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In turbine blade design, all three stages of creep are of concern. Moreover, for most commonly
employed materials, creep rupture data is readily available where as long term creep strain data is not
[1]. Recently, effort has been expended by many researchers in the development of material models
incorporating all three stages of creep at varying stress and temperatures. Several developed models
are complex or burdened by large numbers of material fitting constants. There is need for the
development of a constitutive creep strain prediction formulation that is simplistic and requires

minimal empirical data.

In this thesis, the creep strain model proposed by Holmstrom et al., called the Logistic Creep Strain
Prediction (LCSP) method was modified and used to model all three stages of creep of the well
known nickel based super alloy Inconel 718 [1]. The LCSP is robustness and accurate, and
possesses a simplistic formulation ideal for algebraic manipulation and differentiation making it a

very attractive solution.
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NOMENCLATURE
& or &: Creep strain
€. or &: Creep strain rate
o: Stress
T: Temperature
t: Time
tr: Rupture time
w: Damage parameter
: Rate of damage
S;j: Deviatoric Stress
0: Equivalent stress
o,: Rupture stress
o0q: First principle stress
0;: Theta projection constants where i = 1,2,3,4
): Omega method material parameter
£o: Imaginary initial strain
a, B, xo, p: Logistic Creep Strain Prediction Material Parameters
Ao: Incremental stress

Ag: Incremental strain



CHAPTER 1 INTRODUCTION

1.1  RESEARCH MOTIVATION & GOALS

In the aviation industry gas turbines push their components to the very limit of their thermal
capacity. The ever increasing demand on the design of engines with greater thermal performance
has spurred a major need in the development of models expressing all three stages of creep. The
first two stages of creep for design are no longer adequate. Since, long term creep strain data is not
as common as long term rupture time data, a need for the development of constitutive creep strain
models has been incited. Models that are capable of predicting long term creep strain data from
short term experiments, with a simple formulation. This research was motivated by the need of a
constitutive formulation that encompassed the entire creep strain curve at varying stress levels and
temperatures. ‘The criterions of the development effort focused on a simplistic formulation,
encompassing all three creep stages, requiring minimal empirical data and containing a minimal
number of material fitting parameters. The criterions are derived from what is termed the goals of

applicability. The goals of applicability are concerned with the following qualities:

- Ease of application
- Cost of application

- Versatility

Ease of application was met by the simplistic formulation of the modified LCSP and the minimal
number of material fitting constants. Cost of application is met by the fact that the model for
Inconel 718 could be developed from whatever empirical data could be found from the literature.
Versatility is met by the evidence that the material constants of the modified LCSP are connected to
the mechanisms of creep rather than the specific material. The implied connection of the material
fitting constants and the mechanisms of creep would reason that the proposed model can be easily
applied to other similar materials. The modified LCSP presented in this thesis fills the need of a
constitutive creep strain prediction model, encompassing all three stages of creep. The modified
LCSP also has the potential of giving greater understanding of the mechanisms of creep through
state variable type material constants due to the constraints applied to them. Since a vast majority of
proposed constitutive models have yet to be widely accepted or standardized through batteries of
benchmarking exercises, most commercial Finite Element Method (FEM) software packages do not

include full creep strain curve modeling in the default instillation. Most FEM packages such as



ANSYS or ABACAS offer the user the ability to customize a user defined subroutine. In this
research, the modified LCSP will be written into an ANSYS User-Programmable Feature (UPF).
The user subroutine is an example of the modified LCSP’s easy application and versatility. The UPF

is discussed in greater detail in Chapter 3, section 3.1.
1.2 THE CONCEPT OF CREEP

The advancement of technology and the need for stronger materials for high temperature
applications has driven researchers to study material behaviour at high temperature. Moreover, the
need to understand the critical modes of failure at high temperature and the ability to predict failure
is at the forefront of many engineering problems. A long standing interest has existed in creep
phenomenon and its initial observation is obscured in the pages of human history. If someone were
to try pinpointing a time in history as the beginning of major interest in the analysis of creep, one
might choose the work of French engineer L. J. Vicat in 1834 as a beginning. Vicat’s primary
interest was in the application of wire for load-carrying members in suspension bridges. His
observations lied within what is now accepted as the primary creep stage of the creep curve (Figure
1) [2].

At the beginning of the twentieth century, Phillips (1905) and Andrade (1910) introduced the
concept of the full creep curve with the creep curves for iron and several other materials. Creep
phenomenon is broken up into three stages, namely primary, secondary and tertiary. The three
stages correspond to a decreasing, constant and increasing strain rate respectively. A typical creep

strain versus time curve is presented in Figure 1.



o = constant

T = constant
-T_ Primary Secondary Tertiary
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Figure 1 is a typical metal creep curve, displaying all three stages [2]

Since the achievements of Phillips and Andrade, the reminder of the twentieth century to the
present is littered with the work of many in the study of creep behaviour. The insurgence of the
industrial revolution required machinery that could operate at high temperatures for greater thermal
efficiency. The advancements in aircraft technologies during the two Great World Wars required
engine components that could handle greater temperatures as humanity moved into the jet age.
During the late 1950’s to the 1960’s interest in nuclear power generation peaked another great surge

in interest in the studies of creep analysis [2].

At present, there is great interest in creep modeling that incorporates all three stages of creep in a
single unified model. This interest is driven by the demands of turbo-machinery technology which
is found in both aircraft and power generation industries. Many researchers have developed and

studied a plethora of modeling techniques, some of which will be discussed in the literature survey.

The remainder of this introduction is intended as a summary of the twentieth century equations and
models describing individual creep stages or multiple stages at once. A literal description of the
mechanisms and mechanics of the creep phenomenon will also be presented. There will, however,
be little or no effort to present a detailed derivation of any equations in this section. This section is
merely intended to introduce the concept and is in no way exhaustive. The equations presented in

this section are intended to give an awareness of some of the commonly accepted fundamental



mathematical relations of the various stages of creep. Detailed derivation is left to the literature

survey section detailing full creep curve modeling techniques, the primary interest of this thesis.

Since the creep phenomenon is a complex material behaviour, its analysis is often based on curve-
fitting of experimental creep data. Typically, an effort is made to describe creep strain &, or creep
strain rate &, as a function of stress g, temperature T, and time t. The relations and models

producing constitutive equations are most commonly derived by one of three methods [2; 3],

- Phenomenological (macroscopic, empirical): Derivation of empirical formulas that model
experimental data

- Physical (microscopic): Derivation of equations based on metallurgical creep mechanisms

- Physical-Phenomenological (micro-macroscopic): As its name implies these types of
equations combine the first two types. These formulations are dominated by state variables

representing prevailing creep mechanisms.
Table 7 is duplicated in APPENDIX A: Tables AND CHARTS

from Advance Mechanics of Materials of empirical one-dimensional creep formulas [2]. Table 7 is a
good summary of the generally accepted equations and concepts developed over the twentieth

century.

The proceeding sections of the introduction will briefly give a literal description of the mechanisms
controlling the different stages of creep. The literal description will be followed by a discussion of
some of the basic mathematical relations describing the stage. First the Primary/Secondary stages
will be discussed as they are similar in mechanism. Finally, the introduction will finish off with a

discussion on the tertiary creep stage.
1.3 PRIMARY/SECONDARY CREEP

Dislocation creep theory is based on the principle of crystallographic dislocation of a material’s
atoms arranged in a crystal structure or lattice. The atoms dislocate by means of gliding along their
slip planes, but are not restricted to glide only. The atoms can climb, meaning they are not forced to
only move along their slip planes. Dislocation theory is the premise that a material is hardened with
deformation and softened with time [3]. The primary and secondary creep stages are characterized
by this process of simultaneous hardening and softening. The concept was first coined by Bailey

and Orowan.



At high temperatures roughly one-third of the absolute material melting temperature, dislocations
obtain a new degree of freedom. This degree of freedom is climb. The climb mechanism allows for
the gradual freeing of dislocations previously created by increasing strain. The strain dependent
dislocation or glide dislocation can be halted by obstacles such as other dislocations or second-phase
particles. 'The dislocation is said to recover if it undergoes a climb mechanism, releasing the
dislocation to slide to the next obstacle. The glide mechanism is the principal creep mechanism of
the primary stage. The glide-climb mechanism is dubbed the hardening-recovery mechanism.
Hardening is the process of the dislocation being restrained by an obstacle and recovery is the

freeing of the dislocation by climb.

Empirical evidence would suggest the dislocations are arranged in a network. Creep consists of
continuous events of recovery and hardening within this network. Network consistency is ensured

by the repulsive and attractive forces among the dislocations.

The stress and high temperature subjected dislocations lengthen and therefore increase in density.
This causes strain and hardening to increase. At the initiation of the stress the glide mechanism is
predominate such that there is initially a large number of loosely connected dislocations. This
results in a high initial creep strain rate. Eventually, the number of loosely held dislocations is
reduced over time which gives the primary stage’s characteristic decreasing strain rate (hardening).
The decreasing strain rate or hardening process is countered by the recovery mechanism (softening).
The climb trend is increasing with increasing dislocation density over time. Finally, equilibrium is
achieved by both mechanisms of hardening and softening. The effect is a steady state creep rate or

the beginning of the secondary creep stage.

The objective of mathematical descriptions of material phenomenon is to accurately relate
empirically determined values of creep strain, stress, temperature and time. The developed
mathematical relation can take the form of a single equation or a system of equations. Historically,

efforts have been centered to the fitting of single portions of the creep curve.

The primary creep stage, characterized by a monotonic decrease in creep strain rate, strain ¢ can be

described simplistically by the time-hardening-theory.

&= Aght™ Egunation 1.1

The variables 0 and t are constant uniaxial stress and temperature respectively. The parameters A, n

and m are temperature dependent material constants determined from uni-axial stress creep tests.



Furthermore, differentiating Equation 1.1 with respect to time (t), the creep rate & can be

determined as,

g, = Amontm-1 Egunation 1.2

If time t is substituted from Equation 1.1 into Equation 1.2, we get the relation,

€. = m Al/mgn/mg (m-1)/m Egquation 1.3

Equation 1.3 is referred to as the strain-hardening-theory [4].

Both time-hardening and strain-hardening theories are default models provided in Ansys mechanical
modeling software. Among the two theories mentioned above, Generalized Exponential,
Generalized Graham, Generalized Blackburn, Modified Time-Hardening, and Modified Strain-
Hardening are the available default primary creep models available in Ansys 12 Finite Element

Method (FEM) software package.

Secondary stage creep is similar in behaviour to pure plastic behaviour. Moreover, creep
deformations “of metals will usually be uninfluenced if a hydrostatic pressure is superimposed” [4].
A similar behaviour observed of pure plastic deformations and, as such, creep can be described by
methods employing the mathematical theories of plasticity. The secondary stage can also be

described by its characteristic constant strain rate, at constant stress level and temperature.

For uni-axial tensile tests all at the same temperature but different stress levels, the constant creep

strain rate of the secondary stage can be described as a function of the stress level o [2 p. 635]:
€ = €sc(0) Egquation 1.4
Equation 1.4 ignores primary and tertiary stages and is only applicable to situations when a

component exhibits a curve that appears dominated by a secondary creep stage. In this instance

creep strain is approximated by straight lines such as those in Figure 2.
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Straight-line approximation of creep curves.

Figure 2 illustrates the type of curve Equation 1.4 produces |2]

Models employing formulations such as Equation 1.4 are termed steady-state creep models.
Equation 1.3 or the strain-hardening-theory can be used to model both primary and secondary
stages together. Available default creep models in Ansys 12 are, Generalized Garofalo, Exponential

Form, or Norton.
1.4 TERTIARY CREEP

The final stage of creep before rupture is the tertiary stage. This stage is characterized by an
exponentially increasing creep strain rate. The increasing strain rate is related to the damage
accumulation within the internal crystalline structure of the material. The dislocation mechanisms of
the primary/secondary stages cause cavities (microscopic cracks) on the grain boundaties. These
cavities are initially small and have negligible effect on the strain rate. However, with increasing time
and creep strain the cracks grow and meet to form larger cavities. Eventually, the growing creep
damage becomes a prominent factor in the behaviour of the strain rate. It is at this point the

characteristic exponentially increasing strain rate of the tertiary stage can be observed [3; 4].

Other forms of damage may arise such as void formation from a certain stress history. Less certain,

but still of interest is the effect of oxidation on or below the surface causing microscopic cavities [3].

Hence, was born an interest and study of damage mechanics and specifically continuum damage
mechanics (CDM) methods. However, there has been little benchmarking to date on CDM

methods and therefore it is often difficult to “establish the accuracy of the numerical formulations”



[5]. Since it is difficult to establish the accuracy of such methods, commercial general-purpose Finite

Element (FE) codes leave it to the individual users to incorporate in-house FE codes.

Among some of the modeling methods explored in this paper are Theta-Projection, Omega, and
Typical Katchanov-Robotnov (CDM) and Logistic Creep Strain Prediction methods. The
descriptions of the methods are left to the section within the literature survey entitled continuum

damage mechanics Methods.



CHAPTER 2 LITERATURE SURVEY

Initially, the literature survey served to familiarize the author with not only previously proposed
creep models encompassing the entire creep strain curve, but also the mechanics and basic
mathematical relations of the creep phenomenon. It became apparent at the beginning of this study
that the subject of creep was immense and that a focus was going to be required. A literature survey
that encompassed a review of the major historical mathematical relations developed in twentieth
century would be a task in itself. The primary goal of this research project is the development of a
procedural method in modeling a material’s entire creep strain evolutionary curve. This was to be
done by choosing an appropriate existing creep model that fits the development criterions outlined
previously. As a consequence this literature review reflects the main formulations of interest that

were considered for use in this thesis.
2.1 HISTORICAL BACKGROUND

There has been a great deal of interest within the past century in the study of creep behaviour and
development of modelling techniques. Arguably the first researcher to introduce the concept of the
creep strain curve with all three stages as it is known today was Andrade [6]. Initially, many
scientists approached the analysis of creep modeling within its individual stages. One of the most

well known formulations is the Norton-Bailey relation:

& = omexp _i Egunation 2.1
RT

Where 71 and Q are material constants and R, T and o are the global constant, absolute temperature
and applied constant stress respectively. However, as remarked by Batsoulas, “the use of this
relation in the design means that (i) the creep curve is a straight line, (ii) the initial and tertiary creep
are neglected, and (iii) the rate of secondary creep, &y (and the creep life, tf) is, essentially defined as
the exclusive designing parameter”[3]. As might be imagined this is simply unacceptable in most, if
not all serious creep analysis of modern components. The majority of relations developed eatly in
this century till relatively recently have tackled one or two stages of the creep and not the entire
curve. Batsoulas lists several of these concerning the first and second creep stages. Herein, only a

few representing some of the more well known relations will be reproduced.

Andrade’s Relation



e = exp[In(1 + &) +In(1 + Z,; )3 + Z,t] — 1 Egquation 2.2

Mott and Nabarro’s relation

£ = g[In(1 + Z,)]?/3 Equation 2.3

McVetty and Garofalo’s relation

e=¢go+Z,(1—e 1Y)+ Z,t Equation 2.4
Andrade, Nabarro, Garofalo and many other notable scientists are found in the literature for their
contributions to the understanding of creep. As some of their postulated relations became accepted
researchers of the present are modifying the old to create more robust and accurate all
encompassing relations. Some of the relations accepted as fundamental formulations are found in
popular Finite Element Method (FEM) software packages such as a generalized Garofalo relation in

ANSYS 12.

Recently, there have been efforts by some researchers to compile and provide benchmarks of some
of the past proposed creep strain models [3; 7; 8]. Figure 3 is a table taken from the European Creep
Collaborative Committee’s (ECCC) publication entitled, Recommendations and Guidance for the
Assessment of Creep Strain and Creep Strength Data [8; 9]. The table is a modest compilation of

models most commonly used by organizations currently active in the ECCC.

10



MODEL EQN RANGE OF APPLICATION

EQUATION REF | REGIME MATERIALS

Norton [1] i) S low/high alloy ferritic & austenitic steels, Ni-base
alloys, non-ferrous alloys

Mod-Norton i) S Ni-base alloys

Norton-Bailey iii) P/s low/high alloy ferritic & austenitc steels

RCC-MR [2] wv) P/S low alloy ferritic steels & austentic steels

Bartsch [3] v) P/s low/high alloy ferritic, austenitic steels

Garofalo [4] Vi) P/S low/high alloy ferritic & austenitic steels, Ni-base
alloys, non-ferrous alloys

Mod-Garofalo [9] vil) P/S/T | low/high alloy ferritic steels, Ni-base alloys

BJF [6] Vi) /S high alloy ferritic steels

Theta [7] x) P/S/T | low/high alloy ferritic & austenitic steels, Ni-base
alloys, non-ferrous alloys

Mod-Theta x) P/S/T | low/high alloy ferritic, austenitic steels, Al-alloys,

Al-matrix composites
Graham-Walles [8] xi) P/IS/T | to be advised

Classical strain Xii) ST to be advised
hardening

Rabotnov-Kachanov xiit) PIS/T | low alloy ferritic steels
[

Baker-Cane [10] xiv) PIS/T | low alloy ferritic steels

Dyson-Mclean [11] xV) PIS/T | low alloy ferritic steels, Ni-base alloys
|.Mech.E [12] xvi) /S CMn, low/high alloy ferritic & austenitic steels
Bolton [13] Xvii) P/S/T | low/high alloy ferritic & austenitic steels
Omega [14] XVIIT) ST low/high alloy ferritic steels

Figure 3 P — Primary, S — Secondary, T — Tertiary creep stages.

In the past two or three decades, a shift was made to model the creep curve in its entirety. FEither, it
was to be modelled by macroscopic phenomenological curve fitting techniques, or continuum
damage mechanics (CDM) approaches incorporating state variables corresponding to the dominant
physical procedures of damage [3]. Three methods listed in Figure 3 were of particularly interest,
the Rabotnov-Kachanov, Theta and Omega models. Additionally, one other model is presented and
described in addition to the aforementioned methods. The Logistic Creep Strain Prediction (LCSP)
model developed by Holmstrom and Auerkari is the final model studied in this paper. The LCSP
model is a phenomenological model or a non-linear asymmetric transition function with regulated
steepness, as described by its authors [10]. A detailed description of the Rabotnov-Kachanov,

Theta, Omega and LCSP models is provided in the ensuing subsections of the literature survey.
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2.2 RABOTNOV-KACHANOV METHOD

Kachanov has been dubbed the founder and developer of classical Continuum Damage Mechanics
or CDM as it is referred to. His original work has been revised and adapted by many researchers

with considerable success to many applications [3; 7; 11; 12; 13].

Initially, Kachanov introduced the concept of CDM for the case of creep damage [13]. He
represented the accumulation of damage as the loss in material cross-section, due to cavitation [14].

His initial concept took the form,
0 =AJA, Eguation 2.5

@ is Kachanov’s damage parameter he called the ‘continuity’. The state variable ‘continuity’ is
defined as the ratio of the remaining effective area (4) to the initial area (Ag). This continuity state

variable could be taken a step further to relate to initial stress (0p) and effective stress (0) as,

0 = 0,4,/A Egquation 2.6

In Equation 2.6, the effective stress is increasing due to increasing damage or decreasing effective
area (A). Later Rabotnov would modify Kachanov’s state variable ‘continuity’ concept with the
damage parameter @. The new damage parameter is defined as,
w=1—¢@=1- A/A, Equation 2.7
Equation 2.6 can be re-written to reflect Rabotnov’s modification as,
0=0y/(1—-w) Equation 2.8
Eventually, with the combined effort of Kachanov, Rabotnov, and Hayhurst and co-workers, the
damage rate (w) would be expressed in terms of applied stress and current state of damage (w) as,
w=Cor/(1—w)® Equation 2.9
The constants C, x, and ¢ are material constants. Two more fundamental equations can be detived
using the conditions that w =0 att =0, w =1 att =ty (t is time and ¢ is time to failure).
Integrating Equation 2.9 using the conditions described above gives,
ty = a5 /(C(1+ ) Equation 2.10

Finally, the instantaneous damage state can be derived as,

1/(1+¢)

w®) =1-(1-t/tf) Equation 2.11
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In 1958 Kachanov proposed a modified Norton’s creep rate equation utilizing his effective stress for
the applied stress used in the original Norton’s equation [14]. The modified Norton’s steady state

creep rate equation took the form,

= Go" = G(ap/(1 — w))" Equation 2.12

Equation 2.12 is suitable for uni-axial secondary/tertiary creep modeling.

A commonly used single-state variable constitutive multi-axial stress equation based on the original

Kachanov type equation takes the form [12],

dgicj 3 o nSl" .
Y _Z4 ( ) Hym Equation 2.13
dt 2 \1-w 4

o

Here, S;j and & are the deviatoric and equivalent stresses respectively and A’, n and m are material
constants. Researchers such as Hyde, Becker, Sun and many others have found success in a variety
of applications employing Kachanov adaptations such as Equation 2.13 in their work [12].
Accompanying Equation 2.13 is the rate of change of the damage parameter which takes the form
71,

do (0,)%
dt - 1+ ¢)(1+w)?

t™m Equation 2.14

Where M, ¢ and y are continuum damage material constants. In Equation 2.14, g, is a rupture

stress that can be calculated by [7],

o, =a0,+(1—a)d Equation 2.15
In Equation 2.15 a is a material constant that ranges from 1 (maximum first principle stress

dominant) to 0 (equivalent or Von Mises stress dominant) [7].

Equation 2.13 to Equation 2.15 can be applied to multi-axial stress cases that lie primarily in the
secondary/ tertiary creep stages. The equations can be modified to incorporate the primary creep
stage [7].

As it stands, the Kachanov based equations 2.13 to 2.15 have a total of 9 material constants. This

formulation does not even include the primary creep region.

The Kachanov style formulation represented in this section was eliminated during the selection
process on several accounts. The number of material constants required implies the need for a great
deal of material data for accurate modeling of creep strain curve family. The model would not be

easily integrated into a FEM software package. It was concluded that a Kachanov style model would
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not best achieve the development criterions of the proposed constitutive modeling procedural

method.
2.3 THETA ® PROJECTION METHOD

The Theta Projection (TP) method is a parametric method used to obtain approximations of long-
term creep strain or time data from short term experimental creep data [15]. The TP method is one
that has gained some favour among researchers as a promising constitutive creep formulation. The
TP method expresses creep strain evolution with respect to time in the form,

g = 01(1—e7%%) + 95(eb4t — 1) Equation 2.16
Where & is creep strain, t is time to specific creep strain, 6; terms are experimentally determined

material constants [16]. The method attempts to perform two functions, empirically fitting
experimental strain-time data and provide insight into the processes characteristic of creep damage
mechanics [16]. Though this method is not explicitly a CDM approach, it does however have

similar attributes as it relies on the failure mechanisms of both primary and tertiary creep.

The first group of terms in Equation 2.16 model’s the primary stage and the second group of terms
models tertiary. Any constant secondary creep stage is considered an inflection in the curve. In
other word, the first group is representative of the primary stages characteristic hardening process.
The second group is representative of the tertiary stages mechanism of accumulated damage or
softening. The balancing of the two groups of terms results in an equilibrium being achieved. This
equilibrium is representative of the secondary stage. Furthermore, though the TP method does not

contain any damage parameter, it is reminiscent of the Kachanov damage state variable concept.
The creep strain rate can be defined by differentiating Equation 2.16 to give,

& = 0,0,e7%2t + 0,0,e%¢ Equation 2.17

The theta 8; terms can be expressed as functions of applied constant stress 0 and temperature T as,

lOg Hi = Ai + BiO' + ClT + DiO'T (l = 1,2,3,4) Equation 2.18
The theta terms vary approximately linearly with respect to stress and temperature [16]. It has been
shown that the TP method is capable of predicting creep rupture strains as a function of stress and

temperature.

&r=A4A;+ BT+ Cio+D;joT (i=5) Equation 2.19
The TP method is a favourable creep strain evolution formulation. It has become more widely used

as its advantage and flexibility have become appreciated [3; 15; 16; 17]. Despite the fewer number of
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material constants than a Kachanov style CDM method, there still exists a modeling formulation
incorporating some well established relations with fewer material constants. Moreover, the TP
method appears more dependent on empirical data to accurately model a family of creep curves. It
was believed that the TP method would be dependent on the number of points defining a single
curve of a family of curves in order to adequately model its shape. Furthermore, several curves at
multiple conditions would be requited with a great deal of data to extrapolate/interpolate other
curves within that same family of curves. It was concluded that a model with even fewer material
constants was required and a model that could utilize master curve data such as the Larson-Miller
relation to specified creep strains and creep rupture time. For the abovementioned reasons, the TP

method was eliminated as the modeling choice.
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24  OMEGA (Q) METHOD

Developed by the Materials Properties Council (MPC) and presented by Prager, the MPC Omega
method is founded on the premise that the current creep strain rate along with a brief history of
creep strain rates is adequate to predict past and future creep behaviour of a component [12]. The

MPC Omega (€2) method has received some interest from several researchers [12; 18].

The Q method relies on the premise that a materials ability to resist a given stress decreases with

increasing creep damage. Creep strain rate & is therefore defined by,

Equation 2.20
Where &j is the imaginary initial creep strain rate, & is creep strain (at some time), {) is the omega
material parameter. A small primary creep region results in a &g that is near the minimum creep

strain rate (secondary creep stage).

The factor material parameter omega is implicitly a function of stress, mechanical damage and
micro-structural changes [18]. Integrating Equation 2.20 with respect to time gives a relation with

strain and time t.

t= ! (1— e %) Equation 2.21
(C_:O ' Q ’

Finally, at large values of £} * &, such as those at creep rupture. The value of the exponential term in
Equation 2.21 can be considered negligible. Moreover, creep rupture time t, can be approximated

as [18],
; 1
T Q

Equation 2.22

The imaginary initial strain rate £ and omega {) parameters are stress and temperature dependent.
The determination of the appropriate fitting function that relates stress and temperature for either
parameter is material dependent (i.e. polynomial, exponential). For instance, Jong-Tack Yeom et al.
initially chose an exponential power law to express the material parameter with respect to stress and
temperature. It was found that the developed power law expressions did not fit the material
parameters accurately, and a hyperbolic sine formulation was used to describe imaginary initial strain

rate £y and omega () parameters as functions of stress and temperature [18].

At first glance the MPC ) method appeared very promising. However, of concern was the fact that

the type of curve required to fit the material parameters (polynomial, exponential, etc.) is material
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dependent. This would be a serious disadvantage when trying to develop a creep model that can be
somewhat standardized for multiple materials for application in a user-defined creep model in a
FEM software package. The number of constants and the accuracy of the MPC model are not in
question, but the concern over curve fitting issues even among similar materials disqualified this

model as a choice for the development of the proposed constitutive creep strain procedural method.
2.5 LOGISTIC CREEP STRAIN PREDICTION (LCSP) METHOD

The Logistic Creep Strain Prediction (LCSP) model, developed by Holmstrom and Auerkari, is a
logistic non-linear asymmetric transition function that fits logarithmic strain versus time in its basic
form. The LCSP model relies on time to rupture to control the end point of each curve. Time to
rupture can be provided via true data or master curve predicted data such as that predicted by a
Larson-Miller relation. The formulation of the LCSP provides three parameters for data fitting each
curve or curve family (5, Xg,p). A unique feature of the LCSP formulation is that strain as a
function of time and strain rate as a function of time can all be determined algebraically. The
equation of the LLCSP is described as logarithmic time t to specified logarithmic strain € at
engineering stress and temperature as [10],

logat, +

p Equation 2.23
1+ (log g) quation
Xo

logt =

Where t, is the time to rupture and X, p, f and « are fitting factors. In its simplest form the fitting
factors are found to be constants. However, typically some of the fitting factors will be a function
of stress and temperature. Equation 2.23 can be re-written algebraically to describe strain as a

function of time as,

loge = (LTF — 1) /px, Equation 2.24
Where,

_ log(at,) + 8

LTF
logt + f

Equation 2.25

It should be noted, equations 2.23 - 2.25 implies that at strain & = 1 the time to rupture is attained,
assuming @ = 1. The variable a can be used to correct the strain at time to rupture to correspond
to the actual creep ductility. For most creep ductile materials, however, this is most likely not

necessary [10].
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Moreover, differentiating Equation 2.25 with respect to time gives the algebraic expression for creep
strain rate as,

e=—&ky ky x4 Equation 2.26
Where € is determined by Equation 2.24, and

_WTF -1

1 > Equation 2.27

And

L. = log(a-t,) +p
27 [logt+ B2t - (LTF — 1)

Equation 2.28

The LCSP method is attractive for several reasons. First, if we assume a = 1 the model is reduced
to a total of three fitting material constants that can be determined by a minimal amount of actual
data or master curve data. Furthermore, the formulation is easily manipulated algebraically from one
form to another, which is ideal for characterizing creep in terms of creep strain or creep strain rate.
The LCSP’s robust and simplistic nature made it the ideal constitutive model for application in this

research.
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CHAPTER 3 THEORY & APPLICATION

3.1 ANSYS USER-PROGRAMMABLE FEATURES

ANSYS provides thirteen creep formulations for implicit analysis. The Norton law and Blackburn
model are examples of the models available in ANSYS implicit creep analysis [19]. Despite the
many included implicit creep analysis tools, some users may wish to use a customized creep equation
that has already been validated through testing. Or perhaps, the application of a damage parameter
is required for a certain application. The creep laws that come preinstalled assume creep is to be
used in design rather than failure analysis and as a consequence the available creep laws are meant to

model primary and secondary creep only.

In order to surmount this limitation ANSYS provides a means of allowing the user the ability to
customize a user defined creep subroutine via ANSYS User-Programmable Features (UPF). Since,
ANSYS has an open architecture it allows the user to write their own routines or subroutines in C or
FORTRAN. The routines or subroutines can either be linked to ANSYS or used externally as
commands [20]. Therefore, using UPF’s the user can tailor the ANSYS program to their specific

needs.

The UPF of particular interest in this research is the usercreep.F subroutine. The usercreep
subroutine is activated by “the TB command with the CREEP option and with TBOPT =100 [20].
For the usercreep subroutine, a uniaxial creep law can be used which will be generalized to the
multi-axial state by the general time-dependent viscoplasticity material formulation implemented in

ANSYS.

The original ANSYS instillation provides a usercreep.F’ file, as source code based on the strain
hardening law TBOPT = 1 [19]. The usercreep.F source code provided with the original installation

is reproduced in Appendix B, Source Code 1.

Available variables for use in the subroutine are effective creep strain or time, effective stress, and
temperature. Also available is hydrostatic pressure [19]. The TBDATA command used in creating a
material model input file is used to input the creep material constants right after the TB, CREEP, , ,
,100 command is given. Other temperature dependent material properties such as Modulus of
Elasticity are also input in this way. For specifics on material property input, the user manuals
provided with the ANSYS installation can be reviewed. Moreover, an example of a material

property input file is provided in Appendix B, Source Code 3.
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Three outputs are required by ANSYS for the calculation of creep strain from the subroutine. First,
the incremental creep strain designated ‘delct’ is required. The last two outputs required are, “the
derivatives of the incremental creep strain with respect to effective stress and creep strain, which are
dcrda(1) and derda(2), respectively” [19]. Itis crucial that these derivatives are calculated correctly as
ANSYS requires them to calculate the material tangent stiffness matrix. Miscalculating the
derivatives can negatively impact the convergence behaviour and accuracy of the subroutine. In the
case that the model to be used is complex and the derivative cannot be evaluated directly, it is
suggested that numerical differentiation be used [19]. Therefore from first principles, dcrda(l)
would take the form,

delcr(o + Ac) — delcr(o) Equation 3.1

derda(1) = Ao

The value of stress increment (Ao) is a very small arbitrarily chosen number that may require
adjustment to achieve acceptable accuracy. The value of dcrda(2) would take a similar form to

Equation 3.1 with creep strain increment (A€) in place of stress increment.

ANSYS UPF usercreep.IF subroutine was implemented using the LCSP method as the means of
constructing and analysing creep material properties of all three stages of the creep strain curve of
Inconel 718. The derivation of the equations used in the source code which is reproduced in
Appendix B, Source Code 2, will be covered in the next section entitled LCSP. The specific
equations used to calculate the values of incremental creep strain, dcrda(1) and dcrda(2) are derived

in the next section.
3.2 LCSP LIMITS & CONSTRAINTS
Upon careful observation of the original LCSP formulation, two limitations can be identified. The
original LCSP formulation, time to specified strain is reiterated below for convenience.
_ logat, + 3

p Eqguation 2.23
14 (log g) quation
Xo

logt

The condition of creep strain (€) equal to zero, would imply time to specified strain (t;) is also zero.
However, if zero is subbed into the left side of Equation 2.23, a complex value results. In order to
avoid the calculation of a complex value, a value of one is added to each value of time to specified

strain such that Equation 2.23 can be re-written as,
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logat, +
log(t +1) = log e P Equation 3.2
1+ (1)
Xo
Although, typically researchers and engineers are not concerned with cases where rupture time is
zero, for completeness the same logic was applied to rupture time (t,.) and Equation 3.2 is re-written

to take the form,
log(a(tr + 1)) +p

p Equation 3.3
14 (log s) q
Xo

log(t+1) =

The final constraint of the original LCSP involves the denominator of the right side of Equation
2.23. It is possible to calculate a complex value in the denominator in two situations. In both cases
the value of the material constant p, which is fractional, has an even denominator (eg. If p = 3.5 =
7/2). A complex value will be calculated if log € is negative which will result from any creep strain
value less than 1. Finally, a negative value of the material constant Xy can produce a complex value
in the denominator of Equation 2.23. Therefore, a value of one is added to each value of creep
strain such that Equation 3.3 is further modified to give,

log(a(tr + 1)) +B 3

» <10g(8 n 1)>p Equation 3.4

X0
Furthermore, to avoid the calculation of a complex value or infinity a lower limit is imposed on the

log(t +1) =

material constant X, specifically,

Xp >0 Equation 3.5
In this research, MATLAB software and FORTRAN are used as a mathematical computer aid and
programming language of the subroutine respectively. In both software packages the command log
is the natural logarithm (In). Therefore, all logarithms of the LCSP are interpreted as natural
logarithms. This was done primarily for aesthetic purposes of the programming of any m code or

FORTRAN programming.

Finally, the LCSP method was developed with the fitting of creep strain as a percent, but ANSYS
calculates strain as a fraction. Therefore, fractional strain is multiplied by one hundred percent and

Equation 3.4 takes it’s finally form as,

log(at, + 1)+ B
1 t+1) = — .
og(t+1) i (10g(100£ n 1))” g Equation 3.6

Xo
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In its final modified form (Equation 3.6), creep strain (&), is interpreted as fractional strain.

Moreover, Equation 3.6 can be algebraically rearranged for creep strain as,

LTF-1)'/p -
&= (ex"( — 1) /100 Equation 3.7

Where LTF is now,

log(at, +1) + 8
LTF = ————— E ion 3.8
log(t.+1) +p quation

The creep strain rate is found by taking the derivative of Equation 3.7 with respect to time, which

follows,

§=—xy ki "k, -(e-100+ 1) Equation 3.9

In Equation 3.9 creep strain can be calculated via Equation 3.7 and k1 and k2 are,

— DY
.= M Equation 3.10
p

And

log(a-t,) + B

k2 = 100 - (1) Qoglt + D+ B2 - (TF = 1)

Equation 3.11

3.3 LCSP USER-DEFINED CREEP EQUATIONS

As mentioned previously, ANSYS requires three outputs from the user subroutine for analysis. The

first of these outputs is incremental creep strain or delcr, which from Equation 3.9 takes the form,

de = —xg Ky *ky - (100 + 1) - dt = delcr Equation 3.12
Here dt is incremental time, which in ANSYS is the sub-step time size. The last two outputs ate the
derivatives of incremental creep strain with respect to stress and strain. It is apparent that the
evaluation of the derivatives would be complex and therefore it was decided that numerical

differentiation would be employed.

The numerical differentiation of incremental creep strain with respect to stress, derda(l), is defined
by Equation 3.1. Since creep strain in Equation 3.12 can be replaced by Equation 3.7 which implies
that Equation 3.12 is a function of stress and temperature solely. Therefore, the derivative of
incremental creep strain with respect to creep strain, dcrda(2), is equal to zero. Equations 3.1, 3.12

and the fact that dcrda(2) is equal to zero are the three required output of the ANSYS usercreep
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subroutine that was compiled and linked into ANSYS. The usercrrep.FF file is presented in
APPENDIX B: ANSYS Source Code
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CHAPTER 4 PROCEDURE

The procedure of the proposed constitutive creep strain modeling method involved several steps.
They are listed and discussed in order within this chapter under their respective subchapters. This

chapter includes the following subchapters,

Material Data Collection

- Creep Strain Curve Fitting

-  FORTRAN Compiling and Linking
- CATIA V5 Geometry Creation

- Workbench Meshing

- APDL Creep Analysis Input Files

4.1 MATERIAL DATA COLLECTION

The proposed model was to be based on creep strain and rupture data that could be found in the
literature. As a starting point, the Aerospace Structural Metals Handbook was consulted for a
commonly used material in Turbine Blade design. A well know nickel based super alloy employed in

Turbo-Machinery, Inconel 718 (IN718), was found to be well documented [21].
Data was collected for IN718 under the following heat treatment [21; 18]:

- Annealing for 1 hour at 1750°F - 1800°F then air cooled

- Two Step aging treatment
8 hours at 1325°F then furnace cooled to 1150°F at 100-108°F/hour
Held at 1150°F for an additional 8 hours and finally air cooled

The above heat treatment is the most commonly used treatment procedure with regards to optimum
creep properties [22]. Creep strain data was digitized from creep curves presented by Yeom et al
[18]. Modulus of Elasticity was taken from the High Temp Metals Inc website and poison’s ratio was
taken from the Aerospace Structural Metals Handbook [21; 23]. OriginPro 8 SRO v8.0724 was used
to digitize all required data which is then output to text files by the program. The text files can then
be read into Excel. Figure 4 is the illustrated original creep strain curves taken [18] from Yeom et al
for IN718 [18]. The digitized data points for the Creep Strain Curves are provided in APPENDIX
A: Tables AND CHARTS

, Figure 20.

24



0.25 ; 0.14 T T T
- a Temperature: 600 °C " 950 MPa
# 450 MPa 0.12 - Symbol: tests © 850 MPa
0.20 A 400 MPa 1 Line: predictions A 750 MPa
£ a = 010+ 4
= A =
s o1 Y g ‘
n 2 % 008~ § 4l .
- : 2 : :
® o010 f ® ool & 4 i
A
o 2 %) g y
S n S 004l g a 4
= 005 = 5 N
= '3
0.02 R
-
0.00 — Lt
s ) 2 ) 0.00
10 10 10 10 10° 10' 10 10 10*
Time (hr .
(hr) Time (hr)
0.25 ’ . 0.14 : T T
® 550 MPa A Temperature: 600 °C = 950 MPa
o ® 450 MPa ] 012 - gymbol: tests € 850 MPa |
1 i A 400 MPa : T Line: predictions A 750 MPa
c = Al e 010 - =
£ i : §
0.15 i
» : 4 % 008} .
Q. A
8 a 4 &
2 o0 = H i o 006 4
: i : :
3 I 2 s 0.04
S -
= 005 e =
0.02 |- -
w uu¥
° f 2 1 0.00 -
10 10 10 10 10° 10' e

Time: {he) Time (hr)

Figure 4 Original creep curves from Yeom et al [18]

The chemical composition of the material in Yeom’s research was the following,

Element Compositions
C 0.027
5 0.0005
Mn 0.06
Si 0.05
Cr 15.03
Mo 2.87
Co 0.34
Ti 0.96
Al 047
B 0.04
Fe 17.81
Cu 0.05
Nb+Ta 538
Mi Balance

Figure 5 lists Element compositional percentage in the IN718 Samples

Finally, to complete the material model the following two charts are the mechanical properties of

IN718 used for this thesis project.
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Figure 6 Poisson's Ratio (left plot, second colummn digitized data table on right) from Aerospace Structural Metals
Handbook [21] and Modulus of Elasticity (High Temp Metals company website, first column table on right) [23]

The table in Figure 6 is a snap shot of the table created in Excel.
4.2 CREEP STRAIN CURVE FITTING

The LCSP is fitted in the form of time as a function of the creep strain (Equation 3.6). Three
material constants result from each stress/temperature case. MATLAB Version 7.10.0.499 64-bit

(win64) was used for all curve fitting procedures.
The MATLAB curve fitting tool uses x and y data in the form of,

y = f(x) Equation 4.1
In order to use Eguation 3.6 within the MATLAB curve fitting tool graphical user interface (GUI),

the equation was re-written as,

_log(at, + 1)+ B

X \P Equation 4.2
1+ ()
Where,
y = log(t + 1) Equation 4.3
And,
x =log(100e + 1) Equation 4.4

Values of x and y were calculated using the digitized creep strain and corresponding time data

(APPENDIX A: Tables AND CHARTS
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, Figure 20) in Excel. Since the creep strain data is to rupture, the last time data point was taken to

be the rupture time of each curve.

The x and y data for each creep curve at specified stress and temperature was read into MATLAB
from Excel and the curve fitting tool was opened in MATLAB with the command ‘cftool’. Data is
selected within the Data tab of the cftool GUI. From the ‘Data’ tab the x and y data was loaded
from the MATLAB workspace where data was earlier read from excel. Next, fit options and the
data to be fitted are selected. The specific options chosen in the ‘Fit Editor’ accessed through the

fitting button are as follow,

- Select new fit
- Populate fit name in the Fit name’ field
- Selected desired data from the ‘Data set’ drop down menu
- Custom Equations is selected from the drop down menu of “Type of fit’
- Under Custom Equations, the ‘New’ button is selected to create new custom equation
- In the ‘New Custom Equations’ window under ‘General Equations’ tab right side of
Eguation 4.2 is input into the field to the right of the equal sign, the appropriate rupture time
was subbed in and then ok was selected.
- Back in the Fit Editor, ‘Fit options’ button is pressed and the following options are selected
in the ‘Fit Options’ window:
Robust: Off
Algorithm: Trust-Region

Xo Lower: 0

Each creep curve at specified temperature and stress is fitted using the steps and options listed
above. Once all creep curves where created, m-code representing the fitting of all the curves was
generated by selecting the Generate M-file option from the file drop down menu in the ‘Curve

Fitting Tool” window. This serves three purposes,

- Document the fitting procedure
- Incorporate generated m-function into Excel data reading m-code

- Saves fitting information in a MATLAB Structure Array that can be retrieved for further use

The generated code for curve fitting is modified slightly to output structural arrays containing the

goodness of the fit (R-squared value) and the values of the three material constants of each
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respective creep strain curve. The m-code reading and writing the Excel data and the generated

modified curve fitting m-function is reproduced in APPENDIX C: MATLAB SOURCE CODE
, Source Code 5 and Source Code 6 respectively.

The next phase of curve fitting was done to fit relations to the material constants as functions of
stress level. Temperature dependence was accounted for by determining the relations as a function
of stress level at a particular temperature. Similar procedure was followed for the fitting of the
material constants versus stress level at specified temperature as the curve fitting procedure of the
creep strain curves. In the case of the material constant fitting, the material constants were the y
values and their corresponding stress level was the x values. The values of x and y were again read
in from Excel. The values of the material constants (x) are the values that had just been written in

by MATLAB from the first curve fitting procedure of the creep strain curves.

Also, curve fitted was a relation describing the Larson-Miller Parameter versus logarithmic stress
level. The Larson-Miller Parameter relation is used in the user defined creep subroutine to calculate

rupture time. The Larson-Miller Parameter (LMP) is defined as,

LMP = (T + 460)(log,o t, + C) Egunation 4.5

Where T is temperature in degrees Fahrenheit and stress is in kilo-pound per square inch (ksi). The
value of C is a constant that is typically 20 for metals. The LMP was calculated for each creep curve.
For curve fitting x data is represented by logq 0 and corresponding y values ate the respective LMP

value. The values are again read into MATLAB from Excel.

The curve fitting of the material constants and LMP is analogous to that of the creep strain curves

with a few notable differences. The differences are tabulated below.
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Table 1 Specific Fitting Options for Material Constants

Fit Options .
Custom Equation
Material Constant Type of Fit Option

Robust Algorithm Input
Trust-

B8 exp2 Off N/A
Region

P poly2 Off N/A N/A
Trust-

X, Custom Equations Off a/(1+exp(b*x+c))+d

Region
Trust-

LMP fourier2 Off N/A
Region

N/ A not applicable.

The fitting equations of the material constants and the LMP were chosen based on known

constraints (xg > 0) and the observable pattern of the resulting data points.
43 FORTRAN COMPILING AND LINKING

In order to be capable of utilizing the UPF features in ANSYS, the incumbent must have the proper
software and setup requirements. For this it is recommended that they refer to the specific user’s
manuals such as the Guide to ANSYS User Programmable Features provided with every version of

ANSYS [24]. Several other sources provided insightful information regarding UPF’s [25; 20].

The method of compiling and linking the usercreep.FF will not be detailed here as this information
can be found for each individual version of ANSYS being used. The usercreep.F subroutine code

used for this work can be found in Appendix B.
4.4 CATIA V5 GEOMETRY CREATION

The two-dimensional axi-symmetric model of the smooth specimen for use in ANSYS was
constructed in CATIA Version 5 Release 20. The model geometry is derived from a smooth

cylindrical specimen with dimensions of a 25 mm (0.9843 inches) gauge section and 6 mm (0.2362
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inches) diameter [18]. Figure 7 is an illustration of the CATIA geometry later imported into ANSYS
Workbench 12.

B stat  ENOVIAVSVPM  File it View Inset Tools Window  Help

l.omolad latogy BB | rxh B

NEE@8 ), @0 R @ BA0 wEHeésQQQ2080G0 Zon
=)

Select an object or a command |

%y
Figure 7 Catia Smooth Axi-Symmetric Cross-Section S ketch

45 WORKBENCH MESHING

The CATIA surface part, Figure 8, was imported as an igs geometry file into ANSYS Workbench

Version 12 for meshing.
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Edi View Inset  Tools Window

= )| Wy o2

The two-dimensional model is simple and therefore default settings where kept for meshing. Only
one option was used, Face Sizing of the surface of the model with an element size of 1.0E-2 inches.

The resulting mesh is adequate for the simplicity of the model. The mesh is illustrated in Figure 9.
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Figure 9 Axci-Symmetric Smooth Specimen Mesh

From the meshed model an input file was written to transfer the mesh into ANSYS classical.
4.6 APDL CREEP ANALYSIS INPUT FILES

The ANSYS analysis options and commands are written in ANSYS Parametric Design Language
(APDL) text files. APDL presents the advantage of documenting the analysis details as well as
automation of the analysis, simplifying consistent reruns of the analysis. It is a quick efficient way of
avoiding the need to setup the analysis each and every trial run through the Graphical User Interface
(GUI). The example of an input file for the case of 109 ksi and 1112 °F is provided in APPENDIX
B: ANSYS Source Code

CHAPTER 5 RESULTS & DISCUSSION

This chapter is a summary and discussion of the results of the work performed. The first results to
be discussed are the curve fitting of the creep strain curves and their resulting material constants.
This is followed by the results of the equations relating the material constants with stress level and
the LMP with logarithmic stress. The measure of accuracy is presented by the R-squared value or
also known as the coefficient of determination as calculated by MATLAB for each curve fit. In
MATLAB the R-squared value is described as the goodness of the fit. The last results to be
presented, is a comparison of the analytical creep strain curves as generated by ANSYS and the

LLCSP usercreep subroutine against the original empirical curves.
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The resulting material constants of the MATLAB curve fitting procedure for the LCSP fitting of the

creep strain curves are tabulated in Table 2 below.

Table 2 MATILAB 1L.CSP Curve Fitting Results

Temperature Stress B p X0 R-Square
1112 109 3.114E-03 -1.531E+00 8.834E-02 0.999
1112 123 -4.942E-04 | -1.511E+00 2.138E-01 0.993
1112 138 -8.918E-02 | -2.792E+00 7.036E-01 0.988
1292 58 1.489E-01 -2.340E+00 3.425E-01 0.990
1292 65 1.074E-02 -2.617E+00 4.496E-01 0.972
1292 80 7.584E-03 -2.008E+00 5.301E-01 0.986

It should be noted that ‘B’ is actually the material constant 3. Table 2 was generated from the data
output by MATLAB into an Excel spreadsheet. Given the very high R-Square values for each of the
curves approximated by the modified LCSP formulation, is evidence of the methods considerable
accuracy. The apparent accuracy and robustness of the method with minimal empirical data usage is
attractive for application to user-defined creep models, incorporating all three stages of creep, within

Finite Element Method (FEM) software packages.

In order to interpolate between creep curves at varying stress and temperature, it was necessary to
determine functions of stress and temperature for each material constant. The relations and their R-

Squared fitting accuracies are presented in Tables 3 - 5.

Table 3 Material Constant (o)

B(o) a*exp(b* o) + c*exp(d* o)
Temperature 1112 1292

a -1.0821E-14 | 4.0165E+08

b 2.1575E-01 | -3.7441E-01

C 4.8801E-03 | 0.0000E+00

d -3.6150E-03 | 0.0000E+00

R-Squared =] 9.9465E-01
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Table 4 Material Constant x,(a,T)

Xo(0) a/(1+exp(b* o +c))+d
Temperature 1112 1292
a 7.499E-01 | 3.572E-01
b -6.224E+01 | -2.462E+01
c 1.314E+02 | 4.373E+01
d 6.478E-02 | 1.932E-01
R-Squared 9.990E-01 | 9.993E-01

Table 5 Material Constant p(o,T)

p(o) pl*c’ + p2*c + p3
Temperature 1112 1292
pl -2.994E-03 | 3.644E-03
p2 6.961E-01 | -4.878E-01
p3 -4,183E+01 | 1.370E+01
N/A N/A N/A
R-Squared =1 =]

The functions fitted to the material constants § and p was chosen intuitively from the observable
graphical pattern of the material constants plotted versus stress at specified temperature.
function fitted to x, was chosen partially via the observable graphical pattern of the parameter

plotted versus stress. Also considered in the choice of the function, was the imposed constraints of

the modified LCSP.

Also, the Larson-Miller parameter was described by a function of logarithmic base 10 stress. The

Larson-Miller parameter is used to determine the rupture time of the new creep strain curve. The

Larson-Miller Parameter as a function of stress is presented in Table 6.

Table 6 Larson-Miller Parameter LMP(0)

LMP(o) a0 + al*cos(logl0(o)*w) + bl”‘.sin(loglo(o)*w) +
a2*cos(2*log10(o)*w) + b2*sin(2*log10(o)*w)
a0 3.595E+04
al 1.357E+03
bl 3605
a2 1669
b2 72.87
w 7.627
R-Squared =]

Some notable observations were made concerning the pattern of the relations of the material

constants to stress. [ versus stress at 1112°F tends towards some small value above zero as stress
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drops (infinite rupture). As stress increases § tends toward negative infinity (no rupture life). In
contrast, 3 versus stress at 1292°F tends toward positive infinity as stress decreases (infinite rupture)
and tends toward some horizontal asymptote just below zero as stress increases (no rupture life).

An illustration of the described behaviour is presented in Figure 10,

Material Constant Beta Versus Stress

D? T T I 1 1 1 1 1
+  B1112 vs. BStress1112
+  B1292 vs. Stress1292
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01k
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Figure 10 MATILAB Generated Plot of Material Constant Beta 1 ersus Stress

The inverse in the trend indicates the possibility that 3 is actually related to stress by a logistic
function, which is characterized by two horizontal asymptotes. Figure 11 is an example of a logistic

function plot,
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Figure 11 Example of a logistic function f(x) = 1+i_x

The horizontal asymptotes are inductive of an upper and lower limit on 3 which are governed by
minimum rupture life (zero rupture life) and infinite rupture life. More empirical creep strain curves
at other stress levels would be required to produce more values of 8 to confirm this pattern. A
stress low enough to produce large life and a stress high enough to produce nearly immediate

rupture is required to acquire a true sense of the relationship of material constant 3 and stress.

The graphical relationship of the material constant X is considerably more apparent than that of 3.
The plot in Figure 12 illustrates the observed logistical relationship of material constant Xy with

stress.
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Figure 12 MATI.AB Generated Plot of Material Constant xo versus Logarithmic Stress

The effect of temperature seems to manifest as shifting and compression/stretching of the logistical

function.

The material constant p, displays a polynomial relation of power two. Figure 13 illustrates the

polynomial relation of material constant p with respect to stress level.
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Material Constant p versus Stress
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Figure 13 MATILAB Generated Plot of Material Constant p versus Stress

The characteristic point of inflection in a polynomial function of power two (quadratic relation) is
indicative of the material constant p controlling the inflection characterizing the transition of
primary creep to tertiary creep. Therefore, the quadratic relation of p with stress implies that the
material constant p has some effect on curve shape and specifically on the length and presence of a

secondary stage. Temperature appears to manifest itself in the concavity of the quadratic relation.

The last and most important results to be presented is the analytical results of the ANSYS User-
creep LCSP based subroutine generated creep strain curves compared against the empirical data
points. Creep strain versus time data was output into text files through the Time History Post-
Processor for each of the six cases analyzed. The creep strain curves of the six cases are illustrated

in Figure 14 - 19.
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Creep Strain Curve at 109 ksi and 1112 °F
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Figure 14 Comparative Creep Curve Plot (109 ksi & 1112 °F)

Creep Strain Curve at 123 ksi & 1112 °F
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Figure 15 Comparative Creep Curve Plot (123 ksi & 1112 °F)
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Figure 16 Comparative Creep Curve Plot (138 ksi & 1112 °F)
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Creep Strain Curve at 58 ksi & 1292 °F
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Figure 17 Comparative Creep Curve Plot (58 ksi & 1292 °F)

Creep Strain Curve at 65 ksi & 1292 °F
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Figure 19 Comparative Creep Curve Plot (80 ksi & 1292 °F)
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The figures - 16 demonstrated the most significant divergence with R-Squared wvalues of
approximately .916, .936 and .787 respectively. The remaining figures 17 - 19, possessed R-Squared
values of approximately .844, .982, and .958. Several sources of error were noted. First, it was
observed that the LCSP is highly sensitive to the model used to predict rupture time which is used
to determine the end point of each curve [10]. Slight deviations of predicted rupture time result in
cither stretched or compressed creep curves such as figures 14 and 16 respectively. Moreover,
empirical data scatter that is slightly irregular such as Figure 16 are difficult to quantify, such that
they do not conform to the expected creep curve shape. Finally, it should be noted that there is also
combined error. The fitting error of the original curve fits is compounded with the fitting error of
the material constant relations and the Larson Miller relation. Furthermore, the element formulation

and calculations internally performed within ANSYS have their own error to contend with.

It should be noted no attempt was made to characterize the relationship between the material
constants and temperature. This was done for two reasons. First, since data for only two
temperatures was acquired from the literature, only a linear relation with temperature can be inferred
which may be misleading. Moreover, typically in ANSYS material parameters are described with
respect to stress at a given temperature and ANSYS is allowed to interpolate between temperatures
internally. Finally, temperature interpolation is not suggested for the reasons stated eatlier. More
data would be required to better understand the relation between the material constants and
temperature. Therefore, the model of IN718 developed in this paper is not suggested for use when

temperature interpolation or extrapolation is required.
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CHAPTER 6 CONCLUSION

In summary, a modified Logistic Creep Strain Prediction (LCSP) method was developed and applied
to the material IN718. The formulation maintains a simplistic formulation that encompasses all
three stages of creep without limitations that the original LCSP method contained. In this thesis
several modifications and constraints were proposed eliminating limitations the original formulation
contained. Specifically, the modelling limitation on a minimum of 1 percent creep and minimum of
1 hour for effective creep modeling. The modified LLCSP formulation of this thesis suffers no
minimums in its modelling capabilities. Furthermore, the proposed modifications and constraints
present evidence of a possible insight into the mechanisms of creep rather than simply being
material fitting constants. The research performed was guided by the following development

criterions:

- Minimal empirical data requirements
- Simplistic formulation

- Basy commercial FEM software integration

The development criterions are derived from what was termed the goals of applicability. Reiterating

the goals of applicability, a model’s applicability is founded on the principles of

- It’s easy application
- Cost of application

- Versatility

From this research, several things can be concluded. First, the LCSP modeling technique devised by
Holmstrom et al. is a robust method that, with some modification, accurately predicts the creep
strain curve of super alloys such as IN718. The modified LCSP formulation proposed in this thesis,
offers a creep strain prediction method that encompasses all three stages of creep while maintaining
a simplistic formulation. The modified LCSP, once again, does not contain any of the limitations
the original formulation contained. Moreover, the modified formulation gives some insight into the
mechanisms of creep rather than simply define the shape of a specific creep curve for a specified
material. Furthermore, application of the modified modelling method to IN718 in an ANSYS user-
defined creep strain subroutine is evidence of the simplicity, robustness and versatility of the

modified LCSP modeling method developed in this work.
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Finally, the development of the modified LCSP modelling method accomplishes all the development
criterions set out at the beginning of this endeavour. The modified LCSP model does not need a
great deal of empirical data to describe any particular creep strain curve. In fact, a few points from
within each stage present in the curve which can be acquired from master curve data such as the
LMP for time to specified strain can be used. The modified LCSP is a simplistic formulation not
requiring complex variable data such as deviatoric stress or activation energies. It is easily
algebraically manipulated from one form to another. Its formulation includes, in this case, a total of
three material fitting constants, such that the fourth fitting constant a from the original formulation
is assumed to equal 1. The value of « is set to one as is suggested by Holmstrom et al [10]. As for
the very last of the criterions, easy commercial FEM software integration, the LCSP was shown to
be easily integrated via a user-defined subroutine that was compiled and linked into ANSYS 12. The
simplistic nature of the LCSP formulation made it easy to manipulate it into a form similar to the
already standard creep material models pre-installed in ANSYS 12. In conclusion, despite any
compounded error, the fact that only two of the modelled case has R-Squared values lower than .9 is
evidence of the accuracy and robustness of the proposed formulation. The modified LCSP model
proposed achieves the requirements of a model robust and accurate describing all three stages of
creep at varying stress and temperature. The ease, of which the modified LCSP was integrated into
a FEM package (ANSYS), is a testament to its simplicity and versatility. It presents itself as a viable
modeling technique to be utilized for creep analysis requiring the incorporation of all three stages of

creep. While, still maintaining the criterions outlined in this thesis.
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CHAPTER 7 RECOMMENDATIONS & FUTURE WORK

Several recommendations can be made with regard to the work performed in this thesis. Despite
the fact that the LCSP method requires little empirical data for anyone specific creep strain curve.
In order to accurately assess the relationship between material constant and stress, creep strain
curves at extremes (extreme low: rupture life < 15 hours; extreme high: rupture life > 5000 hours)
should be included amongst a few more creep strain curves in-between. Also, as a standard of good
practice the influence of temperature on creep material constants should include more than two

temperatures to avoid the assumed linear relation between them.

Furthermore, the interesting observation of the possible representation of creep stages by specific
material constants as remarked earlier should be studied further. This could be done by observing
the behaviour of the relation of the material constants and creep strain curve shape, and the

presence or lack of particular stages of creep.

Finally, the proposed model and the application of the LCSP model should be extended to the study
of notched acuity and multi-axial states of stress. Moreover, many researchers have studied notched
behaviour using other methods of creep strain modeling, that include all three stages of creep [13;
22; 27; 28; 29; 30]. This would be the natural step forward in the complete development of a well

rounded creep material modeling method.
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APPENDIX A: TABLES AND CHARTS

Table 7 is taken from Advanced Mechanics of Materials [2 pp. 630-31]
TABLE 18.1 Empirical One-Dimensional Creep Formulas

Equation form References Equation
Time Dependence
Rational
ec = atfl1 + bt (Freundenthal, 1936) (a)
Logarithrnic
em g+ Binld {Phillips, 1905) (b}
e=a+ binl1+eh Medification of (b) {c)
Exponential
€= a8+ bt- cexpl-di (McVetty, 1934) (d)
ec = at + b{1 - expl-ct)} (McVetty, 1934; Séderberg, 1936) ()
Power
e =bt" 1/83<n<)2 {Bailey, 1935) f
Power series
ec=atT+ bt m=10<n<1 {de Lacombe, 1939) iq)
€c = at, + b, + ot +- {Graham, 1953} (h)
Combinad exponential power
ec = all + bt") explkn - a (Andrade, 1910) (i)
Combined logarithmic power
ec=alnlt+ bt" + ot {Whyatt, 1953) {j)
Temperature Dependence
Exponential
éc = a axp(-Q/RT) {Mott, 1953) (k)
ec = alt expl-Q/ATH (Darn, 1962) {1}
é- = aT expl-0/RT) {Stowell, 1957) {rm)
Rational
£ = aT23f(f) {Mott and Nabarro, 1948) In)
e = aTf(t) (Smith, 1948) {o)
ec = f{Tla + In(} (Larson and Miller, 1952) ip)
ec = fI{T- alfInit - b)) (Manson and Haferd, 1953) {q)
Hyperbalic exponential
ér = 3 exp(-Q/RT) sinh{b/RT) (Feltham, 19B3) ir}
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Other
e =cflitiT-T)%

Exponential
e = af{flexp(be)
€c = aexplb + ca)
£c = alexplbe) - 1]
Power
e = afit)a®
ec=at'oh0<n<l, b>1;
Bailey-Norton law
Hyperbolic
€ = a sinh{bo)
Ec = asinhiba/RT)

Other

¢ = ao explfic)]
Other

ec=cflt(T- T8

Exponential
£ = af{flexp|bea)
€c = @ explb + co)
¢ = alexplbal - 1]
Power
£c = af{tia”
ec=at’g0<cne, b>1;
Bailey-MNorton law
Hyperbolic
€z = asinhibo)
Ec = asinhiba/RT)

Other
¢ = ac explfio)l

{Warren, 1967}

Stress Dependence

{Dormn, 1962)
(Nadai, 1931}
{Stiderberg, 1936)

(Dorn, 1962)
{Bailay, 1935; Norton, 1929)

{Ludwik, 1308; McVetty, 1943}
(Feltham, 1953}

{Kanter, 1938)

{Warren, 1967}

Stress Dependence

{Dorn, 1962)
{Nadai, 1931)
(Stderberg, 1936)

(Dorn, 1962)
{Bailay, 1935; Norton, 1929)

{Ludwik, 1908; McVetty, 1943)
(Feltham, 1953)

(Kanter, 1938)

Combined Time-Temperature-Stress Dependencies

e = Texpl-a/T- b + co)

e = a expl-A/T)a"t*

e = 8 expl—A/T)sinh{aa)t*

€ = & expl-A/T) % [sinh(ba)] ™t

ec = a expi-A,/THa/bl® + (a/d)®t
n

= 3 Cofighi; ¢ =t(T' - T~

=1

(Madai, 1831)
(Pickel &t al., 1971)
(Pickel at al., 1971)
(Pickel et al., 1971)
(Odgvist, 1953)

iGraham and Walles, 1965}
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Creep Strain Time History

Creep Curves at Temperature of 600 and Varying Stress

Creep Curves at Temperature of 700 and Varying Stress

Stress 750 MPa
Time (Hrs)  Creep Strain (Fraction)

0 o
46.79470047 0.000947238
104.7889622 0.001147238
449.9072316 0.002294475
864.3229245 0.003441713
1333.936256 0.005773196
1707.386977 0.009214909
1935.507683 0.01554322
2121.101675 0.020724293
2260.607686 0.028791964
2329.123758 0.038598996
2404.438009 0.05010838
2477.375209 0.090446735

Stress 850 MPa
Time (Hrs)  Creep Strain (Fraction)
o o
7.739212647 0.001732035
20.89670463 0.002874441
31.30181234 0.002874441
45.32781819 0.004016847
60.01475681 0.004606475
79.30248472 0.00633851
98.51816573 0.008623322
122.3899732 0.010355357
142.9473603 0.013782574
156.9665882 0.016657015
183.3316803 0.020084233
207.4129851 0.026385891
227.7545392 0.032134772
242.251382 0.036741248
257.6709657 0.043042906
266.0096193 0.048791787
274.0720241 0.05395104
2829414427 0.063679916
2915170289 0.068286391
300.9509964 0.07746243

Stress 950 MPa
Time (Hrs)  Creep Strain (Fraction)
0 0
1.09807266 0.005196104
1.543330876 0.00633851
2.039331319 0.007480916
2.615466537 0.009176099
3.354366768 0.009765728
4.167158978 0.011497763
5.506413401 0.01492498
7.511547438 0.017799421
9.039139319 0.022958673
10.24684142 0.025833114
11.59280309 0.028707555
12.72974012 0.032134772
13.11556194 0.035598842
14.86790707 0.039578837
15.81426674 0.044185312
16.82086332 0.046470124
17.33068175 0.049934193
17.89153094 0.063127139

Stress 400 MPa
Time (Hrs)  Creep Strain (Fraction)
o o
1.117627846 0.002118644
74.33741079 0.006424276
84.99859846 0.007448426
94.99680047 0.00956807
121.2247595 0.010661564
1416066313 0.012780208
154.6940765 0.017017496
172.8904075 0.021323127
188.8691347 0.025560416
201.958975 0.029797704
215.956025 0.035128486
220.93%0314 0.038340623
230.9231602 0.044696555
235.9149255 0.052145981
246.5758077 0.063832695
252.2653402 0.072375615
258.086154 0.081943685
263.6650899 0.094723893
269.7489435 0.109622745
275.5799887 0.145776381
281.9387687 0.155344451
288.4442723 0.227651722

Stress 450 MPa
Time (Hrs)  Creep Strain (Fraction)
o 0

1.394031046 0.004237288
2.775515476 0.003212138

5.0585351 0.005330782
8.063090753 0.005330782
13.74296674 0.006424276
16.05361175 0.006424276
18.75275223 0.006424276
22.89561544 0.00854292
27.36224346 0.00956807
31.28643196 0.010661564
36.54671085 0.011686714
43.61425746 0.014898852
48.7445086 0.017017496
58.25390958 0.020229634
65.10619146 0.024466922
71.12337942 0.030891197
76.05268498 0.036153636
79.48946931 0.043603062
84.99859846 0.051052488
86.83597609 0.058501914
88.83964432 0.06595134
90.76005217 0.080850191
92.8542652 0.113860033

Stress 550 MPa
Time (Hrs)  Creep Strain (Fraction)
0 0
1.946095223 0.005330782
5.526050643 0.007448426
7.540486744 0.00956807
9.219468448 0.011686714
11.0023655 0.017017496
12.85222524 0.022348278
16.05361175 0.031916348
17.53730473 0.039365774
19.18545645 0.048933844
20.95859807 0.061714051
22.89561544 0.076612903
23.4239128 0.088299617
2448242818 0.106410607
25.04733993 0.12130945%
25.58877736 0.135114817
26.1792172 0.175574084
26.74512192 0.21275287

Figure 20 snap shot of Excel tabulated digitized creep strain and respective time data (Yeom et al.)[18]
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*decl., uzercreep

APPENDIX B: ANSYS SOURCE CODE

Source Code 1: Original Usercreep.F Source (TBOP = 1)

MSERDISTRIE parallel gal

SUBROUTINE usercreep (impflg. ld=step. isubst, matld | =lemld.

el o

kDInPt. klaver. kSecPt. n=s=tatv. nprop.
prop . time ., dtime . temp . dtemp
toff=t, Ustatev, cregv . pres ., =eqv
delcr ., dorda)

36 3636 3636 3636 3636 36 3636 3 33636 36 36 3636 36 36 3636 336 3636 I 36 336 3363636 W36 -36-36 33363336363 I 363636 336336 336 I3 I I WM XK

*#%%¥ Drimary function %%
Define cresep laws when cresp table options are
TE.CREEFP with TBOPT=100.
Demon=strate how to implement usercresp =ubroutine

Creep equation is

dotcreq = k0 * =eqv " n * cregqv ~ m * exp (—b-T)

==qv 1= equivalent effective stress (Von-Mises stress)
cregv i= equivalent effective cresp =train

T iz the temperature

k0, m, n, b are materials constants,

Thi=s model correspond= to primary cresep function TBOPT = 1

gal 10.01.1998

noooooonooooooonooooonogooooonoooooooooonan

input argument=

inpflg (in .=C L1 Ezplicit-implicit integration
flag (currently not u=sed)
ld=tep (in ,=c L1 Current load step
izubst (in .=C L1 Current sub =tep
matId {(in .=C L1 nunber of materizal index
elenld (in .=c L1 Element number
kDInPt (in .=C L1 Material integration point
kLayer (in .=c L1 Layver number
kSecFPt (in ,=c L1 Section point
nstatw (in .=c L1 Humber of =state wvariables
nprop (in .=C L1 zize of mat properties array
prop (dp .ari{*).1) mat properties array
Thi= arrav i= passed all the creep
constants defined by command
TEDATA associated with TE. CREEP
(do not uze propilld). az it iz u=ed
elsevhere)
at temperaturse temp.
time Current time
dtime Current time increment
temp Current temperature
dtemnp Current temperaturs incremsnt
toff=t (dp. =c. i) temperature offset from abs=olute zero
=egv (dp .=c . 1) equivalent seffective stress
cregv (dp .=c . 13 equivalent effective cresp s=train
pres (dp .=c . 13 hydrostatic pressure stress, —(SEE+SyYy+SzZz i3
input output arguments input desc A output desc
Uztatewr (dp.ar(=*), i-o) uzer defined iinternal state variables at

time 't' o 't4dt'

Thi= array will be pas=ed in containing the
waluse=s of these wariables at =tart of the
time increment. They must be updated in this

subroutine to their walues at the end of
time increment, if anv of these internal
=ztate variablez are azszociated with the
creep behavior.
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C output arguments=

o ————=====——======

c delcr (dp .=c . o) incremental creep strain

c dorda (dp.ar(*®), o) output array

c dcrdai(l) — deriwvitiwve of incremental creep
c strain to effective stress

c docrda(2) — deriwvitive of incremental creep
c s=train to creep s=train

c

I local wvariables

- —=====z======z===

c cl.c2.c3.cd (dp., =c. 1) temporary wariables as cresp constants

c conl {dp .=c. 1) temporary wariable

c t (dp .=c. 1) temporary wvariable

I

(36 363636 3 33636 36 36 36 36 3636 3E I 363636 36 3636 36 363636 I 363636 36 3636 36 363636 I 363636 36 3636 3636363363636 36 336 3636363363636 33NN
c

c ——— paranseters

I

finclude "impcom. inc”

DOUELE PRECISION ZERO

PARAMETER (ZERC = 0.0d40)
c
- —— argument list
c
INTEGER ld=tep, isubst., matld . e=lemld,
I kDInPt, klayer. kSecPt., n=tatw,
& inpflg. nprop
DOUBLE PRECISION dtime . time . temp . dtemp . toffst,
e creqv . =eqv . pres
DOUBLE PEECISION prop(#*). dordai#*), Ustatevi{nstatwv)
I
z —— local wvariables
c
DOUBLE FPRECISION <1 . o2 . o3 =1
& conl . delcr . t
I

(096 6 363636 36 36 3636 36 36 36 36 3636 36 36 36 36 36 36 36 36 36 3636 363 3636 36 36 36 36 36 3636 36363636 36 3636 363636 I 3636 3636 36 36 36 3636633363636 36366 I

c
o *%%¥ skip when stress and creep strain are all =zero

if (=eqv.lE ZERD.AND creqgv.LE ZER0O) GO TO 990
c *%¥%¥ gdd temperature off ==t

t = temp + toff=t
c ¥¥¥ Primarvy creep function
c delcr = cl *®# =eqv " n *® cregv ~ m ¥ exp (—bsT) * dtime
=l = prop(l)
(=¥ = prop(2)
=3 = prop(3)
[=T:! = prop(4)
c *%% ==r need to make sure if o4 has nonzero value, temperature should be al=o nonzero.
conl = ZERD

if({cd . ne. . ZERED .and. t.gt . ZERC) conl = cd~t
C *### Ccalculate incremental cresep =train
if (cregv .le. TIHY) cregv = =sgrt(TIHY)
delcr = ZERD
IFi(zl . gt . ZEEQ) delcr = {exp( logi{cl) + cZ * logisegv) +
b -3 *® logicregv) — conl )) * dtime
c *** derivitive of incremental creep strain to effective stress
dorda(l)= c2 # delcr ~ =eqgv
c *** derivitive of incremental creep strain to effective creep strain
docrda(2)= -3 #* delcr ~ cregv
c *%* yrite the effective creep strain to last =tate wvariable for wverification
Oztatevinstatv) = cregv
990 continue
return
end
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Source Code 2: LCSP Usercreep.F Source (TBOP = 100)
*decl , uzercreep USERDISTRIE parallel gal
SUBROUTINE usercreep (impflg. ldstep. isubst. matld . elemld.

e kDInPt. klaver. kSecPFt. n=tatv. nprop.
fie prop . time , dtime . temp . dtemp
e toffst, Ustatev, cregv . pres |, =egv
&

delcr ., docrdal

3636 36 36 3636 36 36 36 36 6 36 3636 3 36 3636 36 36 3636 3363636 W 363636 3 3 I3 I 36363363636 336 3636336 336 M IE 3636 W 363636 333633363 E N

c ®%% primary function %%
C Define creep laws when creep table options are
c TE.CREEF with TEOFT=100.
C Demnonstrate hov to implement usercresep subroutine
c
C Creep equation i=
c dotcreq = k0 *# =eqv " n % creqv " m % exp (—b-T)
c
C =zeqv 1= equivalent effective stress (Von-Hises stress)
C cregqv iz equivalent effective creep strain
c T iz the temperature
C k0, m, n., b are materials constants,
c
c Thi= model correspond=s to primary creep function TBOPT = 1
c
c gal 10.01.1998
c
13636 36 36 3636 3 36 3636 36 36 3636 36 36 3636 36 36 3636 36 36 3636 36 36 3636 36 36 3636 3 36 3636 36 36 3636 I 36 3636 36 I 3636 36 36 3636 336 3636 3363636336 3636 XWX
c
c input arguments=
- —=c===z=========
C imnpflg {in .=c L1 Explicit-implicit integration
C flag (currently not used)
c ld=step {in .=c L1 Current load =tep
C 1=ubst {in .=cC L1 Current =ub =tep
C matId {in .=c L1 number of material index
c elenld {in .=c L1 Elenent number
C kDInPt {in .=c L1 Material integration point
C kLaver {in .=c ] Laver number
c kSecPt {in .=c L1 Section point
C nstatw {in .=c L1 Humber of state wvariables
C nprop {in .=c L1 =z1re of mat propertie=s array
o
c prap (dp .ari=*).1) nat properties array
C Thi= arrav i= passed all the creep
c constants defined by command
C TELDATA azsociated with TE,CEEEP
C {do not u=ze propi{lld), a=z it 1=z u=sed
c el=evhere)
at temperature temp.
time Current time
dtime Current time increment
temp Current temperature
dtemp Current temperature increment
toff=t (dp, sc. il tenperature of fset from abs=olute zero
=eqv (dp .=c . 13 equivalent effective stress
Creqv {dp .=c . 1) equivalent effective cresp =train
ores {dp .= . 1) hydrostatic pressure stress. —(SEx+Syvy+Szz ).l
input output argumnents input desc < output desc
U=tater (dp. ar{®), 1i-o0) uzer defined iinternal state wariables at

time 't' S 't4dtt.

Thi=z arravy will be pass=ed in containing the
valuesz of these variables at start of the
time increment. They must be updated in this
subroutine to their valuss at the end of
time increment, 1f anvy of these internal
=ztate wvarisbles are aszsociated with the
creep behavior.
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output argument=

delcr (dp .=c . o) incremshtal cresp =train
dcrda (dp.axr(*), o) output array
dcrda({l) — derivitive of incremental creep
ztrain to effective stres=s
dcrda{?) — derivitive of incremental creep

=train to cresep strain

local wariables

cl.c2,c3.cd (dp. =c. 1) temporary variables asz cresep constants
conl {dp .=c., 13 temporary wvariable
t {dp .=c. 13 temporary wariable

nononoooooonoooooonan

(36 36 36 36 36 36 36 36 36 I 33636 I 36 3636 I 36 36 36 336 636 3 I 3636 3 IE I3 I IE 363 I 33636 I I 3636 I I 3636 I 36 3636 3 I IE-I6 3 IE I3 I IE I3 I
c

c ——— paraneters

c

#include "impcom. inc®

DOUBLE PRECISION ZERO

PARAMETER (ZERO = 0.0d0)
c
o ——— argument list
C
INTEGER ld=tep. isubst, matld . slemId.
e kDInPt. klayer. kSecPt. nstatw.
& inpflg., nprop
DOUBLE PEECISION dtime . time . temp . dtemp . toffst,
& creqv . =edqv . pres
DOUBLE PRECISION prop(#®), dcrda(#*), Ustatevin=ztatv)
C
c —— local wariables
c
DOUELE FRECISION =1 = =X . ocd =
& cb =V =t , =9 =31
e cll ., oclz2 . ep=l , delcr . delcr?
e t . B . D . EO . LHP
e tr . LTF okl Lo k2 . delseqgw
c

(36 36 36 36 36 36 36 36 36 I 33636 I 36 3636 I 36 36 36 336 636 3 I 3636 3 IE I3 I IE 363 I 33636 I I 3636 I I 3636 I 36 3636 3 I IE-I6 3 IE I3 I IE I3 I
c
C *%%¥ =lip when stress and creep =train are all zero
if {=eqv.lE.ZER(Q AND cregv.lE.ZERO) GO TO 990
= *¥% add temperature off ==t

t = temnp + toffist
= *%¥* Primarvy cresp function
= delcr = —-kl*®l?%*({cregv+]l. 0D0)*xo
(=3 = propil]
(=) = propf 2}
=3 = propf 3}
cd = propid)
ch = prop(5)
ch = prop(h)
=¥ = propi?]
[t = propi 3]
=9 = propi 3}
=10 = propll0)
cl1 = propi(ll)
= *¥%% pumerical differentiation (may need to adjust)
= del=seqgv i= delta(stress) while del 3 i= delta(creesep strain)
delsegv = 1.0D-5&

z #¥% LC5F Egquation= required for delcr:

B = cl*EXP(cZ*seqgv)+ci*EXP(cd*=eqgv)

ju} = ch¥*zegus**licb*ssgvic?

=O = c8-(1 0DO+EXF({c9*L0G1l0{=seqv)+c10) 1+cll

ILHF = 3 5950441357 0D0%*co=(7 . 62700*L0G10(=eqv)i+1669 . 000=

cos( 7. 62700*L0G10(seqvi*2 . 0D0)+3605 . OD0*sin( 7. 627D0%
LOGI0 (seqw) )+72 B700%=in( 7. 627D0*10G10(seqv)*2  0D0)

ol
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tr = 1. 0D1**{LMP/{t+4 6D2)—2 0OD1)

ITF = (B+log(tr+1l.0D0%)~{B+log(timetl OD0Y)

epsl = exp(mo*(LTF-1 . 0D0)*x%(1 0D0.p))*(l. 0D0-1 0D23-1. 0D0-1.0D2
k1 = (LTF-1.0D0)*x{1. 0D0-p)-p

k2 = (1.0D0/(B+logitime+1l 0D0))**2%(B+log{tr+1. 00013}

£ {{time=l 0D2+1 0D2)+(LTF-1 . 00D0O%Y)
- *¥%%¥ calculate incremental creep strain
if (cregv .le. TINY) cregv = =grt{TIHY)

delcr = ZERO
delcr = ZERO
IF(t . gt 1000.0D0) deler = —kl*kZ#zox{ep=l=1_ 0D2+1 0D0)%dtine

c *#% LCSP Equations required for delcr? (delta stress):
cl#EXP(cZ*(=seqvtdelseqv) )+ci*EXP (cd*(=egvt+delseqv) )

ju} = ch*({=zegqvtdelseqv)**+cb*( seqvt+delsegqy ) +c7

HO = cB/(1 . 0D0O4+EXEP(c9%L0G10( (=egv+delseqr ) )+c10) 1+c11

IMP = 3.595Dd4+1357 . 0D0%*kco=s(7 . 627D0*xL0G10({ {=egv+del=segv) )i+
£ 1669 0D0%*co=s (7  627D0*L0OG10( {=eqv+del=segv) %2 0D0)+
& 3605 . 0D0%k=1n (7 . 627D0=L0G10L (=segqv+del=seqgv) ) )+72 . 8700=
e =in(7.627D0*L0G10( (seqv+del=seqgv) =2 0D0)

tr = 1.0D1=*{LHP-(t+4 6D2)-2.0D1}

LTF = {(B+log{tr+1.0D0)) {B+logi{time+l.0D0))

epzl = exp{=zo*(LTF-1 . 000)%*=(1 0D0-p))={1.0D0~1.0D2)—1.0D0~-1. 0D2
ki = (LTF-1.0D0)*={1 0D0-p)-p

k2 = (1.0D0-({B+logi{tine+l 0D0) )*x*2%(B+log(tr+1 . 0D0Y )0~
& {{time*xl 0D2+1 . 0D2)*(LTF-1.00D0))

IF(t.gt.1000.0D0) delcr? = —klxk2=*zc*({epsl*l. 0D2+1.0D0)=dtine

C *¥%% derivitive of incremental creep =train to eifective stress
derdail)= (delcr? - delcr)-sdelseqwv

c *¥#% derivitive of incremental creep s=train to effective cresp s=train
dorda(2)= 0

C *%% yrite the effective creep strain to last =tate variable for wverification
T=tatevidi) = cregv

990 continue

return
end
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Source Code 3: IN718 Material Properties Input Code
| ——Inconel 718
SCOM, Typical Material Properties For IH 718
~HOP | =uppres= printout for this macro
SCOM, IN 718 at Heat Treatment: 1 hr 1750 to 1800 F air cooled.
SCOM, 8 hr 1325 F furnace cooled at 100 Fehr to 1150 F,
SCOM, 1150 F hold 8 hr air cool
SCOM, Tnit=s in BU (k=si, lbh. =tc)

| ——Modulu=s of Elasticity (p=i)
MPTEME. 1. 70

MEDATA, EX. 1, 1. 29.6E3
MPDATA, PREY. 1. 1. 0.302943

HFTEMF, 2. Zz00
MPDATA, EX, 1, 2, 29 ZE3
MEDATA, PREY, 1. 2, 0.2924

MPTEMF, 3, 400
MFDATA, EX. 1. 3. 28 BE3
HFDATA, PREY. 1. 3. 0.2808

HFTEHMF, 4. &00
MFDATA, EX. 1. 4. 27 BE3
MEDATA, PREY., 1. 4. 0.2748

MPTEMF, &, 200
MPDATA, EX. 1. &, 26 .5E3
HFDATA, PREY., 1. &5, 0.2744

MPTEMF. &, 1000
MFDATA, EX. 1. 6. 25 5E3
MPDATA, FREY, 1. 6. 0.2796

HPTEMF. 7. 1200
MPDATA, EX, 1. 7. 24 5E3
HFDATA, PREY., 1. 7. 0.2904

MPTEMF. &, 1400
HPDATA, EX. 1. 8, 23.1E3
MPDATA, FREY, 1. &, 0.3068

HPTEMF. 9. 1600

MEPDATA, EX. 1. 9. 13.1E3
HFDATA . PREY. 1. 9. 0. 3288
MPTEME, 10. 1750

MPDATA, EX, 1, 10, 11 .1E3
MPDATA, PREY. 1. 10, 0.34897%

| ———Creep Haterial Properties a=s Deifined by usercreep . F——m——— I

th.cresep.1.2.11.100
TEBTEMP.1112.1

thdat .
thdat .

—62.2375932
1314482724

thdat.l, -1.08211E-14
thdat . 2 2.15745E-01
thdat .3 4 88011E-03
thdat.4, -3 .61500E-03
tbdat,5, -2.99446E-03
thdat.6. 6&.96141E-01
thdat.?., -4 .18334E+01
tbdat, 0.749940767

9

1

1

thdat .

0.
1, 0.064780637
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TETEMF, 1292, 2

thdat .1 4 01651E+08
thdat.2. -3 .74410E-01
thdat .3 0.00000E+00
thdat .4 0.00000E+00
thdat . 5. 3.64436E-03
thdat. 6. —4 . 87836E-01
thdat.? 1. 36954E+01
thdat . g 0.357187494
thdat .9, —24 618335819
thdat, 10, 43 72803618
thdat, 11, 0.193225784

Soutce Code 4: APDL Input File (Case of 109 ksi and 1112 °F
SFILHAME., Smooth_ Creep_109_1112

SCOH, Original Smooth Cresep Verification Test Created Febuary 22.

SCOM, Modified to represent case at 109 k=i and 1112 Fahrenheit
#TITLE. Smooth Bar Specimen Creep Analvy=is at (109 E=1 & 1112 F)
RESUME. Smooth. db

C*%% Entering Preprocessor *%*

~FREFP?

ALLSEL

TUNIF.111&

CMSEL. . BC_NODE

D, ALL. UY. 0O
ALLSEL

CHSEL. | TOF_HODE
SF. ALL. FRES. -109

C*%% Application of Load (Elastic Analysis) *%%

SSOLT

ALLSEL

HLGEQOM, ON

RATE. COFF

TIME. 1E-&
EQSLY. PCG. 1E-8
OUTRES. ALL. LAST
SOLVE

C*%% Beginning of Cresp Analv=is (Assumnsed Primarw) *%x

SS0LT | Second load =s=tep. apply mechanical loading
EATE.CH | Creep analwy=i=s turned on

HLGECOHM, ON | Turn on non—-linear Geometry

DELT.1..1.100

TIHE. 2200 | Time period set to desired wvalue

ATTOTS. 1 I Automatic—time—=tepping turned on

EQSLY, PCG, 1E-8
OUTEES, ERASE
OUTEES. .all.
SOLVE
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APPENDIX C: MATLAB SOURCE CODE

Source Code 5: Excel Data Reading & Result Writing M-code
5%

clear
clc

Titles = { 'Temperature', 'Stress', 'B', 'p', 'mo', 'rsgquare' };

Stress Temp = [1112 105y 1112 123; 1112 138; 12%2 58; 12952 e5; 1252 80]:
Xlswrite ('Inconel 718 Material Data.xlsx', Titles, 'Graphical', 'R1'});
xlswrite ('Inconel 718 Material Data.xlsx', Stress Temp, 'Graphical', '"&Z:B7["):

&%

%This routine loads creep data for curves at varying stress and

ftemperature and there respective curve equations are defined:

FTenperature = 1112, S5tress = 109:

LTIME 1112 108 = xl=read('Inconel 718 Material Data.xlsx', 'Creep','A43:A55'):
LSTRAIN 1112 1059 = xlsread('Inconel 718 Material Data.xlsx', 'Creep', 'B43:35%3'):
fTemperature = 1112, Stress = 123:

LTIME 1112 123 = =xlsread('Inconel 718 Material Data.xlsx', 'Creep','C43:C63"):
LSTRATIN 1112 123 = xlsread('Inconel 718 Material Data.xlsx', 'Creep', 'D43:D63');
fTemperature = 1112, Stress = 138:

LTIME 1112 138 = xlsread('Inconel 718 Material Data.xlsx', 'Creep','E43:E6l]'):
LSTEAIN 1112 138 = xlsread('Inconel 718 Material Data.xlsx', 'Creep', 'F43:F&l');
fTemperature = 1292, Stress = 58:

LTIME 1252 58 = xlsread('Inconel 718 Material Data.xlsx', 'Creep','G43:Ge5'):
LSTRATN 12952 58 = xlsread('Inconel 718 Material Data.xlsx', 'Creep', 'H43:H&3');
FTenperature = 1292, S5tress = 63:

LTIME 1252 &5 = xlsread('Inconel 718 Material Data.xlsx', 'Creep','I43:I66'):
LSTRAIN 1252 65 = xlsread('Inconel 712 Material Data.xlsx', 'Creep', 'J43:J68"):
FTemperature = 1292, Stress = 80:

LTIME 1292 80 = xlsread('Inconel 718 Material Data.xlsx', 'Creep','K43:Ee0'):
LSTRAIN 1292 80 = xXlsread|('Inconel 718 Material Data.xlsx', 'Creep', 'L43:Le&0'}):

&%
FCurve Fitting Function:
[ef 1112 109,goodness_ 1112 109,cf 1112 123,goodness 1112 123, ...

cf 1112 138,goodness 1112 138,cf 1292 58, goodness 1292 58, ...
cf 1292 65,goodness 1292 65,cf 1292 80, goodness_ 1292 80]...

= createlCSPFit (LSTRAIN 1112 109,LTIME 1112 109,...
LSTRAIN 1112 123,LTIME 1112 123,LSTRAIN 1112 138,LTIME 1112 138,...
LSTRAIN 1292 58,LTIME 1292 58,LSTRAIN 1292 65,LTIME 1292 65,...
LSTRAIN 1292 80,LTIME 1292 80):

&%

rsqguare = goodness 1112 109.rsgquare;

B =cf 1112 109.E:

p = cf 1112 109.p;

xo = cf 1112 109.x0;

Curve Parameters = [E p Ho reguare];

xlswrite("'Inconel 718 Material Data.xlsx', Curve Parameters, 'Graphical', "C2'})
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%

rsguare = goodness_ 1112 123.rsguare;
B = cf 1112 123.B:

p = cf 1112 133.p;

xo = cf 1112 123.=xo0;

Curve Parameters = [B p ®o rsguare]:
xlzwrite ('Inconel 718 Material Data.zlsx', Curve Parameters,
%

rsguare = goodness_ 1112 138.rsguare;
B = cf 1112 138.B:;

p = cf 1112 138.p;

xo = cf 1112 138.=xo0;

Curve Parameters = [B p ®o rsguare]:
xlzwrite ('Inconel 718 Material Data.zlsx', Curve Parameters,
%

rsguare = goodness 1292 58.rsgquare;
B = cf 1282 58.B:

p = cf 1232 58.p;

xo = of 1292 58.xo;

kurve_PaIameters = [BE p X0 r=agquare]:
xlzwrite ('Inconel 718 Material Data.zlsx', Curve Parameters,
%

rsguare = goodness_ 1292 &5.rsguare;
B = cf 1232 &5.B:

p = cf 1232 &5.p:

xo = cf 1292 65.xo;

Curve Parameters = [B p ®o rsguare]:
xlzwrite ('Inconel 718 Material Data.zlsx', Curve Parameters,
%

rsguare = goodness 1292 80.rsguare;
B = cf 12892 80.B:

p = cf 1292 80.p:

xo = cof 12592 20.xo;

Curve Parameters = [EBE p =0 rsguare];

zlzwrite ('Inconel 718 Material Data.xzlsx', Curve Parameters,
&%

close all
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Source Code 6: LCSP Generated Modified Curve Fitting Function

function [cf 1112 103,goocdness 1112 108,cf 1112 123,goodness 1112 123, ...

cf 1112 138,goodne=s=s 1112 138,cf 1252 58, goodness 1292 58, ...
cf 1252 &5,goodness_129%2 65,cf 1252 80,goodness_ 1252 80]...
= createlLC5PFic (LSTRAIN 1112 105,LTIME 1112 109,...
LSTRAIN 1112 123, LTIME 1112 123,LSTRAIN 1112 138,LTIME 1112 138,...
LSTRATN 1252 58,LTIME 1232 58, LSTRATIN 1252 &5, LTIME 1232 &5,...
LSTRATN 1252 80,LTIME 1232 80)

FCEREATEFIT Create plot of data sets and fits

% CREATEFIT (LSTRAIN 1112 105,LTIME 1112 109,LSTRAIN 1112 123,

% LTIME 1112 123, LSTRATN 1112 138,LTIME 1112 138, LSTRATN 1232 58,
% LTIME 1292 58,LSTRATN 1232 &5,LTIME 1252 &65,LSTRATN 1252 80,

:  [LTIME 1292 s0)

% Creates a plot, =2imilar to the plot in the main Curve Fitting Tool,
E u=sing the data that you provide as input. You can

% use this function with the same data vou used with CFTCOL

% or with different data. You may want to edit the function to
% customize the code and this help message.

%

% Humber of data sets: &

% Humber of fits: ]

% Data from data set "LTIME 1112 103 ws. LSTRATIN 1112 108":

% ¥ = L5STRAIN 1112 1035:

% Y = LTIME 1112 109:

% Unwelighted

Data from data set "LTIME 1112 123 wvws. LSTRAIN 1112 133":
¥X = L5STRAIN 1112 123:
Y = LTIME 1112 123:
Unweighted

% Data from data set "LTIME 1112 138 vs. LSTRAIN 1112 138":
% ¥ = L5STRAIN 1112 138:

% Y = LTIME 1112 138:

Unweighted

o

% Data from data set "LTIME 12%2 58& ws. LSTRATIN 1232 58":
% ¥ = LSTRARTN 1252 58:

% ¥ = LTIME 1252 58:

% Unweighted

Data from data set "LTIME 1282 g5 wv=. LSTRATN 1292 65":
¥ = LSTRRIN 1232 &5:
¥ = LTIME 1252 &5:
UTnweighted
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% Data from data set "LTIME 1232 80 ws. LSTRATIN 1232 80":
% X = LSTRAIN 1292 80:

E Y = LTIME 1252 80:

%

Unweighted

% Auto-generated by MATLALE on 13-Jul-2011 0B:55:29
% Modified by user on 13—611—201ﬂ

% S5et up figure to receive data sets and fits

f = clf:

figure(f ):

set(f_ ,"Units',"Fixels','Position', [632 9 667 613]);
% Line handles and text for the legend.

legh_ = []:
legt_ = {}:

% Limits of the x-axis.
®xlim = [Inf -Inf];

% Axes for the plot.

ax = axes;

set(ax _, '"Units’', 'normalized', "CuterPosition’', [0 0 1 1]):
set(ax_, "Box'",'on"});:

axes(ax_):

hold on;

% --- Plot data that was originally in data set "LTIME 1112 109 ws. LSTRATN| 1112 103"
L5STEAIN 1112 109 = LSTRAIN 1112 109(:):
LTIME 1112 103 = LTIME 1112 1089(:):

nh_ = line (LSTRAIN 1112 109,LTIME 1112 109, 'Parent',ax ,'Color’', [0.333333 0 0.666667],...

'LineStyle', "none', 'LineWidch',1,
'Marker','.', "MarkerSize',12):
xlim (1) = min(=xlim (1) ,min(LSTRATIN 1112 108)):
xlim (2} = max(xlim (2),max (LSTRAIN 1112 109));
legh (end+l) = h_:
legt_{end+1} = 'LTIME 1112 109 wvs. LSTRAIN 1112 109°':

% --- Plot data that was originally in data set "LTIME 1112 123 ws. LSTRATN| 1112 123"
LSTRATN 1112 123 = LSTRATN 1112 123(:):
LTIME 1112 123 = LTIME 1112 123(:);

h = line (LSTRAIN 1112 123,LTIME 1112 123, 'Parent',ax ,'Color',[0.333333 0.666667 0], ...

'Line5tyle', 'none', 'LineWidth',1,
'"Marker','."', "MarkerSize',12):
zlim (1) = min(xlim (1} ,min(LSTRATN 1113 123});
Xlim (2) = max(xlim (2),max (LSTRAIN 1112 123)}:
legh (end+l) = h_:
legt_{end+1} = 'LTIME 1112 1233 ws. L5TRAIN 1112 133°";
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% --- Plot data that was originally in data set "LTIME 1112 138 ws. LSTRATIN| 1112 138"

L5STEAIN 1112 138 = LSTRAIN 1112 138(:):

LTIME 1112 138 = LTIME 1112 138(:):

h = line(L5STRAIN 1112 138,LTIME 1112 138, 'Farent',ax ,"Color',[0 O O],...
'LineStyle', "none', 'LineWidch',1,
'Marker','.', "MarkerSize',12):

xlim (1) = min(=xlim (1) ,min(LSTRATIN 1112 138)):

xlim (2} = max(xlim (2),max (LSTRAIN 1112 138));:

legh (end+l) = h_:

legt_{end+1} = 'LTIME 1112 138 wvs. LSTRAIN 1112 138':

% -—— Plot data that was originally in data set "LTIME 1252 58 ws. LSTRAIN 12952 58"

LSTREAIN 1252 58 = LSTRAIN 1292 58(:):

LTIME 1292 58 = LTIME 1292 58(:):

h = line (L5TRAIN 1252 58, LTIME 1232 58, 'Farent',ax ,'Color',[0.333333 1 0.666667], ...
'LineS5tyle', "'none', 'LineWidth',1,
'Marker',".", "HMarkerSize',12);

Xlim (1) = min(xlim (1),min(LSTRAIN 1292 58)):

wlim (2} = max(=xlim (2),max (L5STRAIN 1292 58)):

legh {end+l) = h_;

legt_{end+1} = 'LTIME 1252 58 ws. LSTRAIN 1292 58°';

% -—- Plot data that was originally in data set "LTIME 1252 &5 w=. LSTRAIN 1292 &5"

LSTRAIN 1252 &5 = LSTRARIN 1252 &5(:):

LTIME 1292 &5 = LTIME 1292 65(:);

h = line (LSTRAIN 1292 &5,LTIME 1292 &5, 'Parent',ax ,'Color',[0 0.333333 0.666667],...
'LineStyle', "none', 'LineWidth',1,
'"Marker','."', "HarkerSize',12):

Xlim (1) = min(xlim (1),min(LSTRAIN 1292 6&5)):

Xlim (2) = max(xlim (2),max (LSTRAIN 1292 &5)):

legh {end+l) = h_:

legt_{end+1} = 'LTIME 1232 &5 ws. LSTRAIN 1232 &%5';

%t -—- Plot data that was originally in data set "LTIME 1232 80 w=. LSTRAIN 12952 80"

LSTRAIN 1252 80 = LSTRAIN 1292 80(:);

LTIME 12%2 80 = LTIME 1292 80(:):

h = line (LSTEAIN 1292 80,LTIME 1292 80, 'Parent',ax ,'Color',[0.666667 1 0.333333],...
'LineS5tyle', 'none', 'LineWidth',1,...
'Marker','.', '"MarkerSize',12):;

Xlim (1) = min(xlim (1),min(LSTRAIN 1292 80)):

Xlim (2) = max(xlim (2),max (LSTRAIN 1292 80)):

legh (end+l) = h_:

legt_{end+l} = 'LTIME 1252 850 ws. LSTRAIN 1232 80';

% NHudge axis limits bevond data limits
if all(isfinite(xlim ))
xlim = =lim + [-1 1] * ©0.01 * diff(zxlim };
set (ax_, "XLim',xlim )
else
set(ax_, '¥Lim', [-0.025208690850601175, 2.3500777759107186]):
end
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% -—— Create fit "fit_ 1112 109"

fo_ = fitoptions('method', 'NonlinearleastSquares', 'Lower', [-Inf -Tnf 013
ok = isfinite (LSTRATN 1112 10%9) & isfinite(LTIME 1112 103);

if ~all( ok )

warning{ 'GenerateMFile:IgnoringNansindInfs',...

'Tgnoring NaN= and Infs in data.' }:
end
st = [0.51273481479723582 0.10555324817127809 0.12724328289643227 ]:
set (fo_, 'Startpoint',st_);
ft_ = fittype(' (log(2477.375208+1)+B)/ (1+(x/xo) "p)-B',

'dependent', {'v'}, "independent ', {'x'}, ...
'coefficients',{'B', 'p', 'x0'}):

% Fit this model using new data
[cf 1112 109,goodness_ 1112 108] = fit (LSTRAIN 1112 108 (ck ) ,LTIME 1112 108 ({ck },ft_,fo_):
Alternatively uncomment the following lines to use coefficients from the

o

% original fit. You can use this choice to plot the original fit against new
% data.
%
i

ow

{ 0.0034442735017392584, -1.52833097682600%6, O0.0BB2TE8EBT72533368594};
cfit(ft ,cv _{:}):

cf
% Plot this fit
h_ = plot{cf 1112 10%,'fitc',0.85);
set(h (1),'Colox',[1 O O],...
'LineS5tyle','-', 'LineWidcth',2,...
'Marker', 'none', 'MarkerSize',&):
% Turn off legend created by plot method.
legend off;
% S5tore line handle and fit name for legend.
legh_(end+1l) = h_(1):

legt_{end+l} = 'fit 1112 108';

% -—— Create fit "fic_ 1112 123"

fo_ = fitoptions('method', 'NonlinearleastSquares', 'Lower', [-Inf -Tnf 013
ok = isfinite(LSTRATIN 1112 123) & isfinite(LTIME 1112 123);

if ~all{ ok )
warning( 'GenerateMFile:IgnoringNansandInfs",...

'ITgnoring NaNs and Infs in data.' }:
end
st_ = [0.94259264420212985 0.58257080277832785 0.69095139861978072 ];
set(fo_,'Startpoint',st_};
ft_ = fittype(' (log(300.950996+1)+B)/ (1+(x/x0)"p)-B", ...

'dependent', {'yv"'}, "independent ', {"x"}, ...
'coefficients',{"B"', 'p', 'xo'"}}):
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% Fit this model using new data
[cf 1112 123,goodness 1112 123] = fic(LSTRAIN 1112 123(ok },LTIME 1112 123(ok ),fr ,fo }:
Llternatively uncomment the following lines to use coefficients from the

ol

original fit. You can use this choice to plot the original fit against new
data.

cw

cf

{ 0.00229854542839625945, -1.4387787592533985, 0.213126182435747821};
cfit(fr_,cv_{:}):

% Plot this fit

h = plot(cf 1112 123,'fit’",0.95):

gzec(h (1),'Color',[0 O 11,...
'LineS5tyle!','-', 'LineWidth',2,
'"Marker', 'none', '"MarkerSize',&);

% Turn off legend created by plot method.

legend off;

% S5tore line handle and fit name for legend.

legh (end+1l) = h_(1);

legt {end+1} = 'fit 1112 123°';

% —--- Create fit "fit 1112 138"

fo_ = fitoptions('method', "HonlinearleastSquares', 'Lower', [-Inf -Inf 01y
ok = isfinite (LSTRAIN 1112 138) & isfinite(LTIME 1112 138):

if ~all( ok_ )}
warning{ 'GenerateMFile:IgnoringNansAndInfs',...
'Tgnoring NaNs and Infs in data.' }:

end

2t_ = [0.98267510959976456 0.28338102803366083 0.54523096157345863 ]
zet (fo_, 'Startpoint’,3t_);

fr_ = fittype (" (log(17.8915309+1)+B)/ (1+(=/%0)"p)-B", ...

'dependent ', {"yv"'}, "independent ", {"X"}, ...
'coefficients', {'B', 'B', "X0'}):

% Fit this model using new data
[cf 1112 138,goodness 1112 138] = fic(LSTRAIN 1112 138(ok },LTIME 1112 138(ok ),fr ,fo }:
Llternatively uncomment the following lines to use coefficients from the

ol

original fit. You can use this choice to plot the original fit against new
data.

cw

cf

{ -0.0800472711436069232, -2.7500993673603986, 0.7017611055550429[};
cfit(fr_,cv_{:}):

% Plot this fit

h = plot(cf 1112 138,'fitc’",0.95):

gzec(h (1), 'Color',[0.666667 0.333333 01,...
'LineS5tyle!','-', 'LineWidth',2,
'"Marker', 'none', '"MarkerSize',&);

% Turn off legend created by plot method.

legend off;

% S5tore line handle and fit name for legend.

legh (end+1) = h_(1);

legt {end+1} = '"fit 1112 138';

61



3 -—— Create fit "fit_ 1292 58"

fo_ = fitoptions('method', 'NonlinearleastSquares', 'Lower', [-Inf -Tnf 013
ok = izfinite (LSTRATIN 1332 58) & isfinite (LTIME 1332 58);

if ~all( ok )

warning{ 'GenerateMFile:IgnoringNansindInfs',...

'Tgnoring NaN= and Infs in data.' }:
end
st = [0.1451932177560965 0.26068783435660436 0.65562326224249745 1:
set (fo_, 'Startpoint',st_);
ft_ = fittype(' (log(288.444272+1)+B)/ (1+(x/xo0) "p)-B',

'dependent', {'v'}, "independent ', {'x'}, ...
'coefficients',{'B', 'p', 'x0'}):

% Fit this model using new data
[cf 1232 58,goodness 1232 58] = fitc (LSTRATN 1232 58(ck ) ,LTIME 1232 58 (ck ),ft_,fo_}:
Alternatively uncomment the following lines to use coefficients from the

o

original fit. You can use this choice to plot the original fit against new
data.

cV { 0.145830276002735685, -2.3380045132701355, 0.34240087228279215};

cfit(ft ,cv _{:}):

cE

% Plot this fit

h = plot(cf 1252 58,'fit',0.85);

set(h (1),'Color',[0.333333 0.333333 0.333333],...
'LineS5tyle','-', 'LineWidcth',2,...
'Marker', 'none', 'MarkerSize',&):

% Turn off legend created by plot method.

legend off;

% S5tore line handle and fit name for legend.

legh_(end+1l) = h_(1):

legt_{end+1} = 'fit 1352 58';

% -—— Create fic "fit_ 1292 65"

fo_ = fitoptions('method', 'NonlinearleastSquares', 'Lower', [-Inf -Tnf 013
ok = izfinice (LSTRAIN 1292 65) & izfinite(LTIME 1292 &5):

if ~all( ok_ }
warning{ 'GenerateMFile:IgnoringNansAndInfs',...

'"Ignoring NaNs and Infs in data.' }:
end
st_ = [0.8299866357708845 0.24932267896815952 0.22706078593610923 ]:
get (fo_, "Startpoint’,2t_);
ft = fittype (' (log(92.8542652+1)+B)/ (1+(x/%a)"p)-B', ...

‘dependent', {'v"}, "independent ", {"X"}, ...
'coefficients', {"'B', 'p', 'mZo'"}):
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E Fit thiz model using new data

[cf 1292 65,goodness_1292_65] = fit (LSTRAIN 1292 &5(ck_),LTIME 1292 €5(ok_),ft_,fo ):

oo

Llternatively uncomment the following lines to use coefficients from the
original fit. You can use this choice to plot the original fit against new
data.

cwv

cf

{ 0.0118084305839815951, -2.61264963628227352, 0.44951376499606479439]}:
cfit(ft_,cv_{:}}):

% Plot this fit

h = plot(cf_ 1292 &5,'fit',0.93):

set(h_ (1), 'Color',[1 O 1],...
'LineStyle','-', 'LineWidth',2,
'"Marker', "none', 'MarkerSize',6);

% Turn off legend created by plot method.

legend off;

% Store line handle and fit name for legend.

legh (end+l) = h_(1);

legt_{end+1} = 'fit 1292 &5':

% ——— Create fit "fit_ 1232 80"

fo = fitoptions('method®', "NonlinearLeastSguares', "Robust', "On');
ok = iafinite (LSTRAIN 1252 80) & isfinite(LTIME 1292 80):

if ~all{ ok_ }
warning | 'GenerateMFile:IgnoringNansAndInfs',...
'Ignoring NaNs and Infs in data.' }:

end

st_ = [0.85051471135508315 0.64711766344406096 0.47155574656T84685 ]
set (fo_, "Startpoint’,st_);

fr_ = fittype (' (log(26.7451219+1)+B)/ (1+(x/%o)"p)-B', ...

'dependent', {"v'}, "independent ', {"X"}, ...
'coefficients', {'B', 'p', 'm0'"}):

% Fit this model using new data

[cf 1292 80,goodness 1292 80] = fit (LSTRAIN 1292 80 (ok ),LTIME 1292 80(ck ),ft ,fo ):

o

Alternatively uncomment the following lines to use coefficients from the
original fit. You can use this choice to plot the original fit against new
data.

oV

ct

{ 0.00758410175676885%6, -2.0076214226418543, 0.53012354573903464};
cfit(fr_,cv_{:}):

% Plot this fit

h = plot(cf_125%2 80,'fic",0.85):

set(h_(1),'Coloxr',[1 O O],...
'LineStyle','-', 'LineWidth',2,
'"Marker', "'none', "MarkerSize',&):

% Turn off legend created by plot method.

legend off;

% 5tore line handle and fit name for legend.

legh (end+l) = h (1):

legt_{end+1l} = 'fit 1292 20';
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% ——- Finished fitting and plotting data. Clean up.
hold off:

% Display legend
leginfo = {'Orientation', 'wertical', 'Location', 'NorthEast'}:
h_ = legend(ax_,legh ,legt_,leginfo {:});

zet(h_, 'Interpreter', 'none') ;

% Remove labels from x- and y-axes.
xlabelfax ,"'"):

ylabel(ax ,"'"):
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