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Abstract

UNSUPERVISED LEARNING FOR BIOMEDICAL
APPLICATIONS

©MNasim Shams, 2009

Master of Applied Science
Electrical and Computer Engineering
Ryerson University

With the growth of application of computers in the generation and analysis of biomedical
data, a variety of computerized methods and algorithms have been proposed to optimize the
process of acquisition and analysis of the data. Although advanced computerized techniques
have provided the means for more precise diagnosis, the interpretation of the recorded data
in some cases is an issue due to the large amount of the data or complexity of it.

While most of the existing work in the literature consider supervised techniques for analy-
sis of the collected data, the use of unsupervised techniques in the area of analysis and classi-
fication of biomedical signals is relatively unexplored compared to supervised approaches. In
general, the investigation of application of unsupervised techniques for analysis of biomedical
signals can be worthwhile from different view points. In some cases, biomedical databases
tend to contain a large amount of data. Genomic databases or pathological speech databases
arc examples of this kind. The development of any supervised method for analysis of such
databases requires precise manual labeling of the data, which can be extremely costly. How-
ever, the use of an unsupervised classifier can be beneficial to accelerate the process and to
acquire information about the structure of the dataset. In addition, the characteristics of
the collected biomedical data can be affccted by the recording process.

In this work application of unsupervised learning in two biomedical signal processing
problems is investigated. In the first problem, fuzzy C-means clustering has been used in
design of a computer aided diagnosis method for detection of abnormalities in small bowel
capsule endoscope images. The performance of the system shows an accuracy of 76which
is an acceptable rate for an unsupervised method. In the second case, self organizing tree
maps (SOTM) has been applied to audio signal classification for hearing aids. An accuracy
of 96% was achieved for discrimination of human voice from the environmental noise, which
is one the major classification scenarios for hearing aid applications.
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apter 1

Introduction

S the application of computers in the acquisition and generation of medical data is

growing, the use of computerized analysis methods in processing the medical data is
increasing. Although the use of advanced imaging and recording techniques has provided
the physicians with more precise diagnosis, the interpretation of the data is sometimes an
issue due to the large amount of data or complexity of it. As a result, a variety of com-
puter based machine learning methods have emerged to assist the doctors to interpret the
data and extract more information from the recorded signals. In general, machine learning
techniques can be divided into three groups; Supervised learning, unsupervised learning and

reinforcement learning [1].

Supervised learning: In supervised learning, a teacher provides a category label or cost
for each pattern in a training set, the goal is to reduce the sum of the costs for these

patterns.

Unsupervised learning: In unsupervised learning or clustering the category or label of
the data is not known beforchand. There is no explicit teacher, and the system forms

clusters or natural groupings of the input patterns.

Reinforcement learning The reinforcement learning method is analogous to learning with
a critic. In this case no desired category is given for a datum; critic instead, only gives

a binary feedback that states whether the tentative category is right or wrong but does



not say specifically how it is wrong.

Unsupervised classification is a natural way to proceed towards computer-aided diagnostic
systems and the main motivation of using such scheme is to provide the automatic clustering
of the image features in the same way human visual system does. It helps to get an insight
about the structures and patterns that alrcady exists in the daga and hence enables us to
find more robust features, which correspond to the natural characteristics of the data. The
use of unsupervised methods might seem unpromising at first. One might even ask the
question whether or not it is possible to learn anything of value from unlabeled samples.
However, there arc many cases where unsupervised classification could be very beneficial.
For example, collecting labeled data is not always an casy task. In fact, sometimes labeling a
large dataset can be surprisingly costly and not feasible. Unsupcervised classification can be
used to discover the natural groupings that exist in the dataset and then use supervision only
to label the clusters found. Furthermore, in some cases the characteristics of the features
change with time. Hence an unsupervised classifier can be used to track the changes and
make the necessary corrections. Another application of unsupervised learning is to get some
insight about the structure of the dataset. The knowledge about the intrinsic characteristics
of the dataset and the patterns that might exist in the dataset, can help us to come up with
more efficient feature extraction and classification strategies.

There is a considerable amount of work in the literature on the use of unsupervised tech-
niques for analysis and classification of biomedical signals. Here we discuss the application

of some of the popular unsupervised techniques for biomedical signals.

e Independent component analysis (ICA): ICA is an emerging field in biomedi-
cal signal processing. The wide usage of ICA is motivated by the common practical
problem in biomedical signal processing. Recording biomedical signals usually involves
several source signals and several sensors. Hach sensor receives a mixture of source
signals. The problem consists of recovering the source signals from the mixture. In
[2] and [3] a combination of wavelet transform and ICA has been used to separate

fetal ECG from [4] mother ECG. In [5] Bigan adopts ICA to detect chaothic cardia
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arrhythmia in ECG signals. Gao et al. [4] use a combination of ICA and Single value

decomposition (SVD) to extract fetal ECG from the mixture signal. In [6] and [7],
Joyce et al. and Zhou et al. have used ICA to remove eye blink artifact and power line
artifacts from EEG signal. The works done by Navarro et al. [8] and Joshua ct al. [9]

are more examples of adaptation of ICA for EEG signals.

Principle component analysis (PCA): PCA is a widely used dimensionality re-
ducticn technique in data analysis and its popularity comes from three importan$
properties: First, it is the optimal (in terms of mean squared error) linear scheme for
compressing a set of high dimension vectors into a set of lower dimension vectors and
then reconstructing. Second, the model parameters can be computed directly from
the data - for example by diagonalizing the sample covariance. Third, compression
and decompression are casy to perform given the model parameters, and require only
matrix multiplications. In [10] a PCA based method for ECG-QRS detection has been
proposed. Once the QRS complex has been identified, a more detailed examination of
ECG signal can be performed. A combination of wavelets and PCA is proposed in [11]
for decomposing EMG signals. In [12] and [13] PCA has been used along with neural
network and self organizing maps (SOM) for pattern recognition in EMG signals. In
[14] original PCA has been applied to the data for classification of cardiac arrhyth-
mias. In [15] a method for clustering analysis of QRS complexes has been proposed
that integrates PCA and SOM. Another example of integrating methods for ECG can
be found in [16] where PCA and SVM have been used. The main goal is to classify
normal from abnormal signals and then specify the kind of abnormality for abnormal

signals.

K-means clustering: K-means clustering is one the simplest and most basic clus-
tering techniques, which will be described in Chapter 2. In [17] a k-means clustering
technigue has been adopted to classify all discrete points forming a heart model with

respect to their position vectors or source-to measurement transfer matrices. [18] also



uses k-means clustering for EEG arousal detection.

e Fuzzy C-means clustering: Fuzzy C-means clustering is another popular clustering
technique that is used widely in patiern recognition problems. This method is very
close to K-means clustering and will be described in more details in Chapter 2. In [19] a
fuzzy clustering method has been used to classify three types of abnormality. Average
period and the pulse width are the features used for classification, and then fuzzy
clustering was performed for these two features. The work by Geva and Kerem [20]
also utilizes wavelet transform for feature extraction and unsupervised fuzzy clustering
for classifying brain-states. In the work by Ajiboye and Weir [21] also fuzzy clustering
is used for EMG Pattern Recognition for Multifunctional Prosthesis Control. Finally,
in [22] Ajiboye and Weir use fuzzy C-means clustering to classify six major grasping

patterns of the human hand.

The use of unsupervised techniques in the area of biomedical signal analysis has been the
topic of many research works. In general, the investigation of application of unsupervised
techniques for analysis of biomedical signals can be worthwhile from different view points.
In some cases, biomedical databases tend to contain a large amount of data. Genomic
databases or pathological speech databases are examples of this kind. The development of
any supervised method for analysis of such databases requires precise manual labeling of the
data, which can be extremely costly. However, the use of an unsupervised classifier can be
beneficial to accelerate the process and to acquire information about the structure of the
dataset. In addition, the characteristics of the collected biomedical data can be affected by
many factors during the recording process. For instance, the recorded EEG signal can be
affected by the stress level of the patient or movement artifacts. In the process of recording
biomedical data, some patients might need special medications (e.g sedative drugs) or the
recording procedure needs to be performed in a modified way due to the special conditions
of the patient. Another example is the capsule endoscopy where preparation of the bowel for
the experiment is one of the factors that affects the characteristics of the captured images.

Hence, images captured during different experiments could posses more or less different
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characteristics and this could deteriorate the performance of a supervised classifier. Finally,

unsupervised learning methods can be used to get some insight about the structure of the
dataset and intrinsic characteristics if the data or can be combined as a preprocessing with
a supervised approach to build a robust classifier.

In this work the application of fuzzy C-means and self organized tree maps (SOTM) for
the biomedical signals will be examined. These two algorithms will be explained fully in
Chapter 2. Fuzzy C-means has been previously applied to biomedical signals such as EEG,
BECG ete. It has also been used for segmentation of medical images. However, its application
for classification of bicmedical images is unexplored. In Chapter 3, fuzzy C-means has been
used for classification of abnormalitics in the small bowel images. Chapter 4 covers the
adaptation of SOTM for classification of audio signals for hearing aid application. SOTM
has been used for segmentation of biological images but in this work the application of this
algorithm for analysis of biomedical signals will be investigated for the first time. In Section
1.1 and Section 1.2 some of the background information required for Chapters 3 and Chapter

4 are provided respectively.

1.1 Computer methods in medical imaging

Medical imaging is one of the most explosive developments that has taken place in the last
two decades. The new findings in this area not only provide a better diagnosis, butl also
offer new hopes for treatment of many critical diseases. Different imaging techniques such
as X-ray, computed tomography (CT) and magnetic resonance imaging (MRI), provide the
physicians with a more precise and non-invasive diagnostic tool. For example, for cancer
or epilepsy, the precise identification of the lesion already facilitates the use of surgery, the
only therapeutic option for some patients. Also, they can provide more accurate diagnosis
for some parts of the body which are not easy to evaluate using conventional methods. The
small intestine is one of the parts that has been always difficult to evaluate because of its
shape and size. Traditional endoscopy used to be the only way for the gastroenterologists to

get an insight form the small bowel and detect abnormalities. The procedure is extremely
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inconvenient for the patients. During the operation the endoscopic tube, which is rather stiff,

is inserted from the mouth and moves around to navigate patient’s gastrointestinal tract.
The procedure causes a lot of discomfort and the patients are given anesthetics before the
operation.

In 2000, a new product was introduced by the Given imaging Ltd that attracted a large
amount of interest from the gastroenterologists; the PillCam. PillCam is a tiny capsule
endoscope with nearly the size of an ordinary capsule, which has a built in camera. The
capsule is ingested from the mouth and as it goes down through the gastrointestinal tract
(by the natural movements of the tract) it captures images and sends them wirelessly to a
receiver that the patients wears around his/her chest. The capsule is exerted naturally and

the patient lives normally during the procedure. Fig 1.1 shows images of the PillCam.

Figure 1.1: Images of the PillCam

1.1.1 Computer aided diagnosis (CAD)

The benefits of the imaging techniques to achieve reliable diagnosis however depends on
the quality of image interpretation as well as image acquisition. Computer technology, has
made a significant contribution in the quality of interpretation of medical images in the
recent years. The use computer-aided diagnosis (CAD) in the area of medical imaging was
initiated in the 1960s and has increasingly grown since then [23]. Nowadays, CAD is being
widely used in detection and diagnosis of many different kinds of abnormalities in medical
images. For instance, CAD has become a part of the routine clinical procedure for detection

of breast cancer from the mammograms in many hospitals [23].
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CAD is a diagnosis made by a radiologist who uses the output from a computer. The
computerized analysis of medical images is provided to the radiologist as a second opinion
in detecting lesions, assessing extent of disease, and making diagnostic decisions. While
the fnal diagnosis is made by the radiologist, the use of CAD is expected to improve the
interpretation component of medical imaging [24]. These are some of the reasons that the
use of CAD in the area of medical imaging is growing rapidly.

In addition, interpretation of images by humans can be affected by the presence of strue-
ture noise in the image and the presentation of complex disease states requiring the integra-
tion of vast amounts of image data and clinical information.

Another benefit of using CAD in the analysis of medical images is to deal with the large
amount of data. The interpretation of screening images is a repetitive and tedious task, which
involves visual scanning of mostly healthy subjects for a specific abnormality. Screening of
mammograms for early detection of breast cancer, the use of CT for detection of lung cancer
in high risk individuals and the use of colonography for detection of polyps that may lead
to colon cancer are examples of this kind.

It might be useful to emphasize some of the differences between computer-aided diagno-
sis and another similar coneept in this area, automated computer diagnosis [23]. In both
approaches, medical images are analyzed by computer algorithms. However there are major
differences between the two methods. In CAD, radiologists use the computer output as a sec-
ond opinion, and make the final decisions. The computer output may be accepted or rejected
by the radiologists based on their level of confidence. Furthermove, in this approach even if
the performance of the computer is not equal to or higher than that of radiologists, it can
be still combined with the radiologist’s skills to achieve better diagnosis. With automated
computer diagnosis, however, the decision is made by the computer. Thus the cfficiency of

the processing technique is required to be very high and comparable to that of radiologist’s.



1.1.2 CAD for small bowel images

The method developed in this work for the analysis of the small bowel images is designed
as a CAD method. Although images captured by the PillCam provide the gastroenterolo-
gists with more information about the inside of small intestine, one major drawback of this
technology is the large amount of data that is gencrated in each experiment. During cach
examination, an average of 50000 images or an cquivalent of 8 hours of video is captured.
Manual evaluation of such a large number of images is a very time consuming and laborious
task and important clues might be missed duc to fatigue or repetitive nature of the task.
Hence, a CAD method can be developed and used as a second opinion to point out the
suspicious regions to the gastroenterologists. The first work on a CAD method for detecting
abnormalities in the small bowel images captured by the PillCam was published in 2006 by
Khademi et al. [25]. In this work multiresolutional analysis is performed on the gray scale
images to extract the texture information and linear discriminant analysis is used for clagsi-
fication of the images. In [26], Li and Meng use color information to detect bleeding in the
small intestine. In [27] Bonnel et al. propose a feature extraction method based on wavelet
analysis and cross co-occurrence matrices, where the extracted features contain both color
and texture information. Canonical discriminant analysis is then applied to the features for
classification. In the work by Barbosa et al. [28], the features are extracted from wavclet
coefficients and multi layer perceptron (MLP) is used as the classifier. All of the mentioned
papers use supervised classification for detecting abnormalities in the images. In this work
however, the application of unsupervised classification will be investigated. Although the ex-
isting methods with supervised classification typically report higher accuracy rates, the use
of unsupervised classification can be advantageous in many ways. The performance of a su-
pervised classifiers depends on the train data. Hence, a wrongly labeled datum, which is not
rare in biomedical databases, can affect the overall performmance of the classifier. Besides,
in order to obtain sufficient reliability, the dataset necds to be large encugh to overcome
problems such as overfitting and the curse of dimensionality [29]. In addition, characteristics

of the images captured by the PillCam, are affected by the bowel preparation procedure.
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Colors of intra luminal material may be significantly different between examinations. This

leads to different image characteristics and consequently different features for each experi-
ment. A supervised classifier could be biased by the characteristics of the images in the train
set. Whereas, under such circumstances, an unsupervised classifier does not suffer from the
change of the image characteristics like a supervised classifier does. Finally, the application
of unsupervised techniques could be useful to discover clusters that might naturally exist in
the data and the features that are related to these groupings.

In this work, a feature extraction scheme similar to the method used in [27] is used,
which extracts both color and texture information. A fuzzy C-means classifier is applied to
the dataset to find two clusters in the dataset, representing normal (healthy) and abnormal
(discased) images. The results of the unsupervised classification not only can be used as
CAD, but also can be used to get more insight about the structure of the data and help find

the features that best represent the characteristics of the data.

1.2 Audio signal classification

Audio classification for hearing aids is one the growing areas of application of signal pro-
cessing and machine learning methods in biomedicine. Although there are a wide variety
of hearing aids available, studies show thai hearing aid users are not very satisfied with
the performance of their hearing aid in the noisy outdoor cuvironments such as restaurants,
workplace, street etc [30]. In fact, in a survey performed in [31], low performance in the noisy
environments is one of the major reasons that hearing impaired people are reluctant to use
their hearing aid dévices. Similar studies show that better performance of the hearing aids
in the appearance of the noise, is one the most desirable improvements among the hearing
aid owners. In order to overcome these problems, several audio processing and classification
algorithms have been proposed for the hearing aids to discriminate different auditory classes
and detection of the audio environment. In a survey obtained by Kochkin [32] it was observed
that a hearing aid that can operate efficiently under different listening conditions is very de-

sirable. From 223 hearing aid users that took this survey, less than one third were satisfied
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with their hearing aid if the device worked properly in only three or fewer environments.

However, over 91% of the users were satisfied if the hearing aid could be adjusted according
to the audio cnvironment. Thus, there is growing evidence that substantially better user
satisfaction can he expected of the performance of the hearing aid can be improved.

Audio classification is a one of the rescarch areas that has attracted many rescarchers in
the recent years. Discrimination of different audio classes is one of the tasks that humans do
effortlessly everyday. However, implementing such capability in machines is a demanding job
and takes a large amount of effort. A large number of papers in the literature is dedicated
to various technigues for classification of audio signals for different applications. There is
a wide range of applications for the classification of andio signals. Speech processing for
sccurity applications and human computer interaction, multimedia data management and
distribution, security, biometrics and bicacoustics are some of the applications of audio
signals classification [33]. Furthermore, with the growth of application of computerized
processing technigues in the area of biomedical signals, the use of audio processing and
classification algorithms for biomedical applications such as hearing aids and pathological
voice recognition is rapidly increasing.

Various methods have been proposed for discrimination of different audio classes. How-
ever, most of the cxisting works use supervised classification schemes. The proposed solu-
tions include hidden Markov model [34], k-means clustering, histogram driven Bayes clas-
sifiers, multilayer perceptrons [35], Gaussian mixture models [36], k nearest neighborhood
(K-NN)[37], support vector machine (SVM)[38] and linear discriminant analysis (LDA) [33].
The application of unsupervised methods, on the other hand, is relatively unexplored.

At this point, the results of the unsupervised method can be cither presented to the user
or can be followed by a supervised approach for further processing.

The works proposed by Shac et al. [39] and Rauber et al. [40] are two examples of
application of clustering methods for the music databases. Using a clustering method has the
advantage of avoiding the constraints of a fixed taxonomy, which may suffer from ambiguities

and inconsistencies. Considering the variety of the audio signals, some of the signals may
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simply not fit within a given category [41].

The classification method used in this work is a fusion of supervised and unsupervised
classifier. The proposed method in this work is based on the self organizing tree maps
followed by a fuzzy labeling of the data. Another important issue in the classification of
audio signals is the extracted features. There is a large amount of work in the literature
on various feature extraction methods for audio signal classification. The feature extraction
strategy depends on the classification scenario and characteristics of the signals. In this
work, however, the main focus is on the classification part rather than feature extraction. A
brief overview of the existing techniques for audio feature extraction is provided in Chapter

4.

1.3 Organization

In this thesis, the suitability of two unsupervised techniques for biomedical data will be
explored. Chapter 3 is dedicated to the application of an unsupervised technique (fuzzy
C-means clustering) for detection of abnormalities in the capsule endoscopy images while
Chapter 4 describes an unsupervised method (SOTM) for classification of audio signals for

hearing aid application. The organization of this thesis is described here;

1. Introduction: In the first Chapter, background information on CAD in medical imag-
ing and audio classification for hearing aid application is provided. An overview of the
existing works in the literature on the application of unsupervised methods for biomed-

ical signals is also given in this Chapter.

2. Unsupervised learning and clustering: An overview of the clustering techniques
is provided in this chapter. In addition the two clustering method used in this work is

explained in more details.

3. Unsupervised Learning in Medical Image Classification: In this chapter the
application of fuzzy C-means clustering method for detection of abnormalities in the

small intestine images will be described. A feature extraction method based on wavelet
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coefficients and eross co-occurrence matrices is used to extract color and texture infor-

mation of the images. Then fuzzy C-means is applied to the extracted features.

. Unsupervised Learning in Hearing Alds Signal Analysis: In Chapter 4 a clas-

sification method based on the SOTM clustering algorithm is used for discrimination
of audio signals for hearing aid. The feature extraction technique used in this work is
based on time-frequency decomposition of the audio signal, which is more suitable to
handle the non-stationary audio signals. A classification technique, which is a fusion of
supervised and unsupervised classification is applied to the extracted feature and tested
in different scenarios such as discrimination of human/non-human, natrual/artificial

and human/music.

Conclusion: The conclusion for this thesis and the discussion of future works is given

in the last chapter.



Chapter 2

Unsupervised Learning an
Clustering

2.1 Introduction and Motivation

P NSUPERVISED clagsification is a pattern recognition technique that aims to con-

struct decision boundaries based on unlabeled dataset. That is, we are interested
in exploring the dataset and see what can be done when all we have is a collection of un-
labeled samples. Unsupervised classification is also known as data clustering which is a
generic label for a variety of procedures designed to find natural groupings, or clusters, in
multidimensional data, based on measured or perceived similarities among the patterns [42].
One example of clustering is the detection of a region containing a high density of a specific
pattern compared to the rest of the background. Some of the functional definitions proposed

for a cluster are:

» Patterns within a cluster are more similar to each other than those belonging to dif-

ferent clusters.

e A cluster, which consists of an area with relatively high density points, is separated

from other clusters by an area of relatively low density.

Figure 2.1 shows examples of clusters with different sizes and shapes [43]. The problem

of unsupervised classification or clustering is very challenging because data can contain

i3
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Figure 2.1: Clusters in different shapes and sizes

clusters with different shapes and sizes. Even the number of clusters in the data depends on
the resolution with which we view the data. The question that might come to the mind is
that why anyone is interested in using unlabeled samples and whether or not it is possible
even in principle to learn anything valuable from an unlabeled dataset. There arve at least

five main reasons for using unsupervised classification [1].

e First, in some cases labeling a large datasct can be surprisingly costly. One exam-
ple could be the application of land-use classification in remote sensing. In this case
obtaining the "ground truth” information for the samples, which is the category for
each pixel in an image, requires one to visit the specific site associated with the pixel.
Another example is specch classification. Recorded speech is free but accurately label-
ing it (which is marking the word or phoneme uttered at each time) is extremely time
consuming. If a classifier can be crudely designed on a small labeled dataset and then
run without supervision on a large unlabeled dataset, much time and trouble can be

saved.

e The second advantage of using unsupervised learning is that it makes it possible to
proceed in the reverse direction; train with large amounts of inexpensive unlabeled

data, and then used supervision only to label the groupings found. This is the case for
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large data mining applications where we are dealing with a large dataset with no prior

knowledge about the contents of the data.

e Third, in many applications the characteristics of the data can change over time.
For example, in an automated food classification problem, the extracted features may
change as the scason changes. In such case, the performance of the system can be

improved by running a classifier in unsupervised mode to track the changes.

e Fourth, unsupervised methods can be used prior to a supervised classifier to improve
feature sclection. We can use these methods to find more meaningful and discrimina-
tory features that will be used for classification. There are unsupervised methods that

represent a form of “smart preprocessing” or “smart feature extraction”.

e Lasily, in the early stages of an investigation we can use unsupervised methods to
get some insight into the nature or structure of the data. The discovery of distinet
subclasses or similarities among patterns or of major departures from expected char-

acteristics may suggest we significantly alter our approach to design the classifier.

2.2 Steps of a Clustering Task
A typical clustering task usually consists of following steps [44]:

1. Pattern representation (including feature extraction and/or feature selec-
tion): This phase refers to representing the data to the clustering algorithm. The
information regarding the number of classes, type and scale of the features are con-
sidered in this phase. In this step one can use either the original dataset or use a
set of features extracted from the dataset to represent the data. Feature extraction is
the process of applying different transformations, decompositions and analysis on the
dataset to obtain salient features. In many cases, feature extraction is followed by a
feature selection step to identify and choose the most effective feature subset from the

original feature set.
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2. Defining (or selecting) a proximity measure: There are a variety of distance

measures defined for measuring the proximity of the points in the dataset e.g Euclidean
distance, Mahalanabis distance, Minkowski distance etc. The distance measures will

be described in more details in Section 2.4.

3. Clustering: Grouping the samples in the datasct can be done in a number of ways.
The result of the clustering depends on the type of clustering method used to group the
data. The output can be hard (each point belongs to only one cluster) or fuzzy (where
cach point has a membership value in different clusters ) or a nested series of partitions
when a hierarchical clustering approach is used. Various clustering techniques will be

discussed in Section 2.5.

4. Data abstraction (optional): Typically data abstraction is a compact representa-

tion of each cluster, usually by using cluster prototypes or cluster centroid.

S'J'\

Cluster validation (optional): Cluster validation is the assessment of the output
of the clustering algorithm. It determines how “good” the clustering results are. All
clustering algorithms, when represented with a dataset, produce clusters regardless of
whether or not the data actually contains clusters. In those cases where the dataset
actually contains clusters, some clusiering methods return better results. In order to
determine if the groupings found by a clustering algorithm are actually meaningful and
evaluate how good or how poor the clusters are, different quantitative measures are

developed.

Figure 2.2 shows the block diagram of the first three steps, including a feedback loop where
the feature extraction and selection methods can be adjusted based on the grouping results

[45).

2.3 Clustering techniques

Cluster analysis is a very useful technique in different areas of pattern recognition. The speed,

reliability and consistency with which a clustering algorithm can organize a large dataset has
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Figure 2.2: Clustering block diagram

led to widespread use of clustering techniques in areas such as data mining [45], information
retrieval [46][47] image segmentation [48], signal compression and coding[49] and machine
learning. Consequently, numerous clustering algorithms have been proposed in the literatuze
and new ones continue to appear. Classification of the existing clustering methods can be
done hased on different points of view. Figure 2.3 shows a hierarchical representation of the
clustering algorithms [43] [50]. Based on this taxonomy, the algorithms can be divided into
two major classes, parametric and non-parametric. Non-parametric approaches, in turn, fall
within two groups: Partitional clustering and Hicrarchical clustering. The techniques in the
first category are mainly based on the popular iterative squarc-error partitional clustering.
These algorithms aim to obtain the partition which minimizes the within class scatter or
maximizes the within class scatter. Hicrarchical algorithms in the second category arc mostly
based on the agglomerative hierarchical clustering. These algorithms attempt to organize
data in a nested sequence of groups which can be displayed in the form of a dendrogram or

a tree.

2.3.1 Partitional Algorithms

Partitional clustering algorithms attempt to obtain a single partition of the data. These
methods have the advantage in applications where a large amount of data is to be processed.
In such cases, the use of a dendrogram is not computationally feasible. The partitional

techniques usually generate clusters by optimizing a criterion function which is defined either
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Figure 2.3: Hierarchy of unsupervised approaches

locally or globally. The algorithm is run multiple times with different starting points and
the best configuration is then selected as the result of clustering. One of the most popular
partitional clustering algorithms is square-error clustering algorithm. The general objective is
to find the cluster configuration within the dataset, for which the squared-error is minimum
for a fixed number of clusters. The squared-error for cluster C), is defined as the sum of
Buclidean distances between each pattern in Cp and its cluster center m”. This distance is

also called the within-cluster variation.

t

N
=3 |
=1

Where 2¥ is the ith pattern belonging to cluster Cy, ny, is the number of patterns in the

g e m"'” (2.1)

cluster ), and mP* is the mean, or center of the Kth cluster defined as

m* = (~1—) g: z® (2.2)

e/ =
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The overall squared-error for a configuration is the sum of the square-error for all clusters

described as: «
Ei=> ¢ (2.3)
k=1
The objective of the squared-error algorithm is to find the cluster configuration that min-
imizes the total square-error for a fixed number of clusters K. The resulting partition has
also been referred to as the minimum variance partition.
The k-means clustering is one the simplest and the most popular square-error algorithms.
The algorithm is computationally efficient and gives good results on a dataset that consists
of compact and well separated clusters with a hyperspherical shape [43]. The algorithm is
even able to detect hyperellipsoidal clusters if the Mahalanobis distance is used in 2.3 in

defining the squared-error. The following briefly explains the algorithm steps [1]:
1. Begin with X initial cluster centroid.
2. Clagsify the n samples according to the nearest distance.

3. Recompute the cluster center for cach cluster. If the new cluster centers arc the same
as previous ones, there is no need to recalculate the centers again. The current cluster
centers are the final ones. Otherwise, go back to step 2 and classify the points with

the new cluster centers.

A big drawback of the algorithm, however, is the lack of a guideline to sclect the critical
parameters such as the number of clusters and the initial cluster centers [51]. Several varia-
tions have been proposed to improve the performance of the basic k-means algorithm. Gne
of the possible modifications is to introduce a fuzzy criterion function. This results in fuzzy

c-means algorithm, which will be described in the next subsection.

2.3.2 Fuzzy C-means Clustering

In the traditional clustering approaches, each pattern belongs to one and only one cluster.

This type of clustering is called hard clustering. In contrast to hard clustering methods,



20
fuzzy clustering methods assign a degree of membership in each cluster to cach pattern. A

fuzzy clusiering algorithm can be converted to a hard algorithm by assigning a pattern to
the cluster with the largest degree of membership. The steps involved in performing a fuzzy
c-means algerithm is very close to that of k-means, except for the objective function, which
is defined as

TP

lz; — e}, 1< m < oo (2.4)

¢ N
Im = E E )

i=1 j=1

Where m is the fuzziness index, py; is the degree of membership of observation z; in the
cluster ¢, z; (j = 1,2,..., N) is the jth d-dimensional data point and C; is the d-dimensional
center of the cluster.

The fuzzy set Theory was initially applied to data clustering by Ruspini [44]. Although the
results of the algorithm is better than the hard k-means algorithm, FCM can still converge

to the local minima of the squared-crror criterion function.

2.4 Neural Network Approaches

Artificial Neural Networks (ANN) has been widely used in pattern recognition applications

in both supervised and unsupervised ways. ANN approaches typically fall into two groups:

e The first group are those based on competitive learning or learning vector quantization
[50]. In competitive lcarning similar patterns are grouped together by the network rep-
resented by a neuron. This grouping is done based on correlation among the data. In
unsupervised context, well-known example of ANN are the Kohonen’s self-organizing
map (SOM) and adaptive resonance theory proposed by Carpenter and Grossberg in
1990 [50]. The architecture of these networks are single-layered. Patterns are repre-
sented to the input layer and associate to the output layer. The weights between the
input and output layers are updated iteratively until a termination criterion is fulfilled.

This group of algorithms will be discussed in more details shortly.

e The second group are technigues derived from the principle component analysis (PCA),

factor analysis and independent component anlysis (ICA)[52].
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2.4.1 Self~-Organizing Architectures

Self-Organizing methods are closely related to unsupervised learning. A number of self-
organizing architectures are: the Kohonen self-organizing feature map, neural gas approaches,
hierarchical feature map, dynamic hierarchical architectures, non-stationary architectures
and hybrid architectures [50]. The self-organizing technique used in this work is self-organized
tree mapping, which is a derivation of the Kohonen self-organizing map and will be the focus

of this Section. Figure 2.4 shows the hierarchy of different self-organizing methods.

Figure 2.4: hierarchical representation of self-organizing approaches

2.4.2 The Kohonen Self-Organizing Feature map (SOFM)

In the basic SOFM algorithm, input samples from a d dimensional feature space, are mapped
onto a grid with lower dimensions (usually two or tree dimensional) [50]. Each node on the
grid acts like a memory element; it stores the prototype vector that describes commonly
~ occurring vector patterns from the input space. The points that are close to each other in
the input space are mapped onto the neurons that are nearby in the grid. Whenever a node
is updated, the nearby nodes are also updated based on their distance from the original

winning node. Figure 2.5 shows the mapping of samples onto an SOFM lattice. The steps
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Figure 2.5: Mapping samples from the input space onto the SOFM lattice: The input z; is
assigned to the winning node. The neighbors that are connected to the winning node in the lattice
are updated according to the gaussian neighborhood function (courtesy of M.Kyan)
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involved in the SOFM algorithm are:

1.

o

Initialize the weight vector w;; of each neuron in the lattice using a random value. This

random value can be a sample randomly selected from the dataset X.
randomly select an input vector z; from the dataset and present to the network.

choose a winning node wj,;. based on the minimum Euclidean distance.

. update the ncurons on the lattice according to a Gaussian neighborhood funection

defined as:

wii(t+ 1) = wi;(t) + () H (Tiju, 75, 0(1)) [T — Wi (2.5)

where r;; represents the position of the node at(7, j) on the lattice, a(t) represents the
learning rate, which decays from a small initial value and o(t) controls the radius of
the neighborhood, which also decays over time and H(#) is the neighborhood function

defined as: _
*“"i*j*“"‘-ij %
do(t

H(Ti*j*, Tij, O(t)) = 6( (26\)

. update a(t) and o(t)

repeat iteration [rom step 2 until there is no significant change in w;

Association between the nodes is an important advantage in SOFM that helps the evolution

of the network can be uscful for extracting inter-clusters relationships. This property is

useful for visualization of multivariate data, where data with high dimension is mapped onto

a two dimensional lattice. Since the mapping preserves the topology, neighbor nodes in the

lattice represent the samples with related properties in the original data [50].

2.4.3 Self-Organizing Tree Map (SOTM)

SOTM was originally introduced in [53] to remove impulse noise from images. The algorithm

is a hybrid of the traditional SOFM ,which was explained in the previous chapter and the

Adaptive Resonance Theory (ART) [54]. Like ART, the growth of the network is controlled
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by a vigilance test, which essentially watches for an input that is in contrary to the current

knowledge about the input feature space. If such an input is found the resonance occurs and
results in refinement of the winning node or generation of a new node. On the other hand,
like the SOFM the generated network is more topologically aware and the refinement of the
existing prototypes is guided by a Kohenen style learning rule. Like its counterpart SOFM,
the SOTM algorithm uses competitive learning approach to find clusters within the data
while maintaining the general topology of the feature space. However, unlike the SOFM,
SOTM does not suffer from the disadvantage of nodes being trapped in the low density areas
[50] and the network has a dynamic structure and grows from a single node. Generation of
a new node is guided by a hierarchical control function H(t), which acts as an ellipsoid of
significant similarity. H(¢) can be assumed as a global vigilance threshold that is used for
measuring the proximity of a new input sample to the nearest existing node in the network.
Samples that fall outside the scope of the nearest existing node, result in generation of a
new node as child of the winning node. By initializing H(t) to start {rom a large value, the
clusters discovered at the carly stages of the clustering will be far from each other. Decay
of H(t) over time results in partitioning the data space in low resolution at the early stages
of the clustering, while favoring partitioning at higher resolutions later. Figure 2.6 depicts

the clustering process in SOTM and SCFM.
The SOTM Algorithm
The steps involved in the basic SOTM algorithm are:

1. Initialization: randomly select a training vector from the feature space X. Initialize
the network parameters H(0) and «(0)
2. randomly select an input 2 from the feature space and calculate the distance d; from

z to all currently existing neurons w;(j = 1,..., N.) when N, is the total number of

currently existing neurons.

3. sclect the node with the minimum distance as the winning node wy, such that d;(z, wy) =

TTI,’I',ﬂvjdj (Sl?? 'wj)
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Figure 2.6: Clustering procedure in the SOTM(left) vs the SOFM(right). The SOFM uses a
predefined lattice to span the input steps and assigns the samples to the closest node, or the
winning node. The input is used to update the winning node and its immediate neighbors in the
lattice. The SOTM (right), on the contrary, explores the input space by a growing structure in a
top-down manner. As it can be seen in the figure, unlike the SOFM, the SOTM does not suffer
from the nodes begin trapped in low density areas. (courtesy of M.Kyan)
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4. if dj(z,wr) < H(t) , then: update the weight vector of the winning node using the

reinforced learning rule: wy (¢ + 1) = wy () + a(t)[r — w;] where «(¢) is the learning

rate and H (&) is the hierarchical control function.

(@3]

. alternatively if d;(x,wy) > H(¢), then spawn a new node at the position z from the

winning node wy,.

6. update network paraineters
# «(t): decays with time, lies on [0,1], resets periodically.
e H(t): decays with time, controls the hierarchical level of the tree.

7. repeat from step 2 until either:
e there is no significant change in the network.
e all neurons are allocated and there is no significant change in the network.
e maximum number of epochs is reached.

The Hierarchical Control Function

In general we assume that the date samples are presented to the network randomly. The
only constrained imposed on H (¢) is that it should be monoctonically decreasing over time as
the samples are represented to the network [50]. Besides, H(¢) should be ideally initialized
50 a large enough value to cover the span of the data. There are two standard hierarchical

control function proposed for the original SOTM algorithm: lincar and exponential decay.
H(t) = H(0) - [(1 — e ™) H(0)/€]t 2.7

H(t) = H(0)e ¥/ (2.8)

where 7H is a time constant, which is bound to the projected size of the input data X,
H(0) is the initial value, ¢ is the number of iterations (or sample presentation) and £ is the

number of iterations over which the linear version of H(¢) would decay to the same level
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as the exponential version. One benefit of initializing H(¢) to a large value, possibly larger

than the maximum variation within the data, is that all levels of resclution across the data

can be explored. There are two natural choice proposed for H(0) [50]:

Range-based H{0): T (all ranges across the dimensions of X)

SD-based H(0): > 6ox a distance beyond twice the maximum deviation (r = 3o x) of 9%

of the samples from the mean.

In addition, H(#) can operate in different modes. Figure 2.7 shows alternative strategies for

decay of H(t) [50].

i.

Pure H(t) decay: In this case in fransition to a new H (i) value, only one single
random sample is considered. This is the typical approach for decay of H(t). However,
it results a rather limited search to be conducted in each hierarchical level. In fact,
in the lower levels of resolution, the slower the decay of H(?) means the data is being

assessed more thoroughly.

. Stepped H(t) with regular period 7Hstep: A stepped form of decay is introduced

in this approach. This allows at least 7H step samples to be explored before narrowing
the search to a finer resolution. Due to the random nature of sample representation,
it is assumed that at least some samples from all parts of the data are explored in this

period.

Stepped H(#) with irregular period: This mode is in fact an extension of mode
2. In this mode the counter is begin reset every time a new node is generated. This
guarantees that the search will continue for at least another 7Hstep samples after a

new node is generated. This allows a new node to have a chance to adjust itself,

Stepped H({) with irregular period and node inhibition: This mode adds an
additional constrain to mode 2 by forcing the network adaptations only for a pericd of

7H step before inserting a new node. This allows nodes to organize and have sufficient
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time to adjust themselves before new (and possibly unnecessary) nodes are allocated.

This process repeats every time a new node is spawned and gives the network a period

of time to settle before generating a new node.

"
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Figure 2.7: Different H(t) decay strategies illustrated for period of generation of 10 neurons. (a)
Pure H(t) decay; (b) Stepped H(t) with regular period; (c) Stepped H (t) with irregular period; (d)
Stepped H(t) with irregular period and node inhibition. (courtesy of M.Kyan)

Learning Rate

The learning rate a(t) is an important factor in organizing the network. Like the hierarchical
control function, H(t), a(t) can also operate in number of different global or local modes.
In global modes a single learning rate is applied to all node, whereas in local modes an
individual rate operates for each node a set of nodes. There are a few modalities proposed
for the operation of the learning rate. Some of these modes are discussed below. The first
mode is the original periodic reset strategy proposed for the SOTM. Modes 2-4 are the new
approaches suggested in [50]. However, it has been mentioned in [50] that Modes 1 and 2
are noticed to have better results for an SOTM process.



29
Global periodic reset: In this traditional approach the network memory is refreshed

with regard to the underlying density.

Global reset upon node generatioin: This approach is a modification of the first
mode based on the idea that a network needs to reorganize its memory only when a

new node is gencrated.

Local rest of winner and child upon node generation: This modification restricts
the plasticity only to the region of the map which is recently grown. based on the
assumption that the adjustment of the nodes that are distant from the growing region

is not neccessary.

Local reset of winner, child and siblings upon node generation: This mode is
very similar to mode 3, with the exception that children of the winning node are also
considered to be plastic within the updating region. As mentioned in [50], the global
reset modes (1,2) tend to outperform the local reset modes. In addition, it is suggested
that mode 2 is preferred because the reset is justified when new information is to be

induced to the network after node generation.



Image Classification

3.1 Small Intestine Images

EDICAL imaging is certainly one of the most explosive developments that has taken

place in the last two decades. The new findings in this area not only provide a
better diagnoses, but also offer new hopes for treatment of many critical diseases. Different
imaging techniques such as MRI and x-ray provide the physicians with a more precise non-
invasive diagnostic tool. Different medical imaging techniques are complementary and their
progress has immediate repercussion on the development of treatments as they provide a
much less invasive diagnosis compared to previous methods. For example, for cancer or
epilepsy, the precise identification of the lesion already facilitates the use of surgery; the only
therapeutic option for some patients. Also, imaging techniques can provide more accurate
diagnosis for some parts of the body which arc not easy to evaluate using conventional
methods. The small bowel for example has always been difficult to evaluate because of its
shape and size. Traditional endoscopy used to be the only way to gather actual images
from inside the patients intestine. The operation needs to be performed by highly skilled
doctors and is inconvenient for the patients. The endoscopy’s tube, which is inserted from
the mouth, is rather stiff and causes some discomfort as the doctor navigates the patient’s

gastrointestinal tract. In addition, since the camera cannot reach all parts of the small

30
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intestine, diagnosing discases of the small intestine was a major problem for doctors[55]. The

appearance of capsule endoscopy in 2000 has generated a large amount of interest among
gastroenterologists. PillCam is a tiny capsule (10mm x 27mm)[56], which was introduced
by Given Imaging Ltd. The capsule is digested from the mouth and moves slowly through
the gastrointestinal tract (including the small intestine) by a dint of natural contractions. As
the capsule moves through the gastrointestinal tract, it captures color images and transmits
them wirelessly to a receiver that the patient wears around his or her waist [25]. The capsule
is exerted naturally with the natural bowel movements [25]. The data collected through the
examination is an 8-hour-long video that provides visualization of the 21 foot long small
bowel, which used to be a “black-box” to doctors [25]. The procedure is ambulatory and
enables the patient to live normally during the endoscopic examination. Clinical results show
that PillCam is a superior diagnostic method for detecting the diseases in the small intestine
[55]. Four main types of cancer, which are usually found in the small intestine ave listed and

described below [25].

Adenocarcinoma: This type of cancer originates in the epithelial lining of the mucosa and

is mainly found in the duodenum.

Sarcoma: This cancer originates in the muscle wall of the small intestine and is mostly

found in the ileum.

Carcinoid: This type of cancer originates in the specialized neuroendocrine cells are found

in the small intestine, the ileum and sometimes in the appendix.

Lymphoma: This type of malignancy is usually formed within the lymphoid tissue of the

small bowel. They are commonly found in the jejunum or ileum.

The PillCam provides gastrocnterologists with a new method for detection of the small
bowel diseases through a live video representation, which was not available with the tra-
ditional endoscopy. However, the drawback of this technology is the large amount of data

which is collected in each experiment. An average of 50000 images or & hours of video is
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recorded during an examination. Manual evaluation of these images is a an extremely la-

borious and time consuming task and important clues might be missed due to fatigue or
repetitive nature of the job [57]. Therefore, a computer aided diagnostic method can be
developed and used as a secondary opinion, that views and points out the suspicious areas
to the doctor. Figure 3.1 shows sample images taken by the PillCam, which includes three

normal and three abnormal images.

(@)

()] (e) ®

Figure 3.1: Sample small bowel images collected by the PillCam obtained from the Image Atlas
of Given Imaging Ltd. (a) Healthy small bowel, (b) normal pyloric region, (c) normal jejunum, (d)
small bowel polyp, (e) small bowel lymphoma, (e) small bowel lymphoma

In addition, a computer aided system can be used to confirm and compliment the doctor’s
diagnosis. It can help to decrease the number of required biopsies, detect cancer in an early

stage, and in general improve the quality of diagnosis [25]. The first work on the automatic
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detection of abnormalities in the capsule endoscope images was proposed by Khademi et al.

[25], where linear discriminant analysis has been uses for classification. Other classification
techniques used in this area include canonical discriminant analysis [27] and MLP [28][26].
While all the previous works have used supervised techniques, in this work the application
of an unsupervised method will be explored.

The investigation of application of unsupervised approaches for medical images can be
useful from different viewpoints. One of the reasons for considering an unsupervised method
is that image characteristics might vary in different experiments. One of the most important
features of the capsule endoscopy procedure is the bowel preparation. Colors of intra luminal
material may be significantly different between examinations. Thercfore, the characteristics
of the images used for training the supervised classifier might be different from those of
images captured in the test experiment and this could affect the performance of a supervised
classifier. However, the performance of an unsupervised classifier does not depend on the
characteristics of the training and test data. Another important factor to be considered is
the size of dataset. Although the ground truth for the image dataset is given in this case, in
order to build a robust supervised classifier the dataset has to be large enough to guarantee
good generalization. In addition, unsupervised techniques can be used to get some insight
about the structure of the data and existence of the natural patterns, discovery of distinet
subclasses or similarities among patterns and to find meaningful and discriminatory features

that best represent natural groupings in the data.

3.2 Feature Extraction

Like almost any other classification problem, the first step in the classification of small bowel
images is extracting a set of descriptors from the images that can efficiently represent charac-
teristics of the images and have high discriminatory power. The extracted features are then
fed to the classifier, which is unsupervised in this case, to make the decision. The outcome of
the classifier is related to the diagnosis of the images, which can be either a normal (healthy)

or an abnormal (diseased) image. In addition, since the input space consists of images the
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input data is expected to have a very high dimensionality (256x 256 in this case). Performing

any classification method on data with such high dimensions would be extremely costly and
computationally intensive. Hence, the need for a feature extraction scheme becomes more
significant. Figure 3.2 shows the feature extraction procedure performed in this work. The
Images are first converted into CIE lab color space, then shift invariant wavelet transform
is performed on the images, and then cross co-occurrence matrices are calculated on the

wavelet coefficients. Each of the blocks will be described in more details shortly.

Labeling
(normalfabnormal)

Figure 3.2: Block diagram of the feature extraction procedure

The two main features used in this work are color and texture. These features are
directly related to the clues used by the doctors to evaluate the images. Texture is one
of the important clues in analyzing both color and gray scale medical images. The human
visual system can discriminate different textured areas in an image effortlessly. However,
implementing this task on computers has been the subject of research in the area of machine

vision for a long time.

Texture: The images captured by the PillCam are from different organs, structures and
anatomical objects along the gastrointestinal tract. It can be noticed from the exper-
imental dataset that normal images contain mostly smooth and homogeneous texture
with very little disruptions in uniformity except for folds and crevices [25]. On the

other hand, abnormal images tend to contain different textures at the same time and




more heterogenous textured areas. This can be seen in Figure 3.3. 3
Color: Color contents of an image also provides discriminatory information about the re-
gion or objects in the image. Normal regions usually exhibit pinkish colors, whereas
abnormal regions show some difference in color compared to the surrounding area.
Malignant tumors are usually inflated, more reddish and severe in color compared to
normal areas while benign tumors show less intense hues. Redness may specify bleed-
ing, blackness could be treated as deposits due to laxative, green may be the presence

of fecal materials and yellow relates to pus information of the image [58].

(O] 6] ® ()

Figure 3.3: Top row: normal small bowel images. (a) normal small bowel, (b) normal jejunum,
(c) normal jejunum, (d) normal small bowel. Bottom row: abnormal images. (e) small bowel polyp,
(f) small bowel lymphoma, (g) polypoid mass, (h) GIST tumor.

3.2.1 CIE Lab Color Space

As explained in [59], abnormal regions are observed to show more or less differences in
color compared to the surrounding regions. In fact, malignant tumors are usually inflamed,

reddish and more severe in color. Hence, color information plays an important role in the
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detection of abnormalities in small bowel images. The images taken by the PillCam are

compressed in JPEG and coded in RGB color space. However, in this work the feature
extraction is performed in the CIE lab color space. Unlike the RGB, the Lab color space is
designed to approximate the human vision. The main advantage of using lab color space is
that this color space is perceptually uniform, which means a change in the color value results
in a change of about the same visual importance. In addition, Euclidean distance measure
has a better performance in this color space. The L component defines the luminance, «a is
red/blue chrominance, and & is yellow/blue chrominance. The equations for converting the

RGB color space to the Lab color space are given below [59]:

X 0.412 0.357 0.180 R
Y | =10212 0715 0.072 G (3.1)
A 0.019 0.119 0.950 B

The first step is to transform the color form RGE color space into XYZ color space using
Equation 3.1. Next, values in the XY Z color space are converted into the Lab color space

using the following equations

Y 18 e Y 6 '
= ] S = IO —— L3 2 .2
L = 116(3-)'/* — 16for > 0.008856 (3.2)
Y Y :
L = 9033(3-) forg- < 0.008856 (3.3)

g 45 Y, ,‘
@ =500(/() = /(5-)) (3.4

Y Z

= 500(f(=) — f(—= 3.5
b=500(/(37) - f(z) (3.5)

where

f() = ¥t for t > 0.008856
» 16
J(8) = 7.7787¢ + —— for £ < 0.008856

where X,, ), and Z, correspond to the white color in the XYZ color space and L, a and b

are the luminance and chrominance in the Lab color space respectively.




3.2.2 Shift Invariant Discrete Wavelet Transform

In the previous works on the classification of the small bowel images [27][25], the application
of the shift invariant discrete wavelet transform has been investigated and has been proven to
be efficient for extracting the texture information in particular. Multiresolutional analysis of
the images is a natural way to highlight the leatures of interest, such as texture, in an image.
It provides a representation of the image in which the textural information can be retrieved
casily. This method is basically a projection of the images onto a set of finite-length and
fast-decaying oscillating functions known as wavelets. Wavelet transforms can be classified
into discrete wavelet transforms (DWT) and continuous wavelet transforms (CWT). The
latter operates over every possible scale and translation whereas the former uses a specific
subset of scale and translation values or representation grid. The DW'T is a scale-invariant
transform since a decomposition of the image contains all the basic functions needed to
decompose different scales of the image. This feature of the DWT is of importance since
pathological areas in the small bowel images may occur in different sizes.

However, ag the Pillcam travels freely through the howels, the orientation of the images
is not always the same and the location of the suspicious areas is unpredictable. However,
the DWT is a shif-invariant transform, which means different translations of an input image
results in different set of DWT cocfficients [60]. In order to extract a consistent feature
set, one solution is to use the shift-invariant discrete wavelet transform (SIDWT). Several
solutions have been proposed to overcome the shift-invariant property of DW'T. The method
suggested by Mallat et al is based on selecting the local exterma from the filtered and fully
sampled version of the image. These local extermas are used to detect and translate the
shift since a shift in the signal results in a shift in the local extermas. However, due to
lack of decimation there is a large amount of redundancy and cach level of decompaosition
has as many samples as the original input image, which makes the algorithm to be costly
overall. One solution for the cases where the dictionary contains many redundant wavelet
basis functions is the Matching Pursuit (MP) algorithm. However, this algorithm is com-

putationally intensive itself and can slow down the the system. Bradley proposes a method
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which is a trade off between the sparsity of representation and time invariance where critical

sampling is performed for certain subbands only and the vest are fully sampled. The result
of this method is an approximate SIDWT. The mentioned algorithms either suffer form high
computational cost or achieve only an approximation of SIDWT. The SIDWT algorithm
proposed by Beylkin does not have the discussed shortcomings. It calculates the DWT for
all circular shifts in a computationally efficient way. In addition, since this transform uses
orthogonal basis, it results in less redundancy. An extension of Beylkin’s algorithm to 2-D
signals is developed by Lian et al. The application of this algorithm to the biomedical images
is shown to give promising results in the previous works [25][27)].

The algorithm proposed by Liang and Parks in [61] is used in this work to decompose
the images in the wavelet domain. In fact, this algorithm is an easy and fast implementation
of multiresolutional analysis using filterbanks. It makes for a good localization for high
frequencies and a good frequency precision for low frequencies.

The 2 — D filterbank scheme used for an N X N image applies a high pass filter on the
image followed by a low pass filter. Applying the low pass filter Hy(z) and then the high
pass filter H(z) to each row of the image X creates two images: one containing the low
frequencies of X, X (L) and the other one containing the high frequencies X (H). The rows,
and X (L) and X(H) are subsampled by a factor of 2, then the same filters H, and H, are
applicd to the columns of each image. Finally another subsampling by 2 is performed on
the columns. The result, as depicted in Figure 3.5, is four images LL, HL, LH and HH for
two levels of decomposition. The same procedure is repeated for further decomposition. The
high pass filters applied in the horizontal and vertical directions in this scheme emphasize
the high frequency contents of the image and give oriented: The HH, HL, andLH subbands
represent the diagonal, horizontal and vertical edges respectively. The 5/3 Gull wavelet has
been used in this work as used in [62] because the filter lengths are small and can warrant
an efficient implementation. In order to be invariant to translations, the algorithm should
look at all translations of the input image and select the best set of wavelet coefficients.

The procedure consists of two parts, first, an efficient algorithm for computing the wavelet
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Figure 3.4: Wavelet coefficients for two level decomposition of a small bowel image

transform for all the translations and second a fast quadtree search algorithm. The wavelet
decomposition is performed for different shift values. There are four elementary shifts in this
algorithm: (0,0),(0,1),(1,0) and (1,1) where the first index corresponds to the row and
second index corresponds to the column. Every shift can be represented as a combination
of these elementary shifts. So the 7, level of decomposition for the input shift (a,b) can be

obtained by [25]

LLi(a,b) = %j znj ho(m — 2a)ho(n — 2b) L7} (m, n) (3.6)
HL(a,b) = Y. ho(m — 2a)hi(n — 2b)HL?~'(m, n) (3.7)
LH(a,b) = % zn:hl(m — 2a)ho(n — 2b) LH?~'(m, n) (3.8)
HH(a,b) = ;j é hy(m — 2a)hy(n — 2b) HH~}(m, n) (3.9)

The result of this decomposition is a tree shown in Figure 3.5 [27], which contains all
the DWT coefficients for N? translates of the image X, where the size of the image is

N x N. In this work, since the images are represented in the lab color space, three trees are
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generated, each corresponding to a color channel. The total entropy of the color image is

found by caleulating the entropy of the corresponding color subbands and then adding them
up. Since the middle wavelet detailed channels contain most textural information [63] and
in order to limit the number of coefficienss being generated, only two levels of decomposition

was performed on the images in this work.

Figure 3.5: SIDWT decomposition tree for three levels of decomposition with the best selection
corresponding to the minimum cost path

3.2.3 Cross Co-occurrence matrices

The principle of cross co-occurrence matrices is based on the gray scale co-occurrence ma-

trices(GCM). The GCM for a gray scale image shows the distribution of co-occurring values
Y

at a given offset. Bach entry in a GCM, M (4, j), indicates how often a pixel with gray-level

value i occurs at the distance d to a pixel with the value j, where d is the given offset vector.

A cross co-occurrence matrix (CCM) is the counterpart of GCM for color images. Let I be

an N x N small bowel image and b1, b2, and b3 the three color subbands. C'gl’m is the CCM

matrix for the color subbands 61 and 52 for the offset d. Hence, each entry of the matrix,
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CM b‘(i 7), represents the probability of the intensity level 7 in the color subband b1 and

intensity level j in the color subband b2 to occur at two locations seperated by the distance
vector d. As shown in {27], since the subbands are oriented, only some particular CCMs
are calculated on cach subband. The displacement vectors are grouped according to the ori-
entation of the subbands: vertical, diagonal and horizontal. Six matrices are generated for
cach subband or 18 matrices in total for an image. Finally, since C L2 and C”b2 b1 represent

101,1)2 b2,b1
oo

1
i, blb2 . —4—s—d— is used in this

the same information, the average of these two matrices M
work. The use of CCMs has the advantage of extracting color and texture information at the
same time. As proposed in [27][64], four principal features can be derived from ecach matrix:
contrast, energy, homogeneity and entropy. In this work however, based on the efficiency of
the features only two features are kept: energy and homogeneity. The former is calculated
as the sum of the squared elements. If M is a cross co-occurrence matrix, the energy for the
matrix is calculated as

N =Y M(ij)? (3.10)
(5]

Homogeneity is another feature used to describe the textural characteristics in the image.
This feature measures the closeness of the distribution of clements in the co-occurrence

maérix to the matrix diagonal and is defined by
~y M9 (3.11)

T+]i— 4l |

Two sets of features are extracted from cach image based on the energy and homogeneity
measures. As mentioned earlicr the CCMs are calculated for three groups of offsets, vertical,
horizontal and diagonal. Hence, there are 6 matrices for each subband or 18 mairices per

image. Finally, two sets of features are extracted from each CCM based on energy and

homogencity measures, which makes for a total number of 36 features for each image.

3.3 Classification and Results

To evaluate the performance of an unsupervised classification scheme on the small bowel

dataset, two sets of experiments were conducted using k-means and fuzzy C-means clustering
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algorithms. The algorithms were applied to the extracted features. The database contains

75 images, including 41 healthy (normal) images and 34 discased (abnormal) images. using
the feature extraction techniques in the previous sections, cach image in the database is
represented with a feature vector of 36 features. Since there is a considerable difference in
the range of the values for different features, the features are normalized prior to further
analysis. In both clagsification scenarios ( using k-means and fuzzy C-means) the number of
clusters is needed to be known beforchand. Since in this work we aim to detect the existence
of abnormalities in the images, and not determine the type of abnormalities, the numbcer of
clusters is defined to be 2 to represent normal and abnormal images. The Fuzzy C-means
algorithm calculates, for each image X, the degree of membership for the healthy cluster and
the diseased cluster. Then the images are separated into two clusters based on the criterion of
maximum membership. For the k-means algorithm, it is the same method; the same matrix
of extracted features F is used. The algorithm calculates the squared Euclidian distance
between each row of ¥ (which represents one small bowel image) and the centroid. The
centroids are then recalculated and these steps are repeated until the algorithm converges.
The result of the two algorithms is a 75 x 1 matrix. Each row of the matrix corresponds
to one image in the dataset and indicates whether the image belongs to group one or group
two. Finally it is the physician who labels one group as the healthy bowels and the other as
the diseased bowels.

The efficiency of the algorithm is provided in the confusion matrix (or the matching
matrix) given in Table 3.2. Table 3.1 shows the definition of the confusion matrix where the

specificity and sensitivity are defined as:

Sensitivit Number of correct positive predictions TP (3.12)
ensitivity = . ]
v Total number of abnormal cases TP+ FN
.. Number of correct negative predictions TN
Speci ficity = = 3.13
pecificity Total number of normal cases TN+ FP ( )
Number of correctly classified images
ef ficiency = umber of correctly classified images (3.14)

Total number of images
As it can be seen in Table 3.2 that an accuracy rate of 76% is achieved which is a rather

satisfactory result for an unsupervised classifier. The results of other classification methods
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(k-means and SOTM) using encrgy and homogeneity features are provided in Tables 3.3 and

3.4 for comparison.

Anocther measure to evaluate the performance of the classification method is the Receiver
Operating Characteristic (ROC) curve. The ROC curve represents the fraction of true
positive (TP) vs the false positive (FP). The TP corresponds to the sensitivity and is the
proportion of discased bowel images classified as abnormal while the FP represents the
portion of normal images classified as abnormal. An ideal classifier would yield a point in
the upper left corner or coordinate (0,1) of the ROC space, where all images have been
correctly classified. This point represents 100% sensitivity (no false negatives) and 100%
specificity (no false positives). The classification accuracy is also measured by calculating
the arca under the ROC curve. An area of 1 corresponds to perfect classification, whercas
an ineflicient classification is represented by a horizontal straight line going from the point
(0,0) to the point (1,1). In order to have an efficient classifier, the curve has to be above
this line. The ROC curve for the unsupervised classification techniques used in this work is
given in Figure 3.6, where the area under the ROC curve was calculated to be 0.76. Table
3.5 shows the results of using different fecature sets along with supervised and unsupervised
classification methods. In the supervised classification, LDA has been used in conjunction
with leave one out method (LOOM) to combat the problem of small sample size. In the
unsupervised column, the results of applying fuzzy C-means is provided. Both techniques
arc used on the same database of 75 images (including 41 normal and 34 abnormal images).
As it can be scen from the table, the extracted feature for a supervised classificr are not
necessarily optimal for an unsupervised classifier. However, a feature sct that yields a good
results with an unsupervised classifier may naturally lead to better results if a supervised
classifier is used. This shows how an unsupervised classification can be used as a first step
in classification to select the naturally most diseriminant features. From Table 3.5 it can be
observed that using the SIDWT along with cross co-occurrence matrices in the RGB color
space returns an accuracy rate of 52% for the k-means or fuzzy C-means clustering while

a relatively high accuracy rate is achieved using a supervised classifier. Nevertheless, using
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the feature set that is extracted in the Lab color space for unsupervised classification results

in an accuracy of 76%. In an attempt to test the methods with more images, all the images
were rotated by 180 degrees to obtain a database of 150 images. The classification accuracy
for the enlarged database is 70.7% which shows the method could be applicable to larger

databases.
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Figure 3.6: The Receiver Operating Characteristics curve with an area of 0.76

3.3.1 Future work

Although wavelets are shown to be effective as texture feature extraction tools, the adapta-

tion of other texture descriptors for the medical images is growing. Among the new textural

features, textons have shown promising results in extracting texture features for classifi-
cation. Textons are usced to describe the fundamental micro-structure elements in natural

images. The appearance of the textons has a root in the psychological study of the texture

recognition process in human. The theory of textons was first proposed by Jluesz [65] to

explain the “preattentive discrimination” of the texture pairs. To discuss Julesz pioneering




Predictive positive | Predicted negative

Actually positive | TP(true positive) | FN(false negative)

Actually negative | FP(false positive) | TN{true negative)

Table 3.1: The definition of confusion matrix

Normal ;| Abnormal
Normal 32 10
Abnormal 8 25

Table 3.2: Classification results for the fuzzy C-means classifier

work on textons, we need to describe these two concepts:[66]

45

First order statistics refors to the probability of oceurrence of a gray value at a random

location in an image. Thesc statistical measures can be calculated from the histogram

of gray level intensity of the image. First order statistics depend only on individual

pixel values and not on the co-occurrence of the neighbor pixels. The mean gray level

value in an image is an example of firsi order characteristics.

Second order statistics measure the likelihood of gray level intensities occurring sepa-

rated with a displacement vector d where the length and orientation of the vector d is

random.
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Normal § Abnormal

Normal 29 10

Abnormal 11 23

Table 3.3: Classification results for the k-means classifier

Normal | Abnormal

Normal 25 16

Abnormal 8 26

Table 3.4: Classification results for the SOTM classifier

These two attributes were used by Julesz to determine whether two textures are preatten-
tively discriminable. The theory of textons was proposed to address this problem. Textons
can be considered as visual events in an image such as collinearity, termination and closure.
Using the theory of textons, the two different textures in Figure 3.7 can be described as
follows. The two regions in Figure 3.7(a) have identical second order statistics and the
number of terminations (i.e texton information) in both the upper and lower regions is the
same, therefore the human visual system is not able to discriminate the two textures preat-
tentively. On the other hand, in Figure 3.7(b), the number of terminations in the upper
and lower region is different (three in the upper half and four in the lower hall). Because of

the difference in this texton, the two textures are discriminable.
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Figure 3.7: Texture pairs with identical second-order statistics. (a) The upper half and lower half
contain the same textons. The visual system can not discriminate the different textures without
careful scrutiny. (b) The upper region contains textons different from the lower region. Humans
can differentiate the two textures effortlessly.
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The application of textons in the area of medical image processing is growing recently.

in [67] Harms et al. extract texture micro-edges and textons between these micro edges to
diagnose leukemic malignancy in samples of stained blood cells.

In [68] a texture feature extraction based on textons is used to classify the breast density
pattern to determine the breast cancer risk.

In [69] Tuzel et al. use texton histograms to distinguish among hematology cases directly
from microscopic specimens. The images contain normal images and for groups of four
different hematologic malignancies. Initially, the basic texture elements (textons) for the
nuclei and cytoplasm are learned, the cells are represented through texton histograms and
finally a SVM classifier is applied to the extracted features. The work proposed by Adjerch
ot al. in [70] is one example of using the textons for segmentation of retinal images.

The application of textons in the area of medical image analysis for extracting texture
information appears to be increasing among the rescarchers and the results ave promising.
Hence, as the future work a new set of features based on textons can be developed for the

small bowel images to extract the texture information and improve the accuracy.




Color space Extracted features Unsupervised | Supervised
classification [ classification
RGB Contrast 52% 94.7%
Energy
Homogeneity
Entropy
Lab Contrast 53% 78%
Energy
Homogeneity
Entropy
Lab+RGB Contrast 56% 79%
Energy
Homogeneity
Entropy
Lab Energy 76% 76%
Homogeneity
(normalized features)
Lab Energy 72% 84%
(third subband, normalized features)
RGB Energy 61% 8%
Homogeneity
Lab+RGB Energy 65% 88%
Homogeneity

Table 3.5: Comparison of the results of unsupervised classification method with supervised clas-

sification for different feature sets and different color spaces.



4.1 Anudio classification for hearing aids

PEECH and environmental audio signals are important sources of information in our

weryday communication, and can provide information about the location or environ-
ment of the captured scene or event. Having approximately 10% of the world population
suffering from some sort of hearing loss, one of the important applications of audio clag-
sification is in hearing aids for hearing impaired people. Users of hearing aids are forced
to listen under a variety of noise conditions and in most cases simple amplification cannot
help hearing-impaired listeners. Such devices amplify the noise as well as the desired sig-
nal. Consequently, pumerous signal enhancement algorithms have been proposed for digital
hearing aids. To overcome this problem, the hearing aid should be able to detect the audio
classes which the incoming signals belong to, and then change the hearing aid parameters
accordingly. The first step to achieve this goal is the ability to quickly and correctly classily
the audio signals in the environment.

There is a growing body of evidence that different hearing aid characteristics that can
operate efficiently under different listening conditions are desirable [71]. In a survey obtained
by Kochkin [32] from 2323 hearing aid users it was observed that less than one third of the

hearing ald users were satisfied with their hearing aid if the device worked properly in
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only three or fewer environments while over 91% of the users were satisfied if the hearing

aid worked wherever it was needed. Thus if the hearing aid can he automatically adjusted

according to the listening conditions substantially better user satisfaction would be expected.

4.2 Awudio signal classification

Audio signal classification is one the tasks that humans perform cffortlessly all the time.
Differentiating the voice of a singer from the music, understanding heavily accented speech,
recognizing a voice on the telephone, telling the difference between a helicopter sound and
a car sound, discriminating the speakers voice from the background noise are some of the
auditory tasks that we do every day without even considering them. However, duplicating
this capability on machines takes an intensive effort. In the area of machine learning and
artificial intelligence, analysis and discriminasion of the audio signals is one the research areas
that has been active for a long time and is not completely solved yet. There is a wide range of
applications for the classification of audio signals. Speech processing for security applications
and human computer inferaction, multimedia data management and distribution, security,

biometrics and bioacoustics are some of the applications of audio signals classification [33].

4.2.1 Taxonomy of audio signals

Before discussing different existing classification and analyzing techniques, it is important
to define a taxonomy of auditory signals. Audio signals can be sorted into classes from
different viewpoints. However, the taxonomy presented here is based on the origin of the
gignal. Figure 4.1 shows the taxonomy of the audio classes used in this work as a reference.
The audio signals used in this work can be divided into two main groups, signals that have
a natural origin and those which are human made or artificial sounds. Natural signals are
then subdivided into human signals (or speech), which in turn consists of male and female
speakers and non-human sounds, which include hird, animal and insects. On the other
hand, human made scunds consist of two main categories: machine sounds, which in turn

are divided into helicopter and aircraft, and musical instruments such as piano, flute and
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drum. Other taxonomics with higher resolution can be obtained in many ways for example

by subdividing the human speech into pathological or normal or by dividing musical sounds
into different musical genres such as pop, rock, ete. In this work however, we confine our

attention to the taxonomy given in Figure 4.1.
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Figure 4.1: Taxonomy of audio signals used in this work

4.2.2 Audio signal classification

Audio signal classification consists of extracting physical and perceptual features from an
audio signal (or one segment of the signal) and categorizing the signal inio one the given
audio classes. Audio classification in general is a wide area of research and a large amount
of research has been done on it in the last decade. Most of the research works in the area
can be divided into three main categories: speech, music and audio scene analysis. Each of

these topics will be discussed in more detail below:
Speech analysis

A considerable part of research in the area of audio signals has been devoted to speech
analysis and classification. Speech analysis is a wide area of research itself. The following

areas are some of the major branches of the speech analysis in the literature.
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Speech recognition: Speech recognition is one of the oldest and the most fundamental

speech classification problems. The goal is to convert the words from the human
speech into a readable text. Specch recognition has a wide range of applications in
the areas such as health care, military, security, telephony and enabling people with
disabilities. References [72] [73] and [74] are some of the comprehensive works in the

arca of speech processing history and proposed methods and solutions.

Pathological speech analysis: Can be used for recognition of selected types of vocal tract
pathologies [75]. Various pathological conditions affect the vocal functions, which result
in speech disorders. The aim of pathological speech analysis is to assess the speech
disorders by using acoustic characteristics of the speech. It can be also helpful in
monitoring the progress of the patient over the course of therapy [33]. Further more,
it is valuable to provide the physician with a quantitative guideline for a deformation

degree assessment of speech signal [76].

Speaker recognition: Speaker recognition (or sometimes called speaker verification [77])
is the identification or verification a user based on the characteristics of their voice.
Compared to the speech recognition problem, where the main goal is to determine what
word is uttered, the goal is to find out who the speaker is. Some of the applications of

speaker recognition can be speaker authentication, identification or biometrics.
Music

As the amount of multimedia and music files is growing every day, automatic extraction
of music information is gaining more importance as a way to structure and organize the
increasingly large numbers of musice files available digitally on the Web. Today a large portion
of the audio classification literature is related to music and music information retrieval.

However, most of the research in this arca, fall within one of these categories:

Music content analysis: With the creation of huge music databases, the demand for fast

and reliable tools for content analysis and description is growing. These analysis tools
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can be used for scarches, content queries, and interactive access. Amongst all possible

descriptors, music genres are crucial since they have been widely used for years to
organize music catalogues, libraries, and music stores [41]. A musical genre is typ-
ically characterized by the cominon attributes related to instrumentation, rhythmic
structure, and harmonic content of the music. The music genre classification maps a
taxonomy of genres, i.e., a hierarchical sct of categories onto a music collection. Simi-
lar to any other classification problem, a set of features is used to decide on the music
genre. Table 4.1 shows a summary of the features being used in music content retrieval
today [41]. As for the classification, a number of supervised and unsupervised meth-
ods have been proposed. Shao et al. [39] use agglomerative hierarchical clustering
on their music dataset. In the work by Rauber et al. [40] the growing hierarchical
self-organizing map is applied to cluster data and organize them on a two-dimensional
space. References [78] and [79] are examples of application of supervised classifiers
where K-nearest neighbor are used in the context of genre classification. The hidden
markov models (HMMs) have been used in [80] and [81]. In [82] West and Cox show
the applications of linear discriminant analysis in genre classification of audio content.
In [83] support vector machines are used for the classification purpose and finally [84]

is an instance of the use of artificial neural networks.

Musical instrument recognition: Musical instrument recognition is another aspect of
music information retrieval. Such a capability may be extremely helpful in the frame-
work of automatic musical transcription systems as well as in content-based search
applications. One of the practical applications of musical instrument recognition is
automatic music transcription. A typical task of classification of musical instruments
consists of three phases [85] the first step is the preprocessing, which can be also re-
ferred to as pitch extraction. The next stage is the extraction of frequency information,
fundamental frequencies and harmonics. These information will then be used in the
third stage which is the pattern recognition and classification stage. Some of the works

use the temporal information as well [86]. References [87] [88] and [89] are some of the
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other existing techniques in the literature on the recognition of musical instruments.
Speech/music discrimination: Another aspect of content based audio classification that
has attracted many rescarchers is discrimination of human specch from the music. In
this process, sometimes we are more interested in extracting the speech information
form the background music, for example for the purpose of performing auntomatic
speech recognition on the soundtrack data. On the other hand, sometimes the music
content is of more importance e¢.g. many lisieners are more interested in the music
on broadcast radio rather than the commercial and talk programming. The works by
Hawley et al. [90] and Saunders et al. [91] are some of the previous works on this topic
in the literature. Several feature sets have also been suggested for this purpose. In
[92] a comparison of the proposed feature sets for speech/music discrimination (such

as cepstral coefficients, amplitude features and pitch features) is presented.

Timbre Melody/Harmony Rhythm
texture model: model pitch fanction: periodicity function:
of features over measure of the measure of the
texture window: energy in function periodicities of

of music notes features

1) Simple modeling with { 1) Unfolded function: | 1) Tempo: periodicities

low order statistics describes pitch typically in the

2) modeling with content and range 0.31,58

auto regressive model pitch range (i.e., 20040 BPM)

3) modeling with 2) folded function: 2) musical pattern:
distribution estimation | describes periodicites between 2
algorithms(e.g. EM harmonic content and 6 s

estimation of (corresponding to the
a GMM of frame) length of one or

more measure bar)

Table 4.1: Typical features used for music content retrieval



Audioc scene classification

Audio scene analysis is the process of extracting information about the environment based
on the characteristics of the received signal, and has numerous applications in multimedia
processing. Hence, compared to the previously mentioned classification categories (music
and speech) audio scene analysis is a more general and comprehensive task. The idea of
audio scene analysis was first proposed by Bregman in [93], which is the cornerstone of
this area. In his work Bregman presented a new perspective in human sound perception.
The concept of audio scene analysis comes from the way that human brain works to use the
sounds to build a picture from the surrounding environment, which is also called an auditory
scene. There are numerous applications for audio scene analysis. Amongst all, one of the
most popular applications of audio scene analysis is in the development of smart hearing

aids, which will be discussed in more details in the future scctions.

4.2.3 Review of the previous works

Many methods have been proposed in the arca of audio signal classification with the appli-
cation to hearing aids.

In [71] Kates proposes the sclection of processing algorithm based on the audio informa-
tion from the scene. Nordqvist and Leijon [34] introduced a hidden Markov model (HMM)
based classifier for hearing aids using features derived from cepstral coefficients. In the
work done by Buchler et. al [35] a variety of machine learning techniques (k-means, his-
togram driven Bayes classifiers, multilayer perceptrons, and HMMs) were tested and the
ergodic HMMSs were shown to outperform the rest of the methods. Audio content analysis
at Microsoft research commonly employs Gaussian mixture models (GMM)[36], k nearest
neighborhood (K-NN)[37] and support vector machine (SVM)[38] for audio classification.
Other popular classifiers for audio classification include lincar discriminant analysis (LDA)
[33], hidden Markov models (HMM)[39] and artificial neural networks ( ANN){M}.

While there is a large amount of research in the literature on the application of supervised

classifiers, the use of unsupervised classifiers for audio clagsification is relatively unexplored.
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Clustering (or unsupervised) approaches are most beneficial in cases where precise manual

labeling of the data is time consuming and laborious or when the feature characteristics
might change over time. As mentioned earlier, the hearing aid is expected to operate in a
wide range of audio environments. Therefore, the number of audio classes and naturce of the
clagses in the received audio signal is not predictable. In this case, a clustering approach can
be beneficial to discover different audio classes that exist in the received audio signal. This
step can be followed by supervision to select and amplify the desired audio class. In addition,
using a clustering method has the advantage of avoiding the constraints of a fixed taxonomy,
which may suffer from ambiguities and inconsistencies. In addition, considering the variety
of the audio signals, some of the signals may simply not fit within a given category [41].
The use of a clustering technique makes it possible to take into account the overlap that
might exist between different classes. In [39], Shao et al. use an agglomerative hierarchical
clustering on the audio data set for music genre classification. Rauber et al.[40] use the
growing hicrarchical sclf organizing map to create a 2-D output for visual representation of
the music data set. The classification method proposed in this work is based on the self
organizing tree maps, which was explained in Chapter 2, followed by a fuzzy labeling of
the data. approach allows for extraction of underlying characteristics of the data and then
supervised labeling is used to interpret the discovered clusters.

The proposed methods can also be discussed from the point of feature extraction. Most
of the existing method extract cither temporal or spectral features for classification. A
wide range of feature sets have been proposed for this purpose. In [92] a comparison of
different feature sets proposed for audio classification is given. Some of the suggested features
include signal energy, pitch, zero crossing rate [92] [91], Entropy modulation [95], 4 Hz
modulation energy, percentage of low-energy frames, spectral rolloff point, speetral centroid,
mean frequency, cepstral coefficients [96], [97] and high and low frequency slopes [71]. All
the mentioned features are extracted only from time or frequency domain; however, the
temporal or spectral features are not enough for representation and localization of non-

stationary aspects of audio signals, such as trends, discontinuities, and repeated patterns.
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Thus the features used in this work are based on joint time and frequency analysis of the

signals, which is effective for revealing non-stationary characteristics of audio signals.

Work Classification Features

technique
Nordquist et al. [34] HMM Delta features from cepstral coeflicients
Behler et al. [35] k-means, MLP Tonality, width, pitch variance, measures

bayes classifier, HMM | of time offset

Abu-El-Quran et al. [36] | Adaptive thresholding | 4Hz modulation, low energy frames,
of feature values spectral rolloft, spectral centroid,
cepstral residual, pulse metric,
spectral flux, zero crossing rate,
variance of the low band energy

Lu et al. [37] K-NN High zero crossing ratio, low

short time energy ratio, spectrum flux,
LSP divergence,band periodicity,

noise frame ratio

Guo et al. [38] SVM Total power, subband powers, brightness
bandwidth, pitch, mel frequency cepstral
coefficients (MFCC)

Shao et al. [39] HMM MFCC, linear prediction coefficients
derived from cepstrum coefficients,
delta and acceleration

Freeman et al. [94] ANN Mean frequency, high and low frequency
slopes, envelope modulation

Table 4.2: Summary of the feature extraction and classification techniques used in the literature
for audio classification



4.2.4 The proposed method

Figure 4.2 shows the block diagram of the implemented system, where the blue lines show the
flow of the train data and the red lines show the flow of the test data. In the training phase
cach input audio segment X is passed through the adaptive time-frequency decomposition
(TFD) block. The TFD matrix V is then decomposed by the use of Non-negative matrix
Factorization (NMF) methods into basc and coefficient matrices W and H. Then the features
are processed and the desired number of features are extracted from cach base vector and
its corresponding coefficient vector to form the feature set f. Once this procedure is run for
all the segments in the training set, the SOTM clustering technique is applied to the data
to discover the clusters and computer the cluster centers C. Then a membership degree is
calculated for each cluster, «, which will be used for the labeling of the test data. Each
segment in the test dataset, after passing through the feature extraction block, is fed to the
data labeling block, where the decision is made about which class the segment belongs to.

All of these blocks will be described in more details in the future Sections.

input segment [ Adqagrive | 19 W Featwre | 0 [ G s —
- I ) = o N S sl = extraction MRl " assigniment
i {) )
%
Closs Fuzzy
tabel fabeling |

Teost datn

e £ 1

Figure 4.2: Block diagram of the feature extraction and classification
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4.3 Feature extraction
The features used in this work are captured by applying the matching pursuit algorithm on
the signals followed by the non-negative matrix decomposition. The concept of these two
algorithms are briefly described in Sections 4.3.1 and 4.53.2. Then a feature set is created

from the results of these two algorithms which is deseribed in Section 4.3.3.

4.3.1 Matching pursuit TFD

In every day conversations, we communicate a wide range of ideas with precision. By adding
or omitting a few words, we can communicate subtle differences in close meanings. This is
possible due to the fact that natural human languages have large vocabularies that include
words with close meanings. In the area of information processing, a low level representa-
tion of the signal must include information about distinet properties and minor differences
simultaneously. However, most of the signals we deal with in real life applications (such
as audio signals) are complex signals that consist of a wide scope of patterns. Precise rep-
resentation of these signals with few basic functions is not an easy task [98]. This is the
motivation behind the idea of projection of the signals onto large and redundant dictionaries
of waveforms, which was proposed by Mallat ¢t al. in [98]. According to this work, linear
transforms (such as Fourier and wavelet) do not have the flexibility required for representing
wide range of signals. Fourier transform eliminates temporal propertics and hence provides
a poor representation of the signals that are well localized in time. Wavelet bases also are
not optimal for those signals whose Fourier transform has a narrow high frequency support.
Hence, decomposing a signal on such basis, is like writing a text using a small vocabulary.
Although it might be possible to express the idea, it takes extra effort and extra words to
describe the unavailable words. Flexible decompositions are particularly important for those
signals whose local temporal and spectral properties vary widely.

In the matching pursuit algorithm, the signal is decomposed into a linear expansion of
waveforms. These wavelorms belong to a redundant dictionary and are selected in order

to best match the signal structure. These waveforms are called time-frequency atoms. For
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example, impulses need to be decomposed using atoms that are well concentrated in time,

while spectral lines are better represented by waveforms which have a narrow frequency band-
width. Although the matching pursuit decomposition is a nonlinear algorithm, it maintains
the energy conservation property like an orthogonal expansion.

When using a dictionary of time-frequency atoms, applying the matching pursuit algo-
rithm yields an adaptive time-frequency transform. It decomposes the function f(t) into a
sum of complex time-frequency atoms that best match its residues. A general family of time-
frequency atoms can be obtained by scaling, translating and modulating a single window

function g(t). By denoting v = (s,u, ), the function g(¢) can be defined as

(1) =1/vag(-—

Where s > 0 is the scale and £ and u represent frequency modulation and translation

)etét, (4.1)

respectively. The Fourier transform of g,(t) can be written as [99]

§(w) = v/s§(s(w — &))e 0 (4.2)

In this work, a dictionary of Gabor time-frequency atoms has been used. The discrete

Gabor time-frequency atom can be written as

,(n) = cos(in® + ), (4.3)
where
ga(n) = j{g > o (P (4.4)

The constant K is used for normalizing the function gs, p (0 < p < N) is the time shift,
¢ (0 < ¢ < 2m) the phase shift, and 0 < k < N. The decomposition of the signal f can be
written as a linear expansion of the signal over a set of atoms selected from the dictionary. In

order to find the atoms that best match the structure of the signal a successive approximation
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of f with orthogonal projections on the elements of the dictionary is performed [99]. After

n iterations, the decomposition of the signal f is given by:

[ =S (R, 93095 + RS, (4.5)
where R'f is the decomposition residue after n iterations and (,) denotes the inner
product of the two functions. At each stage of iteration, the algorithm selects the atom
i for which the inner product (R'f, g,;) is maximized [99]. The energy distribution of the
decomposition can be written as
n-1
ft,w) = Zl R, it W))l Wg,i(t,w) (4.6)

i=0

where Wg,;(t,w) is the Wigner distribution of the atom g.,;(¢,w) which does not include

cross terms [99].

4.3.2 Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a decomposition technique proposed by Lee and
Seung in [100]. The interpretation of NMF for the application of statistical analysis of the
multivariate data can be described as follows: Assume V is an m X n non-negative data
matrix, where n is the dimension of the data and m is the number of vectors or the number
of samples in the data set. The goal is to find non-negative matrix factors W, «, and H,,,

to approximate the matrix V, such that
V~WH, (4.7)

and also

v~ Wh, (4.8)

where v and h are the corresponding columns of V' and H respectively. This means each

data vector v can be approximated by a linear combination of the columns of W weighted
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by the components of h. Therefore W can be considered as a set of basis vectors that are

optimized for the linear approximation of the data in V.

Usually r is selected to be smaller than n or m, so the result is a compressed version of
the original matrix, V and the data vectors can be represented using fewer basis vectors. On
the other hand, in order to obtain a good approximation, the basis vectors should discover
the structure that is latent in the data. In this work, the NMF technique has been performed
on the time-frequency matrix. Therefore n is the length of the signal, m is the frequency
resolution of the constructed time-frequency matrix, and r is the decomposition order. After
decomposition, W and H carry spectral and temporal characteristics of the original matrix
respectively. W contains spectral structures and H contains the corresponding location of
each spectral structure in the original matrix. The problem of finding W and H can be

considered as a minimization of the function

f=Vv-wH|? (4.9)

There is a variety of strategies in the literature to find W and H [101][102]. In this work a
gradient-based method proposed by Lin in [103], which uses bond-constrained optimization
technique. The standard form of bound-constrained optimization problem can be expressed

as [103]:

min f(z) xeR

subject to L; <x; <wu i1=1,..,n (4.10)
(4.11)
¥ = Pla¥ — o*V f(z*)] (4.12)

where
Z; fOT’ lz < & < Uy
Plzl=¢ w for z; 2w (4.13)
ly for z; <1
In [103] this technique is applied to the NMF problem. This method is computationally

efficient and offers better convergence properties than the standard approach [103].
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4.3.3 Feature selection
As shown in Figure 4.2, once the TFD matrix (V) is decomposed into base and coefficient
matrices (W and H), a feature set is extracted from each base vector and its corresponding
coefficient vector. The features are derived from coeflicient vectors, base vectors, and from

MP decomposition. A brief description of the features used in this work is provided here:

1. Sparsity: The sparsity feature is calculated for each coefficient vector,{h;}1xn, as

VN — (Ziyzl hi(n))/ 25:1 h;",z
VN -1

The value of this feature is 1, if and only if h; contains a single non-zero component,

Sp, = (4.14)

and is zero if and only if the components are equal.

2. Sum of derivatives: This feature is calculated on the base vector and represents
discontinuities and abrupt changes in the signal. The equation for derivation of this

feature is given by

N-1
D, =Y hi(n)?, (4.15)
n=1
where
hi(n) = hi(n+ 1) — hi(n) (4.16)
n=1,.,N-1 (4.17)

The value of this feature is a measure of discontinuities. If there are discontinuities in

the coefficient vector, the value is large, otherwise it is small.

3. Moments: The first moment of the base and coefficient vectors are also extracted. The
spectral and temporal moments, MOw; and MOh;, are obtained using the following
equations

M
MOw; = »  mw;(m) (4.18)
1

m=

N
MOh; =Y nhi(n) (4.19)
n=1
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where h; and w; are the base and coefficient vectors and M is the frequency resolution

of the TFD.

. Sparsity I: In addition to the sparsity of the coefficient vectors, the sparsity of the
base vectors is also extracted. This feature represents the noisy structure of the signal

and is calculated as

v VM —( et wi(n))/\/ et W7 g
Sy = N (4.20)

. Sparsity II: This feature is defined as the number of samples whose value is smaller

than a threshold € to the total number of samples in the base vector:

w; <€
SP=Y2E, (4.21)

where w; < ¢ is the number of base samples less than a small threshold and M is the
total number of samples in each coefficient vector. This function is unity if and only
if all the components in w; are greater than the threshold, and is zero if and only if all

the samples are less than the threshold.

. Periodicity: While the previous feature measures the scattering of the components
in frequency, we still need another feature to represent the presence of harmonicity of
the energy in frequency. For each base vector, the Fourier transform of the vector is

calculated as

Wi(v) = | i eI Wi (m)| (4.22)
m=1

where M is the length of the base vector, and W;(v) is the Fourier transform of the
base vector w;. Next a second Fourier transform is performed on the base vector to

obtain W;(x) as
R]/Q S 2TV
Wilk) =|>_ e W;(v)| (4.23)
v=1

Finally we sum up all the values of |W (k)| for & > mg, where my is a small number.

P, =XM/* \Wi(k)| (4.24)

K=mg
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The value of P, is large for bases whose components show strong pericdic behavior,

such as vowels in speech. However, for non-periodic sounds such as aircraft, the feature

has lower values.

Sum of derivatives: This feature is calculated on the coefficient vectors and captures

discontinuities and abrupt changes in the signal.

M-1 )
D, =Y wi(m)? (4.25)
m=1
where
wim) =wi(m+1) —wy(mym=1,..,M -1 (4.26)
m=1,.,M-1 (4.27)

where wj is the first derivative of the coefficient vector. The value of this feature is

large if the coefficient vector contains discontinuities.

Projection features: As shown in Eq 4.5, MP decomposition projects the signal
onto a set of time-frequency atoms. The amount of signal energy that is projected in
each iteration depends on the structure of the signal. Signals with coherent structures
need less number of iterations, while signals with a non-coherent structure tend to take
more iterations to get decomposed. This property is used as feature to discriminate
coherent audio signals form non-coherent signals. To extract this class of features, first

we calculate the difference in the projection energy between iteration ¢ and ¢ + 1:

di = Q1 — @ (4.28)
1=0,....,.1 -2 (4.29)
where
- aw; "
§ o= (4.30)

Total energy of the decomposed signal
is the ratio of the projection energy at each iteration. Next, we define L; as the sum
of the energy differences:

Li=dy+dy+ ... +d; (4.31)
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i=0,...0 -2 (4.32)
L; keeps the trend of the energy coefficients (a;) but it is normalized and it is indepen-
dent of the signal’s energy. Finally, normalized coeflicients (L;) are used to calculate
MP feature: ] ;
MP = f L; (4.33)
i=0

4.4 C(Classification and results
4.4.1 classification methodology

The classification method used in this work is based on the SOTM clustering algorithm. The
proposed method, which is a fusion of supervised and unsupervised classification, consists
of two stages. In the first stage the SOTM clustering algorithm is applied to the training
dataset. Since the data is represented to the SOTM in a random manner, the formation of
the clusters might be slightly different for each run. In fact, some of the discovered clusters
include one or very limited number of samples. Therefore, those clusters in which the number
of samples is smaller than a threshold will be eliminated. The value of this threshold in this
work was adjusted to be 5% of the total number of samples in the train data set. Next a
membership matrix, M,,.,, is calculated based on the distribution of each class in different
clusters, where m is the number of clusters and n is the number of classes. Each entry in the
membership matrix , m;;, (which we call membership coefficient) indicates the probability

of a vector in the cluster 7 to belong to the j;;, class.

myy Miz ... Mip
Moy Moz ... Moy

M= . , ) (4.34)
Mm1 Mmz ... Mmp

where

(6;1C) (4.35)

my;

I
3
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These coefficients will be used in the calculation of the fuzzy membership degree for

each of the test vectors. Each segment is represented using 15 feature vectors. By using
this approach less weight is associated with the vectors that are in the overlap regions. In
the second stage, each of the feature vectors representing a test signal is assigned to one of
the cluster centers found in the previous stage based on the minimum Euclidean distance

criterion. For each test signal, the scatter vector S is defined as
S =[81, .y 5 (4.36)

where s; is the number of the representing vectors for a test signal that fall within the iy,
cluster and C' is the number of clusters. Finally the probability of a signal belonging to
the jy, class is calculated according to the distribution of its representing feature vectors in

different clusters and can be written as:
B(j) = S.M(j) (4.37)

4.4.2 Results

The audio data set used in this work consists of 192 signals of about 3s duration, with a
sampling rate of 22.05 KHz and a resolution of 16 bits per sample. Table 4.3 shows different

sound classes in the data set and the number of signals in each class.

Airplane | Animal | Bird | Drum | Female | Flute | Helicopter | Insect | Male | Piano

20 20 20 20 20 15 17 20 20 20

Table 4.3: Different audio classes in the data set and the number of signals in each class

MP-TFD with the frequency resolution of M = 250 is constructed for each audio signal.

Once the time-frequency matrix (TFM) is extracted, NMF with decomposition order of 15
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(r = 15) is performed on each TFM. Next, a feature vector comprised of nine features is

extracted from each base and coefficient vector.

F = {Sh,, Dp,, MOy, MOy, S, SP.,, Py, D, MP} (4.38)

Finally, SOTM is applied on the training dataset and the number of valid clusters is
calculated for each classification scenario. One of the advantages of using SOTM is that
unlike other clustering approaches such as fuzzy C-means, the exact number of clusters is
not needed to be determined beforehand. The clusters are formed as the data is presented
to the network and the number and size of the clusters is determined by the parameters
such as the hierarchial control function (H(t)) and the learning rate (a(t)). The initial
values of these functions are appointed according to the dataset. In the next stage, the
membership coefficients are calculated for each cluster based on the distribution of the train
signals. In the test stage, each of the test signals are assigned to one of these cluster centers
based on the minimum Euclidean distance measure. Finally, the class label of each signal is
determined by the weighted sum of the feature vectors falling within each cluster multiplied
by the membership coefficients. Another point to be discussed here is that since the data is
represented to the SOTM in a random manner, the number and the shape and size of the
clusters might vary each time the clustering algorithm is run on the data. However, since
there is not a one to one correspondence between the clusters and the audio classes, this
fact has no considerable impact on the total performance of the classifier. In addition, the
results of the several are averaged to further eliminate this effect.

One of the most important classification tasks for a hearing aid system is to discriminate
human speech form environmental noise. Therefore, in the first scenario the data set consists
of signals from human speech and environmental sounds. The human category includes 20
signals from male speakers and 20 signals from female speakers and environmental sounds
include 10 bird, 10 aircraft, 10 pianc and 10 animal signals. Table 4.4 shows the results for
this classification task where an accuracy of 96% has been achieved. As it can be seen from

the confusion matrices, the system demonstrates high accuracy in discrimination of human
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voice from other audio signals. The achieved true positive rate shows that all human voice

signals have been classified correctly. In addition, the overall accuracy rate for classification
scenarios that include discrimination of human voice is very high. Furthermore, in order to
evaluate the efficiency of the system to discriminate human voice in particular environments,
two other classification tasks have been defined. In the first case, an accuracy of 98% has
been achieved in discrimination of human voice from the musical instruments. This capability
could be useful in recognizing and separation of human voice from the background music in a
song or at the concert. The second classification task was defined as discrimination of human
voice from natural sounds, where an accuracy of 96% has been achieved. Furthermore, the
proposed method was applied to other classification scenarios such as natural vs artificial
sounds and rusical instruments vs aircraft. The results of these classification tasks are
provided in Tables 4.7 and 4.9.

Table 4.5 shows the overall obtained accuracy rate and the data set used for each classi-

fication scenario.

Human | Non-human | Total

Human 40 0 40
(100%) (0%) (100%)

Non-human 3 37 40
(7.5%) (92.5%) (100%)

Table 4.4: Confusion matrix for classifying human vs non-human audio signals
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Classification scenario

Data set

Accuracy rate

Human/non-human Non-human:aircraft, piano, animal, bird 96%
Human: male, female

Human/Music Human:male, female 98%
Music:piano,flute,drum

Natural /Artificial Natural:male, female, bird, animal, insect 81%
Artificial: helicopter, airplane, piano, flute, drum

Human/Nature Human:male, female 96%
Nature:animal, insect, bird

Music/Aircraft Music:piano, flute, drum 92%

Aircraft:helicopter, airplane,

Table 4.5: Different audio classes in the data set and the number of signals in each class

Human | Musical instruments | Total
Human 40 0 40
(100%) (0%) (100%)
Musical instruments 1 39 40
(2%) (98%) (100%)

Table 4.8: Confusion matrix for classifying human speech vs musical instruments
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Natural | Artificial | Total

Natural 50 0 50
(100%) (0%) (100%)

Artificial 19 36 55
(34%) (66%) | (100%)

Table 4.7: Confusion matrix for classifying natural vs artificial sounds

Human { Nature | Total

Human 20 0 20
(100%) | (0%) | (100%)

Nature 3 17 20
(15%) | (75%) | (100%)

Table 4.8: Confusion matrix for clagsifying human vs nature sounds



Musical instruments | Aircraft § Total
Musical instruments 34 6 40
(75%) (15%) 1 (100%)
Aircraft 0 37 50
(0%) (100%) | (100%)

Table 4.9: Confusion matrix for classifying musical instrument vs aircraft sounds

73



Chapter 5

Conclusion

N this work the application of unsupervised learning for analysis and classification of

biomedical signals was investigated. Although there are many works on the applica-
tion of supervised learning techniques for classification of biomedical data, exploring the
application of unsupervised learning methods can be beneficial in many ways. Building a re-
liable supervised classifier requires a large enough, precisely labeled dataset. However, some
biomedical datasets are very large and manual labeling of the data can be extremely costly
and time consuming. In such cases, unsupervised learning methods can be used to find the
natural groupings (e.g in audio classification)that exist in the dataset and then a physician
can label the discovered groups. Furthermore, unsupervised techniques posses more flexibil-
ity in situations where the characteristics of the data change over time or the the number
of classes is not known beforehand. For example, consider the audio classification task in
a hearing aid device. The audio signals that are received by the device contain different
audio classes depending on the audio environment. Audio classes that exist in an indoor
environment can be different from those that are found in an outdoor environment or at the
concert or at a lecture. In such situations where the number and the nature of the classes
are not known, a clustering method might perform better than a supervised classifier that is
tuned to detect specific classes. In addition, unsupervised classifiers can be used to get some
insight about the structure of the data and select more efficient feature extraction methods.

Two classification methods based on clustering techniques was applied to two separate
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biomedical signal classification problem. In Chapter 3, fuzzy C-means clustering was applied

for classification of small bowel capsule endoscope images and in the Chapter 4 classification
of audio signals for hearing aids was investigated. Despite the different classification tasks
in the Chapter 3 and Chapter 4, there are commonalities for the two databases. First, the
signals in both databases are non-stationary. Second, in both scenarios we are dealing with
a large volume of data and lastly in both cases the real-time performance of the algorithms
is important. For the hearing aid application, the need for real-time performance is more
obvious. No hearing aid user would be interested in a device that amplifies the audio signals
with delay. In the case of capsuie endoscopy, the real-time performance becomes more critical
in the design of the next generation of capsule endoscopes, or the "smart” capsule endoscopy,
where the capsule itself contains the drugs and can release the drug wherever it is required
in the gastrointestinal tract.

Based on the nature of the classification task in Chapter 4, where the number of audio
classes is not known, a classification method based on SOTM clustering algorithm was used
to discriminate different audio classes. The advantage of SOTM over other clustering tech-
niques such as fuzz C-means is that in this approach the number of clusters is not required
beforehand and this makes the SOTM more suitable for this audio classification task. The

discussion and conclusion for each of the chapters is provided in following sections.

5.1 Classification of small bowel images
5.1.1 Results and discussion

In Chapter 3, fuzzy C-means clustering was applied to the problem of detecting abnormalities
in the small bowel capsule endoscopy images.

Initially the images were converted to Lab color space. The Lab color space is a percep-
tually uniform color space and the Euclidean distance measure performs better in this color
space. The results provided in Table 3.3 show that the classification accuracy in this color
space is better than the rates obtained in the RGB space.

A feature extraction method based on wavelet coeflicients and cross co-occurrence ma-
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trices was applied to the images. Since the abnormalities might occur at random locations

in the image, SIDWT was used for the wavelet decomposition to extract shift-invariant fea-
tures. The combination of wavelet coefficients and cross co-occurrence matrices was shown
to be efficient in the previous works. Four types of features were extracted from the CCM to
represent texture characteristics, including energy, homogeneity, texture and contrast. Since
the feature extraction process was performed on the three color planes of the image, the
extracted features contain color information as well. Different combinations of features were
evaluated and the results was provided in Table 3.3. The results for a supervised classifier,
which is LDA in this case, is also provided for the same feature set. As it can be observed
from the table, the best performance for unsupervised classification was achieved with en-
ergy and homogeneity features in the Lab color space. The confusion matrix and receiver
operating curve for this feature set is provided in Fig 2.6 and Table 2.2.

An accuracy rate of 76% was achieved for with fuzzy C-means algorithm. Although the
results show higher accuracy rates for the supervised classifier, one should bare in mind that
the performance of the supervised classifier can be biased by the dataset to some extent. In
order for a supervised classifier to be reliable and provide good generalization, it has to be
trained on a large enough dataset. However, the number of images in the small bowel data
base is 75. Hence, despite the higher accuracy rate the reliability of the supervised classifier

vet has to be investigated.

5.1.2 Future work

Although the accuracy rate obtained in this work is acceptable for an unsupervised classifier,
other alternatives and modifications can be sought to improve the performance of the system.

In the feature extraction stage, wavelet decomposition followed by the CCM was used to
extract color and texture information. Although CCMs have been used successfully in the
previous works, they might not be the best solution for small datasets since a large amount
of data is generated after the calculations. Hence, a large amount of averaging and down

sampling has to be done to decrease the number of features to a reasonable number and this
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could cause the loss of information.

Among other texture analysis methods, textons are shown to be effective in representing
textural information. Textons have already been used in for texture analysis in biological
and biomedical images and have shown promising resuits. Thus, one of the subjects of the
future research work would be to examine alternative feature extraction methods such as

textons.

5.2 Classification of audio signals
5.2.1 Results and discussion

In Chapter 4 a classification method based on SOTM clustering algorithm was applied to the
classification of audio signals for the hearing aid application. The SOTM is a newly emerged
clustering method, which has been already used for segmentation of biological images. In
this work however, the classification method is a fusion of supervised and unsupervised
classification. Unlike most of the previous works in this area, the features extracted in
this work were based on time-frequency analysis of the signals followed by the matching
pursuit TFD. Due to the non-stationary nature of the audio signals, temporal or spectral
features can not effectively represent localized features of the audio signals such as trends,
discontinuities and repeated patterns. TF features on the other hand, are more suitable
to capture and represent characteristics of the audio signals. The proposed method was
tested under different classification scenarios such as human/non-human, human/music ,
natural/artificial, human/nature etc. The classification was performed on a database of 10
different audio classes including 20 aircraft, 20 animal, 20 bird, 20 drum, 20 female, 15 flute,
17 helicopter, 20 insect, 20 male and 20 piano signals.

The classification results provided in Table 2.5 show high accuracy rates for most clas-
sification scenarios. An accuracy of 96% was achieved for discrimination of human vs non-
human sounds, which is the most common classification scenario considered for the hearing
aid.

Many methods have been proposed for audio classification for hearing aid. However, most
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of the existing papers in the literature address the problem of discrimination of the human

voice from the background noise. Although this would be desired capability in a hearing
aid, it is not enough for other listening situations such as outdoor, lecture , concert etc. The
problem of audio scene analysis is rather a general problem that can be the ultimate goal
for the hearing aids.

The classification method used in this work is based on SOTM clustering algorithm.
Hence, the number of audio classes is not needed to be known beforehand. This makes the
proposed method suitable for the problem of audio scene analyis for hearing aid where the
number of audio classes vary under different listening situations.

An efficient classification algorithm that can perform effectively in different audio envi-
ronments could have a definite application in the hearing aids. According to several surveys,
a considerable number of hearing aid users are not satisfied with the performance of their
hearing aid since it amplifies the background noise as well as the desired signal. In addition,
it has been observed in similar studies that if the quality of the hearing aids can be improved,

substantially better user satisfaction can be expected.

5.2.2 Future work

The proposed classification method was tested in different classification scenarios and high
accuracy rates were achieved. Nevertheless, the following suggestions can be applied to

improve the performance and reliability of the system.

e Although the number of audio classes is not needed beforehand in the classification
process, the number of discovered clusters is determined by the parameters in the
SOTM algorithm such as H(t) ( the hierarchical control function) and «(t) ( the
reset parameter). The initial values for these parameters affect the number of the
discovered clusters and the variance of the samples within each cluster. In this work,
these values were adjusted according to the performance of the classifier. Thus,a future
improvement for this system would be to find a way to automatically calculate the

optimal value of these parameters from the statistical characteristics of the data and



with regard to the classification results. ™
The number of clusters found by the SOTM,or any other clustering algorithm in gen-
eral, does not always represent the actual number of groupings that exist within the
dataset. Therefore, a cluster validation technique has to be performed on the results
of the clustering to evaluate the validity of the discovered clusters. In this work after
the clustering stage, the clusters whose number of samples were smaller than 5% of the
total number of samples in the dataset, were recognized as invalid clusters and were
eliminated. This threshold was determined based on the performance of the classifier.
However, there are more advanced cluster validity techniques that can be adapted for
this purpose. So, another area for future work could be to find the best cluster validity

measure that optimizes the performance of the classifier.

In the SOTM algorithm, the representation of the data to the network is in a random
manner. Therefore, the results of the clustering might be slightly different for each
time the algorithm is run on the dataset. In this work the result of the several runs
are averaged to calculate the final results. However, a more robust solution would
be to make modifications to the SOTM algorithm or data representation so that the

clustering results do not depend on the order in which the data is fed to the SOTM.

In Chapter 4 different classification scenarios were proposed and tested. The pro-
posed scenarios are based on the taxonomy provided in Fig 4.1 and common listening
situations. Another topic for further research in this area would be to design more

classification tasks that are tailored for the hearing aid application.
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