexity than the tag and is easier to 

implement using software. A separate technique to employ this in hardware is not 

developed here; rather a number is chosen at random to simulate a new key generated 

from a reader or back-end database. Secondly, for simplicity, it is also assumed that the 

reader performs functions of the back -end database (such as ID verification and random 

number generation). To test and verify functionality of the system, it is designed with the 

following parameters: 

• The PID of the tag is defined as a 64-bit value of0x123456789abcdef. 

• The key used for the initial (first) session of the protocol is a 128-bit value 

defined as Ox00112233445566778899aabbccddeeff. 

• The random number used by the reader is a 64-bit value of Ox00000028 or 40. 

• The number of rounds used for all encryption and decryption procedures at the 

reader and the tag are fixed to Ox00000032 or 50 rounds. 

41 



• The new key generated is a value of0x34676398ad9c23ef814574346613712b 

which is a random number. 

The Reader initiates communication with the tag by sending a random number through its 

output port. It generates a strobe signal as an output along with the random number. 

Receipt of this becomes known to the tag by the output strobe signal, which serves as an 

enable input signal to the tag. Once the enable signal goes high, it starts computing the 

value of T(P ID 63 r) where TO refers to encryption using the TEA algorithm (data 1 in 

Figure 5.5). Once this is computed, the tag asserts the Output Ready signal which serves 

as a feedback signal to the Reader block (see sync signal of Figure 5.5). The reader 

accepts the encrypted values ('encrypt_ output_ MSBY' and ' encrypt_ output_ MSBZ' in 

Figure 5.5). The reader performs decryption to retrieve the PID value from {(PJD 63 r) EE> 

r} (data 2 of Figure 5.5). Its validity is verified from the reader (i.e. either corresponding 

stored PID in the reader or valid ID extracted from the PID). If it is valid, the 

'match Jound' signal goes high, and the reader proceeds to random number generation. A 

new key is chosen (a 128-bit random value of0x34676398ad9c23ef814574346613712b 

is chosen for simulation). This new key is encrypted with the PID as T(PID EE> new key) 

(data 3 of Figure 5.5). This appears at the ' reader _encrypt_outputMSB_Y' and 

'reader _encrypt_outputLSBZ' ports of the reader. Another intermediate signal for 

synchronization is 'reader_ output _ready' which indicates the completion of this 

calculation. Once it goes high, the tag receives the newly encrypted information and 

begins decryption to retrieve the new key value (data 4 of Figure 5.5). In this way, at the 

tag side a new key, ((PID EE> new key) EE> PID) is acquired and updated in its internal 

memory (data 5 of Figure 5.5). Now for the next transaction the tag will respond with the 

encrypted tag PID using this new key. The third session will repeat the same procedure 

with the new key and so on. Thus eavesdropping of any information will not cause any 

problems in a real RFID environment since the value of number of rounds, key and PID 

are hidden. Moreover, the tag's response changes in every session making it immune to 

location tracking. 

42 



Name I • 590 • I • 1090 • I • 1590 • I • 20,00 • I • 2590 • I • 3~0 • I • 35.00 • I • 40.00 • I • 45.00 • I • 50.00 • I 

1>- Clk ........... .!.~ .................................. !.~~r~l~, ............................................................................................................................................................................................................................................................................................................................................................... . 
1>- Reset ........ .).~ ................................ ~~.O..r_~~,!:::: ...... = .... -= ...... = ....... = ...... = ...... = ........ = ...... = ...... = ...... = ...... = ....... = ...... = ........ = ..... = .... = ...... = ....... = ...... = ...... = ....... = ...... = ....... = ....... = ..... = ....... = ...... = ...... = ....... = .... -= ........ =---= ..... = ....... = ... = ....... = ...... = ...... = ....... = ...... = ...... = ........ = ..... = ....... = ...... = ...... = .... ======== 

1rt match_found 
............................. ~ .................................................. . ... ................................................................................................................................................................................................................................... 3 ....... 

1rt tag_response !o 
......... .............................. 

; 00000000 

l~!.~r.~~.~~.r~:~r~pt=·~:~tLSB:-~ .... J ~.~~~~~! ........................... : .. ~.~~~~ ....... ...................................................................................................................................... .. 
~~' re~·~·e·r:-:~~~.~~~.~.~.~~ ...................... .).~ .................................... ; ................... ~ .................................................................................................................................................................................. . 

ltJ M final_ decryptY ! 80663153 . 00000000 
.......................................................................... ;::= .......... :::;;:: .. --.. ====::::.::::::::===="""""=----"=""""'="""""="· ::::.::::::::======~~·~$==::::.::::::::======:::{·);::::::=: 

I± 1r fnal_decryptZ ! EFB8BCC4 ' oooooooo 
................................ ...... ..................................... ............ ............................................ . ................................ .. 

I±! ~~' new_key_vakJe ! 81457 434661 • 0000000000000000 34676398AD9C23EF 
................................... .......... .......................... . ................................................................................................................................................ " .. -··-··-····-······ 

~~' send_next_key .......... !.1 ................................... l.. ................ ; .................................................................................................................................................................................................................................................................................................................................................................................................. .. 

Figure 5.5 Simulation of the Variable Key Authentication protocol 

5.5 HDL Implementation of Variable Round Scheme 

Similarly, methodology described in section 5.3 for the variable round scheme is 

implemented. This approach will also be compared to the variable keys scheme described 

of section 5.2. The block diagram for the top level module is illustrated in Figure 5.6. 

There are some changes in the two protocols which are reflected here. In the variable 

round scheme case, the reader doesn't have Random number and Output strobe output 

ports and the send next key input port. However, there is a 'Query' output signal that 

drives the input of the tag ('Enable' input port). 

The two assumptions for the design of the system are the same as of variable key scheme. 

To test and verify the functionality of the system, it is designed with the following 

parameters: 

• Tag PID is defined as a 64-bit value of Ox123456789abcdef. 

• The key used for all the sessions of the protocol is a 128-bit value defined as 

Ox00112233445566778899aabbccddeeff. 

• The number of rounds used for the initial session for encryption and decryption 

procedures at the reader and the tag are Ox00000032 i.e. 50 rounds. 

43 



• The new key number of rounds "generated" from the reader is a value of 

Ox00000045 or 69 rounds which is a randomly chosen number. 

Reset-1-----------------, 

c~+-------------.j 

1--.....___t--~ Reset Tag 
Reader Res¢t 

Clock I---.____~ ClOCk 

Qu-ery 1----~- Enable 

lA 

l-.. 

finat:decryptY -~ 
· 1--., 

encrypt_outputMSB_ Y rl'~~=:=:=:~ tag_ encrypt_ output.\1SB _ Y 6nal_decryptZ v 
}-, 

'A 
encrypt_ outputLSB _Z ~-'9~======:::j tag_encrypt_outputLSB _Z New Rm.mds V .alue '-- ----t/ 

1\ 
Reader Encrypt Output y ~====~v~ Reader EriCl)'Pf Output ·Y 

ReaOO- Encrypt Output Z 

Reader Output ~Ready 

Feedback 

Match Found 

f-::=====~"~- . 1-- v Reader En.Cl)'Pt Output Z 

1----~ Reader 0utpm: Ready 

f;E-,--------.1 Output Ready 

Figure 5.6 Components and their Interface for Variable Round Authentication 

The reader generates a 'Query' to initiate communication with the tag. This enables the 

tag to begin encryption of the PID as T(PID) (data 1 of Figure 5.7). The reader receives a 

feedback signal from the tag indicating it to start the verification process. Once it 

decrypts the PID and certifies it as valid (data 2 of Figure 5. 7), the 'match Jound' signal 

is asserted and the random value for number of rounds is generated. This new value is 

now embedded in the reader's next response as T (P ID EB nr) and sent to the tag at its 

'reader _encrypt_outputMSBY' and 'reader _encrypt_outputLSBZ' ports as shown in the 

waveform (data 3 of Figure 5.7). The tag decrypts this value (data 4 of Figure 5.7) to 

decipher the hidden rounds value by XORing the resultant decrypted value as { (P ID <11 

nr) EB PID} = nr (data 5 of Figure 5.7). The new rounds value is now updated in the tag's 

memory and can be used for the subsequent session. The value for new rounds is 

Ox00000045 or 69 rounds as shown in Figure 5.7. 

44 



The waveform of Figure 5. 7 for various signals clearly illustrates the message exchange 

from one entity to the next (to/from the tag and reader) including feedback signals over a 

time scale. The total time for execution for one session from query to deciphering the 

new rounds value in this protocol is 3.426 ms i.e . .....,6853 clock cycles for a 2 MHz clock. 

Name I Stirn ~ .. I 1 0,5 1 • ) • 1 1..5 1 • ? . 1 2,5 1 • ~ • 1 3,5 1 • ' • 1 4,5 
I 

I value 

~> Clk ! 0 ! For mula 
······ · ·~··R·~~·~~ · · ·· · ···· · · · ··············· · ···················· · ········· ···Ta···················· ·· · ················ ················TF·~·;~~i~r·· · ·· · ·· · ···· · ·········· ·· ···· ·····=······ · ··· ·· · ·I····· · · · ··· · ···· · .. ····················································································· ... . 

··· · ···· · ··· · ················ · · · · ·· ·· · · ·· ············ · ·· ··· · ···· ·· · · ······ · ············ · ···~·· ············· ·· ········· · · · ···· · ············ · ····· · ·· · ····~· · ······· · ········· ~ · · ····· · · · ·· · ··· · · ···· ·· ·· ·· · ···.:.o"' ······· · ··· · · · ·~ ...... ,. .............................................................................................................. . 
r±l nr encrypt_outputMSB_ Y l4B85548C l koooooooo J4B85548C X 
····· · ·· · ···· · ······················································· · ··········· · · · · · · · · ··~··· ············ · ···· · ··· · ················· · ···· · ·· · ···· · · · ··~ ·· ··· · · · ···········~·············· ··· ·· · ·······t·· ...... ·····-·····-····-·····-·····__;····t ..... ····-·····-·····-····-·····-·····-·····-····-·····-·····-····-·····-·····-·····-····-·····-·····-·····-·····-····-·····-·····-·····--+-...... . 
:±l nr encrypt_outputLSB_Z !86.6.69547 l (oooooooo ')(BSAS9547 j 
··· · ···· ··· ······ ······· · ········· ·· · · ·· ··· ··· · ········ ·· ········ · ········ · ··· · ··· ·· ·······?·· · ···· · · · ·········· · ··· · ······ · ······ · ···· · ·· ·· · · · ·· ··· ·· ·+· ·· · ·· · · ·· ·· · · · ·· ·~ ........... -..... -..... -..... -..... ~ ..... '~ .. ~~ ... -..... -..... -... 7' .. .. -.... -..... -..... -..... -..... -..... -..... -.... -..... -..... -..... -..... -..... -..... -.... -..... -.. ... -..... -.... . -..... -..... -... .. -..... +-.... . 

nr query !O l J '================"'"" 

r±l M verified_outputY l 01234567 : : 00000000 /X01234567 \ 
········ · ·· ···· ································ · ·················· ·· ····· ·· ·· ·· · · ····· · ·· · ·~· ········ ······· · ·· · ···· · ········ · ········· ·· · · · ·· · · ·· · · ·· · · ~·· · · · ·· · · ··· · · · · ·· · ~ ·· ·· ······ · ············ · ·· ·· ·· · · · · ·· · ·· ·· · ······ ·· · · ······ 1·· · ...... ·····-·····-·· ··-·····-·····-·····+ .... -..... -..... -.... -..... -..... -..... -.... -..... -..... -.. ... -..... -.... -..... -..... -..... -.... +-.... 
i±J nr verified_outputZ ls9.6.BCDEF l koooooooo ~89ABCDEF / 
· · · ·· · ·· · ·· · ···· · ·········· ···· ·· ·· ·· ·· ··· ··· ·· · · · · ·· · · · · ···· · · ··· ··· ·· · ···· ·· ···· · ··· · ·· ·+·· ··· ·· ···· ···· · ·················· · ·· ······ · · ······· ····· ·+·················+· · ··· · · · ············· ·· ·· · · · · · · ···· · ·· · ·· ·· ···· · ······ · ········~··· ···:.:.;.lll'"'· ·· · · · · ··· · · ·· ··· ·· ·· · ·· · · · ··· · ··· · · · · ····· · ··· · · · · ·· · ·· · · ·· · ···· · ·· ····· · · ·· ·· · · · · ··· · · 

nr match_found 11 l ! I 
· · ·· · ································ · ···· · ················· · ············· · · · · · ··· · ········~··············· · ·· ··· · · ·· ··· · ··· · ············· · ···· · ····· · · · ~····· · ····· · ·· · ····~··· · ···· · ··········· · ················ · ··· · ················ · ···················· · ····· · ········ · ············· · ···· · ···· 3 ................................................ . 

M tag_ response l 0 l ! I .,---...L-
·· ·· · · ·· ···· · · ·· · ·· ···· ······· · ······· ·· ···· · ·· ·· ····· · ········ ·· · ········ · ·· ·· ··· ·· ·· · ····~ · ·· · · · ······ · ·· ··· · · · · · ··· · ···· ··· · ··········· ·· ·· · ·· · · ·· ···~···· · ···· ·· · ·· · · · · ·~ ····· ·· · ·· · · ·· · · · ·· ···· · · ······ · ········· · ···· · ·· ····· ·· · ··· · ·· ·· · · ·· · ··· ··· · · ······· · · · ·· · · ,. ········ · ················ "' ·· · ·· · ·············· · ··· ···· · · · · ···· ·· ······· · · .... 
i±J nr reader_encrypt_outputMSB_ Y l6366EAA3 ! koooooooo fXS3SSEAA3 ' 
······· · ·········· · ····· · ········· · ······ ··· ··· · ······························· · ···········~ · ······ · ·· ·· ··· · · · ····· · ·· · · · · · ·· · ··························~················ · ··~····· ···· ··· · · · · ·· ·· · · · · ···· · ···· · ··· · ···· · ····· · ·· · ··· · ························· · ····· ··}· · · ····················· ·· · .. ·······1············································ .... 
[±] M reader_encrypt_outputLSB_Z !04997EC4 ! : oooooooo ~04997EC4 / 
·· · ··········· · · · ····· · ·· · ···· · ·· · ···· ·· · · ······· ···· · ·· ··· · ··· · ········· · ···· · ········ · ···~· · · · · · · · ·· ·· ···· · · ···· ·· ·· ·· ·· ···· · ··· · ·· · ···· · ···· · ···· · ·· · ~···· · ·· · ······· ·· ·· ~ ·· · ··· · ·· ···· ···· · ··· · ·· · ···· · ····· · ····· · ········· · ·············· ······ · ·· · ··· · ···· ·· ···· · · · ··~········· · ·· · ··· ··· 4 ······· ·················· ···· 

M reader_output_ready ! 0 ! ! I 1 
·· · · ·· · ·· ···· · ·· · ····················· ·· ···· ··· ····· · ·· · ············ ····· · · ··· · ······ ··· ···~··· · ········· · ·· · ·· ······ ···· · · ···· ······ ·· ··· · ····· · ···· ···~·· · ·· · · ·· ······ · · ··~· ··· ····· · · · ········ · · · · ·· · · ···· · ·· ··· ·· ·· ·· ·· · ···· · ··· · ·· ·· · · ·········· ·· ··· · ············· · ············ · ······ ··· · ··· · · ·· · ·"""""' ' ·· · · · · · · ·· ·· · ···"""""'· ····· · ·· · · · ·· .... 
:±1 nr final_decryptY ! 01234567 ! koooooooo / X01234567 "\ 
·· · ········ · ······· · · ···· · ···· · ······· · ····· · ···· · ··· · ·· · ········· · ··· · ······ · ··· · ··· · · · · · +······· · ··· · ·· · ···· · ························ · ···· · · · ·· · ····~· · ···· · ············~··· · ··· · ·· · · · ····· ·· ············· · ···· · ··· · ·· · ····· · ············ · ······· ·· ··· · ··· ·· · · · · ···· · · · ··· · · · ···· · ·· · ·· · ····· · •········ · ·········· · · ·· · · ··· ·· ··············•······· .... 
r±.l nr final_decryptZ ! 89.6.8CDAA ! Koooooooo ~89ABCDAA / 
···· · ·· · ···· ·· · · ·· · ·· ·· ······ · ·· · ········· · ····· · ··· · ·· · ··· · ·· · ······ · ···· · ··· · ··· · · ··· ·· ·· ~· ·· ·· · · · · · ·· · · · ·· ··· · ·· ·· · ·· ·· · · · ·· · · ····· · ··· · ···· · ·· · ·· · · · ~··· · · · · · · · · · ·· · · · ·· ~ ·· · · ·· · ··· · ·· ······· · ·· ·· ··· ·· ·· · ········· · · ········ · ·· · · ··· ············ · ···· · · · ···· ·· · · ·· · ······· · ···: :.::.:.:.::.:.: 

ctJ M new_rounds 1 0000000000000045 1 Koooooooooooooooo 5 --fXoooooooooooooo45 1 
··· ·· · ·· ······ · · · ········· · ·· · · · ·· · ···· · ··········· ·· ············· · ·· ·· ··· ·· ···············~ ·· · ···· · ··· ·· ··· · · · · ··· ·· ··· · · ··· ·· ················· ·· ·· · · · ·~ ··· · ··· · ····· ·· · ·· · ~ · ·· ··· ····· · ····· ··· ··········· · ···· ·· · · ··· · · ·· · · ·· ··· · ···· · ··· ···· · ·· ·· ·· ··· · ············ ·· ·· · ········ · ····· · ··· ····· · ··· 

Figure 5. 7 Simulation of the Variable Round Authentication protocol 

5.6 Comparison of Variable Key and Variable Round Authentication Techniques 

Both variable key and round techniques are successfully simulated using the same 
I 

environment and the same assumptions. Implementation of these protocols is 

accomplished using a finite state machine approach to ensure that all internal signals are 

updated synchronously. One of the most crucial differences in the implementation of 

these protocols is their timing analysis. The variable round scheme clearly takes a shorter 

time to execute since the new value of the number of rounds is updated in one 

transaction. It is due to the number of rounds is a 64-bit value that is easily encrypted by 

TEA. Both systems are simulated with the same 2 MHz clock frequency. The variable 

round technique consumes about .....,6853 clock cycles or 3.426 ms. On the other hand, the 

variable key scheme consumes many more clock cycles for execution. This is due to the 

45 



fact that the key value is 128-bits which cannot be encrypted in one transaction. It takes 

about 5.145 ms for execution which is about 10,290 clock cycles. This method takes 

longer to execute since updating the key is more time-consuming; the key is larger than 

the number of rounds i.e. a 128-bit value and it cannot be updated in one transaction. This 

is because the TEA algorithm can encrypt only 64-bit values at a time and hence the 

algorithm has to be used twice in order to encrypt 128 bits. In this way, updating the new 

key value requires two message exchanges as opposed to one in the variable rounds 

method. 

Parameters Variable Key Variable Round Standard 

Approach Approach Approach 

Execution Time (for 5.145 ms ~3.426 ms ~1.720 ms 

one session of the 

protocol) 

Number of Clock 10290 ~6853 3440 

Cycles 

Number of Reader 2 1 No Update 

Transmissions for 

Key/Round Update 

Table 5.1 Comparison of Variable Key and Variable Round Authentication 

Moreover, varying the number of rounds will increase or decrease the time of encryption 

and decryption. For example, if the random number generates 400 as the new number of 

rounds, then this could drastically affect the performance of the system causing 

considerable amount of delay. A large delay may be unacceptable due to the tag's 

computational capabilities. This issue can be overcome by optimal design of the random 

number generator -the output of this module can be limited to the maximum delay 

tolerated by the system in encryption and decryption and the tag's storage and 

computational capabilities. The variable key scheme however uses fixed rounds and 

therefore, no matter what the key value is, the time period for encryption or decryption 

would be consistent in every session. It is possible to speed up the execution in either 

46 



case by using higher clock frequency for the system (i.e. using a high speed CPU). The 

standard approach entails encryption and decryption using TEA without any 

modifications e.g. the Reader generates a query to the tag, and the tag encrypts the PID 

value. This is now sent to the reader and it decrypts this using the same key and fixed 

number of rounds. This session takes ~ 1. 720 ms for execution and the least number of 

clock cycles. However, it does not provide any level of security since all responses from 

the tag are same at all times when queried from the reader. Therefore the standard use of 

TEA is prone to various kinds of attacks. 

Cost of the system is affected by the level of computational complexity and memory 

requirements. Updating a large key value will consume more space in the memory as 

opposed to the value of number of rounds, thereby affecting the cost of tag. On the other 

hand, use of a PRNG for the variable rounds technique will add to the cost of the tag. 

Therefore, there is a trade-off in both schemes. Another possible difference is the level of 

security offered by both techniques. It seems more secure to update the key value since it 

is harder to break a 128-bit key value than a 64-bit value for rounds. Detailed 

cryptanalysis would be needed to measure the exact levels of security offered in these 

cases. The main advantages of both protocols is the fact that the information is 

dynamically updated making the overall system more secure. 

47 



Chapter 6 

Conclusions and Future Work 

RFID systems are fast emerging and will soon find new applications in our daily life. 

Most of the applications are well underway; tested for functionality but are undergoing 

thorough investigation in terms of security, performance and feasibility to be adopted as 

an industry standard. In order to find use in credit-card transactions and other such high­

risk applications it is essential to strengthen security by developing robust techniques in 

algorithms and authentication procedures in RFID systems. This report presents some of 

the most widely researched and commercially adopted protocols and algorithms in the 

industry today. Although each algorithm differs in terms of performance and 

requirements, a brief comparison is made to choose a 'light-weight' encryption technique 

by keeping passive tags in focus. Passive tags have the highest potential to become 

widespread due to their portable nature and low cost compared to active tags. A survey of 

these light-weight algorithms is presented out of which the Tiny Encryption Algorithm 

(TEA) is selected as a suitable candidate for satisfactory implementation results. 

Moreover study of various authentication protocols is performed and judged based on 

performance metrics like security and privacy. Common attacks in an RFID environment 

are also explored. 

Implementation of TEA is accomplished and described in detail with results and timing 

waveforms to corroborate functionality and correctness of the implemented algorithms. 

Moreover, new schemes with some modification to TEA in combination with an 

authentication protocol are presented. Security and privacy analysis of these new schemes 

illustrate that they are secure from common attacks like eavesdropping, replay attack, 

denial of service and location tracking. A comparison is performed with respect to timing 

and security. Selection of either of these schemes depends on the timing requirements and 

level of security desired in the RFID system. 

48 



Future developments with respect to the work presented here would be to use a method to 

properly encrypt the value of ID in the PID (e.g. using simple mathematical primitives or 

light-weight algorithms) such that the reader is able to derive the value of ID from the 

PID with every session of the protocol. Another development would be to separately 

design and integrate a random number generating module and possible separation of the 

flow of control and the data information for optimum minimization of hardware 

resources. Furthermore, modifications or improvements (based on cryptanalysis) to the 

authentication protocols can be implemented depending on the requirements. Other 

features such as power estimation can be made to minimize the power consumption at the 

tag level. 

49 
ROPERTY OF 

RYERSON UNIVERSITY LIBRARY 



References 

[1] T. Eisenbarth, S. Kumar, C. Paar,, "A Survey of Lightweight-Cryptography 

Implementations", Special Issue on Secure ICs for Secure Embedded Computing, IEEE 

Design & Test of Computers, vol. 24, no. 6, Nov. 2007, pp. 522-533. 

[2] F. Mace, F. Standaert, J.J. Quisquater, "FPGA Implementation(s) of a Scalable 

Encryption Algorithm", IEEE Transactions on Very Large Scale Integration Systems, 

San Francisco, CA, USA, vol. 16, no. 2, Feb. 2008, pp. 212-216. 

[3] W.E. Burr, "Selecting the Advanced Encryption Standard", IEEE Security & Privacy, 

vol. 1, no. 2, Mar-Apr. 2003, pp. 43-52. 

[4] B. Koskun, N. Memon, "Confusion/Diffusion Capabilities of some Robust Hash 

Functions" 401
h Annual Conference on Information Sciences and Systems, Princeton, NJ, 

USA, Mar. 2006, pp. 1188-1193. 

[5] X. Luo, K. Zheng, Y. Pan, Z. Wu, "Encryption Algorithms Comparisons for wireless 

networked sensors", IEEE International Conference on System, Man and Cybernetics, 

The Hague, Netherlands, vol.2, Oct. 2004, pp. 1142-1146. 

[6] P. Israsena, "On XTEA-based Authentication/Encryption Core for Wireless Pervasive 

Communication", International Symposium on Communications and Information 

Technologies, Bangkok, Thailand, Sept. 2006, pp. 59-62. 

[7] P. Kitsos, Y. Zhang, RFID Security- Techniques, Protocols and System-on-chip 

Design, Springer, 2008, pp.397-400. 

[8] P. Israsena, "Design and Implementation of Low Power Hardware Encryption for 

Low Cost Secure RFID using TEA", Pro c. International Conference on Information and 

Communication Systems, Bangkok, Thailand, Dec. 2005, pp. 1402-1406. 

[9] S-S. Wang, W-S. Ni, "An Efficient FPGA implementation of Advanced Encryption 

Standard", IEEE International Symposium on Circuits and Systems, Vancouver, British 

Columbia, Canada, May 2004, vol. 2, pp. 597-600. 

[ 1 0] X. Zhang, K.K Par hi, "Implementation approaches for the Advanced Encryption 

Standard algorithm" IEEE Circuits and Systems Magazine, 2002, vol. 2, no. 4, pp. 24-46. 

50 



[11] D. Park, C. Boyd, E. Dawson, "Classification of Authentication Protocols: A 

Practical Approach", Proceedings of Information Security Workshop, Springer, Jan. 

2000, LNCS vo/.1975, pp.194-208. 

[12] I. Syamsuddin, T. Dillon, E. Chang, S. Han, "A Survey ofRFID Authentication 

Protocols based on Hash-Chain Method" Third Int. Conf. on Convergence and Hybrid 

Information Technology, Busan, South Korea, Nov. 2008, vol. 2, pp. 599-564. 

[13] H. Kim, S. Lim and H. Lee, "Symmetric Encryption in RFID Authentication 

Protocol for Strong Location Privacy and Forward-Security", International Conference 

on Hybrid Information Technology, Cheju Island, Korea, Nov. 2006, vol. 2, pp. 718-723. 

[14] L. Xuefeng, B. B. Enjian and X. Yinghua, "A Novel Authentication Protocol with 

Soundness and High Efficiency for Security Problems", lh Int. Conf on Wireless 

Communications, Networking and Mobile Computing, Dalian, China, Oct. 2008, pp. 1-3. 

[15] S. Weis, S. Sarma, R. Rivest and D. Engels, "Security and Privacy Aspects of Low­

Cost Radio Frequency Identification Systems", ls1 International Conference on Security 

in Pervasive Computing, Springer, Berlin, Germany, Mar. 2003, LNCS vol. 2802, pp. 

201- 212. 

[16] A. Juels, "RFID Security and Privacy: A Research Survey", IEEE Journal on 

Selected Areas in Communications, Feb. 2006, vol.24, no.2, pp. 381-394. 

[17] T. Li, "Employing Lightweight Primitives on Low-Cost RFID Tags for 

Authentication", IEEE 681
h Vehicular Technology Conference, Calgary, Canada, Sept. 

2008, pp. 1-5. 

[18] H. Li, F. Yu, Y. Hu, "A Solution to Privacy Issues in RFID Item-Level 

Applications", Proceedings IEEE International Conference on Integration Technology, 

Shenzhen, China, Mar. 2007, pp. 459-464. 

[19] Y. Liu, "An Efficient RFID Authentication Protocol for Low-Cost Tags", IEEE 

International Conference on Embedded and Ubiquitous Computing, Shanghai, China, 

Dec. 2008, vol.2, pp. 180-185. 

[20] Y.C Lee, Y.C Hsieh, P.S You, T.C Chen, "An Improvement on RFID 

Authentication Protocol with Privacy Protection", Third Int. Conf on Convergence and 

Hybrid Information Technology, Busan, South Korea, Nov. 2008, vol. 2, pp. 569-573. 

51 



[21] L. Luo, Z. Qin, S. Zhou, S. Jiang, J. Wang, "A Middleware Design for Block Cipher 

Seamless connected into Stream Cipher Mode" International Conference on Intelligent 

Information Hiding and Multimedia Signal Processing, Harbin, China, Aug. 2008, pp. 

64-67. 

[22] G. Yong, H. Lie, X. Kun, L. Shu-ru, Q. De-pei, "An Improved Authentication 

Protocol with Dynamic Update in RFID System", lh International Conference on 

Wireless Communications, Networking and Mobile Computing, Dalian, China, Oct. 2008, 

pp. 1-4. 

[23] Z. Zhang, S. Zhou, Z. Luo, "Design and Analysis for RFID Authentication 

Protocol", IEEE International Conference one-Business Engineering, Xi'an, China, Oct. 

2008, pp. 574-577. 

[24] G. Godor, M. Antal, S. Imre, "Mutual Authentication Protocol for Low 

Computational Capacity RFID Systems", IEEE Global Telecommunications Conference, 

New Orleans, Louisiana, USA, Dec. 2008, pp. 1-5. 

[25] Xiang Zhang; Baciu, G, "Low Cost Minimal Mutual Authentication Protocol for 

RFID", IEEE International Conference on Networking, Sensing and Control, Sanya, 

China, Apr. 2008, pp. 620-624. 

[26] X. Lai, J. Massey, "A Proposal for a New Block Encryption Standard", Advances in 

Cryptology, LNCS, vo/.473, Jan. 1995, pp.389-404. 

[27] D.J. Wheeler, R. M. Needham, "TEA, a tiny encryption algorithm", in the Proc. 

Fast Software Encryption: Second International Workshop, Lecture Notes in Computer 

Science, vol. 1008, Leuven, Belgium, Dec. 1994, pp. 363-366. 

[28] Y. Choi, S. Han, S. Shin, "A design of e-ID authentication protocol in Gen2 

environment" 1 01
h International Conference on Advanced Communication Technology, 

Phoenix Park, Korea, Feb. 2008, vol. 1, pp. 246- 251. 

[29] E. Suwartadi, C. Gunawan, A. Setijadi, C. Machbub, "First step toward Internet 

based embedded control system", 51
h Asian Control Conference, Melbourne, Australia, 

Jul. 2004, vol. 2, pp. 1226- 1231. 

[30] J. Kim, D. Choi, I. Kim, H. Kim, "Product Authentication Service of Consumer's 

mobile RFID Device" Tenth Int. Symposium on Consumer Electronics, St. Petersburg, 

Russia, Jul. 2006, pp. 1-6. 

52 



[31] P. Israsena, "Securing ubiquitous and low-cost RFID using tiny encryption 

algorithm", 1st Int. Symposium on Wireless Pervasive Computing, Phuket, Thailand, Jan. 

2006, pp. 4. 

[32] L. Jun-Dian, F, Chih-Peng, "Efficient low-latency RC4 architecture designs for 

IEEE 802.11 i WEP/TKIP, Int. Symposium on Intelligent Signal Processing and 

Communication Systems, Xiamen, China, Dec. 2007, pp. 56-59. 

[33] P. Ekdahl, T. Johansson, "Another attack on A511 [GSM stream cipher]", IEEE Int. 

Symposium on Information Theory, Washington, D.C., USA, Jun. 2001, pp. 160. 

[34] K. Jarvinen, M. Tommiska, J. Skytta, "Hardware Implementation Analysis of the 

MD5 Hash Algorithm", Proceedings of the 38th Int. Conference on System Sciences, 

Hawaii, USA, Jan. 2005, pp. 298a. 

[35] National Institute of Standards and Technology (NIST). (1995, 

Apr.) SHA- 1 standard. [Online]. Available: http://www.itl.nist.gov/fipspubs/fip180-

1.htm 

53 



APPENDIX A 

TINY ENCRYPTION ALGORITHM (VHDL) 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.MATH_REAL.all; 
use IEEE.NUMERIC STD.ALL; 

package types is 
subtype bit t is std_logic; 
subtype round tis std_logic vector (4 downto 0); 
subtype word_t is std_logic_vector (31 downto 0); 
subtype text tis std_logic_vector (63 downto 0); 
subtype key_t is std_logic vector (127 downto 0); 

constant delta: word t .- x"9e3779b9"; 
end types; 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.NUMERIC STD.ALL; 
use IEEE.MATH REAL.all; 
use work.types.all; 

entity tea is 
generic( 
zero 

) ; 

Port (key in key_t; 
Reset: in bit t; 
Ready: in bit_t; 
encrypt_outputMSB_Y 
encrypt outputLSB_Z 
enable : in bit_t; 
elk : in bitt); 

end tea; 

Integer .- 0 

out std_logic_vector(31 downto 0); 
out std_logic vector(31 downto 0); 

architecture Behavioral of tea is 
type Statetype is 
(INIT delta,State1,State3,delta done,INIT,updatesum,fourbitLSZ,Term1,fi 
vebitRSZ,Term2,Term3,part1,newY,fourbitLSY,Term4,fivebitRSY,TermS,Term6 
,part2,newZ,checkrounds,delay,decode_init,updatesum_decode,fourbitLSY_d 
,Term7,fivebitRSY_d,Term8,Term9,part3,newZ_d,fourbitLSZ d,Term10,fivebi 
tRSZ d,Term11,Term12,part4,newY_d,checkrounds d,done); 
signal State : Statetype; 

signal sum,inv_sum 
signal counter,counter1 

std_logic vector(31 downto 0); 
std_logic vector(3 downto 0); 

54 



signal 
· signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 

begin 

delay_counter 
rounds 
kO,k1,k2,k3 
Y,Z 
tempZ,tempZ1 
tempY,tempY1 
lshiftedz, rshiftedz 
lshiftedy,rshiftedy 
key_temp key_t 
delta copy 
L,R 
max rounds 
random number 
delta counter 

std_logic_vector(7 downto 0); 
std_logic_vector(7 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 

:= x"00112233445566778899aabbccddeeff"; 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(15 downto 0) 
integer range 0 to 31; cnt 

temp 
result 
Y out 

std logic_vector (63 downto 0) .- x"OOOOOOOOOOOOOOOO"; 
std_logic_vector(63 downto 0) x"OOOOOOOOOOOOOOOO"; 
std_logic vector(31 downto 0) .- x"OOOOOOOO"; 

PO: process(clk,Reset) 
begin 

if (Reset I 1 I) then 
sum <= (others => I Q I ) ; 

counter <= (others => I Q I ) ; 

counter1 <= (others => I 0 I ) ; 

rounds <= (others => I 0 I ) ; 

tempZ <= (others => I 0 I ) ; 

tempZ1 <= (others => I Q I ) ; 

lshiftedz <= (others => I Q I ) ; 

1 <= (others => I 0 I ) ; 

R <= (others => I Q I ) ; 

rshiftedz <= (others => I 0 I ) ; 

lshiftedy <= (others => I 0 I ) ; 

tempY <= (others => I 0 I ) ; 

tempY1 <= (others => I 0 I ) ; 

random number <= (others => I 0 I ) ; 

rshiftedy <= (others => I 0 I ) ; 

encrypt outputMSB y <= (others => I 0 I ) ; 
- -

encrypt outputLSB z <= (others => I 0 I ) ; 

y <= x"01234567"; 
z <= x"89abcdef"; 
max rounds <= x"00000032"; -- 50 
random number <= x"00000028"; 
State <= INIT delta; 

elsif(clk 1 event and elk 1 1 1 and enable= 1 1 1
) then 

case (State) is 
when INIT delta => 

cnt <= conv integer(delta_counter); 

rounds 

temp <= "00000000000000000000000000000000" & delta; 
State <= State1; 

55 



when State1 => 
if(delta_counter < 31) then 
temp<= temp(62 downto 0) & '0'; 
if(max_rounds(conv_integer(delta_counter)) 
result <= result + temp; 
end if; 
delta counter<= delta counter+ '1'; 
State <= State1; 
else 
State <= State3; 
end if; 

when State3 => 
Y out<= result(31 downto 0); 
State <= delta done; 

when delta done => 
State <= INIT; 

when INIT => 
delta copy <= 
kO <= 
k1 <= 
k2 <= 
k3 <= 
y <= 
z <= 
tempZ <= 
tempZ1 <= 
tempY <= 
tempY1 <= 
State <= 

delta; 
key _temp(127 down to 
key _temp(95 down to 
key _temp(63 down to 
key temp(31 down to -
x"01234567"; 
x"89abcdef"; 
Z; 
Z; 
Y; 
Y; 
updatesum; 

------ Encode Routine ----------

96) ; 
64) ; 
32) ; 
0) ; 

'1') then 

-- Y <= Y + ( (lshiftedz+kO) xor (z+sum) xor (rshiftedz+k1) ); --
when updatesum => 

if (rounds < max_rounds) then 
sum <= sum + delta_copy; 
rounds <= rounds + 1; 
State <= fourbitLSZ; 

else 
State <= done; 

end if; 

when fourbitLSZ => 
if (counter < "0100") then 

z << 4 

tempZ <= tempZ(30 downto 0) & '0';-- 4 bit left shift 
counter <= counter + 1; 
State <= fourbitLSZ; 
else 
lshiftedz <= tempZ; 
counter<= conv std logic vector(conv_unsigned(zero,4),4); 
State <= Term1; 
end if; 

when Term1 => 
lshiftedz <= lshiftedz + kO; 

56 



State <= fivebitRSZ; 

when fivebitRSZ => z >> 5 
if (counter1 < "0101") then 
tempZ1 <= '0' & tempZ1(31 downto 1); -- 5 bit right shift 
counter1 <= counter1 + 1; 
State <= fivebitRSZ; 
else 
rshiftedz <= tempZ1; 
counter1 <= conv std logic vector(conv_unsigned(zero,4),4); 
State <= · Term2; 
end if; 

when Term2 => 
rshiftedz <= rshiftedz + k1; 
State <= Term3; 

when Term3 => 
L <= lshiftedz xor (z + sum) xor rshiftedz; 
State <= part1; 

when part1 => 
y <= y + L; 
State <= newY; 

when newY => 
tempY <= Y; 
tempY1 <= Y; 
State <= fourbitLSY; 

when fourbitLSY => -- Y << 4 
if (counter < "0100") then 
tempY <= tempY(30 downto 0) & '0'; 
counter <= counter + 1; 
State <= fourbitLSY; 
else 
lshiftedy <= tempY; 
counter<= conv std logic vector(conv_unsigned(zero,4),4); 
State <= Term4; 
end if; 

when Term4 => 
lshiftedy <= lshiftedy + k2; 
State <= fivebitRSY; 

when fivebitRSY => 
if (counter1 < "0101") then 
tempY1 <= '0' & tempY1(31 downto 1); 
counter1 <= counter1 + 1; 
State <= fivebitRSY; 
else 
rshiftedy <= tempY1; 

-- y >> 5 

counter1 <= conv_std_logic_vector(conv_unsigned(zero,4),4); 
-- Reset counter1 
State <= TermS; 
end if; 

57 



when TermS => 
rshiftedy <= rshiftedy + k3; 
State <= Term6; 

when Term6 => 
R <= lshiftedy xor (y + sum) xor rshiftedy; 
State <= part2; 

when part2 => 
Z <= Z + R; 
State <= newZ; 

when newZ => 
tempZ <= Z; 
tempZ1<= Z; 
State <= checkrounds; 

when checkrounds => 
if (rounds < max rounds) then 
State <= updatesum; 
else 
encrypt outputMSB_Y <= Y; 
encrypt_outputLSB Z <= Z; 
State <= delay; 
end if; 

when delay => 
if (delay_counter < max rounds) then -- count to 32 

delay_counter <= delay_counter + 1; 
else 

State <= decode init; 
end if; 

-------------Decode Routine -------------------­
when decode init => 

-- Reset value of rounds, L and R 
rounds 
L 
R 
tempZ 
tempZ1 
tempY 
tempY1 
inv sum 
State 

<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 

conv std_logic_vector(conv_unsigned(zero,8),8); 
conv_std_logic_vector(conv_unsigned(zero,31),32); 
conv_std_logic vector(conv_unsigned(zero,31),32); 
Z; 
Z; 
Y; 
Y; 
Y_out; 
updatesum_decode; 

when updatesum_decode => 
if (rounds < max rounds) then 

rounds <= rounds + 1; 
State <= fourbitLSY_d; 

else 
State <= done; 

end if; 

when fourbitLSY d => 
if (counter < "0100") then 
tempY <= tempY(30 downto 0) & '0'; 

58 



counter <= counter + 1; 
State <= fourbitLSY_d; 
else 
lshiftedy <= tempY; 
counter<= conv_std_logic_vector(conv_unsigned(zero,4),4); 
State <= Term7; 
end if; 

when Term7 => 
lshiftedy <= lshiftedy + k2; 
State <= fivebitRSY_d; 

when fivebitRSY d => 
if (counter1 < "0101") then 
tempY1 <= '0' & tempY1(31 downto 1); 
counter1 <= counter1 + 1; 
State <= fivebitRSY_d; 
else 
rshiftedy <= tempY1; 
counter1 <= conv std logic vector(conv_unsigned(zero,4),4); 
State <= TermS; 
end if; 

when TermS => 
rshiftedy <= rshiftedy + k3; 
State <= Term9; 

when Term9 => 
L <= lshiftedy xor (y + inv sum) xor rshiftedy; 
State <= part3; 

when part3 => 
Z <= Z - L; 
State <= newZ d; 

when newZ d => 
tempZ <= Z; 
tempZ1<= Z; 
State <= fourbitLSZ d; 

when fourbitLSZ d => 
if (counter < "0100") then 

else 

tempZ <= tempZ(30 downto 0) & '0'; 
counter <= counter + 1; 
State <= fourbitLSZ d; 

lshiftedz <= tempZ; 

-- 4 bit left shift 

counter<= conv_std_logic_vector(conv_unsigned(zero,4),4); 
State <= Term10; 

end if; 

when Term10 => 

lshiftedz <= lshiftedz + kO; 
State <= fivebitRSZ_d; 

when fivebitRSZ d => 

59 



if (counter1 < "0101") then 
tempZ1 <= '0' & tempZ1(31 downto 1); -- 5 bit right shift 
counter1 <= counter1 + 1; 
State <= fivebitRSZ d; 
else 
rshiftedz <= tempZ1; 
counter1 <= conv std logic vector(conv_unsigned(zero,4),4); 
State <= Term11; 
end if; 

when Term11 => 
rshiftedz <= rshiftedz + k1; 
State <= Term12; 

when Term12 => 
R <= lshiftedz xor (z + inv sum) xor rshiftedz; 
State <= part4; 

when part4 => 
y <= y - R; 
State <= newY d; 

when newY d => 
tempY <= Y; 
tempY1 <= Y; 
State <= checkrounds d; 

when checkrounds d => 
if (rounds < max rounds) then 
inv_sum <= inv_sum - delta_copy; 
State <= updatesum_decode; 
else 
encrypt_outputMSB_ Y <= Y; 
encrypt_outputLSB Z <= Z; 
State <= done; 
end if; 

when done => 
null; 

when others => 
State <= INIT; 

end case; 
end if; 

end process PO; 
end Behavioral; 

TINY ENCRYPTION ALGORITHM (C Language - Hardware/Software 
Approach: Reader Implementation) 

#include <stdio.h> 
#include <altera avalon jtag uart regs.h> 
#include <system.h> 
long* decode(long* v1,long* v2,long* k); 

60 



int main () 
{ 

unsigned long k[4]={0x00112233,0x44556677,0x8899aabb,Oxccddeeff}; 
unsigned long * decrypt_inputl; 
unsigned long * decrypt input2; 
unsigned long * final; 

final= (unsigned long *) OxOOOOOBOOO; //stores the decrypted result 
decrypt inputl =(unsigned long *)OxOOOOOOlO; //input encrypted MSB 
decrypt_input2 =(unsigned long *)Ox00000020; //input encrypted LSB 
final= decode(decrypt inputl,decrypt input2,k); 
printf(" %.6lx(hex)\n", *final); //displays the final output 
return 0; 

long* decode(long* vl,long* v2,long* k) { 
unsigned long n=32, sum, y=*vl, z=*v2, *result, delta=Ox9e3779b9 
surn=delta<<S ; 
while (n-- >0) { 
z-= ( ( y< < 4 ) + k [ 2 ] ) /\ ( y+ s urn) /\ ( ( y > > 5 ) + k [ 3 ] ) 
y-= ((z<<4)+k[O]) /\ (z+surn) /\ ((z>>S)+k[l]) 
surn-=delta ; } // end cycle 
result = &y; 
return result;} 

61 



APPENDIXB 

VARIABLE KEY SCHEME (VHDL) 

TOP LEVEL 

library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic signed.all; 

entity toplevel is 

port( 
Reset,Clk IN std_logic 

) ; 

end entity toplevel; 

architecture struct of toplevel is 

signal connecting strobe std logic; - -
signal tag response std _logic; -
signal match found std_logic; 
signal sync std logic; 

-
signal reader output ready std logic; - -
signal send next key std logic; - -
signal verified outputY std logic vector(31 - - -
signal verified _outputz std logic vector(31 - -
signal random number std_logic_vector(31 
signal encrypt outputMSB y std logic vector(31 - - -
signal encrypt outputLSB z std logic vector(31 

- -
signal new key value std_logic_vector(63 - -
signal reader encrypt outputMSB y std logic vector(31 - - -
signal reader encrypt outputLSB z std_logic_vector(31 -
signal final decryptY std logic vector(31 - - -
signal final decryptZ std logic vector(31 

-

component reader is 
generic( 

) ; 

Port 

zero Integer := 0 

Reset in std_logic; 
output strobe out std_logic; 
reader_output ready out std_logic; 
feedback in std_logic; 
sync in std_logic; 
send_next key in std_logic; 
match found out std_logic; 

down to 
down to 
down to 
down to 
down to 
down to 
down to 
down to 
down to 
down to 

random number out std_logic_vector(31 downto 0); 
encrypt outputMSB_Y in std_logic_vector(31 downto 0); 
encrypt_outputLSB Z in std_logic vector(31 downto 0); 
verified_outputY out std_logic vector(31 downto 0); 

0) ; 

0) ; 

0) ; 

0) ; 

0) ; 

0) ; 
0) ; 

0) ; 
0) ; 

0) ; 

reader_encrypt_outputMSB Y out std_logic_vector(31 downto 0); 
reader_encrypt_outputLSB_Z : out std_logic vector(31 downto 0); 

62 



verified_outputZ 
elk 

end component reader; 

component tag is 
generic( 

zero 

out std_logic_vector(31 downto 0); 
in std_logic); 

Integer := 0 
) ; 

Port random number in std_logic vector(31 downto 0); 
enable in std_logic; 
Reset in std_logic; 
send next key out std_logic; 
new_key_value out std_logic_vector(63 downto 0); 
tag_encrypt outputMSB Y: out std_logic_vector(31 downto 0); 
tag_encrypt_outputLSB Z : out std_logic_vector(31 downto 0); 
final_decryptY out std_logic_vector(31 downto 0); 
final_decryptZ out std_logic vector(31 downto 0); 
reader_output_ready: in std_logic; 
reader_encrypt_outputMSB_Y : in std_logic_vector(31 downto 0); 
reader_encrypt outputLSB_Z : in std_logic vector(31 downto 0); 
output ready out std logic; 
sync out std_logic; 
elk in std_logic); 

end component tag; 

begin 

Ul: reader 
generic map( 
zero => 0 

port map 
Clk 
Reset 
output strobe 
feedback 
sync 
send next key 
reader_encrypt outputMSB_Y 
reader_encrypt_outputLSB_Z 
reader_output ready 
match found 
encrypt_outputMSB_Y 
encrypt_outputLSB Z 
verified_outputY 
verified_outputZ 
random number 

) ; 

U2: tag 
generic map( 

zero 

port map ( 
elk 
Reset 

=> 0 

random number 

=> Clk, 
=> Reset, 
=> connecting strobe, 
=> tag_response, 
=> sync, 
=> send_next_key, 
=> reader_encrypt outputMSB_Y, 
=> reader encrypt outputLSB Z, 
=> reader output ready, 
=> match_found, 
=> encrypt outputMSB_Y, 
=> encrypt_outputLSB Z, 
=> verified_outputY, 
=> verified_outputz, 
=> random number 

=> Clk, 
=> Reset, 
=> random number, 

63 



enable 
output ready 
sync 
send_next_key 
new key value 
reader_;utput ready 
reader_encrypt_outputMSB Y 
reader_encrypt outputLSB Z 
final_decryptY 
final_decryptZ 
tag encrypt outputMSB Y 
tag_encrypt outputLSB_Z 

) ; 

end architecture; 

READER (Reader.vhd) 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.NUMERIC_STD.ALL; 
use IEEE.MATH REAL.all; 

entity reader is 
generic( 
zero 

) ; 

Port Reset 
output strobe 
reader_output ready 
feedback 
sync 
match found 
send_next key 
random number 
encrypt outputMSB Y 
encrypt_outputLSB_Z 
reader_encrypt_outputMSB_Y 
reader encrypt outputLSB Z 
verified_outputY 
verified_outputZ 
elk 

end reader; 

=> connecting strobe, 
=> tag_response, 
=> sync, 
=> send_next key, 
=> new_key_value, 
=> reader_output_ready, 
=> reader_encrypt_outputMSB Y, 
=> reader encrypt_outputLSB Z, 
=> final_decryptY, 
=> final decryptZ, 
=> encrypt outputMSB Y, 
=> encrypt outputLSB_Z 

Integer .- 0 

in std_logic; 
out std_logic; 
out std_logic; 
in std_logic; 
in std_logic; 
out std_logic; 
in std_logic; 
out std_logic_vector(31 downto 0); 
in std_logic_vector(31 downto 0); 
in std_logic_vector(31 downto 0); 
out std_logic_vector(31 downto 0); 
out std_logic_vector(31 downto 0); 
out std_logic_vector(31 downto 0); 
out std_logic vector(31 downto 0); 
in std_logic); 

architecture Behavioral of reader is 
type Statetype is 
(INIT,INIT_delta,Statel,State3,random,initialize_Y_Z,new_state,check_fe 
edback,wait state,delay,decode init,updatesum,updatesum_decode,fourbitL 
SY_d,Term7,fivebitRSY_d,Term8,Term9,part3,newZ_d,fourbitLSZ_d,TermlO,fi 
vebitRSZ_d,Termll,Term12,part4,newY_d,checkrounds_d,fourbitLSZ,Terml,fi 
vebitRSZ,Term2,Terrn3,partl,newY,fourbitLSY,Terrn4,fivebitRSY,Term5,Terrn6 
,part2,newZ,checkrounds,gen_new_key,final,done,do_nothing); 

64 



signal State : Statetype; 

signal rdelta,delta std_logic vector(31 downto 0) := x"9e3779b9"; 
signal rounds,rrounds std_logic vector(7 downto 0); 
signal tempZ,tempZ1,rtempZ,rtempZ1: std_logic_vector(31 downto 0); 
signal tempY,tempY1,rtempY,rtempY1: std_logic_vector(31 downto 0); 
signal L,R,rL,rR std_logic_vector(31 downto 0); 
signal sum,rsum std_logic vector(31 downto 0); 
signal inv_sum,rinv_sum: std_logic_vector(31 downto 0); 
signal rdelta copy std_logic_vector(31 downto 0) := x"9e3779b9"; 
signal Y,rY,Z,rZ std_logic vector(31 downto 0); 
signal lshiftedz,rlshiftedz std_logic_vector(31 downto 0); 
signal rshiftedz,rrshiftedz std_logic_vector(31 downto 0); 
signal lshiftedy,rlshiftedy std_logic_vector(31 downto 0); 
signal rshiftedy,rrshiftedy std_logic_vector(31 downto 0); 
signal max rounds,rmax rounds : std_logic_vector(31 downto 0); 
signal counter,counter1,rcounter : std_logic_vector(3 downto 0); 
signal rand_counter : std_logic_vector(15 downto 0); 
signal delay_counter,rdelay_counter: std_logic_vector(7 downto 0); 
signal rcounter1 : std_logic vector(3 downto 0); 
signal rkO,rk1,rk2,rk3,kO,k1,k2,k3 : std_logic_vector(31 downto 0); 
signal rkey_temp : std_logic_vector(127 downto 0) .-

x "00112233445566778899aabbccddeeff"; 
signal storediD Y std_logic_vector(31 downto 0) 
signal storediD Z : std_logic_vector(31 downto 0) .-
signal wait_cntr : std_logic_vector(15 downto 0); 
signal delta_counter,rdelta counter : std_logic vector(15 

"0000000000000000"; 
signal delta copy 
signal cnt,rcnt 
signal temp,rtemp 

x"OOOOOOOOOOOOOOOO"; 
signal result,rresult 

x "OOOOOOOOOOOOOOOO"; 

std_logic_vector(31 downto 0); 
integer range 0 to 31; 
std_logic vector(63 downto 0) .-

std_logic vector(63 downto 0) .-

x"01234567"; 
x"89abcdef"; 

down to 0) 

signal Y_out,rY_out std_logic_vector(31 downto 0) .- x"OOOOOOOO"; 
signal new_key std_logic_vector(127 downto 0); 
signal saved copy random_number : std_logic_vector(31 downto 0); 
signal t_verifiedY,t_verifiedZ: std_logic vector(31 downto 0); 
signal match_found_reg std_logic; 
signal key_cntr std_logic; 
signal readers_copyiDY std_logic_vector(31 downto 0) .- x"01234567"; 
signal readers copyiDZ std_logic vector(31 downto 0) .- x"89abcdef"; 

begin 
process(clk,Reset) 
variable int rand integer; 
variable seed1, seed2: positive .- 12; 
variable rand : real; 

begin 

if (Reset = '1') then 
random number <= (others 
rsum <= (others 
sum <= (others 
rcounter <= (others 
rcounter1 <= (others 

65 

=> '0' ) ; 
=> '0' ) ; 
=> '0' ) ; 
=> '0' ) ; 
=> '0' ) ; 



rand counter 
rrounds 
rtempZ 
rtempZ1 
rlshiftedz 
rL 
rR 
rrshiftedz 
rlshiftedy 
wait cntr 
rtempY 
new key 
rtempY1 
rrshiftedy 
output_strobe 
match found 
verified_outputY 
verified_outputZ 
key_cntr 
rmax rounds 
max rounds 
inv sum 
counter 
counter1 
wait cntr 
delay_counter 
rounds 
y 

z 
tempZ 
tempZ1 
tempY 
tempY1 
lshiftedz 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= I 0 I; 
<= IQI; 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= I 0 I; 
<= x"00000032"; -- 50 rounds 
<= x"00000032"; 
<= (others=> 1 0 1

); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

rshiftedz <= (others=> 1 0 1
); 

lshiftedy <= (others=> 1 0 1
); 

rshiftedy <= (others=> 1 0 1
); 

L <= (others=> 1 0 1
); 

R <= (others=> 1 0 1
); 

reader encrypt outputMSB_Y <= (others=> 1 0 1
); 

reader encrypt_outputLSB Z <= (others=> 1 0 1
); 

reader output_ready <= 1 0 1
; 

match found_reg <= 1 0 1
; 

State <= check_feedback; 

elsif(clk 1 event and elk= 1 1 1
) then 

case (State) is 

when check feedback => 

if (feedback= 1 0 1 )then 
State <= random; 

elsif (feedback= 1 1 1
) then 

State <= INIT delta; 
end if; 

when random => 

66 



if (rand_counter < "0000011010101000") then 
UNIFORM(seed1, seed2,rand); 
if (rand < 0.2) then 

random_number <= x"00000028"; --40 rounds 
saved_copy_random_number <= x"00000028"; 
output strobe<= '1'; 

else 
random number <= x"00000038"; --50 rounds 
saved_copy_random_number <= x"00000028"; 
output strobe<= '1'; 

end if; 

rand counter<= rand counter+ '1'; 
State <= random; 

else 
output strobe<= '0'; 
State <= check_feedback; 

end if; 

when INIT delta => newdelta maxrounds*delta 
rY <= encrypt outputMSB Y; 
rZ <= encrypt_outputLSB Z; 
rent<= conv_integer(rdelta counter); 
rtemp <= "00000000000000000000000000000000" & rdelta; 
State <= State1; 

when State1 => 

if(rdelta_counter < 31) then 
rtemp <= rtemp(62 downto 0) & '0'; 

else 

if(rmax rounds(conv_integer(rdelta counter)) 
rresult <= rresult + rtemp; 

end if; 
rdelta counter<= rdelta counter+ '1'; 
State <= State1; 

State <= State3; 
end if; 

when State3 => 
rY out<= rresult(31 downto 0); 
State <= delay; 

when delay => 

'1') then 

if (rdelay_counter < rmax_rounds) then -- count to 32 (delay) 
rdelay_counter <= rdelay_counter + 1; 

else 
State <= decode init; 

end if; 

--------------------------- Decode Routine --------------------------

when decode init => -- Reset rounds,R,L 
rrounds <= conv_std_logic_vector(conv_unsigned(zero,8),8); 
rL <= conv_std_logic_vector(conv_unsigned(zero,31),32); 
rR <= conv_std_logic_vector(conv_unsigned(zero,31),32); 
rtempZ <= rZ; 

67 



rtempZ1 <= rZ; 
rtempY <= rY; 
rtempY1 <= rY; 
rinv sum <= rY out; -
rkO <= rkey _temp(127 down to 
rk1 <= rkey_temp(95 down to 
rk2 <= rkey _temp(63 down to 
rk3 <= rkey _temp(31 down to 
State <= update sum decode; 

-

when updatesum_decode => 
if (rrounds < rmax rounds) then 

rrounds <= rrounds + 1; 
State <= fourbitLSY_d; 

else 
State <= done; 

end if; 

when fourbitLSY d => 
if (rcounter < "0100") then 

96) ; 
64) ; 
32); 
0) ; 

rtempY <= rtempY(30 downto 0) & '0'; 
rcounter <= rcounter + 1; 
State <= fourbitLSY d; 

else 
rlshiftedy <= rtempY; 

rcounter <= conv_std_logic vector(conv_unsigned(zero,4),4); 
State<= Term7; 

end if; 

when Term7 => 
rlshiftedy <= rlshiftedy + rk2; 
State <= fivebitRSY_d; 

when fivebitRSY d => 
if (rcounter1 < "0101") then 

rtempY1 <= '0' & rtempY1(31 downto 1); 
rcounter1 <= rcounter1 + 1; 
State <= fivebitRSY_d; 

else 
rrshiftedy <= rtempY1; 
rcounter1<=conv_std_logic_vector(conv_unsigned(zero,4),4); 
State <= TermS; 

end if; 

when TermS => 
rrshiftedy <= rrshiftedy + rk3; 
State <= Term9; 

when Term9 => 
rL <= rlshiftedy xor (rY + rinv sum) xor rrshiftedy; 
State <= part3; 

when part3 => 
rZ <= rZ - rL; 
State <= newZ d; 

when newZ d => 

68 



rtemP.Z <= rZ; 
rtempZ1 <= rZ; 
State <= fourbitLSZ_d; 

when fourbitLSZ d => 
if (rcounter < "0100") then 

rtempZ <= rtempZ(30 downto 0) & '0'; -- 4-bit left shift 
rcounter <= rcounter + 1; 
State <= fourbitLSZ d; 

else 
rlshiftedz <= rtempZ; 
rcounter<=conv_std_logic_vector(conv_unsigned(zero,4),4); 
State <= Term10; 

end if; 

when Term10 => 
rlshiftedz <= rlshiftedz + rkO; 
State <= fivebitRSZ d; 

when fivebitRSZ d => 
if (rcounter1 < "0101") then 

rtempZ1 <= '0' & rtempZ1(31 downto 1); -- 5 bit right shift 
rcounter1 <= rcounter1 + 1; 
State <= fivebitRSZ d; 

else 
rrshiftedz <= rtempZ1; 
rcounter1 <= conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Termll; 

end if; 

when Termll => 
rrshiftedz <= rrshiftedz + rkl; 
State <= Term12; 

when Term12 => 
rR <= rlshiftedz xor (rz + rinv sum) xor rrshiftedz; 
State <= part4; 

when part4 => 
rY <= rY - rR; 
State <= newY d; 

when newY d => 
rtempY <= rY; 
rtempY1 <= rY; 
State <= checkrounds d; 

when checkrounds d => 
if (rrounds < rmax_rounds) then 

rinv_sum <= rinv_sum - rdelta copy; 
State <= updatesum_decode; 
else 
verified_outputY <= rY xor saved_copy_random_number; 
verified_outputZ <= rZ xor saved copy_random_number; 
t verifiedZ <= rZ xor saved_copy_random_number; 
t verifiedY <= rY xor saved_copy_random_number; 
State <= done; 

69 



end if; 

when done => 
if( (t_verifiedZ xor saved_copy_random_number) 
if( (t_verifiedY xor saved_copy_random_number) 

match found <= 1 1 1
; 

match_found_reg <= 1 1 1
; 

readers_copyiDZ) then 
readers copyiDY) then 

State 
end if; 

else 
match found 

end if; 

when gen new_key => 
y 

z 

<= gen_new_key; 

<= 101; 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

if (match found_reg = 1 1 1
) then 

new_key <= x"34676398ad9c23ef814574346613712b"; 
State <= initialize Y Z; 

else 
State 

end if; 

when initialize Y Z => 

<= INIT_delta; 

-- key counter keeps track of the first & second half of key sent 
if (key_cntr 1 0 1

) then 
Y <= storediD Y xor new key(127 downto 96); 
Z <= storediD Z xor new_key(95 downto 64); 

elsif (key_cntr 
y 

z 
tempZ 
tempZ1 
tempY 
tempY1 
lshiftedz 
lshiftedz 
lshiftedy 
rshiftedy 
counter 
counter1 
sum 
rounds 
L 
R 

end if; 
State <= INIT; 

when INIT => 
delta copy 
kO 
k1 
k2 
k3 
tempZ 

1 1 1
) then 

<= storediD Y xor new_key(63 downto 32); 
<= storediD Z xor new_key(31 downto 0); 
<= (others=> 1 0 1

); 

<= (others=> 1 0 1
); 

<= I O I); (others => 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 

(others 
(others 
(others 
(others 
(others 
(others 
(others 
(others 
(others 
(others 
(others 

<= delta; 

=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 

I 0 I ) ; 

I O I ) ; 

I 0 I ) ; 

I 0 I ) ; 

I 0 I ) ; 

I 0 I ) ; 

I 0 I ) ; 

I 0 I ) ; 

I O I ) ; 

I 0 I ) ; 

I 0 I ) ; 

<= rkey_temp(127 downto 96); 
<= rkey_temp(95 downto 64); 
<= rkey_temp(63 downto 32); 
<= rkey_temp(31 downto 0); 
<= Z; 

70 



tempZ1 <= Z; 
tempY <= Y; 
tempY1 <= Y; 
rounds <= (others => I 0 I ) ; 

State <= updatesum; 

------------ Encode Routine ------------
Y <= Y + ( (lshiftedz+kO) xor (z+sum) xor (rshiftedz+k1)); --

when update sum => 
if (rounds < max rounds) then 

sum <= sum + delta copy; 
rounds <= rounds + 1; 
State <= fourbitLSZ; 

else 
State <= done; 

end if; 

when fourbitLSZ => Z << 4 
if (counter < "0100") then 

else 

tempZ <= tempZ(30 downto 0) & 1 0 1
; -- 4bit lshift 

counter 
State 

<= counter + 1; 
<= fourbitLSZ; 

lshiftedz <= tempZ; 
counter <=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Term1; 

end if; 

when Term1 => 
lshiftedz 
State 

<= lshiftedz + kO; 
<= fivebitRSZ; 

when fi vebi tRSZ => Z >> 5 
if (counter1 < "0101") then 

else 

tempZ1 <= 1 0 1 & tempZ1(31 downto 1); -- 5 bit rshift 
counter1 <= counter1 + 1; 
State <= fivebitRSZ; 

rshiftedz <= tempZ1; 
counter1<=conv_std_logic_vector(conv_unsigned(zero,4),4); 
State <= Term2; 

end if; 

when Term2 => 
rshiftedz 
State 

<= rshiftedz + k1; 
<= Term3; 

when Term3 => 
L 
State 

when part1 => 
y <= y 

State 

when newY => 

+ L; 
<= newY; 

<= lshiftedz xor (z + sum) xor rshiftedz; 
<= part1; 

71 



tempY 
tempY1 
State 

<= Y; 
<= Y; 
<= fourbitLSY; 

when fourbitLSY => -- Y << 4 
if (counter < "0100") then 

else 

tempY <= tempY(30 downto 0) & '0'; 
counter 
State 

<= counter + 1; 
<= fourbitLSY; 

lshiftedy<= tempY; 
counter <= conv std logic vector(conv_unsigned(zero,4),4); 
State <= Term4; 

end if; 

when Term4 => 
lshiftedy 
State 

when fivebitRSY => 

<= lshiftedy + k2; 
<= fivebitRSY; 

if (counter1 < "0101") then 
-- y >> s 

tempY1 <= '0' & tempY1(31 downto 1); 

else 

counter1 
State 

<= counter1 + 1; 
<= fivebitRSY; 

rshiftedy <= tempY1; 
counter1<=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= TermS; 

end if; 

when TermS => 
rshiftedy <= rshiftedy + k3; 
State <= Term6; 

when Term6 => 
R <= lshiftedy xor 
State <= part2; 

when part2 => 
z <= z + R; 
State <= newZ; 

when newZ => 
tempZ <= Z; 
tempZ1 <= Z; 
State <= checkrounds; 

when checkrounds => 
if (rounds < max rounds) then 
State 
else 

<= updatesum; 

reader encrypt outputMSB_Y <= Y; 
reader encrypt outputLSB Z <= Z; 
State <= wait state; 
end if; 

when wait state => 

72 

(y + sum) xor rshiftedy; 



if (wait_cntr < "0000000000101000") then 
wait_cntr <= wait_cntr + '1'; 
reader_output ready<= '1'; 

else 
State <= wait state; 

reader output_ready <= '0'; 
wait cntr <= "0000000000000000"; 
State <= do nothing; 

end if; 

when do_nothing => 
if (send_next key= '1' and key_cntr 

key_cntr <= '1'; 
State <= initialize Y Z; 

else 
State <= do_nothing; 

end if; 

when others => 
null; 

end case; 

end if; 
end process; 
end Behavioral; 

TAG (Tag. vhd) 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.MATH_REAL.all; 
use IEEE.NUMERIC STD.ALL; 

package types is 
subtype bit t is std_logic; 

'0') then 

subtype round tis std_logic vector (4 downto 0); 
subtype word_t is std_logic_vector (31 downto 0); 
subtype text_t is std_logic_vector (63 downto 0); 
subtype key_t is std_logic_vector (127 downto 0); 

constant delta: word t 
end types; 

x"9e3779b9"; 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD LOGIC ARITH.ALL; 
use IEEE.STD LOGIC UNSIGNED.ALL; 
use IEEE.NUMERIC STD.ALL; 
use IEEE.MATH REAL.all; 
use work.types.all; 

73 



entity tag is 
generic( 
zero Integer := 0 

) ; 

Port random number in std_logic vector(31 downto 0); 
enable in std_logic; 
Reset in std_logic; 
tag_encrypt_outputMSB_Y out std_logic vector(31 downto 0); 
tag encrypt outputLSB Z out std_logic vector(31 downto 0); 
reader output ready in std_logic; 
send_next_key out std_logic; 
reader_encrypt_outputMSB_Y: in std_logic_vector(31 downto 0); 
reader_encrypt outputLSB Z : in std_logic_vector(31 downto 0); 
final_decryptY out std_logic_vector(31 downto 0); 
final_decryptZ out std_logic_vector(31 downto 0); 
new_key_value out std_logic_vector(63 downto 0); 
output ready out std_logic; 
sync out std_logic; 
elk in bitt); 

end tag; 

architecture Behavioral of tag is 
type Statetype is 
(delta_done,done_l,done 2,done 3,INIT,INIT delta,check_feedback,INIT de 
lta d,Statel,State3,Statel d,State3 d,updatesum,decode_init,updatesum_d 
ecode,fourbitLSY_d,Term7,fivebitRSY d,Term8,Term9,part3,newZ_d,fourbitL 
SZ d,TermlO,fivebitRSZ_d,Termll,Term12,part4,newY_d,checkrounds_d,fourb 
itLSZ,Terml,fivebitRSZ,Term2,Term3,partl,newY,fourbitLSY,Term4,fivebitR 
SY,Term5,Term6,part2,newZ,checkrounds,delay,wait state,final,done); 
signal State : Statetype; 

signal sum,inv_sum : std_logic_vector(31 downto 0); 
signal counter,counterl: std_logic_vector(3 downto 0); 
signal wait cntr std_logic_vector(lS downto 0); 
signal delay_counter std_logic_vector(7 downto 0); 
signal rounds std_logic_vector(7 downto 0); 
signal kO,kl,k2,k3 std_logic_vector(31 downto 0); 
signal Y,Z std_logic_vector(31 downto 0); 
signal tempZ,tempZl std_logic_vector(31 downto 0); 
signal tempY,tempYl std_logic_vector(31 downto 0); 
signal lshiftedz std_logic_vector(31 downto 0); 
signal concat,concatl std_logic_vector(31 downto 0); 
signal rshiftedz std_logic_vector(31 downto 0); 
signal lshiftedy std_logic_vector(31 downto 0); 
signal rshiftedy std_logic_vector(31 downto 0); 
signal delta counter std_logic vector(15 downto 0); 
signal key temp key_t := 
x"00112233445566778899aabbccddeeff"; 
signal delta copy 
signal L,R 
signal max rounds 
signal cnt,rcnt 
signal temp 
signal result 
signal Y_out,rY out 
signal rdelta 
x"9e3779b9"; 

std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
integer range 0 to 31; 
std_logic_vector(63 downto 0); 
std_logic_vector(63 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0) .-

74 



begin 

signal rdelta counter std_logic_vector(l5 downto 0); 
signal rrounds • std_logic_vector(7 downto 0); 
signal rtempZ,rtempZl std_logic_vector(31 downto 0); 
signal rtempY,rtempYl std_logic_vector(31 downto 0); 
signal rL,rR,rY,rZ std_logic_vector(31 downto 0); 
signal rsum,rinv_sum std_logic_vector(31 downto 0); 
signal rdelta_copy std_logic_vector(31 downto 0); 
signal rlshiftedz std_logic_vector(31 downto 0); 
signal rrshiftedz std_logic_vector(31 downto 0); 
signal rlshiftedy std_logic_vector(31 downto 0); 
signal rrshiftedy std_logic_vector(31 downto 0); 
signal rmax rounds std_logic_vector(31 downto 0); 
signal rcounter std_logic_vector(3 downto 0); 
signal rand counter std_logic_vector(l5 downto 0); 
signal rdelay_counter std_logic_vector(7 downto 0); 
signal rcounterl std_logic_vector(3 downto 0); 
signal rkO,rkl,rk2,rk3 std_logic_vector(31 downto 0); 
signal new_key std_logic_vector(l27 downto 0); 
signal rkey_temp std_logic_vector(l27 downto 0) .-

x"00112233445566778899aabbccddeeff"; 
signal rtemp,result : std_logic_vector(63 downto 0); 
signal saved_copy_random_number : std_logic vector(31 downto 
0) : = x"00000028"; 
signal storediD_Y std_logic vector(31 downto 0) .-
x"01234567"; 
signal storediD_Z std_logic vector(31 downto 0) .-
x"89abcdef"; 
signal key_cntr std_logic; 
signal temp_send_next key: std_logic; 

PO: process(clk,Reset) 
begin 

if (Reset '1') then 
sum 
counter 
counterl 
rounds 
tempZ 
tempZl 
lshiftedz 
L 
R 

<= (others=> '0'); 
<= (others=> '0'); 
<= (others=> '0'); 
<= (others=> '0'); 
<= (others=> '0'); 
<= (others=> '0'); 
<= (others=> '0'); 
<= (others=> '0'); 
<= (others=> '0'); 

send_next_key <= '0'; 
new_key_value <= (others=> '0'); 
rshiftedz <= (others=> '0'); 
lshiftedy <= (others=> '0'); 
tempY <= (others=> '0'); 
tempYl <= (others=> '0'); 
concat <= (others=> '0'); 
concatl <= (others=> '0'); 
wait cntr <= (others=> '0'); 
rshiftedy <= (others=> '0'); 
tag_encrypt outputMSB_Y <= (others=> '0'); 
tag_encrypt_outputLSB_Z <= (others=> '0'); 
final decryptY <= (others=> '0'); 

75 



final decryptZ <= (others => '0' ) ; -
output_ ready <= '0'; 
sync <= '0'; 
key_ cntr <= '0'; 
temp_ send next key <= 

- -
'0' ; 

rsum <= (others => '0' ) ; 
rresult <= (others => '0' ) ; 
rcounter <= (others => '0' ) ; 
rcounter1 <= (others => '0' ) ; 
rand counter <= (others => '0' ) ; 
rrounds <= (others => '0' ) ; 
rtempZ <= (others => '0' ) ; 
rtempZ1 <= (others => '0' ) ; 
rlshiftedz <= (others => '0' ) ; 
rL <= (others => '0') ; 
rR <= (others => '0' ) ; 
rrshiftedz <= (others => '0' ) ; 
rlshiftedy <= (others => '0' ) ; 
wait cntr <= (others => '0' ) ; 

-
rtempY <= (others => '0' ) ; 
new key <= (others => '0' ) ; 

-
rtempY1 <= (others => '0') ; 
rrshiftedy <= (others => '0' ) ; 
rmax rounds <= x"00000032"; -- 50 rounds 
max rounds <= x"00000032"; 

-
rdelta copy <= x"9e3779b9"; 
y 

z 
<= 
<= 

storediD Y xor random_number; 
storediD Z xor random number; 

State <= INIT delta; 

elsif(clk'event and elk 
case (State) is 

'1') then 

when INIT delta => 

cnt <= conv_integer(delta counter); 
temp <= "00000000000000000000000000000000" & delta; 
State <= State1; 

when State1 => 

when 

if(delta counter < 31) then 
temp<= temp(62 downto 0) & '0'; 

if(max_rounds(conv_integer(delta counter)) 
result <= result + temp; 
end if; 

delta counter<= delta counter+ '1'; 
State <= State1; 
else 
State <= State3; 
end if; 

State3 => 
y out <= result(31 down to 0) ; 

-
State <= delta done; 

when delta done => 
Y <= storediD Y; 

76 

'1') then 



Z <= storediD Z; 
State <= INIT; 

when INIT => 
delta copy <= 
kO <= 
k1 <= 
k2 <= 
k3 <= 
tempZ <= 
tempZ1 <= 
tempY <= 
tempY1 <= 
State <= 

delta; 
key temp(127 

-
key temp(95 

-
key_ temp(63 
key_ temp(31 
Z; 
Z; 
Y; 
Y; 
update sum; 

downto 96); 
downto 64); 
downto 32); 
downto 0); 

-------------------------- Encode Routine ---------------------­
Y <= Y + ( (lshiftedz+kO) xor (z+sum) xor (rshiftedz+k1)); -­

when updatesum => 
if (rounds < max rounds) then 

else 

sum 
rounds 
State 

State 
end if; 

when fourbitLSZ => 

<= sum + delta copy; 
<= rounds + 1; 
<= fourbitLSZ; 

<= done; 

if (counter < "0100") then 
z << 4 

tempZ <= tempZ(30 downto 0) & '0'; -- 4bit lshift 

else 

counter 
State 

<= counter + 1; 
<= fourbitLSZ; 

lshiftedz <= tempZ; 
counter<=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Term1; 

end if; 

when Term1 => 
lshiftedz 
State 

when fivebitRSZ => 
if (counter1 < 

tempZ1 
counter1 
State 

else 

<= lshiftedz + kO; 
<= fivebitRSZ; 

"0101") then 
-- z >> 5 

<= '0' & tempZ1(31 downto 1);-- 5 bit rshift 
<= counter1 + 1; 
<= fivebitRSZ; 

rshiftedz <= tempZ1; 
counter1<=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Term2; 

end if; 

when Term2 => 
rshiftedz 
State 

when Term3 => 
L 

<= rshiftedz + k1; 
<= Term3; 

<= lshiftedz xor (z + sum) xor rshiftedz; 

77 



when 

when 

when 

State <= part1; 

part1 => 
y <= y + L; 
State <= newY; 

newY => 
tempY <= Y; 
tempY1 <= Y; 
State <= fourbitLSY; 

fourbitLSY => -- y << 4 
if (counter < "0100") then 

tempY <= tempY(30 downto 0) & '0'; 

else 

counter 
State 

<= counter + 1; 
<= fourbitLSY; 

lshiftedy <= tempY; 
counter <=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Term4; 

end if; 

when Term4 => 
lshiftedy 
State 

when fivebitRSY => 

<= lshiftedy + k2; 
<= fivebitRSY; 

if (counter1 < "0101") then 
-- y >> s 

tempY1 <= '0' & tempY1(31 downto 1); 

else 

counter1 
State 

<= counter1 + 1; 
<= fi v ebitRSY; 

rshiftedy <= tempY1; 
counter1 <=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= TermS; 

end if; 

when TermS => 
rshiftedy <= rshiftedy + k3; 
State <= Term6; 

when Term6 => 
R <= lshiftedy xor (y 
State <= part2; 

when part2 => 
z <= z + R; 
State <= newZ; 

when newZ => 
tempZ <= Z; 
tempZ1 <= Z; 
State <= checkrounds; 

when checkrounds => 
if (rounds < max rounds) then 
State <= updatesum; 
else 

78 

+ sum) xor rshiftedy; 



tag_encrypt_outputMSB_Y <= Y; 
tag_encrypt outputLSB_Z <= Z; 
State <= wait state; 
end if; 

when wait state => 

if (wait cntr < "0000000000101000") then 

else 

wait cntr 
output ready 
State 

output ready 
sync 
wait cntr 
State 

end if; 

when INIT delta d => 
rent 
rtemp 
State 

when State1 d => 

<=wait cntr + '1'; 
<= '1'; 
<= wait state; 

<= '0'; 
<= '1'; 
<= "0000000000000000"; 
<= INIT delta d; 

newdelta = maxrounds*delta 
<= conv_integer(rdelta_counter); 
<= "00000000000000000000000000000000" & rdelta; 
<= State1 d; 

if(rdelta counter < 31) then 
rtemp <= rtemp(62 downto 0) & '0'; 

if(rmax_rounds(conv_integer(rdelta_counter)) '1') then 
rresult <= rresult + rtemp; 

end if; 
rdelta counter 
State 
else 
State 
end if; 

when State3 d => 

<= rdelta counter+ '1'; 
<= State1_d; 

<= State3 d; 

rY_out <= rresult(31 downto 0); 
State <= delay; 

when delay => 
if (reader output ready= '1') then 

else 

rY 
rZ 
State 

State 
end if; 

<= reader encrypt outputMSB_Y; 
<= reader encrypt outputLSB Z; 
<= decode init; 

<= delay; 

--------------------------- Decode Routine ---------------------------
when decode init 

rrounds 
rL 
rR 
rtempZ 
rtempZ1 
rtempY 
rtempY1 
rinv sum 

=> 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 

conv_std_logic_vector(conv_unsigned(zero,8),8); 
conv_std_logic_vector(conv_unsigned(zero,31),32); 
conv_std_logic_vector(conv_unsigned(zero,31),32); 
rZ; 
rZ; 
rY; 
rY; 
rY out; 

79 



rkO <= rkey_ temp(127 down to 96) ; 
rk1 <= rkey temp(95 down to 64) ; 

-
rk2 <= rkey_ temp(63 down to 32) ; 
rk3 <= rkey_ temp(31 down to 0) ; 
State <= updatesum_decode; 

when updatesum_decode => 
if (rrounds < rmax rounds) then 

rrounds <= rrounds + 1; 
State <= fourbitLSY_d; 

else 
State <= done; 

end if; 

when fourbitLSY d => 
if (rcounter < "0100") then 

rtempY <= rtempY(30 downto 0) & '0'; 
rcounter <= rcounter + 1; 
State <= fourbitLSY d; 

else 
rlshiftedy <= rtempY; 
rcounter<=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Term7; 

end if; 

when Term7 => 
rlshiftedy <= rlshiftedy + rk2; 
State <= fivebitRSY_d; 

when fivebitRSY d => 
if (rcounter1 < "0101") then 

rtempY1 <= '0' & rtempY1(31 downto 1); 
rcounter1 
State 

<= rcounter1 + 1; 
<= fivebitRSY_d; 

else 
rrshiftedy<= rtempY1; 

rcounter1<=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= TermS; 

end if; 

when TermS => 
rrshiftedy <= rrshiftedy + rk3; 

State <= Term9; 

when Term9 => 
rL <= rlshiftedy xor (rY + rinv sum) xor rrshiftedy; 
State <= part3; 

when part3 => 
rZ <= rZ - rL; 
State <= newZ d; 

when newZ d => 
rtempZ <= rZ; 
rtempZ1 <= rZ; 
State <= fourbitLSZ d; 

80 



when fourbitLSZ d => 
if (rcounter < "0100") then 

rtempZ <= rtempZ(30 downto 0) & '0';-- 4 bit left shift 
rcounter <= rcounter + 1; 
State <= fourbitLSZ_d; 

else 
rlshiftedz <~ rtempZ; 

rcounter<=conv_std_logic_vector(conv_unsigned(zero,4),4); 
State <= Term10; 

end if; 

when Term10 => 
rlshiftedz <= rlshiftedz + rkO; 
State <= fivebitRSZ d; 

when fivebitRSZ d => 
if (rcounter1 < "0101") then 

else 

rtempZ1 <= '0' & rtempZ1(31 downto 1); 
rcounter1 <= rcounter1 + 1; 
State <= fivebitRSZ d; 

-- 5 bit rshift 

rrshiftedz <= rtempZ1; 
rcounter1<=conv_std_logic_vector(conv_unsigned(zero,4),4); 

State <= Term11; 
end if; 

when Term11 => 
rrshiftedz <= rrshiftedz + rk1; 
State <= Term12; 

when Term12 => 
rR <= rlshiftedz xor (rz + rinv sum) xor rrshiftedz; 
State <= part4; 

when part4 => 
rY <= rY - rR; 
State <= newY_d; 

when newY d => 
rtempY <= rY; 
rtempY1 <= rY; 
State <= checkrounds_d; 

when checkrounds d => 
if (rrounds < rmax rounds) then 

rinv_sum <= rinv_sum - rdelta copy; 
State <= updatesum_decode; 

when 

else 
final_decryptY <= rY; 
final_decryptZ <= rZ; 

State <= done 1; 
end if; 

done 1 => 
concat <= rY 
concat1 <= rZ 
State <= done 2; 

xor storediD Y; -
xor storediD Z; -

81 



when done 2 => 
new key_value <= concat & concat1; 
send_next_key <= '1'; 
temp_send_next key<= '1'; 
State <= done 3; 

when done 3 => 
if (temp_send_next_key = '1' and key_cntr 

key_cntr <= '1'; 

else 

end if; 

when others => 
null; 

end case; 
end if; 

end process PO; 
end Behavioral; 

State <= delay; 

State <= done 3; 

82 

'0') then 



APPENDIXC 

VARIABLE ROUNDS SCHEME (VHDL) 

TOP LEVEL 

library IEEE; 
use IEEE.std_logic 1164.all; 
use IEEE.std_logic arith.all; 
use IEEE.std_logic signed.all; 

entity toplevel is 

port( 
Reset,Clk 

-- System Reset, System Clock 
) ; 

end entity toplevel; 

architecture struct of toplevel is 

signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 

connecting_ strobe 
tag_ response 
match found 
verified_outputY 
verified_outputZ 
encrypt_outputMSB_Y 
encrypt outputLSB Z 
sync 
new rounds value 

- -
reader_encrypt_outputMSB Y 
reader_encrypt_outputLSB_Z 
reader_output ready 
final_decryptY 
final decryptZ 

component reader is 
generic( 

IN std_logic 

std logic; 
-

std logic; -
std logic; 

-
std logic vector(31 

- -
std logic vector(31 - -
std logic vector(31 

- -
std logic vector(31 - -
std logic; 

-
std_logic_vector(63 
std logic vector(31 - -
std_logic_vector(31 
std logic; 

-
std_logic_vector(31 
std logic vector(31 - -

zero Integer .- 0 
) ; 

Port (Reset: in std_logic; 
query: out std_logic; 
feedback : in std_logic; 
sync : in std_logic; 
match_found : out std_logic; 

down to 
down to 
down to 
down to 

down to 
down to 
down to 

down to 
down to 

encrypt_outputMSB_Y : in std_logic_vector(31 downto 0); 
encrypt_outputLSB_Z : in std_logic_vector(31 downto 0); 
verified_outputY : out std_logic_vector(31 downto 0); 

0) ; 

0) ; 

0) ; 

0) ; 

0) ; 

0) ; 

0) ; 

0) ; 

0) ; 

reader_encrypt_outputMSB_Y : out std_logic_vector(31 downto 0); 
reader_encrypt_outputLSB_Z : out std_logic_vector(31 downto 0); 
reader_output_ready: out std_logic; 
verified_outputZ out std_logic_vector(31 downto 0); 
elk : in std_logic); 

end component reader; 

83 



component tag is 
generic( 

zero Integer .- 0 
) ; 

Port(enable in std_logic; 
Reset: in std_logic; 
send_next_key : out std_logic; 
new rounds value : out std_logic_vector(63 downto 0); 
tag_encrypt outputMSB_Y : out std_logic_vector(31 downto 0); 
tag_encrypt_outputLSB_Z : out std_logic_vector(31 downto 0); 
final_decryptY : out std_logic_vector(31 downto 0); 
final decryptZ : out std_logic_vector(31 downto 0); 
reader_output_ready: in std_logic; 
reader_encrypt_outputMSB_Y : in std_logic vector(31 downto 0); 
reader_encrypt_outputLSB_Z : in std_logic vector(31 downto 0); 
output ready: out std_logic; 
sync: out std_logic; 
elk : in std_logic); 

end component tag; 

begin 

Ul: reader 
generic map( 
zero => 0 

port map 
Clk 
Reset 
query 
feedback 
sync 
reader_encrypt outputMSB_Y 
reader_encrypt_outputLSB_Z 
reader_output ready 
match found 
encrypt_outputMSB_Y 
encrypt_outputLSB Z 
verified_outputY 
verified_outputZ 

U2: tag 
generic map( 

) ; 

zero => 0 

port map 

=> Clk, 
=> Reset, 
=> connecting_strobe, 
=> tag_response, 
=> sync, 
=> reader_encrypt outputMSB_Y, 
=> reader_encrypt_outputLSB_Z, 
=> reader_output ready, 
=> match_found, 
=> encrypt_outputMSB_Y, 
=> encrypt_outputLSB_Z, 
=> verified_outputY, 
=> verified_outputZ 

elk => Clk, 
Reset => Reset, 
random number 
enable 
output ready 
sync 
new rounds value 

- -
reader_output_ready 
reader encrypt outputMSB Y 

=> random number, 
=> connecting_strobe, 
=> tag_response, 
=> sync, 
=> new_rounds_value, 
=> reader_output_ready, 
=> reader_encrypt_outputMSB_Y, 

84 



reader_encrypt outputLSB Z 
final_decryptY 
final_decryptZ 
tag_encrypt outputMSB Y 
tag_encrypt_outputLSB_Z 

) ; 

end architecture; 

READER (Reader.vhd) 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD LOGIC ARITH.ALL; 
use IEEE.STD LOGIC UNSIGNED.ALL; 
use IEEE.NUMERIC STD.ALL; 
use IEEE.MATH REAL.all; 

=> reader_encrypt_outputLSB Z, 
=> final_decryptY, 
=> final_decryptZ, 
=> encrypt_outputMSB_Y, 
=> encrypt outputLSB Z 

entity reader is 
generic( 
zero Integer .- 0 

) ; 
Port (Reset: in std_logic; 

query: out std_logic; 
reader_output_ready: out std_logic; 
feedback : in std_logic; 
sync : in std_logic; 
match_found: out std_logic; 
encrypt_outputMSB_Y : in std logic_vector(31 downto 0); 
encrypt_outputLSB_Z : in std_logic_vector(31 downto 0); 
reader_encrypt_outputMSB_Y :out std_logic vector(31 downto 0); 
reader_encrypt outputLSB Z :out std_logic vector(31 downto 0); 
verified_outputY out std_logic_vector(31 downto 0); 
verified_outputZ out std_logic vector(31 downto 0); 
elk in std_logic); 

end reader; 

architecture Behavioral of reader is 
type Statetype is 
(INIT,INIT_delta,Statel,State3,random,initialize_Y_Z,new_state,check_fe 
edback,wait_state,delay,decode init,updatesum,updatesum_decode,fourbitL 
SY_d,Term7,fivebitRSY_d,Term8,Term9,part3,newZ_d,fourbitLSZ_d,TermlO,fi 
vebitRSZ_d,Termll,Term12,part4,newY_d,checkrounds_d,fourbitLSZ,Terml,fi 
vebitRSZ,Term2,Term3,partl,newY,fourbitLSY,Term4,fivebitRSY,Term5,Term6 
,part2,newZ,checkrounds,gen_new_rounds,final,done,do_nothing); 
signal State : Statetype; 

signal rdelta,delta : std_logic vector(31 downto 0) .-
x"9e3779b9"; 
signal rounds,rrounds std_logic_vector(7 downto 0); 
signal tempZ,tempZl,rtempZ,rtempZl: std_logic_vector(31 downto 0); 
signal tempY,tempYl,rtempY,rtempYl: std_logic_vector(31 downto 0); 
signal L,R,rL,rR : std_logic_vector(31 downto 0); 
signal sum,rsum std_logic_vector(31 downto 0); 
signal inv_sum,rinv_sum : std_logic vector(31 downto 0); 
signal rdelta copy std logic_vector(31 downto 0) := x"9e3779b9"; 

85 



signal Y,rY : std_logic_vector(31 downto 0); 
signal Z,rZ : std_logic_vector(31 downto 0); 
signal lshiftedz,rlshiftedz std_logic_vector(31 downto 0); 
signal rshiftedz,rrshiftedz std_logic_vector(31 downto 0); 
signal lshiftedy,rlshiftedy std_logic_vector(31 downto 0); 
signal rshiftedy,rrshiftedy std_logic_vector(31 downto 0); 
signal rnax_rounds,rrnax rounds : std_logic_vector(31 downto 0); 
signal counter,counter1,rcounter : std_logic_vector(3 downto 0); 
signal rand_counter : std_logic_vector(15 downto 0); 
signal delay_counter,rdelay_counter: std_logic_vector(7 downto 0); 
signal rcounter1 : std_logic_vector(3 downto 0); 
signal rkO,rk1,rk2,rk3,kO,k1,k2,k3 : std_logic_vector(31 downto 0); 
signal rkey_ternp : std_logic_vector(127 downto 0) .-

x"00112233445566778899aabbccddeeff"; --
signal storediD_Y : std_logic_vector (31 downto 0) .- x"01234567"; 
signal storediD_Z : std_logic_vector(31 downto 0) .- x"89abcdef"; 
signal wait_cntr : std_logic_vector(15 downto 0); 
signal delta counter,rdelta counter : std_logic vector(15 downto 0) .­

"0000000000000000"; 
signal delta_copy 
signal cnt,rcnt 
signal ternp,rternp 

x"OOOOOOOOOOOOOOOO"; 

: std_logic_vector(31 downto 0); 
: integer range 0 to 31; 

std_logic vector(63 downto 0) 

signal result,rresult : std_logic vector(63 downto 0) .-
x"OOOOOOOOOOOOOOOO"; 
signal Y_out,rY out : std_logic_vector(31 downto 0) := x"OOOOOOOO"; 
signal new_rounds : std_logic_vector(63 downto 0); 
signal saved_copy_randorn_nurnber : std_logic_vector(31 downto 0); 
signal new_saved_copy_randorn_nurnber : std_logic_vector(63 downto 0); 
signal t_verifiedY,t_verifiedZ: std_logic_vector(31 downto 0); 
signal rnatch_found_reg: std_logic; 
signal key_cntr : std_logic; 
signal readers_copyiDY std_logic vector (31 downto 0) x"01234567"; 
signal readers copyiDZ std_logic_vector(31 downto 0) x"89abcdef"; 

begin 
process(clk,Reset) 

variable int rand integer; 
variable seed1, seed2: positive .- 12; 
variable rand : real; 

begin 

if (Reset = I 1 I) then 
query <= I 1 I ; 

rsurn <= (others 
sum <= (others 
rcounter <= (others 
rcounter1 <= (others 
rand counter <= (others 
rrounds <= (others 
rternpZ <= (others 
rternpZ1 <= (others 
rlshiftedz <= (others 
rL <= (others 
rR <= (others 

86 

=> I 0 I ) ; 

=> I 0 I ) ; 

=> I 0 I ) ; 

=> I 0 I ) ; 

=> I 0 I ) ; 

=> I O I ) ; 

=> I O I ) i 

=> I 0 I) ; 
=> I 0 I ) ; 

=> I 0 I ) ; 

=> I 0 I ) ; 



State 

rrshiftedz 
rlshiftedy 
wait cntr 
rtempY 
rtempYl 
rrshiftedy 
match found 
verified_outputY 
verified_outputZ 
key_cntr 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= (others=> 1 0 1
); 

<= I 0 I; 
<= (others=> 1 0 1 ); 

<= (others=> 1 Q 1 ); 

<= I 0 I; 
rmax rounds <= x"00000032"; -- 50 rounds 
max rounds <= x"00000032"; 
inv sum <= (others=> 1 0 1

); 

counter <= (others=> 1 0 1
); 

counterl <= (others=> 1 0 1
); 

wait cntr <= (others=> 1 0 1
); 

delay_counter <= (others=> 1 0 1
); 

rounds <= (others=> 1 0 1
); 

Y <= (others=> 1 0 1
); 

Z <= (others=> 1 0 1
); 

tempZ <= (others=> 1 0 1
); 

tempZl <= (others=> 1 0 1
); 

tempY <= (others=> 1 0 1
); 

tempYl <= (others=> 1 0 1
); 

lshiftedz <= (others=> 1 0 1
); 

rshiftedz <= (others=> 1 0 1
); 

lshiftedy <= (others=> 1 0 1
); 

rshiftedy <= (others=> 1 0 1
); 

L <= (others=> 1 0 1
); 

R <= (others=> 1 0 1
); 

reader encrypt outputMSB_Y <= (others=> 1 0 1
); 

reader_encrypt_outputLSB Z <= (others=> 1 0 1
); 

reader output ready <= 1 0 1
; 

match_found_reg <= 1 0 1
; 

<= check feedback; 
elsif(clk 1 event and elk= 1 1 1

) then 
case (State) is 

when check feedback => 
if (feedback= 1 0 1 )then 
State <= random; 
elsif (feedback= 1 1 1

) then 
State <= INIT delta; 
end if; 

when random => 
if (rand_counter < "0000011010101000") then 

UNIFORM(seedl, seed2,rand); 
if (rand < 0.2) then 

saved_copy_random_number <= x"00000028"; 
else 

saved_copy_random_number <= x"00000028"; 
end if; 

rand_counter <= rand_counter + 1 1 1
; 

State <= random; 

87 



else 
State <= check_feedback; 

end if; 

when INIT delta => -- newdelta maxrounds*delta 
rY <= encrypt outputMSB Y; 
rZ <= encrypt outputLSB_Z; 
rent<= conv_integer(rdelta_counter); 

rtemp <= "00000000000000000000000000000000" & rdelta; 
State <= State1; 

when State1 => 
if(rdelta counter < 31) then 

rtemp <= rtemp(62 downto 0) & '0'; --'0' & temp( 
downto 1); 

if(rmax_rounds(conv_integer(rdelta_counter)) 
'1') then-- was max rounds(conv_integer 

else 

rresult <= rresult + rtemp; 
end if; 

rdelta counter<= rdelta counter+ '1'; 
State <= State1; 

State <= State3; 
end if; 

when State3 => 

rY_out <= rresult(31 downto 0); 
State <= delay; 

when delay => 

number) 
if (rdelay_counter < rmax rounds) then -- count to 32 (a random 

rdelay_counter <= rdelay_counter + 1; 
else 

State <= decode init; 
end if; 

------------------ START DECODE HERE!! -----------------­
Term7 starts here 

when decode init => 

rrounds <= conv std_logic vector(conv_unsigned(zero,8),8); 
-- reset rounds 

rL <= conv_std_logic vector(conv_unsigned(zero,31),32); 
reset L 

rR <= conv_std_logic vector(conv_unsigned(zero,31),32); 

rtempZ 
rtempZ1 
rtempY 
rtempY1 

reset R 
<= rZ; 
<= rZ; 
<= rY; 
<= rY; 

rinv sum <= 
x"8dde6e40";-- for 64 

rkO <= 

rY_out; --x"b8ab04e8"; -­
rounds --x"c6ef3720"; for 
rkey_temp(127 downto 96); 

key into 4 sub-keys 

88 

for 40 rounds--
32 rounds 
-- Split the 128-bit 



rk1 
rk2 
rk3 

<= rkey_temp(95 downto 64); 
<= rkey_temp(63 downto 32); 
<= rkey_temp(31 downto 0); 

-- y 

-- z 
<= encrypt_outputMSB_Y; --x"01234567"; 
<= encrypt outputLSB Z; 

State <= updatesum_decode;--updatesum_decode; 

when updatesum_decode => 

verified_outputZ <= rtempZ; 
verified_outputY <= rtempY; 

if (rrounds < rmax rounds) then 
rrounds <= rrounds + 1; 
State <= fourbitLSY d; 

else 
State <= done; 

end if; 

when fourbitLSY d => 
if (rcounter < "0100") then 

else 

rtempY <= rtempY(30 downto 0) & '0'; 
rcounter <= rcounter + 1; 
State <= fourbitLSY_d; 

rlshiftedy <= rtempY; 
rcounter <= 

conv std logic_vector(conv_unsigned(zero,4),4); 
State <= Term7; 

end if; 

when Term7 => 
rlshiftedy <= rlshiftedy + rk2; 
State <= fivebitRSY_d; 

when fivebitRSY d => 
if (rcounter1 < "0101") then 

rtempY1 <= '0' & rtempY1(31 downto 1); 
rcounter1 <= rcounter1 + 1; 

else 
State <= fivebitRSY_d; 

rrshiftedy <= rtempY1; 
rcounter1 <= 

conv std logic_vector(conv_unsigned(zero,4),4); 
State <= TermS; 

end if; 

when TermS => 
rrshiftedy <= rrshiftedy + rk3; 
State <= Term9; 

when Term9 => 

-- Reset counter 

-- Reset counter1 

rL <= rlshiftedy xor (rY + rinv sum) xor rrshiftedy; 
State <= part3; 

when part3 => 

89 



shift 

rZ <= rZ - rL; 
State <= newZ d; 

when newZ d => -
rtempZ 
rtempZl 
State <= fourbitLSZ 

when fourbitLSZ d => 

<= rZ; 
<= rZ; 

d; 

if (rcounter < "0100") then 

else 

rtempZ <= rtempZ(30 downto 0) & '0'; 

rcounter <= rcounter + 1; 
State <= fourbitLSZ d; 

rlshiftedz <= rtempZ; 
rcounter <= 

conv std logic_vector(conv_unsigned(zero,4),4); 
State <= Term10; 

end if; 

when Term10 => 

rlshiftedz <= rlshiftedz + rkO; 
State <= fivebitRSZ d; 

when fivebitRSZ d => 
if (rcounterl < "0101") then 

-- 4 bit left 

-- Reset Counter 

rtempZ1 <= '0' & rtempZ1(31 downto 1); -- 5 bit right 
shift 

else 

rcounter1 <= rcounterl + 1; 
State <= fivebitRSZ d; 

rrshiftedz <= rtempZ1; 
rcounter1 <= 

conv std logic_vector(conv_unsigned(zero,4),4); 
State <= Term11; 

end if; 

when Terml1 => 
rrshiftedz <= rrshiftedz + rk1; 
State <= Term12; 

when Term12 => 

-- Reset counterl 

rR <= rlshiftedz xor (rz + rinv sum) xor rrshiftedz; 
State <= part4; 

when part4 => 

rY <= rY - rR; 
State <= newY_d; 

when newY d => 

rtempY <= rY; 
rtempY1 <= rY; 
State <= checkrounds d; 

90 



when checkrounds d => 
if (rrounds < rmax rounds) then 

rinv sum <= rinv sum - rdelta copy; 
State <= updatesum_decode; 

-- how about this? 

else 
verified outputY <= rY; 
verified_outputZ <= rZ; 
t verifiedZ <= rZ; 
t verifiedY <= rY; 
State <= done; 
end if; 

when done => 
if(t verifiedZ = readers_copyiDZ) then 

else 

if (t_verifiedY = readers copyiDY) then 
match found<= 1 1 1

; 

match_found_reg <= 1 1 1
; 

State <= gen new_rounds; 
end if; 

match found<= 1 0 1
; 

end if; 

when gen_new rounds => 
if (match_found_reg = 1 1 1

) then 
new rounds <= x"0000000000000045"; State <= initialize_Y_Z; 
else 
State <= INIT delta; 
end if; 

when initialize y z => 
y <= storediD y xor new rounds(63 down to 32) ; -z <= storediD z xor new rounds(31 down to 0) ; 

-
tempZ <= (others => I 0 I ) ; 

tempZ1 <= (others => I 0 I ) i 

tempY <= (others => I 0 I ) ; 

tempY1 <= (others => I 0 I ) ; 

lshiftedz <= (others => I 0 I ) ; 

rshiftedz <= (others => I 0 I ) ; 

lshiftedy <= (others => I 0 I ) ; 

rshiftedy <= (others => I 0 I ) ; 

counter <= (others => I 0 I ) ; 

counter1 <= (others => I 0 I ) ; 

sum <= (others => I O I ) i 

rounds <= (others => I 0 I ) ; 

L <= (others => I 0 I ) ; 

R <= (others => I 0 I ) ; 

State <= INIT; 

when INIT => 

------------ Encode Routine ------------
Y <= Y + ( (lshiftedz+kO) xor (z+sum) xor (rshiftedz+k1) ); --

when updatesum => 
if (rounds < max rounds) then 

91 



sum 
rounds 
State 

else 
State 

end if; 

<= sum + delta copy; 
<= rounds + 1; 
<= fourbitLSZ; 

<= done; 

when fourbitLSZ => Z << 4 
if (counter < "0100") then 

tempZ <= tempZ(30 downto 0) & '0'; -- 4bit lshift 
counter <= counter + 1; 
State <= fourbitLSZ; 

else 
lshiftedz <= tempZ; 
counter <=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Term1; 

end if; 

when Term1 => 
lshiftedz 
State 

when fivebitRSZ => 

<= lshiftedz + kO; 
<= fivebitRSZ; 

if (counter1 < "0101") then 
-- z >> 5 

tempZ1 <= '0' & tempZ1(31 downto 1); -- 5 bit rshift 
counter1 <= counter1 + 1; 
State <= fivebitRSZ; 

else 
rshiftedz <= tempZ1; 
counter1<=conv_std_logic_vector(conv unsigned(zero,4),4); 
State <= Term2; 

end if; 

when Term2 => 
rshiftedz 
State 

<= rshiftedz + k1; 
<= Term3; 

when Term3 => 
L 
State 

<= lshiftedz xor (z + sum) xor rshiftedz; 
<= part1; 

when part1 => 
y <= y + L; 
State <= newY; 

when newY => 
tempY 
tempY1 
State 

when fourbitLSY => 

<= Y; 
<= Y; 
<= fourbitLSY; 

if (counter < "0100") then 
-- y << 4 

tempY <= tempY(30 downto 0) & '0'; 

else 

counter 
State 

<= counter + 1; 
<= fourbitLSY; 

lshiftedy<= tempY; 

92 



counter 
State 

end if; 

<= conv_std_logic_vector(conv_unsigned(zero,4),4); 
<= Term4; 

when Term4 => 
lshiftedy 
State 

<= lshiftedy + k2; 
<= fivebitRSY; 

when fivebitRSY => -- Y >> S 
if (counter1 < "0101") then 

tempY1 <= '0' & tempY1(31 downto 1); 

else 

counter1 
State 

<= counter1 + 1; 
<= fivebitRSY; 

rshiftedy <= tempY1; 
counter1<=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= TermS; 

end if; 

when TermS => 
rshiftedy <= rshiftedy + k3; 
State <= Term6; 

when Term6 => 
R <= lshiftedy xor (y + sum) 
State <= part2; 

when part2 => 
z <= z + R; 
State <= newZ; 

when newZ => 
tempZ <= Z; 
tempZ1 <= Z; 
State <= checkrounds; 

when checkrounds => 
if (rounds < max rounds) then 
State <= updatesum; 
else 
reader encrypt outputMSB_Y <= Y; 
reader encrypt outputLSB Z <= Z; 
State <= wait state; 
end if; 

when wait state => 

if (wait cntr < "0000000000101000") then 
wait_cntr <= wait_cntr + '1'; 
reader_output ready<= '1'; 

else 
State <= wait state; 

reader_output ready<= '0'; 
wait cntr <= "0000000000000000"; 
State <= do nothing; 

end if; 

93 

xor rshiftedy; 



when do_nothing => 

null; 

when others => 
null; 

end case; 

end if; 
end process; 
end Behavioral; 

TAG (Tag.vhd) 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.MATH_REAL.all; 
use IEEE.NUMERIC STD.ALL; 

package types is 
subtype bit t is std_logic; 
subtype round tis std_logic vector (4 downto 0); 
subtype word_t is std_logic_vector (31 downto 0); 
subtype text_t is std_logic_vector (63 downto 0); 
subtype key_t is std_logic vector (127 downto 0); 

constant delta: word t .- x"9e3779b9"; 
end types; 

library IEEE; 
use IEEE.STD LOGIC 1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC UNSIGNED.ALL; 
use IEEE.NUMERIC_STD.ALL; 
use IEEE.MATH REAL.all; 
use work.types.all; 

entity tag is 
generic( 
zero Integer := 0 

) ; 

Port enable in std_logic; 
Reset in std_logic; 
tag_encrypt outputMSB_Y out std_logic vector(31 downto 0); 
tag_encrypt outputLSB Z out std_logic vector(31 downto 0); 
reader_output_ready in std_logic; 
reader_encrypt_outputMSB_Y : in std_logic_vector(31 downto 0); 
reader_encrypt outputLSB Z : in std_logic vector(31 downto 0); 
final decryptY out std_logic_vector(31 downto 0); 
final decryptZ out std_logic_vector(31 downto 0); 
new_rounds_value out std_logic_vector(63 downto 0); 
output ready out std_logic; 
sync out std_logic; 

94 



elk 
end tag; 

architecture Behavioral of tag is 
type Statetype is 

in bitt); 

(delta_done,done_l,done 2,done 3,INIT,INIT delta,check_feedback,INIT_de 
lta_d,Statel,State3,Statel d,State3 d,updatesurn,decode_init,updatesurn_d 
ecode,fourbitLSY_d,Terrn7,fivebitRSY_d,Terrn8,Terrn9,part3,newZ_d,fourbitL 
SZ_d,TerrnlO,fivebitRSZ_d,Terrnll,Terrnl2,part4,newY_d,checkrounds_d,fourb 
itLSZ,Terrnl,fivebitRSZ,Terrn2,Terrn3,partl,newY,fourbitLSY,Terrn4,fivebitR 
SY,Terrn5,Terrn6,part2,newZ,checkrounds,delay,wait_state,final,done); 
signal State : Statetype; 

signal surn,inv_surn : std_logic_vector(31 downto 0); 
signal counter,counterl : std_logic_vector(3 downto 0); 
signal wait_cntr,delta counter: std_logic_vector(15 downto 0); 
signal delay_counter :std_logic_vector(7 downto 0); 
signal rounds std_logic_vector(7 downto 0); 
signal kO,kl,k2,k3 std_logic_vector(31 downto 0); 
signal Y,Z std_logic_vector(31 downto 0); 
signal ternpZ,ternpZl std_logic_vector(31 downto 0); 
signal ternpY,ternpYl std_logic_vector(31 downto 0); 
signal lshiftedz,lshiftedy: std_logic_vector(31 downto 0); 
signal concat,concatl : std_logic_vector(31 downto 0); 
signal rshiftedz,rshiftedy: std_logic vector(31 downto 0); 
signal key_ternp : key_t := 
x"00112233445566778899aabbccddeeff"; 
signal delta copy : std_logic_vector(31 downto 0); 
signal L,R,rnax_rounds : std_logic_vector(31 downto 0); 
signal cnt,rcnt : integer range 0 to 31; 
signal temp, result : std_logic_vector(63 downto 0); 
signal rdelta std logic_vector(31 downto 0) .- x"9e3779b9"; 
signal rdelta counter std_logic_vector(15 downto 0); 
signal rrounds std_logic_vector(7 downto 0); 
signal rternpZ,rternpZl std_logic_vector(31 downto 0); 
signal rternpY,rternpYl std_logic_vector(31 downto 0); 
signal rL,rR,rY,rZ std_logic_vector(31 downto 0); 
signal rsurn,rinv_surn std_logic_vector(31 downto 0); 
signal rdelta_copy std_logic_vector(31 downto 0); 
signal rlshiftedz std_logic_vector(31 downto 0); 
signal rrshiftedz std_logic_vector(31 downto 0); 
signal rlshiftedy std_logic_vector(31 downto 0); 
signal rrshiftedy std_logic_vector(31 downto 0); 
signal rrnax rounds std_logic_vector(31 downto 0); 
signal rcounter std_logic_vector(3 downto 0); 
signal rand counter std_logic_vector(15 downto 0); 
signal rdelay_counter std_logic_vector(7 downto 0); 
signal rcounterl std_logic_vector(3 downto 0); 
signal rkO,rkl,rk2,rk3 std_logic_vector(31 downto 0); 
signal rkey temp std logic vector(127 downto 0) .-

x"00112233445566778899aabbccddeeff"; 
signal rternp std_logic_vector(63 downto 0); 
signal rresult std_logic_vector(63 downto 0); 
signal Y out, rY out std logic vector(31 downto 0); 
signal s~ved_copy_randorn_nurnber : std_logic_vector(31 downto 
0) := x"00000028"; 

95 



begin 

signal storediD_Y 
x"01234567"; 
signal storediD_Z 
x"89abcdef"; 
signal key_cntr 

std_logic vector(31 downto 0) .-

std_logic vector(31 downto 0) 

std_logic; 

PO: process(clk,Reset) 
begin 

if (Reset 1 1 1
) then 

sum 
counter 
counterl 
rounds 
tempZ 
tempZl 
lshiftedz 
L 

R 

rshiftedz 
lshiftedy 
tempY 
tempYl 
concat 
concatl 

<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 

(others => I O I ) ; 

(others => I 0 I ) ; 

(others => I 0 I ) ; 

(others => I 0 I ) ; 

(others => I 0 I ) ; 

(others => I 0 I ) ; 

(others => I 0 I ) ; 

(others => I O I ) ; 

(others => I 0 I ) ; 

(others => I 0 I ) ; 

(others => I 0 I ) ; 

(others => I 0 I ) ; 

(others => I O I ) ; 

(others => I 0 I ) ; 

(others => I O I ) ; 

wait cntr <= (others=> 1 0 1
); 

rshiftedy <= (others=> 1 0 1
); 

tag_encrypt outputMSB_Y <= (others=> 1 0 1
); 

tag encrypt_outputLSB Z <= (others=> 1 0 1
); 

final_decryptY <= (others=> 1 0 1
); 

final decryptZ <= (others=> 1 0 1
); 

output ready <= 1 0 1
; 

sync <= 1 0 1
; 

key_cntr <= 1 0 1
; 

rsum <= (others 
rresult <= (others 
rcounter 
rcounterl 
rand counter 
rrounds 
rtempZ 
rtempZl 
rlshiftedz 
rL 

<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 
<= (others 

=> I 0 I ) ; 

=> I 0 I ) ; 

=> I 0 I ) ; 

=> I O I ) ; 

=> I 0 I ) ; 

=> I O I) ; 

=> I 0 I); 
=> I O I ) ; 

=> I O I ) ; 

=> I 0 I ) ; 

=> I O I ) ; 

=> I 0 I ) ; 

=> I O I ) ; 

=> I 0 I ) ; 

=> I 0 I) ; 
=> I 0 I ) ; 

rR 
rrshiftedz 
rlshiftedy 
wait cntr 
rtempY 
rtempYl 
rrshiftedy 
rmax rounds 
max rounds 
rdelta copy 
y 

<= (others=> 1 0 1
); 

z 

<= x"00000032"; -- 50 rounds 
<= x"00000032"; 
<= x"9e3779b9"; 
<= storediD_Y; 
<= storediD_Z; 

96 



State <= INIT delta; 

elsif(clk'event and elk 
case (State) is 

'1' and enable= '1') then 

when INIT delta => 
cnt <= conv_integer(delta counter); 
temp <= "00000000000000000000000000000000" & delta; 
State <= State1; 

when State1 => 

when 

if(delta counter < 31) then 
temp<= temp(62 downto 0) & '0'; 

if(max_rounds(conv_integer(delta counter)) 
result <= result + temp; 
end if; 

delta counter<= delta counter+ '1'; 
State <= State1; 
else 
State <= State3; 
end if; 

State3 => 
y out <= result(31 down to 0) ; 
State <= delta done; -

when delta done => 
Y <= storediD Y; 
Z <= storediD_Z; 
State <= INIT; 

when INIT => 
delta copy <= delta; 
kO <= key _temp(127 down to 96) ; 
k1 <= key temp(95 down to 64) ; 

-
k2 <= key temp(63 down to 32) ; 

-
k3 <= key_temp(31 down to 0) ; 
tempZ <= Z; 
tempZ1 <= Z; 
tempY <= Y; 
tempY1 <= Y; 
State <= updatesum; 

'1') then 

----~--------------------- Encode Routine ---------------------­
Y <= Y + ( (lshiftedz+kO) xor (z+sum) xor (rshiftedz+k1)); -­

when updatesum => 
if (rounds < max rounds) then 

else 

sum 
rounds 
State 

State 
end if; 

when fourbitLSZ => 

<= sum + delta copy; 
<= rounds + 1; 
<= fourbitLSZ; 

<= done; 

if (counter < "0100") then 
z << 4 

tempZ <= tempZ(30 downto 0) & '0'; -- 4bit lshift 
counter <= counter + 1; 

97 



else 
State <= fourbitLSZ; 

lshiftedz <= tempZ; 
counter<=conv_std_logic_vector(conv_unsigned(zero,4),4); 
State <= Term1; 

end if; 

when Term1 => 
lshiftedz 
State 

<= lshiftedz + kO; 
<= fivebitRSZ; 

when fivebitRSZ => -- Z >> 5 

when 

when 

when 

when 

when 

if (counter1 < "0101") then 

else 

tempZ1 <= '0' & tempZ1(31 downto 1) ;-- 5 bit rshift 
counter1 
State 

<= counter1 + 1; 
<= fivebitRSZ; 

rshiftedz <= tempZ1; 
counter1<=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Term2; 

end if; 

Term2 => 
rshiftedz 
State 

Term3 => 
L 
State 

part1 => 
y 

State 

newY => 
tempY 
tempY1 
State 

fourbitLSY => 
if (counter < 

tempY 
counter 
State 

else 

<= rshiftedz + k1; 
<= Term3; 

<= lshiftedz xor (z + sum) xor rshiftedz; 
<= part1; 

<= y + L; 
<= newY; 

<= Y; 
<= Y; 
<= fourbitLSY; 

"0100") then 
-- y << 4 

<= tempY(30 downto 0) & '0'; 
<= counter + 1; 
<= fourbitLSY; 

lshiftedy <= tempY; 
counter <=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Term4; 

end if; 

when Term4 => 
lshiftedy 
State 

<= lshiftedy + k2; 
<= fivebitRSY; 

when fivebitRSY => -- y >> 5 
if (counter1 < "0101") then 

tempY1 <= '0' & tempY1(31 downto 1); 

98 



else 

counter1 
State 

<= counter1 + 1; 
<= fivebitRSY; 

rshiftedy <= tempY1; 
counter1<=conv_std_logic_vector(conv_unsigned(zero,4),4); 
State <= TermS; 

end if; 

when TermS => 
rshiftedy <= rshiftedy + k3; 
State <= Term6; 

when Term6 => 
R <= lshiftedy xor (y 
State <= part2; 

when part2 => 
z <= z + R; 
State <= newZ; 

when newZ => 
tempZ <= Z; 
tempZ1 <= Z; 
State <= checkrounds; 

when checkrounds => 
if (rounds < max rounds) then 
State <= updatesum; 
else 
tag_encrypt outputMSB Y <= Y; 
tag_encrypt outputLSB Z <= Z; 
State <= wait state; 
end if; 

when wait state => 
if (wait cntr < "0000000000101000") then 

else 

wait cntr 
output ready 
State 

output ready 
sync 

<=wait cntr + 1 1 1
; 

<= 111; 

<= wait state; 

<= I 0 I; 
<= 111; 

+ 

wait cntr 
State 

<= "0000000000000000"; 
<= INIT delta d; 

end if; 

sum) xor rshiftedy; 

when INIT delta d => 
rent 

newdelta = maxrounds*delta 
<= conv_integer(rdelta_counter); 

rtemp 
State 

when State1 d => 

<= "00000000000000000000000000000000" & rdelta; 
<= State1 d; 

if(rdelta counter < 31) then 
rtemp <= rtemp(62 downto 0) & 1 0 1

; 

if(rmax rounds(conv_integer(rdelta_counter)) 1 1 1
) then 

rresult <= rresult + rtemp; 
end if; 

rdelta counter <= rdelta counter+ 1 1 1
; 

99 



State 
else 
State 
end if; 

when State3 d => 

<= State1 d; 

<= State3_d; 

rY out<= rresult(31 downto 0); 
State <= delay; 

when delay => 
if (reader output ready= '1') then 

rY <= reader_encrypt outputMSB_Y; 
rZ <= reader_encrypt outputLSB Z; 
State <= decode init; 

else 
State <= delay; 

end if; 
--------------------------- Decode Routine ---------------------------
when decode init 

rrounds 
rL 
rR 
rternpZ 
rternpZ1 
rternpY 
rternpY1 
rinv sum 
rkO 
rk1 
rk2 
rk3 
State 

=> 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 
<= 

conv_std_logic_vector(conv_unsigned(zero,8),8); 
conv_std_logic vector(conv_unsigned(zero,31),32); 
conv_std_logic vector(conv_unsigned(zero,31),32); 
rZ; 
rZ; 
rY; 
rY; 
rY_out; 
rkey_ternp(127 downto 96); 
rkey_ternp(95 downto 64); 
rkey_ternp(63 downto 32); 
rkey_ternp(31 downto 0); 
updatesurn_decode; 

when updatesurn_decode => 
if (rrounds < rrnax rounds) then 

else 

end if; 

rrounds 
State 

State 

<= rrounds + 1; 
<= fourbitLSY d; 

<= done; 

when fourbitLSY d => 
if (rcounter < "0100") then 

else 

rternpY <= rternpY(30 downto 0) & '0'; 
rcounter 
State 

<= rcounter + 1; 
<= fourbitLSY_d; 

rlshiftedy <= rternpY; 
rcounter<=conv_std_logic vector(conv_unsigned(zero,4),4); 
State <= Terrn7; 

end if; 

when Terrn7 => 
rlshiftedy <= rlshiftedy + rk2; 
State <= fivebitRSY d; 

when fivebitRSY d => 

100 



if (rcounter1 < "0101") then 
rtempY1 <= '0' & rtempY1(31 downto 1); 

rcounter1 <= rcounter1 + 1; 
State <= fivebitRSY d; 

else 
rrshiftedy<= rtempY1; 

rcounter1<=conv_std_logic_vector(conv unsigned(zero,4),4); 
State <= TermS; 

end if; 

when TermS => 
rrshiftedy <= rrshiftedy + rk3; 

State <= Term9; 

when Term9 => 
rL <= rlshiftedy xor (rY + rinv sum) xor rrshiftedy; 
State <= part3; 

when part3 => 
rZ <= rZ - rL; 
State <= newZ d; 

when newZ d => 
rtempZ <= rZ; 
rtempZ1 <= rZ; 
State <= fourbitLSZ d; 

when fourbitLSZ d => 
if (rcounter < "0100") then 

rtempZ <= rtempZ(30 downto 0) & '0';-- 4 bit left shift 
rcounter <= rcounter + 1; 
State <= fourbitLSZ d; 

else 
rlshiftedz <= rtempZ; 

rcounter<=conv std_logic_vector(conv_unsigned(zero,4),4); 
State <= Term10; 

end if; 

when Term10 => 
rlshiftedz <= rlshiftedz + rkO; 
State <= fivebitRSZ d; 

when fivebitRSZ d => 
if (rcounter1 < "0101") then 

else 

rtempZ1 <= '0' & rtempZ1(31 downto 1); 
rcounter1 <= rcounter1 + 1; 
State <= fivebitRSZ d; 

-- 5 bit rshift 

rrshiftedz <= rtempZ1; 
rcounter1<=conv_std_logic vector(conv_unsigned(zero,4),4); 

State <= Term11; 
end if; 

when Term11 => 
rrshiftedz <= rrshiftedz + rk1; 
State <= Term12; 

101 



when Term12 => 
rR <= rlshiftedz xor (rz + rinv sum) xor rrshiftedz; 
State <= part4; 

when part4 => 
rY <= rY - rR; 
State <= newY d; 

when newY d => 
rtempY <= rY; 
rtempY1 <= rY; 
State <= checkrounds d; 

when checkrounds d => 

when 

when 

when 

when 

end 

if (rrounds < rmax rounds) then 
rinv_sum <= rinv_sum - rdelta copy; 

State <= updatesum_decode; 
else 
final_decryptY <= rY; 
final_decryptZ <= rZ; 

State <= done 1; 
end if; 

done 1 => 
con cat <= rY 
concat1 <= rZ 
State <= done 2; 

done 2 => 

xor storediD Y; 
-

xor storediD Z; 
-

new rounds value <= concat & concat1; 
State <= done 3; 

done 3 => 
null; 

others => 
null; 

end case; 
if; 

end process PO; 
end Behavioral; 

102 


	Ryerson University
	Digital Commons @ Ryerson
	1-1-2009

	RFID Security : Tiny Encryption Algorithm And Authentication Protocols
	Shirley. Gilbert
	Recommended Citation





