
HARDWARE-SOFTWARE CO-SYNTHESIS FOR
DISTRIBUTED MEMORY ARCHITECTURES

by

Usman Ahmed, B.Eng., 2000,
National University o f Sciences and Technology, Pakistan.

A thesis

presented to Ryerson University

in partial fulfillment o f the

requirement for the degree o f

Master o f Applied Science

in the program o f

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2005

© Usman Ahmed 2005
PROPmTYOF

RYURSOM libraw

UMI N um ber: EC 53001

All rights re se rv ed

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete m anuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform EC53001

Copyright 2008 by ProQ uest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United S tates Code.

ProQ uest LLC
789 E ast Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

I hereby declare that I am the sole author o f this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose o f scholarly research.

USman Ahmed

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request o f other institutions or individuals for the

purpose o f scholarly research.

Usman Ahmed

u

Ryerson University requires the signatures o f all persons using or photocopying this
thesis. Please sign below, and give address and date.

m

Hardware-Software Co-Synthesis for Distributed
Memory Architectures

Usman Ahmed,
Master o f Applied Science, 2005,

Electrical and Computer Engineering,
Ryerson University

Abstract

Hardware software co-synthesis problem is related to finding an architecture, subject to

certain constraints, fo r a given set o f tasks that are related through data dependencies.

The architecture consists o f a set o f heterogeneous processing elements and a

communication structure between these processing elements. In this thesis, a new

algorithm fo r co-synthesis is presented that targets distributed memory architectures. The

algorithm consists o f four distinct phases namely, processing element selection, pipelined

task allocation, scheduling and best topology selection. Selected processing elements are

finally mapped to a regular distributed memory architecture comprising o f mesh,

hypercube or quad-tree topology. The co-synthesis method is demonstrated by applying it

to MPEG encoder application and various size large random graphs.

IV

Acknowledgements

I would like to express m y gratitude to my supervisor, Dr. Gul N. Khan, for his support

during the course o f this project. I am grateful to Ryerson University and POA

Educational Foundation for providing scholarships and to National Science and

Engineering Research Council o f Canada (NSERC) for providing financial support

through a research grant. Support o f Canadian Microelectronics Corporation (CMC) for

providing the prototyping systems was also very valuable. Finally, I would like to thank

Rehan Hameed (Stanford University) and Fahad Ali (Gwangju Institute o f Science and

Technology) for various discussions on the algorithm and MPEG encoder

implementation.

Table of Contents

Abstract.. iv

Acknowledgements..v

Table o f Contents..vi

List o f Tables.. viii

List of Figures... ix

1 INTRODUCTION.. 1

1.1 Overview...1

1.2 Thesis Organization... 2

2 HARDWARE SOFTWARE CODESIGN.. 4

2.1 Overview.. 4

2.2 Codesign Methodology..7

2.2.1 Specification/Requirements Analysis... 7

2.2.2 Partitioning.. 8

2.2.3 Estim ation... 16

2.2.4 Co-simulation / Co-verification... 17

2.3 Hardware Software Co-synthesis... 20

2.3.1 Co-synthesis Phases.. 21

2.3.2 Target Architecture... 26

2.3.3 Co-synthesis Approaches..26

2.3.4 Significant Co-synthesis Environments... 27

2.4 Fault Tolerance...31

2.5 Distributed Memory Architectures..33

2.5.1 Mesh Topology................................... •.....................35

2.5.2 Hypercube Topology.. 35

2.5.3 Tree Topology.. 36

3 HARDWARE SOFTWARE COSYNTHESIS FOR DISTRIBUTED MEMORY

SYSTEMS.. 38

VI

3.1 Introduction...38

3.2 Processing Element Selection and Pipelined Task A llocation............................. 41

3.2.1 Processing Element Selection..43

3.2.2 Pipelined Task Allocation.. 48

3.3 Topology Selection... 51

3.3.1 Topology Generation and Addressing..52

3.3.2 Topology Mapping...59

3.3.3 Best Topology Selection...61

3.4 Scheduling... 63

3.5 Pipeline Period Reduction.. 65

4 EXPERIMENTAL RESULTS... 67

4.1 Introduction... 67

4.2 MPEG Encoder.. 67

4.3 Parallel MPEG Decoding..83

4.4 Random G raphs... 87

4.5 Algorithm Execution T im e ..106

5 CONCLUSION AND FUTURE W O RK ...107

6 REFERENCES... HO

vu

List of Tables

Table 4.1 Processing Element Information for MPEG Application......................................71

Table 4.2 Task Execution Times for MPEG Encoder A pplication.......................................72

Table 4.3 Time/Area Results for MPEG Encoder..74

Table 4.4 Topology Information for MPEG Encoder.. 75

Table 4.5 Time/Area Results for Parallel MPEG Decoding... 85

Table 4.6 Topology Information for Parallel MPEG Decoding.. 86

Table 4.7 Time/Area Results for 50 Node G raphs...90

Table 4.8 Topology Information for 50 Node Graphs... 91

Table 4.9 Time/Area Results for 100 Node G raphs.. 93

Table 4.10 Topology Information for 100 Node Graphs...94

Table 4.11 Time/Area Results for 200 Node G raphs.. 96

Table 4.12 Topology Information for 200 Node Graphs...97

Table 4.13 Time/Area Results for 300 Node G raphs.. 99

Table 4.14 Topology Information for 300 Node Graphs...100

Table 4.15 Time/Area Results for 400 Node G raphs.. 102

Table 4.16 Topology Information for 400 Node Graphs...103

viu

List of Figures

Figure 2.1 Typical System Design Practice...5

Figure 2.2 Verilog based Co-simulation...19

Figure 2.3 Example Task Graph with Possible M apping... 25

Figure 2.4 Task Allocation and Sequential Execution...25

Figure 2.5 Task Allocation and Pipelined Execution..25

Figure 2.6 Original Task-graph and Task-graph with Fault Detection T asks.................... 32

Figure 2.7 Processing Elements Arranged in Mesh Topology with N = 3............................ 35

Figure 2.8 Processing Elements Arranged in Hypercube Topology with N = 4 36

Figure 2.9 Binary Tree with 3 Levels...37

Figure 2.10 Quad Tree with 3 Levels...37

Figure 3.1 Co-synthesis Algorithm...40

Figure 3.2 Processing Element Selection and Pipelined Allocation..................................... 43

Figure 3.3 Pseudo Code for Mesh Topology Generation and Address Assignm ent......... 55

Figure 3.4 Eight Node Mesh Topology with Address Assignment...................................... 56

Figure 3.5 Pseudo Code for Hypercube Topology Generation and Address Assignment 57

Figure 3.6 Eight Node Hypercube Topology with Address A ssignm ent............................ 57

Figure 3.7 Pseudo Code for Quad-Tree Topology Generation and Address Assignment 58

Figure 3.8 Eight Node Quad-Tree Topology with Address A ssignm ent............................ 59

Figure 3.9 Pseudo code for Topology M apping...61

Figure 3.10 Pseudo code for Scheduling... 65

Figure 4.1 MPEG Encoder Task Graph... 69

Figure 4.2 Design Space Exploration for MPEG Encoder A pplication.............................. 74

Figure 4.3 Irregular Processing Element Topology (Test case 1) ...77

Figure 4.4 Processing Elements for MPEG Encoder Arranged in Mesh Topology.......... 77

Figure 4.5 Schedule Map for Mesh Topology.. 78

Figure 4.6 Irregular Processing Element Topology (Test case 4) .. 79

Figure 4.7 Processing Elements for MPEG Encoder Arranged in Hypercube Topology 79

IX

Figure 4.8 Schedule Map for Hypercube Topology.. 80

Figure 4.9 Irregular Processing Element Topology (Test case 5) ...81

Figure 4.10 Processing Elements for MPEG Encoder Arranged in Tree Topology...........81

Figure 4.11 Schedule Map for Tree Topology.. 82

Figure 4.12 Schedule Map with only a Single Processing Element in the System 83

Figure 4.13 Parallel MPEG Decoding Task G raph..84

Figure 4.14 Comparison Results for Parallel MPEG Decoding.. 86

Figure 4.15 Randomly Generated 50-node Graph..89

Figure 4.16 Design Space Exploration for 50 Node G raphs..92

Figure 4.17 Design Space Exploration for 100 Node G raphs..95

Figure 4.18 Design Space Exploration for 200 Node G raphs..98

Figure 4.19 Design Space Exploration for 300 Node G raphs..101

Figure 4.20 Design Space Exploration for 400 Node G raphs..104

Figure 4.21 Topology Mapping for 400-node Graph (Graph ‘e’, T p e r i q d = 100000)...... 105

Figure 4.22 Topology Mapping for 200-node Graph (Graph ‘d’, Tperiod= 125000)...... 105

Figure 4.23 Topology Mapping for 300-node Graph (Graph ‘c ’, Tperiod=200000)....... 105

Figure 4.24 Algorithm Execution Time... 106

CHAPTER 1

INTRODUCTION

1.1 Overview

Modem multimedia, DSP and data communication applications are computationally very

intensive. Computational requirements prohibit the use o f a single processor to provide

all the functionality at desired throughput. These performance requirements are further

strained by low area (power) constraints and small window for time-to-market.

Traditionally these systems were developed as a two stream process, hardware engineers

delivering general purpose computer systems which were programmed by software

engineers. Optimal performance is achieved when hardware and software are properly

‘timed’ to each other. Typical design cycle required the system to be partitioned very

early in the design cycle leaving very little room for modifications later in the design

stage.

Early system partitioning, along with the separate design flows for hardware and software

modules, does not fully explore design space and is prone to high cost, inefficient

hardware and software. The solution is to combine hardware and software design efforts

by considering the efficiency o f both options and to find a design implementation that

fulfills all the specification requirements with a minimal cost. Also, with increasing

design spaces, selecting a feasible solution from a set o f different design options becomes

more and more demanding and hence a need to automate this process. The automated

process is usually referred to as hardware software co-synthesis. Main phases in this

process include selection of processing elements (ASIC or general purpose CPU),

allocation o f tasks to these processing elements, creating a communication structure

between processing elements and assigning start and finish time to each task (scheduling).

In this thesis, a co-synthesis algorithm has been presented that targets regular distributed

memory architectures. Regular architectures have multiple communication paths between

processing elements and therefore offer inherent support o f fault tolerance. The

algorithm has two distinct phases of pipelined processing element allocation and mapping

the processing elements to regular distributed memory architectures. The algorithm

iteratively selects processing elements and allocates tasks to these processing elements.

Pipeline stages are created during the allocation process. Finally the processing elements

are arranged in a regular fault tolerant topology.

1.2 Thesis Organization

This thesis is organized into five chapters. This chapter provides an introduction to co

design process and outlines the thesis organization. Chapter 2 surveys hardware software

co-design and co-synthesis. This chapter also provides some details on distributed,

regular architectures like hypercube, mesh and tree arrangements. Chapter 3 describes all

phases o f the proposed co-synthesis algorithm. These include algorithms for iterative

selection of processing elements, pipelining and task allocation, mapping processing

elements network to a topology and selecting the best topology for the given application.

Chapter 4 presents the experimental results. Algorithm is demonstrated by application on

large random task graphs and an MPEG encoder application for a range o f constraints.

Output from each phase is discussed here. Chapter 5 concludes the thesis by stating some

directions for future work that can improve the proposed algorithm.

CHAPTER 2 '

HARDWARE SOFTWARE CODESIGN

2.1 Overview

Performance requirements o f most real-time embedded applications make it impossible to

execute the entire application in software. To meet the performance constraints,

computationally intensive portions of the application are extracted realized in the form of

specialized hardware. These systems were developed as a two stream process, hardware

engineers deliver the hardware components and software engineers program general

purpose or application specific processors for software components. Design methodology

for these systems starts with requirement analysis. Based on requirements, application is

partitioned into hardware and software components and system architecture is defined.

After that, hardware and software components are designed and an interface between

hardware and software components is described. These components are then verified for

functionality and then integrated together. Finally, the integrated environment is tested

and this concludes the design. A typical design methodology for these systems is shown

in Figure 2.1 [1].

Optimal performance is achieved when hardware and software are properly ‘tuned’ to

each other. Early partitioning along with the separate design flows for hardware and

software does not fully explore design space which may result in an imperfect solution; a

design that is prone to high cost and inefficient hardware/software. Also fi-om Figure 2.1,

Requirements Definition

Architecture Definition

Hardware Design Software Design

Interface
Design

Hardware
M anufacture and

T est
Software Code and

Test

Hardware Software
Impiementation and Test

Deliverables

Documentation

Deployment Field Test

6-12 Months

25-49 Months

6-12 Months

Figure 2.1 Typical System Design Practice

it can be seen that the most time consuming stage is the development o f hardware and

software components. Any problems (e.g. performance/area, cost issues etc.) identified in

the later half o f the design which may require a different hardware software partitioning

would require a new hardware and software design flow costing 25-49 months worth o f

effort. W ith decreasing time-to-market windows, this may prove to be extremely costly.

To effectively address these design challenges, a unified approach that considers the

efficiency o f both hardware and software options is required. This approach is commonly

known as to as hardware software co-design. Hardware software co-design refers to a

mechanism of jointly designing hardware and software components o f a system. It is a

broad term encompassing methodologies and tools that allow a designer to create

hardware-software systems from a single starting point, a set o f specifications. Co-design

keeps hardware and software within the same ‘stream’ o f work, with the hope of

achieving better results through an integrated approach. This concept attempts to join

hardware and software design efforts into a combined methodology that improves cycle

time and quality while enhancing the exploration of the Hardware/Software design space.

The impetus for this effort lies in the following reasons [2];

a) Computing systems deliver increasingly higher performance to end users

b) New architectures based on programmable hardware circuits can accelerate the

execution of specific computations or emulate new hardware

c) Recent progress in synthesis and simulation tools has paved the way for

integrating CAD environments for co-design of hardware software systems

In co-design process, at the very begirming of system development, constraints and

requirements are analyzed to specify the system. The specified system is subject to an

automated partitioning algorithm which partitions the system specification into hardware

and software blocks. The individual hardware and software blocks are integrated and

incorporated along with their interface. The integrated system is then co-simulated and

evaluated for timing and resource constraints. The whole process is repeated until a

satisfactory hardware software implementation is reached. Once the current

hardware/software partition satisfies all the constraints, it is integrated into a complete

system and checked for functional verification.

2.2 Codesign M ethodology

Co-design methodology provides techmques for analyzing the performance, area and

power o f the system and it provides methods for evaluating a large number o f feasible

design options [3], In this section, these phases are discussed and some o f work in each o f

these phases is reviewed.

2.2.1 Specification/Requirements Analysis

Codesign process starts with description of both hardware and software components.

Describing the system level behavior is a challenging problem as it requires a high level

o f abstraction while requiring fine details to make it unambiguous. The output o f this

phase is a functional specification, which lacks any implementation detail. Different

schemes have been used to specify the requirements. These include using representation

o f Communicating Sequential Processes (CSP) [4], VHDL [5], Codesign Finite State

Machine (CFSM) [6] and cV Hardware C [7, 8 and 9].

Different methods have been explored to specify the system requirements. These schemes

range from homogeneous modeling to heterogeneous modeling. In homogenous

modeling all the requirements are specified by a common language. The examples given

above relate to homogeneous modeling. Other alternative (heterogeneous modeling) is to

use hardware description languages to describe obvious hardware functions and use a

software language to deseribe the other funetions. So, when functions move across the

partition only a small portion of the specification need to be translated [3]. However,

software based languages, like C/C++, bias the implementation in favor o f software while

on the other hand the hardware deseription languages, like Verilog, VHDL, etc., favor the

hardware implementation. Also, software based representations, e.g., C/C++, lack the

mechanism to specify concurrent processes.

A recent step in this direction is the introduction of a new language to model system -

SystemC [10]. System C combines the features o f hardware description languages and

software languages to model both software and hardware components o f a system. Many

companies like Synopsys, Cadence etc., are building CAD tools to simulate and

synthesize a system specified in System C.

2.2.2 Partitioning

a) Graph Structure

Once a satisfactory representation of system specification is obtained, it is subject to a

partitioning algorithm. The partitioning algorithm assigns parts o f system description to

heterogeneous implementation units e.g. ASICs (Hardware), standard or embedded

microprocessors (Software), memories and so forth. The aim o f partitioning task is to

find a design implementation that fulfills all the specification requirements (functionality.

goals and constraints) at a minimum cost. The cost could be area cost, power cost or

dollar cost o f the resulting system.

Specifications for the system are read into an internal data structure. This internal

representation is mostly some form o f a graph. Structure o f the graph is also very

important for the operation o f partitioning algorithm. Most commonly used graph

structures are dataflow graphs and control flow graphs.

Dataflow graphs jo in the nodes by their data dependencies. Most digital signal processing

(DSP) applications are data-flow dominated which nicely fit this graph structure.

Partitioning on these graphs is performed by scheduling the nodes o f the graphs to

available hardware and software (general purpose processor) resources. Most commonly

used scheduling algorithms are based on H u’s scheduling algorithm [11]. These

algorithms are list scheduling [12] and force directed scheduling [13]. This form o f graph

can efficiently extract the parallelism during partitioning. However, the main

disadvantage is that it cannot handle conditional branches, e.g., if-el se constructs.

Control flow graph on the other hand join the nodes by their control dependencies. These

graphs suit control applications which have a large number o f ‘if-else’ constructs. Most

commonly used scheme is path based scheduling algorithm [14]. This form o f graph has

the obvious advantage o f handling the control dependencies. However, its complexity is

dependent on the number o f paths in the graph and it also cannot extract parallelism

efficiently.

An interesting approach has been presented by Bergamaschi et al. in [15]. They combine

control-flow and data-flow approaches in an adaptive scheduling algorithm. The

algorithm operates on a control-flow graph and integrates the data-flow techmques into a

path-based scheduling algorithm.

b) Granularity

The partitioning algorithms work by mapping the system components to heterogeneous

resources (hardware or software). The size of components moved to hardware/software

defines the granularity of the partitioning algorithm. Coarse grain approaches assign

complete ftinctions or processes to hardware or software resources. Nodes o f the input

graph in this case represent a large block of system functionality. This high level

representation prevents excessive data communication across the whole application.

Common examples for coarse level granularity are MPEG decode, Fast Fourier

Transform (FFT), Discrete Cosine Transform (DCT) etc. Partitioning performed with at

coarse granularity is also known as high level granularity.

Fine grain approaches, on the other hand deal with small operations. These operations

may be either a single instruction or a bunch of instructions. Fine grain approaches

usually result in a large amount of data transfers across the application. A commonly

used method is to group all instmctions which do not have any conditional expression

among them. This group is known as basic block. Fine grain approaches are also known

as low level approaches.

10

Granularity level directly affects the partitioning process. Optimization potential in

partitioning improves from coarse grain to fine grain approaches. Data communication

overhead and complexity also increases as granularity varies from high level to low level

[16].

Both coarse grain and fine grain approaches have their disadvantages. For most

applications, the computationally intensive parts are small loops which are hidden inside

a function or process. For these cases coarse grain approaches provide costly designs by

moving many redundant parts to hardware. On the other hand, fine grain approaches

suffer from the fact that their space for feasible designs is so large that it is usually hard

to find the global optimum. Henkel and Ernst have proposed an interesting approach

which uses flexible granularity. Basic blocks are clustered together in partitioning objects

which range from a single block to an entire function [17].

c) Optimization Techniques

Optimal Approaches

At the heart o f partitioning process, there operates an optimization algorithm. Goal o f the

optimization algorithm is to select an optimum hardware software partition. Problem can

be setup in different ways, e.g., to maximize the performance, to minimize the cost (area,

power etc.) or to maximize the performance with minimum area. Simple hardware

software partitioning is known to be an NP (Non-polynomial) complete problem [18].

Different optimization algorithms have been used to partition the system in hardware and

software. A simple approach is to try out all possible solutions and then select the best

11

option. This approach, though gives the best result, is not feasible because design space is

very large even for simple problems.

Integer linear programming (ILP) is another technique that can be used to solve

partitioning problem [19]. Linear program is a formulation in which a set o f linear

equations define the objective function and associated constraints. If the desired solution

can only have integer values, the formulation is known as ILP. Simplex technique is a

well known method to solve such linear equations. Partitioning problem can be expressed

as a set of linear objective function subject to linear constraints. Prakash and Parker have

provided such a formulation for hardware software partitioning [20]. Although this

approach provides optimal result but the computation time makes it infeasible for large

problems.

Branch-and-bound algorithm is another procedure to solve optimization problems. It is a

very general algorithm that can even be used to solve ILP formulations. Feasible

solutions are arranged in form of a decision tree where leaves o f the tree represent all

possible options, Algorithm makes a decision at node (branch) based on some criteria and

computes a lower bound for all solutions in the corresponding sub-tree. If the bound has

higher cost than any of the previously found solutions, the sub-tree is excluded from

further search [12]. Hafer and Hutchings have used branch and bound approach to solve

ILP problem [21]. Vemuri and Chatha have used a branch and bound algorithm for

hardware software partitioning [22]. Branch and bound algorithms can considerably

12

reduce the search space however the worst case complexity o f this algorithm still remains

exponential.

Another interesting optimization approach is Dynamic programming. Dynamic

programming decomposes optimization problem into a sequence o f stages such that the

optimal solution to the original problem must contain optimal solutions to each o f these

stages. Algorithm operates at each stage, makes a decision and moves to the next stage.

Decisions made at a stage do not depend on the previous decisions [13]. Shrivastava et al.

used dynamic programming to solve partitioning problem [23]. Chang and Pedram

applied dynamic programming to solve coarse grained partitioning problem [24], while

Knuds en and M adsen used dynamic programming for performing hardware software

partitioning at fine granularity [25]. Use o f dynamic programming can be efficient

however efficiency mainly depends on how the problem has been divided into stages and

complexity to reach an optimal solution at a given sub-problem.

Heuristic Approaches

All the methods mentioned above provided an optimal solution. However, because o f the

exact nature, all the algorithms are computationally very expensive. These algorithms can

only be applied to small problems (e.g, a task graph with a small number o f nodes). For

larger problems, heuristics are often employed as they provide a ‘good quality’ solution

in a reasonable amount o f time. Heuristic techniques only perform a limited search on the

feasible design space and they cannot guarantee optimality o f the solution.

13

Greedy algorithms are commonly used as heuristics. In greedy algorithm, the decision is

made at each step without taking into account any previous or later decisions. Greedy

algorithms are usually ‘up-hill’ or ‘down-hill’ techniques and therefore, are liable to

stuck in local minima or local maxima. Optimality can be guaranteed if problem exhibits

certain conditions [12], but most real life problems do not follow these eonditions and

thus greedy approaches are only used as a heuristic. Ernst et at., used a greedy approach

by starting from all software solution and moved parts to hardware [8]. Gupta and

Micheli used a complementary greedy approach by starting with an all hardware solution

and moving parts to software at each step [9].

Simulated annealing is another popular heuristic optimization technique [26]. Simulated

annealing based on annealing which is a process to obtain low energy states of a solid

material in a heat bath. The temperature of the heat bath is increased to a maximum,

which melts the solid. The temperature is then slowly decreased according to a given

cooling schedule until a low energy state of the solid (a perfect crystal) is reached. The

algorithm is controlled by a temperature parameter, which begins at a high value and

decreases as the system “cools” and stabilizes. A cost function is required to evaluate the

system for each state. Initially, during high temperature, states which increase system

quality are always accepted, and states which decrease design quality are accepted

randomly. As the temperature approaches zero, only the states which decrease system

cost are accepted. The conditional acceptance is based on the probability P, which is

p (a F^= / r
given as: ’ where AE represents the change in cost o f the overall system.

Unlike greedy heuristics, simulated annealing often accepts changes which decrease the

14

quality o f a design, in hope o f achieving a better final design. Henkel and Ernst have used

simulated annealing in hardware software partitioning [17].

Tahu search is another heuristic optimization technique to allow local search methods to

overcome a local optimum [27]. Tabu search uses a form o f short-term memory used to

keep a search from becoming trapped in local minima. A Tabu list is formed that contains

the moves o f the recent past but they are forbidden for a certain number o f iterations.

During the optimization process, solutions are checked against the Tabu list. A solution

that is on the list will not be chosen for the next iteration. Tabu list forms the core o f the

search and keeps the process from cycling in one neighborhood o f the solution space.

Sometimes it may be useful to overrule the Tabu condition by what is known as

‘aspiration criteria’. A commonly used aspiration criterion is to accept a system state if it

results in an overall low cost. A technique to expand the search o f design space is called

the ‘diversification strategy’. A simple diversification strategy is to restart the search

from the initial system state after a specified number o f iterations. Eles et al. applied

Tabu search on hardware software partitioning and compares the results with a simulated

annealing based approach [28].

Genetic Algorithm is also a heuristic technique that can be used to solve optimization

problems. Algorithm starts from an initial population and selects a set o f ‘parents’ based

on a ‘fitness function’. These parents are then used to breed a next generation by

performing ‘crossovers’ and ‘mutation’. Main idea is that as the algorithm progresses,

stronger and fitter chromosomes will survive and their next generation will also have a

15

high probability o f being fitter. Dick and Jha used genetic algorithm in performing

hardware software partitioning [29]. Wiangtong et al., provide an interesting comparison

between simulated annealing, tabu search and genetic algorithms, when applied to

partitioning [30].

2.2.3 Estimation

During the partitioning process, it is often required to estimate the performance o f a task

on a specific processing element (software or hardware) and the cost associated with the

processing element (area, power etc.). This is needed to determine the quality o f a

particular hardware software partition.

Estimating the hardware performance required to determine the maximum clock

frequency of the hardware block. At the same time this has to be done in quick time so

that the partitioning algorithm can analyze a large number of possibilities. Solution is to

use high level synthesis techniques to determine the clock frequency for the longest path

through the logic. Henkel and Ernst have developed a path scheduling based estimation

technique that can estimate hardware performance very efficiently [31, 32]. Vahid and

Gajski have also proposed an estimation technique [33]. Their technique used

incremental hardware cost estimation by updating a previous estimate rather than re-

estimating for a new partition.

16

Software performance estimation problem is also similar to hardware ‘worst-case

execution time problem. Earlier approaches used instruction set simulators to estimate

the software time [7], which is similar to the use o f synthesis techniques to estimate

hardware performance. Park and Shaw proposed one o f the earliest software estimation

algorithms using path enumeration [34]. Li et ah, developed another efficient software

estimation algorithm which also considered the effect o f instruction caches [35]. Ye et ah

also developed an algorithm for software performance estimation [36]. Finally, on system

performance estimation. Yen and W olf developed an algorithm for estimating the

performance o f a set o f tasks on a multiprocessor system [50]. Each processor in the

system used a rate monotonie scheduler to schedule the tasks.

2.2.4 Co-simulation / Co-verification

After successftil partitioning, system needs to be verified against specifications for

completeness and functional correctness. A common verification strategy is to simulate

the final system. Co-simulation refers to an integrated simulation o f hardware and

software components. Challenges in hardware-software co-simulation include ‘speed’,

‘accuracy’ and ‘interactive debugging’. Speed is required to simulate a reasonable

number o f test sequences. Accuracy refers to generating the same simulation outputs in as

the implementation would result. Interactive debugging is the ability to step through

system execution, examining intermediate values, and backtracking to debug the system.

17

Separate verification strategies for hardware and software exist but these are quite

different. For hardware software co-design where the final system contains

heterogeneous components (hardware and software) simulation is a problem. One

approach is to simulate hardware and software separately. This teehnique can be efficient

but it leads to problems with synchronizing the results. Another co-simulation approach

could be to use register transfer level (RTL) or gate level hardware models o f the

processor to simulate software execution in a hardware verification environment.

However, these simulations are too slow to simulate software in a reasonable amount o f

time. A traditional approach to co-simulate hardware and software is to use Verilog

simulator. Verilog’s Programming Language Interface (PLI) was used to co-simulate

hardware and software components. Hardware component is described using Verilog and

software interacts with the hardware using Unix’s sockets. This is illustrated in the

following figure.

18

îrilog Hardware Sir

A pplica tion S p e c if ic
H a rd w a re M odule

1 Hardware

1
Process 1 P r o c e ^ i

1 I

r 1

B us In te rfa c e M odu le

Verilog PLI

Figure 2.2 Verilog based Co-simulation

The Ptolemy environment [37], developed at Berkeley, is also a key research tool in this

area. It focuses on system-level modeling and simulation and provides a high-level

support for a variety o f applications. Cortes et al., have proposed another co-verification

methodology for embedded systems using a Petri-net based representation [38]. They

used symbolic model checking to prove the correctness o f the system. Ghosh et al.,

provided a set o f techniques to speed up simulation of processors and peripherals without

significant timing accuracy loss [39]. They developed a eo-simulator that can be used for

joint debugging o f hardware and software. Finally, Hsiung proposes a formal verification

approach using linear hybrid automata [40]. His approach simplifies the state-space

explosion that occurs in formal verification o f complex systems.

19

2.3 Hardware Software Co-synthesis

In hardware design, synthesis refers to construction of a structure o f digital circuit

starting from a specification in the form of some data-flow graph [12]. This structure

basically represents collection of some resources (e.g., adder, multiplier, ALU etc.),

interconnection between these resources and corresponding control logic. On the other

hand, in software domain, synthesis refers to the conversion o f system specifications into

a group of basic instructions (software program) that can be executed on some general

purpose processor. This software synthesis is mostly done by a compiler which converts

programming language based specification into hardware specific instructions.

In the domain of hardware software co-design, where the resulting system consists of

both hardware and software components, co-synthesis process is the conversion of

system specification (along with a set of technology parameters) into hardware

architecture and corresponding software architecture. System specification identifies both

functional and non functional requirements and is specified in the form o f a task graph.

Hardware architecture consists of processing elements (PE’s) and communication

channels connecting these PE’s, which can either be a general purpose processor or an

application specific hardware (ASIC). Software architecture defines the allocation of

tasks on PE’s, scheduling of tasks and scheduling of communication channels [41].

Hardware software co-synthesis is tightly coupled with hardware software partitioning,

which was described earlier. Partitioning process is a subset of co-synthesis. Co-synthesis

process selects the processing elements, maps tasks onto them, arrange them in a specific

20

architecture and identify the schedule for each task. Partitioning, on the other hand is

m erely the process o f mapping tasks to hardware or software components. However, this

difference is subtle and partitioning and co-synthesis terms are also used interchangeably

in literature.

2.3.1 Co-synthesis Phases

Co-synthesis process involves selecting processing engines, allocating tasks to processing

engines and scheduling tasks on processing engines. For increased throughput

requirements, co-synthesized system may also need to be pipelined. However, it must be

noted that these phases are not always cleanly separated and some o f these phases may be

merged together in a co-synthesis environment. In the following sections, each o f these

phases is described.

a) Resource selection

Co-synthesis environments are mostly library based, where a number o f different

processing elements are available to be added in to the system. Processing elements are

the implementation units which can be either an application specific hardware or a

programmable processor. Performance o f each task on the available processing element is

also known. Resource selection refers to the selection o f processing elements that when

added to the system improves the performance without violating any non functional

parameters (area, power etc.). Techniques for estimation earlier can be used to estimate

21

the performance and cost for adding a specific processing element. Resource selection

involves the number as well as type o f processing elements added into the system.

b) Task Allocation

Next phase in co-synthesis process is to allocate the tasks to the processing elements that

have been added into the system. This phase uses the techniques described earlier in the

partitioning phase. Tasks are allocated to the processing elements such that overall

performance of the system is maximized. Another important parameter to be considered

is the inter-task communication (also known as inter-process communication; IPC). Data

communication between two tasks can be of the same magnitude as their execution times.

Allocating two tasks to two different processing elements based on individual

performance gain can actually reduce the system execution time if the tasks have high

data communication among them. Task allocation is known to be NP-complete and is

therefore a computationally hard problem [18]. Heuristics are often employed to perform

task allocation.

c) Scheduling

Scheduling is the process o f assigning start times to each task after they have been

allocated to some processing engine. Processing elements may have more than one task

allocated onto them and the order in which various tasks execute on a processing element

has a direct influence on the overall system performance. Tasks cannot be executed

unless the required data is available. This data is available only after the execution of

22

parent tasks. I f tasks allocated to a processing element have a data dependency, there is a

fixed order o f execution. However, if there is no such data dependency, the tasks can

execute in any order.

M any scheduling algorithms exist to schedule tasks in a multiprocessor environment.

Scheduling is also a NP complete problem so heuristics are usually used to perform

scheduling. A common heuristic is a list scheduling [12] algorithm which is a variation of

H u’s optimal algorithm [11]. In list scheduling, a priority is assigned to each task. Tasks

which are on the critical path (from performance point o f view) have higher priority than

the other tasks. A common priority measure is the sum o f execution time (maximum,

minimum or median) o f each task along its longest path to final task. Tasks are scheduled

in the order o f decreasing priority such the dependent tasks are scheduled after their

parents.

M ultiprocessor task scheduling is a well researched topic. Many algorithms for

scheduling have been proposed for multiprocessor environments [42]. Scheduling

algorithms for distributed architectures have also been proposed. Sih and Lee present an

interesting algorithm, known as generalized dynamic level (GDL) scheduling [43]. In this

algorithm, the priority assigned to each task is dynamic and changes as the algorithm

proceeds. Priority depends on a number o f factors including the static priority (sum of

execution time along its longest path to final task), inter-task data communication and

descendant consideration.

23

d) Pipelining

Sequential implementations can constrain the throughput o f the system. Concurrent

execution o f different tasks can drastically increase the performance of the system.

Pipelining is a useful technique to execute different tasks in parallel when the tasks

execute in a loop fashion for a long time. Tasks executing concurrently operate on

delayed data; data produced by the parent task in the previous iteration. Pipelining is also

known as retiming transformation.

To illustrate the effect o f pipelining, consider an example task graph shown in Figure 2.3.

Task graph consists of four tasks and three different processing elements are available for

task allocation. Execution time of each task is also shown. Ignoring the data

communication time between tasks, a possible task allocation with corresponding

sequential system execution is shown in Figure 2.4. System executes the tasks

sequentially in 35 time units. Next, a pipelined execution with same task allocation is

shown in Figure 2.5. Dotted lines indicate pipeline stages. Tasks A and C execute in first

pipeline state, task B in second and task D in third pipeline stage. With pipelined

execution, tasks now execute in 15 time units.

In software (VLIW compilers) and hardware synthesis pipelining is a well researched

problem however, use o f pipelining in hardware software co-synthesis is relatively recent

[22], [44]. Like multiprocessor scheduling, pipelining under resource constraints is also

NP complete, which leads to the use of heuristic techniques [18, 22].

24

PEO; 10
PEI: 20

PEO: 25
P E 1:15

PEO: 5
PEI: 5

PEO: 20
PEI: 20
PE2: 15

Figure 2.3 Example Task Graph with Possible Mapping

PE1 PEO

jS

0 S 10 15 20 25 30 35

Time

Figure 2.4 Task Allocation and Sequential Execution

P E I PEO

0 5 10 IS 20 25 30 38

Time

Figure 2.5 Task Allocation and Pipelined Execution

25

2.3.2 Target Architecture

Processing elements together with interconnection describe the architecture o f the system.

This architecture can range from simple shared memory based design to complex

distributed memory schemes. Most simple case is a uni-processor approach, where most

of the application runs on a single processor and computationally intensive parts are

executed on custom hardware which communicates with the processor through a shared

memory. In this case, co-synthesis reduces to a simple hardware software partitioning

problem. For more complicated approaches, a distributed memory scheme is used as

shared memory can become a bottleneck when a large number o f processing elements

communicate through single memory. Distributed memory schemes connect each

processing element with a limited number o f other processing elements in a regular or

irregular fashion. With these schemes, data communication between different tasks

becomes important as data goes through a number o f stages in order to reach the

destination, adding extra overhead. Finally, the target architecture o f the system may not

be pre-defined and is shaped during the co-synthesis process, which complicates the task

allocation and scheduling processes even further.

2.3.3 Co-synthesis Approaches

Co-synthesis can be performed using optimal or heuristic based algorithms. Optimal

algorithms include exhaustive search, integer linear programming approach or branch and

bound algorithms. Design space for co-synthesis is much larger than simple hardware

software partitioning, therefore optimal approaches are very restricted in application.

26

Heuristic approaches search only a limited design space can therefore not guarantee

optimal results. However, most heuristic approaches provide good results in a reasonably

small time. Heuristic approaches are divided into two main categories; Iterative

approaches and constructive approaches. Iterative approaches start with an initial solution

which is a high-cost (high area, high power) system with usually the maximum possible

processing elements. This solution is subsequently improved at every iteration. As the

algorithm proceeds solution is refined until is satisfy the cost constraint. Constructive

algorithms on the other hand are characterized by building solution step by step. A

working system is not available unless the algorithm has finished its execution.

2.3.4 S ignifîcant Co-synthesis Environm ents

In this section, an overview o f some of the popular co-synthesis environments is

presented. Pioneering work in co-synthesis was performed by Prakash and Parker [20].

They developed an algorithm for synthesis o f application specific heterogeneous

multiprocessor systems known as SOS. The algorithm described a formal mechanism to

synthesize a heterogeneous multiprocessor system by creating a mathematical model for

the constraints and objective. The problem is set up as a Mixed Integer Linear Program

(MILP). Equations for constraints and objective function are developed and then

linearized. Linear equations were then solved through simplex technique using Bozo

program [21]. This algorithm took the input in the form o f a data flow graph and

synthesized an arbitrary multiprocessor topology. Algorithm produces optimal results,

however, because o f MILP, it is slow and is limited to only small applications.

27

VULCAN is an earlier co-synthesis environment developed by Gupta and DeMicheli [9].

The input for the co-synthesis process is specified in a C like language known as

HardwareC. HardwareC has some modifications with simple C syntax to model hardware

unambiguously. The specifications are translated into a system graph model which is

control flow graph at fine granularity. A simple architecture is used which consists o f a

single software processor and multiple hardware blocks. Hardware software

communication takes place through shared memory and to simplify computational model,

hardware and software portions execute in mutual exclusion. Partitioning is performed

using an iterative algorithm. Initially all the tasks are put to hardware. This mechanism is

used to check if a solution exists for the given constraints. Then, tasks are subsequently

moved to software to reduce hardware cost.

Another early co-synthesis environment is COSYMA, developed by Henkel and Ernst [7].

Input was specified using a superset of C language called C*. Specifications are translated

to a control flow graph at a fine granularity level of base block. As VULCAN, simple

target architecture is assumed which consists of a single processor and a hardware block.

All the hardware modules are implemented in a single hardware block. Data

communication takes place through shared memory. Earlier version o f the algorithm

operated at fine granularity level and used simulated annealing to partition the graph into

hardware and software components. Later version introduced the idea of flexible

granularity [17]. Partitioning is performed through a dynamically weighted,

multidimensional objective function which takes into account area cost as well as timing

28

constraints. Software timing is estimated through profiling and hardware estimates are

obtained through a path based estimation algorithm. This environment also assumed

hardware and software block operating in mutual exclusion.

Kalavade and Lee developed a constructive algorithm for Ptolemy environment [37, 45].

Task execution time and system cost can be used as two objective functions. Their

algorithm introduced the idea of Global Criticality Local Phase (GCLP). Global

criticality measure identifies whether area is critical or time is critical. Local phase is

used to classify tasks into extreme task, repeller task or a normal task. Algorithm works

on coarse granularity. It initially concentrates on solving two-way partitioning problem

and is then extended to solve multi-way partitioning problem where different an

implementation bin also needs to be selected. Different implementation bins correspond

to having more that two (hardware or software) possible mappings for a task. The

environment concentrates on real time applications implemented by means o f DSP-based

architectures.

W olf presented an architectural co-synthesis algorithm for distributed systems [41]. In

this algorithm, a heterogeneous multiprocessor system is constructed iteratively.

Algorithm works on a data-flow graph specified at a coarse granularity level. Initially all

the tasks are out to the fastest processing element. Tasks are then re allocated based on

processing element utilization to minimize cost. After that, tasks are again re-allocated to

minimize communication between various processing elements. Finally based on data

communication between various processing elements, an irregular topology is created.

29

Tasks are scheduled by finding the longest path through the task-graph. Since task

allocation is known, they are easily scheduled by forcing an order o f execution. Because

of heuristic nature algorithm is very fast, however it does not pipeline the execution.

Vemuri and Chatha presented a co-synthesis algorithm which supports pipelining [22].

Algorithm works on a data-flow graph, specified at a coarse granularity. Algorithm

targets simple shared bus architecture with a single processor and multiple hardware

blocks. Execution times of hardware and software implementation are assumed to be

known in advance. Tasks are moved to hardware or software implementation using a

branch and bound algorithm. Initially a hardware software partition is created which is

followed by pipelined scheduling technique called RECOD (REtiming heuristic for

optimal resource utilization with least shared memory utilization for hw/sw CODesigns).

RECOD algorithm used heuristic techniques to create pipeline stage and utilized

simulated annealing to minimize additional pipeline memory. If pipeline scheduling fails,

branch and bound partitioner is invoked to get a new partition and process is repeated.

Algorithm produced optimal results but is limited to task-graphs with 30 tasks.

Bakshi and Gajski also presented a co-synthesis algorithm with pipelining [44]. This

algorithm also operates on a data-flow graph at coarse granularity. This algorithm tries to

minimize the cost o f hardware and it can perform pipelining even at task, loop and

operation level. Tasks are executed in hardware only if a software implementation cannot

meet timing constraints. Number o f software processors is not limited and processors are

selected by an exhaustive search. Pipeline stages are inserted when a task cannot be

30

executed in the current pipeline stage. This algorithm targets simple shared bus

architecture and it does not take into account the data communication times between

various tasks. Also, it does not consider the hardware cost o f software processors.

A constructive co-synthesis algorithm for distributed hypercube architectures has been

presented by Levman [46]. This algorithm operates on coarse grained data-flow graphs.

Tasks are initially clustered into groups and assertion tasks are added for fault detection.

Algorithm then iteratively adds processing elements into system taking into account

performance improvement versus area cost. Task graph is pipelined a maximum number

o f pipelining stages by repeatedly using RECOD algorithm [22]. Tasks are allocated on

processing elements to balance utilization. Processing elements are then arranged in a

hypercube topology and tasks are then scheduled on each processing element. Scheduling

is performed by assigning high priority to tasks that are on critical path. Tasks are re

allocated iteratively during scheduling in order to reduce excessive data communication

between various processing elements.

2.4 F ault Tolerance

Fault tolerance is a process through which a system continues to work in the presence of

faults. M ajor steps in tolerating a fault include fault detection and fault recovery. Fault

detection is the process o f identifying a fault. Faults can be identified by using assertions

or by duplicating a task (usually by implementing it in an alternative way) and comparing

its output with the original output. Assertion is the method to verify the correctness o f the

31

output without regenerating it. Common examples o f assertions are CRC check, parity

check etc. Assertion requires less overhead compared to duplication where all the

functionality o f the task is implemented, however assertions cannot always be used. After

fault has been detected, fault recovery is then performed by re-executing the faulty task

again on some spare hardware.

Co-synthesis of fault tolerant systems is performed by inserting extra tasks in original

task graph. These tasks are used as assertion tasks or duplicate-and-compare tasks to

detect fault in the system. Following figure illustrates these assertion and duplicate-and-

compare tasks. Assertion tasks have been added for tasks A and B (Aas and Bas) whereas

duplicate-and-compare tasks have been added for tasks C and D (Cdu, Com and Ddu, Dcm)-

Dotted lines and shaded blocks indicate fault detection overhead.

as

as

cm

Figure 2.6 Original Task-graph and Task-graph with Fault Detection Tasks

32

Yajnik et al., proposed a fault tolerant co-synthesis algorithms called Task Based Fault

Tolerance (TBFT) [47]. In this algorithm a fault detection task is added for each task.

Duplicate-and-compare tasks are only added if an assertion task does not exist. Figure 2.6

is an example o f TBFT. Dave and Jha extended TBFT and developed a Cluster Based

Fault Tolerance (CBFT) algorithm [48]. CBFT uses concept o f ‘error transparency’.

Error transparent tasks are clustered together and a single fault detection task is added for

the cluster which reduces the overhead for fault detection. Group Based Fault Tolerance

(GBFT) algorithm is similar to CBFT but uses a bottom-up approach and different

heuristics to merge tasks in a group [46]. Its overhead is shown to be even lower than

CBFT.

2.5 D istribu ted M em ory Architectures

Shared memory architectures, where various processing elements are connected through

a shared bus and communicate to each other through a shared memory, are simple and

efficient i f tlie number o f processing elements is small. As number o f processing

elements increases, shared bus tends to become the bottleneck o f the system by slowing

down the communication between different processors. To overcome this problem,

distributed memory architectures are employed in embedded systems. Distributed

memory architecture is a scheme that connects a processing element along with its local

memory to a processor-to-processor interconnection network [49]. Each processing

element in this architecture has its own local memory which is not shared with any other

processor. Processing elements in these architectures communicate with each other by

33

sending a copy o f the data to other processors through the interconnection network. These

architectures offer high scalability and can easily satisfy the performance requirements of

modem day applications where computation on local data takes most o f the time

compared to data transfers across different processing elements.

Two terms associated with distributed architectures are degree and diameter. Degree of a

node is the maximum number of communication links connected with a processing

element. Diameter is the worst case measure of the number o f communication links

traversed (also known as number of hops) in transferring data between two processing

elements. Regular and irregular architectures are two major classes o f distributed memory

architectures based on the regularity of the communication links. An architecture is

regular if all nodes have same number of communication links. Most regular

architectures offer inherent fault tolerance capabilities to communication link failure as

multiple paths to each processing element exist.

Different distributed memory architectures have been proposed to support scalability and

efficient parallel processing. These architectures differ by inter-processor communication

patterns. Some common topologies of distributed memory architectures are described

below.

34

2.5.1 Mesh Topology

Mesh topology has n = nodes and all nodes except the boundary nodes are connected

to four immediate neighbors. Degree of this topology is 4 and its diameter is 2*(N-1),

Following figure illustrates a mesh topology with N=3.

Figure 2.7 Processing Elements Arranged in Mesh Topology with N=3

2.5.2 Hyperenbe Topology

Hypercube topology has n = 2 ̂ nodes and all nodes are connected to N other nodes.

Degree o f this topology is N and its diameter is N (log2n). Following figure illustrates a

hypercube topology with N=4.

35

Figure 2.8 Processing Elements Arranged in Hypercube Topology with N=4

2.5.3 Tree Topology

In tree topology, processing elements are hierarchically arranged with each node at a

given level is connected to 2 or more nodes and the lower lever. If ‘k ’ denotes number o f

levels and ‘D ’ is the degree of each node, then a balanced tree topology has n D* -1

D - \

nodes. Diameter of tree topology is 2*(k-l). Trees with D=2 and D=4 are known as

binary and quad tree respectively. Unlike mesh and hypercube topologies, in tree

topology there is only one path to each node and therefore cannot support fault tolerance.

To overcome this limitation, nodes at each level are connected by extra links [49]. Trees

with these extra links are also known as X-Trees [50]. Following figure illustrates a

binary and quad-tree topology with k=3. Dotted lines indicate extra links.

36

Figure 2.9 Binary Tree with 3 Levels

Figure 2.10 Quad Tree with 3 Levels

37

CHAPTER 3

HARDWARE SOFTWARE COSYNTHESIS FOR

DISTRIBUTED MEMORY SYSTEMS

3.1 Introdu ction

In this chapter, a new hardware software co-synthesis algorithm is presented which

targets regular distributed memory architectures [53]. Application is specified in the form

of an acyclic task graph using data flow representation. A library of processing elements

is also required. These processing elements can either be general purpose processors

(software processors) or application specific hardware blocks. Algorithm also assumes

that the profiling data is available which contains execution times o f each task on the

available processing elements. Communication links, which connect different processing

elements, are all of the same width. This is required for fault tolerant capability o f regular

architectures so that data can be transferred through a different path in the presence of a

fault. Local memory interfaces to the processing elements can have different data bus

widths depending on memory bandwidth requirements of the application. Data transfers

between different processing elements takes place through message passing schemes.

Every processing element is assumed to have a dedicated communication interface which

can communicate data while a task is executed.

Figure 3.1 provides an overview of the proposed co-synthesis algorithm. Major phases of

this algorithm include selecting processing elements, allocating tasks and creating

38

pipeline stages, selecting a topology for the processing elements, task scheduling and

reducing the pipeline period. An overview o f each o f these phases is provided here.

Initial phase o f the algorithm is selection o f processing elements iteratively followed by

pipelined task allocation. Selected processing element can either be a general purpose

processor or an application specific hardware block. Performance gain and additional

hardware area costs are estimated for each processing element. Processing elements

which gives maximum performance gain with minimum area is added to the system.

After addition o f each processing elements, tasks are allocated to the processing elements

present in the system. Pipeline stages are also created during task allocation. This phase

terminates when all the tasks are scheduled. Otherwise it continues to add more

processing elements until the area constraint is violated. A dirty-list o f processing

elements is maintained to remove an inefficient processing element after the maximum

number o f processing elements gets added into the system.

After a successful task allocation, processing elements are mapped onto a regular

distributed m em ory architecture. Topology o f the processing elements is not

predetermined and the algorithm selects the best topology from some well known

topologies like mesh, hypercube and quad-tree topologies. M apping processing elements

to a regular topology can add delays in communicating data from one processing element

to another. The topology with minimum overhead in inter-PE communication is selected.

39

Processing
Element Selection

ipelined
Allocation

Tasks
chedule

Finish
Constraints

Select Topology

Schedule

Finish
Constraints (SU CCESS)

Reduce Pipeline
Period

« I Processing
Element Selection

Pipelined
Allocation

chedule
0

Constraints ^ ,

Figure 3.1 Co-synthesis Algorithm

40

Topology selection follows the scheduling phase. Start time for each task is identified in

this stage. This phase takes into account the additional data communieation delays

incurred due to mapping processing elements on a regular topology. If after scheduling,

all the tasks finish their execution with in required pipeline period, algorithm terminates

successfully by producing regular, distributed memory architecture o f hardware/software

processing elements with schedule o f each task. If tasks cannot be scheduled, algorithm

proceeds to reduce pipeline period.

In pipeline period reduction phase, the system pipeline period is decreased. This is

attempted to eope for the additional delays introduced by mapping processing elements to

regular topology. Overhead introduced by the regular topology is used to reduce the

pipeline period. M ore processing elements are then added in the system to satisfy the new

period. After successful task allocation, algorithm selects a topology and tries to schedule

the tasks again. This process continues till a system configuration which meets required

tim ing constraints is established. Following sections describe each o f these phases in

detail.

3.2 P rocessing E lem ent Selection and Pipelined Task Allocation

In this phase, the processing elements are selected, tasks are allocated and pipeline stages

are created. Processing elements are added in an iterative manner. Initially all the tasks

are attempted to be scheduled on a single processing element and if this is not possible,

41

more processing elements are added to the system. Task allocation is performed by

scheduling a task on one of the available processing elements. Task allocation takes into

account external data communication time, however, a fully connected topology is

assumed in the beginning.

Different algorithms have been proposed for processing element selection and task

allocation but all o f them have certain limitations. Wolf starts with putting each task on a

separate processing element and then tries to remove less utilized processing elements

[41]. Hardware processing elements are almost always fully utilized and might never be

removed. The algorithm does not pipeline the tasks and therefore cannot satisfy high

throughput requirements. Bakshi and Gajski allocate tasks and create pipeline stages but

tasks with hardware description are always mapped onto hardware processing elements

and therefore they cannot trade off between hardware and software implementations for a

given task [44]. Chatha and Vemuri perform task allocation through a branch and bound

partitioner and present a heuristic algorithm for pipelining [22]. However, they do not

consider pipeline period while creating pipeline stages and therefore may result in

redundant pipeline stages. Figure 3.2 shows the processing element selection/ pipelined

task allocation phase and following sub-sections describe each of these in detail.

42

Processing
Element Selection

ipeiine
Allocation

All T asks

Finish \
(FAIL) J

Figure 3.2 Processing Element Selection and Pipelined Allocation

3.2.1 Processing Element Selection

In this stage a hardware (HW) or software (SW) processing element is selected for

addition to the system based on performance gain and its area cost. This selection

involves computation o f a selection coefficient for all processing elements available in

the library (P E s e l e c t) - The selection coefficient consists o f two factors, namely

• Performance Improvement Factor (P E p e r f j m p r)

• Area Cost Improvement Factor (P E a r e a _ f a c t o r)

Several variables need to be defined in order to describe these factors.

• ‘Tsw’ denotes the set o f tasks, which do not have a dedicated hardware resource

for their execution in the current system.

43 P R O P c m o p

. ‘7W ’ denotes the set o f tasks that have a dedicated hardware resource in the

current system.

. "PEsfv and "PEhw' denote software and hardware processing elements

respectively. ‘ SYSpEs^ ’ and ‘ SYSpE„^ ’ denote sets o f software and hardware

resources respectively in the current system.

Based on these variables, the cumulative software and hardware execution times are

defined:

SYS CUM _sw _TiME X ExecTime{J i,PEj)
Ti PEj

where

Ti G T sw , are tasks with which can execute on software processing elements

P E j G SYSpEsw, are software processing elements

SYScum_HW_T!ME ~ S ^ExecTime{T i , PEj)
TiPEj

where

Ti ^ T hw ̂ are tasks which are executing on hardware processing elements

PE j G SYSpEfj ̂ , are hardware processing elements

These variables indicate the execution time of all the tasks, which execute on all software

and hardware processing elements respectively. Next hardware improvement factor is

defined, which is the improvement in system performance obtained by adding a hardware

processing element to the system:

44

s s ExecTim eiTnPEj)/ \ T. PE ■
H W J m p {PE new) = —— '—r — ------j-------------- Y.E^^cTime{Ti,PENEw)

I T,

where

T i denotes the set o f tasks which can execute on P E new

P E j G S Y S , is a software processing element which has already been added
to the system

Using hardware improvement factor and cumulative hardware and software execution

times, execution time o f the system before {SYSprev_tim e) and after (S Y S p rev time) the

addition o f a processing element are estimated.

C V C - ^ Y ^ C U M - S W _ T I M E
OlbPREV_TIME — 7 5 ̂OIOCUM_HW_T!ME

I f

where

denotes the number o f software processing elements currently in the

system

' S Y S c u m _ s w _ t i m e + Z ExecTime{Ti,PENEw)
------------------- ~ 2 i f e PE^yy

SYScurr time —

SYS PREY TIME ~ H W Im p iP E new) t f PEffgyy e PEfjfff

where

45

Ifyv I denotes the number o f software processing elements currently in the

system

These variables are then used to calculate the performance improvement factor

{PEpERFjMPiù for a given PE. This factor gives a normalized measure o f the performance

gain obtained by adding a particular processing element.

S Y S c u r r t i m e

EE pERF IMPR ~ 1
SYS P RE V TIME

Area cost o f adding another processing element is also considered by determining area

cost factor {PEareajfactor)- This factor identifies the area cost associated with a

particular processing element. Area cost is normalized by dividing it by maximum area

cost associated with any processing element available in the library {MAX_AREA).

_ 1 A^^<^{PEnew)

where

A rea(P E n e w) is the area cost of the newly added processing element

Using performance improvement and area cost improvement factors, finally the selection

coefficient o f a processing element is defined, which is the weighted sum of performance

and area cost improvement factors.

46

P E s e l e c t ~ P E p e r f _iMPR + (\-k)y .p E jiR E A _ F A cro R

where

^ is a user defined area-performance trade-off factor and k e [0,l]

P E s e l e c t is calculated for all available processing elements and the processing element

w ith maximum selection coefficient is selected to be added into the system.

Processing elements are selected iteratively and it is possible that initially some slow

processing elements get added into the system and degrade the system performance. This

might result in system not meeting the required timing constraints. Algorithm uses a

m echanism to remove these processing elements from the system.

Slow processing elements become the bottleneck when another processing element

cannot be added into the system. This happens when;

where

I T s w I is the total number o f tasks that execute on a software processing element

is number o f software processing elements in the system

Once the above condition is satisfied, a slow processing element is removed from the

system. The slowest processing element is selected to be removed, which is found by

using;

47

PE SLOW = max X ExecTime{Ti,PEj)

P E s l o w is the processing element which takes maximum time to execute all software

tasks. Minimum area criteria can also be used to find the slowest processing element.

Once such a processing element is removed from the system, it is added to a ‘DrrtyPE’

list. This list contains all the processing elements which have been removed from the

system. Processing elements which are present in the ‘DirtyPE’ list are not considered in

subsequent phases o f processing element selection.

3.2.2 Pipelined Task Allocation

After a processing element has been added, all the tasks are then allocated to the

processing elements that are currently in the system. Pipelining is also performed

concurrently with the task allocation process.

First step of pipelined task allocation is to assign a priority to each task. This priority

measure can be any metric but the criteria used in this algorithm assign high priority to

those tasks which are on critical path (from execution point o f view). Priority measure

used is;

Prionty(Ti) = Min [ExecTime[T()) + Max{^Priority(Tj^

where

ExecTime(Tj) gives the execution tune of Task T, for all the available processing

elements

48

Tj is a successor task o f 7}

Priority is assigned by starting from the tail o f the graph and setting the priority o f each

task as the sum o f its minimum execution time (on any PE) and maximum priority o f its

successors. This priority measure is quite popular and has been used extensively in the

past [12, 22]. Instead o f using minimum execution time, any other statistical property can

be used e.g., mean or median execution time, however, minimum metric provides slightly

better results.

Pipelined allocation is the process o f assigning start time to each task such that the

following relationship is satisfied;

0 < StartTimeÇTj) < ExecTimeÇT^, PE) +

where

StartTime(Ti) is the time at which task T j starts its execution

ExecTime(TuPE) is the execution time o f Task T; on processing element where it

has been allocated

TpERioD is the constraint pipeline period o f the system

Pipeline allocation process initially finds starting and finishing time o f each task for each

processing element present in the system. Start time for each task is defined in terms o f

earliest start tim e {E a r lie s tS ta r tT im e) and idle time o f a processing element (PEIdleTime).

These parameters are defined as:

EarliestStartTime(Ti) = M AX{^FinishTime[PRED{Ti)))

49

where

PRED(Ti) = Set of all predecessors o f task Ti

PEIdleTime{PEj) - FinishTime (Last task on PEj)

PEIdleTime is the time when a processing element becomes idle by completing the

execution of all the tasks allocated to it.

Next, data communication time for task T, is defined when T is allocated to PEj. This is

the time taken to transfer all the required input data of T to PEj. This time is obtained by

adding data transfer times of all the predecessors of T, that are not allocated to PEf.

CommTime[Ti, P E j)= E DataXfr [PRED (7]))
\fPRED[T.yPEj

where

PRED(Tj) = Set of all predecessors o f task T

Now based on 'EarliestStartTime', 'PEIdleTime' and 'CommTime', we define start and

finish times for a task T, when it is allocated to PE/.

StartTime (r,-, P E j) = MAX(EarliestStartTime(T^), PEIdleTime(PEj))

FinishTime[Tf, PEj) = StartTime (7],P E j) + CommTime (7%,P E j) + ExecTime (7].,P E j)

Using the above equations, finish time of the highest priority ready task is calculated for

all processing elements that have been added to the system. Ready task is the task which

50

has all its predecessors allocated. Task is allocated to the processing element that has the

earliest finish time. I f the earliest finish time violates the pipeline period constraint, a

new pipeline stage is created and task is added to the new pipeline stage. Earliest start

time o f the task is set to zero and finish time is calculated for all the processing elements

again. The task is then allocated to the processing element, in the new pipeline stage that

has earliest finish time. If earliest finish time o f the task violates the pipeline period even

in this new pipeline stage, pipelined allocation fails and another processing element needs

to be added into the system.

3.3 Topology Selection

Task allocation process (after its completion) results in a set o f processing elements

which communicate with each other based on the inter-task communication. Tasks are

scheduled to execute in different pipeline stages based on the timing constraints. Tasks

are also assigned a start time and a finish time. System at this point meets all the

constraints, however the processing elements are connected in an irregular topology.

These processing elements are mapped onto a regular topology during topology selection

phase.

Irregular topologies have certain disadvantages. Primarily, in irregular topologies more

than one data communication paths are not guaranteed that are needed to support fault

tolerance. I f a communication link or a processing element fails, data can always be

routed to other processing elements through a different path. Moreover, data routing is

51

complex in irregular topologies and such mechanisms may prove to he costly in terms of

area, power etc.

In the proposed algorithm, irregular interconnection of processing elements (PE) is

converted to a regular PE network. This mapping can increase data communication time,

as data might have to go through a number of links. As a result additional processing

elements may be added during this process. Topologies considered in this thesis are mesh,

hypercube and quad-tree topologies. The algorithm selects a best topology out o f these

three, however approach presented here is not limited only to these schemes and any

other regular topology can be added as well.

Selection of a regular topology is performed by initially generating regular topologies and

assigning addresses to each location. All the processing elements are then mapped to

these topologies. Mapping is performed by assigning neighbors to each processing

element based on the magnitude of data traffic. Finally overhead for each topology is

calculated and topology with least overhead is selected as the best topology. Following

sections describe each of these steps in detail.

3.3.1 Topology Generation and Addressing

First step in topology mapping and selection is to create an empty template o f nodes and

assign addresses to each node. All the topologies are defined using the same template so

52

that the mapping does not depend on the type o f topology. Topology template is defined

as a graph consisting o f nodes (Vr) connected by edges (Et)

A = { V t, E x }

where,

} » is the set o f nodes o f the topology

E t = { ,̂ = I ’ is the set o f edges which connect the nodes

Each node is assigned a unique address 'Addr(vi) ’ and topology has same number o f

nodes as the num ber o f processing elements in the system, that is;

Vt — +

A set o f neighbors is defined for every node in the topology. Set o f neighbors contain

nodes w hich are adjacent to the current node. Set o f neighbors is defined as;

■̂ V,. = { " I

Using these equations, topologies are generated and addresses are assigned to each node.

Now the process for mesh, hypercube and quad-tree topologies is described.

a) Mesh Topology

M esh topology is generated by arranging nodes in a grid. To determine number o f rows

and columns o f grid, first number o f processing elements in the system (SYS_PE^ is

calculated;

53

SYS PE = +

Using this number, number of rows and number of columns are determined using

following equations;

MAX _ ROWS = I" yjSYS _ PE

MAX _ COLS = \(S Y S _ P E ^ MAX _ ROWS)\

Finally, bits required to represent a row/column address is calculated as;

ADDR _ BITS = I" log; {MAX _ ROWS)]

Using these variables, nodes are added on a grid in a row-wise fashion. Addresses are

assigned to each node by concatenating row and column addresses. After address

assignment, the neighbors are added if they exist for given number o f nodes. The

existence is checked by using boundary conditions. Following pseudo code illustrates the

process.

54

node = 0;
ïf̂ R row=0 to MAX_ROWS-l

FOR COl=0 to MAX_C0LS-1

//Assign address to node by concatenating row . and column-
//addresses
Addr(Vnoa,) = (row « ADDR_BITS) | colj
^̂ ■̂ node == // set neighbor count to 'O' ' •

IF { Exist(UPPER_NEIGHBOR))

AddNeighbor(UPPER); // add upper neighbor
ENDIF

IF (Exist(LOWER_NEIGHBOR))
AddNeighbor(LOWER); // add lower neighbor

ENDFOR
BNDFOR

Figure 3.3 Pseudo Code for Mesh Topology Generation and Address Assignment

Following figure shows the application o f above algorithm for eight nodes. At this point,

only a blank template has been created and no processing element has been allocated to

any node o f the topology.

ENDIF i i >

IF (Exist(LEFT_NEIGHBOR))
:AddNeighbor(LEFT); // add left neighbor

ENDIF

IF (Exist(RIGHT_NEIGHBOR))
AddNeighbor(RIGHT); // add right neighbor

ENDIF
node++;
IF(node == SYS_PE)

RETURN; //return when all nodes have been added
ENDIF

55

Figure 3.4 Eight Node Mesh Topology with Address Assignment

b) Hypercube Topology

Hypercube topology is generated by initially assigning addresses to each node. Addresses

in this case range from ‘0’ to ‘SYS_PE’, where SYS_PE is same as defined for mesh

topology. After assigning the addresses, neighbors for a node are added. Degree of

hypercube identifies number of neighbors for each node. Degree o f a hypercube is

defined as;

DEGREE = plog; {SYS_ P E)\

Adjacent nodes in hypercube topologies have only 1-bit difference between the addresses

[49]. This fact is used to assign neighbors for each node. Following figure illustrate this

process.

56

./•/Assign address to each node , v - . s

Addr (} — node #
N.̂ node =0; // set neighbor count to 'O'

ENDFOR

//Set neighbors for each node
FOR i=0 to SYS_PE-1

FOR j=0 to SYS_PE-1

IF { AddrBitDiff(Vi,Vj,DEGREE) == 1)

AddNeighbor(Vi,Vj) ; // add Vj as Vi's neighbor
ENDIF

ENDFOR
ENDFOR

Figure 3.5 Pseudo Code for Hypercube Topology Generation and Address
Assignment

Following figure shows the application of above algorithm for eight nodes.

Figure 3.6 Eight Node Hypercube Topology with Address Assignment

c) Quad-Tree Topology

Tree topology is generated by assigning address and adding hierarchal neighbors as a

node is created. Each created node is added to a FIFO to add further nodes and neighbors.

57

Finally after hierarchal links have been created, additional links are added at the same

level between adjacent neighbors to support fault tolerance. Following figure describes

this process.

nodeaO;
Addr(v„oa,)=l;
node++;
AddtoFlFO{v„o<i«) ;
WHILE (Vf = GetfromFIFOO) //Continue till FIFO is empty

//Add four new nodes (quad-tree) and update neighbors
FOR 1=0 to 4

Addr(v„od.) = Addr(Vf)*4 + 1; //Address for current node
=0; // set neighbor count to '0'

AddNe i ghbor (Vf, Vaoj,) ;
node++;
IF (node == SYS_PE)

BREAK; //Break when all the nodes have been created
ENDIF
AddtoFIF0(v„oa,) ; //Add the new node to FIFO

ENDFOR
ENDWHILE

//Add extra links by connecting adjacent nodes at the same level to
//support fault tolerance
CreateSaneLevelNeighbors();

Figure 3.7 Pseudo Code for Quad-Tree Topology Generation and Address
Assignment

Following figure illustrate the application of above algorithm for a quad-tree with eight

nodes. Dotted lines in the figure indicate the extra links which provide multiple

communication paths between different processing elements.

58

Figure 3.8 Eight Node Quad-Tree Topology with Address Assignment

3.3.2 Topology Mapping

Processing elements are mapped to a topology in a manner such that data communication

delays can be minimized. To minimize the delay, processing elements are allocated to

topology nodes based on their volume of communication with their neighbors. Traffic

between different processing elements is defined using data communication with already

allocated neighbors o f a topology node. A node is allocated if a processing element has

been assigned to that node (processing element has a unique address). Consequently

allocated neighbors o f node v,- are those nodes which are adjacent to v, and have been

assigned a processing element. These neighbors are denoted by , and ç .

Neighbor traffic is then defined as;

59

NeighTrqffîc(PEj,Vj)= %] CommTime (̂ PÊ , PE [v^fj
Vv.eN̂ j

where

PE(vJ is processing element allocated to topology node Va

CommTime(PEi, PEj) gives the time taken to transfer data between PEi and PEj

A FIFO list is used during allocation of processing elements to topology nodes.

Unallocated neighbors o f the current node are stored in the FIFO. This ensures that

processing elements are assigned first to the immediate neighbors o f allocated nodes.

Following pseudo code illustrate the mapping of processing elements to topology nodes.

60

//Assign first PE to start node of the topology;-.

PEg = ALLOCATED; ~ ,,

//Add all the neighbors of Vq to FIFO
AddtoPIFO(N); , vi

//Continue processing while there is any un-allocated node
WHILE (= GetfromFIFOO) //Continue till FIFO is empty

//Calculate neighbor traffic for current node and all
//unallocated processing elements
FOR ALL UNALLOCATED PEs: PEj,

FOR j=0 to

CalculateNeighborTrafficCPEj., Vj) ;
ENDFOR

ENDFOR

//Get PE which has maximum neighbor traffic
PE* = GetMaxTraf ficPEO ;
//Assign PE* to
PEj, ;
P E j, = ALLOCATED;

//Add unallocated neighbors of to FIFO
AddtoFIFO(N - N*);

ENDWHILE
Figure 3.9 Pseudo code for Topology M apping

3.3.3 Best Topology Selection

Best topology is selected by calculating the overhead o f each topology. Overhead is the

extra time spend in communicating data from one processing element to another. It is

computed relative to the irregular topology, where a processing element can

communicate w ith all the required processing elements directly. To describe overhead,

neighbors o f processing elements and hops required for data communication need to be

61

defined. Neighbors o f a processing element forms a set Npg_, where each member is a

processing element that needs to communicate with PEi. Hops refer to the number of

communication links traversed in a topology in order to transfer data between two given

processing elements. Number of hops, denoted by , can be calculated from the

addresses of each topology node. Following sections describe mechanism to calculate

number of hops for each topology;

a) Mesh Topology

For a mesh topology, address of each node is assigned by concatenating row and column

addresses. Number of hops needed to communicate data from one node to another is the

sum of absolute differences of corresponding row and column addresses. For example in

Figure 3.4, data transfer from node ‘0’ (binary: 00 00) to node ‘9’ (binary: 10 01) would

require 3 hops (differences in row and column addresses is 2 and 1 respectively).

b) Hypercube Topology

For a hypercube topology, number of hops needed to communicate data from one node to

the other is number of bit differences in the corresponding addresses. For example, in

Figure 3.6, number of hops needed to communicate data from node ‘1’ (binary: 001) to

node ‘6’ (binary: 110) is 3.

62

c) Quad-Tree Topology

Num ber o f hops for quad tree is sum o f level difference o f two nodes and twice the level

difference between node at lower level and first common parent o f two nodes. Level o f a

node is defined as |_log^ (^i)J • For quad tree o f Figure 3.8, node ‘16’ is on level 2 and

node 1 is on level 0. Difference between these levels is 2. Also, first common parent o f

two nodes is node ‘1’, therefore level difference between node at lower level (node ‘1’)

and first common parent is 0. Thus, number o f hops required to communicate between

node ‘16’ and node ‘1’ is 2+2(0) = 2.

Now, based on Npg and overhead o f a topology is defined as;

{SYSPE-l)\^^<\ r \ \ ! \
O verheadp = X! \^h ops \^P E i,P E j\-\\^ om m T im e\^ P E ^ ,P E j\

,=0 y=0 ̂ ̂ ^

where,

CommTime(PEi, PEj) gives the time taken to transfer data between PEi and PEj

This overhead gives the extra time taken to transfer data between all the processing

elements o f the system. Topology which minimizes this overhead is selected as the best

topology.

3.4 Scheduling

After processing elements are mapped to a topology, all the tasks o f the application are

rescheduled. Scheduling at this phase is necessary because o f the extra communication

63

delays introduced by the regular topology. List scheduling is used to schedule tasks in

this phase. The technique is similar to one used in pipelined task allocation except that

every task is scheduled on the processing element which was selected for it during

pipelined task allocation phase. Pipeline stages are not modified during this phase and

each task is scheduled in the same pipeline stage where it was scheduled during the

pipelined task allocation phase.

Scheduling is performed by selecting the highest priority task that has all its predecessors

already scheduled. Priority assignment process is described in Section 3.2.2. Earliest start

time and processing element idle time are then calculated for the selected task. Start time

of the task is the maximum of these two quantities. Data communication time is then

calculated taking into account the location of processing element for the current task and

processing elements of all its predecessor tasks. Finally, finish time of the task is

calculated by taking into account exact communication delays and execution time of the

selected task. If task completes its execution within constraint pipeline period, ready task

list is updated (as a result of scheduling of a task, more tasks may have all their

predecessors scheduled). Otherwise, scheduling fails and more processing elements need

to be added to the system by reducing the pipeline period. Following pseudo code

illustrates the scheduling phase.

64

//Add the first task of the application to ready task list
= Tasko;

//Continue processing while there is any un-allocated node '
WHILE (Task* = GetReadyTask ())

//Get the PE where task was allocated
PE = 6etTaskPE(Taskj.) ;

//Get the time when all parent tasks of TaskR finish their
//execution. This time is '0' for a new pipeline stage
EST = GetEarliestStartTime (TaskR) ;
//Time when PE finishes the execution of all tasks
//allocated before 'Task%'
PE_IDLE_TIME = GetPEIdleTime(PE) ;

//Time to transfer all input data from parent tasks. This
//time takes into account extra hops required as a result
//of regular topology
COMM_TIME = GetDataXfrTime (PE, Tasks) ;
//Time taken by 'Task%' to complete its execution on 'PE'
EXEC_TXME = GetTaskExecTime(PE, Tasks);

//Time when ' T a s k s ' finishes its execution on 'PE'
FINISH_TIME = GetTaskFinishTime (

T a s k s »
MAX(EST, PE_IDLE_TIME),
COMMITIME,
EXEC_TIME

) ;

IF(FINISH_TIME > Treriod)
RETURN ERROR;

ENDIF
//Update Ready Task list as a result of scheduling 'Tasks'
UpdateReadyTasks() ;

ENDWHILE

Figure 3.10 Pseudo code for Scheduling

5.5 P ipeline P eriod Reduction

Extra communication delays introduced as by the topology mapping may cause

scheduling phase to terminate unsuccessfully. I f scheduling fails, then more processing

65

elements are required to be added into the system so that tasks can complete their

execution well within the target period and extra communication times do not violate the

system pipeline period constraint. Pipeline period can be reduced by the maximum

violation time factor; however other tasks may not violate the pipeline period with the

same factor and this may redundantly add more processing elements in the system.

Moreover, all pipeline stages do not have the same period as tasks in some pipeline stages

complete earlier than the pipeline period. Therefore reducing the period by maximum

violation time can result in expensive systems. Based on these factors an iterative

pipeline period reduction mechanism is used in the algorithm. Pipeline period is reduced

by a small amount every time scheduling phase fails. Pipeline reduction factor is defined

as;

^ _ OverheadjR̂ED_FACTOR ~ TT~,
L in ks^

where,

Overheadj- is overhead associated with the selected topology (Section 3.3.3)

Links/^ is the number of communication links which are missing in the regular

topology and transfers across these links require multiple hops

After pipeline period is reduced, pipelined task allocation phase is repeated unless the

system meets this new pipeline period. Processing elements are then mapped to regular

topology and scheduling is performed with the original pipeline period constraint. When

all tasks are scheduled, algorithm terminates successfully otherwise pipeline period is

reduced further and the same process is repeated.

66

CHAPTER 4

EXPERIMENTAL RESULTS

4.1 In troduction

This chapter describes the results obtained by using the co-synthesis algorithm on

different task graphs. The algorithm has been implemented in C++ programming

language and M icrosoft’s Visual C environment was used for compilation and

verification. All the experiments were conducted on a system with 512MB memory and a

Pentium 4 processor running at 3.06 GHz. In the first experiment, MPEG encoder

application is used for performing hardware software co-synthesis and second experiment

was carried out using random graphs with up to 400 tasks.

4.2 M P E G E ncoder

M PEG is a compression standard which is used to encode digital video [52]. It relies on

block based m otion compensation to reduce temporal redundancies and on DCT (discrete

cosine transform) based compression scheme to reduce spatial redundancies, MPEG

produces three types o f coded frames known as 1-frames (intra-coded frames), P-frames

(predictively-coded frames) and B-frames (bidirectional predictively coded frames). ‘P ’

and ‘B ’ frames contain motion estimation information, T ’ frames on the other hand only

contain discrete cosine transformed data. Most computationally intensive part o f MPEG

67

is motion estimation where a 16x16 block of current image is searched in previous or

next reference images. Search results in motion vectors which together with prediction

error are stored in ‘P ’ and ‘B’ frames. Prediction error is coded in the same way as ‘I ’

frames using DCT followed by VLC (variable length coding).

MPEG encoder is specified as a data-flow based task graph for input to co-synthesis

algorithm. Task graph for MPEG encoder is shown in Figure 4.1. It is a coarse grained

graph consisting of 22 nodes with each node representing a large block of frmctionality.

Numbers at the edges show the amount of data transferred between the tasks. Images in

the video sequence are assumed to be in RGB format. ‘Initialize’ task performs the

initialization and maintains a state machine to determine the type of coding (‘I’, ‘P ’ or

‘B’) required for the current frame. ‘YCbCr Conversion’ task converts current image

block and reference images (for ‘B’ and ‘P’ frames) from RGB to YCyCr format. ‘Sub-

Sample’ task performs sub-sampling of color difference components (Cy and CJ for the

block of current image. ‘Split Fwd Ref Image’ and ‘Split Bwd Ref Image’ tasks split the

forward and backward reference images into four overlapping regions for performing

motion vector search over these regions in parallel. Tasks ‘F S l’ through ‘FS4’ and ‘B S l’

through ‘BS4’ perform the motion vector search over forward and backward reference

images respectively. ‘Fwd Motion Vector’ and ‘Bwd Motion Vector’ tasks select the best

forward and backward motion vectors respectively. ‘Interpolate’ task interpolates the

forward and backward motion vectors for bi-directionally coded frames. ‘DCT’ task

calculates discrete cosine transform for an image block or motion-predication error block.

‘Quantize’ performs quantization and ‘DCAC Coding’ task codes dc and ac components

68

8449

4097
■257

Ref#

708708708708708 708

BS1FS2 FS3 FS4

196.196196 196

195195

Interpolate

■193

193

,193

385

771

Figure 4.1 MPEG Encoder Task Graph

69

of quantized discrete cosine transformed block. Task ‘Entropy Encode’ performs variable

length coding using huffinan encoding scheme. Finally, ‘Finalize’ task packs huffinan

coded symbols to form the final compressed bitstream.

Software execution time for these tasks is calculated by executing each task on Altera’s

Nios processor. Nios CPU is available as configurable soft macro for Altera’s fgpa

devices. Every task is profiled on two different variants of Nios processor. One variant

uses a dedicated hardware multiplier while the other uses multiple instructions to perform

multiplication. Some of the tasks are also implemented as dedicated hardware. These

tasks include motion vector search, DCT, quantization and dc/ac coding. Each of these

tasks are implemented in Verilog hardware description language at register transfer level

and then synthesized on Altera’s Stratix fpga. Execution time is then the number o f clock

cycles required to complete the task. Execution times for some of the tasks depend on the

amount of data required to be processed (e.g. run-length coding, Huffman encoding etc.).

For these tasks, worst case execution time is considered. Area cost associated with each

processing element is taken as the number of logic elements required to implement it on

Stratix Q)ga. Table 4.1 lists the area cost of each processing element and

Table 4.2 gives the execution time of each task on different processing elements.

70

Table 4.1 Processing Element Information for MPEG Application

NIOS_M UL
A ltera’s Nios embedded
processor with a dedicated
hardware multiplier

Software 4065

NIOS
A ltera’s Nios embedded
processor without a dedicated
hardware multiplier

Software 3662

M VS_ENG Hardware core for motion
vector search Hardware 615

D C T E N G Hardware core for discrete
cosine transform

Hardware 1008

QUANT_ENG Hardware core for quantization Hardware 712

DCAC_ENG
Hardware core for coding DC
and AC components

Hardware 453

71

Table 4.2 Task Execution Times for MPEG Encoder Application

Initialize 1194178 1245890 - - -

YCbCrConvert 6141804 11261292 - - - -

SubSample 122539 199147 - - - -

SplitFwdReflmage 1338842 1338842 - - - -

SplitBwdRefTmage 1338842 1338842 - -

FSl 19983314 20025208 131524 - -

FS2 19983314 20025208 131524 - - -

FS3 19983314 20025208 131524 - - -

FS4 19983314 20025208 131524 - - -

BSl 19983314 20025208 131524 - - -

BS2 19983314 20025208 131524 - - -

BS3 19983314 20025208 131524 - -

BS4 19983314 20025208 131524 - - -

FwdMotionV ector 52161 90945 - - - -

B wdMotionV ector 52161 90945 - - - -

Interpolate 149770 304906 - - - -

DCT 377600 775136 - 936 - -

Quantize 145537 260677 - - 468 -

DCACCoding 620181 620181 - - - 1214

EntropyEncoding 164918 242688 - - - -

Finalize 256904 334876 - - - -

72

M PEG encoder task graph along with task execution times and processing element

hardware area information is fed to the co-synthesis algorithm. A range o f constraints is

provided to the algorithm to obtain a wide range o f designs. The algorithm outputs a set

o f heterogeneous processing elements arranged in a regular distributed memory topology

and a pipelined schedule for the set o f tasks o f the application. Major factors in the output

consist o f system pipeline period, area o f the system, number o f processing elements and

num ber o f pipeline stages created.

Algorithm was run for time constraints varying from 172000000 clock cycles to 6500000

clock cycles. Corresponding constraints on area ranged from 8000 logic elements to

38000 logic elements. Results obtained for these constraints are shown in Table 4.3.

M ore processing elements get added into the system as the time constraints are made

tighter. Also, the number o f pipeline stages increase as system time period decreases.

System corresponding to the tightest constraint (6500000 cycles) consists o f 7 software

processors and 11 dedicated hardware processing elements. The hardware processing

elements correspond to 8 motion vector search engines and 3 hardware blocks for DCT,

quantization and dc/ac coding. This system, giving the highest performance has the

m axim um area and tasks execute in 5 pipeline stages. On the other extreme, system

corresponding to slowest requirements is around 26 times slower and takes around 9

times less area. System consists o f only one processing elements and task execution is not

pipelined. Figure 4.2 illustrates the design space exploration corresponding to various test

cases.

73

Table 4.3 Time/Area Results for MPEG EncoderQ
1. 6500000 38000 6420893 36483 18 5 7 11

2. 7500000 17000 7458521 16309 11 3 3 8

3. 8500000 17000 7592363 16309 11 3 3 8

4. 9500000 17000 8807958 16309 11 3 3 8

5. 25000000 15000 21459777 14676 9 4 3 6

6. 40100000 15000 40091097 14655 7 4 3 4

7. 45000000 13000 41484886 12831 6 4 3 3

8. 55000000 12500 53897342 12216 5 3 3 2

9. 61000000 11700 60370101 11601 4 4 3 1

10. 63000000 11500 61419853 11389 3 3 3 0

11. 95000000 8000 90544535 7727 2 2 2 0

12. 172000000 4065 171821949 4065 1 1 1 0

40000
Constraints
Actual Results

35000

30000

I 250005

I
I 20000

15000

10000

5000

System Time (Time Units)

Figure 4.2 Design Space Exploration for MPEG Encoder Application

74

Other than timing and area results, an important characteristic o f the resulting system is

the arrangement o f the processing elements in a regular topology. Table 4.4 lists this

characteristic o f the system for each test case. It shows the overhead involved in

arranging processing elements to a particular topology and number o f links missing in

each topology when compared to a fully connected topology. It also gives the number o f

extra processing elements that are added to as a result o f increased extra communication

delays due to a regular topology.

Table 4.4 Topology Information for MPEG Encoder

1. 6500000 24051 27 13037 18 14696 24 MESH 0

2. 7500000 6201 15 7978 19 5394 15 HYPERCUBE 0

3. 8500000 6201 15 7978 19 5394 15 HYPERCUBE 0

4. 9500000 5946 16 9681 16 4017 13 HYPERCUBE 0

5. 25000000 2034 9 7458 14 2647 9 TREE 0

6. 40100000 2329 10 4746 12 2942 10 TREE 0

7. 45000000 936 5 3163 7 1549 6 TREE 0

8. 55000000 1880 6 2710 4 2295 5 TREE 0

9. 61000000 2490 4 2905 3 2905 3 TREE 0

10. 63000000 999 2 999 2 999 2 TREE 0

11. 95000000 0 0 0 0 0 0 TREE 0

12. 172000000 0 0 0 0 0 0 TREE 0

75

It is seen that as the time constraints become tighter and tighter, overhead and number of

missing links increase. This is due to the fact that as timing constraints get smaller, more

processing elements are added which increase the inter-processor communication. For

mpeg encoder application, no extra processing element was required and algorithm

selected all of the available topologies for different test cases. For the test case 1, Mesh

topology has the lowest overhead. System in this case consists of 11 processing elements

and 5 pipeline stages. Figure 4.3 shows the irregular interconnection of the processing

elements before they are mapped onto a regular topology. Arrangement of processing

elements in a regular topology is shown in Figure 4.4. Corresponding schedule map for

each task is displayed in Figure 4.5. Figure 4.6, Figure 4.7 and Figure 4.8 show similar

details for test case 4, where processing elements are arranged in a hypercube topology.

Figure 4.9, Figure 4.10 and Figure 4.11 provide same details for test case 5, where tree

topology has the least overhead. Finally, an interesting case is where system consists o f

only a single processing element. In this case there is no overhead and all the tasks

execute one after the other depending on their priority. This case is illustrated in Figure

4.12.

76

Figure 4.3 Irregular Processing Element Topology (Test case 1)

Figure 4.4 Processing Elements for MPEG Encoder Arranged in Mesh Topology

77

fNfTTALlZE (NIOS_MULO)

YCBCR_CONVERT (NI0S_MUL1)

SUBSAMPLE (N10S_MUL1)

SPLrr_FWD_RI (NIOSO)

SPLrr_BWD_RI (NIOS1)

F S l (MVS_ENG1)

FS2 (MVS_ENG2)

FS3 (MVS_ENG3)

FS4 (MVS_ENG4)

FWD_MOTION_VEGTOR (NIOS2)

BS1 (MVS_ENG5)

BS2 (MVS_ENG6)

BS3 {MVS_ENG7)

BS4 (MVS_ENG8)

BWD_MOTION_VEGTOR (NIOS3)

INTERPOLATE (NIOS2)

DGT(DGT_ENG)

QUANTIZE (QUANT_ENG)

DG_AG_GODING (DGAG_ENG)

ENTROPY_ENCODE (ND S4)

FINALIZE (NI0S4)

1000000 2000000 3000000 4000000

Time (time units)

5000000 6000000 7000000

i

Figure 4.5 Schedule Map for Mesh Topology

78

Figure 4.6 Irregular Processing Element Topology (Test case 4)

«a;

MVS
EN61

Figure 4.7 Processing Elements for MPEG Encoder Arranged in Hypercube
Topology

79

INrmLIZE (NIOS_MULO)

YCBCR_CONVERT (NKDS_MULO)

SUBSAMPLE (NI0S1)

SPLIT_FWD_RI (NIOS_MULO)

SPLrr_BWD_RI{NIOSO)

F S l (MVS_ENG1)

FS2 (MVS_ENG2)

FS3 (MVS_ENG3)

FS4 (MVS_ENG4)

FWD_MOTION_VECTOR (NIOS1)

BS1 (MVS_ENG5)

BS2 (MVS_ENG6)

BS3 (MVS_ENG7)

BS4 (MVS_ENG8)

BWD_M0T10N_VECT0R (NI0S1)

INTERPOLATE (NI0S1)

DCT(NIOSI)

QUANTIZE (NIOS 1)

DC_AC_CODING (NI0S1)

ENTROPY_ENCODE (NI0S1)

FINALIZE (NI0S1)

0
i
0

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 6000000 9000000

Time (time units)

Figure 4.8 Schedule Map for Hypercube Topology

80

Figure 4.9 Irregular Processing Element Topology (Test case 5)

Figure 4.10 Processing Elements for MPEG Encoder Arranged in Tree Topology

81

NmALEE (NIOSO)

YCBCR_CONVERT (NIOSO)

SUBSAMPLE (NI0S3)

SPLtr_FWD_RI (NIOSO)

SPLIT_BWD_RI (NIOS1)

F S l (MVS_ENG1)

FS2(MVS_ENG2)

FS3 (MVS_ENG3)

FS4 (MVS_ENG4)

FWD_MOT10N_VECTOR (NIOSO)

BS1 (MVS_ENG5)

BS2 (MVS_ENG6)

BS3 (NI0S1)

BS4 (NIOS3)

BWD_MOT10N_VECTOR (NIOS1)

INTERPOLATE (NIOSO)

DCT (NIOSO)

QUANTIZE (NIOSO)

DC_AC_CODING (NIOSO)

ENTROPY_ENCODE (NIOSO)

FINALIZE (NIOSO)

f
f
I
f
f

i

f
i

T T
0 5000000 10000000 15000000

Time (time units)

Figure 4.11 Schedule Map for Tree Topology

20000000
I

25000000

82

INmALIZE (NIOS_MUL)

Y C B C R _C O N V ER T (NIOS_MUL)

SU B SA M PL E (NIOS_M üL)

SPLrT_FW D _R I (NIOS_MUL)

SPL(T_BW D _RI {NI0S_MÜL)

F S l (NIOS_M üL)

F S 2 (NIOS_M üL)

F S 3 (NIOS^MUL)

F S 4 (NIOS_MUL)

FW D _M O TlO N _V ECTO R (N10S_MUL)

B S l (NlOS_MUL)

B S 2 (NIOS_MUL)

B S 3 (NIOS_MUL)

B S 4 (NIOS_MUL)

BW D_M OTION_VECTOR (NIOS_MUL)

INTERPOLATE (NIOS_MUL)

D C T (NIOS_MUL)

QUANTIZE (NIOS_MUL)

D C _A C _C O D IN G (NIOS_MUL)

E N T R O PY _EN C O D E (NIOS_MUL)

FINALIZE (NIOS_MUL)

f
9
9

I I I I I I I 1----------- 1
20000000 40000000 60000000 80000000 100000000120000000 140000000160000000180000000

Time (time units)

Figure 4.12 Schedule Map with only a Single Processing Element in the System

4.3 P ara lle l M P E G Decoding

In the second experiment, proposed algorithm is applied to a test case from Hypercube

Co-synthesis algorithm [46]. Hypercube co-synthesis algorithm involves processing

elem ent selection, task scheduling and pipelining however the processing elements are

always m apped to a hypercube topology. Also the algorithm uses RECOD pipelining

m ethod ([22]) that may also result in redundant pipeline stages. The task graph for this

test case consists o f 22 nodes with 16 MPEG decoding tasks. Pentium H processor (450

83

MHz) was used for software implementation and Altera FLEXIOKE FPGA was

employed for hardware synthesis. Following figure shows the task graph for parallel

MPEG decoding.

133’

133

legionaT^^gidnalN. /^egionarv /Regional'
Comparison) (Comparison) (Compansoi

'133133 133' 133

Finalize

Figure 4.13 Parallel MPEG Decoding Task Graph

Proposed method is tested with the same constraints as used in the Hypercube co

synthesis technique. Area constraints were varied from 11.5M to 7.5M area units and

corresponding time constraints were 30000 to 770000. Algorithm was able to meet all the

constraints. Processing elements were mapped to tree and hypercube topologies. In the

first case where the resulting system consists of 7 processing elements, tree topology

results in 10 commumcation links as opposed to hypercube topology which consists o f 12

84

links. This shows the savings in cost o f the resulting system. Detailed results are shown

in Table 4.5and Table 4.6. Optimal results are also provided in [46]. Results obtained by

the proposed co-synthesis algorithm suggest that its timing performance is, on an average,

only 0 97/6 m ore than optimal and it utilized only 0.20% more area than the optimal

results. As a comparison, timing and area differences for hypercube co-synthesis

algorithm were 3.75% and 0.62% respectively. This illustrates the effectiveness o f the

proposed algorithm. Comparison results are shown in Figure 4.14.

Table 4.5 Time/Area Results for Parallel MPEG Decoding

m
K m # ■

1. 40000 11500000 36320 11118452 7 4 1 6

2. 50000 11000000 45405 10258292 6 4 1 5

3. 60000 10500000 45405 10258292 6 4 1 5

4. 90000 9500000 68069 9398132 5 4 1 4

5. 120000 9000000 118040 8537972 4 4 1 3

6. 130000 8600000 118040 8537972 4 4 1 3

7. 600000 7600000 588480 7588611 2 2 1 1

8. 770000 7500000 759296 7500000 1 1 1 0

85

Table 4.6 Topology Information for Parallel MPEG Decoding

1. 40000 1599 4 2009 6 1869 5 TREE 0

2. 50000 1995 3 2675 5 1335 3 HYPERCUBE 0

3. 60000 1995 3 2675 5 1335 3 HYPERCUBE 0

4. 90000 2394 3 2800 3 1862 2 HYPERCUBE 0

5. 120000 2261 2 1729 1 1729 1 HYPERCUBE 0

6. 130000 2261 2 1729 1 1729 1 HYPERCUBE 0

7. 600000 0 0 0 0 0 0 TREE 0

8. 770000 0 0 0 0 0 0 TREE 0

xIO"
11.5

Constraints
■0 " Optimal Results

-0 - Results of Proposed Algorithm
Hypercube Co-synthesis Results

10.5

I3
I
I 8.5

§
I«

6.5

7.5

System Time (Time Units)

Figure 4.14 Comparison Results for Parallel MPEG Decoding

86

4.4 R andom Graphs

Third experiment is conducted by performing co-synthesis on random task graphs. These

graphs are generated by randomly varying number o f predecessors and successors for

each task, depth or number o f levels and amount o f data transferred between different

tasks. Successors and predecessors for a task are varied from 2 to 20 and tasks without a

successor are connected to the final task. Number o f processing elements available for the

system is also random and both hardware and software processing elements are included

in the library. Execution time o f each task depends on the area and type of the processing

element. Hardware processing elements execute respective tasks in less time compared to

software counterparts. Large random graphs are generated to conduct the experiments.

Five different types o f graphs are created with 50, 100, 200, 300 and 400 nodes. Multiple

graphs for each type are used and each of the graphs is then tested for a range o f area and

tim ing constraints. Figure 4.15 shows a random graph o f 50 nodes.

87

Figure 4.15 Randomly Generated 50-node Graph

8 8

Tim ing constraints for are varied from 25000 to 70000 time units for five different task

graphs (graph a to graph e) o f 50 nodes. Area constraints range from 1800 to 16500

area units. N um ber o f processing elements ranged from 1 to a maximum o f 10 processing

elements and pipeline stages varied from 1 to 9. All the topologies were selected for

different cases and overhead o f the topologies increased as the pipeline period became

smaller. Also, for cases with tighter constraints extra processing elements were required

to cater for delays introduced due to regular topology mapping. Number of missing links

increase as tim ing constraints become smaller which is due to the fact that more

processing elements get added into the system and communication between processing

elements increases. Table 4.7 shows the timing/area results with number o f processing

elements and pipeline stages. Table 4.8 provides the topology information and Figure

4.16 illustrates the design space exploration for each graph with 50 tasks. Similar results

are obtained for other graphs, however, number o f missing links at smallest constraint

increases w ith number o f tasks in the graph. Subsequent tables and figures illustrate the

results for 100, 200, 300 and 400 node task graphs. Finally, Figure 4.21, Figure 4.22 and

Figure 4.23 show the arrangement o f processing elements for 400-node task graph (graph

‘e ’ w ith tim e constraint o f 100000 time units), 200-node task graph (graph e with time

constraint o f 125000 time units), and 300-node task graph (graph ‘c ’ with time constraint

o f 200000 tim e units) respectively.

89

Table 4.7 Time/Area Results for 50 Node Graphs

mSM
a. 25000 8500 22574 8492 8 9 6 2

a. 30000 5500 29934 5268 4 5 4 0

a. 40000 5300 30884 5268 4 4 4 0

a. 50000 2650 46840 2634 2 2 2 0

a. 67000 1400 66795 1317 1 1 1 0

b. 25000 14200 24851 14131 8 8 6 2

b. 30000 9600 27336 9529 6 7 4 2

b. 40000 7000 35579 6903 3 3 3 0

b. 50000 5000 40417 4602 2 2 2 0

b. 60000 2400 59125 2301 1 1 1 0

c. 25000 16500 23594 16456 8 7 6 2

c. 30000 11000 29092 10742 5 5 4 1

c. 35000 8100 33442 8031 3 3 3 0

c. 40000 5500 39606 5354 2 2 2 0

c. 65000 2700 60661 2677 1 1 1 0

d. 25000 11500 24144 11390 10 6 6 4

d. 30000 9600 28298 9512 8 5 5 3

d. 40000 5300 38595 5232 3 3 3 0

d. 45000 3500 43813 3488 2 2 2 0

d. 65000 1800 61778 1744 1 1 1 0

e. 30000 11000 26350 10075 5 6 5 0

e. 40000 8100 34844 8060 4 4 4 0

e. 45000 6100 42934 6045 3 3 3 0

e. 50000 4100 49468 4030 2 2 2 0

e. 70000 2100 68840 2015 1 1 1 0

90

Table 4.8 Topology Information for 50 Node Graphs

a. 25000 30573 30 29057 26 17419 24 HYPERCUBE 2
a. 30000 15117 6 7475 4 7475 4 HYPERCUBE 0
a. 40000 15117 6 7475 4 7475 4 HYPERCUBE 1
a. 50000 0 0 0 0 0 0 TREE 0
a. 67000 0 0 0 0 0 0 TREE 0
b. 25000 21260 27 23021 22 17601 23 HYPERCUBE 1

b. 30000 9834 14 10866 13 9452 11 HYPERCUBB 0

b. 40000 6755 2 6755 2 6755 2 TREE 0

b. 50000 0 0 0 0 0 0 TREE 0

b. 60000 0 0 0 0 0 0 TREE 0

c. 25000 28498 29 25701 26 17140 24 HYPERCUBE 3

c. 30000 13322 9 13210 7 13227 8 MESH 2

c. 35000 7341 2 7341 2 7341 2 TREE 0

c. 40000 0 0 0 0 0 0 TREE 0

c. 65000 0 0 0 0 0 0 TREE 0

d. 25000 27041 37 31235 33 22872 30 HYPERCUBE 2

d. 30000 21888 22 24441 18 20920 18 HYPERCUBE 1

d. 40000 8756 2 8756 2 8756 2 TREE 0

d. 45000 0 0 0 0 0 0 TREE 0

d. 65000 0 0 0 0 0 0 TREE 0

e. 30000 12597 12 17438 10 13475 10 TREE 0

e. 40000 9450 6 7626 4 7626 4 HYPERCUBE 1

e. 45000 5958 2 5958 2 5958 2 TREE 0

e. 50000 01 0 0 0 0 0 TREE 0

e. 70000 0 0 0 0 0 0 TREE 0

91

9000

0000

@7000

II
I 5000

g 4000

3000

2000

1000, 6.55.5Z5
System Time (Time Units)

Ccnstreints
Actual Resutts

14000

6000

4000

2000, 4.53.52.5
System Time (Time Units)

x10^
1.0

Constraints

i 05
0.6

0 .2„
2.5 3.5 4 4.5

System Time (Time Units)
5.5 6.5

Kit/
12000

Constraints
Ataual Results

10000

f 8000

4000

2000

2.5 3.5 4 4.5
System Time {Time Units)

5.5

Constraints
Actual R e s t isioooo

8000

f «000

I 7000

I 6000

4000

3000

5.5 6.5
System Time (Time Units)

Figure 4.16 Design Space Exploration for 50 Node Graphs

92

Table 4.9 Time/Area Results for 100 Node Graphs

a. 50000 14000 40091 13045 11 11 8 3
a. 70000 6100 62675 6016 4 4 4 0
a. 90000 4600 85038 4512 3 3 3 0
a. 100000 3100 93355 3008 2 2 2 0

a. 135000 1600 134534 1504 1 1 1 0

b. 35000 70000 33824 68035 21 14 19 11

b. 50000 33000 44775 32435 11 10 9 7

b. 70000 15000 62958 14635 6 7 4 3

b. 90000 7500 89201 7120 2 2 2 0

b. 135000 3600 125803 3560 1 1 1 0

c. 40000 26000 36381 25377 11 10 9 2

c. 50000 17500 49736 17028 8 8 6 2

c. 60000 11500 56830 11412 5 5 4 1

c. 80000 5600 79706 5566 2 2 2 0

c. 120000 2800 115622 2783 1 1 1 0

d. 50000 17000 40964 16936 11 11 9 2

d. 60000 12000 53047 11075 7 7 6 1

d. 80000 5500 79409 5433 3 3 3 0

d. 100000 3800 88138 3622 2 2 2 0

d. 130000 1900 125303 1811 1 1 1 0

e. 55000 17000 52583 16504 10 10 7 3

e. 57000 15000 56430 14280 9 9 6 3

e. 65000 12000 60545 11424 6 6 5 1

e. 90000 4500 84821 4448 2 2 2 0

e. 130000 2224 117628 2224 1 1 1 0

93

Table 4.10 Topology Information for 100 Node Graphs

a. 50000 75759 57 75032 52 57230 48 HYPERCUBE 6

a. 70000 30198 6 19159 4 19159 4 HYPERCUBE 0

a. 90000 24300 2 24300 2 24300 2 TREE 0

a. 100000 0 0 0 0 0 0 TREE 0

a. 135000 0 0 0 0 0 0 TREE 0

b. 35000 169524 151 185060 144 116600 138 HYPERCUBE 11

b. 50000 108692 64 94309 56 80141 S3 pYPERCUBE 4

b. 70000 35078 11 26265 11 35065 11 MESH 3

b. 90000 0 0 0 0 0 0 TREE 0

b. 135000 0 0 0 0 0 0 TREE 0

c. 40000 84391 62 85423 55 70341 52 HYPERCUBE 3

c. 50000 62372 29 65579 23 48566 20 HYPERCUBE 3

c. 60000 29133 9 20795 7 29670 8 MESH 0

c. 80000 0 0 0 0 0 0 TREE 0

c. 120000 0 0 0 0 0 0 TREE 0

d. 50000 86426 64 82731 57 65858 54 HYPERCUBE 5

d. 60000 57457 24 60766 22 45394 21 HYPERCUBE 3

d. 80000 17562 2 17562 2 17562 2 TREE 0

d. 100000 0 0 0 0 0 0 TREE 0

d. 130000 0 0 0 0 0 0 TREE 0

e. 55000 83788 38 75404 36 64168 31 HYPERCUBE 5

e. 57000 64198 32 58827 28 53242 27 HYPERCUBE 5

e. 65000 43530 13 47018 13 39613 11 HYPERCUBE 2

e. 90000 0 0 0 0 0 0 TREE 0

e. 130000 0 0 0 0
- , , -------------1

0 0 TREE 0

94

System Ares (Ares Utrits) System Area (Area Units)
System Area (Area UnKs)System A rea (Area Units)

%

I— koo
%
CL

O

System Area (Area Units}

I
I
I

Table 4.11 Time/Area Results for 200 Node Graphs

a. 95000 25000 94430 22718 12 12 10 2

a. 125000 12000 121990 11228 6 6 5 1

a. 150000 9000 132613 8908 4 4 4 0

a. 200000 4500 184755 4454 2 2 2 0

a. 260000 2300 256035 2227 1 1 1 0

b. 95000 28000 88896 27673 12 12 10 2

b. 125000 14000 124634 13958 7 7 5 2

b. 170000 8500 155297 8229 3 3 3 0

b. 200000 5500 177806 5486 2 2 2 0

b. 260000 2800 242599 2743 1 1 1 0

c. 100000 23000 98365 22437 9 8 7 2

c. 125000 12500 123889 12336 4 4 4 0

c. 170000 9300 151555 9252 3 3 3 0

c. 200000 6200 173985 6168 2 2 2 0

c. 260000 3084 250705 3084 1 1 1 0

d. 100000 16500 96527 16035 10 10 6 4

d. 125000 11000 116951 10633 7 7 4 3

d. 175000 7500 153308 7470 3 3 3 0

d. 200000 5000 178012 4980 2 2 2 0

d. 260000 2500 250029 2490 1 1 1 0

e. 100000 20000 95929 19850 9 9 8 1

e.

120000 13000 117500 12533 6 6 5 1

e. 125000 10000 124652 9756 4 4 4 0

e. 200000 5000 171165 4878 2 2 2 0
e. 260000 2500 247290 2439 1 1 1 0

96

4.12 Topology Information for 200 Node Graphs

a. 95000 228059 80 218399 71 171768 66 HYPERCUBE 4
a. 125000 86409 16 96510 12 90295 13 TREE 2
a. 150000 70012 6 45378 4 45378 4 HYPERCUBE 1
a. 200000 0 0 0 0 0 0 TREE 0

a. 260000 0 0 0 0 0 0 TREE 0

b. 95000 204237 78 222386 70 152689 69 HYPERCUBE 5

b. 125000 98766 18 92556 17 96302 15 MESH 3

b. 170000 39507 2 39507 2 39507 2 TREE 0

b. 200000 0 0 0 0 0 0 TREE 0

b. 260000 0 0 0 0 0 0 TREE 0

c. 100000 158977 38 155680 35 120176 34 HYPERCUBE 2

c. 125000 76090 6 47717 4 47717 4 HYPERCUBE 0

c. 170000 35657 2 35657 2 35657 2 TREE 0

c. 200000 0 0 0 0 0 0 TREE 0

c. 260000 0 0 0 0 0 0 TREE 0

d. 100000 146262 44 137651 41 118430 38 HYPERCUBE 3

d. 125000 71213 18 96623 17 71770 14 TREE 1

d. 175000 34123 2 34123 2 34123 2 TREE 0

d. 200000 0 0 0 0 0 0 TREE 0

d. 260000 0 0 0 0 0 0 TREE 0

e. 100000 161684 47 150442 38 134081 39 HYPERCUBE 3

e. 120000 86789 14 87654 13 88005 12 TREE 2

e. 125000 68810 6 43170 4 43170 4 HYPERCUBE 0

e. 200000 0 0 0 0 0 0 TREE 0

e. 260000 0 0 0 0 0 0 TREE 0

97

I

2.4
(Time

T A -

I
I

i ”

2.41.4

X10*

I "
I

1.8
(TlmeUnHs)

2.4

1.8

1.6 2.4

2 -4r T T
1.6 -

1.6-

I
1

0.4

1,4 2.4
System Time (Time Units)

Figure 4.18 Design Space Exploration for 200 Node Graphs

98

Table 4.13 Time/Area Results for 300 Node Graphs

m m

a. 150000 18000 131113 17066 14 14 12 2
a. 200000 8500 183401 8232 6 6 6 0
a. 250000 4200 249678 4116 3 3 3 0
a. 300000 3000 271854 2744 2 2 2 0
a. 400000 1500 377918 1372 1 1 1 0

b. 150000 16000 130661 15930 10 11 10 0

b. 200000 9600 177877 9558 6 6 6 0

b. 260000 6500 203441 6372 4 4 4 0

b. 300000 3200 281363 3186 2 2 2 0

b. 400000 1600 393717 1593 1 1 1 0

c. 150000 15000 147645 14249 9 10 7 2

c. 200000 11000 197525 10164 6 6 5 1

c. 250000 6100 247438 6057 3 3 3 0

c. 300000 4100 259514 4038 2 2 2 0

c. 400000 2019 369897 2019 1 1 1 0

d. 150000 12000 141493 11168 8 8 8 0

d. 200000 5600 194796 5584 4 4 4 0

d. 260000 4200 241119 4188 3 3 3 0

d. 300000 2800 263491 2792 2 2 2 0

d. 400000 1396 372880 1396 1 1 1 0

e. 150000 13500 148745 13134 8 8 7 1

e. 200000 7500 179266 7408 4 4 4 0

e. 250000 5600 223493 5556 3 3 3 0

e. 300000 3800 259033 3704 2 2 2 0

e. 400000 1852 366398 1852 1 1 1 0

99

Table 4.14 Topology Information for 300 Node Graphs

a. 150000 403973 120 419309 108 301949 102 pYPERCUBE 9

a. 200000 221603 20 178106 16 177289 16 HYPERCUBE 2

a. 250000 67615 2 67615 2 67615 2 TREE 0

a. 300000 0 0 0 0 0 0 TREE 0

a. 400000 0 0 0 0 0 0 TREE 0

b. 150000 358779 72 349114 64 261110 60 HYPERCUBE 5

b. 200000 222590 20 166553 16 178741 16 MESH 2

b. 260000 117737 6 82765 4 82765 4 HYPERCUBE 1

b. 300000 0 0 0 0 0 0 TREE 0

b. 400000 0 0 0 0 0 0 TREE 0

c. 150000 243640 40 245260 33 206090 35 HYPERCUBE 3

c. 200000 155663 14 140544 11 150622 12 MESH 2

c. 250000 67490 2 67490 2 67490 2 TREE 0

c. 300000 0 0 0 0 0 0 TREE 0

c. 400000 0 0 0 0 0 0 TREE 0

d. 150000 250263 42 234790 36 176151 32 HYPERCUBE 3

d. 200000 112324 6 90272 4 90272 4 HYPERCUBE 0

d. 260000 60410 2 60410 2 60410 2 TREE 0

d. 300000 0 0 0 0 0 0 TREE 0

d. 400000 0 0 0 0 0 0 TREE 0

e. 150000 230686 33 216663 30 171106 28 HYPERCUBB 3

e. 200000 90726 6 63284 4 63284 4 HYPERCUBE 1

e. 250000 55373 2 55373 2 55373 2 TREE 0

e. 300000 0 0 0 0 0 0 TREE 0

e. 400000 0 0 0 0 0 0 TREE 0

100

18000

18000

14000

I 12000

1.10000

I 0000

1.5 35
System TVne {Time U n li)

18000

12000

10000

8000

I 6000

^ 4000

1.5 2.5
System Time (Time Unfts)

14000

I 12000

6000

4000

2000
3.51.5

System Time (Time Units)

12000

Ië
I
I
I

3.52.51.5

1.

I
I
I

----------------------------T i 2 ' « 3
System Time {Time Units)

Figure 4.19 Design Space Exploration for 300 Node Graphs

101

Table 4.15 Time/Area Results for 400 Node Graphs

m S m
a. 200000 16000 193942 15736 11 10 8 3

a. 250000 11500 223619 11250 6 6 6 0

a. 300000 7500 256960 7500 4 4 4 0

a. 400000 3800 354636 3750 2 2 2 0

a. 500000 2000 496379 1875 1 1 1 0

b. 200000 20000 185507 19199 13 12 8 5

b. 250000 15000 247651 14565 11 10 6 5

b. 300000 9300 262363 9268 4 4 4 0

b. 400000 4700 363667 4634 2 2 2 0

b. 500000 2500 496114 2317 1 1 1 0

c. 170000 23000 166779 22800 10 10 9 1

c. 200000 15300 198317 15267 7 7 6 1

c. 250000 10500 237502 10044 4 4 4 0

c. 350000 5100 334429 5022 2 2 2 0

c. 500000 2600 493521 2511 1 1 1 0

d. 200000 25000 194678 24094 7 7 7 0

d. 230000 21000 207343 20652 6 6 6 0

d. 250000 14000 241836 13768 4 4 4 0

d. 350000 6900 347966 6884 2 2 2 0

d. 500000 3500 497429 3442 1 1 1 0

e. 250000 10050 224331 10017 8 8 6 2

e. 300000 6500 260789 6464 5 5 4 1

e. 350000 4800 335686 4722 3 3 3 0
e. 400000 3200 368259 3148 2 2 2 0
e. 550000 1600 503096 1574 1 1 1 0

102

Table 4.16 Topology Information for 400 Node Graphs

a. 200000 367748 61 327633 55 300090 49 HYPERCUBE 6
a. 250000 269909 20 218650 16 196887 16 HYPERCUBE 2
a. 300000 148085 6 84897 4 84897 4 HYPERCUBE 1
a. 400000 0 0 0 0 0 0 TREE 0
a. 500000 0 0 0 0 0 0

TREE 0

b. 200000 407296 67 451284 63 331531 57 HYPERCUBE 8

b. 250000 308627 39 317030 41 263956 35 HYPERCUBE 7

b. 300000 165444 6 107113 4 107113 4 HYPERCUBE 1

b. 400000 0 0 0 0 0 0 TREE 0

b. 500000 0 0 0 0 0 0 TREE 0

c. 170000 373574 63 376688 55 300727 53 HYPERCUBE 3

c. 200000 250075 24 260269 22 190527 19 HYPERCUBE 1

c. 250000 139359 6 95387 4 95387 4 HYPERCUBE 0

c. 350000 0 0 0 0 0 0 TREE 0

c. 500000 0 0 0 0 0 0 TREE 0

d. 200000 318971 30 298067 26 235154 24 HYPERCUBE 2

d. 230000 276251 20 197729 16 203177 16 MESH 2

d. 250000 132607 6 86574 4 86574 4 HYPERCUBE 0

d. 350000 0 0 0 0 0 0 TREE 0

d. 500000 0 0 0 0 0 0 TREE 0

e. 250000 290773 28 302624 24 219367 22 HYPERCUBE 3

e. 300000 146109 9 107334 7 146173 8 MESH 2

e. 350000 98506 2 98506 2 98506 2 TREE 0

e. 400000 0 0 0 0 0 0 TREE 0

e. 550000 0 0 0 0 0 0 TREE 0

103

12000

2000

4.53 3.5
System Ttone (T im e Units)

25

- a - Constraints
• Actual R e su k1J

0.4

System Time (TTme Units)

I
1 1.5

I
I

0.5

25 3 3.5
System Time (Time Units)

4.5 x1(̂
xiO*

Constraints
- Actual ResuBs

I
II

0.5

3 3.5
System Time {Time Units)

4.5

Actual Resu#s

3,5 4
System Time (Time UMs)

Figure 4.20 Design Space Exploration for 400 Node Graphs

104

Figure 4.21 Topology Mapping for 400-node Graph (Graph ‘e’, T period=100000)

PEÔ:

PEG

Figure 4.22 Topology Mapping for 200-node Graph (Graph ‘d’, Tperiod“ 125000)

Figure 4.23 Topology Mapping for 300-node Graph (Graph ‘c% T p e r i o d = 2 0 0 0 0 0)

105

4.5 Algorithm Execution Time

Time taken by algorithm to generate a co-synthesized hardware software system is an

important criterion for its effectiveness. To study this effect, execution time o f the

algorithm for each test case was recorded. Algorithm works iteratively thus its execution

time is not dependent solely on the number of nodes. Tight constraints require many

iterations and therefore take more time. Figure 4.24 shows minimum, average and

maximum execution times for graphs with a wide range of tasks. Algorithm was able to

provide final output with in 2.5 seconds for largest graph having 400 tasks. Worst case

execution time of the algorithm for graphs up to 100 nodes is even less than 500

milliseconds. This clearly shows its usefulness as, for example Vemuri and Chatha’s

algorithm takes 30 minutes for a 30 node graph [22].

2.5
Max. Execution Time
Average Execution Time

-A- Min, Execution Time

Î

I

0.5

too 150 200
Tasks in Application

250 300 350 400

Figure 4.24 Algorithm Execution Time

106

CHAPTERS

CONCLUSION AND FUTURE WORK

In this thesis a new co-synthesis algorithm for fault tolerant applications is presented. The

algorithm targets regular distributed memory architectures by arranging processing

elements in mesh, hypercube and quad-tree topologies. A data flow graph specifying the

application, library o f heterogeneous processing elements and profile information for

each task is provided to the algorithm along with constraints for pipeline period and area

cost o f the resulting system. The co-synthesis algorithm then operates on these inputs and

selects necessary processing elements and creates pipeline stages for task execution. It

performs co-synthesis by adding processing elements in the system in an iterative manner.

M ain phases o f the algorithm include processing element selection, pipelined task

allocation, topology mapping and scheduling. Processing elements which give maximum

perform ance are added into the system. Tasks are then scheduled on the available

processing elements based on their priority and pipeline stages are created when a task

cannot be scheduled in the current pipeline stage. When timing constraints are met, the

processing elements are mapped to a regular topology. Topology that has the least

com m unication delay is selected. Finally, scheduling is performed to see if all the tasks

still m eet the timing constraints. More processing elements are added in the system if

tim ing constraints are violated.

Different experiments were conducted to demonstrate the efficacy o f the proposed

algorithm. In the first experiment, MPEG encoder application has been used for co-

107

synthesis. Application was tested with a wide range of timing and area constraints and

algorithm was able to generate pipelined schedules for each of the test case in a short

span of time. Other experiments were conducted on large size random graphs consisting

of up to 400 tasks. The algorithm assumes coarse grained task graphs, therefore graph

with 400 tasks represent a very large application. Algorithm was able to find good results

for each of the test case in a very short time. Algorithm generated results that range from

a single processing to tens of processing elements based on performance requirements

and it explored the design space well. Different topologies were selected depending on

the nature of inter-task communication.

Although proposed algorithm gives good results, it can be improved in a number of ways.

Processing elements are currently selected depending on the performance improvement

and corresponding area cost. Tradeoff between these conflicting requirements is done

using a constant area-performance tradeoff factor. One of the enhancements in this

approach could be to dynamically change this factor by deriving it through some system

characteristics or performance/area requirements.

Co-synthesis technique presently requires acyclic data flow graphs. Many applications

require previous iteration data in tasks that lead to the same data for the current iteration.

Modeling such applications with data-flow graphs require cyclic graphs which have

feedback edges. The method could be enhanced to handle these applications by using a

special edge such that the successor task should not wait for predecessor task to complete

108

its execution. D ata required through these edges is produced in previous iterations and is

therefore always available for the current iteration.

Presently, non-functional requirements are specified only as area and pipeline period

constraints. M ore non-functional requirements can be added. Reliability is an important

metric for fault-tolerant systems. System reliability can be modeled and the cost function

o f the algorithm can be modified to include reliability as another constraint. Similarly,

system pow er can also be used as another non-functional requirement.

Finally, another direction for future work could be to substitute reconfigurable logic

devices in place o f hardware blocks for co-synthesis. If configuration time o f such

devices happen to be very small compared to the task execution time, then same device

can be reconfigured to perform a different task instead o f using other processing elements.

This can lead to substantial savings in the cost o f the target system.

109

REFERENCES

[1] V. Madisetti, “Rapid digital system prototyping: current practice, future
challenges,” IEEE Design and Test of Computers, vol. 13, no. 3, pp. 12-22, August
1996.

[2] G.D. Micheli, “Computer-aided hardware software codesign,” in IEEE Micro, vol.
14, no. 4, pp. 11-16, August 1994.

[3] W. Wolf, “A decade of hardware/software codesign,” IEEE Computer vol. 36, no.
4, pp. 38-43, April 2003.

[4] D.E. Thomas, J.K. Adams, H. Schmit, “A model and methodology for hardware-
software codesign,” IEEE Design and Test of Computers, vol. 10, no. 3, pp. 6-15,
September 1993.

[5] S. Kumar, J. Aylor, B. Johnson, W. Wulf, “A framework for hardware/software
codesign,” IEEE Computer, vol. 26, no. 12, pp. 39-45, December 1993.

[6] M. Chiodo, P. Guisto, A. Jurecska, H. C. Hsieh, A.S. Vincentelli, L. Lavagno,
“Hardware software codesgin of embedded systems,” IEEE Micro, vol. 14, no. 4,
pp. 26-36, August 1994.

[7] J. Henkel, Th. Benner, R. Ernst,W. Ye, N. Serafimov and G.Glawe, “COSYMA: A
software-oriented approach to hardware/software codesign,” The Journal of
Computer and Software Engineering, vol. 2, no. 3, pp. 293-314, 1994.

[8] R. Ernst, J. Henkel, T. Benner, “Hardware/software cosynthesis for
microcontrollers,” IEEE Design and Test of Computers, vol. 10, no. 4, pp. 64-75,
December 1993.

[9] R.K. Gupta and G.D. Micheli, “Hardware-software cosynthesis for digital
systems,” IEEE Design and Test of Computers, vol. 10, no. 3, pp. 29-41,
September 1993.

[10] http://www.systemc.org

[11] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations Research,
vol. 9, no. 6, pp. 841-848, 1961.

[12] G. DeMicheli, “Synthesis and Optimization of Digital Circuits,” McGraw-Hill,
1994.

[13] P. Paulin, J. Knight, “Force-directed scheduling for the behavioral synthesis of
ASIC s, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 8, no. 6, pp. 661-679, June 1989.

110

http://www.systemc.org

[14] R. Camposano, “Path based scheduling for synthesis,” IEEE Transactions on
Computer-Aided Design o f Integrated Circuits and Systems, vol. 10, no. 1, pp. 85-
93, January 1991.

[15] R. A. Bergamaschi, S. Raje, I. Nair, L. Trevillyan, “Control-flow versus data-flow-
based scheduling: combining both approaches in an adaptive scheduling system,”
IEEE Transactions on VLSI Systems, vol. 5, no. 1, pp. 82-100, March 1997.

[16] R. Ernst, “Codesign o f embedded systems: status and trends,” IEEE Design and
Test o f Computers, vol. 15, no. 2, pp. 45-54, April 1998.

[17] J. Henkel, R. Ernst, “An approach to automated hardware/software partitioning
using a flexible granularity that is driven by high-level estimation techniques,”
IEEE Transactions on VLSI Systems, vol. 9, no. 2, pp. 273-289 , April 2001.

[18] K. M elhom , “Graph Algorithms and NP-Completeness,” New York: Springer-
Verlag, 1977.

[19] G. Nemhauser, L.Wolsey, “Integer and Combinatorial Optimization,” Wiley, New
York, 1988.

[20] S. Prakash and A.C. Parker, “SOS: Synthesis o f application specific heterogeneous
m ultiprocessor systems,” Journal o f Parallel and Distributed Computing, vol. 16,
pp. 338-351, December 1992.

[21] L.J. Hafer and E. Hutchings, “Bringing up Bozo,” Technical Report (CMTR TR-
02), School o f Computing Science, Simon Fraser University, BC, Canada. March
1990.

[22] K. S. Chatha and R. Vemuri, “Hardware-software partitioning and pipelined
scheduling o f transformative applications,” IEEE Transactions on VLSI Systems,
vol. 10, no. 3, pp. 193-208, June 2002.

[23] Aviral Shrivastava, Mohit Kumar, Sanjiv Kapoor, Shashi Kumar, M.
Balakrishnan, “Optimal hardware/software partitioning for concurrent
specification using dynamic programming,” Proceedings o f International
Conference on VLSI Design, Calcutta, India, pp. 110-113, January 2000.

[24] Jui-M ing Chang, Massoud Pedram, “Codex-dp: Co-Design o f communicating
systems using dynamic programming,” IEEE Transactions on Computer-Aided
Design o f Integrated Circuits and Systems, vol. 19, no. 7, pp. 732-744 , July 2000.

[25] P. V. Knudsen, J. Madsen, “PACE: A dynamic programming algorithm for
hardware/software partitioning,” Proceedings o f 4th International Workshop on
Hardware/Software Codesign, Pittsburgh, PA, USA, pp. 85-92, 1996.

[26] S. Kirkpatrick, C D. Gelatt, M.P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp 671-680, M ay 1983.

[27] F. Glover, E. Taillard, D. de Werra, “A user’s guide to tabu search,” Annals o f
Operations Research, vol. 41, no. 0, pp. 3-28, 1993.

I l l

[28] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hardware/software
partitioning based on simulated annealing and tabu search, Design Automation
for Embedded Systems, vol. 2, no. 1, pp. 5-32, January 1997.

[29] R. Dick, N. Jha, “Mogac; a multi objective genetic algorithm for hardware-software
cosynthesis o f distributed embedded systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, no. 10, pp. 920-935,
October 1998.

[30] T. Wiangtong, P. Cheung, and W. Luk, “Comparing three heuristic search methods
for functional partitioning in hardware-software codesign,” Journal of Design
Automation for Embedded Systems, vol. 6, pp. 425-449, 2002.

[31] J. Henkel and R. Ernst, “A path-based technique for estimating hardware runtime
in HW/SW-cosynthesis,” Proceedings of International Symposium on System
Synthesis, Cannes, France, pp. 116-121, 1995.

[32] J. Henkel and R. Ernst, “High level estimation techniques for usage in
hardware/software co-design,” Proceedings of Asia South Pacific Design
Automation Conference (ASPDAC ’98), Yokohama, Japan, pp. 353-360, 1998.

[33] F. Vahid and D.D. Gajski, “Incremental hardware estimation during
hardware/software functional partitioning,” IEEE Transactions on VLSI Systems,
vol. 3, no. 3, pp. 459-464, September 1995.

[34] C-Y. Park and A.C. Shaw, “Experiments with a program timing tool based on a
source-level timing scheme,” Computer, vol. 24, no. 5, pp. 48-57, May 1991.

[35] Y-T. Li, S. Malik, and A. Wolfe, “Performance estimation of embedded software
with instruction cache modeling,” ACM Transactions on Design Automation of
Electronic Systems, vol. 4, no. 3, pp. 380-387, July 1999.

[36] W. Ye, R. Ernst, T. Benner, and J. Henkel, “Fast timing analysis for hardware-
software co-synthesis,” Proceedings IEEE International Conference on Computer
Design (ICCD ’93), Cambridge, MA, USA, pp. 452-457, 1993.

[37] J. Buck, S. Ha, E. A. Lee, D.G. Messerschmitt, “Ptolemy; A framework for
simulating and prototyping heterogeneous systems,” International Journal of
Computer Simulation, vol. 4, pp. 155-182, April 1994.

[38] L.A. Cortes, P. Eles, Z. Peng, “Verification of embedded systems using a Petri net
based representation,” Proceedings of 13th International Symposium on System
Synthesis, Madrid, Spain, pp. 149-155, September 2000.

[39] A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tarrodaychik,
0 . Yamamo, “A hardware-software co-simulator for embedded system design and
debugging, ’ Proceedings of Asia South Pacific Design Automation Conference
(ASPDAC ’95), Makuhari, Japan, pp. 155-164, September 1995.

[40] P. A. Hsiung, “Hardware-software timing co-verification of concurrent embedded
real-time systems,” lEE Proceedings Computers and Digital Techniques, vol. 147,
no. 2, pp. 83-92, March 2000.

112

[41] W. W olf, An architectural co-synthesis algorithm for distributed, embedded
computing systems,” IEEE Transactions on VLSI Systems, vol. 5, no.2, pp 218-
229, June 1997. > » hf

[42] K. Konstantinides, R. Kaneshiro, and J. Tani, “Task allocation and scheduling
models for multi-processor digital signal processing,” IEEE Transactions on
Acoustics, Speech, Signal Processing, vol. 38, no. 12 pp. 2151-2161, December
1990.

[43] G. C. Sih, E.A. Lee, “A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures,” IEEE Transactions on Parallel
Distributed Systems, vol. 4, no. 2, pp. 175-187, February 1993.

[44] S. Bakshi, D.D. Gajski, “Paritioning and pipelining for performance-constrained
hardware/software systems,” IEEE Transactions on VLSI Systems, vol. 7, no. 4,
pp. 419-432, Dec. 1997.

[45] A. Kalavade, E.A. Lee, “The Extended Partitioning Problem; Hardware/Software
M apping, Scheduling and Implementation-bin Selection,” Journal o f Design
Autom ation o f Embedded Systems, vol. 2, no. 2, pp. 125-163, March 1997.

[46] J. Levman, “Hardware software co-synthesis o f heterogeneous hypercube
architectures for fault tolerant embedded systems,” MASc. Thesis, Dept, o f
Electrical and Computer Engineering, Ryerson University, 2004.

[47] S. Yajnik, S. Srinivasan, N. K. Jha, “TBFT: A Task Based Fault Tolerance Scheme
for Distributed Systems,” Proceedings o f International Conference on Parallel and
Distributed Computing Systems, Las Vegas, NV, USA, pp. 483-489, October
1994.

[48] B. P. Dave, N. K. Jha, “COFTA: Hardware-Software Co-Synthesis o f
Heterogeneous Distributed Embedded Systems for Low Overhead Fault
Tolerance,” IEEE Transactions on Computers, vol. 48, no. 4, pp. 417-441, April
1999.

[49] Ralph Duncan, “A Survey of Parallel Computer Architectures,” Computer, vol. 23,
no.2, pp. 5-16, Feb. 1990.

[50] A.M. Despain, D. A. Patterson, “X-Tree: A tree structured multi-processor
com puter architecture,” Proceedings o f the 5th annual symposium on Computer
architecture, Palo Alto, CA, USA, pp. 144-151, April 1978.

[51] T. Yen, W. Wolf, “Performance Estimation for Real-Time Distributed Embedded
System's,” IEEE Transactions on Parallel and Distributed Systems, vol. 9 no, I I ,
pp. 1125-1136, November 1998.

[52] Didier Le Gall, “MPEG: A video compression standard for multimedia
applications,” Communications o f the ACM, vol. 34, no. 4, pp. 46-58, April 1991.

113

[53] Usman Ahmed, Gul N. Khan, “A new processor allocation and pipelining
approach for hardware software co-synthesis,” Proceedings o f the 18*'’ annual
Canadian Conference on Electrical and Computer Engineering (CCECE’05),
Saskatoon, SK, Canada, May 2005.

114

