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Abstract

This dissertation focuses on the analysis of large-scale image and video data consortia

with applications to multimedia indexing and retrieval. Bag-of-words (BoW) model is

adopted and improved to suit the efficiency and effectiveness requirements in analyzing

large-scale multimedia data. BoW method has been developed from the text retrieval

domain and successfully applied in computer vision, such as image scene and object cate-

gorization. Specifically, we utilized the BoW model in the domain of image classification

and retrieval, tackled challenges of large-scale multimedia applications of video analysis

and mobile-based social activity recommendation using visual intents, respectively.

Incorporating the BoW model with unsupervised classification, we propose a scalable

and generic approach in video analysis. The method aims at systematically analyz-

ing unlabeled video from its genre identification, frame classification, and event detec-

tion. Unlike conventional domain-knowledge dependent approaches, the BoW model is
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domain-knowledge independent. Moreover, the system is mainly unsupervised and re-

quires minimum human input. Therefore, our method is capable of processing massive

quantity of videos generically. In addition, for the evaluation, sports video has been used

as the testing ground.

Combining the BoW model with advanced retrieval algorithms, we propose a mobile-

based visual search and social activity recommendation system. The merit of the BoW

model in large-scale image retrieval is integrated with the flexible user interface provided

by the mobile platform. Instead of text or voice input, the system takes visual images

captured from the built-in camera and attempts to understand users’ intents through

interactions. Subsequently, such intents are recognized through a retrieval mechanism

using the BoW model. Finally, visual results are mapped onto contextually relevant

information and entities (i.e. local business) for social task suggestions. Hence, the

system offers users the ability to search information and make decisions on-the-go.
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Chapter 1

Introduction

1.1 Background

Living in information era, we are surrounded by an enormous amount of digital content.

According to Bohn and Short [4], the estimated size of newly created digital data in 2011

is about 1800 exabyte (1 exabyte=1 billion gigabytes), roughly 100 times more than the

production in 2002 (2 ∼ 3 exabyte). This number is equivalent to a ten-fold average

annual growth rate. In terms of image and video content, according to the latest released

statistics, YouTube hosts more than 120 million copyrighted claimed videos and serves

four billion video requests per day 1. Facebook, on the other hand, hosts about 50 billion

photos (2010), 15 billion of which are tagged 2. Another statistical result shows that

Facebook had 845 million monthly active users and 483 million daily active users on

average in December 2011 3. Undoubtedly, digital content, including images and videos,

are deeply rooted in our daily life, from desktops and laptops to mobile phones and

tablets. Large-scale content-based multimedia data organization and analysis not only

helps to retrieve users’ desired information, but also serves the basis and first step to

multimedia applications such as image/video classification and retrieval, as well as the

recent boom of cross-platform mobile visual search and recommendations.

1http://www.youtube.com/t/press_statistics
2http://www.usatoday.com/tech/news/2010-07-21-facebook-hits-500-million-users\_N.

htm
3http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
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CHAPTER 1. INTRODUCTION
1.2. CHALLENGES AND RELEVANT TECHNOLOGIES

1.2 Challenges and Relevant Technologies

Large-scale image and video search and classification have drawn tremendous interest

from research communities. Different from small scale content-based multimedia analysis,

unique challenges of large-scale multimedia analysis include, among others:

• First, automatic image classification, with minimum human labeling and interven-

tion. According to a recent study, among web-based image and video consortia,

only 5− 10% of total data are labeled [5]. The majority of multimedia data cannot

be retrieved using current textual-based search engines. Moreover, successful image

classification will be useful in frame-based video analysis, such as genre classifica-

tion and event detection.

• Second, image retrieval, including efficient database index, compact storage, and

quick and accurate retrieval performance. Since large-scale databases consist of

millions of images, computational efficiency of both off-line and on-line is crucial.

• Third, integration with cross platform-based applications. With the emerging tech-

nologies of mobile devices and cloud computing, a lot of desktop-based multimedia

applications need to be migrated to and find suitable positions in the mobile do-

main.

1.2.1 Large-scale Content-based Image Classification and Re-

trieval

From the multimedia application perspective, large-scale image classification serves as a

middle agent to link low-level features and high-level semantic events [6, 7]. Supervised

methods are favorable choices in the research community. Although the size and diversity

of current databases can be managed with those tasks using labeled training data, such

tasks become more and more unmanageable with the growing scale of the dataset, as well

as the unlabeled content. Therefore, algorithms using unsupervised learning techniques

with generality and efficiency ought to be sought for analyzing large-scale multimedia

consortia.

On the other hand, content-based image retrieval (CBIR) has attracted researchers

in the field of computer vision, machine learning, database technology, and multimedia

2



1.3. THESIS CONTRIBUTIONS
CHAPTER 1. INTRODUCTION

for almost two decades. It still remains a popular research direction, especially when

considering how to cope with the vast size of and increasing growth of multimedia data.

In the beginning of this millennium, Rui, Huang, and Chang stated that there are two

major difficulties with large-scale image datasets [8]. One is the vast amount of labor

required in manual image annotation. The other, is how to understand different human

perceptions towards the same image content. Moreover, how to efficiently index large-

scale image archives for fast retrieval is also raised as a fundamental consideration in

designing large-scale image retrieval systems [8, 9].

1.3 Thesis Contributions

In response to the above mentioned challenges, bag-of-words (BoW) model is adopted for

multimedia analysis in this thesis, in particular, at large-scale image classification and

retrieval [10, 11]. BoW model can effectively combines locally extracted feature vectors

of either an image or a video frame. It focuses on the characteristics of the local feature

ensemble, and treats individual local descriptors uniformly. The merits of the BoW

include a homogenous process in which it compactly represents images or video frames

for classification, as well as its availability in large-scale image retrieval due to its success

in text retrieval. Contributions of this thesis are presented as follows.

1.3.1 BoW in Unsupervised Classification and Video Analysis

The first contribution of this thesis is to use the BoW model for unsupervised classifi-

cation in video analysis. A distinguishing yet compact representation of the video clip

is proposed using the BoW model. Candidate videos are indexed and represented as a

histogram-based interpretation using the learned BoW model. The advantage of using

the BoW model is that labeled data is not required. Therefore, video analysis can be

realized towards large-scale applications.

Using the above mentioned method, this thesis presents a systematic and generic

approach by using proposed BoW based video representation. The system aims at event

detection scenario of an input video with an orderly sequential process. Initially, domain-

knowledge independent local descriptors are extracted homogeneously from the input

video sequence. The video’s genre is identified by applying the k-nearest neighbor (k-

3



CHAPTER 1. INTRODUCTION
1.4. ORGANIZATION OF THE THESIS

NN) classifiers onto the obtained video representation, with various dissimilarity measures

assessed and evaluated analytically. Subsequently, an unsupervised probabilistic latent

semantic analysis (PLSA) based algorithm is employed at the same histogram-based video

representation to characterize each frame of video sequence into one of the representative

view groups. Finally, a hidden conditional random field (HCRF) structured prediction

model is utilized for interesting event detection. In evaluation, sports videos are used as

the testing ground.

1.3.2 BoW in Retrieval and Mobile Image Search

The second contribution of this thesis is to explore the BoW’s merit in mobile visual

search by effectively incorporating user interaction. Efficient and scalable indexing and

non-linear fast retrieval algorithms are adopted in handling large-scale images. Human

interaction is included in the loop. Therefore, specific user perception and distinguishing

request is delivered to lead the system into achieving a customized search result.

Based on the above idea, an interactive mobile visual search application aimed at

social activity suggestion is developed using a coined term “visual intent”, which can be

naturally expressed through a visual query incorporating human specification. To accom-

plish the discovery of visual intent on the phone, we developed TapTell, an exemplary real

application on the Windows Phone 7. This prototype takes advantage of user interac-

tion and rich context to enable interactive visual search and contextual recommendation.

Through the TapTell system, a mobile user can take a photo and indicate an object-of-

interest within the photo via a circle gesture. Then, the system performs a search-based

recognition by retrieving similar images based on both the object-of-interest and sur-

rounding image context. Finally, the contextually relevant entities (i.e. local businesses)

are recommended to complete social tasks.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 reviews, in detail, the BoW model

and its computer vision applications of image classification and retrieval. In Chapter 3,

a generic and systematic approach in large-scale video analysis is proposed. The BoW

model is used to represent video clips for unsupervised genre categorization and view
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classification. Semantic event detection is achieved by using middle level view classifica-

tion of sampled video frames after its genre categorization. In Chapter 4, a mobile-based

visual search utilizing image context is proposed so that social task recommendation can

be completed as the end result. The BoW model is used in indexing and visual recogni-

tion under the contextual model. Once the retrieved result of a visual query is connected

with the established textual database, a more accurate text-based search is used in the

recommendation. Finally, Chapter 5 presents conclusions and future research directions.
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Chapter 2

Literature Review on Related Works

2.1 Introduction

In this chapter, we review the BoW model, its original proposal, and early years of

applications in computer vision. We also present recent advanced methodologies utilizing

the BoW model in large-scale image classification and retrieval.

The phrase “a picture is worth a thousand words” has been frequently cited in pub-

lished works in image classification and retrieval. On one hand, the phrase indicates

the convenience of using rich content conveyed by digital images in overcoming language

barriers and textual description limitations. Early systems such as QBIC [12, 13], Vi-

sualSEEk [14], Photobook [15], and Virage [16], successfully delivered image retrieval

systems and achieved acceptable performance using low-level global features.

On the other hand, an image may carry too much information making it beyond the

distinguishable representation merely using global features. Moreover, different humans

perceive and interpret the same image content differently. Since one global feature is

limited in capturing detailed aspects of the image, it is difficult to use the single global

feature to represent various interpretations. In recent years, local invariant features have

been developed to tackle the aforementioned challenges. Such keypoint based salient

patches contain rich local information and they are more resilient in dealing with various

conditions and occlusions. An ensemble of local features is treated as a virtual bag

containing visualwords to visually represent images or video frames. This paradigm is

called the BoW model. Figure 2.1 illustrates such an idea of combining salient patches
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Figure 2.1: Illustration of bag-of-words concept [1].

in a virtual ensemble.

The term BoW was coined in the information retrieval and natural language pro-

cessing research areas. The idea is to generate an unordered collection of textual words

for representation in document retrieval, each of which is weighted equally disregarding

the grammar connection and word order [10, 11]. Such a BoW model and notation has

been adopted in the field of computer vision for similar visual feature classification and

retrieval [17, 18]. Similar to its document retrieval counterpart, a single image or video

frame is treated by extracting unordered local visual descriptors as visual “words” to

represent the image “document”. Then, the image itself becomes a bag of ”words” for

the later classification and retrieval processes. A detailed literature review of the BoW

model utilization in computer vision is given in the following section.
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Figure 2.2: Illustration of bag-of-words framework in computer vision [1].

2.2 Bag-of-words (BoW) Model

Figure 2.2 shows a framework of the BoW model and its usage in computer vision. In

general, there are two parts: learning and recognition. In learning, visual features are

extracted from database images or video frames to generate a dictionary of codewords,

which is also called a codebook in the literature. Individual images are used to project

their features to the codebook to obtain a BoW representation for themselves. They

are then categorized by classifiers to get ready for recognition. In recognition, a query

or testing image also goes through the BoW model by mapping to the dictionary of

codewords. Then, the BoW representation is categorized based on which class the query

image belongs to.
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2.2.1 Related Works

Initially, the BoW concept was used in the texture image classification. The idea was

to use K-means clustering to compute a texton (a frequency-based spatial-frequency

selective linear filters) library so that histogram-based representation of texture images

could be generated for classification. Notable works include reference [19] [20] [21]. In [19],

Cula and Dana proposed a bidirectional texture function, a compact feature for texture

image representation. Leung and Malik proposed a three-dimensional textons method

for extracting texture image features that adjusts with different lighting and viewing

conditions [20]. Varma and Zisserman further extended the work by proposing rotational-

invariant filters to achieve viewpoint and illumination independence for texture image

classification without using priori knowledge [21]. Lazebnik et al. focused on finding

scale- and affine-invariant detectors to localize interesting points for computing affine-

invariant descriptors [22]. A codebook was built from a clustering method. Previous

representative works focused on different feature extractions but all used the BoW model

to build a dictionary of codewords for image interpretation. This fact demonstrates the

popularity of using the BoW model in the field of texture image classification.

With the help of a more robust and sophisticated local feature extraction, the BoW

model has been widely applied in more applications of computer vision, such as view/scence

classification, object categorization, image segmentation and stitching, duplicated im-

age/video detection, and concept/object detections in video. In the domain of view/scence

classification, pioneering works include Fei-Fei and Perona’s proposal of a probabilistic

and generative model to categorize natural scene images [23]. In particular, they used

a Bayesian hierarchical framework to automatically learn the distribution of codewords.

Bosch et al. extended the idea and proposed a hybrid approach by incorporating a gener-

ative statistical model with discriminative support vector machines (SVMs) and k-nearest

neighboring (k-NN) algorithms [24]. In the field of object categorization and matching,

Sivic and Zisserman proposed a text retrieval method to match objects in videos [17,18].

Different from previously introduced histogram representation, inverted file systems and

document frequency weighings were adopted from text retrieval and were applied in in-

dexing database images efficiently. Sivic et al. further proposed a mechanism to learn

multiple object categories and content locations using an unsupervised generative sta-

tistical model, which is greatly beneficial in processing unlabeled data [25]. Some other

10
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researchers focused on image classification and segmentation concurrently by introduc-

ing spatial and regional prior knowledge to the BoW model. Cao et al. presented a

spatially coherent latent topic model, a generative approach in order to simultaneously

recognize categories of objects in the scene images as well as segment those objects [26].

Shotton et al. presented a method called the bag of semantic textons to avoid heavy

computation of local descriptors and codebook learning [27]. An implicit hierarchical re-

lationship between visual features and region prior information is investigated in learning

the regional-based histogram representation. This method achieves both overall image

categorization and regional segmentation at the same time in an efficient and automatic

fashion.

To tackle the multimedia processing challenges associated with recent boom of large-

scale data, the BoW model is among the most popular choices in the research community.

It has shown impressive performance in image classification and retrieval. In the following

sections, we will first discuss popular local descriptors developed in recent years; and then,

focus on two different, but related, computer vision tasks: large-scale image classification

and large-scale image retrieval.

2.2.2 Local Descriptors

A key component of the BoW model is to develop an accurate description of visualwords

(a locally extracted visual feature). Local feature is based on regional semantic patches,

where interest points are detected by their properties such as local extrema of pixel

intensity, edge, corners, and etc. Different from global feature, where each image only

has one single vector description, there are various numbers of local features for each

image. The number depends on how many interest points are detected. Hence, there are

two major parts in building local descriptors: feature detection and feature description.

Feature detection is the first process of feature extraction in determining the interest

points, which are believed to carry the representative information of an image or a video

frame. Subsequently, feature description presents a mathematical operation in obtaining

a vector form feature descriptor to represent a local semantic patch or region. Conse-

quently, the ensemble of all local feature descriptors is treated as the representation of

the image or the video frame, and used in the BoW model.
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Feature Detection

Early work of feature detection includes various edge detectors. Edge detection methods

focus on identifying those variations of image intensity level in discontinuities (step edges),

local extrema (line edges), and corners which intersect two lines (junction edges) [28].

Edge detection can successfully capture representative image information and has been

widely applied in identifying objects’ physical, photometrical, and geometrical properties.

However, edge detection is vulnerable to various sources of noises such as electronic

effects, devices discretizations/quantifications, and lighting conditions. Moreover, for

semantic applications such as image classification and retrieval, edge feature is limited

in retaining the differentiation of semantic objects from one another. This limitation is

because edge detection focuses on line-based outline and silhouette information. It is not

able to describe an enclosed regional feature which is critical for semantic similarity and

affinity.

Algorithms developed based on semantic patches were recently proposed to overcome

edge detector limitations. There are two groups of semantic patches based feature detec-

tion: Blob detection and affine-invariant feature detection. Blob detection aims to find

the points or regions of the image that are different from the surrounding pixels. Lapla-

cian of the Gaussian (LoG) and Difference of Gaussians (DoG) are the most common blob

detectors, where the latter can be viewed as an approximation of the former. Initially, an

input image is convolved by a Gaussian kernel in different scale-spaces to obtain Gaus-

sian smoothed images as scale-space representations. Subsequently, a Laplacian operator

is applied at the scale-space representation in the case of LoG; or a Difference operator

in the case of DoG is applied in the convolved adjacent scale-space Gaussian smoothed

images. Finally, a local extrema detector is built based on a 3-D cube, including the

2-D image space and the 1-D adjacent scale-space [2, 29]. The left column of Figure

2.3 shows the Gaussian smoothing operation on the scale-spaced images and their scales

group named octave. The Difference operation of the DoG process is shown on the right

column of Figure 2.3. In the LoG case, a direct Laplacian operation is applied on the

Gaussian smoothed image of each scale-space.

Another blob detection method is called determinant of the Hessian (DoH). The DoH

firstly applies the Gaussian kernels to get the scale-space representation. Then, the

Hessian matrix, a second-order partial derivative of the scale-space Gaussian smoothed

12
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image is computed at a specific scale. The second stage of the process is to compute the

determinant of each Hessian matrix at the specific scale. The last step of the DoH is the

same as LoG and DoG methods in finding the local extrema for interest points detection.

An approximate version of determinant of Hessian using Haar wavelet is adopted in

finding a so called Speeded Up Robust Features (SURF) descriptor, which is much less

intense in computation compared to other blob detectors [30].

Some other algorithms vary from the DoH method by treating scale and spatial in-

formation separately. Instead of treating them together in one step as a 3-D cube using

DoG, LoG, or Hessian matrix applied in DoH method; a Harris-Laplace method proposes

to find the spatial location (the 2-D images) by first using a proposed Harris function.

Then, it selects interest points using a maximal of a local Laplacian measure over the

scales (1-d scale-spaces) [31]. Similarly, another so-called Hessian-Laplace method re-

places the Harris measure by the determinant of the Hessian operator, while keeping the

remaining steps the same [32].

Blob detection focuses on retaining the information about local regions for differ-

entiation. It has shown superior invariant properties in translation (shifting), rotation,

and uniform re-scaling. However, blob detection is vulnerable and subject to perspec-

tive distortion. Some other detection methods need to be sought to preserve geometric

transformations, and to avoid deterioration by perspective distortion. These detectors

should be invariant in geometric transformations, such as skew and stretch. In math-

ematics, these skew and stretch transformations are defined as affine transformations.

Affine transformation is described as a mapping function to preserve straight lines and

ratios of distances between points lying on a straight line. However, it does not neces-

sarily preserve angles or lengths [33]. Because of their importance in object recognition,

and image/video classification and retrieval, various affine-invariant feature detection al-

gorithms were proposed to focus on describing images by those interest points that are

consistent with various affine transformations.

Harris-affine and Hessian-affine detectors focus on finding initial interest points and

regions, with a following affine shape adaptation in normalizing the interest regions to

achieve the affine-invariant property [34, 35]. A following iterative process refines the

initial affine regions to obtain the final stable affine-invariant regions. The difference

between Harris-affine and Hessian-affine is in their initial interest points detection stage.

The Harris-affine detector relies on Harris corner detection using the second-moment
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Figure 2.3: Illustration of DoG operation on scale-space representation and its hierarchi-
cal scale-group (octave) [2].

matrix, while Hessian-affine uses Hessian matrix for interest points detection.

Some other affine-invariant feature detection includes Edge-based region (EBR) detec-

tors [36], intensity-extrema-based region (IBR) detectors [37], maximally stable extremal

regions (MSER) [38], and Kadir-Bradly salient region detectors [39, 40]. EBR focuses

on corner points while making use of the nearby edges [36]. The reason is that the

edges are stable affine-invariant features subject to various viewpoints and scale changes.

IBR starts from detecting intensity extrema over the scale-space to obtain initial interest

points. Then, an affine geometric invariant function is applied to explore the surround-

ing regions to achieve an affine-invariant region. MSER is a method based on a series

of processes in applying thresholds at image pixel intensities. This method tries to find

those extremal regions, such that all pixels inside that MSER have either higher (bright

extremal regions) or lower (dark extremal regions) intensity than all the pixels on its

outer boundary after applying thresholds. Maximally stable describes the property opti-
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mized in the threshold selection. As a result, a connected component of an appropriate

threshold image is obtained as a MSER. The MSER method is also proven to be affine-

invariant [38, 41]. The Kadir-Bradly salient region detector is based on probabilistic

density function (pdf) of intensity values over elliptical regions. First, it calculates the

entropy value of the pdf over a family of ellipses centered on the interested pixel. The

entropy extrema over scales and ellipses are recorded as candidate regions. Then, those

candidate salient regions are ranked over the entire image based on the magnitude of the

pdf derivative with respect to the scale. Finally, a fixed number of top ranked regions

are used as affine-invariant regions.

Feature Description

Feature description is the stage to extract vector representations of identified interest

points or regions from previous feature detection stage. Here, we introduce several state-

of-the-art feature descriptors which fits the BoW model, including scale-invariant feature

transform (SIFT) [2], Gradient location-orientation histogram (GLOH) [42], principle

component analysis SIFT (PCA-SIFT), [43], speeded up robust features (SURF) [30],

histogram of oriented gradients (HOG) [44], and its compact variation coined compressed

histogram of gradients (CHoG) [45].

SIFT feature can robustly identify objects among clutter and partial occlusion. It is

claimed to be invariant to uniform scaling, orientation, and partially invariant to affine

distortion and illumination [46]. It has also been evaluated as the most resistant to

common image deformations, from a comparison study with other local feature descrip-

tors [47]. The SIFT feature descriptor adopts the DoG keypoints detection method on 3D

space, consisting of both spatial-space and Gaussian scale-space. A keypoint descriptor

is built by first computing gradient magnitude m(x, y) and orientation θ(x, y) at each

sample point, in a region around the detected keypoint, shown as:

m(x, y) =
√
(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.1)

θ(x, y) = arctan((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))) (2.2)
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Figure 2.4: Illustration of gradient orientation histogram computation in a down-graded
version. A final histogram vector representation concatenated neighborhoods is also
shown at the bottom of the illustration [2].

At the scale-space where the keypoint is detected, L and L(x, y) are Gaussian smoothed

image and (x, y) pixel smoothed value, respectively. A set of orientation histograms are

built on a 4x4 pixel neighborhoods with 8 bins each. Each of these neighborhoods con-

sists of a region of 4x4=16 pixels. This configuration makes a total of 16x16 regions,

which are centered at the keypoint. In terms of the vector value, a descriptor of 128

elements is computed as a product of 4x4 neighborhoods and 8 bins each. Figure 2.4

depicts the calculation of the vector descriptor in a down-scaled version of SIFT, pro-

posed by Lowe [2]. In the illustration, a total of 8x8=64 pixels region (instead of 16x16

pixels region) is down-graded to 2x2=4 neighborhoods (instead of 4x4 neighborhoods) in

histogram computation, with 8 bins each in histogram.

PCA-SIFT is considered as a variation of the SIFT. It extends SIFT patch-region to

a 41x41 pixels patch, which is also centered at the keypoint. A total of 3042 elements are

computed as the raw input vector by concatenating the horizontal and vertical gradient

maps. Then, a normalization is applied to this vector to minimize the impact of the

illumination variation. It is believed that variations of different conditions impacting on

the feature vector can be modeled by low-dimensional Gaussian distributions. This is
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the reason that Ke and Sukthankar applied the PCA analysis on the raw 3024 elements

SIFT vectors [43]. A projection matrix consisting of the top 20 eigenvectors is stored as

eigenspace representation and is used for PCA-SIFT mapping. The number 20 is calcu-

lated using empirical evaluation. A mapping is conducted using the projection matrix

for each new input vector. PCA-SIFT has shown advantages at certain applications and

the compact representation is promising in large-scale data mining. However, a pre-built

projection matrix is required.

GLOH is designed to increase SIFT descriptor’s robustness and distinctiveness. The

method is based on a SIFT descriptor computed at a log-polar coordinate system, with

a location grid of three bins each in three radius (value at 6, 11, 15), and one bin each

at eight angular directions. Thus, a total of 17 (17=3x3+8) location bins are obtained.

With each location of 16 bins for gradient orientation, a histogram of 272 (272=17x16)

bins is computed. Subsequently, a standard PCA covariance matrix is trained and applied

to select the largest 128 eigenvectors for the final GLOH descriptor [42].

SURF focuses on computational efficiency of the local feature. The computation is

mainly improved by using an integral image intermediate step for convolutions such that

the computation time is reduced [48]. A fast Hessian matrix-based measurement is used

in the feature keypoint detection. The feature descriptor is built based on a distribution

of Haar wavelets. The integral image is used to speed up the calculation, and a total of

64 dimensions are used as the final feature vector size [30].

HOG uses grid-based dense image descriptors, which is different from the previously

introduced salient-based keypoints. This dense grid detection is based on dividing the im-

age window into small spatial regions called “cell”. Then, an accumulated 1-D histogram

of gradient directions or edge orientations over the pixels (similar as SIFT feature) of

the cell is calculated. Finally, histogram entries are combined to represent images, and

contrast-normalization is applied to achieve a better illumination and shadowing invari-

ance. Further, Dalal and Triggs introduced two detection methods based on either rectan-

gular or circular log-polar blocks and named them R-HOG and C-HOG, respectively [44].

HOG features can be viewed as a coarse spatial sampling with a fine orientation sampling,

followed by a strong local photometric normalization. Therefore, it makes the HOG de-

scriptor particularly suitable for human detection. This is because the individual body

movement of humans in image/video shots, which causes lots of noise, is ignored as long

as the human maintains a roughly upright position [44].
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The recently developed CHoG descriptor provides a compressed version of the HOG

feature to satisfy an increasing demand for mobile-based retrieval [49]. This CHoG, as a

low-bit-rate compressed feature, fits well with mobile based visual search scenarios and

requires low traffic demand through the wireless network. A vector quantization (VQ)

process is applied to the gradient distribution to obtain a smaller set of bins than the

uncompressed original HOG. This VQ version of the HOG based histogram is encoded

by various tree coding techniques such as the Huffman tree and the Gagie tree. It claims

to have more than 20 times the bit-rate reduction, while maintaining the baseline image

matching performance [45,50].

2.2.3 Large-scale Image Analysis Using BoW Model

Because of their homogenous procedures in describing images or video frames using rep-

resentative local features, BoW-based methods enable researchers to conduct large-scale

image analysis effectively. Large-scale image classification and retrieval have been care-

fully studied in recent years to catch up with the ever growing image and video datasets.

Image classification and retrieval are highly interrelated research problems. Both of them

are based on analyzing distinguished features of the query image, and are in attempts to

bring out similar images from the database. Classification focuses on the intra-class com-

monalities so that the query image can find its suitable class and belonging. Retrieval,

on the other hand, focuses on finding the most closely related individual images in the

database and returning them as search results. In summary, classification solutions focus

on feature ensembles, for instance, the histogram representation of each image. Retrieval

solutions focus on both feature ensemble and individual local descriptor matches.

Image Classification

Csurka et al. proposed a BoW model-based algorithm for visual image classification from

seven different classes, including faces, buildings, trees, cars, phones, bikes and books [51].

SIFT feature is used as the local descriptor, and Näıve Bayes, with non-linear supervised

support vector machines (SVM), are used as classifiers. Deng et al. proposed a database

called “ImageNet”, which associates images with large-scale ontology supported by the

WordNet structure [52, 53]. Currently, about nine million images are indexed and this

number is still growing. Among benchmark measurements and comparisons, a spatial
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pyramid-based histogram of SIFT local codewords with SVMs classifiers provides the

best performance. Zhou et al. proposed a method by incorporating vector coding to

achieve scalable image classification [54]. They adopted vector quantization coding on

local SIFT descriptors to map the features to form a high-dimensional sparse vector.

Spatial information of local regions in each image is taken into account and called spatial

pooling. Finally, linear SVMs are used to classify the image representations obtained

from the spatial pooling.

Although non-linear SVMs classifiers perform well, they suffer from data scalability

due to computational complexity. Perronnin et al. proposed several methods to improve

non-linear SVMs, including square-rooting BoW vectors, kernel-PCA based embedding

for additive kernels, and non-additive kernels for embedding [55, 56]. In particular, an

algorithm using Fisher Kernels was proposed to build gradient vectors from features, so

that linear SVMs could replace those non-linear ones as less computational classifiers [57].

Hence, the scalability issue was alleviated.

Image Retrieval and Visual Search

Sivic and Zisserman proposed a video scene retrieval system called Video Google [17].

The goal is to retrieve similar objects and scenes and localize their occurrences in a

video. MSER feature detection and SIFT feature description are used to extract local

descriptors. Visual vocabulary is built by K-means clustering. A term frequency-inverse

document frequency (tf-idf) text retrieval algorithm is used to match each visualword.

Nistér and Stewénius proposed an efficient and scalable visual vocabulary tree, so

that building a large-scale retrieval system using the BoW model is possible [3]. The

method adopted hierarchical K-means clustering to boost the codebook generation and

retrieval process. The idea is that a query visualword does not necessarily need to go

through the full comparison with the codebook. Rather, a subset of the codebook (a

branch of the hierarchical K-means clustering) is sufficient. This method allows the

codebook to scale up from a few thousands, to hundreds of thousands, to millions in

size without much computational penalty. Although there is no automatic mechanism to

determine the proper codebook size, in general, a larger vocabulary pool size described

by the codebook leads to a better description of the query image with less quantization

error [58].
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Philbin et al. proposed a soft weighting scheme for object retrieval in large scale

image databases [59]. This soft-assignment maps high-dimensional SIFT descriptors

to a weighted combination of visualwords, rather than to a single visualword as hard

assignment. The soft-weighting assignment is designed as an exponential function of the

distance to the cluster center. This method allows the inclusion of features which are

lost in the quantization stage. Jégou et al. also suggested to improve the BoW model

by aggregating local descriptors into a compact short binary coded image representation

called Hamming embedding (HM) [60, 61]. At the retrieval stage, a tf-idf based index

is built with an integration of weak geometric consistency verification mechanism to

penalize those descriptors which are not consistent in angle and scale.

2.3 Summary

This chapter introduces the BoW model, from its early evolution to recent developments

in which it is combined with local feature descriptors. We also present computer vision

challenges in large-scale image classification and retrieval. This thesis focuses on multime-

dia analysis and applications by incorporating the BoW model and algorithms developed

in the field of image classification and retrieval. Chapter 3 proposes a systematic video

analysis for representing unlabeled video clips using the BoW model. The system is

able to categorize video genres and classify sampled framed scenes using unsupervised

learning, and eventually detect semantic events. Chapter 4 shifts the BoW model and

image retrieval application to a mobile platform, incorporating it with user interaction.

It proposes a context-embedded vocabulary tree for an efficient mobile visual search and

retrieval. Consequently, contextual entity recommendation, based on associated image

content results and their text-based metadata, is suggested to the users.
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Chapter 3

Video Analysis Using the

Bag-of-words Model

3.1 Introduction

The bag-of-words (BoW) model and its application in image classification have been used

in various aspects of video analysis. Because of its robustness in matching semantic ob-

jects using local descriptors, the BoW concept has been used in video object reoccurrence

detection [62, 63], semantic shot detection [64, 65] and grouping [66], and object-based

video retrieval [18, 67]. Some other representative works in video analysis adopted BoW

models with feature tracking along the temporal course, including matching semantically

similar videos built by local features using spatiotemporal volumes [68]; content-based

video copy detection using high-level descriptions derived from the BoW representa-

tion [69]; and, person spotting and retrieval based on their faces features in videos [70].

In the field of video event analysis, Zhou et al. applied the BoW model to Gaussian

mixture models to represent news videos and utilized kernel-based supervised learning in

classifying news event [71]. The BoW model was also used in video clip representation in

Xu and Chang’s work of video event recognition, where a multilevel temporal pyramid

was adopted to integrate information from different sub-clips for pyramid match using

temporal alignment [72].

Aforementioned video analysis methods using BoW models have their individual mer-

its. However, there is a lack of systematic investigation, which is important in connecting
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individual aspects of the video analysis, from raw input video clip genre categorization,

to middle level semantic view or shot understanding, to eventually high-level semantic

event analysis. Furthermore, large-scale video data often contains many hours with a lot

of insignificant information. The nature of large-scale video data is that it requires an

automatic and orderly analysis to obtain efficient information extraction. In this chapter,

we propose a BoW model to represent video frames and clips. We also propose an unsu-

pervised learning approach to utilize the BoW-based video representation. We manage

to tackle a series of video analysis challenges for unlabeled large-scale video consortia.

As a result, a systematic analysis of video data is achieved.

In order to evaluate the effectiveness of the BoW model in the systematic video analy-

sis, we need a valid and meaningful test ground. We believe that large-scale sports videos

are ideal. First, sports video is truly a large-scale consortia. It also contributes signifi-

cantly to the total collection of digital content. Second, sources of sports video collection

are also various: from daily-basis public recreations to professional sports games broad-

casting; from amateur digital camcorder to professional TV broadcasting, and plenteous

but low-quality online streamed videos. Third, sports video analysis is closely connected

with real applications, due to its huge popularity and vast commercial value.

Although analysis of sports video has drawn much attention in the research com-

munity, most of the literature focus on particular sports and tasks, utilizing domain

knowledge and production rules [6, 73–76]. Supervised learning is an important char-

acteristic adopted by these works to fill the semantic gap. These stand-alone methods

have little inter-connection and also suffer from a lack of generality and scalability to the

large-scale data for two reasons. First, with various video content of different themes

and cinematographic techniques, domain knowledge associated methods have difficulties

in extensibility. Second, labeled data is required for supervised learning, while the ma-

jority of multimedia data available is currently unlabeled. In order to tackle these two

issues, our proposed algorithm focuses on using a local domain knowledge-independent

SIFT feature to represent video clips using the BoW model and utilizes an unsupervised

learning paradigm to deal with unlabeled large volume data.

In this chapter, a generic and systematic framework is proposed with experimentations

on a large-scale sports video dataset. Three tasks are introduced such that the output

from the previous tasks are utilized as the input to the next task. Event detection is the

third and final quest with two preceding tasks, video genre categorization and semantic
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view type classification. By accomplishing these three tasks, event detection can be

achieved with minimum domain knowledge and partially labeled data. Although we

perform our methods on sports video, the generic nature makes the proposed framework

valid in evaluating other video consortia.

The novelty of this framework lies in the following three aspects:

(1) Domain knowledge-free local descriptors are extracted using a homogeneous pro-

cess. The BoW model is used to build a histogram-based distribution to represent video

clips. The BoW based video representation using local features is the natural selection

for generically processing videos due to its domain knowledge-free properties.

(2) An unsupervised classifier with homogeneous process is proposed. This choice

of method is because that unlabeled data takes the major portion of all digital content.

Thus, an automatic and systematic process can be deployed towards a large-scale dataset.

Since sports videos have well defined semantic view types from their production char-

acteristics, local features combined with the BoW model is a perfect candidate in view

classification. Such a combination has also been proven successful in computer vision

and object recognition (details in Chapter 2). Therefore, a probabilistic latent semantic

analysis (PLSA)-based method for semantic view classification is preferred due to its

unsupervised nature and applicability to the BoW model.

(3) A structured prediction model is adopted for taking labeled middle-level agents

as input to achieve high-level semantics. This choice is because that sports videos have

distinguishable temporal patterns often consisting of sequences of middle-level agents.

In our work, since semantic view types have been classified in part (2), an appropriate

method is to take the view results as input and achieve semantic event detection. There-

fore, hidden conditional random field (HCRF) is introduced as a rational choice. The

significance of the HCRF is its generalized modeling, which resides in both the relaxation

of the Markov property and incorporation with hidden states of the conditional random

field (CRF) modeling.

In the following, an overview of the proposed system is first presented with a flowchart,

followed by video representation using the BoW model and low-level genre categoriza-

tion. Then, the proposed techniques are introduced, including unsupervised learning for

middle-level view classification and HCRF for high-level event detection. Experimental

results are then provided to demonstrate the effectiveness of the proposed method.
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3.2 Overview

This section provides an overview from a holistic perspective as illustrated in Figure 3.1.

The input video is analyzed systematically using a generic and sequential framework.

This video is interpreted in a way such that the result from a preceding process is the input

to the next process in a consistent and coherent fashion. There are four modules in total:

module 0 is the infrastructure for low-level feature extraction and video representation

using the BoW model. Module 1− 3 are tasks introduced in this thesis. The highlights

of this framework include the following.

(1) A generic foundation using domain knowledge-free local feature was developed to

represent input sports videos. This method fits the general framework in sports

video analysis and provides an alternative solution to alleviate generality, scalabil-

ity, and extensibility issues.

(2) A thorough and systematic structure starting from genre identification is presented,

which was ignored in some related work that assumed the genre type as prior

knowledge.

(3) A general platform is introduced to associate our method with the abundant and

valuable existing literature, as well as various and innovative features input.

At module 0, the low-level local feature utilization incorporated with codebook gen-

eration and the BoW model provides an expandable groundwork for the semantic tasks

of genre categorization, view classification, and high-level event detection. As our survey

shows, the local feature is rarely explored in the domain of the sports videos, though it

has been broadly adopted and proved effective in the field of computer vision. Most of

the literature discusses domain knowledge and production rules at the feature extraction

level. In our structure, a homogenous process is first introduced for extracting domain

knowledge-independent local descriptors. The BoW model is used to represent an input

video by mapping its local descriptors to a codebook, which is generated from an innova-

tive bottom-up parallel structure. The histogram-based video representation is treated

as the sole input (no other feature models) to both the genre categorization and the view

classification modules. Such a concise representation built from the BoW model benefits

24



3.2. OVERVIEW
CHAPTER 3. VIDEO ANALYSIS USING THE BAG-OF-WORDS MODEL

F
ig
u
re

3.
1:

A
fl
ow

ch
ar
t
of

th
e
p
ro
p
os
ed

ge
n
er
ic

fr
am

ew
or
k
w
it
h
on

e
m
o
d
u
le

of
ge
n
er
ic

v
id
eo

re
p
re
se
n
ta
ti
on

an
d

th
re
e
ta
sk

m
o
d
u
le
s
in

se
q
u
en
ce
.

25



CHAPTER 3. VIDEO ANALYSIS USING THE BAG-OF-WORDS MODEL
3.2. OVERVIEW

users in homogenously extracting visual features and representing videos in a compact

and collective form.

In the 1st module, videos are categorized by genre. Video genre nomenclature is

used to describe the video type, which is defined as the highest level of granularity in

video content representation. Since the video genre categorization task directly relies on

low-level features, the proposed feature extraction of the target video sequence is used in

categorization. In large-scale videos, a successful identification of the genre serves as the

first step before attempting higher level tasks. For instance, in sports event detection,

an unknown “shooting” event is the target quest, which could be from a ball game or a

shooting sport. By indiscriminately treating the entire dataset, this event will be searched

through all types of sports. However, since sports like figure-skating and swimming have

no “shooting” at all, the effort to search this event within those non-relevant sports

becomes infeasible. Instead of treating all data indifferently, a more efficient method is

to identify the genre of the query video first; and then, deploy middle/high-level tasks. As

the survey shows in sports video analysis, most of the related works on view classification

and event detection assume the genre by default. This framework, however, provides a

system that automatically identifies the genre from various types of sports data before

further analysis.

In the middle-level and the 2nd module, semantic view types are classified using an

unsupervised PLSA learning method to provide labels for video frames. View describes

an individual video frame by abstracting its overall content. It is treated as a bridge

between low-level visual features and high-level semantic understanding. In addition,

unsupervised learning saves a massive amount of human effort in processing large-scale

data. Moreover, the supervised methods can also be implemented upon our proposed

platform. Therefore, a SVM model is executed as the baseline for comparison.

Finally in the 3rd module, a structured prediction HCRF model using labeled inputs

is a natural fit for the system to detect semantic events. This choice can be justified in

that a video event occupies various length along the temporal dimension. Thus, the state

event model-based HCRF is suitable to deploy. Less comprehensive baseline methods,

such as the hidden Markov model and the conditional random field, can also be applied

on this platform.

Besides the three-level modules in the white background bounding boxes, this frame-

work, illustrated in Figure 3.1, also highlights the relationship between our system and
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existing literature, which are shown in the dark-gray background bounding box. Associ-

ated Table references are also indicated in each module. Multimodal features excluding

local visual features are also introduced at various stages by the literature. The Dotted

arrows are used to represent these associations. The solid arrows denote the proposed

and implemented techniques in our work. The dashed arrow represents a knowledge

transfer characteristic of the generated codebooks. In summary, codebooks generated

from certain sports with abundant resources, can be transferred and utilized in classify-

ing other sports materials with scarce resources. The detail analysis is introduced in the

Section 3.6.2.

In the following section, module 0 and module 1 are combined and presented, including

feature extraction, bag-of-visual-words model, as well as genre categorization.

3.3 BoW-based Video Representation and Genre Cat-

egorization

This section covers the first part of our proposed framework, generic feature extraction

with the BoW model, and systematic genre categorization. Figure 3.2 illustrates details

of each process.

3.3.1 Feature Extraction

Local invariant features are chosen for homogenous feature extraction due to their domain

knowledge-free properties. The scale, rotation, and illumination invariant properties

make these descriptors good candidates in preserving the similarities for semantic objects

and events matching and detection. Global features, on the other hand, rely on domain

knowledge and have difficulties in robust concept and event detection, especially in the

presence of noise and occlusion [58]. Scale-invariant feature transform (SIFT), developed

by Lowe [2], is selected as feature descriptors in this work. The SIFT method extracts

key-points of an image and describes these points using local neighborhood regional

information. Since no prior and domain knowledge is required, SIFT is an ideal option

in the large-scale automatic and homogenous process. By processing image sequences

sampled from video clips, each frame is represented by a magnitude of hundreds of SIFT
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Figure 3.2: Feature extraction and genre categorization framework using data parallelism
and bottom-up structure for codebook generation.
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descriptors. After homogenous local descriptor extraction, the BoW model is applied,

whose effectiveness relies on a robust codebook design. In order to achieve this resiliency,

we propose a two-level bottom-up K-means clustering for codebook generation. The

advantages of the bottom-up structure are efficiency, scalability, and robustness.

3.3.2 BoW Model with Two-level Bottom-up Codebook Gen-

eration

The BoWmodel is adopted by first synthesizing a representing codebook using codewords

which are exemplars of combining sampled SIFT local descriptors. Consequently, a

video clip is characterized by mapping its SIFT feature points to a generated codebook;

and then, a histogram distribution is obtained. Compared to the original footage, this

compact representation preserves enough information for differentiation, only using a

small size in storage. In addition, random noise can be suppressed by using this proposed

frequency-based histogram representation.

With the large-scale dataset, efficiency and robustness of the codebook formation

have been important concerns for the BoW model. Heuristically, the larger the codebook

size, the better the classification results (with certain saturation limitations) [77, 78].

Different codebook sizes have been explored, ranging from several hundred [79, 80] to

thousands [17] to hundreds of thousands [77]. Since they all use different datasets, no

conclusions have been drawn to make a standard rule. In this article, choices of codebook

sizes are based on the empirical studies.

K-means clustering is utilized to generate a codebook by finding and appointing

cluster centers as codeword values. In a large-scale domain, satisfactory performance

has been reported using a top-down structure for categorization [81]. In that work, a

two-layer top-down structure is used for sports genre categorization. At the first-layer,

a general codebook (size 800) is generated using single K-means, in which a query video

is only categorized to one of the predefined bigger groups consisting of several genres.

Such a group is determined by those sports sharing similar semantics. At the second-

layer after the membership of the bigger group is identified, an individual codebook (size

200) for this bigger group is used to decide the video genre. For instance, judo and

boxing are combined into a bigger group named martial arts, where martial arts is used

as the first-layer candidate. Subsequently, Judo and Boxing are differentiated in the
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second-layer categorization. Although good classification accuracy has been reported,

efficiency and robustness are problems for such a method in terms of creating a general

codebook using single K-means clustering. This is because most computation of K-means

lies in calculating the distances between individual points to their cluster centers in each

iteration. A single K-means clustering using large-scale data is heavy in computation

and sometimes inaccurate due to K-means own limitations. Since more than 3 million

high-dimensional SIFT points are used for building the codebook in our application, one

single K-means clustering becomes inefficient.

Therefore, a two-level bottom-up structure is proposed in this work for efficient code-

book generation. At the bottom layer, individual genre codebooks are generated in

1st-level K-means clustering. At the upper layer, the 1st-level codebooks are used as the

input for the 2nd-level K-means to build the generic codebook. By using this bottom-up

structure, we reduce the heavy computation in measuring individual point-to-cluster-

center distance in the K-means algorithm. Moreover, since the 1st-level K-means are

independent from each other, distributed computing methods can be applied to further

reduce the computation time. The numerical analysis is referred to in Section 3.6.1.

Another advantage of bottom-up K-means clustering resides in the system update

and scalability. In the case of new genre videos added to the dataset, a codebook update

module is applied to find the new genre’s individual codebook. The result, together with

existing codebooks, is used to generate the new generic codebook by only re-running the

2nd-level K-means. In the case that new videos are imported for an existing genre, the

corresponding 1st level K-means is applied to achieve the updated individual codebook;

and then, 2nd-level K-means is re-run to update the generic codebook.

3.3.3 Low-level Genre Categorization

Related work

Video genre and its categorization was one of the earliest video analysis which drew

researchers’ interests. The main task of this genre categorization starts from a diverse

group of videos, such as sports, music, news, movies etc., and gradually moves to a more

discriminating categorization such as identifying the sports genres. Various works have

been highlighted as follows. However, a major and common disadvantage of these works

is their heavy dependency on domain knowledge.
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Fischer et al. [82] first proposed a classification method based on five different video

genres. Brezeale and Cook [83] provided an extensive survey in this field. Incorporating

the survey and most recent works, a concise summary is provided in Table 3.1. Color

features with C4.5 decision trees were used in [84]. Camera motion features with statis-

tical classifiers were chosen to classify six sports genre in [85]. A principal component

analysis (PCA) modified audio-visual feature was used to train a Gaussian mixture model

(GMM) classifier in [74]. Semantic shots (views) were used to help in genre categoriza-

tion in [86]. Motion and color, as well as audio features, were applied in [87]. Color

features with a hierarchical support vector machine (SVM) were used in [88]. High-level

MPEG-7 features were extracted and applied in multi-modality classifiers in [89]. The

best classification result at the moment has an accuracy of 95% using a dataset of eight

different genres [90]. These methods used various domain knowledge with supervised

classifiers to achieve the automatic genre categorizations.

As defined in [91], domain knowledge-based features can be divided into two cat-

egories, cinematic-based features and object-based features. The cinematic feature in-

volves middle to high level semantics from common video composition or production rules

such as shots/views or events, while object-based features are described by their spacial

properties, such as color, shape, and texture, as well as spatial-temporal-based object

motions. As Table 3.1 shows, all reviewed works are domain knowledge-dependent, ei-

ther object-based or cinematic-based. A lack of diversity, that is, the number of different

genres in the database, restricts these methods from generality.

Unsupervised genre categorization

In our proposed method, at the genre categorization stage, a query video is expressed

as a histogram Q that also uses the generic codebook and the BoW model. Then, a

k-Nearest Neighbor (k-NN) classifier is applied with a defined dissimilarity measurement

between the query Q and a trained individual genre P . Consequently, the query video is

identified as the genre whose distribution is closest to that of the query within measure.

Technical details are presented in Section 3.6.1.

By identifying the genre of this query video, subsequent processes are confined to

a focused group, and the scale of computation is decreased. Therefore, advanced and

sophisticated techniques can be used in middle/high-level video analysis. In the next
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step, training data is characterized by frequency-based histogram representation. The

individual genre is modularized as a distribution denoted by P using training data of its

own kind.

3.4 BoW-based Unsupervised View Classification

Once a video genre is identified, the next step is to achieve view classification of each of

the video frames in the query sequence. We present a literature review first, followed by

the proposed unsupervised method.

3.4.1 Related Work

We summarize related works so that readers can compare popular supervised means with

proposed unsupervised PLSA in this thesis. Additionally, there are only two works using

unsupervised techniques based on our study. We present them for completeness of the

review [92,93].

Although there may be different nomenclatures, the fundamental purpose of the

middle-level views(shots) is to involve certain production rules to aid in high-level tasks.

This frame-based label concept was first introduced by Xu et al., who defined three groups

of views: global, zoom-in, and close-up [73]. Ekin and Tekalp [6] used a slightly different

notation which includes long-shot, middle-shot, and close-up/out-of-field. Duan et al. [7]

used a finer view/shot group classification, supported by innovative semantic features.

These pioneering methods, along with other works such as [94–96] focus on using deci-

sion tree classifiers to link the low-level features to view/shot types. Xu et al. [73] and

Ekin et al. [6] applied color-based grass detector and field/object size to determine view

types. Incorporating previously mentioned features, Tong et al. [94] added head-area

detection, as well as a grey-level co-occurrence matrix(GLCM) to improve the decision

tree on classification. Wang et al. [95] used field region extraction, object segmenta-

tion and edge detection for view type decision making. Duan et al. [7] first extended

the research from single genre (soccer) to multiple genres (four sports) using individual

genre-based decision trees. Different from previous visual feature extraction methods,

Kolekar and Palaniappan [96] took a top-down approach. They first used audio features

to find exciting video clip. The motion features of the whole image volume along with the
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background color information are then utilized for view-type classification. Benmokhtar

et al. [97] took an approach on feature level fusion using dynamic PCA with informa-

tion coding neural-network (NN). At the classification level, another NN is used to fuse

multi-modality inputs. However, these supervised methods are limited by the labeled

data; and thus, constrained from being expanded to larger scales.

Some other researchers pursued unsupervised methods for view classification. Wang

et al. [92] proposed an information-theoretic co-clustering method, in which mutual in-

formation was maximized by treating shot classes and features as two random variables.

As a consequence, color histogram and perceived motion energy features are used with

a test set of four sports video genres. Zhong et al.’s method was inspired from spectral

theory conventionally used to solve segmentation problem in graph theory [93]. They

proposed a spectral-division algorithm to find the proper video shot clustering, which

were tested in three sports videos using the HSV space color feature. Although good

performances have been obtained in these methods, the extensibility and flexibility to-

wards diverse genres and large-scale datasets are very limited. This limitation is again

due to the domain knowledge dependency of the extracted features.

Table 3.2 compares the aforementioned methodologies from angles of feature utiliza-

tion and classification techniques. Color and texture are two major global features used

by most works. Duan et al.’s work is the only one that proposed middle level features

developed from low-level global features. The rest of the work either adopted additional

popular global feature schemes, such as audio feature or Gabor feature, as well as some

production rule-based features, or did not utilize any. While various global features are

used, none of the local features have been applied. Moreover, most of the supervised

methods (except Duan t al.’s work) focus on a single (soccer) sport, while unsupervised

techniques use various types of sports.

3.4.2 Unsupervised View Classification

This section introduces the middle-level view classification, where the previously built

BoW model is also used as feature representation. Since this work targets large-scale

videos, an unsupervised solution is more viable and applicable. Therefore, we chose to

use unsupervised probabilistic latent semantic analysis (PLSA)-based models. PLSA has

demonstrated promising results in analyzing co-occurrence data of words and documents
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in text retrieval [98]. From a matrix factorization point of view, PLSA belongs to a

subgroup called non-negative matrix factorization, where the factorized matrices are non-

negative [99]. Because the codebook paradigm with codewords is adopted in mapping

visual features to a probability-based histogram which has to be non-negative, PLSA

becomes a more suitable selection compared to other factorization techniques, such as

singular value decomposition or principle component analysis.

PLSA relies on the likelihood function of multinomial sampling and aims to reach

an explicit maximization of the predictive power of the model. Incorporating the PLSA

plate notation in Figure 3.3 with the view classification application, the observed state w

is defined as codewords with a predefined codebook of sizeM . An individual video frame

is denoted by d with a total number of training frames N . Latent state z is the view

type and parameter K is the total number of view classes, and in this work, K equals

four. The likelihood function is given in Equation (3.1). The probabilistic distribution is

defined as p(wi|dj), where wi is an individual codeword, and dj is a training frame. Such

distribution can be represented by a sum-of-product of two distributions, p(wi|zk) and

p(zk|dj). The former is interpreted as an impact on codewords by a view type, while the

latter is the probability of a particular view type given a training frame. The number of

codeword wi appearing in a frame dj is denoted as n(wi, dj). The argument of maximum

posterior (MAP) estimate z∗ is optimized by using an expectation maximization (EM)

as shown in Equation (3.2).

L =
M∏
i=1

N∏
j=1

p(wi|dj)n(wi,dj)

=
M∏
i=1

N∏
j=1

( K∑
k=1

p(wi|zk)p(zk|dj)
)n(wi,dj) (3.1)

z∗ = argmax
z
p(z|d) (3.2)

Since SVMs have demonstrated great performance in the field of classification, it is

adopted in our view classification task for comparison purposes. In general, supervised

models tend to yield better results but require predefined knowledge. A typical radial

basis function (RBF) is used as the non-linear kernel in SVM [100] and shown in Equation
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Figure 3.3: Illustration of the PLSA model in plate notation and its connection with
view type classification.

(3.3). In this equation, xi and xj represent the codewords, and γ is the kernel parameter

of the RBF.

K(xi, xj) = exp (−γ ∥xi − xj∥2), γ > 0. (3.3)

Four view types are defined, namely close-up-view, mid-view, long-view and outer-

field-view. This definition is also popular among other work in this field [6, 73, 101]. For

the PLSA-based model, the number of view types is required, while labeling effort is

not needed for individual frames. On the contrary, SVM-based models demand both

semantic predefined view types as well as all frames labeled with groundtruth, which

could be unaffordable when the video is large in size.

As a result of the view classification task, the query video sequence is labeled with

view types. In the next section, models which take labeled video sequence as input for

detecting interesting events are introduced.
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3.5 High-Level Event Detection

Content-based video event detection is among the most popular quest for high-level

semantic analysis. Different from video abstraction and summarization, which targets

any interesting events happening in a video rush, event detection is only constrained to a

predefined request type (such as the third goal or the second penalty kick in a particular

soccer match). In sports videos, a consumer’s interest in events resides in the actual

video contents, more than just the information delivered. For instance, a user wants to

watch particular goals in basketball games, or replays in soccer matches. S/he is not

only interested in the information like who/how/what, but more importantly, the visual

contents rendered from the sports clips. On the other hand, sports videos also have very

strongly correlated temporal structures. In a way, the structure can be interpreted as

a sequence of video frames which have patterns and internal connections. This pattern

is ubiquitous due to the nature of sports, a competition where players learn from the

standard in order to excel. Therefore, an intuitive approach is to find such patterns using

certain representation; and in turn, to learn the temporal structure. Luckily, the PLSA

algorithm provides such a labeled frame sequence. What we need is a clever technique to

analyze portions of the video and determine what structured prediction model to use. In

the following, we will first review the literature. Then, we will introduce a coarse-to-fine

scheme and hidden conditional random field (HCRF) for event detection.

3.5.1 Related Work

As one of the most popular semantic tasks in video analysis, event detection has been a

popular topic from the beginning of multimedia research. Despite different definitions of

event detection by different researchers, commonly acknowledged properties of an “event”

can be summarized as follows. An event occupies a period of time and is described using

salient aspects of the video sequence input, which consists of smaller semantic units or

building blocks [102]. Lavee et al. also summarized and classified event detection algo-

rithms into three categories: a) pattern-recognition models, b) semantic event models,

and c) state event models. Pattern-recognition models focus on direct classification from

low-level features, but lacks semantic linkage. Semantic models target high-level semantic

rules and constraints with domain-knowledge. These models require a lot of human in-
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volvement in creating rules and regulations using prior information. State models utilize

abstracted middle-level agents, as well as the intrinsic structure of the event itself.

By comparing these three categories of event modeling with examples in the literature,

we think that the pattern-recognition model is heavily dependent on classifiers, which

at the moment, are not intelligent enough to understand all semantics from low-level

features. On the other hand, the semantic model considerably relies on human expertise;

and thus, underestimates the accuracy and efficiency provided by classification tools.

From our experience, the state model incorporates the strength of pattern recognition at

low-level with classifiers at high-level so that it utilizes both feature extraction power and

classification intelligence. Moreover, the state model also accommodates an automatic

process and unsupervised learning, which reduces human input into the system. There-

fore, state event models are suitable for analyzing large-scale datasets, from both generic

and systematic point of views. A coarse-to-fine strategy fits well into such state event

models, by first roughly localizing the event with context information and then precisely

detecting the event using an advanced structure model.

Although we prefer the state event model for its natural fitness to the proposed

systematic approach in this work, two other models are still valued for their efficiencies

in analyzing sports videos and utilizations in applications. In the following, state-of-the-

art algorithms are summarized and compared.

Support vector machine (SVM) is a popular pattern-recognition model algorithm

[102]. Some groups use rich audiovisual features, such as face detection, scoreboard

information, and, geometry of the field, to find certain semantic events. Saldier and

O’Connor [103] used SVM to classify “scoring” events for four different field sports.

Xu et al. [104] analyzed tennis videos by using hierarchical-SVM applied on fused audio-

visual modalities. Similarly, Ye et al. [105] utilized middle-level view labels as well as shot

length and camera motion descriptors. An SVM-based incremental learning scheme using

updated data is proposed in detecting soccer events, along with a predefined temporal

structure. A similar method combining SVM and predefined temporal structure was

proposed by Li et al. [106], targeting basketball events using optical flow patterns.

Some semantic event models using rules and logic and semantic relationships are pre-

sented. Babaguchi et al. [107] used closed caption text streams with audiovisual features

and the intermodal correlation between them to search a ”touch down” event from four

hours of American football videos. Zhang et al. [108] also focused on superimposed cap-
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tion frames and used decision trees to decide the event, such as ”scoring” or ”last pitch”

for baseball games. Ekin et al. [91] incorporated production rules and soccer sport rules

to detect certain events such as ”goal”, ”referee”, and ”penalty-box”.

In terms of state event models, one of the earliest works targeting structures of videos

was from Nepal et al. [75], who empirically studied the temporal model in basketball

videos based on manual observation, using heuristic methods and low-level audio-visual

features. Duan et al. [101] also generated a temporal structure using multimodality with

heuristic experience on tennis events. Another approach of learning temporal structure

is from the data mining perspective, where Tien et al. [109] focused on a tennis match

event detection by creating a max-subpattern tree and learning the frequent patterns

from it.

Another important branch of state event models are structured prediction models such

as hidden Markov models (HMMs) and their variations, Bayesian networks, as well as

discriminative conditional random fields (CRFs). Zhang et al. [110] proposed an HMM-

based statistical method for classifying middle-level agents generated from web-casting

texts. Tong et al. [111] used Bayesian networks to classify “shoot” and “card” events

in soccer videos, by applying decision tree-based intermediate-layer concept units. Mei

and Hua [112] proposed an innovative mosaic-based middle-agent for key-event mining

using HMMs. Wang et al. [113] proposed a CRF model on detecting semantic soccer

events, and the performance turned out to be better than both SVM and HMMs. A

similar algorithm was also proposed by Xu et al. [114] using CRFs for basketball and

soccer event detection where a webcast text feature was obtained to achieve middle-level

concepts. An interesting event tactic analysis is proposed by Zhu et al. [76], which is

beyond the conventional event and adopts the cooperative nature and tactic patterns of

team sports. Extensive experiments have been conducted on soccer.

Table 3.3 provides a comparison of the aforementioned literature from a feature uti-

lization point of view. Most of the methods utilize multimodality schemes of features

input. By comparing the number of events processed, it appears that the state event

model has better scalability in examining various event scenarios. It is also interesting to

point out that local visual features have not been utilized in any of the methods. In ad-

dition, many of the methods, especially state event models, require middle-level semantic

agents to bridge the gap between the low-level features and the high-level events. Such

middle-level agents have to be labeled data. However, for the generic method presented

40



3.5. HIGH-LEVEL EVENT DETECTION
CHAPTER 3. VIDEO ANALYSIS USING THE BAG-OF-WORDS MODEL

in this work, we tackle event detection problem using the input obtained by unsupervised

learning and unlabeled data.

3.5.2 Hidden Conditional Random Field (HCRF) Model

Before learning the temporal patterns, a starting and entry point of an event needs to

be seized. A two-stage coarse-to-fine event detection strategy is suitable for this sce-

nario. The first stage is a rough event recognition and localization utilizing rich and

accurate text-based information either from web-casting text or optical character recog-

nition (OCR) techniques of the scoreboard update. In the second stage, precise video

contents associated with the semantic event have been detected in terms of event bound-

ary detection and accuracy analysis. The coarse-to-fine techniques have been proven

effective and accurate [115]. Web-casting text for coarse-stage event detection and video

alignment was studied and analyzed such as replaying scenes and various goal and shot

scenes detection in soccer video [116,117].

Since the proposed framework targets the generic learning model that can be extended

to large-scale datasets, we rely on visual content, that is, the local features extracted and

middle-level views classified from such features. To demonstrate the effectiveness of the

proposed model, we focus on a particular basketball score event detection. We adopted

the previously developed scoreboard update detection method for a coarse-stage process

in order to obtain the time-stamp [115]. The fine-stage process focuses on robust and

accurate visual content detection from the score event. The video sequence is analyzed

by distinguishing the actual score event from false alarm events, such as timeouts or

intermission, which are also concurrent with scoreboard information. We propose a

HCRF-based structured prediction model utilizing previously classified views, thereby

completing the generic approach. For example, the HCRF model can be used to detect

the score event in basketball for exciting events and highlights. Such an HCRF technique

belongs to the state event model defined in related works. Therefore, HCRF takes the

labeled sequences as input in a natural and seamless fashion. On the other hand, HCRF

is a comprehensive model which can be degraded to hidden Markov models (HMM) or

conditional random fields (CRF) with certain constraints. The merits of HCRF compared

with the other two models are its resilience and robustness with a combination of both

the hidden states and the Markov property relaxation. Technical details are examined
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in the following.

There are several advantages of using HCRF in large-scale datasets, rather than

HMM, or CRF models. First, HCRF relaxes the Markov property, which assumes that

the future state only depends on the current state. In our generic framework, video

frames are uniformly decimated and sampled, regardless of the temporal pace of the

video itself. In some cases, several consecutive frames have the same labeling, while in

other cases, different labels are assigned. Markov property-based models such as HMM

are appropriate for the former scenarios, but not suitable for the latter ones, since the

future state in HMM only cares about the current state label, but not previous states.

On the other hand, HCRF is flexible and takes surrounding states from both before and

after the current state. Thus, HCRF is more robust for dealing with large-scale homo-

geneous processes and uniform sampling with no prior knowledge. For instance, if a key

frame immediately preceding the current state is missed due to uniform sampling, such

information loss could be compensated by including and summing up distant informa-

tional frames (both previous and future) from uniform sampling without misclassifying

the event.

Second, HCRF has merit in its hidden states structure, which helps to relax the re-

quirement of explicit observed states. This relaxation property is also an advantage in

dealing with large-scale uniformly sampled video frames. It is because of this configura-

tion, CRF model outputs individual result labels (such as event or not event) per state

and requires separate CRFs to present each possible event [114]. In HCRF, only one final

result is presented in terms of multi-class events occurring probabilities. From the point

of view of robustness, a CRF model can be easily ruined by semantically unrelated frames

due to automatic uniform sampling. A multi-class HCRF, on the other hand, can correct

the error introduced by such unrelated frames using probability-based outputs [118].

Moreover, HCRF is also appealing for allowing the use of not explicitly labeled train-

ing data with partial structure [118]. From the literature, HCRF has been successfully

used in gesture recognition [118,119] and phone classification [120].

Figure 3.4(a) illustrates an HCRF structure in which label y ∈ Y of event type is pre-

dicted from an inputX. This input consists of a sequence of vectorsX = x1,x2, ...,xm, ...,xM ,

with each xm representing a local state observation along the HCRF structure. In order

to predict y from a given input X, a conditional probabilistic model defined in [118] and

in Equation (3.4) is adopted. In the equation, model parameter θ is used to describe the

43



CHAPTER 3. VIDEO ANALYSIS USING THE BAG-OF-WORDS MODEL
3.5. HIGH-LEVEL EVENT DETECTION

local potential function ψ, which is expanded in Equation (3.6). A sequence of latent

variables h = h1, h2, ..., hm, ..., hM are also introduced in Equation (3.4), which are not

observable from the structure of Figure 3.4(a). Each hm member of h corresponds to a

state of sm. The denominator Z(X; θ) is the normalization factor, which is expanded in

Equation (3.5).

P (y|X, θ) =
∑
h

P (y,h|X, θ) =
∑

h e
ψ(y,h,X;θ)

Z(X; θ)
(3.4)

Z(X; θ) =
∑
y′,h

eψ
(
y′,h,X;θ

)
(3.5)

ψ(y,h,X; θ) =
∑
t

∑
k

θ1kf
1
k (y, ht,X) +

∑
t

∑
k

θ2kf
2
k (y, ht−1, ht,X) (3.6)

In the event detection application, each xm from X is a vector descriptor called

local observation. In the notation, the xm value at a time t is defined as xm(t) =

[pws1(t), pws2(t), pws3(t), pws4(t), pwc(t)], with each entry of xm(t) calculated from an av-

erage result of a sliding window centering at time t, as Figure 3.5 shows. The first four

entries of xm(t) are the probabilities of four possible view types, where pwsj=1,2,3,4
(t) as-

sociates with close-up-view, mid-view, long-view, and outer-field-view by j = 1, 2, 3, 4

respectively. The fifth pwc(t) value is an associated directional motion descriptor, intro-

duced by Tan et al. [121]. The formula to calculate the average values at time-stamp t

are given in Equation (3.7), where individual frame-based probabilities are psj=1,2,3,4
and

pc.

pwsj(t) =
1

N

t+N/2∑
τ=t−N/2

psj(τ) with j = 1, 2, 3, 4

pwc(t) =
1

N

t+N/2∑
τ=t−N/2

pc(τ) (3.7)

A label and training sequence pair is defined as (yi,Xi) with the index number i =

1, 2, ..., n. For each pair, yi ∈ Y and Xi = xi,1,xi,2,xi,m, ...,xi,M are the event label

and observed states as Figure 3.4(a) depicts. For instance, xi,m is interpreted as the
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(a) HCRF (b) CRF

(c) HMM

Figure 3.4: Structured prediction models: (a) hidden conditional random field (HCRF);
(b) conditional random field (CRF); (c) hidden Markov model (HMM).

mth sampled time state of the ith training sequence, where xi,m(t) = [pi,ws1(t), pi,ws2(t),

pi,ws3(t), pi,ws4(t), pi,wc(t)].

During HCRF training, parameters θ1k and θ2k need to be learned. As Equation (3.6)

shows, θ1k and θ
2
k are coefficients for the state feature function f 1

k , which contains a single

hidden state, and the transition feature function f 2
k , which involves two adjacent hidden

states, respectively. In order to find the optimal parameters, a log-likelihood objective

function is used, as shown in Equation (3.8), with a shrinkage prior (the second term in the

equation) in order to avoid the excessive parameter growth. A limited-memory version of

the Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton gradient ascent method

[122] is applied to find the optimal θ∗ = argmax£(θ). The L-BFGS algorithm is chosen

due to this method’s efficiency and performance from both theory [123] and application

[114].

During the optimization process, the conditional probability in Equation (3.8) is

substituted by the explicit form in Equation (3.4) to get Equation (3.9). Then, partial

derivatives of a training sample £i(θ) with respect to θ1k and θ
2
k are derived in Equations

45



CHAPTER 3. VIDEO ANALYSIS USING THE BAG-OF-WORDS MODEL
3.5. HIGH-LEVEL EVENT DETECTION

Figure 3.5: HCRF input shown in Equation (3.7), by sliding window average result on
view types of decoded image sequence.

(3.10) and (3.11), respectively.

£(θ) =
∑
i

log p(yi|Xi, θ)−
1

2δ2
∥θ∥2 (3.8)

£(θ) =
∑
i

log

(
1

Z(Xi; θ)

∑
h

eψ(yi,h,Xi;θ)

)
− 1

2δ2
∥θ∥2 (3.9)

∂£i(θ)

∂θ1k
=

∑
t

P (ht|yi,Xi)f
1
k (yi, ht,Xi)

−
∑
t,y′

P (ht, y
′|Xi)f

1
k (y

′, ht,Xi) (3.10)

∂£i(θ)

∂θ2k
=

∑
t

P (ht−1, ht|yi,Xi)f
2
k (yi, ht−1, ht,Xi)

−
∑
t,y′

P (ht−1, ht, y
′|Xi)f

2
k (y

′, ht−1, ht,Xi) (3.11)

3.5.3 Comparison with Conditional Random Field (CRF) and

Hidden Markov Model (HMM)

For comparison purposes, we also utilized conventional CRF models as depicted in Figure

3.4(b). By following definitions in [124], the conditional probability function is shown in

Equation (3.12), with the normalization factor in Equation (3.13). The potential function
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is defined in Equation (3.14), where vj(Yt−1, Yt,x) is a transition feature function between

state positions t and t−1 within the observation sequence; while sk(Yt,x) is a state feature

function at state position t. Parameters λj and µk are estimated for transition and state

feature functions, respectively.

P (Y|x) = 1

Z(x)
· exp

(∑
t=1

F (Y, x, t)

)
(3.12)

Z(x) =
∑
Y ′

exp

(∑
t=1

F (Y ′,x, t)

)
(3.13)

F (Y,x, t) =
∑
j

λjvj(Yt−1, Yt,x) +
∑
k

µksk(Yt,x) (3.14)

The HMM algorithm is also provided in Equation (3.15) and depicted in Figure 3.4(c).

P (Y |X) = P (X, Y )/P (X)

=
∏
t

P (Xt|Yt) · P (Yt|Yt−1) (3.15)

The aforementioned three structured prediction models use different decision-making

schemes for the final event detection. For the HMM, the query sequence is tested. The

highest likelihood of the HMM provides the final decision in event detection. On the

other hand, in the CRF model, since each state variable Y (t) requires a label, as Figure

3.4(b) shows, a majority-rule voting scheme in which the most event labels along the Y

sequence decide the event result. For the HCRF model depicted in Figure 3.4(a), a multi-

class training process recognizing all classes at the same time is adopted. Therefore, a

detected event with the highest probability is considered the final result for the query

sequence.

3.6 Experiments and Results

In the following section, experimental results are presented to justify the properties of

the proposed generic framework, specifically using a relatively large-scale video collection
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that includes 23 genres with a total of 145 hours gathered by the authors and his co-

workers, named the 23-sports dataset. To our best knowledge, this dataset is the most

diverse in video genres, collected from both the internet and television. All the video

clips have the same length of 167 seconds with a total of 500 uniformly sampled frames

at a sampling rate of three frames per second. This dataset is composed with 3,122 clips.

In training, 1,198 clips are used, in which a subset of 46 clips (2 clips per sport) are used

in codebook generation with a total of 3,112,341 SIFT points. In testing, the other 1,924

clips are selected.

Various codebook sizes were studied at first. Then, the proposed system was evaluated

in three experiments, with a particular event detection as its ultimate measurement: (1)

genre categorization using the proposed bottom-up codebook generation is analyzed; (2)

view classification results are assessed and compared using both supervised and unsuper-

vised classifiers; (3) finally, the coarse-to-fine event detection is examined by investigating

the basketball score event. The validity on the score event detection can be extended to

other event scenarios with labeled video sequences. The detailed argument can be found

in Section 3.6.3.

To investigate the codebook size effectiveness, a subset of the 23-sports dataset of

14 sports was used. The clip numbers of these sports range from 70 to 106, averaging

87, while each individual clip is a uniform 167 seconds in length. Two experiments were

conducted on the codebook size selection for genre categorization and view classification,

respectively. For genre categorization, the average accuracy performance of all sports as a

function of different codebook sizes is shown in Figure 3.6(a). The plot reaches a plateau

after codebook size 800, and starts to drop at codebook size 1,500. For view classification,

the accuracies of individual sports as a function of different codebook sizes are shown

in Figure 3.6(b). Although various accuracy levels are observed for each sport, the

individual performance follows a similar plateau trend. Based on these empirical studies,

it is concluded that the performances are proportional to codebook sizes, with stable

results at codeword ranges of 800–1500 and 800–1000 for genre categorization and view

classification, respectively. This study is also consistent with existing research [58,77,78].

In the following experimentation for genre categorization with a total of 23 sports types,

it is predicted that the codebook size should be bigger than in the tested 14 sports case.

Therefore, a codebook size of 1,600 is chosen, and a codebook size of 800 is also applied

as a comparative analysis. For view classifications involving 14 sports, a codebook size
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(a)

(b)

Figure 3.6: Empirical studies on codebook size selection. (a) Average sports accuracy
performance for genre categorization. (b) Individual sport accuracy performance for view
classification.
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of 800 is selected.

3.6.1 Genre Categorization Using a K-nearest Neighbor (k-

NN) Classifier

In genre categorization, a K-nearest neighbor (k-NN) classifier is applied. Three differ-

ent dissimilarity measurements are compared, including Euclidian distance (ED), earth

mover’s distance (EMD), and Kullback-Leibler divergence (KL-div). ED is used for

measuring the spatial distance in Euclidian space in between two histograms. EMD is

a distance function for achieving the minimal cost in transforming one histogram into

the other [125]. The KL-div is a non-symmetric measurement between two probability

distributions Q and P defined as DKL(Q||P ) =
∑

i qi · ln(qi/pi) [126]. In this work, qi

and pi are individual codewords for the query video Q and the trained genre model P ,

respectively.

Before accuracy performance analysis on genre categorization, codebook generation

schemes are examined by comparing both the proposed two-level bottom-up (BU) struc-

ture and the baseline single K-means (SK) clustering method [126]. As pointed out

by Jain et al. [127], K-means clustering is considered a partitional algorithm using the

squared error to reach the optimum solution. The sum of squared errors (SSE) is a widely

used criterion function for clustering analysis, which quantitatively measures the total

difference between all individual points to their clustering centers [126]. An SSE devia-

tion percentage δdev is defined in Equation (3.16). Let ξBU and ξSK represent the SSEs of

the bottom-up clustering and the single K-means clustering at the end of each algorithm,

respectively. The numerator is the absolute value of the difference between ξBU and ξSK ,

and the denominator is ξSK . As Table 3.4 shows, the SSE deviation percentages at code-

book sizes of 800 and 1,600 are 1.4% and 3.7%, respectively. Thus, we can conclude that

in using the bottom-up structure instead of the single K-means clustering for codebook

generation, the deviation of SSE is trivial.

δdev =
| ξBU − ξSK |

ξSK
· 100% (3.16)

Codebook computation effort of the bottom-up structure is also compared with single

K-means clustering in Table 3.4. Both bottom-up and single K-means clustering are
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Table 3.4: SSE deviation percentage δdev and computation time in codebook generation
using bottom-up (BU) and single K-means (SK) structures.

Codebook cb
BU

cb
SK

cb
BU

cb
SK

Size =800 =800 =1600 =1600
δdev 1.4 % 3.7 %

Computation 4hrs 350hrs 9hrs 648hrs

employed on a single Quad CPU at 2.40GHz with 4.0G RAM machine, in which the

bottom-up is only simulated as parallel computing in a serial sequence. To generate a

codebook with size 800, the single K-means clustering uses 350 hours, while the bottom-

up clustering only takes four hours. When the codebook size is doubled to 1,600, the

computation for single K-means and bottom-up clustering are 648 hours and 9 hours,

respectively. With a truly distributed processing environment using multiple computers,

bottom-up processing time will be further reduced. This comparison of computational

complexity demonstrates that our generic framework using robust bottom-up clustering

for codebook generation can replace the single K-means in dealing with large-scale and

diverse datasets.

For the accuracy performance using k-NN and various dissimilarities, Table 3.5 shows

the average genre categorization results for 23 different sports. The proposed bottom-up

codebook generation manifests a better and more robust performance than single K-

means codebook generation in both EMD and KL-div measurements. By comparing the

row-wise’s dissimilarities, the bottom-up structure is more consistent with codebook sizes

of 800 and 1600. On the contrary, the single K-means codebook generation is unstable

for both histogram and mLDA-based distributions. For instance, the performance at

a codebook size of 800 using EMD has about a 7% increment from ED dissimilarity

(75.33% vs. 68.31%), while the counterpart at a codebook size of 1,600 using EMD has

dropped 1.1% from ED dissimilarity (64.28% vs.65.39%). One reason is that the single

K-means clustering on over 3 million input SIFT points hardly reaches the optimal value.

As a summary, KL-div performs the best among three dissimilarity measures. Using the

bottom-up structure, results of the codebook size 1,600 outperform the cases with size

800 in all measurements with consistency. Oppositely, single K-means clustering results

are not consistent.
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Table 3.5: Average categorization results (%) of 23-sports data with codebook size 800
and 1,600.

Measurement ED EMD KL–div
cb

BU
=800 61.54 75.80 78.59

cb
SK

=800 68.31 75.33 73.49
cb

BU
=1600 65.68 78.94 82.16

cb
SK

=1600 65.39 64.28 75.75

Note: BU: codebook generated using bottom-
up structure. SK: codebook generated using
single K-means structure.

Another merit of the bottom-up structure is its preservation of individual genre char-

acteristics from the 1st-level K-means. On the contrary, single K-means codebook gen-

eration covers all the data; thus, a weakly distinguishable genre is easily overruled by a

strong one. This reasoning explains why with the increase of codebook size from 800 to

1,600, the bottom-up process has about a 4% improvement for KL-div, while the single

K-means process has only a 2% increment for KL-div.

The individual sport genre classification result is illustrated in Figure 3.7. On average,

a codebook size of 1,600 gives an average of 3.6% higher than the codebook size of 800,

which corresponds with the empirical studies from other research groups [58,78].

To evaluate the generic and extensive properties of our proposed method, experimen-

tal results on the 23-sports dataset are compared with results in Li et al.’s work [81],

where a top-down process was adopted using single K-means as its top layer general

codebook. The best performance in two-layer and single-layer structures are 83.83%

and 81.2%, respectively [81]. In their work, speeded up robust features (SURF)-based

method is adopted. Similar to SIFT, SURF is also a scale and rotation-invariant interest-

ing point feature extraction algorithm, which focuses on the computational efficiency [30].

Although SURF and SIFT adopt different key points detection techniques, these two de-

scriptors are comparable in characterizing local features of sampled frames from a video

sequence. Therefore, such a comparison is valid in genre categorization performances,

regardless of the feature extraction difference. Considering the increment of data in scale

about 27% (145 hrs vs. 114.2 hrs), and in variety about 64% (23 genres vs. 14 genres),

using the bottom-up structure with a codebook size of 1,600 and KL-div measurement,
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Figure 3.7: Genre categorization for the 23-sports dataset with codebook sizes of 800
and 1600.

our experimentation provides comparable results of 82.16%, with a degradation of 1.67%.

Although the performance is maintained on average, we also observed that the indi-

vidual performance has been fluctuating. This fluctuation is mainly due to the nature

of the adopted k-NN classifier, where distance-based measurement can be overruled by a

strong representation in a large and sparse dataset. We acknowledge that k-NN may not

be the most robust algorithm towards the very large-scale dataset. However, the k-NN

is an efficient method in batch processing. It can be used as a coarse and preliminary

execution to quickly prune off the large portion of the irrelevant data.

From a different perspective, generic properties of the proposed method are assessed

using various video clip lengths and frame sampling methods. As detailed in Table 3.6,

better performance is acquired using longer lengths of video clips, while a generic and au-

tomatic uniform sampling method outperforms the key-frame sampling. It is because the

proposed method is based on local key-point descriptors. Therefore, a longer video clip

with denser sampling frames provides more key-points and consequently builds a better

distribution than a shorter clip with less sampled key-frames/shots. Such experimenta-

tion demonstrates the merit of our proposed generic method towards a truly large-scale

dataset.
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Table 3.6: Genre categorization accuracy between various video clips with uniform
sampling-based and key-frame/shot-based methods.

3 Minutes Clip 10 seconds Clip
Uniform Key-frame/ Uniform Key-frame/
Sampling Shot Sampling Shot
83.83% 79.41% 71.90% 63.10%

Figure 3.8: View type classification using supervised SVM and unsupervised PLSA. First
two columns are with codebook size 800 for 14 sports.

3.6.2 View Classification Analysis Using Supervised SVM and

Unsupervised PLSA

Experiments in this section focus on middle-level view classification by utilizing extracted

low-level histogram-based representations. A subset of 14 sports of all 23 sports was used

as test data. Figure 3.8 compares both supervised SVM and unsupervised PLSA results

as the 1st and 2nd columns, respectively. On average, supervised SVM has a classification

accuracy of 82.86%, and unsupervised PLSA has an average of 68.13%, in which the SVM

technique outperforms the PLSA algorithm by 14.73%.

It needs to be pointed out that this evaluation is based on predetermined semantic

view types, which are in favor of the SVM algorithm. It is because such a semantic

definition has become considerably involved in SVM training, while barely being used

in PLSA training. In the SVM method, labeled training data associated with each
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predefined view type are indispensable for building the classifier. On the other hand, the

PLSA model training merely requires a specified number of view types, which is similar to

the number of clusters needed for training a K-means clustering. Thus, it is anticipated

that the supervised SVM method will have better performance than the unsupervised

PLSA algorithm.

However, the PLSA model is advanced in its unsupervised characteristics such that

the labeled data is not necessary in training. This feature makes the PLSA more suitable

than the SVM and significant in supporting the generic framework dealing with large-scale

datasets, where automatic processes and minimum human and expertise interventions

are essential. For evaluating our proposed framework, a trade-off in the classification

accuracy can be afforded, if the ultimate event detection results are comparable using

either the PLSA or the SVM view results.

In order to analyze the generic and scalable properties, a subset with small-scale

five-sports dataset is applied, including {soccer, basketball, volleyball, table tennis, ten-

nis}. The SVM and PLSA view classification performance of this small-scale dataset is

presented in the 3rd/4th columns of Figure 3.8, respectively. The baseline on the small-

scale data, the 14-sports, has a 0.27% performance drop in SVM and an improvement of

1.76% in PLSA. With similar results, compared with the five-sport small-scale data, the

14-sport view dataset has a lot more data in both variety and volume.

Based on the preceding analytical results, the extrapolated performance from this

current relatively large-scale dataset to a truly large-scale dataset should be maintained,

especially for the PLSA method. The reasoning is twofold: first, large-scale data is

normally sparse; PLSA, as a generative model, has a characteristics in probabilistically

mapping data from a high-dimensional space to a low-dimensional space. Hence, more

information brought by the new data can help in finding significant representatives in

the lower dimensional space. Second, since the number of view classes are fixed at four

types, more variety and volume will not affect the performance much.

Additionally, a knowledge transfer property is investigated by using the same five-

sport dataset. It can be seen that an individual sport from insufficient resources {basketball,
volleyball, table tennis, tennis} can be assisted by borrowing the codebook from an abun-

dant sport resource {soccer}. As Figure 3.8 depicts, these limited-source four sports in

the 5th/6th columns, the codebook transfer mechanism has improved about 2.07 % and

5.05% for the SVM and PLSA on average, respectively. The margin of improvement
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using the PLSA is bigger than its counterpart in SVM. This result can be explained

by the nature of two different techniques. PLSA is a probabilistic-based dimensional

reduction technique. Therefore, more data will provide a more thorough characterization

of the low-dimensional model. On the contrary, SVM is a technique mapping from a

low dimensional space to a higher dimensional space. More information brought by the

codebook may be overwhelmed by the SVM process and may not necessarily provide a

better classification in the higher-dimensional space. Therefore, such a knowledge trans-

fer property could help the unsupervised PLSA in further improving its performance for

sports with scarce resources.

3.6.3 Event Detection Using Coarse-to-fine Scheme and HCRF-

based Structured Prediction Model

In previous experiments, the proposed framework provides an application to identify

video genres by directly utilizing domain knowledge-free SIFT descriptors and a BoW

model. After the genre is determined, individual frames of the query video sequence

are labeled by the middle-level semantic views via either supervised or unsupervised

classifiers. In this experiment, the task on basketball score event detection is investigated

by employing this labeled video sequence. A two-staged coarse-to-fine scheme is adopted

that first detects scoreboard information change, introduced by Miao et al. [115]. By

adopting this technique, an entry point of an interesting event is located. However,

this coarse detection only provides a static frame-based rough estimation as an entry

point. Since scoreboard information not only appears in score events, but also in time-

out events or intermission events, individual frame-based detection without temporal

structured information cannot provide robust and satisfactory results. Therefore, a fine-

tuning process in finalizing detection is adopted to ensure that the query video truly

conveys the score event as its semantic theme. The proposed HCRF model is deployed

as the fine-tuning process after the first-stage coarse detection. Experimental results

using this HCRF model are compared with CRF and HMM baselines.

Two video groups consisting of four matches are utilized, which are defined as (a)

Dataset A: using two NBA games for training and using another two Olympic Games for

testing; (b) Database B: using one NBA game for training and using another NBA game

for testing. Frame-based views from the PLSA model and the SVM model are applied to
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Table 3.7: Precision and recall results of basketball score events detection at the first
(coarse) stage.
Correctly Detected Score Detected Score Correct Total Score Precision Recall

(true positive) (correct result) (obtained result) (%) (%)
231 251 268 92.03 86.19

Figure 3.9: Current state influenced by surrounding observed states.

Dataset A and B. Therefore, four combinations of view labels and datasets are defined

as PLSA + A, PLSA + B, SVM + A, and SVM + B. Each video clip used in both

training and testing is automatically decimated and consists of 500 uniformly sampled

frames. We use a window size N = 20, which is introduced in Figure 3.5 and Equation

(3.7) from Section 3.5, with a window N sliding every ten frames. The final number of

the states sequence for HCRF is thus calculated as 49 = 500/(20− 10)− 1.

The number of approximated events detected after the first stage is given in Table

3.7. The precision and recall of the coarse-stage basketball score detection are 92.03%

and 86.19% respectively. In the second stage, the proposed HCRF-based model and

state-of-the-art HMM and CRF models are evaluated and compared. The advantage of

HCRF over HMM is its relaxation on the Markov property that the current state St

can be inferred from both current observations, as well as surrounding observations, as

illustrated in Figure 3.9. In the experiment, the circumferential range number is selected

at ω = 0, 1, 2. As shown in Table 3.8, the HCRF has better performance than the

CRF for the same ω values, while both models outperform the HMM baseline. When

using different ω values for both CRF and HCRF, ω = 1 provides better results than

ω = 0, in which neighboring information assists in better decision-making. However,

when ω = 2 is used for HCRF, the performance has been dropped for all cases compared

with ω = 1. This performance degradation can be viewed as an overfitting issue, in which
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Table 3.8: Performance comparison on score event detection in basketball.
Accuracy

Dataset A (NBA/Olympics) Dataset B (NBA/NBA)
SVM+A (%) PLSA+A (%) SVM+B (%) PLSA+B (%)

HMM ω = 0 78.28 75.29 87.50 85.94
CRF ω = 0 78.16 74.57 87.43 86.52
CRF ω = 1 79.52 76.82 88.52 87.89
HCRF ω = 0 80.93 75.53 90.00 90.77
HCRF ω = 1 83.26 80.24 93.08 92.31
HCRF ω = 2 82.09 77.88 91.46 91.77

Note: Dataset A: NBA matches as training, Olympic matches as testing. Dataset
B: NBA matches for both training and testing.

adding more surrounding information limits the structured prediction ability. A similar

overfitting problem is also observed in gesture recognition research using HCRF [118].

In summary, the proposed HCRF-based model with parameter ω = 1 outperforms both

CRF and HMM models. The best results are obtained at 93.08% and 92.31% by taking

SVM-and PLSA-based input labels, respectively.

On the other hand, by comparing the proposed PLSA with SVM benchmark, perfor-

mance discrepancy of the event detection has been shortened, despite the input view clas-

sification (as shown in Figure 3.8) has PLSA (70.14%) outperformed by SVM (82.00%)

with 11.86%. For Dataset A, the average difference shows that SVM outperforms PLSA

by 3.65%, while in Dataset B, such a difference is only 0.47%. This tolerable difference

demonstrates the robustness and resilience of structured prediction models in accommo-

dating poorly labeled video sequences from PLSA, yet achieving comparable performance

with those labeled sequences from SVM. Therefore, the event detection presented in this

work achieves similar results by both unsupervised and supervised learning. However,

due to PLSA’s reduced human involvement, the unsupervised classifier is preferred in

large-scale video analysis.

Experimental result discrepancies using Dataset A and Dataset B are also compared.

Although both datasets belong to basketball, Dataset B (with NBA matches for both

training and testing) outperformed Dataset A (with NBA matches for training and

Olympics matches for testing) by 10.9% on average. It suggests that albeit Datasets
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A and B are of the same genre and event detection task, a significant difference exists.

Such a difference can be explained by assuming that NBA and international basketball

(FIBA) are two different styles of the same genre. In terms of computer vision and struc-

tured prediction, NBA and FIBA have related but different temporal patterns even in

the same semantic event. Thus, by training/testing in the same style, it is expected to

have a better detection rate than training/testing using different styles. This is also an

example of the semantic gap–that semantic event recognition with discrepant conditions

is still not perfect.

Although there is only one event detection example discussed, it is believed that the

method can be extended and generalized to a bigger pool of event scenarios. The reason

is fourfold: First, the experiment data of the basketball score event are multi-source and

non-simplex. Videos are collected from both internet and TV recordings, and there are

different production rules of NBA and Olympics basketball. Second, the video represen-

tation module using local features and the BoW model is domain knowledge-free and with

no production rules involved. Such a generic approach has been proven to be effective in

genre categorization of 23 sports, view classification of 14 sports, and the basketball score

event. Third, the event detection algorithm utilizing HCRFs, as well as baseline HMMs

and CRFs are structured prediction models and belong to the category of state event

model. By comparing the number of events analyzed using different event models from

Table 3.3, the state event model, a recently popular approach in literature, is capable

in handling more events than the other two model types (i.e. patten-recognition model

and semantic event model). In addition, among the state event models, most methods

utilize middle-level semantic agents. In our work, the adopted four-category view type

definition is one of the most popular classification schemes in literature. Last and most

important, the input of our event detection model is a sequence of labeled views which is

the result of a domain knowledge-free method (either PLSA or SVM), using generic video

representation. With better accuracy achieved by the proposed HCRF-based model than

baselines HMM- and CRF-based models, the performance should be maintained with

other labeled sequences which could form various event scenarios. Moreover, utilizing

sequences labeled by the middle-level agents as input, is also popular among peers’ work

with state event models [110,111,113,114].
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3.7 Summary

This chapter introduces the BoW model, with its incorporation of unsupervised learning

algorithms, in analyzing large-scale video dataset generically and systematically. Three

video tasks are investigated in a coherent and sequential order. After processing all

data indifferently at the feature extraction stage using domain knowledge-free local SIFT

descriptors, video sequences are represented by utilizing compact and concise BoWmodel.

Then, a systematic scheme is employed for interesting event detection, by taking the

video sequence as query. In this framework, after its genres identified using a k-NN

classifier, the query video is evaluated by a semantic view assignment as the second stage

using the PLSA model. Both genre identification and view classification tasks utilize

the initially processed video representation as input, and unsupervised algorithms as

classifiers. Finally in the third task, the interesting event is detected by feeding the view

labels into an HCRF-structured prediction model.

Overall, this framework demonstrates the efficiency and generality in processing vo-

luminous data from a large-scale sports collection and achieves various tasks in video

analysis. The effectiveness of the framework is justified by extensive experimentation

and results are compared with benchmarks and state-of-the-art algorithms. As a con-

clusion, with little human expertise and effort involvement in both domain knowledge-

independent video representation and annotation-free unsupervised view labeling, the

proposed generic and systematic method using the BoW model is promising in process-

ing videos, and has the potential for even larger and more diverse datasets.
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Chapter 4

Interactive Mobile Visual Search

and Recommendation Using the

Bag-of-words Model

4.1 Introduction

The bag-of-words (BoW) model and its application in content-based retrieval has shown

promising results in desktop-based visual searches. In this chapter, we present a mo-

bile visual search algorithm by combining the BoW model’s merit with user interaction

through a mobile platform. We proposed an innovative context-aware search-tree based

on the BoW paradigm, which includes both user specified region of interest (ROI) and

surrounding pictorial context. There is a mutual benefit by combining the visual search

using the BoW model with mobile devices.

From a retrieval point of view, although the BoW model has shown promising results

in desktop-based visual searches for large-scale consortia, it also suffers a semantic gap.

The BoW model is limited by its homogenous process in treating all regions without

distinction. Features are extracted homogeneously, and local features are treated without

emphasis. Therefore, information provided by a query image without priority can mislead

the computer vision algorithm for recognition. Hence, to have a better retrieval result,

there is a need to orderly utilize local visual information. Multi-touch screen and its

user interaction on mobile-devices offer such a platform for users to select their ROIs as
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prioritized information, with surrounding context as secondary information.

From a mobile application perspective, visual search via image query provides a pow-

erful complementary carrier besides conventional textual and vocal queries. Compared

to conventional text or voice queries for information retrieval on-the-go, there are many

cases where visual queries can be more naturally and conveniently expressed via mo-

bile device camera sensors (such as an unknown object or text, an artwork, a shape or

texture, and so on) [128]. In addition, mobile visual search has a promising future due

to the vital roles mobile devices play in our life, from their original function of tele-

phony, to prevalent information-sharing terminals, to hubs that accommodate tens of

thousands of applications. While on the go, people are using their phones as a personal

concierge discovering what is around and deciding what to do. Therefore, the mobile

phone is becoming a recommendation terminal customized for individuals—capable of

recommending contextually relevant entities (local businesses such as a nearby restau-

rant or hotel) and simplifying the accomplishment of recommended tasks. As a result,

it is important to understand user intent through its multi-modal nature and the rich

context available on the phone.

Motivated by the above observations, this chapter presents an interactive search-based

visual recognition and contextual recommendation using the BoW model. Smart-phone

hardware such as camera and touch screen, are taken advantage of in order to facilitate

expressions of user’s ROI from the pictures taken. Then, the visual query along with such

a ROI specification go through an innovative contextual visual retrieval model to achieve

a meaningful connection to database images and their associated rich text information.

Once the visual recognition is accomplished, associated textual information of retrieved

images are further analyzed to provide meaningful recommendations.

An actual system codename TapTell is implemented based on the proposed algorithms

and methodologies. A natural user interaction is proposed to achieve the Tap action, in

which three gestures are investigated (i.e., circle, line, and tap). We conclude that the

circle (also called “O” gesture) is the most natural interaction for users, which integrates

user preference to select the targeted object. We adopt the BoW model introduced in

Chapter 2 and propose a novel context-embedded vocabulary tree. The algorithm incor-

porates both ROI visual query and the context from surrounding pixels of the “O” region

to search similar images from a large-scale image dataset. Through this user interaction

(i.e., “O” gesture) and the BoW model with our innovative algorithm, standard visual
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recognition can be improved. The Tell action is accomplished by recommending relevant

entities based on recognition results and associated metadata.

The novelty of the chapter lies in the following aspects:

• We adopt the BoW model and propose a context-aware visual search algorithm in

which a novel context-embedded vocabulary tree (CVT) is designed. The algorithm

is able to achieve better visual recognition performance by embedding the context

information around the “O” region into a standard visual vocabulary tree.

• Based on the proposed context-aware visual recognition, we implemented a real sys-

tem TapTell to understand users’ visual intents. The goal is to provide a contextual

entity suggestion for activity completion that provides meaningful and contextu-

ally relevant recommendations. We utilize the advances of touch screen technology

provided at the mobile platform and introduce human experts in loop for a better

visual search. We investigate three different kinds of gestures for specifying object

(and text) of interest by a user study. We conclude that “O” provides the most

natural and effective way to interactively formulate user’s visual intent and thus

reduce ambiguity. After obtaining the recognition results, we propose a location-

aware recommendation which suggests relevant entities for social task completion.

In the following, an interactive mobile visual search using the BoW model and the

proposed CVT algorithm is first presented. A viable application, TapTell, is introduced

in detail to show how to accomplish meaningful contextually relevant recommendations

through mobile recognition. Experimental results are provided to demonstrate the effec-

tiveness of the proposed method.

4.2 BoW-Based Mobile Visual Search

This section presents the mobile visual search with proposed context-aware image re-

trieval using the BoW model. Section 4.2.1 introduces the literature and industrial

developments of mobile visual search. Section 4.2.2 presents an overview of the proposed

algorithm. Finally, Section 4.2.3 presents the visual recognition by search using the BoW

model, with the help of both image context as well as sensory GPS information. Section

4.2.4 summarizes this section.
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4.2.1 Mobile Visual Search

Mobile Visual Search in Industry

Due to its potential for practicality, mobile visual search is one of the research areas

drawing extensive attention from both industry and academia. Table 4.1 summarizes

representative mobile visual search applications from industry. Different from the above

mentioned applications, the proposed system is innovative in terms of an interactive

gesture-based (using advanced multi-touch function) visual search system to help users

to specify their visual intent, with a consequent recommendation based on the visual

search results and contextual information. In this perspective, our system leverages

visual search results to formulate a second query to accomplish task completion on mobile

devices, which is significantly different from existing applications.

Mobile Visual Search in Academia

In academia, the workshop on mobile visual search has been gathering researchers and

engineers to exchange various ideas in this field [129]. Quite a few research efforts have

been put into developing compact and efficient descriptors, which can be achieved on

the mobile end. Chandrasekhar et al. developed a low bit-rate compressed histogram of

gradients (CHoG) feature which has a great compressibility [45]. Tsai et al. investigated

in an efficient lossy compression to code location information for mobile-based image

retrieval. The performance is also comparable with its counterpart in lossless compression

[130].

On the other hand, contextual features such as location information have been adopted

and integrated successfully into mobile-based visual searches. Schroth et al. utilized GPS

information and segmented searching area from a large environment of city to several

overlapping subregions to accelerate the search process with a better visual result [131].

Duan and Gao proposed a side discriminative vocabulary coding scheme, extending the

location information from conventional GPS to indoor access points as well as surround-

ing signs such as the shelf tag of a bookstore, scene context, and etc. [132].

Additionally, other researchers targeted practical applications and provided promising

solutions. Takacs et al. proposed a loxel-based visual feature to describe region-related

outdoor object features [133]. Chen and Tsai proposed methods on using image process-
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ing techniques to find book spines in order to index book inventories based on bookshelf

images [134, 135]. Girod et al. investigated mobile visual search from a holistic point of

view with practical analysis under mobile device constraints of memory, computation,

devices, power and bandwidth [49]. An extensive analysis using various feature extrac-

tion, indexing and matching techniques is conducted using real mobile-based Stanford

Product Search system. They demonstrated a low-latency interactive visual search with

satisfactory performance.

A Summary of the Proposed Work

Aforementioned visual search methods and applications on mobile devices have demon-

strated their merits. Alternatively, we believe that combining visual recognition tech-

niques with personal and local information will provide contextually relevant recommen-

dations. Hence, this work proposes a mobile visual search model to suggest potential

social activities on-the-go.

We have investigated three types of user interactions (i.e., the tapping, straight line,

and circle gestures) to facilitate the expression of the user intent. Then, the visual

query goes through an innovative contextual visual retrieval model using the state-of-

the-art BoW paradigm, to achieve a meaningful connection to database images and their

associated metadata information. Once the user intent expression is predicted by such

visual recognition, associated textual information of retrieved images are further analyzed

to provide meaningful textual-based social activity and task recommendation.

4.2.2 Overview

Figure 4.1 shows the framework of our visual recognition and activity recommendation

model. In general, it can be divided into the client-end and cloud-end. On the client-

end, a user’s visual search intent is specified by the “O” gesture on a captured image.

On the cloud-end, with user selected object and the image context around this object,

a recognition-by-search mechanism is applied to identify user’s visual intent. We have

designed a novel context-embedded vocabulary tree to incorporate the “O” context (the

surrounding pixels of the “O” region) in a standard visual search process. Finally, the

specified visual search results are mapped to associate metadata by leveraging sensory

context (e.g., GPS-location), which are used to recommend related entities to the user.
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Figure 4.1: Proposed framework of mobile visual search and activity completion model
using image contextual model, including 1) “O”-based user interaction, 2) image context
model for visual search, and 3) contextual entity recommendation for social activities.

The “O” gesture utilizes multi-touch screen of the smart-phone. Users do not need

any training and can naturally engage with the mobile interface immediately. After the

trace (the blue thin line in Figure 4.1) has been drawn on the image, sampling points

along the trace-line are collected as {D|(xj, yj) ∈ D}Nj=1, which contain N pixel-wise

positions (xj, yj). We applied principal component analysis (PCA) to find two principal

components (which form the elliptical ring depicted by thick orange line in Figure 4.1).

The purpose of this part is to formulate a boundary of the selected region from an

arbitrary “O” gesture trace. We also calculated mean µ and covariances Σ based on D

and non-correlated assumption along the two principal components:

µ = [µx, µy] Σ =

∣∣∣∣∣ σ2
x 0

0 σ2
y

∣∣∣∣∣ . (4.1)

Figure 4.2 shows the computation of principal components from the “O” query. Once

the principal components are identified, proposed image contextual model for mobile

visual search is used to identify the object of interest indicated by the user.
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Figure 4.2: Illustration of user indicated “O” query, and the computation of principal
components of the query. (µx, µy) is the center of “O” query, (xo, yo) is a pixel on the
“O” boundary, and (xq, yq) is a query pixel.

4.2.3 Context-aware Visual Search Using the BoW Model

The visual intent recognition method is based on a retrieval scheme using the BoW model

with the vocabulary tree proposed by Nister et al. [3]. This method provides a fast

and scalable search mechanism and is suitable for large-scale and expansible databases

because of its hierarchical tree-structured indexing. We adapt this method in the mobile

domain, because the “O” gesture fits naturally to provide a focused object selection for

better recognition. Different from using the entire image as visual query in [3], we have

user-indicated ROI from the “O” gesture (called “O-query”). We design a novel context-

aware visual search method in which a CVT is built to take the surrounding pixels

around the O-query into consideration. The CVT algorithm focuses on first building a

visualwords codebook for the BoW model to map each local feature, and subsequently,
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constructing a BoW representation. By establishing a hierarchical K-means clustering

for the codebook, this algorithm manages to shorten the codebook generation process.

Therefore, it is scalable and efficient for processing large-scale data. Specifically, the

CVT algorithm is able to reduce the following ambiguities:

• Sometimes, issuing O-query only in image-based search engines may lead to too

many similar results. The surrounding pixels provide a useful context to differen-

tiate those results.

• Sometimes, the O-query may not have (near) duplicates or exist in the image

database. Issuing only O-query may not lead to any search results. The surrounding

pixels then can help in providing a context to search for the images with similar

backgrounds.

• Hierarchically built K-means clustering for codebook generation makes the retrieval

process efficient, wherein each queried local feature only goes through one particular

branch at the highest level and its sub-branches instead of going through the entire

codebook.

The proposed CVT-based visual search method encodes different weights of term

frequencies inside and outside the O-query. We will carefully describe the proposed

visual search algorithm in Section 4.2.3. We also propose a location-context-based filter

process in Section 4.2.3 for re-ranking visual search results based on user’s current location

(derived from the GPS-enabled images taken by the phone camera). For off-line image

indexing, we first extract SIFT local descriptors. Since our target database is large-scale,

we utilize the hierarchical K-means to cluster local descriptors and build the CVT. Then,

we index the large-scale images using the built CVT and the inverted file mechanism,

which is to be introduced in the following sections.

Context-aware visual search

In on-line image searches, given a query image, we can interpret the descriptor vectors

of the image in a similar way to the indexing procedure, and accumulate scores for

the images in the database with a so-called term frequency–inverse document frequency

(tf–idf) scheme [3]. This tf–idf method is an effective entropy weighting for indexing a
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Figure 4.3: Image search scheme with visual vocabulary tree [3]. Note that the white
circle in the image corresponds to a local descriptor (not an O-query).

scalable database. Figure 4.3 shows the computation of image similarity based on the

tf–idf scheme. In the vocabulary tree, each leaf node corresponds to a visualword i,

associated with an inverted file (with the list of images containing this visualword i).

Note that we only need to consider images d in the database with the same visual words

as the query image q. This significantly reduces the amount of images to be compared

with respect to q. The similarity between an image d and the query q is given by

s(q, d) = ∥ q− d ∥22
=
( ∑
i|di=0

|qi|2 +
∑
i|qi=0

|di|2 +
∑

i|qi ̸=0,di ̸=0

|qi − di|2
)

(4.2)

where q and d denote the tf–idf feature vectors of the query q and image d in the

database, which are consisted of individual elements qi and di (i denotes the i-th visu-

alword in the vocabulary tree), respectively. qi and di are the tf–idf value for the i-th

visualword in the query and the image, respectively. Mathematical interpretations are
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given by

qi = tfiq · idfi, (4.3)

di = tfid · idfi. (4.4)

In the above equation, the inverted document frequency idfi is formulated as ln(N/Ni),

where N is the total number of images in the database, and Ni is number of images with

the visualword i (i.e., the images whose descriptors are classified into the leaf node i).

The term frequency representations tfiq and tfid are computed as the accumulated

counts of the visualword i in the query q and the database image d, respectively. One

simple means for the term frequency computation is to use the O-query as the initial

query without considering the pixels surrounding the “O”. This process is equivalent to

using “binary” weights of the term frequency tfiq : the weight is 1 inside “O”, and 0

outside “O”. A more descriptive and accurate computation is to incorporate the context

information (i.e., the surrounding pixels around the O-query) in the vocabulary tree. We

design a new representation of the term frequency tf oiq for the O-query. A “soft” weighting

scheme is proposed to modulate the term frequency by incorporating the image context

outside the O-query, which was neglected in the simple binary scheme. When quantizing

descriptors in the proposed CVT, the tf oiq of the O-query for a particular query visualword

iq is formulated as:

tf oiq =

tfiq , if iq ∈ O

tfiq ·min
{
1, ℜ(xq ,yq)

ℜ(xo,yo)

}
, if iq /∈ O

(4.5)

where ℜ(xo, yo) and ℜ(xq, yq) denote the Gaussian distances of the pixel (xo, yo) and

(xq, yq) with respect to the center of O-query (µx, µy). Figure 4.2 shows the definition of

these pixels in the query image q. The Gaussian distance ℜ(x, y) for an arbitrary pixel

(x, y) is given by

ℜ(x, y) = A · exp
{
− 1

2

[(x− µx)
2

ασ2
x

+
(y − µy)

2

βσ2
y

]}
(4.6)

The “soft” weighting scheme shown in Equation (4.5), is a piece-wise, bivariate-based

multivariate distribution outside the O-query, and a constant 1 inside the O-query. The

71



CHAPTER 4. INTERACTIVE MOBILE VISUAL SEARCH AND
RECOMMENDATION USING THE BAG-OF-WORDS MODEL

4.2. BOW-BASED MOBILE VISUAL SEARCH

...Image 1

...

...Image 2

...

Image ID
Associated

Contextual

Information

Index Image 2

Context

Image 1

Context

Image 

Context

Figure 4.4: Sensory context information index associated with each image.

position (xo, yo) is the boundary of the O-query contour where the weight 1 ends. In the

case that a visualword iq is outside the O-query, the modulating term is min
{
1, ℜ(xq ,yq)

ℜ(xo,yo)

}
,

such that the soft weighting is guaranteed to be less than 1. The term ℜ(xq ,yq)

ℜ(xo,yo)
is the ratio

of which the query point (xq, yq) should be weighted with respect to its closest boundary

position (xo, yo). Mean values µx and µy are calculated from “O” gesture sample data,

while α and β are tunable parameters to control the standard deviation for the bivariate

normal distribution. Figure 4.2 also illustrates this “soft” weighting schemes in the CVT

when a projection view along one principal axis is sliced and presented. Parameter A is

the amplitude value controlling the highest possible weighting scale. Parameters α and β

reflect the importance of the horizontal and vertical axis (or directions) when employing

the PCA technique. Empirically, we set α with higher value than β to indicate that the

horizontal axis is usually more important than the vertical one. This is because most

pictures are taken by the phone camera horizontally. As illustrated in Figure 4.3

Location-based filtering

Context information collected by mobile sensors plays an important role to help to iden-

tify users’ visual intents. As Figure 4.4 illustrates, similar with the inverted file index

method, each piece of image context information is indexed with the image itself during

the off-line database construction.

In our system, GPS information from sensors is utilized and associated with each

image taken by the phone camera. A filter-based process is used to remove the non-

correlated images after the initial visual search. This is because GPS as an important

context filter can be used to efficiently explore users’ true intents by precisely knowing

their locations. This process is formulated as:

72



4.2. BOW-BASED MOBILE VISUAL SEARCH

CHAPTER 4. INTERACTIVE MOBILE VISUAL SEARCH AND
RECOMMENDATION USING THE BAG-OF-WORDS MODEL

SL(q, d) = s(q, d) · ϕ(q, d)

where ϕ(q, d) =

1, if distquadkey(q,d) ∈ Q

0, if distquadkey(q,d) /∈ Q
(4.7)

The visual similarity term s(q, d) is modulated by a location-based filter ϕ(q, d). This

filter is based on the GPS effective region Q, which describes the geographical distance

between the query and the database images. We defined distquadkey(q,d) as the quadkey

distance between the query q and the database image d.

The quadkey method is adopted from the Bing Maps Tile System 1. It converts

the GPS coordinates to a hashing-based representation for fast search and retrieval. We

present an example in Figure 4.5 to walk through the steps of conversion from theWGS-84

GPS to a quadruple tiles code. We encode the GPS to a 23 digits number with the ground

resolution of possible 0.02m accuracy. The formulation of this distance is computed by

the Quadkeys representation. GPS context from mobile sensor is collected first. The

standard WGS-84 is encoded to the quadkey representation. In the illustration, pictures

of the same landmark (the Brussels town hall) with both the front and the back façades

are taken. These two photos have different WGS-84 information, which have 10 out of

15 quadkey digits identical after Bing Maps projection. In other words, the hamming

distance between these two codes is 5, which is calculated using tables to approximate a

ground distance of about 305m.

4.2.4 Summary

This section proposed a context-aware mobile visual search based on the BoW model

and the hierarchical visual vocabulary tree. Contextual GPS information is also used in

filtering the visual search result. In the next section, an implementation named TapTell

is presented based on the CVT algorithm introduced. TapTell is able to achieve social

activity recommendations through mobile visual searches.

1http://msdn.microsoft.com/en-us/library/bb259689.aspx
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Context from Mobile Sensors

50° 50' 47.75" N | 4° 21' 9.22" E

WGS 84 Format

Latitude: 50.846597

Longitude: 4.352560

Context Parsing Accuracy Level: 15 

Ground resolution: ~5m 

Geographical distance (305m)

= 153m@Level10 + 2x76m@Level 11

120202132221100

120202132203322

-Quadkey length=15

-Hamming distance = 5 

-Quadkey matched @ 

Level 10

Quadkey 

Representation

120202132221100

Quadkey 

Representation

120202132203322
Context from Mobile Sensors

50° 50' 54.38" N | 4° 21' 12.85" E 

WGS 84 Format

Latitude: 50.848440

Longitude: 4.353569

Context Parsing

Map Service
Map Service

Figure 4.5: Quadkeys quantization and hashing from GPS, and images ground distance
estimation using Microsoft Bing Map service.

4.3 TapTell : A Mobile Visual Search Implementa-

tion

TapTell is a system that utilizes visual query input through an advanced multi-touch mo-

bile platform and rich context to enable interactive visual search and contextual recom-

mendation. Different from other mobile visual searches, TapTell explores users individual

intent and their motivation in providing a visual query with specified ROI. By under-

standing such intent, associated social activities can be recommended to users. Existing

work has predominantly focused on understanding the intent expressed by text (or the

text recognized from a piece of voice). For example, previous research attempts to esti-

mate user’s search intent by detecting meaningful entities from a textual query [136,137].

However, typing takes time and can be cumbersome on the phone, and thus in some cases,

not convenient in expressing user intent. An alternative is to leverage speech recognition

techniques to support voice as an input. For example, popular mobile search engines
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enable a voice-to-search mode 23. Siri is one of the most popular applications that fur-

ther structure a piece of speech to a set of entities 4. However, text as an expression of

user intent has two major limitations. First, it relies on a good recognition engine and

works well only in a relatively quiet environment. Second, there are many cases where

user intent can be naturally and conveniently expressed through the visual form rather

than text or speech (such as an unknown object or text, an artwork, a shape or texture,

and so on) [128]. As an alternative, we believe that image is a powerful complementary

carrier to express user intents on the phone.

Since intent is generally defined as “a concept considered as the product of attention

directed to an object or knowledge” [138], we can define mobile visual intent as follows:

Definition 1 (Mobile visual intent) Mobile visual intent is defined as the intent that

can be naturally expressed through any visual information captured by a mobile device

and any user interaction with it. This intent represents user’s curiosity of certain object

and willingness to discover either what it is or what associated tasks could be practiced

in a visual form.

The following shows scenarios of mobile visual intent and how expressed intent may

be predicted and connected to social tasks for recommendation. The goal is not only to

list related visual results, but also to provide rich context to present useful multimedia

information for social task recommendation.

• You pass by an unknown landmark that draws your attention. You can take a pic-

ture of it. By using visual intent analysis, the related information of this landmark

is presented to you.

• You see an interesting restaurant across the street. Before you step into the restau-

rant, you take a picture of it and indicate your interest using your gesture. By

applying visual intent analysis, the information about this restaurant or its neigh-

borhood points-of-interest matching your preference are recommended.

• You are checking a menu inside a restaurant, but you do not speak the language

or know the cuisine. You can take a photo of the menu using your phone and

2http://www.discoverbing.com/mobile
3http://www.google.com/mobile
4http://siri.com/
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indicate your intended dish or text in the photo. Your visual intent on either the

photo or the description of the dish will be analyzed. For example, optical character

recognition (OCR) can help you automatically recognize the indicated text, while a

visual search can help you identify the dish (which may not be recognized without

indication) and recommend nearby restaurants serving a similar dish.

Figure 4.6 shows three corresponding scenarios. The visual intent model consists

of two parts: visual recognition by search and social task recommendation. The first

problem is to recognize what is captured (e.g., a food image), while the second is to

recommend related entities (such as nearby restaurants serving the same food) based on

the search-based recognition results. This activity recommendation is a difficult task in

general, since visual recognition in the first step still remains challenging. However, the

advanced functionalities, such as natural multi-touch interaction and a set of available

rich context on the mobile device, bring us opportunities to accomplish this task. For

example, although one image usually contains multiple objects, a user can indicate an

object or some text of interest through a natural gesture, so that visual recognition can

be reduced to search a similar single object. Moreover, the contextual information, such

as geo-location, can be used for location-based recommendations.

Since the proposed visual intent is an original term, we retrospect the evolution of

intent in general and walk the readers through the formation of the intent from text,

voice, and visual inputs, with both desktop-based and mobile domain-based searches

and recognition.

4.3.1 Related Work

For desktop user intent mining, an early study on web search taxonomy is introduced

by Broder [139]. In this work, the most searched items belong to an “informational”

category, in which it sought for related information to answer certain questions in a user’s

mind. A later work from Rose and Levinson further categorized the informational class

to five sub-categories, where the locate of a product or service occupies a large percentage

[140]. On the other hand, compared to general web searches, intents derived from mobile

information have strong on-the-go characteristics. Church and Smyth conducted a diary

study of user behavior of mobile-based text search and summarized a quite different

categorization from its general web search counterpart [141]. Besides the informational
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Figure 4.7: The framework of TapTell, based on previously introduced visual recognition
algorithm in Figure 4.1, incorporates with the visual intents notation.

category at 58.3%, a new geographical category which is highly location dependent takes

a share of 31.1% of total search traffic. From a topic perspective, local services and

travel & commuting are the most popular ones out of 17 total topics, with 24.2% and

20.2% entries respectively. It can be concluded that the on-the-go characteristics play an

important role for intent discovery and understanding on mobile devices [142].

4.3.2 Overview

Figure 4.7 shows the framework of TapTell. It extends Figure 4.1 by including user intent.

This illustration can assist readers from an implementation perspective to understand the

importance in linking individual intents to final recommendations. Intent expression rec-

ognizes the object specified by the user-mobile interaction. Intent prediction formulates

intent expression and incorporates image context. Finally, a task recommendation is

achieved by taking both the predicted intent, as well as, the sensory context.

In the following, Section 4.3.3 presents a conducted survey and explains why the
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(a) tap (b) line (c) O: circle

Figure 4.8: Different gestures for specifying user intent in TapTell : (a) “tap”—selection
of image segments, (b) “line”—rectangular box, and (c) “O”—circle or lasso.

“O” gesture is chosen as the best solution among several gesture candidates. With

the “O” gesture and selected ROI, visual recognition by search is achieved using the

algorithm introduced in the previous section. Consequently, Section 4.3.4 describes the

recommendation, using text metadata associated with visual recognition to achieve a

better re-ranking.

4.3.3 User Interaction for Specifying Visual Intent

It has been studied and suggested that visual interface will improve mobile search ex-

periences [143]. In this section, we have performed a user study to identify the most

natural and efficient gesture for specifying the visual intent on mobile devices. By tak-

ing advantages of multi-touch interaction on smart-phones, we defined three gestures for

specifying visual intents on captured photos as follows:

• Tap. A user can “tap” on the pre-determined image segments, in which a captured

image is automatically segmented on-the-fly. Then, the tapped segments indicated
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by user’s gesture will be connected as the region-of-interest (ROI). The ROI will

be further used as the visual query, as shown in Figure 4.8 (a).

• Line. A user can draw straight “lines” to form a rectangular bounding box. The

region in the box will be used as the visual query, as shown in Figure 4.8 (b).

• O (circle). A user can naturally outline an object of irregular shape. The “O”

gesture can be also called the circle or lasso. Note that an “O” is not limited to a

circle, but any arbitrary shape, as shown in Figure 4.8 (c).

We performed a user study following the principles of focus group in the field of

human-computer interaction [144]. In this study, 10 participants were invited. After

being introduced to the basic functions of TapTell and getting familiar with the system,

they were asked to perform several tasks using different gestures in 30 minutes. From

this study, we found that 7 out of 10 subjects thought that “O” is more natural than

the other two gestures, and 8 subjects were satisfied with the “O” interaction. Their

comments on “tapping” and “line” are: 1) tapping is sometimes too sensitive and image

segmentation is not always satisfying, and 2) the “line” is not convenient for selecting an

arbitrary object.

Equipped with the “O” gesture and the user interaction platform, mobile search and

recognition can be achieved effectively using the proposed method. The next step of

TapTell is to recommend social activities based on associated metadata and text-based

search.

4.3.4 Social Activity Recommendations

Recently, Jain and Sinha proposed to re-examine the fundamental issue between con-

tent and context and why researchers should utilize both of them to bridge the semantic

gap [145]. From the perspective of visual content analysis, Hua and Tian surveyed the

importance of visual features to help text-based searches [146]. Although the afore-

mentioned two studies focused on context and visual contents, respectively, they both

advocate on a multi-modality structure to achieve various tasks. On the other hand,

Guy et al. suggest that while machine learning and human computer interactions play

key roles in recommendations, personalization and context-awareness are also crucial in
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establishing an efficient recommendation system [147]. We agree with their arguments

that it is necessary to connect data and users. We also believe that smart-phones provide

perfect platforms for such data-users connection, from human computer interaction, to

visual search, and finally, to the recommendation.

In the TapTell system, after the visual intent expression and identification, we utilize

rich metadata as a better feature to search. We also use powerful context to re-rank

metadata-based search result for the final task completion. To be specific, we adopt the

metadata associated with the top image search result as our textual query. Then, we

obtain the social activity recommendations based on the text retrieval results. The Okapi

BM25 ranking function is used to compute a ranking score based on text similarity [148].

We extract the keywords Qt = {qt1 , qt2 , ..., qtn} by projecting the text query to a quantized

text dictionary. Then, we compute the relevance score of query Qt and database image

descriptions Dt. Detailed score computation techniques can be referred to in reference

[148]. In the last step, we re-rank the search results based on the GPS distance of the

user’s current location. Figure 4.9 demonstrates a sample result of the recommendation

list and location-based re-ranking.

4.4 Experiments

Experiments on evaluating proposed context-embedded visual recognition, social activity

recommendations through the TapTell system, subject evaluation, system performance

and complex analysis, and OCR performance, are presented in the following.

4.4.1 Data and Settings

The client-end application is developed on a Windows Phone 7 HD7 model with 1GHz

processor, 512MB ROM, GPS sensor and 5 megapixel color camera. In the cloud, a total

of one million visualwords is built from 100 million sampled local descriptors (SIFT in

this experiment). A hierarchal tree structure consisting of six levels of branches is used,

where each superior branch has 10 sub-branches or nodes. In constructing the vocabulary

tree, each visualword takes up to 168 bytes storage, where 128 bytes are for the clustering

vector (same size as SIFT), and 4 bytes for ten subordinate children nodes connection.

In total, 170 megabytes of storage is used for the vocabulary tree in cache.
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The dataset consists of two parts. One is from Flickr, which includes a total of

two million images, with 41,614 landmarks equipped with reliable GPS contextual in-

formation. With a further manual labeling effort, 5,981 images were identified as the

groundtruth such that the landmark object façade or the outside appearance can be

traced from the image. The second part of the database is a crawled commercial local

services data, mainly focusing on the restaurant domain. In this part, a total of 332,922

images associated with 16,819 restaurant entities from 12 US cities were crawled with

associated metadata.

4.4.2 Evaluation Metrics

We use mean average precision (MAP) for the evaluation, where MAP is the mean value

of average precisions (APs). The average precision (AP) formula is presented as

AP@n =
1

min(n, P )

min(n,S)∑
k=1

Pk
k

× Ik (4.8)

The number of top ranks is represented as n. The size of the dataset is denoted as S,

and P is the total number of positive samples. At index k, Pk is the number of positive

results in the top n returns, and Ik is described as the result of the kth position.

Another performance metric we adopt is Normalized Discounted Cumulative Gain

(NDCG). Given a query q, the NDCG at the depth d in the ranked list is defined by:

NDCG@d = Zd
∑d

j=1

2r
j − 1

log(1 + j)
(4.9)

where rj is the rating of the j-th pair, Zd is a normalization constant and is chosen so

that the NDCG@d of a perfect ranking is 1.

4.4.3 Objective Evaluations

Evaluation of location-based recognition

In Figure 4.10, the proposed CVT-based CBIR method with and without location-based

GPS filter is evaluated in both MAP and NDCG measurements for different database

sizes. In this case, original image query is used without any visual intent regulation.
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Figure 4.10: Top N returns for both MAP and NDCG evaluations with GPS context, on
the whole image itself as query.

The performance suffers a degradation with the increment of database size. For the

location-based recognition method, images with related geographical regions have been

firstly isolated from irrelevant images, and then, recognition by search algorithm is im-

plemented solely on the filtered dataset. Performance is maintained and demonstrates

that the proposed system is applicable for dealing with large-scale databases. For the

location-based filter ϕ(q), the GPS effective region Q utilizes the Quadkey level 5, which

is equivalent to the resolution of 4891 meters in ground. Since landmarks groundtruth

includes various object types: from statuaries and buildings, to city skylines and famous

mountains, the aforementioned contextual filter will guarantee the inclusion of enough

potential image candidates. In summary, such an analysis and investigation demon-

strate the usage of location-based filter as an important tool in mobile visual search and

recognition.

Evaluation of context-embedded visual recognition

We investigated image contextual information and its effectiveness in recognition by

search technique, using the soft weighting scheme. For the bivariate-based function

ℜ(x, y), we fixed the amplitude A to 1 and tuned two parameters α and β to modulate

the standard deviation. We conducted two sets of experimentation with and without

GPS context shown in Figure 4.11 and Figure 4.12, respectively. In general, using the

soft weighting scheme improves search performance compared to the binary weighting
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method. Specifically, in Figure 4.11, α = 50 and β = 10 provide the best performance

for both MAP and NDCG measurements. The results of this parameter choice using

MAP and NDCG measures outperform the binary weight method by 12% and 15%,

respectively.

Similarly, after incorporating the GPS context, the soft weighting method again out-

performed the binary one, but in a much higher precision range. This does not surprise us

since geolocation is an important feature for differentiating objects and their recognition,

and eventually associated visual intent. Different from its counterpart in the non-GPS

scenario, Figure 4.12 demonstrates that parameter α = 5 and β = 1 outperforms other

parameter choices, as well as the baseline binary weighting scheme. The margin differ-

ence from the soft weighting and the binary case has dropped to 2% and less than 1%

for MAP and NDCG, respectively. This result demonstrates the importance of the GPS

context.

It can be observed that parameter α is higher than parameter β for the best per-

formance in both Figure 4.11 and Figure 4.12. The reason is due to the fact that most

images are taken horizontally. Therefore, information is appreciated more and weighted

higher by α horizontally than its counterpart β vertically. Similar patterns can also be

observed in the following evaluations.

The significance of this image contextual information with soft weighting scheme

allows robust user behavior and is seamlessly glued with the “O” gesture, which is spon-

taneous and natural. The shortcoming of the“O” is that it inevitably suffers from lack

of accuracy due to device limitations in outlining the boundary, compared to other ges-

tures, such as segmentation or line-based rectangular shape. However, soft weighting

alleviates this deficiency of correctness in object selection and provides a robust method

to accommodate behavioral errors when drawing the outlines of the ROI.

Evaluation and comparison with contextual image retrieval model (CIRM)

We also implemented a state-of-the-art contextual image retrieval model (CIRM) [149]

and compared its performance to our proposed context-embedded visual recognition.

The CIRM has demonstrated a promising result in desktop-based CBIR by applying a

rectangular bounding box in highlighting the emphasized region, which can be achieved

using mouse control at a desktop platform. The weighting scheme in CIRM model is to
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Figure 4.11: Image contextual-based recognition by various parameter α and β, without
GPS information.

Figure 4.12: Image contextual-based recognition by various parameter α and β, with
GPS information.

use two logistic functions joined at the directional (either X or Y) center of the bounding

box. Then, the term frequency tfq is formulated as:

tfq ∝ min( 1
1+exp(δX(xl−xi))

, 1
1+exp(δX(xi−xr)))

∗ min( 1
1+exp(δY (yt−yi)) ,

1
1+exp(δY (yi−yb))

) (4.10)

where xl, xi, xr represent x pixel values of the left boundary, detected feature point,

and the right boundary along the x-axis direction, respectively. Similarly, yt, yi, yb are

the y pixel values of the top boundary, detected feature point, and the bottom boundary

along the y-axis, respectively. The geometric relations xl < xi < xr and yt < yi < yb

hold for this bounding box, such that the tfq should be approaching the value 0, the
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Figure 4.13: Comparison of image contextual-based recognition by various parameter
α and β, with the conventional CBIR (original), as well as the CIRM algorithm with
parameter dX and dY , without GPS information.

further xi from the bounding box; while ideally close to value 1 when the feature point

is inside the bounding box. δX and δY are two tunable parameters for finding the best

performance of the bounding box. Detailed explanation of the algorithm can be found

in reference [149].

Figure 4.13 shows MAP and NDCG measurements, by comparing the proposed

Gaussian-based contextual method with the CIRM model, as well as the CBIR method

using the original image. It appears that the proposed method with parameters α = 40

and β = 10 outperformed both CIRM in its best result with parameter dX = 0.0001 and

dy = 0.0001, and the CBIR result of the original image without using contextual model.

Figure 4.14 depicts a similar comparison using the GPS context re-ranking. Again, the

proposed method outperformed the CIRM method and the CBIR algorithms. However,

the best performance of the CIRM model at dX = 0.0001 and dY = 0.0001 is close to

the performance of our proposed contextual model at α = 5 and β = 1. This result can

be explained, such that, by adopting the GPS filtering, the margin of various methods is

reduced.

Evaluation of mobile recommendations

For the recommendations, our method is to use the visual photo taken by users as the

starting point, and to provide recommendation lists based on text searches associated

with the recognized object. First, we identify the object and match it to the database.

87



CHAPTER 4. INTERACTIVE MOBILE VISUAL SEARCH AND
RECOMMENDATION USING THE BAG-OF-WORDS MODEL

4.4. EXPERIMENTS

Figure 4.14: Comparison of image contextual-based recognition by various parameter
α and β, with the conventional CBIR (original), as well as the CIRM algorithm with
parameter dX and dY , with GPS information.

Then, we use the matched metadata as a text query to do a text-based search. The final

result is then re-ranked by the relevant GPS distance from the query’s image location to

the ranked list image locations.

The evaluation was conducted exclusively on a vertical domain of food cuisines. We

randomly picked 306 photos and manually labeled and categorized them into 30 featured

themes of food dishes, such as beef, soup, burger, etc. We built a 300 word text dictionary

by extracting the most frequently used words in the image description.

In order to produce a real restaurant scenario, we printed out dishes in a menu style

with both texts and images. We took pictures of the dishes as the visual query and

attempted to find the duplicated/near-duplicated images from the dataset. We assumed

that the best match of the visual recognition result would be user intent. Such intent

was carried by the associated metadata, which were quantized using the prepared 300-

word dictionary. The quantized words were searched with a ranked list based on the text

similarity. The final step was to re-rank the result list using GPS distance.

Table 4.2 presents the MAP result with the initial visual query and newly format-

ted text description query after visual recognition. The Table demonstrates that the

performance of the text description-based search is much better than the visual-based

search. This result is reasonable in the sense that text is a better description than visual

content once the ROI is identified and linked with precise textual metadata. However,

the merit of the visual input is its role in filling the niche when an individual does not
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Table 4.2: MAP evaluation of the visual-based and description-based performance.
MAP @0 @1 @2 @3 @4

Visual-based 96.08 53.06 37.61 29.60 24.59
Description-based n/a 75.65 72.66 70.78 65.93

Table 4.3: A summary of the subjective survey.
Q# Valid Result Criteria 1 2 3 4 5 Avg.

1 10 Useful 0 1 2 1 6 4.2
2 10 Satisfied 0 1 1 3 5 4.2
3 10 Satisfied 0 1 1 4 4 4.1
4 10 Satisfied 0 2 2 2 4 3.8
5 9 Useful 0 1 1 3 4 4.11
6 10 Useful 0 1 3 2 4 3.9
7 10 Useful 0 1 1 4 4 4.1
8 10 Useful 0 1 1 4 4 4.1
9 10 Useful 0 1 2 3 4 4.0

Note: A scale of 1 to 5 is used, with 5 indicating the most use-
ful/satisfied level, 1 indicates the least useful/satisfied level,
and 3 is the neutral.

have the language tools to express him/herself articulately. We demonstrate that dur-

ing the initial visual search (@0), the visual-search result is at a high precision rate of

96.08%. Such accuracy provides a solid foundation to utilize associated metadata as a

description-based query during the second stage search. In summary, once the visual

query is mined accurately, the role of the search query is then shifted from visual content

to text metadata for a better result.

4.4.4 Subjective Evaluation

We also conducted a subjective evaluation on user experience with the TapTell system.

A total of 13 people participated the survey, nine male and four female. Eight out of the

total participants had heard of the term content-based image retrieval, and six of them

had heard of a natural user interface. During the survey, they were asked about the

usefulness of and satisfaction with the proposed system based on their experience using
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the prototype. The survey scale is ranked from 1 to 5 for usefulness and satisfaction,

where 1 is the least and 5 is the most. Table 4.3 summarizes the survey result.

• Question 1 and 2 are about the usefulness of the “O” gesture compared to segmen-

tation and line-based gestures, and the satisfaction of the “O” interface.

• Question 3 and 4 are about visual search satisfaction on duplication/near-duplication

results, as well as semantic similar results. The rate is higher for the former, which

is a fair reflection of the algorithm we took. This is because we use salient-based

SIFT points, which are more suitable for duplication/near-duplication detection

than object recognition.

• Question 5 and 6 are the usefulness study on the Optical Character Recognition

(OCR) technique and adopted transformation invariant low-rank textures (TILT)

for improving the OCR. More people are in favor of the TILT algorithm enhanced

OCR method than the OCR itself [150]. (Technical details are presented in Section

4.4.6).

• Question 7 is about the performance of text-based searches. Most people are sat-

isfied with this feature.

• Question 8 and 9 are about the overall usefulness in terms of a recommendation

system and TapTell as an application for mobile devices. Most people gave positive

response to the usefulness of this system for both recommendations, as well as the

application in general.

• The last question asks a price (in USD) they would be willing to pay at the mobile

market to obtain this application. Eight out of 10 people prefer a price less than

$4.99, where two are not willing to pay anything. The remaining two participants

are willing to pay a price above $10.

On average, questionnaire participants were satisfied with the TapTell system. Most

responses were either 4s or 5s on the 5-point scale. They also provided insightful com-

ments such as
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(a) Total time spent of the TapTell system.

(b) Visual search time spent.

Figure 4.15: The time analysis of the TapTell system as well as the visual search, based
on the restaurants dataset.

Quote 1 “Maybe can cooperate with the fashion industry.”

Quote 2 “This is quick and natural. Better than pre-segmented based

method. The segment results are always confusing.”

4.4.5 Time Complexity Analysis

TapTell ’s efficiency performance of the individual component is evaluated. A detailed

analysis is illustrated in Figure 4.15. The total time spent on the server end takes about

1.6 seconds, including initialization, text-based search, visual-based search, and OCR-
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based recognition (we also support OCR if the ROI corresponds to a text region). Among

the visual search, local descriptor SIFT extraction takes the most time, almost 1 second.

The communication time between the server and the client takes about 1.2 seconds, which

is the wireless transmission in our experimental set-up.

4.4.6 Improved OCR from “O”

Besides the visual content, Optical Character Recognition (OCR) is another important

means to help mobile users to understand their visual intents correctly. It plays a vital

role in translating from the visual feature to the text feature. However, most of the

OCR techniques are sensitive to the orientation of visual input. If characters are skewed

in a certain degree, current OCR techniques cannot successfully recognize the correct

characters. However, such a difficulty can be alleviated by using a transform invariant

low-rank textures (TILT) algorithm to align the severely tilted characters properly [150].

We found that one of the byproducts from the “O” gesture is that we can achieve

better OCR performance if we utilized the estimation results of two principal components

by the PCA in Section 4.3.3. Once the original text region is selected by the “O” gesture,

those characters are first aligned by performing rotation alignment based on the PCA

result, and then, further aligned by the TILT algorithm before the OCR process. Figure

4.16 illustrates a successful OCR detection.

4.4.7 Video Demonstration

We also have uploaded a video demo to showcase the TapTell system. The video speed

is set to x1.7 more than the original footage to make this video demo more compact and

agreeable to watch 5.

4.4.8 Visual Examples

Two visual examples are demonstrated in Figure 4.17 with the visual queries associated

location metadata of (a): Bleecker Street Pizza, located at 69 7th Ave S. New York. (b):

Beef Marrow and Marmalade, located at 97 Sullivan St. New York.

5http://www.viddler.com/explore/Mm11132/videos/1/
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(a) original image with O (b) OCR fails without O (c) OCR with “O + alignment”

Figure 4.16: Standard OCR failed to recognize multiple lines of skewed characters, but
is successful after using the “O + TILT alignment” procedure.

4.5 Summary

A contextual-based mobile visual search utilizing the BoW model is proposed in this

Chapter. A viable application, TapTell, is implemented to achieve mobile recognition

and recommendations. Meaningful social tasks and activities are suggested to users with

the assistance of multimedia tools and rich contextual information in the surroundings.

We have investigated different gestures from tapping the segments, to drawing the lines

of rectangle, to making an “O”-circle via the multi-touch screen. We demonstrated that

the “O” behavior is the most natural and agreeable user-mobile interaction. Along with

the BoW model, a context-embedded vocabulary tree for soft weighting is proposed by

using both “O” object and its surrounding image context to achieve mobile visual intents

mining. We evaluated various weighting schemes with and without GPS conditions, and

verified that image context outside the “O” region plays a constructive role in improving

the recognition. We also compared our method with the state-of-the-art algorithms

and it has demonstrated that the proposed method outperformed both the conventional

CBIR using original image query and the CIRM algorithm. Moreover, a recommendation

system is built upon an initial visual query input, where neither the text nor the voice
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(a) Bleecker Street Pizza

(b) Beef Marrow and Marmalade

Figure 4.17: Visual examples based on the recommendation system. The left snapshot
shows the visual query. The middle snapshot is the result using metadata-based text
search. The right snapshot is the re-ranking based on user’s current position and location-
based distance.
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has the strength in describing the visual intent. Once the context metadata is associated

with the intent, more reliable contextual text and GPS features are taken advantage

of in searching and re-ranking. Ultimately, interesting and related social activities are

recommended to the users.
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Chapter 5

Conclusions and Future Work

5.1 Thesis Summary

This thesis focuses on large-scale unlabeled image/video data and proposes multimedia

analysis and approaches by integrating the bag-of-words (BoW) model with image based

classification and retrieval. In particular, we proposed a systematic video analysis frame-

work and a mobile based visual search with recommendation system, based on image

classification and retrieval methodologies, respectively. The BoW model was applied to

images and video frames by incorporating local scale-invariant feature descriptors (SIFT).

A codebook was built based on uniformly sampled local descriptor data. Each image or

video frame was then mapped onto the codebook to form a BoW representation.

In the systematic and generic video analysis framework proposed in chapter 3, the

BoW model was used to represent video frames and clips. Codebook generation was

achieved by an innovative two-layer bottom-up K-means clustering. In this way, compu-

tational efficiency was improved compared to the conventional single K-means clustering.

Using the BoWmodel based representation, three levels of the video analysis were investi-

gated from a large-scale sports video dataset with 23 types. First, an unknown video clip

was categorized by its genre using the K-nearest neighboring algorithm. Once the genre

was decided, middle level views were learned and classified using an unsupervised PLSA

model. Finally, the result of view classification in the form of a labeled sequence of video

frames were fed into a HCRF model to achieve final high-level semantic event detection.

This proposed framework is generic and requires minimum human input. Therefore, it is
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ideal for processing large-scale multimedia data. The experimental performance demon-

strates that an unsupervised PLSA model as input is comparable in event detection

accuracy, compared to its supervised SVM counterpart. However, labeling work can be

saved by PLSA learning. Thus, it makes the proposed framework scalable to an even

larger data consortia with more diverse genres.

In chapter 4, visual search, and consequently, social task recommendations were

achieved on mobile platforms. User intention in form of visual queries was obtained

by an interactive platform provided by the natural user interface and the advance of

mobile multi-touch technology. By understanding user input and incorporating that

with the BoW model, a context-embedded vocabulary tree (CVT) was built to gener-

ate a hierarchical visual codebook. Query images consisting of both the ROI segment

selected by the “O” gesture and its surrounding context were mapped onto the codeo-

book using a Gaussian-distance based weighting scheme. Using this method, the query

image was treated with an emphasis on the ROI while also including the background

information. Experiments show that the proposed algorithm outperformed both the con-

ventional CBIR using the whole image as query and the single ROI segment as query.

It also demonstrated that the proposed CVT, using soft Gaussian-distance weighting,

outperformed a desktop CBIR algorithm (called CIRM), which used a logistic function

weighting scheme. An implementation called “TapTell” was engineered to achieve mo-

bile visual search and mine users’ visual intent for social activity recommendations. GPS

information and OCR techniques were also adopted during this implementation process

to achieve a better understanding of visual intent.

5.2 Future Work

Despite the advancement and research focus on the BoW model in image classification

and retrieval with large-scale multimedia analysis and applications, there are still many

opportunities to further extend and improve the BoW model by utilizing more repre-

sentative local descriptors, generating more robust and extensive codebooks, discovering

spatial connections between local descriptors, and incorporating text and audio multi-

modalities. The following directions are worth further exploration.

• Although various local features have been designed and applied successfully in var-
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ious applications, there is still a need of more powerful and robust local descriptors

to face ever growing large-scale and complicated visual data.

• Codebook construction is an important stage of the BoWmodel. Efficient codebook

generation and concise representation methods are crucial in accurately mapping

visual information, which are highly appreciated in large-scale multimedia applica-

tions. In addition, there is also a promising future in developing multiple codebooks,

each of which has its own focus on the feature space while maintains connection

with each other.

• The BoW model is unordered. This means that no priorities are given to particular

visualwords inside the BoW. However, certain developed local descriptors carry

more representative information than others. How to prioritize information inside

the BoW model is a worthy investigative direction, which may be related to spatial

context and semantic labeling.

• The BoW model is a content-based analysis method. Despite some effort in this

thesis to link the BoW based image retrieval with indexed metadata, connections

between visual contents and modalities, such as audio and text, are worthy further

research in order to achieve an optimized multimodal solution.
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