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ABSTRACT 

 

Development of A Kinematic Hardening Rule to Assess Ratcheting Response 

of Materials under various Multiaxial Loading Spectra 

 

SeyedMahdi Hamidinejad, Doctor of Philosophy in Mechanical Engineering, Ryerson 

University, Toronto, Canada, 2015 

 

The present thesis develops an Armstrong-Frederick (A-F) type coupled kinematic 

hardening rule to assess ratcheting response of steel alloys under various multiaxial loading paths. 

The hardening rule is constructed on the basis of the recently proposed Ahmadzadeh-Varvani (A-

V) hardening rule to further evaluate the ratcheting response of materials under multiaxial loading 

spectra. The modified model offers a simple framework with limited number of terms and 

coefficients in the dynamic recovery portion of the model. The dynamic recovery further holds 

inner product of plastic strain increment
pd  and backstress unit vector aa  with different 

directions under multiaxial stress cycles enables the model to track different directions.  Term 

2/1

. aan  taking positive values less than unity for multiaxial loading conditions is to control 

the accumulation rate of ratcheting strain and to prevent the modified model to experience plastic 

shakedown over stress cycles in stage II. Term ).2( aan taking the values between 1 and 3 

under multiaxial loading, magnifies the effect of coefficient γ2 to take into account the non-

proportionality effect of various loading paths and further to shift down the predicted ratcheting 

strain over the stress cycles.  

The predicted ratcheting curves by the modified rule were compared with those predicted 

based on earlier developed hardening rules of Ohno-Wang (O-W), Jiang-Sehitoglu (J-S), 

McDowell, and Chen-Jiao-Kim (C-J-K) holding relatively complex framework and more number 

of coefficients. The O-W, the J-S, McDowell and C-J-K models mainly deviated from the 

experimental ratcheting strain of steel alloys for various multiaxial loading histories, while the 
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predicted curves of the modified model closely agreed with experimental data of steel samples 

over ratcheting stages. The predicted ratcheting curves based on the modified model closely agreed 

with experimental data of steel samples under various multiaxial step-loading histories. The 

modified model was also found capable of predicting ratcheting in the opposite direction as the 

tensile axial mean stress dropped in magnitude. The O-W, J-S, McDowell and C-J-K models 

holding more backstress components and coefficients require longer Central Processing Unit 

(CPU) time. While time required for ratcheting assessment using the modified hardening rule was 

found to be twice shorter due to its simpler framework and limited number of coefficients.  
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PREFACE 
 

A brief description of materials covered in the chapters of current thesis is provided in the 

following. 

Chapter 1 presents the background and overview for ratcheting assessment. This chapter 

mainly highlights the scope and objectives of the work. 

Chapter 2 presents a literature survey in the field of cyclic plasticity with emphasis on the 

ratcheting assessment. This chapter also discusses physics of ratcheting and dislocation motion. 

The kinematic hardening rules of Prager, Armstrong-Frederick, Bower, Ohno-Wang, McDowell, 

Jiang-Sehitoglu, Chen-Jiao-Kim and Ahmadzadeh-Varvani were reviewed in the details of their 

frameworks. 

Chapter 3 discusses the framework, terms and components of the modified hardening rule 

to assess multiaxial ratcheting of materials. The terms and coefficients in the dynamic recovery of 

the modified hardening rule are introduced in details and their contributions in multiaxial 

ratcheting assessment of materials in different directions, loading path and non-proportionality 

effect, and shakedown and ratcheting arrest were discussed. The procedures for calculation of 

coupled modulus of plasticity and other stress/strain components for both stress-controlled 

conditions and mixed stress- and strain-controlled multiaxial conditions are presented. This 

chapter presents a comprehensive algorithm to assess ratcheting based on the modified hardening 

rule for various multiaxial step-loading spectra. 

Chapter 4 presents results and discussion on ratcheting assessment of steel alloys under 

various multiaxial loading spectra by mean of the modified hardening rule and other well-known 

hardening rules of O-W, McDowell, J-S, and C-J-K. The terms and coefficients of dynamic 

recovery in these models are extensively discussed and the capability of hardening rules in 

assessing ratcheting under various multiaxial step-loading conditions and paths were evaluated as 

the predicted ratcheting curves were compared with those experimentally reported in this chapter. 
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Chapter 5 summarizes the conclusions extracted from this research work and presents 

future recommendations. 

Appendix A presents MATLAB programming code developed to assess ratcheting 

response based on the modified hardening rule and other well-known hardening rules of O-W, 

McDowell, J-S, and C-J-K along with related subroutines. 

Appendix B tabulates ratcheting experimental strain values employed in chapter 4 to 

evaluate the capability of the modified hardening rule and the O-W, J-S, and C-J-K models for 

steel alloys under various multiaxial loading paths and spectra.  
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1. CHAPTER ONE 

 

 

 INTRODUCTION 

 

 

1.1 Overview and background   

Engineering components and machinery parts such as those in auto- , aero-, and pipeline 

industries can experience catastrophic failure if the extent of materials plastic deformation is not 

accurately controlled over stress cycles. Plasticity theories enable characterising nonlinear strain-

stress response of materials under cyclic loading conditions. Structural components experiencing 

the low-cycle fatigue (LCF) in the presence of mean stress can accumulate an irreversible plastic 

deformation in progress of their fatigue damage as the number of cycle advances. This successive 

and directional plastic strain is defined as cyclic ratcheting strain and occurs in components 

undergoing unsymmetrical stress cycles. The integration of ratcheting and fatigue phenomena 

results in severe damage in materials leading to failure of components. A precise investigation of 

ratcheting response of materials is crucial for reliable design of engineering components and 

structures undergoing asymmetric stress cycles. 

The simulation of ratcheting strain in the framework of coupled constitutive theories is 

complicated as plastic deformation involves the translation of stress space as well as change in 

shape and size of yield surfaces. Several exciting theories in literature are yet to properly predict 

ratcheting behavior of materials particularly under multiaxial loading conditions. The developed 

models in the literature possess numerous coefficients and complicated frameworks. These models 

are also limited to address ratcheting response of some particular materials and limited 

experimental ratcheting data.  
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The present study intends to assess the ratcheting response of steel alloys under single and 

multi-step multiaxial loading histories by means of a modified hardening rule developed on the 

basis of the Ahmadzadeh-Varvani (A-V) hardening rule. The capability of the modified model 

then will be compared with predicted ratcheting curves of earlier well-known models of Ohno-

Wang (O-W), McDowell, Jiang-Sehitoglu (J-S) and Chen-Jiao-Kim (C-J-K) hardening rules as 

well as experimentally obtained ratcheting data. 

 

1.2 Objectives  

The present research intends to study the cyclic ratcheting behavior of different steel alloys 

under non-proportional loading conditions to further develop a simple framework of hardening 

rule for the prediction of ratcheting strain under stress-controlled and mixed stress- strain-

controlled multiaxial paths. The main objective of this work is to further develop the A-F based 

hardening rule of A-V for ratcheting assessment of materials under multiaxial loading histories 

through a comprehensive algorithm and Matlab programming code. The modified hardening rule 

holding material dependent coefficients C and γ1 of the A-V model, redefined calibrating 

coefficient γ2 in conjunction with terms of aad p  , 
2/1

. aan and ).2( aan  in the 

dynamic recovery of the model. The projection presented by the function in term aad p  is 

smaller than dp  in the A-V model resulting in a slower evolution in simulation of ratcheting strain 

under multiaxial loading conditions. Term aad p  introduces a slower evolution of ratcheting 

strain in the deviatoric stress space as the components
pd  and aa in the MaCaulay brackets take 

different directions under multiaxial loading conditions and makes the model capable of tracking 

these different directions. The measure of non-proportionality was also utilized in the form of 

product of 
2/1

. aan  and vector b  to control the accumulation rate of ratcheting strain and 

mainly to prevent the modified model to experience plastic shakedown as the number of cycles 

advances over various multiaxial loading conditions. Under multiaxial loading histories, term
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2/1

. aan takes values smaller than 1 and prevents this model from premature plastic 

shakedown. Term ).2( aan  regulates the magnitude of coefficient γ2 properly for various 

multiaxial loading paths.  This term takes the values between 1 and 3 under multiaxial loading and 

consequently magnifies the effect of γ2 and results in a smaller accumulation rate of ratcheting 

strain over stress cycles. Term ).2( aan  encounters the effect of non-proportionality as 

multiaxial loads are applied and reduces to unity for uniaxial loading condition. 

The capability of the modified hardening rule in ratcheting assessment of materials is 

further examined and compared with a wide variety experimentally obtained data under single-

step and multi-step non-proportional loading histories. The framework, terms and coefficients of 

the Ohno-Wang (O-W), McDowell, Jiang-Sehitoglu (J-S) and Chen-Jiao-Kim (C-J-K) hardening 

rules along with the modified A-V model are described in details. The capability, limitations and 

complications involved with multiaxial ratcheting assessment of steel alloys are discussed.  

 

1.3 Significance of ratcheting and contribution of this research 

Structural and engineering components subjected to asymmetric stress cycles are prone 

to failure and require to be critically assessed for materials integrity. Excess of applied stress 

in load-bearing components in service beyond the elastic limit is most times inevitable. 

Successive and directional plastic strain accumulation over stress cycles and its integration 

with fatigue damage deteriorates fatigue damage through a continuous drop in cross-sectional 

area of components. The ratcheting strain is a hidden problem and exacerbates performance of 

engineering structures due to the interaction of fatigue damage and accumulated ratcheting 

strain. This phenomenon is influenced by several parameters including microstructural 

properties, stress amplitude, mean stress, loading history, loading step and the sequence of 

loading. The catastrophic failure of engineering components and structures has been reported 

[1] to cost over 120 billion dollars per year in North America and ratcheting phenomenon has 
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been recognised as one of the main root causes due to its high detrimental influence on the 

components life. Research in ratcheting enhances a better understanding of the mechanism 

involved with plastic strain accumulation over stress cycles and offers pertinent database to 

reliably design components such as landing gears, offshore structures and piping /pressure 

vessels undergoing asymmetric stresses.   

Ratcheting assessment is considered as a challenging engineering problem due to 

complexity in constitutive cyclic plasticity equations. This involves a delegated process in 

yield surface translation over loading within plasticity regime through a proper choice of 

kinematic hardening rule. This research contributes to develop a comprehensive kinematic 

hardening rule to assess ratcheting response of steel alloys and addresses shortcomings of 

earlier developed hardening rules. The following outlines contributions of the current study: 

 The modified hardening rule offers a simple framework with less coefficients to assess 

ratcheting response of materials over various multiaxial loading spectra.  

 Terms introduced in the dynamic recovery holding plastic strain increment, the normal 

vector to the yield surface, and the backstress components enable the modified model to (i) 

track different directions, (ii) account for the effect of non-proportionality, and (iii) prevent 

plastic shakedown over the multiaxial stress cycles.  

 Coefficients in the modified hardening rule are defined from uniaxial stress-strain and 

ratcheting data while constants in other models discussed in this research are defined by 

segments chosen on the uniaxial stress-strain and multiaxial ratcheting curves through a 

tedious and time-consuming trial procedure. 

 The modified model with less complexity and number of coefficients noticeably shortens 

the CPU time in ratcheting assessment as compared to other hardening rules discussed in 

this thesis. 
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2. CHAPTER TWO 

 

 

LITERATURE SURVEY 

 

 

2.1 Ratcheting response of materials 

 Structural components and machinery parts undergo failure if materials deform severely 

over stress cycles. Engineering components experiencing asymmetric stress cycles with non-zero 

mean stress accumulate an irreversible plastic deformation along with fatigue damage as the 

number of cycles progresses. This successive and directional accumulation of plastic strain is 

referred as ratcheting strain. Both ratcheting and fatigue phenomena when are coupled result in a 

severe damage leading to failure of components. For reliable design of engineering components 

and structures undergoing asymmetric stress cycles, the ratcheting assessment of materials is 

always crucial. Ratcheting phenomenon was first reported by Bairstow [2]. This subject has 

received considerable attention over last few decades. Many researchers have investigated cyclic 

plasticity and ratcheting response of various materials tested under stress-controlled conditions [3-

12].  

2.1.1 Coupled kinematic hardening rules and ratcheting assessment 

Several cyclic plasticity models have been developed to characterize ratcheting response 

of materials under various loading conditions. Unlike coupled hardening rules, there are some 

uncoupled models structured on the basis of constitutive equations at which the calculation of the 

modulus of plasticity, Hp, is not coupled with the hardening rule through the consistency condition 

of yield surface. It can however indirectly affect the hardening rule. The current study aims to 

study and evaluate the coupled constitutive models in predicting and modeling of cyclic ratcheting 
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strain of materials. The coupled kinematic hardening rules at which the calculation of the modulus 

of plasticity, Hp, was coupled with the hardening rule through the consistency condition of yield 

surface were proposed by Armstrong-Frederick (A-F) [13], Chaboche [14], Bower [15], Bari and 

Hassan [16], Delobelle et al. [17], Burlet-Cailletaud [18], Ohno-Wang (O-W) [19—20], Jiang-

Sehitoglu (J-S) [21, 22], McDowell [23] , Abdel Karim-Ohno [24, 25], Döring et al. [26], Kang 

[27], Chen et al. [28-30], Yaguchi-Takahashi [31], Colak [32], Dafalias-Feigenbaum [33] and 

lately Ahmadzadeh-Varvani (A-V) [34, 35]. Combination of linear strain hardening and dynamic 

recovery terms have constructed coupled nonlinear constitutive model of A-F. The choice and 

capability of the coupled hardening rules has been highly dependent on how dynamic recovery 

term was modified. To decrease the rate of plastic strain accumulation over stress cycles, Bower 

[15] introduced a simple non-linear model by adding the second kinematic variable. Chaboche 

[14] proposed a model with a threshold in the dynamic recovery term. Chaboche [14] extended A-

F hardening rule by decomposing hardening rule to several parts at which backstress components 

worked independently. The main goal of employing a threshold in the hardening rule was to reduce 

the overall magnitude of ratcheting and it was implemented by means of a term inside MaCaulay 

brackets. During plastic deformation, the threshold converted the model from non-linear to linear 

hardening rule. Beyond this threshold, the recall term prevented plastic shakedown to occur. Bari 

and Hassan [36] achieved better simulation of uniaxial ratcheting strain while the model with 

threshold over-predicted ratcheting strain for multiaxial loading conditions. Bari and Hassan [16] 

developed a hardening rule by using the ideas of Delobelle et al. [17]. Depending on the magnitude 

of Delobelle parameter, this model compromises over-prediction of ratcheting of A-F and the 

plastic shakedown of Burlet-Cailletaud [18] under multiaxial loading conditions. Dafalias et al. 

[37, 38] developed multiplicative A-F kinematic hardening rule based on the initial model of 

Chaboche et al. [39].  

Based on the concept of independent backstress components Ohno and Wang [19] 

developed a multilinear hardening rule in which each backstress component would have a critical 

state. To avoid producing closed hysteresis loops in uniaxial loading condition, the second version 
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of O-W model was introduced [19] through a power-law function. To improve the capability of 

this model in predicting ratcheting strain under various loading conditions, the O-W models have 

been taken as the backbone of several hardening rules through modifications on dynamic recovery 

part. Abdel-Karim [40] examined the recently developed models implementing terms/ variables 

introduced into the dynamic recovery term of O-W. Jiang and Sehitoglu [22] and McDowell [23] 

modified the exponent of the O-W model. However in these models, accumulated plastic strain 

increment was employed rather than plastic strain increment incorporated to the dynamic recovery 

term. To improve the ability of first model of O-W rather than non-linear activation, Abdel-Karim 

and Ohno [24] utilized a weighting parameter to partially activate dynamic recovery term as 

backstress component reached its critical value. Another effort to improve ratcheting simulation 

was made by Abdel-Karim and Ohno [25] by multiplying new parameters as additional terms into 

dynamic recovery of O-W initial model. Magnitude of these parameters are able to compromise 

the over-prediction of A-F and shakedown of O-W under uniaxial loading conditions. Chen et al. 

[30] reported that the magnitudes of these parameters determined based on uniaxial ratcheting test 

did not enable this hardening rule to predict multiaxial ratcheting in materials. Kang [27] has 

utilized accumulated plastic strain increment instead of plastic strain increment in this model to 

develop a visco-plastic constitutive model to simulate uniaxial and multiaxial ratcheting responses 

of U71Mn rail steel samples. Chen et al. [30] developed a model incorporating a new factor 

associated with backstress and non-coaxiality of plastic strain rate in the second model of O-W. 

Hardening rule of Chen et al. [30] in simulating materials ratcheting under multiaxial loading 

conditions were reported promising [40]. Ahmadzadeh-Varvani [34, 35] modified the dynamic 

recovery term in Bower’s kinematic hardening rule by means of a limited number of material and 

stress level dependent coefficients to assess uniaxial ratcheting response of materials. 
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2.1.2 Hardening rules and ratcheting assessment under complex loading conditions 

Multiaxial ratcheting response of materials becomes rather challenging as loading path and 

non-proportionality are coupled with the hardening rules. Non-proportional loading histories 

induce greater hardening than those of proportional, resulting in slower rates in the ratcheting 

progress over multiaxial stress cycles [41]. The ratcheting assessment of materials are investigated 

based on stress-controlled and/or combined stress- and strain-controlled multiaxial testing 

conditions. Under stress-controlled state, the elements of applied stress tensor are known and the 

incremental ratcheting strain values are defined using Hooke’s law and flow rule through the 

framework of the kinematic hardening rule. While the combined condition embraces complexity 

in the tensorial stress and strain components before the deviatoric stress/strain components are 

employed in ratcheting analysis of materials. Several researchers [41-52] have discussed these 

complexities including the effect of complex loading paths and non-proportionality on ratcheting 

response of materials conducting multiaxial ratcheting tests under stress-controlled and the 

combined stress- and strain-controlled conditions. Hassan et al. [5, 8, 47] discussed capability of 

hardening rules in ratcheting assessment of materials under multiaxial loading conditions and 

concluded that the non-proportionality effect is yet to fully address and the shape of hysteresis 

curves and the evolution of yield surfaces over stress cycles are required to be accurately predicted. 

Jiang and Sehitoglu [53] examined ratcheting response of 1070 steel samples under 

uniaxial and multiaxial step-loading histories. They investigated ratcheting response of steel 

samples under uniaxial high–low and low-high step-loading histories as well as two-step axial-

torsional loading paths. Haupt and Schinke [54] conducted two-step loading tests on austenitic 

AISI 316 L (N) stainless steel samples at room temperature and discussed the influence of loading 

sequence on ratcheting response of steel samples. The influence of loading sequence, stress 

amplitude and mean stress on ratcheting response of SA333 C–Mn and 304LN steel alloys over 

steps of loading was experimentally examined by Paul et al. [55, 56]. Kang et al. [27, 43, 50, 57-

59] investigated ratcheting response of 304 and 316 stainless steel alloys under uniaxial and 

multiaxial step-loading histories. In their studies, Kang and coworkers [27] discussed the influence 
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of temperature in ratcheting progress over loading steps. Goodman [60] investigated the ratcheting 

response of SS316 steel samples under multi-step loading histories and discussed how influential 

the effect of increase in mean stress on ratcheting magnitude is while the applied stress amplitude 

is kept constant. On the other hand, Hassan and Kyriakides [4] discussed the ratcheting response 

of 1026 steel samples tested under multi-step loading with an increasing stress amplitude and a 

constant mean stress over loading steps. Ahmadzadeh-Varvani [35] evaluated ratcheting response 

of SS316L, SA333, SS316L (N) and 1070 steel alloys undergoing various uniaxial low-high, high-

low, low-high-low and high-low-high loading sequences by means of the A-V hardening rule and 

discussed the influence of the prior load step for different loading sequences affecting the 

ratcheting progress in subsequent steps. 

 

2.2 Physics of ratcheting and dislocation motion  

The successive plastic deformation over stress cycles referred as ratcheting strain tends to 

be accumulated in three distinct stages. This phenomenon is similar, but not identical in nature to 

cyclic creep. The ratcheting strain is the result of formation of cells, dislocations movement and/or 

slip and the interaction of dislocations [61-64]. In stage I, ratcheting increases rapidly while 

experiencing a gradual decrease in ratcheting rate as a result of cyclic hardening and reduction of 

dislocation motion [65]. In the second stage, the ratcheting rate decreases until the stabilization of 

ratcheting strain occurs. At the last stage, as the number of cycles advances more active dislocation 

are produced and the cross sectional area decreases due to accumulation of the plastic strain. This 

accelerates the accumulation of ratcheting strain, resulting in an increase in the true stress, and an 

instability and therefore necking in the specimen experiencing ratcheting [61-64].    

 

2.3 A-F type kinematic hardening rules and ratcheting assessment 

The backbone of cyclic plasticity models is structured by important constituents of strain 

increment, Hooke’s law, yield function, flow rule, hardening rule and consistency condition. The 
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hardening rule is the central part of cyclic plasticity theory defining the movement direction of 

yield surface in the stress space during plastic deformation. This chapter mainly describes structure 

of A-F type hardening rules including the linear kinematic hardening rule of Prager [66], non-

linear hardening rule of Armstrong-Frederick (A-F) [13], Bower’s model [15] further developed 

on the basis of A-F rule by introducing second kinematic variable, the Ohno-Wang (O-W) [20] 

hardening rule developed based on the critical state of dynamic recovery of backstress, the Jiang-

Sehitoglu (J-S) [21], McDowell and Chen-Jiao-Kim (C-J-K) [30] hardening rules developed based 

on the O-W rule to include the effects of non-proportionality in ratcheting assessment of materials. 

 

2.3.1 The Prager Model 

The simplest kinematic hardening rule has been proposed by Prager [66]. This model 

translates the yield surface linearly in the stress space without altering the shape and size of it 

during plastic deformation:  

pCdad                                          (2.1) 

where � corresponds to the backstress tensor and C is a material constant. Based on the linear 

hardening rule, if the shape of yield surface stays unchanged the value of plastic modulus will be 

identical with the value of constant C in forward loading and reverse loading and consequently 

results in closed hysteresis loops and no ratcheting as shown in Fig. 2.1. Upon application of stress 

cycles in the presence of mean stress, this model is not capable to predict the shape of hysteresis 

loops properly and after overprediction of ratcheting over initial stress cycles ratcheting is arrested. 
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Figure 2.1 Hysteresis loops based on Prager hardening rule for 42CrMo. 

 

 

2.3.2 The Armstrong-Frederick Model 

Armstrong and Frederick [13] modified Prager’s model by adding a dynamic recovery term 

introducing nonlinearity to this model as: 

dpaCdad p         (2.2) 

where 

pp dddp  .        (2.3) 

Coefficients C and γ are material coefficients. The second term in equation (2.2) 

introducing nonlinearity to the model is responsible for the accumulation of plastic strain over the 

stress cycles. Uniaxial stress–strain hysteresis loops obtained from strain-controlled loading 

condition are employed to determine the C and γ. Constants C and γ are used to find modulus of 

plasticity given in equation (2.4): 

).( naCH p                          (2.4) 
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The dynamic recovery term in Armstrong-Frederick kinematic hardening rule is responsible to 

track different shapes of forward loading and reverse loading hysteresis curves. The modulus of 

plasticity takes negative sign during forward loading and positive sign in reverse loading as shown 

in the Fig 2.2 for 42CrMo steel. 

 

Figure 2.2 Hysteresis loops of 42CrMo based on A-F hardening rule. 

 

The A-F hardening model produces open hysteresis loops resulting in ratcheting progress, however 

this model predicts same loops over all stress cycles, resulting in a constant rate of ratcheting. In 

Fig 2.2 the equality of ratcheting strain intervals (a=b) proves that this model predicts ratcheting 

strain of 42CrMo steel with a constant rate resulting in a significant overestimation of the 

ratcheting.  

 

2.3.3 The Bower Model 

The A-F hardening rule predicts ratcheting with a constant rate per cycle and consequently 

overestimates the ratcheting strain. Bower [15] further modified the A–F rule to overcome this 

drawback. He introduced the second kinematic variable 2  into the dynamic recovery term to 
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reduce the constant rate of strain accumulation predicted by the A-F hardening rule as the number 

of stress cycles advances. The Bower’s model of equation (2.5) employs the second kinematic 

variable in the recall term to simulate the accumulating ratcheting strain decay [15, 67]:  

dpbaCdad p )(1                     (2.5a) 

dpbabd )(2                            (2.5b) 

In Bower’s model coefficient C  and the first kinematic variable 1  are material constants 

regulating size and the shape of hysteresis loops. The second kinematic variable is responsible to 

determine the ratcheting rate. Constant 2  introduces a gradual decrease in the magnitude of 

)( ba  as the stress cycles advances. The movement of tensor b  with the initial value of zero in 

equation (2.5a) follows backstress )(a exponentially through equation (2.5b) over stress cycles. 

This model is capable to simulate rate of ratcheting decay over initial number of cycles and over 

stage I. Fig 2.3 shows the hysteresis loops of 42CrMo steel sample predicted by the Bower model.  

This figure shows the capability of the model to track different shapes between forward and reverse 

loading and produces open hysteresis loops similar to the A-F hardening rule. It is evident from 

figure 2.3 as a>b, this model is able to simulate the rate of ratcheting decay as the number of cycles 

advances. The model however suffers a premature shakedown in stage II.  
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Figure 2.3 Hysteresis loops of 42CrMo based on the Bower hardening rule. 

 

 

2.3.4 The Ohno-Wang (O-W) Model  

Ohno and Wang [19, 20] developed a hardening rule on the basis of the critical state of the 

dynamic recovery term in the backstress equation. The total backstress in this hardening rule is 

defined based on the superposition of M independent backstress components as presented 

schematically in figure 2.4 suggested first by Chaboche [14] as: 





M

i

iadad
1

   Mi ,...,2,1                   (2.6) 
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Figure 2.4 Total backstress defined based on the superposition of M independent backstress 

components. 

A critical value in each component (i=1, 2,…, ε) causes its dynamic recovery term to be 

fully activated. In the initial O-W model [19], authors employed a Heaviside step function in the 

dynamic recovery term as: 












 i

i

i
pipiii a

a

a
dfHdrad  )(

3

2
                        (2.7) 

 

Magnitude of 
ia is defined as |

ia |= (
ia .

ia ) ½ and the critical state of dynamic recovery 

through yield surface definition of fi=|
ia |2- ri

2. In proportional loading conditions, for 
ia < ri 

hardening rule linearly develops with the rate of 
ii r

3

2
 and as soon as 

ia =ri dynamic recovery 

term is activated and dynamic recovery and hardening terms become balanced resulting in no 

change in backstress i.e. 0iad . The hardening rule acted as a multi-linear model for uniaxial 
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case and produced closed hysteresis loops resulting in materials ratcheting arrest [19, 68]. To 

overcome this shortcoming, the second O-W model was defined by means of a power function as: 
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Dynamic recovery term in this hardening rule operates partially within the yield surface fi and as 

each backstress component, ia approaches the surface fi its dynamic recovery becomes highly 

nonlinear. As exponent mi approaches infinity, Eq. (2.8) turns to the initial O-W model and acts 

like a multilinear hardening rule resulting in the plastic shakedown after a slight overprediction in 

ratcheting [19]. Fig 2.5 shows that the variation of backstress �i at the transient stage is affected 

by to the Heaviside and power functions under monotonic loading. 

 

Figure 2.5 The ith component of uniaxial backstress at different activation functions 

Figure 2.6 shows how a tensile uniaxial stress-strain curve is divided into several segments, 

and consequently, parameters ri and 
i are determined through equations (2.9a) and (2.9b), 

respectively as: 
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



M

i

ir
1

max0                                                                                             (2.9b) 

 

Figure 2.6 The defined segments on the uniaxial cyclic stress–strain to determine the 

coefficients of the O-W hardening rule. 

 

2.3.5 The McDowell Model  

In the prediction of ratcheting strain based on the O-W hardening rule, both rate and 

magnitude of ratcheting progress are controlled by exponents mi. To improve the capability of the 

O-W model in predicting ratcheting strain under multiaxial loading conditions, exponents mi were 

modified by McDowell [23]. The exponent mi in equation (2.10a) is related to noncoaxiality of the 

plastic strain increment and relative distance of backstress component from its origin in the form 

of equation (2.9b): 
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iB

i

i
ii

a

a
nAm .                                                               (2.10b) 

where Ai is calibrated to predict the best fit for the uniaxial materials ratcheting similar to 

mi in the Ohno-Wang model (equation (2.8)) while Bi  is calibrated to fit the ratcheting response of 

material under multiaxial loading. The noncoaxiality reflected by Bi was introduced to simulate 

the softening effects of non-proportionality. Based on the definition of mi the nonlinearity level of 

recall term decreases with increasing the relative directions of 
ii aa and n . As the level of non-

proportionality increases, mi diminishes the nonlinearity of dynamic recovery term which results 

in larger ratcheting strain. At Bi=0, the McDowell reduces to the O-W hardening rule. With an 

increase in Bi the McDowell model overpredicts ratcheting strain as compared to that of the O-W 

model. 

 

2.3.6 The Jiang-Sehitoglu (J-S) Model 

Jiang [6] experimentally found that evolution of backstress is associated with loading non-

proportionality and that the rate of ratcheting strain is dependent on the stress level. These 

parameters were further employed to modify the O-W capability in ratcheting assessment of 

materials under non-proportional loading conditions through exponent mi [21]. The J-S hardening 

rule was presented in the form of a series of backstress components as: 
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where pp dddp    corresponds to the equivalent plastic strain increment. Exponent mi in Eq. 

(2.11) is defined as:  
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where mi (i=1, 2, …, ε) introduces the non-proportionality effect in ratcheting assessment of 

materials through term  ii aan.2  . Term ii aan. is referred as the non-proportionality factor. 

Under uniaxial loading condition, for constant value of mi (i.e., mi=m0i) the J-S rule reduces to the 

O-W model. The parameters in the O-W model can also be employed in the J-S and McDowell 

models and consequently, similar ratcheting strain values are achieved based on the O-W, J-S, and 

McDowell hardening rules under uniaxial loading condition. The J-S hardening rule, however 

showed an overestimation of ratcheting response of materials subjected to multiaxial loading 

conditions [16, 30]. This model holds dp in the dynamic recovery term while components 
pd  and 

ii aa  in the MaCaulay brackets in the dynamic recovery term of the O-W rule possess different 

directions under multiaxial loading. The projection presented by iip aad   in the O-W is 

smaller than dp in the J-S rule. The O-W rule holding iip aad  shows slower evolution in 

ratcheting progress under multiaxial loading than the J-S model including dp  in the dynamic 

recovery term. In the O-W rule, the function with the MaCaulay brackets reduces to dp under 

uniaxial loading condition.  Exponent m0i in the J-S hardening rule is equivalent with exponent mi 

in the O-W hardening rule. The exponent mi introduced through the J-S rule resulted in larger value 

of mi as compared to that of the O-W rule and consequently caused slower evolution in ratcheting 

progress under multiaxial loading conditions. This interactive effect between mi and dp  in the J-

S hardening rule needs to be analysed for different loading paths, which will be addressed in this 

study. 

 

2.3.7 The Chen-Jiao-Kim (C-J-K) Model  

In the O-W hardening rule, both rate and magnitude of ratcheting progress are controlled 

by exponents mi. To improve the capability of the O-W model in ratcheting assessment under 

multiaxial loading conditions, exponents mi were modified by McDowell [23] and Jiang-Sehitoglu 

[21].  The modifications on mi were yet to accurately assess ratcheting under complex multiaxial 
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loading conditions. To overcome this drawback, Chen-Jiao-Kim (C-J-K) [30] further modified the 

O-W second model by introducing term ii aan.  constructed based on backstress and the non-

coaxiality of the plastic strain rate:  
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The exponent i  in equation (2.13) is referred as multiaxial factor. Under non-

proportional loading, term ii aan. takes values of either zero or less than unity and corresponds 

to the non-proportionality factor and consequently the term in the MaCaulay brackets,

  i

ii aan


.  incorporates the non-proportionality effect into the hardening rule. For i

the C-J-K hardening rule reduces to a multilinear model experiencing premature shakedown. For  

0i the C-J-K reduces to the second O-W model (equation (2.8)). Under uniaxial loading 

condition, term ii aan. takes values either zero or unity resulting in an ineffective exponent

i  then the C-J-K model reduces to the O-W rule. Under multiaxial loading, the term ii aan.

becomes less than unity and exponent
i   (  i0 ) noticeably influences the ratcheting rate 

and magnitude. As this exponent approaches infinity ( i ), ratcheting rate and magnitude 

reduces toward ratcheting arrest. The value of the exponent i  is calibrated based on the 

experimental ratcheting curve under multiaxial loading condition. 

 

2.3.8 The Ahmadzadeh-Varvani (A-V) Model 

The A-V model was developed on the basis of constitutive equations at which the 

calculation of the modulus of plasticity, Hp, was coupled with consistency condition of yield 

surface. The A-V model with its dynamic recovery term introduced a non-linear trend in the 

hardening rule. This hardening rule holds coefficients dictating the evolution of the yield surface 
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on the deviatoric stress space to accumulate the ratcheting strain with the gradual decreasing rate. 

For uniaxial loading, the A-V hardening rule was expressed as [34-35, 69]. 

dpbaCdad p )(1                     (2.14a) 

dpbabd )(2                            (2.14b) 

The tensor b  is an additional kinematic variable with the initial value of zero. Coefficients C and 

γ1 are determined from experimental stress–strain hysteresis under stress-controlled loading 

condition. Coefficients γ2 and į were found to be material and stress level dependent. Coefficient 

į avoids ratcheting arrest after certain number of cycles and results in a constant rate followed by 

ratcheting strain rate decay over stage I. Coefficients γ2 and δ were defined based on the material 

properties and stress levels. Both coefficients γ2 and δ were defined for various stress amplitudes 

and mean stresses in non-linear forms as: 

21 )()(2

  yayam K                                           (2.15) 

and 

aFe
 1                                      (2.16) 

Constant EF my /)(2   . Terms E and y represent respectively modulus of elasticity 

and size of yield surface. In equations (2.15) and (2.16), constants K, 1, 2, andare materials 

constants. Coefficients γ2 and į can also can be estimated using typical family curves shown in 

figure 2.7 for SS304 steel samples. 
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Figure 2.7 Family curves representing the variations of (a) coefficient γ2 and (b) coefficient δ for 
different a and m values [34]. 

 

Coefficient γ2 controls ratcheting rate and regulates the ratcheting response of materials at 

various loading conditions. Coefficients į is responsible to control the accumulation rate of 

ratcheting strain and prevents the modified model to experience plastic shakedown as the number 

of cycles advances. Figure 2.8 presents the effects of γ2 and į on the trend of A-V hardening rule 

in the ratcheting prediction of 42CrMo steel samples. In figure 2.8a, for į=1 the model reduces to 

the Bower’s model experiencing plastic shakedown and for į=0 the model acts as the A-F model 

predicting same hysteresis loops over stress cycles which results in a constant rate of ratcheting 

strain with no decay in the accumulation rate of ratcheting strain. In figure 2.8b, for γ2=0 the A-V 

model reduces to A-F model. In case of γ1=γ2=0 the model converts to linear hardening rule of 

Prager’s. Coefficients γ2 and į compromise the overestimation of A-F rule and the plastic 

shakedown predicted by the Bower hardening rule.  
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Figure 2.8 The variation of coefficients δ and γ2 on the ratcheting strain over stress cycles [34]. 

 

2.4 Summary 

The framework of several coupled kinematic hardening rules were described and studied. 

The linear hardening rule of Prager failed to produce open hysteresis loops and accumulate 

ratcheting strain. The A-F mode predicted open hysteresis loops and ratcheting over stress cycles. 

The rate of ratcheting progress stayed constant and resulted in a large overestimation based on the 

A-F model as compared with experimental ratcheting data. The A-F hardening rule was further 

modified by Bower through inclusion of an additional kinematic variable b  in the dynamic 

recovery term to introduce the ratcheting rate decay. Despite this breakthrough, Bower’s model 

experiences plastic shakedown over the second stage. To overcome this drawback, Ahmadzadeh 

and Varvani offered a hardening rule holding coefficients γ2 and į in the dynamic recovery term 

to compromise the overestimation of A-F model and the plastic shakedown predicted by Bower’s 

rule. Ohno and Wang developed a kinematic hardening rule based on the critical state of dynamic 

recovery in backstress equation. The total backstress was consequently determined by the 

superposition of M independent backstress components in this model. Attempts were made by 

McDowell, Jiang-Sehitoglu and Chen-Jiao-Kim to further modify the O-W model by inclusion of 

non-proportionality effects into the framework of this model.   
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3. CHAPTER THREE 

 

 

FUNDAMENTAL ELEMENTS OF THE PROPOSED 

HARDENING RULE 

  

This chapter presents the constitutive equations to assess ratcheting response of materials 

over stress cycles. The framework and components of cyclic plasticity are defined and the 

evolutional modifications made on the A-V hardening rule are presented to finally introduce the 

modified hardening rule. The influential elements in the dynamic recovery term of the modified 

model including γ2, aad p  ,
2/1

. aan and ).2( aan  terms are defined. The step-wise 

procedures for calculation of modulus of plasticity and unknown elements in case of applied mixed 

stress- strain controlled multiaxial conditions are presented. The algorithm of the modified 

hardening rule is detailed in this chapter and the MATLAB programming code is presented in 

Appendix A.  

 

3.1 Cyclic plasticity and A-F type kinematic hardening rules   

3.1.1 Framework of cyclic plasticity 

 The backbone of cyclic plasticity models is structured by important constituents of strain 

increment, Hooke’s law, yield function, flow rule, hardening rule and consistency condition. 

Materials are assumed to present elastic behaviour with strain-stress relation without plastic strain 

until the yield condition is satisfied. The von Mises criterion is given as: 

0)).((
2

3
),,( 2  yy asasasf                        (3.1) 
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where s  is the deviatoric stress tensor and defined as: 

IIs ).(
3

1                                                    (3.2) 

During loading, the size and shape of yield surface remain unchanged. The yield surface 

can translate in the deviatoric stress space. Total strain increment is composed of both elastic and 

plastic strain components as: 

pe ddd                            (3.3) 

Elastic strain is defined by Hooke’s law as: 

II
EG

e ).(
2

                                                                        (3.4) 

where terms I and   correspond respectively to unit and stress tensors. Elastic and plastic regions 

is partitioned by employing von Mises criterion and the plastic strain increment is obtained based 

on the associated flow rule which was first  proposed by Drucker [70-71] to define the relation of 

stress and strain increments as: 

nnsd
H

d
p

p ).(
1

                                  (3.5) 

where the normal vector to the yield surface is defined as: 

as

as
n




                                                            (3.6) 

Terms Hp and sd are the plastic modulus and the increment of deviatoric stress tensor, 

respectively. 

During an elastic-plastic deformation loading condition the consistency condition of yield 

surface needs to be satisfied. The consistency condition implies for the same projection of 
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backstress and stress state increments on the unit exterior normal n  during an elastic-plastic 

loading condition and is defines as: 

nsdnad ..                                                                                (3.7) 

 The plastic modulus Hp can be derived through the equations of flow rule (equation (3.5)), the 

consistency condition of yield surface (equation (3.7)), and a kinematic hardening rule as the 

central part of cyclic plasticity theory. The hardening rule defines the movement direction of yield 

surface in the stress space during plastic deformation.  

 

3.1.2 A-F type kinematic hardening rules 

Recalling from Chapter 2, Armstrong and Frederick [13] modified Prager’s model [15] by 

adding a “dynamic recovery” term introducing nonlinearity to A-F model: 

dpaCdad p                         (2.2) 

where 

pp dddp  .                           (2.3) 

Coefficients C and γ are material dependent and determined using strain-stress hysteresis 

loop obtained under strain-controlled loading condition. The second term in equation (2.2) 

introducing nonlinearity to the model is responsible for the accumulation of plastic strain over 

stress cycles. The A-F hardening rule predicts same loops over all stress cycles and results in a 

constant rate of ratcheting strain and consequently the overestimation of ratcheting strain. 

Bower [15] further modified the A–F rule to overcome this drawback. He introduced the 

second kinematic variable 2  into the dynamic recovery term to reduce the constant rate of strain 

accumulation predicted by the A-F hardening rule as the number of stress cycles advances. The 
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Bower’s model defined in equation (2.5) employs the second kinematic variable in the recall term 

to simulate the accumulating ratcheting strain decay:  

dpbaCdad p )(1                     (2.5a) 

dpbabd )(2                            (2.5b) 

Bower model is capable to simulate rate decay in predicting the ratcheting strain over initial 

number of cycles and over stage I. However, this model shows premature shakedown in stage II. 

Ahmadzadeh-Varvani [34, 69] further modified Bower’s hardening rule to encounter the 

influence of stress levels over ratcheting stages by means of γ2 and į coefficients introduced into 

the dynamic recovery term of the hardening rule. The A-V hardening rule was then described in 

the form of:  

dpbaCdad p )(1                                      (2.14a) 

dpbabd )(2                   (2.14b)  

 The tensor b  is an additional kinematic variable with the initial value of zero. Both C and 

γ1 in the A-V hardening rule (Eq. (2.14.)) are material dependent coefficients and responsible to 

control the width of stress-strain hysteresis loops over ratcheting progress. Coefficients C and γ1 

are determined from experimental stress–strain hysteresis under stress-controlled loading 

condition. Coefficients γ2 and į were defined to be material and stress level dependent through the 

equations (2.15) and (2.16). Coefficients γ2 and į can also be estimated using corresponding family 

curves with respect to a and m.  

 

3.2 Modifications on the A-V hardening rule and dynamic recovery term 

Components undergoing multiaxial stress cycles and various non-proportional loading 

histories are more prone to hardening than those of uniaxially and proportionally loaded.  
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Modifications have been made to extend the capability of the A-V hardening rule to predict 

multiaxial ratcheting response of materials under various loading paths. The modified hardening 

rule holding function aad p   in dynamic recovery term is capable to assess ratcheting at 

different directions under multiaxial loading conditions due to components 
pd  and aa . The 

projection presented by the function in the MaCaulay brackets is smaller than dp  (in equation 

(2.14)) resulting in a slower evolution in simulation of ratcheting strain under multiaxial loading 

conditions. The calibrating coefficient γ2 in the modified model is redefined to be merely material 

dependent. The A-V hardening rule was further modified by introducing the term ).( aan  into 

the dynamic recovery term to encounter the effect of non-proportionality and structured as: 

a

a
db

a

a
naCdad pp ..

21

1  












 ,                                         (3.8a) 

a

a
dba

a

a
nbd p .)(.2 2  










 .                                                   (3.8b) 

In equation (3.8), term ).( aan holds non-proportional characteristics under multiaxial 

loading conditions. The normal vector to the yield surface n  and the backstress unit vector aa  

have different directions under multiaxial loading, and consequently the projection presented by 

).( aan  produces values between -1 and 1, however in uniaxial cases, this term is unity. The 

term ).2( aan  regulates the magnitude of coefficient γ2 properly for various multiaxial 

loading paths.  This term takes the values between 1 and 3 under multiaxial loading and 

consequently magnifies the effect of γ2 and results in a smaller accumulation rate of ratcheting 

strain over stress cycles. Term ).2( aan  encounters the effect of non-proportionality as 

multiaxial loads are applied and reduces to unity for uniaxial loading condition. For γ2=0, the 

modified model reduces to A-F model. In case of γ1=γ2=0 the proposed model converts to linear 

hardening rule of Prager’s. The measure of non-proportionality was also utilized in the form of 
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product of 
2/1

. aan  and vector b  to control the accumulation rate of ratcheting strain and 

mainly to prevent the modified model to experience plastic shakedown as the number of cycles 

advances over various multiaxial loading conditions. Under multiaxial loading histories, term

2/1

. aan takes positive values smaller than 1 and prevents this model from premature plastic 

shakedown. For uniaxial loading, since term 
2/1

. aan is equal to 1, the modified model reduces 

to Bower’s model. 

Figure 3.1 presents the evolution of the modified hardening rule (Eqn (3.8)) for typical 

ratcheting assessment of 1045 steel samples for cases at which (i) the accumulated plastic strain 

increment dp is replaced with aad p   in the dynamic recovery term of equation (3.8a), (ii) the 

term 
2/1

. aan in equation (3.8a) is absent, (iii) the term ).2( aan in equation (3.8b) is 

absent, and (iv) the modified hardening rule holding all terms of equation (3.8). 
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Figure 3.1 Experimental data [30] and predicted ratcheting strain values of 1045 steel samples 

for butterfly loading path based on the modified model. 

 

3.2.1 Estimation of C, γ1 and γ2 coefficients 

Coefficients C and γ1 in the A-V and modified hardening rules are defined and calibrated 

on the basis of strain-stress hysteresis loops over stress cycles. In the A-F model [13], constants C 

and γ1 are determined from the uniaxial stress–strain hysteresis loop under strain-controlled 

condition. The material constants C and γ1 in the Bower [15] hardening rule were obtained from 

the unsymmetrical uniaxial stress-strain hysteresis loops. The γ2 in this model, is also chosen to 

give the correct total accumulated strain after N1 and N2 stress cycles. Constants mi, ri and γi in the 

kinematic hardening rules of Jiang-Sehitoglu [6], Ohno-Wang [19, 20] and Chen et al. [30] are 

defined by segments chosen on the uniaxial stress-strain and uniaxial ratcheting curves through a 

tedious and time-consuming trial procedure, which remain constant after determination during 

each increment of cyclic plasticity theory. These constants are highly affected by the chosen 

segments over stress-strain curve.  
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Material dependent coefficients C and γ1 are estimated to properly coincide predicted and 

experimental stress–strain hysteresis loops while satisfying the consistency condition of yield 

surface in forward and reversed loading [35, 69]. Both C and γ1 coefficients are material dependent 

coefficients to control the shape and size of stress-strain hysteresis loops over evolution of 

ratcheting strain. Figure 3.2b shows how influential the effects of different values of C and 1 on 

the shape and size of hysteresis loops of SS304 under asymmetrical uniaxial loading are. Various 

combinations of C and 1 values are examined in a closed form solution of the proposed model in 

each individual iteration to address hysteresis loops with consistent size and shape. Figures 3.2c 

and 3.3d with the respective combinations of (C=10 GPa, 1 =150), (C=40 GPa, 1 =450) which 

result in the violation of consistency condition and consequently the distortion of hysteresis loops 

while the coefficients C=27 GPa, 1 =180 for this material satisfied the consistency condition and 

resulted in progressive hysteresis loops with the number of cycles [35].   
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Figure 3.2 The effect of C and 1 on the consistency condition and hysteresis loops [35]. 
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The calibrating coefficient γ2 is material dependent and is determined using the ratcheting 

data obtained under uniaxial loading condition. Figure 3.3 shows the effect of γ2 on the ratcheting 

assessment of SS304L under uniaxial loading of 50±200. Coefficient γ2 controls ratcheting rate 

and regulates the ratcheting response of materials. 

 

Figure 3.3 Determination of coefficient γ2 in the modified model using uniaxial ratcheting 

response. 

Under multiaxial loading, coefficient γ2 non-proportionally is regulated by ).2( aan  

in the dynamic recovery term resulting in more controllable ratcheting rate over stages I and II. 

The term aan. further encounters the non-proportionality in the model through 
2/1

. aan

over asymmetric multiaxial stress cycles.  

 

3.2.2 Derivation of modulus of plasticity 

In the category of coupled hardening rules, the calculation of modulus of plasticity, Hp, is 

coupled with the kinematic hardening rule through the consistency condition of the yield surface. 
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The derivation of modulus of plasticity can be expressed in three distinctive steps using kinematic 

hardening rule, flow rule and the consistency condition. 

(i) The definition of pd  (equation (3.9)) is substituted into the modified hardening rule 

(equation (3.8a)) and backstress increment iad  is defined in equation (3.10):  

ndpd p .                                                                                             (3.9) 
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                                               (3.10) 

(ii) Based on consistency condition, the stress state during the elastic-plastic deformation should 

always lie on yield surface.  Equation (3.7) is then extended as:  

n
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(iii) Plastic strain increment pd of equation is redefined as the plastic modulus defined based on 

(3.9) and nsd .  defined based on (3.11) are substituted into the flow rule equation (3.5): 
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The plastic modulus Hp is then derived as: 

n
a

a
nb

a

a
naCH p ..

21

1 












                                              (3.13)    
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3.3 Algorithm of ratcheting assessment under various multiaxial loading 

conditions 

The multiaxial ratcheting assessment of materials are generally conducted in (i) stress-based 

multiaxial state, and (ii) stress- and strain-based multiaxial state. In the first case,  upon the 

application of incremental cyclic load all the elements of applied stress tensor is known and the 

incremental ratcheting strain values are defined using Hooke’s law and flow rule through the 

framework of operated kinematic hardening rule. In the second case embracing higher complexity, 

both stress-controlled and strain-controlled cycles are however responsible for ratcheting of 

materials. The present study has first transformed applied cyclic stress and strain values on the 

tubular steel samples to the stress components in the stress tensor over each increment. The 

incremental ratcheting strain values were defined using Hooke’s law and flow rule through the 

framework of the modified hardening rule. 

Under such loading conditions, incremental strain and stress respectively were defined 

through 
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Unknown elements of strain and stress increments, were studied in this research are xyd , 

t

xxd , 
t

yyd  and 
t

zzd . Thess unknown elements under multiaxial loading conditions were first 

symbolically defined by solving equations (3.3-3.5) simultaneously, using Symbolic Math Toolbox 

in MATLAB software and re-expressed by equations (3.14)-(3.17):  

 

)4(3

)23(2

2

pxy

zzxyxxyyxyxxxyxxxxp

t

xy

xy
HGn

nndnndnndHdG
d







                                             (3.14) 

)4(3

121223

2

22

pxy

zzxx

t

xyzzxxxxxyxxxxxyxxxxxxxxpt

xx
HGnE

nnGEdnnEdnnEdnGdnEddH
d







         (3.15) 



  

36 

 

 

)4(3

122123

2

22

pxy

xyyy

t

xyzzyyxxyyxxxxxyxxyyxxxxpt

yy
HGnE

nnGEdnnEdnnEdnGdnEddH
d







           (3.16) 

)4(3

122123

2

22

pxy

xyzz

t

xyzzyyxxzzxxxxxyxxzzxxxxpt

zz
HGnE

nnGEdnnEdnnEdnGdnEddH
d







      (3.17) 

To evaluate ratcheting response of materials based of the modified hardening model upon 

the application of a stress-controlled and mixed stress- strain- controlled loading conditions in the 

framework of theory of advanced cyclic plasticity, a MATLAB programming was developed. The 

algorithm of developed MATLAB programming is presented in figure. 3.4 and includes the main 

components of cyclic plasticity theory and evolution of ratcheting strain over strain cycles 

developed for the modified hardening rule. Dashed box in the algorithm corresponds to a 

subroutine to address ratcheting assessment under combined stress- /strain-controlled condition 

tests. MATLAB codes are presented in Appendix A. 
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Figure 3.4 Algorithm for multiaxial ratcheting assessment based on the modified hardening rule. 
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3.4. Summary 

The A-V hardening rule is further modified through its linear and dynamic recovery terms. 

The linear term of backstress holds material dependent coefficients of C and γ1 controlling shape 

and size of hysteresis loops while the dynamic recovery term possesses coefficient γ2 to control 

the ratcheting strain rate as the number of cycles advances. The plastic strain increment 
pd  and 

the backstress unity vector aa  as components in the MaCaulay brackets aad p   possessed 

different directions enabling the hardening rule to track reversed ratcheting during multiaxial stress 

cycles. Coefficient γ2 is redefined in the modified model to be merely material dependent and it is 

determined using the ratcheting data under uniaxial loading condition. This constant is regulated 

by ).2( aan to account for non-proportionality resulting in slower ratcheting rate. Function 

2/1

. aan  in the dynamic recovery term prevented the modified model to plastically 

shakedown. These terms holding backstress unity vector aa are coupled to control ratcheting rate 

and direction over non-proportional loading conditions. The algorithm for the modified hardening 

rule is developed to evaluate multiaxial ratcheting under stress-controlled and mixed stress- strain-

controlled loading conditions. The MATLAB programming code for this algorithm is detailed in 

Appendix A. 
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4. CHAPTER FOUR 

 

 

RESULTS OF RATCHETING ASSESSMENT AND DISCUSSION 

  

This chapter presents the results of ratcheting assessment under various multiaxial loading 

paths by mean of the modified hardening rule and other well-known hardening rules of O-W, J-S, 

and C-J-K for several steel alloys. The predicted ratcheting results by the hardening rules are 

compared with experimentally obtained ratcheting data in this chapter. . Materials properties and 

experimental ratcheting data are tabulated in Appendix B. 

 

4.1 The evolution of the hardening rule in ratcheting assessment of 1045 steel 

alloy under multiaxial loading histories  

The Ahmadzadeh-Varvani (A-V) kinematic hardening rule is further modified to assess 

ratcheting response of steel alloys under various multiaxial loading paths. The modified hardening 

rule (equation (3.8)) offered a simple framework to predict ratcheting strain over multiaxial 

loading cycles mainly due to modifications in the dynamic recovery term.  The plastic strain 

increment 
pd  and the backstress unit vector aa  as components in the MaCaulay brackets

aad p   possessed different directions enabling the hardening rule to track reversed ratcheting 

during multiaxial stress cycles. The calibrating coefficient γ2 in dynamic recovery term controlled 

the ratcheting rate and was regulated by term ).2( aan accounting for non-proportionality to 

further lower the ratcheting strain curve. Function 
2/1

. aan  in the dynamic recovery term 

prevented the modified model to plastically shakedown. These terms holding backstress unit vector 
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aa  and the normal vector n to the yield surface are coupled to control ratcheting rate and 

direction over multiaxial stress cycles under non-proportional loading conditions.  

 

4.1.1 1045 steel samples, testing and multiaxial ratcheting data 

To evaluate the capability of the modified hardening rule in ratcheting assessment of 

materials, eight data tests conducted on 1045 steel alloy at various multiaxial loading paths were 

extracted from literature [30]. Ratcheting tests on 1045 steel samples under multiaxial loading 

conditions were conducted at which both stress-controlled and strain-controlled cycles were 

responsible for ratcheting of steel samples.  

The tubular test samples of 1045 with inside and outside diameters of 10 mm and 12.5 mm 

in the gauge section, were cyclically loaded using tension–torsion loading conditions using an 

Instron testing machine. Extensometers were mounted on the outside of the sample gauge section 

to measure plastic strain over stress cycles with the frequency of 0.5Hz at room temperature. The 

tests conducted using triangular waveform. The different multiaxial and loading paths conducted 

on samples of 1045 are presented in Fig. 4.1. In eight loading histories, the amplitude of shear 

strain was 0.866% and major ratcheting strain accumulation occurs in axial direction. Table 4.1 

presents ratcheting tests and loading conditions for tubular 1045 steel samples. In figure 4.1, 

loading path A corresponds to shear strain cycle applied concurrently with an axial constant stress. 

Path B presents a shear strain cycle and an axial stress with a mean value of 50 MPa. Load path C 

is diamond-shaped with a fully reversed shear strain and axial stress consisted of mean value of 

50MPa. Load path D vertical butterfly and paths E, F, G, and H are horizontal butterflies with 

different mean axial stress and shear strain values. The horizontal loading paths E, F, G, and H 

have been differentiated through non-proportionality factor for their different mean stress values 

and loading sequences. 
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Figure 4.1 Multiaxial loading paths A-H and their loading spectra for 1045 steel samples. 
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Figure 4.1. Continued  
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Table 4.1 Ratcheting experiments for 1045 steel samples under various loading paths [30]. 

Loading Path Δγ/2 ıa ım Ĳa Ĳm 

A 0. 866% 0 100 288 0 

B 0. 866% 50 50 275 0 

C 0.866% 50 50 274 0 

D 0. 866% 50 50 280 0 

E 0. 866% 50 50 282 0 

F 0. 866% 50 50 285 0 

G 0. 866% 50 100 290 0 

H 0. 866% 50 100 295 0 

 

The ratcheting strain values were determined from  minmax2
1  r  where İmax and İmin are 

the experimentally obtained maximum and minimum strain values of progressing stress-strain 

hysteresis loops.  Ratcheting strain data of 1045 steel samples of various loading paths A-H were 

plotted versus multiaxial stress cycles in Fig 4.2. This figure shows how influential is the effect of 

loading path on the magnitude of ratcheting strain data in steel samples achieved at different stress 

amplitudes and mean stresses.  
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Figure 4.2 Ratcheting strain vs stress cycles for 1045 steel samples under various non-

proportional loading paths (A-H) [30]. 

 

The material dependent calibrating coefficient γ2 is determined from experimentally 

obtained ratcheting strains over uniaxial stress cycles in 1045 steel alloy. Figure 4.3 shows curves 

of ratcheting calibrated through γ2 for a 1045 steel sample tested under uniaxial stress cycles of 

100±370 magnitude. Coefficients of the modified hardening rule for 1045 steel alloy are listed in 

Table 4.2. 
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Figure 4.3 Determination of coefficient γ2 in 1045 steel sample tested under uniaxial condition. 

 

Table 4.2 The coefficients of the modified hardening rule for 1045 steel alloy. 

Modified Hardening Rule Parameters C=150GPa, γ1=400, γ2 =15 

 

4.1.2 Predicted ratcheting curves of 1045 steel alloy 

The multiaxial ratcheting data of 1045 tubular steel samples were predicted by means of 

the modified hardening rule. The predicted ratcheting curves were discussed in the presence of 

modifying parameters in the dynamic recovery term and were compared with experimental data. 

The modified model similar to other coupled kinematic hardening rules was constructed on the 

basis of the theory of plasticity elements including Hooke’s law, yield criterion, and flow rule. The 

experimental and the predicted ratcheting strain values based on the modified model (Eq. (3.8)) 

for 1045 tubular specimen tested under various multiaxial loading paths A-H are presented in 

figure 4.4.  In this figure, ratcheting strains progress in the direction of axial mean stress with a 

decay in ratcheting rate over multiaxial stress cycles.  

Figure 4.4 presents the evolution of the modified hardening rule (Eqn (3.8)) for ratcheting 

assessment of 1045 steel samples for cases at which (i) the accumulated plastic strain increment 
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dp is replaced with aad p   in the dynamic recovery term of equation (3.8a), (ii) the term 

2/1

. aan in equation (3.8a) is absent, (iii) the term ).2( aan in equation (3.8b) is absent, 

and (iv) the modified hardening rule holding all terms of equation (3.8). 

 

  

  

Figure 4.4 Experimental data [30] and predicted ratcheting strain values of 1045 steel samples 

based on the modified model under various loading conditions (A-H). 
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Figure 4.4. Continued. 
 

Experimental ratcheting data in this figure consistently agree with those of predicted curves 

based on the modified hardening rule for multiaxial loading paths A, B, C, D, and E. The predicted 

ratcheting curve for the path F however slightly overestimates the ratcheting data. The modified 

model closely predicts the trend of experimental ratcheting data over stages I and II under loading 

path G. The modified model slightly underestimates the ratcheting strain of 1045 samples under 

loading path H. The overestimation and underestimation in histories F and H have been also 

reported for the predicted ratcheting curves based on the Abdel Karim-Ohno and Chen models in 

ref. [30]. The close agreements of the modified models with experimental data are attributed to the 
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inclusion of material dependent coefficients C, 1, and 2. The non-proportionality has been 

introduced in the dynamic recovery term through terms aad p  and ).( aan . The modified 

model (Eqn (3.8)) holding the calibrating coefficient γ2, terms aad p  and ).( aan  offered 

a reasonable agreement with multiaxial ratcheting data obtained experimentally. As dp in dynamic 

recovery term of the A-V hardening rule is replaced with aad p  , the capability of the 

hardening rule has been further improved to assess multiaxial ratcheting. The function in the 

MaCaulay brackets reduces to dp under uniaxial loading condition. This function results in slower 

accumulation of ratcheting strain rate. Since pd  and aa  possess different directions under 

multiaxial stress cycles, their projection presented by aad p   is rather smaller and more 

controllable. The function in the MaCaulay brackets in the dynamic recovery term shifted down 

the overall magnitude of predicted ratcheting curve as substituted with the accumulated plastic 

strain increment dp. Figure 4.4 shows how influential this substitution in the dynamic recovery 

term is. In the framework of the proposed model, term ).( aan  accounts for non-proportionality 

under multiaxial loading conditions. The normal vector n to the yield surface, and the unity vector 

of backstress aa  have different directions under multiaxial loading, and consequently the 

projection presented by ).( aan  produces values between -1 and 1and becomes 1 under uniaxial 

case. Term ).2( aan becomes equal to unity under uniaxial loading case and takes the values 

between 1 and 3 under multiaxial loading conditions. The product of this term and calibrating 

coefficient γ2 results in a slower rate of ratcheting strain accumulated over stress cycles.  This is 

evident from figure 4.4 as the predicted ratcheting solid curve based on the modified model (Eqn 

(3.8b)) holding ).2( aan  term in the dynamic recovery and the green dashed curve predicted 

in the absence of ).2( aan term are compared.  In the absence of this term embracing non-

proportionality term ).( aan  in this predicted curve, ratcheting values show overprediction. 

More overprediction of ratcheting (pink dashed curve) is resulted in through the replacement of 
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aad p  with the accumulated plastic strain increment dp in the modified model (see figure 4.4). 

This predicted curve shows how influential the effect of aad p   is in the prediction of 

ratcheting values. The blue dash-dot curve in this figure represents the modified rule in the absence 

of 
2/1

. aan in the dynamic recovery term resulting in plastic shakedown over stage II. Under 

multiaxial loading histories, this term takes positive values smaller than 1 and prevents this model 

from premature plastic shakedown while it reduces to unity under uniaxial loading conditions.  

 

4.2 Multiaxial ratcheting assessment of 1045 and 1Cr18Ni9Ti steel alloys based 

on the O-W, J-S, McDowell and A-V modified hardening rules 

Ratcheting response of 1045 and 1Cr18Ni9Ti tubular steel samples are predicted using 

nonlinear kinematic hardening rules of Ohno-Wang (O-W), Jiang-Sehitoglu (J-S), McDowell and 

newly modified model based on hardening rule of Ahmadzadeh-Varvani (A-V) under various 

multiaxial loading histories.  The O-W hardening rule was developed based on the critical state of 

dynamic recovery of backstress. The total backstress was determined by the superimposition of M 

independent backstress components first suggested by Chaboche holding several coefficients. The 

J-S and McDowell hardening rules further developed the O-W rule to include the effects of stress-

dependency and non-proportionality in ratcheting assessment of materials. The modified 

hardening rule with less complexity holds terms aad p  , ).2( aan and 
2/1

. aan to 

encounter the non-proportionality effects in its dynamic recovery term dictating the evolution of 

the yield surface on the deviatoric stress space to accumulate the ratcheting strain with the gradual 

decreasing rate.  
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4.2.1 1045 and 1Cr18Ni9Ti steel samples, testing and multiaxial ratcheting data 

Ratcheting experimental data of 1045 steel [30] and 1Cr18Ni9Ti stainless steel [29] samples 

were taken to evaluate the capability of the O-W, J-S, McDowell and modified A-V hardening rules 

in ratcheting assessment under various multiaxial loading paths. Ratcheting tests on 1045 and 

1Cr18Ni9Ti steel samples under multiaxial loading conditions were conducted at both stress-

controlled and strain-controlled cycles which were responsible for ratcheting of steel samples.  The 

different multiaxial and loading paths conducted on samples of 1045 are presented in Fig. 4.5 (Paths 

A-H). The experimental details of 1045 steel samples were presented in section 4.1.1.  

The samples of 1Cr18Ni9Ti consisted inside and outside diameters of 18 and 22 mm in the 

gauge section and were subjected to multiaxial with a frequency of 0.5Hz at room temperature. An 

MTS axial-torsional extensometer mounted on the outside of the gauge section of 1Cr18Ni9Ti steel 

sample was used to measure the strain over cycles. The axial–torsional loading histories of 

1Cr18Ni9Ti samples are shown in Fig. 4.5 (Paths I-K). 
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Figure 4.5 Multiaxial loading paths and their loading spectra for 1045 (A-H) and 1Cr18Ni9Ti (I-

K) steel samples. 
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Table 4.3 presents ratcheting tests and loading conditions for tubular 1Cr18Ni9Ti and 1045 

steel samples. The experiments on thin-walled tubular samples of 1Cr18Ni9Ti stainless steel were 

carried out [29] under axial stress–shear strain cycles.   

 

Table 4.3 Ratcheting experiments for 1045 and 1Cr18Ni9Ti steel samples under various loading 

Material Loading Path Δγ/2 ıa ım Ĳa Ĳm 

1045 

A 0. 866% 0 100 288 0 

B 0. 866% 50 50 275 0 

C 0.866% 50 50 274 0 

D 0. 866% 50 50 280 0 

E 0. 866% 50 50 282 0 

F 0. 866% 50 50 285 0 

G 0. 866% 50 100 290 0 

H 0. 866% 50 100 295 0 

1Cr18Ni9Ti  

I 0.4% 0 200 278 0 

J 0.4% 100 200 302 0 

K 0.6% 100 200 327 0 

 

The stainless steel samples of 1Cr18Ni9Ti were tested with loading paths I, J and K. Path 

I is similar to path A and consists of fully reversed shear strain cycle with a constant axial stress, 

while paths J and K represent 90 out-of-phase of sinusoidal shear strain and axial stress spectra 

which result in elliptical and circular paths respectively possessing 0.4% and 0.6% shear strain 

amplitudes. 
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Figure 4.6 Ratcheting strain vs stress cycles for 1Cr18Ni9Ti (I-K) steel samples under various 

non-proportional loading paths [29]. 

 

The coefficients of the O-W, J-S, McDowell hardening rules and the modified model 

employed in the current study are listed in Table 4.4. 

Ratcheting strain data of 1045 and 1Cr18Ni9Ti steel samples of various loading paths were 

plotted versus multiaxial stress cycles in figures 4.2 and 4.6, respectively. This figures shows how 

influential the effect of loading path is on the magnitude of ratcheting strain data in steel samples 

achieved at different loading paths, stress amplitudes and mean stresses.  
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Table 4.4 The coefficients of the hardening rules to assess ratcheting response of 1045 and 

1Cr18Ni9Ti steel samples. 

Material Model Hardening Rule Parameter  

1045 

Modified 

Model 
C=150 GPa, γ1=400, 2=16 

O-W 

Model 

γ1=2500, γ2=1250, γ3 =666.7, γ4 =500, γ5=333.3, γ6=200,  γ7=125, γ8= 83.3, 

r1 =88, r2 =42, r3 =30.4, r4 =21.3, r5 =28.3, r6 =31, r7 =27.8, r8=76.4 

mi = 3.7 

J-S 

Model 

γ1=2500, γ2=1250, γ3 =666.7, γ4 =500, γ5=333.3, γ6=200,  γ7=125, γ8= 83.3, 

r1 =88, r2 =42, r3 =30.4, r4 =21.3, r5 =28.3, r6 =31, r7 =27.8, r8=76.4 

m0i = 3.7 

McDowell 

Model 

γ1=2500, γ2=1250, γ3 =666.7, γ4 =500, γ5=333.3, γ6=200,  γ7=125, γ8= 83.3, 

r1 =88, r2 =42, r3 =30.4, r4 =21.3, r5 =28.3, r6 =31, r7 =27.8, r8=76.4 

Ai = 3.7, Bi =0.5 

1Cr18Ni9Ti 

Modified 

Model 
C=200 GPa, γ1=370, γ2=54 

O-W 

Model 

γ1=4800, γ2=2400, γ3 =1200, γ4 =600, γ5=300, γ6=150,  γ7=75, γ8= 37.5, 

r1 =10, r2 =65, r3 =63, r4 =41, r5 =80, r6 =70, r7 =16, r8=2 

mi =30 

J-S 

Model 

γ1=4800, γ2=2400, γ3 =1200, γ4 =600, γ5=300, γ6=150,  γ7=75, γ8= 37.5, 

r1 =10, r2 =65, r3 =63, r4 =41, r5 =80, r6 =70, r7 =16, r8=2 

m0i =30 

McDowell 

Model 

γ1=4800, γ2=2400, γ3 =1200, γ4 =600, γ5=300, γ6=150,  γ7=75, γ8= 37.5, 

r1 =10, r2 =65, r3 =63, r4 =41, r5 =80, r6 =70, r7 =16, r8=2 

Ai =30, Bi =0.5 

 

 

4.2.2 Predicted ratcheting of 1045 and 1Cr18Ni9Ti steel alloys by O-W, J-S, 

McDowell and A-V modified hardening rules 

 The multiaxial ratcheting response of 1045 and 1Cr18Ni9Ti steel samples were predicted 

by means of the O-W, J-S, McDowell and modified A-V kinematic hardening rules. The 

experimental and the predicted ratcheting strain values based on the modified model (Eq. (3.8)), 

and the hardening rules of O-W (Eq. (2.8)), J-S (Eq. (2.11-2.12)), McDowell (Eq. (2.10)) for 1045 

and 1Cr18Ni9Ti samples tested under various multiaxial loading paths are presented in figures 4.7 

and 4.8 respectively. Ratcheting strains progressed in the direction of the axial mean stress with a 

decay in the accumulated ratcheting rate over multiaxial stress cycles. The capability of the O-W, 
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J-S, McDowell and A-V modified hardening rules in ratcheting assessment of 1045 steel sample 

under eight different loading paths (A-H) was assessed as the predicted ratcheting curves were 

compared with those of experimentally reported values in Fig. 4.7. Experimental ratcheting data 

in this figure show consistently good agreements with those of predicted curves based on the 

modified hardening rule for multiaxial loading paths A, B, C, D, and E. The predicted ratcheting 

curve for path F however slightly overestimates the ratcheting data. The modified model closely 

predicts the trend of experimental ratcheting data over stages I and II under loading path G. The 

modified model underestimates the ratcheting strain of 1045 samples under loading path H. The 

overestimation and underestimation of respectively histories F and H have been also reported for 

the predicted ratcheting curves based on the Abdel Karim -Ohno and Chen models in ref. [30].  

 The close agreement between the predicted ratcheting curves based on the modified model 

with experimental data for various loading histories is attributed to the inclusion of non-

proportionality through terms aad p  and ).( aan  in the dynamic recovery. The modified 

hardening rule substitutes aad p   with the accumulated plastic strain increment, dp  in the 

dynamic recovery term of the model. This enables the modified model to follow different 

directions under multiaxial loading due to components pd  and aa . Under multiaxial loading 

condition, the projection presented by the function in the MaCaulay brackets is smaller than dp  

resulting in a slower evolution in simulation of ratcheting strain under multiaxial loading 

conditions.  

 

 

 

 

 

 

 

 



  

56 

 

  

  

  

Figure 4.7 Experimental data [30] and predicted ratcheting strain values of 1045 steel samples 

based on the Ohno-Wang (O-W), Jiang-Sehitoglu (J-S), McDowell and A-V modified hardening 

rules under various loading conditions (A-H). 
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Figure 4.7. Continued 

As presented in figures 4.7 and 4.8, it is quite evident that the O-W model with mi=3.7 

overestimated ratcheting response for various multiaxial loading paths. Larger values of mi in 

equation (2.8) can decrease the rate of accumulated ratcheting over multiaxial stress cycles. 

However, this adjustment can affect the simulations response of uniaxial ratcheting. Chen and Jiao 

[29] have reported that the O-W model overestimates the ratcheting response of cyclically 

hardened materials under multiaxial loading. This overestimation was earlier attributed to the lack 

of parameters reflecting non-proportionality to control the evolution of ratcheting over multiaxial 

stress cycles [36]. 

The J-S hardening rule has also shown a persistent overestimation in various loading 

conditions of steel samples in figures 4.7 and 4.8. Based on the definition of exponent mi in 

equation (2.12), different directions possessed by terms 
ii aa and n over multiaxial stress cycles 

resulted in function ii aan.  to fall between -1 and 1 and consequently exponent  mi in the J-S 

hardening rule becomes larger than m0i = 3.7. The higher value of mi diminishes the rate of 

accumulated ratcheting as compared with that of the O-W rule. The interactive parameter dp 

however in the J-S model tends to expedite the rate of ratcheting contrarily. The predicted 

ratcheting curve based on the J-S rule showed less overestimation than the O-W model for loading 
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paths B, C, D, E, and F. The O-W model however showed better prediction for loading paths A, 

H, and G.   

Term iip aad  in the O-W model resulted in lower ratcheting strain values under 

multiaxial stress cycles as compared with term dp in the dynamic recovery term of the J-S model. 

Under loading paths A, H, and G with larger axial mean stress of m=100 MPa and axial stress 

ratio of R>1/3, the smaller rate of accumulated ratcheting strain introduced by iip aad   in the 

O-W model is more pronounced. A choice of larger value of exponent mi introduced through 

equation (2.12) overcame the lower rate of accumulated ratcheting strain through the O-W rule. 

Loading paths B, C, D, E, and F presented in figure 4.7 show that the exponent mi introduced by 

the J-S model under multiaxial loading histories, is more influential than term iip aad   in the 

O-W model to decrease the accumulated rate of ratcheting strain. Chen et al. [30] reported the 

predicted ratcheting curves of medium carbon steel samples tested under multiaxial loading 

conditions based on the O-W and J-S hardening rules. In their ratcheting assessment, the 

dominancy of the mean stress level, stress ratio over exponent mi on the hardening rules was not 

discussed. Upon replacing dp in the dynamic recovery term of equation (2.11) with term

iip aad  , the J-S hardening rule transforms to the O-W model resulting in a remarkable 

reduction in ratcheting strain of steel samples undergoing multiaxial stress cycles. 

The McDowell model largely overestimated the ratcheting response of steel samples under 

various loading paths A-H. Predicted ratcheting strain values based on the McDowell model stayed 

higher than the O-W and J-S models. Under uniaxial loading condition the McDowell model 

reduced to the O-W rule.  The exponent mi defined based on equation (2.10) enabled the hardening 

rule with term ii aan. of the dynamic recovery possessed values between 0 and 1 under 

multiaxial loading conditions. At Bi > 0 exponent mi computed by this equation stayed smaller 

than mi determined for the O-W model. Consequently McDowell model resulted in larger 

ratcheting strain values as compared with the O-W model.  The higher level of non-proportionality, 
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larger relative directions of 
ii aa and n , the lower level of nonlinearity in the dynamic recovery 

term in the McDowell model resulted in higher rate of ratcheting strain accumulation. An increase 

in the Bi caused more overestimation of the McDowell model. At Bi=0 the McDowell model 

reduced to the O-W model (Eq. 2.8). This value for medium carbon steel was taken as Bi=1.0 [30] 

and for steel samples in the present study Bi=0.5. 

Figure 4.8 presents the predicted ratcheting curves of Cr18Ni9Ti steel samples tested under 

multiaxial load histories I-K. The ratcheting curves were predicted based on the O-W, J-S, and 

McDowell hardening rules considering eight backstress components M=8. These predicted 

ratcheting curves largely overestimated the experimental data.  

The predicted ratcheting curves in figure 4.8 based on the modified hardening rule were 

found in good agreement with those of experimentally reported for histories I, J, and K at which 

the axial mean stress is m=200 MPa with a minimum axial stress ratio of R=1/3. The predicted 

ratcheting curve based on the J-S model in figure 4.8 positioned slightly higher than those of the 

O-W model. Term iip aad   in the dynamic recovery of the O-W model dropped the 

accumulated ratcheting rate for load histories I-K. The lower rate of accumulated ratcheting strain 

caused by the O-W rule overcame the choice of larger value of exponent mi introduced through 

equations (2.11) and (2.12). With increase in values of mi, m0i, Ai the capability of the O-W, J-S, 

and McDowell hardening rules in ratcheting prediction of 1Cr18Ni9Ti steel samples was 

improved. To predict multiaxial ratcheting based on these hardening rules, the constant values 

were increased up to 30 to achieve the optimal ratcheting results. This however considerably 

increased the CPU running time for these models as compared to the  modified model with twice 

shorter CPU time capability in ratcheting assessment of steel samples. 
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Figure 4.8 Experimental data [29] and predicted ratcheting strain values of 1Cr18Ni9Ti steel 

samples based on the Ohno-Wang (O-W), Jiang-Sehitoglu (J-S), McDowell and A-V modified 

hardening rules under various loading conditions (I-K). 

The O-W, J-S and McDowell were found to overestimate the ratcheting response of 1045 

and 1Cr18Ni9Ti steel samples for various loading paths. Predicted ratcheting curve based on the 

McDowell model positioned higher than other models in figures 4.7 and 4.8. The predicted 

ratcheting results based on the J-S model showed closer agreement with experimental data as 

compared with those of predicted by the O-W for axial stress ratios R>1/3. The O-W and 

consequently J-S and McDowell models are significantly influenced by the number of backstress 

components, M, exponent mi and parameters ri and 
i  defined by segments chosen on the uniaxial 

stress-strain curve through a tedious and time-consuming trial procedure.  
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The J-S, McDowell rules and the proposed model took into account the effect of non-

proportionality. The McDowell’s modifications on the τ-W model is beneficial for cases at which 

the O-W model underestimated the ratcheting strain. The J-S rule on the other hand slightly 

improved the overestimated ratcheting curves based on the O-W model due to terms dp and mi of 

the dynamic recovery term.  The modified model reasonably assessed various multiaxial loading 

histories through the inclusion of non-proportionality through terms ).2( aan  and 

2/1

. aan  in the dynamic recovery term of the hardening rule.   

The O-W, J-S and McDowell models possessed more complicated structures. The 

capability of these models were very dependent on the number of backstress components and the 

magnitude of coefficients. The prediction of ratcheting curves based on the O-W, J-S and 

McDowell hardening rules with more number of backstress components, and with larger exponent 

mi requires longer CPU time to run the models while time required to predict ratcheting over stress 

cycles by the modified model is more time efficient mainly due to less complicated hardening rule 

and holding only three merely material dependent coefficients. 

 

4.3 Multiaxial ratcheting of SS304 alloys under stress-controlled and combined 

stress- and strain-controlled histories 

Ratcheting response of SS304 tubular stainless steel samples using nonlinear kinematic 

hardening rules of Ohno-Wang (O-W), Chen-Jiao-Kim (C-J-K) and newly modified hardening 

rule under stress-controlled, and combined stress- and strain-controlled histories, is evaluated.  The 

framework of O-W hardening rule was defined on the basis of the critical state of dynamic recovery 

of backstress. The C-J-K hardening rule further developed the O-W rule to include the effect of 

non-proportionality in ratcheting assessment of materials. The modified hardening rule offered a 

simple framework including three material dependent coefficients C, 1 and 2. The modified 
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model through the inclusion of aad p   and ).( aan into its recall term is capable to track 

different ratcheting directions during multiaxial loading histories.  

 

4.3.1 SS304 steel samples, testing and multiaxial ratcheting data 

 The capability of the O-W, C-J-K and modified A-V hardening rules to assess ratcheting 

of SS304 steel samples under various non-proportional loading paths was investigated. Multiaxial 

ratcheting data of three different 304 stainless steel alloys taken from literature [47, 50-51] were 

conducted under stress-controlled and mixed stress- and strain-controlled conditions. Hassan et al. 

[47] carried out various multiaxial tests under stress-controlled and mixed stress- and strain-

controlled conditions on SS304L tubular specimens of 25mm in diameter and thickness of 1.27 mm 

using a servohydraulic system. The SS304L samples were annealed in 1050°C for an hour and then 

were quenched slowly in air.  The employed loading paths/spectra on steel samples are presented 

in figures 4.9 and 4.10 (loading paths A1-A3 and B6). 

Kang et al. [50] performed ratcheting tests on tubular steel samples of hot-rolled SS304 

under different multiaxial stress-controlled paths of A4 and A5 (see figure 4.9). Tubular specimens 

employed in Kang’s experiments possessed inside and outside diameters of 12 mm and 15 mm, 

respectively. Tests were conducted using MTS809-25KN machine.  

Kim et al. [51] conducted a series of axial-torsional experiments on SS304 tubular samples 

with inside and outside diameters of 10 mm and 12.5 mm under mixed stress- and strain-controlled 

conditions using an Instron testing machine. The axial–torsional loading histories B1-B5 for Kim’s 

steel samples are presented in figure 4.10.  
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Figure 4.9 Stress-controlled paths. 

 

Under mixed stress- and strain- controlled testing conditions B1-B6, incremental strain and 

stress respectively were defined through t

ijd  and ijd . Unknown elements of strain and stress 

increments xyd , 
t

xxd , 
t

yyd  and 
t

zzd  under multiaxial loading conditions were first determined 

using Symbolic Math Toolbox in MATLAB software. Then the applied cyclic stress and strain 

values on steel samples were transformed to the stress components in the stress tensor over each 

increment. The incremental ratcheting strain values were defined using Hooke’s law and flow rule 

through the framework of hardening rules. While, for stress-controlled multiaxial loading histories 

A1-A5, the components of incremental stress tensor, 
ijd , are known in each individual increment. 
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Figure 4.10 Mixed stress- and strain-controlled paths. 

 

Table 4.5 presents ratcheting tests and loading conditions for tubular SS304 samples taken 

from [47, 50-51]. 

 

Table 4.5 Multiaxial ratcheting testing for 304 stainless steel samples under various loading 

paths. 

Materials Loading Path 
Δγ/2 

(%) 
ıa 

(MPa) 

ım 

(MPa) 
Ĳa 

(MPa) 

Ĳm 

(MPa) 

SS304L [47] 

A1 - 0 50 115.47 0 

A2 - 141.42 50 81.65 0 

A3 - 141.42 50 81.65 0 

SS304 [50] 
A4 - 248 78 143.2 0 

A5 - 248 78 143.2 0 

SS304 [51] 

B1 0.866 0 150 - - 

B2 0.866 100 100 - - 

B3 0.866 100 100 - - 

B4 0.866 100 100 - - 

B5 0.866 100 100 - - 

SS304L [47] B6 0.50 125 125 - - 
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In figure 4.9, loading path A1 corresponds to shear stress cycle applied in the presence of 

a constant axial stress. Path A2 presents a squared-shaped loading condition with fully reversed 

shear stress cycle and an axial mean stress of 50 MPa. Load path A3 is double squared-shaped 

with a symmetric shear stress cycle in one axis and an axial stress cycle in another loading axis 

consist of mean value of 50MPa. Loading path A4 represents 90 out-of-phase of sinusoidal 

symmetric shear stress and asymmetric axial stress spectra. Load path A5 is diamond-shaped with 

a fully reversed shear stress with a mean axial stress value of 78MPa. 

 In figure 4.10, loading path B1 corresponds to shear strain cycle applied concurrently with 

an axial constant stress. Path B2 presents a shear strain cycle and an axial stress with a mean value 

of 100 MPa. Loading path B3 represents 90 degree out-of-phase of sinusoidal shear strain and 

axial stress spectra. Loading paths B4 and B5 are horizontal butterflies with different directions 

and with mean axial stresses of 100MPa. Loading path B6 is triangle-shaped with asymmetric 

axial stress cycle and 0.5% shear strain amplitude.  

Ratcheting strain data of 304 stainless steel alloys of various loading paths were plotted 

versus multiaxial stress cycles in Fig 4.11. This figure depicts the effect of loading path on the 

magnitude of ratcheting strain data in SS304 samples achieved at different loading paths, stress 

amplitudes and mean stresses.   



  

66 

 

    

 

 
Figure 4.11 Ratcheting strain vs stress cycles for 304 stainless steel alloys under non-

proportional stress-controlled conditions (A1-A5) and mixed stress- and strain-controlled 

conditions (B1-B6). 

 

The calibrating coefficient γ2 is determined using a uniaxial ratcheting data of 304 stainless 

steel samples taken from references [47], [50] and [51]. Figure 4.12 shows how γ2 for three types 

SS304 is determined using the uniaxial ratcheting data. 
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Figure 4.12 Determination of coefficient γ2 for SS304 samples from uniaxial ratcheting data. 

 

Coefficient γ2 controls ratcheting rate and regulates the ratcheting response of materials. 

The coefficients of the O-W, C-J-K and A-V modified hardening rules employed in the current 

study are listed in Table 4.6.  
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Table 4.6 The coefficients of the hardening rules to assess ratcheting response of 304 stainless 

steel samples. 

Materials Model Hardening Rule Parameters  

SS304L [47] 

Modified 

Model 
C=55 GPa, γ1=190, γ2=25 

O-W Model 
γ1=1000, γ2=5000, γ3 =2000, γ4 =1400, γ5=830, γ6=340,  γ7=250, γ8= 55, 

r1 =18, r2 =12, r3 =8.5, r4 =7.2, r5 =5.5, r6 =6.6, r7 =11, r8=69.5 

mi =2 

C-J-K Model  

γ1=1000, γ2=5000, γ3 =2000, γ4 =1400, γ5=830, γ6=340,  γ7=250, γ8= 55, 

r1 =18, r2 =12, r3 =8.5, r4 =7.2, r5 =5.5, r6 =6.6, r7 =11, r8=69.5 

mi = 2   χi=4.8 

SS304 [50] 

Modified 

Model 
C=80 GPa, γ1=200, γ2=20 

O-W Model 
γ1=3448, γ2=1527, γ3 =839.6, γ4 =210.3, γ5=90.87, γ6=49.10,  γ7=31.01, γ8= 22.65, 

r1 =7.290, r2 =66.75, r3 =58.91, r4 =27.61, r5 =15.60, r6 =15.90, r7 =15.96, r8=117.96 

mi =5 

C-J-K Model 

γ1=3448, γ2=1527, γ3 =839.6, γ4 =210.3, γ5=90.87, γ6=49.10,  γ7=31.01, γ8= 22.65, 

r1 =7.290, r2 =66.75, r3 =58.91, r4 =27.61, r5 =15.60, r6 =15.90, r7 =15.96, r8=117.96 

mi =5    χi=1.3 

SS304 [51] 

Modified 

Model 
C=75 GPa, γ1=190, γ2=21 

O-W Model 
γ1=2000, γ2=1000, γ3 =500, γ4 =250, γ5=167, γ6=100,  γ7=62.5, γ8= 31.25, 

r1 =60, r2 =60, r3 =40, r4 =50, r5 =27, r6 =24, r7 =17, r8=52 

mi = 6 

C-J-K Model 

γ1=2000, γ2=1000, γ3 =500, γ4 =250, γ5=167, γ6=100,  γ7=62.5, γ8= 31.25, 

r1 =60, r2 =60, r3 =40, r4 =50, r5 =27, r6 =24, r7 =17, r8=52 

mi = 6   χi=2.9 

 

 

4.3.2 Predicted ratcheting of SS304 steel by O-W, C-J-K and A-V modified 

hardening rules under stress-controlled and combined stress- and strain-controlled 

histories 

The multiaxial ratcheting response of 304 stainless steel alloys under stress-controlled, and 

mixed stress- and strain-controlled conditions were predicted by means of the O-W, C-J-K and A-

V modified kinematic hardening rules. The experimental and the predicted ratcheting strain values 

based on the modified model (Eq. (3.8)), and the hardening rules of O-W (Eq. (2.8)) and C-J-K 

(Eq. (2.13)) for 304 stainless steel alloys tested under various stress-controlled and combined 

stress- and strain-controlled paths are presented in figures 4.13 and 4.14, respectively. Ratcheting 
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strains progressed in the direction of the axial mean stress with a decay in the accumulated 

ratcheting rate over multiaxial stress cycles for both loading conditions. The capability of the O-

W, C-J-K and modified hardening rules in ratcheting assessment of 304 stainless steel samples 

under five different stress-controlled loading paths A1-A5 was assessed as the predicted ratcheting 

curves were compared with those of experimentally reported values in Fig. 4.13. Experimental 

ratcheting data in this figure shows consistently good agreements with those of predicted curves 

based on the modified hardening rule for multiaxial loading paths A2, A3, A4, and A5 beyond first 

few cycles of 10-20. The predicted ratcheting curve for loading path A1 however overestimated 

the ratcheting data in this figure. A larger overestimation has been reported as ratcheting of loading 

path A1 was predicted by the first and second O-W, Abdel Karim -Ohno, and Kang models in ref. 

[72].  

The predicted ratcheting curves based on modified model were found in the closer 

agreement with those of experimentally reported which is attributed to inclusion of terms 

aad p  and ).( aan  in the recall term in the framework of proposed rule. The replacement 

of accumulated plastic strain increment dp with aad p   in the dynamic recovery term shifts 

down the overall magnitude of predicted ratcheting curve under multiaxial loading, since 

components pd  and aa  hold different direction and consequently their projection presented in 

the MaCaulay brackets induces a slower rate of ratcheting strain over stress cycles. In the 

meantime, material dependent coefficient γ2 first determined using uniaxial ratcheting response, is 

incrementally calibrated by ).2( aan consistent with applied multiaxial loading. This term, 

taking values between 1 and 3 under multiaxial loading, results in lower ratcheting rate.  

The non-proportionality term ).( aan  once again was employed in the form of 

2/1

. aan  multiplying vector b  to prevent the modified model experiencing plastic shakedown. 

The non-proportionality term ).( aan  takes values between -1 and 1 under multiaxial loading 
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histories. Term
2/1

. aan produces values between 0 and 1 under multiaxial loading reduces to 

1 for uniaxial loading case.  

For loading paths A1-A5, the O-W model overestimated ratcheting response of 304 

stainless steel samples in figure 4.13. Chen and Jiao [29] have further concluded that the O-W 

model overestimated the ratcheting response of cyclically hardened materials under multiaxial 

loading conditions. This overestimation was earlier attributed to the absence non-proportionality 

factor to control the evolution of ratcheting over complex stress cycles [36]. Chen et al. [30] further 

modified the dynamic recovery term through   i

ii aan


. to incorporate the loading non-

proportionality into the hardening rule. Term ii aan. takes different values of either zero or a 

value less than 1 under non-proportional loading and the terms in the MaCaulay brackets

  i

ii aan


. encounter the loading non-proportionality in ratcheting assessment of materials for 

exponent 0i . 

Based on the C-J-K model, exponent i  was first calibrated based on a set of multiaxial 

ratcheting data and then was employed for various loading paths. For 304L stainless steel samples 

[47] exponent 8.4i  was initially calibrated to coincide the ratcheting curve predicted by the C-

J-K model with those of experimentally obtained under loading Path A1. This value was then 

employed to predict the ratcheting under stress-controlled paths A2 and A3 as well as combined 

stress- and strain-controlled path B6. The predicted ratcheting curves for loading paths A1-A3 and 

B6 have positioned closer to experimental data as compared with predicted curves by the O-W 

mainly due to implementing term   i

ii aan


. . The C-J-K model is yet to closely follow the 

trend of ratcheting data of 304L in loading paths A1-A3 and B6. To predict ratcheting of 304 

stainless steel under loading paths A4 and A5 [50] exponent 3.1i was first defined to predict 

ratcheting of SS304 in agreement with experiment data of path A4. The C-J-K hardening rule with 
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the same value of i  failed to well predict ratcheting of loading path A5 as close as the model 

predicted ratcheting under loading path A4.  

 

 

 
Figure 4.13 Experimental and predicted ratcheting strain values of 304 stainless steel samples 

based on the O-W, C-J-K and A-V modified hardening rules under various stress-controlled 

paths A1-A5. 
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Figure 4.14 presents the predicted ratcheting curves of 304 stainless steel samples tested 

under combined stress- and strain-controlled histories B1-B6. The ratcheting curves were 

predicted based on the O-W and C-J-K hardening rules considering eight backstress components 

M=8.  

The predicted ratcheting curves based on the O-W model in this figure largely 

overestimated the experimental ratcheting data of SS304 samples [51] under B1-B5 loading 

histories. The O-W hardening rule underestimated the ratcheting of 304L sample tested under 

triangular loading path B6 [47] for initial 12-15 cycles and then largely overestimated the 

ratcheting trend as the number of cycle progressed. To predict the ratcheting curves of SS304 [51] 

under various paths, 9.2i  was calibrated based on ratcheting data of B1. The C-J-K model, 

employing this value for other loading paths B2-B5, improved the overestimation predicted earlier 

by the O-W model. The predicted ratcheting curves for loading paths B1 and B4 were found in 

good agreements with experimental data reported by Kim et al. [51]. The C-J-K model with the 

same multiaxial factor i  showed a noticeable deviation of predicted ratcheting curves for paths 

B2, B3, and B5. The ratcheting of B6 sample predicted by the C-J-K showed some underestimation 

in consistent with what reported by Abdel-Karim [72].  

Figure 4.14 also shows how closely the ratcheting curves predicted based on the modified 

model are positioned next to the experimental values for loading paths B1-B5. The modified model 

underestimated the ratcheting strain of 304L stainless steel samples under loading path B6. A 

larger underestimation in ratcheting was also achieved for B6 loading path when predicted based 

on the Abdel-Karim and Chen-Jiao models [72].  
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Figure 4.14 Experimental and predicted ratcheting strain values of 304 stainless steel samples 

based on the O-W, C-J-K and A-V modified hardening rules under combined stress- and strain-

controlled tests B1-B6. 
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The O-W model overestimated the ratcheting response of 304 stainless steel samples under 

both stress-controlled and combined stress- and strain-controlled paths. Larger values of mi in 

equation (2.8) suppressed the rate of accumulated ratcheting over multiaxial stress cycles. 

Constants mi, ri and γi in the kinematic hardening rules of O-W [19, 20] and C-J-K [30] are defined 

by segments chosen on the uniaxial stress-strain and uniaxial ratcheting curves through a tedious 

and time-consuming trial procedure. The persistent overestimation of ratcheting curves predicted 

based on the O-W model in figures 4.13 and 4.14 was attributed to the absence of the non-

proportionality factor in the framework of the O-W. The C-J-K model addressed this shortcoming 

of the O-W model by incorporating term   i

ii aan


. into the dynamic recovery term to include 

the effect of loading non-proportionality. The C-J-K model showed a closer agreement of the 

predicted ratcheting curves of SS304 steel samples to experimental data as compared to those 

curves predicted by the O-W model. Exponent i in the C-J-K model once calibrated based on a 

multiaxial ratcheting data set, hardly became applicable for other multiaxial loading histories. For 

instance, the calibrated i  for SS304 under loading path A4 failed to result in good prediction for 

loading path A5. Similarly, the i defined for loading path B1 is yet to well predict ratcheting for 

tests with loading paths B2, B3 and B5 of the same steel alloy. 

The modified hardening rule was found consistently capable to predict ratcheting of 304 

steel alloys under various stress-controlled and combined stress- and strain-controlled tests. The 

overestimation in predicting the ratcheting of steel alloys for loading paths A1 and B6 as compared 

with experimental data reported by researchers in reference [49] was attributed to the distortion of 

the yield surface affecting the ratcheting response in 304 samples.  

The O-W and C-J-K models were significantly influenced by the number of backstress 

components, M, exponent mi and parameters ri and 
i  defined by segments chosen on the uniaxial 

stress-strain curve through a tedious and time-consuming trial procedure. Both the C-J-K and 

modified models took into account the effect of non-proportionality. The C-J-K rule improved the 
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overestimated ratcheting curves predicted by the O-W model as a non-proportionality factor was 

introduced into the dynamic recovery term.   

The modified model reasonably assessed various loading histories through the inclusion of 

non-proportionality term ).( aan  in the dynamic recovery term of the hardening rule. The 

capability of the O-W and C-J-K models was very much dependent on the number of backstress 

components and how the coefficients are chosen/determined. The prediction of ratcheting curves 

based on the O-W and C-J-K hardening rules with more number of backstress components, and 

with larger exponent mi required longer CPU time to run the models while time required to predict 

ratcheting over stress cycles by the modified model was insignificant mainly due to less 

complicated hardening rule and its limited number of coefficients. 

 

4.4 Ratcheting assessment of SS304 steel under multiaxial step-loading 

conditions 

The present study predicts ratcheting response of 304 tubular stainless steel samples 

undergoing multiaxial step-loading histories by means of nonlinear kinematic hardening rules of 

Ohno-Wang (O-W), Chen-Jiao-Kim (C-J-K) and the modified Ahmadzadeh-Varvani (A-V). The 

influence of load steps on ratcheting progress over multiaxial load cycles in 304 steel samples was 

evidential for five different loading paths discussed in this section. The prior load step in these 

paths greatly affected the ratcheting buildup in subsequent steps. The predicted ratcheting curves 

and generated axial-torsional hysteresis loops based on the modified are also compared with 

experimentally obtained hysteresis loops of SS304 steel samples over loading steps. 

4.4.1 SS304 sample, testing and multiaxial ratcheting data 

 Ratcheting data of 304 stainless steel samples tested under various multiaxial step-loading 

spectra were taken from literature [43, 50] to assess the capability of the O-W, C-J-K and modified 

A-V hardening rules in predicting ratcheting curves.  
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Ratcheting tests on tubular steel samples of hot-rolled SS304 were performed under 

different multiaxial stress-controlled paths of A-E as presented in figure 4.15.  

 

 

 

 

 

Figure 4.15 Step-loading paths and multiaxial testing histories. 
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Tubular specimens in these experiments possessed inside and outside diameters of 12 mm 

and 15 mm, respectively and ratcheting tests were conducted using MTS809-25KN testing 

machine. Table 4.7 presents ratcheting tests and loading conditions for tubular SS304 samples 

taken from [43]. 

Table 4.7 Step-loading multiaxial ratcheting testing of SS304 samples under various loading 

paths [50]. 

Path  

Step 1  Step 2  Step 3 

ım1± ıa1 
(MPa) 

Ĳm1± Ĳa1 

(MPa) 
N1 (Cycle)   

ım2± ıa2 

(MPa) 
Ĳm2± Ĳa2 

(MPa) 
N2 (Cycle)   

ım3± ıa3 

(MPa) 
Ĳm3± Ĳa3 

(MPa) N3 (Cycle) 

A 78±248 67.55±0 50   117±248 67.55±0 50   78±248 67.55±0 20      

B 78±248 0±143.2 50   117±248 0±143.2 50   78±248 0±143.2 20      

C 78±248 0±71.6 50   117±248 0±71.6 50   78±248 0±71.6 20      

D 78±248 0±143.2 50   117±248 0±143.2 50   78±248 0±143.2 20      

E 78±248 0±71.6 50   117±248 0±71.6 50   78±248 0±71.6 20      

 

In figure 4.15, loading path A corresponds to axial stress cycle applied concurrently with 

a constant shear stress. Loading paths B and C represent 90 out-of-phase of sinusoidal shear stress 

and axial stress axes which result in circular and elliptical paths respectively possessing 143.2MPa 

and 71.6MPa as shear stress amplitudes. Loading paths D and E are diamond-shaped with a fully 

reversed shear stress with stress amplitudes of respectively 143.2MPa and 71.6MPa, and 

asymmetric axial stress cycles. Paths A-E possess histories consist of three load steps with  low-

high-low sequences at which torsional loading was kept unchanged over three loading steps while 

the asymmetric axial axes in these histories included mean stresses of 78MPa, 117MPa, and 

78MPa over the first, the second, and the third steps of loading spectra, respectively. The axial and 

torsional stress amplitudes stayed unchanged at 248MPa over loading steps. 

Ratcheting strain data of 304 stainless steel samples of various loading paths were plotted 

versus multiaxial loading steps in Fig 4.16. This figure shows how influential the effect of loading 
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path, loading steps and its sequence on the magnitude of ratcheting strain data in SS304 samples 

is.   

 

Figure 4.16 Ratcheting strain vs stress cycles for 304 stainless steel samples tested under 

multiaxial step-loading histories A-E [50]. 

Coefficients of the O-W, C-J-K and modified A-V hardening rules employed in the current 

study are listed in Table 4.8. 

Table 4.8 Coefficients of the hardening rules to assess ratcheting response of 304 stainless steel 

samples. 

Model Hardening Rule Parameters  

 Modified Model C=80 GPa, γ1=200, γ2=20 

O-W Model 
γ1=3448, γ2=1527, γ3 =839.6, γ4 =210.3, γ5=90.87, γ6=49.10,  γ7=31.01, γ8= 22.65, 

r1 =7.290, r2 =66.75, r3 =58.91, r4 =27.61, r5 =15.60, r6 =15.90, r7 =15.96, r8=117.96 

mi =5 

C-J-K Model 

γ1=3448, γ2=1527, γ3 =839.6, γ4 =210.3, γ5=90.87, γ6=49.10,  γ7=31.01, γ8= 22.65, 

r1 =7.290, r2 =66.75, r3 =58.91, r4 =27.61, r5 =15.60, r6 =15.90, r7 =15.96, r8=117.96 

mi =5    χi=1.3 
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4.4.2 Multiaxial ratcheting of SS304 over loading steps by the modified model 

Ratcheting response of 304 stainless steel samples undergoing multiaxial step-loading 

histories A-E was predicted by means of the modified hardening rule and was compared with 

experimental ratcheting data over loading steps in figures 4.17a-4.21. The stress amplitude over 

step-loading histories remained constant while mean stress varied with low-high-low sequences.  

The experimentally obtained tensile strain-shear strain (-) hysteresis loops and those predicted 

by the modified model over three low-high-low loading steps are presented in parts (b) and (c) of 

figures 4.17-4.21.  

In figure 4.17, loading path A with a constant stress amplitude of 248MPa and low-high-

low mean stress sequence of 78MPa, 117MPa, 78MPa resulted in ratcheting strain to progress in 

the direction of axial mean stress over the first and the second steps while it showed a change in 

direction of ratcheting accumulation over the third step. The predicted ratcheting curve closely 

agreed with experimental data over the first and third steps in figure 4.17a however a deviation of 

up to 7% between the predicted and experimental ratcheting values is evidenced within the second 

step. In the third step the modified model enabled the ratcheting strain values to lower agreeable 

with the experimental data as a result of a drop in mean stress level. The change in direction of 

predicted ratcheting curve over the third step of loading path A verifies the capability of the model. 

The experimental hysteresis loops (-) in figure 4.17b and those of predicted in figure 4.17c 

closely agreed over low-high-low loading steps. These figures verify the presence of the shear 

ratcheting strain for non-zero shear mean stress of m=67.55MPa.  
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Figure 4.17 (a) Experimental ratcheting data [50] vs predicted ratcheting curves based on the 

modified model, (b) experimental hysteresis loops [50] (-), and (c) predicted hysteresis loops 

(-) over load steps for history A. 

 

The predicted ratcheting curves of SS304 steel sample undergoing circular loading path B 

with a constant stress amplitude of 248MPa and mean stresses 78MPa, 117MPa, and 78MPa over 

three load steps was compared with those of experimentally reported in Fig. 4.18a. The predicted 

ratcheting curves agreed with experimental data over the first step and third step and they showed 

an underestimation as high as 5% as compared with experimental data within the second step. The 

experimental axial-shear ratcheting hysteresis loops in figure 4.18b agreed with those of predicted 

by the modified model in figure 4.18c. These figures show the dominancy of ratcheting along axial 

direction due to the applied axial mean stresses and a minor shear ratcheting progress as shear 

mean stresses were absent over load steps. The evidence of minor shear ratcheting progress in the 

absence of applied shear mean stresses have been also reported by Kang et al. [50, 73].  
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Figure 4.18 (a) Experimental ratcheting data [50] vs predicted ratcheting curves based on the 

modified model, (b) experimental hysteresis loops [50] (-), and (c) predicted hysteresis loops 

(-) over load steps for history B. 

 

Figure 4.19a plots both experimentally obtained ratcheting strain data of 304 stainless steel 

and those of predicted curves over three load steps of history C consists of the constant stress 

amplitude of 248MPa and mean stresses of 78MPa, 117MPa, 78MPa. The predicted ratcheting 

curves in this figure underestimated the ratcheting for the first 10-15 cycles and closely agreed 

with experimental data as the number of cycle advanced in step 1. The predicted ratcheting curve 

in the middle step fell below the experimental data with a magnitude of 7%. At the third step both 

predicted and experimental ratcheting data collapsed next to each other. The experimental and 

predicted hysteresis loops (-) in figures 4.19b and 4.19c showed close agreements.  
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Figure 4.19 (a) Experimental ratcheting data [50] vs predicted ratcheting curves based on the 

modified model, (b) experimental hysteresis loops [43] (-), and (c) predicted hysteresis loops 

(-) over load steps for history C. 

 

The experimental and predicted ratcheting values of 304 steel sample tested under history 

D is presented in figure 4.20a.  The close agreement of the predicted ratcheting curves and 

experimental data over steps 1 and 3 is evident. The predicted curve in the middle step showed an 

underestimation of ratcheting not exceeding 8% as compared with experimental data. Over loading 

steps of history D shear stress amplitudes remained constant a=143.2MPa over loading steps. The 

experimental and predicted hysteresis loops (-) in figures 4.20b and 4.20c showed close 

agreements in both trend and magnitude of axial and shear strain values over hysteresis cycles.  
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Figure 4.20 (a) Experimental ratcheting data [43] vs predicted ratcheting curves based on the 

modified model, (b) experimental hysteresis loops [50] (-), and (c) predicted hysteresis loops 

(-) over load steps for history D. 

 

Figure 4.21a compares the predicted ratcheting curves with the experimental ratcheting 

data for diamond loading path E. The predicted ratcheting curve underestimated experimental data 

half-way through step 1 cycles. The predicted ratcheting values agreed with experimental data 

within the third loading step. The predicted curve fell below ratcheting data at 7% over the second 

loading step. 

Path E is similar to path D over load steps of axial stress cycles. The diamond loading path 

E however possessed different shear stress amplitudes over load steps. The shear stress amplitude 

was kept constant a=71.6MPa for history E. The higher shear stress amplitude of history D 

(a=143.2MPa), resulted in a smaller axial strain up to 1.45% as compared with that of 2.4% for 

loading path E. The experimental and predicted hysteresis loops (-) in figures 4.21b and 4.21c 

showed close agreements in both trend and magnitude of axial-shear strain hysteresis loops. The 
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lower shear stress amplitude for history E dropped the range of shear strain as compared with that 

of history D with higher shear stress amplitude over loading steps. 

 

Figure 4.21 (a) Experimental ratcheting data [50] vs predicted ratcheting curves based on the 

modified model, (b) experimental hysteresis loops [43] (-), and (c) predicted hysteresis loops 

(-) over load steps for history E. 

 

An increase in axial mean stress resulted in a buildup in ratcheting data of 304 stainless 

steel samples tested with low-high-low axial mean stress sequence in histories A-E as presented 

in figures 4.17a-4.21a. The change in direction of ratcheting over the third load step lowering the 

ratcheting magnitude is evident from these figures as the axial mean stress dropped at this step.  

The buildup at the transient of step 1-step 2 and small peak at the transient points from step 

2 to step 3 in these figures show how influential the loading sequence and drop in mean stress 

magnitude on the ratcheting response of 304 steel samples under step-loading conditions is.  

The predicted ratcheting curves based on the modified hardening rule for loading path A-

E agreed with experimental data over load step 1 and particularly after a few initial cycles at this 

step as well as those experimental data within step 3. The predicted ratcheting data over middle 
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load step however showed an underestimation as compared with experimental data for histories 

A-E. This underestimation has also been reported by Kang et al. [43] for loading paths B-E.   

In figures 4.17-4.21, a drop in axial mean stress level in step 3 resulted in a suppression of 

the axial ratcheting strain values over this step. The shear ratcheting strain in figures 4.17b and 

4.17c was due to non-zero shear mean stress of 67.55MPa over loading steps of history A. The 

minor presence of shear ratcheting strain was evident in history B (figures 4.18b and 4.18c) at 

which shear mean stresses were absent over loading steps. In histories D and E, the difference in 

shear stress amplitudes noticeably affected the magnitude of axial ratcheting strain. Diamond 

loading path D resulted the ratcheting strain of 1.45% (see figures 4.20b and 4.20c) and loading 

path E resulted in a higher magnitude of axial ratcheting strain of 2.4% (see figures 4.21b and 

4.21c). The corresponding shear strain ranges in figures 4.20b and 4.21b over loading steps 1-3 

were found to be respectively 0.11% and 0.065%.  

 

4.4.3  Multiaxial ratcheting of SS304 based on the O-W, C-J-K and modified A-V 

hardening rules under step-loading conditions 

The multiaxial ratcheting response of 304 stainless steel samples under various step-

loading histories A-E were predicted by means of the O-W, C-J-K and modified A-V kinematic 

hardening rules. The experimental ratcheting data were presented with those of predicted based on 

the modified model (Eq. (3.8)), O-W (Eq. (2.8)) and C-J-K (Eq. (2.13)) hardening rules in figure 

4.22. In this figure, histories A-E possessed low-high-low sequences in mean stresses while stress 

amplitude stayed unchanged over load steps. This increase in the mean stress magnitude at the 

second loading step shifted up ratcheting strain values at this stage resulting in a peak at the 

transition of load steps 2 and 3 and subsequently as the mean stress in stage 3 decreased, the 

direction of ratcheting accumulation was reversed.   

Predicted ratcheting curves based on the modified model in figures 4.22a-4.22e 

consistently agreed with those of experimentally obtained under multiaxial loading paths A-E 
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beyond first few cycles of the first step as well as entire step 3. The predicted curves over step 2 

slightly underestimated ratcheting for these histories over the second step.  

The proposed model through introducing new terms including aad p  , ).2( aan  

and 
2/1

. aan , and calibrating coefficient γ2 in its dynamic recovery term was capable to closely 

agree the trend of experimental ratcheting data over the multiaxial step-loading histories. The 

replacement of dp with aad p  further improved the capability of model to assess multiaxial 

ratcheting strain as the function in the MaCaulay brackets distinguishes different directions of 
pd  

and aa  under multiaxial stress cycles. Term ).2( aan  taking values between 1 and 3 under 

multiaxial loading conditions, magnifies the calibrating coefficient γ2 and shifted down the 

ratcheting strain predicted by the modified model. Term ).( aan  taking values between -1 and 

1 produces positive values smaller than 1, as it was employed in MaCaulay brackets in the form 

of 
2/1

. aan . This term controls the accumulation of ratcheting strain over stage II and prevents 

the modified model trapped in plastic shakedown. 

The ratcheting curves were predicted based on the O-W and C-J-K hardening rules 

considering eight backstress components M=8. For loading paths A-D, the O-W model 

overestimated ratcheting response of 304 stainless steel samples in figure 4.22 within the first step. 

The O-W model persistently overestimated the ratcheting strain of SS304 over subsequent steps 2 

and 3 under paths B and D.  The overestimation of multiaxial ratcheting based on the O-W model 

was consistently reported by Chen and Jiao [29] for cyclically hardened steel samples. This 

overestimation was earlier attributed to the absence of non-proportionality factor to control the 

evolution of ratcheting over complex stress cycles [36].  
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Figure 4.22 Experimental data [50] and predicted ratcheting strain values of 304 stainless steel 

samples based on the O-W, C-J-K and A-V modified hardening rules under various loading 

histories A-E. 
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In the present study, the predicted ratcheting curves under loading history A resulted in a 

slight overestimation by the O-W model over the first loading step followed by underestimations 

of  the second and third loading steps. The predicted curves through the O-W model showed a 

closer agreement with experimental results in steps 2 and 3 after the overestimation of the first 

step under loading history C. The hardening rule of O-W showed a persistent underestimation over 

load steps in loading history E. This model enabled to assess ratcheting in opposite direction as 

mean stress magnitude followed high-low sequence within steps 2 and 3 of loading histories A-E. 

Constants mi, ri and γi in the kinematic hardening rules of O-W [19, 20] and C-J-K [30] are 

defined by segments chosen on the uniaxial stress-strain and uniaxial ratcheting curves through a 

tedious and time-consuming trial procedure. The deviation of predicted ratcheting curves based on 

the O-W model in figures 4.22 was associated to the absence of the non-proportionality factor in 

the framework of the O-W. The C-J-K model addressed this shortcoming of the O-W model by 

incorporating term   i

ii aan


. into the dynamic recovery term to include the effect of loading 

non-proportionality. Term ii aan. takes different values of either zero or a value less than unity 

under non-proportional loading and the terms in the MaCaulay brackets   i

ii aan


. encounter 

the loading non-proportionality in ratcheting assessment of materials for exponent 0i . 

The exponent i  in this model was first calibrated based on a set of multiaxial ratcheting 

data and then was employed for various loading paths. For 304 stainless steel samples discussed 

in this study, exponent 3.1i  was initially calibrated to coincide the ratcheting curve predicted 

by the C-J-K model with those of experimentally obtained under loading Path A. This value was 

then employed to predict the ratcheting under stress-controlled paths B-E. For loading paths at 

which the O-W model showed overproduction, the predicted ratcheting curves by the C-J-K model 

fell closer to experimental data as compared with those predicted curves by the O-W model mainly 

due to implementing term   i

ii aan


. . For the loading histories B and D at which the O-W 

model overestimated the ratcheting curves, the C-J-K hardening rule resulted in shifting down the 
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ratcheting curves and closer agreements with the experimental data. The predicted ratcheting 

curves by the C-J-K model further shifted down the ratcheting curves as the predicted curves of 

A, C, and E histories through the O-W rule fell below experimental data. The C-J-K model showed 

more deviation of the predicted curves as compared with experimental ratcheting data over loading 

paths A and E as compared to those predicted by the O-W model. 

The C-J-K model with the inclusion of multiaxial factor i  showed the capability to follow 

the trend of ratcheting strain under non-proportional step-loading conditions and to accumulate the 

ratcheting strain in the opposite direction of axial mean stress at step 3 consistent with experimental 

data as shown in figure 4.22.  

In the transient stage form the second step to the third step the ratcheting response of SS304 

showed a small peak predicted by the O-W, C-J-K and modified A-V hardening rules. These small 

peaks formed in the transient stage from step 2 to step 3 verifying how influential the effect of the 

loading sequence in ratcheting response under step-loading histories is. Kang et al. also [52] 

reported that under a step-loading history each step affected the ratcheting progress over 

subsequent load steps depending on the sequence of loading steps.  

The O-W and C-J-K predictions were significantly influenced by the number of backstress 

components, M, exponent mi and parameters ri and 
i  defined by segments chosen on the uniaxial 

stress-strain curve through a tedious and time-consuming trial procedure. Both the C-J-K and 

modified models took into account the effect of non-proportionality. The C-J-K rule improved the 

overestimated ratcheting curves predicted by the O-W model as a non-proportionality factor was 

introduced into the dynamic recovery term.  

Experimental ratcheting data of 304 steel samples under multiaxial step-loading conditions 

showed great influence of the prior load step history on the ratcheting response over the subsequent 

loading steps. The material showed slight ratcheting accumulation in the opposite direction of axial 

mean stress. The high–low axial mean stress load sequence in the transient stage of step 2 and step 

3 resulted in the restraining of the ratcheting progress. The difference in ratcheting magnitudes 
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over loading steps 1 and 3 for histories A-E at which both steps possess identical applied stress 

magnitudes can also be attributed to the influence of loading sequence involving the prior load 

step with higher axial mean stress. This is believed [73] to improve materials strength and to 

decrease the rate of ratcheting progress in the subsequent step. 

 

4.5 Summary  

The A-V hardening rule is modified through its linear hardening and dynamic recovery 

term. The linear term of backstress holds material dependent coefficients of C and γ1 controlling 

shape and size of hysteresis loops while the dynamic recovery term possesses calibrating 

coefficient γ2 to control the ratcheting strain rate over stress cycles. Materials dependent 

coefficients C, γ1, γ2 are determined based on uniaxial ratcheting data. 

The modified rule through the involvement of pd  and aa  in the MaCaulay brackets 

aad p   is capable to track different directions under multiaxial loading. This function further 

decreased the overall ratcheting curve and provided a closer predicted curves to the experimental 

data. The non-proportionality term ).( aan  is introduced in the form of multipliers  

).2( aan  and 
2/1

. aan  to respectively regulate dynamic recovery components γ2 and b  

under multiaxial loading. Term ).2( aan further shifted down the predicted ratcheting strain, 

while term 
2/1

. aan prevented modified model to predict plastic shakedown over stage II. 

The modified hardening rule was employed to predict ratcheting response of 1045 steel 

samples for eight different multiaxial loading paths A-H. The predicted curves closely agreed with 

experimental data over ratcheting stages I and II. Ratcheting response of 1045 and 1Cr18Ni9Ti 

steel samples undergoing multiaxial loading cycles was assessed based on nonlinear hardening 

rules of the O-W, J-S, McDowell and modified A-V. The O-W, J-S, McDowell hardening rules 

with relatively complex structure and several coefficients were compared with the modified model 
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with less complexity and number of coefficients. The O-W, J-S and McDowell models 

overestimated the ratcheting strain of 1045 and 1Cr18Ni9Ti steel samples for various loading 

histories, while the predicted curves of the modified model closely agreed with experimental data 

of 1045 and 1Cr18Ni9Ti steel samples over ratcheting stages I and II. The J-S and McDowell 

hardening rules developed the O-W rule to include the effects of stress-dependency and non-

proportionality in ratcheting assessment of materials through modifications over exponent mi. The 

predicted ratcheting curves by the McDowell and J-S models highly overestimated the ratcheting 

response of steel samples under various multiaxial loading paths as compared with the 

experimental data. The J-S model has shown slightly lower overestimation than that of the 

McDowell model mainly due to its mi formulation. The O-W, J-S and McDowell models possessed 

more complicated structures. 

Ratcheting response of 304 stainless steel samples undergoing stress-controlled and 

combined stress- and strain-controlled multiaxial tests was assessed based on hardening rules of 

the O-W, C-J-K and modified model. The O-W model overestimated the ratcheting strain of SS304 

samples for various loading histories. The C-J-K model holding a non-proportionality term 

resulted in closer agreement of the predicted ratcheting curves and experimental data for loading 

paths A3, A4, B1, and B4. The modified model closely agreed with experimental data of 304 

stainless steel samples over ratcheting stages I and II with some deviation over initial stress cycles. 

Ratcheting response of 304 stainless steel samples undergoing multiaxial step-loading tests was 

assessed based on nonlinear hardening rules of the O-W, C-J-K and modified model. Load 

sequence greatly affected the ratcheting strain rate and its trend over the steps. Low–high-low axial 

mean stress sequence studied in this paper resulted in a buildup of ratcheting strain values from 

the first step to the second step, followed by restraining and changing the direction of ratcheting 

data over the third loading step. The predicted ratcheting curves through the modified hardening 

rule showed a close agreement as compared with the ratcheting experimental data over multiaxial 

load steps in 304 steel samples undergoing various loading histories A-E. The O-W model closely 

predicted the ratcheting strain of 304 steel samples under loading path C. The predicted curves 
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through this model deviated from experimental data for histories A, B, D, and E. The C-J-K model 

through its non-proportionality term resulted in a closer agreement of the predicted ratcheting 

curves and experimental data for the loading paths B and D overestimated through the O-W model. 

The C-J-K model exacerbates the ratcheting prediction of the O-W model for loading histories A, 

C, and E. The O-W, C-J-K and modified A-V hardening rules enabled ratcheting prediction over 

step 3 at which mean stress reduced resulting in a change in the ratcheting direction over this 

loading step. The O-W, J-S, McDowell and C-J-K models possessed more complicated structures. 

The prediction of ratcheting curves based on these hardening rules with more number of backstress 

components, and with larger exponent mi required longer CPU time to run the models while time 

required to predict ratcheting over stress cycles by the modified model was twice shorter due to 

less complicated hardening rule and limited number of coefficients. 
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5. CHAPTER FIVE 

 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

 

5.1 Conclusions   

 

The proposed kinematic hardening rule in this study offers a simple framework with three 

material dependent coefficients C, γ1 and γ2, to predict the ratcheting strain developed over 

multiaxial loading cycles mainly due to modifications in the dynamic recovery term.   In the 

dynamic recovery of the modified hardening rule, the term aad p  was replaced with the 

accumulated plastic strain increment, dp. The term aad p  introduced a slower evolution of 

ratcheting strain in the deviatoric stress space as the components
pd  and aa in the MaCaulay 

brackets took different directions under multiaxial loading conditions and made the model capable 

of tracking these different directions. The projection presented by this term resulted in a slower 

evolution of ratcheting under multiaxial loading compared to term dp. The measure of non-

proportionality was also utilized in the form of product of 
2/1

. aan  and vector b  to control the 

accumulation rate of ratcheting strain, and essentially to prevent the modified model to experience 

plastic shakedown as the number of cycles advances over various multiaxial loading conditions. 

Under multiaxial loading histories, the term
2/1

. aan takes positive values smaller than 1 and 

prevents this model from premature plastic shakedown. The term ).2( aan  regulates the 

magnitude of coefficient γ2 properly for various multiaxial loading paths.  The coefficient γ2 was 

determined using the ratcheting data under uniaxial loading through a trial-error procedure. This 
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term takes the values between 1 and 3 under multiaxial loading and consequently magnifies the 

effect of γ2 and results in a smaller accumulation rate of ratcheting strain over stress cycles. Term

).2( aan  encounters the effect of non-proportionality as multiaxial loads are applied, and 

reduces to unity for uniaxial loading condition. The new modified hardening rule was employed 

to assess the ratcheting response of 1045 steel samples under various multiaxial loading paths. The 

applied modifications were individually studied to investigate the evolutional impact of introduced 

terms. The modified hardening rule offered a simple framework to successfully predict ratcheting 

strain over multiaxial loading cycles mainly due to its dynamic recovery terms with limited number 

of coefficients.   

The multiaxial ratcheting strain of 1045 and 1Cr18Ni9Ti steel samples was assessed under 

various loading paths by means of the O-W, J-S, McDowell, and A-V modified hardening rules. 

The O-W, J-S, McDowell hardening rules with relatively complex structures and several 

coefficients were compared with the modified model with less complexity and number of 

coefficients. The O-W, J-S and McDowell models overestimated the ratcheting strain of 1045 and 

1Cr18Ni9Ti steel samples under various multiaxial loading histories, while the predicted curves 

of the modified model closely agreed with experimental data of steel samples over all the 

ratcheting stages through terms aad p  and ).( aan  in the dynamic recovery, accounting for 

non-proportionality effect. The J-S and McDowell models have further developed the O-W model 

to introduce non-proportionality effects through the exponents mi. The J-S model showed a closer 

agreement with experimental data due to the employed mi formulation. The McDowell presented 

a more overestimation as compared to the O-W model. 

The capability of the O-W, C-J-K and the modified hardening rule was investigated in 

multiaxial ratcheting assessment of SS304 steel samples under various stress-controlled and 

combined stress- and strain-controlled multiaxial paths. The O-W model persistently 

overestimated the ratcheting response of 304 stainless steel samples tested under various loading 

histories, while the predicted curves through the C-J-K model showed less overprediction for all 
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cases and presented a close agreement with ratcheting experimental data for loading paths A3, A4, 

B1, and B4 due to the inclusion of non-proportionality term in its framework. The predicted 

ratcheting curves based on the modified model closely agreed with experimental data of 304 steel 

samples.  

The ratcheting response of 304 stainless steel samples was also evaluated under three-step 

multiaxial loading histories by means of the modified hardening rule as well as the models of O-

W and C-J-K and the results were compared with experimentally obtained ratcheting data. The 

predicted ratcheting curves and generated axial-torsional hysteresis loops based on the modified 

model closely agreed with the experimentally obtained hysteresis loops of SS304 steel samples 

over the loading steps. The modified model was found capable of predicting ratcheting in the 

opposite direction as the tensile axial mean stress dropped from 117MPa to 78MPa. The predicted 

ratcheting curve closely agreed with the experimental data over the first and third steps however a 

deviation of up to 8% between the predicted and experimental ratcheting values was evidenced 

within the second step. 

The predicted ratcheting curves by the O-W model showed deviations from the 

experimental data as compared with experimental ratcheting data of SS304 samples for histories 

A, B, D, and E, while presented a close agreement as the loading history C was applied. This 

deviation has been lowered than under loading conditions B and D predicted by the O-W model 

as the C-J-K model holding non-proportionality term was employed. However, the C-J-K model 

aggravated the ratcheting prediction of the O-W model for loading histories A, C, and E.  

The choice of hardening rule to assess ratcheting steel samples is found to be very much 

dependent on complexities involved with ratcheting algorithms, their constitutive equations and 

framework, coefficients, and CPU time required to run ratcheting programs. The O-W, J-S, 

McDowell and C-J-K models possessed more complicated structures with more number of 

backstress components as well as more number of coefficients, including ri , 
i and mi. The 

prediction of ratcheting strain on the basis of these complex framewoks required longer CPU time, 
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while the time required to predict the ratcheting strain over loading cycles by the modified 

hardening rule was found more time-efficient due to requirement for less coefficients and less 

complicated framework. 

 

5.2 Recommendations for Future Research 

 

For reliable design of engineering components and structures undergoing asymmetric 

stress cycles, assessment of successive plastic strain referred as ratcheting strain in materials is 

always crucial. When both ratcheting and fatigue phenomena are coupled, they result in a severe 

damage leading to failure of components. Influential parameters and their interactions affecting 

ratcheting and fatigue phenomena need to be prioritized by the researchers in the field of cyclic 

plasticity and failure analysis, to more accurately investigate the effects of mechanistic parameters. 

The influencing parameters include non-proportionality under multiaxial loading conditions, 

microstructural characterization, cyclic softening/ hardening of materials, thermal stresses, and 

hostile environment. 

Further research outlooks in the field of cyclic plasticity coupled damage is recommended 

for the reliable ratcheting and failure assessment of materials. Some of these plans are listed below:   

 In addition to non-proportionality effects, influential parameters such as environmental 

and thermal conditions as well as rate-dependency need to be properly addressed as 

future research perspectives in the framework of hardening rules for a realistic 

ratcheting assessment of materials. 

 

 Materials microstructures, dislocations characterizations and their evolution and 

interactions over stress cycles are prominent parameters in the ratcheting phenomenon 

and consequently introducing them in the modeling of ratcheting strain is 

recommended for future studies.  
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 The proposed hardening rule was evaluated for steel alloys under a wide variety of 

stress- and stress/strain controlled multiaxial loading histories. Further investigations 

are recommended to assess the capability of the modified model in ratcheting 

prediction of other metallic, composites and smart materials.  

 

 In the kinematic hardening rules, it is assumed that the size and shape of yield surface 

stay unchanged during the plasticity over the deviatoric stress space. Combining the 

kinematic and isotropic hardening rules introduces change in the yield surface into the 

hardening rule. This can improve the capability of models in the ratcheting assessment 

of viscoplastic materials, and materials under very complex loading conditions which 

may be experiencing extra hardening.    

 

 The kinematic hardening rule of Ohno and Wang was defined on the basis of the critical 

state of the dynamic recovery term in the backstress equation. The total backstress in 

this hardening rule is defined based on the superposition of M independent backstress 

components. It is recommended to employ the modified hardening rule to form 

 


M

i iadad
1

  superpositioning M independent backstress components.  

 

  The modified hardening rule in this study presented a promising results. This model 

has a simpler framework and requires less number of coefficients compared with the 

other models, these offer more robust analysis, consistency condition and consequently 

produces reliable component ratcheting prediction.  Implementation of the developed 

model within a finite element code is recommended for ratcheting assessment of 

various geometry components. 
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A. APPENDIX A 
 

Appendix A presents MATLAB Programming code developed on the basis of the modified 

kinematic hardening rule in this thesis to assess ratcheting response of 1045, SS304 and 

1Cr18Ni9Ti steel alloys under various multiaxial loading spectra. MATLAB Programming codes 

for the O-W, McDowell, J-S and C-J-K hardening rules were also developed as subroutine 

programs to assess multiaxial ratcheting under stress-controlled and mixed stress- and strain-

controlled conditions. The codes are developed based on incremental theory of plasticity and 

include steps of analysis for various loading paths, stress/strain tensors, deviatoric stress 

components and yield surface translations. Table A.1 lists symbols and terms employed in the 

developed MATLAB programming codes.  

Table A.1 Symbols and terms used in the MATLAB programming codes. 

E Young’s modulus of elasticity 

G Shear modulus 

ni Poisson's ratio 

n Normal vector yield surface 

a Total backstress tensor 

Da Increments of backstress tensor 

ai Total backstress tensor of ith components in O-W 

Dsig Increments of  stress tensor  

Eps Total strain 

DEps Increments of total strain  

DEps_e Increments of elastic strain 

DEps_p Increments plastic tensor 

Ddev_Sig Increments of deviatoric stress 

Hp Modulus of plasticity 

Db Increments of the second internal variable  

Cb2 Coefficient γ2 in the modified model 

Cb1 Coefficient γ1 in the modified model 

Ab Coefficient C in the modified model 

A_0i Calibrating exponent of McDowell and J-S models 

Bi Noncoaxial calibrating exponent of McDowell model  

Xi Mutiaxiality factor of C-J-K model 

aexx  Ratcheting strain in axial direction 

aexy Ratcheting strain in axial direction 
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MATLAB Programs for the Modified Hardening Rule 

 

Main program under mixed stress- strain-controlled loading conditions 

clc 
clear all 
 % -------------------------------------------------------------------------- 
fh = figure('Name','Stress courses generation: ',... 
    'Position',[0,40,990,650],... 
    'Resize', 'off',... 
    'Toolbar','none',... 
    'Menubar','none','Color',[0.941176 0.941176 0.941176]); 
 panel3 = uipanel('Parent',fh,'Title','Hystersis loops',... 
    'Position',[.62 .52 .37 .48]);  
 axeshLoop = axes('Parent',panel3,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.15 0.15 0.81 0.82]); 
hLoop=plot(0,0,'-k',0,0,'-r',0,0,'ok',0,0,'or'); 
xlabel('\epsilon(%), -') 
ylabel('\sigma(t), \tau(t), MPa') 
 % ------------------Applied loading condition is plugged in here-------% 
[t, Sig, Tau, mate] = test; %%-- i.e.: test_sq represents square loading path  
% --------------------------------------------------------------------------- 
 panel4 = uipanel('Parent',fh,'Title','Yield surfaces',... 
    'Position',[.62 .01 .37 .51]);   
axeshSurf = axes('Parent',panel4,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.13 0.14 0.83 0.83],... 
    'XLim',[-800 800],... 
    'YLim',[-600 600]);  
set(get(axeshSurf,'xlabel'),'string','\surd 3 \tau(t), MPa','fontsize',8) 
set(get(axeshSurf,'ylabel'),'string','\sigma(t), MPa','fontsize',8) 
grid on 
                fi=0:pi/80:2*pi; 
                x=mate.R*cos(fi); 
                y=mate.R*sin(fi); 
                hp=patch(x,y,4); hold on, 
                h=plot(0,0,'ok','markerfacecolor','r','markersize',8); 
                hz=plot(0,0,'--b'); 
                axis equal 
                axis manual 
% ---------------------------------------------------------------------------  
i=0; 
a=zeros(1,9); 
b=a; 
DEps_p=zeros(1,9); 
aa=zeros(length(t), 9); 
am(1:length(mate.R),9)=0; 
ar=a; 
Eps=zeros(length(t),9); 
Sigma=zeros(length(t),9); 
Shear=zeros(length(t),9); 
Dsig=zeros(1,9); 
Dsig_t=zeros(length(t),9); 
Eps_p=zeros(length(t),9); 
Debuging=zeros(length(t), 29); 
DP=0; 
for j=1:length(t)-1,   
            sig_xx=Sig(j); 
             Eps_txy=Tau(j); 
             Dsig_xx=Sig(j+1)-Sig(j); 
             DEps_txy=Tau(j+1)-Tau(j); 
        if j==1 
            Sig_start=[Sigma(j) 0 0 Shear(j) 0 0 Shear(j) 0 0]; 
            Dsig=[Sigma(j+1)-Sigma(j) 0 0 Shear(j+1)-Shear(j) 0 0 Shear(j+1)-Shear(j) 0 0]; 
        end 
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            [Debuging, i, a, ar, DEps_p, b,...  DP,Dsig,DEps_t]=calculation(Sig_start, Dsig, i, 
a, mate,j,Debuging, ar, DEps_p, b, DP,Dsig_xx,DEps_txy); 
            Sigma(j+1,:)=Sigma(j,:)+Dsig;             
            Dsig_t(j,:)=Dsig; 
            Sig_start=Sigma(j+1  
            Eps(j+1,:)=Eps(j,:)+DEps_t; 
            Eps_p(j+1,:)=Eps_p(j,:)+DEps_p; 
            aa(j+1,:)=a;             
% ---------------------------------------- 
             set(hLoop(1),'xdata',Eps(1:j+1,1)*100,'ydata',Sigma(1:j+1,1)) 
            set(hLoop(2),'xdata',Eps(1:j+1,4)*100,'ydata',Sigma(1:j+1,4)) 
            set(hLoop(3),'xdata',Eps(j+1,1)*100,'ydata',Sigma(j+1,1)) 
            set(hLoop(4),'xdata',Eps(j+1,4)*100,'ydata',Sigma(j+1,4)) 
            drawnow expose 
%  -----------------------------------------  
                ay=1.5*aa(j+1,1); 
                ax=sqrt(3)*aa(j+1,4); 
                set(hp,'xdata',x+ax,'ydata',y+ay) 
                set(h,'ydata',Sigma(j+1,1),'xdata',sqrt(3)*Sigma(j+1,4))                 
                j=round(j/150  
  
end 
k=1; 
z=1; 
%%% -----------Ratcheting Calculation-------------------%%%%   
for j=1:length(t) 
if rem(t(j),.05)==0 
    Mexx(z,1)=max(Eps(k:j,1)); 
    Nexx(z,1)=min(Eps(k:j,1)); 
    aexx(z,1)=(Mexx(z,1)+Nexx(z,1))*100/2; 
    Mexy(z,1)=max(Eps(k:j,4)); 
    Nexy(z,1)=min(Eps(k:j,4)); 
    aexy(z,1)=(Mexy(z,1)+Nexy(z,1))*100/2; 
    k=j+1; 
    z=z+1; 
end 
end 
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Calculation subroutine for modified model under mixed stress- strain-controlled loading 

conditions 

  
%*********Modified Hardening Rule in the case of applied stress-strain-controlled loading 
conditions*****************% 
  
function [Debuging, i, a, ar, DEps_p, b,DP,Dsig,DEps_t]=... 
    calculation(Sig_start, Dsig, i, a, mate,j,Debuging, ar, DEps_p,b, DP,Dsig_xx,DEps_txy); 
%---------------- material data----------------------------------% 
    E=mate.E; 
    ni=mate.ni; 
    G=E/(2*(1+ni)); 
    R=mate.R;   %Yield surface radius    
%----------------------------------------------------------------% 
Ab=?;  
Cb1=?;    
Cb2=?;  
%--convert to deviatoric space ----------------------------------% 
    dev_Sig_start=dev(Sig_start); 
%----------------------------------------------------------------% 
%--------------------------------------------------------------------------% 
    DEps_p=zeros(1,9); 
%--------------------------------------------------------------------------% 
    if F(dev_Sig_start, a)>R^2 %------plastic condition 
         n=nn(dev_Sig_start, a); 
         [Dsig_xy, DEps_txx, DEps_tyy, DEps_tzz]=Cal_Unknown_Perameter( i, n, Ab, Cb1, a, 
b,G,E,ni,Dsig_xx,DEps_txy); 
         Dsig = [Dsig_xx, 0, 0, Dsig_xy, 0, 0, Dsig_xy, 0, 0];             
         Sig_start=Sig_start+Dsig; 
         Ddev_Sig=dev(Dsig); 
         dev_Sig_start=dev(Sig_start);             
         n=nn(dev_Sig_start, a); 
         %======================================================== 
         PlasticityCond=n*(Ddev_Sig)'; 
            if PlasticityCond >=0 
                DEps_t = [DEps_txx, DEps_tyy, DEps_tzz, DEps_txy, 0, 0,                  
DEps_txy, 0, 0]; 
                [DEps_e]=DEps_ee(G,E,ni,Dsig);                 
                D_strain_p=DEps_t-DEps_e;                               
                [Da,b,Db]=shiftsurface(Ab,Cb1,Cb2, D_strain_p, a, b, n);                 
                a=a+Da;  
            else                 
                [Dsig_xy, DEps_txx, DEps_tyy, 
DEps_tzz,DEps_e]=Cal_Unknown_Perameter_elastic(G,E,ni,Dsig_xx,DEps_txy); 
                Dsig = [Dsig_xx, 0, 0, Dsig_xy, 0, 0, Dsig_xy, 0, 0]; 
                DEps_t = DEps_e;                 
            end 
    else 
        [Dsig_xy, DEps_txx, DEps_tyy, 
DEps_tzz,DEps_e]=Cal_Unknown_Perameter_elastic(G,E,ni,Dsig_xx,DEps_txy); 
        Dsig = [Dsig_xx, 0, 0, Dsig_xy, 0, 0, Dsig_xy, 0, 0]; 
        DEps_t = DEps_e; 
    end 
     
end   
%-------------------------------------------------------------------% 
%Vector normal to yield surfaces, n                             
%-------------------------------------------------------------------% 
function n=nn(A_dew, a) 
    n=(A_dew-a(1,:))/norm(A_dew-a(1,:));   %eq. (3.6) 
end 
%------------------------------------------------------------------% 
%Yield function: Von Mises y=(3/2)*(s-a(i,:))*(s-a(i,:))'                                             
% 
%------------------------------------------------------------------% 
function y=F(s, aa) 
y=(3/2)*(s-aa)*(s-aa)'; 
end 
  



  

102 

 

%------------------------------------------------------------------% 
%Modulus of Plasticity for modified model and strain increments (flow rule)                  
%------------------------------------------------------------------% 
 
function [Dsig_xy, DEps_txx, DEps_tyy, DEps_tzz]=Cal_Unknown_Perameter( i, n, C, Gama, a, 
b,G,E,ni,Dsig_xx,DEps_txy)  
     
    if a==0 
        Hp_OW_i=0;        
         
    else 
        Hp_OW_i=n*(a/sqrt((a*a')))'; 
    end 
     
    if    Hp_OW_i<0 
                
          Hp_OW_i=0; 
    end 
     
%******Modulus of Plasticity (Hp) of the Modified Hardening Rule********** 
 
    Hp=C-Gama*(n*(a-((Hp_OW_i)^(.5))*b)')*Hp_OW_i; 
%------------------------------------------------------------------------% 
             Dsig_xy=(2*G*(3*DEps_txy*Hp - 2*Dsig_xx*n(1,1)*n(1,4) + ... Dsig_xx*n(1,4)*n(1,2) + 
Dsig_xx*n(1,4)*n(1,3)))/(3*(4*G*n(1,4)^2 + Hp)); 
 
             DEps_txx=(3*Dsig_xx*Hp + 2*Dsig_xx*E*n(1,1)^2 + ... 12*Dsig_xx*G*n(1,4)^2 - 
Dsig_xx*E*n(1,1)*n(1,2) - ...  
Dsig_xx*E*n(1,1)*n(1,3) + ... 
12*DEps_txy*E*G*n(1,1)*n(1,4))/(3*E*(4*G*n(1,4)^2 + Hp)); 
 
             DEps_tyy=-(3*Dsig_xx*Hp*ni + Dsig_xx*E*n(1,2)^2 + ... 12*Dsig_xx*G*ni*n(1,4)^2 - 
2*Dsig_xx*E*n(1,1)*n(1,2) + ... Dsig_xx*E*n(1,2)*n(1,3) – ... 
12*DEps_txy*E*G*n(1,4)*n(1,2))/(3*E*(4*G*n(1,4)^2 + Hp)); 
 
             DEps_tzz=-(3*Dsig_xx*Hp*ni + Dsig_xx*E*n(1,3)^2 + ... 12*Dsig_xx*G*ni*n(1,4)^2 - 
2*Dsig_xx*E*n(1,1)*n(1,3) + ... Dsig_xx*E*n(1,2)*n(1,3) – ... 
12*DEps_txy*E*G*n(1,4)*n(1,3))/(3*E*(4*G*n(1,4)^2 + Hp)); 
end 
%------------------------------------------------------------------------% 
function [Dsig_xy, DEps_txx, DEps_tyy, DEps_tzz, 
DEps_e]=Cal_Unknown_Perameter_elastic(G,E,ni,Dsig_xx,DEps_txy)  
  
Dsig_xy = 2*DEps_txy*G; 
DEps_txx = Dsig_xx/E; 
DEps_tyy =-(Dsig_xx*ni)/E; 
DEps_tzz =-(Dsig_xx*ni)/E; 
DEps_e = [DEps_txx, DEps_tyy, DEps_tzz, DEps_txy, 0, 0, DEps_txy, 0, 0]; 
             
End 
%------------------------------------------------------------------------% 
function DEps_e=DEps_ee(G,E,ni,Dsig) 
  
DEps_e (1,1) =((1/E)*(Dsig(1,1)-(ni)*(Dsig(1,2)+Dsig(1,3))));  
DEps_e (1,2) =((1/E)*(Dsig(1,2)-(ni)*(Dsig(1,3)+Dsig(1,1)))); 
 DEps_e (1,3) =((1/E)*(Dsig(1,3)-(ni)*(Dsig(1,1)+Dsig(1,2))));  
DEps_e (1,4) =(Dsig(1,4))/(2*G);  
DEps_e (1,5) =(Dsig(1,5))/(2*G);   
DEps_e (1,6) =(Dsig(1,6))/(2*G);   
DEps_e (1,7) = DEps_e (1,4);  
DEps_e (1,8) = DEps_e (1,5);  
DEps_e (1,9) = DEps_e (1,6); 
  
end 
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%------------------------------------------------------------------% 
%%%%%%%%%%%%%%%-------------Modified Hardening Rule---------%%%%%%%%%%%%%%%                                   
%------------------------------------------------------------------% 
function [Da,b,Db]=shiftsurface(Ab,Cb1,Cb2, D_strain_p, a, b, n) 
  
    if a==0         
        dp_OW_i=0;         
    else 
        dp_OW_i=D_strain_p*(a/sqrt((a*a')))'; 
    end      
    if    dp_OW_i<0                
           dp_OW_i=0; 
    end     
    if a==0 
        Hp_OW_i=0;     
    else 
        Hp_OW_i=n*(a/sqrt((a*a')))';         
    end   
    Hp_OW_i_1=Hp_OW_i;     
    if    Hp_OW_i<0                
          Hp_OW_i=0;           
    end    
    Db=((2-Hp_OW_i_1))*Cb2*(a-1*b)*(dp_OW_i);  
    b=b+Db;     
    Da=(1/1)*Ab*D_strain_p-Cb1*(a-((Hp_OW_i)^(.5))*b)*dp_OW_i;  
End 
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Deviatoric stress subroutine 1 

 
function s=dev(t); 
  
error(nargchk(1,1,nargin)) 
  
[m n]=size(t); 
  
if n==3 
   I=[1 1 1]; 
elseif n==6 
   I=[1 1 1 0 0 0]; 
elseif n==9 
   I=[1 1 1 0 0 0 0 0 0]; 
else 
   error('Improper matrix dimension') 
end 
  
s=t-((1/3)*(t*I'))*I; 
 

 

Material properties subroutine 2 

 
%--Yield stress----------------------------------% 
texthSigy = uicontrol(panel4,'Style','text',... 
    'Units','pixels',... 
    'String','Yield stress (MPa)',... 
    'Position',[10 75 80 27],... 
    'backgroundColor',[.8 .86 1]); 
edithSigy = uicontrol(panel4,'Style','edit',... 
    'Units','pixels',... 
    'String','220',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[20 43 62 27]); 
%--Maximum stress, MPa-----------------% 
texthSigmax = uicontrol(panel4,'Style','text',... 
    'Units','pixels',... 
    'String','Maximum stress (MPa)',... 
    'TooltipString','Maximum stress must be higher than Yield stress !',... 
    'Position',[95 75 80 27],... 
    'backgroundColor',[.8 .86 1]); 
  
edithSigmax = uicontrol(panel4,'Style','edit',... 
    'Units','pixels',... 
    'String','900',... 
    'BackgroundColor','white',... 
    'TooltipString','Maximum stress must be higher than Yield stress !',... 
    'Fontsize',9,... 
    'Position',[104 43 62 27]);  

                                                           
1 Material properties subroutine was taken from [74] 
2 Hooke’s Law subroutine was taken from [74] 
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Stress generation subroutine under mixed stress- strain-controlled loading conditions 3  

 
 
%---the applied loading paths are plugged in here, including test_B, test_C, test_D and 
etc...%%%% 
 
function [t, Sig, Tau, mate] = test_A  
global smax 
fh = figure('Name','Stress courses generation',... 
    'Position',[300,200,1000,618],... 
    'Resize', 'on',... 
    'Toolbar','none',... 
    'Menubar','none','Color',[.8 .91 1]);  
panel1 = uipanel('Parent',fh,'Title','Sinusoidal stress signals',... 
    'Position',[.01 .79 .45 .20],'backgroundColor',[.8 .86 1],'FontWeight', 'bold'); 
panel2 = uipanel('Parent',fh,'Title','Time signal',... 
    'Position',[.01 .58 .16 .20],'backgroundColor',[.8 .86 1],'FontWeight', 'bold'); 
panel3 = uipanel('Parent',fh,'Title','Slow start',... 
    'Position',[.19 .58 .14 .20],'backgroundColor',[.8 .86 1],'FontWeight', 'bold'); 
panel4=uipanel('parent', fh, 'Title', 'Material Properies',... 
     'Position',[.01 .05 .45 .35],'backgroundColor',[.8 .86 1],'FontWeight', 'bold');  
%--Equations----------------------------------% 
axeshSiga = axes('Parent',panel1,'units','pixels',... 
    'Position',[7 53 136 26]); 
image(imread('stresseq1.jpg','jpg')); 
set(gca,'visible','off') 
 axeshTaua = axes('Parent',panel1,'units','pixels',... 
    'Position',[9 12 136 26]); 
image(imread('stresseq2.jpg','jpg')); 
set(gca,'visible','off')  
%--Sig_a and Tau_a-------------------------------------% 
texthSiga = uicontrol(panel1,'Style','text',... 
    'Units','pixels',... 
    'String','Stress levels (MPa)',... 
    'Position',[145 85 70 27],... 
    'backgroundColor',[.8 .86 1]);  
edithSiga = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','0',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[155 52 52 27]);  
edithTaua = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','0.00433',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[155 11 52 27]);  
%--Mean Stresses-------------------------------------% 
texthSigm = uicontrol(panel1,'Style','text',... 
    'Units','pixels',... 
    'String','Mean Stresses (MPa)',... 
    'Position',[220 85 90 27],... 
    'backgroundColor',[.8 .86 1]);  
edithSigm = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','100',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[237 52 52 27]);  
edithTaum = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','0',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[237 12 52 27]); 

                                                           
3 The graphical programming in stress generation subroutine pages 105-107 was taken from [74] 
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%--Frequencies----------------------------------% 
texthfsig = uicontrol(panel1,'Style','text',... 
    'Units','pixels',... 
    'String','Frequencies (Hz)',... 
    'Position',[310 85 66 27],... 
    'backgroundColor',[.8 .86 1]);  
edithfsig = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','20',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[315.5 52 52 27]);  
edithftau = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','20',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[315.5 12 52 27]);  
%--Phase shift, rad---------------------------------% 
texthd = uicontrol(panel1,'Style','text',... 
    'Units','pixels',... 
    'String','Phase shift (rad)',... 
    'Position',[380 42 60 27],... 
    'backgroundColor',[.8 .86 1]);  
edithd = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','0',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[383 12 52 27]);  
%--Time signal---------------------------------% 
edithS = uicontrol(panel2,'Style','edit',... 
    'Units','pixels',... 
    'String','3000',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[50 55 52 27]);  
texthS = uicontrol(panel2,'Style','text',... 
    'Units','pixels',... 
    'String','Frequency sampling (Hz)',... 
    'Position',[10 85 140 16],... 
    'backgroundColor',[.8 .86 1]);  
edithL = uicontrol(panel2,'Style','edit',... 
    'Units','pixels',... 
    'String','0.5',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[50 5 52 27]);  
texthL = uicontrol(panel2,'Style','text',... 
    'Units','pixels',... 
    'String','Length (s)',... 
    'Position',[45 35 60 16],... 
    'backgroundColor',[.8 .86 1]);  
%--Main axes-------------------------------------------% 
axesh = axes('Parent',fh,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.525 0.525 0.45 0.45]); 
set(get(axesh,'xlabel'),'string','Time, s','fontsize',8) 
set(get(axesh,'ylabel'),'string','\sigma(t), \tau(t), MPa','fontsize',8)  
%--Young modulus----------------------------------% 
texthE = uicontrol(panel4,'Style','text',... 
    'Units','pixels',... 
    'String','Young modulus (MPa)',... 
    'Position',[10 165 80 27],... 
    'backgroundColor',[.8 .86 1]); 
edithE = uicontrol(panel4,'Style','edit',... 
    'Units','pixels',... 
    'String','205000',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
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    'Position',[20 133 62 27]);  
%--Poisson ratio----------------------------------% 
texthni = uicontrol(panel4,'Style','text',... 
    'Units','pixels',... 
    'String','Poisson ratio',... 
    'Position',[95 165 80 27],... 
    'backgroundColor',[.8 .86 1]);  
edithni = uicontrol(panel4,'Style','edit',... 
    'Units','pixels',... 
    'String','0.3',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[105 133 62 27]);   
%--Main axes-------------------------------------------% 
axesh2 = axes('Parent',fh,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.525 0.06 0.45 0.40]); 
set(get(axesh2,'xlabel'),'string','\epsilon_a, -','fontsize',8) 
set(get(axesh2,'ylabel'),'string','\sigma_a, MPa','fontsize',8)  
%---buttons----------------------------------------% 
bhSlow = uicontrol(panel3,'Units','normalized',... 
    'Position',[0.22 0.64 0.54 0.32],... 
    'String','Slow start',... 
    'Enable','off',... 
    'Callback',@buttonSlow); 
  
texthSlow = uicontrol(panel3,'Style','text',... 
    'Units','normalized',... 
    'String','During time (s)',... 
    'Position',[0.2 0.4 0.6 0.14],... 
    'backgroundColor',[.8 .86 1]);  
edithSlow = uicontrol(panel3,'Style','edit',... 
    'Units','normalized',... 
    'String','0.010',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[0.28 0.1 0.4 .24]);  
bhApply = uicontrol(fh,'Units','normalized',... 
    'Position',[.35 .66 0.05 0.05],... 
    'String','Apply',... 
    'Callback',@buttonApply);  
bhOk = uicontrol(fh,'Units','normalized',... 
    'Position',[0.92 0.07 0.05 0.05],... 
    'String','OK',... 
    'Callback',@buttonOK);  
%---buttons----------------------------------------% 
hh= uicontrol(panel4,'Units','pixel',... 
    'Position',[380 10 55 30],... 
    'String','Apply',... 
    'Callback',@buttonApply2);  
uiwait(fh); 
 
function buttonApply(hObject,eventdata)         
        Sig_a=str2double(get(edithSiga,'String')); 
        Tau_a=str2double(get(edithTaua,'String')); 
        fsig=str2double(get(edithfsig,'String')); 
        ftau=str2double(get(edithftau,'String')); 
        delta=eval(get(edithd,'String')); 
        fs=str2double(get(edithS,'String')); 
        T=str2double(get(edithL,'String')); 
        Sig_mean=str2double(get(edithSigm,'String'));            
        Tau_mean=str2double(get(edithTaum,'String'));          
        t=0:1/fs:T; 
        sigmma=zeros(1,length(t)); 
        strain=zeros(1,length(t)); 
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******** test-A for paths A in Fig 4.5 and, B1 in  Fig 4.10 **************** 

%----------------------------------------------------------% 
     
for i=1:length(t), 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(2*fsig)) 
            sigmma(i)= ((Sig_a+Sig_mean)/(1/(2*fsig)))*t(i);      
        else               
            sigmma(i)= -((Sig_a+Sig_mean)/(1/(2*fsig)))*t(i)+2*(Sig_a+Sig_mean);         
    
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(2*fsig))           
            sigmma(i)= ((Sig_a+Sig_mean)/(1/(2*fsig)))*equ_i;  
   
        else 
            sigmma(i)= -((Sig_a+Sig_mean)/(1/(2*fsig)))*equ_i+2*(Sig_a+Sig_mean);    
        end  
         
    end 
end 
  
[Sig]=sigmma; 
Sig=Sig_a*sin(2*pi*fsig*(t+0))+ Sig_mean;  
  
for i=1:length(t), 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(4*ftau)) 
            strain(i)= (Tau_a/(1/(4*ftau)))*t(i)+Tau_mean;      
        elseif  t(i)<= (3/(4*ftau))             
            strain(i)= -(Tau_a/(1/(4*ftau)))*t(i)+2*Tau_a+Tau_mean;         
        else 
            strain(i)= (Tau_a/(1/(4*ftau)))*t(i)-4*Tau_a+Tau_mean;         
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
        if equ_i<= (1/(4*ftau))            
            strain(i)= (Tau_a/(1/(4*ftau)))*equ_i+Tau_mean; 
        elseif  equ_i<= (3/(4*ftau))             
            strain(i)= -(Tau_a/(1/(4*ftau)))*equ_i+2*Tau_a+Tau_mean;        
        else 
            strain(i)= (Tau_a/(1/(4*ftau)))*equ_i-4*Tau_a+Tau_mean;        
        end 
    end 
end 
  
[Tau]=strain; 
                 
 

******** test-B for paths B in Fig 4.5 and, B2 in  Fig 4.10 **************** 
%------------------------------------------------% 

         
for i=1:length(t)-1, 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(2*fsig)) 
            sigmma(i)= ((Sig_a+Sig_mean)/(1/(2*fsig)))*t(i);      
        else               
            sigmma(i)= -((Sig_a+Sig_mean)/(1/(2*fsig)))*t(i)+2*(Sig_a+Sig_mean);         
    
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 



  

109 

 

         
        if equ_i<= (1/(2*fsig))           
            sigmma(i)= ((Sig_a+Sig_mean)/(1/(2*fsig)))*equ_i;  
   
        else 
            sigmma(i)= -((Sig_a+Sig_mean)/(1/(2*fsig)))*equ_i+2*(Sig_a+Sig_mean);    
        end  
         
    end 
end 
  
[Sig]=sigmma; 
  
  
for i=1:length(t)-1, 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(2*ftau)) 
            strain(i)= (Tau_a/(1/(4*ftau)))*t(i)-Tau_a+Tau_mean;      
        else              
            strain(i)= -(Tau_a/(1/(4*ftau)))*t(i)+3*Tau_a+Tau_mean;        
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
        if equ_i<= (1/(2*ftau))            
            strain(i)= (Tau_a/(1/(4*ftau)))*equ_i-Tau_a+Tau_mean;     
        else 
            strain(i)= -(Tau_a/(1/(4*ftau)))*equ_i+3*Tau_a+Tau_mean;        
        end 
    end 
end 
  
[Tau]=strain; 
 

**************** test-C for paths C in Fig 4.5 ************************ 
%------------------------------------------------% 

 
for i=1:length(t)-1, 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(2*fsig)) 
            sigmma(i)= ((Sig_a+Sig_mean)/(1/(2*fsig)))*t(i);      
        else               
            sigmma(i)= -((Sig_a+Sig_mean)/(1/(2*fsig)))*t(i)+2*(Sig_a+Sig_mean);         
    
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(2*fsig))           
            sigmma(i)= ((Sig_a+Sig_mean)/(1/(2*fsig)))*equ_i;  
   
        else 
            sigmma(i)= -((Sig_a+Sig_mean)/(1/(2*fsig)))*equ_i+2*(Sig_a+Sig_mean);    
        end  
         
    end 
end 
  
[Sig]=sigmma; 
  
  
for i=1:length(t)-1, 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(4*ftau)) 
            strain(i)= (Tau_a/(1/(4*ftau)))*t(i)+Tau_mean;      
        elseif  t(i)<= (3/(4*ftau))             
            strain(i)= -(Tau_a/(1/(4*ftau)))*t(i)+2*Tau_a+Tau_mean;         
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        else 
            strain(i)= (Tau_a/(1/(4*ftau)))*t(i)-4*Tau_a+Tau_mean;         
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
        if equ_i<= (1/(4*ftau))            
            strain(i)= (Tau_a/(1/(4*ftau)))*equ_i+Tau_mean; 
        elseif  equ_i<= (3/(4*ftau))             
            strain(i)= -(Tau_a/(1/(4*ftau)))*equ_i+2*Tau_a+Tau_mean;        
        else 
            strain(i)= (Tau_a/(1/(4*ftau)))*equ_i-4*Tau_a+Tau_mean;        
        end 
    end 
end 
  
[Tau]=strain; 
 

**************** test-D for paths D in Fig 4.5 ************************ 
%------------------------------------------------% 

    
for i=1:length(t)-1, 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(4*fsig)) 
            sigmma(i)= ((Sig_a+Sig_mean)/(1/(4*fsig)))*t(i);  
             
        elseif t(i)<= (1/(2*fsig))             
            sigmma(i)= Sig_a+Sig_mean; 
             
        elseif  t(i)<= (3/(4*fsig))              
            sigmma(i)= -((Sig_a+Sig_mean)/(1/(4*fsig)))*t(i)+3*(Sig_a+Sig_mean);  
             
        else              
            sigmma(i)= 0; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(4*fsig))           
            sigmma(i)= ((Sig_a+Sig_mean)/(1/(4*fsig)))*equ_i; 
             
        elseif  equ_i<= (1/(2*fsig)) 
            sigmma(i)= Sig_a+Sig_mean; 
             
        elseif equ_i<= (3/(4*fsig)) 
            sigmma(i)= -((Sig_a+Sig_mean)/(1/(4*fsig)))*equ_i+3*(Sig_a+Sig_mean);  
   
        else 
            sigmma(i)= 0;    
        end  
         
    end 
end 
  
[Sig]=sigmma; 
  
  
for i=1:length(t)-1, 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(4*ftau)) 
            strain(i)= ((2*Tau_a)/(1/(4*ftau)))*t(i)-Tau_a+Tau_mean;      
        elseif  t(i)<= (1/(2*ftau))             
            strain(i)= -((2*Tau_a)/(1/(4*ftau)))*t(i)+3*Tau_a+Tau_mean;         
        elseif t(i)<= (3/(4*ftau))  
            strain(i)= ((2*Tau_a)/(1/(4*ftau)))*t(i)-5*Tau_a+Tau_mean;   
        else  
            strain(i)= -((2*Tau_a)/(1/(4*ftau)))*t(i)+7*Tau_a+Tau_mean; 
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        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
         
        if equ_i<= (1/(4*ftau)) 
            strain(i)= ((2*Tau_a)/(1/(4*ftau)))*equ_i-Tau_a+Tau_mean;  
             
        elseif equ_i<= (1/(2*ftau))             
            strain(i)= -((2*Tau_a)/(1/(4*ftau)))*equ_i+3*Tau_a+Tau_mean;  
             
        elseif equ_i<= (3/(4*ftau))  
            strain(i)= ((2*Tau_a)/(1/(4*ftau)))*equ_i-5*Tau_a+Tau_mean; 
             
        else  
            strain(i)= -((2*Tau_a)/(1/(4*ftau)))*equ_i+7*Tau_a+Tau_mean; 
        end  
  
    end 
end 
  
[Tau]=strain; 
 

***** test-E for paths E&G in Fig 4.5 and B4 in  Fig 4.10 ********** 
%------------------------------------------------% 

     
for i=1:length(t), 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(4*fsig)) 
            sigmma(i)= ((2*Sig_a)/(1/(4*fsig)))*t(i)-Sig_a+Sig_mean;  
             
        elseif t(i)<= (1/(2*fsig))          
            sigmma(i)= -((2*Sig_a)/(1/(4*fsig)))*(t(i)-(1/(4*fsig)))+Sig_a+Sig_mean;  
             
        elseif  t(i)<= (3/(4*fsig))              
            sigmma(i)= ((2*Sig_a)/(1/(4*fsig)))*(t(i)-(1/(2*fsig)))-Sig_a+Sig_mean;  
             
        else              
            sigmma(i)= -((2*Sig_a)/(1/(4*fsig)))*(t(i)-(3/(4*fsig)))+Sig_a+Sig_mean; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(4*fsig))           
            sigmma(i)= ((2*Sig_a)/(1/(4*fsig)))*equ_i-Sig_a+Sig_mean;  
             
        elseif  equ_i<= (1/(2*fsig)) 
            sigmma(i)= -((2*Sig_a)/(1/(4*fsig)))*(equ_i-(1/(4*fsig)))+Sig_a+Sig_mean;  
             
        elseif equ_i<= (3/(4*fsig)) 
            sigmma(i)= ((2*Sig_a)/(1/(4*fsig)))*(equ_i-(1/(2*fsig)))-Sig_a+Sig_mean;  
   
        else 
            sigmma(i)= -((2*Sig_a)/(1/(4*fsig)))*(equ_i-(3/(4*fsig)))+Sig_a+Sig_mean;    
        end  
         
    end 
end 
  
[Sig]=sigmma; 
  
  
for i=1:length(t), 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(4*ftau)) 
            strain(i)= ((2*Tau_a)/(1/(4*ftau)))*t(i)-Tau_a+Tau_mean;  
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        elseif  t(i)<= (1/(2*ftau)) 
            strain(i)= Tau_a+Tau_mean; 
             
        elseif t(i)<= (3/(4*ftau))            
            strain(i)= -((2*Tau_a)/(1/(4*ftau)))*t(i)+5*Tau_a+Tau_mean; 
             
        else  
            strain(i)= Tau_mean-Tau_a; 
             
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
         
        if equ_i<= (1/(4*ftau)) 
            strain(i)= ((2*Tau_a)/(1/(4*ftau)))*equ_i-Tau_a+Tau_mean;   
             
        elseif equ_i<= (1/(2*ftau))             
            strain(i)= Tau_a+Tau_mean;  
             
        elseif equ_i<= (3/(4*ftau))  
            strain(i)= -((2*Tau_a)/(1/(4*ftau)))*equ_i+5*Tau_a+Tau_mean; 
             
        else  
            strain(i)= Tau_mean-Tau_a; 
        end  
  
    end 
end 
  
[Tau]=strain; 
 

***** test-F for paths F&H in Fig 4.5 and B5 in  Fig 4.10 ********** 
%------------------------------------------------%  

for i=1:length(t), 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(4*fsig)) 
            sigmma(i)= ((2*Sig_a)/(1/(4*fsig)))*t(i)-Sig_a+Sig_mean;  
             
        elseif t(i)<= (1/(2*fsig))          
            sigmma(i)= -((2*Sig_a)/(1/(4*fsig)))*(t(i)-(1/(4*fsig)))+Sig_a+Sig_mean;  
             
        elseif  t(i)<= (3/(4*fsig))              
            sigmma(i)= ((2*Sig_a)/(1/(4*fsig)))*(t(i)-(1/(2*fsig)))-Sig_a+Sig_mean;  
             
        else              
            sigmma(i)= -((2*Sig_a)/(1/(4*fsig)))*(t(i)-(3/(4*fsig)))+Sig_a+Sig_mean; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(4*fsig))           
            sigmma(i)= ((2*Sig_a)/(1/(4*fsig)))*equ_i-Sig_a+Sig_mean;  
             
        elseif  equ_i<= (1/(2*fsig)) 
            sigmma(i)= -((2*Sig_a)/(1/(4*fsig)))*(equ_i-(1/(4*fsig)))+Sig_a+Sig_mean;  
             
        elseif equ_i<= (3/(4*fsig)) 
            sigmma(i)= ((2*Sig_a)/(1/(4*fsig)))*(equ_i-(1/(2*fsig)))-Sig_a+Sig_mean;  
   
        else 
            sigmma(i)= -((2*Sig_a)/(1/(4*fsig)))*(equ_i-(3/(4*fsig)))+Sig_a+Sig_mean;    
        end  
         
    end 
end 
  
[Sig]=sigmma; 
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for i=1:length(t), 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(4*ftau)) 
            strain(i)= Tau_mean-Tau_a; 
             
        elseif  t(i)<= (1/(2*ftau)) 
            strain(i)= ((2*Tau_a)/(1/(4*ftau)))*t(i)-3*Tau_a+Tau_mean; 
             
        elseif t(i)<= (3/(4*ftau))            
            strain(i)= Tau_a+Tau_mean; 
             
        else  
            strain(i)= -((2*Tau_a)/(1/(4*ftau)))*t(i)+7*Tau_a+Tau_mean; 
             
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
         
        if equ_i<= (1/(4*ftau)) 
            strain(i)= Tau_mean-Tau_a;   
             
        elseif equ_i<= (1/(2*ftau))             
            strain(i)= ((2*Tau_a)/(1/(4*ftau)))*equ_i-3*Tau_a+Tau_mean; 
             
        elseif equ_i<= (3/(4*ftau))  
            strain(i)= Tau_a+Tau_mean; 
             
        else  
            strain(i)= -((2*Tau_a)/(1/(4*ftau)))*equ_i+7*Tau_a+Tau_mean; 
        end  
  
    end 
end 
  
[Tau]=strain; 

******** test-tri for paths B6 in Fig 4.10 **************** 
%-----------------------------------------------%         

         
for i=1:length(t)-1, 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(6*fsig)) 
            sigmma(i)= ((2*Sig_a)/(1/(6*fsig)))*t(i)-Sig_a+Sig_mean;  
             
        elseif t(i)<= (2/(6*fsig))          
            sigmma(i)= -((2*Sig_a)/(1/(6*fsig)))*(t(i)-(1/(6*fsig)))+Sig_a+Sig_mean;  
             
        elseif t(i)<= (3/(6*fsig)) 
            sigmma(i)= -Sig_a+Sig_mean; 
             
        elseif  t(i)<= (4/(6*fsig))              
            sigmma(i)= ((2*Sig_a)/(1/(6*fsig)))*(t(i)-(3/(6*fsig)))-Sig_a+Sig_mean;  
             
             
        elseif  t(i)<= (5/(6*fsig))              
            sigmma(i)= (-(2*Sig_a)/(1/(6*fsig)))*(t(i)-(4/(6*fsig)))+Sig_a+Sig_mean;  
             
        else              
            sigmma(i)= -Sig_a+Sig_mean; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(6*fsig)) 
            sigmma(i)= ((2*Sig_a)/(1/(6*fsig)))*equ_i-Sig_a+Sig_mean;  
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        elseif equ_i<= (2/(6*fsig))          
            sigmma(i)= -((2*Sig_a)/(1/(6*fsig)))*(equ_i-(1/(6*fsig)))+Sig_a+Sig_mean;  
             
        elseif equ_i<= (3/(6*fsig)) 
            sigmma(i)= -Sig_a+Sig_mean; 
             
        elseif  equ_i<= (4/(6*fsig))              
            sigmma(i)= ((2*Sig_a)/(1/(6*fsig)))*(equ_i-(3/(6*fsig)))-Sig_a+Sig_mean;  
             
             
        elseif  equ_i<= (5/(6*fsig))              
            sigmma(i)= (-(2*Sig_a)/(1/(6*fsig)))*(equ_i-(4/(6*fsig)))+Sig_a+Sig_mean;  
             
        else              
            sigmma(i)= -Sig_a+Sig_mean; 
    
        end   
         
    end 
end 
  
[Sig]=sigmma; 
  
  
for i=1:length(t)-1, 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(6*ftau)) 
            strain(i)= Tau_mean;              
        elseif  t(i)<= (2/(6*ftau)) 
            strain(i)= ((Tau_a)/(1/(6*ftau)))*(t(i)-(1/(6*fsig)))+Tau_mean;  
             
        elseif  t(i)<= (3/(6*ftau)) 
            strain(i)= (-(Tau_a)/(1/(6*ftau)))*(t(i)-(2/(6*fsig)))+Tau_a+Tau_mean; 
             
        elseif  t(i)<= (4/(6*ftau)) 
            strain(i)= Tau_mean; 
             
        elseif t(i)<= (5/(6*ftau))            
            strain(i)= (-(Tau_a)/(1/(6*ftau)))*(t(i)-(4/(6*fsig)))+Tau_mean; 
             
        else  
            strain(i)= ((Tau_a)/(1/(6*ftau)))*(t(i)-(5/(6*fsig)))-Tau_a+Tau_mean; 
             
        end         
    else   
         
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
         
        if equ_i<= (1/(6*ftau)) 
            strain(i)= Tau_mean;              
        elseif  equ_i<= (2/(6*ftau)) 
            strain(i)= ((Tau_a)/(1/(6*ftau)))*(equ_i-(1/(6*fsig)))+Tau_mean;  
             
        elseif  equ_i<= (3/(6*ftau)) 
            strain(i)= (-(Tau_a)/(1/(6*ftau)))*(equ_i-(2/(6*fsig)))+Tau_a+Tau_mean; 
             
        elseif  equ_i<= (4/(6*ftau)) 
            strain(i)= Tau_mean; 
             
        elseif equ_i<= (5/(6*ftau))            
            strain(i)= (-(Tau_a)/(1/(6*ftau)))*(equ_i-(4/(6*fsig)))+Tau_mean; 
             
        else  
            strain(i)= ((Tau_a)/(1/(6*ftau)))*(equ_i-(5/(6*fsig)))-Tau_a+Tau_mean; 
             
        end  
  
    end 
end 
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[Tau]=strain; 
                 
**************After plugging in one of the loading condition **************** 
*********************the program continues here on **************************      
        axes(axesh) 
        plot(t,Sig,'.-k',t,Tau,'.-r') 
        xlabel('Time, s') 
        ylabel('\sigma(t), \tau(t), MPa') 
        legend('\sigma(t)', '\tau(t)') 
        axis tight 
        set(bhSlow,'Enable','on') 
        smax= max(abs(Sig)); 
  end 
%------------------------------------------------% 
    function buttonSlow(hObject,eventdata)         
        T=str2double(get(edithL,'String')); 
        T0=str2double(get(edithSlow,'String')); 
        fs=str2double(get(edithS,'String'));         
        if T0>T, 
            f = warndlg('Time of slow start cannot be longer than time of stress signals.', 
'Warning'); 
            T0 = T; 
            set(edithSlow,'string',num2str(T0)) 
            uiwait(f) 
        end 
        nr=T0*fs; 
        X=[Sig' Tau']; 
        w=sin([0:pi/2/nr:pi/2]'); 
        w=w*ones(1,size(X,2)); 
        X(1:size(w,1),:)=w.*X(1:size(w,1),:); 
        Sig=X(:,1)'; 
        Tau=X(:,2)'; 
        plot(t,Sig,'.-k',t,Tau,'.-r') 
        xlabel('Time, s') 
        ylabel('\sigma(t), \tau(t), MPa') 
        legend('\sigma(t)', '\tau(t)') 
        axis tight         
    end  
%------------------------------------------------% 
    function buttonOK(hObject,eventdata) 
        close(fh) 
    end  
%------------------------------------------------% 
    function buttonApply2(hObject2,eventdata2)         
        mate.E=str2double(get(edithE,'String')); 
        mate.K=str2double(get(edithK,'String')); 
        mate.n=str2double(get(edithn,'String')); 
        mate.ni=str2double(get(edithni,'String')); 
        mate.Sig_y=str2double(get(edithSigy,'String')); 
        mate.Sigmax=str2double(get(edithSigmax,'String')); 
        mate.R=mate.Sig_y; 
        if mate.Sigmax<mate.Sig_y, 
            f = warndlg('Maximum stress must be higher than the yield stress.', 'Warning'); 
            mate.Sigmax=mate.Sig_y+mate.DSig; 
            set(edithSigmax,'string',num2str(mate.Sigmax)) 
            uiwait(f) 
        end         
        Sig_ai=[0:5:mate.Sigmax]; 
        Eps_ai=Sig_ai/mate.E+(Sig_ai/mate.K).^(1/mate.n);         
          Eps_a=mate.Sig_y/mate.E+(mate.Sig_y/mate.K).^(1/mate.n);   
          Eps_b=smax/mate.E+(smax/mate.K).^(1/mate.n); 
          mate.C=((3/2)*(((Eps_b-Eps_a)/(smax-mate.Sig_y))-1/mate.E))^-1 
          axes(axesh2) 
        plot(Eps_ai,Sig_ai,'-k',[Eps_a,Eps_b],[mate.Sig_y,smax],'+-b') 
        xlabel('\epsilon_a, -') 
        ylabel('\sigma_a, MPa') 
    end 
end  
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MATLAB Programs for the O-W, McDowell, J-S and C-J-K hardening rules 

Main program under mixed stress- strain-controlled loading conditions 

 

clc 
clear all 
% --------------------------------------------------------------------------- 
fh = figure('Name','Stress courses generation: ',... 
    'Position',[0,40,990,650],... 
    'Resize', 'off',... 
    'Toolbar','none',... 
    'Menubar','none','Color',[0.941176 0.941176 0.941176]); 
  
panel3 = uipanel('Parent',fh,'Title','Hystersis loops',... 
    'Position',[.62 .52 .37 .48]); 
  
axeshLoop = axes('Parent',panel3,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.15 0.15 0.81 0.82]); 
hLoop=plot(0,0,'-k',0,0,'-r',0,0,'ok',0,0,'or'); 
xlabel('\epsilon(%), -') 
ylabel('\sigma(t), \tau(t), MPa') 
% --------------------------------------------------------------------------- 
[t, Sig, Tau, mate] = test_A; 
% --------------------------------------------------------------------------- 
panel4 = uipanel('Parent',fh,'Title','Yield surfaces',... 
    'Position',[.62 .01 .37 .51]); 
  
axeshSurf = axes('Parent',panel4,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.13 0.14 0.83 0.83],... 
    'XLim',[-1000 1000],... 
 'YLim',[-1000 1000]);  
set(get(axeshSurf,'xlabel'),'string','\surd 3 \tau(t), MPa','fontsize',8) 
set(get(axeshSurf,'ylabel'),'string','\sigma(t), MPa','fontsize',8) 
grid on 
                fi=0:pi/80:2*pi; 
                x=mate.R*cos(fi); 
                y=mate.R*sin(fi); 
                hp=patch(x,y,4); hold on, 
                h=plot(0,0,'ok','markerfacecolor','r','markersize',8); 
                hz=plot(0,0,'--b'); 
                axis equal 
                axis manual 
% ------------------------------------------------------------------------ 
i=0; 
a=zeros(1,9); 
b=a; 
DEps_p=zeros(1,9);  
aa=zeros(length(t), 9); 
am(1:length(mate.R),9)=0; 
ar=a; 
Eps=zeros(length(t),9); 
Sigma=zeros(length(t),9); 
Shear=zeros(length(t),9); 
Dsig=zeros(1,9); 
Dsig_t=zeros(length(t),9); 
Eps_p=zeros(length(t),9); 
Debuging=zeros(length(t), 29); 
DP=0 
s_s=[  Stress strain vector taken from tensile uniaxial stress-strain curve which is divided into 
several segments, to determine parameters ri and gamma_i] 
s_s_column1=s_s(:,1)/100; 
s_s_column2=s_s(:,2); 
s_s_s=[s_s_column2 s_s_column1]; 
MM=size(s_s_s); 
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M=MM(1);  
ri_gama=zeros(M,2); 
for k=2:M-1 
    ri=(((s_s_s(k,1)-s_s_s((k-1),1))/(s_s_s(k,2)-s_s_s((k-1),2)))-((s_s_s((k+1),1)-
s_s_s(k,1))/(s_s_s((k+1),2)-s_s_s(k,2))))*s_s_s(k,2); 
    gama_i=1/s_s_s(k,2); 
    ri_gama(k,:)= [ri gama_i];       
end 
    r_M=[(s_s_s(M,1)-s_s_s((M-1),1))/(s_s_s(M,2)-s_s_s((M-1),2))]*s_s_s(M,2); 
    gama_M=1/s_s_s(M,2); 
    ri_gama(M,:)=[r_M gama_M];     
    r1=s_s_s(M,1)- mate.R-(sum(ri_gama(:,1))); 
    gama1=1/s_s_s(1,2); 
    ri_gama(1,:)=[r1 gama1]; 
MM=size(ri_gama); 
M=MM(1);  
ai=zeros(M,9); 
Dai_t=zeros(M,9); 
dp_OW=zeros(1,M); 
Hi_t=zeros(1,M); 
  
for j=1:length(t)-1,         
             sig_xx=Sig(j); 
             Eps_txy=Tau(j); 
             Dsig_xx=Sig(j+1)-Sig(j); 
             DEps_txy=Tau(j+1)-Tau(j);     
        if j==1     
            Sig_start=[Sigma(j) 0 0 Shear(j) 0 0 Shear(j) 0 0]; 
            Dsig=[Sigma(j+1)-Sigma(j) 0 0 Shear(j+1)-Shear(j) 0 0 Shear(j+1)-Shear(j) 0 0]; 
        end            
            [Debuging, i, a,ai, ar, DEps_p, b, DP,Dsig,DEps_t]=calculation(Sig_start, Dsig, i, a, 
mate,j,Debuging, ar, DEps_p, b, DP,ai,Dai_t,dp_OW,Hi_t,ri_gama,M,Dsig_xx,DEps_txy);  
            Sigma(j+1,:)=Sigma(j,:)+Dsig;             
            Dsig_t(j,:)=Dsig; 
            Sig_start=Sigma(j+1,:);            
            Eps(j+1,:)=Eps(j,:)+DEps_t; 
            Eps_p(j+1,:)=Eps_p(j,:)+DEps_p; 
            aa(j+1,:)=a;                               
% ---------------------------------------- 
            set(hLoop(1),'xdata',Eps(1:j+1,1)*100,'ydata',Sigma(1:j+1,1)) 
            set(hLoop(2),'xdata',Eps(1:j+1,4)*100,'ydata',Sigma(1:j+1,4)) 
            set(hLoop(3),'xdata',Eps(j+1,1)*100,'ydata',Sigma(j+1,1)) 
            set(hLoop(4),'xdata',Eps(j+1,4)*100,'ydata',Sigma(j+1,4)) 
            drawnow expose 
%  -----------------------------------------  
                ay=1.5*aa(j+1,1); 
                ax=sqrt(3)*aa(j+1,4); 
                set(hp,'xdata',x+ax,'ydata',y+ay) 
                set(h,'ydata',Sigma(j+1,1),'xdata',sqrt(3)*Sigma(j+1,4))                 
                j=round(j/150) 
end 
k=1; 
z=1; 
for j=1:length(t) 
if rem(t(j),.05)==0 
    Mexx(z,1)=max(Eps(k:j,1)); 
    Nexx(z,1)=min(Eps(k:j,1)); 
    aexx(z,1)=(Mexx(z,1)+Nexx(z,1))*100/2; 
    Mexy(z,1)=max(Eps(k:j,4)); 
    Nexy(z,1)=min(Eps(k:j,4)); 
    aexy(z,1)=(Mexy(z,1)+Nexy(z,1))*100/2; 
    k=j+1; 
    z=z+1; 
end 
end 
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Calculation subroutine for O-W, McDowell, J-S and C-J-K hardening rules under mixed 

stress- strain-controlled loading conditions 

 
% Ohno-Wang Based Hardening Rules 
function [Debuging, i, a, ai,ar, DEps_p, b,DP,Dsig,DEps_t]=... 
    calculation(Sig_start, Dsig, i, a, mate,j,Debuging, ar, DEps_p,b, 
DP,ai,Dai_t,dp_OW,Hi_t,ri_gama,M,Dsig_xx,DEps_txy);  
%---------------- material data----------------------------------% 
    E=mate.E; 
    ni=mate.ni; 
    G=E/(2*(1+ni)); 
    R=mate.R;   %Stress Radius    
%----------------------------------------------------------------%  
mi=?; 
A_0i=?; 
Bi=?; 
Xi=?; 
%--convert to deviatoric space ----------------------------------% 
dev_Sig_start=dev(Sig_start);     
%--------------------------------------------------------------------------% 
    DEps_p=zeros(1,9);  
%--------------------------------------------------------------------------% 
    if F(dev_Sig_start, a)>R^2                %plastic condition  
         n=nn(dev_Sig_start, a); 
         [Dsig_xy, DEps_txx, DEps_tyy, DEps_tzz]=Cal_Unknown_Perameter(i, n, 
a,ai,Dai_t,dp_OW,Hi_t,ri_gama,M,mi,G,E,ni,Dsig_xx,DEps_txy, A_0i,Bi 
, Xi); 
         Dsig = [Dsig_xx, 0, 0, Dsig_xy, 0, 0, Dsig_xy, 0, 0];             
         Sig_start=Sig_start+Dsig; 
         Ddev_Sig=dev(Dsig); 
         dev_Sig_start=dev(Sig_start);             
         n=nn(dev_Sig_start, a);    
         %============================== 
         PlasticityCond=n*(Ddev_Sig)';             
            if PlasticityCond >=0 
                DEps_t = [DEps_txx, DEps_tyy, DEps_tzz, DEps_txy, 0, 0, DEps_txy, 0, 0]; 
                [DEps_e]=DEps_ee(G,E,ni,Dsig);                 
                D_strain_p=DEps_t-DEps_e;                 
                [Da,ai]=shiftsurface(D_strain_p, a,ai,Dai_t,dp_OW,Hi_t,ri_gama,M,mi);                 
                a=a+Da;                 
            else                 
                [Dsig_xy, DEps_txx, DEps_tyy, 
DEps_tzz,DEps_e]=Cal_Unknown_Perameter_elastic(G,E,ni,Dsig_xx,DEps_txy); 
                Dsig = [Dsig_xx, 0, 0, Dsig_xy, 0, 0, Dsig_xy, 0, 0]; 
                DEps_t = DEps_e;                 
            end 
    else 
        [Dsig_xy, DEps_txx, DEps_tyy, 
DEps_tzz,DEps_e]=Cal_Unknown_Perameter_elastic(G,E,ni,Dsig_xx,DEps_txy); 
        Dsig = [Dsig_xx, 0, 0, Dsig_xy, 0, 0, Dsig_xy, 0, 0]; 
        DEps_t = DEps_e; 
    end 
     
end 
%-------------------------------------------------------------------% 
%Vector normal to yield surfaces, n                            % 
%-------------------------------------------------------------------% 
function n=nn(A_dew, a) 
    n=(A_dew-a(1,:))/norm(A_dew-a(1,:));   % 
end  
%------------------------------------------------------------------% 
%Yield function: Von Mises y=(3/2)*(s-a(i,:))*(s-a(i,:))'                                              
%------------------------------------------------------------------% 
function y=F(s, aa) 
y=(3/2)*(s-aa)*(s-aa)'; 
end 
%------------------------------------------------------------------% 
%Plastic strain increments (flow rule)                 % 
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%------------------------------------------------------------------% 
function [Dsig_xy, DEps_txx, DEps_tyy, DEps_tzz]=Cal_Unknown_Perameter( i, n, 
a,ai,Dai_t,dp_OW,Hi_t,ri_gama,M,mi,G,E,ni,Dsig_xx,DEps_txy, A_0i,Bi 
, Xi)  
for zz=1:M     
    if ai(zz,:)==0       
        Hp_OW_i=0;         
    else 
        Hp_OW_i=n*[ai(zz,:)/sqrt((ai(zz,:)*ai(zz,:)'))]'; 
    end             
    if    Hp_OW_i<0                
          Hp_OW_i=0; 
    end        
%------------------------------------------------------------------% 
%Modulus of Plasticity for O-W, McDowell, J-S model                  
%------------------------------------------------------------------% 
Hi= ri_gama(zz,2)*((2/3)*ri_gama(zz,1)- 
Hp_OW_i*(n*(((sqrt((ai(zz,:)*ai(zz,:)'))/ri_gama(zz,1))^mi)* ai(zz,:))')); 
%------------------------------------------------------------------% 
%Modulus of Plasticity for C-J-K model                  
%------------------------------------------------------------------% 
Hi= ri_gama(zz,2)*((2/3)*ri_gama(zz,1)-
((Hp_OW_i)^Xi)*Hp_OW_i*(n*(((sqrt((ai(zz,:)*ai(zz,:)'))/ri_gama(zz,1))^mi)* ai(zz,:))')); 
%------------------------------------------------------------------% 
          Hi_t(zz)=Hi;     
end    
          Hp=sum(Hi_t);              
               
             Dsig_xy=(2*G*(3*DEps_txy*Hp - 2*Dsig_xx*n(1,1)*n(1,4) + ... Dsig_xx*n(1,4)*n(1,2) + 
Dsig_xx*n(1,4)*n(1,3)))/(3*(4*G*n(1,4)^2 + Hp)); 
 
             DEps_txx=(3*Dsig_xx*Hp + 2*Dsig_xx*E*n(1,1)^2 + ... 12*Dsig_xx*G*n(1,4)^2 - 
Dsig_xx*E*n(1,1)*n(1,2) - ...  
Dsig_xx*E*n(1,1)*n(1,3) + ... 
12*DEps_txy*E*G*n(1,1)*n(1,4))/(3*E*(4*G*n(1,4)^2 + Hp)); 
 
             DEps_tyy=-(3*Dsig_xx*Hp*ni + Dsig_xx*E*n(1,2)^2 + ... 12*Dsig_xx*G*ni*n(1,4)^2 - 
2*Dsig_xx*E*n(1,1)*n(1,2) + ... Dsig_xx*E*n(1,2)*n(1,3) – ... 
12*DEps_txy*E*G*n(1,4)*n(1,2))/(3*E*(4*G*n(1,4)^2 + Hp)); 
 
             DEps_tzz=-(3*Dsig_xx*Hp*ni + Dsig_xx*E*n(1,3)^2 + ... 12*Dsig_xx*G*ni*n(1,4)^2 - 
2*Dsig_xx*E*n(1,1)*n(1,3) + ... Dsig_xx*E*n(1,2)*n(1,3) – ... 
12*DEps_txy*E*G*n(1,4)*n(1,3))/(3*E*(4*G*n(1,4)^2 + Hp));            
              
end 
  
function [Dsig_xy, DEps_txx, DEps_tyy, DEps_tzz, 
DEps_e]=Cal_Unknown_Perameter_elastic(G,E,ni,Dsig_xx,DEps_txy)   
  
Dsig_xy = 2*DEps_txy*G; 
DEps_txx = Dsig_xx/E; 
DEps_tyy =-(Dsig_xx*ni)/E; 
DEps_tzz =-(Dsig_xx*ni)/E;  
DEps_e = [DEps_txx, DEps_tyy, DEps_tzz, DEps_txy, 0, 0, DEps_txy, 0, 0]; 
              
end 
  
function DEps_e=DEps_ee(G,E,ni,Dsig)  
  
DEps_e (1,1) =((1/E)*(Dsig(1,1)-(ni)*(Dsig(1,2)+Dsig(1,3))));  
DEps_e (1,2) =((1/E)*(Dsig(1,2)-(ni)*(Dsig(1,3)+Dsig(1,1))));  
DEps_e (1,3) =((1/E)*(Dsig(1,3)-(ni)*(Dsig(1,1)+Dsig(1,2))));  
DEps_e (1,4) =(Dsig(1,4))/(2*G);   
DEps_e (1,5) =(Dsig(1,5))/(2*G);   
DEps_e (1,6) =(Dsig(1,6))/(2*G);   
DEps_e (1,7) = DEps_e (1,4);  
DEps_e (1,8) = DEps_e (1,5);  
DEps_e (1,9) = DEps_e (1,6); 
  
end 
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%------------------------------------------------------------------% 
%Hardening Rules                                       % 
%------------------------------------------------------------------% 
function [Da,ai]=shiftsurface(D_strain_p, a,ai,Dai_t,dp_OW,Hi_t,ri_gama,M,mi, A_0i,Bi, Xi)  
%------------------------------------------------------------------% 
%O-W Hardening Rule                                        % 
%------------------------------------------------------------------% 
for z=1:M     
    if ai(z,:)==0         
        dp_OW_i=0;         
    else 
        dp_OW_i=D_strain_p*[ai(z,:)/sqrt((ai(z,:)*ai(z,:)'))]'; 
    end     
    if    dp_OW_i<0                
           dp_OW_i=0; 
    end 
     
    Dai= ri_gama(z,2)*[(2/3)*ri_gama(z,1)*D_strain_p-
((sqrt((ai(z,:)*ai(z,:)'))/ri_gama(z,1))^mi)* ai(z,:)*dp_OW_i];  
%------------------------------------------------------------------% 
%McDowell Hardening Rule                                        % 
%------------------------------------------------------------------% 
for z=1:M     
    if ai(z,:)==0         
        dp_OW_i=0; 
        nonpro=1;                 
    else 
        dp_OW_i=D_strain_p*[ai(z,:)/sqrt((ai(z,:)*ai(z,:)'))]'; 
        nonpro=n_prim*[ai(z,:)/sqrt((ai(z,:)*ai(z,:)'))]';         
    end      
    if nonpro<0         
        nonpro=0; 
    end     
    mi=A_0i*(nonpro)^Bi;  
        if    dp_OW_i<0                
           dp_OW_i=0; 
    end 
     
    Dai= ri_gama(z,2)*[(2/3)*ri_gama(z,1)*D_strain_p-
((sqrt((ai(z,:)*ai(z,:)'))/ri_gama(z,1))^mi)* ai(z,:)*dp_OW_i]; 
%------------------------------------------------------------------% 
%J-S Hardening Rule                                        % 
%------------------------------------------------------------------% 
for z=1:M     
    if ai(z,:)==0         
        dp_OW_i=0; 
        nonpro=0; 
        mi=A_0i*(2-nonpro);         
    else 
        dp_OW_i=D_strain_p*[ai(z,:)/sqrt((ai(z,:)*ai(z,:)'))]' 
        nonpro=n_prim*[ai(z,:)/sqrt((ai(z,:)*ai(z,:)'))]'; 
        mi=A_0i*(2-nonpro); 
    end    
     
    if    dp_OW_i<0                
           dp_OW_i=0; 
    end   
  
    Dai= ri_gama(z,2)*[(2/3)*ri_gama(z,1)*D_strain_p-
((sqrt((ai(z,:)*ai(z,:)'))/ri_gama(z,1))^mi)* ai(z,:)*(sqrt(((D_strain_p*D_strain_p'))))]; 
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%------------------------------------------------------------------% 
%C-J-K Hardening Rule                                        % 
%------------------------------------------------------------------% 
for z=1:M     
    if ai(z,:)==0         
        dp_OW_i=0; 
        Hp_OW_i=0;         
    else 
        dp_OW_i=D_strain_p*[ai(z,:)/sqrt((ai(z,:)*ai(z,:)'))]'; 
        Hp_OW_i=n*(ai(z,:)/sqrt((ai(z,:)*ai(z,:)')))'; 
    end      
    if    Hp_OW_i<0               
          Hp_OW_i=0; 
    end     
    if    dp_OW_i<0                
           dp_OW_i=0;           
    end 
     
    Dai= ri_gama(z,2)*[(2/3)*ri_gama(z,1)*D_strain_p-
((sqrt((ai(z,:)*ai(z,:)'))/ri_gama(z,1))^mi)* ai(z,:)*dp_OW_i*((Hp_OW_i)^(Xi+1))]; 
 
   %------------------------------------------------------------------% 
 
    Dai_t(z,:)=Dai; 
    ai(z,:)=ai(z,:)+Dai; 
                    
end  
    Da=sum(Dai_t); 
end 
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MATLAB Programs for the modified hardening rule 

 

Main program under stress-controlled loading conditions4 

 
clc 
clear all  
% --------------------------------------------------------------------------- 
fh = figure('Name','Stress courses generation. ',... 
    'Position',[0,40,990,650],... 
    'Resize', 'off',... 
    'Toolbar','none',... 
    'Menubar','none','Color',[0.941176 0.941176 0.941176]);  
panel3 = uipanel('Parent',fh,'Title','Hystersis loops',... 
    'Position',[.62 .52 .37 .48]);  
axeshLoop = axes('Parent',panel3,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.15 0.15 0.81 0.82]); 
hLoop=plot(0,0,'-k',0,0,'-r',0,0,'ok',0,0,'or'); 
xlabel('\epsilon(%), -') 
ylabel('\sigma(t), \tau(t), MPa')  
% --------------------------------------------------------------------------- 
[t, Sig, Tau, mate] = test_sq; 
% ---------------------------------------------------------------------------  
panel4 = uipanel('Parent',fh,'Title','Yield surfaces',... 
    'Position',[.62 .01 .37 .51]); 
 axeshSurf = axes('Parent',panel4,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.13 0.14 0.83 0.83],... 
    'XLim',[-1000 1000],... 
 'YLim',[-1000 1000]);  
set(get(axeshSurf,'xlabel'),'string','\surd 3 \tau(t), MPa','fontsize',8) 
set(get(axeshSurf,'ylabel'),'string','\sigma(t), MPa','fontsize',8) 
grid on 
                fi=0:pi/80:2*pi; 
                x=mate.R*cos(fi); 
                y=mate.R*sin(fi); 
                hp=patch(x,y,4); hold on, 
                h=plot(0,0,'ok','markerfacecolor','r','markersize',8); 
                hz=plot(0,0,'--b'); 
                axis equal 
                axis manual 
% ---------------------------------------------------------------------------  
i=0; 
a=zeros(1,9); 
b=a; 
DEps_p=zeros(1,9); 
aa=zeros(length(t), 9); 
am(1:length(mate.R),9)=0; 
ar=a; 
Eps=zeros(length(t),9); 
Eps_p=zeros(length(t),9); 
Debuging=zeros(length(t), 29); 
DP=0 
for j=1:length(t)-1, 
            Sig_start=[Sig(j) 0 0 Tau(j) 0 0 Tau(j) 0 0]; 
            Dsig=[Sig(j+1)-Sig(j) 0 0 Tau(j+1)-Tau(j) 0 0 Tau(j+1)-Tau(j) 0 0]; 
            [Debuging,DEps, i, a, ar, DEps_p, b, DP]=calculation(Sig_start, Dsig, i, a, 
mate,j,Debuging, ar, DEps_p, b, DP); 
            Eps(j+1,:)=Eps(j,:)+DEps; 
            Eps_p(j+1,:)=Eps_p(j,:)+DEps_p; 
            aa(j+1,:)=a;                              
% ----------------------------------------  

                                                           
4 This section was taken from [74] 
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            set(hLoop(1),'xdata',Eps(1:j+1,1)*100,'ydata',Sig(1:j+1)) 
            set(hLoop(2),'xdata',Eps(1:j+1,4)*100,'ydata',Tau(1:j+1)) 
            set(hLoop(3),'xdata',Eps(j+1,1)*100,'ydata',Sig(j+1)) 
            set(hLoop(4),'xdata',Eps(j+1,4)*100,'ydata',Tau(j+1)) 
            drawnow expose 
% -----------------------------------------         
                ay=1.5*aa(j+1,1); 
                ax=sqrt(3)*aa(j+1,4); 
                set(hp,'xdata',x+ax,'ydata',y+ay) 
                set(h,'ydata',Sig(j+1),'xdata',sqrt(3)*Tau(j+1))                 
                j=round(j/100) 
 
end 
  
k=1; 
z=1; 
for j=1:length(t) 
if rem(t(j),.05)==0 
    Mexx(z,1)=max(Eps(k:j,1)); 
    Nexx(z,1)=min(Eps(k:j,1)); 
    aexx(z,1)=(Mexx(z,1)+Nexx(z,1))*100/2; 
    Mexy(z,1)=max(Eps(k:j,4)); 
    Nexy(z,1)=min(Eps(k:j,4)); 
    aexy(z,1)=(Mexy(z,1)+Nexy(z,1))*100/2; 
    k=j+1; 
    z=z+1; 
end 
end  
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Calculation subroutine for modified model under stress-controlled loading conditions 

 

function [Debuging,DEps, i, a, ar, DEps_p, b,DP]=calculation(Sig_start, Dsig, i, a, 
mate,j,Debuging, ar, DEps_p,b, DP )  
%---------------- material data----------------------------------% 
    E=mate.E; 
    ni=mate.ni; 
    G=E/(2*(1+ni)); 
    R=mate.R;   %Stress Radius    
%----------------------------------------------------------------% 
Ab=?;  
Cb1=?;    
Cb2=?;   
%--convert to deviatoric space ----------------------------------% 
    Ddev_Sig=dev(Dsig); 
    dev_Sig_start=dev(Sig_start); 
%--initial normal vector n computation---------------------------% 
    n=nn(dev_Sig_start, a, i);   
%--checking the unloading condition------------------------------% 
    [n ,i, ar]=PlasticityCond(i, Ddev_Sig, n, a, ar); 
%----------------------------------------------------------------% 
%--initial value of points A(start) and C(end)-----------------------------% 
    A_dew=dev_Sig_start; 
    C_dew=A_dew+Ddev_Sig; 
%--------------------------------------------------------------------------% 
    DEps_p=zeros(1,9); 
%--------------------------------------------------------------------------% 
    if F(C_dew, a)>R^2   %plastic condition 
        if i==0 
            A_dew=verify_A(A_dew, a, R); 
            [B_dew]=intersection(A_dew, C_dew, a, R); %point B of intersection  
            A_dew=B_dew;                %point A becomes the new point B 
            AC_dew=C_dew-A_dew; 
            i=i+1; 
            n=nn(C_dew, a, i); 
            D_strain_p=Delta_Strain_p(AC_dew, Delta, i, n, Ab, Cb1, a, b); 
            [Da,b,Db]=shiftsurface(Ab,Cb1,Cb2, D_strain_p, a, b, Delta, n);             
            a=a+Da; 
            DEps_p=D_strain_p;  
        else 
            n=nn(C_dew, a, i); 
            D_strain_p=Delta_Strain_p(Ddev_Sig,  i, n, Ab, Cb1, a, b); 
            [Da,b,Db]=shiftsurface(Ab,Cb1,Cb2, D_strain_p, a, b,  n); 
            a=a+Da; 
            DEps_p=D_strain_p; 
        End 
    end 
    %------------------ Elastic condition ------------------------% 
    DEps_e=hooklaw(Dsig, 'stress_strain', E, ni); 
    DEps=DEps_e+DEps_p; 
end 
%-------------------------------------------------------------------% 
%Vector normal to yield surfaces, n                            % 
%-------------------------------------------------------------------% 
function n=nn(A_dew, a, i) 
if i>0 
    n=(A_dew-a(1,:))/norm(A_dew-a(1,:));    
else 
   n=[]; 
end 
end 
%--------------------------------------------------------------------% 
%Function PlasticityCond check if the increment of deviatoric stress % 
%results in loading or unlloading                                    % 
%--------------------------------------------------------------------% 
function [n ,i, ar]=PlasticityCond(i, Delta, n, a, ar) 
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if i>0 
   if n*(Delta)'<0 
        i=0; 
        n=[]; 
        ar=a; 
   end 
else 
    n=n; 
    i=i; 
    ar=ar; 
end 
  
end 
%------------------------------------------------------------------% 
%Yield function: Von Mises y=(3/2)*(s-a(i,:))*(s-a(i,:))'                                              
%------------------------------------------------------------------% 
function y=F(s, aa) 
y=(3/2)*(s-aa)*(s-aa)'; 
end 
%------------------------------------------------------------------------% 
%Plastic strain increments (flow rule)                 % 
%-----------------------------------------------------------------% 
function D_strain_p=Delta_Strain_p(D_dew, i, n, C, Gama, a, b) 
    if a==0 
        Hp_OW_i=0;       
    else 
        Hp_OW_i=n*(a/sqrt((a*a')))'; 
    end     
    if    Hp_OW_i<0                
          Hp_OW_i=0; 
    end 
  
%------------------------------------------------------------------% 
%Modulus of Plastic strain increments (flow rule)                  % 
%------------------------------------------------------------------% 
                Hp=C-Gama*(n*(a-((Hp_OW_i)^(.5))*b)')*Hp_OW_i;                
%------------------------------------------------------------------%    
                D_strain_p=(1/Hp)*(n*D_dew')*n;  
end 
%------------------------------------------------------------------% 
%Modified hardeing Hardening Rule                                      % 
%------------------------------------------------------------------% 
function [Da,b,Db]=shiftsurface(Ab,Cb1,Cb2, D_strain_p, a, b, n) 
    if a==0         
        dp_OW_i=0;         
    else 
        dp_OW_i=D_strain_p*(a/sqrt((a*a')))'; 
    end     
    if    dp_OW_i<0                
           dp_OW_i=0; 
    end     
    if a==0 
        Hp_OW_i=0;       
    else 
        Hp_OW_i=n*(a/sqrt((a*a')))'; 
    end 
    Hp_OW_i_1=Hp_OW_i;  
    if    Hp_OW_i<0  
          Hp_OW_i=0;  
    end  
    Db=((2-Hp_OW_i_1))*Cb2*(a-1*b)*(dp_OW_i);  
    b=b+Db; 
    Da=(1/1)*Ab*D_strain_p-Cb1*(a-((Hp_OW_i)^(.5))*b)*dp_OW_i;  
end  
%--------------------------------------------------------------------% 
%Point of intersection between increment of stress and yield surface, B      %-------------------
-------------------------------------------------% 
function [B_dew, k0]=intersection(DewLower, DewHigher, aa, RR) 
w(1)=(DewHigher-DewLower)*(DewHigher-DewLower)'; w(2)=2*(DewLower-aa)*(DewHigher-DewLower)'; 
w(3)=(DewLower-aa)*(DewLower-aa)'-(2/3)*RR^2; 
k0=roots(w); k0=max(k0); k0=k0(1); 
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B_dew=DewLower+k0*(DewHigher-DewLower); 
end 
%---------------------------------------------------------------------------% 
%Verification of point A location,   
%---------------------------------------------------------------------------% 
function A_dew=verify_A(A_dew, aa, RR) 
delta=(1e-012)*(A_dew-aa); 
if F(A_dew, aa)-RR^2>=0, 
    [A_dew]=intersection(aa, A_dew, aa, RR); 
    A_dew=A_dew-delta; 
else 
     
end 
end 
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Stress generation subroutine under mixed stress -controlled loading conditions  

 
function [t, Sig, Tau, mate] = test 
global smax 
fh = figure('Name','Stress courses generation',... 
    'Position',[300,200,1000,618],... 
    'Resize', 'on',... 
    'Toolbar','none',... 
    'Menubar','none','Color',[.8 .91 1]);  
panel1 = uipanel('Parent',fh,'Title','Sinusoidal stress signals',... 
    'Position',[.01 .79 .45 .20],'backgroundColor',[.8 .86 1],'FontWeight', 'bold'); 
panel2 = uipanel('Parent',fh,'Title','Time signal',... 
    'Position',[.01 .58 .16 .20],'backgroundColor',[.8 .86 1],'FontWeight', 'bold'); 
panel3 = uipanel('Parent',fh,'Title','Slow start',... 
    'Position',[.19 .58 .14 .20],'backgroundColor',[.8 .86 1],'FontWeight', 'bold'); 
panel4=uipanel('parent', fh, 'Title', 'Material Properies',... 
     'Position',[.01 .05 .45 .35],'backgroundColor',[.8 .86 1],'FontWeight', 'bold');  
%--Equations----------------------------------% 
axeshSiga = axes('Parent',panel1,'units','pixels',... 
    'Position',[7 53 136 26]); 
image(imread('stresseq1.jpg','jpg')); 
set(gca,'visible','off')  
axeshTaua = axes('Parent',panel1,'units','pixels',... 
    'Position',[9 12 136 26]); 
image(imread('stresseq2.jpg','jpg')); 
set(gca,'visible','off')  
%--Sig_a and Tau_a-------------------------------------% 
texthSiga = uicontrol(panel1,'Style','text',... 
    'Units','pixels',... 
    'String','Stress levels (MPa)',... 
    'Position',[145 85 70 27],... 
    'backgroundColor',[.8 .86 1]);  
edithSiga = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','141.42',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[155 52 52 27]);  
edithTaua = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','81.64',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[155 11 52 27]);  
%--Mean Stresses-------------------------------------% 
texthSigm = uicontrol(panel1,'Style','text',... 
    'Units','pixels',... 
    'String','Mean Stresses (MPa)',... 
    'Position',[220 85 90 27],... 
    'backgroundColor',[.8 .86 1]);  
edithSigm = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','50',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[237 52 52 27]);  
edithTaum = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','0',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[237 12 52 27]); 
%--Frequencies----------------------------------% 
texthfsig = uicontrol(panel1,'Style','text',... 
    'Units','pixels',... 
    'String','Frequencies (Hz)',... 
    'Position',[310 85 66 27],... 
    'backgroundColor',[.8 .86 1]);  
edithfsig = uicontrol(panel1,'Style','edit',... 
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    'Units','pixels',... 
    'String','20',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[315.5 52 52 27]);  
edithftau = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','20',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[315.5 12 52 27]);  
%--Phase shift, rad---------------------------------% 
texthd = uicontrol(panel1,'Style','text',... 
    'Units','pixels',... 
    'String','Phase shift (rad)',... 
    'Position',[380 42 60 27],... 
    'backgroundColor',[.8 .86 1]);  
edithd = uicontrol(panel1,'Style','edit',... 
    'Units','pixels',... 
    'String','0',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[383 12 52 27]);  
%--Time signal---------------------------------% 
edithS = uicontrol(panel2,'Style','edit',... 
    'Units','pixels',... 
    'String','2000',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[50 55 52 27]);  
texthS = uicontrol(panel2,'Style','text',... 
    'Units','pixels',... 
    'String','Frequency sampling (Hz)',... 
    'Position',[10 85 140 16],... 
    'backgroundColor',[.8 .86 1]);  
edithL = uicontrol(panel2,'Style','edit',... 
    'Units','pixels',... 
    'String','5',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[50 5 52 27]);  
texthL = uicontrol(panel2,'Style','text',... 
    'Units','pixels',... 
    'String','Length (s)',... 
    'Position',[45 35 60 16],... 
    'backgroundColor',[.8 .86 1]);  
%--Main axes-------------------------------------------% 
axesh = axes('Parent',fh,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.525 0.525 0.45 0.45]); 
set(get(axesh,'xlabel'),'string','Time, s','fontsize',8) 
set(get(axesh,'ylabel'),'string','\sigma(t), \tau(t), MPa','fontsize',8)  
%--Young modulus----------------------------------% 
texthE = uicontrol(panel4,'Style','text',... 
    'Units','pixels',... 
    'String','Young modulus (MPa)',... 
    'Position',[10 165 80 27],... 
    'backgroundColor',[.8 .86 1]); 
edithE = uicontrol(panel4,'Style','edit',... 
    'Units','pixels',... 
    'String','205000',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[20 133 62 27]);  
%--Poisson ratio----------------------------------% 
texthni = uicontrol(panel4,'Style','text',... 
    'Units','pixels',... 
    'String','Poisson ratio',... 
    'Position',[95 165 80 27],... 
    'backgroundColor',[.8 .86 1]); 



  

129 

 

 edithni = uicontrol(panel4,'Style','edit',... 
    'Units','pixels',... 
    'String','0.3',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[105 133 62 27]);  
%--Yield stress----------------------------------% 
texthSigy = uicontrol(panel4,'Style','text',... 
    'Units','pixels',... 
    'String','Yield stress (MPa)',... 
    'Position',[10 75 80 27],... 
    'backgroundColor',[.8 .86 1]); 
edithSigy = uicontrol(panel4,'Style','edit',... 
    'Units','pixels',... 
    'String','153.2',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[20 43 62 27]);  
%--Maximum stress, MPa-----------------% 
texthSigmax = uicontrol(panel4,'Style','text',... 
    'Units','pixels',... 
    'String','Maximum stress (MPa)',... 
    'TooltipString','Maximum stress must be higher than Yield stress !',... 
    'Position',[95 75 80 27],... 
    'backgroundColor',[.8 .86 1]);  
edithSigmax = uicontrol(panel4,'Style','edit',... 
    'Units','pixels',... 
    'String','900',... 
    'BackgroundColor','white',... 
    'TooltipString','Maximum stress must be higher than Yield stress !',... 
    'Fontsize',9,... 
    'Position',[104 43 62 27]);  
axesh2 = axes('Parent',fh,'units','normalized',... 
    'Box','on',... 
    'Fontsize',8,... 
    'Position',[0.525 0.06 0.45 0.40]); 
set(get(axesh2,'xlabel'),'string','\epsilon_a, -','fontsize',8) 
set(get(axesh2,'ylabel'),'string','\sigma_a, MPa','fontsize',8)  
%---buttons----------------------------------------% 
bhSlow = uicontrol(panel3,'Units','normalized',... 
    'Position',[0.22 0.64 0.54 0.32],... 
    'String','Slow start',... 
    'Enable','off',... 
    'Callback',@buttonSlow);  
texthSlow = uicontrol(panel3,'Style','text',... 
    'Units','normalized',... 
    'String','During time (s)',... 
    'Position',[0.2 0.4 0.6 0.14],... 
    'backgroundColor',[.8 .86 1]);  
edithSlow = uicontrol(panel3,'Style','edit',... 
    'Units','normalized',... 
    'String','0.010',... 
    'BackgroundColor','white',... 
    'Fontsize',9,... 
    'Position',[0.28 0.1 0.4 .24]);  
bhApply = uicontrol(fh,'Units','normalized',... 
    'Position',[.35 .66 0.05 0.05],... 
    'String','Apply',... 
    'Callback',@buttonApply);  
bhOk = uicontrol(fh,'Units','normalized',... 
    'Position',[0.92 0.07 0.05 0.05],... 
    'String','OK',... 
    'Callback',@buttonOK);  
%---buttons----------------------------------------% 
hh= uicontrol(panel4,'Units','pixel',... 
    'Position',[380 10 55 30],... 
    'String','Apply',... 
    'Callback',@buttonApply2); 
  
uiwait(fh); 
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  function buttonApply(hObject,eventdata) 
         
        Sig_a=str2double(get(edithSiga,'String')); 
        Tau_a=str2double(get(edithTaua,'String')); 
        fsig=str2double(get(edithfsig,'String')); 
        ftau=str2double(get(edithftau,'String')); 
        delta=eval(get(edithd,'String')); 
        fs=str2double(get(edithS,'String')); 
        T=str2double(get(edithL,'String')); 
        Sig_mean=str2double(get(edithSigm,'String'));            
        Tau_mean=str2double(get(edithTaum,'String'));    
        t=0:1/fs:T; 
        Sig=zeros(1,length(t)); 
        Tau=zeros(1,length(t)); 

************************************************************************ 
**************** test-sq for paths A2 in Fig 4.9 ************************ 
************************************************************************ 

       
for i=1:length(t), 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(4*fsig)) 
            Sig(i)= Sig_a+Sig_mean;  
             
        elseif t(i)<= (1/(2*fsig))          
            Sig(i)= -((2*Sig_a)/(1/(4*fsig)))*(t(i)-(1/(4*fsig)))+Sig_a+Sig_mean;  
             
        elseif  t(i)<= (3/(4*fsig))              
            Sig(i)= -Sig_a+Sig_mean; 
             
        else              
            Sig(i)= ((2*Sig_a)/(1/(4*fsig)))*(t(i)-(3/(4*fsig)))-Sig_a+Sig_mean; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(4*fsig))           
            Sig(i)= Sig_a+Sig_mean;  
             
        elseif  equ_i<= (1/(2*fsig)) 
            Sig(i)= -((2*Sig_a)/(1/(4*fsig)))*(equ_i-(1/(4*fsig)))+Sig_a+Sig_mean;  
             
        elseif equ_i<= (3/(4*fsig)) 
            Sig(i)= -Sig_a+Sig_mean;  
   
        else 
            Sig(i)= ((2*Sig_a)/(1/(4*fsig)))*(equ_i-(3/(4*fsig)))-Sig_a+Sig_mean;   
        end  
         
    end 
end 
 
for i=1:length(t), 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(4*ftau)) 
            Tau(i)= ((2*Tau_a)/(1/(4*ftau)))*t(i)-Tau_a+Tau_mean;  
             
        elseif t(i)<= (1/(2*ftau))          
            Tau(i)= Tau_a+Tau_mean; 
             
        elseif  t(i)<= (3/(4*ftau))              
            Tau(i)= -((2*Tau_a)/(1/(4*ftau)))*(t(i)-(1/(2*ftau)))+Tau_a+Tau_mean;  
             
        else              
            Tau(i)= -Tau_a+Tau_mean; 
    
        end  
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    else          
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
         
        if equ_i<= (1/(4*ftau))           
            Tau(i)= ((2*Tau_a)/(1/(4*ftau)))*equ_i-Tau_a+Tau_mean; 
             
        elseif  equ_i<= (1/(2*ftau)) 
            Tau(i)= Tau_a+Tau_mean;  
             
        elseif equ_i<= (3/(4*ftau)) 
            Tau(i)= -((2*Tau_a)/(1/(4*ftau)))*(equ_i-(1/(2*ftau)))+Tau_a+Tau_mean;  
   
        else 
            Tau(i)= -Tau_a+Tau_mean;    
        end  
         
    end 
end 

************************************************************************ 
**************** test-Dsq for paths A3 in Fig 4.9 ************************ 
************************************************************************  

for i=1:length(t), 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(7*fsig)) 
            Sig(i)= ((Sig_a)/(1/(7*fsig)))*t(i)+Sig_mean; 
             
        elseif t(i)<= (2/(7*fsig))          
            Sig(i)= Sig_a+Sig_mean; 
             
        elseif  t(i)<= (3/(7*fsig))              
            Sig(i)= -((Sig_a)/(1/(7*fsig)))*(t(i)-(2/(7*fsig)))+Sig_a+Sig_mean;  
             
        elseif t(i)<= (4/(7*fsig)) 
            Sig(i)= Sig_mean; 
             
        elseif t(i)<= (5/(7*fsig)) 
            Sig(i)= -((Sig_a)/(1/(7*fsig)))*(t(i)-(4/(7*fsig)))+Sig_mean; 
             
        elseif t(i)<= (6/(7*fsig)) 
            Sig(i)= -Sig_a+Sig_mean; 
             
        else              
            Sig(i)= ((Sig_a)/(1/(7*fsig)))*(t(i)-(6/(7*fsig)))-Sig_a+Sig_mean; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(7*fsig))           
            Sig(i)= ((Sig_a)/(1/(7*fsig)))*equ_i+Sig_mean; 
             
        elseif  equ_i<= (2/(7*fsig)) 
            Sig(i)=  Sig_a+Sig_mean;  
             
        elseif equ_i<= (3/(7*fsig)) 
            Sig(i)=  -((Sig_a)/(1/(7*fsig)))*(equ_i-(2/(7*fsig)))+Sig_a+Sig_mean;  
             
        elseif equ_i<= (4/(7*fsig)) 
            Sig(i)= Sig_mean; 
             
        elseif equ_i<= (5/(7*fsig)) 
            Sig(i)= -((Sig_a)/(1/(7*fsig)))*(equ_i-(4/(7*fsig)))+Sig_mean; 
             
        elseif equ_i<= (6/(7*fsig)) 
            Sig(i)= -Sig_a+Sig_mean; 
               
        else 
            Sig(i)= ((Sig_a)/(1/(7*fsig)))*(equ_i-(6/(7*fsig)))-Sig_a+Sig_mean;    
        end  
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    end 
end 
 
for i=1:length(t), 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(7*ftau)) 
            Tau(i)= Tau_mean;  
             
        elseif t(i)<= (2/(7*ftau))          
            Tau(i)= ((Tau_a)/(1/(7*fsig)))*(t(i)-(1/(7*ftau)))+Tau_mean;  
             
        elseif t(i)<= (3/(7*ftau)) 
            Tau(i)= Tau_a+Tau_mean; 
             
        elseif  t(i)<= (4/(7*ftau))              
            Tau(i)= -((2*Tau_a)/(1/(7*ftau)))*(t(i)-(3/(7*ftau)))+Tau_a+Tau_mean; 
             
        elseif  t(i)<= (5/(7*ftau))  
            Tau(i)= -Tau_a+Tau_mean; 
             
        elseif t(i)<= (6/(7*ftau)) 
            Tau(i)= ((Tau_a)/(1/(7*fsig)))*(t(i)-(5/(7*ftau)))-Tau_a+Tau_mean; 
                    
        else              
            Tau(i)= Tau_mean; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
         
        if equ_i<= (1/(7*ftau)) 
            Tau(i)= Tau_mean;  
             
        elseif equ_i<= (2/(7*ftau))          
            Tau(i)= ((Tau_a)/(1/(7*fsig)))*(equ_i-(1/(7*ftau)))+Tau_mean;  
             
        elseif equ_i<= (3/(7*ftau)) 
            Tau(i)= Tau_a+Tau_mean; 
             
        elseif  equ_i<= (4/(7*ftau))              
            Tau(i)= -((2*Tau_a)/(1/(7*ftau)))*(equ_i-(3/(7*ftau)))+Tau_a+Tau_mean;  
             
        elseif  equ_i<= (5/(7*ftau))  
            Tau(i)= -Tau_a+Tau_mean; 
             
        elseif equ_i<= (6/(7*ftau)) 
            Tau(i)= ((Tau_a)/(1/(7*fsig)))*(equ_i-(5/(7*ftau)))-Tau_a+Tau_mean; 
                    
        else              
            Tau(i)= Tau_mean; 
    
        end          
    end 
end 
 

************************************************************************ 
******** test-rh for paths A5 in Fig 4.9 and D&E in Fig 4.15 *************** 
************************************************************************ 

for i=1:length(t), 
    if t(i)<= (1/fsig) 
         
        if t(i)<= (1/(4*fsig)) 
            Sig(i)= ((Sig_a)/(1/(4*fsig)))*t(i)+Sig_mean;  
             
        elseif t(i)<= (3/(4*fsig))          
            Sig(i)= (-(Sig_a)/(1/(4*fsig)))*(t(i)-(1/(4*fsig)))+Sig_a+Sig_mean;            
            
        else              
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            Sig(i)= ((Sig_a)/(1/(4*fsig)))*(t(i)-(3/(4*fsig)))-Sig_a+Sig_mean; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(fsig)))*(1/(fsig)); 
         
        if equ_i<= (1/(4*fsig))           
            Sig(i)=  ((Sig_a)/(1/(4*fsig)))*equ_i+Sig_mean; 
             
        elseif  equ_i<= (3/(4*fsig)) 
            Sig(i)=  (-(Sig_a)/(1/(4*fsig)))*(equ_i-(1/(4*fsig)))+Sig_a+Sig_mean;  
               
        else 
            Sig(i)=  ((Sig_a)/(1/(4*fsig)))*(equ_i-(3/(4*fsig)))-Sig_a+Sig_mean;  
             
        end  
         
    end 
end 
  
for i=1:length(t), 
    if t(i)<= (1/ftau) 
         
        if t(i)<= (1/(2*ftau)) 
            Tau(i)= ((Tau_a)/(1/(4*fsig)))*t(i)-Tau_a+Tau_mean; 
                    
        else              
            Tau(i)= (-(Tau_a)/(1/(4*fsig)))*(t(i)-(2/(4*ftau)))+Tau_a+Tau_mean; 
    
        end  
         
    else          
        equ_i=t(i)-floor(t(i)./(1/(ftau)))*(1/(ftau)); 
         
        if equ_i<= (1/(2*ftau)) 
            Tau(i)= ((Tau_a)/(1/(4*fsig)))*equ_i-Tau_a+Tau_mean;  
            
        else              
            Tau(i)= (-(Tau_a)/(1/(4*fsig)))*(equ_i-(2/(4*ftau)))+Tau_a+Tau_mean; 
    
        end          
    end 
end    
        axes(axesh) 
        plot(t,Sig,'.-k',t,Tau,'.-r') 
        xlabel('Time, s') 
        ylabel('\sigma(t), \tau(t), MPa') 
        legend('\sigma(t)', '\tau(t)') 
        axis tight 
        set(bhSlow,'Enable','on') 
        smax= max(abs(Sig)); 
  end 
%------------------------------------------------% 
    function buttonSlow(hObject,eventdata) 
         
        T=str2double(get(edithL,'String')); 
        T0=str2double(get(edithSlow,'String')); 
        fs=str2double(get(edithS,'String'));         
        if T0>T, 
            f = warndlg('Time of slow start cannot be longer than time of stress signals.', 
'Warning'); 
            T0 = T; 
            set(edithSlow,'string',num2str(T0)) 
            uiwait(f) 
        end 
        nr=T0*fs; 
        X=[Sig' Tau']; 
        w=sin([0:pi/2/nr:pi/2]'); 
        w=w*ones(1,size(X,2)); 
        X(1:size(w,1),:)=w.*X(1:size(w,1),:); 
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        Sig=X(:,1)'; 
        Tau=X(:,2)'; 
        plot(t,Sig,'.-k',t,Tau,'.-r') 
        xlabel('Time, s') 
        ylabel('\sigma(t), \tau(t), MPa') 
        legend('\sigma(t)', '\tau(t)') 
        axis tight         
    end  
%------------------------------------------------% 
    function buttonOK(hObject,eventdata) 
        close(fh) 
    end  
%------------------------------------------------% 
    function buttonApply2(hObject2,eventdata2)         
        mate.E=str2double(get(edithE,'String')); 
        mate.K=str2double(get(edithK,'String')); 
        mate.n=str2double(get(edithn,'String')); 
        mate.ni=str2double(get(edithni,'String')); 
        mate.Sig_y=str2double(get(edithSigy,'String')); 
        mate.Sigmax=str2double(get(edithSigmax,'String')); 
        mate.R=mate.Sig_y; 
        if mate.Sigmax<mate.Sig_y, 
            f = warndlg('Maximum stress must be higher than the yield stress.', 'Warning'); 
            mate.Sigmax=mate.Sig_y+mate.DSig; 
            set(edithSigmax,'string',num2str(mate.Sigmax)) 
            uiwait(f) 
        end         
        Sig_ai=[0:5:mate.Sigmax]; 
        Eps_ai=Sig_ai/mate.E+(Sig_ai/mate.K).^(1/mate.n);         
          Eps_a=mate.Sig_y/mate.E+(mate.Sig_y/mate.K).^(1/mate.n);   
          Eps_b=smax/mate.E+(smax/mate.K).^(1/mate.n); 
          mate.C=((3/2)*(((Eps_b-Eps_a)/(smax-mate.Sig_y))-1/mate.E))^-1 
          axes(axesh2) 
        plot(Eps_ai,Sig_ai,'-k',[Eps_a,Eps_b],[mate.Sig_y,smax],'+-b') 
        xlabel('\epsilon_a, -') 
        ylabel('\sigma_a, MPa') 
    end 
end   
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B. APPENDIX B 
 

Experimental data employed in chapter four to assess the ratcheting response of steel alloys 

under various multiaxial loading spectra are presented in Appendix B. Table B.1 presents 

mechanical properties of steel alloys used in this thesis. Experimental ratcheting data for 1045 

steel samples subjected to eight various loading paths were used to evaluate the capability of the 

modified hardening rule in ratcheting assessment under multiaxial loading cycles (see figure 4.4). 

These experimental data are presented in Tables B.2 and B.3. The capability of the O-W, J-S, 

McDowell and modified A-V hardening rules in the ratcheting prediction of 1045 steel and 

1Cr18Ni9Ti stainless steel under different multiaxial loading histories was evaluated in figures 4.7 

and 4.8. Experimental ratcheting data in these figures are tabulated in Tables B.3 and B.4. 

Ratcheting data of SS304 steel samples were compared with predicted curves based on the 

hardening rules of Ohno-Wang (O-W), Chen-Jiao-Kim (C-J-K) and the modified hardening rule 

under both stress-controlled and mixed stress- and strain-controlled multiaxial histories as 

presented in figures 4.13 and 4.14. Tables B.5, B.6 and B.7 present experimental ratcheting strain 

data for multiaxial loading paths A1-A5 and B1-B6 as presented in figure 4.13-4.14. The hardening 

rules of Ohno-Wang (O-W), Chen-Jiao-Kim (C-J-K) and the modified model were evaluated for 

their capability in ratcheting assessment of as compared with SS304 ratcheting data reported for 

various multiaxial step-loading histories presented in figures 4.17-4.22. The experimental 

ratcheting data for these multiaxial paths are presented in Table B.8. 
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Table B.1 Mechanical properties of steel alloys studied in this thesis. 

Material σy (MPa) E (GPa) G(GPa) σu (MPa) 

1045 steel [30] 590 205 79 798 

1Cr18Ni9Ti [29] 310 193 65.5 605 

SS304L [47] 19 205 80 480 

SS304 [50] 210 192 83 500-510 

SS304 [51] 230 195 86 500-510 

 

 

 

  



  

137 

 

Table B.2 Uniaxial experimental ratcheting data of 1045 steel alloy [30] used to determine 

calibrating coefficient γ2 in figure 4.3. 

Uniaxial (100±370MPa) 

Cycles (N) εr (%) 

0 0.00 

1 0.38 

40 0.81 

100 1.19 

200 1.62 

300 1.93 
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Table B.3 Multiaxial ratcheting data of 1045 steel alloy [30] for various loading paths A-H used 

in figures 4.4 and 4.7. 

Path A  Path B  Path C  Path D 

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  0 0.00  0 0.00  0 0.23 

6 0.30  9 0.34  19 0.36  19 0.49 

24 0.58  20 0.41  30 0.40  40 0.63 

60 0.96  30 0.49  40 0.46  60 0.71 

80 1.09  40 0.54  50 0.51  80 0.75 

94 1.17  50 0.59  60 0.57  100 0.82 

140 1.42  60 0.62  70 0.59  120 0.88 

210 1.71  70 0.68  80 0.64  140 0.92 

230 1.76  80 0.69  90 0.67  160 0.98 

240 1.81  90 0.70  100 0.68  180 1.02 

255 1.84  100 0.74  200 0.92  200 1.04 

270 1.88  200 0.97  300 1.07  300 1.17 

280 1.92  300 1.11  --- ---  --- --- 

300 1.96   --- ---   --- ---   --- --- 
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Table B.3 Continued 

Path E  Path F  Path G  Path H 

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  0 0.00  0 0.00  0 0.00 

2 0.16  3 0.02  2 0.31  7 0.55 

3 0.24  4 0.04  3 0.44  9 0.63 

4 0.30  7 0.07  4 0.53  10 0.70 

8 0.36  10 0.09  6 0.61  20 0.96 

10 0.39  20 0.12  10 0.69  30 1.16 

20 0.50  30 0.15  11 0.76  40 1.31 

30 0.58  40 0.18  20 0.98  50 1.43 

40 0.65  50 0.21  30 1.15  60 1.53 

50 0.70  60 0.24  40 1.28  70 1.63 

60 0.75  70 0.26  50 1.40  80 1.73 

70 0.80  80 0.27  60 1.51  90 1.78 

80 0.84  90 0.28  70 1.60  100 1.86 

90 0.89  100 0.30  80 1.68  200 2.38 

100 0.92  200 0.42  90 1.78  300 2.75 

200 1.21  300 0.50  100 1.85   --- --- 

300 1.40    ---  ---   200 2.44   ---  ---  

  ---  ---    ---  ---   300 2.87   ---  ---  

  

 

 

 

 

 

 

 



  

140 

 

Table B.4 Multiaxial ratcheting data of 1Cr18Ni9Ti steel alloy [29] for loading paths I-K used in 

figure 4.8. 

Path I   Path J   Path K  

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  0 0.00  0 0.00 

1 0.18  1 0.30  1 0.48 

2 0.26  2 0.34  2 0.54 

3 0.30  3 0.37  3 0.59 

4 0.32  4 0.39  4 0.62 

5 0.35  5 0.41  5 0.65 

5 0.37  6 0.42  6 0.68 

7 0.39  7 0.43  7 0.71 

9 0.40  8 0.44  8 0.73 

10 0.42  9 0.45  9 0.75 

15 0.45  10 0.46  10 0.78 

31 0.51  16 0.50  20 0.93 

63 0.57  32 0.56  40 1.11 

 --- ---  64 0.62  60 1.22 
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Table B.5 Uniaxial experimental ratcheting data of SS304 steel alloys [47, 50-51] used to 

determine calibrating coefficient γ2 in figure 4.12 

SS304L [47] 

Uniaxial Loading 50±200  

SS304 [50] 

Uniaxial Loading 78±248  

SS304 [51] 

Uniaxial Loading 235±235 

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  0 0.00  0 0.00 

1 1.03  1 0.89  4 1.18 

6 1.35  3 1.11  15 1.43 

11 1.49  6 1.23  39 1.66 

16 1.58  9 1.33  79 1.84 

21 1.66  13 1.41  134 1.97 

26 1.72  19 1.47  216 2.15 

31 1.78  25 1.53  300 2.28 

36 1.83  30 1.59   --- --- 

41 1.87  36 1.65   ---  ---  

46 1.91  43 1.69   ---  ---  

51 1.95  50 1.73   --- --- 

56 1.98   --- ---   ---  ---  

61 2.01   ---  ---    ---  ---  

66 2.04   ---  ---    --- --- 

71 2.07   --- ---   ---  ---  

76 2.10   ---  ---    ---  ---  

81 2.12   ---  ---    --- --- 

86 2.14   ---  ---    ---  ---  

91 2.17   ---  ---    ---  ---  

96 2.19   ---  ---    ---  ---  
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Table B.6 Multiaxial ratcheting data for SS304 alloys [47, 50] for loading paths A1-A5 under 

stress-controlled loading conditions used in figure 4.13. 

Path A1 [47]  Path A2 [47]  Path A3 [47] 

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  0 0.00  0 0.00 

1 0.035  1 0.194  1 0.391 

6 0.063  6 0.261  6 0.444 

11 0.063  11 0.274  11 0.472 

16 0.070  16 0.285  16 0.493 

21 0.070  21 0.292  21 0.514 

26 0.072  26 0.297  26 0.526 

31 0.075  31 0.306  31 0.540 

36 0.075  36 0.308  36 0.554 

41 0.075  41 0.313  41 0.566 

46 0.077  46 0.320  46 0.578 

51 0.080  51 0.323  51 0.592 

56 0.077  56 0.325  56 0.599 

61 0.080  61 0.330  61 0.610 

66 0.082  66 0.335  66 0.619 

71 0.080  71 0.337  71 0.627 

76 0.077  76 0.337  76 0.639 

81 0.082  81 0.341  81 0.645 

86 0.082  86 0.346  86 0.655 

91 0.084  91 0.348  91 0.662 

96 0.084  96 0.348  96 0.673 
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Table B.6 Continued 

Path A4 [50]  Path A5 [50] 

Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  0 0.00 

1 0.40  1 0.40 

2 0.635  2 0.431 

3 0.694  3 0.453 

4 0.724  4 0.463 

5 0.742  5 0.467 

6 0.756  6 0.479 

7 0.764  7 0.491 

9 0.780  9 0.495 

11 0.790  11 0.503 

13 0.800  13 0.511 

15 0.812  15 0.515 

17 0.817  17 0.521 

19 0.828  19 0.525 

21 0.832  20 0.528 

23 0.839  23 0.531 

25 0.843  25 0.539 

27 0.848  27 0.543 

29 0.856  29 0.546 

31 0.860  31 0.547 

33 0.860  32 0.547 

35 0.866  34 0.551 

37 0.870  36 0.553 

39 0.876  38 0.555 

41 0.879  40 0.560 

43 0.880  42 0.564 

45 0.880  44 0.568 

47 0.884  45 0.567 

50 0.888  47 0.567 

 ---  ---   49 0.571 

 ---  ---   50 0.571 
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Table B.7 Multiaxial ratcheting data for SS304 alloys [47, 51] for loading paths B1-B6 under 

mixed strain- and stress-controlled conditions used in figure 4.14. 

Path B1 [51]  Path B2 [51]  Path B3 [51] 

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  0 0.00  0 0.00 

1 0.25  2 0.18  1 0.26 

2 0.40  3 0.24  2 0.30 

3 0.59  4 0.30  3 0.35 

5 0.75  6 0.38  5 0.40 

12 0.87  12 0.42  8 0.44 

20 0.97  21 0.47  14 0.47 

30 1.06  33 0.50  21 0.49 

44 1.15  44 0.53  33 0.51 

59 1.23  60 0.55  43 0.53 

72 1.28  73 0.57  54 0.53 

84 1.32  87 0.59  68 0.55 

101 1.37  105 0.61  83 0.56 

113 1.41  128 0.63  95 0.57 

128 1.45  151 0.66  112 0.58 

142 1.50  176 0.68  126 0.59 

163 1.56  213 0.72  142 0.59 

191 1.62  245 0.74  158 0.60 

213 1.67  274 0.77  175 0.61 

234 1.72  300 0.80  191 0.62 

256 1.76   ---  ---   208 0.63 

282 1.83   ---  ---   226 0.63 

300 1.87   ---  ---   243 0.64 

 ---  ---    ---  ---   261 0.65 

 ---  ---    ---  ---   279 0.66 

 ---  ---    ---  ---   300 0.66 
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Table B.7 Continued 

Path B4 [51]  Path B5 [51]  Path B6 [47] 

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  0 0.00  0 0.00 

1 0.16  1 0.18  1 1.64 

2 0.28  2 0.23  6 2.68 

3 0.43  3 0.29  11 2.99 

5 0.61  10 0.35  16 3.13 

11 0.82  23 0.40  21 3.21 

17 0.99  40 0.43  26 3.26 

28 1.21  54 0.44  31 3.30 

43 1.39  74 0.46  36 3.32 

61 1.57  94 0.47  41 3.35 

83 1.74  112 0.48  46 3.38 

106 1.88  138 0.50  51 3.40 

138 2.04  165 0.51  56 3.42 

170 2.19  192 0.52  61 3.44 

200 2.34  232 0.54  66 3.46 

229 2.44  269 0.56  71 3.48 

253 2.52  300 0.57  76 3.49 

280 2.61   ---  ---   81 3.52 

300 2.68   ---  ---   86 3.53 

 ---  ---    ---  ---   91 3.54 

 ---  ---    ---  ---   96 3.56 
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Table B.8 Ratcheting data for SS304 alloys [43, 50] for loading paths A-E under various 

multiaxial step-loading spectra used in figure 4.17-4-22. 

Path A  Path B 

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  63 2.31  0 0.00  68 1.88 

3 0.86  65 2.35  1 0.40  70 1.91 

5 0.91  67 2.39  3 0.69  72 1.93 

7 0.94  70 2.44  5 0.74  75 1.96 

9 0.96  74 2.51  7 0.76  78 1.99 

11 0.98  78 2.56  11 0.79  80 2.02 

13 1.00  82 2.60  15 0.81  83 2.05 

17 1.02  86 2.64  19 0.83  85 2.06 

20 1.03  90 2.67  23 0.84  88 2.08 

24 1.06  94 2.71  27 0.85  91 2.11 

28 1.08  98 2.73  31 0.86  93 2.13 

32 1.09  101 2.71  35 0.87  96 2.15 

36 1.11  103 2.71  39 0.88  98 2.16 

40 1.12  106 2.71  43 0.88  100 2.19 

43 1.13  110 2.71  47 0.88  103 2.13 

47 1.14  114 2.71  51 1.06  106 2.13 

49 1.15  118 2.71  54 1.51  108 2.13 

51 1.52   ---  ---   56 1.61  111 2.13 

53 1.84   ---  ---   58 1.68  113 2.13 

55 1.99   ---  ---   60 1.74  115 2.13 

57 2.09   ---  ---   62 1.78  117 2.13 

59 2.17   ---  ---   64 1.82  119 2.13 

61 2.24   ---  ---   66 1.86   ---  ---  

 

 

 

 

 

 

 

 



  

147 

 

Table B.8 Continued 

Path C  Path D 

Cycles (N) εr (%)  Cycles (N) εr (%)  Cycles (N) εr(%)  Cycles (N) εr (%) 

0 0.00  53 1.55  0 0.00  62 1.22 

2 0.52  55 1.65  1 0.36  64 1.24 

3 0.58  57 1.72  3 0.45  66 1.26 

5 0.62  60 1.79  5 0.47  68 1.28 

7 0.65  63 1.85  7 0.49  70 1.30 

9 0.67  67 1.91  9 0.49  72 1.31 

12 0.70  71 1.96  11 0.50  74 1.32 

14 0.71  75 2.01  13 0.51  76 1.34 

17 0.73  80 2.05  15 0.52  78 1.35 

20 0.74  85 2.10  17 0.52  80 1.36 

22 0.76  88 2.12  21 0.53  82 1.37 

26 0.77  91 2.15  25 0.54  85 1.38 

28 0.78  95 2.18  29 0.55  88 1.40 

31 0.79  98 2.20  37 0.56  92 1.42 

34 0.80  100 2.21  41 0.56  96 1.44 

37 0.80  102 2.17  50 0.57  100 1.45 

40 0.81  103 2.16  51 0.85  103 1.41 

43 0.82  105 2.16  52 0.97  107 1.41 

46 0.83  108 2.16  53 1.03  111 1.41 

50 0.83  111 2.16  54 1.07  118 1.40 

51 1.11  115 2.16  56 1.12   ---  ---  

52 1.30  118 2.17  58 1.16   ---  ---  

52 1.45  120 2.16  60 1.19   ---  ---  
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Table B.8 Continued 

Path E 

Cycles (N) εr (%)  Cycles (N) εr (%) 

0 0.00  52 1.68 

1 0.89  54 1.81 

2 0.96  56 1.91 

3 0.99  59 1.99 

5 1.01  62 2.05 

8 1.02  64 2.08 

11 1.03  68 2.14 

14 1.04  71 2.18 

17 1.05  76 2.23 

21 1.06  79 2.26 

25 1.08  83 2.30 

29 1.09  86 2.32 

32 1.09  90 2.35 

36 1.10  93 2.37 

38 1.10  96 2.39 

41 1.10  100 2.42 

44 1.11  101 2.39 

47 1.11  106 2.37 

50 1.12  109 2.37 

50 1.21  112 2.37 

51 1.30  114 2.37 

51 1.42  117 2.37 

51 1.54  119 2.37 
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