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ABSTRACT 

 

Optimal Power Flow (OPF) is a very important tool for planning and analysis of power 

systems. In the recent times, uncertain renewable energy is being integrated into power systems 

in a large scale. Appropriate modeling of renewables in optimal power flow requires using 

stochastic models. Using stochastic models of renewables in optimal power flow is numerically 

and algorithmically challenging due to the complexity of stochastic models and nonlinear nature 

of bus power balance equations. 

Hitherto, Monte Carlo simulation technique and Cumulant technique have been proposed, but 

they are not computationally viable for large systems. In this thesis, we propose the use of linear 

fuzzy relation technique to relate stochastic models of dependent variables of optimal power 

flow formulation in terms of control variables that include power output of renewables. This 

fuzzy relation uses Hessian matrix of the LaGrangian of the optimal power flow formulation at 

optimal solution point. 

The technique is tested on a six bus system and results are reported. One can intuitively see 

that this technique can be easily extended to larger systems. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Electrical Power System 

Electrical power system is one of the largest and most complex systems in the world 

having its distinctive properties based on its geographical layout. It consists of three 

principal components namely generation, transmission and distribution. It is undergoing 

rapid changes since the last two decades with the integration of renewables.  

The power system should operate at optimal state at all times. To achieve this goal, 

optimal power flow in various forms is used by the system operator multiple times a day for 

realistic power system network conditions [1]. In the past two decades, world is increasing 

moving ahead towards clean energy generation technology as source of power generation. 

The wind energy generation among other renewable sources such as solar, geothermal, 

bioenergy, small hydro etc. is increasing at a rapid pace due to increase in electricity 

demand, environmental issues such as global warming, advancements in renewable 

technologies etc. The year 2010 marked an important milestone in the global wind energy 

industry as it was the first year that more new wind capacity was added in emerging markets 

than in traditional Organization for Economic Co-operation and Development (OECD) 

countries. In order to harness maximum green energy there is an increase in wind generation 

connected into the power system. Today, the total renewable generation in the world is more 

than 40 GW as reported by 2011 Global Wind Energy Council, Figure 1.1 [2].  
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With power output from wind electric generator being uncertain, their inclusion in optimal 

power flow renders the optimal solution with uncertainties. Therefore one must quantify and 

comprehend uncertainties in wind energy and the resulting optimal solution of optimal 

power flow. This task requires a probabilistic optimization technique in order to determine 

optimal solution values of different variables. With connection of wind electric generators in 

an electrical network, even with the most accurate wind forecasting techniques the 

prediction of wind at a particular instant of time is uncertain and so do output of wind 

electric generators [3]. This uncertainty is addressed by a probabilistic technique using 

probability density function of normal distribution representing output of wind electric 

generator [4]. It takes into account all possible uncertainties associated with wind electric 

generator power output.  

 

Year 

Fig. 1.1   Global Annual Installed Capacity 

MW 
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Owing to the reason that power output of wind electric generator can deviate from their 

mean value, such deviation should be considered in finding the optimal voltage solution for 

the real power optimal power flow problem. As this deviation is represented by a normal 

probability density function, hence the voltage solution at a bus is not a deterministic value, 

but voltage value depends on deviation of power output of wind electric generator from its 

mean value. During the normal operation of a power system, voltage values at all buses in 

the network should be within limits of      as set by regulatory authorities. So it becomes 

important to study the effect of a wind electric generator on the voltage at buses in the 

network. 

 

It is a challenge to find the voltage solution to this problem. In this work, a probabilistic 

optimal real power flow technique is proposed that takes into account the probabilistic 

nature of the wind power output while determining the optimal voltage solution at buses of a 

transmission system as shown in Figure 1.2.  

 

 

Probabilistic 

OPF 

Probabilistic 

voltages at 

buses. 

Bus i 

    

Fig. 1.2   Probabilistic Optimal Power Flow (P-OPF) 
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Owing to probabilistic power output of wind electric generator in the electrical network, 

different techniques are used to find solution for optimal power flow problem. One 

traditional technique which is used to deal with such probabilistic problems is Monte Carlo 

simulation technique which finds solution for deviation of wind electric generator power 

output. It runs simulations, one by one for every deviation of wind power from the mean 

forecasted value, by solving a deterministic optimal power flow formulation and hence takes 

a lot of time to find the probabilistic solution. The situation gets even worse when the 

number of wind electric generators connected to the network is increased. In order to reduce 

solution time in solving probabilistic optimal power flow problem, the authors in one paper  

proposed real power optimal power flow using cumulant technique in which, the cumulants 

for unknown random variables are computed from known random variables, and probability 

density functions are reconstructed as bus loading is treated as random variables [5]. In 

another paper, system demand is taken as a random vector of correlated variables and First-

Order Second Moment technique is used to find their statistical characteristics [6]. In 

another technique load demand and wind availability are taken as random variables and 

cumulants for output variables is calculated. Finally, probability density function of output 

variables is reconstructed by Gram-Charlier expansion theory [7]. The main idea behind all 

these techniques is to use approximate formulas for calculating the statistical moments of a 

random quantity that is a function of random variables. 

 

 This thesis briefly outlines the fundamentals of the Lagrangian technique, in which 

Kraush-Kuhn-Tucker conditions are solved using a Newton Raphson technique and its 

adaptation to solve real power optimal power flow problem to compute voltages in fuzzy 
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domain approximating the uncertainty of voltage due to wind electric generator output 

uncertainty [8].  

 

1.2 Objective of this Thesis 

 In this thesis, we propose fuzzy relation technique to relate stochastic models of dependent 

variables of optimal power flow formulation in terms of control variables that include power 

output of renewables. This fuzzy relation uses the Hessian matrix of the LaGrangian of the 

optimal power flow formulation at optimal solution point. 

The stochastic models determined by the proposed technique are compared with those 

obtained from traditional accurate but time consuming Monte-Carlo simulation technique. 

The technique is tested on a six bus system and results are reported. One can intuitively 

see that this technique can be easily extended to larger systems. 

 

1.3  Thesis Outline 

This thesis is arranged as follows. Chapter 2 presents the probabilistic real power optimal 

power flow formulation. In Chapter 3 the general mathematical Lagrangian model, its 

deterministic solution and probabilistic optimal power flow using linear fuzzy relation 

technique are presented. Chapter 4 details results of a modified Ward and Hale six-bus 

system obtained using the proposed technique and its comparison with Monte Carlo 

simulation technique. Finally Chapter 5 concludes the thesis stating its advantages. 

Appendix A is provided at the end in order to present data of the modified Ward and Hale 

system. 
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Chapter 2 

Probabilistic Optimal Power Flow – 

Problem formulation 

 

 

 This chapter presents wind generator model and then formulates the probabilistic optimal 

power flow formulation. The model uses the probability theory in which a random variable 

is used to reflect the behavior of random processes. So uncertainty in the power output of 

wind electric generator is represented by a probability density function of a normal random 

variable. Once it is represented by probability density function it is used in problem 

formulation to find probabilistic characteristics of unknown variables. 

 

2.1 Modeling of Wind Generator Output 

The power output of wind electric generator at bus i is modeled by a normal distribution 

with its respective mean (  ̿̿ ̿̿  ̿)and standard deviation (    value. In order to include the 

majority of deviation in wind electric generator power output from its mean value, a 99.73% 

confidence interval is taken which is equal to     
̅̅ ̅̅ ̅̅        of mean value power output as 

shown in Figure 2.1 [4].  
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Fig. 2.1 Probability density function of WEG power output 

 

The Probability Density Function (PDF) of the normal distribution is given by: 

 

       
 

√    
 
  

 
 

 
(
      ̅̅ ̅̅ ̅̅

 
  

)

 

                             (2.1) 

 

2.2 Probabilistic Optimal Power Flow – Formulation 

 This section presents the probabilistic real power optimal power flow challenge for 

transmission system. Thereafter its solution technique by forming a Lagrangian function, 

Kraush-Kuhn-Tucker conditions and the solution is presented. 

 Probabilistic real power optimal power flow concept is used when certain variables are 

modeled using random variables. It includes objective such as minimization of system 

operation cost while treating uncertainty of power system variables of interest. A single line 

representation of generic transmission system incorporating wind electric generator at bus i 

is shown in Figure 2.2. 

PWi 

f(PWi) 

  ̿̿ ̿̿  ̿       
 

  ̿̿ ̿̿  ̿       
 

 

  ̿̿ ̿̿
 ̿ 



 

Chapter 2: Probabilistic Optimal Power Flow- Problem Formulation 

8 

 

 

Bus i has a wind electric generator connected to it that injects real power. The net real 

power demand at the bus is represented by            and it is the difference between 

the real power demand and real output power of wind electric generator at the bus. This is 

used to represent net power demand at the bus and is used in real power optimal power flow 

formulation.  

 In the probabilistic real power optimal power flow study, the objective is to minimize the 

total active power generation cost:  

            ∑                  
    

                         (2.2) 

where           are the cost coefficients of    generator and     is the real power 

generation.  

subject to: 

Bus Power Balance Equality constraints: 

In real power probabilistic optimal power flow, the cost of generation is minimized while 

satisfying these equality constraints imposed by physical nature of the system. These 

Fig.2.2   Concept of wind electric generator output in Transmission system 

CEG 

     

    

    

 

 

        

Bus i 
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equality constraints use the power flow equations representing bus active and reactive power 

injections in terms of bus voltage magnitudes and bus phase angles. 

 

                                                (2.3) 

                                              (2.4) 

where 

PG is a vector of real power output of conventional electric generators. 

QG is a vector of reactive power output of conventional electric generators. 

PD is a vector of real power demand at a bus. 

QD is a vector of reactive power demand at a bus. 

PW is a vector of probabilistic values of wind electric generator power output. 

       is a vector function of real power flow from buses into connected lines. 

       is a vector function of reactive power flow from buses into connected lines. 

Inequality constraints at generator buses: 

These constraints are imposed on relevant variables to ensure that they satisfy physical 

limits of the devices.  

                             (2.5) 

                             (2.6) 

                             (2.7) 

where 

        are the vector of lower and upper limits of voltage at generators terminals. 

        are the vector of lower and upper limits of real power generated by generators. 
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        are the vector of lower and upper limits of reactive power generated by generators. 

Inequality constraints at load buses: 

    These constraints are included to ensure that the optimal solution is free from voltage 

violations at load buses 

                                             (2.8) 

where 

        are the lower and upper limits of voltages at load buses. 

The above is a probabilistic real power optimal power flow formulation with PWi being the 

probabilistic input. As a result, the solution comprising of power generated by generators 

(PG) and voltage at load buses (V) are probabilistic. Equations (2.2) to (2.8) construe the 

complete problem. 

 

2.3 Conclusion 

This chapter presented a probabilistic real power optimal power flow challenge. Firstly 

probabilistic model of the wind electric generator is basically represented by probability 

density function of normal distribution which takes into account maximum deviation of 

power output from the forecasted mean value. The values from probability density function 

representing uncertainty is included in the problem formulated which is basically 

minimizing cost of all conventional electric generators subject to various constraints in 

regard to find optimal probabilistic solution of unknown system variables. The proposed 

solution technique will be presented in the next chapter. 
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CHAPTER 3 

PROBABILISTIC OPTIMAL POWER FLOW – SOLUTION 

 

 

The solution strategy for the probabilistic real power optimal power flow problem is 

detailed in this section. The goal of this solution technique is to determine the probabilistic 

behavior of the dependent variables which can be observed by their probabilistic distribution 

function values. Hence the first step is to formulate the deterministic real power optimal 

power flow problem. To solve the deterministic formulation, the Lagrangian formulation is 

used and is solved by satisfying the Kraush-Kuhn-Tucker (KKT) conditions. On obtaining 

the optimal solution for the deterministic real power optimal power flow problem, a Hessian 

matrix is determined that relates changes in problem variables at the optimal point. 

Thereafter, probabilistic variable are transformed to fuzzy variables using fuzzy triangles. 

Finally probabilistic behavior of real power and voltage variables is calculated using linear 

fuzzy relation and a Hessian matrix estimated at optimal point. The set of steps of the linear 

fuzzy relation based probabilistic optimal power flow technique are summarized below: 

 

1. The probabilistic real power optimal power flow challenge is reduced to a 

deterministic challenge by considering the mean value of power output of wind 

generator (  ̿̿ ̿̿ ̿i). 

2. The deterministic formulation is solved by forming a Lagrangian function and solving 

Kraush-Kuhn-Tucker Conditions.  
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3. The Hessian of the Lagrangian at the optimal solution is reduced to form a linear 

relation between changes in wind power output (PWi) and other optimal variables such 

as generator real power output (PG), bus voltage (V), etc. 

4. Fuzzy probabilistic variables are defined that represent approximations of probabilistic 

distribution functions of wind power output (  ̃i). 

5. Linear Fuzzy Relation technique is used to determine fuzzy probabilistic variables of 

power output of conventional electric generator power (PG) and voltage at buses (V) 

in terms of fuzzy probabilistic variable of wind power output      . Accordingly, 

mean and standard deviation of probability density functions for PG and V are 

estimated. 

 

These steps are now detailed in the following sections. 

 

3.1 Deterministic Optimal Power Flow (with mean value of WEG power output 

  ̿̿ ̿̿ ̿
i) 

The step of finding the deterministic optimal power flow solution is to form a Lagrangian 

function of the problem by augmenting objective function with active & reactive power 

balance equations and other inequality constraints. In optimal power flow problem 

formulation there are basically three types of variables: independent, dependent and 

Lagrange multipliers. Independent variables are generator real powers outputs, generators 

terminal voltages, transformers tap ratios etc. which can be controlled to obtain optimal 

solution, dependent variables corresponds to both magnitude and angle of voltages at load 
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buses, reactive power output of generators and Lagrange multipliers that are coefficients 

corresponding to real and reactive power balance equations at buses.  

 

The values of the unknowns and Lagrange multipliers corresponding to optimal power 

flow problem are determined from the Lagrangian formulation of the problem. In every step 

of the iterative algorithm, values of variables and Lagrange multipliers are computed 

simultaneously. At the optimal state, change in variables is less than the defined tolerance 

value. 

 

The Lagrange multiplier technique augments the original objective function with a set of 

the equality constraints and inequality constraints.  

 

The problem defined in section (2.2) – (2.8) may be stated briefly as: 

                                                  (3.1) 

            

                                                               (3.2) 

                                                                (3.3) 

A Lagrangian function for (3.1) – (3.3) may be defined as below: 

                 [      ]    [      ]                   (3.4) 

Once the probabilistic optimal power flow problem is formulated, an algorithm is 

developed to minimize the cost of conventional electric generators including resultant 

demand at a wind electric generator bus in power system network to meet overall load 

demand of the network. The basic idea is to determine the optimum values of the variables 
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such that value of cost function is the minimum. To solve this problem by deriving the 

Kraush-Kuhn-Tucker (KKT) conditions as below, one gets: 

  

  
   

     

  
   

     

  
                                  (3.5) 

                                                (3.6) 

                                               (3.7) 

                                               (3.8) 

By solving the above, we can determine the optimal values for X,  and β 

At the optimal solution, on identify binding inequality constraints   , one gets:

  

  
   

     

  
   

     

  
  

                                             (3.10) 

                                                                                                                               (3.11) 

Using first order approximation, one may write: 

                 

where  

H(X) is the Hessian of the Lagrangian. 

      is the gradient of the Lagrangian. 

     is the value for change in variable at every iteration.  

[
 
 
 
 
 
 
[

   

      
      

   

   
      

   

]
     

  

     

  

     

  
  

      

  
  ]

 
 
 
 
 
 

[
  
  
  

]  [
  
  
   

]                    (3.12) 
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 Once the optimal solution is obtained, by manipulating (3.12), one may determine a linear 

relation between: PW and [PG, V] as below: 

[   ] [
   
  

]  [   ]                              

where HPW is an extract of the Hessian matrix from (3.12). 

The procedure to obtain optimal solution uses the Newton Raphson technique. The 

Newton Raphson technique is basically solving simultaneously equations from (3.9) – (3.11) 

for unknown variables at each iteration till the solution converges to the optimal solution. 

In order to solve using Newton Raphson technique, it is required to calculate elements of 

Jacobian matrix of (3.9) to (3.11). The flow chart of Newton Raphson technique to 

determine the optimal solution of the real power optimal power flow problem is summarized 

in Fig 3.1 [8]. 
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START 

                                    

Assume A = [     ] 
Initialize    = [         ] 
Initialize    = [        ] 

 

Write Lagrangian (3.4) & its KKT equations (3.5-3.7). 
 

[ ][   ]  [   ] 

Solve KKT equations using Newton 

Raphson technique (see equation 

3.12). 

 

If [   ]  
         [  ]  [  ]  [   ] 

Update 

 

The optimum solution values of         are obtained. 

STOP 

NO 

YES 

Fig. 3.1   Flow Chart of Newton Raphson technique  

Read Network Data 

Form      for Network 
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3.2    Fuzzy Probabilistic Relations [9] 

 This section details the proposed solution scheme that uses (3.13) relating changes in wind 

power (PW) with changes in real power output of generators (PG) and changes in bus 

voltages (V) using Linear Fuzzy Relation technique. 

3.2.1 Linear Fuzzy Relation – Introduction 

Fuzziness describes the ambiguity and randomness in the occurrence of an event. Lofti 

Zadeh proposed the set membership idea to model vagueness, imprecision and lack of 

information when uncertainty occurs and formed fuzzy sets as the sets on the universe X 

which can accommodate degree of fuzziness. Fuzziness in a fuzzy set is characterized by its 

membership function. Membership functions are formed by assigning a specific membership 

value (degree of belongingness) to each of estimated value. Membership function for a set 

maps each element of the set to a membership value between 0 and 1. In this work triangular 

membership function is formed which is defined by its middle value and spread 

respectively. 

 A generic fuzzy set may be defined as below: 

 ̃   {                            }                         (3.14) 

 The following equation defines a generic linear fuzzy relation: 

  ̃        ̃        ̃        ̃          ̃                 (3.15) 

In (3.15),            are constants that relate fuzzy variables    ̃    ̃     ̃ to the 

output variable   ̃. Typically, knowing input and output fuzzy variables, one may determine 

the constants using regression analysis [8] 
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 The next section defines probabilistic wind power output as a fuzzy variable. It then uses 

the linear relation in the optimal solution (3.13) and relates fuzzy variable of power output 

(  ̃ ) of wind electric generator to the fuzzy variables of power output of conventional 

electric generators (  ̃ ) and voltage ( ̃ ) at buses. These fuzzy variables then help 

determine probabilistic values of power output of conventional electric generators (PG) and 

voltages (V) at buses. 

 

3.2.2 Defining Fuzzy Variables 

 

In this work, power output of wind generators is uncertain. Consider output of the     wind 

generator (PWi). Eq. (2.1) provides its forecast probabilistic distribution function. The mean 

for this PDF is   ̿̿̿̿  ̿. The uncertainty of this PDF can then be modeled by    ̃  such that 

  ̃     ̿̿ ̿̿  ̿     ̃ . Accordingly,    ̃  is defined as a fuzzy variable using (2.1) while 

capturing essential probabilistic features of the Probability Density Function (PDF) as 

below.  

   ̃   {                             }                  (3.16) 

 

The following aspects were considered in this process: 

 The width of fuzzy variable is defined using 99% confidence interval of the normal 

function.  

Therefore: 

        ̿̿ ̿̿  ̿                                        (3.17) 
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        ̿̿ ̿̿  ̿                                      (3.18) 

The height of the triangle that helps define the satisfaction function          is chosen as 

a triangle with area of 1.0 such that it correlates with the PDF of the normal distribution 

function. 

 The fuzzy variable    ̃  closely models the actual probabilistic distribution function of 

(2.1). The two are drawn and show in Fig. 3.2. 

 

Fig. 3.2    Fuzzy Probabilistic Model of Wind Power Output 

 

This fuzzy probabilistic model is used in the linear fuzzy relation to extract fuzzy 

probabilistic models of generator real power outputs and bus voltage magnitude at optimal 

solution using the linear relation extracted from the optimal solution in equation (3.13). 

 

    

       

       
 

 
 

 

 
 

  ̿̿ ̿̿  ̿      

 

  ̿̿ ̿̿  ̿      

 
  ̿̿ ̿̿  ̿ 

         

       

                  

Normal PDF 

Fuzzy Model 
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3.2.3 Fuzzy Probabilistic Relations 

Using the knowledge of linear fuzzy relation expressed in (3.15) and linear relation 

established in (3.13), the following can be written as below: 

[   ] [   ̃
  ̃

]  [   ̃]                               (3.19)  

Thereafter, probabilistic variables   ̃      ̃ are formed as below: 

  ̃     ̿̿ ̿̿      ̃                                  (3.20) 

 ̃    ̿    ̃                                                                                                                     (3.21) 

 Summarizing, the steps of the proposed algorithm include: 

1. Assume mean values of probabilistic variables and solve a deterministic formulation (2.1)-

(2.7) by forming Lagrangian function (3.4) and solving for the KKT conditions (3.5)-

(3.8). 

2. At the optimal solution, determine the subset of the Hessian (3.13) that provides linear 

relations between PW and PG, V. 

3. Using Linear Fuzzy Relations, (3.19)-(3.21), determine: Probabilistic variables   ̃      ̃. 

 

3.3 Linear Fuzzy Relation (LFR) Flow Chart 

The complete solution technique to solve real power probabilistic optimal power flow 

problem is summarized in linear fuzzy relation flow chart in shown in figure on next page.  
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3.4 Conclusion  

In this chapter the proposed technique to solve probabilistic real power optimal power 

flow is presented. The formulation takes into account the uncertainty of power output of a 

wind electric generator and solution technique is divided into two steps. The first step uses 

Newton Raphson iterative technique to solve problem as deterministic problem. Using 

[ ] [   ̃
  ̃

]  [   ̃] 

Calculate using LFR equation (3.15) find values 

of probabilistic variables.  

 

Fig. 3.3   Flow Chart using LFR for (P-OPF) 

END 

  ̃    ̿̿̿̿     ̃ 

Compute final value of variables. 

 ̃   ̿    ̃   

Solve Real Power OPF problem using Newton Raphson 

algorithm. Optimal values of variable PG & V are obtained. 

Start 

Compute the Hessian matrix using optimal solution of 

OPF. Deduce subset of Hessian [   ]for linear fuzzy 

relation. 
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optimal values of variables, fuzzy functions are defined to yield optimal probabilistic values 

of the power output of generators (PG) and voltages at buses (V). 
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CHAPTER 4 

TEST CASE AND RESULTS 

 

The diagram of the modified Ward and Hale 6-bus system is shown in Fig. 4.1. The 

system has two conventional electric generators (CEG1) and (CEG 2) connected at electrical 

buses 1001 and 2003. One wind electric generator (WEG1) is connected at bus 2003. The 

total numbers of loads connected to the system are three. It has five transmission lines and 

two transformers (T/F1) & (T/F2). The wind electric generator (WEG1) is installed at load 

bus 2003. Remaining buses are 1004, 2005 & 1006 where no load or generation is 

connected. The mean power output of this wind electric generator (WEG1) is taken as 20 

MW and its standard deviation is 10% of its mean value [10]. The six bus system data is 

taken from research paper which is modified in the present work [11]. The detailed system 

data is given in Appendix A. 
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Fig. 4.1   Modified Six-Bus System 

 

The solution for the six bus system obtained using the proposed probabilistic optimal power 

flow using Linear Fuzzy Relation (LFR) technique is presented below. In order to contrast 

results from the proposed technique, results are elicited from Monte Carlo simulation 

technique applied to same data set using deterministic formulation (2.1-2.7) are detailed in 

the following sections. The effect of deviation in power output of wind electric generator is 

studied on power output of conventional generators and voltage at buses. 

 

4.1 Comparison of results for power output for Linear Fuzzy Relation technique and 

Monte Carlo Simulation (MCS) technique 

First, results for deviation in power output of conventional electric generators due to 

deviation in wind electric generator power output are presented in Table 4.1& Table 4.2. 

CEG2 

2002 2005 1006 

CEG1 

T/F 1 

2003 1004 1001 

T/F 2 

WEG1 



 

Chapter 4: Test Case and Results 

25 

 

Results shown in Table 4.1 are calculated using Linear Fuzzy Relation technique and 

standard deviation values are calculated for deviation in power output of generator.  

 

Table 4.1   Calculation of standard deviation values of power output using LFR technique 

 

Generator 

Power Output 

Bus No.   ̅̅̅̅  

Maximum 

probable value 

   

 Minimum 

probable value 

    

Standard 

Deviation of the 

probable value 

PG1 1001 0.269766 0.180834 0.014822 

PG2 2002 0.289304 0.253496 0.005968 

  

 

Similarly in Table 4.2 results are computed using Monte Carlo Simulation technique and 

standard deviation values are calculated for deviation in power output for each generator. 

 

Table 4.2   Calculation of standard deviation values of power output using MCS technique 

 

Generator Power 

Output 

Bus 

No. 

  ̅̅̅̅  

Maximum 

Probable 

value 

   

Minimum 

Probable 

value 

    

Standard Deviation of the 

probable value 

PG1 1001 0.270032 0.181189 0.014807 

PG2 2002 0.289601 0.253345 0.006043 

 

The results of standard deviation values for generator outputs (PG1 & PG2) for both 

Linear Fuzzy Relation & Monte Carlo Simulation techniques is small as shown in Table 4.1 

& 4.2. This interprets the information that there is very small change on power output of 

generators due to deviation in wind electric generator power output.   
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Finally to assess the accuracy of the Linear Fuzzy Relation technique in comparison to 

Monte Carlo technique (% error) is computed for both PG1 & PG2 values and results 

obtained are shown in Table 4.3. The % error values are small. This reflects that Linear 

Fuzzy Relation technique is an accurate technique. 

 

Table 4.3   Comparison of standard deviation values of power output 

 

Generator 

Power Output 

Bus 

No. 

Standard Deviation using 

Linear Fuzzy Relation 

technique 

      

Standard Deviation using 

Monte Carlo Simulation 

Technique 

      

Error 

(%) 

PG1 1001 0.014822 0.014807 0.1 

PG2 2002 0.005968 0.006043 1.2 
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4.2 Comparison of results for voltages at buses for LFR and MCS technique 

Similarly in order to find the effect of deviation in wind electric generator power output on 

voltage of buses excluding slack and generator buses, Linear Fuzzy Relation technique is 

used and results are shown in Table 4.4. The values for standard deviations are calculated.  

 

Table 4.4   Calculation of standard deviation values of voltages using LFR technique 

 

 

Parameter 

Bus 

No. 

  

Minimum 

Probable 

Value 

 ̅ 

Maximum 

Probable 

Value 

   

Standard 

Deviation 

 

Voltage 

2003 

1004 

2005 

1006 

0.916486 

0.966280 

0.972948 

0.943970 

0.926314 

0.974920 

0.977052 

0.948230 

0.001638 

0.001440 

0.000684 

0.000710 

 

Results are shown in Table 4.4 for maximum deviation in voltages from their mean values 

due to deviation in power output of wind electric generator. The standard deviation values of 

voltages calculated for every bus indicate that there is very small effect on voltages due to 

deviation in power output of wind.  
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Table 4.5   Calculation of standard deviation values using MCS technique 

 

 

Parameter 

 

Bus 

No. 

  

Minimum 

Probable 

Value 

 ̅ 

Maximum 

Probable 

Value 

   

Standard 

Deviation 

 

 

Voltage 

 

 

2003 

1004 

2005 

1006 

0.916342 

0.966156 

0.972940 

0.943884 

0.926165 

0.974781 

0.977092 

0.948145 

0.001637 

0.001438 

0.000692 

0.000710 

 

Similarly results are calculated from Monte Carlo Simulation technique and are shown in 

Table 4.5. The results for standard deviation values of voltages is small which also interprets 

the same information. In order to check the accuracy of the results of Linear Fuzzy Relation 

technique with Monte Carlo Simulation technique in case of voltage values, % error are 

calculated and tabulated in Table 4.6. The value of % error is very small which shows that 

the Linear Fuzzy Relation technique is an accurate technique.  
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Table 4.6   Comparison of standard deviation values of voltages 

 

Parameter Bus 

No. 

    

     

Standard Deviation using 

Linear Fuzzy Relation 

technique 

MCS 

     

Standard Deviation using 

Monte Carlo Simulation 

Technique 

        

 

 

Voltage 

 

2003 

1004 

2005 

1006 

0.001638 

0.001440 

0.000684 

0.000710 

0.001637 

0.001438 

0.000692 

0.000710 

0.05 

0.17 

1.13 

0.04 

 

4.3 Comparison of time required to obtain solution for both techniques 

The advantage of Linear Fuzzy Relation technique over Monte Carlo Simulation technique 

is its quick time in solving the probabilistic real power optimal power flow problem. The 

time is calculated for both techniques and shown in Table 4.7. 

Table 4.7 Comparison of time required to solve real power Real Power optimal power flow 

Technique Execution time (Secs) 

Linear Fuzzy Relation (LFR) technique 0.23 

Monte Carlo Simulation (MCS) technique  54.78 

 

The real power optimal power flow problem is solved using the code written in Matlab 

software version 7.12.0.635 (R 2011 a). This comparison of results shows that time required 

to solve using Linear Fuzzy Relation technique is extremely less as compared to Monte 

Carlo Simulation technique.  
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Hence the results shown in Tables 4.1 to 4.7 demonstrate that proposed Linear Fuzzy 

Relation technique is accurate, efficient and reliable technique to solve probabilistic real 

power optimal power flow problem. It accounts for the probabilistic information of 

uncertain wind generators. 
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Chapter 5 

Conclusion 

 

 This thesis proposes a probabilistic optimal power flow using linear fuzzy relation 

technique to find the deviation in the optimal bus voltage values and power output of 

generators due to uncertainty in power output of wind electric generator.  

The thesis models output of wind electric generators using a normal probabilistic 

distribution function. This model is transformed into a triangular fuzzy model which has an 

area equal to the normal probability distribution function. 

Thereafter, considering the mean forecast of wind power, the optimal solution is 

determined using a deterministic optimal power flow formulation. From the Lagrangian 

function, the hessian determined at the optimal solution is used to create the linear fuzzy 

relation. This relation relates the fuzzy variables of wind power deviation to fuzzy variables 

of power output of generators and bus voltage magnitudes. These fuzzy variables are 

translated into probabilistic variables by computing mean and standard deviation values. 

The computed deviation in voltages and power output of generators corresponding to 

uncertainties in WEG power output using the proposed technique is compared with those 

obtained using MCS technique. On comparison, the % error values of power output of 

conventional electric generators and voltage solution values of buses shows that the 

proposed solution technique is accurate. Further, the time taken by proposed technique is 
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significantly less than Monte Carlo Simulation technique. The proposed method is shown to 

be computationally efficient, operationally flexible and numerically accurate. 
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APPENDICES 

Appendix A: Modified Ward and Hale 6-Bus System 

This appendix presents six bus Ward and Hale System data. This system possesses 

characteristics of a large power system. The data includes generators, loads, lines and 

transformers. The base MVA for this system is 100 MVA. 

 

Table A.1 

Generator cost data of six bus system 

Sr.No. Bus No.    

$ 

   

$/MWh 

   

$/MWh
2 

1 1001 400 36 0.019 

2 1002 200 34 0.017 
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Table A.2 

Load data of six bus system 

Sr.No. Bus No.          

Real Power Load 

         

Reactive Power Load 

1 1001 0 0 

2 2002 0 0 

3 2003 0.275 0.065 

4 1004 0 0 

5 2005 0.15 0.09 

6 1006 0.25 0.025 

 

 

 

 
Table A.3 

Line data of six bus system 

Sr. No. From 

Bus 

To 

Bus 

No. of  

circuits 

 

R 

(p.u.) 

 

X 

(p.u.) 

1 1001 1004 01 0.08 0.37 

2 1001 1006 01 0.123 0.518 

3 2002 2003 01 0.723 1.05 

4 2002 2005 01 0.282 0.64 

5 1004 1006 01 0.097 0.407 
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Table A.4 

Transformer data of 6 six bus system 

Sr.No. From Bus To Bus No. of 

Circuits 

R(p.u.) X(p.u.)    (p.u.) 

1 2003 1004 01 0.0 0.133 1.05 

2 2005 1006 01 0.0 0.3 0.95 
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Appendix B: Calculation of Hessian elements of Lagrangian. 

Appendix B contains a list of all the equations that make up Hessian matrix. These hessian 

terms are due to power flow equations.  

 

B.1: Second order derivatives with respect to    . 

These equations from (B 1.1 to B 1.10) corresponds to first line of Hessian matrix.  

   

    
                                           (B.1.1) 

   

        
                                      (B.1.2) 

   

       
                                       (B.1.3) 

   

       
                                                                                                                         (B.1.4) 

   

       
                                       (B.1.5) 

   

       
                                       (B.1.6) 

   

        
                                       (B.1.7) 

   

        
                                       (B.1.8) 

   

        
                                       (B.1.9) 

   

        
                              (B.1.10) 
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B.2: Second derivatives with respect to   . 

These equations from (B 2.1 to B 2.10) corresponds to first line of Hessian matrix.  

   

       
                                          (B.2.1) 

   

       
                                          (B.2.2) 

   

   
     

   ∑      
  
   
   

    (         )  ∑    
   

  
   
   

                 

             ∑    
(  ∑          (         )

  
   
   

)  ∑      
  
   
   

       
  
      

                                                (B.2.3) 

   

      
    

(           (          ))     
  ∑                        

∑    
           (         )       ∑          (         ) 

  
             (B.2.4) 

   

      
    

 ∑                     
  
   
   

   ∑    
  
   
   

                      

∑    
 ∑         (         )  ∑                           

  
   
   

  
   
   

  
         (B.2.5) 

   

      
    

   ∑                       ∑    
                        

∑    
         (         )  ∑    

                        
  
      (B.2.6) 

   

    
   

     ∑                     
  
   
   

)                      (B.2.7) 

   

    
   

                                                  (B.2.8) 

   

    
   

   ∑      
     

   
   

                                   (B.2.9) 
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                                                  (B.2.10) 

B.3: Second derivatives with respect to   . 

These equations from (B 3.1 to B 3.10) corresponds to third line of Hessian matrix.  

   

       
                                       (B.3.1) 

   

       
                                       (B.3.2) 

   

      
    

  ∑                        ∑    
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       (         ) 
  
                 (B.3.6) 
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B.4: Second derivatives with respect to    
 

These equations from (B 4.1 to B 4.10) corresponds to fourth line of Hessian matrix.  

   

        

                                          (B.4.1) 
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B.5: Second derivatives with respect to    
 

These equations from (B 5.1 to B 5.10) corresponds to fifth line of Hessian matrix.  
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Appendix C: Calculations of First Order elements of the Lagrangian.  

These equations (C.1 to C.10) form the gradient vector of the Lagrangian formulation 

solution. 
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Appendix D: Matlab code written for P-optimal power flow Solution 

 
 

To solve for P-optimal power flow problem using Newton Raphson technique in Matlab, 

the following function files are written which also gives solution in general case.  

 
Then run_file.m which consists of following function files is to be run first. It will ask for 

the data file. Then PMINDAT.TXT (file name) should be entered at the command prompt 

which is in the same folder. Once the data is read, YBUS matrix of the network is formed 

which is required in calculations. Then the iterative algorithm steps are solved using Hessian 

file to compute optimal solution. 

 

The following are the function files used in solution. 

 

1. DATA.m  

 

2. YBUS.m 

 

3. SIX_BUS_LAMPQ.m 

 

4. HESSIAN.m 

     These are .m files which run inside Hessian function file to compute Hessian matrix.   

     DEL_all.m 

     PG_all.m 

     V_all.m 

     Lamp_all.m 

     Lamq_all.m  

6. OUTPUT.m    
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% Calculation of Optimal Power Flow using Newton Raphson   technique. 

 

clc 

clear all 

format shortg 

 

global NB NBB NS NG NLB NTR NTRL NT NSHC NSVS NSHR NSH NREG 

global VSLACK TOLER PBASE VLMAX VLMIN ITMAX 

global BIND BSN BNAM PG QG PD QD V DEL QGMAX QGMIN VSH                 

global FB TB NCKT YL ZL BL TAP RAT KV LEN TAPMAX TAPMIN TAPSTP         

global SNO SUS SUSMAX SUSMIN SUSSTP 

global YB 

global LAM 

global PGMAX PGMIN VGMAX VGMIN ap bp cp  

global ofp ifp         

global Y Theta 

global Lamp Lamq 

global HESSIAN_INV DEL_Degree 
 

tic 

                                 

DATA                                                        % Reads data from data file. 

 

YBUS                                                        % Form Y bus for electrical network. 

 

SIX_BUS_LAMPQ                             

 

HESSIAN                                                 % Form Hessian Matrix. 

 

OUTPUT                                                 % Give details of Power Flow, Losses, etc. 

 

toc 
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Data File 

 

function DATA 

 

global NB NBB NS NG NLB NTR NTRL NT NSHC NSVS NSHR NSH NREG 

global VSLACK TOLER PBASE VLMAX VLMIN ITMAX 

global BIND BSN BNAM PG QG PD QD V DEL QGMAX QGMIN VSH                 

global FB TB NCKT YL ZL BL TAP RAT KV LEN TAPMAX TAPMIN TAPSTP         

global SNO SUS SUSMAX SUSMIN SUSSTP 

global YB 

global LAM 

global PGMAX PGMIN VGMAX VGMIN ap bp cp  

global ofp ifp                        

global Y  

global Lamp Lamq  

 

PP = input('name of input data file:' ,'s')  

ofp = fopen('PMINOUT.TXT','w'); 

ifp = fopen(PP,'r');  

fprintf(ofp,'INPUT  FILE NAME: PP \n'); 

fprintf(ofp,'OUTPUT FILE NAME: PMINOUT.TXT \n');  

temp = fscanf(ifp,'%s',[1]);    fprintf(ofp,'SYSTEM: %s\n',temp); 

temp = fscanf(ifp,'%s',[1]);    fprintf(ofp,'YEAR  : %s\n',temp); 

temp = fscanf(ifp,'%s',[1]);    fprintf(ofp,'CASE  : %s\n',temp); 

temp = fscanf(ifp,'%s',[1]);    fprintf(ofp,'NUMBER: %s\n',temp);  

ttt  = fscanf(ifp,'%d %d %d %d %d %d %d %d %d %d %d %d %d',[1,13]); 

NB   = ttt(1); NBB  = ttt(2); NS   = ttt(3);   

NG   = ttt(4);   

temp = ttt(5);  

temp = ttt(6);  

NLB  = ttt(7);    

NTR  = ttt(8);   

NTRL = ttt(9);   

NSHC = ttt(10);  

NSVS = ttt(11); 

NSHR = ttt(12); 

NREG = ttt(13);  

 

NT  = NTR + NTRL; 

NSH = NSHC + NSVS + NSHR; 

 

ttt    = fscanf(ifp,'%f %f %f %f %f %d',[1,6]); 

VSLACK = ttt(1);     

TOLER  = ttt(2);     

PBASE  = ttt(3);     
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VLMAX   = ttt(4);     

VLMIN   = ttt(5); 

ITMAX  = ttt(6); 

 

fprintf(ofp,'NUMBER OF BUSES : %d\n',               NB); 

fprintf(ofp,'SLACK BUS NUMBER : %d\n',              NS); 

fprintf(ofp,'NUMBER OF GENERATORS : %d\n',          NG); 

fprintf(ofp,'NUMBER OF LOAD BUSES : %d\n',          NLB); 

fprintf(ofp,'NUMBER OF TRANSFORMERS : %d\n',        NTR); 

fprintf(ofp,'NUMBER OF TRANSMISSION LINES : %d\n',  NTRL); 

fprintf(ofp,'NUMBER OF SHUNT CAPACITORS : %d\n',    NSHC); 

fprintf(ofp,'NUMBER OF SWITCHABLE CAPACITORS :%d\n',NSVS); 

fprintf(ofp,'NUMBER OF SHUNT REACTORS : %d\n',      NSHR); 

fprintf(ofp,'SLACK BUS VOLATGE : %8.4f\n',          VSLACK); 

fprintf(ofp,'TOLERANCE (MW)    : %8.4f\n',          TOLER*PBASE); 

fprintf(ofp,'BASE MVA  \t60 : %8.4f\n',             PBASE); 

fprintf(ofp,'MINIMUM LOAD BUS VOLTAGE : %8.4f\n',   VLMIN); 

fprintf(ofp,'MAXIMUM LOAD BUS VOLTAGE : %8.4f\n',   VLMAX); 

fprintf(ofp,'MAXIMUM NUMBER OF ITERATIONS : %d\n',  ITMAX); 

ttt    = fscanf(ifp,'%s',[1]);   % region names 

BSN   = zeros(NB,1);   

BNAM  = cell (NB); 

PD    = zeros(NB,1);   

QD    = zeros(NB,1); 

PG    = zeros(NB,1);   

QG    = zeros(NB,1); 

QGMAX = zeros(NB,1);   

QGMIN = zeros(NB,1); 

VSH   = zeros(NB,1); 

 V     = ones(NB,1);    

DEL   = zeros(NB,1); 

 

fprintf(ofp,'DETAILED OUTPUT IN PER UNIT    \n'); 

 

fprintf(ofp,'\t\tGENERATOR BUS DATA\n'); 

fprintf(ofp,'SNO R.NO B.NO BUS NAME ---PG--- ---PD--- ---QD--- --QGMX-- --QGMN-

- --V SH--\n'); 

 

BSNMAX=0; 

for k = 1:NG 

ttt      = fscanf(ifp,'%d %d %d',[1,3]);     

BSN(k)   = ttt(3); 

ttt      = fscanf(ifp,'%s',[1]);  

BNAM(k)= cellstr(ttt); 

ttt      = fscanf(ifp,'%f %f %f %f %f %f',[1,6]); 
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PD(k)    = ttt(1);      QD(k)    = ttt(2); 

PG(k)    = ttt(3);      QG(k)    = 0;   

QGMAX(k) = ttt(4);      QGMIN(k) = ttt(5); 

VSH(k)   = ttt(6);      V(k)     = VSH(k); 

if ( BSNMAX < BSN(k) )  

         BSNMAX = BSN(k); 

end 

    fprintf(ofp,'%3d %4d %4d %8s %8.4f %8.4f %8.4f %8.4f %8.4f 

%8.4f\n',k,k,BSN(k),char(BNAM(k)),PG(k),PD(k),QD(k),QGMAX(k),QGMIN(k),VSH(k))

; 

PD(k)    = PD(k)   /PBASE;     QD(k)    = QD(k)   /PBASE; 

PG(k)    = PG(k)   /PBASE;     QG(k)    = QG(k)   /PBASE; 

QGMAX(k) = QGMAX(k)/PBASE;     QGMIN(k) = QGMIN(k)/PBASE; 

end 

 

fprintf(ofp,'\t\tLOAD BUS DATA\n'); 

fprintf(ofp,'SNO R.NO B.NO BUS NAME ---PD--- ---QD---\n'); 

for k = NG+1:NB 

ttt      = fscanf(ifp,'%d %d %d',[1,3]);    BSN(k)   = ttt(3); 

ttt      = fscanf(ifp,'%s',[1]);            BNAM(k)= cellstr(ttt); 

ttt      = fscanf(ifp,'%f %f',[1,2]); 

PD(k)    = ttt(1);                          QD(k)    = ttt(2); 

if ( BSNMAX < BSN(k) )  

        BSNMAX = BSN(k); 

end 

    fprintf(ofp,'%3d %4d %4d %8s %8.4f 

%8.4f\n',k,k,BSN(k),char(BNAM(k)),PD(k),QD(k)); 

PD(k) = PD(k)/PBASE;        QD(k) = QD(k)/PBASE; 

end 

PD; 

QD; 

PG; 

QG; 

QGMAX; 

QGMIN; 

 

BIND = zeros(BSNMAX,1); 

for k = 1:NB 

BIND(BSN(k)) = k; 

end 

 

ZL = (0+j*0)  * zeros(NT,1); 

YL = (0+j*0)  * zeros(NT,1); 

BL = (0+j*0)  * zeros(NT,1); 
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FB = zeros(NT,1);   TB = zeros(NT,1); 

NCKT=zeros(NT,1);   TAP= ones (NT,1); 

RAT= zeros(NT,1);   KV = zeros(NT,1); 

LEN= zeros(NT,1); 

 

TAPMAX= ones (NT,1);    TAPMIN= ones (NT,1);    TAPSTP= ones (NT,1); 

 

fprintf(ofp,'\t\tTRANSFORMER DATA FOR TOTAL NOS OF CIRCUITS\n'); 

fprintf(ofp,'SNO F.NO T.NO NCKT --R PU-- --X PU-- ---AN--- --RAT---\n'); 

for k=1:NTR 

ttt    = fscanf(ifp,'%d %d %d %d %f %f %f %f',[1,8]); 

FB(k)  = ttt(2);      TB(k)  = ttt(3); 

NCKT(k)= ttt(4); 

ZL(k)  = complex(ttt(5),ttt(6)); 

TAP(k) = ttt(7); 

BL(k)  = complex(0,0); 

RAT(k) = ttt(8)/PBASE; 

LEN(k) = 0;           KV(k)  = 0; 

 

BL(k)= BL(k) * NCKT(k);                    % X by NCKT    

ZL(k)= ZL(k) / NCKT(k);                    % / NCKT 

 

YL(k) = 1/ZL(k); 

 

ttt    = fscanf(ifp,'%f %f %f',[1,3]); 

TAPMAX(k) = ttt(1);      TAPMIN(k) = ttt(2);      TAPSTP(k) = ttt(3); 

      fprintf(ofp,'%3d %4d %4d %4d %8.4f %8.4f %8.4f %8.4f 

\n',k,FB(k),TB(k),NCKT(k),real(ZL(k)),imag(ZL(k)),TAP(k),RAT(k)); 

end 

 

fprintf(ofp,'\t\tLINE DATA FOR TOTAL NOS OF CIRCUITS\n'); 

fprintf(ofp,'SNO F.NO T.NO NCKT --R PU-- --X PU-- --HLC--- --RAT--- ---AN---\n'); 

for k=NTR+1:NT 

ttt    = fscanf(ifp,'%d %d %d %d %f %f %f %f %f %f',[1,10]); 

FB(k)  = ttt(2);            TB(k)  = ttt(3); 

NCKT(k)= ttt(4); 

ZL(k)  = complex(ttt(5),ttt(6)); 

BL(k)  = complex(0,ttt(7)); 

RAT(k) = ttt(8)/PBASE;      LEN(k) = ttt(9); 

KV(k)  = ttt(10); 

 

BL(k)= BL(k) * NCKT(k);                    % X by NCKT    

ZL(k)= ZL(k) / NCKT(k);                    % / NCKT 

 

if LEN(k)>0 && KV(k)>0                     % Line length & KV 
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ZBASE = KV(k) * KV(k)  / PBASE;       % KV*KV/PBASE 

ZL(k) = ZL(k) * LEN(k) / ZBASE; 

BL(k) = BL(k) * LEN(k) * ZBASE;            

end 

 

YL(k) = 1/ZL(k); 

      fprintf(ofp,'%3d %4d %4d %4d %8.4f %8.4f %8.4f %8.4f 

%8.4f\n',k,FB(k),TB(k),NCKT(k),real(ZL(k)),imag(ZL(k)),BL(k),RAT(k),TAP(k)); 

end 

YL; 

SNO    = zeros(NSH,1);    SUS    = zeros(NSH,1); 

SUSMAX = zeros(NSH,1);    SUSMIN = zeros(NSH,1); 

SUSSTP = zeros(NSH,1); 

 

fprintf(ofp,'\t\tSHUNT CAPACITOR DATA\n'); 

fprintf(ofp,'SNO B.NO  -MVAR-pu-\n'); 

for k = 1:NSHC      % Fixed capacitors 

ttt     = fscanf(ifp,'%d %d %f',[1,3]); 

SNO(k)  = ttt(2);             

SUS(k)  = ttt(3) / PBASE; 

fprintf(ofp,'%3d %4d %8.4f\n',k,SNO(k),SUS(k));    

end 

 

fprintf(ofp,'\t\tSWITCHABLE CAPACITOR DATA\n'); 

fprintf(ofp,'SNO B.NO --MAX--- --MIN--- --STEP-- -ACTUAL-\n'); 

fprintf(ofp,'         --MVAR-- --MVAR-- --MVAR-- --MVAR--\n'); 

for k = NSHC+1 : NSHC+NSVS 

ttt       = fscanf(ifp,'%d %d %f %f %f %f',[1,6]); 

SNO(k)    = ttt(2);             

SUSMAX(k) = ttt(3) / PBASE; 

SUSMIN(k) = ttt(4) / PBASE; 

SUSSTP(k) = ttt(5) / PBASE; 

SUS(k)    = ttt(6) / PBASE; 

      fprintf(ofp,'%3d %4d %8.4f %8.4f %8.4f 

%8.4f\n',k,SNO(k),SUSMAX(k),SUSMIN(k),SUSSTP(k),SUS(k));    

end 

 

fprintf(ofp,'\t\tSHUNT REACTOR DATA\n'); 

fprintf(ofp,'SNO B.NO  --MVAR--\n'); 

for k = NSHC+NSVS+1 : NSH 

ttt     = fscanf(ifp,'%d %d %f',[1,3]); 

SNO(k)  = ttt(2);             

SUS(k)  = -ttt(3) / PBASE; 

fprintf(ofp,'%3d %4d %8.4f\n',k,SNO(k),SUS(k));    

end 
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PGMAX = zeros(NG,1);  PGMIN = zeros(NG,1); 

ap    = zeros(NG,1);  bp    = zeros(NG,1);  cp    = zeros(NG,1); 

 

fprintf(ofp,'\t\tOPTIMIZATION DATA\n'); 

fprintf(ofp,'SNO B.NO --PGMAX- --PGMIN- --AP---- -BP----- --CP----\n'); 

fprintf(ofp,'         --MW-PU- --MW-PU- -------- -------- --------\n'); 

for k = 1 : NG 

ttt        = fscanf(ifp,'%d %d %f %f %f %f %f',[1,7]); 

kk         = BIND(ttt(2)); 

PGMIN(kk)  = ttt(3) / PBASE;      

PGMAX(kk)  = ttt(4) / PBASE;             

ap(kk)     =           ttt(5);   

bp(kk)     = PBASE   * ttt(6); 

cp(kk)     = PBASE^2 * ttt(7); 

      fprintf(ofp,'%3d %4d %8.4f %8.4f %8.4f %8.4f 

%8.4f\n',k,ttt(2),PGMAX(kk),PGMIN(kk),ap(kk),bp(kk),cp(kk));  

end 

ap; 

bp; 

cp; 
 

 

function YBUS 

 

global NB NBB NS NG NLB NTR NTRL NT NSHC NSVS NSHR NSH NREG 

global VSLACK TOLER PBASE VLMAX VLMIN ITMAX 

global BIND BSN BNAM PG QG PD QD V DEL QGMAX QGMIN VSH                 

global FB TB NCKT YL ZL BL TAP RAT KV LEN TAPMAX TAPMIN TAPSTP         

global SNO SUS SUSMAX SUSMIN SUSSTP 

global YB 

global LAM 

global PGMAX PGMIN VGMAX VGMIN ap bp cp  

global Y Theta 

global ofp ifp  

 

% output and input file pointers 

 

YB = (0+j*0)  * zeros(NB,NB);       %% Creating an empty 6x6 matrix  

 

for k=1:NT                                                                

      k1 = BIND(FB(k)); 

      k2 = BIND(TB(k)); 

 

YB(k1,k2) = YB(k1,k2) -  YL(k)/TAP(k);     % Off Diagonal Elements                     
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YB(k2,k1) = YB(k2,k1) -  YL(k)/TAP(k); 

 

      YB(k1,k1) = YB(k1,k1) +  BL(k) + YL(k)/(TAP(k)^2);          % Diagonal Elements 

      YB(k2,k2) = YB(k2,k2) +  BL(k) + YL(k);           

end 

 

for k = 1:NSH 

    k1 = BIND(SNO(k)); 

YB(k1,k1) = YB(k1,k1) + SUS(k); 

end 

% Converting to real and angle  

YB 

Y = abs(YB) 

Theta = angle(YB) 

 

 

function SIX_BUS_LAMPQ 

global Lamp Lamq 

 

% Assumptions of Lamp and Lamq  

Lamp = [200; 200;   0;   0;   0;   0]; 

Lamq = [0  ;   0; 100; 100; 100; 100]; 

 

 

function HESSIAN  

 

global PG QG PD QD DEL V NG NB PD Y 

global Lamp Lamq  

 

global PP AB 

global ap bp cp 

global Y Theta  

global HESSIAN_INV DEL_Degree 

 

% Forming vector for all variables. 

ALL_VAR = [PG; DEL; V; Lamp; Lamq]; 

 

% Retriving required variables required for calculation. 

PG_i   = ALL_VAR(1 : NG); 

DEL_i  = ALL_VAR(NB+1+1 : NB+NB); 

V_i    = ALL_VAR(NB+NB+NG+1 : NB+NB+NB); 

Lamp_i = ALL_VAR(NB+NB+NB+1 : NB+NB+NB+NB); 

Lamq_i = ALL_VAR(NB+NB+NB+NB+NG+1 : NB+NB+NB+NB+NB); 

 

%--------------------checking-------------------------------- 
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%------------------CALCULATION OF FUNCTION---------------- 

F = zeros(NG,1); 

for i =1:NG 

F(i,1) = (ap(i)*PG(i,1)^2 + bp(i)*PG(i,1) + cp(i)); 

end 

 

F = sum(F,1); 

 

% Rename DEL as Del  

Del = DEL; 

 

%---Calculations of Initial Constraints for every bus (Real Power constraint) 

cons_p = zeros(NB,1); 

for i = 1:NB  

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

    cons_p(i,1) = PG(i)-PD(i)-V(i)*(sum(V.*Y(i,1:NB)'.*cos(Deli-Del(1:NB)-

Theta(i,1:NB)'))); 

end 

 

 

%---Calculations of Initial Constraints for every bus (Real Power constraint) 

cons_q = zeros(NB,1); 

for i = 1:NB  

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

    cons_q(i,1) = QG(i)-QD(i)-V(i)*(sum(V.*Y(i,1:NB)'.*sin(Deli-Del(1:NB)-

Theta(i,1:NB)'))); 

end 

 

% Iterations to find solution------------------------- 

for k=1:30 

% .m files for calculating double derivatives wrt. variables. 

% Calculation of mismatch also. 

PG_all; % .m file for calculating double derivatives wrt. PG1...PGn.   

PG_ALL =[PG_PG,DEL_PG,VG_PG,LAMP_PG,LAMP_QG]; % Matrix values calculated. 

L_PG;         % Mismatch dL/dPg. 

DEL_all; % .m file for calculating double derivatives wrt.DEL1...DELn.   

DEL_ALL = [PG_DEL,DEL_DEL,V_DEL,LAMP_DEL,LAMQ_DEL];  % Matrix values 

calculated. 

L_DEL;                                   % Mismatch dL/dDel. 

 

V_all; % .m file for calculating double derivatives wrt.V1...Vn.   

    V_ALL = [PG_V,DEL_V,V_V,LAMP_V,LAMQ_V];              % Matrix values 

calculated.  
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L_V;                 % Mismatch dL/dV. 

Lamp_all; % .m file for calculating double derivatives wrt.Lamp1...Lampn. 

LAMP_ALL = [PG_LAMP,DEL_LAMP,V_LAMP,LAMP_LAMP,LAMQ_LAMP]; % 

Matrix values calculated.  

L_LAMP;                   % Mismatch dL/dLamp 

Lamq_all;% .m file for calculating double derivatives wrt.Lamq1...Lamqn. 

LAMQ_ALL = [PG_LAMQ,DEL_LAMQ,V_LAMQ,LAMP_LAMQ,LAMQ_LAMQ]; % 

Matrix values calculated.  

L_LAMQ;                                                   % Mismatch dL/dLamq. 

 

% Hessian Matrix 

HESSIAN =  [PG_PG,   DEL_PG,   VG_PG,  LAMP_PG,  LAMP_QG; 

PG_DEL,  DEL_DEL,   V_DEL, LAMP_DEL, LAMQ_DEL; 

PG_V,    DEL_V,     V_V,   LAMP_V,   LAMQ_V; 

PG_LAMP, DEL_LAMP,  V_LAMP,LAMP_LAMP,LAMQ_LAMP; 

PG_LAMQ, DEL_LAMQ,  V_LAMQ,LAMP_LAMQ,LAMQ_LAMQ]; 

 

 

% Inverse of Hessian matrix  

HESSIAN_INV = inv(HESSIAN) 

 

% Mismatch (RHS) 

RHS =[L_PG'; L_DEL'; L_V'; L_LAMP'; L_LAMQ']; 

 

% Computation of Error Values 

Error_values  = (HESSIAN_INV)*RHS; 

 

% Naming the errors calculated for all variables.   

PG_e   = Error_values(1 : NG); 

DEL_e  = Error_values(NG+1 : NG+(NB-1)); 

V_e    = Error_values(NG+(NB-1)+1 : NG+(NB-1)+(NB-NG)); 

Lamp_e = Error_values(NG+(NB-1)+(NB-NG)+1 : NG+(NB-1)+(NB-NG)+NB); 

Lamq_e = Error_values(NG+(NB-1)+(NB-NG)+NB+1 : NG+(NB-1)+(NB-NG)+NB+(NB-

NG)); 

%Lamq_e = Error_values(NG+(NB-1)+(NB-NG)+NB+1 : NG+(NB-1)+(NB-

NG)+NB+(NB-NG)); 

 

% Adding zero's to value's not computed to make vector symmetrical  

% with intial vector 

     PG_e   = [PG_e;zeros(NB-NG,1)]; 

     DEL_e  = [zeros(1,1);DEL_e]; 

     V_e    = [zeros(NG,1);V_e]; 

     Lamp_e = Lamp_e; 

     Lamq_e = [zeros(NG,1);Lamq_e]; 
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% Update of values of variables (intial values + error) 

    PG     = PG   + PG_e;   

    DEL    = DEL  + DEL_e; 

    V      = V    + V_e; 

    Lamp   = Lamp + Lamp_e; 

    Lamq   = Lamq + Lamq_e; 

 

%Calculations of Intial Constraints for every bus (Real Power constraint) 

cons_p = zeros(NB,1); 

for i = 1:NB  

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

    cons_p(i,1) = PG(i)-PD(i)-V(i)*(sum(V.*Y(i,1:NB)'.*cos(Deli-Del(1:NB)-

Theta(i,1:NB)'))); 

end 

 

 

%Calculations of Intial Constraints for every bus (Real Power constraint) 

cons_q = zeros(NB,1); 

for i = 1:NB  

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

    cons_q(i,1) = QG(i)-QD(i)-V(i)*(sum(V.*Y(i,1:NB)'.*sin(Deli-Del(1:NB)-

Theta(i,1:NB)'))); 

end 

 

end 

 

 

% Optimum values of variables. 

PG = PG*100 

V 

%DEL 

DEL_Degree = DEL*(180/3.14) % converting bus angle's into degree's 

 

% Final value of Optimum Cost  

System_Cost  = (50*PG(1,1)^2 + 351*PG(1,1) + 44.4)+(50*PG(2,1)^2 + 389*PG(2,1) + 

40.6); 

 

% ------------Calculation of FIRST ROW (PG) elements and RHS- 

 

% Rename DEL as Del  

Del = DEL; 

 

% FIRST ROW_FIRST BLOCK (PG_PG) Checked 
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PG_PG = zeros(NG,NG); 

for i = 1:NG  

for j = 1:NG 

if i == j 

              PG_PG(i,j) = 2*ap(i);  

else 

              PG_PG(i,j) = 0; 

end 

end 

end 

  PG_PG; 

 

%FIRST ROW_SECOND BLOCK (DEL_PG) Checked 

DEL_PG = zeros(NG,NB-1); 

for i = 1:NG 

for j = 1:(NB-1) 

        DEL_PG(i,j) = 0; 

end 

end 

DEL_PG; 

 

%FIRST ROW_THIRD BLOCK (VG_PG) Checked 

VG_PG = zeros(NG,NB-NG); 

for i = 1:NG 

for j =(NB-NG) 

      VG_PG(i,j) = 0; 

end 

end 

VG_PG; 

 

%FIRST ROW_FOURTH BLOCK (LAMP_PG) Checked 

LAMP_PG = zeros(NG,NB); 

for i = 1:NG 

for j =1:NB 

if i == j 

    LAMP_PG(i,j) = -1; 

else 

    LAMP_PG(i,j) = 0; 

end 

end 

end 

LAMP_PG; 

 

%FIRST ROW_FIFTH BLOCK (LAMP_QG) Checked 
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LAMP_QG = zeros(NG,NB-NG); 

for i =1:NG 

for j =1:NB-NG 

        LAMP_QG(i,j) = 0; 

end 

end 

LAMP_QG; 

 

%PG ALL ROW  

PG_ALL =[PG_PG,DEL_PG,VG_PG,LAMP_PG,LAMP_QG];  

 

%-------------------RHS (L_PG)------------------------------- 

for i = 1:NG 

L_PG(i) = 2*ap(i)*PG(i)+ bp(i)-Lamp(i); 

end 

L_PG; 

L_PG = -L_PG; 

 

% Calculation of SECOND ROW (DEL) elements and RHS- 

 

%--------------------------SECOND_ROW (DEL)------------------ 

% Rename DEL as Del  

Del = DEL; 

 

%SECOND ROW_FIRST BLOCK (PG_DEL) Checked 

PG_DEL = zeros(NB,NG); 

for i = 1:(NB) 

for j = 1:NB 

        PG_DEL(i,j) = 0; 

end 

end 

PG_DEL; 

PG_DEL = PG_DEL(2:NB,[1:NG]); 

 

%SECOND ROW_SECOND BLOCK (DEL_DEL) CHECKED OK  

for i =  1:NB 

for j =  1:NB 

if i == j 

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

             DEL_DEL(i,j) = Lamp(i)*(V(i)*((sum(V.*Y(i,1:NB)'.*-cos(Deli-Del- 

Theta(i,1:NB)'))-V(i)*Y(i,i)*-cos(Del(i)-Del(i)- 

Theta(i,i)))))+sum(Lamp.*V.*Vi.*Y(1:NB,i).*-cos(Del-Deli-Theta(1:NB,i)))-

(Lamp(i)*V(i)*(V(i)*Y(i,i)*-cos(Del(i)-Del(i)-

Theta(i,i))))+Lamq(i)*(V(i)*((sum(V.*Y(i,1:NB)'.*-sin(Deli-Del- Theta(i,1:NB)'))-
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V(i)*Y(i,i)*-sin(Del(i)-Del(i)- Theta(i,i)))))+ sum(Lamq.*V.*Vi.*Y(1:NB,i).*-sin(Del-Deli-

Theta(1:NB,i)))-(Lamq(i)*V(i)*(V(i)*Y(i,i)*-sin(Del(i)-Del(i)-Theta(i,i)))); 

else 

 

DEL_DEL(i,j) = Lamp(i)*(V(i)*V(j)*Y(i,j)*cos(Del(i)-Del(j)-

Theta(i,j)))+Lamp(j)*V(j)*(V(i)*Y(j,i)*cos(Del(j)-Del(i)-

Theta(j,i)))+Lamq(i)*(V(i)*V(j)*Y(i,j)*sin(Del(i)-Del(j)-

Theta(i,j)))+Lamq(j)*V(j)*V(i)*Y(j,i)*sin(Del(j)-Del(i)-Theta(j,i)); 

end 

end 

end 

DEL_DEL; 

DEL_DEL = DEL_DEL(2:NB,[2:NB]); 

 

%SECOND ROW_THIRD BLOCK (V_DEL) CHECKED  

for i = 1:NB 

for j = 1:NB 

if i == j 

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

            V_DEL(i,j) = Lamp(i)*((sum((V.*Y(i,1:NB)'.*(-sin(Deli-Del- Theta(i,1:NB)'))))-

V(i)*Y(i,i)*(-sin(Del(i)-Del(i)- Theta(i,i)))))+(sum(Lamp.*V.*Y(1:NB,i).*sin(Del-Deli-

Theta(1:NB,i)))-(Lamp(i)*V(i)*(Y(i,i)*sin(Del(i)-Del(i)-Theta(i,i)))))+ 

Lamq(i)*(sum((V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)')))-V(i)*Y(i,i)*cos(Del(i)-

Del(i)- Theta(i,i)))                         + (sum(Lamq.*V.*Y(1:NB,i).*(-cos(Del-Deli-

Theta(1:NB,i))))-(Lamq(i)*V(i)*Y(i,i)*(-cos(Del(i)-Del(i)-Theta(i,i)))));  

else 

            V_DEL(i,j) = Lamp(i)*V(i)*Y(i,j)*(-sin(Del(i)-Del(j)-Theta(i,j)))+ 

Lamp(j)*V(i)*Y(j,i)*sin(Del(j)-Del(i)-Theta(j,i))+ Lamq(i)*V(i)*Y(i,j)*cos(Del(i)-Del(j)-

Theta(i,j))+ Lamq(j)*V(i)*Y(j,i)*(-cos(Del(j)-Del(i)-Theta(j,i))); 

end 

end 

end 

V_DEL; 

V_DEL = V_DEL(2:NB,[NG+1:NB]); 

 

% Extra Step Added 

% V_DEL = zeros(NB,NB); 

% V_DEL = V_DEL(2:NB,[NG+1:NB]); 

 

%SECOND ROW_FOURTH BLOCK (LAMP_DEL) % CHECKED 

for i = 1: NB  %(NB-1) 

for j = 1:NB 

if i == j 

Vi(1:NB,1) = V(i); 
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Deli(1:NB,1) = Del(i);  

        LAMP_DEL(i,j) = -V(i)*(sum((V.*Y(i,1:NB)'.*sin(Deli-Del- Theta(i,1:NB)')))... 

                        -V(i)*Y(i,i)*sin(Del(i)-Del(i)- Theta(i,i))); 

else 

Vi(1:NB,1) = V(i); 

Deli(1:NB,1) = Del(i);     

        LAMP_DEL(i,j) = V(j)*(V(i)*Y(j,i)*sin(Del(j)-Del(i)-Theta(j,i))); 

end 

end 

end 

 LAMP_DEL; 

 LAMP_DEL = LAMP_DEL(2:NB,[1:NB]); 

 

 %SECOND ROW_FIFTH BLOCK (LAMQ_DEL)CHECKED 

for i = 1:NB 

for j = 1:NB 

if i == j 

Vi(1:NB,1) = V(i); 

Deli(1:NB,1) = Del(i);  

        LAMQ_DEL(i,j) = V(i)*(sum((V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)')))-

V(i)*Y(i,i)*cos(Del(i)-Del(i)- Theta(i,i))); 

else 

Vi(1:NB,1) = V(i); 

Deli(1:NB,1) = Del(i);     

        LAMQ_DEL(i,j) = -V(j)*((V(i)*Y(j,i)*cos(Del(j)-Del(i)-Theta(j,i)))); 

end 

end 

end 

LAMQ_DEL; 

LAMQ_DEL = LAMQ_DEL(2:NB,[NG+1:NB]); 

 

% Extra Step Added 

% LAMQ_DEL = zeros(NB,NB); 

% LAMQ_DEL = LAMQ_DEL(2:NB,[NG+1:NB]); 

 

%DEL ALL ROW 

 DEL_ALL = [PG_DEL,DEL_DEL,V_DEL,LAMP_DEL,LAMQ_DEL]; 

 

%------------------- RHS (L_DEL)----------------------------- 

for i = 1:NB 

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

      L_DEL(i) = Lamp(i)*(V(i)*((sum(V.*Y(i,1:NB)'.*(-sin(Deli-Del- Theta(i,1:NB)'))))- 

V(i)*Y(i,i)*(-sin(- Theta(i,i)))))+ sum(Lamp.*V.*Vi.*Y(1:NB,i).*sin(Del-Deli-

Theta(1:NB,i)))-Lamp(i)*V(i)*V(i)*Y(i,i)*sin(-
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Theta(i,i))+Lamq(i)*(V(i)*(sum(V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)'))-

V(i)*Y(i,i)*cos(- Theta(i,i))))               +sum(Lamq.*V.*Vi.*Y(1:NB,i).*(-cos(Del-Deli-

Theta(1:NB,i))))-Lamq(i)*V(i)*(V(i)*Y(i,i)*(-cos(-Theta(i,i))));          

end 

L_DEL; 

%Extra Term Added 

L_DEL = -L_DEL(2:NB); 

 

%-----------------------THIRD ROW (V)------------------------ 

% Rename DEL as Del  

Del = DEL; 

 

%THIRD ROW_FIRST BLOCK (PG_V) Checked 

for i = 1:(NB) 

for j = 1:NB 

        PG_V(i,j) = 0; 

end 

end 

PG_V; 

PG_V = PG_V(NG+1:NB,[1:NG]); 

 

%THIRD ROW_SECOND BLOCK (DEL_V)  CHECKED 

for i = 1:(NB) 

for j = 1:(NB) 

if i == j 

Deli(1:3,1) = Del(i); 

Vi(1:3,1) = V(i); 

        DEL_V (i,j) = Lamp(i)*(sum(V.*Y(i,1:NB)'.*(-sin(Deli-Del- Theta(i,1:NB)')))-

V(i)*Y(i,i)*(-sin(Del(i)-Del(i)- Theta(i,i))))+(sum(Lamp.*V.*Y(1:NB,i).*sin(Del-Deli-

Theta(1:NB,i)))-(Lamp(i)*V(i)*Y(i,i)*sin(Del(i)-Del(i)-

Theta(i,i))))+Lamq(i)*(sum(V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)'))-

(V(i)*Y(i,i)*cos(Del(i)-Del(i)-Theta(i,i))))+(sum(Lamq.*V.*Y(1:NB,i).*(-cos(Del-Deli-

Theta(1:NB,i))))-(Lamq(i)*V(i)*Y(i,i)*(-cos(Del(i)-Del(i)-Theta(i,i))))); 

else 

        DEL_V(i,j) =  Lamp(i)*V(j)*Y(i,j)*sin(Del(i)-Del(j)-

Theta(i,j))+Lamp(j)*V(j)*Y(j,i)*(-sin(Del(j)-Del(i)-Theta(j,i)))+Lamq(i)*V(j)*Y(i,j)*(-

cos(Del(i)-Del(j)-Theta(i,j)))+Lamq(j)*V(j)*Y(j,i)*cos(Del(j)-Del(i)-Theta(j,i)); 

end 

end 

end 

DEL_V; 

DEL_V = DEL_V(NG+1:NB,[2:NB]); 

 

% Extra Step Added  

% DEL_V = zeros(NB,NB); 
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% DEL_V = DEL_V(NG+1:NB,[2:NB]); 

 

%THIRD ROW_THIRD BLOCK (V_V)  CHECKED 

for i = 1:NB 

for j = 1:NB 

if i == j  

         V_V(i,j) = Lamp(i)*(2*Y(i,i)*cos(-Theta(i,i))) 

                   +Lamq(i)*(2*Y(i,i)*sin(-Theta(i,i))); 

else 

         V_V(i,j) = Lamp(i)*(Y(i,j)*cos(Del(i)-Del(j)-Theta(i,j)))+Lamp(j)*(Y(j,i)*cos(Del(j)-

Del(i)-Theta(j,i)))+Lamq(i)*(Y(i,j)*sin(Del(i)-Del(j)-

Theta(i,j)))+Lamq(j)*(Y(j,i)*sin(Del(j)-Del(i)-Theta(j,i))); 

end 

end 

end 

V_V; 

 

%Extra Step Added 

V_V = V_V(NG+1:NB,[NG+1:NB]); 

 

%THIRD ROW_FOURTH BLOCK (LAMP_V) CHECKED 

for i = 1:(NB) 

for j = 1:NB 

if i == j  

Deli(1:3,1) = Del(i); 

            LAMP_V(i,j) = 2*V(i)*Y(i,i)*cos(-Theta(i,i)) 

                         +(sum(V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)')))-

V(i)*Y(i,i)*cos(Del(i)-Del(i)- Theta(i,i)); %2*V(i)*Y(i,i)*cos(-Theta(i,i))    +    

sum((V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)'))-Y(i,i)*cos(Del(i)-Del(i)- Theta(i,i))); 

else 

            LAMP_V(i,j) = V(j)*(Y(j,i)*cos(Del(j)-Del(i)-Theta(j,i)));  

end 

end 

end 

LAMP_V; 

LAMP_V = LAMP_V(NG+1:NB,[1:NB]); 

 

% Extra Step Added 

% LAMP_V = zeros(NB,NB); 

% LAMP_V = LAMP_V(NG+1:NB,[1:NB]); 

 

%THIRD ROW_FIFTH BLOCK (LAMQ_V) CHECKED 

 

for i = 1:(NB) 

for j = 1:(NB) 
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if i ==j 

Deli(1:3,1) = Del(i); 

            LAMQ_V(i,j) = 2*V(i)*Y(i,i)*sin(-Theta(i,i))... 

                         +(sum(V.*Y(i,1:NB)'.*sin(Deli-Del- Theta(i,1:NB)')-V(i)*Y(i,i)*sin(Del(i)-

Del(i)- Theta(i,i)); 

else 

            LAMQ_V(i,j) = V(j)*Y(j,i)*sin(Del(j)-Del(i)-Theta(j,i)); 

end 

end 

end 

LAMQ_V; 

LAMQ_V = LAMQ_V(NG+1:NB,[NG+1:NB]); 

 

%VOLTAGE (V) ALL ROW 

V_ALL = [PG_V,DEL_V,V_V,LAMP_V,LAMQ_V]; 

 

%--------------------RHS (L_V)------------------------------- 

for i = 1:NB 

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

 L_V(i) =  Lamp(i)*(2*V(i)*Y(i,i)*cos(-Theta(i,i)))... 

          +Lamp(i)*(sum(V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)'))-(V(i)*Y(i,i)*cos(-

Theta(i,i))))... 

          +sum(Lamp.*V.*Y(1:NB,i).*cos(Del-Deli-Theta(1:NB,i)))-

Lamp(i)*V(i)*Y(i,i)*cos(-Theta(i,i))...  

          +Lamq(i)*(2*V(i)*Y(i,i)*sin(-Theta(i,i)))... 

          +Lamq(i)*(sum(V.*Y(i,1:NB)'.*sin(Deli-Del- Theta(i,1:NB)'))-(V(i)*Y(i,i)*sin(-

Theta(i,i))))... 

          +sum(Lamq.*V.*Y(1:NB,i).*sin(Del-Deli-Theta(1:NB,i)))-Lamq(i)*V(i)*Y(i,i)*sin(-

Theta(i,i));     

end 

L_V; 

%Addition term added 

L_V = -L_V(NG+1:NB);   % Earlier [NG+1:NB] 

 

%-----------------------------FOURTH ROW (LAMP)-------------- 

% Rename DEL as Del  

Del = DEL; 

 

%FOURTH ROW_FIRST BLOCK (PG_LAMP) Checked 

for i =1:NB 

for j =1:NB 

if i == j 

            PG_LAMP(i,j) = -1; 

else 
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            PG_LAMP(i,j) =  0;  

end 

end 

end 

PG_LAMP; 

PG_LAMP = PG_LAMP(1:NB,[1:NG]); 

 

%FOURTH ROW_SECOND BLOCK (DEL_LAMP) CHECKED  

for i = 1:NB 

for j = 1:(NB) 

if  i==j; 

Deli(1:NB,1) = Del(i); 

          DEL_LAMP(i,j)=  V(i)*(sum((V.*Y(i,1:NB)'.*-sin(Deli-Del- Theta(i,1:NB)')))-

V(i)*Y(i,i)*-sin(Del(i)-Del(i)- Theta(i,i)));         

else 

           DEL_LAMP(i,j) = V(i)*V(j)*Y(i,j)*sin(Del(i)-Del(j)-Theta(i,j)); 

end 

end 

end 

DEL_LAMP; 

DEL_LAMP = DEL_LAMP(1:NB,[2:NB]); 

 

%FOURTH ROW_THIRD BLOCK (V_LAMP) CHECKED  

for i = 1:NB 

for j = 1:(NB) 

if i ==j 

Deli(1:3,1) = Del(i); 

            V_LAMP(i,i) = 2*V(i)*Y(i,i)*cos(-Theta(i,i))+(sum(V.*Y(i,1:NB)'.*cos(Deli-Del- 

Theta(i,1:NB)')))-V(i)*Y(i,i)*cos(Del(i)-Del(i)- Theta(i,i)); 

else 

            V_LAMP(i,j) = V(i)*Y(i,j)*cos(Del(i)-Del(j)-Theta(i,j)); 

end 

end 

end 

V_LAMP; 

V_LAMP = V_LAMP(1:NB,[NG+1:NB]); 

 

% New Term Added 

% V_LAMP = zeros(NB,NB); 

% V_LAMP = V_LAMP(1:NB,[NG+1:NB]); 

 

%FOURTH ROW_FOURTH BLOCK (LAMP_LAMP) Checked 

for i = 1:NB 

for j =1:NB 

        LAMP_LAMP(i,j) = 0; 
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end 

end 

LAMP_LAMP; 

LAMP_LAMP = LAMP_LAMP(1:NB,[1:NB]); 

 

%FOURTH ROW_FIFTH BLOCK( LAMQ_LAMP) Checked 

for i = 1:NB 

for j =1:(NB) 

        LAMQ_LAMP(i,j) = 0; 

end 

end 

LAMQ_LAMP; 

LAMQ_LAMP = LAMQ_LAMP(1:NB,[NG+1:NB]); 

 

%LAMP ROW 

LAMP_ALL = [PG_LAMP,DEL_LAMP,V_LAMP,LAMP_LAMP,LAMQ_LAMP]; 

 

%-rhs 

 dl_lp        = V(1)*V(1)*Y(1,1)*cos(-Theta(1,1))... 

                +V(1)*(… 

+V(2)*Y(1,2)*cos(Del(1)-Del(2)-Theta(1,2)) 

+v(2)*y(3,2)*cos(d(3)-d(2)-t(3,2)) 

+v(3)*y(4,3)*cos(d(4)-d(3)-t(4,3)) 

                +V(4)*Y(1,4)*cos(Del(1)-Del(4)-Theta(1,4)) 

                +V(5)*Y(1,5)*cos(Del(1)-Del(5)-Theta(1,5)) 

+v(6)*y(4,6)*cos(d(4)-d(6)-t(4,6)) 

                +0) 

l_lp = - dl_lp 

 

%-------------------RHS (L_Lamp)----------------------------- 

for i = 1:NB 

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) = V(i); 

  L_LAMP(i) = V(i)*(sum(V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)')))-PG(i)+PD(i);       

end 

L_LAMP; 

% Addition term Added     

L_LAMP = -L_LAMP(1:NB); 

 

%----------------------FIFTH BLOCK (LAMQ)------------------------------ 

% Rename DEL as Del  

Del = DEL; 

 

%FIFTH ROW_FIRST BLOCK (PG_LAMQ) Checked 

for i = 1:(NB) 
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for j =1:NB 

         PG_LAMQ(i,j) = 0;              

end 

end 

 PG_LAMQ; 

 PG_LAMQ = PG_LAMQ(NG+1:NB,[1:NG]); 

 

%FIFTH ROW_SECOND BLOCK (DEL_LAMQ) CHECKED  

 

for i = 1:(NB) 

for j = 1:(NB) 

if i == j 

Deli(1:NB,1) = Del(i); 

            DEL_LAMQ(i,j) = V(i)*(sum(V.*Y(i,1:NB)'.*cos(Deli-Del- Theta(i,1:NB)'))-

V(i)*Y(i,i)*cos(Del(i)-Del(i)- Theta(i,i))); 

else 

            DEL_LAMQ(i,j) = V(i)*V(j)*Y(i,j)*-cos(Del(i)-Del(j)-Theta(i,j)); 

end 

end 

end 

DEL_LAMQ; 

DEL_LAMQ = DEL_LAMQ(NG+1:NB,[2:NB]); 

 

% Extra Added 

% DEL_LAMQ = zeros(NB,NB); 

% DEL_LAMQ = DEL_LAMQ(NG+1:NB,[2:NB]); 

 

%FIFTH ROW_THIRD BLOCK (V_LAMQ)CHECKED 

 

for i = 1:(NB) 

for j = 1:(NB) 

if i == j 

Deli(1:3,1) = Del(i); 

        V_LAMQ(i,j) = 2*V(i)*Y(i,i)*sin(-Theta(i,i))+(sum(V.*Y(i,1:NB)'.*sin(Deli-Del- 

Theta(i,1:NB)')))-V(i)*Y(i,i)*sin(Del(i)-Del(i)- Theta(i,i));  

else 

            V_LAMQ(i,j) = V(i)*Y(i,j)*sin(Del(i)-Del(j)-Theta(i,j)); 

end 

end 

end 

V_LAMQ; 

V_LAMQ = V_LAMQ(NG+1:NB,[NG+1:NB]); 

 

%FIFTH ROW_FOURTH BLOCK (LAMP_LAMQ) Checked 

for i = 1:(NB) 
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for j = 1:(NB) 

        LAMP_LAMQ(i,j) = 0; 

end 

end 

LAMP_LAMQ; 

LAMP_LAMQ = LAMP_LAMQ(NG+1:NB,[1:NB]); 

%FIFTH ROW_FIFTH BLOCK (LAMQ_LAMQ) Checked 

for i = 1:(NB) 

for j = 1:(NB) 

        LAMQ_LAMQ(i,j) = 0; 

end 

end 

LAMQ_LAMQ; 

LAMQ_LAMQ = LAMQ_LAMQ(NG+1:NB,[NG+1:NB]); 

 

%LAMQ ROW 

LAMQ_ALL = [PG_LAMQ,DEL_LAMQ,V_LAMQ,LAMP_LAMQ,LAMQ_LAMQ]; 

 

%-------------------RHS (L_LAMQ)------------------------------ 

for i = 1:NB 

Deli(1:NB,1) = Del(i); 

Vi(1:NB,1) =  V(i); 

  L_LAMQ(i) =  V(i)*sum(V.*Y(i,1:NB)'.*sin(Deli-Del-Theta(i,1:NB)'))-QG(i)+QD(i);       

end 

 L_LAMQ; 

% Addition term Added     

L_LAMQ = -L_LAMQ(NG+1:NB);
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