
AREA-DELAY DRIVEN
LIBRARY-FREE SYNTHESIS

by

MATTHEW PULLERITS
B.A.Sc., Queen's University, 2005

A thesis
presented to Ryerson University

in partial fulfillment of the
requirement for the degree of

Master of Applied Science
in the Program of

Electrical and Computer Engineering.

Toronto, Ontario, Canada, 2008

© Matthew Pullerits, 2008

PROPERTY Of
RYERSON UNIVERSiTY LIBRARY

Author's Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

Matthew Pullerits

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Matthew Pullerits

Instructions to Borrowers

Ryerson University requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

Name Signature Address Date

11

Abstract

AREA-DELAY DRIVEN LIBRARY-FREE SYNTHESIS
Matthew Pullerits

M.A.Sc. Ryerson University, 2008

Current logic synthesis tools rely on pre-defined cell libraries to assemble an arbitrary

circuit to perform a needed function. The efficiency of the synthesized circuit relies on

the quality and size of the library used in terms of circuit area and critical path delay. It

has been shown that in a process supporting five serial NMOS and PMOS transistors,

425803 unique logic gates may be constructed. Clearly this is beyond what is currently

available in standard cell libraries.

A richer cell library allows the technology mapper more freedom to better select matches

to reduce area, delay and power consumption. This thesis proposes novel algorithms for

mapping an input netlist to a library of virtual cells by minimizing logical effort delay,

and gate input capacitance to select an architecture which minimizes the design area­

delay. An average 69.43% reduction in transistor count, 53.33% reduction in circuit area,

with a 3.76% increase in delay has been realized compared to results obtained from

Synopsys Design Compiler with high map effort for delay minimization.

111

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Adnan Kabbani for his help and support

during my research. His direction and guidance was always appreciated.

I would like to thank my parents, sister, and grandfather for always looking out for my

best interest. They supported me, and were patient during my struggles and mistakes.

Lastly, my friends Raymond, Dennis, Adrian, and Edwina who understood when I

needed to focus on studying, and were always there to help me.

lV

Table of Contents

List of Figures ... vii

1. INTRODUCTION ... 1
1.1 Integrated Circuit Design Techniques .. 1
1.2 Logic Synthesis ... 2
1.3 Objectives ... 3
1.4 Main Contributions ... 3
1.5 Thesis Organization .. 4

2. LIBRARY-BASED LOGIC SYNTHESIS .. 5
2.1 Decomposition .. 5
2.2 Partitioning .. 5
2.3 Matching ... 7

2.3.1 Structural Matching ... 7
2.3.1.1 Simple Tree-Based Matching ... 8
2.3.1.2 String Matching with Multiple Base Functions 9

2.3.2 Boolean Matching .. 12
2.3 .2.1 Input Permutation .. 14
2.3.2.2 Input Negation .. 14
2.3.2.3 Output Negation .. 14
2.3.2.4 Boolean Signatures ... 14
2.3.2.5 Canonical Representations of Boolean Functions 16

2.4 Covering .. 20
2.5 Summary ... 21

3. LIBRARY -FREE TECHNOLOGY MAPPING .. 22
3.1 Previous Studies in Library-Free Mapping ... 23
3.2 Summary ... 27

4. PROPOSED SYNTHESIS ALGORITHMS .. 28
4.1 Logical Effort .. 28

4.1.1 Estimating Gate Area with Input Capacitance ... 30
4.2 Fast Boolean Matching of Complex Gates ... 31
4.3 Complex Gate Generation and Indexing ... 32

4.3.1 Complex Gate Library Population ... 33
4.3 .2 Permutations of Order and Complementation of Inputs 40

4.3.2.1 Input Tracking in P-Canonical Generation ... 40
4.3.2.2 Input Tracking in NP-Canonical Generation .. 40

4.3.3 CMOS Transistor Logic Solver ... 43
4.3.4 CMOS Gate Skewing ... 44
4.3.5 NMOS Network Generation .. 48

4.3.5.1 NMOS Generation-Dependency on Library Size 51

v

4.4 Proposed Boolean Tree Matching 52
4.4.1 Sub-tree Extraction 52
4.4.2 Matching Algorithm ... 54
4.4.3 Boolean Logic Solver 55

4.5 Proposed Covering Algorithm .. 56
4.5.1 Minimizing Logical Effort Delay 56
4.5.2 Minimizing Circuit Area .. 61

4.6. Summary 63

5. IMPLEMENTATION .. 64
5.1 Synthesis Process Overview 64

5.1.11nput Parsing and DAG Storage 64
5.1.2 Partitioning 66
5.1.3 Memory Management .. 67
5.1.4 Timing Restrictions during Sub-tree Extraction .. 68
5.1.5 User Interface and Result Presentation 69
5.1.6 Automated Verification of Results 73

5.2 Summary ... 74

6. RESULTS .. 7 5
6.1 Design Compiler Area Minimization .. 77

6.1.1 DC vs. Developed Tool Area Minimization (H = 4) 78
6.1.2 DC vs. Developed Tool Delay Minimization (H = 4) 79
6.1.3 DC vs. Developed Tool Area Minimization (H = 1 00) 80
6.1.4 DC vs. Developed Tool Delay Minimization (H = 1 00) 81
6.1.5 Comparison of Synthesis Algorithms .. 82

6.2 Design Compiler Delay Minimization .. 83
6.2.1 DC vs. Developed Tool Delay Minimization (H = 2) 84
6.2.2 DC vs. Developed Tool Area Minimization (H = 2) 85
6.2.3 DC vs. Developed Tool Delay Minimization (H = 4) 86
6.2.4 DC vs. Developed Tool Area Minimization (H = 4) 88
6.2.5 DC vs. Developed Tool Delay Minimization (H = 16) 89
6.2.6 DC vs. Developed Tool Area Minimization (H = 16) 90
6.2.7 DC vs. Developed Tool Delay Minimization (H = 100) 91
6.2.8 DC vs. Developed Tool Area Minimization (H = 1 00) 92
6.2.9 Comparison of Synthesis Algorithms .. 93

2.3 Summary ... 96

7. CONCLUSIONS AND FUTURE WORK .. 97

8. REFERENCES .. 99

vi

List of Figures
Figure 2-1. Single-Fanout Partitioning ... 6
Figure 2-2. Gate representation of function f=(ab +c)' ... 7
Figure 2-3. Tree decomposition of function f=(ab +c)' into NAND & Inverter gates 8
Figure 2-4. MATCH Algorithm .. 9
Figure 2-5. AND function ... 9
Figure 2-6. AND pattern tree. Inverter= White, NAND= Black, Input= Grey) 9
Figure 2-7. Pattern trees, strings, tree identifiers for 3 common library cells 11
Figure 2-8. Automation for sample library given in Figure 2-7 12
Figure 2-9. Comparisons of two Boolean functions ... 13
Figure 2-l 0. Truth table permutations .. 17
Figure 2-11. Transformations due to reordering of input variables 17
Figure 2-12. Transformations due to reordering and inversion of input variables 17
Figure 2-13. Number ofNP-equivalents vs. number of input variables 18
Figure 2-14. Complete Link Table for 3-input function ... 18
Figure 2-15. Sample Covering .. 20
Figure 2-16. Alternative Covering .. 20
Figure 2-17. Alternative Covering .. 21
Figure 3-1. Gate combinations possible with series NMOS & PMOS transistors 23
Figure 3-2. Possible Cover .. 24
Figure 3-3. Alternate Cover .. 25
Figure 3-4. Simple Circuit for OTR Example .. 25
Figure 3-5. Transistor-level representation of Figure 3-4 ... 26
Figure 3-6. Intermediate transformation of OTR method ... 26
Figure 3-7. Final transformation of OTR method: Resultant complex gate 27
Figure 4-1. Logical Effort of Simple Gates .. 30
Figure 4-2. Example of Transistor Size Variation in Gates .. 31
Figure 4-3. Library Cell Data Structure .. 33
Figure 4-4. Library Data Structure .. 33
Figure 4-5. 3x3 Generation Matrix ... 35
Figure 4-6. 2x2 Generation Matrix ... 36
Figure 4-7. Gates Extracted from 2x2 Generation Matrix .. 3 7
Figure 4-8. Transistor Container Data Structure ... 38
Figure 4-9. Transistor Data Structure ... 38
Figure 4-10. Transistor Node Data Structure .. 39
Figure 4-11. Hierarchy of the Transistor classes .. 39
Figure 4-12. Reference Truth Table for NP-Canonical Generation 41
Figure 4-13. Input Order Permutation Function ... 42
Figure 4-14. Input Inversion Algorithm .. 43
Figure 4-15. Sample Input Permutation & Minterm Positions ... 43
Figure 4-16. Sizing for equal rise & fall times in CMOS gates .. 44
Figure 4-17. Gate generated from 4x4 Generation Matrix ... 46
Figure 4-18. Gate Generated from 4x4 Matrix with 6 Series Transistors 4 7
Figure 4-19. Generating NMOS Network from PMOS Structure 48

Vll

Figure 4-20. Truth Table for NOR Gate ... 49
Figure 4-21. Truth Table for NAND Gate .. 49
Figure 4-22. PMOS Network f=!(A+B)C ... 50
Figure 4-23. PMOS Network f=!(XZ+Y) ... 50
Figure 4-24. Generated Truth Tables & P-canonical form of Figure 38 51
Figure 4-25. Generated Truth Tables & P-canonical form of Figure 39 51
Figure 4-26. Extracted Sub-trees from Sample Graph .. 52
Figure 4-27. Proposed sub-tree extraction method ... 54
Figure 4-28. Proposed Boolean tree matching algorithm ... 55
Figure 4-29. Recursive Boolean logic solver pseudo code ... 56
Figure 4-30. Matches Explored in Covering Algorithm ... 58
Figure 4-31. Gate Transformations through Boolean Matching 59
Figure 4-32. Proposed logical effort delay minimizing covering algorithm 60
Figure 4-33. Proposed area minimizing covering algorithm .. 61
Figure 5-l. Simple Example of BENCH Code ... 65
Figure 5-2. Boolean Representation of BENCH Code in Figure 5-l 65
Figure 5-3. Node Object ... 66
Figure 5-4. Partition Object .. 67
Figure 5-5. LibraryMatch Object .. 68
Figure 5-6. Configuration Tab of Synthesis Tool ... 69
Figure 5-7. Status of Synthesis Process .. 70
Figure 5-8. Sample Report Generated by Synthesis Tool.. ... 71
Figure 5-9. Browsing Partitions .. 72
Figure 5-l 0. Display of Matching Library Cell .. 72
Figure 5-11. Display of Critical Path .. 73
Figure 5-12. Result of Automated Verification .. 7 4
Figure 6-1. ISCAS' 85 Benchmark Circuits .. 7 5
Figure 6-2. DC Area Minimization vs. Developed Tool Area Minimization- H=4 78
Figure 6-3. Design Compiler vs. Developed Tool/l Area-Delay Product 78
Figure 6-4. DC Area Minimization vs. Developed Tool Delay Minimization- H=4 79
Figure 6-5. DC vs. Developed Toolll Area-Delay Product (Area vs. Delay) 79
Figure 6-6. DC Area Minimization vs. Developed Tool Area Minimization- H=l 00 ... 80
Figure 6-7.DC vs. Developed Tool/l Area-Delay Product (Area vs. Area) 80
Figure 6-8. DC Area Minimization vs. Developed Tool Delay Minimization- H=IOO .. 81
Figure 6-9. DC vs. Developed Tool/l Area-Delay Product (Area vs. Delay) 81
Figure 6-10. DC Area Minimization (H=4) .. 82
Figure 6-11. DC Area Minimization (H=100) .. 83
Figure 6-12. DC Delay Minimization vs. Tool Delay Minimization- H=2 85
Figure 6-13. DC vs. Developed Tool/l Area-Delay Product (Delay vs. Delay) 85
Figure 6-14. DC Delay Minimization vs. Tool Area Minimization- H=2 86
Figure 6-15. DC vs. Developed Tool/l Area-Delay Product (Delay vs. Area) 86
Figure 6-16. DC Delay Minimization vs. Tool Delay Minimization- H=4 87
Figure 6-17. DC vs. Developed Tool/l Area-Delay Product (Delay vs. Delay) 87
Figure 6-18. DC Delay Minimization vs. Tool Area Minimization- H=4 88
Figure 6-19. DC vs. Developed Tool/l Area-Delay Product (Delay vs. Area) 88
Figure 6-20. DC Delay Minimization vs. Developed Tool Delay Minimization- H=l6 89

Vlll

Figure 6-21. DC vs. Developed Tool fl. Area-Delay Product (Delay vs. Delay) 89
Figure 6-22. DC Delay Minimization vs. Tool Area Minimization- H=16 90
Figure 6-23. DC vs. Developed Tool fl. Area-Delay Product (Delay vs. Area) 90
Figure 6-24. DC Delay Minimization vs. Tool Delay Minimization- H=1 00 91
Figure 6-25. DC vs. Developed Tool fl. Area-Delay Product (Delay vs. Delay) 91
Figure 6-26. DC Delay Minimization vs. Developed Tool Area Minimization- H=l 00 92
Figure 6-27. DC vs. Developed Tool fl. Area-Delay Product (Delay vs. Area) 92
Figure 6-28. DC Delay Minimization (H=2) 93
Figure 6-29. DC Delay Minimization (H=4) 94
Figure 6-30. DC Delay Minimization (H=16) .. 95
Figure 6-31. DC Delay Minimization (H=l 00) .. 96

IX

1. Introduction

1.1 Integrated Circuit Design Techniques
Since the inception of the integrated circuit in April of 1961 by Robert Noyce [1], the

technology has rapidly evolved to a level where every aspect of our lives is driven by

computer chips- from health care to national defense.

Application Specific Integrated Circuits (ASICs) in production today are composed of a

few, to a few hundred million transistors, depending on the intended task of the chip.

Transistors are composed of interconnected layers of silicon, metal (most commonly used

metals are aluminum or copper), and insulator (most commonly used is Si02 - glass).

These ASICS may be manufactured with many interconnecting layers of metal, giving a

total metal layer count in the chip of six in a 0.06f.lm process [2]. Individual layers are

separated, and "mask layouts" are created for each layer to be produced. These mask

layouts are the final step in ASIC design, and are directly used in production of the chip.

ASICs are currently produced in one of three ways: Full Custom, Fully Automatic, and

Semi-Custom. In a full custom process, design engineers draw the final mask layout of

the circuit to be produced using computer aided design (CAD) software. This allows the

engineer to customize every aspect of the chip in regards to transistor sizing for optimal

power consumption, delay, or area specifications. As modern integrated circuits may

contain around]-billion transistors, a full custom design although would result in the

most optimal product with respect to speed or power consumption, is not always possible

or practical due to time or budget constraints.

In a fully automatic process, circuits to be produced are defined in a high level hardware

description language (HDL) such as Verilog, VHDL, or SystemC. Using these languages,

a design engineer may describe their circuit in a manner similar to that of a computer

1

program, making use of programming techniques such as while loops, for loops, and

custom data structures. Once a circuit is defined in a HDL, it may be synthesized to a

production-ready mask layout easily with currently available synthesis tools, such as

Synopsys Design Compiler, or the Berekley-made SIS. Relative to a fully custom design,

usage of HDLs may allow for time-savings of many orders of magnitude. This is a great

economic savings for the design firm with respect to engineering time required to

develop a production-ready circuit.

Although synthesis allows for a great savings of time to produce a functional ASIC,

current CAD tools are not able to produce circuits which are optimal with respect to area

and delay. On occasion it is necessary to produce a semi custom design, in which a layout

obtained from HDL synthesis is modified to conform to required design specifications.

1.2 Logic Synthesis

Logic synthesis is the process of converting a circuit described in a hardware definition

language into a netlist of gates, which may be made to a layout ready for fabrication.

Synthesis tools today rely on libraries of pre-defined cells which are used to construct the

circuit. These cells act as building blocks which can be connected to produce a desired

function.

Cell libraries have played an important role in logic synthesis for the past three decades.

They have allowed engineers to quickly utilize these pre-designed building blocks to

assemble and fabricate an arbitrary circuit to perform a needed function. While

convenient, these library files require significant investment in engineering time to

develop and maintain for every generation of technology process.

The efficiency of the synthesized circuit relies heavily on the quality and size of the

library used [3]. However, creating rich cell libraries to facilitate the continued demand

for faster, smaller, and more complex ASICs is not economically permissible. As such,

many of the advances in deep sub-micron fabrication are not being fully utilized by

implementing functions in complex gates [4]. It has been shown that in a technology

2

II

process capable of supporting five serial NMOS and PMOS transistors, 425803 unique

logic gates may be constructed [5]. Clearly this is beyond what is currently available in

standard cell libraries. A synthesis tool which is able to dynamically generate library cells

during the synthesis process, rather than relying on a pre-constructed cell library, is able

to much better utilize resources inside the ASIC by generating a complex gate where

previously many smaller library cells would have to be used. These resources being

minimized may include transistor count, silicon area, power consumption, or critical path

delay.

1.3 Objectives

• To develop library-free synthesis algorithms which:

•

o Has a complexity similar to current state-of-the-art synthesis tools

o Minimizes the power consumption and delay. Since it is well known

power dissipation is proportional to the design area, this objective can be

achieved by minimizing the area-delay product.

o Guarantees the consistency of the quality of the synthesized design by

ensuring a) independence from the initial decomposition of the circuit, and

b) absolute logic minimization

To develop a CAD tool which implements the proposed algorithms in a high level

language such as C or C++

1.4 Main Contributions

This thesis proposes novel synthesis algorithms for use in library-free synthesis. Using

this technique allows the direct production of a transistor netlist of the design, as opposed

to the cell-based synthesis method. The proposed technique is independent of the initial

decomposition which improves the overall area-delay product. Finally, the developed

synthesis algorithms will generate circuits which are not tied to any particular technology

process, allowing inexpensive portability between processes.

3

1.5 Thesis Organization

The remainder of this document is organized as follows. An overview of library-based

logic synthesis is presented in chapter 2. Chapter 3 reviews the theory of library-free

logic synthesis and previous works in this area. Chapter 4 presents the proposed library­

free logic synthesis algorithms. Implementation details are outlined in chapter 5.

Experimental results obtained from executing the developed tool with benchmark

circuits, and comparisons against industry standard synthesis tools is presented in chapter

6. Finally, conclusions and room for future work is discussed in chapter 7.

4

11

I

2. Library-Based Logic Synthesis

A cell library contains a set of pre-constructed mask layouts of logic functions which are

ready for fabrication on a specific technology process. These logic functions range from

simple gates such as Inverters, NANDs or NORs, to complex adders and registers.

Accurate area and timing information is available for these cells, as well as various sizes

of these gates in order to drive different loads.

Logic synthesis is a conversion process which translates a gate level representation of an

HDL into a layout ready for further processing such as power planning for production on

a particular technology using pre-characterized cells from the cell library. This process

can be broken down into four unique steps: decomposition, partitioning, matching, and

covering.

2.1 Decomposition

During the technology independent stage of logic minimization, functions are

decomposed in to a network of base functions. These base functions could be a set of two

input NAND, NOR and Inverter gates. Decomposition allows for a complex circuit to be

broken down into smaller gates which are easier to analyze and synthesize [6]. While the

structure of the circuit is modified during decomposition, the functionality is maintained.

At minimum, the target technology cell library must contain the set of base functions

decomposed to, in order to guarantee a complete covering.

2.2 Partitioning

Boolean networks may be represented as directed acyclic graphs (DAGs) with vertices

representing Boolean functions, and edges representing connections, or wires. It has been

shown [7] that network partitioning into trees is an essential heuristic step in the

technology mapping process, as there is currently no algorithm to optimally cover a DAG

5

in polynomial time1
• Many studies have been conducted on the complexity of covering a

DAG, resulting in the conclusion that the problem is NP-hard [8]. As complex Boolean

networks may contain thousands or potentially millions of functions, each with at least

one, and in most cases, more than one covering, a solution is beyond the capabilities of

covering tools. In order to solve the covering problem in a practical amount of time,

heuristics must be applied to simplify the problem. One such heuristic is partitioning the

DAG into singly-rooted trees [7] [9]. Partitioning serves two purposes: first it simplifies

the covering problem so that each network being covered is smaller. Second, by this

simplification, partitioning enables the covering problem to become practical. It has been

shown that although the covering problem is intractable, computation time is reasonable

for problems of practical size [I 0].

It should be noted that partitioning of a Boolean network serves as a heuristic step, and

although simplifies the computation of an optimal covering, will hinder the quality of the

overall result.

Singe-rooted trees may be partitioned by traversing the network from primary outputs to

primary inputs, creating a new partition for every primary output, or for any multiple

fanout traversed. Figure 2-1 illustrates the partitions obtained by traversing from outputs

to inputs, with X's marking partition locations.

Figure 2-1. Single-Fanout Partitioning

1 Although numerous algorithms have been proposed to cover a DAG, all implement some sort of heuristic
[8] [39] [24] [40] to execute within an acceptable time frame.

6

2.3 Matching

Matching can be broken down into two flavors: structural matching and Boolean

matching [11]. Structural matching analyzes a decomposed, partitioned circuit as a graph,

and searches for matching patterns in the cell library. Boolean matching looks at the logic

function being accomplished by the circuit, and seeks similar functions or permutations

of functions in the cell library by comparing the Boolean truth tables of the functions.

2.3.1 Structural Matching

After partitioning, the original DAG will have been broken into a forest of trees. Each

individual tree is called a subject graph [7], with edges representing wires, or connections

between gates, and vertices representing logic functions. A root node is defined as the

output of the function, or the node which all other nodes lead to. A child node is defined

as a node which stems from another node at a higher level. Leaf nodes are always inputs

to the subject graph, and are the lowest-level child nodes. These subject graphs contain

multiple inputs, but only a single output.

For example, consider the Boolean network illustrated in Figure 2-2, representing the

function f = ab + c .

Figure 2-2. Gate representation of function f=(ab +c)'

Given the base functions: NAND and NOT, the network in Figure 2-2 may be

transformed into the subject graph seen in Figure 2-3. NAND gates are represented by the

character N, and NOT gates are represented by the character I. Lower case letters

represent inputs.

7

Figure 2-3. Tree decomposition of function f=(ab +c)' into NAND & Inverter gates

Structural matching algorithms function by checking the isomorphism between two

rooted trees. A subject graph, or a portion of a subject graph is compared with stored

pattern graphs of functions within a cell library. If the two are found to be isomorphic, it

can be said that the two match.

2.3.1.1 Simple Tree-Based Matching

One of the simplest forms of tree-based matching considers the case when there is only

one base function which the original Boolean network is decomposed to. For the

purposes of this Section, we will assume that the two-input NAND gate is used.

Similarly, a NOR gate could be used instead.

As an Inverter may be generated by tying two inputs of a NAND together, only one type

of non-terminal vertex is required; Differentiation between a NAND and Inverter gate

may be determined by the number of children beneath the vertex.

MATCH, a simple tree-based matching algorithm operates by comparing subgraphs of

the subject tree to every pattern tree in the library, checking for isomorphism [12]. The

algorithm is outlined in Figure 2-4.

8

!!(.1

MATCH (subject, pattern) {
If (subject is a leaf) return (TRUE);
Else {

If (pattern is a leaf) return (FALSE);
If(degree(pattern) != degree(pattern)) return(FALSE);
If (degree(pattern) == 1) {

} else {

Uc =child of subject; Vc =child of pattern;
Return (match(U c, V c))

Ul = left-child of subject; Ur = right-child of subject;
VI= left-child of pattern; Vr =right-child of pattern;
Return (match(Ul, VI) . match(Ur,Vr) + match(Ur,Vl) . match(UI, Vr));

Figure 2-4. MATCH Algorithm

2.3 .1.2 String Matching with Multiple Base Functions

It is not always the case that Boolean networks will be decomposed to one base function,

thus an alternate method is required to match and cover networks with multiple types of

base function. The remainder of this section describes structural matching based on string

encodings of trees and string recognition.

Tree String Encoding

Trees may be stored in memory as an encoding of strings, each representing one path

from the root to a leaf [12]. Consider the AND function, decomposed into a NAND and

Inverter, seen below in Figure 2-5.

Figure 2-5. AND function

The tree representation of this decomposed AND function may be observed in Figure 2-6.

Figure 2-6. AND pattern tree. Inverter= White, NAND =Black, Input = Grey)

9

Pattern strings for the AND gate may now be generated from the pattern tree illustrated in

Figure 2-6, which provide a textual description of every path from the root to each input­

leaf. Each unique base function is assigned a unique character representation, such as I

for Inverter, or N for NAND. The format of a pattern string is as follows: the string is a

pattern of character identifiers, followed by a number, representing the next child node to

traverse in order to reach the target leaf.

Looking at Figure 2-6, one can obtain the pattern strings "11Nl v" and "IIN2v". Breaking

down both of these strings, first looking at "IlNlv", we can see that the root node is an

Inverter, and it's first (and only) child is connected to the output of a NAND gate, whose

first input is connected to a leaf node, v.

The second string, "I 1 N2v" may be broken down as follows: The root node is an Inverter,

and it's first (and only) child is connected to the output of a NAND gate, whose second

input is connected to a leaf node, v.

Tree Sting Matching using Automation String Detection

A partitioned, decomposed subject tree may be covered using pattern-string detection

algorithms by matching substrings of a subject tree string with pattern strings in a cell

library. One such method of recognizing pattern strings within a subject tree is to build an

automation for the entire cell library [12], which will compare input subject strings one

character at a time against the library automation. Such an automation is built

incrementally, one pattern string at a time. Initially the automation is set in a reset state,

until an appropriate matching input is received. Once an initial input is received, the

automation begins operating as a finite-state machine, until reaching a terminating state,

when it will return to the reset status.

An automation built from the sample library illustrated in Figure 2-7 is illustrated tn

Figure 2-8.

10

Library Decomposition into NAND/INV Pattern Tree Pattern String Tree Identifier
Function base functions

INV v ~
Ilv tl.l

NAND2 c!G Nlv t2.1
N2v t2.2

NOR2 IlNIIl v t3 . 1
I1N2Ilv t3.2

Figure 2-7. Sample pattern trees, pattern strings, pattern tree identifiers for 3 common library cells

11

tl.l

N
t3.1

2
t3.2

N
t2.1

2
t2.2

Figure 2-8. Automation for sample library given in Figure 2-7

Example. We will now use the simple automation illustrated in Figure 2-8 to determine

if the subject tree in Figure 2-3 may be covered by this library. The following subject

strings define the subject tree illustrated in Figure 2-3: {IlNlNlv, 11N1N2v, 11N2Ilv}

By inputting these strings into the automation, one can see that only I1 N2Il v has a

perfect match with tree string t3.2; However since t3.1 does not have a match, this cell

cannot be used in the cover. After pruning the subject tree, we can find a match I1 v, by

trees tl.l. Similarly, one can find a match for the strings Nl v, and N2v, covered by tree

strings t2,1, and t2.2, respectfully.

2.3.2 Boolean Matching

As described in the previous Section, structural matching will find a matching library cell

in order to generate a complete network cover; however, for complex functions, there

may be many different decompositions of the same function, and the quality of the

resulting mapped circuit depends heavily on the initial decomposition.

12

II! I

In order to combat this dependency on the initial decomposition, a structural matcher

could pre-calculate every possible decomposition and store this in the library for lookup.

This lookup procedure becomes computationally hard as complex functions are generated

with up to and exceeding 8 inputs, with potentially many thousands of different

decompositions. Boolean matching allows us to take a step back, and analyze the function

being calculated, regardless of the ordering of variables, or structure of decomposed

network.

One can say that two functions,f(x) and g(y), are Boolean-equivalent ifj(x) EB g(y) is a

tautology- that their truth tables are equal.

Consider the following two functions:

f = xy + x y ' + y 'z

g=xy+xy'+xz

The two are very different structurally, but examining their truth tables in Figure 2-9, one

can see that they are a Boolean match. In this case, f(x) ffi g(y), as for every matching

input combination, the same output is obtained.

X y z F X y z G
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 0 0 1 0 0

0 1 1 0 0 1 1 0

1 0 0 0 1 0 0 0

1 0 1 1 1 0 1 1

1 0 1 1 1 0 1

1 1 1 1 1 1 1

Figure 2-9. Comparisons of two Boolean functions

It is uncommon for a subject function to exactly match any library function without some

sort of permutation to it. There are three unique permutations which may be performed

on a subject function in order to match it to a library gate. First, the order of the inputs

may be changed - this is called P-equivalence. Second, the inputs may be complimented

in any combination, as well with permutation of the input variables, which is referred to

13

as NP-equivalence. Finally the output may be complimented with combination of the

previous two equivalences, which is referred to as NPN-equivalence.

2.3.2.1 Input Permutation

It is not always the case that f(x) is directly equivalent to g(y). In most cases, it is

necessary to explore the possible permutations of input variables that yield equivalent

behavior. It can be said that f and g are P-equivalent if there exists an ordering of input

variables i ofy such thatf(x) fB g(i) is a tautology.

For example, the functions f = ab + c, and g=cb + a are P-equivalent, as a rearrangement

of their input variables will result in the same function being computed. This equivalency

is not as evident initially to the eye as the number of variables in a function exceeds three.

In ann-variable function, n! unique input permutations exist.

2.3.2.2 Input Negation

As Inverters are inexpensive to construct, exploring the possibility of inverting the inputs

of a function opens up many new options to more efficiently match a function to a library

cell. An n-input function requires 2n equivalency checks in order to explore all

combinations of input permutations, and NP-equivalence requires n!2n computations.

2.3.2.3 Output Negation

By simply allowing the output of a gate to be complimented by inserting an additional

Inverter, many new cost saving matches may be explored. This added Inverter doubles

the required equivalency checks, with NPN-equivalence costing n!2n+I computations for

ann-input function.

2.3.2.4 Boolean Signatures

Boolean signatures may be used to reduce the number of tautology checks required to

determine if a matching function has been found. A signature is something which

identifies certain properties of a Boolean function, however does not guarantee a match.

Two Boolean functions cannot be equivalent and have different signatures; However, two

14

Boolean functions sharing the same signature are not necessarily equivalent. Identifying

characteristics of a Boolean function which may be used for a signature could be

symmetries, unateness, size of co factors, etc.

If one were to generate a signature of a Boolean function based on symmetry, it could be

defined as follows: A symmetry set [13] is a set of variables that are pairwise

interchangeable without affecting the logic functionality. A symmetry class is an

ensemble of symmetry sets with the same cardinality.

Example. Consider the function f= x1x2 + X3X4X5 + X6X7

The support variables ofj(x) can be partitioned into three symmetry sets: {x1x2}, {x3x4x5},

{X6X7}. There are two non-void symmetry classes: C2={ {x1x2}, {X6X7}} and C3={x3X4X5}.

This gives a signature of [0,2, I ,0,0,0,0], with each dimension of the signature

representing the number of occurrences of one degree of cardinality.

Other signatures may be obtained by examining other aspects of the function in question,

for example the satisfY count, which is the number of minterms in the function.

Regardless of the characteristics used to create the signature, once generated they can be

an excellent tool to determine if two functions do not match. In practice, signatures may

be pre-computed for all available library functions and stored in a hash table. The

signature for a function in question may quickly be generated and checked against the

table to obtain a list of potential matches.

Example. Consider the following pattern function:

f = xlx2a + xlx2 'b + xl 'x3c + xl 'x3 'd

The function has 7 variables, 4 of which are unate, and 3 which are binate. Using a

simple Boolean signature to identify this function by its unateness, one can simplify the

number of tautology checks required. Assuming no input or output negations are

required, with no signature one would need to check 7! = 5040 different variable

orderings in order to locate a matching function. If the information that there are 4 unate

and 3 binate variables in the function is available, only 4!3! = 144 tautology checks is

required, a 3500% increase in efficiency.

15

2.3.2.5 Canonical Representations of Boolean Functions

While Boolean signatures will certainly aid in the matching process, it can be seen that if

strictly tautology checks are employed to determine if two functions are a Boolean match,

that for each N-input function being checked, N!2N+t tautology checks are required per

function. If every subject gate being covered must be matched against a library

containing over 400,000 unique functions, the matching process quickly becomes

impractical.

Utilizing the canonical form of a Boolean function, this matching process can be

simplified to a single integer or string comparison. The canonical form of a Boolean

function acts as a unique signature, which differentiates it from all other functions with

the same number of inputs, under certain conditions. There exist three equivalency

classes which functions may be grouped by: P-equivalent, NP-equivalent, and NPN­

equivalent. Any function falling under one of these groups may be interchanged with

another in the same group with the appropriate permutations.

Many canonical representations for equivalency checking have been developed over the

history of automated circuit design and synthesis which perform differently with respect

to CPU time and memory requirements. Two Boolean canonical form generation

algorithms were implemented in this synthesis tool, to be used under different

circumstances given their performance and abilities.

NPN-equivalent matching

Debnath and Saso proposed an efficient canonical form for Boolean matching with

permutation and input/output negation for use in large libraries [14]. Their method

proposed that functions which are NP-equivalent belong to the same NP-equivalency

class. In an NP-equivalence class, the function which has the smallest binary number

representation is the NP-representative (NPR) of that class, and is used in matching. If

two functions, f and g share the same NPR, they are NP-equivalent, and one is able to

16

represent the other with a permutation and complementation of its input variables. Output

negation is checked by comparing the NPR values off with g and !g.

The function in Figure 2-1 O(b) is obtained by permuting the input variable order of that in

Figure 2-1 O(a). It should be noted the transformation in position of the minterms is

irrelevant of the value of the minterm. These transformations may be pre-computed and

stored for an arbitrary number of inputs. Figure 2-11 illustrates these transformations for

any three-input function.

Xt x2 X3 j{x~, x2, x3) Xt X2 X3 f{x3, x2, x,)

0 0 0 Co 0 0 0 co

0 0 1 Ct 0 0 1 c4

0 0 c2 0 0 c2

0 1 c3 0 1 c6

0 0 c4 0 0 Ct
1 0 1 Cs 0 Cs

0 C6 1 0 c3

C7 c1

(a) (b)
Figure 2-10. Truth table permutations

j{XJ, X2, X3) ./{xt, X3, x2) j{x2, Xt, X3) ./{~2, X3, Xt) j{~3, x~, x2) ./ixJ, x2, x,)
Co Co Co co co Co

CJ c2 CJ c4 c2 C4

c2 CJ c4 CJ c4 c2

CJ CJ c5 C5 c6 C6

c4 C4 c2 c2 CJ CJ

c5 c6 CJ c6 CJ C5

C6 Cs C6 CJ C5 CJ

C7 C7 C7 C7 C7 C7

Figure 2-11. Minterm transformations due to reordering of input variables

j{x~, x2, x3) j{xt, !x3, x2) j{!x3, x2, !xi) f{!x2, !xt, x3)

Co c2 c5 c6

CJ co CJ C7

c2 CJ C7 c2

CJ CJ CJ CJ

C4 c6 C4 C4

c5 c4 Co c5

C6 C7 c6 Co

C7 c5 c2 CJ

Figure 2-12. Minterm transformations due to reordering and complementation of input variables

17

Similar to Figure 2-11, Figure 2-12 illustrates four of the NP-equivalents of a three­

variable function. All NP-equivalents of a three-variable function are visible in Figure

2-14. In order to match two Boolean functions, both of their NPR values must be

available in order to determine if they are NP-equivalents. Calculating the NPR value of a

function gets increasingly difficult as the number of inputs to the function increases.

Figure 2-13 illustrates the geometrical growth in the number of computations required

versus the number of input variables to a function. The algorithm proposed by Debnath

and Saso will allow for very fast NPN-equivalence matching, however for inputs greater

than seven, becomes impractical to calculate the match. As such, an alternate canonical

form is required for matching functions with more than seven inputs.

Maximum number Maximum number
of variables of NP-equivalents

3 48
4 384
5 3840
6 46080
7 645120
8 10321920

Figure 2-13. Number of NP-equivalents vs. number of input variables

Link Tables are pre-generated up for up to 7-input functions to allow for quick generation

of the NP-equivalent set of functions for a given truth table. An example Link Table for a

three-input function can be seen in Figure 2-14. The leftmost column of this table

(highlighted in grey) is the reference column, where the truth table for the function in

question is entered.

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7
1 1 2 2 4 4 0 0 3 3 5 5 0 0 3 3 6 6 1 1 2 2 7 7 0 0 5 5 6 6 1 1 4 4 7 7 2 2 4 4 7 7 3 3 5 5 6 6
2 4 1 4 1 2 3 5 0 5 0 3 3 6 0 6 0 3 2 7 1 7 1 2 5 6 0 6 0 5 4 7 1 7 1 4 4 7 2 7 2 4 5 6 3 6 3 5
3 5 3 6 5 6 2 4 2 7 4 7 1 4 1 7 4 7 0 5 0 6 5 6 1 2 1 7 2 7 0 3 0 6 3 6 0 3 0 5 3 5 1 2 1 4 2 4
4 2 4 1 2 1 5 3 5 0 3 0 6 3 6 0 3 0 7 2 7 1 2 1 6 5 6 0 5 0 7 4 7 1 4 1 7 4 7 2 4 2 6 5 6 3 5 3
5 3 6 3 6 5 4 2 7 2 7 4 4 1 7 1 7 4 5 0 6 0 6 5 2 1 7 1 7 2 3 0 6 0 6 3 3 0 5 0 5 3 2 1 4 1 4 2
6 6 5 5 3 3 7 7 4 4 2 2 7 7 4 4 1 1 6 6 5 5 0 0 7 7 2 2 1 1 6 6 3 3 0 0 5 5 3 3 0 0 4 4 2 2 1 1
7 7 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0

Figure 2-14. Complete Link Table for 3-input function

The remaining cells in the table contain memory pointers to the appropriate cell in the

reference column. As such, once the reference column contains the truth table of the input

18

function, the remaining cells will instantly automatically contain the complete NP­

equivalent set. The NP-representative of this set may quickly be found by comparing the

cell values row-by-row, and eliminating columns which will not give a minimal column

summation. This is accomplished by comparing every cell value in one row; If there

exists any cell containing a zero value in the row, the column of any cell containing a one

value is discarded from future comparisons. Once every row is processed, the remaining

column(s) is the NP-representative of that set.

PN-equivalent matching

Ciric and Sechen proposed a P-equivalent canonical form capable of efficiently handling

functions with up to 25 inputs, which is the maximum which would be required by a

CMOS technology process capable of supporting five serial PMOS and NMOS devices in

a single complex gate [15]. Negation of the output may be achieved by generating two P­

equivalent canonical forms per library cell, one with output negation and one without.

The canonical form is generated from a function's truth table, firstly eliminating any row

which does not equate to one, leaving only the minterms. Secondly, the function output

column is pruned, leaving only a table of inputs which produced a one output. This table

may be quite large, with the number of rows depending on the number of minterms in the

function. ln order to reduce this table before canonical form generation, logic

minimization may be applied to generate a table of Boolean values and don't cares. The

developed synthesis tool initially implemented the Quine-McCluskey [16] Boolean

minimization algorithm, however it was not able to efficiently handle large tables. The

minimization algorithm as proposed in [17] was eventually implemented as it allowed for

much faster runtimes. If the resulting table contains ones and don't cares, the don't cares

are translated to zeros. If the resulting table contains zeros and don't cares, the zeros are

translated to ones, and the don't cares to zero. A decreasing weight is applied to every

cell in the table, decreasing in the direction from left to right, top to bottom. The columns

and rows of the table are to be permuted until a minimum total table weight is reached.

The Boolean values in this minimum weight truth table is the canonical form. They may

19

be extracted into a string, or converted to integer form for using as the index in a library

hash table.

2.4 Covering

The matching process identifies many possible matches for every node in every subject

graph. The goal of covering is to determine the set of matches which a) completely

covers the subject graph with library cells, and b) optimally does so with respect to a set

of costs such as area or delay.

The first step in the covering process is covenng the subject graph with the base

functions available in the library. Figure 2-15 illustrates the simplest network covering,

with each base function covered independently, whereas Figure 2-16 and Figure 2-17

show alternative coverings using available three-input gates.

Figure 2-15. Sample Covering

/
/

/
/

Figure 2-16. Alternative Covering

20

I
/

I

'

I
I

I

\

I
I
I
I
I
\

\

2.5 Summary

Figure 2-17. Alternative Covering

This chapter has overviewed the four main steps in current library-based synthesis

techniques, which are decomposition, partitioning, matching and covering. Structural and

Boolean matching algorithms were outlined and compared. Boolean signatures were

discussed and their drawbacks were outlined. The Boolean canonical form generation

algorithms described in section 2.3.2.5 were selected for implementation in the developed

synthesis tool. The following chapter will discuss a library-free approach to logic

synthesis, and its advantages over a cell-library.

21

3. Library-Free Technology Mapping

Libraries have played an important role in logic synthesis for the past three decades. They

have allowed designers to quickly utilize pre-designed building blocks to assemble and

fabricate an arbitrary circuit to perform a needed function. Cell libraries also allow

accurate predictions of silicon wafer area utilization and path delay, as individual cells

are pre-characterized with precise area, loading, and timing information. These library

files require significant investment in engineering time to develop and maintain for every

generation of technology process.

As the demand for faster, smaller, and more complex ASICs is increasing, the rate at

which technology processes change is not economically permissible of adequately

equipped cell libraries to be developed. As such, many of the advances in deep sub­

micron (DSM) fabrication are not being fully utilized by implementing functions in

complex gates [4]. It has been shown that in a technology capable of supporting five

serial NMOS and PMOS transistors, 425803 unique logic gates may be constructed [5].

Aggressive scaling has advanced the state of optical lithography to resolutions of 22nm

and below, and electron beam lithography has demonstrated capability to produce

minimum features that are less than 1 Onm wide. These incredible advances in fabrication

technology are not only pushing the physical limits of fabrication as we approach atomic

sizes, but also come at a huge cost of over $1 billion to bring a laboratory demonstration

to a manufacturable technology [2]. Clearly there is the need to improve upon current

design techniques in order to better utilize the resources, i.e. transistors, which are placed

within these integrated circuits. Optimization of the circuit architecture to reduce delay

and area will allow for improvement on a technology process without reducing the

minimum feature size.

22

The efficiency of the generated circuit relies heavily on the quality of the library used.

The larger the available library, the better the mapping tool is able to optimize a given

circuit on silicon as more precisely matching cells will be available for placement. The

maximum number of unique gates in a library is defined as a function of the number of

series NMOS and PMOS transistors s(n,p). It has been shown [18] that a circuit's total

number of transistors may be reduced by up to 35% when an s(4, 4) library-free approach

(containing 3503 unique gates) is used in matching as opposed to using a simple gate

library containing three cells: Inverter, 2-input NAND, 2-input NOR.

It can be seen in Figure 3-1 that the task of creating and managing this cell library

quickly becomes enormous as the number of allowed series transistors increases.

Number of Serial 1
NMOS Transistors 2

3
4
5

Number of Serial PMOS Transistors
1 2 3 4 5
1 2 3 4 5
2 7 18 42 90
3 18 87 396 1677
4 42 396 3503 28435
5 90 167 28435 425803

Figure 3-1. Gate combinations possible with series NMOS & PMOS transistors.

A tool which could synthesize from logic directly to a transistor netlist would eliminate

the need to redesign a cell library every time the production technology process is

updated. This would result in greater efficiency in silicon usage as we are no longer

placing cells and are directly placing transistors on silicon with complex gates, reducing

fabrication costs, engineering costs, and significantly decreasing time-to-market of the

product.

3.1 Previous Studies in Library-Free Mapping

The concept of library-free technology mapping has been discussed and debated for

nearly a decade in many research papers [5], [19-23]. Numerous approaches to solving

the problem have been proposed, which will be discussed and evaluated in this Section.

23

In [5] a straightforward approach to complex gate generation from Boolean equations

was proposed, in which every time a set of literals of the equation was a logic AND, the

NMOS networks were associated in series, and PMOS in parallel, with the opposite for a

logic OR. An Inverter is then inserted after the output of the complex gate to compensate

for the natural negation of CMOS circuits.

Reis proposed an algorithm to cover trees in [19] by dynamically collapsing NAND/NOR

trees of gates from the root-downwards so long as the newly generated gate does not

violate a globally set maximum number of serial NMOS and PMOS transistors.

Figure 3-2. Possible Cover

As this covering algorithm began collapsing gates at the root, the method will promote

complex gates to form near the root of the tree, which is a charged node, as illustrated in

Figure 3-2. The output node of a tree may be sized larger than its child nodes which

enlarges any complex gate at this node, leaving smaller gates clustered near the input

nodes. Correia and Ries suggested an alternative method to collapse base functions into

complex gates [21]. This method takes a bottom-up approach at gate collapsing, which

encourages complex gates to be formed near the inputs of the tree rather than the output,

as illustrated in Figure 3-3. While this approach is an improvement, the quality of the

resulting mapped circuit still highly depends on the initial decomposition.

24

Figure 3-3. Alternate Cover

Jiang et al. proposed the odd-transistor-replacement (OTR) method to dynamically

generate complex gates from a decomposed logic network [20]. It is a two-step process,

collapsing every three consecutive gates into one complex gate. The OTR method works

by selecting three levels of logic and combining them into one complex gate. This

process is outlined in the example below.

Example- Odd-Transistor Replacement Method

Figure 3-4 illustrates a sample logic structure which will be collapsed into one complex

gate using the OTR method. The transistor structure of this simple circuit before

transformation is visible in Figure 3-5.

A

B

G2

Figure 3-4. Simple Circuit for OTR Example

The first step in the OTR gate collapsing method is to replace NMOS (PMOS) transistor

structures from the first level (second level) with the PMOS (NMOS) transistor structures

from the second level (first level). Figure 3-6 illustrates this transformation between gates

Gl, G2 and G3, into G3'.

25

A~
',, ""='" ./' I

·~
c----------------------~

Figure 3-5. Transistor-level representation of Figure 3-4

~}/'

// ~ f-'\

//)
Figure 3-6. Intermediate transformation of OTR method

The second step in the OTR method is to perform the exact same procedure, replacing

NMOS and PMOS structures between the newly generated intermediate gate, G3' with

those in the last stage. The resulting complex gate can be seen in Figure 3-7.

While these varying techniques will serve to dynamically generate complex gates out of a

directed acyclic graph (DAG) partitioned into trees, they may not necessarily produce the

best covering which optimizes area, power consumption and delay as they simply extract

the complex gates from the structure of the circuit. Marques et. al proposed a modified

wavefront [24] covering algorithm which dynamically generates complex gates within

the width of the wave, which propagates from inputs to outputs across the entire DAG

without partitioning in to trees [22]. This method has been shown to be effective at

26

reducing delay in a circuit by duplicating logic between fanout-free regions, with

comparison to traditional partitioned tree-based mapping. Although this duplication tn

logic reduces delay, it comes at an increase in area, and power consumption.

G4'

Figure 3-7. Final transformation ofOTR method: Resultant complex gate

3.2 Summary

As the limit of how small we can fabricate transistors is quickly being reached,

alternative methods of design must be explored to enable continued performance

improvements on existing technology processes. Library-free synthesis attempts to

improve the architecture of a circuit by covering it with complex gates which are

typically not found in current standard cell libraries. This chapter has overviewed a

number of current library-free covering algorithms, the majority of which are highly

dependent on the structure of the initial decomposition.

The following chapter will propose new matching and covering algorithms for improved

library free synthesis which are not tied to the initial decomposition of the circuit.

27

4. Proposed Synthesis Algorithms

A combination of structural tree-traversing and Boolean matching was employed to

optimally match and cover the partitioned subject graphs. The use of Boolean matching

enables the resulting mapped circuit to be independent on the structure of the initial

decomposition, as complex gates are not directly extracted from the decomposed tree.

Size-less gate-transistor structures are pre-generated, defined by the maximum allowed

serial PMOS and NMOS transistors, and stored in a hash table in RAM. A transistor logic

solver was developed and used to determine the truth table values for these gates being

generated. Canonical representations of the generated gates are then created to check for

NPN-equivalence for functions with seven inputs or less, and P-equivalence for functions

with 25 or less inputs. The two canonical forms are then saved as a string of bits and

indexed in two hash tables in the virtual library.

A Boolean logic solver was developed and used to determine the truth table for the

partitioned subject graphs. These truth tables are used to generate canonical

representations of the subject graph to be searched against the library hash table for a

match.

As the generated library will be large (425,803 gates with 5 series transistors), speed and

practicality of the matching and covering algorithms was of paramount concern.

4.1 Logical Effort

The method of logical effort, first publicized by Ivan Sutherland, Robert SprouJI, and

David Harris in [25] is a simple, quick method to estimate the delay in a CMOS circuit.

Logical effort attempts to model delays in a circuit as being caused by capacitive load

that the gate drives, and by its own topology. Logical effort gives the minimum delay (D)

of a given circuit path as in (4-1). The delay in (4-1) is normalized to -r, where -r is the

delay of a unit Inverter driving another Inverter without parasitic effects,

28

D = N(GHB) Ytv + P (4-1)

where G is the path logical effort, H is the electrical effort, B is branch effort, N is the

number of stages on the path, and P is parasitic delay. The electrical effort, H, is

determined by the loading of the path in question, and is controlled by the environment

surrounding the circuit. The logical effort, G, is controlled by the architecture of the

covering gates, and is simple to modify - minimizing G minimizes delay. Logical effort

of a gate is obtained by summing the PMOS and NMOS transistor input capacitances

(Cin) for a given input, and dividing that by the input capacitance for a unit sized Inverter

with identical rise and fall characteristics. The third component of delay, P, is introduced

by internal parasitic capacitances within the covering gate, controlled by the number, and

sizes of transistors with their drain connected to the output node of the gate. The

branching effort, B, is the ratio of total capacitance being driven by the gate to the

capacitance on the path of interest.

Logical effort does not yield precise values for delay, and is not intended to replace

traditional simulation tools. It provides a method to compare two circuits to determine

which architecture will yield the lowest delay. The delay in a multistage network can be

approximated using (4-2) by summing the logical effort delays of each stage.

One can observe that in order to minimize delay in a given circuit, it is necessary to

minimize the sum of the product of electrical effort (H) and logical effort (G), and the

parasitic delays (P). Minimizing G and P is simple, and is controlled solely by gate

selection. As an example, compare the Inverter, NAND and NOR gates below, which are

all sized for equal rise and fall times, given the assumption that the electron mobility in

the PMOS transistor is half that of the mobility in the NMOS transistor.

29

INVERTER
G = 3/3
p = 3/3

NOR
G = 5/3
p = 6/3

NAND
G = 4/3
p = 6/3

Figure 4-1. Logical Effort of Simple Gates

The Inverter is the simplest CMOS logic gate, and is used as a basis for comparison for

every other gate. The logical effort of the Inverter is 1. As the NAND and NOR functions

are symmetric, both inputs to these functions will share the same logical effort value.

Looking at the NAND gate, the sum of the PMOS and NMOS input capacitances is 4

thus the logical effort for this gate is 4/3. Similarly, the logical effort of the NOR gate

may be found to be 5/3. If one were to design a circuit, and have the choice to implement

the circuit with NAND gates or NOR gates, by logical effort, the implementation

utilizing NAND gates will have a lower delay than that using NORs.

This chapter will propose a novel method to obtain the most optimal circuit covering

using logical effort as the cost being minimized.

4.1.1 Estimating Gate Area with Input Capacitance

Transistor count alone is not an effective measure of gate area. The area of a gate

depends on the number of transistors in the gate, and the size of those transistors. The

size of a transistor depends on the driving strength, and complexity of the gate. In logical

effort, the complexity of a gate is modeled by G.

30

Consider an Inverter and a 3-input NOR, as illustrated in Figure 4-2. Also assume the

electron mobility of an NMOS device is twice that of PMOS. The average size of a

transistor in the NOR gate is 2.33 times larger than that of a transistor in an Inverter of

equal driving strength. Thus, transistor count alone is not a valid means to estimate total

circuit area. Rather, total circuit area may be estimated by adding the transistor widths of

the template gates for every gate in the circuit. Using this method, in Figure 4-2 the area

of the Inverter can be seen to be 3, and the NOR to be 21.

NOR

INVERTER

(a)

(b)

Figure 4-2. Example of Transistor Size Variation in Gates
(a) Inverter; (b) NOR

4.2 Fast Boolean Matching of Complex Gates

As the matching algorithm will be executed many times, it is important to be able to

generate the canonical form of a given function as fast as possible. Every generated gate

will be indexed in the library by two canonical forms, as outlined in Sections 2.4.5.1 and

2.4.5.2 of this thesis. The canonical form proposed by Ciric and Sechen, as overviewed in

Section 2.4.5.2 will be generated from the subject graph first, and a PN-equivalence test

will first be made for functions up to 25 inputs.

31

If a matching library cell is not found initially, and the subject graph being matched has

seven or fewer inputs, the more computationally expensive NPN-equivalence test as

proposed by Debnath and Saso, and outlined in Section 2.4.5.1 of this thesis will be used.

If a match is not found at this point, there does not exist a cell in the library which can

cover the given subject graph in its entirety.

4.3 Complex Gate Generation and Indexing

A technology-independent library of complex gate structures is pre-generated for

matching against a subject graph prior to synthesizing the input netlist. Using the inputs

(Sp, Sn), which denote the number of serial PMOS and NMOS transistors, the library

generation tool will generate all possible combinations of gates. A CMOS transistor gate

logic solver was developed to obtain the truth table for these newly created complex

gates. Once a truth table is available, the PN- and NPN-representatives of the function

are derived by the method described in Sections 2.4.5.1 and 2.4.5.2 of this thesis. These

representatives will be stored as a string of bytes, along with the order of the inputs,

relative to the original function inputs, input or output negations, and the transistor

structure, as described by the library cell data structure in Figure 4-3.

As gates are generated, they will be subsequently added to the library, as defined in

Figure 4-4. After gate generation, the P canonical representation is generated, and

checked for existence in the Library's PCanonicallndex. The PCanonicallndex is a hash

table with the string value of the canonical representation as the key. If no match is found

in the table, the NP canonical representation is generated, and both will be indexed, along

with the generated gate structure. The NP canonical representation is considerably more

expensive than the P canonical representation, in terms of computation time, which is the

reason why it is only generated once it has been verified that the cell in question is not

equivalent to an existing cell in the library.

32

class LibraryCell

public List <Transistor> Inputs; II transistors in PMOS network
public double [] LE; II logical effort per input
public string NPCanonical = "" ;

public string PCanonical = "" ;

public int [] POrder; II input ordering of P- canonical
public int [] NPOrder; II input ordering of NP - canonical
public bool [] TruthTable;
public bool [] NMOSTruthTable;
public string ID; II unique id in memory
public double P; II parasitic delay of gate
public List <Transistor> VDD ; II root which transistors are

II connected to

public List <Transistor> OUTPUT NMOS; II root of NMOS network
public TransistorNode OUTPUT; I I which all DRJUN nodes lead to
public TransistorNode GROUND; II which SOURCE nodes connect to

II in NMOS network

public InputChain inputchain; II used to solve truth table
II of gate

public bool NMOSfound = false ;
public LibraryCell NMOSNetwork; II matching NMOS network
public bool InvertedOutput = false ;

Figure 4-3. Library Cell Data Structure

class Library

public Li st <T.i hrr.lryC'Pll > Cells ;
public Hashtable NPCanonicalindex;
public Hashtable [] PCanonicalindex;
public Hashtable TTindex;

Figure 4-4. Library Data Structure

4.3.1 Complex Gate Library Population

In order to determine the most optimal covering for a given subject graph, a fully

populated library of complex gates must be available to match against. The library

generation module takes two integer inputs, the maximum number of allowed serial

PMOS and NMOS transistors and uses these values to build an indexed library of

complex gates.

33

The first step in the process is to generate a two-dimensional matrix with the given

dimensions. In each cell of the matrix, a TransistorContainer object is instantiated. This

object is used to traverse the matrix, and extract many combinations of complex gates

available. Each TransistorContainer contains a Transistor object, and a source and drain

which contain virtual links to other TransistorContainer elements in the matrix.

Directional links are assigned between the source and drain nodes of these

TransistorContainer objects, following the pattern illustrated in Figure 4-5. These links

do not represent actual electrical connections between transistors in a gate, but rather

possible connections to explore which would result in a unique gate being created by

following a set of rules.

Complex gates are generated recursively, beginning from the root Transistor Container

located at position (0,0) in the matrix illustrated in Figure 4-5. Links are explored one at a

time, beginning with those from the drain of the TransistorContainer, taking "skip" wrap

around links first (the links visible on the left of certain transistors in Figure 4-5). For

every link followed, the generation function is recursively called, with the root reference

pointing to the current TransistorContainer in scope. After following a link, unless the

next skip link is to be taken, the new root TransistorContainer is "enabled". Once all

outgoing links from the TransistorContainer' s Drain node have been explored, the

TransistorContainer will be disabled, and the recursion will return the function which

called it. Only vertical and skip links may visit a disabled TransistorContainer- all others

may only visit a node if it has been previously enabled. When a link is explored which

points to the output of the function, the transistor structure up to this point is extracted,

and indexed in the library. After indexing, the root is set to the next transistor with its

source connected to VDD, and the function is called recursively again.

34

/
/

(9
I
I
\

/
/

/

(9
I
I
I
I
I , " I I

\ , I I
_,.>(I I

, " 'vi I
," I\ I

, ," / ~~
_,. " I I \ I

/ / ,
+------7---:;:7

I _,.
I /

I /

(1,0) / / 9 I I
I
I
I
I
I
I
I
I
\ "I
1 ," 1 I
, >(I I

, \ I I
," V I

, " I\ I

," / \~
I ," I I \ I

/ II '-
+ - -----~------

(2,0) /
I

I
I

I
I

JY>

I
I

I

I
I

I

/
/

/

(9
I
I
I
\
\ , " I I
\ , I I
,>(I I

/ , " 'vi I
, " I\ I

,, " / \.-.:
/ I I \ I

/ / ' --- -- - ~ ----;_;:;;

I /
I /

(1 ,1) 1/ ,/9
1 I

I
I
I
I
I
\
I
\ \ , /;1 I

, >(I I
" \ I I

," V I
_,. / I \ I

/ / / \~
," I I \ I

_,. I I '
------~------

I
I

I

1
I

// 9

-C> Represents Output
of Gate

Figure 4-5. 3x3 Generation Matrix

Example - Generation of complex gates with two serial PMOS, NMOS transistors.

The generation function will begin with the Source of the TransistorContainer (TC)

located at (0,0) in Figure 4-6. The first link to be explored is the skip link, bringing us to

the Source of the TC located at (1,0). As we are visiting a disabled TC, it will now be

enabled. There is one outbound link from the Drain of this TC to the output. As we have

reached an output node, the transistor structure up to this point will be extracted, yielding

a gate with one PMOS transistor, the Inverter. After extraction, we move to the next TC

connected to VDD, located at (0,1).

35

At the Source of the TC at (0, 1), the skip link is explored first, bringing us to the Source

of the TC at (1, 1). As we are visiting a disabled TC, it will now be enabled. There is one

outbound link from the Drain of this TC to the output. As we have reached an output

node, the transistor structure up to this point will be extracted, yielding a gate with two

parallel PMOS transistors, the NAND gate. At this point, as there are no more transistors

attached to VDD to explore, the TC at (1,1) is disabled, and the recursion steps back to

the Source of the TC at (0, 1). This TC is now enabled, and the downwards vertical link

from its Drain is explored, bringing us to the TC at (1, 1), which is then enabled. There is

one outbound link from the Drain of this TC to the output. As we have reached an output

node, the transistor structure up to this point will be extracted, yielding a gate with the

function f = A + BC . This process of following links and extraction at outputs follows

until all possibilities have been exhausted, and the function returns to the original root TC

at (0,0).

s-c

\

\ .., "I I
\ "' I

........ \ / :
"' \ I I

,..."' .(I
,..."' / 'v~

I ,... "' 1 / \ I

/ / .,_ -
~ - -----7-----

1
I

I

(1,0) /

I
I

I

I
I

I

I
I 0

-t> Represents Output
of Gate

Figure 4-6. 2x2 Generation Matrix

Figure 4-7 illustrates the gates which will be generated, and the order of their generation

(A - N) with the input parameters (2,2) which represent the number of serial PMOS and

NMOS transistors which are allowed. It should be noted that gates B, C, and G are

equivalent. Gates C, and G will not be added to the library once their canonical values are

36

calculated and it is found that an equivalent, B, is already in the library. Similarly, D, E, I,

J and N are equivalents; only D will be indexed in the library.

4(] 4(] 4
A B c D

4B
-(l

4 4
E F G H

__::::c_

4 4

4 4
J K L

4

4
M N

Figure 4-7. Gates Extracted from 2x2 Generation Matrix

The class descriptions for the TransistorContainer, Transistor, and TransistorNode classes

can be seen in Figure 4-8, Figure 4-9 and Figure 4-1 0, respectfully. The

TransistorContainer contains one Transistor, an enabled flag, and "links" which are

represented as memory pointers to other TransistorContainer objects. The Transistor class

containes a Boolean gate variable which is used for truth table generation, type definition

which is either PMOS or NMOS, and node variables for the source and drain. These

37

nodes are used to represent an electrical link to another transistor or the output of the

gate, and are managed by the TransistorNode class. The hierarchy of these classes is

illustrated in Figure 4-11.

public class TransistorContainer
{

public Transistor rnos;
public string ID;

public bool enabled = false ;
public bool isOUTPUT = false ;
public bool isVDD = false ;

public List < IransistorContain(r> drain;
public TransistorContainer drainLeftLink;
public TransistorContainer drainLeftTop;
public TransistorCon ainer drainLeftBottorn;
public Transis orContainer drainBottorn;
public TransistorContainer drainBottornAround;

public List <TransistorContainer> source;

public TransistorContainer nextTranonVDD;

Figure 4-8. Transistor Container Data Structure

public class Transistor
{

public TransistorType type;
public TransistorNode source;
public TransistorNode drain;
public string ID;
public bool gate;
public bool INVERTED INPUT = false;
public bool ON OUTPUT = false;
public float skewwidth = 0;
public bool skip = false;
public int XPosition; //used for drawing
public int YPosition; //used for drawing

Figure 4-9. Transistor Data Structure

38

public class TransistorNode
{

public
public
public
public
public
public
public

Transistor parentTra ns i stor ;
TransistorNodeTyre type ;
List <TransistorNodE" > e x ternalLink ;
List <TransistorNodr> > e x ternalLinkBACK ;
bool value ;
string ID ;
bool recursiveVisit false ;

Figure 4-10. Transistor Node Data Structure

I
I

/
/

bool value ;
t ; f type ;',

,, ~ r 1
, 1 externalLink ;J

paren tTransi s tor ~

/ /

source ;

type ;
bool gate ;

, . ' drain ;

----- ----
b ool value ;

,t.·j l(l ~r · l type;',
I r~ J, external Link~

parentTransistor 'l
/

/

• • r mos ;

bool enabled =
j ·1 t= ~ > drai n;

source ;

Figure 4-11. Hierarchy of the Transistor classes.
Dashed lines represent class encapsulation borders

39

4.3.2 Permutations of Order and Complementation oflnputs

As the canonical generation algorithms which are being employed permute the order and

complementation of the inputs, it is necessary to map the inputs of the newly generated

gate with those in the P and NP representation. For every gate generated a permutation

array will be constructed, with the length equal to the number of inputs in the gate.

4.3.2.1 Input Tracking in P-Canonical Generation

The P-canonical generation algorithm as described in Section 2.3.2.5 permutes the order

of the inputs by rotating columns in order to achieve the lowest weight minterm table. A

one-dimensional rotation array is instantiated with the length equal to the number of

inputs in the function. The table is initially filled with the integers 0 - (n-1), where n is

the number of inputs, which can be directly used as the index to the array Inputs of the

library cell as in Figure 4-3. As columns are rotated, the indices of the input order array

are also switched. Once the P-canonical form is generated, the rotation array is copied to

the POrder variable of the library cell, as in Figure 4-3.

4.3.2.2 Input Tracking in NP-Canonical Generation

The NP-canonical generation algorithm as described in Section 2.3.2.5 permutes the

order of the inputs as well as complements these inputs in order to find the NP-canonical

value. The canonical value is obtained through the use of pre-calculated link tables,

which are generated in the initialization process of the synthesis tool for functions with

up to 7 inputs.

Link Table Generation

In order to be able to quickly obtain the NP-canonical form of a function, look-up tables

are pre-calculated in the initialization phase of the synthesis tool. These tables are created

by calculating minterm positions based on a given permutation of the input variables. A

reference truth table is generated, and each row is assigned a unique identifier, as in

Figure 4-12. The order of the inputs to the function are then permuted by recursively

calling the permutation function GenerateinputSequence in Figure 4-13. The

available inputs are initially stored in an array of integer IDs, with each ID representing

40

an index to the Inputs list in Figure 4-3. Each ID in the array is visited, and added to a

linked list of inputs. As an ID is added to the linked list, it is removed from the array of

available inputs, and the recursive function is called again, being passed the linked list

and the updated array. This process continues until the array of available inputs is empty

at which time the linked list contains the selected input ordering. Similarly, the

combinations of input inversions possible with the given input ordering is generated by

recursively calling the invert Inputs function in Figure 4-14, which inverts an input

by negating the integer input ID value. The linked list is traversed, calling the function

again with the child of the input node as the input. This process continues until the end of

the linked list is reached, and the list is extracted to the link table through the

addinputColumn function. At this point, every combination of complementation of

the inputs is generated for the given input ordering.

Xt x2 X3 j(x 1, x2, x3)
0 0 0 Co

0 0 1 Ct

0 1 0 c2
0 1 1 CJ

1 0 0 c4
1 0 1 Cs

1 1 0 c6
1 1 1 C7

Figure 4-12. Reference Truth Table for NP-Canonical Generation

Given an input ordering, minterm positions can be calculated using the reference truth

table by calculating the position a minterm would appear in this table. For example, the

minterm positions for the input ordering 3,2, 1 are illustrated in Figure 4-15. They can be

calculated as follows: for the inputs (0,0,0), regardless of the ordering, this minterm can

be found at position co in the reference table. The inputs (0,0, 1) are translated to (1 ,0,0)

using the input ordering (3,2, 1). This minterm can be found at position c4 in the reference

table. Similarly, the inputs (0,1,0) are mapped to c2, and (0,1,1) is mapped to c6 in the

reference table. This process continues until all of the minterm positions have been

calculated for a given permutation of the input variables. The function

addinputColumn takes the input linked list, and writes the calculated minterm

positions to the link table for NP-canonical generation.

41

for (int inputCounter = 0; inputCounter < numinputs; inputCounter++)
{

int chosenStart = availinputs[inputCounter];
int newCounter = 0;
for (int innerloop = 0; innerloop < numinputs; innerloop++)

if (availinputs [innerloop] != chosenStart)
{

updatedinputs[newCounter] = availinputs[innerloop];
newCounter++;

inputN newNode = new inputNode ();
newNode.id = chosenStart;
inp1 N J~ root = newNode;
GenerateinputSequence(availinputs, newNode, root);

GenerateinputSequence(int [] availinputs, inp~tNodl node, inputNode root)
{

if (availinputs.Length == 0)
{

Invertinputs(root)

else
{

inputNode newNode = new inputNode ();
node.child = newNode;
foreach (int input id in availinputs)
{

newNode.id = input_id;
int [] newAvail = new int [availinputs.Length];
availinputs.CopyTo(newAvail, 0);
int [] UpdatedAvail = new int [availinputs.Length- 1];
int counter = 0;
foreach (int to_remove in availinputs)
{

if (to remove != input id)
{

UpdatedAvail[counter]
counter++;

to remove;

GenerateinputSequence(UpdatedAvail, newNode, root);

node.child = null ;

Figure 4-13. Input Order Permutation Function

42

private void invertinputs(inputNode n) {
if (n.child != null)
{

else

invertinputs(n.child);
n.id = n.id * -1;
invertinputs(n.child);

addinputColumn(n);
n.id = n.id * -1;
addinputColumn(n);

Figure 4-14. Input Inversion Algorithm

X1 X2 X3 j{x3, x2, xi)

0 0 0 Co

0 0 1 c4

0 1 0 c2
0 1 1 C6

1 0 0 CJ

1 0 I Cs

1 1 0 c3
1 1 1 c1

Figure 4-15. Sample Input Permutation & Minterm Positions

4.3.3 CMOS Transistor Logic Solver

In order to calculate the canonical representation of a newly generated library cell, it is

necessary to derive the truth table of the function performed by the gate. As is shown in

Figure 4-3, a library cell contains a list of all transistors whose source node is attached to

VDD. The cell also contains an output node, which the bottom-most transistors' drains

are connected to, and is also where we will be sampling output values of the function.

Transistors are aligned in a linear linked list, and are recursively traversed, exciting every

possible gate input combination- 2n in all, where n is the number of inputs (transistors)

to the function (gate). Once a particular input pattern has been assigned to the gates of the

transistors in the complex gate, the output is solved recursively, from VDD to output.

43

Initially, the source vales of every node attached to VDD are set to TRUE. Following

each node recursively downwards through the drain links, the drain values are set to

TRUE only if the value of the gate is FALSE (as we are working with PMOS transistors).

The evaluation method works on the basic function:

Drain= Drain OR Source AND NOT(Gate)

Once every source node attached to VDD is explored, the Boolean value of the output

node may be read, and inserted into a truth table row corresponding to the input sequence

tested.

4.3.4 CMOS Gate Skewing

It is often desired for the output rise and fall times of a CMOS gate to be equal; as such,

the resistance between VDD and the output must be the same as that between the output

and VSS in order to allow equal charge and discharge currents to and from the output

load being driven. Figure 4-16 illustrates this requirement, representing the entire PMOS

and NMOS networks with their equivalent resistance, RPMos and RNMos, respectfully. In

order for the rise and fall currents, Irise and Iran to be equal, the transistors in the PMOS

and NMOS networks must be sized such that RPMos = RNMOS·

l I .e E>

[I tall
C Gate

Figure 4-16. Sizing for equal rise & fall times in CMOS gates

44

In order to size a gate for equal rise and fall times, we analyze the PMOS and NMOS

networks independently. In the worst case, only one path in each network will be active

at a time. As such, all paths in each network must be sized so that they have the same

resistance. Taking the PMOS network first, each path from VDD to output is traversed,

and added to a list of paths. This list is sorted descending in the order of the number of

transistors on the path.

Taking each path at a time, if there are no previously sized transistors on the path, every

transistor width is equal to the number of serial transistors on the path. If there are

previously sized transistors on the path, transistor widths are assigned according to

Equation 4-3,

W = (Weq)S (4-3)
Weq-1

where S is the number of serial transistors on the path without a defined size, and Weq is

the equivalent width of the sized transistors on the path, as defined by Equation 4-4,

I
Weq = (4-4)

I:-1
n wn

The W value from Equation 4-3 is then assigned as the width for every unsized transistor

in the current path.

Example -Sizing of complex gate for equal path resistance from VDD to output

The gate generation algorithm as described in Section 4.3.1 will produce a transistor

structure similar to that seen in Figure 4-1 7, with vertical and horizontal directional links.

Paths are traced beginning from VDD to output, from the left most transistor connected

to VDD, to the rightmost. Tracing the paths in Figure 4-17, we retrieve the set of paths

{ABCD, ABG, EFCD, EFG, HIJ, HL, KIJ, KL}. This list of paths is then sorted in

descending order by the number of transistors on the path, yielding a new set of paths:

{ABCD, EFCD, ABC, EFG, HIJ, KIJ, HL, KL}

45

Figure 4-17. Gate generated from 4x4 Generation Matrix

First we traverse the path ABCD. As none of these transistors have been previously sized,

their widths are set to 4, the number of transistors on the path. The path EFCD is

analyzed next. By (4-4), the equivalent resistance of the sized transistors is calculated:

1 4
Weq = l/

4
+ l/

4 2
Using (4-3), the widths of transistors E and F, the only unsized

transistors along the path EFCD to be W = 2(~) = 4 . Solving the third path, ABG,

equates Weq to 2. As there is one unsized transistor on this path, S = 1. Thus, the width of

G is calculated to be W = 1{2) = 2 .

Following in this manner, all of the remaining transistors in the gate may be ratioed such

that every path shares the same resistance.

It is common knowledge in CMOS digital logic design that PMOS and NMOS transistors

often do not share the same electron mobility (J.l) and as such will not have the same

resistance for the same width of transistor. The electron mobility of the PMOS transistor

(J.lp), depending on technology process, is often quite different than that of its NMOS (J.ln)

46

counterpart. For this work, we consider J.ln = 2J.lp which is a very common assumption in

CMOS digital design. Thus in order to size for equal rise and fall times, the gate ratios

are then multiplied by a skewing factor, which will double the widths of the PMOS

transistors in order to counterbalance the lower electron mobility.

The generation algorithm as presented in Section 4.3 .1 is not perfect, and at times will

generate a gate which does not meet the required maximum number of allowed series

transistors. Figure 4-18 illustrates a gate which will be generated by a 4x4 generation

matrix. By studying the interconnections, it can be seen that a path HIFBCD from VDD

to output exists which contains six series transistors. Clearly this is beyond the allowed

maximum of four. As such, the skewing algorithm also serves as a filter - if a path is

found which exceeds the maximum allowed series transistors, the gate is discarded and

not indexed in the library.

Figure 4-18. Gate Generated from 4x4 Matrix with 6 Series Transistors

47

4.3.5 NMOS Network Generation

The complex gate generation algorithm described in Section 4.3 .1 only creates and solves

the PMOS network, from VDD to the output. In order to synthesize an input HDL, the

NMOS network for gates in the library must be available in order to obtain the logical

effort value for every input. The gate generation matrix presented in Figure 4-5 will

generate every possible gate given the restrictions on the maximum allowed series

transistors. Although the algorithm described in Section 4.3.1 generates the PMOS

network for a logic gate, if the transistors are replaced to be NMOS, the generated

structure may be an exact match to a previously generated PMOS network. Combining

these two will create a complete CMOS logic gate.

Figure 4-19. Generating NMOS Network from PMOS Structure

In order to match PMOS and NMOS networks to form a complete gate, Boolean truth

tables must be independently generated for each network, and P-canonical matching is

used to identify pairs. When a PMOS network is generated, the CMOS transistor logic

solving algorithm as in Section 4.3.3 is employed to generate the truth table for the

PMOS structure. From this truth table, the canonical forms are generated and the cell is

added to the library. At the same time, the truth table for the network is generated as if

the transistors were NMOS. This is accomplished by solving the truth table for the PMOS

structure again, however inverting the inputs to the gate. Figure 4-19 illustrates a simple

NOR gate extracted from the gate generation matrix in Figure 4-5. The truth table for this

PMOS structure can be seen in Figure 4-20. In order to obtain the truth table for the

NMOS network, the inputs are inverted before applying the transistor logic solving

48

algorithm from Section 4.3.3, while keeping the rows identical in the truth table. Once the

function output is obtained via the logic solving algorithm, it is inverted and added to the

truth table. Figure 4-21 illustrates the truth table obtained by inverting the inputs to the

gates of the transistors in Figure 4-19 and inverting the output value. This can be verified

simply by looking at the last row of Figure 4-21. Inverting both inputs, and applying a

logic zero to both gates of the transistors in Figure 35, one can quickly see that the output

will be a logic one.

A B F
0 0 1
0 1 0
1 0 0
1 1 0

Figure 4-20. Truth Table for NOR Gate

A B F
0 0 1
0 1 1
1 0 1
1 1 0

Figure 4-21. Truth Table for NAND Gate

Once all library cells have been indexed, it is necessary to pair PMOS networks with

NMOS networks in order to complete each CMOS gate in the library. Each library cell

only containing a PMOS network is visited. The P-canonical representation of the

calculated NMOS truth table is generated, and searched for in the library's P-canonical

hash table. The matching cell in the P-canonical hash table is copied, and assigned as the

NMOS network to the cell. At this point, it is necessary to re-arrange the order of the

inputs in the NMOS network so that they align with those in the PMOS network,

allowing the logical effort value of each input to the gate to be calculated.

When the P-canonical representation of a function is calculated, the canonical

representation may have a different permutation of input variables to that of the truth

table which it was calculated from. This ordering is saved in memory as the POrder, and

is represented as a !-dimensional array of integers, with length equal to the number of

PROPERlY Of r
RYERSON UNl\IERSITY U8BAR

49

inputs there are to the truth table. Each element in the array stores one integer which

represents the index of the inputs to the original function. For example, the POrder

{0,1,3,2} implies the first and second inputs remain fixed, and the third and fourth are

switched.

As both the PMOS and NMOS networks share the same P-canonical representation, their

POrders may be used to match their inputs together, using the P-canonical form as a

common reference.

Example -Input matching between PMOS and NMOS networks

Consider the PMOS networks presented in Figure 4-22 and Figure 4-23. The network in

Figure 4-23 is the NMOS counterpart of that in Figure 4-22, but with PMOS transistors,

and vice versa. The truth table for the PMOS network in Figure 4-22 is available in

Figure 4-24(a). The NMOS truth table is calculated by solving the network again, instead

inverting its inputs, and the output, and is available in Figure 4-24(b). From this table, the

P-canonical representation of the NMOS truth table is calculated, and is available in

Figure 4-24(c). Figure 4-24(d) illustrates the calculated POrder for this canonical form,

showing that no permutation is required to obtain the canonical form.

y -c

Figure 4-22. PMOS Network f=!(A+B)C Figure 4-23. PMOS Network f=!(XZ+ Y)

The truth table for the PMOS network in Figure 4-22 is illustrated in Figure 4-25(a). The

P-canonical representation is calculated from this table, and is visible in Figure 4-25(b). It

can be seen that Figure 4-24(c) and Figure 4-25(b) are identical, showing the two

functions are a match. The POrders of each gate are used to match inputs. The POrder is

iterated through, and inputs are assigned as follows:

50

GATEl.Inputs[POrderl[index]] = GATE2.Inputs[POrder2[index]]

The index variable is iterated from 1 toN, where N is the number of inputs to the gate. In

this case, POrderl[l] = 1; POrder2[1] = 1; Thus, A=X. POrder1[2] = 2; POrder2[2] = 3;

Thus, B=Z. POrderl [3] = 3; POrder2[3] = 2; Thus, C=Y.

A B c F A B c fNMOS A B c { 1' 2, 3}
0 0 0 1 0 0 0 1 0 1 1
0 0 1 1 0 0 1 0 1 0 1 (d)

0 1 0 1 0 1 0 1 (c)
0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 0

(a) (b)

Figure 4-24. Generated Truth Tables & P-canonical form of Figure 38
(a) truth table of Figure 38; (b) calculated NMOS network truth table; (c) NMOS P-canonical; (d) NMOS

POrder

X y z F X z y {1,3,2}
0 0 0 1 0 1 1
0 0 1 1 1 0 1 (c)

0 1 0 0 (b)
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

(a)

Figure 4-25. Generated Truth Tables & P-canonical form of Figure 39
(a) truth table of Figure 39; (b) PMOS P-canonical; (c) PMOS POrder

4. 3. 5.1 NMOS Generation -Dependency on Library Size

The gate-generation matrix in Figure 4-5 will generate all combinations of PMOS

structures possible given the input library dimensions. If the library is not square, certain

NMOS networks will not be generated. For example, if a library is generated with a

maximum allowed 3 series NMOS and 2 series PMOS, NMOS networks will not be

51

found for PMOS networks which are more than 2 transistors wide. As such, for non­

square libraries, a complimentary library with opposite dimensions is generated for

searching for NMOS networks. Using the same example, a library with the dimensions of

2 series NMOS and 3 series PMOS is generated to locate appropriate NMOS networks.

4.4 Proposed Boolean Tree Matching

It will be necessary to determine the most optimal match for every node in the subject

graph in order to obtain the best cover with respect to logical effort delay or area. The

subject tree will be traversed recursively from root to leaf nodes, from left child to right

to find matching gates.

4.4.1 Sub-tree Extraction

At each node in the traversal, it is necessary to explore all possible matches from this

point to its primary inputs, and all combinations of inputs leading up to the current node.

During the matching process, it is necessary to extract all sub-trees at a particular node in

order to explore all possible covers. From the simple tree below, five unique sub-trees

can be extracted, as illustrated in Figure 4-26.

Figure 4-26. Extracted Sub-trees from Sample Graph

An algorithm has been developed which will perform this extraction, taking the root node

of the extraction as its input, and its output being a set of all combinations of sub-trees.

The extraction process works by recursively traversing the tree downwards, from left

child to right, and returning upwards the set of nodes { self; self + left child; self + right

child; self+ [left child X right child] } . This process is illustrated in the example below.

52

Example- Sub-tree extraction algorithm in operation

Traversing the tree illustrated to the immediate left (also shown in

Figure 4-26), from left child to right, bottom up, returning the possible

combinations of nodes at each step, all possible combinations of sub­

trees can be obtained.

Starting from the leaf nodes, and passing upwards, the bottom

NAND ("N") node does not have any children, and as such can

only pass itself forward. ~
Returns {@}

{CD} Similarly, the Inverter ("I") node does not have any children,
Returns I

~ and passes only itself forward.

The middle-level NAND gate passes upwards the set of itself, itself+ it's left child (in

this case the NAND gate), itself+ it's right child (in this case the Inverter), and itself+

all combinations of it's left and right children together. Since both children only returned

one result each, the number of possible combinations of arrangements of it's children is

one.

}

{ ... }

®
{ ... \D

Finally, the top-level Inverter gate passes upwards the set of itself, itself+ it's only child,

as illustrated below. At this point, all possible sub-trees have been extracted from the root

node of the input tree.

53

Returns {

~
{ ... }

A

CD

~ ... } { ... ~

This procedure is detailed in pseudo code in Figure 4-27.

subtreeExtract (node n) {
if n has 1 child

}

return "set of' { self, self+ subtreeExtract(n.child) }
if n has 2 children {

}

lc = subtreeExtract(n.leftChild)
rc = subtreeExtract(n.rightChild)
return "set of" { self, self+ lc, self+ rc, self+ [lc X rc] }

return null

Figure 4-27. Proposed sub-tree extraction method

4.4.2 Matching Algorithm

}

In order to obtain all matches in a given subject tree, it is necessary to traverse the tree

from root to leaf nodes, and explore all potential matches along the way. If a match is

found, the node in the tree is marked with this match for later analysis in the covering

step. This is accomplished by visiting each node in the subject graph, extracting all

54

subtrees from this node to the inputs of the partition, and iterating through each of these

subtrees looking for a Boolean match with a cell in the library. This matching algorithm

is detailed in pseudo code in Figure 4-28.

findMatch(Node n) {

}

extractedTrees = extractSubtrees(n);

foreach (Node ex in extractedTrees) {
TT = Generate Truth Table(ex);
PNCanonical = GeneratePNCanonical(TT);

if (Library.PNindex.Contains(PNCanonical)) {
ex.Matches.Add(PNCanonical);

}
else

if (ex.numlnputs < 8) {

}

NPNCanonical = GenerateNPNCanonical(TT)
ifLibrary.NPNindex.Contains(NPNCanonical)

ex.Matches.Add(NPNCanonical);

foreach (Node c in n.children)
findMatch(c);

Figure 4-28. Proposed Boolean tree matching algorithm

4.4.3 Boolean Logic Solver

The matching algorithm in Figure 4-28 requires that the truth table of the input extracted

subtree be generated in order to calculate the canonical representations used in matching.

Inputs to the tree are aligned in a linear linked list, and are recursively traversed; exciting

every possible input combination - 2n in all, where n is the number of inputs to the tree.

Once a particular input pattern has been assigned to the inputs of the function, the output

value is solved recursively, from the output node to the inputs.

At each node, the output is passed upwards based on the value at its inputs and the type

of function. The simplified pseudo code for this function is presented in Figure 4-29.

55

bool booleanSolver (Node t)
{

if (t . type = INV)
return NOT(booleanSolver(t . child) ;

if (t . type = NAND)
return NOT(booleanSo l ver(l eftChild) AND boo l eanSo l ver(rightChild)) ;

if (t . type = NOR)
return NOT (boo l eanSo l ver(l eft Ch i l d) OR booleanSolver(r i ght Child)) ;

Figure 4-29. Recursive Boolean logic solver pseudo code

4.5 Proposed Covering Algorithm

Once all matches have been obtained using the method described in Figure 4-28, it is

necessary to determine the most optimal covering in order to reduce area-delay

consumption. A dynamic programming approach is taken to solve this minimization

problem. Similar to the recursive tree-traversal algorithm implemented in Figure 4-28,

the most optimal result will flow from the leaf nodes and arrive at the root node upon

completion. The algorithm works by beginning at the root node of a subject graph, and

iterating through each available match at this node. Each match iterated will be fixed in

place at the current node being analyzed; the function will then be called recursively for

each child of the match being fixed in place. Upon completion of the recursive call, the

function will return the best match, and the cost of this match for each of its children,

given the restriction of the match being fixed in place. This iteration process will

continue until finally the leaf nodes of the subject tree are reached, where only one match

may be found - the base function. The cost function being minimized may be calculated

as logical effort delay, or total circuit area.

4.5.1 Minimizing Logical Effort Delay

The matching phase as described in Section 4.4 of this paper will generate a large set of

matches for a given circuit, with an even larger set of possible coverings obtainable using

56

these matches. It is necessary to determine which set of matches should be employed to

obtain the minimum critical path logical effort delay.

The critical input in a subject graph may be identified by the input with the highest path

logical effort value, G, observed from the input towards the output of the circuit [26]. As

defined by logical effort theory, path logical effort is the product of the logical effort of

all inputs seen along the path being analyzed [25].

Example - Logical effort delay minimizing covering algorithm

The covering algorithm outlined above may be applied to the very simple circuit in

Figure 4-30(a). The following example assumes that a library is available containing a

two-input NAND, a two-input AND (NAND+Inverter), a two-input OR (NOR+Inverter),

a three-input OR (NOR+Inverter), and an OR-AND-INVERT (OAI).

The first step of the covering algorithm looks at the root node, and lists the matches

available for this node. At node 1, there are three matches, which are illustrated in Figure

4-30(b). These matches are a single NAND, an OAI containing nodes 1 and 2, and an

OAI containing nodes 1 and 3. The covering algorithm works by iterating through each

of these matches, determining which minimizes logical effort delay. First the NAND

match is selected, and fixed in place. First the left input to this gate is visited - gate 2. As

there is only one gate at this node, only the OR match is found. It is returned, along with

its cost to gate 1. The delay of gate 2 by (4-2) is 5.66, taking account for the Inverter

added to the NOR to make it an OR. Next, the right child of gate 1 is visited, gate 3

which has 2 potential matches, as seen in Figure 4-30(c).

First, the OR match is selected and locked into place. As each of the children of the OR

match only contain one match themselves, they are visited, and locked in place in a

similar manner, passing their delays upwards to node 3. This is visible in Figure 4-30(d).

The critical delay of node 3 passes through node 5 to primary inputs, giving a delay of

11.32.

57

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4-30. Matches Explored in Covering Algorithm

Next, the 3-input OR match is explored, and locked in place. The only child to this match

is the 2-input AND at gate 4, and is locked in place as well. This is visible in Figure

4-30(e). The critical delay of the match at gate 3 is 12.66, and flows through the 2-input

NAND at gate 4. The delay of the configuration in Figure 4-30(d) is lower than that in

Figure 4-30(e); as such, the 2-input OR match is selected as the best match for gate 3, is

58

passed upwards to gate 1. The critical delay at the output of gate 1 is 3.33 + 11.33 =

14.66.

Next, the OAI covering gates 1 and 2 is selected and locked into place. There is only one

child node of this match, and it is gate 3, which has 2 potential matches to explore, as

illustrated in Figure 4-30(t). First, the 2-input OR match is locked into place. As each of

its children only contain one match, they are both visited and their costs are returned to

gate 3. This covering is visible in Figure 4-30(g), with a delay at the output of gate 3 of

11.33.

Next, the 3-input OR covering is explored at gate 3. As there is only one child match, it is

fixed into place as in Figure 4-30(h). The delay at the output of gate 3 is calculated to be

12.66. Clearly this is higher than 11.33; as such, the 2-input OR match is returned to gate

1. The critical delay of the covering in Figure 4-30(g) is calculated to be 4 + 7.33 =

11.33.

(a) (b)

(c) (d)

Figure 4-31. Gate Transformations through Boolean Matching

59

Match coverNode(Node n) {
Match bestMatch =null;

}

BestPath _Delay = Float. Max Value;
foreach (Match m in n.Matches) {

m.PathDelay = -1;
foreach (Node ni in m.Inputs) {

ni.bestMatch = coverNode(ni);
m.ChildMatches.Add(ni.bestMatch);

}

for (inti = 0; i < m.Inputs.Count; i++) {

}

PathDelay = m.Inputs[i].bestMatch.PathDelay +
m.LibraryCellMatch.LE[i] + m.LibraryCellMatch.P;

if (PathDelay > m.PathDelay)
m.PathDelay = PathDelay;

if (m. PathDelay < BestPath'-Delay) {
BestPath _Delay = m.PathDelay;
bestMatch = m;

}
}
return bestMatch;

Figure 4-32. Proposed logical effort delay minimizing covering algorithm

Finally, the OAI covering gates 1 and 3 is fixed into place as in Figure 4-30(i). As each

child gate of this match only contains one match itself, they are all locked into place. The

critical delay of this covering flows through the 2-input OR at gate 2, through the OAI

and to the output. This delay is calculated to be 4.66 + 5.66 = 10.33. Clearly 10.33 is the

lowest critical path delay, and as such, this is the covering which optimizes the logical

effort delay from the matches found in Figure 4-30.

Boolean matching allows the discovery of gates which are not included in the original

netlist. Figure 4-3l(a) illustrates how gate 3 can be transformed into a NAND by utilizing

the Inverters associated with the AND, and OR gates from gates 4 and 5 respectfully,

transforming them into NAND and NOR gates. Figure 4-3l(b) illustrates the new circuit

which is logically equivalent to those in Figure 4-30. This transformation allows the

exploration of two additional covers which were not included in Figure 4-30, visible in

60

Figure 4-31 (c) and Figure 4-31 (d). The delay of Figure 4-31 (c) can be calculated to be

10.33, and the delay of Figure 4-31(d) to be 11.33. Figure 4-31(c) is tied for the lowest

delay with the cover in Figure 4-30(i), and can be selected as the best cover, with an area

of 4 7 by the area calculation method described in Section 4.1.1.

The pseudo code for this logical effort delay minimizing algorithm is available in Figure

4-32.

Match coverNode(Node n) {

}

Match bestMatch = null;
BestArea = Float.MaxValue;
foreach (Match m in n.Matches) {

m.TotalArea = 0;
foreach (Node ni in m.Inputs) {

ni.bestMatch = coverNode(ni);
m.ChildMatches.Add(ni.bestMatch);

}

for (int i = 0; i < m.Inputs.Count; i++) {

}

m.TotalArea += m.Inputs[i].bestMatch.TotaJArea +
m.LibraryCellMatch.LE[i];

if (m.TotalArea < BestArea) {
BestArea = m.TotalArea;
bestMatch = m;

}
}
return bestMatch;

Figure 4-33. Proposed area minimizing covering algorithm

4.5.2 Minimizing Circuit Area

In order to determine which set of matches will produce a cover with minimal circuit

area, the method as described in Section 4.1.1 will be employed to calculate the area of

each gate. A similar recursive algorithm was developed to that for delay minimization,

61

however the cost being minimized is total circuit area. For each match locked in place,

the cost returned will be the total area of it, and that of all its children. The pseudo code

for this area minimizing algorithm is available in Figure 4-32.

Example - Area minimizing covering algorithm

The area covering algorithm may be applied to the very simple circuit in Figure 4-30(a).

The following example assumes that a library is available containing a two-input NAND,

a two-input AND (NAND+Inverter), a two-input OR (NOR+Inverter), a three-input OR

(NOR+Inverter), and an OR-AND-INVERT (OAI).

The first step of the covering algorithm looks at the root node, and lists the matches

available for this node. At node 1, there are three matches, which are illustrated in Figure

4-30(b). These matches are a single NAND, an OAI containing nodes 1 and 2, and an

OAI containing nodes 1 and 3. The covering algorithm works by iterating through each

of these matches, determining which minimizes total circuit area. First the NAND match

is selected, and fixed in place. First the left input to this gate is visited - gate 2. As there

is only one gate at this node, only the OR match is found. It is returned, along with its

cost to gate 1. The area of gate 2 is 13. Next, the right child of gate 1 is visited, gate 3

which has 2 potential matches, as seen in Figure 4-30(c).

First, the OR match is selected and locked into place. As each of the children of the OR

match only contain one match themselves, they are visited, and locked in place in a

similar manner, passing their delays upwards to node 3. This is visible in Figure 4-30(d).

The area of gate 3 including its two children is 3 7.

Next, the 3-input OR match is explored, and locked in place. The only child to this match

is the 2-input AND at gate 4, and is locked in place as well. This is visible in Figure

4-30(e). The area of the match at gate 3 including its one child is 35.

62

The area of the configuration in Figure 4-30(e) is lower than that in Figure 4-30(d); as

such, the 3-input OR match is selected as the best match for gate 3, is passed upwards to

gate I. The total area of the covering in Figure 4-30(d) is 58.

Next, the OAI covering gates 1 and 2 is selected and locked into place. There is only one

child node of this match, and it is gate 3, which has 2 potential matches to explore, as

illustrated in Figure 4-30(f). First, the 2-input OR match is locked into place. As each of

its children only contain one match, they are both visited and their costs are returned to

gate 3. This covering is visible in Figure 4-30(g), with the area of gate 3 and its children

being 37.

Next, the 3-input OR covering is explored at gate 3. As there is only one child match, it is

fixed into place as in Figure 4-30(h). The area of gate 3 with this match is 35. Clearly this

is lower than 37; as such, the 3-input OR match is returned to gate I. The area of the

covering in Figure 4-30(h) is calculated to be 51.

Finally, the OAI covering gates 1 and 3 is fixed into place as in Figure 4-30(i). As each

child gate of this match only contains one match itself, they are all locked into place. The

area of this covering is 53.

Exploring the coverings in Figure 4-31 (c) and Figure 4-31 (d), their areas can be

calculated to be 4 7 and 42. It can be seen that the covering which produces the minimum

area is Figure 4-31 (d) with a delay of 11.3 3.

4.6. Summary

This chapter has proposed novel matching and covering algorithms for library-free

synthesis which minimize the critical path delay or total circuit area. The following

chapter will overview implementation of these algorithms for testing against benchmark

circuits.

63

5. Implementation

The proposed matching and covering algorithm was implemented in Microsoft C# .NET

as a windows application. This environment was selected for its ease of development and

testing. Microsoft .NET allows the developer to easily create many layers of abstraction

in code allowing for organization and portability to other platforms. The developed

synthesis algorithms and support functions are encapsulated in numerous levels of

abstraction to allow for simple insertion into another application such as an Internet­

based web service.

5.1 Synthesis Process Overview

The desired output of the synthesis tool is a netlist of complex gates which cover an input

HDL, minimizing a given cost function. There are many steps which must be followed in

order to accomplish this task, and many obstacles needed to be overcome.

5 .1.1 Input Parsing and DAG Storage

The BENCH format is a simple, easy to read textual description of a circuit, which all

ISCAS'85 benchmark circuits are provided in. The ISCAS'85 combinational benchmark

circuits were selected as a measure for comparison between the developed tool and

Synopsys Design Compiler due to their wide acceptance in academic research for CAD

optimization. The BENCH format is very simple to parse, and is composed of three main

Sections. The first is the definition of inputs to the circuit, defined in the format

INPUT(ID). Second, the outputs are defined in the format OUTPUT(ID). Lastly, the

gates of the circuit are defined in the format ID=GATE(ID~, ID2, .. I~), where ID is a

unique identifier to that gate, and GATE is the type of gate in the set {AND, OR, NAND,

NOR, NOT, XOR, BUF}. The NOT and BUF gates may only have one input, and the

XOR gate may only have two inputs; the rest are unlimited. The inputs to the gate are the

64

unique identifiers as defined by other gates, or inputs. Figure 5-l is the BENCH

equivalent of the circuit in Figure 5-2.

Simple BENCH example. Text on lines with a hash (#) are treated as
#comments.

INPUT(A)
INPUT(B)
INPUT(C)
INPUT(D)
INPUT(E)
INPUT(F)
OUTPUT(Y)

1 = OR(A, B)
2 =AND(I, C, D)
3 = NAND(E, 2)
Y = OR(F. 3)

Figure 5-l. Simple Example of BENCH Code

a
b

c
d
e
f

Figure 5-2. Boolean Representation of BENCH Code in Figure 5-l

The Node object is the most basic and most used object in the developed synthesis tool.

The class description for the Node object can be seen in Figure 5-3, whose primary

components are the Parent and Children linked lists. A network of Nodes is created as the

input BENCH file is parsed, creating the DAG which will later be partitioned, matched,

and covered. As each line of the input BENCH file is read, a new Node object is

instantiated, and assigned the type and ID according to the BENCH file. The DAG is

built from input to outputs, in the order gates appear in the BENCH file, with primary

outputs being the roots of the DAG, and inputs being the child leafs.

65

All nodes are indexed in a globally accessible hash table for quick lookup by their unique

ID. Similarly, primary inputs and outputs are each indexed in their own hash tables for

quick lookup as needed.

public class Node
{

public NODEType type;
public List <Node > parent;
public List <Node > children;

public string ID;
public string PartitioniD "" . I

public Node inputChainLeft; //used for boolean solving
public Node inputChainright; //used for boolean solving

public bool value;
public int LE;
public int inputs to level; //used for subtree extraction

public List <LibraryMatch> matches;
public LibraryMatch bestMatch = null ;

Figure 5-3. Node Object

5 .1.2 Partitioning

Once the HDL has been parsed, and the DAG is created in memory, partitions are formed

by iterating through each Node in the primary output hash table and traversing the DAG

to primary inputs. Partitions are marked at each fanout point as described in Section 2.2.

As partition locations are found in the DAG, partition objects are instantiated as defined

in Figure 5-4. The primary components of the Partition object are a list of child partitions,

a unique identifier, and a root node, which is linked to a node in the DAG. The Node

object contains a variable PartitioniD. The PartitioniD of every Node is assigned to that

of it's containing Partition's ID. Barrier Nodes are inserted into the DAG at the inputs of

each Partition; these Nodes are assigned the type IN. Although they do not logically

change the DAG, they allow for quick identification of boundaries while traversing the

graph.

66

Each partition may be considered completely independent of the others. The developed

synthesis tool matches and covers partitions independently, in the order they are formed.

A multi CPU computer may process partitions in parallel.

public class Partition
{

public List <Partition> children;
public string ID;
public Node root;
public Node rootChaininput;
public int inputs = 0;
public bool [] TruthTable;

Figure 5-4. Partition Object

5.1.3 Memory Management

Once partitioning is complete, matching and covering may begin. It can be seen in Figure

5-3 that each Node contains a list of matching library cells. Each match is defined by the

Library Match object as in Figure 5-5. Each Library Match contains a list of child matches;

creating a second graph composed of Library Match objects. As each Node in the network

may have multiple matches, one can see that the complexity of the interconnections

between LibraryMatch objects quickly becomes great as the number of Nodes in the

network increases. Initially, the synthesis tool was developed to match every partition,

and then cover each partition. The amount of RAM required for this quickly exceeded

3GB during the synthesis of simple benchmark circuits due to the immense networks of

matches created. In order to reduce this memory usage, partitions are processed one at a

time, and are matched and covered in one step. Once an optimal cover is found for a

partition, all remaining unused matches are removed from the graph and purged from

memory.

67

public class TibrdryMarch
{

public string ID ;
public I ~t r 1ryCe ll cell ;
public Ncde parentNode ;
public bool isBest = false ;

public string PCanonical ;
public string NPCanonical ;
public int [] POrder ;
public int [] NPOrder ;

public Arr1yList Inputs ; //nodes
public bool [] Invertedinputs ;

public List <LitraryMatch> ChildMatches
public string TT ;

public double CriticalPath LE ;
public double LE AREA;
public double LE DELAY;

new uist <LibraryMatch>() ;

Figure 5-5. LibraryMatch Object

5 .1.4 Timing Restrictions during Sub-tree Extraction

During the matching process, it is necessary to extract all sub-trees at a particular node in

order to explore all possible covers. The number of extracted sub-trees strongly depends

on the number of inputs to a partition which are below the node being extracted. The sub­

tree extraction algorithm will not produce a tree which contains more inputs than the limit

imposed by the maximum allowed series NMOS and PMOS transistors. Some partitions

however, contain many times this number of inputs; as the number of inputs to a partition

rises, so do the number of extracted sub-trees.

The P-canonical form for each extracted sub-tree must be generated, and checked for

existence in the library's P-canonical hash table. Should a partition be processed with an

excessive number of inputs, in order to not incur significant runtimes, the sub-tree

extraction algorithm is timed. Should the main loop of the algorithm take more than a

preset amount of time, the maximum number of inputs to be considered is reduced by

one. This self-tuning algorithm allows practical runtimes for special case partitions.

68

5.1.5 User Interface and Result Presentation

In order for the developed synthesis tool to be useful, the results of the synthesis process

must be easy for the end user to view, and verify. The tool has a simple tabbed interface,

allowing the user to configure the settings of the synthesis process in the first tab, as is

visible in Figure 5-6. Once the synthesis settings have been selected and the process has

begun, status is updated on-screen in the Status tab, visible in Figure 5-7.

At the completion of the synthesis process, a report is generated similar to that visible in

Figure 5-8. This report presents details on the results of the mapped circuit, including

transistor count, circuit area, and critical path delay.

gt l ibrary-Free Synthesis Tool

Settings Status 1 Report Browser Criical Path Verification

Ubrary Settings

Maximum serial PMOS transistOfll 3

Maximum senal NMOS transistors 4

Des1gn File

Design File

C17
C432
C499

[ll@t

Rle Preview

I
ftc880
:t 60 inputs
26 outputs
#63 inverters

uN • 2 uP M1nimlze for:

C1355
' C1980 # 320 gates (143 ANDs + 150 NANOs + 29 ORs + 61 NORs + 26 buffers)

i f~~
C5315
C6288

,C7552
Test Orcu~ 1

INPUT(1)
INPUT(B)
INPUT(13)
INPUT(17)

[= I @) j...t3-- j

AREA

~AI Foes] [Current File [[Normalize I L start Synth':5i3 _ J

Figure 5-6. Configuration Tab of Synthesis Tool

The structure of the mapped library cells can be obtained by exploring the partitions in

the Browser tab of the application, as is seen in Figure 5-9. A list of every partition is

available in a drop-down box. Upon selecting a partition, a tree diagram is drawn

allowing the user to explore the hierarchy of matches from the root of the partition down

to its inputs. Selecting any individual match draws the PMOS transistor structure of the

69

gate. Transistors highlighted in red have inverted inputs, and were found using the NP­

canonical form.

• .. Lib rary-Free Synthesis Tool

Settings Status Report j Browser f Cttical Path { Verification

Tagging memory for delet1on
done .

Partition #33 4 inputs
Pl!lrtition match111g completed 1n : 0000:00.07226 10
Partition coveling completed 1n · 00:00·00
T agQing mem01y for delet1on .
.. done

Partit1on 1134 . 4 inputs
Partition matching completed in : 00:00:00.0478485
Partition coveling completed 1n 00:00 00
T agg1ng memory for delet1on .
done

Partition 1135 · 1nputs
Partition matching completed in 00 00 00.04491 90
Part~1on covenng completed 1n : 00:00:00
Tagging memory for deletion
.. done

Partition ;;t36 : 4 inputs
Partit1on matching completed 1n . 00:00.00.0664020
Partition coveling completed in : 00:00.00

1 Tagging memory for delet ion
. done.

Partition 1137 : 4 inputs

Figure 5-7. Status of Synthesis Process

The critical path may be viewed in the Critical Path tab. This allows the exploration of

the gates along the slowest path of the mapped circuit. Figure 5-11 illustrates this feature.

70

Library-Free Synthesis Report

START TIME: 23/07/2008 10:02:01 AM
END TIME: 23/07/2008 10:11 :44 AM
Total time spent: 00:09:30.6167985

Library: 155 cells
--Serial PMOS transistors: 3
--Serial NMOS transistors: 3

TOTAL TRANSISTOR COUNT WITH ADDED INPUT AND OUTPUT INVERTERS: 1540
TOTAL TRANSISTOR AREA WITH ADDED INPUT AND OUTPUT INVERTERS: 3394

Critical Path LE (G): 1517.38386763535
Critical Path # Stages (N): 14
Critical Path Parasitics (P): 44.6666666666667
Critical Path Branch Effort (B): 2000.7

H=4
Critical Path Delay D = N(GHBY'(1/N) + P: 89.556928395978
Area- Delay Product= D *A: (89.556928395978) * (3394) = 303956.214975949

H= 10
Critical Path Delay D = N(GHBY'(l/N) + P: 91.8354071896211
Area- Delay Product= D *A: (91.8354071896211) * (3394) = 311689.372001574

H=50
Critical Path Delay D = N(GHBY'(1/N) + P: 97.5818992008538
Area- Delay Product= D *A: (97.5818992008538) * (3394) = 331192.965887698

H = 100
Critical Path Delay D = N(GHBY'(l/N) + P: 100.267698537843
Area- Delay Product= D *A: (100.267698537843) * (3394) = 340308.568837438

Figure 5-8. Sample Report Generated by Synthesis Tool

71

u, Library-Free Synthesis Tool

Settings r Status T Report Browser Csitical Path 1 Verification

Select a part~ ion to explore · ~(--.,...,..-.,.----=~"·..::;::=:::::==:__:j•) J Show covering matches

Partttion 111 3 inputs
Parttt1on t:12 · 3 1nputs
P artttion 113 · 3 inputs
Parttt ion #4 2 inputs
Part~1on 115 · 4 1nputs
Partttion #6 · 4 inputs
P artrt1on #7 : 3 1nputs
Partition #8 · 2 inputs
Partition t19 : 3 inputs
Partrtion # 1 0 : 3 Inputs
Partttion # 11 3 inputs
Partition # 12 : 2 inputs
Partrt1on 1113 : 2 1nputs
Partition 1114 : 2 inputs
Partit1on 1115 : 3 inputs
Partrtion 111 S : 1 inputs
Partrtion 1117 : 4 inputs
Partition # 18 : 3 1nputs
Partttion # 19 : 4 inputs
P artttion #20 2 1nputs
Partition #21 4 inputs
Partition #22 · 4 inputs
Partit1on #23 : 4 inputs
Partrtion #24 : 4 inputs
Partition #25 4 inputs
Partition #21> : 4 1nputs
Partition #27 · 4 inputs
PartitJon #28 : 4 1nputs

1:..'=:::::=-::=:=:=:=:=:=:=:= Partttion #2.9 ~ inputs

Figure 5-9. Browsing Partitions

u.. ibrary-Free Synthesis Tool

Settings T Statu;r Report Browser Ctitical Path J Velification 1

Select a part~ion to explore · Ll P_art_iti_·o_n _l14_6_ : _ 14_in_:._put_ s ________ __j• J J Show covenng matches

- 4 1nput Match

~w•mmsn
2 1nput Match

- 2 1nput Match

2 1nput Match

2 1nput Match

3 1nput Match

Figure 5-10. Display of Matching Library Cell

72

1 =1@! 1~1

l· =i§J I~J

g • l ibrary-Free Synthe:;is Tool

Settings Status Report Browser Crtticl!ll Path

2 input match
J input match
4 input match
3 input match
2 input match
2 input match
3 1nput match

1lmim#~
2 input match
3 input match
2 input match
4 input match
5 input match

Verification

Figure 5-11. Display of Critical Path

5 .1.6 Automated Verification of Results

- =

In order to verify the correctness of the synthesized circuit, an algorithm was developed

which generates random inputs to each primary input of the circuit. The original DAG is

then solved recursively obtaining output values at each primary output given the set of

inputs. The DAG is traversed again however the transistor structures of each match are

solved recursively until values are available at the primary outputs of the circuit. If these

two output values are identical, it can be said that synthesis is correct. The results of this

automated verification are visible in Figure 5-12.

73

u., l ibrary-Free Synthesis Tool

Settings f Status j Report j Browser l Critical Path [Y~~i~~~~~~j

Test Vectors Generated & Verified

01011 0100111 0111 00111010000011 0111 0111011 OK
01011 01001110111 00111010000011 0111 0111 011 OK
0101 10100111 0111 00111 010000011 0111 0111011 OK
00111110100000100100011 0100010100011 01110 OK
0011111 0100000100100011 0100010100011 01110 OK
00111110100000100100011 0100010100011 0111 0 OK
0011111 0100000100100011 010001010001101110 OK
0011111 01000001001000110100010100011 01110 OK
0011111 0100000100100011 010001010001101110 OK

I 0011111 0100000100100011 0100010100011 01110 OK
0011111010000010010001101000101000110111 0 OK
0011111 0100000100100011010001010001101110 OK

I 0011111 0100000100100011010001010001101110 OK
0011111 010000010010001101000101000110111 0 OK
001111101000001001000110100010100011 01110 OK
001111101000001001000110100010100011 01110 OK
0011111 0100000100100011 0100010100011 0111 0 OK
00111110100000100100011 0100010100011 01110 OK
0011111 0100000100100011 0100010100011 0111 0 OK
00111110100000100100011 010001010001101110 OK
00111110100000100100011 01000101000110111 0 OK
00111110100000100100011 0100010100011 01110 OK
00111110100000100100011 0100010100011 0111 0 OK
00111110100000100100011 0100010100011 01110 OK

Figure 5-12. Result of Automated Verification

5.2 Summary

l = i §J I~I

This chapter outlined the synthesis process and described implementation details for the

proposed synthesis algorithms. The proposed synthesis algorithms were implemented

using Microsoft Visual C#.NET and tested on a Windows Vista platform. The following

chapter outlines performance results of the proposed algorithms compared with Synopsys

Design Compiler 2005.

74

6. Results
In order to judge the performance of the developed synthesis tool, Synopsys Design

Compiler (DC) 2005 was selected as a reference point. Synopsys offers synthesis tools

which are widely used in industry for commercial ASIC design. The Synopsys tools are

library based, and synthesize an input HDL to a set of pre-defined cells. The technology

library selected for comparison is the TSMC 0.18J.tm library, which is available in the

Ryerson VLSI lab.

Standard cell libraries contain exact area and timing information for each cell placed

during the synthesis process. The developed tool does not have simulated area and timing

data for each gate placed; as such, alternative metrics must be considered for comparison

with Design Compiler. The area of the mapped circuit as produced by DC and that from

the developed tool will be estimated using the method described in Section 4.1.1. The

delay of the critical path as identified by DC is calculated using (4-1) in Section 4.1.

Similarly, this equation is used to identify and calculate the delay of the critical path in

the mapped circuit produced by the developed tool.

Circuit Name Circuit Function Total Gates 110 Pins
C432 Priority Decoder 160 36
C499 ECAT 202 41
C880 ALU and Control 383 60

C1355 ECAT 546 41
C1908 ECAT 880 33
C2670 ALU and Control 1193 233
C3540 ALU and Control 1669 50
C5315 ALU and Selector 2307 178
C6288 16-bit Multiplier 2406 32
C7552 ALU and Control 3512 207

Figure 6-1. ISCAS'85 Benchmark Circuits

In 1985, the International Symposium on Circuits and Systems (ISCAS) released a set of

ten combinational logic benchmark circuits for testing CAD algorithms. Since their

release two decades ago, these circuits have been used to judge to the performance of

75

many algorithms in countless research papers. Each circuit, along with its output

function, total gates and 110 pin count is available in Figure 6-1. Circuits C499 and

C 1355 are logically equivalent; All XOR gates in C499 have been expanded to their four

NAND gate equivalent in Cl355.

Design Compiler synthesized these benchmark circuits to the TSMC O.l8J.1m technology

library with high map effort for cost function minimization. The proposed synthesis tool

generated mapped circuits with the design constraint allowing a maximum of three serial

PMOS, and four serial NMOS devices; creating gates with up to 12 inputs.

The path logical effort (G) and branching effort (B) of the critical path as defined by DC

has been calculated for each benchmark circuit. Branching effort is defined as the ratio of

the sum of the input capacitances of the gates being driven, to the input capacitance of the

gate on the path. As exact capacitance values are not known, it is estimated as the ratio of

the sum of the logical effort of the gates being driven to the logical effort of the gate on

the path of interest, which is an estimation of the input capacitance without sizing. The

branching effort for an individual stage in the critical path, b, is calculated as in (5-1). For

simplicity, we will be ignoring the area and delay incurred with interconnects, and will

not be concerned with the actual fabrication sizes of the transistors. Critical path delay is

estimated using (4-1), which takes account for the logical effort, number of stages,

branching effort, electrical effort and the parasitic delays along this path. Typically, the

design constraint being minimized during synthesis is critical path delay; however, in

certain cases circuit area minimization is desired. Design Compiler was set to

independently minimize circuit critical path delay, as well as minimize total circuit area

for all testable benchmark circuits with high map effort. In order to observe the

performance impact of a load on the primary outputs, cases were studied with a varying

load on the primary output equal to a multiple of the input capacitance.

b = goff _ path + g on_ path

g on _ path

76

(5-1)

The total circuit area and critical path delay has been calculated for the ISCAS' 85

benchmark circuits after being synthesized in Synopsys Design Compiler and the

developed tool. The developed tool was also run over every benchmark circuit for area,

and delay minimization. The 16-bit multiplier in the ISCAS benchmark file C6288 has an

extremely high number of paths from input to output pins. It has been shown [27] that

there are at least 98943441738294937238 unique paths in this circuit. Due to this high

number of paths, it is practically impossible to determine which is the path with the

highest delay. The developed tool is able to partition, match, and cover the circuit within

a similar amount of time as the other benchmark circuits, minimizing delay or area;

however, it is not able to determine what the critical path delay is due to the number of

paths to explore. As such, this circuit has been excluded from comparison with Synopsys

Design Compiler.

6.1 Design Compiler Area Minimization

In this Section, Synopsys Design Compiler was set to minimize the total circuit area of

each benchmark circuit. The resulting total circuit area and critical path delay of each

circuit are compared with the developed synthesis tool for both area and delay

minimization algorithms. Two cases are studied, one with a low output capacitance equal

to 4x the input capacitance, and one with high load equal to 100x the input capacitance.

The critical path delays of the mapped circuits obtained from both the designed synthesis

tool and DC were calculated using (4-1) with an H value of 4 and 100. Section 6.1.1

compares Synopsys Design Compiler with high map effort for area minimization against

the developed tool for area minimization with Cout1Ci0 =4. Section 6.1.2 compares Design

Compiler area minimization against the developed tool for delay minimization with

Cout1Cin=4. Section 6.1.3 compares Design Compiler with high map effort for area

minimization with the developed tool for delay minimization with Cout1Cin=100. Section

6.1.4 compares Design Compiler area minimization with the developed tool for area

minimization with Cout1Cin=100.

77

6.1.1 DC vs. Developed Tool Area Minimization (H = 4)

The developed synthesis tool was set to minimize area for each benchmark circuit by

minimizing the area in each partition as described in Section 4.5.2. Synopsys Design

Compiler 2005 was set to minimize the area of each combinational benchmark circuit

with high map effort. The results of these synthesis tools are presented in Figure 6-2.

Design ComQiler DeveloQed S~nthesis Tool
Area Minimization Area Minimization

Circuit Area Delay # Transistor Area Delay # Transistor 11Area 11 Tran. Count 11Delay

C432 1547 116.79 612 1677 115 696 7.75% 12.07% -1 .56%
C499 3605 135.02 1526 4134 80.9 1724 12.80% 11.48% -66.90%
C880 3029 134.69 1160 2947 89.28 1212 -2.78% 4.29% -50.86%

C1355 3700 121.96 1584 4342 116.41 2140 14.79% 25.98% -4.77%
C1980 3683 144.39 1532 5461 115 2314 32.56% 33.79% -25.56%
C2670 5879 99.5 2442 7179 136.21 3050 18.11% 19.93% 26.95%
C3540 8465 178.75 3194 8318 162.38 3548 -1.77% 9.98% -10.08%
C5315 12932 114.67 5008 18087 124.56 7584 28.50% 33.97% 7.94%
C7552 14493 287.16 5854 23934 97.97 10162 39.45% 42.39% -193.11%

Avg . .Ll- (Design Compiler vs. Developed Tool) 16.60% 21.54% -35.33%

Figure 6-2. DC Area Minimization vs. Developed Tool Area Minimization- H=4

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from the Design Compiler and the developed synthesis tool. The

difference between these two is visible in Figure 6-3. From this data, it can be seen that in

the majority of cases Design Compiler is able to better minimize area than the developed

tool, while the developed tool achieves an average delay reduction of 35.33%. Overall,

the developed tool produced mapped circuits with an average area-delay product 9.27%

less than that from Design Compiler.

Circuit ll. AreaxDela)£

C432 6.32

C499 -45.54

C880 -55.06

C1355 10.72

C1980 15.32

C2670 40.18

C3540 -12.03

C5315 34.18

C7552 -77.49

Avg.Ll -9.27%

Figure 6-3. Design Compiler vs. Developed Tool fl. Area-Delay Product (Area vs. Area)

78

6.1.2 DC vs. Developed Tool Delay Minimization (H = 4)

The developed synthesis tool was set to minimize delay for each benchmark circuit by

minimizing the critical path delay in each partition as described in Section 4.5.1.

Synopsys Design Compiler 2005 was set to minimize the area of each combinational

benchmark circuit with high map effort. The results of these synthesis tools are presented

in Figure 6-4.

Design ComQiler DeveloQed S~nthesis Tool
Area Minimization Delav Minimization

Circuit Area Delay # Transistor Area Delay # Transistor b.Area b. Tran. Count b. Delay

C432 1547 116.79 612 2041 117.39 850 24.20% 0.51% 0.51%

C499 3605 135.02 1526 4182 78.49 1756 13.80% -72.02% -72.02%

C880 3029 134.69 1160 3268 86.93 1400 7.31% -54.94% -54.94%

C1355 3700 121 .96 1584 4390 113.98 2172 15.72% -7.00% -7.00%

C1980 3683 144.39 1532 5581 116.97 2362 34.01% -23.44% -23.44%

C2670 5879 99.5 2442 7332 131 .02 3072 19.82% 24.06% 24.06%

C3540 8465 178.75 3194 8949 167.55 3614 5.41% -6.68% -6.68%

C5315 12932 114.67 5008 18909 124.99 7846 31.61% 8.26% 8.26%

C7552 14493 287.16 5854 24779 97.68 10316 41.51% -193.98% -193.98%

Avg.A1- (Design Compiler vs. Developed Tool) 21.49% -36.14% -36.14%

Figure 6-4. DC Area Minimization vs. Developed Tool Delay Minimization - H=4

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-5. From this data, it can be seen that in the

majority of cases Design Compiler is able to better minimize are than the developed tool,

while the developed tool achieves an average delay reduction of 36.14%. Overall, the

developed tool produced mapped circuits with an average area-delay product 3.94% less

than that from Design Compiler.

Circuit A AreaxDela~

C432 24.59%

C499 -48.29%

C880 -43.61%

C1355 9.82%
C1980 18.54%

C2670 39.11%
C3540 -0.91%
C5315 37.26%
C7552 -71.95%
Avg~ -3.94%

Figure 6-5. Design Compiler vs. Developed Tool/1 Area-Delay Product (Area vs. Delay)

79

6.1.3 DC vs. Developed Tool Area Minimization (H = 1 00)

The developed synthesis tool was set to minimize area for each benchmark circuit by

minimizing the area in each partition as described in Section 4.5.2. Synopsys Design

Compiler 2005 was set to minimize the area of each combinational benchmark circuit

with high map effort. The results of these synthesis tools are presented in Figure 6-6.

Design Com11.iler Develo11.ed S~nthesis Tool
Area Minimization Area Minimization

Circuit Area Delay # Transistor Area Delay # Transistor !J.Area !J. Tran. Count !J.Delay

C432 1575 128.86 622 1677 123.95 696 6.08% 10.63% -3.96%
C499 3689 126.87 1582 4134 89.12 1724 10.76% 8.24% -42.36%
C880 3102 143.64 1206 2947 100.32 1212 -5.26% 0.50% -43.18%

C1355 3796 136.07 1648 4342 124.48 2140 12.57% 22 .99% -9.31%
C1980 3614 146.45 1533 5461 122.04 2314 33.82% 33.75% -20.00%
C2670 5786 172.75 2456 7179 144.18 3050 19.40% 19.48% -19.82%
C3540 8480 218.63 3208 8318 171.64 3548 -1 .95% 9.58% -27.38%
C5315 12925 174.82 5054 18087 131 .47 7584 28 .54% 33.36% -32.97%
C7552 14593 296.74 5953 23934 105.42 10162 39.03% 41.42% -181 .48%

Avg.Ll- (Design Compiler vs. Developed Tool) 15.89% 19.99% -42.27%

Figure 6-6. DC Area Minimization vs. Developed Tool Area Minimization- H=lOO

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-7. From this data, it can be seen that in the

majority of cases, the Synopsys tools are able to better minimize area than the developed

tool, while the developed tool achieves an average delay reduction of 42.27%. Overall,

the developed tool produced mapped circuits with an average area-delay product 15.94%

less than that from Design Compiler.

Circuit

C432

C499
C880

C1355

C1980
C2670
C3540
C5315
C7552
AvgA

11 AreaxDelay

2.36

-27.03
-50.71
4.43

20.58
3.43

-29.86
4.98

-71 .63
-15.94%

Figure 6-7. Design Compiler vs. Developed Toolll Area-Delay Product (Area vs. Area)

80

6.1.4 DC vs. Developed Tool Delay Minimization (H = 100)

The developed synthesis tool was set to minimize delay for each benchmark circuit by

minimizing the critical path delay in each partition as described in Section 4.5.1.

Synopsys Design Compiler 2005 was set to minimize the area of each combinational

benchmark circuit with high map effort. The results of these synthesis tools are presented

in Figure 6-8.

Design Coml!,iler Develof!.ed S~nthesis Tool
Area Minimization Delav Minimization

Circuit Area Delay # Transistor Area Delay # Transistor flAre a ll Tran. Count llDelay

C432 1575 128.86 622 2041 127.64 850 22.83% 26.82% -0.96%
C499 3689 126.87 1582 4182 86.6 1756 11.79% 9.91% -46.50%
C880 3102 143.64 1206 3268 96.6 1400 5.08% 13.86% -48.70%

C1355 3796 136.07 1648 4390 122 2172 13.53% 24.13% -11 .53%
C1980 3614 146.45 1533 5581 125.5 2362 35.24% 35.10% -16.69%
C2670 5786 172.75 2456 7332 138.81 3072 21.09% 20.05% -24.45%
C3540 8480 218.63 3208 8949 176.92 3614 5.24% 11 .23% -23.58%
C5315 12925 174.82 5054 18909 131.75 7846 31 .65% 35.59% -32 .69%
C7552 14593 296.74 5953 24779 104.89 10316 41 .11% 42.29% -182.91%

Avg~- (Design Compiler vs. Developed Tool) 20.84% 24.33% -43.11%

Figure 6-8. DC Area Minimization vs. Developed Tool Delay Minimization- H=lOO

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-9. From this data, it can be seen that in the

majority of cases, the Synopsys tools are able to better minimize area than the developed

tool, while the developed tool achieves an average delay reduction of 43 .11%. Overall,

the developed tool produced mapped circuits with an average area-delay product 10.32%

less than that from Design Compiler.

Circuit

C432

C499

C880

C1355

C1980

C2670

C3540

C5315

C7552

Avg.A

A AreaxDelay

22.09%

-29.23%

-41 .14%

3.56%

24 .43%

1.79%

-17.1%

9.3%

-66.61%

-10.32%

Figure 6-9. Design Compiler vs. Developed Toolll Area-Delay Product (Area vs. Delay)

81

6.1.5 Comparison of Synthesis Algorithms
In all cases outlined above for both low and high output loads, the developed synthesis

tool outperformed Synopsys Design Compiler with respect to the average area-critical

path delay product for the set of ISCAS benchmark circuits.

Figure 6-1 0 illustrates the area-delay product difference between Synopsys Design

Compiler for area minimization and the developed tool for both area and delay

minimization for each circuit with an output load 4x the input capacitance. In nearly all

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the

delay minimization algorithm of Section 4.5.1.

....
(.)

~
"C
2
ll.
>-cu

~
fts e

<(

.5
c:::
0
;:;
(.)
~

"C

~
~ 0

60.00%

40.00% -

20.00%

0.00%

-40.00%

-60.00%

-80.00%

-100.00%

Design Compiler Area Minimization (H = 4)

ISCAS Benchmark Circuit

' --Developed Tool - Area
Mnimzation

--Developed Tool - Delay
Mnimzation

Figure 6-10. DC Area Minimization (H=4)

Figure 6-11 illustrates the area-delay product difference between Synopsys Design

Compiler for area minimization and the developed tool for both area and delay

minimization for each circuit with an output load 1 OOx the input capacitance. In nearly all

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the

delay minimization algorithm of Section 4.5.1.

82

Design Compiler Area Minimization (H = 1 00)

40.00%

t) = 20.00% +--~-------~~ ,
e

Cl.

~ 0.00% +-+-'\r----,---,--l----,----.--~__,--------d-+.------,-----,

;3 Q;

lR ()
.:(-20.00% +--~-----=-.fl---=-----=-----=----+-----"7------=.

.5
c
~ -40.00%

= ,
Cl)

0:: -60.00% +-----------------------
<fl.

-80.00%

ISCAS Benchmark Circuit

--Developed Tool -Area
Mnirrization

--Developed Tool - Delay
Mnimzation

Figure 6-11. DC Area Minimization (H=1 00)

6.2 Design Compiler Delay Minimization

In this Section, Synopsys Design Compiler was set to minimize the critical path delay of

each benchmark circuit, the result of which will be compared with the developed

synthesis tool for both area and delay minimization. As delay minimization is typically

preferred over area minimization, more cases will be studied here to observe the effects

of various output loads than in Section 6.1.

Four cases are studied, with output capacitances equal to 2x, 4x, 16x and lOOx the input

capacitance. A high output load requires higher current to charge the load in the same

time than a lower load does. As the source voltage is not modified if the load is increased,

the resistance of the paths from VDD to load, and load to VSS must be lowered in order

to support this higher current. As such, the widths of the transistors in the gate directly

driving the output load will typically be higher than those of gates elsewhere along the

path. These larger transistors themselves become more difficult to drive by earlier stages

as they are now larger. Typically a design with a high output load requires more stages

83

along the path to gradually "upsize" the current in order to drive the large load in a timely

manner. This dependence on the number of stages and the output load size are both

represented by the variables N and H in (4-1) when calculating the logical effort delay of

the critical path.

The critical path delays of the mapped circuits obtained from both the designed synthesis

tool and DC were calculated using (4-1) with an H value of 2, 4, 16 and I 00. Sections

6.2.1 and 6.2.2 compare Synopsys Design Compiler with high map effort for delay

minimization against the developed tool for delay, and area minimization, respectfully

with Cout1Cin=2. Sections 6.2.3 and 6.2.4 compare Design Compiler with high map effort

for delay minimization against the developed tool for delay, and area minimization,

respectfully with Cout1Cin=4. Sections 6.2.5 and 6.2.6 compare Design Compiler with high

map effort for delay minimization against the developed tool for delay, and area

minimization, respectfully with Cout1Cin=l6. Sections 6.2.7 and 6.2.8 compare Design

Compiler with high map effort for delay minimization against the developed tool for

delay, and area minimization, respectfully with CoutiCin=l 00.

6.2.1 DC vs. Developed Tool Delay Minimization (H = 2)

The developed synthesis tool was set to minimize delay for each benchmark circuit by

minimizing the delay in each partition as described in Section 4.5.1. Similarly, Synopsys

Design Compiler was set to minimize critical path delay in each benchmark circuit with

high map effort. The results of these synthesis tools are presented in Figure 6-12. From

this data, it can be seen that the developed tool produces a circuit with a critical path

delay only marginally higher than that from Design Compiler, while achieving a 41.97%

reduction in area, and a 53.72% reduction in transistor count.

84

Design Com11.iler Develo11.ed Sr,nthesis Tool
Delav Minimization Delav Minimization

Circuit Area Delay # Transistor Area Delay # Transistor 11Area 11 Tran. Count /1Delay

C432 2573 119 1308 2041 115.23 850 -26.07% -53.88% -3.27%

C499 6985 91.63 3218 4182 76.82 1756 -67.03% -83.26% -19.28%

C880 7234 63.6 3164 3268 84.94 1400 -121.36% -126.00% 25.12%

C1355 9446 94.6 4470 4390 112.26 2172 -115.17% -105.80% 15.73%

C1980 8677 79.79 4012 5581 115.14 2362 -55.47% -69.86% 30 .70%

C2670 6874 124.68 3734 7332 129.33 3072 6 .25% -21.55% 3.60%
C3540 12049 161 .78 5406 8949 165.51 3614 -34.64% -49.58% 2.25%

C5315 16351 98.98 7056 18909 123.53 7846 13.53% 10.07% 19.87%

C7552 19271 126.4 8630 24779 96.17 10316 22.23% 16.34% -31.43%

Avg . ..1- (Design Compiler vs. Developed Tool) -41.97% -53.72% 4.81%

Figure 6-12. DC Delay Minimization vs. Developed Tool Delay Minimization- H=2

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-13. From this figure, it can be seen that the

developed tool is able to reduce the overall area-delay product by 30.86% with

comparison to Design Compiler.

Circuit fl. Area)(Delax

C432 -30.19%

C499 -99.23%

C880 -65.75%

C1355 -81.32%
C1980 -7.74%

C2670 9.62%

C3540 -31 .61%

C5315 30.71%
C7552 -2.22%
Avg..Ll -30.86%

Figure 6-13. Design Compiler vs. Developed Toolll Area-Delay Product (Delay vs. Delay)

6.2.2 DC vs. Developed Tool Area Minimization (H = 2)

The developed synthesis tool was set to minimize area for each benchmark circuit by

minimizing the area in each partition as described in Section 4.5.2. Similarly, Synopsys

Design Compiler was set to minimize critical path delay in each benchmark circuit with

high map effort. The results of these synthesis tools are presented in Figure 6-14. From

this data, it can be seen that the developed tool produces a circuit with a critical path

85

delay 5.35% higher than that from Synopsys, while achieving a 50.65% reduction in area,

and a 63.41% reduction in transistor count.

Design Comll.iler Develoll.ed S~nthesis Tool
Delav Minimization Area Minimization

Circuit Area Delay # Transistor Area Delay # Transistor flAre a fl Tran. Count flDelay

C432 2573 119 1308 1677 113.18 696 -53.43% -87.93% -5.14%

C499 6985 91 .63 3218 4134 79.21 1724 -68.96% -86.66% -15 .68%
C880 7234 63.6 3164 2947 87.04 1212 -145.47% -161.06% 26.93%

C1355 9446 94.6 4470 4342 114.67 2140 -117.55% -108.88% 17.50%

C1980 8677 79.79 4012 5461 113.48 2314 -58.89% -73.38% 29.69%

C2670 6874 124.68 3734 7179 134.49 3050 4.25% -22 .43% 7.29%
C3540 12049 161.78 5406 8318 160.37 3548 -44.85% -52.37% -0.88%

C5315 16351 98.98 7056 18087 123.07 7584 9.60% 6.96% 19.57%

C7552 19271 126.4 8630 23934 96.41 10162 19.48% 15.08% -31 .11%

Avg.Ll- (Design Compiler vs. Developed Tool) -50.65% -63.41% 5.35%

Figure 6-14. DC Delay Minimization vs. Developed Tool Area Minimization- H=2

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-15. From this figure, it can be seen that the

developed tool is able to reduce the overall area-delay product by 37.83% with

comparison to Design Compiler.

Circuit A Area)(Dela~

C432 -61.32%
C499 -95.46%
C880 -79.36%

C1355 -79.47%
C1980 -11 .72%

C2670 11.23%

C3540 -46.13%
C5315 27.29%
C7552 -5.56%
Avg.Ll -37.83%

Figure 6-15. Design Compiler vs. Developed Tool /!:i Area-Delay Product (Delay vs. Area)

6.2.3 DC vs. Developed Tool Delay Minimization (H = 4)

The developed synthesis tool was set to minimize delay for each benchmark circuit by

minimizing the delay in each partition as described in Section 4.5.1. Similarly, Synopsys

Design Compiler was set to minimize critical path delay in each benchmark circuit with

86

high map effort. The results of these synthesis tools are presented in Figure 6-16. From

this data, it can be seen that the developed tool produces a circuit with a critical path

delay only marginally higher than that from Design Compiler, while achieving a 44.75%

reduction in area, and a 59.95% reduction in transistor count.

Design ComQiler DeveloQed S~nthesis Tool
Delav Minimization Delav Minimization

Circuit Area Delay # Transistor Area Delay # Transistor 11Area 11 Tran. Count 11Delay

C432 2527 129.77 1274 2041 117.39 850 -23.81% -49.88% -10.55%
C499 8285 95.83 3992 4182 78.49 1756 -98.11% -127.33% -22.09%

C880 6785 79.37 3063 3268 86.93 1400 -107.62% -118.79% 8.70%
C1355 9662 94.36 4838 4390 113.98 2172 -120.09% -122.74% 17.21%
C1980 7604 127.09 3604 5581 116.97 2362 -36.25% -52.58% -8.65%
C2670 7880 84.4 3748 7332 131 .02 3072 -7.47% -22.01% 35.58%
C3540 13152 147.83 6048 8949 167.55 3614 -46.97% -67.35% 11.77%
C5315 15863 115.34 7224 18909 124.99 7846 16.11% 7.93% 7.72%
C7552 19462 106.6 8954 24779 97.68 10316 21 .46% 13.20% -9.13%

Avg . .-1- (Design Compiler vs. Developed Tool) -44.75% -59.95% 3.40%

Figure 6-16. DC Delay Minimization vs. Developed Tool Delay Minimization- H=4

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-17. From this figure, it can be seen that the

developed tool is able to reduce the overall area-delay product by 40.06% with

comparison to Design Compiler.

Circuit fl. AreaxDela~

C432 -36.87%

C499 -141.88%

C880 -89.56%
C1355 -82.21%
C1980 -48.04%

C2670 30.77%
C3540 -29.67%
C5315 22.59%
C7552 14.29%

Avg..Ll -40.06%

Figure 6-17. Design Compiler vs. Developed Tool!!.. Area-Delay Product (Delay vs. Delay)

87

6.2.4 DC vs. Developed Tool Area Minimization (H = 4)

The developed synthesis tool was set to minimize area for each benchmark circuit by

minimizing the area in each partition as described in Section 4.5.2. Similarly, Synopsys

Design Compiler was set to minimize critical path delay in each benchmark circuit with

high map effort. The results of these synthesis tools are presented in Figure 6-18. From

this data, it can be seen that the developed tool produces a circuit with a critical path

delay 3.76% higher than that from Synopsys, while achieving a 53.33% reduction in area,

and a 69.54% reduction in transistor count.

Design Comg,iler Develoeed S~nthesis Tool
Delav Minimization Area Minimization

Circuit Area Delay # Transistor Area Delay # Transistor fl.Area fl. Tran. Count fl. Delay

C432 2527 129.77 1274 1677 115 696 -50.69% -83.05% -12.84%

C499 8285 95.83 3992 4134 80.9 1724 -100.41% -131.55% -18.45%

C880 6785 79.37 3063 2947 89.28 1212 -130.23% -152.72% 11.10%

C1355 9662 94.36 4838 4342 116.41 2140 -122.52% -126.07% 18.94%

C1980 7604 127.09 3604 5461 115 2314 -39.24% -55.75% -10.51%

C2670 7880 84.4 3748 7179 136.21 3050 -9.76% -22 .89% 38.04%

C3540 13152 147.83 6048 8318 162.38 3548 -58.11% -70.46% 8.96%

C5315 15863 115.34 7224 18087 124.56 7584 12.30% 4.75% 7.40%

C7552 19462 106.6 8954 23934 97.97 10162 18.68% 11 .89% -8.81%

Avg . .ll- (Design Compiler vs. Developed Tool) -53.33% -69.54% 3.76%

Figure 6-18. DC Delay Minimization vs. Developed Tool Area Minimization- H=4

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-19. From this figure, it can be seen that the

developed tool is able to reduce the overall area-delay product by 4 7.56% with

comparison to Design Compiler.

Circuit A AreaxDelal£

C432 -70.04%

C499 -137.4%

C880 -104.68%

C1355 -80.37%
C1980 -53.88%

C2670 31 .99%

C3540 -43.95%

C5315 18.79%

C7552 11.52%

Avg.JJ -47.56%

Figure 6-19. Design Compiler vs. Developed Toolll Area-Delay Product (Delay vs. Area)

88

6.2.5 DC vs. Developed Tool Delay Minimization (H = 16)

The developed synthesis tool was set to minimize delay for each benchmark circuit by

minimizing the delay in each partition as described in Section 4.5.1. Similarly, Synopsys

Design Compiler was set to minimize critical path delay in each benchmark circuit with

high map effort. The results of these synthesis tools are presented in Figure 6-16. From

this data, it can be seen that the developed tool produces a circuit with a critical path

delay only marginally higher than that from Design Compiler, while achieving a 52.29%

reduction in area, and a 65.17% reduction in transistor count.

Desig_n ComQiler DeveloQed Sr,nthesis Tool
Delav Minimization Delav Minimization

Circuit Area Delay # Transistor Area Delay # Transistor 11Area 11 Tran. Count 11Delay

C432 3106 129.74 1622 2041 121 .94 850 -52.18% -90.82% -6.40%
C499 8422 90.39 3966 4182 82.06 1756 -101 .39% -125.85% -10.15%
C880 7390 76.39 3338 3268 91.18 1400 -126.13% -138.43% 16.22%

C1355 9625 93.71 4506 4390 117.57 2172 -119.25% -107 .46% 20.29%
C1980 8422 127.91 3926 5581 120.78 2362 -50.90% -66.22% -5.90%
C2670 8013 99.19 3716 7332 134.52 3072 -9.29% -20.96% 26.26%
C3540 12605 152.72 5546 8949 171.76 3614 -40.85% -53.46% 11.09%
C5315 16637 116.1 7386 18909 128.01 7846 12.02% 5.86% 9.30%
C7552 20471 111.54 9198 24779 100.88 10316 17.39% 10.84% -10.57%

Avg . .A- (Design Compiler vs. Developed Tool) -52.29% -65.17% 5.57%

Figure 6-20. DC Delay Minimization vs. Developed Tool Delay Minimization- H=16

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-21. From this figure, it can be seen that the

developed tool is able to reduce the overall area-delay product by 42.75% with

comparison to Design Compiler.

Circuit ~ AreaxDela~

C432 -61.91%
C499 -121.83%
C880 -89.45%

C1355 -74.75%
C1980 -59.81%
C2670 19.42%
C3540 -25.24%
C5315 20.2%
C7552 8.66%
Avg.Ll -42.75%

Figure 6-21. Design Compiler vs. Developed Tool fl. Area-Delay Product (Delay vs. Delay)

89

6.2.6 DC vs. Developed Tool Area Minimization (H = 16)

The developed synthesis tool was set to minimize area for each benchmark circuit by

minimizing the area in each partition as described in Section 4.5.2. Similarly, Synopsys

Design Compiler was set to minimize critical path delay in each benchmark circuit with

high map effort. The results of these synthesis tools are presented in Figure 6-22. From

this data, it can be seen that the developed tool produces a circuit with a critical path

delay 3.76% higher than that from Synopsys, while achieving a 61.81% reduction in area,

and a 76.09% reduction in transistor count.

Design Comll.iler Develoll.ed Sr,nthesis Tool
Delav Minimization Area Minimization

Circuit Area Delay # Transistor Area Delay # Transistor flAre a 6. Tran. Count t::..Delay

C432 3106 129.74 1622 1677 119.04 696 -85.21% -133.05% -8.99%
C499 8422 90.39 3966 4134 84.51 1724 -103.73% -130.05% -6.96%
C880 7390 76.39 3338 2947 94.01 1212 -150.76% -175 .41% 18.74%

C1355 9625 93.71 4506 4342 120.02 2140 -121.67% -110.56% 21 .92%
C1980 8422 127.91 3926 5461 118.16 2314 -54.22% -69 .66% -8.25%
C2670 8013 99.19 3716 7179 139.8 3050 -11.62% -21 .84% 29.05%
C3540 12605 152.72 5546 8318 166.54 3548 -51 .54% -56.31% 8.30%
C5315 16637 116.1 7386 18087 127.65 7584 8.02% 2.61% 9.05%
C7552 20471 111.54 9198 23934 101.26 10162 14.47% 9.49% -10.15%

Avg.Ll- (Design Compiler vs. Developed Tool) -61.81% -76.09% 5.86%

Figure 6-22. DC Delay Minimization vs. Developed Tool Area Minimization- H=16

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-23. From this figure, it can be seen that the

developed tool is able to reduce the overall area-delay product by 51.06% with

comparison to Design Compiler.

Circuit 11 AreaxDela~

C432 -101.86%

C499 -117.9%

C880 -103.76%

C1355 -73.08%
C1980 -66.95%

C2670 20.81%

C3540 -38.96%

C5315 16.34%

C7552 5.79%

Avg~ -51.06%

Figure 6-23. Design Compiler vs. Developed Tool b. Area-Delay Product (Delay vs. Area)

90

6.2.7 DC vs. Developed Tool Delay Minimization (H = 100)

The developed synthesis tool was set to minimize delay for each benchmark circuit by

minimizing the delay in each partition as described in Section 4.5.1. Similarly, Synopsys

Design Compiler was set to minimize critical path delay in each benchmark circuit with

high map effort. The results of these synthesis tools are presented in Figure 6-24. From

this data, it can be seen that the developed tool produces a circuit with a critical path

delay only marginally higher than that from Design Compiler, while achieving a 43.09%

reduction in area, and a 55.44% reduction in transistor count.

Design ComQ.iler DeveloQ.ed Sr_nthesis Tool
Delav Minimization Delav Minimization

Circuit Area Delay # Transistor Area Delay # Transistor flAre a ll Tran. Count llDelay

C432 2779 136.64 1392 2041 127.64 850 -36.16% -63.76% -7.05%
C499 7946 93.8 3722 4182 86.6 1756 -90.00% -111.96% -8.31%
C880 6206 78.29 2772 3268 96.6 1400 -89.90% -98.00% 18.95%

C1355 9313 106.16 4452 4390 122 2172 -112.14% -104.97% 12.98%
C1980 7029 141 3268 5581 125.5 2362 -25.95% -38.36% -12.35%
C2670 8982 100.8 4318 7332 138.81 3072 -22.50% -40.56% 27.38%
C3540 12395 170.11 5452 8949 176.92 3614 -38.51% -50.86% 3.85%
C5315 16859 121 .65 7766 18909 131.75 7846 10.84% 1.02% 7.67%
C7552 20688 97.62 9436 24779 104.89 10316 16.51% 8.53% 6.93%

Avg . .Ll- (Design Compiler vs. Developed Tool) -43.09% -55.44% 5.56%

Figure 6-24. DC Delay Minimization vs. Developed Tool Delay Minimization- H=lOO

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-25. From this figure, it can be seen that the

developed tool is able to reduce the overall area-delay product by 34.86% with

comparison to Design Compiler.

Circuit ll. AreaxDelal£
C432 -45.76%

C499 -105.8%

C880 -53.91%
C1355 -84.6%
C1980 -41 .5%

C2670 11.04%

C3540 -33.18%
C5315 17.68%
C7552 22.3%
AvgA -34.86%

Figure 6-25. Design Compiler vs. Developed Toolll Area-Delay Product (Delay vs. Delay)

91

6.2.8 DC vs. Developed Tool Area Minimization (H = 100)

The developed synthesis tool was set to minimize area for each benchmark circuit by

minimizing the area in each partition as described in Section 4.5.2. Similarly, Synopsys

Design Compiler was set to minimize critical path delay in each benchmark circuit with

high map effort. The results of these synthesis tools are presented in Figure 6-26. From

this data, it can be seen that the developed tool produces a circuit with a critical path

delay 5.72% higher than that from Design Compiler, while achieving a 51.72% reduction

in area, and a 64.93% reduction in transistor count.

Design Comfliler Develofled S~nthesis Tool
Delav Minimization Area Minimization

Circuit Area Delay # Transistor Area Delay # Transistor flAre a 11 Tran. Count flDelay

C432 2779 136.64 1392 1677 123.95 696 -65.71% -100.00% -10.24%
C499 7946 93 .8 3722 4134 89.12 1724 -92.21% -115.89% -5.25%
C880 6206 78.29 2772 2947 100.32 1212 -110.59% -128.71% 21 .96%

C1355 9313 106.16 4452 4342 124.48 2140 -114.49% -108.04% 14.72%
C1980 7029 141 3268 5461 122.04 2314 -28.71% -41 .23% -15.54%
C2670 8982 100.8 4318 7179 144.18 3050 -25.11% -41.57% 30.09%
C3540 12395 170.11 5452 8318 171.64 3548 -49.01% -53.66% 0.89%
C5315 16859 121 .65 7766 18087 131.47 7584 6.79% -2.40% 7.47%
C7552 20688 97.62 9436 23934 105.42 10162 13.56% 7.14% 7.40%

Avg.Ll- (Design Compiler vs. Developed Tool) -51.72% -64.93% 5.72%

Figure 6-26. DC Delay Minimization vs. Developed Tool Area Minimization- H=lOO

The area-critical path delay product was calculated for each benchmark circuit for the

results obtained from Design Compiler and the developed synthesis tool. The difference

between these two is visible in Figure 6-27. From this figure, it can be seen that the

developed tool is able to reduce the overall area-delay product by 38.2% with comparison

to Design Compiler.

Circuit IJ. AreaxDelall
C432 -82.68%

C499 -102.3%

C880 -64.34%

C1355 -82.92%

C1980 -48.71%

C2670 12.53%

C3540 -47.69%

C5315 13.75%

C7552 19.96%
Avg.Ll -42.49%

Figure 6-27. Design Compiler vs. Developed Tool h. Area-Delay Product (Delay vs. Area)

92

6.2.9 Comparison of Synthesis Algorithms

In all cases outlined above for all output loads, the developed synthesis tool outperformed

Synopsys Design Compiler with respect to the average area-critical path delay product

for the set of ISCAS benchmark circuits.

Figure 6-28 illustrates the area-delay product difference between Synopsys Design

Compiler for delay minimization and the developed tool for both area and delay

minimization for each circuit with an output load 2x the input capacitance. In nearly all

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the

delay minimization algorithm of Section 4.5.1.

Design Compiler Delay Minimization (H = 2)

40.00%

.. 20.00% u
::s

't:J e 0.00% D..
>.
ftS

~ --Developed Tool - Delay
cis Mnimization e -40.00%
c(--Developed Tool - Area
·= Mnimization c: -60.00%
0
:;:;
u
::s -80.00%

't:J

~
~ 0 -100.00%

-120.00%

ISCAS Benchmark Circuit

Figure 6-28. DC Delay Minimization (H=2)

Figure 6-29 illustrates the area-delay product difference between Synopsys Design

Compiler for delay minimization and the developed tool for both area and delay

minimization for each circuit with an output load 4x the input capacitance. In nearly all

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the

delay minimization algorithm of Section 4.5.1.

93

60.00%

40.00% -... u
::J 20.00% "C e

0.00% D.
>. ca

-20.00%
~ CJ
cU -40.00% e
< -60.00%
.5
c -80.00% 0

~ -100.00% ::J
"C

~ -120.00%
~ 0 -140.00%

-160.00% -

Design Compiler Delay Minimization (H = 4)

_Q; ~q,(;:)
--cJ' G

~<o
u"

ISCAS Benchmark Circuit

--Developed Tool - Delay
Mnimization

--Developed Tool- Area
Mnimization

Figure 6-29. DC Delay Minimization (H=4)

Figure 6-30 illustrates the area-delay product difference between Synopsys Design

Compiler for delay minimization and the developed tool for both area and delay

minimization for each circuit with an output load 4x the input capacitance. In nearly all

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the

delay minimization algorithm of Section 4.5.1.

94

...
u
:::s
"C
e a..
~
~

Design Compiler Delay Minimization (H = 16)

40.00% .,---------------·-----

20.00%

fts -40.00% +---------___. ___ _.I__ ___ _

!
c(-60.00% +------------------------o.H--
.5
c
.2 -80.00% +--~- --~~-- ---------
1)
:::s -g -100.00% +---.:----+-- --F--F---------

~

~ -120.00% +----v--------

-140.00% __~_____ ___________ _

ISCAS Benchmark Circuit

Figure 6-30. DC Delay Minimization (H=l6)

~el_op~d Tool - Dela~
1mzat1on

veloped Tool - Area
imzation

Figure 6-31 illustrates the area-delay product difference between Synopsys Design

Compiler for delay minimization and the developed tool for both area and delay

minimization for each circuit with an output load 4x the input capacitance. In nearly all

cases, the area minimization algorithm as described in Section 4.5.2 outperforms the

delay minimization algorithm of Section 4.5.1.

From the results presented abole, it can be seen that the proposed area minimization

algorithm as described in Section 4.5.2 outperforms the delay minimization algorithm of

Section 4.5.1. There are certain circuits however, which neither algorithm is able to

outperform the results obtained from Synopsys Design Compiler. These benchmark

circuits are C2670 and C5315. This is due to the fact that Design Compiler is able to map

XOR gates to the input HDL, rather than many smaller functions. The XOR gate is not a

standard CMOS logic gate as the compliment of each input must be available- a two

input XOR actually receives four inputs: input A, input B, and the compliments of both.

Due to DAG partitioning, the developed tool will never be able to recognize these XOR

gates. Similarly, the multiplexor (MUX) is not a standard CMOS logic gate due to the

95

fact that many of the drains of the transistors in the gate are not directly connected to the

output, but rather to the gates of other internal transistors to the logic gate. Design

Compiler is able to use MUX and XOR gates from its cell library - as such, benchmark

circuit 2670 has 30% by area utilization XOR circuits. Similarly, C5315 has 43% by area

MUX and XOR circuits. This is much higher than the other benchmark circuits such as

C3540 which has 17% area XOR gates which the developed tool outperforms.

Design Compiler Delay Minimization (H = 100)

40.00%

t) 20.00% +----------------~~
:::::1

"C £ 0.00% -f====.==~===r=-===.===.=~~=~f/====:-~==='9

~
~
ds
~ -40.00% +----------1#---~r------

.E
c -60.00%
0

~
:::::1 -80.00%

~ '* -100.00%

-120.00% -'--------------------

ISCAS Benchmark Circuit

--Developed Tool- Delay
Mnirrization

--Developed Tool- Area
Mnirrization

Figure 6-31. DC Delay Minimization (H=lOO)

2.3 Summary

This chapter outlined the results obtained from executing the developed synthesis tool

over a set of benchmark circuits. Two problematic benchmark circuits were identified,

and reasons for the lack of improvement were suggested. The following chapter will

discuss conclusions and future work.

96

7. Conclusions and Future Work

This thesis has proposed new matching and covering algorithms for use in library-free

synthesis which produce a cover minimizing path delay as in logical effort theory or

overall circuit area by minimizing input capacitance to gates. The results of these

algorithms are independent of the initial decomposition of the circuit through the use of

Boolean matching. Due to runtime constraints, the tool is currently limited to matching

functions with up to 12 inputs. This 12 input limitation will allow for covering with gates

with up to 24 transistors. With this constraint, most benchmark circuits were able to

complete in a few minutes. Due to the exponential nature of the problem being solved,

this time quickly grows beyond 12 inputs. In the future, given advances in processing

capabilities, improved minimization, and matching algorithms, this value will allow

matching functions with higher number of inputs.

The most significant improvement in results with comparison to Synopsys Design

Compiler comes when the developed tool is set to minimize overall circuit area, and

Design Compiler is set to minimize critical path delay. From Figure 6-22, it can be seen

that for a marginal delay increase of 5.86%, an area reduction of 61.81% can be realized,

yielding an average area-delay product improvement of 51.06%.

The area of the benchmark circuits is calculated by summing the input capacitances, Cin,

to each transistor of each gate in the mapped circuit. The dynamic power consumed by a

circuit results from the charging and discharging of input capacitances to gates as they

switch [28]. Dynamic power can be calculated by (7 -1), where a represents the switching

activity, C is the sum of all input capacitances to the circuit, Ynn is the supply voltage,

and f is the frequency of the switching. The switching activity for general circuits is in

the range of 0.4 - 0.5 [29].

2
pdynamic = aCVDD f (7-1)

97

A reduction in input capacitance of 61.81% implies a proportional reduction in dynamic

power by the same amount. As such, the area minimization algorithm on average will

reduce circuit area and dynamic power consumption by 61.81% while suffering a 5.86%

increase in critical path delay with respect to Synopsys Design Compiler with high map

effort for delay minimization. This reduction in area and power may be very useful in the

development of small, low power mobile devices such as in cellular phones or wireless

sensors. Other work has been proposed [30] which attempts to synthesize to a transistor

netlist optimizing delay by minimizing the input capacitances of the switching transistors.

There is much potential in the area of library-free synthesis to improve the efficiency of

circuits produced on existing technology processes, and to ease the transition to new

processes. A virtual cell library is not tied to any particular technology; as such, circuits

may be synthesized using a virtual library to any technology process without the need to

recreate the individual cells. The developed tool may be improved by expanding the

capability of the matching algorithm to match functions with more than 12 inputs,

allowing for much more complex gates to be used in the final cover.

98

8. References
[1] Noyce, R.N., US. Patent No. 2,981,877USA, 1961.

[2] S. Thompson, M. Alavi, M. Hussein, P. Jacob, C. Kenyon, P. Moon, M. Prince, S.
Sivakumar, S. Tyagi, M. Bohr., "130nm Logic Technology Featuring 60nm
Transistors,Low-K Dielectrics, and Cu Interconnects." Intel Technology Journal, 2002,
Issue 02, Vol. 06. 1535766X.

[3] B. Guan, C. Sechen., "Large standard cell libraries and their impact on layout area
and circuit performance." Austin : IEEE, 1996. International Conference Computer
Design, VLSI in Computers and Processors. pp. 3 78-3 83. 0-8186-7 5 54-3 .

[4] T. Sakurai, A.R. Newton., "Delay analysis of series-connected MOSFET circuits."
IEEE Journal of Solid-State Circuits, February 1991, Issue 2, Vol. 26, pp. 122-131. 0018-
9200.

[5] J. Togni, F.R. Schneider, V.P. Correia, R.P. Ribas, A.l. Reis., "Automatic generation
of digital cell libraries." 2002. 15th Symposium on Integrated Circuits and Systems
Design. pp. 265-270. 0-7695-1807-9.

[6] M. Rawski, Z. Jachna, I. Brzozowski, R. Rzechowski., "Practical Aspects of Logic
Synthesis Based on Functional Decomposition." Warsaw: s.n., 2001. Euromicro
Symposium on Digital Systems Design. pp. 38-45. 0-7695-1239-9.

[7] Keutzer, K., "DAGON: Technology Binding and Local Optimization by Dag
Matching." 1987. 24th Conference on Design Automation. pp. 341-347.0-8186-0781-5.

[8] M.J. Chung, K. Sangchul., "A path-oriented algorithm for the cell selection problem."
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions, 1995,
Issue 3, Vol. 14, pp. 296-307. 0278-0070.

[9] Mailhot, F., Technology Mapping For VLSI Circuits Exploiting Boolean Properties
and Operations. Stanford : Standord University, 1994.

[10] Detjens, E., "Technology Mapping in MIS." Los Alamitos: IEEE Computer Society
Press, 1987. ICCAD. pp. 116-119.

[11] L. Lavagno, G. Martin, L. Scheffer., Electronic Design Automation for Integrated
Circuits Handbook. 2006. 0849330963.

[12] Micheli, G., Synthesis and Optimization of Digital Circuits. s.l. :McGraw-Hill
Science, 1994. 0-07-016333-2.

99

[13] F. Mailhot, G. Micheli., "Technology mapping using boolean matching and don't
care sets." Glasgow: s.n., 1990. European Design Automation Conference. 0-8186-2024-
2.

[14] D. Debnath, T. Sasao., "Efficient Computation of Canonical Form under Variable
Permutation and Negation for Boolean Matching in Large Libraries." IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, s.l.: Oxford
University Press, December 2006, Issue 12, Vols. E89-A. 0916-8508.

[15] J. Ciric, C. Sechen., "Efficient canonical form for Boolean matching of complex
functionsin large libraries." San Jose: s.n., 2001. pp. 610-617.0-7803-7247-6.

[16] Biswas, N .N ., "Minimization of Boolean Functions." IEEE Transactions on
Computers, August 1971, Issue 8, Vols. C-20, pp. 925-929. 0018-9340.

[17] Kahramanli, S. Gunes, S. Sahan, S. Basciftci, F., "A New Method Based on Cube
Algebra for the Simplification of Logic Functions." Arabian Journal for Science and
Engineering, Konya,Turkey: King Fahd University of Petroleum & Minerals, April
2007, Issue IB, Vol. 32, pp. 101-114. 0377-9211.

[18] A. Reis, M. Robert, R. Reis., "Topological Parameters for Library Free Technology
Mapping." Rio de Janeiro: s.n., 1998. Brazilian Symposium on Integrated Circuit
Design. 0-8186-8704-5.

[19] Reis, A., "Covering strategies for library free technology mapping." Natal: s.n.,
1999. Symposium on Integrated Circuits and System Design. 0-7695-0387-X.

[20] Y. Jiang, S. Sapatnekar, C. Bamji., "Technology mapping for high performance
static CMOS and pass transistor logic designs." IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, s.l. : IEEE Educational Activities Department, 200 I, Issue 5,
Vol. 9. 1063-8210.

[21] V .Correia, A. Reis., "Advanced technology mapping for standard-cell generators."
Pernambuco : s.n., 2004. 17th symposium on Integrated circuits and system design. pp.
254-259. 1-58113-947-0.

[22] F. Marques, L. Rosa, R. Ribas, S. Sapatnekar, A. Reis., "DAG based library-free
technology mapping." Stresa-Lago Maggiore: ACM, 2007. 17th ACM Great Lakes
symposium on VLSI. pp. 293-298. 978-1-59593-605-9.

[23] S. Gavrilov, A. Glebov, S. Pullela, S.C. Moorehoudhury, R. Panda, G. Vijayan, D.T.
Blaauw A. Dhar., "Library-less synthesis for static CMOS combinational logic circuits."
San Jose: IEEE Computer Society, 1997. Proceedings of the 1997 IEEEIACM
international conference on Computer-aided design. pp. 658 - 662. 0-8186-8200-0 .

100

[24] L. Stok, M. Iyer, A. Sullivan., "Wavefront technology mapping." Munich : s.n.,
1999. Design, Automation, and Test in Europe. 1-58113-121-6.

[25] I. Sutherland, B. Sproull, D. Harris., Logical effort: designing fast CMOS circuits.
s.l. : Morgan Kaufmann Publishers Inc., 1999. 1-55860-557-6.

[26] S. Karandikar, S. Sapatnekar., "Logical Effort Based Technology Mapping." s.l. :
IEEE Computer Society, 2004. 2004 IEEEIACM International conference on Computer­
aided design. pp. 419 - 422. 0-7803-8702-3 .

[27] 0. Gjermundnes, E.J. Aas., Design of a path delay fault simulator for evaluation of
abist generated stimuli. 2005. 0-7803-9345-7.

[28] N. Weste, D. Harris., CMOS VLSI Design. s.l.: Addison-Wesley, 2005. 0-321-
14901-7.

[29] J.M. Rabaey, M. Pedram (Eds.)., Low Power Design Methodologies. s.l.: Kluwer
Academic Publishers, 1995. 978-0-7923-9630-7.

[30] D. Kagaris, T. Haniotakis., "Transistor-Level Synthesis for Low-Power
Applications." Carbondale : s.n., 2007. 8th International Symposium on Quality
Electronic Design. pp. 607-612.0-7695-2795-7.

[31] R.F. Pease, S.Y. Chou., "Lithography and Other Patterning Techniques for Future
Electronics." Proceedings of the IEEE. 2008, Vol. 96, 2.

[32] Kabbani, A. Al-Khalili, D. Al-Khalili, A.J., "Logical path delay distribution and
transistor sizing." Toronto : s.n., 2005. The 3rd International NEWCAS Conference. pp.
391- 394. 0-7803-8934-4.

[33] Kabbani, A., Al-Khalili, D. and Al-Khalili, A.J., "Delay analysis of CMOS gates
using modified logical effort model." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2005, Issue 6, Vol. 24, pp. 937- 947.

[34] Xue, Jingyue, Al-Khalili, D. and Rozon, C.N., "Tree-based transistor topology
extraction algorithm for library-free logic synthesis." Kingston : s.n., 2004. IEEE
International Conference on Semiconductor Electronics. 0-7803-8658-2.

[35] Jain, Alok and Bryant, R.E., "Switch-Level Technology Mapping and Modeling."
1991. Design Automation Conference. pp. 219 - 222.

[36] Sechen, C., "Libraries: LifeJacket or Straitjacket." 2003. Design Automation
Conference. pp. 642- 643. 1-58113-688-9.

101

[37] L. Rung-Bin, I. Chou, T. Chi-Ming., "Benchmark Circuits Improve the Quality of a
Standard Cell Library." Wanchai : s.n., 1999. Design Automation Conference. pp. 173-
176.0-7803-5012-X.
[38] Scott, K. and Keutzer, K., "Improving cell libraries for synthesis." 1994. pp. 128 -
131.

[39] T.H. Kim, Y.H. Kim., "DEMI: A Delay Minimization Algorithm for Cell-Based
Digital VLSI Design." IEICE Trans Fundam Electron Commun Comput Sci, 1999, Issue
3, Vols. E82-A, pp. 504-511. 0916-8508.

[40] S. Lin, M. Marek-Sadowska, E. S. Kuh., "Delay and area optimization in standard­
cell design." Orlando: ACM, 1991. Annual ACM IEEE Design Automation Coriference.
pp. 349-352. 0-89791-363-9.

102

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2008

	Area-Delay Driven Library-Free Synthesis
	Matthew Pullerits
	Recommended Citation

