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Abstract 

UNSUPERVISED LEARNING FOR BIOMEDICAL 
APPLICATIONS 

@Nashu Shan1s, 2009 

Master of Applied Science 
Electrical and Computer Engineering 

Ryerson University 

With the growth of application of cornputcrs in the generation aud analysis of bio1ucdical 
data, a. variety of eomputerized 1nethods and algoritluns have been proposed to optim.izc the 
process of acquisition and analysis of the data. Although advanced computerized techniques 
have provided the n1eans for rnorc precise diagnosis, the intcrprcta.tion of the recorded data 
in son1e cases is an issue due to the large amount of the data or com.plexity of it. 

\Vhilc most of t.he existing work in. the literature consider supervised techniques for analy­
sis of the collected data, the use of unsupervised techniques in the area of analysis and classi­
fication of bimncdical signals is relatively unexplored cmnpared to supervised approaches. In 
general, the investigation of application of unsupervised techniques for analysis of biornedical 
signals can be worthwhile frmn different view points. In son1e cases, bimnedical databases 
tend to contain a large anwunt of data. Genmnic da.tabases or pathological speech databases 
are exmnples of this kind. The devdopnwnt of any supervised nwthod for analysis of such 
databases requires predse n1anual labeling of the data, which ean be extrcnwly costly. How­
ever, t.:he use of an unsupervised classifier can be beneficial to accelerate the process tuld to 
acquire infonnation about the structure of the dataset. In addition, the characteristics of 
the collected bion1edical data can be affected by the recording process. 

In this work application of unsupervised learning in two biomedical signal processing 
problen;1s is investigated. In the first prohlmn, fuzzy C-rneans clustering has been used in 
design of a c01nputer aided diagnosis n1ethod for detection of abnorrnalities in s1nall bowel 
capsule endoscope images. The performance of the systCin shows an accuracy of 76which 
is an acceptable rate for an unsupervised 1nethod. In the second case, self organizing tree 
1na.ps (SOT~1) has been applied to audio signal dassification for hearing aids. An accuracy 
of 96% was achieved for discrirnination of hmnan voice from the environmental noise, which 
is one the 1najor classification scenarios for hearing aid applications. 
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Chapter 1 

Introduction 

A S the application of computers in the acquisition and generation of 1nedical data is 

growing, the use of con1putcrized analysis rnethods in processing the n1edical data is 

increasing. Although the usc of advanced ilnaging and recording techniques has provided 

the physicians with n1ore precise diagnosis, the interpretation of the data is sornctilnes an 

issue due to the large arnount of data or cmnplexity of it. As a result, a of cmn-

putcr based rnachine learning rnethods have em.crged to assist the doctors to interpret the 

data and extract n1orc infonnation frmn the recorded signals. In general, 1nachinc learning 

techniques caJ1 be divided into three groups; Supervised learning, unsupervised leaxniug a.nd 

reinforccrnent learning [ 1], 

Supervised learning: In supervised learning, a teacher provides a category label or cost 

for each pattern in a. training set, the goal is to reduce the stun of the costs for these 

patterns. 

Unsupervised learning: In unsupervised learning or clustering the ca.tegory or label of 

the data is not known beforehand. There is no explicit teacher, and the system fonns 

dusters or natural groupings the input patterns, 

Reinforce1nent learning The reinforcCinent learning n:wthod is analogous to learning \Vith 

a eritie. In this case no desired category is given for a datum; critic instead, only gives 

a binary feedback that states whether the tentative. category is right or wrong but docs 

1 
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not say specifically how it is wrong. 

Unsupervised classification is a natural way to proceed tm,vards cornputer-a.idecl diagnostic 

systerns and the 1nain motivation of using such scheme is to provide the automatic:. clustering 

of the irnage features in the sanw way hurnan visual systern does. It. helps to get an insight 

about the structures and patterns that already exists in the data and hence enables us to 

find n1ore robust features, which correspond to the natural characteristics of the da.ta. The 

usc of unsupervised nwthods n1ight seem unpromising at first. One might even B ... <:ik the 

question whether or not it is possible to learn anything of value from unlabeled sarnples. 

However, there arc ma,ny cases where unsupervised dassification could be very beneficial. 

For exarnple, collecting labeled data is not alwa~ys an easy task. In fact, sometimes labeling a 

large dataset can be surprisingly costly a.nd not feasible" lJnsupcrviscd classification can be 

used to discover the natural groupings that exist in the dataset and then use supervision only 

to label the clusters found . Furthennore, in smne cases the characteristics of the features 

change with tirne. Hence an unsupervised classifier can be used to track the changes and · 

n1ake the necessary corrections. Another application of unsupervised learning is to get smnc 

insight about the structure of the dataset. The knowledge about the intrinsic characteristics 

of the dataset and the patterns that n1ight exist in the dataset, can help us to cmne up with 

rnore efficient feature extraction and classifieation strategies. 

There is a considerable mnount of work in the literature on the usc of unsupervised tech­

niques for analysis a,nd classification of biomedical signals. Here 'live discuss the application 

of so1ne of the popular unsupervised techniques for biornedical s.ignals. 

e Independent component analysis (ICA): ICA is an en1erging field in bimnedi­

cal signal processing. The wide usage of ICA is 1notivated by the eom.n1on practical 

problcrn in biornedical signal processing. Recording bimnedical signals usua.lly involves 

several source signals and several sensors. Each sensor receives a rnixture of souree 

signals" The problen1 consists of recovering the source signals frorn the rnixture" In 

[2] and [3} a cornbination of wavelet transform. and ICA has been used to separate 

fetal ECG fron1 [4] n1other ECG" In [5] Bigan adopts ICA to detect chaothic cardia 



:3 
arrhythrnia. in EGG signals. Gao ct al. [4] usc a combination of ICA and Single value 

decomposition (SVD) to extra.ct fetal ECG frmn the rnixturc signal. In [6} and [7], 

Joyce ct al. and Zhou et al. have used ICA to remove eye blink artifact and power line 

artifacts frorn EEG signal. The works done by Navarro ct al. [8] and .Joshua ct al. [9] 

arc 1nore examples of adaptation of ICA for EEG signals. 

e Principle con1ponent analysis (PCA): PCA is a widely used dirnensionality re-

duction technique in data analysis and popularity con.1es front three hnportant 

properties: First, it is the optimal (in tenus of mean squared error) linear schmnc for 

cmnpressing a set of high dimension vectors into a set of lower dirnension vectors and 

then reconstructing. Secon.d, the n1odcl pararnctcrs can be computed dircctl:y frmn 

the data - for example by diagonalizing the sarnplc covariance. Third, com.pression 

and decmnprcssion arc easy to perfonn given the model paran1etcrs, and require only 

m.atrix rnultiplications. In [10] a PCA based 1nethod for ECG-QRS detection has been 

proposed. Once the QRS complex has been identified, a rnore detailed exmnination of 

ECG signal ean be perforrned. A c01nhination of wavelets and PCA is proposed in [11) 

for dccmnposing EiviG signals. In [12] and [13] PCA has been used along with neural 

network and self organizing rnaps (SOiVI) for pa.ttern recognition in EIVIG signals. In 

[14] original PCA has been applied to the data for dassification of cardiac arrhyth­

rnias. In [1.5} a n1ethod for clustering analysis of QRS cornplexes has been proposed 

that integrates PCA and SOIVL Another exan1ple of integrating n1ethods for ECG can 

be found in [16] where PCA and SVIVI have been used. The main goal is to classify 

nonnal fron1 abnonnal signals and then specify the kind of abnonuality for abnormal 

signals. 

e K-n1eans clustering: K-n1cans clustering is one the simplest and most basic clus­

tering tedmiques, which will be described in Chapter 2. In [17] a k-rneans clustering 

technique ha.s been adopted to classify all discrete points fonning a heart rnodel with 

respect to their position vectors or source-to 1neasurement transfer rnatrices. [18] also 
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uses k-mcans clustering for EEG arousal detection. 

• Fuzzy C-1neans clustering: Fuzzy C-rneans clustering is another popular clustering 

technique that is used widely in pattern recognition problems. T'his method is very 

dose to K-1neans clustering and will be described inmore details in Chapter 2. In [19] a 

fuzzy d ustering n1ethod has been used to classi(y three types of abnormality. Average 

period and the pulse w-idth arc the features used for classification, and then fuzzy 

clustering was perfonncd for these two features. The work by Geva and Kcre1n [20] 

also utilizes wavelet transform for feature extraction and unsupervised. fuzzy clustering 

for classifying brain-states. In the work by Ajiboye and \iVeir [21] also fuzzy clustering 

is used for E:MG Pattern Recognition for JMultifunctional Prosthesis Control. Finally, 

in [22} Ajiboye and vVeir use fuzzy C-rneans clustering to cla."lsify six rnajor grasping 

patterns of the hmnan hand. 

The usc of unsupervised techniques in the area of biornedical signal analysis has been the 

topk of nutny research works. In general, the investigation of application of unsupervised 

techniques for analysis of bimnedical signals can be worthw hilc fron1 different view points. 

In smnc cases, bion1edical databases tend to contain a large amount of data. Genmnic 

databases or pathological speech databases are exarnples of this kind. The develop1nent of 

any supervised n1ethod for analysis of such databases requires precise Inanuallabeling of the 

data, which can be ext.ren1ely costly. However, the usc of tiD unsupervised classifier can be 

beneficial to accelerate the process and to acquire infonnat.ion about . the structure of the 

dataset. In addition 1 the characteristics of the collected bion1edical data can be affected by 

n1any factors during the recording process. For instance, the recorded EEG sign~l can be 

affected by . the stress level of the patient or rnovCinent artifacts. In the process of recording 

bimnedical data, sorne patients n1ight need special nwdieations (e.g sedative drugs) or the 

recording procedure needs to be perfonned in a modified way due to the special conditions 

of the patient. Another exarnple is the capsule endoscopy ·where preparation of the bowel for 

the experiment is one of the factors that affects the characteristics of the captured irnages. 

Hence, in1ages captured during different experilnents could posses rrwre or less different 
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characteristics and this could deteriorate the perfonnance of a supervised classifier. Finally, 

unsupervised learning rnethods can be used to get sorne insight about the structure of the 

dataset and intrinsic characteristics if the data or can be cmnbincd as a preprocessing with 

a supervised approach to build a. robust classifier. 

In this work the application of fuzzy C-means and self organized tree maps (SOTIVI) for 

the biomedical signals will be exarnined. These two algorithms will be explained fully in 

Chapter 2. Fuzzy C-rneans has been previously applied to bimnedical signals such as EEG, 

ECG etc. It has also been u.scd for seg1ncntation of rnedieaJ irnagcs. However, its application 

for classification of biornedical irnages is unexplored. ln Chapter 3, fuzzy C-means has been 

used for classification of abnonnalities in the s1nall bowel images. Chapter 4 covers 

adaptation of SOTIVI for classification of audio signals for hearing aid application. SOTTh/1 

has been used for seg1ncntation of biological ilua.ges but in this work the application of this 

algoritlnn for analysis of bi01nedical signals will be investigated for the first time" In Section 

1.1 and Section 1.2 smne of the background infonnation required for Chapters 3 and Chapter 

4 arc provided respectively. 

lsl Computer metl1ods in medical imaging 

Iviedical ilnaging is one of the n1ost explosive devclop1ncnts that has taken place in the last 

two decades. The new findings in this area not only provide a better dia,gnosis, but also 

offer new hopes for trcatrnent of n1any critical diseases. Different imaging techniques such 

as X-ray, com.puted tom.ography (C'I') a.nd 111agnetic resonance in1aging (Th/IRI), provide the 

physicians with a more precise and non-invasive diagnostie tooL For example, for cancer 

or epilepsy, the predse identification of the lesion already facilitates the usc of surgery, the 

only therapeutic option for son1e patients. Also, they can provide rnorc accurate diagnosis 

for son1e parts of the body which arc not easy to evaluate using conventional methods. The 

srnall intestine is one of the parts that has been ahl\lays difficult to evaluate because of its 

shape and size" Traditional endoscopy used to be the only way the gastroenterologists to 

get an insight fonu the s1nall bowel and detect abnonnalities. The procedure is extrmnely 
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inconvenient for the patients. During the operation the endoscopic tube, which is rather stiff, 

is inserted from the mouth and moves around to navigate patient's gastrointestinal tract. 

The procedure causes a lot of discomfort and the patients are given anesthetics before the 

operation. 

In 2000, a new product was introduced by the Given imaging Ltd that attracted a large 

amount of interest from the gastroenterologists; the PillCam. PillCam is a tiny capsule 

endoscope with nearly the size of an ordinary capsule, which has a built in camera. The 

capsule is ingested from the mouth and as it goes down through the gastrointestinal tract 

(by the natural movements of the tract) it captures images and sends them wirelessly to a 

receiver that the patients wears around his/her chest. The capsule is exerted naturally and 

the patient lives normally during the procedure. Fig 1.1 shows images of the PillCam. 

Figure 1.1: Images of the PillCam 

1.1.1 Computer aided diagnosis {CAD) 

The benefits of the imaging techniques to achieve reliable diagnosis however depends on 

the quality of image interpretation as well as image acquisition. Computer technology, has 

made a significant contribution in the quality of interpretation of medical images in the 

recent years. The use computer-aided diagnosis (CAD) in the area of medical imaging was 

initiated in the 1960s and has increasingly grown since then [23]. Nowadays, CAD is being 

widely used in detection and diagnosis of many different kinds of abnormalities in medical 

images. For instance, CAD has become a part _of the routine clinical procedure for detection 

of breast cancer from the mammograms in many hospitals [23]. 
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CAD is a diagnosis rnadc by a radiologist who uses the output frmn a cmnputer. The 

cmnputerized analysis of nuxlical hnages is provided to the radiologist as a second opinion 

in detecting lesions, assessing extent of disea.'Je, and rna.king diagnostic dedsions. \Vhile 

the final diagnosis is rnade by the radiologist, the usc of CAD is expected to iinprove the 

interpretation cmnponent of medical ilna.ging [2-4]. These m:e son1e of the reasons that the 

use of CAD in the area. of 1ncdical irnaging is growing rapidly. 

In addition, interpretation of images by hun1ans can be affected by the presen.ce of struc­

ture noise in the hnage and the presentation of cmnplex disease states requiring the integra­

tion of vast arnounts of iinage data and clinical infonnation. 

Another benefit of using CAD in the analysis of medical i1nages is to deal with the large 

an1ount of data. T'he interpretation of screening i1nages is a repetitive and tedious task, which 

involves visual scanning of n1ostly healthy subjects for a specific abnormality. Screening of 

Inanunograins for early detection of breast cancer, the use of CT for detection of lung cancer 

in high risk individuals and the usc of colonogra.phy for detection of polyps that 1nay lead 

to colon cancer are cxmnples this kind. 

It n1ight be useful to ernphasize sornc of the differences between con1puter-aided diagno­

sis and another similar concept in t.his area., a.utornated cornputer diagnosis (23]. In both 

approaches, rnedical iina.ges are analyzed by cornputer algorithrns. However there are 1uajor 

differences between the two n1ethods. In CAD, ra.diologists use the cornputer output as a sec-

ond opinion, and 1nake the final decisions. The cmnputer output may accepted or rejected 

by the radiologists based on their level of confidence. Furthermore, in this approach even if 

the performance of the con1putcr is not equal to or higher than that of radiologists, it can 

be still cmnbined with the radiologist's skills to achieve better diagnosis. \i\Tith autmna.ted 

cmnputer diagnosis, however, the decision is n1ade by the cmnputer. Thus the efficiency of 

the processing technique is required to be very high and cmnparable to that of radiologist's. 
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1~1$2 CAD for small bowel in1ages 

The rnethod developed in this work for the analysis of the snw1l bowel hnages is designed 

as a CAD method. Although images captured by the PillCam provide the gastroenterolo­

gists with n1ore infonnation about the inside of small intestine, one nw.jor drawback of this 

technology is the large arnount of data that is generated in each • expcriinent. During each 

exarnination, an average of 50000 irnages or an equivalent of 8 hours of video is captured. 

~Ianual evaluation of such a large nun1ber of images is a very tiine consmning and laborious 

task and ilnportant dues might be rnisscd due to fatigue or repetitive nature of the task. 

Hence, a CAD n1cthod caJl be developed and used as a second opinion to point out the 

suspicious regions to the gastroenterologists. The first work on a CAD rncthod for detecting 

ahnornwlities in the sm.all bowel images captured by the PiUCarn was published in 2006 by 

Khaderni et al. [25]. In this work rnultiresolutional analysis is perfonned on the gray scale 

hnages to extract the texture infonna.tion and linear diserirninant analysis is used for classi­

fication of the hnages. In [26], Li and .Nieng use color inforrnation to detect bleeding in the 

small intestine. In [27] Bonnel et al. propose a feature extraction n1ethod based on wavelet 

analysis and cross co-occurrence matriees, where the extracted features contain both color 

and texture information. Canonical discrirninant analysis is then applied to the features for 

classification. In the work by Barbosa et al. [28}, the features are extracted fron1 wavelet 

coefficients and 1nulti layer perceptron (IviLP) is used as the classifier. All of the n:tentioned 

papers use supervised classification for detecting abnor:malities in the irnages. In this work 

however, the application of unsupervised classification will be investigated, Although the ex­

isting rnethods with supervised elassification typically report higher accuracy rates, the use 

of unsupervised classification can be advantageous in rnany ways. The perforrna.nce of a su­

pervised classifiers depends on the train data. Hence, a wrongly labeled daturn, which is not 

ra.re in bimnedica.l databases, can a.ffect the overall performance of the classifier. Besides, 

in order to obtain sufficient reliability, the dataset needs to be large enough to overcom.e 

proqlerns such as overfi.tting and the curse of dirncnsionality [29]. In addition, characteristics 

of the ilnages captured by the PillCmn, are affected by the bowel preparation procedure. 
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Colors of intra lurninal rua.teria.l rnay be significantly different between examinations. This 

leads to different im.age characteristics and consequently different features for each experi­

nlent. A supervised classifier could be biased by the characteristics of the in1ages in the train 

set. vVhereas, under such circun1stances, an unsupervised cla.ssifier does not suffer frmn the 

cha.nge of the image characteristics like a supervised classifier docs. Finally, the application 

of unsupervised techniques could be useful to discover clusters that might naturally exist in 

the data. and the features that are related to these groupings. 

In this work, a feature extraction schcnlC similar to the rnethod used in [27] is used, 

which extracts both color and texture infonnation. A fuzzy C-1neans classifier is applied to 

the dataset to find two clusters in the dataset, representing nonnal (healthy) abnorn1a.l 

(diseased) irnages. The results of the unsupervised classification not only can be used as 

CAD, but also can be used to get rnorc insight about the structure of the da.ta and help find 

the features that best represent the characteristics of the data. 

1 .. 2 At.tdio signal classification 

Audio da.ssification for hearing aids is one the growing areas of application of signal pro­

cessing and rnachine learning rnethods in biornedidne. Although there arc a wide variety 

of hearing aids available, studies show that hearing aid users arc not very satisfied with 

the perfonna.nce of their hearing aid in the noisy outdoor cnvironn1ents such as restaurants, 

workplace, street etc [30]. In fact, in a survey performed in [31], low perforrnance in the noisy 

environrnents is one of the major reasons that hearing irnpaired people are reluctant to use 

their hearing aid devices. Sirnilar studies show tha.t better perforrr1ance of the hearing aids 

in the appearance of the noise, is one the most desirable irnprove1nents arnong the hearing 

aid o\vners. In order to overcornc these problen1s, several audio processing and classification 

algorithms have been proposed for the hearing aids to discri1ninate different auditory classes 

and detection of the audio environrncnL In a survey obtained by Kochkin [~32] it was observed 

that a hearing aid that can operate efficiently under different listening conditions is very de­

sirable. Frmn 223 hearing aid users that took this survey, less than one third were satisfied 
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with their hearing aid if the deviee worked properly in only three or fewer environnwnts. 

However, over 91% of the users were satisfied if the hearing aid could be adjusted according 

to the audio envirom:nent. Thus, there is growing evidence that substantially better user 

satisfa.ctjon can be expected of the perfonna.ncc of the hearing aid can be in1proved. 

Audio classification is a one of the research areas that has attracted 1uany researchers in 

the recent years. Discrilnination of different audio classes . is one of the ta.':lks that htunans do 

effortlessly everyday. However, irnplmncnting such eapability in machines is a dernanding job 

and takes a la.rge am.ount of effort. A la.rge nurnbcr of papers in the literature is dedicated 

to various techniques for dassification of audio signals for . different applications. There is 

a wide range of applications . for the classification of audio signals. Speech processing for 

security applications and hmnan con1putcr interactionj n1ultirncdia data rnanagenwnt and 

distribution, security, bionwtries and bioacoustics arc sornc of the applications of audio 

signals classification [33]. Furthcnnore, with the growth of application of con1puterized 

processing techniques in the area of bimnedical signals, the use of audio processing and 

classification algorithms for biornedical applications such as hearing a.ids and pathological 

voice reeognition is rapidly inereasing. 

Various nwthods ha.ve been proposed for discrimination of different audio classes. How­

evcr1 nwst of the existing works use supervised classification schernes. The proposed solu­

tions include hidden IVIarkov n1odel [:34], k-rneans clustering, histogra1n driven Bayes clas­

sifiers, rnultilaycr perceptrons [35] , Gaussian mixture rnodels · [36], k nearest neighborhood 

(K-NN)[::>7], support vector 1naehinc (SVl\l)[:38J and linear discriminant analysis (LDA) [33]. 

The application of unsupervised n1ethods, on the other hand, is relatively unexplored. 

At this point, the results of the unsupervised nwthod can be either presented to the user 

or can be followed by a supervised approach for further processing, 

The works proposed by Sha.o et al. [39) and Rauber et al [t10) are two exmnples of 

application of clustering 1nethods for the n1usie databases. Using a clustering n1ethod has the 

advantage of avoiding the constraints of a fixed taxonomy, which rnay suffer frmn a1nbiguitics 

and inconsistencies. Considering the variety of the audio signals, son1e of the signals nw,y 



11 
sixnply not fit within a given category [41]. 

The classification 1ncthod used in this work is a fusion of supervised and unsupervised 

cla.'3sificr. The proposed method in this work is based on the self organizing tree n1aps 

followed by a fuzzy labeling of the data.. Another hnportant issue in the cla.'3sification of 

audio signals is the extra.cted features. There is a large anwunt of work in the literature 

on various feature extraction 1nethods for audio signal da.'3sifica.tion. The feature extraction 

strategy depends on the classification scenario and characteristics of the signals. In this 

work, however, the 1nain focus is on the classification part rather than feature extraction. A 

brief overview of the existing teehniques for audio feature extraction is provided in Chapter 

4. 

1 .. 3 Organization 

In this thesis, the suitability of two unsupervised techniques for biomedical data will be 

explored. Chapter :3 is dedicated to the application of an unsupervised technique (fuzzy 

C-means clustering) for detection of abnorma1ities in the capsule endoscopy hnages while 

Chapter ,4 describes an unsupervised method (SO'I'!vi) for cla<ssification of audio signals for 

lwaring aid application. The organization of this thesis is deseribed here; 

1. Introduction: In the first Chapter, background infonnation on CAD in niCdical inw,g­

ing and audio classification for hearing aid application is provided. An overview of the 

existing works in the literature on the application of unsupervised methods for bimued­

ical signals is also given in this Chapter. 

2. Unsupervised learning and clustering: An overvie\v of the dustering techniques 

is provided in this chapter. In addition the two clustering n1ethod used in this work is 

explained in 1nore details. 

:3. Unsupervised Learning in :1\tiedical In1age Classification: In this chapter the 

application of fuzzy C-n1eans clustering n1ethod for detection of abnormalities in the 

small intestine irnages will be described. A feature extraction Inethod based on wavelet 
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coefficients and cross co-occurrence rnatrices is used to extract color and texture infor-

1nation of the irnages. Then fuzzy C-mcans is applied to the extracted features. 

4. ·unsupervised Learning in IIearing Aids Signal Analysis: In Chapter 4 a clas­

sification nwthod based on the SOTlVI clustering algorithrn is used for discrin1ination 

of audio signals for hearing aiel. The feature extraction techniqueused in this work is 

based on thne-frequency clecornposition of the audio signal, which is n1ore suitable to 

handle the non-stationary audio sig.n.a.ls. A dassification technique, which is a fusion of 

supervised and unsupervised dassifieation is applied to the extracted feature and tested 

in different scenarios such as discrimination of hurnan/non-hurnan, natrual/ artificial 

and hurnanjn1usic. 

5. Conclusion: The conclusion for this thesis and the discussion of future works is given 

in the last chapter. 



Chapter 2 

Unsupervised Learning and 
Clustering 

2 .. 1 Introduction and Motivation 

U
NSUPER~I~ED classific-ation is a pattern recognition technique that aims to con­

struct decision boundancs based on unlabeled dataset. That is, we are interested 

in exploring the dataset and sec what can be done when all we have is a. collection of un­

labeled sa1uples. Unsupervised classification is also known as data clustering which is a 

generic label for a variety of procedures designed to natural groupings, or dusters, in 

rnultidirnensional data, based on rnea.sured or perceived sirnilarities ~unong the patterns [42]. 

One example of clustering is the detection of a region eontaining a. high density of a specifie 

pattern cornparcd to the rest of the background. Son1e of the functional definitions proposed 

for a cluster are: 

• Patterns within a duster are n1ore sin1ilar to each other than those belonging to dif-

fercnt dusters. 

e A cluster, which consists of an area with relatively high density points, is separated 

frmn other clusters an area of relatively low density. 

Figure 2.1 shows exa:mples of dusters with different sizes and shapes [43). The problen1 

of unsupervised classification or clustering is very challenging because data can contain 

13 
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Figure 2.1: Clusters in different shapes and sizes 

clusters with different shapes and sizes. Even the nurnbcr of dusters in the data depends on 

the resolution with which we view the data .. The question that n1ight cmne to the mind is 

that why anyone is intcrc~sted in using unlabeled sainples and whether or · not it is possible 

even in principle to learn anything valuable frorn an unlabeled dataset. There are at least 

five n1ain reasons for using unsupervised classification [1]. 

e First, in smne cases labeling a large dataset can be surprisingly costly. One exam­

ple could be the application of land-use classification in renwte sensing. In this case 

obtaining the "ground truth" infonnation for the samples, \Vhieh is the category for 

each pixel in an in1age, requires one to visit the specific site assoeiated with the pixeL 

Another exmnple is speech classification. Recorded speech is free but ctccurately label­

ing it (which is Inarking the word or phoncnlC uttered a.t each tinlC) is extrcnwly tirne 

consurning. If a classifier can be crudely designed on a small labeled dataset and then 

run without supervision on a large unlabeled dataset, n1uch tirne and trouble can be 

saved. 

• The second advantage of using unsupervised learning is that it rnakes it possible to 

proceed in the reverse direction; train with large arnounts of inexpensive unlabeled 

data, and then used supervision only to la.bel the groupings found. This is the case for 
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large data ruining a.pplieations where we are dealing with a large dataset with no prior 

knowledge about the contents of the data. 

e Third, in many applications the characteristic-s of the data can change over tim.e. 

F<x cxarnple, in an autornatcd food classification prohlcn1, the extracted features may 

change as the season changes. In such ca.<:;e, the perfonnance of the systen1 can be 

irnproved by running a classifier in unsupervised n1ode to track the changes. 

• Fourth, unsupervised n1ethods can be used prior to a supervised classifier to in1prove 

feature selection. vVe can usc these 1nethods to find more meaningful and discrinlina­

tory features that will be used for classification. 'I'here are unsupervised n1ethods that 

represent a fonn of"srnart preprocessing" or"srnart feature extraction". 

• Lastly, in the early stages of an investigation we ean use unsupervised rnethods to 

some insight into the nature or structure of the data. The discovery of distinet 

subclasses or sin1ilarities a.xnong patterns or of major departures front expected char­

acteristics 1nay suggest we significantly alter our approach to design the classifieL 

2 .. 2 Steps of a Clustering Task 

A typical clustering task usually consists of following steps [44]: 

1. Pattern :representation (including feature extraction and/or feature selec­

tion): This phase refers to representing the data to the clustering algoritlun. The 

infonnation regarding the mnubcr of dasses, type and scale of the features are con­

sidered in this phase" In this step one can use either the original data.'let or usc a 

set of features extracted frorn the da.t&':let to represent the data. Feature extraction is 

the process of applying different transfonnations, decompositions and analysis on the 

dataset to obtain salient features. In many c&':les, feature extraction is followed by a 

feature selection step to identify and choose the nwst effective feature subset frmn the 

original feature set. 
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2. Defining . (or selecting) a proxhnity 1neasure: There are a variety of distance 

measures defined for xneasuring the proxirnity of the points in the dataset e.g Euclidean 

distance, ~!Iahalanabis distance, :Minkowski distance etc. 'I'he distance 1neasures will 

be described in 1nore details in Section 2.4. 

:3. Clustering: Grouping the smnplcs in the datasetcan be done in a nuinber of ways. 

The result of the clustering depends on the type of clustering rnethod used to group the 

data. The output can be hard (each point belongs to only one cluster) or fuzzy (where 

each point has a xnembership value in different clusters) or a nested series of partitions 

when a hierarchical clustering approach is used. Various clustering techniques will be 

discussed in Section 2.5. 

4. Data abstraction (optional): Typically data abstraction is a compact representa­

tion of each cluster, usually by using duster prototypes or cluster centroid. 

5. Cluster validation (optional): Cluster validation is the asscssrnent of the output 

of the clustering algorithn1. It determines how "good'1 the clustering results a.re. All 

clustering algorithms, when represented with a dataset, produce clusters regardless of 

whether or not the data actually contains clusters. In those cases where the dataset 

actually contains clusters, son1e clustering nwthods return better results. In order to 

dctern1ine if the groupings found by a clustering algorithrn are actually rneaningful and 

evaluate ho\v good or how poor the clusters arc, different quantitative rneasures a.re 

developed. 

Figure 2.2 shows the block diagran1 of the first three steps, including a feedback loop wl1ere 

the feature extraction and selection rnethod.s can be adjusted based on the grouping results 

[45]. 

2 .. 3 Clustering tecl1niques 

Cluster analysis is a very useful technique in different areas of pattern recognition. The speed, 

reliability and consistency with which a clustering algorithrr1 can organize a. large dataset ha.'3 
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Figure 2.2: Clustering block diagram 
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led to \Videspread use of elustering tcehniques in areas such as data 1nining [45], infonnation 

retrieval [46] [47] image segn1cntation [48], signal cmnpression and coding[49] and rnachinc 

learning. Consequently, nurnerous clustering algoritluns have been proposed in the literature 

and new ones continue to appear. Classification of the existing clustering nwthods can be 

done based on different points of view. Figure 2.3 shows a hierarchical representation of the 

clustering algoritluns [43] [50]. Based on this taxonmny, the algorithrns can be divided into 

two 1najor classes, paranwtric and non-parametric. Non-pararnetrie approaches, in turn, fall 

within two groups: Partitional clustering a.nd Hierarchical clustering. The techniques in the 

first category are n1ainly based on the popular iterative squa.re-error partitional clustering. 

These algoritluns ahn to obtain the partition which n1inilnizcs the within class scatter or 

maxin1izes the within class scatter. Hierarchical algorithrns in the second category are 1nostly 

based on the a.gglom.erative hierarchical clustering. These algoritluus attmnpt to organize 

data in a nested sequence of groups which ean be displayed in the form of a dendrogram or 

a tree. 

Partitional Algorithms 

Partitional clustering algorithms atte1npt to obtain a single partition of the data. These 

rncthods have the advantage in applications where a large an1ount of data is to be processed. 

In such eases 1 the usc of a dendrograrn is not cmuputationally feasible . The partitional 

techniques usually generate clusters optimizing a criterion function which is defined either 
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locally or globally. The algorithm is run rnultiple tilnes with different starting points and 

the best configuration is then selected as the result of clustering. One of the rnost popular 

partitional clustering algorithrns is square-error clustering algoritlun. The general objective is 

to find the cluster configuration within the dataset, for which the squared-error is minimum 

for a fixed nmnber of clusters. The squared-error for cluster Ck is defined as the sun1 of 

Euclidean distances between each pattern in Ck and its cluster center m/'. This distance is 

also called the within-cluster variation. 

(2.1) 

\Vhere :.r~ is the 'ith pattern belonging to cluster Ckl nk is the nun1ber of patterns in the 

cluster ch and rnk is the Inean, or center of the I< th cluster defined a,s 

(2.2) 
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The overall squared-error for a configuration is the sun1 of the square-error for all dusters 

described as: 
K 

2 ~ .2 
Eli:= ~ek (2.3) 

k=l 

objective of the squared-error a.lgoritlun is to find the cluster configuration that n1in-

irnizcs the total square-error for a fixed munber of clusters K. The resulting partition has 

also been referred to as the 1ninimurn variance partitkm. 

The k-n1ea.ns clustering is one the shnplcst and the n1ost popular square-error a.lgorithn1s. 

Th.e a.lgoritlnn is cmnputationally efficient and gives good results on a dataset that consists 

of cmnpact and well separated clusters with a hyperspherieal shape [43). The algorithrn is 

even able to detect hypcrellipsoidal clusters if the IVIahalanobis distance is used in 2.3 in 

defining the squared-error. The following briefly explains the algorithm steps [1]: 

1. Begin with I< initial cluster centroid. 

2. Classify the n san1ples according to the nearest distance. 

3. Rccmnpute the cluster center for each cluster. If the new cluster centers are the sarne 

as previous ones, there is no need to recalculate the centers again. The current cluster 

centers arc the final ones. Otherwise, go back to step 2 and classify the points with 

the new duster centers. 

A big drawback of the algorithm., however, is the lack of a guideline to select the critical 

para1neters such as the number of clusters and the initial cluster centers [51]. Several varia­

tions have been proposed to hnprove the perforrn.ance of the ba .. 'Jic k:-rneans a1goritlun. One 

of the possible modifications is to introduce a fuzzy criterion function. This results in fuzzy 

c-means algorith1n, which will be described in the next subsection. 

2e3 .. 2 Fuzzy C-1neans Clustering 

In the traditional clustering approaches, each pattern belongs to one and only one cluster. 

This type of clustering is called hard clustering. In contra.."t to hard clustering n1ethods, 
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fuzzy clustering rnethods assign a degree of mernbership in ea.ch cluster to each pattern. A 

fuzzy clustering algorithm can be converted to a hard algorithn1 by assigning a pattern to 

the cluster with the largest degree of Ineinbcrship. The steps involved in perfonning a fuzzy 

c-means algoritlnn is very close to that of k-rncans, except for the objective function, which 

is defined as 

(2.4) 
i=l j:::::l 

vVhere rn is the fuzziness index, {lij is the degree of rnernbership of observation ~ri in the 

cluster ,i., :rj (j = 1, 2, ... , N) is the jth d-dilnensional data point and Ci is the d-dirnensional 

center of the duster. 

The fuzzy set Theory ,;vas initially applied to data clustering by Ruspini [44]. Although the 

results of the algorithn1 is better than the hard k-nwans a.lgoritlun, FClVI can still converge 

to the localrninin1a of the squared-error criterion funetion. 

2~4 Neural Network Approaches 

Artificial Neural Networks (ANN) has been widely used in pattern recognition applications 

in both supervised and unsupervised ways. ANN approaches typically fall into two groups: 

• The first group are those based on emnpetitive learning or learning vector quantization 

[50]. In cornpetitivc learning sirnilar patterns are grouped together by the network rep­

resented by a neuron. This grouping is done based on correlation an1ong the data. In 

unsupervised context, well-known example of ANN are the Kohonen 's self-organizing 

rnap (801\!1) a.nd adaptive resonance theory proposed by Carpenter and Grossberg in 

1990 (50]. The architecture of these networks are single-layered. Patterns m·e repre­

sented to the input layer and associate to the output layer. The weights between the 

input and output layers are updated iteratively until a tennina.tion criterion is fulfilled. 

This group of algorithnlS will be discussed in more details shortly. 

• The second group are techniques derived fron1 the principle cmnponent analysis (PCA), 

factor analysis and independent component anlysis (ICA)[52]. 
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2.4.1 Self-Organizing Architectures 

Self-Organizing methods are closely related to unsupervised learning. A number of self­

organizing architectures are: the Kohonen self-organizing feature map, neural gas approaches , 

hierarchical feature map, dynamic hierarchical architectures, non-stationary architectures 

and hybrid architectures [50]. The self-organizing technique used in this work is self-organized 

tree mapping, which is a derivation of the Kohonen self-organizing map and will be the focus 

of this Section. Figure 2.4 shows the hierarchy of different self-organizing methods . 
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Figure 2.4: hierarchical representation of self-organizing approaches 

2.4.2 The Kohonen Self-Organizing Feature map (SOFM) 

In the basic SOFM algorithm, input samples from ad dimensional feature space, are mapped 

onto a grid with lower dimensions (usually two or tree dimensional) [50]. Each node on the 

grid acts like a memory element; it stores the prototype vector that describes commonly 

occurring vector patterns from the input space. The points that are close to each other in 

the input space are mapped onto the neurons that are nearby in the grid. Whenever a node 

is updated, the nearby nodes are also updated based on their distance from the original 

winning node. Figure 2.5 shows the mapping of samples onto an SOFM lattice. The steps 
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l 

Figure 2.5: Mapping samples from the input space onto the SOFM lattice: The input xi is 
assigned to the winning node. The neighbors that are connected to the winning node in the lattice 
are updated according to the gaussian neighborhood function (courtesy of M.Kyan) 



involved in the SOFl\'1 algorithrn are: 

1. Initialize the weight vector WiJ of each neuron in the lattice using a random va1u.e. This 

randmn value can be a sample random.ly selected frmn the dataset -'Y.. 

2. randmnly select an input vector :J..~i from the dataset and present to the network. 

3. choose a winning node wi*i* based on the minimum Eudidean distance. 

4. update the neurons on the lattice according to a Gaussian neighborhood function 

defined as: 

(2.5) 

where 1'ii represents the position of the node at(i,j) on the lattice, a(t) represents the 

leaTning rate, which decays from a sn1all initial value and a( t) controls the radius of 

the neighborhood, which also decays over tilne and H(t) is the neighborhood function 

defined as: 

(2.6) 

5. update a{t) and o'(t) 

6. repeat iteration frorn step 2 until there is no significant change in Wij 

Association between the nodes is an hnportant advantage in SOF:tv1 that helps the evolution 

of the network ea.n be useful for extracting inter-clusters relationships. This property is 

useful for visualization of rnultivariatc data, where data with high dinlCnsjon is rnappcd onto 

a two din1cnsional lattice. Since the 1na.pping preserves the topology, neighbor nodes in the 

lattice represent the sa.n1ples with related properties in the original data [50] . 

2 .. 4 .. 3 Self-Organizing Tree Map (SOTl\1) 

SOTT\11 was originally introduced in [58] to rmnovc irnpulse noise from ilnagcs. The algorithm 

is a hybrid of the traditional SOFivf , which was explained in the previous chapter and the 

Adaptive H.esonance Theory (ART) [54]. Like ART, the growth of the network is controlled 
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by a vigilance test, which essentially watches for an input that is in contrary to the current 

knowledge about the input feature spaee. If sueh an input is found the resonance occurs a,nd 

results in refinernent of the winning node or generation of a new node. On the other hand, 

like the SOFlVI the generated network is 1norc topologically aware and the refinen1ent of the 

existing prototypes is guided by a Kohencn style learning rule. Like its counterpart SOFJ\11, 

the SOT:N1 algoritlun uses con1petitive learning approach to find clusters within the data 

while rnaintaining the general topology of the feature space. However, unlike the SOF1\t1, 

SOTIVI does not suffer from the disadvantage of nodes being trapped in the low density areas 

[50] and the network has a dynarnic structure and grows front a single node. Generation of 

a new node is guided by a hierarchical control function H.(t), which acts as an ellipsoid of 

significant siinilarity. H.(t) can be assun1cd as a global vigih.u1ce threshold that is used for 

n1casuring the proxirnity of a new input sample to the nearest existing node in the network. 

Smnples that fall outside the scope of the nearest existing node, result in generation of a 

new node as child of the winning node. By initializing ll(t) to start frmn a large value, the 

clusters discovered at the early st.a.ges of the clustering will be far frmn each other. Decay 

of H (t) over thnc results in partitioning the data space in low resolution at the early stages 

of the clustering, while favoring partitioning at higher resolutions later. Figure 2.6 depicts 

the clustering process in SOTl\1 and SOFIVI. 

The SOTM Algorithm 

The steps involved in the basic SOTNI algoritlnn are: 

l. Initialization: ra.ndmnly select a training vector frmn the feature space .-Y. Initialize 

t.he network parameters H(O) and a(O) 

2. randornly select an input :v frorn the feature space and calculate the distance di frorn 

::c to all cu.rren.tly existing neurons 'l.Vj(j = 1, ... , 1VcJ when Nc is the total munber of 

currently existing neurons. 

3. seleet the node with the m.inilnmn distance as the winning node ·w1.~ sueh that di(x, wk) = 

rwinidJ(x, ·t.ui) 
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Figure 2.6: Clustering procedure in the SOTM(left) vs the SOFM(right). The SOFM uses a 
predefined lattice to span the input steps and assigns the samples to the closest node, or the 
winning node. The input is used to update the winning node and its immediate neighbors in the 
lattice. The SOTM (right), on the contrary, explores the input space by a growing structure in a 
top-down manner. As it can be seen in the figure, unlike the SOFM, the SOTM does not suffer 
from the nodes begin trapped in low density areas. (courtesy of M.Kyan) 
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4. if dj(:r, 1o1z) ::_:; H(t:) , then: update the weight vector of the winning node using the 

reinforced learning rule: wk(t + 1) = wk(t) + o:(t)[~r- wi] where a(t) is the lea.rning 

rate and H(t) is the hierarchical control function. 

5. alternatively if dj ( ~r, tv k) > H ( t), then spawn a new node at the position x frorn the 

winning node 'IBk· 

6. update network parmneters 

• a(t;): decays with tin1e, lies on [0,1}, resets periodically. 

• H(t): decays with time, controls the hierarchical level of the tree. 

7. repeat fn.:nn step 2 until either: 

• there is no significant change in the network. 

• all neurons are allocated and there is no significant change in the network. 

• nutxinuun number of epochs is reached. 

The Hierarchical Control Function 

In general we assunw that the date samples arc presented to the network randomly. The 

only constrained hnposed on H ( t) is that it should be nwnotonieally decreasing over time as 

the samples are represented to the network [50]. Besides, H(t) should be ideally initialized 

to a large enough value to cover the span of the da.ta" There arc two standard hierarchical 

control function proposed for the original SOT11 algoritlun: linear and exponential decay. 

H('t) = H(O)- [(1- e-fJrH)I/(0)/f,]t (2.7) 

H(t) = I-I(O)e-tfTii (2o8) 

where T H is a thne constant) which is bound to the projected size of the input data ... Y, 

f/(0) is the initial value, t is the nurnber of iterations (or sa1nple presentation) and f, is the 

nurnber of iterations over which the linear · version of H ( t) would decay to the same level 
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a large value, possibly larger 

than the maxirnum variation within the data, is that all levels of resolution across the data 

can be explored. There arc two natural choke proposed for H(O) [50]: 

Range-based H(O}: :E (all ranges across the dimensions of X) 

SD-based II(O): > 6ax a. distance beyond twice the n1axinnnn deviation (T = :3crx) of 99% 

of the smnples frmn the 1nean. 

In addition, II (t) can operate in different nwdes. Figure 2.7 shows alternative strategies for 

decay of H(t) [50). 

1. Pure H(t) decay: In this case in transition to a new I-I(t) value, only one single 

randmn san1ple is considered. This is the typical approach for decay of H(t). However, 

it results a rather lilnited search to he conducted in each hierarchical level. In fact, 

in the lower levels of resolution, the slower the decay of H(t) means the data is being 

assessed more thoroughly. 

2. Stepped Ii ( t) with regular period T H step: A stepped fonn of decay is introduced 

in this approa,ch. This allows at least T Ii step san1ples to be explored before narrowing 

the search to a finer resolution. Due to the random nature of sa.n1ple representation, 

it is assurned tha.t a.t least sorrw smnplcs frorn all parts of the data are explored in this 

period. 

3. Stepped I-I(t) with irregular period: This mode is in fact an extension of xnodc 

2. In this mode the counter is begin reset every tin1e a new node is generated. This 

guarantees tha.t the search will continue for at least another T Hste]J sa.1uples after a 

new node is generated. This allows a ncvv node to have a chance to adjust itself. 

4. Stepped H ( t) with irregular period and node inhibition: This n1odc adds an 

additional constrain to 1nocle 2 by forcing the network adaptations only for a period of 

T H stqJ before inserting a new node. This allows nodes to organize and have sufficient 
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time to adjust themselves before new (and possibly unnecessary) nodes are allocated. 

This process repeats every time a new node is spawned and gives the network a period 

of time to settle before generating a new node. 

:~f\'· .. 
' . 

(a) 

(c) (d) 

Figure 2.7: Different H(t) decay strategies illustrated for period of generation of 10 neurons. (a) 
Pure H(t) decay; (b) Stepped H(t) with regular period; (c) Stepped H(t) with irregular period; (d) 
Stepped H(t) with irregular period and node inhibition. (courtesy of M.Kyan) 

Learning Rate 

The learning rate a(t) is an important factor in organizing the network. Like the hierarchical 

control function , H(t), a(t) can also operate in number of different global or local modes. 

In global modes a single learning rate is applied to all node, whereas in local modes an 

individual rate operates for each node a set of nodes. There are a few modalities proposed 

for the operation of the learning rate. Some of these modes are discussed below. The first 

mode is the original periodic reset strategy proposed for the SOTM. Modes 2-4 are the new 

appr?aches suggested in [50]. However, it has been mentioned in [50] that Modes 1 and 2 

are noticed to have better results for an SOTM process. 
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o Global periodic reset: In this traditional approach the network rnmnory is refreshed 

with regard to the underlying density. 

e Global reset upon node generatioin: This approach is a n1odification of the first 

nwde based on the idea that a network needs to reorganize its nwn1ory only \lilhen a 

new node is generated. 

o Local rest of winner and child upon node generation: This rnodification restricts 

the plasticity only to the region of the rnap which is recently grown. based on the 

assurnption that the adjustlnent of the nodes that are distant from the growing region 

is not necessary. 

e Local reset of winner, child and siblings upon node generation~ This nwde is 

very sirnilar to 1node :3, with the exception that children of the winning node arc also 

considered to be plastic within the updating region. As n1entioned in [50], the global 

reset n1odes (1,2) tend to outperform the local reset n1odcs. In addition, it is suggested 

that rnodc 2 is preferred because the reset is justified when new infonnation is to 

induced to the network after node generation. 



Chapter 3 

Unsupervised Learning in Medical 
Image Classification 

3.1 Small Intestine Images 

EDICAL ilnaging is certainly one of the most explosive devdopn1ents that has t<llien 

place in the last two decades. The new findings in this area not only provide a 

better diagnoses: but also offer new hopes for treat1nent of 1nany critical diseases. Different 

irnaging techniques such a.s lVIRI and x-ray provide the physicians with a nwrc precise non­

invasive diagnostic tool. Different rnedical imaging techniques arc complen1cntary and their 

progress has in1mcdiatc reperct1ssion on the devcloprnent of treatn1ents as t.hey provide a 

nmch less invasive diagnosis cmnpared to previous n:tcthods. For exan1ple1 for cancer or 

epilepsy, the predse identifica tion of the lesion already facilitates the usc of surgery; the only 

therapeutic option for son1e patients. Also, ima.ging techniques can provide 1nore aecurate 

diagnosis for son1c parts of the body which arc not easy to evaluate using conventional 

methods. The sn1all bowel for exa.n1ple has always been difficult to eval uatc because of its 

shape and size. Traditional endoscopy used to be the only way to gather actual images 

frmn inside the patients intestine. The operation needs to be perfonned by highly skilled 

doctors and is inconvenient for the patients. The endoscopy's tube, whieh is inserted fron1 

the n1outh, is rather stiff and causes son1e discmnfort as the doctor navigates the patient's 

gastrointestinal tract. In addition, since the ca1ncra cannot reach all parts of the small 

30 
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intestine, diagnosing diseases of the s1nall intestine was a Inajor problern for doctors[55]. The 

appm.u:ance of capsule endoscopy in 2000 has generated a large ~uuount of interest a1nong 

gastroenterologists. PillCa.n1 is a tiny capsule (lOnun x 27mn1)[56], which was introduced 

by Given Imaging Ltd. The capsule is digested frorn the n1outh and Inoves slowly through 

the gastrointestinal tract (including the sina.ll intestine) by a dint of natural contractions. As 

the capsule moves through the gastrointestinal tract, it captu.res color irnagcs and trans1nits 

thmn wirelessly to a receiver that the patient wears around his or her waist [25). The capsule 

is exerted naturally with the natural bowel movmnent.s [25]. The da.ta collected through the 

exan1ination is an 8-hour-long video that provides visualization of the 21 foot. long sn1all 

bowel, which used to be a "bla.ck-box" to doctors [25]. The procedure is a1nbulatory and 

enables the patient to live norn1ally during the endoscopic exan1ination. Clinical results show 

that PillCam is a superior diagnostic rnethod for detecting the diseases in the small intestine 

[55). Four n1ain types of cancer, which are usually found in the s1nall intestine are listed and 

described below [25). 

Adenocarcinon1.a: This type of cancer originates in the epithelial lining of the n1ucosa and 

is rnainly found in the duodenurn. 

Sa:rcoina: This cancer originates in the n1usde wall of the sn1all intestine and is mostly 

found in the ileum. 

Carcinoid: This type of cancer originates in the specialized neuroendocrine cells are found 

in the srnall intestine, the ileurn and sornetimes in the appendix. 

Lymphoma: This type of rnalignancy is usually fonned within the ly1nphoid tissue of the 

small bowel. They are comrnonly found in t:he jejunurn or ileunL 

The PillCam provides gastroenterologists with a new n1cthod for detection of the srnall 

bowel diseases through a live video representation, which was not available with the tra­

ditional endoscopy. However, the drawback of this technology is the large amount of data 

which is collected in each experiment. An average of 50000 irnages or 8 hours of video is 
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recorded during an examination. Manual evaluation of these images is a an extremely la-

borious and time consuming task and important clues might be missed due to fatigue or 

repetitive nature of the job [57]. Therefore, a computer aided diagnostic method can be 

developed and used as a secondary opinion, that views and points out the suspicious areas 

to the doctor. Figure 3.1 shows sample images taken by the PillCam, which includes three 

normal and three abnormal images. 

(a) (b) (c) 

(d) (e) (f) 

Figure 3.1: Sample small bowel images collected by the PillCam obtained from the Image Atlas 
of Given Imaging Ltd. (a) Healthy small bowel, (b) normal pyloric region, (c) normal jejunum, (d) 
small bowel polyp, (e) small bowel lymphoma, (e) small bowel lymphoma 

In addition, a computer aided system can be used to confirm and compliment the doctor's 

diagnosis. It can help to decrease the number of required biopsies, detect cancer in an early 

stage, and in general improve the quality of diagnosis [25]. The first work on the automatic 
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detection of abnonnalities in the capsule endoscope irnages was proposed by Khademi et a1. 

[25), where linear discriminant analysis has been uses for classification. Other classifica.tion 

techniques used in this area include canonical discrirninant analysis [27] and :tvfLP [28] [26]. 

vVhile all the previous works have used supervised techniques, in this work the application 

of an unsupervised rnethod will be explored. 

The investigation of application of unsupervised approaches for n1edical in1ages can be 

useful frmu different viewpoints. One of the reasons for considering an unsupervised n1ethod 

is that i1nage characteristics might vary in different experirnents. One of the rnost irr.1.portarrt 

features of the capsule endoscopy proecdurc is the bowel preparation. Colors of intra luminal 

1naterial n1ay be significantly different between exmninations. Therefore, the charactcristies 

of the hnages used for training the supervised classifier rnight be different fron1 those of 

hna.ges captured in the test experhnent and this could affect the pcrfonnance of a. supervised 

classifier. However, the perfonna.nee of an unsupervised classifier does not depend on the 

characteristies of the training and test data. Another important factor to be considered is 

the size of dataset. Although the ground truth for the hnage dataset is given in this case, in 

order to build a robust supervised classifier the dataset has to be large enough to guarantee 

good genera.lization. In addition, unsupervised teehniques can be used to get smne insight 

about the structure of the data and existence of the natural patterns, discovery of distinct 

subclasses or similarities an1ong patterns and to find 1ueaningful and discrin1inatory features 

that best represent natural groupings in the data. 

3$2 Feature Extractio11 

Like alrnost any other classifieation problcn1, the first step in the classifieation of s1nall bowel 

irna.ges is extracting a set of descriptors frmn t.he iinages that ean efficiently represent eharac­

tcristies of the images and have high discrhninatory power. The extracted features are then 

fed to the classifier, which is unsupervised in this ease, to rnake the decision. The outcome of 

the classifier is related to the diagnosis of the images, which can be either a. nonnal (healthy) 

or an ahnorn1al (diseased) ii:nage. In addition, since the input space consists of images the 
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input data is expected to have a very high dimensionality (256x256 in this case). Performing 

any classification method on data with such high dimensions would be extremely costly and 

computationally intensive. Hence, the need for a feature extraction scheme becomes more 

significant. Figure 3.2 shows the feature extraction procedure performed in this work. The 

Images are first converted into CIE lab color space, then shift invariant wavelet transform 

is performed on the images, and then cross co-occurrence matrices are calculated on the 

wavelet coefficients. Each of the blocks will be described in more details shortly. 

Input ir!wge in 
RGB 

Label no 
(normal/abnormal) 

Figure 3.2: Block diagram of the feature extraction procedure 
) 

The two main features used in this work are color and texture. These features are 

directly related to the clues used by the doctors to evaluate the images. Texture is one 

of the important clues in analyzing both color and gray scale medical images. The human 

visual system can discriminate different textured areas in an image effortlessly. However, 

implementing this task on computers has been the subject of research in the area of machine 

vision for a long time. 

Texture: The images captured by the PillCam are from different organs, structures and 

anatomical objects along the gastrointestinal tract. It can be noticed from the exper­

imental dataset that normal images contain mostly smooth and homogeneous texture 

·with very little disruptions in uniformity except for folds and crevices [25]. On the 

other hand, abnormal images tend to contain different textures at the same time and 
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more heterogenous textured areas. This can be seen in Figure 3.3. 

Color: Color contents of an image also provides discriminatory information about the re­

gion or objects in the image. Normal regions usually exhibit pinkish colors, whereas 

abnormal regions show some difference in color compared to the surrounding area. 

Malignant tumors are usually inflated, more reddish and severe in color compared to 

normal areas while benign tumors show less intense hues. Redness may specify bleed­

ing, blackness could be treated as deposits due to laxative, green may be the presence 

of fecal materials and yellow relates to pus information of the image [58]. 

(a) (b) (c.) (d) 

Figure 3.3: Top row: normal small bowel images. (a) normal small bowel, (b) normal jejunum, 
(c) normal jejunum, (d) normal small bowel. Bottom row: abnormal images. (e) small bowel polyp, 
(f) small bowel lymphoma, (g) polypoid mass, (h) GIST tumor. 

3.2.1 CIE Lab Color Space 

As explained in [59], abnormal regions are observed to show more or less differences in 

color compared to the surrounding regions. In fact, malignant tumors are usually inflamed, 

reddish and more severe in color. Hence, color information plays an important role in the 
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detection of abnormalities in srnall bowel hnages. The im.ages taken by the PillCa.rn are 

eom.pressed in .JPEG and coded in R.GB color space. Hmvever, in this work the feature 

extraction is perfonned in the CIE lab color space. Unlike the RGB, the La,b color space is 

designed to approxin1ate the hun1an vision. The n1.ain advantage of using lab color space is 

tha,t this color space is perceptually unifonn, which rneans a change in the color value results 

in a change of about the same visual ilnportancc. In addition, Eudidea.n distance Ineasurc 

has a better perfonnancc in this color space. The L cornponcnt defines the huninance, a. is 

red/blue chrmninancc, and b ·is yellow /blue chron1inancc. The equations for converting the 

RGB color space to the Lab color space are given below [59]: 

[ 

x_ r ] [ 0.41.2 .0.3_._ ·_57 .• . _·· 0 .. 180 .]. [ R _]_. Y = 0.212 0.715 .· 0.072 G 
Z 0.019 0.119 0.950 B 

(3.1) 

The first step is to transfonn the color form. RGB color space into XYZ color space using 

Equation 3.1. Next, values in the .. Yl'" Z color space are converted into the Lab color space 

using the following equations 

y 1/3 y 
L = 116(-. · ) - 16for-. > 0.008856 

Yrt Yn 
(3.2) 

y y 
L = 903.3( Y. ) fory: ::; 0.008856 

n n 
(3.3) 

a= 500(J(J~•)- f< )) (3.4) 

b ( '( y' !( z )) =500}-)--
Yn' Zn ·· 

(:3.5) 

where 

f(t) = ifi for t > 00008856 

J~(t) = 7.7787t + 
16 

for t < 0.00885_ 6 . 116 -

where AYn, 1/:l, and Zn correspond to the white color in the XYZ color space and L, a and b 

are the huuinance a.nd chrmninance in the Lab color space respectively. 
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3o2o2 Shift Invariant Discrete Wavelet Transforn1 

In the previous works on the classification of the srnall bowel ilnagcs [27] [25], the application 

of the shift invariant discrete wavelet transfonn has been investigated and has been proven to 

be efficient for extracting the texture inforn1ation inparticular. :rv1ultiresolutional ana1ysis of 

the ilnagcs is a natural way to highlight the features of interest, such as texture, in a.n in1age. 

It provides a. representation of the image in which the textural infonnation can be retrieved 

easily. This rnethod is basically a projection of the images onto a set of finite-length and 

fast-decaying oscillating functions known as wavelets. Wavelet transforn1s can be classified 

into discrete wavelet transforrns (D\iVT) and · continuous wavelet transfonns ( C\VT) . The 

latter operates over every possible scale and translation whereas the forn1er uses a specific 

subset of scale and translation values or representation grid. The DvVT is a scale-invariant 

transfonn since a decornposition of the hnagc contains all the b~1..sic functions needed to 

decmnpose different scales of the image. This feature of the DvVT is of in1portance since 

pathological areas in the sn1all bowel ilnages may occur in different sizes. 

However, as the Pillcam travels freely through the bowels, the orientation of the images 

is not always the sarne and the location of the suspicious areas is unpredictable. However, 

the D\VT is a shif-invariant transfonn, which means di1Terent translations of an input irnage 

results in different set of D\VT cocflicicnts [60]. In order to extract a consistent feature 

set, one solution is to use the shift-invariant discrete wavelet transfonn (SIDWT). Several 

solutions have been proposed to overcmne the shift-invariant property of DVVT. The method 

suggested by :rviallat et al is based on selecting the local exterrna frmn the filtered and fully 

sampled version of the ilna.ge. These local cxtcnna.s are used to detect and translate the 

shift since a shift in the signal results in a shift in the local exterrnas. However, due to 

lack of decin1ation there is a large mnount of redundancy and each level of decomposition 

has as many smnplcs as the original input irnage, which makes the algorithn1 to be costly 

overall. One solution for the eases where the dictionary contains Inany redundant wavelet 

basis functions is the Ivia.tching Pursuit (I\1P) algorithn1. However, this algorithn1 is cOin­

putationally intensive itself and can slow down the the syste1n. Bradley proposes a rnethod 
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whieh is a trade off between the sparsity of representation and tirne invariance where critical 

san1pling is perfornwd for certain sub bands only and the rest arc fully sarnplcd. The result 

of this rnethod is an approxintate SID\lVT. The n1entioned algorit.luns either suffer forrn high 

cornputational cost or achieve only an approxirnation of SIDWT. The SID\V1' algorithrn 

proposed by Beylkin does not have the discussed shortcon1ings. It calculates the D\VT for 

all circular shifts in a cornputationa.lly efficient way. In addition, since this transforrr1 uses 

orthogonal basis, it results in less redundancy. An extension of Beylkin's a.lgorit.lun to 2-D 

signals is developed by Lian et al. The application of this algorithn1 to the bio1nedieal irnagcs 

is shown to give prornising results in the previous works [25][27]. 

The algorithrn proposed by Liang and Parks in [61] is used in this work to decon1pose 

the i1nagcs in the wavelet. dmnain. In fact, this algorithm is a.n easy and fast i1nplemcntation 

of nmltiresolutional analysis using filtcrbanks. It makes for a good localization for high 

frequencies and a good frequency precision for low frequencies. 

The 2 - D filterbank schcrne used for an _N x lV irnage applies a high pass filter on the 

in1agc followed by a low pass filter. Applying the low pass filter l10 (z) and then the high 

pass filter H 1 (z) to each row of the image X creates two inutgcs: one conta,lning the low 

frequencies of X , .. \ (L) and the other one containing the high frequencies X (H). The rows, 

and ... Y(L) and X(H) axe subsarnpled by a factor of 2, then the sante filters H0 and H1 arc 

applied to the columns of each image. Finally another subsarnpling by 2 is perforrned on 

the colurnns. The result, as depicted in Figure :3.5, is four irna.gcs LL, H L, LH. and H H for 

two levels of decornposition. The smnc procedure is repeated for further decornposition. The 

high pass filters applied in the horizontal and vertical directions in this seherne cn1phasize 

the high frequency contents of the hna.ge and give oriented: The H H-, H L, andLH sub bands 

represent the diagonal, horizontal and vertical edges respectively. The 5/3 Gull wavelet has 

been used in this work as used in [62) because the filter lengths ru:e sn1all and can wa.rrant 

an efficient irnplementation. In order to be inva.riant to translations, the algoritlnn should 

look at all translations of the input ilnage and select the best set of wavelet coefficients. 

The procedure consists of two parts, first, an efficient algoritlnn for cmnputing the wavelet 
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Figure 3.4: Wavelet coefficients for two level decomposition of a small bowel image 

transform for all the translations and second a fast quadtree search algorithm. The wavelet 

decomposition is performed for different shift values. There are four elementary shifts in this 

algorithm: ( 0, 0), ( 0, 1), ( 1, 0) and ( 1, 1) where the first index corresponds to the row and 

second index corresponds to the column·. Every shift can be represented as a combination 

of these elementary shifts. So the ith level of decomposition for the input shift (a, b) can be 

obtained by [25] 

LLi(a, b)= L L ho(m- 2a)h0(n- 2b)LLJ- 1(m, n) (3.6) 
m n 

(3.7) 
m n 

(3.8) 
m n 

(3.9) 
m n 

The result of this decomposition is a tree shown in Figure 3.5 [27], which contains all 

the DWT coefficients for N 2 translates of the image X, where the size of the image is 

N x N. In this work, since the images are represented in the lab color space, three trees are 



40 
generated, each corresponding to a color channel. The total entror)y of the color image is 

found by calculating the entropy ofthe corresponding color subba.nds and then adding them. 

up. Since the rniddle wavelet detailed channels contain n1ost textural inforrna.tion [63] and 

in order to lirnit the nun1bcr ofcoefficients being generated, only two levels of dccmnposition 

was perforrned on the huages in this work. 

Figure 3.5: SID,JVT decomposition tree for three levels of decomposition with the best selection 
corresponding to the minimum cost path 

3o2.3 Cross Co-occurrence matrices 

1'he principle of cross co-occurrence Inatriccs is based on the gray scale co-occurrence rna-

trices(GCl\!1). The GCrvi for a gray scale ilnage shows the distribution of co-occurring values 

at a given offset. Each entry in a GCivi, J.lf ('i, j), indicates how often a pixel with gray-level 

value i occurs at the distanced to a pixel with the value j, where dis the given offset vector. 

A cross co-occurrence 1natrix (CC1V1) is the counterpart of GCrvi for color ilnagcs. Let I he 

an iV X JV Slnall bowel inu"tgc and bl, b2, and b3 the three color subbands. c~l,b2 is the CCl\11 

rnatrix for the color subbands bl and b2 for the offset d. Hence, each entry of the 1natrix, 
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c~l ,b2 ( i,j), represents the probability of the intensity level i in the color subband bl and 

intensity level j in the color subband b2 to occur at two locations seperated by the distance 

vector d. As shown in [27], since the sub bands are oriented, only some particular CCJVIs 

are calculated on each subband. The displaeen1ent vectors are grouped according to the ori­

entation of the subbands: vertical, diagonal and horizontal. Six rnatrices a.re generated for 

· ·1 ··· ""b d · ·Is· • t ·· · · t t·l f · · , F. . 11 .· . cbl,b2 · d cb2,b1 
0 

• • t cac 1 :::;uo. an 01 · 111a nccs 1n .o a or an lffid.ge. 1na y, s1nce 'd an .·d rep1csen 
bl b2 cbl,b2+cb2,!Jt 

the s;Jme infonnation, the average of these two 1natriccs J\1d ' = 'd 
2 

' t is used in this 

work. The use of CCMs has the advantage of extracting color and texture information at the 

sarne thne. As proposed in [27][64], four principal features can be derived frmn each 1natrix: 

contrast, energy, homogeneity and entropy. In this work however, based on the efficiency of 

the features only two features are kept: energy and hmnogencity. The fanner is calculated 

as the stun of the squared elements. If J\,1 is a cross co-occurrence rnatrix, the energy for the 

matrix is calculated as 

IV= EAJ(i,j)2 

i,j 

(3.10) 

Hon1ogcneity is another feature used to describe the textural characteristics in the hnage. 

This fea.ture n1easures the closeness of the distribution of elen1ents in the eo-occurrence 

1natrix to the matrix diagonal and is defined by 

(3.11) 

Two sets of features arc extracted from each ilna.gc based on the energy and hmnogcneity 

rneasures. As rnentioned earlier the CC:tvis are calculated for three groups of offsets, vertical, 

horizontal and diagonal. Hence, there arc 6 1natrices for each subband or 18 m.atriees per 

image. Finally, t\vo sets of features arc extracted from each CCivi based on energy and 

hon1ogencity measures, which rnakcs for a total nurnber of 36 features for each hnagc. 

3 .. 3 Classification and Results 

To evaluate the perfonnancc of an unsupervised elassification schcn1e on the small bowel 

dataset, two sets of experinmnts were conducted using k.-xneans and fuzzy C-1neans clustering 
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algoritluns. The · algorithn1s were applied to the extracted features. The database contains 

75 iinages, including 41 healthy (normal) iinages and 34 diseased (abnor:rnal) irnagcs. using 

the feature extraction techniques in the previous sections, each hnage in the database is 

represented with a feature vector of 36 features. Since there is a considerable difference in 

the range of the values for different features, the features are norrnalized prior to further 

analysis. In both classification scenarios ( using k-1neans and fuzzy C-nwans) the rmtnbcr of 

clusters is necd.ed to be known beforehand. Since in this work we aim to detect the existence 

of abnonnalities in the irnages, and not detennine the type of abnonnalities, the nun1bcr of 

dusters is defined to be 2 to represent norn1al and abnorn1al irnages. The Fuzzy C-rneans 

algorithn1 calculates 1 for each hnage X, the degree of n1en1bership for the healthy duster and 

the diseased duster. Then the hna.ges are separated into two clusters based on the criterion of 

n1a..xinuun rnembership. For the k-nwans algorithrn, it is the sarne rnethod; the same rnatrix 

of extracted features F is used. The a.lgoritlun calculates the squared Euclidian distance 

between each row of F (which represents one srnall bowel irnage) and the centroid. The 

centroids are then recalculated and these steps arc repeated until the a.lgoritlnn converges. 

The result of the two algorithrns is a 75 x 1 n1atrix. Each row of the n1a.trix corresponds 

to one im.age in the dataset and indicates ·whether the in1age belongs to group one or group 

two. Finally it is the physician who labels one group as the healthy bowels and the other as 

the diseased bowels. 

The eHiciency of the algoritlnn is provided in the confusion matrix (or the matching 

rna.trix) given in Table 3.2. Table 3.1 shows the definition of the confusion matrix where the 

specificity and sensitivity are defined as: 

1Vurnber of cor-rect positive predictions TP 
Sens'ii:ivity = · · ~ ----

. 1btal n·umber· of abnor'mal cases TP + F N 
(3.12) 

(3.13) 
iVurnber- of correct negative p·red-ict·ions T IV 

SrJec-ificity = . = ----
- Total n:wnber of nor·mal cases T JV + F P 

. . !vr·wmbeT of corrY::ctly classified i·mages 
r>.f f'tczenc:y = 
- Total numbeT of iTnages 

(3.14) 

As it can be seen in Table 3.2 that an accuracy rate of 76% is achieved which is a rather 

satisfactory result for an unsupervised classifier.The results of other da.ssifica.tion rnethods 
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(k-n1cans and SOTivi) using energy and h01nogeneity features are provided in Tables 3.3 and 

3.4 for con1parison. 

Another n1easure to evaluate the performance of the classification 1ucthod is the Receiver 

Operating Characteristic (ROC) curve. The ROC curve represents the fraction of true 

positive (TP) vs the false positive (FP). The TP corresponds to the sensitivity and is the 

proportion of diseased bowel hnages cla..':{sified as abnorn1al while the FP represents the 

portion of nonnal hnages classified as abnormal. An ideal classifier would yield a point in 

the upper left corner or coordinate (0,1) of the ROC space, where all ilnagcs have been 

correctly classified. This point represents 100% sensitivity (no false negatives) and 100% 

specificity (no false positives). The classification accuracy is also rneasured by calculating 

the area under the ROC curve. An area of 1 corresponds to perfect classification, whereas 

an inefficient cla.-.;sification is represented by a horizontal straight line going from the point 

(0, 0) to the point (1 , 1). In order to have an efficient classifier, the curve ha..o;; to be above 

this line. The ROC curve for the unsupervised classification . techniques used in this ·wodc is 

given in Figure 3.6, where the area under the ROC curve was calculated to be 0.76. Table 

3.5 shows the results of using different feature sets along with supervised and unsupervised 

classification 1nethods. In the supervised classifi.ca.tion, LDA has been used in conjunction 

with leave one out rnethod (LOOIV!) to cmnbat the proble1n of small sarnple size. In the 

unsupervised colmnn, the results of applying fuzzy C-1neans is provided. Both techniques 

arc used on the same database of 75 ilnagcs (including 41 norrnal and 34 abnorn1al im.agcs). 

As it can be seen fron1 the table, the extracted feature for a supervised classifier are not 

necessarily optimal for an unsupervised classifier. However, a feature set that yields a good 

results with an unsupervised classifier n1ay naturally lead to better results if a supervised 

cla .. c;sifier is used. This sho\vs how an unsupervised classification can be used as a first step 

in dassifica,tion to select the naturally rnost discrin1ina.nt features. l<'tmn Table 3.5 it can be 

observed that using the SIDvVT along with cross co-occurrence 1natrices in the RGB color 

spa.ce returns an accuracy rate of 52% for the k-1neans or fuzzy C-n1cru1s clustering while 

a relatively high accuracy rate is achieved using a supervised classifier. Nevertheless, using 
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the feature set that is extracted in the Lab colQr space for unsupervised classification results 

in an accuracy of 76%. In an attcrnpt to test the 1nethods with more iinages, all the in1ages 

were rotated by 180 degrees to obtain a database of 150 images. The classiflcation accuracy 

for the enlarged database is 70.7% which shows the 1nethod could be applicable to larger 

databases. 
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Figure 3.6: The Receiver Operating Characteristics curve with an area of 0. 76 

Future work 

Although ·wavelets are shown to be effective as texture feature extraction tools, the adapta­

tion of other texture descriptors for the Inedical hnages is growing. Arnong the new textural 

features, textons have shown promising results in extracting texture features for classifi­

cation. Textons are used to describe the fundarnental n1iero-structure elcnwnts in natural 

hna.ges. The appearance of the textons has a root in the psychological study of the texture 

recognition process in hurnan. The theory of textons was first proposed by .Jluesz [65] to 

explain the ''preattentive discrirnination" of the texture pairs. To discuss Julesz pioneering 
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Predietive positive Predicted negative 

Actually positive TP(true positive) FN (false negative) 

Actually negative FP(false positive) TN(true negative) . • . 

Table 3.1: The definition of confusion matrix 

Normal Abnonnal 

Norn1a.l 32 10 

Abnormal 8 25 

Table 3.2: Classification results for the fuzzy C-:means elassifier 

work on textons, '~'e need to describe these t-vvo concepts: [66) 

First order statistics refers to the probability of oecurrcnee of a gray value at a randmn 

location in an in1age. These statistical nwasures can be calculated fron1 the histogran1 

of gray level intensity of the im.age. First order statistics depen.d only on individual 

pixel values and not on the co-occurrence of the neighbor pixels. The rnean gray level 

value in an inmgc is an exan1plc of first order characteristics. 

Second order statistics rneasure the likelihood of gray level intensities occurring sepa­

rated with a. displaeCincnt vector d where the lengt.h and orienta.tion of the vector dis 

random. 
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Nonnal Abnorn1al 

Nonnal 29 10 

Abnonnal 11 23 

Table 3.3: Cla ... 'lsification results for the k-means classifier 

Norn1al Abnonna.l 

Norrnal 25 16 

Abnornutl 8 26 

Table 3.4: Classification results for the SOTI\rl classifier 

These two attributes were used by .Julesz to detennine whether two textures are prcatten­

tively discrirninable. The theory of textons was proposed to address this problern. Textons 

can be considered as visual events in an irnage such as collinearity, t.ern1ination and closure. 

Using the theory of textons, the two different textures in Figure 3. 7 can be described as 

followso The two regions in Figure 3. 7(a) have identical second order statistics and the 

nmnbcr of tenninations (Le tcxton infonnation) in both the upper · and lower tegions is the 

sarncl therefore the htnnan visual syst(~rn is not able to discrirninate the two textures preat­

tentivclyo On the other hand, in Figure 3.7(b), the munbcr of tenninations in the upper 

and lower region is different (three in the upper half and four in the lower half). Because of 

the difference in this texton, the two textures are d.iserhninable. 



, L / ·:~ ;:::: ru ru ~::1 ;:::.' ~~:l n,; ; u ;::: 
.~:i ;:::;; nJ ru :::'? ;::~' ;:;] ,::::= 

u Ul :;_; 

e m U' 

(a) 

47 

Figure 3. 7: Texture pairs with identical second-order statistics. (a.) The upper half and lower half 
contain the same textons. The visual system can not discriminate the different textures without 
careful scrutiny. (b) The upper region contains textons different from the lower· region. Humans 
can differentiate the two textures effortlessly. 
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The application of tcxtons in the area of Ultxlica1 irnage processing is growing recently. 

in [67] H;..ums ct. a.l. extract texture 1nicro-edges and textons between these rnicro edges to 

diagnose leukmnic Inaligna.ncy in samples of stained blood eells. 

In [68] a. texture feature extraction based on textons is used to classify the breast density 

pattern to dctcnninc the breast cancer risk. 

In [69] Tuzcl et al. use texton histognuns to distinguish among hernatology cases directly 

frorn rnicroscopic spcdrnens. The in1ages contain nonnal in1ages and for groups of four 

different hcn1atologic rnalignancies. Initially, the basic texture elcrnents (textons) for the 

nuclei and cytoplasn1 are learned, the cells are represented through texton histogran1s and 

finally a SVM classifier is applied to the extracted features. The work proposed by Adjeroh 

et a.l. in [70] is one cxarn.ple of using the textons for segn1entation of retinal hnagcs. 

The application of tcxtons in the area of nwdica.l iinage analysis for extracting texture 

infonnation appears to be increasing among the researchers and the results are prornising. 

Hence., as the future work a new set of features based on textons can be developed for the 

s1nall bowel i:mages to extract the texture infonnation and in1prove the accuracy. 



Color space 

RGB 

Lab 

Lab+RGB 

Extracted featu.res 

Contrast 
Energy 

Ho1nogeneity 
Entropy 

Contrast 
Energy 

Hon1ogeneity 
Entropy 

Contrast 
Energy 

Homogeneity 
Entropy 

Lab Energy 
Hornogeneity 

(normalized features) 

Lab Energy 
(third subband, normalized features) 

RGB Energy 
Honwgeneity 

Lab+ RG B Energy 
Hon10geneity 

Unsupervised 
classification 

52% 

56% 

76% 

72% 

61% 

65% 

Supervised 
classification 

94. 

79% 

76% 

84% 

78% 

88% 

4:9 

Table 3.5: Comparison of the result.s of l.HL"mpervised classification rnethod with supervised clas­
sification for different featu.re sets and different color spaces. 



Chapter 4 

Unsupervised Learning in Hearing 
Aids ignal Analysis 

4*1 A·udio classificatio11 for hearing a.ids 

S PEECH and envirmunental audio signals are irnportant sources of infonna.tion in our 

everyday corn1nunication, and can provide .information about the location or envi.ron­

nwnt of the captured scene or event. Having approxiinately 10% of the world population 

suffering fron1 son1e sort of hearing loss, one of the ilnportant applications of audio clas­

sification is in hearing aids for hearing irnpaired people. U scrs of hca.ring aids are forced 

to listen under a variety of noise conditions and in rnost ca..,es sirnple an1plification cannot 

help hearing-impaired listeners. Such devices a.Inplify the noise as well as the desired sig­

nal. Consequently, nurncrous signal enhancernent algorithn1s have been proposed for digital 

hearing aids. To overconw this problem, the hearing aid should be able to detect the audio 

classes which the incorning signals belong to, and then change the hea.ring aid parmneters 

aceordinglyo The first step to achieve this goal is the ability to quickly and correctly classify 

the audio signals in the environment. 

There is a growing body of evidence that different hearing aid characteristics tha.t can 

operate efficiently under different listening conditions are desirable [71). In a survey obtained 

by Kochkin [:32) from. 2323 hearing a.id users it was observed that less than one third of the 

hearing aid users were satisfied with their hearing aid if the device worked properly in 

50 
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only three or fewer environments while over 91% of the users were satisfied if the hearing 

aid worked wherever it was needed. Thus if the hearing aid can be a.utmna.tically adjusted 

according to the listening conditions substantially better user satisfaction would be expected. 

4*2 Audio signal classification 

Audio signal classification is one the tasks that humans perfo.nn etiortlessly all the tin1e. 

Differentiating the voice of a singer frorn the nmsie, understanding heavily accented speech, 

recognizing a voice on the telephone, telling the difference between a helicopter sound and 

a car sound, discrhninating the speakers voice from the background noise are sorne of the 

auditory tasks that we do every day without even considering then1. However, duplicating 

this capability on machines takes a.n intensive effort. In the area. of n1achine learning and 

artificial intelligence, analysis and discri1nination of the audio signals is one the research areas 

that has been active for a long time and is not con1pletcly solved yet. There is a wide range of 

applications for the classification of audio signals. Speech processing for security applications 

and human computer interaction, nulltirncdia data rnanagmnent and distribution, security, 

bion1etrics a.nd bioaeoustics are smne of the applications of audio signals classification [:3:3]. 

Taxonon1y of audio signals 

Before discussing different existing classification and analyzing techniques, it is irnportant 

to define a taxonmny of auditory signals. Audio signals can be sorted into classes from 

different viewpoints. However, the taxonmny presented here is based on the origin of the 

signal. Figure 4.1 shows the taxonomy of the audio classes used in this work as a reference. 

The audio signals used in this work can be divided into two Inain groups, signals that have 

a natural origin and those which are htunan 1nadc or artificial sounds. Natural signals are 

then subdivided into human signals (or speeeh) 1 which in turn consists of 1nalc and fcrnale 

speakers and non-lnunan sounds, whic:h include bird, anilnal and insects. On the other 

hand, lunua:n 1nade sounds consist of two rnain categories: 1nachine sounds, which in turn 

are divided into helicopter and aircraft~ and musical instn1n1ents such as piano? flute and 
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drun1. Other taxonomies with higher resolution can be obtained in rnany ways for exarnple 

by subdividing the hurnan speech into pathological or norrnal or by dividinginusical sounds 

into difl'erent nmsical genres such as pop, rock, etc. In this work however, we confine our 

attention to the taxonon1y given in Figure 4.1. 
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Figure 4.1: Taxonomy of audio signals used in this work 

Audio signal classification 

Audio signal classification consists of extracting physical and perceptual features frorn an 

audio signal (or one seg1ncnt of the signal) and categorizing the signal into one the given 

audio classes. Audio classification in general is a wide area of research and a large amount 

of research has been done on it in the last decade. ~1ost of the resca,rch works in the area 

can be divided into three main categories: speech, n1usic and audio scene analysis~ Each of 

these topics will be discussed in more detail below: 

Speech analysis 

A considerable part of research in the area of audio signals has been devoted to speech 

analysis and classification. Speech analysis is a wide area of research itself. The following 

areas are some of the rnajor branches of the speech analysis in the literature. 



5:3 
Speech recognition: Speech recognition is one of the oldest and the rnost fundarnental 

speech classification problcn1s. The goal is to convert the words frmn the hurna.n 

speech into a readable text. Speech recognition har; a wide range of applications in 

the areas such as health care, n1ilitary, security, telephony and enabling people with 

disabilities. References [72) [73] and [74] are son1e of the cmnprehensive works in the 

area of speech processing history and proposed rnethods and solutions. 

Pathological speech analysis: Can be used for recognition of selected types of vocal tract 

pathologies [75]. Various pathological conditicms affect the vocal functions, which result 

in speech disorders. The aim of pathological speech analysis is to assess the speech 

disorders by using acoustic characteristics of the speech. It can be also helpful in 

n1onitoring the progress of the patient over the course of therapy [33). Further n1ore, 

it is valuable to provide the physician with a qum1tita.tive guideline for a dcfonnation 

degree assessment of speech signal [76]. 

Speaker recognition: Speaker recognition (or smnetimes called speaker verification [77]) 

is the identification or verification a user based on the characteristics of their voice. 

Cmnpared to the speech recognition problem, where the main goal is to detern1inc what 

word is uttered, the goal is to find out who the speaker is. Son1c of the applications of 

spea.ker recognition can be speaker authentication, identification or bion1ctrics. 

Music 

As the an1ount of n1ultinwdia and n1usic files is growing every day, automatic extraction 

of 1nusic information is gaining n1ore irnportance as a way to structure and organize the 

increasingly large nmnbers of 1nusic files available digitally on the Web. Today a large portion 

of the audio classifi.cation literature is related to n1usic and n1usic infonnation retrieval. 

However, rrwst of the research in this area, fall within one of these categories: 

]\tlusic content analysis: vVith the creation of huge music databases, the dem.and for fast 

and reliable tools for content analysis and description is growing. These analysis tools 



54 
ean be used for searches, content queries, and interactive access. An1ongst all possible 

descriptors, 1nusic genres are crucial since they have been widely used for years to 

organize music ea.talogues, libraries, and rnusic stores [·:11]. A rnusical genre is typ-

ically characterized by the . cmnmon attributes related to instrurnentation~ rhythn1ie 

structure, and harrnonic content of the rnusic. The music genre classification rnaps a 

taxonomy of genres, i.e., a hierarchical set of categories onto a rnusic collection. Sirni­

lar to any other classification problcrn, a set of features is used to decide on the rnusic 

genre. Table 4.1 shows a sunun.ary of the features being used in 1nusic content retrieval 

today [41]. As for the classification, a number of supervised and unsupervised rneth­

ods have been proposed. Shao et a.l. [39] usc agglmnerativc hierarchical clustering 

on their rnusic dataset. In the work by Rauber et al. ['10] the growing hierarchical 

self-organizing rnap is applied to cluster data and organize thern on a two-dirnensional 

space. References [78] and [79] arc exa.1nples of application of supervised dassifiers 

where K-nearest neighbor are used in the context of genre classification. The hidden 

rnarkov n1odels (HIVI:~~Is) have been used in [80] and [81]. In [82] vVest and Cox show 

the applications of linear discrhninant analysis in genre classification of audio content. 

In [83] support vector machines are used for the classification purpose and finally [84) 

is an instance of the usc of artificial neural networks. 

Musical instrument recognition: :Niusical instrument recognition is another aspect of 

rnusic inforrna.tion retrieval. Such a capability rnay be extremely helpful in the frarne­

work of autmnatic rnusical transcription systems as \vell ~1..c; in content-based search 

applications. One of the practical applications of rnuslcal instnunent recognition is 

autornatic rnusic transcription. A typical task of classification of musical instnuncnts 

consists of three phases [85] the first step is the preprocessing, which can be also re­

ferred to as pitch extraction. The next stage is the extraction of frequency infonnation, 

funda1nental frequencies and hannonics. These .infonnation will then be used in the 

third stage which is the pattern recognition and classification stage. Some of the works 

use the ten1poral inforrnation as well [86]. References [87] [88] and [89] are son1e of the 
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other existing techniques in the literature on the recognition of musical instrun1ents. 

Speech/music discrin1ination: Another aspect of content based audio classification that 

has attracted many researchers is discrin1ination of hun1an speech frmn the music. In 

this process, smnetilnes we are rnore interested in extracting the speech inforrnation 

fonn the background 1nusic, for exa1nple for the purpose of perforn1ing autmnatic 

speech recognition on the soundtrack data. On the other hand, smnetirnes the music 

content is of 1non:~ hnportancc e.g. rnany listeners are n1ore interested in the rnusic 

on broadcast radio rather than the conunercial and talk progran1ming. The works by 

Hawley et a.l. [90] and Saunders et al. [91) are some of the previous works on this topic 

in the literature. Several feature sets have also been suggested for this purpose. In 

[92] a cornparison of the proposed feature sets for speech/rnusic discrimination (such 

as cepstral coefficients, amplitude features and pitch features) is presented. 

Tin1bre 

texture n1odel: rnodel 
of features over 
texture window: 

1) Sirnple modeling with 
low order statistics 
2) rnodeling with 
auto regressive m.odel 
3) n1odeling with 
distribution estiination 
algoritluns( e.g. EI'vl 
estirnation of 
a G 1\!IIVI of fra1ue) 

1v1elody /Harmony 

pitch function: 
n1easure of the 
energy in function 
of nrusic notes 

1) Unfolded function: 
describes pitch 
content and 
pitch range 
2) folded function: 
describes 
hannonic content 

Rhytlun 

periodicity function: 
m.easure of the 
periodicities of 
features 

1) Te·mpo: periodicities 
typically in the 
range 0.31 158 
(i.e., 20040 BPI\1) 
2) rnusical pattern: 
pcriodicites between 2 
and 6 s 
(corresponding to the 
length of one or 
In ore rneasure bar) 

Table 4.1: Typical features used for music content retriev·al 
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Audio scene classification 

Audio scene a.na1ysis is the process of extracting infonnation about the environment based 

on the characteristics of the received signal, and has nurncrous applications in nmltiincdia 

processing. Hence, cornpared to the previously rnentioned classification categories (rnusic 

and speech) audio scene analysis is a more general and cmnprehensivc task. The idea of 

audio scene analysis was first proposed by Brcgrna11 in [93], which is the cornerstone of 

this area. In his work Bregrnan presented a new perspective in human sound perception. 

The concept of audio scene analysis con1es frmn the way that htunan brain works to use the 

sounds to build a picture from the surrounding cnvironrnent, whieh is also called an auditory 

scene. There are ntunerous applications for audio scene analysis. Arnongst all, one of the 

Inost popular applications of audio scene ana.lysis is in the developrnent of smart hearing 

aids, which will be discussed in n1ore details in the future sections. 

4o2o3 Review of the previous works 

Iviany rnethods have been proposed in the area of audio signal classification with the appli­

cation to hearing aids. 

In [71] Kates proposes the selection of processing algoritlnn based on the audio infonna­

tion from. the scene. N ordqvist and Leijon [34] introduced a hidden IVIarkov n1odel (HJ\!Il\i1) 

based classifier for hearing aids using features derived fronr ccpstral coefficients. In the 

work done by Buchler et. al [35] a va.riety of rna,chine lea.rning techniques (k-n10ans, his­

tograrn driven Bayes classifiers, n1ultilaycr perceptrons, and Hl\fMs) were tested and the 

ergodic Hl\1!\,1s were shown to outperform the rest of the xnethods. Audio content analysis 

at IVIicrosoft research conunonly en1ploys Gaussian rnixture nwdels (Gl\Il\/1)[36], k nearest 

neighborhood (K-NN)[37] and support vector rnachine (SV:rvi)[:38] for audio classification. 

Other popular classifiers for audio classification include linear d.iscrirninant analysis (LDA) 

[33], hidden l\!Iarkov 1nodels (HlVII\11)[:39} and artificial neural networks (ANN)[94]. 

\Vhile there is a large anwunt of research in the literature on the application of supervised 

classifiers, the use of unsupervised classifiers for audio classification is relatively unexplored. 
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Clustering (or unsupervised) approaches are nwst beneficial in cases where precise rnanual 

labeling of the data is tiine consurning and laborious or when the feature characteristics 

rn.ight change over time. As rnentioned earlier, the hearing aid is expected to operate in a 

wide range of audio envirmuncnts. Therefore, the nurnber of audio classes and nature of the 

classes in the received audio signa.l is not predictable. In this case, a clustering approach can 

be beneficial to discover different audio cla.r;ses that exist in the received audio signal. This 

step ca.n be followed by supervision. to select and arnplifythe desired audio class. In addition, 

using a clustering nwthod has the ad vantage of avoiding the constraints of a fixed tax:onmny, 

which may suffer frorn ambiguities and inconsistencies. In addition, considering the vc.u:iety 

of the audio signals, sorne of the signals rnay sirnply not fit within a given category [41]. 

The usc of a clustering technique makes it possible to take into account the overlap that 

n1ight exist between different classes. In [39), Sha.o et al. use ~:u1 aggloinerative hierarchical 

clustering on the audio data. set for music genre classification. Rauber ct al. [40] use the 

growing hierarchical self organizing 1nap to create a. 2-D output for visual representation of 

the n1usic data set. The classification method proposed in this work is based on the self 

organizing tree 1na.ps, whieh was explained in Chapter 2, followed by a fuzzy· labeling of 

the data. approach allows for extraction of underlying characteristics of the data and then 

supervised labeling is used to interpret the discovered clusters. 

The proposed 1nethods can also be discussed front the point of feature extraction. IVIost 

of the existing nwthod extract either temporal or spectral features for classification. A 

wide range of feature sets have been proposed for this purpose. In [92) a comparison of 

different feature sets proposed for audio classification is given. Smne of the suggested features 

include signal energy, pitch, zero crossing ra.te [92] [91], Entropy rnodulation [95], 4 Hz 

rnodulation energy, percentage of low-energy fraJnes, spectral rolloff point, spectral centroid, 

rnean frequency, ccpstral coefficients [96), [97} and high and low frequency slopes [71]. All 

the rnent;ioned features arc extracted only fron1 tirne or frequency dornain; however, the 

ternporal or spectral features are not enough for representation and localization of non­

stationary aspects of audio signals, such as trends, discontinuities, and repeated patterns. 
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Thus the features used in this work are based on joint tilne and frequency analysis of the 

signals, which is effective for revealing non-stationa.ry characteristics of audio signals. 

\Vork 

Nordquist et al. [:34) 

Behler et al. [35] 

Abu-El-Quran et al. [36) 

Lu et al. [37) 

Guo et al. [38] 

Shao et al. [39] 

J:.reen1an et al. [94] 

Classification 
technique 

HlVIl\11 

k-means, J\:ILP 
hayes classifier, HIV111. 

Adaptive thresholding 
of feature values 

K-NN 

SVl\ti 

HfviiYI 

ANN 

Delta features fron1 cepstral coefficients 

Tonality, width, pitch variance, 1neasures 
of tiine offset 

4Hz rnodulation, low energy frarnes, 
spectral · roll off, spectral centroid, 
cepstral residual, pulse n1etric, 
spectral flux, zero crossing rate, 
variance of the low band energy 

High zero crossing ratio, low 
short tirne energy ratio, spectrun1 flmc, 
LSP divergence,band periodicity, 
noise f.ra1ne ratio 

Total power, subband powers, brightness 
bandwidth, pitch, 1nel frequency cepstral 
coefficients ( l\!1FCC) 

l\;1FCC, linear prediction coeiiidents 
derived frmn cepstrum coefficients, 
delta and acceleration 

!vlean frequency, high and low frequency 
slopes, envelope 1nodulat.ion 

Table 4.2: Summary of the feature extraction and classification techniques used in the literature 
for audio classification 
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Figure 4.2 shows the block dia.gran1 of the ilnplernented syst.mn, where the blue lines show the 

flow of the train data and. the red lines show thef1ow of the test data. In the training phase 

ea,ch input audio seg1nent .. Y is passed through the adaptive timc-ii·cquency decomposition 

(TFD) block. The TFD matrix V is then d.ecmuposcd b.Y the use of Non-negative n1atrix 

Factorization (NivlF) nwthods into base and coefficient 1natriccs ~V and l{. Then the features 

a.re processed and the desired nurnbcr of featu.res arc extracted frcnn each ba..'3e vector and 

its corresponding coeffident vector to fonn the feature set f. Once this procedure is run for 

all the segments in the training set, the SOTN1 clustering technique is applied to the data 

to discover the clusters aJJd cornputer the du.ster centers C. Then a n1cn1bership degree is 

calculated for each duster, a, which will be used for the labeling of the test data. Eaeh 

segment in the test da.taset, after passing through the feature extraction block, is fed to the 

data labeling block, where the deeision is n1a.dc about whieh class the segment. belongs to. 

All of these blocks will be described in Inore details in the future Sections. 

Input s~eg{ ment ·. ·· ·A···· daptive 
.... ~-- ~ -= TFD 

~--~ .. - ··-· ·· 

Figure 4.2: Block diagram of the feature extraction and classification 
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The features used in this \Vork arc captured by applying the 1natching pursuit algorit.lun on 

the signals followed by the non-negative rua.trix decomposition. The concept of these two 

algorithms are briefiy described in Sections 4.3.1 and 4.3.2. Then a feature set is created 

fron1 the results of these two algoritluns which is described in Section 4.8.3. 

Matching pursuit TFD 

In every day conversations, we connnunieate a wide range of ideas with precision. By adding 

or ornitting a few words, we c~m cornmunica.tc subtle differences in close meanings. This is 

possible due to the fact . that. natural hmnan languages have large vocabularies that include 

words with close rnea.nings. In the area of infonna.tion proeessing, a low level represcnta,... 

tion of the signal nmst include infonnation about distinct properties and minor differences 

si1nultancously. However, nwst of the signals we deal with in real life applications (such 

as audio signa.ls) are cmnplex sigrw.ls that consist of a wide scope of patterns. Precise rep­

resentation of these signals with few basic functions is not an easy task [98]. This is the 

nwtivation behind the idea of projection of the signals onto large and redundant dictionaries 

of wavefonns, which was proposed by :Mallat et al. in [98]. According to this work, linear 

transfonns (such as Fourier and wavelet) do not have the flexibility required for representing 

wide range of signals. Fourier transfonn elin1inates temporal properties and hence provides 

a poor representation of the signals that are well localized in tiinc. vVavelet bases also arc 

not opthnal for those signals whose Fourier transforn1 has a narrow high frequency support. 

Hence, decornposing a signal on such basis, is like writing a text using a small vocabulary. 

Although it might be possible to express the idea, it takes extra effort and extra. words to 

describe the unavailable words. Flexible deeornpositions arc particularly irnportant for those 

signals whose local ternporal and spectral properties vary widely. 

In the rnatching pursuit algorithn1, the signal is decomposed into a. linear expansion of 

waveforms . These waveforms belong to a redundant dictionary and are selected in order 

to best rnatch the signal structure. These wavefonns are called tirne-frequency atmns. for 
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example, impulses need to be decon1posed using atorns that are well concentrated in tiine, 

while spectral lines are better represented by waveforms which have a narrow frequency band­

width. Although the n1atching pursuit decornposition is a nonlinear algorithm, it maintains 

the energy conservation property like an orthogonal expansion. 

When using a dictionary of tilne-frequency atorns, applying the rnatching pursuit algo­

rithrn yields an adaptive tiine-frequency transfornl. It decon1poses the function f(t) into a 

sum of con1plex time-frequency atoms that best match its residues. A general fmnily of time­

frequency atoms can be obtained by scaling, translating and modulating a single window 

function g(t). By denoting'"'(= (s, tl, ~),the function g(t) can be defined &'3 

( ) - I ~r. ( t - u- if,t g1 t - 1 v sg --)e , 
8 

(4.1) 

\rVhere s > 0 is the scale and ~ and u represent frequency modulation and translation 

respectively. The Fourier transfonn of g-y(t) can be written as [99] 

.9(w) = y'Sg(s(w- e))e-i(w-f.)u (4.2) 

In this work, a dictionary of Gabor time-frequency atoms has been used. The discrete 

Gabor time-frequency atom can be written as 

(4.3) 

where 

( ) 
= K-8 ~ ?.1; 4 -1r(n- pJV)2 

9s · n r;, L ...., e . 
V S p=O S 

(4.4) 

The constant J(., is used for normalizing the function g8 , p (0:::; p < N) is the tin1e shift, 

¢ (0 :::; ¢ < 2n) the phase shift, and 0 :::; k < N. The decon1position of the signal f can be 

written as a linear expansion of the signal over a set of atorns selected frorn the dictionary. In 

order to find the atorns that best match the structure of the signal a successive approximation 
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of f with orthogonal projections on the elernents of the dictionary is performed [99]. After 

n iterations, the decon1position of the signal f is given by: 

f - )'n-1 (Rif ) + Rif - L....li=O ' 9-ri 9~yi , (4.5) 

where Rif is the decon1position residue after n iterations and (, ) denotes the inner 

product of the two functions. At each stage of iteration, the algorithm selects the atmn 

g.h for which the inner product (Ri f, 9-ri) is rnaximized [99). The energy distribution of the 

decomposition can be written as 

n-1 

E f ( t' w) = L I ( Ri f' 9~ti ( t' w)) 1
2 \V 9-ri ( t' w) (4.6) 

·i=O 

where l'Vg1i(t,w) is the Wigner distribution of the aton1 9Art(-t,w) which does not include 

cross terrns [ 99] . 

4e3.2 Non-negative matrix factorization 

Non .. negative rnatrix factorization (NMF) is a decmnposition technique proposed by Lee and 

Seung in [100]. The interpretation of Nlv1F for the application of statistical analysis of the 

multivariate data can be described as follows: Assume V is an m x n non-negative data 

rnatrix, where n is the dimension of the data and rn. is the number of vectors or the nun1ber 

of san1ples in the data set. The goal is to find non-negative matrix factors l¥ mxT and H.,.xn 

to approximate the n1atrix l/, such that 

(4.7) 

and also 

v ~ VVh, (4.8) 

where v and h are the corresponding colun1ns of V and H respectively. This rneans each 

data vector v can be approximated by a linear cornbination of the columns of w· weighted 
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by the con1ponents of h. Therefore lV can be considered as a set of basis vectors that are 

optimized for the linear approxin1ation of the data in V. 

Usually r is selected to be smaller than nor m, so the result is a compressed version of 

the original matrix, V and the data vectors can be represented using fewer basis vectors. On 

the other hand, in order to obtain a good approxhnation, the basis vectors should discover 

the structure that is latent in the data. In this work, the NJ\;IF technique has been performed 

on the tirne-frequency 1natrix. Therefore n is the length of the signal, rn is the frequency 

resolution of the constructed tin1e-frequency matrix, and r is the decomposition order. After 

decomposition, lV and H carry spectral and ten1poral characteristics of the original matrix 

respectively. HI contains spectral structures and H contains the corresponding location of 

each spectral structure in the original matrix. The problem of finding TV and H can be 

considered as a minin1ization of the function 

f = IIV- vVHII2 (4.9) 

There is a variety of strategies in the literature to find tV and H [101][102]. In this work a 

gradient-based 1nethod proposed by Lin in [103], which uses bond-constrained optin1ization 

technique. The standard form of bound-constrained optimization problem can be expressed 

as [103]: 

where 

n1in f ( ::t) :rER 

subject to l.i :::; xi :::; ·ui, i = 1, ... , n (4.10) 

( 4.11) 

(4.12) 

{ 

Xi for li < ~ri < ui 
P[;J;] = ni for xi 2: ui (4.13) 

li for Xi :S li 

In [103] this technique is applied to the NJ\1F problen1. This n1ethod is computationally 

efficient and offers better convergence properties than the standard approach [10:3]. 
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493.3 Feature selection 

As shown in Figure 4.2, once the TFD rnatrix (V) is decmnposed into base and coefficient 

n1atrices (T!V and H), a feature set is extracted from each base vector and its corresponding 

coefficient vector. The features are derived from coefficient vectors, base vectors, and frorn 

1\tiP decomposition. A brief description of the features used in this work is provided here: 

1. Sparsity: The sparsity feature is calculated for each coefficient vector,{hih xN, as 

8 
= VJV- (I:~=l hi(n))/JL:;:=l hr 

hi JN - 1 
( 4.14) 

The value of this feature is 1, if and only if hi contains a single non-zero con1ponent, 

and is zero if and only if the components are equal. 

2. Sum of derivatives: This feature is calculated on the base vector and represents 

discontinuities and abrupt changes in the signal. The equation for derivation of this 

feature is given by 
N-1 

Dhi = L h~(n) 2 , 
n=l 

where 

n = 1, ... ,N -1 

(4.15) 

( 4.16) 

( 4.17) 

The value of this feature is a measure of discontinuities. If there are discontinuities in 

the coefficient vector, the value is large, otherwise it is sn1all. 

3. Moments: The first mmnent of the base and coefficient vectors are also extracted. The 

spectral and te1nporal moments, 1\10wi and Jv!Ohi, are obtained using the following 

equations 
M 

A!Ow.i = I: rnwi(m) (4.18) 
rn=1 

N 

l\10hi = I: nhi(n) (4.19) 
n=l 
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where hi and wi are the base and coefficient vectors and A1 is the frequency resolution 

of the TFD. 

4. Sparsity I: In addition to the sparsity of the coefficient vectors, the sparsity of the 

base vectors is also extracted. This feature represents the noisy structure of the signal 

and is calculated as 

s = VM - (I:~~=l wi(n))/VL..~;,=l wr 
Wi VM -1 

(4.20) 

5. Sparsity II: This feature is defined as the nu1nber of samples whose value is smaller 

than a threshold E to the total nun1ber of samples in the base vector: 

SP. = Wi < E 
Wl A1 ' ( 4.21) 

where wi < E is the number of base sa1nples less than a small threshold and NI is the 

total nu1nber of smnples in each coefficient vector. This function is unity if and only 

if all the components in wi are greater than the threshold, and is zero if and only if all 

the sa1nples are less than the threshold. 

6. Periodicity: \iVhile the previous feature measures the scattering of the components 

in frequency, we still need another feature to represent the presence of harn1onicity of 

the energy in frequency. For each base vector, the Fourier transform of the vector is 

calculated as 
l\J 

H1i(v) = I L e-j
2

rr~;w wi(1n) j ( 4.22) 
1n=l 

where AI is the length of the base vector, and H'i(v) is the Fourier transfonn of the 

base vector wi . Next a second Fourier transform is perfonned on the base vector to 

obtain Hli ( K) as 
M/2 

vVi(K) =I L e-j~~;;l¥i(v)l (4.23) 
v=l 

Finally we sum up all the values of I~V(K}I for K > rn0, where 1n0 is a small number. 

P . = EA~4 j Hl·(K)•i w, K-rno ~ (4.24) 
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The value of Pwi is large for bases whose cornponents show strong periodic behavior, 

such as vowels in speech. However, for non-periodic sounds such as aircraft, the feature 

has lower values. 

7. Su1n of derivatives: This feature is calculated on the coefficient vectors and captures 

discontinuities and abrupt changes in the signal. 

M-1 
'\.---.. I ( 2 Dw; = L... wi m.) 

1n=l 

where 

w~(rn) = wi(m, + 1)- wi(rn)rn = 1, ... , l'vf- 1 

rn = 1, ... , AJ- 1 

(4.25) 

(4.26) 

(4.27) 

where w~ is the first derivative of the coefficient vector. The value of this feature is 

large if the coefficient vector contains discontinuities. 

8. Projection features: As shown in Eq 4.5, I\1P decomposition projects the signal 

onto a set of time-frequency atoms. The an1ount of signal energy that is projected in 

each iteration depends on the structure of the signal. Signals with coherent structures 

need less nun1ber of iterations, while signals with a non-coherent structure tend to take 

rnore iterations to get decomposed. This property is used as feature to discrin1inate 

coherent audio signals form non-coherent signals. To extract this class of features, first 

we calculate the difference in the projection energy between iteration i and i + 1: 

(4.28) 

i = 0, ... , I- 2 (4.29) 

where 
- a~ri 

a = Total energy of the decomposed signal 
(4.30) 

is the ratio of the projection energy at each iteration. Next, we define Li as the sun1 

of the energy differences: 

Li = do + d1 + ... + di ( 4.31) 
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(4.32) 

Li keeps the trend of the energy coefficients (ai) but it is normalized and it is indepen­

dent of the signal's energy. Finally, norn1alized coefficients (Li) are used to calculate 

1\!IP feature: 
J-2 

A1P =ELi (4.33) 
i=O 

4 .. 4 Classification and results 

4.4.1 classification methodology 

The classification rnethod used in this work is based on the SOTJ\;1 clustering algorithm. The 

proposed method, which is a fusion of supervised and unsupervised classification, consists 

of two stages. In the first stage the SOT1V1 clustering algoritlun is applied to the training 

dataset. Since the data is represented to the SOTM in a randon1 n1anner, the fonnation of 

the clusters might be slightly different for each run. In fact, sorne of the discovered clusters 

include one or very lilnited nmnber of sarnples. Therefore, those clusters in which the number 

of smnples is smaller than a threshold will be elin1inated. The value of this threshold in this 

work was adjusted to be 5% of the total number of samples in the train data set. Next a 

mernbership matrix, 1VLmxn, is calculated based on the distribution of each class in different 

clusters, where rn is the nun1ber of clusters and n is the nu1nber of classes. Each entry in the 

rnembership rnatrix , rniJ, (which we call men1bership coefficient) indicates the probability 

of a vector in the cluster ·i to belong to the )th class. 

Af= 
[ 

mu 
rn21 

m~, 
( 4.34) 

where 

(4.35) 
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These coefficients will be used in the calculation of the fuzzy rnembership degree for 

each of the test vectors. Each segn1ent is represented using 15 feature vectors. By using 

this approach less weight is associated with the vectors that are in the overlap regions. In 

the second stage, each of the feature vectors representing a test signal is assigned to one of 

the cluster centers found in the previous stage based ·on the n1inimum Euclidean distance 

criterion. For each test signal, the scatter vector S is defined as 

(4.36) 

where si is the nun1ber of the representing vectors for a test signal that fall within the ith 

cluster and C is the nurnber of clusters. Finally the probability of a signal belonging to 

the )th class is calculated according to the distribution of its representing feature vectors in 

different clusters and can be written as: 

<I>(j) = S.Af(j) (4.37) 

4.4~2 Results 

The audio data set used in this work consists of 192 signals of about :3s duration, with a 

sarnpling rate of 22.05 KHz and a resolution of 16 bits per sample. Table 4.3 shows different 

sound classes in the data set and the nurnber of signals in each class. 

Airplane Anirnal Bird Drum Fen1ale Flute Helicopter Insect I\!Iale Piano 

20 20 20 20 20 15 17 20 20 20 

Table 4.3: Different audio classes in the data set and the number of signals in each class 

J\1P-TFD with the frequency resolution of Af = 250 is constructed for each audio signal. 

Once the time-frequency matrix (TFM) is extracted, NI\!IF with decomposition order of 15 
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(r = 15) is performed on each TFl\1. Next, a feature vector comprised of nine features is 

extracted from each base and coefficient vector. 

(4.38) 

Finally, SOTJ\II is applied on the training dataset and the nurnber of valid dusters is 

calculated for each classification scenario. One of the advantages of using SOTM is that 

unlike other clustering approaches such as fuzzy C-rneans, the exact nurnber of clusters is 

not needed to be determined beforehand. The clusters are formed as the data is presented 

to the network and the number and size of the clusters is determined by the paran1eters 

such as the hierarchial control function (H(t)) and the learning rate ( a(t) ). The initial 

values of these functions are appointed according to the dataset. In the next stage, the 

rnernbership coefficients are calculated for each cluster based on the distribution of the train 

signals. In the test stage, each of the test signals are assigned to one of these cluster centers 

based on the minilnum Euclidean distance measure. Finally, the class label of each signal is 

detenuined by the weighted stun of the feature vectors falling within each duster rnultiplied 

by the rnernbership coefficients. Another point to be discussed here is that since the data is 

represented to the SOTl\1[ in a randmn rnanner, the nurnber and the shape and size of the 

clusters might vary each time the clustering algoritlun is run on the data. However, since 

there is not a one to one correspondence between the clusters and the audio classes, this 

fact has no considerable impact on the total performance of the classifier. In addition, the 

results of the several are averaged to further elirninate this effect. 

One of the rnost irnportant classification tasks for a hearing aid system is to discrirninate 

hun1an speech fonn environmental noise. Therefore, in the first scenario the data set consists 

of signals from hurnan speech and envirmunental sounds. The hun1an category includes 20 

signals from male speakers and 20 signals fronr fernale speakers and environn1ental sounds 

include 10 bird, 10 aircraft, 10 piano and 10 anin1al signalso Table 4.4 shows the results for 

this classification task where an accuracy of 96% has been achieved. As it can be seen from 

the confusion 1natrices, the systern dernonstrates high accuracy in discrimination of hun1an 
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voice fron1 other audio signals. The achieved true positive rate shows that all hun1an voice 

signals have been classified correctly. In addition, the overall accuracy rate for classification 

scenarios that include discrirnination of human voice is very high. Furtherrr10re, in order to 

evaluate the efficiency of the systen1 to discriminate humanvoicein particular environments, 

two other classification tasks have been defined. In the first case, an accuracy of 98% has 

been achieved in discrirnination of human voice from the rnusical instnunents. This capability 

could be useful in recognizing and separation of hurnan voice fron1 the background n1usic in a 

song or at the concert. The second classification task was defined as discrimination of hun1an 

voice from natural sounds, where an accuracy of 96% has been achieved. Furthermore, the 

proposed method was applied to other classification scenarios such as natural vs artificial 

sounds and 1nusical instruments vs aircraft. The results of these classification tasks are 

provided in Tables 4.7 and 4.9. 

Table 4.5 shows the overall obtained accuracy rate and the data set used for each classi­

fication scenario. 

Human Non-human Total 

Hun1an 40 0 40 
(100%) (0%) (100%) 

Non-hun1an 3 37 40 
(7.5%) (92.5%) (100%) 

Table 4.4: Confusion matrix for classifying human vs non-human audio signals 
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Classification scenario Data set Accuracy rate 

Hurnanjnon-hurnan Non-hurnan:aircraft, piano, animal, bird 
Human: rnale, female 

Hurnanj1\1usic Hurnan:male, fen1ale 
1v1usic:piano,flute,drum 

96% 

98% 

Nat ural/ Artificial Natural:rnale, female, bird, anirnal, insect 81% 
Artificial: helicopter, airplane, piano, flute, drum 

Hurnan/Nature Hun1an:rnale, female 96% 
N ature:anilnal, insect, bird 

Iviusic/ Aircraft 1v1usic:piano, flute, drurn 92% 
Aircraft:helicopter, airplane, 

Table 4.5: Different audio classes in the data set and the number of signals in each class 

Human 1\1 usical instrurnents Total 

Hurnan 40 0 40 
(100%) (0%) (100%) 

.1\1 usical instrurnents 1 39 40 
(2%) (98%) (100%) 

Table 4.6: Confusion matrix for classifying human speech vs musical instruments 
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Natural Artificial Total 

Natural 50 0 50 
(100%) (0%) (100%) 

Artificial 19 36 55 
(34%) (66%) (100%) 

Table 4. 7: Confusion matrix for classifying natural vs artificial sounds 

Hun1an Nature Total 

Hurnan 20 0 20 
(100%) (0%) (100%) 

Nature 3 17 20 
(15%) (75%) (100%) 

Table 4.8: Confusion matrix for classifying human vs nature sounds 
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l\!1 usical instruments Aircraft Total 

l\!1 usical instruments 34 6 40 
(75%) (15%) (100%) 

Aircraft 0 37 50 
(0%) (100%) (100%) 

Table 4.9: Confusion matrix for classifying musical instrument vs aircraft sounds 



Chapter 5 

Conclusion 

I N this work the application of unsupervised learning for analysis and classification of 

bion1edical signals was investigated. Although there are rnany works on the applica­

tion of supervised learning techniques for classification of bimnedical data, exploring the 

application of unsupervised learning rnethods can be beneficial in Inany ways. Building a re­

liable supervised classifier requires a large enough, precisely labeled dataset. However, some 

bimnedical datasets are very large and n1anual labeling of the data can be extren1ely costly 

and tirne consun1ing. In such cases, unsupervised learning methods can be used to find the 

natural groupings (e.g in audio classification) that exist in the dataset and then a physician 

can label the discovered groups. Furthermore, unsupervised techniques posses 1nore flexibil­

ity in situations where the characteristics of the data change over tirne or the the number 

of classes is not known beforehand. For example, consider the audio classification task in 

a hearing aid device. The audio signals that are received by the device contain different 

audio classes depending on the audio environment. Audio classes that exist in an indoor 

environ1nent can be different frmn those that are found in an outdoor envirorunent or at the 

concert or at a lecture. In such situations where the nun1ber and the nature of the classes 

are not known, a clustering method rnight perfonn better than a supervised classifier that is 

tuned to detect specific classes. In addition, unsupervised classifiers can be used to get some 

insight about the structure of the data and select n1ore efficient feature extraction methods. 

Two classification methods based on clustering techniques was applied to two separate 

74 
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bimnedical signal classification problern. In Chapter 3, fuzzy C-rneans clustering was applied 

for classification of sn1all bowel capsule endoscope in1ages and in the Chapter 4 classification 

of audio signals for hearing aids was investigated. Despite the different classification tasks 

in the Chapter 3 and Chapter 4, there are conunonalities for the two databases. First, the 

signals in both databases are non-stationary. Second, in both scenarios we are dealingwith 

a large volurne of data and lastly in both cases the real-time performance of the algorithrns 

is in1portant. For the hearing aid application, the need for real-time performance is more 

obvious. No hearing aid user would be interested in a device that amplifies the audio signals 

with delay. In the case of capsule endoscopy, the real-time performance becomes more critical 

in the design of the next generation of capsule endoscopes, or the "smart'' capsule endoscopy, 

where the capsule itself contains the drugs and can release the drug wherever it is required 

in the gastrointestinal tract. 

Based on the nature of the classification task in Chapter 4, where the nun1ber of audio 

classes is not known, a classification rnethod based on SOTIVI clustering algoritlun was used 

to discriminate different audio classes. The advantage of SOTM over other clustering tech­

niques such as fuzz C-means is that in this approach the number of clusters is not required 

beforehand and this n1akes the SOTI\!I more suitable for this audio classification task. The 

discussion and conclusion for each of the chapters is provided in following sections. 

5ol Classification of sn'lall bowel images 

5.1.1 Results and discussion 

In Chapter 3, fuzzy C-n1eans clustering was applied to the problem of detecting abnormalities 

in the small bowel capsule endoscopy images. 

Initially the iinages were converted to Lab color space. The Lab color space is a percep­

tually uniforn1 color space and the Euclidean distance measure perfonns better in this color 

space. The results provided in Table 3.3 show that the classification accuracy in this color 

space is better than the rates obtained in the RG B space. 

A feature extraction method based on wavelet coefficients and cross co-occurrence Ina-
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trices was applied to the ilnages. Since the abnorrnalities rnight occur at random locations 

in the image, SIDvVT was used for the wavelet decon1position to extract shift-invariant fea­

tures. The combination of wavelet coefficients and cross co-occurrence nratrices was shown 

to be efficient in the previous works. Four types of features were extracted frmn the CCl\11 to 

represent texture characteristics, including energy, homogeneity, texture and contrast. Since 

the feature extraction process was performed on the three color planes of the hnage, the 

extracted features contain color infonnation as well. Difl'erent combinations of features were 

evaluated and the results was provided in Table 3.3. The results for a supervised classifier, 

which is LDA in this case, is also provided for the same feature set. As it can be observed 

from the table, the best performance for unsupervised classification was achieved with en­

ergy and hon1ogeneity features in the Lab color space. The confusion matrix and receiver 

operating curve for this feature set is provided in Fig 2.6 and Table 2.2. 

An accuracy rate of 76% was achieved for with fuzzy C-rneans algorithrn. Although the 

results show higher accuracy rates for the supervised classifier, one should bare in n1ind that 

the perfonnance of the supervised classifier can be biased by the dataset to son1e extent. In 

order for a supervised classifier to be reliable and provide good generalization, it has to be 

trained on a large enough dataset. However, the number ofirnages in the srnall bowel data 

base is 75. Hence, despite the higher accuracy rate the reliability of the supervised classifier 

yet has to be investigated. 

5.1.2 Future work 

Although the accuracy rate obtained in this work is acceptable for an unsupervised classifier, 

other alternatives and n1odifications can be sought to in1prove the perforn1ance of the system. 

In the feature extraction stage, wavelet decomposition followed by the CCiv1 was used to 

extract color and texture information. Although CCl\1s have been used successfully in the 

previous works, they rr1ight not be the best solution for sn1all datasets since a large a1nount 

of data is generated after the calculations. Hence, a large amount of averaging and down 

sarnpling has to be done to decrease the number of features to a reasonable nurnber and this 
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could cause the loss of inforn1ation. 

Among other texture analysis rnethods, textons are shown to be effective in representing 

textural infonnation. Textons have already been used in for texture analysis in biological 

and bion1edical irnages and have shown promising results. Thus, one of the subjects of the 

future research work would be to exan1ine alternative feature extraction n1ethods such as 

textons. 

5 .. 2 Classification of audio signals 

5.2.1 Results and discussion 

In Chapter 4 a classification rnethod based on SOTl\1 clustering algorithm was applied to the 

classification of audio signals for the hearing aid application. The SOTl\!1 is a newly emerged 

clustering n1ethod, which has been already used for segn1entation of biological images. In 

this work however, the classification method is a fusion of supervised and unsupervised 

classification. Unlike most of the previous works in this area, the features extracted in 

this work were based on time-frequency analysis of the signals followed by the matching 

pursuit TFD. Due to the non-stationary nature of the audio signals, ten1poral or spectral 

features can not effectively represent localized features of the audio signals such as trends, 

discontinuities and repeated patterns. TF features on the other hand, are rnore suitable 

to capture and represent characteristics of the audio signals. The proposed method was 

tested under different classification scenarios such as human/non-human, human/music , 

natural/artificial, lnnnan/nature etc. The classification was perforn1ed on a database of 10 

different audio classes including 20 aircraft, 20 animal, 20 bird, 20 drum, 20 female, 15 flute, 

17 helicopter, 20 insect, 20 rnale and 20 piano signals. 

The classification results provided in Table 2.5 show high accuracy rates for rnost clas­

sification scenarios. An accuracy of 96% was achieved for discrin1ination of human vs non­

hunlan sounds, which is the n1ost common classification scenario considered for the hearing 

aid. 

l\4any rnethods have been proposed for audio classification for hearing aid. However, most 
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of the existing papers in the literature address the problem of discrin1ination of the hurnan 

voice from the background noise. Although this would be desired capability in a hearing 

aid, it is not enough for other listening situations such as outdoor, lecture , concert etc. The 

problmn of audio scene analysis is rather a general problenr that can be the ultirnate goal 

for the hearing aids. 

The classification rnethod used in this work is based on SOT:NI clustering algorithrn. 

Hence, the nun1ber of audio classes is not needed to be known beforehand. This rnakes the 

proposed rnethod suitable for the problern of audio scene analyis for hearing aid where the 

nun1ber of audio classes vary under different listening situations. 

An efficient classification algorithm that can perforrn effectively in different audio envi­

ronnlents could have a definite application in the hearing aids. According to several surveys, 

a considerable number of hearing aid users are not satisfied with the perfonnance of their 

hearing aid since it an1plifies the background noise as well as the desired signal. In addition, 

it has been observed in sirnilar studies that if the quality of the hearing aids can be improved, 

substantially better user satisfaction can be expected. 

5.2.2 Future work 

The proposed classification n1ethod was tested in different classification scenarios and high 

accuracy rates were achieved. Nevertheless, the following suggestions can be applied to 

improve the perforn1ance and reliability of the systern. 

s Although the nurnber of audio classes is not needed beforehand in the classification 

process, the nun1ber of discovered clusters is .detennined by the parameters in the 

SOTl\1 algorithm such as H(t) ( the hierarchical control function) and o:(t) ( the 

reset pararneter). The initial values for these paranl(~ters affect the number of the 

discovered clusters and the variance of the san1ples within each cluster. In this work, 

these values were adjusted according to the perforrnance of the classifier. Thus,a future 

· improvement for this systmn would be to find a way to autornatically calculate the 

optimal value of these parameters fron1 the statistical characteristics of the data and 
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with regard to the classification results. 

• The number of clusters found by the SOTI\1,or any other clustering algorithm in gen­

eral, does not always represent the actual nurnber of groupings that exist within the 

dataset. Therefore, a cluster validation technique ha.s to· be perforrned on the results 

of the clustering to evaluate the validity of the discovered clusters. In this work after 

the clustering stage, the clusters whose number of sarnples were srnaller than 5% of the 

total number of samples in the dataset, were recognized as invalid dusters and were 

elirninatecl. This threshold was deternrined based on the perfonnance of the classifier. 

However, there are more advanced cluster validity techniques that can be adapted for 

this purpose. So, another area for future work could be to find the best cluster validity 

n1ea.sure that optirnizes the perfonnance of the classifier. 

• In the SOTI\!1 algorithm, the representation of the data to the network is in a random 

nranner. Therefore, the results of the clustering rnight be slightly different for each 

time the algorithm is run on the dataset. In this work the result of the several runs 

are averaged to calculate the final results. However, a more robust solution would 

be to n1ake n1odifications to the SOTlVI • algorithm or data representation so that the 

clustering results do not depend on the order in which the data is fed to the SOTM. 

• In Chapter 4 different classification scenarios were proposed and tested. The pro­

posed scenarios are based on the taxonomy provided in Fig 4.1 and comrnon listening 

situations. Another topic for further research in this area would be to design more 

classification tasks that are tailored for the hearing aid application. 



Bibliography 

[1] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification. Wiley New York, 2001. 

[2] A. Bousbia-Salah, A. Belouchrani, and A. Cichocki. Application of tirne-frequency 

distributions to the independentcomponent analysis of ECG signals. In IEEE Inter­

national Sy·mposi~tm on Signal Processing and its Applications (IS8PIT'01), volurne 1, 

2001. 

[3] W. Zhou and J. Gotlnan. Removal of El\IIG and ECG artifacts frorn EEG based on 

wavelet transfonn and ICA. In 26th IEEE Ann·ual Internat·ional Conference of the 

Engineering in Medicine and Biology 8oC'iety,IElv!BS'04., volun1e 1, 2004. 

[4] P. Gao, E. C. Chang, and L. Wyse. Blind separation of fetal ECG from single rnixture 

using SVD and ICA. In Pr-oc. the Joint Confe?~ence of the 4th International Confer­

ence on Inforrnation, Com.1n'unications and Signal ProcessingJ and the 4th Pacific Rirn 

Confe·rence on Multimedia (ICICS-PCJI;f'03), volume 3, pages 1418- 1422. 

[5] C. Bigan. Chaotic cardiac arrhythmia detection by ICA and nonlinear dynan1ic pro­

cessing of ECG signal. In IEEE International SympoBiurn on Intelligent Signal Pro­

cessing, pages 117- 120, 2003. 

[6] C.A. Joyce, I.F. Gorodnitsky, and 1\1. Kutas. Automatic removal of eye rnovement and 

blink artifacts fron1 EEG data using blind cmnponent separation. Psychophysiology, 

41(2):313-325, 2004. 

[7] W. Zhou, J. Zhou, H. Zhao, and L. Ju. Re1noving eye rnovement and power line 

80 



81 
artifacts from the EEG based on ICA. In 27th Ann·nal Internat·ional Conference of 

the Engineering in IV!edicine and Biology Soc·iety. IEEE-Elv1BS'05., pages 6017---6020, 

2005. 

[8} I. Navarro, B. Hubais, and F. Sepulveda. A comparison of time, frequency and ICA 

based features and five classifiers for wrist n1ovement cla.-,sification in EEG signals. 

In 21th Annnal International Conference of the Engineering in Medic·ine and Biology 

Society. IEEE-ElvfBS'05., pages 2118--2121, 2005. 

[9) L.K.L Joshua and J.C Rajapakse. Extraction of event-related potentials from EEG 

signals using ICA with reference. In Proc. IEEE International Joint Conference on 

Nenral Networks. IJCNNj05., volume 4, 2005. 

[10] NIPS Chawla, HK Venna, and V. Kumar. ECG modeling and QRS detection using 

principal cmnponent analysis. In 8rd International Conference On Advances in Medical 

Signal and Inform.ation PTocessing. JVIEDSIP '06. JET, pages 1--4, 2006. 

[11] R .. Yamada, .J. Ushiba, Y. Tomita, andY. I\1asakado. Decon1position of electrornyo­

graphic signal by principal con1ponent analysis of wavelet coefficients. In IEEE EMBS 

Asian-Pacific Conference on Biomed·ical Engineering., pages 118-119, 2003. 

[12] J. U. Chu, I. I\1oon, S.K. Kirn, and JV1.S. I\1un. Control of multifunction myoelectric 

hand using a real-time El\1G pattern recognition. 

[13] J. U. Chu, L I\1oon, and 1\tl.S. 1\tiun. A real-time EJ\IIG pattern recognition system based 

on linear-nonlinear feature projection for. a multifunction myoelectric hand. IEEE 

Transactions on Biom.edical Engineer·ing, 53(11):2232~2239, 2006. 

[14} J. Nadal and R.B Panerai. Classification Of Cardiac Arrhythmias Using Principal 

Component Analysis Of The ECG. In Proc. the Annual IEEE International Conference 

of the Engineering in Aifedicine and Biology. Soc·iety., volume 13. 



82 
[15] Y. Wenyu, L. Gang, L. Ling, and Y. Qilian. ECG analysis based on PCA and 80~1. 

In Proc. the International Conference on Neural Networks and Signal Processing., vol­

unle 1, pages 37-40. 

[16] H. Zhang and L.Q. Zhang. ECG analysis based on PCA and support vector rnachines. 

In Proc. the International Conference on Neu.ral Network.s and Brain. ICNNf!_1B'05, 

volun1e 2, pages 743-747. 

[17] N. Takano, H.G. Puurtinen, M. Rautiainen, J. Hyttinenl and J. Malmivuo. ECG source 

location clustering based on position vectors and forward transfer rnatrices. Cornputers 

in CaTdiology, pages 3L3-316, 2002. 

[18) O.R Pacheco and F. Vaz. Integrated system for analysis and autmnatic classification of 

sleep EEG. In Proc. the 20th Ann·uallnternational Conference of the IEEE Engineering 

in A1edicine and Biology Society, volume 4, pages 2062-2065, 1998. 

[19] D. Wu and Vv. Wan Tan. Genetic learning and perforn1ance evaluation of interval type-

2 fuzzy logic controllers. Engineering Applications of Artificial Intelligence, 19(8):829--

841, 2006. 

[20] A.B Geva and D.H Kerem. Forecasting generalized epileptic seizures frOin the EEG sig­

nal by wavelet analysis and dynamic unsupervised fuzzy clustering. IEEE Transactions 

on Biomedical Enginee-ring, 45(10):1205--1216, 1998. 

[21] AB Ajiboye and R.F. \IVeir. A heuristic fuzzy logic approach to E!v1G pattern recogni­

tion for n1ultifunctional prosthesis control. iEEE Transact-ions on Neural Systems and 

Rehabilitation Engineering, 13(:3):280-291, 2005. 

[22] A.B Ajiboye and R.F \Neir. Fuzzy c-rneans clustering analysis of the E~1G patterns 

of six n1ajor hand grasps. In Proc. the 9th lnte·rnatio·nal Conference on Rehabilitation 

Robotics. ICORR '05., pages 49- 52. 



83 
[23] K. Doi. Cornputer-aided diagnosis in n1edical irnaging: historical review, current status 

and future potential. Computerized fll!edical Imaging and GraphicB, 31(4-5):198~211, 

2007. 

[24] lVLL Giger, N. Karssen1eijer, and S.G Armato. Guest editorial con1puter-aided diag­

nosis in medical imaging. IEEE Transactions on Medical Imaging, 20(12):120.5-1208, 

2001. 

[25] A. Khademi and S. Krishnan. l\1ultiresolution Analysis and Classification of Small 

Bowel I\/[edical Images. In Proc. 29th Annual IEEE International Conference of the 

Engineering in Medicine and Biology Society. Ek1BS'01., pages 4524-4527, 2007. 

[26] B. Li and I'vLQ.H. I\11eng. Analysis of the gastrointestinal status fron1 wireless capsule 

endoscopy irnages using local color feature. In Proc. IEEE International Conference 

on lnfonnation Acq'tti8ition. !CIA '07., pages 553-557, 2007. 

[27] .J. Bonnel, A. Khaderni, S. Krishnan, and C. Ioana. Small bowel image classification 

using cross-co-occurrence rnatrices on wavelet dornain. Biomedical Signal Processing 

and Control, 4(1):7-15, 2009. 

[28] D.J.C. Barbosa, J. Ramos, and C.S .. Lima. Detection of small bowel tun1ors in cap­

sule endoscopy frames using texture analysis based on the discrete wavelet transforn1. 

In 30th IEEE Annual International Conference of the Engineering in flr1edicine and 

Biology Society. Ell1B8'08., pages 3012--3015, 2008. 

[29] G. Hughes. On the n1ean accuracy of statistical pattern recognizers. IEEE Transactions 

on Infonnation Theory, 14(1):55---63, 1968. 

[30] S. Kochkin. 10-year custon1er satisfactiontrend.s in the US hearing instrurnent n1arket. 

Iiearing Re·uiew, 9. 

[31] S. Kochkin. " Why my hearing 

Hear·ing Journal, 53(2):34-42, 2000. 

are in the drawer": The consun1ers' perspective. 



84 
[32] S. Kochkin. MarkeTrak III identifies key factors in determining consumer satisfaction. 

Hearing Journal, 45:39-39, 1992. 

[33] K. Umapathy and S. Krishnan. Feature analysis of pathological speech signals using 

local discrirninant bases technique. Nl edical and Biological Engineering and Cmnputing, 

43( 4) :457-464, 2005. 

[34] P. Nordqvist and A. Leijon. An efficient robust sound classification algorithm for 

hearing aids. The JmtTnal of the Acottstical Society of A·merica, 115(6). 

[35] 1t1. Behler, S. Allegro, S. Launer, and N. Dillier. Sound classification in hearing aids 

inspired by auditory scene analysis. EURASIP Jo·urnal on Applied Signal Processing, 

18:2991--3002, 2005. 

[36] Adaptive Feature Selection for Speech/IV1usic Classification. IEEE 8th Workshop on 

Multimedia Signal PTocessing. 

[37] L. Lu, H.J. Zhang, and H. Jiang. Content analysis for audio classification and segrnen­

tation. IEEE transactions on 8peech and audio process·ing, 10(7):504- 516, 2002. 

[38] G. Guo and S.Z. Li. Content-based audio cla..'3sification and retrieval by support vector 

machines. IEEE Transactions on Neural Networks, 14(1):209--215, 2003. 

[39] X. Shao, C. Xu, and l\II.S. Kankanhalli. Unsupervised classification of n1usic genre 

using hidden Markov model. In Proc. IEEE International Conference on J\;Jultirnedia 

and E~rpo, ICME'04., volurrw 3. 

[40] A. Rauber, E. Pan1palk, and D. l\!Ierkl. Using psycho-acoustic n1odels and self­

organizing maps to create a hierarchical structuring of music by sound sirnilarity. In 

Proc. International Society for 1\Iu,sic Infor·mation Retrieval Conference ISMIR, pages 

71-80~ 2002. 

[41] N. Searingella, G. Zoia, and D.l\1lynek. Automatic genre classification of n1usic con­

tent: a survey. IEEE Signal Processing Magazine, 23(2):133-141, 2006. 



85 
[42] A.K. Jain and R.C. Dubes. Algo·rithm,s for clu.stering data. Printice Hall, 1988. 

[43] AK Jain, RPW Duin, and J. JVIao. "Statistical pattern recognition: A review''. IEEE 

Transactions on paUern analysis and rnachine intelligence, 22(1):4--37, 2000. 

[44] A.K Jain, J\;LN lV1urty, and P.J Flynn. Data clustering: a review. ACM computing 

sun;eys, 31(3), 1999. 

[45] D. Judd, PK l\1cKinley, and AK Jain. "Large-scale parallel data clustering". IEEE 

Transact·ions on Pattern Analysis and A1achine Intelligence, 20(8):871-876, 1998. 

[46] S.K Bhatia and J .S Deogun. "Conceptual clustering in inforn1ation retrieval". IEEE 

Transactions on System.s, A1an, and Cybernetics, Part B, 28(3):427--436, 1998. 

[47] C. Carpineto and G. Rmnano. "A lattice conceptual clustering system and its appli­

cation to browsing retrieval". JI;Jachine Learning, 24(2):9.5---122, 1996. 

[48] H. Frigui and R. Krishnapuran1. "A robust con1petitive clustering algorithn1 with 

applications incornputer vision". IEEE Trnnsactions on Pattern Analysis and Machine 

Intelligence, 21(5):450--465, 1999. 

[49] H.l\1. Abbas and 1\/I.l\1. Fahmy. "Neural networks for maximun1 likelihood clustering". 

Signal Processing, 36(1):111-126, 1994. 

[50] lVLJ. Kyan. Unsupervised learning through dynmnic self-organization: Implications 

for microbiological image analysis. In PhD thesis, School of Electrical and Information 

Engineering University of Sydney, 2007. 

[51] E. Backer. Computer-assisted reasoning in cluster analysis. Prentice Hall International 

Ltd. Hertfordshire, UK, 199.5. 

[52] A. Hyva.rinen and E. Oja. Independent con1ponent analysis: algorithms and applica­

tions. Neural networks, 13(4-5):411-430, 2000. 



86 
[53] H. Kong and L. Guan. Detection and re1noval of i1npulse noise by a neural network 

guidedadaptive n1edian filter. In IEEE International Conference on Neural Networks, 

1995. Proceeding.s., volu1ne 2, 199.5. 

[54) GA Carpenter and S. Grossberg. The ART of adaptive pattern recognition by a self­

organizing neuralnetwork. Computer, 21(3):77-88, 1988. 

[55] Given Imaging Ltd. 

formation guide. 

PillCamTM SB Capsule Endoscopy - product in­

In -~Vorld Wide w·eb~ http:/ jwww.givenirnaging.com/en-

usjHealthcarePr'Ofessionals/ProductsjPages/PillCamSB.asp:r, 2009. 

[56) B. Kiln, S. Park, C.Y. Jee, and S.J. Yoon. An earthworn1-like locomotive rnechanis1n 

for capsule endoscopes. In IEEE/RSJ International Conference on Intelligent Robots 

and Systern,8. (IROS 2005 ), pages 299T---3002, 2005. 

[57] D.G. Adler and C.J. Gostout. Wireless capsule endoscopy. Hospital Physician, 

39(5):14-22, 2003. 

(58) B. Li and IVI.Q.H. 1\tleng. Analysis of the gastrointestinal status frorn wireless capsule 

endoscopy in1ages using local color feature. In Information Acquisition, 2007. !CIA '07. 

International ConfeTence on, pages 553-557, 2007. 

[59) B. Li and JVI.Q.H. I\1eng. Analysis of the gastrointestinal status from wireless capsule 

endoscopy irnages using local color feature. In Information Acquis-ition, 2007. 1 CIA '07. 

InteTnational Conference on, pages .553--.557, 2007. 

[60) S. l\1allat. A wavelet to·ur of 8'ignal processing. Acade1nic press, 1999. 

[61] J. Liang and T\V Parks. In1age coding using translation invariant wavelet transforms 

withsyrnrnetric extensions. IEEE Transactions on Irnage Process-ing, 7(5):762- 769, 

1998. 

[62] A. Khaderni. Multiresolutional analysis for classification and COlllJJfession of n1edical 

images. l\1aster's thesis, Ryerson University, Canada. 



87 
[63] S.A. Karkanis, DJC Iakovidis, D.E. Niaroulis, D.A. Karras, and M. Tzivras. Computer-

aided tumor detection in endoscopic video using color wavelet features. IEEE Trans­

actions on Inforrnat·ion Technology in Biom.edicine, 7(3):141~152, 2003. 

[64} V. Arvis, C. Debain, JVL Berducat, and A. Benassi. Generalization of the cooccurrence 

rnatrix for colour in1ages: application to colour texture classification. Image Analysis 

and Stereology, 23(1):63--72, 2004. 

[65) B. Julesz. Textons, the elernents of texture perception, and their interactions. 1981. 

[66] lv1. Tuceryan and A.K. Jain. Handbook of pattern recognition 1!:1 cornputer vision. vVorld 

Scientific Pub Co Inc, 1999. 

[67] H. Harms, U. Gunzer, and HJ\1 Aus. Combined local color and texture analysis of 

stained cells. Comp·uter vision, graphics, and image processing, 33(3):364~376, 1986. 

[68] S. Petroudi, T. Kadir, and lvi. Brady. Autornatic classification of n1anunographic 

parenchyrnal patterns: A statistical approach. In Proc. the 25th Annual IEEE Inter­

national Conference of the Engineering in A!edicine and Biology Society., volume 1, 

2003. 

[69] 0. Tuzel, L. Yang, P. JVieer, and D . .J . Foran. Classification of hematologic rnalignancies 

using texton signatures. Pattern Analysis ef Applications, 10(4):277-290, 2007. 

[70] D.A. Adjeroh, U. Kandaswamy, and .J.V. Odom. Te.x:ton-based segrnentation of retinal 

vessels. Journal of the Optical Society of Arnerica A, 24(5):1384-1393, 2007. 

[71] J Jv1. Kates. Classification of background noises for hearing-aid applications. The 

Journal of the Acoustical Society of America, 97:461, 1995. 

[72] L. Rabiner and B.H. Juang. Fundamental8 of speech recognition. 1993. 

[73) J.C. Junqua and J.P. Haton. Robus.tness in autmnatic speech recognition: fundarnentals 

and applications. Kluwer Aca.dernic Publishers Norwell, !viA, USA, 1995. 



88 
[74] B. Gold and N. l\~1organ. Speech €1 audio signal processing. Wiley India Pvt. Ltd., 

2006. 

[75] A. Izworski, R. Tadeusiewicz, and W. Wszolek. Artificial Intelligence l\t1ethods in 

Diagnostics of the Pathological Speech Signals. Lecture notes in cornputer science, 

pages 7 40-7 48, 2004. 

[76] Z. Han, X. Wang, and J. Vvang. Pathological Speech Defonnation Degree Assess1nent 

Based on Dynamic and Static Feature Integration. In The 2n,d International Conference 

on Bioinformatics and Bimnedical Eng'ineering, 2008. ICBBE 2008., pages 2036- 20:39, 

2008. 

[77] l\1.A. Lund and C.C. Lee. A robust sequential test for text-independent speaker veri­

fication. The Journal of the Acoustical Society of America, 99:609, 1996. 

[78] G. Tzanetakis and P. Cook. l\1usical genre classification of audio signals. IEEE Trans­

actions on speech and audio processing, 10(5):293--302, 2002. 

[79] E. Pan1palk, A. Flexer, and G. Widmer. In1proven1ents of audio-based n1usic sin1ilarity 

and genre classification. In Proc. International Society joT lvf-usic lnforrnation Retrieval 

Conference. JSMIR '05, volu1ne 5, 2005. 

[80} N. Scaringella and G. Zoia. On the modeling of tinw information for auton1atic genre 

recognition systems in audio signals. In Proc., pages 666-671. 

[81] H. Soltau, T. Schultz, l\rL Westphal, and A. Waibel. Recognition of n1usic types. In 

Proc. the IEEE International Conference on Acoust·ics, Speech and Signal Processing, 

ICASSP'98, volun1e 2, pages 1137-1140. 

[82] K. West and S. Cox. Finding an optimal segn1entation for audio genre classification. In 

Proc. 6th International Symposiv,·m on Afusic Information Retrieval, ISMJR '05, pages 

680-685. 



[83] T. Lidy and A. Rauber. 

forn1ations for music genre ~,J.ckoOH.LI._, 

lv!usic Information Retrieval 

[84] A. Berenzweig, D.P.W. Ellis, 

[85] B. Kostek. l\11usical instrument 

mation retrieval techniques. 

and Language Processing, 

[87] L Kaminsky and A. l\!Iaterka. 

cal instrumentsounds. In Proc 

volume 1, pages 189-194. 

[88] K.D. l\!Iartin. Toward autornatic 

n1ents. NATO Co·mputational 

1-12~ 1998. 

[89) A. Eronen and A. Klapuri. 

andte1nporal features. In Proc. 

and Signal Proce8sing, ICASS 

[90] Ivi.J. Hawley. StructuTe out of 

bridge, i\1A, USA, 1993. 

[91] J. Saunders, L.l\1. Co, 

speech/music. In Proc. IEEE 

Signal P-rocessing,ICASSP'96., 

89 
and psycho-acoustic tra.ns-

rnat·ional Conference on 

rce seJ~In.en1~s to in1prove artist 

aL ,()o·ntF::rP1U'P on "Virtual, Syn-

e1nploying music infor-

hHJ.Gtt.LlU'll of monophonic rnusi­

"-n l'.o,.'"'Y'U'D on Neural Networks~ 

identifying musical instru­

'tute, Il Ciocca, Italy, pages 

on Acoust·ics, 



90 
[92] l\1..1 . Carey, E.S. Parris, and H. Lloyd-Thomas. A con1parison of features for speech, 

rnusic discrin1ination. In Proc. IEEE International Conference on Aco·ustics~ Speech 

and Signal Pr·ocessing, ICASSP'99, volurne 1, pages 149·--152, 1999. 

[93] A.S. Bregrnan. Auditory scene analysis: The perceptual 01~ganization of sound. The 

l\!IIT Press, 1994. 

[94] G. Freeman, R.D Dony, and S.J\11 Areibi. Audio Environment Classification for Hearing 

Aids using Artificial Neural Networks with Windowed Input. In Proc. IEEE Syrnposiurn 

on Cornputational Intelligence in Image and Signal Processing, CIISP '07, pages 183-

188, 2007. 

(95) .J. Pinquier, J.L. Rouas, and R. Andre-Obrecht. Robust speech/rnusic classification 

in audio docurnents. In Proc. the 7th Seventh International Conference on Spoken 

Lang'uage Processing, volurne :3. 

[96] E. Scheirer and l\1. Slaney. Construction and evaluation of a robust rnultifeature 

speech/music discrirninator. In PToc. IEEE International Conference on Acoustics 

Speech and Signal Processing, ICASSP'97, volume 2, pages 13:31-1334, 1997. 

[97] N. Niesgarani, M. Slaney, and SA Shanuna. Discrirnination of speech frcnn nonspeech 

based on rnultiscale spectro-ternporal modulations. IEEE Transactions on A·uclio, 

Speech, and Language Processing, 14(3):920-930, 200G. 

[98} SG IV1a.llat and Z. Zhang. J\!Iatching pursuits with tirne-frequeney dictionaries. IEEE 

Transactions on Signal Processing, 41(12):3397--3415, 1993. 

[99) P.J. Franaszczuk, G.K. Bergey, P.J. Durka, and H.l\!1. Eisenberg. Time- frequency 

analysis using the nwtehing pursuit a.lgorithrn applied to seizures originating frorn the 

mesial temporal lobe. Electroencephalography and clinical nevxophysiology, 106(6):513--

521, 1998. 



91 
[100) D.O. Lee and H.S. Seung. 

torization. Nature, 401 

'"'"' .. "'·,.·•·c· " .. n.n.·•a.n,r-c by non-negative matrix fac-

(101] I. Buciu. Non-negative matrix 

and Applications. In Proc. the ZTIA'], LD£rl?.r Jn1~er:na1~w1 

Communications and Control~ 

feature extraction: Theory 

Conference on C(nnputer-s, 

[102) M.vV. Berry, IVI. Browne, A.N. and R.J. Ple1nn1ons. Algorithms 

and applications for UUFI!J ... ~'...._J. .... !.A._.,,_,,_, n~=>nrteg;:ttl'\re n-· ..... t- .... ,--v factorization. Computational 

[103) C.J. Lin. Projected gradient ............ ,,,_uv\ . .1.0 

Co'mputation, 19(10):2756-2779, 2007. 


	Ryerson University
	Digital Commons @ Ryerson
	1-1-2009

	Unsupervised learning for biomedical applications
	Nasim Shams
	Recommended Citation





