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Abstract 

AREA-DELAY DRIVEN LIBRARY-FREE SYNTHESIS 
Matthew Pullerits 

M.A.Sc. Ryerson University, 2008 

Current logic synthesis tools rely on pre-defined cell libraries to assemble an arbitrary 

circuit to perform a needed function. The efficiency of the synthesized circuit relies on 

the quality and size of the library used in terms of circuit area and critical path delay. It 

has been shown that in a process supporting five serial NMOS and PMOS transistors, 

425803 unique logic gates may be constructed. Clearly this is beyond what is currently 

available in standard cell libraries. 

A richer cell library allows the technology mapper more freedom to better select matches 

to reduce area, delay and power consumption. This thesis proposes novel algorithms for 

mapping an input netlist to a library of virtual cells by minimizing logical effort delay, 

and gate input capacitance to select an architecture which minimizes the design area­

delay. An average 69.43% reduction in transistor count, 53.33% reduction in circuit area, 

with a 3.76% increase in delay has been realized compared to results obtained from 

Synopsys Design Compiler with high map effort for delay minimization. 
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1. Introduction 

1.1 Integrated Circuit Design Techniques 
Since the inception of the integrated circuit in April of 1961 by Robert Noyce [1 ], the 

technology has rapidly evolved to a level where every aspect of our lives is driven by 

computer chips- from health care to national defense. 

Application Specific Integrated Circuits (ASICs) in production today are composed of a 

few, to a few hundred million transistors, depending on the intended task of the chip. 

Transistors are composed of interconnected layers of silicon, metal (most commonly used 

metals are aluminum or copper), and insulator (most commonly used is Si02 - glass). 

These ASICS may be manufactured with many interconnecting layers of metal, giving a 

total metal layer count in the chip of six in a 0.06f.lm process [2]. Individual layers are 

separated, and "mask layouts" are created for each layer to be produced. These mask 

layouts are the final step in ASIC design, and are directly used in production of the chip. 

ASICs are currently produced in one of three ways: Full Custom, Fully Automatic, and 

Semi-Custom. In a full custom process, design engineers draw the final mask layout of 

the circuit to be produced using computer aided design (CAD) software. This allows the 

engineer to customize every aspect of the chip in regards to transistor sizing for optimal 

power consumption, delay, or area specifications. As modern integrated circuits may 

contain around ]-billion transistors, a full custom design although would result in the 

most optimal product with respect to speed or power consumption, is not always possible 

or practical due to time or budget constraints. 

In a fully automatic process, circuits to be produced are defined in a high level hardware 

description language (HDL) such as Verilog, VHDL, or SystemC. Using these languages, 

a design engineer may describe their circuit in a manner similar to that of a computer 
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program, making use of programming techniques such as while loops, for loops, and 

custom data structures. Once a circuit is defined in a HDL, it may be synthesized to a 

production-ready mask layout easily with currently available synthesis tools, such as 

Synopsys Design Compiler, or the Berekley-made SIS. Relative to a fully custom design, 

usage of HDLs may allow for time-savings of many orders of magnitude. This is a great 

economic savings for the design firm with respect to engineering time required to 

develop a production-ready circuit. 

Although synthesis allows for a great savings of time to produce a functional ASIC, 

current CAD tools are not able to produce circuits which are optimal with respect to area 

and delay. On occasion it is necessary to produce a semi custom design, in which a layout 

obtained from HDL synthesis is modified to conform to required design specifications. 

1.2 Logic Synthesis 

Logic synthesis is the process of converting a circuit described in a hardware definition 

language into a netlist of gates, which may be made to a layout ready for fabrication. 

Synthesis tools today rely on libraries of pre-defined cells which are used to construct the 

circuit. These cells act as building blocks which can be connected to produce a desired 

function. 

Cell libraries have played an important role in logic synthesis for the past three decades. 

They have allowed engineers to quickly utilize these pre-designed building blocks to 

assemble and fabricate an arbitrary circuit to perform a needed function. While 

convenient, these library files require significant investment in engineering time to 

develop and maintain for every generation of technology process. 

The efficiency of the synthesized circuit relies heavily on the quality and size of the 

library used [3]. However, creating rich cell libraries to facilitate the continued demand 

for faster, smaller, and more complex ASICs is not economically permissible. As such, 

many of the advances in deep sub-micron fabrication are not being fully utilized by 

implementing functions in complex gates [4]. It has been shown that in a technology 

2 



II 

process capable of supporting five serial NMOS and PMOS transistors, 425803 unique 

logic gates may be constructed [5]. Clearly this is beyond what is currently available in 

standard cell libraries. A synthesis tool which is able to dynamically generate library cells 

during the synthesis process, rather than relying on a pre-constructed cell library, is able 

to much better utilize resources inside the ASIC by generating a complex gate where 

previously many smaller library cells would have to be used. These resources being 

minimized may include transistor count, silicon area, power consumption, or critical path 

delay. 

1.3 Objectives 

• To develop library-free synthesis algorithms which: 

• 

o Has a complexity similar to current state-of-the-art synthesis tools 

o Minimizes the power consumption and delay. Since it is well known 

power dissipation is proportional to the design area, this objective can be 

achieved by minimizing the area-delay product. 

o Guarantees the consistency of the quality of the synthesized design by 

ensuring a) independence from the initial decomposition of the circuit, and 

b) absolute logic minimization 

To develop a CAD tool which implements the proposed algorithms in a high level 

language such as C or C++ 

1.4 Main Contributions 

This thesis proposes novel synthesis algorithms for use in library-free synthesis. Using 

this technique allows the direct production of a transistor netlist of the design, as opposed 

to the cell-based synthesis method. The proposed technique is independent of the initial 

decomposition which improves the overall area-delay product. Finally, the developed 

synthesis algorithms will generate circuits which are not tied to any particular technology 

process, allowing inexpensive portability between processes. 
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1.5 Thesis Organization 

The remainder of this document is organized as follows. An overview of library-based 

logic synthesis is presented in chapter 2. Chapter 3 reviews the theory of library-free 

logic synthesis and previous works in this area. Chapter 4 presents the proposed library­

free logic synthesis algorithms. Implementation details are outlined in chapter 5. 

Experimental results obtained from executing the developed tool with benchmark 

circuits, and comparisons against industry standard synthesis tools is presented in chapter 

6. Finally, conclusions and room for future work is discussed in chapter 7. 

4 
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2. Library-Based Logic Synthesis 

A cell library contains a set of pre-constructed mask layouts of logic functions which are 

ready for fabrication on a specific technology process. These logic functions range from 

simple gates such as Inverters, NANDs or NORs, to complex adders and registers. 

Accurate area and timing information is available for these cells, as well as various sizes 

of these gates in order to drive different loads. 

Logic synthesis is a conversion process which translates a gate level representation of an 

HDL into a layout ready for further processing such as power planning for production on 

a particular technology using pre-characterized cells from the cell library. This process 

can be broken down into four unique steps: decomposition, partitioning, matching, and 

covering. 

2.1 Decomposition 

During the technology independent stage of logic minimization, functions are 

decomposed in to a network of base functions. These base functions could be a set of two 

input NAND, NOR and Inverter gates. Decomposition allows for a complex circuit to be 

broken down into smaller gates which are easier to analyze and synthesize [6]. While the 

structure of the circuit is modified during decomposition, the functionality is maintained. 

At minimum, the target technology cell library must contain the set of base functions 

decomposed to, in order to guarantee a complete covering. 

2.2 Partitioning 

Boolean networks may be represented as directed acyclic graphs (DAGs) with vertices 

representing Boolean functions, and edges representing connections, or wires. It has been 

shown [7] that network partitioning into trees is an essential heuristic step in the 

technology mapping process, as there is currently no algorithm to optimally cover a DAG 
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in polynomial time1
• Many studies have been conducted on the complexity of covering a 

DAG, resulting in the conclusion that the problem is NP-hard [8]. As complex Boolean 

networks may contain thousands or potentially millions of functions, each with at least 

one, and in most cases, more than one covering, a solution is beyond the capabilities of 

covering tools. In order to solve the covering problem in a practical amount of time, 

heuristics must be applied to simplify the problem. One such heuristic is partitioning the 

DAG into singly-rooted trees [7] [9]. Partitioning serves two purposes: first it simplifies 

the covering problem so that each network being covered is smaller. Second, by this 

simplification, partitioning enables the covering problem to become practical. It has been 

shown that although the covering problem is intractable, computation time is reasonable 

for problems of practical size [I 0]. 

It should be noted that partitioning of a Boolean network serves as a heuristic step, and 

although simplifies the computation of an optimal covering, will hinder the quality of the 

overall result. 

Singe-rooted trees may be partitioned by traversing the network from primary outputs to 

primary inputs, creating a new partition for every primary output, or for any multiple 

fanout traversed. Figure 2-1 illustrates the partitions obtained by traversing from outputs 

to inputs, with X's marking partition locations. 

Figure 2-1. Single-Fanout Partitioning 

1 Although numerous algorithms have been proposed to cover a DAG, all implement some sort of heuristic 
[8] [39] [24] [40] to execute within an acceptable time frame. 
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2.3 Matching 

Matching can be broken down into two flavors: structural matching and Boolean 

matching [11 ]. Structural matching analyzes a decomposed, partitioned circuit as a graph, 

and searches for matching patterns in the cell library. Boolean matching looks at the logic 

function being accomplished by the circuit, and seeks similar functions or permutations 

of functions in the cell library by comparing the Boolean truth tables of the functions. 

2.3.1 Structural Matching 

After partitioning, the original DAG will have been broken into a forest of trees. Each 

individual tree is called a subject graph [7], with edges representing wires, or connections 

between gates, and vertices representing logic functions. A root node is defined as the 

output of the function, or the node which all other nodes lead to. A child node is defined 

as a node which stems from another node at a higher level. Leaf nodes are always inputs 

to the subject graph, and are the lowest-level child nodes. These subject graphs contain 

multiple inputs, but only a single output. 

For example, consider the Boolean network illustrated in Figure 2-2, representing the 

function f = ab + c . 

Figure 2-2. Gate representation of function f=(ab +c)' 

Given the base functions: NAND and NOT, the network in Figure 2-2 may be 

transformed into the subject graph seen in Figure 2-3. NAND gates are represented by the 

character N, and NOT gates are represented by the character I. Lower case letters 

represent inputs. 
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Figure 2-3. Tree decomposition of function f=(ab +c)' into NAND & Inverter gates 

Structural matching algorithms function by checking the isomorphism between two 

rooted trees. A subject graph, or a portion of a subject graph is compared with stored 

pattern graphs of functions within a cell library. If the two are found to be isomorphic, it 

can be said that the two match. 

2.3.1.1 Simple Tree-Based Matching 

One of the simplest forms of tree-based matching considers the case when there is only 

one base function which the original Boolean network is decomposed to. For the 

purposes of this Section, we will assume that the two-input NAND gate is used. 

Similarly, a NOR gate could be used instead. 

As an Inverter may be generated by tying two inputs of a NAND together, only one type 

of non-terminal vertex is required; Differentiation between a NAND and Inverter gate 

may be determined by the number of children beneath the vertex. 

MATCH, a simple tree-based matching algorithm operates by comparing subgraphs of 

the subject tree to every pattern tree in the library, checking for isomorphism [12]. The 

algorithm is outlined in Figure 2-4. 
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MATCH (subject, pattern) { 
If (subject is a leaf) return (TRUE); 
Else { 

If (pattern is a leaf) return (FALSE); 
If(degree(pattern) != degree(pattern)) return(FALSE); 
If (degree( pattern) == 1) { 

} else { 

Uc =child of subject; Vc =child of pattern; 
Return ( match(U c, V c)) 

Ul = left-child of subject; Ur = right-child of subject; 
VI= left-child of pattern; Vr =right-child of pattern; 
Return (match(Ul, VI) . match(Ur,Vr) + match(Ur,Vl) . match(UI, Vr)); 

Figure 2-4. MATCH Algorithm 

2.3 .1.2 String Matching with Multiple Base Functions 

It is not always the case that Boolean networks will be decomposed to one base function, 

thus an alternate method is required to match and cover networks with multiple types of 

base function. The remainder of this section describes structural matching based on string 

encodings of trees and string recognition. 

Tree String Encoding 

Trees may be stored in memory as an encoding of strings, each representing one path 

from the root to a leaf [12]. Consider the AND function, decomposed into a NAND and 

Inverter, seen below in Figure 2-5. 

Figure 2-5. AND function 

The tree representation of this decomposed AND function may be observed in Figure 2-6. 

Figure 2-6. AND pattern tree. Inverter= White, NAND =Black, Input = Grey) 
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Pattern strings for the AND gate may now be generated from the pattern tree illustrated in 

Figure 2-6, which provide a textual description of every path from the root to each input­

leaf. Each unique base function is assigned a unique character representation, such as I 

for Inverter, or N for NAND. The format of a pattern string is as follows: the string is a 

pattern of character identifiers, followed by a number, representing the next child node to 

traverse in order to reach the target leaf. 

Looking at Figure 2-6, one can obtain the pattern strings "11Nl v" and "IIN2v". Breaking 

down both of these strings, first looking at "IlNlv", we can see that the root node is an 

Inverter, and it's first (and only) child is connected to the output of a NAND gate, whose 

first input is connected to a leaf node, v. 

The second string, "I 1 N2v" may be broken down as follows: The root node is an Inverter, 

and it's first (and only) child is connected to the output of a NAND gate, whose second 

input is connected to a leaf node, v. 

Tree Sting Matching using Automation String Detection 

A partitioned, decomposed subject tree may be covered using pattern-string detection 

algorithms by matching substrings of a subject tree string with pattern strings in a cell 

library. One such method of recognizing pattern strings within a subject tree is to build an 

automation for the entire cell library [12], which will compare input subject strings one 

character at a time against the library automation. Such an automation is built 

incrementally, one pattern string at a time. Initially the automation is set in a reset state, 

until an appropriate matching input is received. Once an initial input is received, the 

automation begins operating as a finite-state machine, until reaching a terminating state, 

when it will return to the reset status. 

An automation built from the sample library illustrated in Figure 2-7 is illustrated tn 

Figure 2-8. 
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Library Decomposition into NAND/INV Pattern Tree Pattern String Tree Identifier 
Function base functions 

INV v ~ 
Ilv tl.l 

NAND2 c!G Nlv t2.1 
N2v t2.2 

NOR2 IlNIIl v t3 . 1 
I1N2Ilv t3.2 

Figure 2-7. Sample pattern trees, pattern strings, pattern tree identifiers for 3 common library cells 
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tl.l 

N 
t3.1 

2 
t3.2 

N 
t2.1 

2 
t2.2 

Figure 2-8. Automation for sample library given in Figure 2-7 

Example. We will now use the simple automation illustrated in Figure 2-8 to determine 

if the subject tree in Figure 2-3 may be covered by this library. The following subject 

strings define the subject tree illustrated in Figure 2-3: {IlNlNlv, 11N1N2v, 11N2Ilv} 

By inputting these strings into the automation, one can see that only I1 N2Il v has a 

perfect match with tree string t3.2; However since t3.1 does not have a match, this cell 

cannot be used in the cover. After pruning the subject tree, we can find a match I1 v, by 

trees tl.l. Similarly, one can find a match for the strings Nl v, and N2v, covered by tree 

strings t2,1, and t2.2, respectfully. 

2.3.2 Boolean Matching 

As described in the previous Section, structural matching will find a matching library cell 

in order to generate a complete network cover; however, for complex functions, there 

may be many different decompositions of the same function, and the quality of the 

resulting mapped circuit depends heavily on the initial decomposition. 
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In order to combat this dependency on the initial decomposition, a structural matcher 

could pre-calculate every possible decomposition and store this in the library for lookup. 

This lookup procedure becomes computationally hard as complex functions are generated 

with up to and exceeding 8 inputs, with potentially many thousands of different 

decompositions. Boolean matching allows us to take a step back, and analyze the function 

being calculated, regardless of the ordering of variables, or structure of decomposed 

network. 

One can say that two functions,f(x) and g(y), are Boolean-equivalent ifj(x) EB g(y) is a 

tautology- that their truth tables are equal. 

Consider the following two functions: 

f = xy + x y ' + y 'z 

g=xy+xy'+xz 

The two are very different structurally, but examining their truth tables in Figure 2-9, one 

can see that they are a Boolean match. In this case, f(x) ffi g(y), as for every matching 

input combination, the same output is obtained. 

X y z F X y z G 
0 0 0 1 0 0 0 1 
0 0 1 1 0 0 1 1 
0 1 0 0 0 1 0 0 

0 1 1 0 0 1 1 0 

1 0 0 0 1 0 0 0 

1 0 1 1 1 0 1 1 

1 0 1 1 1 0 1 

1 1 1 1 1 1 1 

Figure 2-9. Comparisons of two Boolean functions 

It is uncommon for a subject function to exactly match any library function without some 

sort of permutation to it. There are three unique permutations which may be performed 

on a subject function in order to match it to a library gate. First, the order of the inputs 

may be changed - this is called P-equivalence. Second, the inputs may be complimented 

in any combination, as well with permutation of the input variables, which is referred to 
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as NP-equivalence. Finally the output may be complimented with combination of the 

previous two equivalences, which is referred to as NPN-equivalence. 

2.3.2.1 Input Permutation 

It is not always the case that f(x) is directly equivalent to g(y). In most cases, it is 

necessary to explore the possible permutations of input variables that yield equivalent 

behavior. It can be said that f and g are P-equivalent if there exists an ordering of input 

variables i ofy such thatf(x) fB g(i) is a tautology. 

For example, the functions f = ab + c, and g=cb + a are P-equivalent, as a rearrangement 

of their input variables will result in the same function being computed. This equivalency 

is not as evident initially to the eye as the number of variables in a function exceeds three. 

In ann-variable function, n! unique input permutations exist. 

2.3.2.2 Input Negation 

As Inverters are inexpensive to construct, exploring the possibility of inverting the inputs 

of a function opens up many new options to more efficiently match a function to a library 

cell. An n-input function requires 2n equivalency checks in order to explore all 

combinations of input permutations, and NP-equivalence requires n!2n computations. 

2.3.2.3 Output Negation 

By simply allowing the output of a gate to be complimented by inserting an additional 

Inverter, many new cost saving matches may be explored. This added Inverter doubles 

the required equivalency checks, with NPN-equivalence costing n!2n+I computations for 

ann-input function. 

2.3.2.4 Boolean Signatures 

Boolean signatures may be used to reduce the number of tautology checks required to 

determine if a matching function has been found. A signature is something which 

identifies certain properties of a Boolean function, however does not guarantee a match. 

Two Boolean functions cannot be equivalent and have different signatures; However, two 
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Boolean functions sharing the same signature are not necessarily equivalent. Identifying 

characteristics of a Boolean function which may be used for a signature could be 

symmetries, unateness, size of co factors, etc. 

If one were to generate a signature of a Boolean function based on symmetry, it could be 

defined as follows: A symmetry set [13] is a set of variables that are pairwise 

interchangeable without affecting the logic functionality. A symmetry class is an 

ensemble of symmetry sets with the same cardinality. 

Example. Consider the function f= x1x2 + X3X4X5 + X6X7 

The support variables ofj(x) can be partitioned into three symmetry sets: {x1x2}, {x3x4x5}, 

{X6X7}. There are two non-void symmetry classes: C2={ {x1x2}, {X6X7}} and C3={x3X4X5}. 

This gives a signature of [0,2, I ,0,0,0,0], with each dimension of the signature 

representing the number of occurrences of one degree of cardinality. 

Other signatures may be obtained by examining other aspects of the function in question, 

for example the satisfY count, which is the number of minterms in the function. 

Regardless of the characteristics used to create the signature, once generated they can be 

an excellent tool to determine if two functions do not match. In practice, signatures may 

be pre-computed for all available library functions and stored in a hash table. The 

signature for a function in question may quickly be generated and checked against the 

table to obtain a list of potential matches. 

Example. Consider the following pattern function: 

f = xlx2a + xlx2 'b + xl 'x3c + xl 'x3 'd 

The function has 7 variables, 4 of which are unate, and 3 which are binate. Using a 

simple Boolean signature to identify this function by its unateness, one can simplify the 

number of tautology checks required. Assuming no input or output negations are 

required, with no signature one would need to check 7! = 5040 different variable 

orderings in order to locate a matching function. If the information that there are 4 unate 

and 3 binate variables in the function is available, only 4!3! = 144 tautology checks is 

required, a 3500% increase in efficiency. 
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2.3.2.5 Canonical Representations of Boolean Functions 

While Boolean signatures will certainly aid in the matching process, it can be seen that if 

strictly tautology checks are employed to determine if two functions are a Boolean match, 

that for each N-input function being checked, N!2N+t tautology checks are required per 

function. If every subject gate being covered must be matched against a library 

containing over 400,000 unique functions, the matching process quickly becomes 

impractical. 

Utilizing the canonical form of a Boolean function, this matching process can be 

simplified to a single integer or string comparison. The canonical form of a Boolean 

function acts as a unique signature, which differentiates it from all other functions with 

the same number of inputs, under certain conditions. There exist three equivalency 

classes which functions may be grouped by: P-equivalent, NP-equivalent, and NPN­

equivalent. Any function falling under one of these groups may be interchanged with 

another in the same group with the appropriate permutations. 

Many canonical representations for equivalency checking have been developed over the 

history of automated circuit design and synthesis which perform differently with respect 

to CPU time and memory requirements. Two Boolean canonical form generation 

algorithms were implemented in this synthesis tool, to be used under different 

circumstances given their performance and abilities. 

NPN-equivalent matching 

Debnath and Saso proposed an efficient canonical form for Boolean matching with 

permutation and input/output negation for use in large libraries [14]. Their method 

proposed that functions which are NP-equivalent belong to the same NP-equivalency 

class. In an NP-equivalence class, the function which has the smallest binary number 

representation is the NP-representative (NPR) of that class, and is used in matching. If 

two functions, f and g share the same NPR, they are NP-equivalent, and one is able to 
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represent the other with a permutation and complementation of its input variables. Output 

negation is checked by comparing the NPR values off with g and !g. 

The function in Figure 2-1 O(b) is obtained by permuting the input variable order of that in 

Figure 2-1 O(a). It should be noted the transformation in position of the minterms is 

irrelevant of the value of the minterm. These transformations may be pre-computed and 

stored for an arbitrary number of inputs. Figure 2-11 illustrates these transformations for 

any three-input function. 

Xt x2 X3 j{x~, x2, x3) Xt X2 X3 f{x3, x2, x,) 

0 0 0 Co 0 0 0 co 

0 0 1 Ct 0 0 1 c4 

0 0 c2 0 0 c2 

0 1 c3 0 1 c6 

0 0 c4 0 0 Ct 
1 0 1 Cs 0 Cs 

0 C6 1 0 c3 

C7 c1 

(a) (b) 
Figure 2-10. Truth table permutations 

j{XJ, X2, X3) ./{xt, X3, x2) j{x2, Xt, X3) ./{~2, X3, Xt) j{~3, x~, x2) ./ixJ, x2, x,) 
Co Co Co co co Co 

CJ c2 CJ c4 c2 C4 

c2 CJ c4 CJ c4 c2 

CJ CJ c5 C5 c6 C6 

c4 C4 c2 c2 CJ CJ 

c5 c6 CJ c6 CJ C5 

C6 Cs C6 CJ C5 CJ 

C7 C7 C7 C7 C7 C7 

Figure 2-11. Minterm transformations due to reordering of input variables 

j{x~, x2, x3) j{xt, !x3, x2) j{!x3, x2, !xi) f{!x2, !xt, x3) 

Co c2 c5 c6 

CJ co CJ C7 

c2 CJ C7 c2 

CJ CJ CJ CJ 

C4 c6 C4 C4 

c5 c4 Co c5 

C6 C7 c6 Co 

C7 c5 c2 CJ 

Figure 2-12. Minterm transformations due to reordering and complementation of input variables 
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Similar to Figure 2-11, Figure 2-12 illustrates four of the NP-equivalents of a three­

variable function. All NP-equivalents of a three-variable function are visible in Figure 

2-14. In order to match two Boolean functions, both of their NPR values must be 

available in order to determine if they are NP-equivalents. Calculating the NPR value of a 

function gets increasingly difficult as the number of inputs to the function increases. 

Figure 2-13 illustrates the geometrical growth in the number of computations required 

versus the number of input variables to a function. The algorithm proposed by Debnath 

and Saso will allow for very fast NPN-equivalence matching, however for inputs greater 

than seven, becomes impractical to calculate the match. As such, an alternate canonical 

form is required for matching functions with more than seven inputs. 

Maximum number Maximum number 
of variables of NP-equivalents 

3 48 
4 384 
5 3840 
6 46080 
7 645120 
8 10321920 

Figure 2-13. Number of NP-equivalents vs. number of input variables 

Link Tables are pre-generated up for up to 7-input functions to allow for quick generation 

of the NP-equivalent set of functions for a given truth table. An example Link Table for a 

three-input function can be seen in Figure 2-14. The leftmost column of this table 

(highlighted in grey) is the reference column, where the truth table for the function in 

question is entered. 

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 
1 1 2 2 4 4 0 0 3 3 5 5 0 0 3 3 6 6 1 1 2 2 7 7 0 0 5 5 6 6 1 1 4 4 7 7 2 2 4 4 7 7 3 3 5 5 6 6 
2 4 1 4 1 2 3 5 0 5 0 3 3 6 0 6 0 3 2 7 1 7 1 2 5 6 0 6 0 5 4 7 1 7 1 4 4 7 2 7 2 4 5 6 3 6 3 5 
3 5 3 6 5 6 2 4 2 7 4 7 1 4 1 7 4 7 0 5 0 6 5 6 1 2 1 7 2 7 0 3 0 6 3 6 0 3 0 5 3 5 1 2 1 4 2 4 
4 2 4 1 2 1 5 3 5 0 3 0 6 3 6 0 3 0 7 2 7 1 2 1 6 5 6 0 5 0 7 4 7 1 4 1 7 4 7 2 4 2 6 5 6 3 5 3 
5 3 6 3 6 5 4 2 7 2 7 4 4 1 7 1 7 4 5 0 6 0 6 5 2 1 7 1 7 2 3 0 6 0 6 3 3 0 5 0 5 3 2 1 4 1 4 2 
6 6 5 5 3 3 7 7 4 4 2 2 7 7 4 4 1 1 6 6 5 5 0 0 7 7 2 2 1 1 6 6 3 3 0 0 5 5 3 3 0 0 4 4 2 2 1 1 
7 7 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 

Figure 2-14. Complete Link Table for 3-input function 

The remaining cells in the table contain memory pointers to the appropriate cell in the 

reference column. As such, once the reference column contains the truth table of the input 
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function, the remaining cells will instantly automatically contain the complete NP­

equivalent set. The NP-representative of this set may quickly be found by comparing the 

cell values row-by-row, and eliminating columns which will not give a minimal column 

summation. This is accomplished by comparing every cell value in one row; If there 

exists any cell containing a zero value in the row, the column of any cell containing a one 

value is discarded from future comparisons. Once every row is processed, the remaining 

column(s) is the NP-representative of that set. 

PN-equivalent matching 

Ciric and Sechen proposed a P-equivalent canonical form capable of efficiently handling 

functions with up to 25 inputs, which is the maximum which would be required by a 

CMOS technology process capable of supporting five serial PMOS and NMOS devices in 

a single complex gate [15]. Negation of the output may be achieved by generating two P­

equivalent canonical forms per library cell, one with output negation and one without. 

The canonical form is generated from a function's truth table, firstly eliminating any row 

which does not equate to one, leaving only the minterms. Secondly, the function output 

column is pruned, leaving only a table of inputs which produced a one output. This table 

may be quite large, with the number of rows depending on the number of minterms in the 

function. ln order to reduce this table before canonical form generation, logic 

minimization may be applied to generate a table of Boolean values and don't cares. The 

developed synthesis tool initially implemented the Quine-McCluskey [16] Boolean 

minimization algorithm, however it was not able to efficiently handle large tables. The 

minimization algorithm as proposed in [ 17] was eventually implemented as it allowed for 

much faster runtimes. If the resulting table contains ones and don't cares, the don't cares 

are translated to zeros. If the resulting table contains zeros and don't cares, the zeros are 

translated to ones, and the don't cares to zero. A decreasing weight is applied to every 

cell in the table, decreasing in the direction from left to right, top to bottom. The columns 

and rows of the table are to be permuted until a minimum total table weight is reached. 

The Boolean values in this minimum weight truth table is the canonical form. They may 
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be extracted into a string, or converted to integer form for using as the index in a library 

hash table. 

2.4 Covering 

The matching process identifies many possible matches for every node in every subject 

graph. The goal of covering is to determine the set of matches which a) completely 

covers the subject graph with library cells, and b) optimally does so with respect to a set 

of costs such as area or delay. 

The first step in the covering process is covenng the subject graph with the base 

functions available in the library. Figure 2-15 illustrates the simplest network covering, 

with each base function covered independently, whereas Figure 2-16 and Figure 2-17 

show alternative coverings using available three-input gates. 

Figure 2-15. Sample Covering 

/ 
/ 

/ 
/ 

Figure 2-16. Alternative Covering 
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2.5 Summary 

Figure 2-17. Alternative Covering 

This chapter has overviewed the four main steps in current library-based synthesis 

techniques, which are decomposition, partitioning, matching and covering. Structural and 

Boolean matching algorithms were outlined and compared. Boolean signatures were 

discussed and their drawbacks were outlined. The Boolean canonical form generation 

algorithms described in section 2.3.2.5 were selected for implementation in the developed 

synthesis tool. The following chapter will discuss a library-free approach to logic 

synthesis, and its advantages over a cell-library. 
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3. Library-Free Technology Mapping 

Libraries have played an important role in logic synthesis for the past three decades. They 

have allowed designers to quickly utilize pre-designed building blocks to assemble and 

fabricate an arbitrary circuit to perform a needed function. Cell libraries also allow 

accurate predictions of silicon wafer area utilization and path delay, as individual cells 

are pre-characterized with precise area, loading, and timing information. These library 

files require significant investment in engineering time to develop and maintain for every 

generation of technology process. 

As the demand for faster, smaller, and more complex ASICs is increasing, the rate at 

which technology processes change is not economically permissible of adequately 

equipped cell libraries to be developed. As such, many of the advances in deep sub­

micron (DSM) fabrication are not being fully utilized by implementing functions in 

complex gates [4]. It has been shown that in a technology capable of supporting five 

serial NMOS and PMOS transistors, 425803 unique logic gates may be constructed [5]. 

Aggressive scaling has advanced the state of optical lithography to resolutions of 22nm 

and below, and electron beam lithography has demonstrated capability to produce 

minimum features that are less than 1 Onm wide. These incredible advances in fabrication 

technology are not only pushing the physical limits of fabrication as we approach atomic 

sizes, but also come at a huge cost of over $1 billion to bring a laboratory demonstration 

to a manufacturable technology [2]. Clearly there is the need to improve upon current 

design techniques in order to better utilize the resources, i.e. transistors, which are placed 

within these integrated circuits. Optimization of the circuit architecture to reduce delay 

and area will allow for improvement on a technology process without reducing the 

minimum feature size. 
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The efficiency of the generated circuit relies heavily on the quality of the library used. 

The larger the available library, the better the mapping tool is able to optimize a given 

circuit on silicon as more precisely matching cells will be available for placement. The 

maximum number of unique gates in a library is defined as a function of the number of 

series NMOS and PMOS transistors s(n,p). It has been shown [18] that a circuit's total 

number of transistors may be reduced by up to 35% when an s(4, 4) library-free approach 

(containing 3503 unique gates) is used in matching as opposed to using a simple gate 

library containing three cells: Inverter, 2-input NAND, 2-input NOR. 

It can be seen in Figure 3-1 that the task of creating and managing this cell library 

quickly becomes enormous as the number of allowed series transistors increases. 

Number of Serial 1 
NMOS Transistors 2 

3 
4 
5 

Number of Serial PMOS Transistors 
1 2 3 4 5 
1 2 3 4 5 
2 7 18 42 90 
3 18 87 396 1677 
4 42 396 3503 28435 
5 90 167 28435 425803 

Figure 3-1. Gate combinations possible with series NMOS & PMOS transistors. 

A tool which could synthesize from logic directly to a transistor netlist would eliminate 

the need to redesign a cell library every time the production technology process is 

updated. This would result in greater efficiency in silicon usage as we are no longer 

placing cells and are directly placing transistors on silicon with complex gates, reducing 

fabrication costs, engineering costs, and significantly decreasing time-to-market of the 

product. 

3.1 Previous Studies in Library-Free Mapping 

The concept of library-free technology mapping has been discussed and debated for 

nearly a decade in many research papers [5], [19-23]. Numerous approaches to solving 

the problem have been proposed, which will be discussed and evaluated in this Section. 
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In [5] a straightforward approach to complex gate generation from Boolean equations 

was proposed, in which every time a set of literals of the equation was a logic AND, the 

NMOS networks were associated in series, and PMOS in parallel, with the opposite for a 

logic OR. An Inverter is then inserted after the output of the complex gate to compensate 

for the natural negation of CMOS circuits. 

Reis proposed an algorithm to cover trees in [19] by dynamically collapsing NAND/NOR 

trees of gates from the root-downwards so long as the newly generated gate does not 

violate a globally set maximum number of serial NMOS and PMOS transistors. 

Figure 3-2. Possible Cover 

As this covering algorithm began collapsing gates at the root, the method will promote 

complex gates to form near the root of the tree, which is a charged node, as illustrated in 

Figure 3-2. The output node of a tree may be sized larger than its child nodes which 

enlarges any complex gate at this node, leaving smaller gates clustered near the input 

nodes. Correia and Ries suggested an alternative method to collapse base functions into 

complex gates [21]. This method takes a bottom-up approach at gate collapsing, which 

encourages complex gates to be formed near the inputs of the tree rather than the output, 

as illustrated in Figure 3-3. While this approach is an improvement, the quality of the 

resulting mapped circuit still highly depends on the initial decomposition. 
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Figure 3-3. Alternate Cover 

Jiang et al. proposed the odd-transistor-replacement (OTR) method to dynamically 

generate complex gates from a decomposed logic network [20]. It is a two-step process, 

collapsing every three consecutive gates into one complex gate. The OTR method works 

by selecting three levels of logic and combining them into one complex gate. This 

process is outlined in the example below. 

Example- Odd-Transistor Replacement Method 

Figure 3-4 illustrates a sample logic structure which will be collapsed into one complex 

gate using the OTR method. The transistor structure of this simple circuit before 

transformation is visible in Figure 3-5. 

A 

B 

G2 

Figure 3-4. Simple Circuit for OTR Example 

The first step in the OTR gate collapsing method is to replace NMOS (PMOS) transistor 

structures from the first level (second level) with the PMOS (NMOS) transistor structures 

from the second level (first level). Figure 3-6 illustrates this transformation between gates 

Gl, G2 and G3, into G3'. 
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Figure 3-5. Transistor-level representation of Figure 3-4 

~}/' 

// ~ f-'\ 

//) 
Figure 3-6. Intermediate transformation of OTR method 

The second step in the OTR method is to perform the exact same procedure, replacing 

NMOS and PMOS structures between the newly generated intermediate gate, G3' with 

those in the last stage. The resulting complex gate can be seen in Figure 3-7. 

While these varying techniques will serve to dynamically generate complex gates out of a 

directed acyclic graph (DAG) partitioned into trees, they may not necessarily produce the 

best covering which optimizes area, power consumption and delay as they simply extract 

the complex gates from the structure of the circuit. Marques et. al proposed a modified 

wavefront [24] covering algorithm which dynamically generates complex gates within 

the width of the wave, which propagates from inputs to outputs across the entire DAG 

without partitioning in to trees [22]. This method has been shown to be effective at 
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reducing delay in a circuit by duplicating logic between fanout-free regions, with 

comparison to traditional partitioned tree-based mapping. Although this duplication tn 

logic reduces delay, it comes at an increase in area, and power consumption. 

G4' 

Figure 3-7. Final transformation ofOTR method: Resultant complex gate 

3.2 Summary 

As the limit of how small we can fabricate transistors is quickly being reached, 

alternative methods of design must be explored to enable continued performance 

improvements on existing technology processes. Library-free synthesis attempts to 

improve the architecture of a circuit by covering it with complex gates which are 

typically not found in current standard cell libraries. This chapter has overviewed a 

number of current library-free covering algorithms, the majority of which are highly 

dependent on the structure of the initial decomposition. 

The following chapter will propose new matching and covering algorithms for improved 

library free synthesis which are not tied to the initial decomposition of the circuit. 
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4. Proposed Synthesis Algorithms 

A combination of structural tree-traversing and Boolean matching was employed to 

optimally match and cover the partitioned subject graphs. The use of Boolean matching 

enables the resulting mapped circuit to be independent on the structure of the initial 

decomposition, as complex gates are not directly extracted from the decomposed tree. 

Size-less gate-transistor structures are pre-generated, defined by the maximum allowed 

serial PMOS and NMOS transistors, and stored in a hash table in RAM. A transistor logic 

solver was developed and used to determine the truth table values for these gates being 

generated. Canonical representations of the generated gates are then created to check for 

NPN-equivalence for functions with seven inputs or less, and P-equivalence for functions 

with 25 or less inputs. The two canonical forms are then saved as a string of bits and 

indexed in two hash tables in the virtual library. 

A Boolean logic solver was developed and used to determine the truth table for the 

partitioned subject graphs. These truth tables are used to generate canonical 

representations of the subject graph to be searched against the library hash table for a 

match. 

As the generated library will be large (425,803 gates with 5 series transistors), speed and 

practicality of the matching and covering algorithms was of paramount concern. 

4.1 Logical Effort 

The method of logical effort, first publicized by Ivan Sutherland, Robert SprouJI, and 

David Harris in [25] is a simple, quick method to estimate the delay in a CMOS circuit. 

Logical effort attempts to model delays in a circuit as being caused by capacitive load 

that the gate drives, and by its own topology. Logical effort gives the minimum delay (D) 

of a given circuit path as in ( 4-1 ). The delay in ( 4-1) is normalized to -r, where -r is the 

delay of a unit Inverter driving another Inverter without parasitic effects, 
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D = N(GHB) Ytv + P (4-1) 

where G is the path logical effort, H is the electrical effort, B is branch effort, N is the 

number of stages on the path, and P is parasitic delay. The electrical effort, H, is 

determined by the loading of the path in question, and is controlled by the environment 

surrounding the circuit. The logical effort, G, is controlled by the architecture of the 

covering gates, and is simple to modify - minimizing G minimizes delay. Logical effort 

of a gate is obtained by summing the PMOS and NMOS transistor input capacitances 

(Cin) for a given input, and dividing that by the input capacitance for a unit sized Inverter 

with identical rise and fall characteristics. The third component of delay, P, is introduced 

by internal parasitic capacitances within the covering gate, controlled by the number, and 

sizes of transistors with their drain connected to the output node of the gate. The 

branching effort, B, is the ratio of total capacitance being driven by the gate to the 

capacitance on the path of interest. 

Logical effort does not yield precise values for delay, and is not intended to replace 

traditional simulation tools. It provides a method to compare two circuits to determine 

which architecture will yield the lowest delay. The delay in a multistage network can be 

approximated using ( 4-2) by summing the logical effort delays of each stage. 

One can observe that in order to minimize delay in a given circuit, it is necessary to 

minimize the sum of the product of electrical effort (H) and logical effort (G), and the 

parasitic delays (P). Minimizing G and P is simple, and is controlled solely by gate 

selection. As an example, compare the Inverter, NAND and NOR gates below, which are 

all sized for equal rise and fall times, given the assumption that the electron mobility in 

the PMOS transistor is half that of the mobility in the NMOS transistor. 
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INVERTER 
G = 3/3 
p = 3/3 

NOR 
G = 5/3 
p = 6/3 

NAND 
G = 4/3 
p = 6/3 

Figure 4-1. Logical Effort of Simple Gates 

The Inverter is the simplest CMOS logic gate, and is used as a basis for comparison for 

every other gate. The logical effort of the Inverter is 1. As the NAND and NOR functions 

are symmetric, both inputs to these functions will share the same logical effort value. 

Looking at the NAND gate, the sum of the PMOS and NMOS input capacitances is 4 

thus the logical effort for this gate is 4/3. Similarly, the logical effort of the NOR gate 

may be found to be 5/3. If one were to design a circuit, and have the choice to implement 

the circuit with NAND gates or NOR gates, by logical effort, the implementation 

utilizing NAND gates will have a lower delay than that using NORs. 

This chapter will propose a novel method to obtain the most optimal circuit covering 

using logical effort as the cost being minimized. 

4.1.1 Estimating Gate Area with Input Capacitance 

Transistor count alone is not an effective measure of gate area. The area of a gate 

depends on the number of transistors in the gate, and the size of those transistors. The 

size of a transistor depends on the driving strength, and complexity of the gate. In logical 

effort, the complexity of a gate is modeled by G. 
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Consider an Inverter and a 3-input NOR, as illustrated in Figure 4-2. Also assume the 

electron mobility of an NMOS device is twice that of PMOS. The average size of a 

transistor in the NOR gate is 2.33 times larger than that of a transistor in an Inverter of 

equal driving strength. Thus, transistor count alone is not a valid means to estimate total 

circuit area. Rather, total circuit area may be estimated by adding the transistor widths of 

the template gates for every gate in the circuit. Using this method, in Figure 4-2 the area 

of the Inverter can be seen to be 3, and the NOR to be 21. 

NOR 

INVERTER 

(a) 

(b) 

Figure 4-2. Example of Transistor Size Variation in Gates 
(a) Inverter; (b) NOR 

4.2 Fast Boolean Matching of Complex Gates 

As the matching algorithm will be executed many times, it is important to be able to 

generate the canonical form of a given function as fast as possible. Every generated gate 

will be indexed in the library by two canonical forms, as outlined in Sections 2.4.5.1 and 

2.4.5.2 of this thesis. The canonical form proposed by Ciric and Sechen, as overviewed in 

Section 2.4.5.2 will be generated from the subject graph first, and a PN-equivalence test 

will first be made for functions up to 25 inputs. 
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If a matching library cell is not found initially, and the subject graph being matched has 

seven or fewer inputs, the more computationally expensive NPN-equivalence test as 

proposed by Debnath and Saso, and outlined in Section 2.4.5.1 of this thesis will be used. 

If a match is not found at this point, there does not exist a cell in the library which can 

cover the given subject graph in its entirety. 

4.3 Complex Gate Generation and Indexing 

A technology-independent library of complex gate structures is pre-generated for 

matching against a subject graph prior to synthesizing the input netlist. Using the inputs 

(Sp, Sn), which denote the number of serial PMOS and NMOS transistors, the library 

generation tool will generate all possible combinations of gates. A CMOS transistor gate 

logic solver was developed to obtain the truth table for these newly created complex 

gates. Once a truth table is available, the PN- and NPN-representatives of the function 

are derived by the method described in Sections 2.4.5.1 and 2.4.5.2 of this thesis. These 

representatives will be stored as a string of bytes, along with the order of the inputs, 

relative to the original function inputs, input or output negations, and the transistor 

structure, as described by the library cell data structure in Figure 4-3. 

As gates are generated, they will be subsequently added to the library, as defined in 

Figure 4-4. After gate generation, the P canonical representation is generated, and 

checked for existence in the Library's PCanonicallndex. The PCanonicallndex is a hash 

table with the string value of the canonical representation as the key. If no match is found 

in the table, the NP canonical representation is generated, and both will be indexed, along 

with the generated gate structure. The NP canonical representation is considerably more 

expensive than the P canonical representation, in terms of computation time, which is the 

reason why it is only generated once it has been verified that the cell in question is not 

equivalent to an existing cell in the library. 
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class LibraryCell 

public List <Transistor> Inputs; II transistors in PMOS network 
public double [] LE; II logical effort per input 
public string NPCanonical = "" ; 

public string PCanonical = "" ; 

public int [] POrder; II input ordering of P- canonical 
public int [] NPOrder; II input ordering of NP - canonical 
public bool [] TruthTable; 
public bool [] NMOSTruthTable; 
public string ID; II unique id in memory 
public double P; II parasitic delay of gate 
public List <Transistor> VDD ; II root which transistors are 

II connected to 

public List <Transistor> OUTPUT NMOS; II root of NMOS network 
public TransistorNode OUTPUT; I I which all DRJUN nodes lead to 
public TransistorNode GROUND; II which SOURCE nodes connect to 

II in NMOS network 

public InputChain inputchain; II used to solve truth table 
II of gate 

public bool NMOSfound = false ; 
public LibraryCell NMOSNetwork; II matching NMOS network 
public bool InvertedOutput = false ; 

Figure 4-3. Library Cell Data Structure 

class Library 

public Li st <T.i hrr.lryC'Pll > Cells ; 
public Hashtable NPCanonicalindex; 
public Hashtable [] PCanonicalindex; 
public Hashtable TTindex; 

Figure 4-4. Library Data Structure 

4.3.1 Complex Gate Library Population 

In order to determine the most optimal covering for a given subject graph, a fully 

populated library of complex gates must be available to match against. The library 

generation module takes two integer inputs, the maximum number of allowed serial 

PMOS and NMOS transistors and uses these values to build an indexed library of 

complex gates. 
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The first step in the process is to generate a two-dimensional matrix with the given 

dimensions. In each cell of the matrix, a TransistorContainer object is instantiated. This 

object is used to traverse the matrix, and extract many combinations of complex gates 

available. Each TransistorContainer contains a Transistor object, and a source and drain 

which contain virtual links to other TransistorContainer elements in the matrix. 

Directional links are assigned between the source and drain nodes of these 

TransistorContainer objects, following the pattern illustrated in Figure 4-5. These links 

do not represent actual electrical connections between transistors in a gate, but rather 

possible connections to explore which would result in a unique gate being created by 

following a set of rules. 

Complex gates are generated recursively, beginning from the root Transistor Container 

located at position (0,0) in the matrix illustrated in Figure 4-5. Links are explored one at a 

time, beginning with those from the drain of the TransistorContainer, taking "skip" wrap 

around links first (the links visible on the left of certain transistors in Figure 4-5). For 

every link followed, the generation function is recursively called, with the root reference 

pointing to the current TransistorContainer in scope. After following a link, unless the 

next skip link is to be taken, the new root TransistorContainer is "enabled". Once all 

outgoing links from the TransistorContainer' s Drain node have been explored, the 

TransistorContainer will be disabled, and the recursion will return the function which 

called it. Only vertical and skip links may visit a disabled TransistorContainer- all others 

may only visit a node if it has been previously enabled. When a link is explored which 

points to the output of the function, the transistor structure up to this point is extracted, 

and indexed in the library. After indexing, the root is set to the next transistor with its 

source connected to VDD, and the function is called recursively again. 
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Figure 4-5. 3x3 Generation Matrix 

Example - Generation of complex gates with two serial PMOS, NMOS transistors. 

The generation function will begin with the Source of the TransistorContainer (TC) 

located at (0,0) in Figure 4-6. The first link to be explored is the skip link, bringing us to 

the Source of the TC located at (1,0). As we are visiting a disabled TC, it will now be 

enabled. There is one outbound link from the Drain of this TC to the output. As we have 

reached an output node, the transistor structure up to this point will be extracted, yielding 

a gate with one PMOS transistor, the Inverter. After extraction, we move to the next TC 

connected to VDD, located at (0,1). 
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At the Source of the TC at (0, 1 ), the skip link is explored first, bringing us to the Source 

of the TC at (1, 1 ). As we are visiting a disabled TC, it will now be enabled. There is one 

outbound link from the Drain of this TC to the output. As we have reached an output 

node, the transistor structure up to this point will be extracted, yielding a gate with two 

parallel PMOS transistors, the NAND gate. At this point, as there are no more transistors 

attached to VDD to explore, the TC at (1,1) is disabled, and the recursion steps back to 

the Source of the TC at (0, 1 ). This TC is now enabled, and the downwards vertical link 

from its Drain is explored, bringing us to the TC at (1, 1 ), which is then enabled. There is 

one outbound link from the Drain of this TC to the output. As we have reached an output 

node, the transistor structure up to this point will be extracted, yielding a gate with the 

function f = A + BC . This process of following links and extraction at outputs follows 

until all possibilities have been exhausted, and the function returns to the original root TC 

at (0,0). 
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Figure 4-6. 2x2 Generation Matrix 

Figure 4-7 illustrates the gates which will be generated, and the order of their generation 

(A - N) with the input parameters (2,2) which represent the number of serial PMOS and 

NMOS transistors which are allowed. It should be noted that gates B, C, and G are 

equivalent. Gates C, and G will not be added to the library once their canonical values are 
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calculated and it is found that an equivalent, B, is already in the library. Similarly, D, E, I, 

J and N are equivalents; only D will be indexed in the library. 

4(] 4(] 4 
A B c D 

4B 
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E F G H 
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4 
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Figure 4-7. Gates Extracted from 2x2 Generation Matrix 

The class descriptions for the TransistorContainer, Transistor, and TransistorNode classes 

can be seen in Figure 4-8, Figure 4-9 and Figure 4-1 0, respectfully. The 

TransistorContainer contains one Transistor, an enabled flag, and "links" which are 

represented as memory pointers to other TransistorContainer objects. The Transistor class 

containes a Boolean gate variable which is used for truth table generation, type definition 

which is either PMOS or NMOS, and node variables for the source and drain. These 
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nodes are used to represent an electrical link to another transistor or the output of the 

gate, and are managed by the TransistorNode class. The hierarchy of these classes is 

illustrated in Figure 4-11. 

public class TransistorContainer 
{ 

public Transistor rnos; 
public string ID; 

public bool enabled = false ; 
public bool isOUTPUT = false ; 
public bool isVDD = false ; 

public List < IransistorContain(r> drain; 
public TransistorContainer drainLeftLink; 
public TransistorContainer drainLeftTop; 
public TransistorCon ainer drainLeftBottorn; 
public Transis orContainer drainBottorn; 
public TransistorContainer drainBottornAround; 

public List <TransistorContainer> source; 

public TransistorContainer nextTranonVDD; 

Figure 4-8. Transistor Container Data Structure 

public class Transistor 
{ 

public TransistorType type; 
public TransistorNode source; 
public TransistorNode drain; 
public string ID; 
public bool gate; 
public bool INVERTED INPUT = false; 
public bool ON OUTPUT = false; 
public float skewwidth = 0; 
public bool skip = false; 
public int XPosition; //used for drawing 
public int YPosition; //used for drawing 

Figure 4-9. Transistor Data Structure 
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public class TransistorNode 
{ 

public 
public 
public 
public 
public 
public 
public 

Transistor parentTra ns i stor ; 
TransistorNodeTyre type ; 
List <TransistorNodE" > e x ternalLink ; 
List <TransistorNodr> > e x ternalLinkBACK ; 
bool value ; 
string ID ; 
bool recursiveVisit false ; 

Figure 4-10. Transistor Node Data Structure 
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/ 
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bool value ; 
t ; f type ;', 

,, ~ r 1
, 1 externalLink ;J 

paren tTransi s tor ~ 

/ / 

source ; 

type ; 
bool gate ; 

, . ' drain ; 

----- ----
b ool value ; 

,t.·j l( l ~r · l type;', 
I r~ J, external Link~ 

parentTransistor 'l 
/ 

/ 

• • r mos ; 

bool enabled = 
j ·1 t= ~ > drai n; 

source ; 

Figure 4-11. Hierarchy of the Transistor classes. 
Dashed lines represent class encapsulation borders 

39 



4.3.2 Permutations of Order and Complementation oflnputs 

As the canonical generation algorithms which are being employed permute the order and 

complementation of the inputs, it is necessary to map the inputs of the newly generated 

gate with those in the P and NP representation. For every gate generated a permutation 

array will be constructed, with the length equal to the number of inputs in the gate. 

4.3.2.1 Input Tracking in P-Canonical Generation 

The P-canonical generation algorithm as described in Section 2.3.2.5 permutes the order 

of the inputs by rotating columns in order to achieve the lowest weight minterm table. A 

one-dimensional rotation array is instantiated with the length equal to the number of 

inputs in the function. The table is initially filled with the integers 0 - (n-1 ), where n is 

the number of inputs, which can be directly used as the index to the array Inputs of the 

library cell as in Figure 4-3. As columns are rotated, the indices of the input order array 

are also switched. Once the P-canonical form is generated, the rotation array is copied to 

the POrder variable of the library cell, as in Figure 4-3. 

4.3.2.2 Input Tracking in NP-Canonical Generation 

The NP-canonical generation algorithm as described in Section 2.3.2.5 permutes the 

order of the inputs as well as complements these inputs in order to find the NP-canonical 

value. The canonical value is obtained through the use of pre-calculated link tables, 

which are generated in the initialization process of the synthesis tool for functions with 

up to 7 inputs. 

Link Table Generation 

In order to be able to quickly obtain the NP-canonical form of a function, look-up tables 

are pre-calculated in the initialization phase of the synthesis tool. These tables are created 

by calculating minterm positions based on a given permutation of the input variables. A 

reference truth table is generated, and each row is assigned a unique identifier, as in 

Figure 4-12. The order of the inputs to the function are then permuted by recursively 

calling the permutation function GenerateinputSequence in Figure 4-13. The 

available inputs are initially stored in an array of integer IDs, with each ID representing 
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an index to the Inputs list in Figure 4-3. Each ID in the array is visited, and added to a 

linked list of inputs. As an ID is added to the linked list, it is removed from the array of 

available inputs, and the recursive function is called again, being passed the linked list 

and the updated array. This process continues until the array of available inputs is empty 

at which time the linked list contains the selected input ordering. Similarly, the 

combinations of input inversions possible with the given input ordering is generated by 

recursively calling the invert Inputs function in Figure 4-14, which inverts an input 

by negating the integer input ID value. The linked list is traversed, calling the function 

again with the child of the input node as the input. This process continues until the end of 

the linked list is reached, and the list is extracted to the link table through the 

addinputColumn function. At this point, every combination of complementation of 

the inputs is generated for the given input ordering. 

Xt x2 X3 j(x 1, x2, x3) 
0 0 0 Co 

0 0 1 Ct 

0 1 0 c2 
0 1 1 CJ 

1 0 0 c4 
1 0 1 Cs 

1 1 0 c6 
1 1 1 C7 

Figure 4-12. Reference Truth Table for NP-Canonical Generation 

Given an input ordering, minterm positions can be calculated using the reference truth 

table by calculating the position a minterm would appear in this table. For example, the 

minterm positions for the input ordering 3,2, 1 are illustrated in Figure 4-15. They can be 

calculated as follows: for the inputs (0,0,0), regardless of the ordering, this minterm can 

be found at position co in the reference table. The inputs (0,0, 1) are translated to (1 ,0,0) 

using the input ordering (3,2, 1 ). This minterm can be found at position c4 in the reference 

table. Similarly, the inputs (0,1,0) are mapped to c2, and (0,1,1) is mapped to c6 in the 

reference table. This process continues until all of the minterm positions have been 

calculated for a given permutation of the input variables. The function 

addinputColumn takes the input linked list, and writes the calculated minterm 

positions to the link table for NP-canonical generation. 
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for (int inputCounter = 0; inputCounter < numinputs; inputCounter++) 
{ 

int chosenStart = availinputs[inputCounter]; 
int newCounter = 0; 
for (int innerloop = 0; innerloop < numinputs; innerloop++) 

if (availinputs [innerloop] != chosenStart) 
{ 

updatedinputs[newCounter] = availinputs[innerloop]; 
newCounter++; 

inputN newNode = new inputNode (); 
newNode.id = chosenStart; 
inp1 N J~ root = newNode; 
GenerateinputSequence(availinputs, newNode, root); 

GenerateinputSequence( int [] availinputs, inp~tNodl node, inputNode root) 
{ 

if (availinputs.Length == 0) 
{ 

Invertinputs(root) 

else 
{ 

inputNode newNode = new inputNode (); 
node.child = newNode; 
foreach (int input id in availinputs) 
{ 

newNode.id = input_id; 
int [] newAvail = new int [availinputs.Length]; 
availinputs.CopyTo(newAvail, 0); 
int [] UpdatedAvail = new int [availinputs.Length- 1]; 
int counter = 0; 
foreach (int to_remove in availinputs) 
{ 

if (to remove != input id) 
{ 

UpdatedAvail[counter] 
counter++; 

to remove; 

GenerateinputSequence(UpdatedAvail, newNode, root); 

node.child = null ; 

Figure 4-13. Input Order Permutation Function 
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private void invertinputs( inputNode n) { 
if (n.child != null ) 
{ 

else 

invertinputs(n.child); 
n.id = n.id * -1; 
invertinputs(n.child); 

addinputColumn(n); 
n.id = n.id * -1; 
addinputColumn(n); 

Figure 4-14. Input Inversion Algorithm 

X1 X2 X3 j{x3, x2, xi) 

0 0 0 Co 

0 0 1 c4 

0 1 0 c2 
0 1 1 C6 

1 0 0 CJ 

1 0 I Cs 

1 1 0 c3 
1 1 1 c1 

Figure 4-15. Sample Input Permutation & Minterm Positions 

4.3.3 CMOS Transistor Logic Solver 

In order to calculate the canonical representation of a newly generated library cell, it is 

necessary to derive the truth table of the function performed by the gate. As is shown in 

Figure 4-3, a library cell contains a list of all transistors whose source node is attached to 

VDD. The cell also contains an output node, which the bottom-most transistors' drains 

are connected to, and is also where we will be sampling output values of the function. 

Transistors are aligned in a linear linked list, and are recursively traversed, exciting every 

possible gate input combination- 2n in all, where n is the number of inputs (transistors) 

to the function (gate). Once a particular input pattern has been assigned to the gates of the 

transistors in the complex gate, the output is solved recursively, from VDD to output. 
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Initially, the source vales of every node attached to VDD are set to TRUE. Following 

each node recursively downwards through the drain links, the drain values are set to 

TRUE only if the value of the gate is FALSE (as we are working with PMOS transistors). 

The evaluation method works on the basic function: 

Drain= Drain OR Source AND NOT(Gate) 

Once every source node attached to VDD is explored, the Boolean value of the output 

node may be read, and inserted into a truth table row corresponding to the input sequence 

tested. 

4.3.4 CMOS Gate Skewing 

It is often desired for the output rise and fall times of a CMOS gate to be equal; as such, 

the resistance between VDD and the output must be the same as that between the output 

and VSS in order to allow equal charge and discharge currents to and from the output 

load being driven. Figure 4-16 illustrates this requirement, representing the entire PMOS 

and NMOS networks with their equivalent resistance, RPMos and RNMos, respectfully. In 

order for the rise and fall currents, Irise and Iran to be equal, the transistors in the PMOS 

and NMOS networks must be sized such that RPMos = RNMOS· 

l I .e E> 

[ I tall 
C Gate 

Figure 4-16. Sizing for equal rise & fall times in CMOS gates 
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In order to size a gate for equal rise and fall times, we analyze the PMOS and NMOS 

networks independently. In the worst case, only one path in each network will be active 

at a time. As such, all paths in each network must be sized so that they have the same 

resistance. Taking the PMOS network first, each path from VDD to output is traversed, 

and added to a list of paths. This list is sorted descending in the order of the number of 

transistors on the path. 

Taking each path at a time, if there are no previously sized transistors on the path, every 

transistor width is equal to the number of serial transistors on the path. If there are 

previously sized transistors on the path, transistor widths are assigned according to 

Equation 4-3, 

W = ( Weq )S (4-3) 
Weq-1 

where S is the number of serial transistors on the path without a defined size, and Weq is 

the equivalent width of the sized transistors on the path, as defined by Equation 4-4, 

I 
Weq = (4-4) 

I:-1 
n wn 

The W value from Equation 4-3 is then assigned as the width for every unsized transistor 

in the current path. 

Example -Sizing of complex gate for equal path resistance from VDD to output 

The gate generation algorithm as described in Section 4.3.1 will produce a transistor 

structure similar to that seen in Figure 4-1 7, with vertical and horizontal directional links. 

Paths are traced beginning from VDD to output, from the left most transistor connected 

to VDD, to the rightmost. Tracing the paths in Figure 4-17, we retrieve the set of paths 

{ABCD, ABG, EFCD, EFG, HIJ, HL, KIJ, KL}. This list of paths is then sorted in 

descending order by the number of transistors on the path, yielding a new set of paths: 

{ABCD, EFCD, ABC, EFG, HIJ, KIJ, HL, KL} 
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Figure 4-17. Gate generated from 4x4 Generation Matrix 

First we traverse the path ABCD. As none of these transistors have been previously sized, 

their widths are set to 4, the number of transistors on the path. The path EFCD is 

analyzed next. By (4-4), the equivalent resistance of the sized transistors is calculated: 

1 4 
Weq = l/

4 
+ l/

4 2 
Using (4-3), the widths of transistors E and F, the only unsized 

transistors along the path EFCD to be W = 2( ~) = 4 . Solving the third path, ABG, 

equates Weq to 2. As there is one unsized transistor on this path, S = 1. Thus, the width of 

G is calculated to be W = 1{2) = 2 . 

Following in this manner, all of the remaining transistors in the gate may be ratioed such 

that every path shares the same resistance. 

It is common knowledge in CMOS digital logic design that PMOS and NMOS transistors 

often do not share the same electron mobility (J.l) and as such will not have the same 

resistance for the same width of transistor. The electron mobility of the PMOS transistor 

(J.lp), depending on technology process, is often quite different than that of its NMOS (J.ln) 
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counterpart. For this work, we consider J.ln = 2J.lp which is a very common assumption in 

CMOS digital design. Thus in order to size for equal rise and fall times, the gate ratios 

are then multiplied by a skewing factor, which will double the widths of the PMOS 

transistors in order to counterbalance the lower electron mobility. 

The generation algorithm as presented in Section 4.3 .1 is not perfect, and at times will 

generate a gate which does not meet the required maximum number of allowed series 

transistors. Figure 4-18 illustrates a gate which will be generated by a 4x4 generation 

matrix. By studying the interconnections, it can be seen that a path HIFBCD from VDD 

to output exists which contains six series transistors. Clearly this is beyond the allowed 

maximum of four. As such, the skewing algorithm also serves as a filter - if a path is 

found which exceeds the maximum allowed series transistors, the gate is discarded and 

not indexed in the library. 

Figure 4-18. Gate Generated from 4x4 Matrix with 6 Series Transistors 
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4.3.5 NMOS Network Generation 

The complex gate generation algorithm described in Section 4.3 .1 only creates and solves 

the PMOS network, from VDD to the output. In order to synthesize an input HDL, the 

NMOS network for gates in the library must be available in order to obtain the logical 

effort value for every input. The gate generation matrix presented in Figure 4-5 will 

generate every possible gate given the restrictions on the maximum allowed series 

transistors. Although the algorithm described in Section 4.3.1 generates the PMOS 

network for a logic gate, if the transistors are replaced to be NMOS, the generated 

structure may be an exact match to a previously generated PMOS network. Combining 

these two will create a complete CMOS logic gate. 

Figure 4-19. Generating NMOS Network from PMOS Structure 

In order to match PMOS and NMOS networks to form a complete gate, Boolean truth 

tables must be independently generated for each network, and P-canonical matching is 

used to identify pairs. When a PMOS network is generated, the CMOS transistor logic 

solving algorithm as in Section 4.3.3 is employed to generate the truth table for the 

PMOS structure. From this truth table, the canonical forms are generated and the cell is 

added to the library. At the same time, the truth table for the network is generated as if 

the transistors were NMOS. This is accomplished by solving the truth table for the PMOS 

structure again, however inverting the inputs to the gate. Figure 4-19 illustrates a simple 

NOR gate extracted from the gate generation matrix in Figure 4-5. The truth table for this 

PMOS structure can be seen in Figure 4-20. In order to obtain the truth table for the 

NMOS network, the inputs are inverted before applying the transistor logic solving 
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algorithm from Section 4.3.3, while keeping the rows identical in the truth table. Once the 

function output is obtained via the logic solving algorithm, it is inverted and added to the 

truth table. Figure 4-21 illustrates the truth table obtained by inverting the inputs to the 

gates of the transistors in Figure 4-19 and inverting the output value. This can be verified 

simply by looking at the last row of Figure 4-21. Inverting both inputs, and applying a 

logic zero to both gates of the transistors in Figure 35, one can quickly see that the output 

will be a logic one. 

A B F 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

Figure 4-20. Truth Table for NOR Gate 

A B F 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

Figure 4-21. Truth Table for NAND Gate 

Once all library cells have been indexed, it is necessary to pair PMOS networks with 

NMOS networks in order to complete each CMOS gate in the library. Each library cell 

only containing a PMOS network is visited. The P-canonical representation of the 

calculated NMOS truth table is generated, and searched for in the library's P-canonical 

hash table. The matching cell in the P-canonical hash table is copied, and assigned as the 

NMOS network to the cell. At this point, it is necessary to re-arrange the order of the 

inputs in the NMOS network so that they align with those in the PMOS network, 

allowing the logical effort value of each input to the gate to be calculated. 

When the P-canonical representation of a function is calculated, the canonical 

representation may have a different permutation of input variables to that of the truth 

table which it was calculated from. This ordering is saved in memory as the POrder, and 

is represented as a !-dimensional array of integers, with length equal to the number of 

PROPERlY Of r 
RYERSON UNl\IERSITY U8BAR 
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inputs there are to the truth table. Each element in the array stores one integer which 

represents the index of the inputs to the original function. For example, the POrder 

{0,1,3,2} implies the first and second inputs remain fixed, and the third and fourth are 

switched. 

As both the PMOS and NMOS networks share the same P-canonical representation, their 

POrders may be used to match their inputs together, using the P-canonical form as a 

common reference. 

Example -Input matching between PMOS and NMOS networks 

Consider the PMOS networks presented in Figure 4-22 and Figure 4-23. The network in 

Figure 4-23 is the NMOS counterpart of that in Figure 4-22, but with PMOS transistors, 

and vice versa. The truth table for the PMOS network in Figure 4-22 is available in 

Figure 4-24(a). The NMOS truth table is calculated by solving the network again, instead 

inverting its inputs, and the output, and is available in Figure 4-24(b ). From this table, the 

P-canonical representation of the NMOS truth table is calculated, and is available in 

Figure 4-24( c). Figure 4-24( d) illustrates the calculated POrder for this canonical form, 

showing that no permutation is required to obtain the canonical form. 

y -c 

Figure 4-22. PMOS Network f=!(A+B)C Figure 4-23. PMOS Network f=!(XZ+ Y) 

The truth table for the PMOS network in Figure 4-22 is illustrated in Figure 4-25(a). The 

P-canonical representation is calculated from this table, and is visible in Figure 4-25(b ). It 

can be seen that Figure 4-24( c) and Figure 4-25(b) are identical, showing the two 

functions are a match. The POrders of each gate are used to match inputs. The POrder is 

iterated through, and inputs are assigned as follows: 
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GATEl.Inputs[POrderl[index]] = GATE2.Inputs[POrder2[index]] 

The index variable is iterated from 1 toN, where N is the number of inputs to the gate. In 

this case, POrderl[l] = 1; POrder2[1] = 1; Thus, A=X. POrder1[2] = 2; POrder2[2] = 3; 

Thus, B=Z. POrderl [3] = 3; POrder2[3] = 2; Thus, C=Y. 

A B c F A B c fNMOS A B c { 1' 2, 3} 
0 0 0 1 0 0 0 1 0 1 1 
0 0 1 1 0 0 1 0 1 0 1 (d) 

0 1 0 1 0 1 0 1 (c) 
0 1 1 0 0 1 1 0 
1 0 0 1 1 0 0 1 
1 0 1 0 1 0 1 0 
1 1 0 1 1 1 0 0 
1 1 1 0 1 1 1 0 

(a) (b) 

Figure 4-24. Generated Truth Tables & P-canonical form of Figure 38 
(a) truth table of Figure 38; (b) calculated NMOS network truth table; (c) NMOS P-canonical; (d) NMOS 

POrder 

X y z F X z y {1,3,2} 
0 0 0 1 0 1 1 
0 0 1 1 1 0 1 (c) 

0 1 0 0 (b) 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 0 

(a) 

Figure 4-25. Generated Truth Tables & P-canonical form of Figure 39 
(a) truth table of Figure 39; (b) PMOS P-canonical; (c) PMOS POrder 

4. 3. 5.1 NMOS Generation -Dependency on Library Size 

The gate-generation matrix in Figure 4-5 will generate all combinations of PMOS 

structures possible given the input library dimensions. If the library is not square, certain 

NMOS networks will not be generated. For example, if a library is generated with a 

maximum allowed 3 series NMOS and 2 series PMOS, NMOS networks will not be 
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found for PMOS networks which are more than 2 transistors wide. As such, for non­

square libraries, a complimentary library with opposite dimensions is generated for 

searching for NMOS networks. Using the same example, a library with the dimensions of 

2 series NMOS and 3 series PMOS is generated to locate appropriate NMOS networks. 

4.4 Proposed Boolean Tree Matching 

It will be necessary to determine the most optimal match for every node in the subject 

graph in order to obtain the best cover with respect to logical effort delay or area. The 

subject tree will be traversed recursively from root to leaf nodes, from left child to right 

to find matching gates. 

4.4.1 Sub-tree Extraction 

At each node in the traversal, it is necessary to explore all possible matches from this 

point to its primary inputs, and all combinations of inputs leading up to the current node. 

During the matching process, it is necessary to extract all sub-trees at a particular node in 

order to explore all possible covers. From the simple tree below, five unique sub-trees 

can be extracted, as illustrated in Figure 4-26. 

Figure 4-26. Extracted Sub-trees from Sample Graph 

An algorithm has been developed which will perform this extraction, taking the root node 

of the extraction as its input, and its output being a set of all combinations of sub-trees. 

The extraction process works by recursively traversing the tree downwards, from left 

child to right, and returning upwards the set of nodes { self; self + left child; self + right 

child; self+ [left child X right child] } . This process is illustrated in the example below. 
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Example- Sub-tree extraction algorithm in operation 

Traversing the tree illustrated to the immediate left (also shown in 

Figure 4-26), from left child to right, bottom up, returning the possible 

combinations of nodes at each step, all possible combinations of sub­

trees can be obtained. 

Starting from the leaf nodes, and passing upwards, the bottom 

NAND ("N") node does not have any children, and as such can 

only pass itself forward. ~ 
Returns {@} 

{CD} Similarly, the Inverter ("I") node does not have any children, 
Returns I 

~ and passes only itself forward. 

The middle-level NAND gate passes upwards the set of itself, itself+ it's left child (in 

this case the NAND gate), itself+ it's right child (in this case the Inverter), and itself+ 

all combinations of it's left and right children together. Since both children only returned 

one result each, the number of possible combinations of arrangements of it's children is 

one. 

} 

{ ... } 

® 
{ ... \D 

Finally, the top-level Inverter gate passes upwards the set of itself, itself+ it's only child, 

as illustrated below. At this point, all possible sub-trees have been extracted from the root 

node of the input tree. 
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Returns { 

~ 
{ ... } 

A 

CD 

~ ... } { ... ~ 

This procedure is detailed in pseudo code in Figure 4-27. 

subtreeExtract (node n) { 
if n has 1 child 

} 

return "set of' { self, self+ subtreeExtract(n.child) } 
if n has 2 children { 

} 

lc = subtreeExtract(n.leftChild) 
rc = subtreeExtract(n.rightChild) 
return "set of" { self, self+ lc, self+ rc, self+ [lc X rc] } 

return null 

Figure 4-27. Proposed sub-tree extraction method 

4.4.2 Matching Algorithm 

} 

In order to obtain all matches in a given subject tree, it is necessary to traverse the tree 

from root to leaf nodes, and explore all potential matches along the way. If a match is 

found, the node in the tree is marked with this match for later analysis in the covering 

step. This is accomplished by visiting each node in the subject graph, extracting all 

54 



subtrees from this node to the inputs of the partition, and iterating through each of these 

subtrees looking for a Boolean match with a cell in the library. This matching algorithm 

is detailed in pseudo code in Figure 4-28. 

findMatch(Node n) { 

} 

extractedTrees = extractSubtrees(n); 

foreach (Node ex in extractedTrees) { 
TT = Generate Truth Table( ex); 
PNCanonical = GeneratePNCanonical(TT); 

if (Library.PNindex.Contains(PNCanonical)) { 
ex.Matches.Add(PNCanonical); 

} 
else 

if ( ex.numlnputs < 8) { 

} 

NPNCanonical = GenerateNPNCanonical(TT) 
ifLibrary.NPNindex.Contains(NPNCanonical) 

ex.Matches.Add(NPNCanonical); 

foreach (Node c in n.children) 
findMatch( c); 

Figure 4-28. Proposed Boolean tree matching algorithm 

4.4.3 Boolean Logic Solver 

The matching algorithm in Figure 4-28 requires that the truth table of the input extracted 

subtree be generated in order to calculate the canonical representations used in matching. 

Inputs to the tree are aligned in a linear linked list, and are recursively traversed; exciting 

every possible input combination - 2n in all, where n is the number of inputs to the tree. 

Once a particular input pattern has been assigned to the inputs of the function, the output 

value is solved recursively, from the output node to the inputs. 

At each node, the output is passed upwards based on the value at its inputs and the type 

of function. The simplified pseudo code for this function is presented in Figure 4-29. 
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bool booleanSolver (Node t) 
{ 

if (t . type = INV) 
return NOT(booleanSolver(t . child) ; 

if (t . type = NAND) 
return NOT(booleanSo l ver( l eftChild) AND boo l eanSo l ver(rightChild) ) ; 

if (t . type = NOR) 
return NOT (boo l eanSo l ver( l eft Ch i l d) OR booleanSolver(r i ght Child)) ; 

Figure 4-29. Recursive Boolean logic solver pseudo code 

4.5 Proposed Covering Algorithm 

Once all matches have been obtained using the method described in Figure 4-28, it is 

necessary to determine the most optimal covering in order to reduce area-delay 

consumption. A dynamic programming approach is taken to solve this minimization 

problem. Similar to the recursive tree-traversal algorithm implemented in Figure 4-28, 

the most optimal result will flow from the leaf nodes and arrive at the root node upon 

completion. The algorithm works by beginning at the root node of a subject graph, and 

iterating through each available match at this node. Each match iterated will be fixed in 

place at the current node being analyzed; the function will then be called recursively for 

each child of the match being fixed in place. Upon completion of the recursive call, the 

function will return the best match, and the cost of this match for each of its children, 

given the restriction of the match being fixed in place. This iteration process will 

continue until finally the leaf nodes of the subject tree are reached, where only one match 

may be found - the base function. The cost function being minimized may be calculated 

as logical effort delay, or total circuit area. 

4.5.1 Minimizing Logical Effort Delay 

The matching phase as described in Section 4.4 of this paper will generate a large set of 

matches for a given circuit, with an even larger set of possible coverings obtainable using 
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these matches. It is necessary to determine which set of matches should be employed to 

obtain the minimum critical path logical effort delay. 

The critical input in a subject graph may be identified by the input with the highest path 

logical effort value, G, observed from the input towards the output of the circuit [26]. As 

defined by logical effort theory, path logical effort is the product of the logical effort of 

all inputs seen along the path being analyzed [25]. 

Example - Logical effort delay minimizing covering algorithm 

The covering algorithm outlined above may be applied to the very simple circuit in 

Figure 4-30(a). The following example assumes that a library is available containing a 

two-input NAND, a two-input AND (NAND+Inverter), a two-input OR (NOR+Inverter), 

a three-input OR (NOR+Inverter), and an OR-AND-INVERT (OAI). 

The first step of the covering algorithm looks at the root node, and lists the matches 

available for this node. At node 1, there are three matches, which are illustrated in Figure 

4-30(b). These matches are a single NAND, an OAI containing nodes 1 and 2, and an 

OAI containing nodes 1 and 3. The covering algorithm works by iterating through each 

of these matches, determining which minimizes logical effort delay. First the NAND 

match is selected, and fixed in place. First the left input to this gate is visited - gate 2. As 

there is only one gate at this node, only the OR match is found. It is returned, along with 

its cost to gate 1. The delay of gate 2 by ( 4-2) is 5.66, taking account for the Inverter 

added to the NOR to make it an OR. Next, the right child of gate 1 is visited, gate 3 

which has 2 potential matches, as seen in Figure 4-30(c). 

First, the OR match is selected and locked into place. As each of the children of the OR 

match only contain one match themselves, they are visited, and locked in place in a 

similar manner, passing their delays upwards to node 3. This is visible in Figure 4-30(d). 

The critical delay of node 3 passes through node 5 to primary inputs, giving a delay of 

11.32. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 4-30. Matches Explored in Covering Algorithm 

Next, the 3-input OR match is explored, and locked in place. The only child to this match 

is the 2-input AND at gate 4, and is locked in place as well. This is visible in Figure 

4-30(e). The critical delay of the match at gate 3 is 12.66, and flows through the 2-input 

NAND at gate 4. The delay of the configuration in Figure 4-30(d) is lower than that in 

Figure 4-30(e); as such, the 2-input OR match is selected as the best match for gate 3, is 
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passed upwards to gate 1. The critical delay at the output of gate 1 is 3.33 + 11.33 = 

14.66. 

Next, the OAI covering gates 1 and 2 is selected and locked into place. There is only one 

child node of this match, and it is gate 3, which has 2 potential matches to explore, as 

illustrated in Figure 4-30(t). First, the 2-input OR match is locked into place. As each of 

its children only contain one match, they are both visited and their costs are returned to 

gate 3. This covering is visible in Figure 4-30(g), with a delay at the output of gate 3 of 

11.33. 

Next, the 3-input OR covering is explored at gate 3. As there is only one child match, it is 

fixed into place as in Figure 4-30(h). The delay at the output of gate 3 is calculated to be 

12.66. Clearly this is higher than 11.33; as such, the 2-input OR match is returned to gate 

1. The critical delay of the covering in Figure 4-30(g) is calculated to be 4 + 7.33 = 

11.33. 

(a) (b) 

(c) (d) 

Figure 4-31. Gate Transformations through Boolean Matching 
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Match coverNode(Node n) { 
Match bestMatch =null; 

} 

BestPath _Delay = Float. Max Value; 
foreach (Match m in n.Matches) { 

m.PathDelay = -1; 
foreach (Node ni in m.Inputs) { 

ni.bestMatch = coverNode(ni); 
m.ChildMatches.Add(ni.bestMatch); 

} 

for (inti = 0; i < m.Inputs.Count; i++) { 

} 

PathDelay = m.Inputs[i].bestMatch.PathDelay + 
m.LibraryCellMatch.LE[i] + m.LibraryCellMatch.P; 

if (PathDelay > m.PathDelay) 
m.PathDelay = PathDelay; 

if ( m. PathDelay < BestPath'-Delay) { 
BestPath _Delay = m.PathDelay; 
bestMatch = m; 

} 
} 
return bestMatch; 

Figure 4-32. Proposed logical effort delay minimizing covering algorithm 

Finally, the OAI covering gates 1 and 3 is fixed into place as in Figure 4-30(i). As each 

child gate of this match only contains one match itself, they are all locked into place. The 

critical delay of this covering flows through the 2-input OR at gate 2, through the OAI 

and to the output. This delay is calculated to be 4.66 + 5.66 = 10.33. Clearly 10.33 is the 

lowest critical path delay, and as such, this is the covering which optimizes the logical 

effort delay from the matches found in Figure 4-30. 

Boolean matching allows the discovery of gates which are not included in the original 

netlist. Figure 4-3l(a) illustrates how gate 3 can be transformed into a NAND by utilizing 

the Inverters associated with the AND, and OR gates from gates 4 and 5 respectfully, 

transforming them into NAND and NOR gates. Figure 4-3l(b) illustrates the new circuit 

which is logically equivalent to those in Figure 4-30. This transformation allows the 

exploration of two additional covers which were not included in Figure 4-30, visible in 
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Figure 4-31 (c) and Figure 4-31 (d). The delay of Figure 4-31 (c) can be calculated to be 

10.33, and the delay of Figure 4-31(d) to be 11.33. Figure 4-31(c) is tied for the lowest 

delay with the cover in Figure 4-30(i), and can be selected as the best cover, with an area 

of 4 7 by the area calculation method described in Section 4.1.1. 

The pseudo code for this logical effort delay minimizing algorithm is available in Figure 

4-32. 

Match coverNode(Node n) { 

} 

Match bestMatch = null; 
BestArea = Float.MaxValue; 
foreach (Match m in n.Matches) { 

m.TotalArea = 0; 
foreach (Node ni in m.Inputs) { 

ni.bestMatch = coverNode(ni); 
m.ChildMatches.Add(ni.bestMatch); 

} 

for (int i = 0; i < m.Inputs.Count; i++) { 

} 

m.TotalArea += m.Inputs[i].bestMatch.TotaJArea + 
m.LibraryCellMatch.LE[i]; 

if (m.TotalArea < BestArea) { 
BestArea = m.TotalArea; 
bestMatch = m; 

} 
} 
return bestMatch; 

Figure 4-33. Proposed area minimizing covering algorithm 

4.5.2 Minimizing Circuit Area 

In order to determine which set of matches will produce a cover with minimal circuit 

area, the method as described in Section 4.1.1 will be employed to calculate the area of 

each gate. A similar recursive algorithm was developed to that for delay minimization, 
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however the cost being minimized is total circuit area. For each match locked in place, 

the cost returned will be the total area of it, and that of all its children. The pseudo code 

for this area minimizing algorithm is available in Figure 4-32. 

Example - Area minimizing covering algorithm 

The area covering algorithm may be applied to the very simple circuit in Figure 4-30(a). 

The following example assumes that a library is available containing a two-input NAND, 

a two-input AND (NAND+Inverter), a two-input OR (NOR+Inverter), a three-input OR 

(NOR+Inverter), and an OR-AND-INVERT (OAI). 

The first step of the covering algorithm looks at the root node, and lists the matches 

available for this node. At node 1, there are three matches, which are illustrated in Figure 

4-30(b ). These matches are a single NAND, an OAI containing nodes 1 and 2, and an 

OAI containing nodes 1 and 3. The covering algorithm works by iterating through each 

of these matches, determining which minimizes total circuit area. First the NAND match 

is selected, and fixed in place. First the left input to this gate is visited - gate 2. As there 

is only one gate at this node, only the OR match is found. It is returned, along with its 

cost to gate 1. The area of gate 2 is 13. Next, the right child of gate 1 is visited, gate 3 

which has 2 potential matches, as seen in Figure 4-30(c). 

First, the OR match is selected and locked into place. As each of the children of the OR 

match only contain one match themselves, they are visited, and locked in place in a 

similar manner, passing their delays upwards to node 3. This is visible in Figure 4-30(d). 

The area of gate 3 including its two children is 3 7. 

Next, the 3-input OR match is explored, and locked in place. The only child to this match 

is the 2-input AND at gate 4, and is locked in place as well. This is visible in Figure 

4-30(e). The area of the match at gate 3 including its one child is 35. 
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The area of the configuration in Figure 4-30( e) is lower than that in Figure 4-30( d); as 

such, the 3-input OR match is selected as the best match for gate 3, is passed upwards to 

gate I. The total area of the covering in Figure 4-30(d) is 58. 

Next, the OAI covering gates 1 and 2 is selected and locked into place. There is only one 

child node of this match, and it is gate 3, which has 2 potential matches to explore, as 

illustrated in Figure 4-30(f). First, the 2-input OR match is locked into place. As each of 

its children only contain one match, they are both visited and their costs are returned to 

gate 3. This covering is visible in Figure 4-30(g), with the area of gate 3 and its children 

being 37. 

Next, the 3-input OR covering is explored at gate 3. As there is only one child match, it is 

fixed into place as in Figure 4-30(h). The area of gate 3 with this match is 35. Clearly this 

is lower than 37; as such, the 3-input OR match is returned to gate I. The area of the 

covering in Figure 4-30(h) is calculated to be 51. 

Finally, the OAI covering gates 1 and 3 is fixed into place as in Figure 4-30(i). As each 

child gate of this match only contains one match itself, they are all locked into place. The 

area of this covering is 53. 

Exploring the coverings in Figure 4-31 (c) and Figure 4-31 (d), their areas can be 

calculated to be 4 7 and 42. It can be seen that the covering which produces the minimum 

area is Figure 4-31 (d) with a delay of 11.3 3. 

4.6. Summary 

This chapter has proposed novel matching and covering algorithms for library-free 

synthesis which minimize the critical path delay or total circuit area. The following 

chapter will overview implementation of these algorithms for testing against benchmark 

circuits. 
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5. Implementation 

The proposed matching and covering algorithm was implemented in Microsoft C# .NET 

as a windows application. This environment was selected for its ease of development and 

testing. Microsoft .NET allows the developer to easily create many layers of abstraction 

in code allowing for organization and portability to other platforms. The developed 

synthesis algorithms and support functions are encapsulated in numerous levels of 

abstraction to allow for simple insertion into another application such as an Internet­

based web service. 

5.1 Synthesis Process Overview 

The desired output of the synthesis tool is a netlist of complex gates which cover an input 

HDL, minimizing a given cost function. There are many steps which must be followed in 

order to accomplish this task, and many obstacles needed to be overcome. 

5 .1.1 Input Parsing and DAG Storage 

The BENCH format is a simple, easy to read textual description of a circuit, which all 

ISCAS'85 benchmark circuits are provided in. The ISCAS'85 combinational benchmark 

circuits were selected as a measure for comparison between the developed tool and 

Synopsys Design Compiler due to their wide acceptance in academic research for CAD 

optimization. The BENCH format is very simple to parse, and is composed of three main 

Sections. The first is the definition of inputs to the circuit, defined in the format 

INPUT(ID). Second, the outputs are defined in the format OUTPUT(ID). Lastly, the 

gates of the circuit are defined in the format ID=GATE(ID~, ID2, .. I~), where ID is a 

unique identifier to that gate, and GATE is the type of gate in the set {AND, OR, NAND, 

NOR, NOT, XOR, BUF}. The NOT and BUF gates may only have one input, and the 

XOR gate may only have two inputs; the rest are unlimited. The inputs to the gate are the 
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unique identifiers as defined by other gates, or inputs. Figure 5-l is the BENCH 

equivalent of the circuit in Figure 5-2. 

# Simple BENCH example. Text on lines with a hash (#) are treated as 
#comments. 

INPUT( A) 
INPUT(B) 
INPUT(C) 
INPUT(D) 
INPUT( E) 
INPUT(F) 
OUTPUT(Y) 

1 = OR(A, B) 
2 =AND( I, C, D) 
3 = NAND(E, 2) 
Y = OR(F. 3) 

Figure 5-l. Simple Example of BENCH Code 

a 
b 

c 
d 
e 
f 

Figure 5-2. Boolean Representation of BENCH Code in Figure 5-l 

The Node object is the most basic and most used object in the developed synthesis tool. 

The class description for the Node object can be seen in Figure 5-3, whose primary 

components are the Parent and Children linked lists. A network of Nodes is created as the 

input BENCH file is parsed, creating the DAG which will later be partitioned, matched, 

and covered. As each line of the input BENCH file is read, a new Node object is 

instantiated, and assigned the type and ID according to the BENCH file. The DAG is 

built from input to outputs, in the order gates appear in the BENCH file, with primary 

outputs being the roots of the DAG, and inputs being the child leafs. 
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All nodes are indexed in a globally accessible hash table for quick lookup by their unique 

ID. Similarly, primary inputs and outputs are each indexed in their own hash tables for 

quick lookup as needed. 

public class Node 
{ 

public NODEType type; 
public List <Node > parent; 
public List <Node > children; 

public string ID; 
public string PartitioniD "" . I 

public Node inputChainLeft; //used for boolean solving 
public Node inputChainright; //used for boolean solving 

public bool value; 
public int LE; 
public int inputs to level; //used for subtree extraction 

public List <LibraryMatch> matches; 
public LibraryMatch bestMatch = null ; 

Figure 5-3. Node Object 

5 .1.2 Partitioning 

Once the HDL has been parsed, and the DAG is created in memory, partitions are formed 

by iterating through each Node in the primary output hash table and traversing the DAG 

to primary inputs. Partitions are marked at each fanout point as described in Section 2.2. 

As partition locations are found in the DAG, partition objects are instantiated as defined 

in Figure 5-4. The primary components of the Partition object are a list of child partitions, 

a unique identifier, and a root node, which is linked to a node in the DAG. The Node 

object contains a variable PartitioniD. The PartitioniD of every Node is assigned to that 

of it's containing Partition's ID. Barrier Nodes are inserted into the DAG at the inputs of 

each Partition; these Nodes are assigned the type IN. Although they do not logically 

change the DAG, they allow for quick identification of boundaries while traversing the 

graph. 

66 



Each partition may be considered completely independent of the others. The developed 

synthesis tool matches and covers partitions independently, in the order they are formed. 

A multi CPU computer may process partitions in parallel. 

public class Partition 
{ 

public List <Partition> children; 
public string ID; 
public Node root; 
public Node rootChaininput; 
public int inputs = 0; 
public bool [] TruthTable; 

Figure 5-4. Partition Object 

5.1.3 Memory Management 

Once partitioning is complete, matching and covering may begin. It can be seen in Figure 

5-3 that each Node contains a list of matching library cells. Each match is defined by the 

Library Match object as in Figure 5-5. Each Library Match contains a list of child matches; 

creating a second graph composed of Library Match objects. As each Node in the network 

may have multiple matches, one can see that the complexity of the interconnections 

between LibraryMatch objects quickly becomes great as the number of Nodes in the 

network increases. Initially, the synthesis tool was developed to match every partition, 

and then cover each partition. The amount of RAM required for this quickly exceeded 

3GB during the synthesis of simple benchmark circuits due to the immense networks of 

matches created. In order to reduce this memory usage, partitions are processed one at a 

time, and are matched and covered in one step. Once an optimal cover is found for a 

partition, all remaining unused matches are removed from the graph and purged from 

memory. 

67 



public class TibrdryMarch 
{ 

public string ID ; 
public I ~t r 1ryCe ll cell ; 
public Ncde parentNode ; 
public bool isBest = false ; 

public string PCanonical ; 
public string NPCanonical ; 
public int [] POrder ; 
public int [] NPOrder ; 

public Arr1yList Inputs ; //nodes 
public bool [] Invertedinputs ; 

public List <LitraryMatch> ChildMatches 
public string TT ; 

public double CriticalPath LE ; 
public double LE AREA; 
public double LE DELAY; 

new uist <LibraryMatch>() ; 

Figure 5-5. LibraryMatch Object 

5 .1.4 Timing Restrictions during Sub-tree Extraction 

During the matching process, it is necessary to extract all sub-trees at a particular node in 

order to explore all possible covers. The number of extracted sub-trees strongly depends 

on the number of inputs to a partition which are below the node being extracted. The sub­

tree extraction algorithm will not produce a tree which contains more inputs than the limit 

imposed by the maximum allowed series NMOS and PMOS transistors. Some partitions 

however, contain many times this number of inputs; as the number of inputs to a partition 

rises, so do the number of extracted sub-trees. 

The P-canonical form for each extracted sub-tree must be generated, and checked for 

existence in the library's P-canonical hash table. Should a partition be processed with an 

excessive number of inputs, in order to not incur significant runtimes, the sub-tree 

extraction algorithm is timed. Should the main loop of the algorithm take more than a 

preset amount of time, the maximum number of inputs to be considered is reduced by 

one. This self-tuning algorithm allows practical runtimes for special case partitions. 
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5.1.5 User Interface and Result Presentation 

In order for the developed synthesis tool to be useful, the results of the synthesis process 

must be easy for the end user to view, and verify. The tool has a simple tabbed interface, 

allowing the user to configure the settings of the synthesis process in the first tab, as is 

visible in Figure 5-6. Once the synthesis settings have been selected and the process has 

begun, status is updated on-screen in the Status tab, visible in Figure 5-7. 

At the completion of the synthesis process, a report is generated similar to that visible in 

Figure 5-8. This report presents details on the results of the mapped circuit, including 

transistor count, circuit area, and critical path delay. 

gt l ibrary-Free Synthesis Tool 

Settings Status 1 Report Browser Criical Path Verification 

Ubrary Settings 

Maximum serial PMOS transistOfll 3 

Maximum senal NMOS transistors 4 

Des1gn File 

Design File 

C17 
C432 
C499 

[ll@t 

Rle Preview 

I 
ftc880 
:t 60 inputs 
# 26 outputs 
#63 inverters 

uN • 2 uP M1nimlze for: 

C1355 
' C1980 # 320 gates ( 143 ANDs + 150 NANOs + 29 ORs + 61 NORs + 26 buffers ) 

i f~~ 
C5315 
C6288 

,C7552 
Test Orcu~ 1 

INPUT(1) 
INPUT(B) 
INPUT(13) 
INPUT(17) 

[ = I @) j...t3-- j 

AREA 

~AI Foes ] [ Current File [ [ Normalize I L start Synth':5i3 _ J 

Figure 5-6. Configuration Tab of Synthesis Tool 

The structure of the mapped library cells can be obtained by exploring the partitions in 

the Browser tab of the application, as is seen in Figure 5-9. A list of every partition is 

available in a drop-down box. Upon selecting a partition, a tree diagram is drawn 

allowing the user to explore the hierarchy of matches from the root of the partition down 

to its inputs. Selecting any individual match draws the PMOS transistor structure of the 
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gate. Transistors highlighted in red have inverted inputs, and were found using the NP­

canonical form. 

• .. Lib rary-Free Synthesis Tool 

Settings Status Report j Browser f Cttical Path { Verification 

Tagging memory for delet1on 
done . 

Partition #33 4 inputs 
Pl!lrtition match111g completed 1n : 0000:00.07226 10 
Partition coveling completed 1n · 00:00·00 
T agQing mem01y for delet1on . 
.. done 

Partit1on 1134 . 4 inputs 
Partition matching completed in : 00:00:00.0478485 
Partition coveling completed 1n 00:00 00 
T agg1ng memory for delet1on . 
done 

Partition 1135 · 1nputs 
Partition matching completed in 00 00 00.04491 90 
Part~1on covenng completed 1n : 00:00:00 
Tagging memory for deletion 
.. done 

Partition ;;t36 : 4 inputs 
Partit1on matching completed 1n . 00:00.00.0664020 
Partition coveling completed in : 00:00.00 

1 Tagging memory for delet ion 
. done. 

Partition 1137 : 4 inputs 

Figure 5-7. Status of Synthesis Process 

The critical path may be viewed in the Critical Path tab. This allows the exploration of 

the gates along the slowest path of the mapped circuit. Figure 5-11 illustrates this feature. 
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Library-Free Synthesis Report 

START TIME: 23/07/2008 10:02:01 AM 
END TIME: 23/07/2008 10:11 :44 AM 
Total time spent: 00:09:30.6167985 

Library: 155 cells 
--Serial PMOS transistors: 3 
--Serial NMOS transistors: 3 

TOTAL TRANSISTOR COUNT WITH ADDED INPUT AND OUTPUT INVERTERS: 1540 
TOTAL TRANSISTOR AREA WITH ADDED INPUT AND OUTPUT INVERTERS: 3394 

Critical Path LE (G): 1517.38386763535 
Critical Path # Stages (N): 14 
Critical Path Parasitics (P): 44.6666666666667 
Critical Path Branch Effort (B): 2000.7 

H=4 
Critical Path Delay D = N(GHBY'(1/N) + P: 89.556928395978 
Area- Delay Product= D *A: (89.556928395978) * (3394) = 303956.214975949 

H= 10 
Critical Path Delay D = N(GHBY'(l/N) + P: 91.8354071896211 
Area- Delay Product= D *A: (91.8354071896211) * (3394) = 311689.372001574 

H=50 
Critical Path Delay D = N(GHBY'(1/N) + P: 97.5818992008538 
Area- Delay Product= D *A: (97.5818992008538) * (3394) = 331192.965887698 

H = 100 
Critical Path Delay D = N(GHBY'(l/N) + P: 100.267698537843 
Area- Delay Product= D *A: (100.267698537843) * (3394) = 340308.568837438 

Figure 5-8. Sample Report Generated by Synthesis Tool 
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u, Library-Free Synthesis Tool 

Settings r Status T Report Browser Csitical Path 1 Verification 

Select a part~ ion to explore · ~( --.,...,..-.,.----=~"·..::;::=:::::==:__:j• ) J Show covering matches 

Partttion 111 3 inputs 
Parttt1on t:12 · 3 1nputs 
P artttion 113 · 3 inputs 
Parttt ion #4 2 inputs 
Part~1on 115 · 4 1nputs 
Partttion #6 · 4 inputs 
P artrt1on #7 : 3 1nputs 
Partition #8 · 2 inputs 
Partition t19 : 3 inputs 
Partrtion # 1 0 : 3 Inputs 
Partttion # 11 3 inputs 
Partition # 12 : 2 inputs 
Partrt1on 1113 : 2 1nputs 
Partition 1114 : 2 inputs 
Partit1on 1115 : 3 inputs 
Partrtion 111 S : 1 inputs 
Partrtion 1117 : 4 inputs 
Partition # 18 : 3 1nputs 
Partttion # 19 : 4 inputs 
P artttion #20 2 1nputs 
Partition #21 4 inputs 
Partition #22 · 4 inputs 
Partit1on #23 : 4 inputs 
Partrtion #24 : 4 inputs 
Partition #25 4 inputs 
Partition #21> : 4 1nputs 
Partition #27 · 4 inputs 
PartitJon #28 : 4 1nputs 

1:..'=:::::=-::=:=:=:=:=:=:=:= Partttion #2.9 ~ inputs 

Figure 5-9. Browsing Partitions 

u.. ibrary-Free Synthesis Tool 

Settings T Statu;r Report Browser Ctitical Path J Velification 1 

Select a part~ion to explore · Ll P_art_iti_·o_n _l14_6_ : _ 14_in_:._put_ s ________ __j• J J Show covenng matches 

- 4 1nput Match 

~w•mmsn 
2 1nput Match 

- 2 1nput Match 

2 1nput Match 

2 1nput Match 

3 1nput Match 

Figure 5-10. Display of Matching Library Cell 
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g • l ibrary-Free Synthe:;is Tool 

Settings Status Report Browser Crtticl!ll Path 

2 input match 
J input match 
4 input match 
3 input match 
2 input match 
2 input match 
3 1nput match 

1lmim#~ 
2 input match 
3 input match 
2 input match 
4 input match 
5 input match 

Verification 

Figure 5-11. Display of Critical Path 

5 .1.6 Automated Verification of Results 

- = 

In order to verify the correctness of the synthesized circuit, an algorithm was developed 

which generates random inputs to each primary input of the circuit. The original DAG is 

then solved recursively obtaining output values at each primary output given the set of 

inputs. The DAG is traversed again however the transistor structures of each match are 

solved recursively until values are available at the primary outputs of the circuit. If these 

two output values are identical, it can be said that synthesis is correct. The results of this 

automated verification are visible in Figure 5-12. 
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u., l ibrary-Free Synthesis Tool 

Settings f Status j Report j Browser l Critical Path [Y~~i~~~~~~j 

Test Vectors Generated & Verified 

01011 0100111 0111 00111010000011 0111 0111011 OK 
01011 01001110111 00111010000011 0111 0111 011 OK 
0101 10100111 0111 00111 010000011 0111 0111011 OK 
00111110100000100100011 0100010100011 01110 OK 
0011111 0100000100100011 0100010100011 01110 OK 
00111110100000100100011 0100010100011 0111 0 OK 
0011111 0100000100100011 010001010001101110 OK 
0011111 01000001001000110100010100011 01110 OK 
0011111 0100000100100011 010001010001101110 OK 

I 0011111 0100000100100011 0100010100011 01110 OK 
0011111010000010010001101000101000110111 0 OK 
0011111 0100000100100011010001010001101110 OK 

I 0011111 0100000100100011010001010001101110 OK 
0011111 010000010010001101000101000110111 0 OK 
001111101000001001000110100010100011 01110 OK 
001111101000001001000110100010100011 01110 OK 
0011111 0100000100100011 0100010100011 0111 0 OK 
00111110100000100100011 0100010100011 01110 OK 
0011111 0100000100100011 0100010100011 0111 0 OK 
00111110100000100100011 010001010001101110 OK 
00111110100000100100011 01000101000110111 0 OK 
00111110100000100100011 0100010100011 01110 OK 
00111110100000100100011 0100010100011 0111 0 OK 
00111110100000100100011 0100010100011 01110 OK 

Figure 5-12. Result of Automated Verification 

5.2 Summary 

l = i §J I~I 

This chapter outlined the synthesis process and described implementation details for the 

proposed synthesis algorithms. The proposed synthesis algorithms were implemented 

using Microsoft Visual C#.NET and tested on a Windows Vista platform. The following 

chapter outlines performance results of the proposed algorithms compared with Synopsys 

Design Compiler 2005. 
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6. Results 
In order to judge the performance of the developed synthesis tool, Synopsys Design 

Compiler (DC) 2005 was selected as a reference point. Synopsys offers synthesis tools 

which are widely used in industry for commercial ASIC design. The Synopsys tools are 

library based, and synthesize an input HDL to a set of pre-defined cells. The technology 

library selected for comparison is the TSMC 0.18J.tm library, which is available in the 

Ryerson VLSI lab. 

Standard cell libraries contain exact area and timing information for each cell placed 

during the synthesis process. The developed tool does not have simulated area and timing 

data for each gate placed; as such, alternative metrics must be considered for comparison 

with Design Compiler. The area of the mapped circuit as produced by DC and that from 

the developed tool will be estimated using the method described in Section 4.1.1. The 

delay of the critical path as identified by DC is calculated using ( 4-1) in Section 4.1. 

Similarly, this equation is used to identify and calculate the delay of the critical path in 

the mapped circuit produced by the developed tool. 

Circuit Name Circuit Function Total Gates 110 Pins 
C432 Priority Decoder 160 36 
C499 ECAT 202 41 
C880 ALU and Control 383 60 

C1355 ECAT 546 41 
C1908 ECAT 880 33 
C2670 ALU and Control 1193 233 
C3540 ALU and Control 1669 50 
C5315 ALU and Selector 2307 178 
C6288 16-bit Multiplier 2406 32 
C7552 ALU and Control 3512 207 

Figure 6-1. ISCAS'85 Benchmark Circuits 

In 1985, the International Symposium on Circuits and Systems (ISCAS) released a set of 

ten combinational logic benchmark circuits for testing CAD algorithms. Since their 

release two decades ago, these circuits have been used to judge to the performance of 
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many algorithms in countless research papers. Each circuit, along with its output 

function, total gates and 110 pin count is available in Figure 6-1. Circuits C499 and 

C 1355 are logically equivalent; All XOR gates in C499 have been expanded to their four 

NAND gate equivalent in Cl355. 

Design Compiler synthesized these benchmark circuits to the TSMC O.l8J.1m technology 

library with high map effort for cost function minimization. The proposed synthesis tool 

generated mapped circuits with the design constraint allowing a maximum of three serial 

PMOS, and four serial NMOS devices; creating gates with up to 12 inputs. 

The path logical effort (G) and branching effort (B) of the critical path as defined by DC 

has been calculated for each benchmark circuit. Branching effort is defined as the ratio of 

the sum of the input capacitances of the gates being driven, to the input capacitance of the 

gate on the path. As exact capacitance values are not known, it is estimated as the ratio of 

the sum of the logical effort of the gates being driven to the logical effort of the gate on 

the path of interest, which is an estimation of the input capacitance without sizing. The 

branching effort for an individual stage in the critical path, b, is calculated as in (5-1). For 

simplicity, we will be ignoring the area and delay incurred with interconnects, and will 

not be concerned with the actual fabrication sizes of the transistors. Critical path delay is 

estimated using ( 4-1 ), which takes account for the logical effort, number of stages, 

branching effort, electrical effort and the parasitic delays along this path. Typically, the 

design constraint being minimized during synthesis is critical path delay; however, in 

certain cases circuit area minimization is desired. Design Compiler was set to 

independently minimize circuit critical path delay, as well as minimize total circuit area 

for all testable benchmark circuits with high map effort. In order to observe the 

performance impact of a load on the primary outputs, cases were studied with a varying 

load on the primary output equal to a multiple of the input capacitance. 

b = goff _ path + g on_ path 

g on _ path 

76 

(5-1) 



The total circuit area and critical path delay has been calculated for the ISCAS' 85 

benchmark circuits after being synthesized in Synopsys Design Compiler and the 

developed tool. The developed tool was also run over every benchmark circuit for area, 

and delay minimization. The 16-bit multiplier in the ISCAS benchmark file C6288 has an 

extremely high number of paths from input to output pins. It has been shown [27] that 

there are at least 98943441738294937238 unique paths in this circuit. Due to this high 

number of paths, it is practically impossible to determine which is the path with the 

highest delay. The developed tool is able to partition, match, and cover the circuit within 

a similar amount of time as the other benchmark circuits, minimizing delay or area; 

however, it is not able to determine what the critical path delay is due to the number of 

paths to explore. As such, this circuit has been excluded from comparison with Synopsys 

Design Compiler. 

6.1 Design Compiler Area Minimization 

In this Section, Synopsys Design Compiler was set to minimize the total circuit area of 

each benchmark circuit. The resulting total circuit area and critical path delay of each 

circuit are compared with the developed synthesis tool for both area and delay 

minimization algorithms. Two cases are studied, one with a low output capacitance equal 

to 4x the input capacitance, and one with high load equal to 100x the input capacitance. 

The critical path delays of the mapped circuits obtained from both the designed synthesis 

tool and DC were calculated using ( 4-1) with an H value of 4 and 100. Section 6.1.1 

compares Synopsys Design Compiler with high map effort for area minimization against 

the developed tool for area minimization with Cout1Ci0 =4. Section 6.1.2 compares Design 

Compiler area minimization against the developed tool for delay minimization with 

Cout1Cin=4. Section 6.1.3 compares Design Compiler with high map effort for area 

minimization with the developed tool for delay minimization with Cout1Cin=100. Section 

6.1.4 compares Design Compiler area minimization with the developed tool for area 

minimization with Cout1Cin=100. 
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6.1.1 DC vs. Developed Tool Area Minimization (H = 4) 

The developed synthesis tool was set to minimize area for each benchmark circuit by 

minimizing the area in each partition as described in Section 4.5.2. Synopsys Design 

Compiler 2005 was set to minimize the area of each combinational benchmark circuit 

with high map effort. The results of these synthesis tools are presented in Figure 6-2. 

Design ComQiler DeveloQed S~nthesis Tool 
Area Minimization Area Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor 11Area 11 Tran. Count 11Delay 

C432 1547 116.79 612 1677 115 696 7.75% 12.07% -1 .56% 
C499 3605 135.02 1526 4134 80.9 1724 12.80% 11.48% -66.90% 
C880 3029 134.69 1160 2947 89.28 1212 -2.78% 4.29% -50.86% 

C1355 3700 121.96 1584 4342 116.41 2140 14.79% 25.98% -4.77% 
C1980 3683 144.39 1532 5461 115 2314 32.56% 33.79% -25.56% 
C2670 5879 99.5 2442 7179 136.21 3050 18.11% 19.93% 26.95% 
C3540 8465 178.75 3194 8318 162.38 3548 -1.77% 9.98% -10.08% 
C5315 12932 114.67 5008 18087 124.56 7584 28.50% 33.97% 7.94% 
C7552 14493 287.16 5854 23934 97.97 10162 39.45% 42.39% -193.11% 

Avg . .Ll- (Design Compiler vs. Developed Tool) 16.60% 21.54% -35.33% 

Figure 6-2. DC Area Minimization vs. Developed Tool Area Minimization- H=4 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from the Design Compiler and the developed synthesis tool. The 

difference between these two is visible in Figure 6-3. From this data, it can be seen that in 

the majority of cases Design Compiler is able to better minimize area than the developed 

tool, while the developed tool achieves an average delay reduction of 35.33%. Overall, 

the developed tool produced mapped circuits with an average area-delay product 9.27% 

less than that from Design Compiler. 

Circuit ll. AreaxDela)£ 

C432 6.32 

C499 -45.54 

C880 -55.06 

C1355 10.72 

C1980 15.32 

C2670 40.18 

C3540 -12.03 

C5315 34.18 

C7552 -77.49 

Avg.Ll -9.27% 

Figure 6-3. Design Compiler vs. Developed Tool fl. Area-Delay Product (Area vs. Area) 
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6.1.2 DC vs. Developed Tool Delay Minimization (H = 4) 

The developed synthesis tool was set to minimize delay for each benchmark circuit by 

minimizing the critical path delay in each partition as described in Section 4.5.1. 

Synopsys Design Compiler 2005 was set to minimize the area of each combinational 

benchmark circuit with high map effort. The results of these synthesis tools are presented 

in Figure 6-4. 

Design ComQiler DeveloQed S~nthesis Tool 
Area Minimization Delav Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor b.Area b. Tran. Count b. Delay 

C432 1547 116.79 612 2041 117.39 850 24.20% 0.51% 0.51% 

C499 3605 135.02 1526 4182 78.49 1756 13.80% -72.02% -72.02% 

C880 3029 134.69 1160 3268 86.93 1400 7.31% -54.94% -54.94% 

C1355 3700 121 .96 1584 4390 113.98 2172 15.72% -7.00% -7.00% 

C1980 3683 144.39 1532 5581 116.97 2362 34.01% -23.44% -23.44% 

C2670 5879 99.5 2442 7332 131 .02 3072 19.82% 24.06% 24.06% 

C3540 8465 178.75 3194 8949 167.55 3614 5.41% -6.68% -6.68% 

C5315 12932 114.67 5008 18909 124.99 7846 31.61% 8.26% 8.26% 

C7552 14493 287.16 5854 24779 97.68 10316 41.51% -193.98% -193.98% 

Avg.A1- (Design Compiler vs. Developed Tool) 21.49% -36.14% -36.14% 

Figure 6-4. DC Area Minimization vs. Developed Tool Delay Minimization - H=4 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-5. From this data, it can be seen that in the 

majority of cases Design Compiler is able to better minimize are than the developed tool, 

while the developed tool achieves an average delay reduction of 36.14%. Overall, the 

developed tool produced mapped circuits with an average area-delay product 3.94% less 

than that from Design Compiler. 

Circuit A AreaxDela~ 

C432 24.59% 

C499 -48.29% 

C880 -43.61% 

C1355 9.82% 
C1980 18.54% 

C2670 39.11% 
C3540 -0.91% 
C5315 37.26% 
C7552 -71.95% 
Avg~ -3.94% 

Figure 6-5. Design Compiler vs. Developed Tool/1 Area-Delay Product (Area vs. Delay) 
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6.1.3 DC vs. Developed Tool Area Minimization (H = 1 00) 

The developed synthesis tool was set to minimize area for each benchmark circuit by 

minimizing the area in each partition as described in Section 4.5.2. Synopsys Design 

Compiler 2005 was set to minimize the area of each combinational benchmark circuit 

with high map effort. The results of these synthesis tools are presented in Figure 6-6. 

Design Com11.iler Develo11.ed S~nthesis Tool 
Area Minimization Area Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor !J.Area !J. Tran. Count !J.Delay 

C432 1575 128.86 622 1677 123.95 696 6.08% 10.63% -3.96% 
C499 3689 126.87 1582 4134 89.12 1724 10.76% 8.24% -42.36% 
C880 3102 143.64 1206 2947 100.32 1212 -5.26% 0.50% -43.18% 

C1355 3796 136.07 1648 4342 124.48 2140 12.57% 22 .99% -9.31% 
C1980 3614 146.45 1533 5461 122.04 2314 33.82% 33.75% -20.00% 
C2670 5786 172.75 2456 7179 144.18 3050 19.40% 19.48% -19.82% 
C3540 8480 218.63 3208 8318 171.64 3548 -1 .95% 9.58% -27.38% 
C5315 12925 174.82 5054 18087 131 .47 7584 28 .54% 33.36% -32.97% 
C7552 14593 296.74 5953 23934 105.42 10162 39.03% 41.42% -181 .48% 

Avg.Ll- (Design Compiler vs. Developed Tool) 15.89% 19.99% -42.27% 

Figure 6-6. DC Area Minimization vs. Developed Tool Area Minimization- H=lOO 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-7. From this data, it can be seen that in the 

majority of cases, the Synopsys tools are able to better minimize area than the developed 

tool, while the developed tool achieves an average delay reduction of 42.27%. Overall, 

the developed tool produced mapped circuits with an average area-delay product 15.94% 

less than that from Design Compiler. 

Circuit 

C432 

C499 
C880 

C1355 

C1980 
C2670 
C3540 
C5315 
C7552 
AvgA 

11 AreaxDelay 

2.36 

-27.03 
-50.71 
4.43 

20.58 
3.43 

-29.86 
4.98 

-71 .63 
-15.94% 

Figure 6-7. Design Compiler vs. Developed Toolll Area-Delay Product (Area vs. Area) 
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6.1.4 DC vs. Developed Tool Delay Minimization (H = 100) 

The developed synthesis tool was set to minimize delay for each benchmark circuit by 

minimizing the critical path delay in each partition as described in Section 4.5.1. 

Synopsys Design Compiler 2005 was set to minimize the area of each combinational 

benchmark circuit with high map effort. The results of these synthesis tools are presented 

in Figure 6-8. 

Design Coml!,iler Develof!.ed S~nthesis Tool 
Area Minimization Delav Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor flAre a ll Tran. Count llDelay 

C432 1575 128.86 622 2041 127.64 850 22.83% 26.82% -0.96% 
C499 3689 126.87 1582 4182 86.6 1756 11.79% 9.91% -46.50% 
C880 3102 143.64 1206 3268 96.6 1400 5.08% 13.86% -48.70% 

C1355 3796 136.07 1648 4390 122 2172 13.53% 24.13% -11 .53% 
C1980 3614 146.45 1533 5581 125.5 2362 35.24% 35.10% -16.69% 
C2670 5786 172.75 2456 7332 138.81 3072 21.09% 20.05% -24.45% 
C3540 8480 218.63 3208 8949 176.92 3614 5.24% 11 .23% -23.58% 
C5315 12925 174.82 5054 18909 131.75 7846 31 .65% 35.59% -32 .69% 
C7552 14593 296.74 5953 24779 104.89 10316 41 .11% 42.29% -182.91% 

Avg~- (Design Compiler vs. Developed Tool) 20.84% 24.33% -43.11% 

Figure 6-8. DC Area Minimization vs. Developed Tool Delay Minimization- H=lOO 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-9. From this data, it can be seen that in the 

majority of cases, the Synopsys tools are able to better minimize area than the developed 

tool, while the developed tool achieves an average delay reduction of 43 .11%. Overall, 

the developed tool produced mapped circuits with an average area-delay product 10.32% 

less than that from Design Compiler. 

Circuit 

C432 

C499 

C880 

C1355 

C1980 

C2670 

C3540 

C5315 

C7552 

Avg.A 

A AreaxDelay 

22.09% 

-29.23% 

-41 .14% 

3.56% 

24 .43% 

1.79% 

-17.1% 

9.3% 

-66.61% 

-10.32% 

Figure 6-9. Design Compiler vs. Developed Toolll Area-Delay Product (Area vs. Delay) 
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6.1.5 Comparison of Synthesis Algorithms 
In all cases outlined above for both low and high output loads, the developed synthesis 

tool outperformed Synopsys Design Compiler with respect to the average area-critical 

path delay product for the set of ISCAS benchmark circuits. 

Figure 6-1 0 illustrates the area-delay product difference between Synopsys Design 

Compiler for area minimization and the developed tool for both area and delay 

minimization for each circuit with an output load 4x the input capacitance. In nearly all 

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the 

delay minimization algorithm of Section 4.5.1. 
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Figure 6-10. DC Area Minimization (H=4) 

Figure 6-11 illustrates the area-delay product difference between Synopsys Design 

Compiler for area minimization and the developed tool for both area and delay 

minimization for each circuit with an output load 1 OOx the input capacitance. In nearly all 

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the 

delay minimization algorithm of Section 4.5.1. 
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Design Compiler Area Minimization (H = 1 00) 
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Figure 6-11. DC Area Minimization (H=1 00) 

6.2 Design Compiler Delay Minimization 

In this Section, Synopsys Design Compiler was set to minimize the critical path delay of 

each benchmark circuit, the result of which will be compared with the developed 

synthesis tool for both area and delay minimization. As delay minimization is typically 

preferred over area minimization, more cases will be studied here to observe the effects 

of various output loads than in Section 6.1. 

Four cases are studied, with output capacitances equal to 2x, 4x, 16x and lOOx the input 

capacitance. A high output load requires higher current to charge the load in the same 

time than a lower load does. As the source voltage is not modified if the load is increased, 

the resistance of the paths from VDD to load, and load to VSS must be lowered in order 

to support this higher current. As such, the widths of the transistors in the gate directly 

driving the output load will typically be higher than those of gates elsewhere along the 

path. These larger transistors themselves become more difficult to drive by earlier stages 

as they are now larger. Typically a design with a high output load requires more stages 

83 



along the path to gradually "upsize" the current in order to drive the large load in a timely 

manner. This dependence on the number of stages and the output load size are both 

represented by the variables N and H in ( 4-1) when calculating the logical effort delay of 

the critical path. 

The critical path delays of the mapped circuits obtained from both the designed synthesis 

tool and DC were calculated using ( 4-1) with an H value of 2, 4, 16 and I 00. Sections 

6.2.1 and 6.2.2 compare Synopsys Design Compiler with high map effort for delay 

minimization against the developed tool for delay, and area minimization, respectfully 

with Cout1Cin=2. Sections 6.2.3 and 6.2.4 compare Design Compiler with high map effort 

for delay minimization against the developed tool for delay, and area minimization, 

respectfully with Cout1Cin=4. Sections 6.2.5 and 6.2.6 compare Design Compiler with high 

map effort for delay minimization against the developed tool for delay, and area 

minimization, respectfully with Cout1Cin=l6. Sections 6.2.7 and 6.2.8 compare Design 

Compiler with high map effort for delay minimization against the developed tool for 

delay, and area minimization, respectfully with CoutiCin=l 00. 

6.2.1 DC vs. Developed Tool Delay Minimization (H = 2) 

The developed synthesis tool was set to minimize delay for each benchmark circuit by 

minimizing the delay in each partition as described in Section 4.5.1. Similarly, Synopsys 

Design Compiler was set to minimize critical path delay in each benchmark circuit with 

high map effort. The results of these synthesis tools are presented in Figure 6-12. From 

this data, it can be seen that the developed tool produces a circuit with a critical path 

delay only marginally higher than that from Design Compiler, while achieving a 41.97% 

reduction in area, and a 53.72% reduction in transistor count. 
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Design Com11.iler Develo11.ed Sr,nthesis Tool 
Delav Minimization Delav Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor 11Area 11 Tran. Count /1Delay 

C432 2573 119 1308 2041 115.23 850 -26.07% -53.88% -3.27% 

C499 6985 91.63 3218 4182 76.82 1756 -67.03% -83.26% -19.28% 

C880 7234 63.6 3164 3268 84.94 1400 -121.36% -126.00% 25.12% 

C1355 9446 94.6 4470 4390 112.26 2172 -115.17% -105.80% 15.73% 

C1980 8677 79.79 4012 5581 115.14 2362 -55.47% -69.86% 30 .70% 

C2670 6874 124.68 3734 7332 129.33 3072 6 .25% -21.55% 3.60% 
C3540 12049 161 .78 5406 8949 165.51 3614 -34.64% -49.58% 2.25% 

C5315 16351 98.98 7056 18909 123.53 7846 13.53% 10.07% 19.87% 

C7552 19271 126.4 8630 24779 96.17 10316 22.23% 16.34% -31.43% 

Avg . ..1- (Design Compiler vs. Developed Tool) -41.97% -53.72% 4.81% 

Figure 6-12. DC Delay Minimization vs. Developed Tool Delay Minimization- H=2 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-13. From this figure, it can be seen that the 

developed tool is able to reduce the overall area-delay product by 30.86% with 

comparison to Design Compiler. 

Circuit fl. Area)(Delax 

C432 -30.19% 

C499 -99.23% 

C880 -65.75% 

C1355 -81.32% 
C1980 -7.74% 

C2670 9.62% 

C3540 -31 .61% 

C5315 30.71% 
C7552 -2.22% 
Avg..Ll -30.86% 

Figure 6-13. Design Compiler vs. Developed Toolll Area-Delay Product (Delay vs. Delay) 

6.2.2 DC vs. Developed Tool Area Minimization (H = 2) 

The developed synthesis tool was set to minimize area for each benchmark circuit by 

minimizing the area in each partition as described in Section 4.5.2. Similarly, Synopsys 

Design Compiler was set to minimize critical path delay in each benchmark circuit with 

high map effort. The results of these synthesis tools are presented in Figure 6-14. From 

this data, it can be seen that the developed tool produces a circuit with a critical path 
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delay 5.35% higher than that from Synopsys, while achieving a 50.65% reduction in area, 

and a 63.41% reduction in transistor count. 

Design Comll.iler Develoll.ed S~nthesis Tool 
Delav Minimization Area Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor flAre a fl Tran. Count flDelay 

C432 2573 119 1308 1677 113.18 696 -53.43% -87.93% -5.14% 

C499 6985 91 .63 3218 4134 79.21 1724 -68.96% -86.66% -15 .68% 
C880 7234 63.6 3164 2947 87.04 1212 -145.47% -161.06% 26.93% 

C1355 9446 94.6 4470 4342 114.67 2140 -117.55% -108.88% 17.50% 

C1980 8677 79.79 4012 5461 113.48 2314 -58.89% -73.38% 29.69% 

C2670 6874 124.68 3734 7179 134.49 3050 4.25% -22 .43% 7.29% 
C3540 12049 161.78 5406 8318 160.37 3548 -44.85% -52.37% -0.88% 

C5315 16351 98.98 7056 18087 123.07 7584 9.60% 6.96% 19.57% 

C7552 19271 126.4 8630 23934 96.41 10162 19.48% 15.08% -31 .11% 

Avg.Ll- (Design Compiler vs. Developed Tool) -50.65% -63.41% 5.35% 

Figure 6-14. DC Delay Minimization vs. Developed Tool Area Minimization- H=2 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-15. From this figure, it can be seen that the 

developed tool is able to reduce the overall area-delay product by 37.83% with 

comparison to Design Compiler. 

Circuit A Area)(Dela~ 

C432 -61.32% 
C499 -95.46% 
C880 -79.36% 

C1355 -79.47% 
C1980 -11 .72% 

C2670 11.23% 

C3540 -46.13% 
C5315 27.29% 
C7552 -5.56% 
Avg.Ll -37.83% 

Figure 6-15. Design Compiler vs. Developed Tool /!:i Area-Delay Product (Delay vs. Area) 

6.2.3 DC vs. Developed Tool Delay Minimization (H = 4) 

The developed synthesis tool was set to minimize delay for each benchmark circuit by 

minimizing the delay in each partition as described in Section 4.5.1. Similarly, Synopsys 

Design Compiler was set to minimize critical path delay in each benchmark circuit with 
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high map effort. The results of these synthesis tools are presented in Figure 6-16. From 

this data, it can be seen that the developed tool produces a circuit with a critical path 

delay only marginally higher than that from Design Compiler, while achieving a 44.75% 

reduction in area, and a 59.95% reduction in transistor count. 

Design ComQiler DeveloQed S~nthesis Tool 
Delav Minimization Delav Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor 11Area 11 Tran. Count 11Delay 

C432 2527 129.77 1274 2041 117.39 850 -23.81% -49.88% -10.55% 
C499 8285 95.83 3992 4182 78.49 1756 -98.11% -127.33% -22.09% 

C880 6785 79.37 3063 3268 86.93 1400 -107.62% -118.79% 8.70% 
C1355 9662 94.36 4838 4390 113.98 2172 -120.09% -122.74% 17.21% 
C1980 7604 127.09 3604 5581 116.97 2362 -36.25% -52.58% -8.65% 
C2670 7880 84.4 3748 7332 131 .02 3072 -7.47% -22.01% 35.58% 
C3540 13152 147.83 6048 8949 167.55 3614 -46.97% -67.35% 11.77% 
C5315 15863 115.34 7224 18909 124.99 7846 16.11% 7.93% 7.72% 
C7552 19462 106.6 8954 24779 97.68 10316 21 .46% 13.20% -9.13% 

Avg . .-1- (Design Compiler vs. Developed Tool) -44.75% -59.95% 3.40% 

Figure 6-16. DC Delay Minimization vs. Developed Tool Delay Minimization- H=4 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-17. From this figure, it can be seen that the 

developed tool is able to reduce the overall area-delay product by 40.06% with 

comparison to Design Compiler. 

Circuit fl. AreaxDela~ 

C432 -36.87% 

C499 -141.88% 

C880 -89.56% 
C1355 -82.21% 
C1980 -48.04% 

C2670 30.77% 
C3540 -29.67% 
C5315 22.59% 
C7552 14.29% 

Avg..Ll -40.06% 

Figure 6-17. Design Compiler vs. Developed Tool!!.. Area-Delay Product (Delay vs. Delay) 
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6.2.4 DC vs. Developed Tool Area Minimization (H = 4) 

The developed synthesis tool was set to minimize area for each benchmark circuit by 

minimizing the area in each partition as described in Section 4.5.2. Similarly, Synopsys 

Design Compiler was set to minimize critical path delay in each benchmark circuit with 

high map effort. The results of these synthesis tools are presented in Figure 6-18. From 

this data, it can be seen that the developed tool produces a circuit with a critical path 

delay 3.76% higher than that from Synopsys, while achieving a 53.33% reduction in area, 

and a 69.54% reduction in transistor count. 

Design Comg,iler Develoeed S~nthesis Tool 
Delav Minimization Area Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor fl.Area fl. Tran. Count fl. Delay 

C432 2527 129.77 1274 1677 115 696 -50.69% -83.05% -12.84% 

C499 8285 95.83 3992 4134 80.9 1724 -100.41% -131.55% -18.45% 

C880 6785 79.37 3063 2947 89.28 1212 -130.23% -152.72% 11.10% 

C1355 9662 94.36 4838 4342 116.41 2140 -122.52% -126.07% 18.94% 

C1980 7604 127.09 3604 5461 115 2314 -39.24% -55.75% -10.51% 

C2670 7880 84.4 3748 7179 136.21 3050 -9.76% -22 .89% 38.04% 

C3540 13152 147.83 6048 8318 162.38 3548 -58.11% -70.46% 8.96% 

C5315 15863 115.34 7224 18087 124.56 7584 12.30% 4.75% 7.40% 

C7552 19462 106.6 8954 23934 97.97 10162 18.68% 11 .89% -8.81% 

Avg . .ll- (Design Compiler vs. Developed Tool) -53.33% -69.54% 3.76% 

Figure 6-18. DC Delay Minimization vs. Developed Tool Area Minimization- H=4 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-19. From this figure, it can be seen that the 

developed tool is able to reduce the overall area-delay product by 4 7.56% with 

comparison to Design Compiler. 

Circuit A AreaxDelal£ 

C432 -70.04% 

C499 -137.4% 

C880 -104.68% 

C1355 -80.37% 
C1980 -53.88% 

C2670 31 .99% 

C3540 -43.95% 

C5315 18.79% 

C7552 11.52% 

Avg.JJ -47.56% 

Figure 6-19. Design Compiler vs. Developed Toolll Area-Delay Product (Delay vs. Area) 
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6.2.5 DC vs. Developed Tool Delay Minimization (H = 16) 

The developed synthesis tool was set to minimize delay for each benchmark circuit by 

minimizing the delay in each partition as described in Section 4.5.1. Similarly, Synopsys 

Design Compiler was set to minimize critical path delay in each benchmark circuit with 

high map effort. The results of these synthesis tools are presented in Figure 6-16. From 

this data, it can be seen that the developed tool produces a circuit with a critical path 

delay only marginally higher than that from Design Compiler, while achieving a 52.29% 

reduction in area, and a 65.17% reduction in transistor count. 

Desig_n ComQiler DeveloQed Sr,nthesis Tool 
Delav Minimization Delav Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor 11Area 11 Tran. Count 11Delay 

C432 3106 129.74 1622 2041 121 .94 850 -52.18% -90.82% -6.40% 
C499 8422 90.39 3966 4182 82.06 1756 -101 .39% -125.85% -10.15% 
C880 7390 76.39 3338 3268 91.18 1400 -126.13% -138.43% 16.22% 

C1355 9625 93.71 4506 4390 117.57 2172 -119.25% -107 .46% 20.29% 
C1980 8422 127.91 3926 5581 120.78 2362 -50.90% -66.22% -5.90% 
C2670 8013 99.19 3716 7332 134.52 3072 -9.29% -20.96% 26.26% 
C3540 12605 152.72 5546 8949 171.76 3614 -40.85% -53.46% 11.09% 
C5315 16637 116.1 7386 18909 128.01 7846 12.02% 5.86% 9.30% 
C7552 20471 111.54 9198 24779 100.88 10316 17.39% 10.84% -10.57% 

Avg . .A- (Design Compiler vs. Developed Tool) -52.29% -65.17% 5.57% 

Figure 6-20. DC Delay Minimization vs. Developed Tool Delay Minimization- H=16 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-21. From this figure, it can be seen that the 

developed tool is able to reduce the overall area-delay product by 42.75% with 

comparison to Design Compiler. 

Circuit ~ AreaxDela~ 

C432 -61.91% 
C499 -121.83% 
C880 -89.45% 

C1355 -74.75% 
C1980 -59.81% 
C2670 19.42% 
C3540 -25.24% 
C5315 20.2% 
C7552 8.66% 
Avg.Ll -42.75% 

Figure 6-21. Design Compiler vs. Developed Tool fl. Area-Delay Product (Delay vs. Delay) 

89 



6.2.6 DC vs. Developed Tool Area Minimization (H = 16) 

The developed synthesis tool was set to minimize area for each benchmark circuit by 

minimizing the area in each partition as described in Section 4.5.2. Similarly, Synopsys 

Design Compiler was set to minimize critical path delay in each benchmark circuit with 

high map effort. The results of these synthesis tools are presented in Figure 6-22. From 

this data, it can be seen that the developed tool produces a circuit with a critical path 

delay 3.76% higher than that from Synopsys, while achieving a 61.81% reduction in area, 

and a 76.09% reduction in transistor count. 

Design Comll.iler Develoll.ed Sr,nthesis Tool 
Delav Minimization Area Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor flAre a 6. Tran. Count t::..Delay 

C432 3106 129.74 1622 1677 119.04 696 -85.21% -133.05% -8.99% 
C499 8422 90.39 3966 4134 84.51 1724 -103.73% -130.05% -6.96% 
C880 7390 76.39 3338 2947 94.01 1212 -150.76% -175 .41% 18.74% 

C1355 9625 93.71 4506 4342 120.02 2140 -121.67% -110.56% 21 .92% 
C1980 8422 127.91 3926 5461 118.16 2314 -54.22% -69 .66% -8.25% 
C2670 8013 99.19 3716 7179 139.8 3050 -11.62% -21 .84% 29.05% 
C3540 12605 152.72 5546 8318 166.54 3548 -51 .54% -56.31% 8.30% 
C5315 16637 116.1 7386 18087 127.65 7584 8.02% 2.61% 9.05% 
C7552 20471 111.54 9198 23934 101.26 10162 14.47% 9.49% -10.15% 

Avg.Ll- (Design Compiler vs. Developed Tool) -61.81% -76.09% 5.86% 

Figure 6-22. DC Delay Minimization vs. Developed Tool Area Minimization- H=16 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-23. From this figure, it can be seen that the 

developed tool is able to reduce the overall area-delay product by 51.06% with 

comparison to Design Compiler. 

Circuit 11 AreaxDela~ 

C432 -101.86% 

C499 -117.9% 

C880 -103.76% 

C1355 -73.08% 
C1980 -66.95% 

C2670 20.81% 

C3540 -38.96% 

C5315 16.34% 

C7552 5.79% 

Avg~ -51.06% 

Figure 6-23. Design Compiler vs. Developed Tool b. Area-Delay Product (Delay vs. Area) 
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6.2.7 DC vs. Developed Tool Delay Minimization (H = 100) 

The developed synthesis tool was set to minimize delay for each benchmark circuit by 

minimizing the delay in each partition as described in Section 4.5.1. Similarly, Synopsys 

Design Compiler was set to minimize critical path delay in each benchmark circuit with 

high map effort. The results of these synthesis tools are presented in Figure 6-24. From 

this data, it can be seen that the developed tool produces a circuit with a critical path 

delay only marginally higher than that from Design Compiler, while achieving a 43.09% 

reduction in area, and a 55.44% reduction in transistor count. 

Design ComQ.iler DeveloQ.ed Sr_nthesis Tool 
Delav Minimization Delav Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor flAre a ll Tran. Count llDelay 

C432 2779 136.64 1392 2041 127.64 850 -36.16% -63.76% -7.05% 
C499 7946 93.8 3722 4182 86.6 1756 -90.00% -111.96% -8.31% 
C880 6206 78.29 2772 3268 96.6 1400 -89.90% -98.00% 18.95% 

C1355 9313 106.16 4452 4390 122 2172 -112.14% -104.97% 12.98% 
C1980 7029 141 3268 5581 125.5 2362 -25.95% -38.36% -12.35% 
C2670 8982 100.8 4318 7332 138.81 3072 -22.50% -40.56% 27.38% 
C3540 12395 170.11 5452 8949 176.92 3614 -38.51% -50.86% 3.85% 
C5315 16859 121 .65 7766 18909 131.75 7846 10.84% 1.02% 7.67% 
C7552 20688 97.62 9436 24779 104.89 10316 16.51% 8.53% 6.93% 

Avg . .Ll- (Design Compiler vs. Developed Tool) -43.09% -55.44% 5.56% 

Figure 6-24. DC Delay Minimization vs. Developed Tool Delay Minimization- H=lOO 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-25. From this figure, it can be seen that the 

developed tool is able to reduce the overall area-delay product by 34.86% with 

comparison to Design Compiler. 

Circuit ll. AreaxDelal£ 
C432 -45.76% 

C499 -105.8% 

C880 -53.91% 
C1355 -84.6% 
C1980 -41 .5% 

C2670 11.04% 

C3540 -33.18% 
C5315 17.68% 
C7552 22.3% 
AvgA -34.86% 

Figure 6-25. Design Compiler vs. Developed Toolll Area-Delay Product (Delay vs. Delay) 
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6.2.8 DC vs. Developed Tool Area Minimization (H = 100) 

The developed synthesis tool was set to minimize area for each benchmark circuit by 

minimizing the area in each partition as described in Section 4.5.2. Similarly, Synopsys 

Design Compiler was set to minimize critical path delay in each benchmark circuit with 

high map effort. The results of these synthesis tools are presented in Figure 6-26. From 

this data, it can be seen that the developed tool produces a circuit with a critical path 

delay 5.72% higher than that from Design Compiler, while achieving a 51.72% reduction 

in area, and a 64.93% reduction in transistor count. 

Design Comfliler Develofled S~nthesis Tool 
Delav Minimization Area Minimization 

Circuit Area Delay # Transistor Area Delay # Transistor flAre a 11 Tran. Count flDelay 

C432 2779 136.64 1392 1677 123.95 696 -65.71% -100.00% -10.24% 
C499 7946 93 .8 3722 4134 89.12 1724 -92.21% -115.89% -5.25% 
C880 6206 78.29 2772 2947 100.32 1212 -110.59% -128.71% 21 .96% 

C1355 9313 106.16 4452 4342 124.48 2140 -114.49% -108.04% 14.72% 
C1980 7029 141 3268 5461 122.04 2314 -28.71% -41 .23% -15.54% 
C2670 8982 100.8 4318 7179 144.18 3050 -25.11% -41.57% 30.09% 
C3540 12395 170.11 5452 8318 171.64 3548 -49.01% -53.66% 0.89% 
C5315 16859 121 .65 7766 18087 131.47 7584 6.79% -2.40% 7.47% 
C7552 20688 97.62 9436 23934 105.42 10162 13.56% 7.14% 7.40% 

Avg.Ll- (Design Compiler vs. Developed Tool) -51.72% -64.93% 5.72% 

Figure 6-26. DC Delay Minimization vs. Developed Tool Area Minimization- H=lOO 

The area-critical path delay product was calculated for each benchmark circuit for the 

results obtained from Design Compiler and the developed synthesis tool. The difference 

between these two is visible in Figure 6-27. From this figure, it can be seen that the 

developed tool is able to reduce the overall area-delay product by 38.2% with comparison 

to Design Compiler. 

Circuit IJ. AreaxDelall 
C432 -82.68% 

C499 -102.3% 

C880 -64.34% 

C1355 -82.92% 

C1980 -48.71% 

C2670 12.53% 

C3540 -47.69% 

C5315 13.75% 

C7552 19.96% 
Avg.Ll -42.49% 

Figure 6-27. Design Compiler vs. Developed Tool h. Area-Delay Product (Delay vs. Area) 
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6.2.9 Comparison of Synthesis Algorithms 

In all cases outlined above for all output loads, the developed synthesis tool outperformed 

Synopsys Design Compiler with respect to the average area-critical path delay product 

for the set of ISCAS benchmark circuits. 

Figure 6-28 illustrates the area-delay product difference between Synopsys Design 

Compiler for delay minimization and the developed tool for both area and delay 

minimization for each circuit with an output load 2x the input capacitance. In nearly all 

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the 

delay minimization algorithm of Section 4.5.1. 

Design Compiler Delay Minimization (H = 2) 
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Figure 6-28. DC Delay Minimization (H=2) 

Figure 6-29 illustrates the area-delay product difference between Synopsys Design 

Compiler for delay minimization and the developed tool for both area and delay 

minimization for each circuit with an output load 4x the input capacitance. In nearly all 

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the 

delay minimization algorithm of Section 4.5.1. 
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Figure 6-29. DC Delay Minimization (H=4) 

Figure 6-30 illustrates the area-delay product difference between Synopsys Design 

Compiler for delay minimization and the developed tool for both area and delay 

minimization for each circuit with an output load 4x the input capacitance. In nearly all 

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the 

delay minimization algorithm of Section 4.5.1. 
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Figure 6-30. DC Delay Minimization (H=l6) 
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Figure 6-31 illustrates the area-delay product difference between Synopsys Design 

Compiler for delay minimization and the developed tool for both area and delay 

minimization for each circuit with an output load 4x the input capacitance. In nearly all 

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the 

delay minimization algorithm of Section 4.5.1. 

From the results presented abole, it can be seen that the proposed area minimization 

algorithm as described in Section 4.5.2 outperforms the delay minimization algorithm of 

Section 4.5.1. There are certain circuits however, which neither algorithm is able to 

outperform the results obtained from Synopsys Design Compiler. These benchmark 

circuits are C2670 and C5315. This is due to the fact that Design Compiler is able to map 

XOR gates to the input HDL, rather than many smaller functions. The XOR gate is not a 

standard CMOS logic gate as the compliment of each input must be available- a two 

input XOR actually receives four inputs: input A, input B, and the compliments of both. 

Due to DAG partitioning, the developed tool will never be able to recognize these XOR 

gates. Similarly, the multiplexor (MUX) is not a standard CMOS logic gate due to the 
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fact that many of the drains of the transistors in the gate are not directly connected to the 

output, but rather to the gates of other internal transistors to the logic gate. Design 

Compiler is able to use MUX and XOR gates from its cell library - as such, benchmark 

circuit 2670 has 30% by area utilization XOR circuits. Similarly, C5315 has 43% by area 

MUX and XOR circuits. This is much higher than the other benchmark circuits such as 

C3540 which has 17% area XOR gates which the developed tool outperforms. 

Design Compiler Delay Minimization (H = 100) 
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Figure 6-31. DC Delay Minimization (H=lOO) 

2.3 Summary 

This chapter outlined the results obtained from executing the developed synthesis tool 

over a set of benchmark circuits. Two problematic benchmark circuits were identified, 

and reasons for the lack of improvement were suggested. The following chapter will 

discuss conclusions and future work. 
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7. Conclusions and Future Work 

This thesis has proposed new matching and covering algorithms for use in library-free 

synthesis which produce a cover minimizing path delay as in logical effort theory or 

overall circuit area by minimizing input capacitance to gates. The results of these 

algorithms are independent of the initial decomposition of the circuit through the use of 

Boolean matching. Due to runtime constraints, the tool is currently limited to matching 

functions with up to 12 inputs. This 12 input limitation will allow for covering with gates 

with up to 24 transistors. With this constraint, most benchmark circuits were able to 

complete in a few minutes. Due to the exponential nature of the problem being solved, 

this time quickly grows beyond 12 inputs. In the future, given advances in processing 

capabilities, improved minimization, and matching algorithms, this value will allow 

matching functions with higher number of inputs. 

The most significant improvement in results with comparison to Synopsys Design 

Compiler comes when the developed tool is set to minimize overall circuit area, and 

Design Compiler is set to minimize critical path delay. From Figure 6-22, it can be seen 

that for a marginal delay increase of 5.86%, an area reduction of 61.81% can be realized, 

yielding an average area-delay product improvement of 51.06%. 

The area of the benchmark circuits is calculated by summing the input capacitances, Cin, 

to each transistor of each gate in the mapped circuit. The dynamic power consumed by a 

circuit results from the charging and discharging of input capacitances to gates as they 

switch [28]. Dynamic power can be calculated by (7 -1 ), where a represents the switching 

activity, C is the sum of all input capacitances to the circuit, Ynn is the supply voltage, 

and f is the frequency of the switching. The switching activity for general circuits is in 

the range of 0.4 - 0.5 [29]. 

2 
pdynamic = aCVDD f (7-1) 
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A reduction in input capacitance of 61.81% implies a proportional reduction in dynamic 

power by the same amount. As such, the area minimization algorithm on average will 

reduce circuit area and dynamic power consumption by 61.81% while suffering a 5.86% 

increase in critical path delay with respect to Synopsys Design Compiler with high map 

effort for delay minimization. This reduction in area and power may be very useful in the 

development of small, low power mobile devices such as in cellular phones or wireless 

sensors. Other work has been proposed [30] which attempts to synthesize to a transistor 

netlist optimizing delay by minimizing the input capacitances of the switching transistors. 

There is much potential in the area of library-free synthesis to improve the efficiency of 

circuits produced on existing technology processes, and to ease the transition to new 

processes. A virtual cell library is not tied to any particular technology; as such, circuits 

may be synthesized using a virtual library to any technology process without the need to 

recreate the individual cells. The developed tool may be improved by expanding the 

capability of the matching algorithm to match functions with more than 12 inputs, 

allowing for much more complex gates to be used in the final cover. 
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