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Abstract

Kandasamy Illanko, 2014

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University

Designing wireless communication systems that efficiently utilize the resources, frequency

spectrum and electric power, leads to problems in mathematical optimization. Most of these

optimization problems are difficult to solve because the objective functions are nonconvex.

While some problems remain unsolved, the solutions proposed in the literature for the others

are of somewhat limited use because the algorithms are either unstable or have too high

a computational complexity. This dissertation presents several stable algorithms, most of

which have polynomial complexity, that solve five different nonconvex optimization problems

in wireless communication. Two centralized and two distributed algorithms deal with the

power allocation that maximizes the throughput in the Gaussian interference channel (GIC)

with various constraints. The most valuable of these algorithms, the one with the minimum

rate constraints became possible after a significant theoretical development in the dissertation

that proves that the throughput of the GIC has a new generalized convex structure called

invexity. The fifth algorithm has linear complexity, and finds the power allocation that

maximizes the energy efficiency (EE) of OFDMA transmissions, for a given subchannel

assignment. Some fundamental results regarding the power allocation are then used in the

genetic algorithm for determining the subchannel allocation that maximizes the EE. Pricing

for channel subleasing for ad-hoc wireless networks is considered next. This involves the

simultaneous optimization of many functions that are interconnected through the variables

involved. A composite game, a strategic game within a Stackelberg game, is used to solve this

optimization problem with polynomial complexity. For each optimization problem solved,

numerical results obtained using simulations that support the analysis and demonstrate the

performance of the algorithms are presented.
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Chapter 1

Introduction

No one doubts that we are living amidst the “wireless revolution.” There have been many

discussions about the impact of this revolution on our society. Egalitarian scientists notice

an aspect that is often absence in these discussions. It is the dissemination of “privileged”

information, from the world’s most advanced learning institutions, to anyone in the world.

Top researchers at the frontiers of knowledge are making their course notes and books freely

available on the internet. More than 95% of the knowledge required to finish this desertation

was obtained via wireless internet at various locations in the city of Toronto. And the same

knowledge, with the exception of the IEEE database, is only a laptop away from someone in

a developing country. The engineers and the computer scientists who laid the foundations

for the internet believed that knowledge should be free [1–3]. A quarter century later, the

marriage of internet with wireless communication - the wireless internet - is making their

wish almost a reality.

The core enabling technology of this revolution, the wireless communication has been

around for over a century. Radio and Television can be considered as the first two waves

of the wireless communication. The wireless revolution had its origin in the third wave,

the availability of the cellular mobile phones to the masses. The defining feature of cellular

communication, which later became part of most modern wireless communication systems, is
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frequency reuse. A set of frequencies are used to serve customers in a particular neighborhood

of a city. The same set of frequencies are re-used in another neighborhood of the same city.

Since its introduction in the early 1980’s, cellular technology has undergone many changes.

A constant throughout has been the unrelenting thirst of the customers for higher data rates.

This is the principal motive for this dissertation. In order to deliver higher data rates, the

engineers have to squeeze out every ounce of performance from the two main resources -

frequency spectrum and electric power - of wireless communication. Designing communi-

cation systems that efficiently utilize these resources leads to problems in mathematical

optimization.

How the demand for higher and higher data rates shaped the evolution of cellular com-

munication is outlined in Section 1.1. The connection of the mobile data rate to the funda-

mentals of communications is explained in the next two sections - the OSI model and the

physical layer in Section 1.2, and Shannon’s upper bound on the transmission rate in Sec-

tion 1.3. Section 1.4 describes the system models used in this dissertation. The optimization

problems to be solved in this dissertation are listed in Section 1.5. A short review of the

literature related to these optimization problems is given in Section 1.7. More detailed, in

depth, literature reviews are presented in the chapters dealing with each optimization prob-

lem. The chapter concludes with a detailed outline of the organization of the dissertation in

Section 1.8.

1.1 Chronology of cellular communications

The first generation (1G) mobile phones were analogue devices and only carried voice com-

munication at an average transmission rate of about 2.4 kbits/s [4]. The 2G mobile devices

were digital, had text capabilities, and led to an explosive growth in the use of mobile phones

worldwide in the early 1990’s [4]. In North America, 2G cellular phones adopted the IS95

(CDMA) standard [5,6], while the rest of the world adopted the GSM (OFDMA) [7,8]. The
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average transmission rate in 2G was about 64 kbits/s.

Operators were surprised to learn that the cellular customers were more adventurous than

they thought. 3G wireless technology was rushed in to give the data rate starving customers

2Mbits/s speeds. 3G also saw the change from circuit switching to packet switching for

data transmission; voice transmissions in 3G still used circuit switching. The arrival of 4G

technology in 2010 completely eliminated circuit switching [9]. 4G mobile devices adopted

the OFDMA transmission technology worldwide [10], and average data rate jumped to 100

Mbits/s. For the first time, the cellular mobile systems adapted the multiple input-multiple

output (MIMO) communication technology [11].

The more than 1,000 fold increase in data rates from 2G to 4G was accompanied by a

million fold increase in mobile customers [4], putting enormous pressure on the engineers

to push the limits on wireless transmission rates. The question of how far can we push the

transmission rates brings us to the fundamentals of wireless communications.

1.2 Physical layer

The open systems interconnection (OSI) model [12] breaks down the communication between

two devices into seven layers (Fig. 1.1). This dissertation is concerned with some of the

optimization problems that arise in the bottom most layer, the physical layer.

The bit stream from the packets obtained from the layer above are used to modulate an

electrical signal at the radio frequency and fed to the transmit antenna. The electromagnetic

wave emanating from the transmit antenna travels through air, gets reflected on roads and

buildings, if necessary penetrates a few walls and reaches the receiving antenna. At the

receiver, the process is reversed and the bit stream is recovered with possible errors due

to noise. We will refer to everything between the output of the power amplifier at the

transmitter and the input to the receiving preamplifier as the channel. Is there a way to

theoretically model the happenings in the physical layer and answer the question: Given the
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Figure 1.1: The OSI model. Courtesy [12]
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parameters of the channel, what is the maximum speed with which communication can take

place? What is the maximum possible data transmission rate?

But what is data transmission rate? We already mentioned that in the physical layer,

at the receiver, the bits are collected with possible errors. Obviously, there is no point in

calculating transmission rate with errors. By the 1920’s, there was considerable knowledge

about how square waves get corrupted by noise. Given the probability distribution of the

noise and the transmitted square wave, by 1928, the researchers knew how to calculate the

error rate [13]. Yet no one could answer the question: What is the maximum possible data

rate. It turned out that we were not asking the right question. About 20 years later, Claude

Shannon asked the right question and the “Mathematical Theory of Communications” was

born [14].

Suppose the bits are transmitted at a rate of 100 bits/s and the bit error rate is 1%.

Can we say the error free transmission rate is 99 bits/s? As Shannon explains in his seminal

work [14], this is wrong becasue we don’t know exactly which bits are in error. The correct

answer to this question cannot be arrived at without doing some serious thinking about the

nature of communications. What are we trying to communicate? We know the answer to

that question; it is information. But what is information? Do we have a scientific definition of

information? This is the question that one must ask and answer, before concerning ourselves

with the maximum speed of communication.

1.3 Shannon’s upper bound

Shannon defined information regarding an event as a quantity that is proportional to the

(probabilistic) uncertainty involved in that event [14]. The purpose of the communication

channel is to reduce this uncertainty about the information at the source, in the mind of

the receiver. Shannon showed that how much a channel can reduce this uncertainty depends

not only on the nature of the channel but also on the relationship of the channel to the
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the source. Given a channel, Shannon defined capacity of that channel as the maximum

reduction in the uncertainty achievable over all possible sources. He then went on to prove

two theorems that are important to this dissertation. The first one says that communication

with arbitrarily small bit error rates is possible as long as the bits are transmitted at a rate

that is less than or equal to the capacity of the channel. The second theorem expresses the

capacity of a channel in terms of the bandwidth of the signal and the signal to noise ratio

at the receiver. Suppose the signal that leaves the transmitter has a bandwidth of B Hz

and carries a power of p Watts as it leaves the power amplifier. Then the capacity C of the

channel in bit/s is:

C = B log2

(

1 +
ap

σ2B

)

, (1.1)

where a is called the gain of the channel and is basically a fraction indicating the decay

in the amplitude of the signal from the transmitter to the receiver. σ2 is the noise power

density in Watts/Hz. This is the sum power of all the unwanted signals that have found

their way to the receiver. It may include transmission signals from neighboring systems in

the same frequency band.

Thus, the maximum error free transmission rate at the physical layer is upper bounded by

the capacity of the channel C above. Henceforth, we will refer to the error free transmission

rate at the physical layer as the transmission rate. In order to achieve this upper bound

in the transmission rate, that is, to transmit at capacity, one must add additional bits to

the bits carrying the information we are trying to communicate. The elementary way of

looking at these additional bits is to consider them as part of error correcting codes. The

advanced way of looking at this is to think that these additional bits are necessary to improve

the relationship of the source to the channel, or “matching” the source to the channel. As

mentioned before, this has the potential to move up the “reduction in uncertainty” towards

the capacity of the channel. This procedure is known as channel coding and is performed at

the data link layer just above the physical layer. Advances in the last 25 years in channel
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coding have enabled communication very close to the capacity of the channel [15,16]. In other

words, we will assume that the transmissions are taking place at capacity of the channel.

Under this assumption, the transmission rate R and the capacity C are equal and we have:

R = B log2

(

1 +
ap

σ2B

)

(1.2)

1.3.1 Throughput

There are many ways in which a wide band frequency channel can be used by a number

of users for communication. In the next few subsections, we will use the method used in

the 4G mobile systems to explain the objective functions and the optimization variables

considered in this dissertation. Typically, a wide band channel is divided into a number of

subchannels (or subcarriers) and each subchannel is assigned exclusively to one user in the

system. Often, the subchannels that are in use in the same neighborhood are separated by

“guard bands” to make sure that the electromagnetic waves transmitted on one subchannel

does not spill over into the next subchannel and cause interference. Subchannels like these

are referred to as being orthogonal. If ak is the gain experienced by the user to whom the kth

subchannel is assigned and pk is the transmission power used on that subchannel, then the

sum transmission rate over the k subchannels in bits/s, expressed per Hz of the subchannels,

will be:

R =
K
∑

k=1

log2

(

1 +
akpk
σ2
k

)

, (1.3)

where σ2
k is the noise power density on the kth subchannel in Watts/Hz. Historically, the

sum transmission rate R given above has been the most important performance measure

of a wireless communication system. Note that the unit of R is bits/s/Hz. This R is also

referred to as spectral efficiency, throughput or simply the sum rate.
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1.3.2 Power allocation

Equation (1.3) shows that the sum rate or throughput can be increased by increasing the

power pk on each subchannel. Until recently, electric power was not considered a limited

resource by engineers except in the case of battery operated devices. This was because of

two reasons: First, electric power is relatively inexpensive in north America. The second, the

transmission power at a cellular base station is small compared to the power expenditure

in other use of electricity such as heating and cooling. Even then, there was a reason to

limit the transmission power on the subchannels. Too high a transmission power in one

system can have a detrimental effect on the transmissions on a neighboring system through

interference. As seen in (1.3), transmissions from a neighboring system in the subchannel

k can increase σ2
k and thereby reduce R. Because of this, it is customary to limit the total

transmission power. The task of distributing the available power among the subchannels in

a way that increases the sum rate is referred to as power allocation.

1.3.3 Frequency assignment

The channel gain ak depends on the terrain between the transmitter and the receiver. In

urban environments, a signal leaving a base station antenna, for example, goes through many

reflections and may have to penetrate few walls before reaching the mobile device. What

fraction of the original amplitude of the signal survives this adventure mainly depends on

the distance from the transmitter to the receiver. It also depends on the frequency of the

signal because the loss during reflections and penetrations depends on the frequency. This

shows that the transmission rate depends on which subchannel is assigned to a particular

user. This brings us to the second variable, the channel gain. It is important to note that

channel gain is not a continuous variable; it changes when we assign a different subchannel

to a user. This shows that in fact the channel gain is a discrete variable. For example, it

may change from 0.001 to 0.0004.
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Another way to increase the throughput is to increase the bandwidth B in (1.2) (or

equivalently K in (1.3). The frequency bandwidth available for wireless systems does in-

crease over time. However, this happens once in every 2 decades or so. At any given time,

the bandwidth available for a particular wireless system is finite. Hence, the only way to

increase throughput is to use the available bandwidth efficiently, by carefully distributing

the subchannels among the users. This task is referred to as frequency assignment.

A typical optimization problem in resource allocation in wireless communication is con-

cerned with the frequency assignment and power allocation that maximizes a performance

measure such as system throughput.

1.3.4 Energy efficiency

It has been reported that, by 2010, the global carbon footprint of the information technology

(IT) sector has become equal to that of the aviation industry, and that the fastest growing

section within the IT sector is mobile communications [17]. This shows that we can no longer

ignore the energy consumption in wireless communications, even if we are not concerned with

the financial aspect. Independently of this, battery operated communication devices always

have to be concerned with their energy expenditure.

Concerns with the energy expenditure of wireless transmissions have given rise to a

new performance measure called energy efficiency. Energy efficiency (EE) is defined as

throughput per unit of power, and measured in bits/s/Hz/Watts, or bits/Joule/Hz. A

detailed expression for EE in terms of the transmission powers and the channel gains will be

given in the next section after we describe the system models.

1.4 System models

The various optimization problems undertaken in this dissertation are unified by two aspects.

First, they all arise from resource allocation in wireless communications. Second, they cannot
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be solved using convex optimization techniques. In these optimization problems, the physical

layer of a wireless communication system is represented using various models depending on

the transmission technology used.

Orthogonal Frequency Division Multiple Access (OFDMA) is the transmission technology

used in the current 4G mobile phones [10]. Gaussian Interference Channel (GIC) is used

to model femto cells and ad-hoc networks [18–24]. As far as the work in dissertation is

concerned, code division multiple access (CDMA) can be considered as a special case of the

GIC. CDMA was the cellular transmission technology in North America from early 1990’s

to late 2000’s [6]. We now give detailed descriptions of the GIC and OFDMA models.

1.4.1 GIC
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Figure 1.2: The N -user Gaussian Interference Channel

Gaussian interference channel (GIC) is used to model CDMA uplinks, digital subscriber

lines (DSL), as well as situations where geographical separation of users allow many users
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to use the same channel for transmission.

GIC with N users is shown in Fig. 1.2. User i employs transmitter i to communicate with

receiver i but receiver i experiences interference from all other transmitters. hij denotes the

channel gain between transmitter j and receiver i, and pi denotes the power used by trans-

mitter i. If σ2
i is the spectral density of the additive white Gaussian noise, the transmission

rate ri of user-i in bits/s/Hz can be written as:

ri = log2

(

1 +
hiipi

σ2
i +

∑

j 6=i hijpj

)

, (1.4)

The sum transmission rate or throughput R of the GIC in bits/s/Hz can be written as:

R =
N
∑

i=1

log2

(

1 +
hiipi

σ2
i +

∑

j 6=i hijpj

)

, (1.5)

Chapters 8 and 9 are concerned with the power levels pi that maximize the throughput R

subject to a total power constraint and, either a proportional rate constraint or a minimum

rate constraint.

CDMA

Code division multiple access (CDMA) was the multi-access technology for cellular com-

munication in North America during the 2G and part of the 3G periods. In CDMA, each

user is assigned a code. Each user, instead of transmitting a bit, would transmit a series of

bits representing the code assigned to it. The codes are not truly orthogonal, they are only

pseudo-orthogonal. While this keeps the interference between the users to a minimum, it

does not eliminate it completely.

Consider the uplink of a cell that uses CDMA. While the signal from User-i will have

an amplitude of hiipi, it will be corrupted not only by the Gaussian noise, but also by the

signals from the other users, because the codes are not truly orthogonal. The effect of the
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other signals can be sumed up as
∑

j 6=i hjjpj. The end result is that the throughput of the

uplink of a CDMA system can be written as:

R = A

N
∑

i=1

log2

(

1 +
hiipi

σ2
i +

∑

j 6=i hjjpj

)

, (1.6)

where A is a constant [8]. This shows that the throughput model for the CDMA uplink is

a special case of the GIC. The reader interested in the implementation details of CDMA is

referred to [5].

This dissertation does not concern itself with any problems in the CDMA. However, since

CDMA is a special case of the GIC, any solution to a GIC problem in dissertation readily

applies to the same problem in the CDMA system.

There are far more research done on the throughput maximization in the CDMA than

that on GIC. The related work section of Chapter 8 provides a review of the work on CDMA.

We emphasize that while these work does not apply to our problems, our work does apply

to their problems.

1.4.2 OFDMA

As the name implies, the subchannels in OFDMA are orthogonal. This means transmissions

in one subchannel do not interfere with transmissions in another subchannel. Implementation

details of OFDMA are irrelevant to this dissertation, but the interested reader is referred

to [8] for more information.

Consider the downlink of a single cell with N users and K orthogonal subchannels.

Since the channels are orthogonal, transmissions on one subchannel do not interfere with the

transmissions on another subchannel. Each subchannel is assigned exclusively to one user.

If the channel gain on the kth subchannel is ak, the transmission power pk, the noise spectral

density σ2, and hk = ak/σ
2, then sum transmission rate or system throughput in bits/s/Hz
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can be written as:

R =
K
∑

k=1

log2 (1 + hkpk) (1.7)

The system energy efficiency (EE) of the transmissions over allK subchannels in bits/Joule/Hz

can be written as:

EE =
R

pc + ψ
∑K

k=1 pk
=

∑K
k=1 log2 (1 + hkpk)

pc + ψ
∑K

k=1 pk
, (1.8)

where ψ is the reciprocal of the efficiency of the transmit power amplifier. pc is called the

circuit power [25] of the downlink transmitter, and it represents the total power spent on

preprocessing the signal before it enters the power amplifier.

Assume a yet-to-be determined subchannel assignment protocol is used to distribute the

subchannels among the users. Suppose a total of K1 subchannels - subchannel 1 through

subchannel k1 - are assigned to User-1. A total ofK2 subchannels - subchannel k1+1 through

subchannel k2 - are assigned to User-2 and so on. A total of Kn subchannels - subchannel

kn−1 + 1 through subchannel kn - are assigned to User-n. Then the rate rn of User-n can be

written as:

rn =
kn
∑

k=kn−1+1

log2 (1 + hkpk) , (1.9)

1.5 Thesis statement and expected contributions

We start with a description of the five optimization problems that will be solved in this

dissertation. The thesis statement is given next. A summary of the expected original con-

tributions follows.
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1.5.1 Optimization problems to be solved

Throughput of GIC with proportional rate constraints

Chapter 8 solves the problem of finding the power allocation that maximizes the throughput

of the GIC with proportional rate and linear power constraints. This is achieved without any

knowledge of the geometrical structure (convex or otherwise) of the throughput of the GIC. A

formal description of the problem is given below. In addition to the variables and parameters

defined in the last section, βi’s stands for the proportional rates, gi’s are the coefficients in

the linear power constraint, and P is the maximum (interference) power allowed.

maximize
p1,p2,...pK

N
∑

i=1

log2

(

1 +
hiipi

σ2
i +

∑

j 6=i hijpj

)

subject to

R1 : R2 :R3 : ...RN = β1 : β2 : β3 : ...βN

N
∑

i=1

gipi ≤ P

(1.10)

Throughput of GIC with minimum rate constraints

Chapter 9 establishes that the throughput of the GIC has a generalized convex structure

called invexity. This together with the understanding of the nature of the gradient vector

of the throughput of the GIC gained in Chapter 8 is used to tackle the harder problem of

finding the power allocation that maximizes the throughput of the GIC with minimum rate

and linear power constraints. The minimum rates can be translated to minimum signal to

interference and noise ratios (SINR) γi’s.
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maximize
p1,p2,...pK

N
∑

i=1

log2

(

1 +
hiipi

σ2
i +

∑

j 6=i hijpj

)

subject to

pi
σ2
i +

∑

j 6=i aijpj
≥ γi for i = 1, 2, ...N.

N
∑

i=1

gipi ≤ P

(1.11)

Energy efficiency of OFDMA with minimum rate constraints

A two step, near optimal, solution to the problem of finding the frequency and power alloca-

tion that maximizes the energy efficiency of OFDMA transmissions from a base station, with

minimum rate and total power constraints, is solved in Chapter 11. Genetic algorithm [26]

is used for subchannel assignment, and is followed by the optimal power allocation obtained

in the previous chapter by solving the problem below:

maximize
p1,p2,...pK

∑K
k=1 log2 (1 + hkpk)

pc + ψ
∑K

k=1 pk

subject to

kn
∑

k=kn−1+1

log2 (1 + hkpk) ≥ Rn for n = 1, 2, ..., N.

K
∑

k=1

pk ≤ P

(1.12)

The same notations for the variables and parameters from the OFDMA system model sub-

section 1.4.2 are used here. Rn is the minimum rate requirement of User-n.
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Pricing for subleasing of channels for ad-hoc networks

An operator that subleases spectrum to agencies that use ad-hoc networks divides a city into

cells. Unlike in the traditional cells, the operator allows frequency re-use in adjacent cells.

The price structure for the subleasing has a part discouraging too much interference to an

agency in the adjacent cell using the same subchannel. The optimization process involved

in setting the best price for this part is formulated as a composite game - a strategic game

inside a Stackelberg game [27]. Chapter 12 solves this game and determines the optimal

price the operator would like to set in order to maximize his revenue. Transmissions from

users in a cell is modeled using GIC. For the payoff functions used please see Chapter 12.

1.5.2 Thesis statement

The goal of this dissertation is to develop polynomial time algorithms that solve the five

optimization problems listed in the last subsection.

1.5.3 Expected original contributions

A concise description of the ten original contributions of this dissertation are given below.

Throughput maximization in GIC

• C-1: A new way of solving throughput maximization with proportional rate con-

straints.

• C-2: A centralized polynomial time algorithm.

• C-3: A distributed linear time algorithm.

• C-4: A distributed constant time algorithm (shared memory).

• C-5: The proof that the throughput has the generalized convex structure called in-

vexity.
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• C-6: The projection algorithm for throughput maximization with minimum rate con-

straints.

EE maximization in OFDMA

• C-7: A linear time algorithm that obtains the power allocation by solving a single

non-linear equation.

• C-8: Derivation of approximate fitness functions for evolutionary approaches to chan-

nel assignment for EE maximization.

• C-9: A two-step frequency and power allocation algorithm that achieves the highest

EE in the literature.

Subchannel pricing for ad-hoc networks

• C-10: Derivation of pricing in terms of the solution to a linear system of equations

using a composite game framework.

1.6 Computational complexity measure

The most popular complexity measure used to evaluate the relative merits of optimization

algorithms concerns itself with how the execution time of the algorithm scales with the size

of the problem it solves. For example, the complexity of the fastest algorithm for sorting an

array is O(n log2(n)), where n is the number of elements in the array. The complexity of a

modern linear system solver is O(N2L), where N is the number of equations and L is the

number of variables [28].

The size of a typical wireless communication resource allocation problem can be described

by its two dimensions: the number of users N in the system and the number of subchannels

K in the system. For example, a channel allocation protocol from the literature which we

use for comparison purposes later in the dissertation has a complexity of O(NK log2(K)).
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1.7 Background

This dissertation deals with five optimization problems in resource allocation in wireless

communications. This section presents what is state of the art in these problems, in brief.

A more detailed account of the related work is given in the chapters dealing with each of

these problems.

1.7.1 Throughput maximization in GIC

The power allocation that maximizes the throughput of the GIC with a total power constraint

is an open problem in wireless communication. The existing work [29–35] on throughput

maximization in GIC uses individual power constraints. While individual power constraints

are important in many applications, there are also situations where a total (interference)

power constraint is more appropriate. In these situations, dividing a total power con-

straint into equal parts into individual power constraints is inefficient because the maximum

throughput under a total power constraint may occur outside these individual power con-

straints. Furthermore, the algorithms proposed by most work in the literature have too high

a complexity to be of significant value to the industry.

Another group of work [36–61] maximizes individual transmission rates of a number

of users in a system simultaneously. When a user increases its power it will increase his

transmission rate but will decrease the rates of all the other users. Strategic game theory

[27, 62–66] is used to find a competitive (Nash) equilibrium power level for all users. This

equilibrium point has the property that a unilateral deviation from this power level by a single

user cannot increase his transmission rate. These work use individual power constraints, and

do not maximize the system (sum) transmission rate.

This dissertation provides polynomial time algorithms for the throughput maximization

problem in the GIC with total power constraint. The algorithm in this dissertation can be

easily modified to accommodate individual power constraints.
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1.7.2 Energy efficiency maximizing power allocation (for fixed sub-

channel assignment) in OFDMA

The objective of the optimization problem, the energy efficiency (EE), is not concave in the

powers. The Charnes-Cooper Transformation has been used in many work to change it into

a concave function [25, 67–71]. However, the solution to the problem, the power allocation

that maximizes the EE is obtained using an iterative algorithm.

A limitation with this type of solution is that it does not help us in any way with the other

part of the optimization: the frequency allocation. In a two step solution to the frequency

and power allocation that maximizes the EE, the subchannels are assigned first and then

the powers are allocated in an optimal manner. In order to assign the subchannels in a near

optimal way, we need insights into the question: what type of subchannel allocation leads

to the highest maximum EE after the optimal power allocation. This is not possible with a

power allocation that is obtained via an iterative algorithm. A closed form solution to the

problem of optimal power allocation would be ideal, but that may not be possible.

We obtain the power levels that produce the maximum EE through a single non-linear

equation. We also obtain some fundamental closed form results concerning the EE maxi-

mizing power allocation. These results enable us to approximate the maximum EE in closed

form and use it in frequency assignment.

1.7.3 Energy efficiency maximizing frequency and power alloca-

tion for OFDMA

In the absence of knowledge about the type of subchannel allocation that leads to the high-

est maximum EE after the optimal power allocation, the existing two step solutions use a

heuristic approach to frequency allocation [25,72].

Armed with the results from the EE maximizing power allocation, we use genetic algo-

rithm for frequency assignment.

19



1.7.4 Pricing for subleasing channels for ad-hoc networks

Pricing of spectrum in the context of a cognitive radio scenario has been studied using

strategic games in [73–77]. A number of researchers use a Stackelberg game [27, 78] to

analyze the pricing of spectrum by primary networks that leverage the secondary access

points as cooperative relays [79, 80].

To model the scenario considered in this dissertation, a single game would not suffice.

Hence, in this dissertation, we use a composite game: a strategic game inside a Stackelberg

game.

1.8 Organization

This dissertation is divided into two main parts, titled, Theory and Techniques, and Appli-

cations and Algorithms. The relationship between these two parts is illustrated in Fig. 1.3.

1.8.1 Part I: Theory and Techniques

Part I starts by introducing the basic definitions and terminology of mathematical opti-

mization, in Chapter 2, and goes on to explain relatively new ideas such as cross products

in higher dimensions and invexity in later chapters. This part also introduces the genetic

algorithm and game theory.

Please note that because of the diversity of the optimization problems considered in this

dissertation, a single table summarizing all the notations is not feasible. Instead, a table

summarizing the notations used in each of the application chapters is provided in each of

those chapters.

Chapter 2 begins with categorizing the optimization problems into what we are successful

in solving and what we are hopeless at. It then introduces the basic definitions and termi-
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Figure 1.3: The connection of the theory to application
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nology essential to understanding any exposition on optimization, by presenting a concise

account of convex optimization. The chapter ends with a glimpse into generalized convexity.

Chapter 3 explains why the idea of the traditional cross product breaks down in higher

dimensions and introduces an extended version of the cross product.

One of the most exciting ideas in this dissertation, the one that led to a breakthrough

in an optimization problem that is known to be difficult to solve, invexity, is introduced in

Chapter 4. While most of this chapter contains a re-organization of invex analysis found

in [88–90], it also has an original theorem that is necessary for our application of invex

analysis in the later Chapter 9.

Chapter 5 covers convexifying transformations that can be used to transform nonconvex

functions into convex functions. A transformation introduced in this chapter is used later in

Chapter 10 to convert the energy efficiency function in OFDMA into a concave function.

Genetic algorithm (GA) is explained in detail in Chapter 6. GA is used for frequency

assignment in Chapter 11.

Finally, Chapter 7 presents the fundamentals of strategic game theory in continuous

spaces and the Strackelberg game theory. A composite game, a strategic game inside a

Strackelberg game is used to come up with the optimal spectrum pricing in Chapter 12.

1.8.2 Part II: Application and Algorithms

Part II uses the theory and techniques from Part I to analyze and solve 5 different nonconvex

optimization problems in resource allocation for wireless communication systems. Each

problem is the subject of a different chapter. Each chapter also develops algorithms that

solve the respective problem and presents numerical results supporting the analysis and

demonstrating the performance of the algorithm/s.

Chapter 8 solves the problem of finding the power allocation that maximizes the through-

put of the GIC with proportional rate and total power constraints. Analytic geometry and

the cross product in higher dimensions introduced in Chapter 3 are used here. One central-
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ized algorithm (polynomial complexity) and two distributed algorithms that find the solution

are developed. Apart from the usefulness of these results in themselves, there is another mo-

tivation for the work in this chapter. It is the analysis of the gradient of the throughput of

the GIC in this chapter that enabled the proof of the central theorem of the next chapter.

Chapter 9 has two purposes. Establishing the generalized convex structure of the through-

put of the GIC, and finding the power allocation that maximizes the throughput of the GIC

with minimum rate and total power constraints. The throughput is shown to be incave

(Chapter 4) in the transmission powers. A centralized algorithm of polynomial complexity is

developed. This chapter and the chapter before solve optimization problems with the same

objective but with different constraints. Despite this similarity, the material is presented

in two different chapters because of two reasons. First, the theory used in this chapter is

different from the one used in the last chapter. Second, as mentioned before, this chapter

has the important result that the sum rate of the GIC is incave in the powers, which may

have other applications outside of the optimization problem undertaken in this chapter.

The fundamental aspects of the power allocation that maximizes the energy efficiency of

OFDM and OFDMA transmissions are the material for Chapter 10. The Charnes-Cooper

Transformation (CCT) from Chapter 5 is used to convert the nonconvex objective EE into a

convex one. It is shown that whether we have a single user and single carrier, or multiusers

and multicarriers, for a fixed channel assignment, the optimal power allocation (without any

constraints) can be obtained through the same simple equation: EE(w) = 1/(w ln 2). The

cases with a total power constraint as well as proportional and minimum rate constraints

are also analyzed.

Chapter 11 provides a two-step solution to the frequency and power allocation that

maximizes the energy efficiency of the OFDMA transmissions with minimum rate and total

power constraints. Genetic algorithm from Chapter 6 is used for subchannel assignment and

an algorithm from Chapter 10 is used for power allocation.

The optimum price that an operator must set when subleasing subchannels to future
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ad-hoc networks is the subject of Chapter 12. Strategic and Stackelberg game theories from

Chapter 7 are used to model this problem as a composite game.
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Part I

Theory and Techniques

25



Chapter 2

Mathematical optimization

2.1 Introduction

Engineers, computer scientists, and applied mathematicians all agree that we do not know

how to solve a vast majority of the optimization problems [81, 82]. There are two type

of problems, however, that we have become experts. They are linear programing and the

least square minimization [81–84]. Regardless of the number of variables (millions or more)

involved, we have very reliable and very fast methods for these two type of problems [81,82].

These methods and their implementations in software have advanced to such heights that

we call them mature technologies. Linear programming and least square minimization have

even found their way into embedded systems [81,82]. There is another type of problems for

which our methods of solutions have improved rapidly in the last two decades or so. Our

methods for these problems are approaching the level of the previously mentioned two types.

This is the type called convex optimization [28]. Convex optimization has been extensively

used in the design and analysis of engineering systems in the last three decades. The new

frontier however, consists of nonconvex problems - both old unsolved problems and new

design problems.

We now use an arbitrary optimization problem to introduce the terminology, explain
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duality, and then go onto to a convex optimization problem. Generalized convex functions

is discussed next and a brief introduction to game theory follows. We finish the chapter

with a discussion on what type of solutions are acceptable to the wireless communication

industry. All normal faced letters represent real numbers or real valued functions. Bold

faced letters represent vectors of real numbers or vector valued functions. a � 0 means a

has non-negative components.

2.2 An optimization problem

Suppose we want to find the minimum value of the function f0(x) for x values in the domain

D, subject to the inequality constraints fi and equality constraints hi. Note that at this

point we do not make any assumptions about f0 or fi (such as convex or otherwise).

minimize f0(x) (2.1)

subject to fi(x) ≤ 0, i = 1, 2, ...,m (2.2)

hi(x) = 0, i = 1, 2, ..., n (2.3)

x ∈ D. (2.4)

The problem above is called the primal problem and its solution, namely the global optimum

value of f0, is denoted by p∗. In the optimization literature the word global is omitted and

the phrase optimal solution is used to mean the global optimal solution. The set of all x ∈ D

that satisfies the constraints is called the feasible set.

If D is a convex set, and the objective function f0 and all the constraints fi are convex

functions, then the above problem is said to be a convex optimization problem. We will

define a convex set, a convex function, and take a closer look at a convex optimization

problem in a short while. In the mean time, lets not make any assumptions about the set

D or the functions f0 or fi, convex or otherwise.
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2.3 The dual problem

A popular technique for solving an optimization problem uses theLagrange Dual Function.

The Lagrangian, L, is formed in the following way where λ and µ are the dual variables.

L(x,λ,µ) = f0(x) +
m
∑

i=1

λifi(x) +
n
∑

i=1

µihi(x) (2.5)

The infimum (greatest lower bound) of the Lagrangian over the variable x is called the

Lagrange dual function.

g(λ,µ) = inf
x∈D

L(x,λ,µ) (2.6)

= inf
x∈D

(

f0(x) +
m
∑

i=1

λifi(x) +
n
∑

i=1

µihi(x)

)

(2.7)

The following result holds for any λ � 0 and any µ, and is easily proven by substituting the

inequalities in the primal problem into (2.7).

g(λ,µ) ≤ p∗. (2.8)

Since g(λ,µ) is a lower bound of the solution to the primal problem, it is natural to ask how

high g(λ,µ) can be, or, what is the maximum value of g(λ,µ). The problem of finding the

maximum value of g(λ,µ) is called the Dual Problem.

maximize g(λ,µ) (2.9)

subject to λ � 0. (2.10)

The solution of the dual problem is denoted by d∗. It can be shown easily, that regardless

of the primal problem, the dual problem is always convex [81]. Now obviously (2.8) would
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imply that

d∗ ≤ p∗. (2.11)

This is called the Weak Duality. Weak duality holds always. Note that so far we have not

made any assumptions about the functions we are dealing with.

Under certain conditions d∗ = p∗, and this is called the Strong Duality.

d∗ = p∗. (2.12)

One of the simple sufficient conditions under which strong duality holds is called Slater’s

Condition [81]. It says that if the primal problem is convex and there is a strictly feasible

point satisfying the constraints then Strong Duality holds. It should be noted that for almost

all engineering problems this condition on feasibility holds. But convexity may not.

Slater’s is a sufficient condition but it is not necessary. There are numerous other less

stringent conditions under which Strong Duality holds but all of them are complicated and

not useful for engineers [81].

When the primal problem is not convex (hence Slater’s condition does not hold), the

experts [81, 82] suggest that 1) It is best to analyze the problem on its own. 2) Make

compromises in the primal problem formulation and see if strong duality holds approximately.

In the following we start with convex sets and functions and go on to explain what is a

convex optimization problem.

2.4 Convex sets and convex functions

A set D ⊆ Rn is convex if for every pair of points X and Y in D, every point on the line

segment XY also lies in D.

29



Definition 2.4.1. D ⊆ Rn is convex if for every x,y ∈ D and 0 < λ < 1, we have

λx+ (1− λ)y ∈ D. (2.13)

Two definitions of a convex function follows. The first one says that the graph restricted

to a line segment in the domain is under the secant line and the second one says that it is

above the tangent line.

Definition 2.4.2. f : Rn ⊇ D −→ R is convex, if D is convex and if for any x,y ∈ D and

0 < λ < 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.14)

Definition 2.4.3. A differentiable function f : Rn ⊇ D −→ R is convex, if D is convex

and for all x,y ∈ D,

f(x)− f(y) ≥ (x− y) • ∇f(y) (2.15)

Note that the above definition immediately leads to the first order optimality condition for

a convex function: ∇f(y) = 0 implies f(y) is the global minimum. More importantly,

any local minimum is a global minimum. A concave function is defined by reversing the

inequality above. An equivalent definition is: f is concave if −f is convex.

2.5 Convex structure

The phrase convex structure may refer to a convex or concave structure. It merely states

that one of these structures is present. In other words, a function is said to have a convex

structure if the function is either convex or concave.
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2.6 Convex optimization problem

The optimization problem:

minimize f0(x) (2.16)

subject to fi(x) ≤ 0, i = 1, 2, ...,m (2.17)

hi(x) = 0, i = 1, 2, ..., n (2.18)

x ∈ D. (2.19)

is convex if the set D, the objective function f0, and all the constraints fi are convex. As

mentioned before, the strong duality holds for this problem, and a popular method of solving

this type of problems is through the Lagrangian dual. Instead of solving the above problem,

one solves the dual problem.

2.7 The Karush Kuhn Tucker (KKT) Conditions

There is a set of optimality conditions, famously known as the KKT conditions that can

be used to theoretically locate the solution to a constrained convex optimization problem.

Referring to the problem in (2.16), we first form the Lagrangian:

L(x,λ,µ) = f0(x) +
m
∑

i=1

λifi(x) +
n
∑

i=1

µihi(x) (2.20)
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Then the KKT conditions are as follows:

λifi(x) = 0, i = 1, 2, ...,m (2.21)

µihi(x) = 0, i = 1, 2, ..., n (2.22)

∂L

∂xi
= 0, i = 1, 2, ...,m (2.23)

fi(x) ≤ 0, i = 1, 2, ...,m (2.24)

hi(x) = 0, i = 1, 2, ..., n (2.25)

We said KKT conditions locate the optimal point theoretically, because solving these equa-

tions in itself could be a hard problem. Note that except in the case of a quadratic objective

and quadratic constraints, the KKT conditions lead to a system of non-linear equations.

There are no efficient algorithms for solving systems of non-linear equations. The most

popular algorithm for this purpose, the multivariate Newton-Raphson, is not only computa-

tionally expensive but highly unstable [28, 85].

2.8 Generalized convex functions

Many optimization problems encountered in engineering and economics cannot be considered

as convex optimization problems because the objective is either known to be nonconvex

(nonconcave) or no one was able to prove the objective is convex (concave). Slater’s is

a sufficient condition but it is not necessary for the duality gap to be zero. Convexity is a

sufficient condition for the KKT conditions to give the optimum point but it is not necessary.

The combination of these three facts has led many researchers to question if there is any

broader class of functions than convex for which KKT conditions hold or duality gap is zero.

There have been several proposals to extend or loosen the definition of convexity [86, 87].

In the following, we discuss three of these extensions, the first two of which are well known
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while the last one is relatively new and unknown. This last extension of convexity, known as

invexity is later used in this dissertation to solve a difficult optimization problem regarding

throughput maximization in the Gaussian interference channel.

2.8.1 Quasiconvex functions

In 1949, de Finetti modified [86] the right side of the Definition 2.4.2 of convex functions to

introduce what became known as quasiconvex functions.

Definition 2.8.1. A function f : Rn ⊇ D −→ R is quasiconvex if for all x,y ∈ D and for

any λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ max {f(x), f(y)} (2.26)

For differentiable functions, quasiconvexity can be defined as follows.

Definition 2.8.2. A differentiable function f : Rn ⊇ D −→ R is quasiconvex if

f(x) ≤ f(y) =⇒ (x− y) • ∇f(y) ≤ 0, for all x,y ∈ D. (2.27)

2.8.2 Pseudoconvex functions

Tuy (1964) and Mangasarian (1965) introduced differentiable pseudoconvex functions [86] by

switching the sides and reversing the inequalities in the definition of a quasiconvex function.

Definition 2.8.3. A differentiable function f : Rn ⊇ D −→ R is pseudoconvex if

(x− y) • ∇f(y) ≥ 0 =⇒ , f(x) ≥ f(y) for all x,y ∈ D. (2.28)

One of the remarkable things about differentiable pseudoconvex functions is that the first

order optimality condition for the convex functions also applies to pseudoconvex functions.
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Note that if ∇f(y) = 0, then the definition above implies that f(y) is the global mini-

mum. In other words, a local minimum is always a global minimum. In case of constrained

optimization, pseudoconvexity is sufficient for the KKT conditions.

2.8.3 Invex functions

Even after the introduction of pseudoconvexity, many problems in economics and engineering

remained unsolved. In 1981, Hanson introduced a much wider form of generalization of

convexity, that came to be known as invexity, by replacing the (x−y) term in the Definition

2.4.3 of a convex function with an arbitrary vector function [88–90]. He went on to show

that in case of a constrained invex problem, the KKT conditions are sufficient for optimality.

We give a short but comprehensive account of invex analysis in Chapter 4 and use invexity

to solve the throughput maximization problem in the GIC in Chapter 9.

2.9 Game theory

Certain design problems in engineering can be modeled as the simultaneous optimization

of a number of multivariable functions in the same variables, where different variables are

controlled by different agents. Strategic and Stackelberg game theories can then be used to

find the solution to these problems.

An important question is whether game theory belongs in convex optimization or in

nonconvex optimization. An argument can be made for each side. If the payoff functions

involved in the game are convex then we can say we are performing convex optimization.

However, the most famous concept in the strategic game theory, the Nash equilibrium, can

exist even when the payoff functions are nonconvex. The same is true for the existence of

the outcome of a Stackeberg game. Therefore, one can consider game theory as part of

nonconvex optimization too. This is particularly true when we prove the existence of the

equilibrium outcome directly, without involving the theorems that peg the existence of the
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equilibrium on the convexity of the payoff functions.

2.10 Real time problems

We saw that the optimization problems can be classified into linear programming, convex

optimization or nonconvex optimization. There is another way to categorize optimization

problems that is perhaps not important to mathematicians but certainly very important

to engineers. This categorization is based on whether the solution to the optimization

problem is required on a real time basis or not. Consider the flight scheduling problem

at an airport. Flights are scheduled at least months ahead of time. This means the method

used to optimally use the airport runways and time can take months to arrive at the solution.

We are not optimizing any function when a plane is approaching the airport. This means

the flight scheduling is not a real time application. If the software used for this optimization

crashes once in a while, this is not a big problem.

Now consider the power allocation problem at a cellular base station. The users and

their channel conditions are changing every second. Even if we decide to optimize the power

allocation only every 10 seconds or so, there is not enough time for a software engineer to

run a computer program in the computer and then relay the solution to the manager. This

is an example of a real time optimization problem. The optimization has to be performed

automatically, at very high speeds, and at the chip level at the base station. The wireless

industry will accept only a solution that can be embedded in the chip that controls the power

transmitter at the base station.

This brings us to the question of which type of optimization solutions or algorithms can

be embedded in chips. First of all, the reason we are going to the chip level is speed. The

algorithm has to be very fast. Only polynomial time algorithms are suitable. Second, the

algorithm has to be stable. An algorithm that converges to the optimum result for all values

of the parameters involved is said to be stable. For example, a power allocation algorithm has
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to converge for all values of the channel gains it could possibly encounter in the application.

We need a theoretical proof that the algorithm will converge for all values of the channel gains

as well as extensive numerical results through simulations that demonstrate the convergence.

36



Chapter 3

Cross product in higher dimensions

3.1 Introduction

Consider a resource allocation problem that maximizes the sum output of a number of users

under a total constraint on the resource. If the user’s proportional outputs are admitted as

additional constraints, in some cases, it may be possible to locate the point of maximum sum

output, under a total resource constraint, using analytical geometry whether the sum output

is concave or not. This technique is used in Chapter 8 to solve the problem of finding the

power allocation that maximizes the sum transmission rate (throughput) of the Gaussian

interference channel with proportional rate and total power constraints.

Suppose there are N users. The idea is to follow the curve of intersection of the sum

rate and the proportional rate constraints in the N +1 -dimensional Euclidean space until it

intersects the power constraint plane. Crucial in this approach is the increasing/decreasing

behavior of the said curve of intersection. This brings us to the tangent line of this curve.

In 3-dimensions, the direction of the tangent line of the curve of intersection of two surfaces

can be found by taking the cross-product of the normal vectors of the two surfaces. This

idea falls apart in dimensions higher than three because the traditional cross product is

not defined in higher dimensions. In what follows, we explain this in detail and propose a
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solution.

3.2 Traditional cross product

In 3-dimensions, two non-parallel vectors can be used to define a unique direction that

is perpendicular to both vectors, using the familiar cross product. In higher dimensions,

the idea of a cross product of two vectors falls apart because of the following reason. In

4-dimensions, given two non-parallel vectors, there are an infinite number of vectors that

are perpendicular to both these vectors. In fact, these vectors will form a plane that is

perpendicular to the given two vectors. Suppose we use X, Y, Z,W to label the axes in

4-dimensions. Consider the X and Y axes. Z axis is perpendicular to both X and Y ,

but so is W . In fact, every direction in the ZW -plane is perpendicular to both X and Y

directions. Similarly, in 5-dimensions, the vectors perpendicular to given two vectors will

form a 3-dimensional subspace.

In light of this, mathematicians have defined various advanced “products” of two vectors

in higher spaces such as Wedge product and Clifford product. While Wedge product and

Clifford product have found numerous important applications in Physics and Engineering, it

turns out that for our present work, we could use an extension of the familiar cross product

after all.

3.3 Extended cross product

There is a way to extend the cross product into higher dimensions [91]. In 4-dimensions, the

idea is to use three linearly independent vectors to define a unique direction perpendicular

to these three. For example, W axis is the only direction perpendicular to X, Y and Z in

4-dimensions. Moreover, this new direction can be found by using the familiar determinant

style formulation.
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Let us consider two illustrative examples from the 4-dimensional space. Suppose we use

θ1, θ2, θ3, and θ4 to denote the unit vectors in the 4 coordinate directions. Let us cross

(1, 0, 0, 0), (0, 1, 0, 0), and (0, 0, 1, 0) together. Note that these are the unit vectors in the

coordinate directions X, Y and Z. We expect the result to be the unit vector in the W

direction. Note that in the following, the result is obtained simply by calculating the deter-

minant.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ1 θ2 θ3 θ4

1 0 0 0

0 1 0 0

0 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (0, 0, 0, 1), (3.1)

as expected. As a second example, consider the cross product of v1 = (1, 1, 0, 0),v2 =

(0, 1, 1, 0) and v3 = (0, 0, 1, 1).

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ1 θ2 θ3 θ4

1 1 0 0

0 1 1 0

0 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1,−1, 1,−1) = v. (3.2)

We can easily verify that the result v is perpendicular to each of the vi’s by taking the dot

product. That is, v.vi = 0 for i = 1, 2, 3.

In general, in the N -dimensional space, we can use N − 1 linearly independent vectors

to define a unique direction that is perpendicular to all N − 1 vectors, using the same

determinant formulation of the extension of the 3-dimensional cross product.
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Chapter 4

Invexity

4.1 Introduction

Optimizing non-convex functions is difficult mainly for two reasons. First is that the simple

characterization of the critical point such as the KKT conditions may not be applicable. The

second is the possible existence of many local optima; a search algorithm that is looking for

the global optimum point might get stuck at a local optimum point. Thankfully, convexity is

not the only condition under which a local extremum necessarily becomes a global extremum.

As mentioned in Chapter 2, the famous example is pseudo-convexity.

In the 1980’s a more general geometrical structure called invexity (incavity) was pro-

posed [88–90]. What is impressive about invexity is that while it is more general than

pseudo-convexity and quasi-convexity, invexity guarantees that any local extremum is a

global extremum. Furthermore, under certain conditions, the solution to an invex, con-

strained, optimization problem can be obtained via the KKT conditions. Invexity is appli-

cable only to differentiable functions. For engineers, this is not a serious limitation, because

most functions we attempt to optimize are differentiable.

We present a short treatment of invex analysis with a perspective from our application of

the theory. The early development here parallels what is in [88–90], although some theorems
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there are definitions here and some definition there are theorems here. Towards the end of

this section however, we deviate from the development in [88–90], and provide an original

theorem that is better suited to our application.

4.2 Concavity

We start with a definition and two theorems from convex analysis, which we purposefully

present here instead of an appendix because the theory of invex analysis and the proofs of the

theorems closely follow of that of the convex analysis. Unless stated otherwise, all functions

are assumed to be differentiable. Bold face letters represent vectors or vector functions. a•b
indicates the inner product of a and b.

Definition 4.2.1. Concavity: A scalar function f : D ⊆ Rn −→ R is said to be concave

in domain D if

f(x)− f(y) ≤ (x− y) • ∇f(y) for all x,y ∈ D. (4.1)

Theorem 4.2.1. Suppose f is concave in D. Then ∇f(a) = 0 for an a ∈ D implies f(a)

is the global maximum of f in D.

Proof: Suppose ∇f(a) = 0. Then for all x ∈ D we have

f(x)− f(a) ≤ (x− a) • ∇f(a) = (x− a) • 0 = 0 (4.2)

Note that the converse is not true. That is, “∇f(a) = 0 implies f(a) is the global

maximum” does not imply that f is concave.

Remark 4.2.1. Note that in order to prove that f(a) is the maximum, we do not necessarily

need (4.1) to be valid at x = a. As long as (4.1) is valid for every point x 6= a, the proof
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stands. This shows that f(a) will be the maximum even if (4.1) is valid everywhere but not

at a.

The following theorem is about what we know traditionally about constraint optimization

in its simplest form. It deals with the familiar Kuhn-Tucker condition [88] for the maximum

of f(x) subject to the constraint g(x) ≥ 0.

Theorem 4.2.2. Suppose f and g are concave scalar functions defined in domain D and

there is a point a in D such that ∇f(a)+λ∇g(a) = 0 with scalar λ > 0 and g(a) = 0. Then

f(a) is the global maximum of f(x) in D subject to the constraint g(x) ≥ 0.

Proof: The concavity of f and g allows us to write that for all x ∈ D,

f(x)− f(a) ≤ (x− a) • ∇f(a) and

g(x)− g(a) ≤ (x− a) • ∇g(a)
(4.3)

Multiplying the second inequality by λ and adding to the first:

f(x)− f(a) + λg(x)− λg(a) ≤ (x− a) • [∇f(a) + λ∇g(a)] (4.4)

Substituting for quantities that are zero and re-arranging:

f(x) + λg(x) ≤ f(a) (4.5)

Since x is constraint to g(x) ≥ 0 and λ > 0, we have

f(x) ≤ f(a). (4.6)

Remark 4.2.2. Note that f(a) will be the maximum even if (4.6) is valid everywhere but

42



not at x = a. In other words, f(a) will be the maximum even if (4.3) is valid everywhere

but not at x = a.

4.3 Incavity

We now start our exposition on incavity. Hanson [88] noticed that the term (x − a) in the

definition of concavity in (4.1) is not special and that it can be replaced by any other vector

function. He went on to define Incavity as follows.

Definition 4.3.1. Incavity: A scalar function f : D ⊆ Rn −→ R is said to be incave in

the domain D if there exists a vector function η : D ×D −→ Rn such that

f(x)− f(y) ≤ η(x,y) • ∇f(y) for all x,y ∈ D. (4.7)

Invexity is defined by reversing the inequality. In the following, we will use η to denote

η(x,y).

Notice that just like concavity, incavity is a linear property. That is, if f and g are incave

then so is f + kg for any positive k.

A function that is concave (convex) is necessarily incave (invex). This can be easily

proven by taking η = x− a. It is important to note that the converse is not true. A linear

function is both concave and convex, and therefore, both incave and invex.

The analogue of Theorem 4.2.1 is stronger; the converse is true too.

Theorem 4.3.1. f is incave in D if and only if ∇f(a) = 0 for an a ∈ D implies f(a) is

the global maximum of f in D.

Proof: The proof of the forward direction is exactly the same as the proof of Theorem

4.2.1 but (x−a) replaced with η. To prove the reverse direction, assume that the statement
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“∇f(a) = 0 implies f(a) is the global maximum of f” is true. Let us refer to this statement

as the hypothesis. We need to prove that f is incave. We shall produce an η and demonstrate

that (4.7) holds. We have two cases: Either ∇f(y) = 0 or ∇f(y) 6= 0.

If ∇f(y) = 0, by the hypothesis we know f(y) is the global maximum and therefore we

have,

f(x)− f(y) ≤ 0. (4.8)

If we take η = 0, (4.7) will hold and therefore f is incave.

If ∇f(y) 6= 0, take

η =
f(x)− f(y)

||∇f(y)||2 ∇f(y). (4.9)

Then

η • ∇f(y) = f(x)− f(y)

||∇f(y)||2 ∇f(y) • ∇f(y) = f(x)− f(y) (4.10)

Notice that the above equation implies the inequality in (4.7) and therefore f is incave.

The next theorem is the analogue of Theorem 4.2.2.

Theorem 4.3.2. Suppose f and g are incave with respect to the same function η everywhere

in D except possibly at point a where we have: ∇f(a) + λ∇g(a) = 0 with scalar λ > 0 and

g(a) = 0. Then f(a) is the global maximum of f(x) in D subject to the constraint g(x) ≥ 0.

Proof: Straightforward from the proof of Theorem 4.2.2 by replacing (x− a) with η.

In convex analysis, the component x − y in the definition of concavity is common to

all functions that are concave, by definition. In contrast, in incave analysis, two functions

that are incave in the same domain may be incave with respect to two different η functions.

Theorem 4.3.2 however, requires that the functions be incave with respect to the same η

function. This raises the question: what is the condition two incave functions have to satisfy

in order to be incave with respective to the same η function? Before we can answer that
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question, we must answer the following question: is there a sufficient condition that ensures

the incavity of a function?

4.4 A sufficient condition for incavity

The following theorem asserts that a function without any stationary points is necessarily

incave and invex.

Theorem 4.4.1. Suppose f(x) has the property ∇f(x) 6= 0 for all x in D. Then f is incave

and invex in D.

Proof: Since ∇f(x) 6= 0 for all x in D, we have ||∇f(y)|| 6= 0 for all y in D. This

enables us to write

f(x)− f(y) =

[

f(x)− f(y)

||∇f(y)||2 ∇f(y)
]

• ∇f(y) (4.11)

For each y ∈ D, define u(y) as any vector with components that have the same sign as that

of the components of ∇f(y). Then u • ∇f(y) ≥ 0 for all y ∈ D. We can now write

f(x)− f(y) ≤
[

f(x)− f(y)

||∇f(y)||2 ∇f(y) + u

]

• ∇f(y) (4.12)

Comparing the above equation with the definition of incavity in (4.7), we see that f is incave

everywhere in D with respect to the function

η =
f(x)− f(y)

||∇f(y)||2 ∇f(y) + u (4.13)

Note that we can prove f is invex by choosing u as any vector with components that have

the opposite sign to that of the components of ∇f(y).
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4.5 Being incave with respect to the same function

The function η in (4.13) can be written as

η = t∇f(y) + u, (4.14)

where t is a scalar. Note that this η is one possible functions among many that will make

the proof work. For given x and y, what are the possible choices for the vector u, that would

make the proof that f is incave valid? Under which condition a number of functions with no

stationary points can have a common η function at a point? The reader is referred to [88]

and [90] for the answers to these questions in the most general context. In what follows, we

give an original theorem whose scope is narrower than the theorems in [88] and [90], but the

proof is much simpler. The scope of this theorem is sufficient for our application of invex

analysis in this article.

Theorem 4.5.1. Suppose f and g are two functions with ∇f(x) 6= 0 and ∇g(x) 6= 0 for

all x in D and hence incave in D. Then f and g are incave with respect to a common η at

every point y in D where ∇f(y) and ∇g(y) do not point in exactly opposite directions.

Proof: Since ∇f(x) 6= 0 and ∇g(x) 6= 0, by Theorem 4.4.1, and by the observation

at the beginning of the paragraph above, f and g are incave with respect to η1 and η2 given

by:

η1 = t∇f(y) + u1 (4.15)

η2 = s∇g(y) + u2, (4.16)

where t and s are scalars and u1 and u2 are vectors with u1•∇f(y) ≥ 0 and u2•∇g(y) ≥ 0.

We use Fig. 4.1 to show that it is possible to choose u1 and u2 so that η1 = η2, as long as

∇f(y) and ∇g(y) do not face exactly opposite directions.
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Given a vector a, the possible directions for a vector b that satisfies the condition a•b ≥ 0

is shown in Fig. 4.1(a). Given the directions of ∇f(y) and ∇g(y), how we can choose u1

and u2 so that we end up with the same η is illustrated in Fig. 4.1(b) and (c). Two different

relative orientations for ∇f(y) and ∇g(y) are shown in Fig. 4.1(b) and (c). It is clear from

these two diagrams that the only orientation of ∇f(y) and ∇g(y) where there might not be

a common η is when they point in exact opposite directions.
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Figure 4.1: Two functions having the same η.
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Chapter 5

Convexifying, increasing

transformations

5.1 Introduction

If a non-convex objective function can be transformed into a convex function in such a manner

that the order of the local extreme values is preserved, the tools of convex analysis can then

be used to find the optimum value of this function. A moment of reflection tells us that

the order of the local extreme values will be preserved if the transformation is increasing1.

Suppose T transforms f(x) into g(X). T is said to be increasing if g(X) increases whenever

f(x) increases. Note that g(X) will increase with f(x) if each component of X increases

with x.

The concept of an increasing transformation mapping a single variable non-convex func-

tion into a single variable convex function is mystifying. An increasing transformation will

preserve all the local extrema; how can the resulting function then be convex? One can

safely conclude no such transformation exists. The multi-variable context is not this simple.

1Strictly speaking monotonicity is sufficient. However, the existence of a monotonic transformation
guarantees the existence of an increasing one.
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Furthermore, a transformation can increase the number of variables.

A natural question is what type of functions can be transformed into convex functions

in this manner. Despite considerable research, the results in this area are disappointing.

We only have a necessary condition for convexifyability. In other words, we know when

a non-convex function is not convexifyable. A theorem due to Fenchel asserts that only

quasi-convex functions are convexifyable [87]. This leaves us with only isolated examples of

quasi-convex functions and the corresponding confexifying transformations. In what follows

we present two such transformations, the second of which is later used in energy efficient

power allocation for OFDMA transmissions.

5.2 The exponential transformation

Suppose f and g are two single variable scalar functions. It is straight forward to prove that if

f and g are convex and if f is increasing then f ◦g is convex. Now consider the multi-variable

scalar function f : Rn −→ R defined by f(x1, x2, ...xn) = exp(a1x1+a2x2+ ...+anxn) where

a1, a2, ...an are real numbers. Since a1x1 + a2x2 + ... + anxn is convex (linear) and exp(x)

is increasing and convex, it follows that f(x1, x2, ...xn) = exp(a1x1 + a2x2 + ... + anxn) is

convex.

Suppose the function one wishes to optimize is of the form g(x1, x2, ...xn) =
∏

i x
ai
i ,

which in general, may not be convex. The exponential transformation xi = exp(yi) maps g

to h(y1, y2, ...yn) = exp(a1y1 + a2y2 + ...+ anyn), which is convex. The fact that xi increases

with yi ensures that the exponential transformation is increasing.

Example 5.2.1. Consider z = g(x, y) = x2
√
y. Letting y = c, where c is a constant, shows

that the cuts parallel to the ZX-plane are convex. Letting x = c shows that the cuts parallel

to the Y Z-plane are concave. Hence, g is not convex (Fig. 5.1). Under the transformation

x = exp(X), y = exp(Y ), g(x, y) becomes h(X, Y ) = exp(2X + (1/2)Y ), which is convex as

proven earlier (Fig. 5.2).
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Figure 5.1: z = g(x, y) = x2
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Figure 5.2: h(X, Y ) = exp(2X + (1/2)Y )

5.3 Charnes-Cooper transformation (CCT)

Consider an objective that is the ratio of two functions where the numerator is concave and

the denominator is affine. Such an objective, in general, may not be concave. CCT can

be used to transform this objective into a concave one. The CCT transformation increases

the number of variables by one. Naturally, the new variable’s relationship to at least one

of the original variables now becomes part of the optimization problem. However, as far

as the objective function is concerned, all the variables are treated as independent. The

relationship between the new variable and the original variables becomes a constraint. In this

way, CCT transformation changes an unconstrained optimization problem into a constrained

optimization problem. In case of constrained optimization, CCT increases the number of

constraints by one.

Suppose the objective is f(x)/g(x), where f is concave and g > 0 is affine. The CCT

transformation is given by: t = 1/g(x) and y = tx. The first equation becomes a constraint

in the optimization problem after the transformation. The objective f(x)/g(x) becomes

tf(y/t). The new optimization problem is: maximize tf(y/t) subject to the constraints

t = 1/g(x) and t > 0.
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The reason why tf(y/t) is concave is best understood through a well known result from

convex analysis. Consider the numerator f(x) of the original objective and the new objective

tf(y/t). The transformation from any function h(x) to th(x/t) for a fixed t is called the

perspective transformation in convex analysis [28]. Perspective transformation is one of the

standard transformations studied under the umbrella of “convexity preserving” transforma-

tions. In other words, if f(y) is convex then tf(y/t) is convex. In our case, we know that

f(x) is concave, which means f(y) is concave, and hence, tf(y/t) is concave.

To show that CCT is an increasing transformation, note that tf(y/t) can be written

as f(y/t)/g(y/t) = (f/g)(y/t). In other words, CCT transforms (f/g)(x) into (f/g)(y/t).

The relationship y = tx can be re-written as x = y/t. This shows that each component of

y/t is increasing with the corresponding component of x.

Example 5.3.1. Consider the single variable function f(x) = ln(x)/x. The numerator ln(x)

is concave while the denominator x is affine. As Fig. 5.3 shows f is not concave. Applying

the CCT transformation to f , we let t = 1/x and x = y/t. This produces a concave function

g(y, t) = t ln(y/t), which is shown in Fig. 5.4.
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Chapter 6

Genetic algorithm

6.1 Introduction

Genetic algorithm is one of the algorithms from a class of biology inspired algorithms called

evolutionary algorithms that mimic the nature to solve optimization problems. Ant colony

and particle swarm optimizations are two other examples of evolutionary algorithms.

Genetic algorithm (GA) is the culmination of many researchers’ work [92]. It was popu-

larized in North America in the 1970’s by John Holland [26]. GA can be used to solve almost

any optimization problem. It can be used to optimize a function with continuous, discrete

or mixed variables. GA has been used to obtain near optimal solutions to many industrial

problems that are too complex for analytical methods. Examples include flight scheduling in

airports and design of engine parts [93,94]. GA uses a chromosome to represent a particular

value of a variable in the optimization problem. The algorithm then creates improved values

of that variable by mimicking the birth of children in the natural world with better chromo-

somes than their parents in terms of surviving the environment. Consider a maximization

problem. A number of chromosomes (or individuals) are randomly created in the beginning.

These individuals form the initial population. The individuals are then ranked by evaluating

a measure called the fitness function. A fraction of the initial individuals with the highest

52



rank are allowed to produce new chromosomes (or children). The children and a fraction

of the high ranking individuals form the next generation. The process is repeated for many

generations. Naturally, the fitness function is often none other than the objective function

of the optimization problem itself.

In the following we use two specific examples to illustrate GA in detail. The first one has

discrete variables whereas the second involves continuous variables.

6.2 Genetic algorithm with discrete variables

The combinatorial optimization problem considered in the following example has an obvious

solution. We deliberately chose this problem to illustrate how close to the optimal solution

can the solution from GA can be.

Example 6.2.1. Throughput maximizing OFDMA channel assignment with equal

power allocation and without rate constraints. There are K orthogonal subchannels

that are to be assigned to N (N < K) Users so that one subchannel is assigned to only one

User. The channel gain for User-n on subchannel-k, akn is known for all n and k.

The obvious solution to this problem is to assign each subchannel to the user with the

highest channel gain on that subchannel. In the following, we will pretend we do not know

this and let genetic algorithm decide the subchannel assignment.

6.2.1 Chromosome

Central in genetic algorithm is the idea of a chromosome. Associated with each variable in

the optimization problem there will be a chromosome. During the execution of the algorithm,

the chromosome will hold the valuation of the variable it is associated with. In our case,

there is only one variable. It is an array indicating the subchannel assignment. Consider a

one-dimensional array consisting of K cells, each cell representing a subchannel. The number
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Table 6.1: The Genetic Algorithm

Step 1 Randomly generate 3P number of
chromosomes or individuals.

Step 2 Evaluate the fitness function
of each individual.

Step 3 Pick the P number of individuals
with the highest fitness value
and refer to them as the Elites.

Step 4 Pick the P number of individuals
with the lowest fitness values

and erase them.
Step 5 Call the rest of the P number

of individuals Middles.
Step 6 Put the P number of Elites and the

P number of Middles in one group and
randomly pair them in groups of two.

Step 7 For each pair, use the chromosomes
of the two individuals to create two
new chromosomes or children using
one-point crossover (Fig. 6.1(b)).

Step 8 Occasionally, mutate a child’s
chromosome by interchanging the
numbers in two randomly selected

cells in the chromosome.
Step 9 Put the P number of Elites and

the 2P number of Children together
to form the new generation of

3P individuals.
Step 10 Stop if the number of generations

is equal to Ngen.
Otherwise go to Step 2.
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in each cell indicates the User to whom that subchannel is being assigned. For example, in

Fig. 6.1(a), cell number 5 contains the number 7. This means that subchannel 5 is assigned

to user 7. A different subchannel assignment will be represented by a different chromosome.

Each chromosome or subchannel assignment will lead to a particular value for the throughput

after (equal) power allocation. Using ρ(k) to denote the array representing the chromosome,

the throughput resulting from that chromosome can be written as:

R =
∑

k

log2

(

1 +
akρ(k)p

σ2
k

)

, (6.1)

where σ2
k is the background noise power per Hz and p is the power. The higher the throughput

is, the better that channel assignment or better that chromosome will be. In what follows

we will associate each chromosome with an individual. The function to be optimized, the

throughput, will be referred to as the fitness function. The steps involved in the GA, in the

context of the problem considered in this example, are outlined in Table I.

6.2.2 In the beginning

We start with the creation of a number of chromosomes or channel assignments using com-

pletely random selection. In other words, for each chromosome, each cell is assigned to a

User who is selected randomly. We repeat this process 3P times to create 3P chromosome

or individuals. Steps 2 to 5 in Table 6.1 are self explanatory.

6.2.3 The birth of children

In Step 6, a pool of 2P individuals consisting of the Elites and the Middles is randomly paired

to form P couples. Let us call the individuals who form a couple Father and Mother. We

split the Father’s and Mother’s chromosomes at a randomly chosen but identical location.

We swap the chromosomes as shown in Fig. 6.1(b) to create two new chromosomes. In the
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GA terminology, this is called one-point cross-over. In this way, each couple will create two

offspring (Step 7). In total we will have 2P children.

6.2.4 Genetic mutation

In order to prevent the algorithm from converging to a local maximum, occasionally we

mutate the chromosomes of the children at birth. This is accomplished by including Step 8

which occurs with a low probability. This step is included only if necessary.

6.2.5 The last generation

The algorithm continues until a predetermined number of Ngen generations. Ngen is deter-

mined by trial and error in the first few runs of the program by observing the convergence

of the throughput value. The chromosome of the individual with the highest fitness func-

tion value in the last generation represents the sub-channel allocation that leads to the

near-optimum throughput value given by the fitness function.

6.2.6 Numerical results

Numerical results obtained using GA for the above example problem with N = 6 users and

K = 128 subchannels, and using a population size 3P = 600 are shown in Fig. 6.2. The

dotted line represents the optimal throughput obtained by assigning each subchannel to the

user with the highest gain. The near optimal solution obtained using the GA is within 3%

of the optmal solution. Note that the solution from GA can be improved by using a larger

population size.
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Figure 6.2: Genetic algorithm with population size 3P=600

6.3 Genetic algorithm with continuous variables

In case of an objective function with continuous variables, the real numbered values of the

variables are represented using the binary notation. The 0’s and 1’s of the binary digits

become the entries in the chromosome.

Example 6.3.1. Consider the problem of finding the absolute maximum value of f(x, y) =

15− 2(x− 1.125)2 − 3(y − 2.300)2.

We know the maximum occurs at xopt = 1.125, yopt = 2.300 and it is 15. We will

demonstrate how good GA is in solving this problem.

There are two variables and hence there will be two chromosomes. Suppose we decided

to represent the real number x using 6 binary digits in the form b6b5b4 . b3b2b1. This one-

dimensional array of 6 cells will form one of the two chromosome. Each cell will have one

of the binary digits, either a 0 or 1. A similar array representing the variable y in binary
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notation will form the other chromosome. Note that the last three digits come after the

“point.” The largest number that can be represented is 7.875 and the smallest is 0.125.

GA repeats the steps in Table 6.1 for each chromosome separately and in parallel. The

fitness function will be the f(x, y) given above.

6.3.1 Numerical results

The results from GA with a population size of 3P = 90 is shown in Fig. 6.3. The throughput

solution of 14.9925 from GA is practically the same as the optimal solution of 15. Note that

the near optimal yGA = 2.250 value obtained by GA is the closest one can get to the optimal

yopt = 2.300 when one is representing fractions using 3 binary digits. Naturally this can

be improved by using more digits to represent a fraction. However, the near optimal value

obtained, 14.9925, is so close the optimal value 15, there is no need for improvements.
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Figure 6.3: Genetic algorithm with population size 3P=90
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Chapter 7

Game theory

7.1 Introduction

Game theory is simply the analysis of games in terms of strategy. We have all analyzed games

starting from elementary school probably with tic-tac-toe. We came to the conclusion that

if the player who starts first occupies the central node in tic-tac-toe, then he/she cannot

loose. Analyzing games in sports this manner has limited use because the outcome of a

sport game often depends also on other factors such as players’s skill and psychology. What

makes game theory such a valuable tool is that many conflicting situations that arise between

organizations or nations can be modeled as a game. Each party involved in such a situation

can analyze the game under the assumption that the opposing party chooses the best strategy

available to it, and select the best strategy for itself. An example that is perhaps surprising

is the application of game theory in the arbitration process between the management and the

union. When the talks between the union and the management breaks down, the arbitrator

models the “offers and counter-offers” by the two parties as a repeated game and calculates

the theoretical outcome under the assumption that the negotiations go on forever [62]. The

arbitrator then imposes the outcome of this infinitely-repeated-game on the parties involved.

Broadly speaking, games can be classified in two ways. One is into sequential games
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and strategic games. Tic-tac-toe and chess are two examples of sequential games. Prisoner’s

Dilemma and Battle of the Sexes are two examples of strategic games that are often men-

tioned in books on game theory [27, 63, 64]. The second is to classify games based on their

strategy spaces as games in discrete space or in continuous space. The strategy spaces of

Prisoner’s Dilemma and Battle of the Sexes are discrete. They can be used to model So-

cial or Economic behavior. In contrast, almost every design decision an engineer makes is

about a continuous variable that takes a real value. The strategy spaces of games useful for

engineers are continuous.

7.2 Optimization and game theory

In a game, each side or user attempts to use all the resources available to it to maximize

its chance of winning the game. This shows that “winning the game” has a connection to

optimizing. But we see a complication immediately. Every game has at least two players

who attempts to win. Every game involves at least two optimizing processes. No game

in game theory can be used to optimize a single function. However, game theory is useful

in an optimization process that involves several interconnected multi-variable functions, if

the situation satisfies certain conditions. Certain type of interconnection and conditions

enable one to model the problem as a strategic game. Another type of interconnection and

conditions lead to a Stackleberg game. In Chapter 12, we use a composite game - a strategic

game inside a Stackleberg game to decide the price of subchannels for an operator that

subleases channels for ad-hoc networks.

7.3 Strategic games in continuous space

The strategic game and its central idea of a Nash equilibrium were discovered by John

Nash during his doctoral work at Princeton university. For three of four years Nash did
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not publish any papers, while among his classmates were a few who were very prolific in

publishing. When taunted by these classmates for not publishing, Nash apparently retorted

by saying that while their work was derivative research, he was waiting for that one big

idea [115]. It turns out that the big idea was the Nash Equilibrium. In the following, we

first describe a two player strategic game and then go on to multi-player strategic game and

the definition of a Nash equilibrium.

Consider two individuals, X and Y , playing a game. X is supposed to pick a real number

from the closed interval [a, b]. Without knowing what X picked, Y has to pick a real number

from the interval [c, d]. [a, b] is called the Strategy Space of X and [c, d] is called the Strategy

Space of Y . The order in which they do their picking does not matter but it is important

that they do this without the knowledge of the number picked by the other. Let us denote

the number picked by X by x and the number picked by Y by y. x is called the Strategy

of X and y is called the Strategy of Y . Each individual is now awarded a point based on

his/her and the other player’s pick. Suppose X(x, y) is the function that decides the point

awarded to X, and Y (x, y) decides the point for Y . We will assume X(x, y) and Y (x, y)

are continuous and bounded. These functions are fixed before the start of the game and are

called Payoff (Utility) Functions : X(x, y) is the payoff function for X and Y (x, y) is the

payoff function for Y . Before the start of the game each player not only has the knowledge

of his/her payoff function but also has knowledge of the other player’s payoff function. The

game is played only once and the player who gets the most points wins. Assuming each

player wants to win and is capable of reasoning, can we predict the outcome of the game?

In other words, can we predict the numbers the players would choose?

It is clear that X will try to pick the x that maximizes X(x, y) and Y will try to pick

the y that maximizes Y (x, y). But the x that maximizes X(x, y), in general, will depend on

y, which is decided by Y alone; X has no knowledge or control over this y. Suppose that

X knows that for sure Y will play y1. Then X will pick the x that maximizes X(x, y1). In

other words, X will pick xy1 = arg max
x

X(x, y1). If X thinks that for sure Y will play y2,
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then X will pick xy2 = arg max
x

X(x, y2). This dependence of X’s pick of x on the choice

made by Y can be described by a function called the best response function of X:

BRX(y) = arg max
x

X(x, y) (7.1)

Similarly if Y knows for sure thatX will play x1, then Y will pick the yx1
= arg max

y
X(x1, y),

and so on. The best response function of Y will be given by:

BRY (x) = arg max
y

Y (x, y) (7.2)

Suppose that there are two numbers x∗ and y∗ (x∗ ∈ [a, b] and y∗ ∈ [c, d]) such that the x

that maximizes X(x, y∗) is x∗ and the y that maximizes Y (x∗, y) is y∗. Suppose further that

there is only one such pair of numbers (x∗, y∗). Since each player has knowledge of both

player’s payoff functions, and is capable of reasoning, we can conclude that the outcome of

the game would be (x∗, y∗). Are the players satisfied with this outcome? How happy is each

player? These questions will be addressed in Section 7.3.3.

What if there are more than one such pairs of points? Before we discuss this, we will

tighten our argument by replacing the word maximum by local maximum. Suppose that

there are two such pairs (x∗1, y
∗
1) and (x∗2, y

∗
2), such that X(x∗1, y

∗
1) is a local maximum of

X(x, y∗1) and Y (x∗1, y
∗
1) is a local maximum of Y (x∗1, y), and like wise X(x∗2, y

∗
2) is a local

maximum of X(x, y∗2) and Y (x∗2, y
∗
2) is a local maximum of Y (x∗2, y). Predicting the outcome

might not be possible now.

In any event, points like (x∗1, y
∗
1) and (x∗2, y

∗
2) are called Nash equilibria. Suppose that in

one instant of playing the above game the players picked (x∗2, y
∗
2). Now imagine we bend the

rules and say that while Y is not allowed to change his mind, we give X a chance to pick

another number if she chooses to. Is their any motivation for X to move away from x∗2? The

answer is no, because for y fixed at y2, x2 maximizes f(x, y) and their is no point in deviating

from this. This illustrates one of the important characteristics of a Nash equilibrium. If for
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some reason the players find themselves selecting strategies that produces a Nash equilibrium,

then no player has the motive to move away from that strategy unilaterally, as long as all the

other players choose not to deviate from their strategies that lead to that particular Nash

equilibrium.

7.3.1 Nash equilibrium

Based on our discussion in the last section, it is not hard to motivate a definition of Nash

equilibrium for two player games. For a strategic game with closed and bounded Euclidean

strategy spaces X and Y , and continuous payoff functions X(x, y) and Y (x, y), respectively,

a point (x∗, y∗) is a Nash equilibrium if and only if X(x∗, y∗) is a local maximum of X(x, y∗)

for x ∈ X and Y (x∗, y∗) is a local maximum of Y (x∗, y) for y ∈ Y .

Now consider an N player game where we denote the closed and bounded Euclidean

strategy space of the ith player by Pi, and the continuous payoff function for the ith player by

ui(p). Here, p = [p1, p2, ...pN ]. It is convenient to have a notation for the vector that contains

the strategies of all players except the ith player. Let p−i = [p1, p2, ...pi−1, pi+1, ...pN ]. This

allows us to rewrite ui(p) as ui(pi,p−i) when we prefer to.

Definition 7.3.1. A point p∗ is a Nash equilibrium if and only if ui(p
∗
i ,p

∗
−i) is a local

maximum of ui(pi,p
∗
−i) for pi ∈ Pi, for each i.

A natural question now would be: Do all games have Nash equilibria? Or more relevantly,

do all payoff functions produce Nash equilibria?

7.3.2 Existence of Nash equilibrium

Well established theorems on the existence of the Nash equilibrium for continuous strategy

spaces require some sort of convexity structure for the the payoff functions. It may be

possible to loosen these requirements, but we cannot get rid of them altogether [65]. The
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most well known of these theorems also requires the strategy spaces to be compact. In

Euclidean spaces, compactness is equivalent to closed and boundedness.

Theorem 7.3.1. (Debreu, Glicksberg, and Fan) A game with closed and bounded strat-

egy spaces Pi and continuous payoff functions ui(p−i, pi) has a Nash equilibrium if each

ui(p−i, pi) is quasi concave in pi [64].

One of the theorems that accepts a loosened form of structure requires super-modularity

of the payoff function.

Definition 7.3.2. A twice differentiable function f(x1, x2, ..., xn) : Rn → R is said to be

super-modular if the mixed partial derivatives ∂f2

∂xi∂xj
≥ 0 for all i 6= j.

Definition 7.3.3. A game with super-modular payoff functions is called a super-modular

game.

Theorem 7.3.2. Every super-modular game has a Nash equilibrium.

It is important to note that all the theorems about the existence of the Nash equilibrium

deal with sufficient conditions. These conditions are not necessary for the existence of the

Nash equilibrium.

7.3.3 Optimality of Nash equilibrium

Going back to the two player game, assume that the payoff functions are such that there

was only one Nash equilibrium (x∗, y∗). The payoff for player X would then be X(x∗, y∗).

We know that X(x∗, y∗) is the maximum of X(x, y∗); But X(x∗, y∗) is not the maximum of

X(x, y). If for some reason the game has ended in another outcome (x, y), payoff X(x, y)

for X could possibly be higher than X(x∗, y∗). This shows that Nash equilibrium has no

relation to the maximum values of individual payoff functions.

Consider two arbitrary points A = (x1, y1), B = (x2, y2). If the payoff at A is better than

the payoff at B, for both players, that is, X(A) ≥ X(B) and Y (A) ≥ Y (B), we say point A
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Pareto Dominates point B. A point (xp, yp) that Pareto Dominates every other point (x, y),

is said to be Pareto Optimal.

7.4 Stackelberg game

The main deference between the strategic game and the Stackelberg game is that in the

latter, one of the players (the leader) gets to decide the value of his variable first. All the

others choose the values of their variables simultaneously, but after the leader has decided

on his variable. Unlike the strategic game and its idea of Nash equilibrium, the mathematics

involved in the Stackelberg game is quite simple. In the following, we will describe a two

player Stackelberg game in detail.

7.4.1 Two player Stackelberg game

Consider two players A and B. Each player has a function associated with it called a payoff

(utility) function. Both payoff functions are functions of two variables a and b. Let us denote

the payoff function of A by A(a, b) and that of B by B(a, b). Each player not only knows

its payoff function but has knowledge of the other player’s payoff function. Variable a is

controlled only by player A, and variable b is decided only by B. The objective of the game

for each player is to maximize its payoff function. Which player gets to decide the value of

its variable first is decided before the start of the game and that player is called the leader.

Let us assume A is the leader. Suppose that A chooses the value a1 for its variable

a. Then the follower, B, can choose the b that maximizes B(a1, b). That is, the follower

can choose b1 = arg max
b

B(a1, b). b1 is called the best response of B to the choice a1 by

A. If instead, A chooses a2, B can choose b2 = arg max
b

B(a2, b). This dependency of the

follower’s choice for b in the leader’s choice for a can be described by what is called the best

response function of B. For notational simplicity, let us denote this best response function

by b = f(a).
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Since the leader has knowledge of the follower’s utility function B(a, b), the leader can

compute the above mentioned best response function b = f(a). The leader can then sub-

stitute this function into its own payoff function to arrive at A(a, f(a)) which depends only

on its own variable a. It can now find the a that maximizes A(a, f(a)) and announce

a∗ = arg max
a

A(a, f(a)) as its choice. Given this, B substitutes this a∗ into b = f(a) (just

like A anticipated) to arrive at its best choice b∗ = f(a∗) for its variable b. The point (a∗, b∗)

is called the Stackelberg equilibrium of the game.

If the payoff functions A(a, b) and B(a, b) are continuous and the variables a and b are

defined on a closed interval, then extreme value theorem guarantees that A(a, b and B(a, b)

will posses maximum values. If in addition, the functions f(a) and A(a, f(a)) are sufficiently

smooth, there are theorems that peg the existence of the Stackelberg Equilibrium on the

concavity of these functions. Note, however, that the conditions imposed by these theorems

are sufficient but they are not necessary for the existence of the Stackelberg equilibrium.
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Part II

Applications and Algorithms
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Chapter 8

Throughput maximization in the GIC

with proportional rate constraints

8.1 Introduction

This chapter presents the solution to the optimization problem of finding the power alloca-

tion that maximizes the throughput (sum rate) of the Gaussian interference channel with

any linear power constraint and proportional rate constraints. It is proved that the sum-

rate of the Gaussian interference channel restricted to proportional rate constraints does not

have a critical point and the maximum sum-rate subject to said constraints occurs at the

boundary of the domain formed by the plane representing the linear power constraint. This

is accomplished by using analytic geometry in higher dimensions to show that the curve of

intersection of the sum-rate and the proportional rate constraints is always increasing, and

intersects the boundary plane representing the linear power constraint at a unique point.

A polynomial time (in the number of users) centralized algorithm that finds this point of

optimal power allocation is proposed. This is a significant improvement over existing algo-

rithms for related power allocation problems which have exponential time complexity in the

number of users. Two distributed algorithms with linear and constant complexities are also

69



presented. Simulation results supporting the analysis and demonstrating the performances

of the algorithms are presented.

8.2 Related work

Gaussian interference channel (GIC) has been used to model the uplinks of code-division

multiple access (CDMA) systems, digital subscriber line (DSL) systems, and more recently,

ad-hoc networks, and small cell networks such as femtocell networks. Almost 50 years

after the first investigation by Shannon [98], an exact description of the capacity region

of the interference channel that covers all values of the channel parameters continues to

elude us [98–101]. Researchers concerned with power allocation that maximizes the system

capacity have sidestepped this difficulty by optimizing what is called the sum-rate. This sum-

rate is obtained by applying Shannon’s original formula for capacity to each user separately

while considering the interference from the other users as noise. Even then, the problem of

finding the power allocation that maximizes the sum-rate has remained a difficult problem.

The early 1990’s saw the arrival of the 3G cellular systems, and the transmission technol-

ogy for the 3G in North America was Code division multiple access (CDMA). As indicated

in Chapter 1, the channel model for the CDMA uplink is a special case of the GIC. Conse-

quently, a vast number of research related to the problem undertaken in this chapter came

from work on CDMA. It should be noted that while any work on power allocation in GIC is

directly applicable to CDMA, any work on CDMA would need considerable extension before

it can be applied to GIC.

The early works in power allocation on CDMA, focused on each user achieving its target

SINR and offered distributed solutions based on fixed point algorithms [102–106]. More

recently, strategic game theory has been used to find a competitive equilibrium among users

who attempt to maximize their utility functions [36–61]. A user’s utility function typically

includes its transmission rate and a cost function. The strategy space of a user is the range
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of power available to it. This meant that game theory approaches used individual power

constraints. It is important to note that the sum utility or the sum-rate is not maximized

in the game theory based solutions. Game theory also offers distributed solutions based on

fixed point algorithms or their variants.

In light of the big body of research in this area [36–61], we give a review of this work in

Appendix A.

The difficulty in determining the power allocation that maximizes the sum-rate of the

GIC arises due to the fact that the convex structure of the sum-rate is unknown. The only

theoretical insight into this problem we have is that the power allocation that maximizes

the sum-rate under a total power constraint occurs at the boundary plane formed by the

power constraint [107,108]. For the problem of maximizing the sum-rate with any fairness or

quality-of-service (QoS) constraints, no studies have been reported that exploits the structure

of the feasible set. However, many search algorithms have been proposed to determine the

optimal power allocation under various constraints. Oh et al. [29] model the uplink of a

CDMA based cellular system as a GIC and consider the sum-rate maximization problem

under the minimum individual SINR, total interference, and individual power constraints.

They, then, propose a systematic search that finds the optimal power allocation in O(tN)

computations, where N is the number of mobile users and t is the number of points to be

checked for optimality. Abadpour et al. [30] report that the technique proposed by Oh et al.

often produces a power allocation that is unfair to some users. To rectify this Abadapour et

al. introduce maximum individual SINR constraints and modify Oh et al.’s algorithm.

Dai et al. [33] consider the problem of maximizing the minimum uplink rate of mobile

users with individual power constraints as well as minimum and maximum rate constraints.

They use Majorization theory to reduce this optimization problem into a search problem for

a real number in a closed interval. Gjendemsj et al. [34] propose a suboptimal solution to

the power allocation problem that maximizes the system throughput with individual power

constraints that is based on an extension of the solution of the two-user case. Qian et
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al. [31, 32] consider the problem of maximizing the weighted sum-rate subject to individual

minimum rate and power constraints. They transform this problem into multiplicative linear

fractional programming, and propose an algorithm that constructs a sequence of polyblocks

of decreasing size and searches their vertexes for the optimal solution. Chiang et al. [109,

110] approximate the Shannon’s formula log2(1 + SINR) with log2(SINR) to transform the

throughput maximization problem into a geometric program.

If our goal is to maximize the system throughput with a total power constraint, then

SINR balancing and game theory cannot be used. The other existing algorithms also work

with individual power constraints. Total power constraint is important in practical wireless

systems to limit the interference to the neighboring systems [111]. Dividing a total power

constraint into equal individual power constraints cannot be efficient. None of the algorithms

that maximize the sum-rate uses any knowledge of the structure of the optimization problem.

Because of this they fall into to the category of search algorithms which are computationally

expensive.

8.3 The proposed approach

This chapter takes an analytical approach to obtain the solution of the power allocation

problem that maximizes the sum-rate of the GIC under any linear power constraint and

proportional rate constraints. The goal is to produce an algorithm with a complexity that is

practical (polynomial). Proportional rate constraints have been used in resource allocation

problems in OFDMA before [95, 112–114]. Proportional rate constraints can be mapped to

proportional delay constraints (in case of saturated traffic scenarios). Furthermore, since

existing (minimum rate constraint) algorithms have exponential complexity, a polynomial

time solution with a slightly different QoS constraint can be useful. For example, suppose

we have a situation where we have to satisfy minimum rate demands and the demands are

feasible. The optimum solution using the existing work takes exponential time. However, we
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can take the ratios of the minimum rates and use our proportional rate algorithm to get a

near optimal solution in polynomial time. This is worthwhile because the difference between

exponential and polynomial time is extremely large.

The optimization problem undertaken in this chapter is challenging because of two rea-

sons. The first is that the objective function is not concave. This excludes many conventional

methods from convex analysis such as dual methods and KKT conditions [28]. This difficulty

is further exacerbated by the second reason that the proportional rate constraints are non-

linear. Because of this non-linearity, the maximum sum-rate subject to the proportional rate

and linear power constraints could occur at any point in the domain and not necessarily on

the power constraint plane (which is the case with minimum rate constraints). Furthermore,

in general, the curve of intersection of the proportional rate constraints and the sum could

intersect the power constraint plane at more than one point, as illustrated by the following

example.

Example 8.3.1. Consider the sum f = f1+f2 of two functions f1(x, y) = 2x2+2xy−2x+3/4

and f2(x, y) = y2 + 2xy − 4y + 4. Suppose the proportional constraint we are interested is

1:1, and the linear constraint x+ y = 2.

Figures 8.1-8.3 show that the curve of intersection of the proportional constraint f1 : f2 =

1 : 1 and the surface z = f1 + f2 of the sum intersects the linear constraint plane x+ y = 2

at two points.

Analytically, the equations f1 = f2 and x+ y = 2 can be simultaneously solved to obtain

the (x, y) coordinates of these two points. They turn out to be (1/2, 3/2) and (3/2, 1/2).

In the GIC however, we prove that the curve of intersection of the proportional rate

constraints and the sum-rate is always increasing and intersects the power constraint plane

at a unique point. Therefore this point is the maximum.

The contributions of this chapter are as follows:

1. The proof that the power allocation that maximizes the sum-rate under the propor-
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Figure 8.1: The locus of f1 : f2 = 1 : 1.

Figure 8.2: The curve C of intersection of f1 : f2 = 1 : 1 and the sum.
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Figure 8.3: Intersection of C and x+ y = 2.

tional rate and any linear power constraints occurs at a unique point on the power

constraint plane.

2. A fast, simple, and stable centralized algorithm that finds this point in polynomial

time (specifically, the time complexity of the algorithm is O(N3)).

3. A distributed algorithm that converges to this point with linear time complexity, but

does not require any communication between the users, or a user and a central con-

troller.

4. A distributed algorithm with constant time complexity that conforms to the Shared

Memory model [116] in distributed decision making.

The rest of the chapter is organized as follows. Section 8.4 presents the system model

and the problem formulation. Analysis of the optimization problem and the summary of the

analysis can be found in Section 8.5. A centralized algorithm that solves the optimization

75



problem is presented in Section 8.6, and two distributed algorithms are developed in Section

8.7. Numerical results obtained through simulations are provided in Section 8.8, followed by

conclusion in Section 8.9.
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Figure 8.4: The N -user Gaussian interference channel.

8.4 System model and the problem statement

Consider the N -user GIC shown in Fig. 8.4. User i employs transmitter i to communicate

with receiver i but receiver i experiences interference from all other transmitters. hij denotes

the channel gain between transmitter j and receiver i, and pi denotes the power used by

transmitter i. The channel gains are assumed to remain constant in the time period in

which the power allocation algorithm is applied. The transmission rate Ri of user i is given

by
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Figure 8.5: An increasing space curve.
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Ri = log2

(

1 +
hiipi

σ2
i +

∑

j 6=i hijpj

)

, (8.1)

where σ2
i stands for the received additive white Gaussian noise power per Hz. Letting

Ni = σ2
i /hii and aij = hij/hii,

Ri = log2

(

1 +
pi

Ni +
∑

j 6=i aijpj

)

. (8.2)

The sum-rate R of the N -user GIC is

R =
N
∑

i=1

Ri. (8.3)

A summary of the notations is given in Table 8.1.

Our objective is to solve the optimization problem that determines the power allocation

that maximizes the sum-rate R subject to two constraints. The first one is a linear constraint
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in the transmit powers as follows:
N
∑

i=1

gipi ≤ P. (8.4)

This constraint could arise, for example, as an interference constraint in ad-hoc or sensor

networks. gi is the channel coefficient from transmitter i to the interference measuring point.

P represents the acceptable interference threshold. If all the gi’s are equal to 1, then this

could represent a total power constraint.

The second constraint deals with proportional transmission rates

R1 : R2 : R3 : ...RN = β1 : β2 : β3 : ...βN , (8.5)

where βi’s are non-zero positive real numbers. Letting αi = βi/β1 for i = 2, 3, 4, ..., N , the

latter can be re-written as the following N − 1 equations:

αiR1 = Ri for i = 2, 3, 4, ..., N. (8.6)

N number of users in the system
hij the channel gain between transmitter j and receiver i
pi power used by transmitter i
Ri transmission rate of User-i
σ2
i additive white Gaussian noise density
Ni σ2

i /hii
aij hij/hii
R sum rate or throughput
gi channel gain from transmitter i to the interference measuring point
βi proportional rate of User-i
αi βi/ β1

Table 8.1: Notations

Often in practice, there may be a total power as well as an interference constraint. This

however, does not mean that we have to formulate the optimization problem with both
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constraints. Suppose the solution to the problem with total power constraint is P ∗ and the

solution to the problem with the interference constraint is P ∗∗. Then as we prove in the

next section, the solution to the problem with both constraints is the one among these two

points that is closest to the origin.

8.5 Analysis of the optimization problem

In this section, we interpret the objective and the constraints of our optimization problem

as hyper surfaces in the N + 1-dimensional Euclidean space and use analytic geometry in

higher dimensions to prove that the solution to the optimization problem exists, is unique,

and it occurs on the hyper plane formed by the linear power constraint.

8.5.1 Objective and constraints as hyper surfaces

Consider first the two-user case and the 3-dimensional Euclidean space with the Cartesian

system of coordinates. We can plot p1 and p2 along the first two axes and the sum-rate

R(p1, p2) along the third axis. In this way, R = R(p1, p2) will form a 2-dimensional surface

in the 3-dimensional space. In this case, there will be only one proportional rate con-

straint, α2R1(p1, p2) − R2(p1, p2) = 0, and it will also form a 2-dimensional surface in the

3-dimensional space. Since the third variable R is absent from the rate constraint equation,

this latter surface will rise parallel to the R axis and will intersect the surface formed by

the sum-rate R(p1, p2) in a space curve. In summary, the intersection of two 2-dimensional

surfaces in the 3-dimensional space forms a space curve.

In the case of three users, we need 4 dimensions. The sum-rate R(p1, p2, p3) will form a

3-dimensional hyper surface in the 4-dimensional space. There will be two rate constraints,

each forming a 3-dimensional surface. The intersection of the three 3-dimensional surfaces

in the 4-dimensional space will form a hyper space curve.

Consider now the N -user case and the N +1 dimensional space. We can plot the powers
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pi’s along the firstN axes and the sum-rate R(p1, p2, ..., pN ) along the last axis. In this way, in

the N+1 dimensional space, R will form an N -dimensional hyper surface. Each of the N−1

proportional rate constraints in (8.6) will form a N -dimensional surface. The intersection of

all of these surfaces - the sum-rate and the constraints - a total of N , N -dimensional surfaces

in the N + 1-dimensional space will form a hyper space curve C.

8.5.2 Methodology of the analysis

We first wish to prove that this space curve C is always increasing, and therefore, the

maximum sum-rate restricted to this curve can only occur on the boundary plane
∑

i gipi =

P . We then prove that this curve C indeed intersects the boundary hyper plane
∑

i gipi = P ,

and that the point of intersection is unique.

A single-variable function f : R −→ R is said to be increasing if f(a) > f(b) when-

ever a > b. We say a space curve c(t) in N -dimensions defined by the parametric form

{x1(t), x2(t), ..., xn(t)} is increasing if the single variable function xn(t) is increasing. Note

that it immediately follows that a space curve c(t) is increasing if the N -th dimensional

component x′n(t) of its tangent vector c′(t) is positive. Two examples of space curves in

3-dimensions, one increasing and the other decreasing are shown in Fig. 8.5 and Fig. 8.6,

respectively.

The goal is to prove that the space curve C is increasing by finding its tangent vector.

Since C is the intersection of N , N -dimensional surfaces, a tangent vector to C can be

obtained by the cross product of the N normal vectors of the surfaces. For this purpose, we

will use an extension of the familiar cross product of two vectors in three dimensions. An

outline of this cross product in higher dimensions was given in Chapter 3. The orientation

of the tangent vector obtained this way would depend on the way we orient the N normal

vectors, and the order we cross or write them in the determinant. This is further complicated

by the fact that when we evaluate the determinant we need to consider whether N is odd or

even. We circumvent these difficulties by first concentrating on the magnitude of the tangent
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vector and then establishing the orientation using an indirect argument.

8.5.3 Normal vectors of the surfaces

We start by finding the normal vectors of the N surfaces, namely, the sum-rate surface and

the N − 1 surfaces from the proportional rate constraints. This can be done by rewriting

the equations (8.3) and (8.6) as follows:

F =
N
∑

i=1

Ri −R = 0, (8.7)

Hi = αiR1 −Ri = 0 for i = 2, 3, 4, ..., N, (8.8)

and finding the gradients. Before proceeding, we introduce the notation Rij for the partial

derivative of user rate Ri with respect to power pj. That is, Rij =
∂Ri

∂pj
. The normal vector

of the sum-rate surface is

∇F =

(

∑

i

Ri1 ,
∑

i

Ri2 ,
∑

i

Ri3, ...,
∑

i

RiN , −1

)

. (8.9)

The normal vectors of the N − 1 surfaces in (8.8) are

∇Hi =(αiR11 −Ri1, αiR12 −Ri2, ..., αiR1N −RiN , 0) ,

for i = 2, 3, 4, ..., N.
(8.10)

8.5.4 Tangent vector to curve C and its last component

Crossing the N vectors in (8.9) and (8.10), we obtain the tangent vector T of the curve of in-

tersectionC of the sum-rate and the rate constraints, shown in (8.11), where θ1, θ2, θ3, . . . , θN , θN+1
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are the unit vectors along the N + 1 coordinate directions.

T =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ1 θ2 . . . θN θN+1

∑

iRi1

∑

iRi2 . . .
∑

iRiN −1

α2R11 −R21 α2R12 −R22 . . . α2R1N −R2N 0

α3R11 −R31 α3R12 −R32 . . . α3R1N −R3N 0
...

...
. . .

...
...

αNR11 −RN1 αNR12 −RN2 . . . αNR1N −RNN 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (8.11)

The N + 1-dimensional component of T, which we denote by tN+1, is shown in (8.12).

tN+1 = ±

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

iRi1

∑

iRi2 . . .
∑

iRiN

α2R11 −R21 α2R12 −R22 . . . α2R1N −R2N

α3R11 −R31 α3R12 −R32 . . . α3R1N −R3N

...
...

. . .
...

αNR11 −RN1 αNR12 −RN2 . . . αNR1N −RNN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ±|M0|. (8.12)

The determinant in (8.12) can be shown to be row equivalent to the determinant below.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R11 R12 R13 . . . R1N

R21 R22 R23 . . . R2N

R31 R32 R33 . . . R3N

...
...

...
. . .

...

RN1 RN2 RN3 . . . RNN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(8.13)

From (8.2), the partial derivatives are calculated as

Rij =











1
pi+Ii

, if j = i,

− aijpi
(pi+Ii)(Ii)

, if j 6= i,

(8.14)
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where

Ii = Ni +
∑

j 6=i

aijpj. (8.15)

Substituting in (8.13), we obtain:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
p1+I1

−a12p1
I1(p1+I1)

−a13p1
I1(p1+I1)

. . . −a1Np1
I1(p1+I1)

−a21p2
I2(p2+I2)

1
p2+I2

−a23p2
I2(p2+I2)

. . . −a2Np2
I2(p2+I2)

−a31p3
I3(p3+I3)

−a32p3
I3(p3+I3)

1
p3+I3

. . . −a3Np3
I3(p3+I3)

...
...

...
. . .

...

−aN1pN
IN (pN+IN )

−aN2pN
IN (pN+IN )

−aN3pN
IN (pN+IN )

. . . 1
pN+IN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (8.16)

At this point, we emphasize that none of the powers pi’s can be zero, for if any of the

pi’s is zero, then that user’s rate would be zero, and that would violate our condition that

none of the βi is zero in (8.5). By using a series of row and column operations, it can be

then shown that the matrix of the determinant above is equivalent to the matrix M below:

M =























I1 −a12p2 −a13p3 · · · −a1NpN
−a21p1 I2 −a23p3 · · · −a2NpN
−a31p1 −a32p2 I3 · · · −a3NpN

...
...

...
. . .

...

−aN1p1 −aN2p2 −aN3p3 · · · IN























. (8.17)

From (8.15), since Ii = Ni +
∑

j 6=i aijpj, Ii >
∑

j 6=i aijpj, ∀i. This shows that the matrix

M satisfies the condition

|mii| >
∑

j 6=i

|mij|, ∀i, (8.18)

and therefore, is diagonally dominant. The determinant of a diagonally dominant matrix

cannot be zero [117]. Hence det(M) 6= 0, and by extension, tN+1 6= 0. Since tN+1 is clearly

continuous in pi’s, by intermediate value theorem, tN+1 must be either always positive or
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always negative.

8.5.5 Curve C is increasing

We now consider the special case where βi = 1 for all i and the users all experience the same

channel conditions. That is, aik = ajk for all i, j, k. It is clear that in this case the rate

constraint (8.5) would imply that the powers are all equal. Letting pi = p for all i in (8.2),

dRi

dp
=

Ni

(Ni + p
∑

j 6=i aij)
2 + p(Ni + p

∑

j 6=i aij)
> 0. (8.19)

Hence, dR
dp
> 0. This shows that the tangent line to the curve of intersection of the sum-rate

and the rate constraint points in the direction of increasing R. In other words, tN+1 > 0,

in this special case. Combining this with the result that tN+1 is either always positive or

always negative, we conclude that tN+1 is always positive.

The fact that tN+1 is always positive implies that the curve of intersection of the sum-rate

and the rate constraints is always increasing and the maximum sum-rate restricted to this

curve C can only occur at the boundary plane
∑N

i=1 gipi = P .

8.5.6 Curve C intersects the power constraint plane at a unique

point

We now focus on showing that the curve C does indeed intersect the plane
∑N

i=1 gipi = P ,

and that the point of intersection is unique. This is accomplished by proving that C never

becomes parallel to
∑N

i=1 gipi = P . Note that a normal vector to
∑N

i=1 gipi = P is n =

(g1, g2, g3, . . . gN , 0). For C to become parallel to
∑N

i=1 gipi = P , the dot product T.n must

vanish.

Writing T.n explicitly, in (8.20),
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T.n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1 g2 g3 . . . gN 0
∑

iRi1

∑

iRi2

∑

iRi3 . . .
∑

iRiN −1

α2R11 −R21 α2R12 −R22 α2R13 −R23 . . . α2R1N −R2N 0

α3R11 −R31 α3R12 −R32 α3R13 −R33 . . . α3R1N −R3N 0

α4R11 −R41 α4R12 −R42 α4R13 −R43 . . . α4R1N −R4N 0
...

...
...

. . .
...

...

αNR11 −RN1 αNR12 −RN2 αNR13 −RN3 . . . αNR1N −RNN 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (8.20)

and expanding by the last column and letting Sij = αiR1j −Rij, we obtain

T.n = ±

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1 g2 g3 . . . gN

S21 S22 S23 . . . S2N

S31 S32 S33 . . . S3N

S41 S42 S43 . . . S4N

...
...

...
. . .

...

SN1 SN2 SN3 . . . SNN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (8.21)

Letting γj = gj/g1, taking away γj times the first column from column j, and expanding by

the first row, we arrive at (8.22).

T.n = ±g1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S22 − γ2S21 S23 − γ3S21 . . . S2N − γNS21

S32 − γ2S31 S33 − γ3S31 . . . S3N − γNS31

S42 − γ2S41 S43 − γ3S41 . . . S4N − γNS41

...
...

. . .
...

SN2 − γ2SN1 SN3 − γ3SN1 . . . SNN − γNSN1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (8.22)

At this point we go back to (8.17) and observe that M is a Z-matrix that is diagonally

85



dominant. Therefore, M must be positive definite [118]. By extension, the matrix M0 in the

determinant that defined tN+1 in (8.12) must be either positive or negative definite. Using

our earlier shorthand Sij = αiR1j −Rij , matrix M0 can be re-written as

M0 =





























∑

iRi1

∑

iRi2

∑

iRi3 . . .
∑

iRiN

S21 S22 S23 . . . S2N

S31 S32 S33 . . . S3N

S41 S42 S43 . . . S4N

...
...

...
. . .

...

SN1 SN2 SN3 . . . SNN





























. (8.23)

This matrix can be shown to be equivalent to the matrix M2 shown in (8.24).

M2 =





























S22 − γ2S21 S23 − γ3S21 . . . S2N − γNS21 S21

S32 − γ2S31 S33 − γ3S31 . . . S3N − γNS31 S31

S42 − γ2S41 S43 − γ3S41 . . . S4N − γNS41 S41

...
...

...
. . .

...

SN2 − γ2SN1 SN3 − γ3SN1 . . . SNN − γNSN1 SN1

∑

iRi2 − γ2
∑

iRi1 γ3
∑

iRi3 −
∑

iRi1 . . .
∑

iRiN − γN
∑

iRi1

∑

iRi1





























.

(8.24)

Note that M2 must also be either positive or negative definite. We now notice that

the determinant in (8.22) is a principal minor of the matrix M2 above. Since M2 is either

positive or negative definite, any principal minor of M2 must be non-zero. Hence, T.n 6= 0.

This shows that C never becomes parallel to
∑N

i=1 gipi = P . Note that C cannot intersect

any of the coordinate planes because such an intersection would force one of the pi’s to be

zero and that would violate our condition that none of the βi is zero. This proves C must

intersect
∑N

i=1 gipi = P .
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Now suppose that C intersects
∑N

i=1 gipi = P at two points. Then, after the first inter-

section, C must turn back towards
∑N

i=1 gipi = P at some point. At this turning point, C

must become parallel to
∑N

i=1 gipi = P . This is a contradiction.

We now summarize the result of our analysis in the theorem below.

Theorem 8.5.1. The power allocation that maximizes the sum-rate R of the GIC subject

to the constraint
∑N

i=1 gipi ≤ P and the proportional rate constraints in (8.6) exists, unique,

and lies at the hyper plane
∑N

i=1 gipi = P .

8.5.7 Two linear constraints on the powers

Proposition 8.5.1. Suppose the solution to the optimization problem with total power con-

straint is P ∗ and the solution with the interference constraint is P ∗∗. Then the solution with

both constraints is the one among these two points that is closest to the origin.

Proof: Note that the feasible set with both constraints is the intersection of the feasible

sets with each of the constraints alone. Therefore both points P ∗ and P ∗∗ are upper bounds

for the new feasible set. By the proof of Theorem 8.5.1, both lie on the intersections of curve

C with the respective constraint planes (Fig. 8.7). When we travel along curve C starting

from the origin, we will encounter one of these points first. This point is the only one among

the two points that is guaranteed to lie on the intersection of the two original feasible sets.

This point will be the solution to the new optimization problem, because an upper bound

that lies on the feasible set is the maximum. Note that this point has the shortest distance

from the origin measured along curve C.

Distance along the curve C from the origin can be replaced with distance from the origin

unless curve C “turns too much,” or more precisely, unless curve C becomes parallel to one

of the planes. The proof of Theorem 8.5.1 established that this is not the case.
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Figure 8.7: Solution with two linear constraints. P ∗ and P ∗∗ are labels (not coordinates) for
points in the Euclidean space.

8.6 Centralized algorithm for power allocation

In the last section, we proved that the power allocation that maximizes the sum-rate of the

GIC subject to proportional rate constraints and
∑N

i=1 gipi ≤ P lies on a unique point in the

plane
∑N

i=1 gipi = P . In this section, we first develop a polynomial time algorithm that finds

this optimal point. Then we compare the complexity of this algorithm to a typical power

allocation algorithm for GIC.

The straightforward way of determining the power levels at the optimal point is to

solve the N − 1 proportional rate constraints equations with the power constraint equa-

tion
∑N

i=1 gipi = P . The N − 1 proportional rate constraints equations are non-linear. This

means we have to solve a system of non-linear equations. The most popular method to solve

a system of non-linear equations is the multi-variable Newton-Raphson method. However,

multi-variable Newton-Raphson method is highly unstable. That is, it is extremely sensitive

to the initial guess for the solution, and depending on this initial point, may not converge
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at all. Because of this, we abandoned this approach and investigated other ways to find the

solution, and discovered the following method which is guaranteed to converge as well as

faster than the multi-variable Newton-Raphson method.

8.6.1 Algorithm

Given an analytical or algebraic characterization of a point, there are many ways to write

an algorithm so that a computing machine might be used to find the point. Some are direct

and some are indirect. However, not all these methods would necessarily converge to that

point. Some that do converge to the required point might take an extremely long time to

reach that point.

In our case, the algebraic characterization of the optimal point was: “the intersection

of the rate constraints and the power constraint plane.” The most straight forward way of

finding this point is to solve the N − 1 non-linear equations simultaneously with the power

constraint equation. This would form a system of N non-linear equations. The most popular

method of solving non-linear equations is the multi-variable Newton-Raphson algorithm.

In fact, this is what we first attempted. The algorithm found the optimal point for some

values of the channel gains, but diverged for the others. The multi-variable Newton-Raphson

algorithm is highly unstable. We know very well that the single variable Newton-Raphson

will fail to find the root if there is an extrema between the initial guess and the actual root.

In multi-variable Newton-Raphson, this issue is magnified even more and this is why it is

not suitable for our purpose.

Another example where not every algebraic definition will yield a converging algorithm

is found in the popular problem of finding the fixed point. Suppose we know that a fixed

point x∗ exists for the function f(x). That is, there exists an x∗ such that f(x∗) = x∗. The

simplest way of finding this point x∗ is through the algorithm: xn+1 = f(xn). But that will

work only sometimes - only if the condition |f ′(x∗)| < 1 is satisfied. If this condition is not

satisfied, we must re-arrange the equation to another form until this condition is satisfied.
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As an example, consider the fixed point of f(x) = x2. Now x = f(x) becomes x = x2 and

we see x = 1 is an obvious fixed point. However the algorithm xn+1 = x2n will not converge

to the fixed point 1, because f ′(1) = 2 ≥ 1. We can easily see this by starting at x1 = 0.9

which will go zero (which is another fixed point) or by starting at x1 = 1.1 which will go to

infinity. On the other hand, if we re-write that equation as x =
√
x and use the algorithm

xn+1 =
√
xn, it will converge to 1, because for the new function f(x) =

√
x, f ′(1) = 1/2 < 1.

In our problem, instead of using the multi-variable Newton-Raphson method, we decom-

pose the task at hand into two problems, for each of which there is a “mature technology” [28]

available to solve that problem. We first write the proportional rate equations in terms of

User-1’s rate R1 to obtain a linear system in the powers pi’s. We then substitute the “solu-

tion” of this system into the power constraint equation to form a single non-linear equation

in R1.

If we let

Si = 2Ri − 1 = 2αiR1 − 1, (8.17)

(8.1) can be re-written as

hiipi − Si

∑

j 6=i

hijpj = Siσ
2
i for i = 1, 2, 3, ..., N. (8.18)

This is a linear system of N equations in the solution variables pi. This linear system can

be written as

Ap = q, (8.19)

where the entries of the matrixA can be written in terms of hij’s, ℵi,s and R1. Once we know

the channel gains and proportional rates, these entries can be written in terms of R1 alone.

Similarly, q is the column vector with entries Siℵi and these numbers can also be written

in terms of R1 alone. We use subscripts to denote this dependency on R1 and re-write the
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linear system:

AR1
p = qR1

(8.20)

If we know R1 then the above linear system can be used to find the pi’s. The idea is to find

the R1 that leads to pi’s that satisfy

N
∑

i=1

gipi = P (8.21)

We now show that this can be accomplished using a linear system solver and a linear equation

solver. Most platforms in which we do our programming these days come with these built-in

functions or modules. We shall describe our algorithm using the Matlab built-in functions

linsolve and fzero. How linsolve works will be clear from the way it is used in our algorithm.

Suppose we wish to solve the non-linear equation x5−sin(x) = 0 using fzero. We first define

a function named “hello” as:

function y = hello(x) (8.22)

y = x5 − sin(x) (8.23)

Then we call fzero using the syntax fzero(@(t) hello(t), [a,b]), where [a,b] is an interval

containing the root.

We now present our low-complexity algorithm that finds the power allocation that max-

imizes the sum-rate of the GIC subject to proportional rate constraints as well as a linear

constraint on the transmit powers.

Centralized Algorithm

1. Define the function called “pconstr” given below.

(a) function y = pconstr(R1)
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(b) p = linsolve(AR1
,qR1

)

(c) p

(d) y =
∑N

i=1 gipi − P

2. Call the built-in function “fzero” by entering: fzero(@(x) pconstr(x), [a,b])

fzero may call the function “pconstr” several times until y becomes close enough to zero.

At every iteration, at step (c), “pconstr” will output p. The p value at the last iteration is

our power solution.

Note that the convergence of this algorithm to the global optimal point is guaranteed

because of the following. Theorem 8.5.1 asserts that for a particular P and a particular set of

proportional rate constraints, there exists only a unique set of power levels and those power

levels actually globally maximize the sum-rate. This unique set of power levels corresponds

to a unique R1 as given by (8.1). This shows that R1 exists and is unique for a given P.

8.6.2 Complexity

Even though fzero might call “pconstr” several times, this number does not depend on the

number of users N . There is only one non-linear equation to solve even if there are 25 users.

Therefore the number of times the outer-loop is executed does not increase with N . Inside

the function “pconstr, there is a step involving solving a system of N by N linear equations.

Solving linear systems is considered a matured technology, meaning there are extremely

reliable software packages that can solve systems with a very large number of variables very

accurately within a very short time [28]. Since the time complexity of solving an N by N

system is O(N3) [28], the complexity of our algorithm is O(N3), where N is the number of

users.
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8.7 Distributed algorithms for power allocation

The Centralized Algorithm presented in the last section requires a duplex control channel

between each user and a central controller. Each user must estimate its channel coefficient

and report it to the central controller via the control channel and then obtain the optimum

power level from the central controller. In this section, we provide two distributed algorithms,

one of which completely eliminates the need for this control channel and the other eliminates

the need for a central controller. It should be noted that even though the structure and the

design of these algorithms seem fairly intuitive on their own, the proof that these algorithms

actually converge to the power allocation that maximizes the sum-rate while maintaining

the proportional rate constraints relies on Theorem 8.5.1 of Section 8.5.

8.7.1 Distributed algorithm-1

This algorithm assumes no communication between the users, or between a user and a central

controller. The only requirement is that the users have access to synchronized clocks and

that each user is aware of the total interference constraint P . The time period allocated to

power control during the control part of the frame is divided into time slots and the power

levels are updated on each time slot until convergence.

The total power or the interference constraint places considerable limitations on the

possible distributed algorithms. Since there is no way to check if this constraint is met in

the middle of the algorithm, the only choice is to start with a power allocation that satisfies

this constraint and then preserve this during each iteration. Hence, the algorithm starts

with User-i employing a power pi = P/(Ngi).

After this, all users update their powers at the aforementioned synchronized time slots.

During each time slot only one user increases its power by s/gi, while all the others decrease

their power by s/[gi(N − 1)], where s is a predetermined step size. Note that this keeps the

sum interference at P . Which user needs to increase its power is determined in the following
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way. Suppose γi is the SINR of User-i. We define Fairness Quotient FQi of User-i as follows:

FQi = (1 + γi)
1/αi . (8.24)

The proportional rate constraints in (8.6) can be now re-written as

FQi = K for i = 1, 2, 3, ..., N, (8.25)

where K is a number that is independent of i and α1 is defined as unity. By Theorem 8.5.1,

for a fixed interference constraint P , there is only one power allocation and hence one K

that satisfies this equation. This implies that for a fixed interference constraint P , there is

only one K. To emphasize this one-to-one relationship between K and P , we re-write the

last equation as

FQi = KP for i = 1, 2, 3, ..., N. (8.26)

Note that the above equation will be valid only at the optimal power allocation. For an

arbitrary power allocation satisfying the interference constraint, such as at the beginning

of the proposed distributed algorithm, some FQi’s will be lower than KP while the others

greater thanKP . Note also that while the value ofKP can be calculated using the Centralized

Algorithm when all users’ channel gains are known, in the current distributed decision making

scenario, users have no way of determining KP . However, each user can calculate its own

current Fairness Quotient from its SINR. The proposed distributed algorithm works by

allowing the user with the lowest FQi value to increase its power in each time slot. At the

beginning of each time slot, each user starts a timer that expires after cFQi time units,

where c is an appropriate constant that was previously agreed upon. The user whose timer

expires first increases its power by s/gi. At this point, other users will observe a reduction

in their SINR. This is the signal for these users to reduce their power by s/[gi(N − 1)], stop

their timers, and wait for the beginning of the next time slot.
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At the beginning of the algorithm, a larger step size s will be useful so that the gap in

FQ values can be bridged sooner. However, as can be seen from the proof of the Theorem

8.7.1 below, at the end of the algorithm, a larger value of s will make the FQ values oscillate

with a large amplitude. A step size that decreases during the run of the algorithm would

be the best one; and for this reason, a function f(t), which we call the accelerating factor,

is introduced, where t is the number of iterations. f(t) must be an increasing function in

t; but exactly what function to choose is best decided by simulations. The algorithm is

terminated when the change in the SINR in successive iterations becomes too small to be of

any practical value, that is, when it is smaller than a predetermined number γstop.

Distributed Algorithm-1

1. pi := P/(Ngi), ∀i.

2. Compute FQi = (1 + γi)
1/αi and at the beginning of the next time slot set the timer

to expire exactly after cFQi time units.

3. The User-i whose timer expires first increases its power by s/gi.

4. If any user’s SINR (γ) decreases before its timer expires, it decreases its power by

s/[gi(N − 1)].

5. Go to step 2 with s := s/f(t) unless change in SINR is smaller than γstop.

The following Lemmas and definitions are necessary for the proof that this distributed

algorithm converges.

Lemma 8.7.1. For a given interference constraint P , there cannot be any power distribution

that makes FQi > KP for all i.
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Proof: Suppose there is such a power distribution. For ease of explanation, let us

consider the two-user case first. Without loss of generality, we can assume there is a power

distribution such that FQ1 > FQ2 > KP . By incrementally reducing User-1’s power but

increasing the power of User-2, we can make FQ1 = FQ2 > KP , while satisfying the

interference constraint P . This would imply that there are two different power distributions

both satisfying a particular proportional rate and interference constraints. This contradicts

Theorem 8.5.1. The argument for the case with more than two users follows the same path.

The contrary assumption implies that by a re-distribution of power levels we can make

FQ1 = FQ2 = FQ3 = ... = FQN > KP while satisfying the interference constraint P . This

contradicts Theorem 8.5.1.

Definition 8.7.1. Increases to within δ: A sequence {ai} is said to be increasing to

within δ if ai+1 > ai − δ for all i, where δ is a fixed positive number whose magnitude is

small compared to any ai.

Note that Decreases to within δ can be defined in a similar manner.

Definition 8.7.2. Converges to C within δ from below: A sequence {ai} is said to

converge to C within δ from below if there exists an M such that C − δ ≤ ai ≤ C for i > M .

Converges to C within δ from above is defined in a similar way.

Lemma 8.7.2. A sequence that is bounded above (below) and increases (decreases) to within

δ converges to its least upper bound (greatest lower bound) within δ from below (above).

Proof: Follows from the well-known theorem that a sequence that is bounded above

(below) and increases (decreases) converges to its least upper bound (greatest lower bound).

Theorem 8.7.1. Distributed Algorithm-1 converges to the unique, optimum power levels

mentioned in Theorem 8.5.1.
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Proof: The behavior of the algorithm with a fixed step size s is established first. In

other words, assume f(t) = 1 for now. Consider two sequences of numbers selected from the

FQ values from successive iterations of the algorithm. First one, which we call the Lower

Sequence consists of the smallest FQ value during each iteration. Suppose during the first

iteration User-3 has the lowest FQ value, during the second iteration User-1 has the lowest

FQ value and during the third iteration User-5 has the lowest FQ value and so on. With a

slight abuse of notation, the lower sequence would then look like FQ3, FQ1, FQ5, · · · .
At first it would appear that the Lower Sequence is always increasing. This is because

at any iteration, the user with the lowest FQ is allowed to increase its power and hence its

FQ. However, a closer examination shows that this is true only at the beginning. Sooner

or later these increasing values will cross over the FQ value of a user who is decreasing its

power. The new lowest FQ may not be necessarily higher than the previous one. As can be

seen from Fig. 8.8, the new FQ value can be lower than the old FQ value.

When a user decreases its power its FQ value will decrease accordingly. How much

FQ decreases will depend on the channel gains as well as the current power levels. Since

the changes in power levels are the same from iteration to iteration, the magnitude of the

change in FQ for a particular User-i will remain approximately the same throughout the

run of the algorithm. However, it will be different from user to user. Let ∆FQM stand for

the magnitude of the maximum change in the FQ over all users. That is, let

∆FQM = max
i

∆FQi. (8.27)

As illustrated in Fig. 8.8, the new FQ value can be lower than the old FQ value by at most

∆FQM . This shows that the Lower Sequence is increasing to within ∆FQM .

The Lower Sequence gets arbitrarily close to K but cannot exceed K. It cannot exceed

K because of the following reason. Suppose at the end of an iteration the Lower Sequence

exceeds K. This would imply that the FQ values at the end of this iteration are all greater
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than K. This contradicts Lemma 8.7.1. Thus K is the least upper bound of the Lower

Sequence which increases to within ∆FQM . By Lemma 8.7.2, it converges to K within

∆FQM from below.

Now consider the Upper Sequence which consists of the highest FQ values on successive

iteration. It can be shown, using the arguments similar to the ones we used for the Lower

Sequence, that the upper sequence decreases to within ∆FQM and gets arbitrarily close to

K but never goes below K. Hence, the Upper Sequence converges to K, to within ∆FQM

from above.

The sequence of FQi values of any User-i through the iterations is trapped between the

Lower and Upper sequences and hence will eventually oscillate about KP to within 2∆FQM .

The accelerating factor f(t) will make the effective step size approach zero as the iteration

number increases. This will have the effect of making ∆FQM approach zero. Thus, the FQi

values will all eventually approach KP .

Earlier, we explained that Theorem 8.5.1 implied that the power levels will satisfy FQi =

KP for all i only at the global optimal point. Therefore, Distributed Algorithm-1 converges

to the global optimum power allocation.

8.7.2 Distributed algorithm-2

An algorithm that conforms to the Shared Memory model in the study of distributed algo-

rithms [116] is presented here. The proposed algorithm assumes that control channels are

available between each user and a shared memory location so that it can write its rate and

obtain the rates of others or the sum-rate. Note that this memory can be provided by one

of the users, a leader.

This algorithm also starts with power levels that satisfy the interference constraint. Un-

like the last algorithm, all users simultaneously update their power levels during each time

slot. However, this is done in a way that the interference constraint is met throughout the

run of the algorithm. The change in power level is based on the each user’s proportion of its
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rate to the sum-rate of all N users. This proportional rate is defined as

ri =
Ri
∑

iRi

. (8.28)

At the beginning of each time slot the sum-rate of the N users is obtained by each user

from the shared memory. This enables each user to calculate its proportional rate at each

iteration of the algorithm. Let rit be the proportional rate of User-i at the beginning of

iteration number t and ri be the proportional rate requested by User-i. During iteration

number t, User-i would change its power by

∆pi = (k/gi)(ri − rit), (8.29)

where k is an appropriate constant. Note that this means a user whose current proportional

rate is lower than its required proportional rate will end up increasing its power while a

user whose current proportional rate is higher than its required proportional rate will end

up decreasing its power. The following Lemma proves that the proposed update in power

levels satisfies the interference constraint.

Lemma 8.7.3. Suppose the power levels of the users satisfy the interference constraint
∑

i gipi = P at the beginning of an iteration. The power levels after a change of power

levels given by ∆pi = (k/gi)(ri − rit) will still satisfy the same interference constraint.

Proof: Since ri and rit are ratios of user rates to the sum-rate as defined in (8.28), we

have
∑

i

ri =
∑

i

rit = 1. (8.30)
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The change in the sum gipi is

∆
∑

i

gipi =
∑

i

gi∆pi (8.31)

=
∑

i

k(rir − rit), using (8.29) (8.32)

= k
∑

i

(rir − rit) (8.33)

= k

(

∑

i

ri −
∑

i

rit

)

= k(1− 1) = 0. (8.34)

Distributed Algorithm-2

1. pi := P/(Ngi), ∀i.

2. pi := pi +∆pi = pi + (k/gi)(ri − rit), ∀i.

3. Go to step 2 unless change in SINR is smaller than γstop.

The following theorem proves that Distributed Algorithm-2 converges as long as the

proportionality constant k is not too large. It should be noted here that the condition on k

is nothing new. For example, the gradient decent algorithm, which finds the location of the

minimum of f , increments its independent variables in step sizes of k∇f , and will overshoot

and oscillate about the minimum point if k is too large.

Theorem 8.7.2. Distributed Algorithm-2 converges to the unique optimal point mentioned

in Theorem 1 where the proportional rate and the interference constraints are satisfied.
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Proof: Consider User-i on iteration number t. Without loosing generality we may

assume that its proportional rate rit at this point is lower than what it requested. This

means it will increase its power. Since everyone whose proportional rate is smaller than their

requested proportional rate would have increased their powers while the others lowered their

powers, the new proportional rate of User-i would be higher. As long as k is not too large, it

will still be smaller than the requested proportional rate ri. This shows the proportional rates

rit’s will form an increasing sequence whose least upper bound is ri. Hence it will converge

to ri. This shows that the users’ rates will converge to the proportional rates requested.

Lemma 8.7.3 showed that during every iteration of the algorithm the power levels remain

on the interference constraint plane. Therefore, the point of convergence is on this plane.

By Theorem 8.5.1, there is only one point on this plane that satisfies the proportional rate

constraints. Hence, this point of convergence is the unique optimal point.

8.7.3 Complexity

Let ∆pi be the deference between the initial and final power level of User-i during the

execution of Distributed Algorithm-1. In the worst case, this user may have to decrease its

power throughout the run of the algorithm. In each iteration, it will decrease the power by

s/[(N − 1)gi], or approximately by s/[(Ngi], where s is the step size. If s is the average step

size during the run of the algorithm, then it would take ∆piNgi/s iterations.

Each iteration consists of one time slot of fixed duration in which all users update their

powers, even though they have to wait until their timers to expire before they can increase

the power or notice a decrease in their SINR and reduce the power. The important question

is if the length of the time slot should depend on the number of users. The time slot should

be long enough to allow each user to estimate its SINR and calculate FQi = (1+SINRi)
1/α.

It should also be long enough to accommodate a length of time equal to c[FQi]max. But

[FQi]max does not depend on how many users are there and c can be chosen appropriately to

fit [FQi]max into an appropriate time interval in which users can estimate their SINR and set
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Figure 8.9: Scenario-1: Simulation details (only two of the 6 transceivers are shown).

the timers. This shows the length of the time slot does not depend on the number of users.

If we denote the length of each time slot by τ and λ1 = {∆pigi}max, then the complexity

order of Distributed Algorithm-1 would be τλ1N/s.

A similar calculation shows that the time complexity of Distributed Algorithm-2 is τλ2/s,

where λ2 is a constant. Its run time is independent of the number of users.

8.8 Numerical results

Numerical results obtained using simulations for three different scenarios are presented here.

In each scenario there are 6 users. A path-loss coefficient of 4 is used to calculate the

channel coefficients from the distances. The performance of the Centralized Algorithm is

demonstrated first followed by that of the distributed algorithms.
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Figure 8.10: Transmission rates and power levels for Scenario-1.

8.8.1 Centralized algorithm

The first scenario is about power allocation in GIC under a total power constraint. The

details are shown in Fig. 8.9, where we deliberately place the 2nd and 5th users in unenviable

positions: their transmitter to receiver distances are a bit greater than the other users. The

power allocation by the Centralized Algorithm with the total power constraint of 80 micro

Watts is illustrated in Fig. 8.10. Not surprisingly, all the runs of the Centralized Algorithm

produce transmission rates that are exactly at the proportional rates requested: 1.0000,

1.2000, 1.4000, 1.6000, 1.8000 and 2.000. We use bar charts to illustrate the patterns in

power allocation that is required to produce this rate ratios. Note that in Fig. 8.10, the

power levels of User-2 and User-5 are higher than what should be expected (the inclined line)

for their rate demands. This should be anticipated because, by our design, their transmitter

to receiver distances are greater than the others.

The second and third scenarios deal with power allocation in GIC under an interference

constraint. Details of Scenario-2 are shown in Fig. 8.11, where the 6 users from the previous
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Figure 8.11: Scenario-2: Simulation details (only two of the 6 transceivers are shown).

scenario now become primary users, and an interference measuring point, indicated by PR,

is added. An interference tolerance level of P = 1 pico Watts is used. The power levels

prescribed by our algorithm is shown in Fig. 8.12. We notice that the rates of users for

Scenario-2 are smaller compared to those for Scenario-1. This is because an interference

tolerance level of 1 pico Watts and the assumed transmitter to interference measuring point

distances in Scenario-2 put a stringent condition on the power levels than a total power

constraint of 80 micro Watts from Scenario-1.

The third scenario is identical to the second one except that the value of s5 is fixed

at 70 meters, which is lower than the other si’s. We put User-5 in a tough position by

placing it closer to the interference measuring point than the others. The power allocation
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Figure 8.12: Transmission rates and power levels for Scenario-2.
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Figure 8.13: Transmission rates and power levels for Scenario-3.
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for this Scenario is shown in Fig. 8.13. We notice that the rates of all users are smaller

compared to Scenario-2. User-5’s proximity to the interference measuring point pushes its

power down, which in turn has the effect of lowering the powers of all the other users through

the proportional rate constraint.

The algorithms mentioned in the review of the related work all use with minimum rate

constraints but ours use proportional rate constraints. Therefore, it is not possible to com-

pare our algorithm to those algorithms directly. However, we will now demonstrate the

performance of our algorithm in solving the problem for which the algorithms from the

literature are designed.

As mentioned before, the algorithm by Chiang et al. [109, 110] uses geometric program-

ming. We used Boyd’s geometric program (GP) software [28] to imitate Chiang’s algorithm

and compared the results to the that from our algorithm. We considered the sum-rate max-

imization problem with minimum rate constraints and a total power constraint of 80 micro

Watts. We calculated the proportional rates using the minimum rate demands and used them

in our proportional rate algorithm. If the minimum rates are feasible then our algorithm

should produce a result that satisfies the minimum rate demands. Note that our algorithm

will not provide optimal sum-rate. This is because it uses that exact proportional rates

whereas minimum rates give more leeway in the feasible set. But we expect our algorithm to

be faster than GP. We restricted the number of users to 4 because of the long execution time

for the geometric programming. The channel gains are obtained from Scenario-1, without

the exception to User-2.

Table 8.2 shows that our algorithm achieves more than 90% of the sum-rate achieved by

GP but it is faster by orders of magnitude. Granted we used an application program for

GP, perhaps we can knock off one zero. Our algorithm is still about 100 times faster. This

is only with 4 users; the comparison will be even more impressive with 10 users.
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Minimum rate sum-rate Time
demand (bits/s/Hz) (bits/s/Hz) (Sec.)

3, 3, 3, 3 GP 16.03 3.89
Ours 16.34 0.00069

4, 2, 2, 2 GP 16.03 3.62
Ours 14.60 0.00053

3, 3, 2, 2 GP 16.03 3.61
Ours 15.64 0.00059

3, 3, 4, 4 GP 16.03 3.60
Ours 15.89 0.00076

1.5, 1.5, 3, 5 GP 15.23 3.62
Ours 12.59 0.00068

5, 3, 1.5, 1.5 GP 15.77 3.61
Ours 13.11 0.00057

Table 8.2: Centralized algorithm compared with geometric programming

8.8.2 Distributed algorithms

The second scenario in the previous subsection with the same interference tolerance level of P

= 1 pico Watts is used to evaluate the distributed algorithms. Fig. 8.14 shows the behavior

of the Distributed Algorithm-1 with an accelerating factor of f(t) = t1/30. To show that the

algorithm behaves exactly as predicted in the convergence proof, we have plotted the FQ

values of the users during the execution of the algorithm. In the proof of convergence, it was

mentioned that a particular FQ curve will jump in the opposite direction when it crosses

another curve. This can be clearly seen in Fig. 8.14. The proportional rates produced by

this algorithm, shown in Fig. 8.14, are satisfactory.

For the purpose of comparison, we use the Centralized Algorithm to calculate the KP

value and it turned out to be 4.1223. The convergence proof of the Distributed Algorithm-

1 claims that the FQ values should converge to KP . In Fig. 8.14, we see the FQ values

converging to a number just above 4. A separate plot in Fig. 8.15 shows how the proportional

rates converge to the required ratios.

The behavior of the Distributed Algorithm-2 for the same simulation scenario is shown
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Figure 8.16: Distributed Algorithm-2: Convergence of the proportional rates.

in Fig. 8.16. We see a much faster convergence to the required proportional rates. It should

be noted that this performance gain is obtained at the cost of a communication channel

between each user and a shared memory.

8.9 Conclusion

We have presented a deterministic solution to the optimization problem of finding the power

allocation that maximizes the sum-rate of the Gaussian interference channel subject to any

linear power constraint and proportional rate constraints. This has been accomplished using

analytic geometry in higher dimensions to show that the curve of intersection of the sum-

rate and the proportional rate constraints is always increasing and the maximum sum-rate

occurs at the unique point where this curve intersects the boundary plane formed by the

linear power constraint. A polynomial time centralized algorithm as well as two distributed
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algorithms that find the optimal power allocation have been proposed. Simulation results

supporting the analysis and demonstrating the performances of the algorithms have been

presented.
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Chapter 9

Throughput maximization in the GIC

with minimum rate constraints

9.1 Introduction

Finding the power allocation that maximizes the throughput of the Gaussian Interference

Channel (GIC) has remained a difficult problem because it is not known if the throughput

posses the classical convex (or concave) structure. This problem with a total power constraint

has actually remained unsolved, except for the case of two users [107]. That is, to the best of

our knowledge, there is no algorithm that finds the throughput maximizing power allocation,

for more than two users, under a total power constraint.

As mentioned in Chapter 4, in the 80’s, a more general form of geometrical structure

called invexity under which any local extrema automatically becomes a global extrema was

proposed. This chapter establishes that while the throughput of the GIC is both incave and

invex, the throughput restricted to a linear constraint on the powers is incave. It is shown

that one of the KKT conditions can be used to locate the power allocation that maximizes

the throughput subject to the said constraint on the powers. The existence and uniqueness

of a point on the power constraint plane that satisfies the KKT condition is proven. These
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theoretical results lead to the first ever algorithm that maximizes the throughput subject to

total power and QoS constraints.

The proposed algorithm uses a new idea that can be used by any algorithm for solving

a very common problem encountered in optimization: locating the point that satisfies the

KKT condition. This problem arises in many engineering applications that requires solving

a convex optimization problem. The current algorithms for this purpose are fraught with

stability issues because they are sensitive to the initial values of the dual variables in the

problem [108]. The proposed algorithm eliminates the dual variables from the problem and

hence does not suffer from any stability issues. The algorithm uses the new idea of projections

onto the linear space defined by the constraints. This algorithm is also at least twice as fast

the most common algorithm [108] for finding the optimum point (for other problems, not

sum rate maximization) using the KKT condition.

9.2 Background

Gaussian interference channel (GIC) has been used to model the uplinks of code-division

multiple access (CDMA) systems, digital subscriber line (DSL) systems, and more recently,

ad-hoc networks, and small cell networks such as femtocell networks. First investigated by

Shannon [98], the capacity region of the GIC continues to elude us except for particular

cases of channel parameters [98–101]. Researchers concerned with power allocation that

maximizes the system capacity have sidestepped this difficulty by optimizing what is called

the sum-rate. This sum-rate is obtained by applying Shannon’s original formula for capacity

to each user separately while considering the interference from the other users as noise. Even

then, the problem of finding the power allocation that maximizes the sum-rate has remained

a difficult problem. To the best of our knowledge, there are no techniques or algorithms

that find the power allocation that maximizes the sum rate of the GIC subject to a total

power constraint and any quality of service (QoS) constraints, for more than two users.
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There is only one algorithm that works with a total power constraint, the one from the last

chapter, but it uses proportional rate constraints. The main reason for this is that the convex

structure of the sum rate was unknown.

Optimizing convex functions is relatively easy because any local extremum is necessarily

the global extremum. In case of constrained optimization, convexity provides the simplest

sufficient condition for optimality that characterizes the critical points: the KKT conditions.

Convex optimization has been studied for well over 70 years now. The algorithms that solve

convex optimization problems now belong to a category called “mature technology” because

many reliable software packages are available that guarantee the solutions within specified

time limits [28].

Optimizing non-convex functions is difficult mainly for two reasons. First is that the

simple characterization of the critical point such as the KKT conditions may not be appli-

cable. The second is the possible existence of many local optima; a search algorithm that is

looking for the global optimum point might get stuck at a local optimum point. Thankfully,

convexity is not the only condition under which a local extremum necessarily becomes a

global extremum. As shown in Chapter 2, the famous example is pseudo-convexity.

What is impressive about invexity [88–90] is that while it is more general than pseudo-

convexity and quasi-convexity, invexity guarantees that any local extremum is a global

extremum. Furthermore, under certain conditions, the solution to an invex optimization

problem can be obtained via one of the KKT conditions. Invexity is applicable only to dif-

ferentiable functions. For engineers, this is not a serious limitation, because most functions

we attempt to optimize are differentiable.

Please see Chapter 8 for a review of the related literature. Section 9.3 describes the system

model and formulates the optimization problem. Application of the invex analysis (Chapter

4) to the sum rate maximization of the GIC is presented in Section 9.4. An algorithm

that maximizes the sum rate of the GIC subject to any linear constraint on the powers as

well as QoS constraints is developed in Section 9.5. Numerical results that demonstrate the
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convergence of the proposed algorithm under widely varying channel conditions are given in

Section 9.6. The chapter concludes in Section 9.7.
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Figure 9.1: The N -user Gaussian Interference Channel

9.3 System model and the problem statement

Consider the N -user GIC shown in Fig. 9.1. User i employs transmitter i to communicate

with receiver i but receiver i experiences interference from all other transmitters. hij denotes

the channel gain between transmitter j and receiver i, and pi denotes the power used by

transmitter i. If σ2
i is the additive white Gaussian noise power per Hz, and Ni = σ2

i /hii, and

aij = hij/hii, the sum transmission rate R of the GIC can be written as:

R =
N
∑

i=1

log2

(

1 +
pi

Ni +
∑

j 6=i aijpj

)

(9.1)
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We wish to establish the generalized convex structure of the sum rate R as well the sum rate

restricted to a linear constraint on the powers:

g(p) = P −
N
∑

i=1

gipi ≥ 0, (9.2)

where p = (p1, p2, ...pN ). We then wish to give an analytic characterization of the power

allocation that maximizes the sum rate subject to the linear power constraint.

Finally, we wish to add minimum rate constraints. Note that minimum rate constraints

can be translated to minimum SINR constraints:

SINRi ≥ γi for i = 1, 2, ...N. (9.3)

The constraints above can be re-written as:

pi
Ni +

∑

j 6=i aijpj
≥ γi for i = 1, 2, ...N. (9.4)

This is a linear inequality in the powers pi and can be re-arranged to:

N
∑

j=1

bijpj ≥ ci for i = 1, 2, ...N, (9.5)

where

bij =











1, if i = j

−aijγi, if i 6= j

(9.6) and ci = γiNi (9.7)

A summary of the notations are given in Table 9.1.

If we change the inequalities in (9.5) into equalities we get N hyper planes in RN . All

these inequalities combine to form a hyper solid bounded by the said hyper planes. User’s

minimum rate demands will be met only when the power allocation falls within this hyper
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solid.

N number of users in the system
hij channel gain between transmitter j and receiver i
pi power used by transmitter i
γi minimum SINR acceptable to User-i
σ2
i additive white Gaussian noise power density
Ni σ2

i /hii
aij hij/hii
R sum rate or throughput
gi channel gain from transmitter i to the interference measuring point
P total power constraint

Table 9.1: Notations

A specific question on power allocation

We are also interested in answering the following question. Are there any channel conditions

under which, the sum rate maximizing power distribution, under a total power constraint

but without any rate constraints, allocates zero power to some users? In case of two users,

it is easily seen that this indeed happens by conducting an exhaustive search on the power

levels using simulation. Performing an exhaustive search over three or more users is very

time consuming. Still, there is a clever way of out of this as shown by the following example.

Example: Consider a partially symmetric placement of users where (using the same

notation as in Fig. 9.1) hii = 30−4 for i = 1, 2, 3, h44 = 140−4 and hij = 240−4 for all i 6= j.

The first three users all have identical and favorable channel conditions, whereas the

fourth user faces adverse channel conditions. Because of the partial symmetry, we know

that the sum rate maximizing power distribution will allocate equal powers to the first three

users. This reduces the exhaustive search to just two variables: one power level for the first

three users and another one for the fourth user. A total power of P = 100 micro Watts is

divided into two parts. One is given to the fourth user. The other part is divided into three
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equal parts and given to the first three users. Fig. 9.2 shows the plot of the sum rate against

the part given to the fourth user in the simulation: the maximum sum rate occurs when the

last user receives no power.
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Figure 9.2: Example: The sum rate in the partially symmetrical case.

We would like to know if there is any theoretical basis for this. Exactly how bad the

channel gain of the last user must be for this to occur? Especially, given the channel gains,

is it possible to predict this before going through the sum rate optimization?

9.4 Generalized convex structure of the sum rate of

the GIC

The three central theorems of this chapter are presented in this section. The first one proves

that the sum rate of the GIC is both invex and incave. The second one proves that the sum

rate restricted to a linear power constraint is incave and that the global maximum sum rate
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restricted to the said constraint can be located using one of the KKT conditions. The third

theorem proves the existence and uniqueness of such a point on the power constraint plane.

The notation v ≻ 0 is used to indicate that the components of vector v are all positive.

Theorem 9.4.1. The gradient of the sum rate R of the GIC (with respect to the powers pi’s)

is never zero (∇R 6= 0) and hence the sum rate R is both invex and incave in the powers pi.

Furthermore, the global maximum of R subject to the constraint g(p) ≥ 0 can only occur on

g(p) = 0.

Proof: Using Ii to denote Ni +
∑

j 6=i aijpj, the partial derivative of the sum rate R in

(9.1) with respect to pi can be written as:

Rpi =
1

pi + Ii
−
∑

j 6=i

ajipj
(pj + Ij)(Ij)

(9.8)

The gradient of the sum rate R can then be written as:

∇R = Mx, (9.9)

where the entries the matrix M and the vector x are given by

mij =











1, if i = j

−ajipj
Ij

, if i 6= j

(9.10) and xi =
1

pi + Ii
(9.11)

Notice that x 6= 0. We now perform the following three operations on M in that order

to arrive at a new matrix M′.

1) Multiply column j by Ij/pj for j = 1, 2, 3, ..., N .

2) Multiply row i by pi for i = 1, 2, 3, ..., N .

3) Transpose
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m′
ij =











Ii, if i = j

−aijpj, if i 6= j

(9.12)

Recalling that

Ii = Ni +
∑

j 6=i

aijpj, we observe that (9.13)

Ii >
∑

j 6=i

aijpj for all i. (9.14)

This shows that the matrix M′ satisfies the condition

|m′
ii| >

∑

j 6=i

|m′
ij| for all i, (9.15)

and therefore, is diagonally dominant. The determinant of a diagonally dominant matrix

cannot be zero [117]. Hence, M′ is invertible. By extension, M is invertible.

Now suppose ∇R = Mx = 0. Since M is invertible, this would imply x = 0. This is a

contradiction.

The invexity and incavity of R now follows from Theorem 4.4.1. The fact that ∇R 6= 0

implies that there are no local maxima inside the region g(p) ≥ 0.

Remark 9.4.1. Note that it is possible to prove the stronger result that ∇R ≻ 0, using

continuity and considering a special case, or by other methods. This might shed more light

in the geometrical structure of R. However, we do not need this result in order to establish

the key conclusions of this chapter.

The following lemma is necessary for the next theorem.

Lemma 9.4.1. Suppose pi >> Ii for all i. Then when pi is fixed, Rpi increases with any

pj 6=i. Rpi decreases with pi when all the other powers are fixed.
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Proof: If pi >> Ii, from (9.8) we can approximate Rpi as:

Rpi =
1

pi
−
∑

j 6=i

aji
Ij

(9.16)

Since Ij increases with any pj 6=i, so does Rpi , when pi is fixed.

Rpipi =
−1

p2i
+
∑

j 6=i

a2ji
I2j

(9.17)

Note that Rpi and Rpipi have the following forms

Rpi = A−
∑

k

Bk Rpipi = −A2 +
∑

k

B2
k, (9.18)

where A and Bk’s are positive constants. We know that Rpi > 0 by Theorem 9.4.1 and hence

A−
∑

k

Bk > 0 (9.19)

Since all Bk’s are positive, we have

∑

k

B2
k <

[

∑

k

Bk

]2

(9.20)

Therefore,

Rpipi = −A2 +
∑

k

B2
k < −A2 +

[

∑

k

Bk

]2

(9.21)

=

[

A+
∑

k

Bk

][

−A+
∑

k

Bk

]

(9.22)

< 0, using (9.19). (9.23)
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Hence, Rpi decreases with pi when all the other powers are fixed.

Note that in CDMA uplinks, the pseudo-orthogonal codes will make sure, unless a very

large number of customers are active, that the SINR is good enough to make pi >> Ii. The

SINR in a Femtocell is typically greater than 15dB [119]. This is a ratio of more than 30.

From (9.1), we have SINRi < pi/Ii. Hence, pi >> Ii.

Theorem 9.4.2. There exist a unique λ > 0 and a unique point a such that ∇R(a) +
λ∇g(a) = 0 and g(a) = 0.

Proof: We shall first prove the existence. It is sufficient to prove that there is a point

on g(p) = 0 such that

Rp1/g1 = Rp2/g2 = ... = RpN/gN . (9.24)

Start at any power allocation p that satisfies g(p) = 0. The Rpi/gi values of the users may

be at different levels. We now show that by adjusting users’ power levels selectively, we can

bring the Rpi/gi values to the same level. Increase the power of the user with the highest

Rpi/gi incrementally, while simultaneously reducing the power of the user with the lowest

Rpi/gi so as to make sure we are still on the plane g(p) = 0. By Lemma 9.4.1, this will

reduce the Rpi/gi of the highest user and increase that of the lowest. When some other user’s

Rpi/gi crosses over either user, start working with the new highest and lowest users.

It is possible that at some point in this process the power of the user whose power we

are decreasing might hit zero. This means that at the optimal point the power allocation

for this user is zero. We remove this user from the system and continue the procedure. Note

that during each step, the separation between the highest and the lowest Rpi/gi decreases.

Therefore, this process will eventually lead to a point where all the remaining users have the

same Rpi/gi value.

Suppose we are at a point where all Rpi/gi are the same. If we increase the power of any

user, we have to decrease the power of at least one other user to remain in the plane g(p) = 0.

By Lemma 9.4.1, this means at least two of the Rpi/gi values will move in opposite directions.

122



Therefore, it will not be possible to bring all the Rpi/gi values together at a different level.

Note that the proof above offers a partial answer to the “specific question on power

allocation” we posed in Section 8.4. Some user’s Rpi/gi value is too low for it to be able

to rise up to the equilibrium level given by (9.24), and these users might end up with zero

power. We are still far away from identifying these users without actually going through the

optimization process. We need further analysis in this regard, and it is beyond the scope of

this article. However, one possible theoretical starting point has just been established.

Theorem 9.4.3. The sum rate R subject to the linear power constraint g(p) ≥ 0 is incave

in the powers. R(a) is the global maximum of R subject to the constraint g(p) ≥ 0 where a

is defined by ∇R(a) + λ∇g(a) = 0 and g(a) = 0.

Proof: Let D be the region of the domain of R restricted to the power constraint

plane. In other words, D is defined by g(p) = 0. According to Theorem 9.4.1, the global

maximum of R can only occur on D. Furthermore, Theorem 9.4.1 proved that ∇R 6= 0 and

R is incave. Since g is linear, ∇g 6= 0 and g is incave. According to Theorem 9.4.2, ∇R(a)
and ∇g(a) point in exact opposite directions only at the point a. Then by Theorem 4.5.1,

there exists a common η with respect to which both R and g are incave in D, except possibly

at a. Hence, by Theorem 4.3.2, R(a) is the global maximum of R subject to the constraint

g(p) ≥ 0.

The fact that “∇[R(a) + λg(a)] = ∇R(a) + λ∇g(a) = 0 implies R(a) is the global

maximum of R restricted to g(p) ≥ 0” shows that R(a) + λg(a) restricted to g(p) ≥ 0 is

incave, by Theorem 4.3.1. Since g is incave, the linearity property of incavity implies R

restricted to g(p) ≥ 0 is incave.
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9.5 Algorithm development

In this section, we develop an algorithm that finds the power allocation that maximizes

the sum rate of the GIC under a total power and minimum rate constraints. In the last

section, we proved that the maximum occurs at the point given by the KKT condition.

(∇R(a) + λ∇g(a) = 0). There is a traditional way to design an algorithm that locates this

point. Our algorithm however, does not use the traditional approach. Rather, it is based on

the new idea of projection of the gradient onto the space defined by the constraints. We will

first explain the traditional approach.

9.5.1 Extension of traditional algorithms to locate the point of

KKT condition

It is important to note here that by traditional algorithms we don’t mean any algorithms

that solve the sum rate maximization problem in the GIC with total power constraint. As

mentioned earlier, to the best of our knowledge, there are no such algorithms. We are here

talking about algorithms for other optimization problems where the location of the optimal

point is characterized by the KKT condition. Consider such an maximization problem, where

the optimal point a is known to be given by ∇f(a) + λ∇g(a) = 0. The algorithm to locate

the optimal point a, also has to find the optimal λ.

If f(x) is convex, then the duality theory from the convex analysis asserts that the

optimal λ actually minimizes ∇f(x)+λ∇g(x) for a fixed x [28]. This duality theory can be

extended for invex functions [89]. Assume for a moment that we are taking this approach.

Typically, algorithms that use the dual approach perform two tasks during each iteration: a

step towards minimizing ∇f(x) + λ∇g(x) over λ for a fixed x using steepest gradient, and

another step towards maximizing ∇f(x)+λ∇g(x) over x for fixed λ using steepest gradient.

The algorithm has to start at some initial values of x and λ. Usually any value of x

in the domain would be fine for this purpose. But how do we find a good initial λ value?
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Furthermore, in our experience, we find such algorithms extremely sensitive to the initial

value of λ, and will fail to converge if the initial value of λ is not close enough to the optimal

value of λ [108].

In what follows, we develop an original algorithm that avoids the need to find λ alto-

gether. This not only doubles the speed of the algorithm but avoids any pitfalls regarding

convergence.

9.5.2 Proposed algorithm to locate the point of KKT Condition

- the algorithm for sum rate maximization with total power

constraint

The goal is to design an algorithm that starts at any point p in the plane g(p) = 0 and

finds the point a on this plane where ∇R(a) + λ∇g(a) = 0. Notice that a is the point

on that plane where ∇R(p) becomes parallel to a normal of the plane g(p) = 0, namely,

−∇g(p) = (g1, g2, ...gN ). The key idea behind the algorithm is that at this point a, the

projection of ∇R(p) onto the plane g(p) = 0 is zero. This means we can use a variation of

the popular steepest gradient method to find this point. The idea is to use the projection

of ∇R(p) onto the plane g(p) = 0 instead of ∇R(p). The required projection can be easily

obtained by first finding the projection of ∇R(p) onto the subspace that is orthogonal to

the plane g(p) = 0, that is the projection of ∇R(p) in the direction of the normal vector

(g1, g2, ...gN ), and then subtracting it from ∇R(p). Let

g = (g1, g2, ...gN ) (9.25)

The required projection is

Projg(p)=0∇R(p) = ∇R(p)− ∇R(p) • g
||g||2 g (9.26)
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9.5.3 A important note on the origin of the algorithm

After developing the algorithm, we noticed that there is a “theoretical algorithm” called the

“projected gradient algorithm” in the convex optimization literature [84]. This algorithm

essentially uses the same idea but concerns itself with projecting points onto a convex set. In

other words, our algorithm is a special case of this algorithm for linear sets. The projection

algorithm in the literature has never been used in practice (to the best of our knowledge)

because finding the protection of a point onto a convex set itself is an optimization problem.

However, when that set is linear, the projected point can be written in closed form. This is

why the special case of the “wider” projection algorithm that we “re-invented” is feasible.

In our literature search, we did not find any work that reports the feasibility of the projected

algorithm in the linear case.

We now present the algorithm where s is the step size.

Projected Gradient Algorithm (PGA)

1. pi := P/(Ngi) for all i.

2. p := p+ sProjg(p)=0∇R(p)

3. if the change in R(p) < δ stop.

4. else go to step 2.
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9.5.4 Algorithm with rate constraints

In Section 8.4, the minimum rate constraints were converted into minimum SINR constraints

which were then translated into the following linear inequalities:

N
∑

j=1

bijpj ≥ ci for i = 1, 2, ...N, (9.27)

The goal is to find the power allocation that maximizes the sum rate while satisfying the

above inequalities and the linear power constraint:

g(p) = 0 (9.28)

The first task is to make sure that the algorithm starts at a point pinitial that falls inside the

hyper solid defined by the linear inequalities in (9.27) and the equation in (9.28). At first

it might appear that we have to solve this system of inequalities using linear programming.

However, this is not necessary as all we need is a single point satisfying this system of

inequalities. We can modify the inequalities in (9.27) into equations and solve the following

linear system of equalities to obtain pinitial.

N
∑

j=1

bijpj = ci for i = 1, 2, ...N.

g(p) = 0

(9.29)

Consider the point of maximum sum rate subject to the power constraint g(p) = 0 alone. If

this point happens to fall inside the hyper solid defined by the linear inequalities in (9.27),

then PGA is all we need, provided that it starts at pinitial mentioned above. However, this

may not always be the case. When the optimum point is outside this solid, PGA will cross

over one of the hyperplanes defined by user’s minimum rate demands - a hyperplane of

the form
∑N

j=1 bijpj = ci. If we want to satisfy users’ rate demands we need to halt PGA
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temporarily at this point. We know that the optimum point with the rate constraints lies

somewhere on the plane
∑N

j=1 bijpj = ci. The algorithm needs to travel along the plane
∑N

j=1 bijpj = ci to find the optimum point. However, we have to keep in mind that we have

to be still on the power constraint plane. In other words, the algorithm has to travel along

the intersection of the rate constraint plane
∑N

j=1 bijpj = ci and the power constraint plane

g(p) = 0.

At first, it appears that the direction of the intersection of these two planes can be found

by taking the cross product of the two normal vectors of the planes. However, this works

only in 3-dimensions. In higher dimensions, there is no cross product of two vectors. This is

because, given two non-parallel vectors in higher dimensions, there are an infinite numbers

of directions, each of which are perpendicular to any given two vectors.

In dimensions higher than 3, say in RN , the intersection of two hyper planes do form a

linear space, and is actually a shifted version of a subspace of RN . Note that while a subspace

of RN contains the origin, the intersection of our hyper planes is away from the origin. Let

us call the linear space formed by the intersection of the hyper planes
∑N

j=1 bijpj = ci and

g(p) = 0 by Si. The algorithm should travel along the projection of ∇R onto this linear

space Si. Since the algorithm, at this point, is actually halted on a point on Si, we need

not worry about the location; all we need is a direction. This direction can be obtained by

considering the associated subspace Si0 that actually contains the origin. In other words,

the required projection of ∇R onto the linear space Si is the same as the projection of ∇R
onto the subspace Si0.

Just like before, this projection of∇R onto Si0 can be found by first finding the projection

of ∇R onto the space S⊥
i0 that is orthogonal to Si0 and then subtracting it from ∇R. In

order to find the projection of ∇R onto S⊥
i0, we need an orthogonal basis for S⊥

i0. Since Si0

is the intersection of two hyper planes g(p) = 0 and
∑N

j=1 bijpj = 0, a basis for S⊥
i0 can be
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made from the two normal vectors as {g,bi}, where g is given in (9.25) and

bi = (bi1, bi2, ...biN ). (9.30)

An orthogonal basis {ei1, ei2} for S⊥
i0 can be found by:

ei1 = g and ei2 = bi −
bi • g
||g||2 g (9.31)

Thus, the projection of ∇R onto the linear space Si is obtained as:

ProjSi
∇R(p) = ∇R(p)− ∇R(p) • ei1

||ei1||2
ei1 −

∇R(p) • ei2
||ei2||2

ei2 (9.32)

While traveling along Si it is possible that the algorithm encounters the rate constraint

plane of another user. When this happens the algorithm should change its direction and

travel along the space formed by the intersection of the power constraint plane and the two

rate constraint planes. In the following, Sj represents the space formed by the intersection

of the power constraint plane and all the rate constraint planes encountered until and up to

the rate constraint plane of User-j. We now present the algorithm with rate constraints.

Projected Gradient Algorithm with

Rate Constraints (PGARC)

1. T = {1, 2, 3, ...N}

2. Solve (9.29) to obtain pinitial.

3. p := pinitial.

4. D(p) := Projg(p)=0∇R(p)

5. p := p+ sD(p)
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6. for i ∈ T

7. if SINRi ≤ γi

8. j := i

9. remove i from T .

10. D(p) := ProjSj
∇R(p)

11. end if

12. end for

13. if the change in R(p) < δ stop.

14. else go to step 4.

T is an array that contains the user numbers whose rate constraint planes have not been

reached yet. Initially T contains all the integers from 1 to N . D(p) is the vector that

determines the direction of the algorithm. Initially it is set to the projection of ∇R(p)
onto the power constraint plane, and remains so as long as no user’s rate constraint plane

is encountered. After each update in Step 5, the loop between Steps 6 and 12 checks if any

user’s rate constraint plane has been reached, and if so updates T in Step 9, and modifies

the direction of the algorithm in Step 10.

9.5.5 Modification to work with individual power constraints

PGARC can be easily modified to handle individual power constraints instead of a total

power constraint. Each individual power constraint adds a hyper plane boundary in the

form of a linear inequality to the feasible set. We can combine these inequalities to those

from the minimum rate constraints, and use linear programming to find a point pi in the
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feasible set. Steps between 4) and 11) can be modified to check if the algorithm crosses over

the new hyper planes. Otherwise the algorithm remains the same.

9.5.6 Convergence of the algorithms

We need the following Lemma to prove that PGA and PGARC converge to the respective

global maximum sum rates.

Lemma 9.5.1. The direction of the fastest increase of any function f restricted to a linear

space is the projection of ∇f onto that linear space, evaluated on that linear space.

Proof: We restrict our attention to three variable functions but the proof easily ex-

tends to functions of any number of variables. We will first deal with the case where the

linear space is the XY -plane.

Consider a three variable scalar function f(x, y, z). We know that ∇f = (fx, fy, fz) gives

the direction of the fastest increase in f , when there are no restrictions on x, y, z. Suppose

x, y, z are restricted to the XY -plane. Then f becomes g(x, y) = f |z=0 = f(x, y, 0), and the

direction of the fastest increase of f restricted to theXY -plane will be given by∇g = (gx, gy).

But it is easily seen that gx = fx|z=0 and gy = fy|z=0 and therefore, ∇g = (fx|z=0, fy|z=0).

However, (fx|z=0, fy|z=0) is nothing but the projection of ∇f = (fx, fy, fz) onto the XY -

pane evaluated on the XY -plane. Note that the same arguments hold when the linear space

is the line formed by the X-axis.

By rotating the axes, we can extend the proof to include any inclined linear space.

Theorem 9.5.1. PGA and PGARC converge to the points of global maximum sum rate of

the GIC subject to the respective constraints.

Proof: PGA converges to the global maximum point for the same reason as to why

the steepest gradient algorithm (SGA) converges to the global maximum point. Consider

first, a concave function f(x) and the SGA that finds the point at which f(x) attains its
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maximum. The SGA starts at any point x and updates its position by:

x := x+ s∇f(x) (9.33)

These updates eventually lead to the optimal point because two conditions are fulfilled. First

is that at any point x, the gradient ∇f(x) gives the direction in which f(x) increases the

fastest. This guarantees that the updates take the algorithm not only in the direction in

which f(x) increases but in the most efficient route towards the maximum. The second is

that near the maximum point, ∇f(x) becomes smaller and smaller and eventually becomes

zero. This makes sure that the algorithm hits the point of maximum and stays there or

oscillates about the maximum point with an amplitude determined by the step size s.

We already proved that the maximum of R(p) restricted to g(p) = 0 occurs at the point

given by ∇R(a) + λ∇g(a) = 0, or at the point where Projg(p)=0∇R(p) = 0. Since the

updates in our algorithm PGA use Projg(p)=0∇R(p), the second condition mentioned above

is satisfied.

By Lemma 9.5.1, Projg(p)=0∇R(p) represents the direction of the fastest increase in

R(p), when p is restricted to g(p) = 0. This shows that the first condition is satisfied too,

and hence, PGA converges to the global maximum point.

The same argument applies to PGARC with g(p) = 0 replaced with the “intersection of

g(p) = 0 and the rate constraint planes.”

9.5.7 Computational complexity of PGARC

Note that the part of PGARC from steps 7) to 11) is identical to the steepest gradient

algorithm but with a different gradient. The steepest gradient algorithm has geometrical

convergence, and this does not depend on the number of variables in the problem [28].

Hence, the time taken from steps 7) to 11) does not depend on N . In the worst case, the

steps between 7) and 11) may have to be executed N times. In Step 2), we have to solve an
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N × N linear system. This takes a time in the order of N3 [28]. Steps 4) and 5) are part

of the steepest gradient algorithm but with a different gradient. Therefore, PGARC has a

time complexity O(N3) +O(N) which simplifies to O(N3).

The modified algorithm with individual power constraints has to solve a 2N ×N linear

programming problem in step 2). This will take a time in the order of 2N3. The algorithm

has to check 2N number of planes between the steps 7) and 11). Hence, the complexity here

will be O(2N3) +O(2N) which simplifies to O(N3) as well.

9.6 Numerical results

In this section, we provide considerable numerical evidence regarding three matters. The

proposed algorithms converge; they converge to the global maximum sum rate; they do so

with remarkable speed. The details of the simulation parameters are given in Fig. 9.3. The

first test of any algorithm should involve a case where we already know the solution. With

this in mind, in the first few scenarios we calculate the channel gains using path loss only, from

known distances so as to keep the channel gains predictable. The later scenarios gradually

allow for random variation in distances, Rayliegh fading and log-normal-shadowing.

We start with Scenario-1 in Fig. 9.3, which is a completely symmetrical system with a

total power constraint. We know that the maximum sum rate for this case should occur

when the power levels of the 4 users are equal. We deliberately start the PGA with unequal

power levels. Fig. 9.4 shows the convergence of the sum rate. Fig. 9.5 shows the individual

power levels converging to the same level.

In Scenario-2 (Fig. 9.3), we test the PGA with the interference constraint. This system

is partially symmetrical; the first two users face identical conditions and so do the last two

users. Hence, at the maximum sum rate, the first two users should have the same power level

and so do the last two users. For this Scenario, we started the algorithm with pi = P/(Ngi).

Fig. 9.6 shows the convergence of the power levels to what we expected.
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Figure 9.3: Simulation details.
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Figure 9.4: Scenario-1: The sum rate in the symmetrical case.
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Figure 9.5: Scenario-1: The power levels in the symmetrical case.

135



1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

Number of iterations

T
ra

n
sm

is
si

o
n

 p
o

w
er

 (
m

ic
ro

 W
at

ts
)

Users 1 and 2

Users 3 and 4

Figure 9.6: Scenario-2: The power levels in the partially symmetrical case.
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Figure 9.7: Scenario-3: The sum rate for the example in Section 8.4.
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Figure 9.8: Scenario-3: The power levels for the example in Section 8.4.
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Figure 9.9: Scenario-4: The sum rate of eight users
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Figure 9.10: Scenario-4: The power levels of eight users

Scenario-3 is the same as the example we considered in Section 8.4. The exhaustive

search we conducted at that time demonstrated that at the maximum sum rate, the power

level of User-4 must be zero. The sum rate and power levels obtained through the algorithm

PGA are shown in Fig. 9.7 and Fig. 9.8. As expected, the first three users get equal power

levels, while the last user gets nothing. The maximum sum rate obtained using PGA shown

in Fig. 9.7 (25.32 bits/s/Hz) agrees with the one obtained using an exhaustive search (a bit

more than 25 bits/s/Hz) shown in Fig. 9.2 of Section 8.4. The bend in iteration number 8

in Fig. 9.8 is the result of the algorithm getting halted when the power level of User-4 is

about to cross over zero. Instead of negative power, User-4 gets zero power, which is slightly

“higher” than what the algorithm is about to give it. This in turn results in the upward

bend in the sum rate curve in Fig. 9.7 at iteration number 8.

In Scenario-4, we increase the number of users, allow some randomness in the interfering

distances and include fading and shadowing in the calculation of the channel gains. The

convergence of the sum rate is shown in Fig. 9.9 and the power levels in Fig. 9.10. The last
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three users get no power. This should not be surprising given their channel conditions.

Scenario-5 allows randomness in the direct as well as the interfering distances. The mini-

mum rate constraints are taken into consideration. Fading and shadowing are superimposed

on the path loss to obtain the channel gains. Fig. 9.11 shows the convergence of the sum rate

as well as the individual transmission rates and the sum rate at important points during the

execution of the algorithm PGARC. The numbers in the first row gives the rates obtained

at Step-2 of the algorithm when the linear system is solved to find a point in the feasible

set. The second row gives the rates when the algorithm is about to cross the hyper plane

representing User-1’s minimum rate demand. From this point on, the algorithm travels on

the intersection of the power constraint plane and the afore mentioned rate demand plane

of User-1, until it is about to cross the rate demand plane of User-3. The rates at this point

is given in the third row. Hereafter, the algorithm travels on the intersection of three hyper

planes given by: the total power constraint, the rate demand of User-1 and the rate demand

of User-3.

Any comparison of our algorithm with an algorithm that considers individual power con-

straints by dividing the total power constraint P into N equal individual power constraints

would be unfair to the later algorithm as the maximum sum rate might occur at a point

where one or more users are allocated a power that is more than P/N . With this in mind,

in Scenario-6, we compare the sum rate obtained using PGARC to that obtained using the

only other algorithm that uses a total power constraint, albeit a different rate constraint

- proportional rate constraints. This is the central algorithm from the last chapter. We

understand this could be construed as unfair to the algorithm from the last chapter. We em-

phasize here that it is not our intention to compare the performances of the two algorithms.

Rather, we would like to illustrate the advantages of an algorithm that considers minimum

rate constraints over one that considers proportional rates when it comes to satisfying QoS

requirements. We set the QoS requirements via the minimum rate demands shown in Fig.

9.3 and made sure the problem is feasible by running PGARC. Then we executed the algo-
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rithm from the last chapter with the proportional rates in the same ratio as the minimum

rate demands. As shown in Table 9.2, the algorithm from the last chapter also satisfies the

minimum rate demands. However, PGARC achieves a higher sum rate.
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Figure 9.11: Scenario-5: The sum rate, and the individual rates at key points.

Table 9.2: Scenario-6: Comparison
Individual rates Sum rate
(bits/s/Hz) (bits/s/Hz)

Proportional
rate 1.779 2.135 2.490

algorithm (Chapter 8) 2.846 3.202 3.558 16.010
Proposed

minimum rate 1.121 1.852 2.351
algorithm 3.731 6.495 4.908 20.458
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9.7 Conclusion

The chapter used a new type of geometrical structure called invexity (incavity) to characterize

the sum rate of the GIC. It was established that while the sum rate of the GIC is both incave

and invex, the sum rate restricted to a linear constraint on the powers is incave. One of

the KKT conditions was then used to locate the power allocation that maximizes the sum

rate subject to the said constraint. The existence and uniqueness of a point on the power

constraint plane that satisfies the KKT condition was proven. An algorithm that maximizes

the sum rate of the GIC subject to total power and QoS constraints is proposed. Numerical

results demonstrating the performance of the algorithm were also presented.
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Chapter 10

Fundamental aspects of energy

efficient power allocation in OFDMA

10.1 Introduction

This chapter fills a gap in the literature regarding the foundations of energy efficient power

allocation for orthogonal frequency division multiple access (OFDMA). It is shown that for

fixed subchannel assignment, the power allocation that maximizes the energy efficiency (EE)

of OFDMA transmissions can be obtained through a single water level that can be calculated

by solving a single non-linear equation. What is more, this equation is the same for single

user, single carrier case or multi user, multi carrier case. The maximum EE is shown to

have an inverse relationship to the said water level. The theoretical results obtained in this

chapter are used in the next chapter to find a two step solution to the problem of determining

the frequency and power allocation that maximizes the EE of OFDMA.

The approach we take in this chapter to arrive at the results is rather unique. In Chapter

2, we mentioned that the KKT equations that define the critical point of a constrained

optimization problem, in general, are difficult to solve. Yet, this is the approach that we take

in this chapter because the alternative, using iterative algorithms to arrive at the optimum

142



power allocation, does not help with the other part in the resource allocation problem - the

frequency assignment. To the best of our knowledge, this is the first time KKT equations

from a fairly complex optimization problem have been solved analytically to express the

optimum point as a solution to a single equation.

For alternative approaches to obtaining the power allocation that maximizes the energy

efficiency, namely using iterative algorithms, the reader is referred to our works that use

fractional programming in cooperative cognitive radios [142–146].

10.2 Background

The need to reduce the carbon footprint of mobile communications together with the increas-

ing demand for data rates has necessitated research into the energy efficiency of the transmis-

sions from base stations [17], [68]. Power allocation that maximizes the bits/Joule/Hz energy

efficiency (EE) of orthogonal frequency division multiple access (OFDMA) based transmis-

sions has been studied well [25, 67–72]. It is known that for a fixed channel assignment, the

power allocation that maximizes the EE, without any QoS or total power constraints, is given

by a common water level for all users [25,69–72]. The best approach among these work uses

Charnes-Cooper Transformation (CCT) to change the quasi-concave EE objective function

into a concave function. The common water level is obtained using iterative algorithms.

Consider the bigger problem of frequency and power allocation that maximizes the EE.

This problem is too complex and we can only consider two step near optimal solutions - a

near optimal frequency assignment followed by optimal power allocation. In order to assign

subchannels optimally, we need theoretical insights into the role the channel assignment

plays in the maximum EE attainable from a given subchannel assignment. This insight is

possible only if we have a closed form solution to the maximum EE in terms of the channel

gains. If this is not possible then the next best thing is an approximate expression for the

maximum EE. But none of this is possible with a solution based on iterative algorithms. It
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is because of this reason that we decide to attack the KKT equations face on.

The next section presents the system model and the problem statements. The follow-

ing sections develop the fundamentals of energy efficiency maximizing power allocation for

OFDMA. Section 10.4 deals with the single user, single carrier case. Single user, multi car-

rier case (OFDM) is considered in Section 10.5, and multiuser, multi carrier case (OFDMA)

with proportional rate constraints in Section 10.6. Multiuser, multi carrier case (OFDMA)

with minimum rate constraints is considered in Section 10.7 followed by Multiuser, multi

carrier case (OFDMA) with a total power constraint in Section 10.8. Section 10.9 presents

the algorithm that maximizes the EE, with minimum rate constraints, for a given channel

assignment. The complexity of this algorithm is discussed in Section 10.10, and the chapter

concludes in Section 10.11.

10.3 System model and problem statement

Consider the downlink of a single cell with N users and K orthogonal subchannels. Each

subchannel is assigned exclusively to one user. If the channel gain on the kth subchannel

is ak, the transmission power pk, the noise spectral density σ2, and hk = ak/σ
2, then the

system EE of the transmissions over all K subchannels in bits/Joule/Hz can be written as:

EE =

∑K
k=1 log2 (1 + hkpk)

pc + ψ
∑K

k=1 pk
, (10.1)

where ψ is the reciprocal of the efficiency and pc is the circuit power [25] of the downlink

transmitter.

Assume a yet-to-be determined subchannel assignment protocol is used to distribute the

subchannels among the users. Suppose a total of K1 subchannels - subchannel 1 through

subchannel k1 - are assigned to User-1. A total ofK2 subchannels - subchannel k1+1 through

subchannel k2 - are assigned to User-2 and so on. A total of Kn subchannels - subchannel
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kn−1 + 1 through subchannel kn - are assigned to User-n. Then the rate rn of User-n can be

written as:

rn =
kn
∑

k=kn−1+1

log2 (1 + hkpk) , (10.2)

where k0 = 0. If the minimum rate acceptable to User-n is Rn then we must have

rn −Rn ≥ 0 for n = 1, 2, ..., N. (10.3)

The goal is to maximize the EE in (10.1) subject to (10.3) and a total power constraint P

using a two step optimization procedure - first using the GA for subchannel assignment and

then solving the following power allocation problem:

max
p1,p2,...pK

EE

subject to

C1 : rn −Rn ≥ 0 for n = 1, 2, ..., N.

C2 : P −
K
∑

k=1

pk ≥ 0.

(10.4)

The material developed in this chapter is also sufficient to solve the EE maximizing

power allocation problem with proportional rate constraints. That problem can be formally

described by replacing the constraint C1 above with C3 below:

C3 : αn+1

k1
∑

k=1

log2 (1 + hkpk)−
kn+1
∑

k=kn+1

log2 (1 + hkpk) = 0, for n = 1, 2, 3, ..., N − 1. (10.5)

10.4 The single user, single carrier Case

In this Section we analyze the EE of a single user. Even though the results of this section

can be obtained without introducing a water level, we do introduce the water level so that
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we can compare the results here with results from the multi-carrier and multi user cases. If

the channel gain is a, the transmission power p, the noise spectral density σ2, and h = a/σ2,

then the EE of the transmission in bits/Joule/Hz can be written as:

EE =
log2 (1 + hp)

pc + ψp
, (10.6)

where ψ is the reciprocal of the efficiency of the power amplifier and pc is the circuit power [25]

of the transmitter. The circuit power represents the total power spent on preprocessing the

signal before it enters the power amplifier. We wish to find the p that maximizes the EE for

fixed h, ψ, and pc. The optimization problem here is:

max
p

EE =
log2 (1 + hp)

pc + ψp
(10.7)

The fact that the EE here is not concave in the power p does not trouble us because we

have a single variable. The existence of a global maximum can be established using simple

analysis. We summarize the results in the following Theorem.

Theorem 10.4.1. The single user EE has only one stationary point and this point is a global

maximum. The stationary point can be obtained by solving the equation EE(w) = 1/ψw ln 2,

where w is the water level. The maximum EE has an inverse relationship to the water level

that produces it and a direct relationship to the channel gain. In other words, the maximum

EE is higher if the channel gain is higher.

Proof: Differentiating EE with respect to p:

EE′(p) =
f(p)

(pc + ψp)2
, (10.8)

where

f(p) =
h

1 + hp
(pc + ψp)− ψ ln(1 + hp) (10.9)
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Note that lim
p→0+

f(p) = hpc > 0 and lim
p→∞

f(p) = ψ −∞ < 0. Since f(p) is continuous for

p > 0, by intermediate value theorem, there is at least one p such that f(p) = 0.

Suppose there are two such p’s. Since f(p) is differentiable, by Rolle’s theorem, f ′(p) = 0

for some p > 0. However, it can be shown that

f ′(p) = −h
2(pc + ψp)

(1 + hp)2
> 0 for all p > 0, (10.10)

which is a contradiction.

Thus, EE(p) has only one stationary point. Note further that EE(p) is positive, differ-

entiable, lim
p→0+

EE(p) = 0 and lim
p→∞

EE(p) = 0. Therefore, this stationary point must be a

global maximum.

From (10.9), we see that the stationary point is given by

h

1 + hp
= ψ

ln(1 + hp)

pc + ψp
. (10.11)

Introducing the water level

w = p+
1

h
, (10.12)

on the left only, and rewriting:

EE =
1

ψw ln 2
(10.13)

That is, the maximum EE is inversely proportional to the water level that produces it. Since

the EE on the left side of (10.13) can also be written in terms of the water level w, this

equation can be solved to obtain the optimum water level w∗.

We now investigate the relationship of the channel gain h to the maximum EE. Writing

the EE on the left side of (10.13) in terms of the water level w and re-arranging:

pc + ψw − ψ

h
= ψw lnw + ψw lnh (10.14)
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Implicitly differentiating this equation with respect to h, it can be shown that

dw

dh
=

−p
h ln(1 + hp)

< 0 (10.15)

This shows that the water level that produces the maximum EE decreases with the channel

gain h. We earlier showed that the maximum EE is inversely proportional to the water

level that produces it. Combining these two results, we conclude that the maximum EE is

increasing with channel gain.

10.5 Single user, multi carrier case (OFDM)

Consider a single user transmitting over K subchannels. If the channel gain on the kth

subchannel is ak, the transmission power on the kth subchannel is pk, and hk = ak/σ
2, the

optimization problem we are interested is:

max
p

EE =

K
∑

k=1

log2 (1 + hkpk)

pc + ψ
K
∑

k=1

pk

, (10.16)

where p = (p1, p2, ...pK).

The numerator of our objective function is concave in p, while the denominator is affine.

Such a fraction may not be concave. However, as mentioned in Chapter 5 this fraction can

be transformed in to a concave function using Charnes-Cooper transformation (CCT).

Theorem 10.5.1. The power levels that maximize the total EE can be obtained through a

water-filling-like solution with a common water level on all the carriers. This water level can
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be obtained by solving a single non-linear equation:

EE(w) =
1

ψw ln 2
(10.17)

The maximum EE is inversely proportional to the water level that produces it. Anytime a

subchannel is replaced with another with a greater channel gain, the maximum EE increases.

Proof: We apply CCT transformation (Chapter 5) to the optimization problem in

(10.16) by letting

t =
1

pc + ψ
K
∑

k=1

pk

and yk = tpk, (10.18)

to obtain the new optimization problem:

max
y t

f(y, t) = t
∑

k

log2 (1 + hkyk/t)

subject to

C1 : ψ
∑

k

yk + pct− 1 = 0

C2 : t > 0

(10.19)

10.5.1 Why the inequality t > 0 can be ignored

This inequality t > 0 in constraint C2 will be a recurring theme in this chapter. However,

it does not affect the results in any meaningful manner. In order to avoid unnecessary

complexity in the derivation, we would like to ignore this constraint in the future. We first

show why constraint C2 can be ignored.

The strict inequality in the constraint C2: t > 0 is not part of the convex optimization

theory. We can change this constraint into C2: t− δ ≥ 0 with the understanding that at the

end of the analysis we let δ −→ 0.
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max
y t

f(y, t) = t
∑

k

log2 (1 + hkyk/t)

subject to

C1 : ψ
∑

k

yk + pct− 1 = 0

C2 : t− δ ≥ 0

(10.20)

The Lagrangian can be written as follows, where λ and µ are the dual variables.

L(y, t, λ, µ) = f + λ

(

ψ
∑

k

yk + pct− 1

)

+ µ(t− δ) (10.21)

The KKT conditions:

∂f

∂yk
+ λψ = 0 (10.22a)

∂f

∂t
+ λψpc + µ = 0 (10.22b)

ψ
∑

k

yk + pct− 1 = 0 (10.22c)

µ(t− δ) = 0 (10.22d)

t− δ ≥ 0 (10.22e)

Note that (10.22d) implies either µ = 0 or t = δ.

Suppose t = δ. Since we were going to make δ −→ 0, this implies that the solution occurs

as t −→ 0. Recalling that

t =
1

pc + ψ
∑

k pk
, (10.23)

we conclude that the solution occurs as
∑

k pk −→ ∞. This will happen only if some of the

pk’s goes to infinity. We can stop here and go to the alternate case that µ = 0, because
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infinite power is not feasible.

In the following, we go one step further and prove that the solution we obtain for the

optimum energy efficiency, from the case that some of the pk’s goes to infinity, is actually

zero.

Let us put the k’s for which pk −→ ∞ into the set S and the rest of the k’s into set Sc.

The energy efficiency f can be written as:

f =

∑

k∈S log2 (1 + hkpk) +
∑

k∈Sc log2 (1 + hkpk)

pc + ψ
∑

k∈S pk + ψ
∑

k∈Sc pk
(10.24)

We wish to calculate the limit of f as those pk’s that go to infinity approach infinity.

Note that both in the numerator and the denominator, the summations with the k ∈ S

terms dominate. After dividing the numerator and the denominator by
∑

k∈S pk and omitting

the terms that approach zero,

limit
pk−→∞

f = limit
pk−→∞

∑

k∈S log2 (1 + hkpk)

ψ
∑

k∈S pk
(10.25)

We know that all the pk’s here are approaching infinity. Among this pk’s there will be one

pi that goes to infinity at a speed equal to or greater than the others. Then

limit
pk,pi−→∞

pk
pi

= ck, (10.26)

where ck is either zero or a constant. By dividing the numerator and the denominator of f

by this pi,

limit
pk,pi−→∞

f = limit
pk,pi−→∞

log2(1+hipi)
pi

+ pk
pi

∑

k
log2(1+hkpk)

pk

ψ (1 +
∑

k pk/pi)
=

0 + ck.0

ψ (1 +
∑

k ck)
= 0, (10.27)

Because, by a famous theorem, log x goes to infinity at a slower speed than x. Thus, we
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conclude that

limit
pk−→∞

f = 0 (10.28)

The above argument shows that if we go with the case in the KKT equations that t = δ

then the solution for the optimal energy efficiency is zero. (10.22d) implies that if t 6= δ

then µ = 0. This is the other case, and this case essentially eliminates the last term in the

Lagrangian in (10.21). This means that in this case, we can eliminate the constraint C2:

t > 0 from our optimization problem.

In what follows we will always go with the later case, ignore the constraint C2: t > 0

from the optimization problem, and try to obtain a positive solution for the optimal energy

efficiency. As long as we obtain a positive solution for the optimal value, that must be the

actual maximum value, because the other solution is zero.

We re-write the optimization problem 10.20 without C2 and proceed.

max
y t

f(y, t) = t
∑

k

log2 (1 + hkyk/t)

subject to

C : ψ
∑

k

yk + pct− 1 = 0

(10.29)

The Lagrangian is formed as:

L(y, t, λ) = f + λ

[

ψ
∑

k

yk + pct− 1

]

(10.30)

The KKT conditions:

The Constraint C:

ψ
∑

k

yk + pct− 1 = 0 (10.31)

The t derivative of the Lagrangian in (10.30):
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K
∑

k=1

[

ln(1 + hkpk)

ln 2
− hkpk

(1 + hkpk) ln 2

]

+ λpc = 0 (10.32)

The yk derivatives of the Lagrangian in (10.30):

hk
(1 + hkpk) ln 2

+ λψ = 0, for k = 1, 2, ..., K. (10.33)

Eliminating λψ from the K equations in (10.33):

1 + h1p1
h1

=
1 + h2p2

h2
=

1 + h3p3
h3

= . . . =
1 + hKpK

hK
(10.34)

Denoting the common number above by w:

1 + h1p1
h1

=
1 + h2p2

h2
=

1 + h3p3
h3

= . . . =
1 + hKpK

hK
= w (10.35)

This shows that the power levels that maximize the EE are given by a common water level:

pk = w − 1

hk
for k = 1, 2, ..., K. (10.36)

We now concentrate on finding this water level. Using (10.36) to eliminate pk from (10.32)

and (10.33), we obtain two new equations.

K
∑

k=1

[

ln(whk)

ln 2
− whk − 1

whk ln 2

]

+ λpc = 0 (10.37a)

1

w ln 2
+ λψ = 0 (10.37b)

Multiplying the kth equation in (10.33) by pk, and adding all K equations:

K
∑

k=1

[

hkpk
(1 + hkpk) ln 2

]

+ λψ

K
∑

k=1

pk = 0 (10.38)
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Adding this equation to (10.32):

K
∑

k=1

log2(1 + hkpk) + λ

(

pc + ψ

K
∑

k=1

pk

)

= 0, (10.39)

which implies that

f = EE = −λ (10.40)

Using (10.37b) now,

EE(w) =
1

ψw ln 2
(10.41)

This is exactly the same equation as (10.13) in the single carrier case. The maximum EE is

inversely proportional to the water level that produces it. After writing the EE in terms of

the common water level w, this equation can be used to solve for w. Since the optimization

problem is concave, we expect only one solution to this equation. However, it is possible to

prove that this equation has a unique solution by independent means just as in the single

user case. Also, it is straight forward to proceed like in the single user case and obtain the

following.
∂w

∂hk
=

−hk
hk ln(1 + hkpk)

< 0 for all k. (10.42)

Combining this with the result that the maximum EE is inversely proportional to the water

level, we conclude that any time a subcarrier with a greater channel gain is substituted for

one with a lower channel gain, the maximum EE increases.

10.6 Multi user multi carrier case (OFDMA) with pro-

portional rate requirements

Note that without any rate requirements from the users, the power allocation that maximizes

the EE in this case will be identical to the last section. With this in mind in this section
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we include proportional rate requirements. As mentioned earlier, the main reason for this

analysis is to gain theoretical understanding of the nature of the EE maximizing power

allocation. The knowledge gained in this section is used in the next chapter when using

genetic algorithm for subchannel assignment. A summary of the notations is given in Table

10.1.

N number of users in the system
K number of subchannels in the system
ak channel gain on subchannel k experienced by the user to whom it is assigned
σ2
k additive white Gaussian noise density
hk ak/σ

2
k

pk power used on subchannel k
pc circuit power
ψ reciprocal of the power amplifier efficiency
αn User-n’s transmission rate as a ratio of User-1’s transmission rate

Table 10.1: Notations

There are N users and K subcarriers. A total of K1 subcarriers - starting from subcarrier

1 through subcarrier k1 are assigned to User-1. A total of K2 subcarriers - starting from

subcarrier k1 + 1 through subcarrier k2 are assigned to User-2. In general, a total of Kn

subcarriers - starting from subcarrier kn−1 +1 through subcarrier kn are assigned to User-n.

User-n’s rate demand is αn times that of User-1. For notational simplicity we use α1 as well,

with the assumption that α1 = 1. We use the short hand l to denote ln2.

The optimization problem:
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max
p

K
∑

k=1

log2 (1 + hkpk)

pc + ψ

K
∑

k=1

pk

subject to

C1 : αn+1

k1
∑

k=1

log2 (1 + hkpk)−
kn+1
∑

k=kn+1

log2 (1 + hkpk) = 0, for n = 1, 2, 3, ..., N − 1.

(10.43)

Theorem 10.6.1. The power levels that maximize the system EE can be obtained through a

water-filling-like solution where each user has a common water level on all of its carriers. All

user’s water levels can be written in terms of a single User’s water level, and this particular

User’s water level can be obtained by solving a single non-linear equation:

EE(w1, β2w
γ2
1 , β3w

γ3
1 , ..., βNw

γN )
1 =

∑N
n=1 αn

(ln2)
∑N

n=1 αnβnw
γn
1

, (10.44)

where βn and γn are defined in the proof below. The maximum EE is inversely proportional

to the weighted average water level. Anytime a subchannel is replaced with another with a

greater channel gain, the maximum EE increases.

Proof: Just like in the last section we apply the CCT transformation (Chapter 5):

t =
1

pc + ψ

K
∑

k=1

pk

and yk = tpk (10.45)

156



The new optimization problem:

max
y, t

f(y, t) = t
∑

k

log2 (1 + hkyk/t)

subject to

C1 : αn+1

k1
∑

k=1

log2 (1 + hkyk/t)−
kn+1
∑

k=kn+1

log2 (1 + hkyk/t) = 0, for n = 1, 2, 3, ..., N − 1.

C2 : ψ
∑

k

yk + pct− 1 = 0

(10.46)

The Lagrangian:

L(y, t, λ, µ) = f + λψ

[

∑

k

yk + pct− 1

]

+
N−1
∑

n=1

µn

[

αn+1

k1
∑

k=1

log2 (1 + hkyk/t)−
kn+1
∑

k=kn+1

log2 (1 + hkyk/t)

]

(10.47)

The KKT conditions:

Constraint C1:

αn+1

k1
∑

k=1

log2 (1 + hkpk) =

kn+1
∑

k=kn+1

log2 (1 + hkpk) , for n = 1, 2, 3, ..., N − 1. (10.48)

Constraint C2:

ψ
∑

k

yk + pct− 1 = 0 (10.49)

t derivative:
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K
∑

k=1

ln(1 + hkpk)−
hkpk

1 + hkpk
− 1

t

N−1
∑

n=1

µnαn+1

k1
∑

k=1

hkpk
1 + hkpk

+
µ1

t

k2
∑

k=k1+1

hkpk
1 + hkpk

+
µ2

t

k3
∑

k=k2+1

hkpk
1 + hkpk

+ ...+
µN−1

t

K
∑

k=kN−1+1

hkpk
1 + hkpk

+ λψlpc = 0

(10.50)

yk derivatives:

(

1 +
1

t

N−1
∑

n=1

µnαn+1

)

hk
1 + hkpk

+ λψl = 0, for k = 1, 2, ..., k1 (10.51a)

(

1− µ1

t

) hk
1 + hkpk

+ λψl = 0, for k = k1 + 1, k1 + 2, ..., k2 (10.51b)

(

1− µ2

t

) hk
1 + hkpk

+ λψl = 0, for k = k2 + 1, k2 + 2, ..., k3 (10.51c)

... (10.51d)
(

1− µN−1

t

) hk
1 + hkpk

+ λψl = 0, for k = kN−1 + 1, kN−1 + 2, ..., N (10.51e)

Eliminating λ from (10.51a) shows that User-1 has a common water level on all his sub-

carriers. Similarly, (10.51b)-(10.51e) show each user has his own water level. If we denote

User-n’s water level by wn, we have

pk + 1/hk = w1, for k = 1, 2, ..., k1 (10.52a)

pk + 1/hk = w2, for k = k1 + 1, k1 + 2, ..., k2 (10.52b)

pk + 1/hk = w3, for k = k2 + 1, k2 + 2, ..., k3 (10.52c)

... (10.52d)

pk + 1/hk = wN , for k = kN−1 + 1, kN−1 + 2, ..., N (10.52e)
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Using (10.52) on (10.51),

1 +
1

t

N−1
∑

n=1

µnαn+1 = −λψlw1 (10.53a)

1− µ1

t
= −λψlw2 (10.53b)

1− µ2

t
= −λψlw3 (10.53c)

... (10.53d)

1− µ(N − 1)

t
= −λψlwN (10.53e)

(10.53a) + α2(10.53b) + α3(10.53c) + ... + αN(10.53e) gives

N
∑

n=1

αn = −λψl
N
∑

n=1

αnwn (10.54)

Multiplying (10.51a) by pk and summing over k = 1 to k = k1,

k1
∑

k=1

(

1 +
1

t

N−1
∑

n=1

µnαn+1

)

hkpk
1 + hkpk

+ λψl

k1
∑

k=1

pk = 0 (10.55)

We can obtain similar equations from the other equations in (10.51), by multiplying by pk and

summing over appropriate k values. Adding all these equations to (10.50) and rearranging

give us,

f = −λ, (10.56)

a result that is exactly the same as the one in (10.40) from the last section.

Combining this with (10.54),

f =

∑N
n=1 αn

ψ(ln 2)
∑N

n=1 αnwn

(10.57)
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This equation is very similar to (10.13) and (10.41) from the last two sections except the

water level in the last two sections is now replaced with the average water level. In other

words, the maximum EE in this section is inversely proportional to the weighted average of

the water levels.

Now compare (10.57) to (10.41) from last section. The position or role of any wk in

(10.57) is similar to the role of w in (10.41), as far as the increasing/decreasing behavior of

the functions they are part of. In the last section we concluded that ∂w/∂hk < 0. Based on

the comparisons of (10.57) and (10.41), we deduce that ∂w/∂hk < 0 here too. That is, the

optimum water level decreases with the channel gains. Since the maximum EE decreases

with the water level it produces it, we conclude that anytime a subchannel is replaced with

another with a greater channel gain, the maximum EE increases.

Using (10.52) on (10.48),

αn+1

k1
∑

k=1

log2 (hkw1) =

kn+1
∑

k=kn+1

log2 (hkwn) , for n = 1, 2, 3, ..., N − 1. (10.58)

[

k1
∏

k=1

(hkw1)

]αn+1

=

kn+1
∏

k=kn+1

(hkwn), for n = 1, 2, 3, ..., N − 1. (10.59)

Letting

βn+1 =

[

∏k1
k=1(hk)

]

αn+1

Kn

[

∏kn+1

k=kn+1 hk

]
1

Kn

for n = 1, 2, 3, ..., N − 1. (10.60)

and

γn+1 =
K1αn+1

Kn

for n = 1, 2, 3, ..., N − 1, (10.61)

give us

wn = βnw
γn
1 for n = 2, 3, 4, ..., N. (10.62)

Note that this equation allows us to write the water levels of all users in terms of the water
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level w1 of User-1. We can now write both sides of (10.57) in terms of w1.

f(w1, w2, w3, ..., wN ) = f(w1, β2w
γ2
1 , β3w

γ3
1 , ..., βNw

γN )
1 =

∑N
n=1 αn

(ln2)
∑N

n=1 αnβnw
γn
1

, (10.63)

where we assume that β1 = 1. This single non-linear equation will give us w1. Once we

know w1, all the other water levels can be calculated. From the water levels, we can obtain

the power levels that maximize the total EE.

10.7 Multi user multi carrier case (OFDMA) with min-

imum rate requirements

In this section we include user’s minimum rate constraints. Consider, for a moment, the

solution to the unconstrained EE maximization problem with multi users and multi carriers.

This solution will be identical to the solution from Section 10.5 to the EE maximization

problem with a single user and multi carriers - the solution based on a single water level

w. It may happen that the power levels corresponding to this solution do not satisfy some

(or all) user’s (say in set Suh minimum rate requirements. Note that w∗ will satisfy the rate

demand of User-n only if
kn
∑

k=kn−1+1

log2 (w
∗hk) ≥ Rn (10.64)

This can be re-arranged to:

w∗ ≥
[

2Rn

∏kn
k=kn−1+1 hk

]1/Kn

(10.65)

We must identify all the users for whom the above condition is not satisfy and put them in

set Suh. Then we must allocate enough power to users in set Suh so as to satisfy their rate

demands, remove these users from the mathematics and then re-visit the original optimiza-

tion problem. Before we re-visit the original problem minus these users, we have to think
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about how to allocate the power to the subchannels belonging to these users. The power

distribution to subchannels assigned to users in set Suh must maximize the sum EE of these

users, while meeting their rate demands exactly. That is, we must solve the optimization

problem:

max
p

∑

k∈Suh
log2 (1 + hkpk)

pc + ψ
∑

k∈Suh
pk

subject to

kn
∑

k=kn−1+1

log2 (1 + hkpk) = Rn for n ∈ Suh,

(10.66)

where k ∈ Suh means subchannels assigned to users in Suh and Rn is the minimum rate

requirement of User-n.

Theorem 10.7.1. The EE maximizing power allocation for users in Suh is given by the

water levels:

wn =

[

2Rn

∏kn
k=kn−1+1 hk

]1/Kn

for all n ∈ Suh. (10.67)

Proof: At first it appears that we have to repeat the original optimization problem

for the users in Suh. However, there is a way in which we can obtain a closed form solution.

Notice that the above optimization problem is the same as

max
p

∑

n∈Suh
Rn

pc + ψ
∑

k∈Suh
pk

subject to

kn
∑

k=kn−1+1

log2 (1 + hkpk) = Rn for n ∈ Suh.

(10.68)

Furthermore, the numerator of the objective function as well as pc and ψ are constants.

162



Therefore, this optimization problem reduces to

min
p

∑

k∈Suh

pk

subject to

C:
kn
∑

k=kn−1+1

log2 (1 + hkpk)−Rn = 0 for n ∈ Suh.

(10.69)

Notice that this is the opposite of the OFDMA power allocation problem that maximizes

the throughput subject to a total power constraint. Here too, the solution is obtained using

the Lagrange multipliers. The Lagrangian equations are:

1 =αn
hk

1 + hkpk
for k = kn−1 + 1, kn−1 + 2, ... kn

and for all n ∈ Suh,

(10.70)

where αn’s are the dual variables. Writing pk’s in terms of αn’s,

pk =αn −
1

hk
for k = kn−1 + 1, kn−1 + 2, ... kn

and for all n ∈ Suh.

(10.71)

This shows that αn is in fact the water level for User-n. Using this to substitute for pk in

constraint C1 and re-arranging,

wn = αn =

[

2Rn

∏kn
k=kn−1+1 hk

]1/Kn

for all n ∈ Suh. (10.72)
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Substituting in (10.71) for αn,

pk = pIk =

[

2Rn

∏kn
k=kn−1+1 hk

]1/Kn

− 1

hk

for k = kn−1 + 1, kn−1 + 2, ... kn

(10.73)

10.8 Multi user multi carrier case (OFDMA) with to-

tal power constraint

Often in OFDMA, there is a total power constraint,
∑

k pk ≤ PT , on the transmission powers.

When the solution to the unconstrained EE maximization occurs outside the hyper plane

given by
∑

k pk = PT , the solution to the constrained EE maximization problem will occur

on the hyper plane
∑

k pk = PT . It is easily seen that this happens when

w∗ > P +
∑

k

1

hk
(10.74)

In this case, we must solve the following optimization problem:

max
p

∑

k log2 (1 + hkpk)

pc + ψ
∑

k pk

subject to
∑

k

pk = PT

(10.75)

Once again we can obtain the solution easily, this time without doing any work at all.

Note that we can replace the
∑

k pk in the denominator of the objective function with PT
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from the constraint.

max
p

∑

k log2 (1 + hkpk)

pc + ψPT

subject to
∑

k

pk = PT

(10.76)

Since the denominator of the objective function is a constant, the above problem reduces to:

max
p

∑

k

log2 (1 + hkpk)

subject to
∑

k

pk = PT

(10.77)

This is the familiar OFDMA throughput maximization (under a total power constraint)

problem, for which there is the well known water filling solution [140]:

pk = p∗∗k =

[

w∗∗ − 1

hk

]+

, (10.78)

where

w∗∗ =
PT

K
+

1

K

∑

k

1

hk
(10.79)

10.9 EE maximizing power allocation for OFDMA with

minimum rate and total power Constraints

This section combines the theoretical results obtained in this chapter to form a power allo-

cation procedure. This procedure assumes that the subchannels have been assigned to the

users already, and provides the optimal power allocation that maximizes the system EE with
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user’s minimum rate constraints and a system wide total transmission power constraint. The

material developed in this chapter is also sufficient to form a power allocation procedure with

proportional rate constraints. The reader to referred to our work in [139] for such a power

allocation procedure.

For the convenience of the reader, the system model and the problem statement with min-

imum rate and total power constrains are repeated before the power allocation procedure is

presented. Consider the downlink of a single cell with N users and K orthogonal subchan-

nels. Each subchannel is assigned exclusively to one user. If the channel gain on the kth

subchannel is ak, the transmission power pk, the noise spectral density σ2, and hk = ak/σ
2,

then the system EE of the transmissions over all K subchannels in bits/Joule/Hz can be

written as:

EE =

∑K
k=1 log2 (1 + hkpk)

pc + ψ
∑K

k=1 pk
, (10.80)

where ψ is the reciprocal of the efficiency and pc is the circuit power [25] of the downlink

transmitter.

Assume a yet-to-be determined subchannel assignment protocol is used to distribute the

subchannels among the users. Suppose a total of K1 subchannels - subchannel 1 through

subchannel k1 - are assigned to User-1. A total ofK2 subchannels - subchannel k1+1 through

subchannel k2 - are assigned to User-2 and so on. A total of Kn subchannels - subchannel

kn−1 + 1 through subchannel kn - are assigned to User-n. Then the rate rn of User-n can be

written as:

rn =
kn
∑

k=kn−1+1

log2 (1 + hkpk) , (10.81)

where k0 = 0. If the minimum rate acceptable to User-n is Rn then we must have

rn −Rn ≥ 0 for n = 1, 2, ..., N. (10.82)

The goal is to maximize the EE in (10.80) subject to (10.82) and a total power constraint
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P using a two step optimization procedure - first using the GA for subchannel assignment

and then solving the following power allocation problem:

max
p1,p2,...pK

EE

subject to

C1 : rn −Rn ≥ 0 for n = 1, 2, ..., N.

C2 : P −
K
∑

k=1

pk ≥ 0.

(10.83)

Feasibility

For a given subchannel allocation, it may happen that the constraints C1 and C2 cannot be

satisfied simultaneously. However, this will come to light only after the channel allocation has

been performed and power allocation is being attempted. At this point there are two options.

One is to remove the users with the largest Rn/
∏

k hk’s one by one until the constraints are

satisfied. The second is to redo the channel allocation so as to give better channels to the

users whose rate demands are not met. The second option will increase the complexity of

the resource allocation considerably. For simplicity, in this dissertation we will assume no

feasibly issue arises.

The Optimal Power Allocation Procedure

1. Solve (10.41) and obtain the common water level w∗.

2. If w∗ ≥
[

2Rn
∏kn

k=kn−1+1
hk

]1/Kn

for all n ∈ S and w∗ ≤ P +
∑

k∈S
1
hk

then

pk := w∗ − 1
hk

for all k ∈ S.

167



3. If w∗ > P +
∑

k∈S
1
hk

then pk = p∗∗k from (10.78)

4. If w∗ ≤ P +
∑

k∈S
1
hk

and w∗ ≥
[

2Rn
∏kn

k=kn−1+1
hk

]1/Kn

for all n ∈ Sh

and w∗ <

[

2Rn
∏kn

k=kn−1+1
hk

]1/Kn

for all n ∈ Suh

then pk =

[

2Rn
∏kn

k=kn−1+1
hk

]1/Kn

− 1
hk

for k = kn−1 + 1, kn−1 + 2, ... kn,

and for all n ∈ Suh, and go to step 1 with S := Sh.

S represents the set of all users in the system. Step 1 computes the solution to the

unconstrained optimization problem. Step 2 checks if all the user’s rate demands are met and

if the solution lies inside power constraint plane. If so then the solution to the unconstrained

optimization problem w∗ is the solution to the constrained optimization problem.

Step 3 checks if w∗ falls outside the power constraint plane and if so then the solution to

the constrained optimization problem lies on the power constraint plane.

Step 4 identifies those users whose rate demands are not met (set Suh), allocates appro-

priate power to them and go back to step 1 with the reduced set of users.

10.10 Complexity

Note that step-1 of our power allocation procedure solves a single non-linear equation re-

gardless of the number of users N in the system. Since the equation has only one root and

we have an interval in which we expect w∗ to fall, w∗ can be obtained in few iterations.

Therefore, the time it takes for step-1 is independent of N and is negligible. In the worst

case scenario, step-4 may involve going through all N users. Hence, our algorithm has the

worst case complexity of O(N).
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10.11 Conclusion

This chapter showed that in OFDM, whether we have single user and single carrier or multi

users with multi carriers, the power allocation that maximizes the EE for a given carrier

assignment can be obtained by solving a single non-linear equation. The cases with a total

power, proportional rate, and minimum rate constraints are also considered. The chapter

concluded with a power allocation algorithm that maximizes the EE for a fixed channel

assignment under a total power and minimum rate constraint. Note that this chapter also

has sufficient material to formulate a power allocation procedure with proportional rate

constraints instated of minimum rate constraints. The interested reader is referred to our

work in [139].
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Chapter 11

Energy efficient frequency and power

allocation for OFDMA

11.1 Introduction

Another gap in the literature regarding the energy efficiency (EE) maximization, the appli-

cation of genetic algorithms (GA) for channel assignment, is addressed in this chapter. GA

is ideally suited to a combinatorial problem like channel assignment and is widely used for

channel assignment in many other optimization problems in wireless communications. Yet,

GA is conspicuously absence in problems regarding EE maximization. As explained in detail

later, this is probably due to the complexity involved in calculating the maximum possible

EE for each individual in each generation of the GA. In this chapter, we overcome this dif-

ficulty by using the analytical insights obtained in the last chapter regarding the nature of

the EE maximizing power allocation.

A two-step near optimal solution to the problem of finding the subchannel and power

allocation that maximizes the energy efficiency of the orthogonal frequency division multiple

access (OFDMA) based transmissions, under minimum rate and total power constraints, is

presented. Genetic algorithm is used for subchannel assignment, and is followed by optimal
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power allocation derived in the last chapter via analytical methods.

11.2 Background

As mentioned in the last chapter, the power allocation that maximizes the bits/Joule/Hz en-

ergy efficiency (EE) of OFDMA transmissions has been well studied [25,67–72,138]. Channel

assignment that maximizes the EE in OFDMA, however, has not received as much atten-

tion. Only simple, low complexity, ad-hoc protocols based on intuition, have been proposed

for EE maximizing channel allocation [25, 72, 138]. A related optimization problem is the

throughput maximizing channel assignment for OFDMA with QoS constraints. This is a

well known, computationally challenging problem that remains unsolved. As expected, only

simple, suboptimal, heuristic solutions have been proposed [95] for this problem. As demon-

strated in Chapter 6, genetic algorithm (GA) is perfectly suited to this later optimization

problem. In one of our earlier work [96], we used GA for finding the throughput maximizing

channel assignment for OFDMA. Recently, GA has also been used for power allocation in

EE maximization [97].

Despite the similarities between the throughput maximizing channel assignment and EE

maximizing channel allocation, there is a notable absence of the application of GA for channel

assignment in EE maximization. One of the reason for this could be the following. For each

generation, and for each individual, the GA needs to evaluate the fitness function. In our

present application, the fitness function would be the maximum EE possible from a given

channel assignment. However, the maximum possible EE from a given channel assignment

can only be evaluated by going through the optimization process that finds the optimal

power allocation for a given channel assignment. As mentioned in the last chapter, the

method available for determining the maximum EE for a given channel assignment in the

literature is via an iterative algorithm. In the middle of GA, waiting for the convergence of

this algorithm for each of the 100’s of individuals in each of the 100’s of generations, means
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this iterative algorithm has to be executed at least a total of 10,000 times. This can only be

described as “computational suicide.”

In the last chapter, we made considerable progress away from the EE maximizing power

allocation techniques in the literature, by showing that the maximum EE can be calculated

by solving a single non-linear equation. While solving a single non-linear equation takes

much shorter time compared to waiting for the convergence of the iterative algorithms from

the literature, this approach too wastes precious time in the middle of GA.

This difficulty with fitness functions that are too complex to evaluate in the middle of the

GA is not uncommon in the broader area of GA applications, particularly, outside of wireless

communications. A common solution is to use an approximation to the fitness function. It

is this approach that we take in this chapter; we use two different approximations to the

maximum EE possible from a given channel assignment. These approximate fitness functions

are obtained through our work in the last chapter dealing with the EE maximizing power

allocation with proportional rate . After obtaining the channel assignment using GA, we

use the optimal power allocation from the last chapter. Numerical results obtained show

that the channel assignment using GA produces better EE than the best protocol in the

literature.

Section 11.3 formulates the two-step optimization problem. Channel assignment using

GA is discussed in Section 11.4, and power allocation in Section 11.5. Numerical results are

presented in Section 11.6, and the chapter concludes in Section 11.7.

11.3 System model and the optimization problem

Consider the downlink of a single cell with N users and K orthogonal subchannels. Each

subchannel is assigned exclusively to one user. If the channel gain on the kth subchannel

is ak, the transmission power pk, the noise spectral density σ2, and hk = ak/σ
2, then the
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system EE of the transmissions over all K subchannels in bits/Joule/Hz can be written as:

EE =

∑K
k=1 log2 (1 + hkpk)

pc + ψ
∑K

k=1 pk
, (11.1)

where ψ is the reciprocal of the efficiency and pc is the circuit power [25] of the downlink

transmitter. A summary of the notations is given in Table 11.1.

N number of users in the system
K number of subchannels in the system
ak channel gain on subchannel k experienced by the user to whom it is assigned
σ2
k additive white Gaussian noise density
hk ak/σ

2
k

pk power used on subchannel k
pc circuit power
ψ reciprocal of the power amplifier efficiency
rn transmission rate of User-n
Rn minimum transmission rate acceptable to User-n
P total transmission power constraint

Table 11.1: Notations

Assume a yet-to-be determined subchannel assignment protocol is used to distribute the

subchannels among the users. Suppose a total of K1 subchannels - subchannel 1 through

subchannel k1 - are assigned to User-1. A total ofK2 subchannels - subchannel k1+1 through

subchannel k2 - are assigned to User-2 and so on. A total of Kn subchannels - subchannel

kn−1 + 1 through subchannel kn - are assigned to User-n. Then the rate rn of User-n can be

written as:

rn =
kn
∑

k=kn−1+1

log2 (1 + hkpk) , (11.2)

where k0 = 0. If the minimum rate acceptable to User-n is Rn then we must have

rn −Rn ≥ 0 for n = 1, 2, ..., N. (11.3)
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The goal is to maximize the EE in (11.1) subject to (11.3) and a total power constraint P

using a two step optimization procedure - first using the GA for subchannel assignment and

then solving the following power allocation problem:

max
p1,p2,...pK

EE

subject to

C1 : rn −Rn ≥ 0 for n = 1, 2, ..., N.

C2 : P −
K
∑

k=1

pk ≥ 0.

(11.4)

Feasibility

For a given subchannel allocation, it may happen that the constraints C1 and C2 cannot be

satisfied simultaneously. However, this will come to light only after the channel allocation

has been performed and power allocation is being attempted. At this point there are two

options. One is to remove the users with the largest Rn/
∏

k hk’s one by one until the

constraints are satisfied. The second is to redo the channel allocation so as to give better

channels to the users whose rate demands are not met. The second option will increase the

complexity of the resource allocation considerably. For simplicity, in this chapter we will

assume no feasibility issue arises.

11.4 Channel assignment using genetic algorithm

A detailed description of the steps involved in the genetic algorithm (GA) was given in

Chapter 6. In the current application of GA, the objective function, the EE, has a single

discrete variable - an array representing the subchannel assignment. As mentioned in Chapter

6, this array is referred to as a chromosome or an individual. GA creates a number of these

individuals randomly to form the initial population. The population is ranked using the
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fitness function and the top two third is used to create two thirds of the individuals in the

next generation.

11.4.1 Choice of a fitness function

Ideally, in order to decide the effectiveness of a particular channel assignment or chromosome,

we must calculate the best possible EE resulting from that channel assignment. However,

this would involve finding the power allocation that maximizes EE for that particular channel

assignment. In other words, we must solve the optimization problem in (11.4). As mentioned

earlier, the fastest method of accomplishing this is to solve a non-linear equation. This means

if we were to take this path, for each generation of the GA, and for each individual, we have

to solve a non-linear equation in order to evaluate its fitness function. Obviously, this is far

too time consuming.

In what follows, we will consider two approximations that can be used as the estimates

of the maximum EE resulting from a particular channel assignment. In Chapter 10, we

mentioned the equation that relates the maximum EE, for a given channel assignment, to

the water level that produces it.

EE(w) =
1

(ln2)ψw
(11.5)

This shows the maximum EE is inversely related to the water level that produces it. In

other words, the lower the water level, the higher the EE. This suggests that we could use

the reciprocal of the common water level as the fitness function. However, the water level

that maximizes the EE cannot be obtained without going through the optimization process.

In Chapter 10, we also proved that the maximum EE under proportional rate constraints

is achieved when each user has its own separate water level. Furthermore, the maximum EE
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in this case is related to the weighted average water level in the following way.

EE(w) =

∑

wn

(ln2)ψ
∑

αnwn

, (11.6)

where αn’s are the proportional rates of the users with respect to one of the users.

Suppose we make the simplifying assumption that the optimum EE under minimum rate

requirements actually occurs at the proportional rates given by the minimum rates requested.

Then the proportional rates can be substituted by minimum rates. Furthermore, each user’s

optimum water level can be easily calculated using (10.72) of Chapter 10.

wn =

[

2Rn

∏kn
k=kn−1+1 hk

]1/Kn

(11.7)

We can now use the reciprocal of the weighted average water level as the fitness function.

FF =

∑

nRn
∑

nRnwn

(11.8)

However, taking the reciprocal of a real number is computationally expensive. But maxi-

mizing the reciprocal of a function is equivalent to maximizing the negative of the function.

Since
∑

nRn is a constant, the first fitness function we propose is:

FF1 = −
∑

n

Rnwn (11.9)

The fastest computational approach, in fact, is to use
∑

nRnwn and to choose the individual

with the least “fitness function.” However, a graph that converges to a maximum is clearer

and more demonstrative than a graph that converges to a minimum. Therefore, we will stick

with maximizing −∑nRnwn. Another option is to minimize the maximum water level.

This is the same as maximizing the negative of maximum water level, which brings us to the
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second fitness function:

FF2 = − max
n

wn (11.10)

11.4.2 The channel assignment solution

The top one-third of the original population and the children born to the top two thirds form

the next generation of individuals. The process is repeated until a predetermined number

of generations. The chromosome of the individual with the highest fitness function value in

the last generation represents the near optimal subchannel assignment.

11.5 Power allocation

The optimum power allocation procedure of Chapter 10 is applied after the subchannels have

been assigned using GA. For the convenience of the reader we repeat that power allocation

procedure here.

The Optimal Power Allocation Procedure

1. Solve (10.41) and obtain the common water level w∗.

2. If w∗ ≥
[

2Rn
∏kn

k=kn−1+1
hk

]1/Kn

for all n ∈ S and w∗ ≤ P +
∑

k∈S
1
hk

then

pk := w∗ − 1
hk

for all k ∈ S.

3. If w∗ > P +
∑

k∈S
1
hk

then pk = p∗∗k from (10.78)

4. If w∗ ≤ P +
∑

k∈S
1
hk

and w∗ ≥
[

2Rn
∏kn

k=kn−1+1
hk

]1/Kn

for all n ∈ Sh

and w∗ <

[

2Rn
∏kn

k=kn−1+1
hk

]1/Kn

for all n ∈ Suh
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then pk =

[

2Rn
∏kn

k=kn−1+1
hk

]1/Kn

− 1
hk

for k = kn−1 + 1, kn−1 + 2, ... kn,

and for all n ∈ Suh, and go to step 1 with S := Sh.

11.6 Numerical results

We illustrate the convergence behavior of the GA first and then compare the EE results

obtained using GA to that from the literature. The details of the parameters used is the GA

are given in Fig. 11.1. The channel gain simulation details are given in Fig. 11.2.
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Figure 11.1: Genetic algorithm parameters.

The behaviors of the GA for Scenario-1 from Fig. 11.2 with the two proposed fitness

functions are shown in Fig. 11.3 and Fig. 11.4. Fig. 11.5 compares the EE results obtained

using GA for channel allocation with that obtained using the best intuitive channel allocation

protocol from the literature [25]. In all three cases, the optimal power allocation from last

chapter was used. GA using both fitness functions perform better than the intuitive channel

allocation protocol in [25]. Not surprisingly the GA that uses the weighted water level

performs better than the one that uses the maximum water level.
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Figure 11.2: Simulation details.
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Figure 11.3: Scenario-1: Convergence of GA with FF1 = −∑nRnwn.
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Figure 11.4: Scenario-1: Convergence of GA with FF2 = − max
n

wn.
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Figure 11.5: Scenario-2: Comparing the EE values.
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11.7 Discussion and Conclusion

A two-step near optimal solution to the problem of finding the subchannel and power al-

location that maximizes the energy efficiency of the orthogonal frequency division multiple

access (OFDMA) based transmissions, under minimum rate and total power constraints, was

presented in this chapter. Genetic algorithm (GA)was used for subchannel assignment, and

was followed by optimal power allocation derived in the last chapter via analytical methods.

A common criticism of GA is the high computational complexity involved. In spite of

this, the material in this chapter is useful in two different ways. First, the chapter shows

that the existing heuristic protocols for channel assignments have room to improve. Perhaps

an avenue to explore is to start with the two approximations to the maximum EE that

were used as fitness functions in the GA to come up with heuristic algorithms for channel

assignment. Second, there is a memory - speed tradeoff in GA. By increasing the number of

population 3P in each generation, it is possible to reduce the number of generations Ngen

necessary for convergence. Researchers were probably reluctant to attempt this until now

because of the memory requirements in the computer. However, the latest computers have

plenty of memory to handle this. Of course the memory-speed tradeoff cannot be pushed

forever in one direction, as at one point the memory access latency of the computer might

come into play. But how far we can push the memory to achieve speed in GA is an open

problem. We should also be mindful of how much memory can be embedded in chip levels

for real time applications.
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Chapter 12

Competitive pricing for spectrum

subleasing for future wireless ad hoc

networks

12.1 Introduction

This chapter envisions a near future in which the proliferation of wireless ad hoc networks in

urban centers causes excessive spectrum pollution on currently allocated unlicensed bands.

One solution for this problem is for the operators to lease freshly released spectrum from

the regulators and sublease it to agencies in major cities. We consider one such operator

who divides an urban area into regions and subleases spectrum with the condition that the

interference measured at boundary points should not exceed a threshold. The subleasing

pricing structure has a fixed part, as well as a variable part that discounts the price based

on the margin between the interference threshold and the actual interference. The operator

has already decided on the fixed part of the spectrum subleasing price. It wishes to decide

on the variable part by carrying out an optimization procedure.
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The slope of the variable part is called the discount rate and is determined by a compe-

tition that is modeled as a game within a game. For a fixed discount rate, the competition

between the customers forms a strategic game. The end result of this game becomes the

input to the Stackelberg game between the customers as a whole on the one side and the op-

erator on the other side. We derive the mild condition under which the strategic game of the

customers has a unique Nash equilibrium, and obtain an explicit solution for the equilibrium

point. This result is then used to derive the best response of the operator and the optimum

(Stackelberg equilibrium) discount rate the operator would want to offer. Numerical results

obtained through simulations that support the analysis are also provided.

12.2 Background

Wireless sensor networks are becoming widespread in urban centers because of their appli-

cations in monitoring air pollution, greenhouse temperature and humidity, and machine and

structural health, to mention a few. Wireless mesh networks are being deployed because

of their advantage in emergency situations and military applications. A large number of

institutions are carrying out research on road safety and accident prevention based on the

assumption that VANETs will be widely deployed in the future. At the moment all of these

ad hoc networks have been served by the unlicensed frequency bands dedicated to the 802.11,

802.15 and 802.16 standards. Already, it has been reported that the ad hoc networks are

often deployed in areas where the unlicensed bands suffer from excessive spectrum pollu-

tion [77]. It is not hard to envision these bands getting overcrowded in the near future. At

the same time, the CRTC in Canada has not yet decided what to do with the newly freed

TV white spaces. The FCC in United States still has many unoccupied bands that have not

been leased [120].

We envision a near future, in which an operator leases spectrum from the FCC, CRTC,

EU, OFTA, TRAI or similar organizations in other jurisdictions, breaks them into subchan-
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nels and subleases them to city governments, health services, emergency departments and

industries, or to a service provider who caters to these organizations. An urban center is

divided into regions and on each region spectrum is subleased to one organization or service

provider. Because of the absence of base stations and high power transmissions in ad hoc

networks, unlike in the usual cellular systems, this operator allows frequency reuse in adja-

cent regions, but imposes the condition that the interference measured at boundary points

must be less than a certain threshold.

However, in order to make sure the spectrum is utilized to the fullest and to maximize its

profit, the operator uses a subleasing pricing that has a fixed part as well as a variable part.

The variable part has a sliding scale that effectively discounts the price based on the margin

between the interference threshold and the actual interference. The slope of the sliding scale

is referred to as the discount rate1. The operator wishes to determine the optimum discount

rate by weighing the revenue against the negative effects of interference experienced by the

customers. This chapter shows that the situation faced by the operator can be modeled

using a composite game - a game within a game. The outcome of this composite game will

provide the operator with the optimum discount rate.

For a given discount rate, the competition among the customers becomes a non-cooperative

strategic game. The Nash equilibrium outcome of this game becomes the input to the Stack-

elberg game between the operator on the one side and the customers on the other side. The

operator anticipates the outcome of the strategic game as a function of the discount rate,

and uses this information to arrive at the optimal discount rate.

Section 12.3 discusses related work. The system model and the game theoretic prob-

lem formulation are give in Section 12.4. Game theoretic analysis and the theorems that

articulate the results are provided in Section 12.5. Numerical results that support the anal-

ysis, obtained through simulations, are presented in Section 12.6, followed by conclusion, in

1In economics, “discount rate” means something completely different from our usage here. Our usage
should not be confused with the one in economics.
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Section 12.7.

12.3 Related work

Pricing of spectrum by a primary license holder who wishes to lease its spectrum within a

subregion of its network is studied by Daoud et al. [73]. The optimization problem arising

from the tradeoff between the revenue on the one side, and the reduced coverage of the

original network and call blocking through interference on the other side, is analyzed using

the reduced load approximation. A game theoretic frame work for dynamic spectrum leasing

in a cognitive network is developed by Jayaweera et al. [74]. The primary user participates in

a strategic game with the secondaries and uses the interference threshold as its strategy. The

strategy of the secondaries is their power, and their utilities contain two parts: a rewarding

function based on the received SNR and a penalizing term based on the difference between

the actual interference and the interference threshold. Howayek et al. [75] extend this work

to multiple channels and provide a distributed solution. The strategic interactions of two

competing operators who lease spectrum from the owners and sublease it to secondary users

is studied by Duan et al. [121]. The amount of spectrum to lease from the owner and the

best price to sell it to secondary users, who want to maximize their individual profits, is

modeled as a three-stage dynamic game.

Pricing by a primary user who sells part of his spectrum to a small number of secondaries

is studied under an oligopoly market competition and Cournot game model by Niyato et

al. [76]. The design of a secondary wireless mesh network that leases spectrum from a

primary mesh network subject to interference constraints is taken up by Shakeri et al. [77].

Multiple primaries sharing their spectrum with secondaries through an intermediary broker

is studied by Lin et al. [122]. The interaction between two wireless service providers and

their customers is analyzed by Ya-Zhen et al. using a Wardrop Principle point of view [123].

A number of researchers use Stackelberg game to analyze the pricing of spectrum by primary
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networks that leverage the secondary access points as cooperative relays [73–77,79,80].
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Figure 12.1: System Model

12.4 System model and the problem statement

The operator divides a metropolitan area into regions similar to today’s wireless cells. In

each region the operator subleases its spectrum only to one agency, on the condition that

the interference measured at the boundary points do not exceed a threshold. The subleasing

is based on the subchannel framework. An agency in a region can use the spectrum either
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in an OFDMA based communication or dump all the subchannels onto a wide band and use

CDMA. The subchannels in one regions are reused in the neighboring regions. The price per

subchannel is B − C(I0 − I) dollars/time-unit, where B is the fixed part of the price, I0 is

interference threshold and I is the total interference caused by that user on that subchannel

measured at points on the boundary of the regions. C is the discount rate measured in

Dollars/micro Watts on that subchannel.

It is worthwhile noting here that while Jayaweera et al. [74] allow the interference to

exceed the threshold but discourage it by having a negative term proportional to (I − I0)

in the customers’ utility, we do not allow the interference to exceed the threshold at all.

The term C(I0 − I) in our pricing scheme discourages the customers from approaching the

interference threshold, unless they want to pay a higher price for the spectrum.

Consider N node-pairs in neighboring regions shown in Fig. 12.1 using the same subchan-

nel. In each pair, one node is transmitting to the other but the receiving node experiences

interference from transmission by other pairs. Let gij be the channel gain between the trans-

mitting node j and receiving node i. The equivalent channel gain between a transmitting

node i and the measuring pointsMP ’s is denoted by hi. Note that at any particular moment

only one node pair will be active on any given subchannel within a particular region.

Each node pair will try to strike a balance between the amount of throughput achievable

in the subchannel with a certain amount of power and the cost of that power-subchannel

combination. Henceforth, we will refer to node-pair i as customer i. Using the Gaussian

interference channel to model the subchannel, this trade-off can be quantified by a utility

function Ui for each customer i given by,

Ui =A log2

(

1 +
giipi

σ2
i +

∑

j 6=i gijpj

)

− [B − C(I0 − hipi)] ,

(12.1)

where σ2
i stands for the additive Gaussian noise and pi the power employed by user i. The

187



constant A is there to convert the transmission rate to corresponding monetary value. Letting

Ni = σ2
i /gii and aij = gij/gii, (12.1) can be rewritten as

Ui = A log2

(

1 +
pi

Ni +
∑

j 6=i aijpj

)

− [B − C(I0 − hipi)] (12.2)

A summary of the notations is given in Table 12.1.

gij channel gain between transmitter j and receiver i
pi power used by customer i
σ2
i additive white Gaussian noise density
Ni σ2

i /gii
aij gij/gii
I0 interference threshold
hi equivalent channel gain between a transmitting node i and the measuring points MPs
Ui utility of custormer-i
B fixed part of the spectrum subleasing price
C discount rate of the spectrum subleasing price

Table 12.1: Notations

For the sake of mathematical completeness, we will assume that each pi belongs in a

closed and bounded (compact) set of real numbers [0, P ], where

hiP ≤ I0 for all i. (12.3)

Note that the above requirement relieves us from worrying about (I0 − hipi) becoming neg-

ative in (12.2).

For a fixed C, each customer will try to buy the pi that maximizes its Ui. Unfortu-

nately each Ui also depends on the powers bought by the other users. This shows that the

simultaneous maximization of Ui’s by the customers in a subchannel forms a strategic game.

Assuming this game has a unique Nash equilibrium, each customer will end up buying an

amount of power that depends on the discount rate C.
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The operator subleasing the subchannel must weigh the relative merit of the revenue with

the negative effect of allowing frequency reuse in neighboring cells as opposed to the policy

in the traditional cells. This negative effect depends on the level of interference measured.

It can quantize this trade-off by defining a utility function

Uo =
∑

i

B − C(I0 − hipi)− Thipi (12.4)

where T is the constant representing the harmful effects of interference. The operator would

want to choose a C that will maximize Uo. However, the amount of power bought by the

customers will depend on C. In other words there is C “inside” each pi. This shows that

from the operator’s point of view, the process of determining an optimal discount rate C can

be modeled as a Stackelberg game [27]- [78].

If the strategic game of the customers does have a unique Nash equilibrium for a fixed C,

and if that equilibrium point can be explicitly calculated in closed form, then the operator

can perform these calculations and express the power each customer will buy in terms of C

via functions pi = pi(C). It can then replace the pi’s in (12.4) to write its utility Uo as a

function of C alone. The operator can now optimize Uo as a function of C and find the C

that maximizes its utility.

12.5 Analysis

We prove that the strategic game of the customers does have a unique Nash equilibrium,

provided that the channel coefficients satisfy a mild condition. We derive the best response

functions of the customers and obtain a closed form solution for the equilibrium point. We

then formulate the best response of the operator and derive the Stackelberg equilibrium

discount rate C∗. In the forgoing, we will use the standard notation from game theory where

p denotes the vector (p1, p2, ..., pN ) containing all the powers, and p−i denotes the vector
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containing all the powers except pi.

Theorem 12.5.1. For a given discount rate C offered by the operator, the strategic game

among the customers with the utility functions in (12.2) has a unique Nash equilibrium if

det(M) 6= 0. Here M is the matrix obtained from the channel matrix, by erasing all entries

associated with the customers for whom C ≥ A
hiNi ln 2

or C ≤ A
hi ln 2[Ni+(1+

∑
j 6=i aij)P ]

.

Proof: Differentiating Ui in (12.2) twice with respect to pi,

∂2Ui

∂p2i
=

−A
(ln 2)(pi +Ni +

∑

j 6=i aijpj)
2
< 0. (12.5)

This shows that each Ui is concave in pi. Since each pi comes from a compact set, a theorem

due to Debreu, Glicksberg and Fan [27] now guarantees the existence of a Nash equilibrium.

We will now derive the best responses BRi(p−i)’s of the players. Starting from (12.2),

∂Ui

∂pi
=

A

(ln 2)(pi +Ni +
∑

j 6=i aijpj)
− Chi (12.6)

Letting f(p) = 1
pi+Ni+

∑
j 6=i aijpj

,

∂Ui

∂pi
=

A

ln 2

[

f(p) − Chi ln 2

A

]

(12.7)

Since f(p) is decreasing in each pi ∈ [0, P ], [f(p)]Max = 1/Ni and [f(p)]Min = 1/[Ni +P (1+
∑

j 6=i aij)]. Here, [f(p)]Max and [f(p)]Min denote the maximum and minimum values of f(p),

respectively.

Case: I C ≥ A
hiNi ln 2

Eq. (12.7) shows ∂Ui

∂pi
≤ 0 always, Ui will be non-increasing and the maximum Ui will

occur at the boundary pi = 0. Hence, for a customer who belongs in this case, BRi(p−i) = 0.
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Case: II C ≤ A
hi ln 2[Ni+(1+

∑
j 6=i aij)P ]

∂Ui

∂pi
≥ 0 always, Ui will be non-decreasing and the maximum Ui will occur at the boundary

pi = P . In other words, for a customer who belongs in this case, BRi(p−i) = P .

Case: III A
hi ln 2[Ni+(1+

∑
j 6=i aij)P ]

< C < A
hiNi ln 2

The maximum Ui will occur at the critical point given by ∂Ui

∂pi
= 0. Using (12.7),

pi = BRi(p−i) =
A

Chi ln 2
− Ni −

∑

j 6=i

aijpj (12.8)

For users who fall into Case-I or Case-II there is only one choice for best response and that

will be their Nash equilibrium point. Whereas for the users in Case-III, the Nash equilibrium

occurs when their best responses in (12.8) coincide. Suppose S2 and S3 denote the sets of

integers containing the indexes of the users who fall into Case-II and Case-III, respectively.

Then the Nash equilibrium power levels p∗ of the users in Case-III will be given by,

p∗i =
A

Chi ln 2
− Ni − P

∑

j∈S2

aij −
∑

j 6=i
j∈S3

aijp
∗
j for all i ∈ S3 (12.9)

Letting ri =
A

Chi ln 2
− Ni − P

∑

j∈S2
aij,

p∗i +
∑

j 6=i
j∈S3

aijp
∗
j = ri for all i ∈ S3 (12.10)

This is a square system of linear equations in the equilibrium powers with a coefficient matrix

M with entries

mij =











1, if i = j

aij, if i 6= j,

(12.11)
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and will have a unique solution

p∗i =M−1[ri], (12.12)

if det(M) 6= 0. Here, [ri] stands for the column matrix with entries ri.

Mildness of the condition det(M) 6= 0

Note that the diagonal entries of the matrix M are all 1’s. Suppose we assume that the

nearest interfering transmitter is at least 1.5 times as far away as your own transmitter.

If we use a path loss coefficient of 4, this would give an interfering channel coefficient of

aij = 0.1975, j 6= i. Now consider row i of matrix M . Since 0.1975 × 5 < 1, even with 6

customers we will have |mii| >
∑

j 6=i |mij|. This shows we can go up to 6 customers in the

same subchannel, and the matrix M will remain diagonally dominant. The determinant of

a diagonally dominant matrix cannot be zero. This argument shows how mild the condition

on the uniqueness of the equilibrium is.

As usual in Stackelberg game model, the operator anticipates the optimizing process the

customers went through using the strategic game, mimics the calculations, and comes to the

same conclusion as Theorem 12.5.1. It can now use this conclusion to decide the discount

rate that maximizes its utility. However it should be mindful of not extending the conclusion

of the theorem into regions where the interference exceeds the threshold.

Theorem 12.5.2. The Stackelberg game between the operator with utility in (12.4) and the

costumers with utilities in (12.2), has a competitive equilibrium discount rate C∗ given by,

C∗ = Max

{

√

AT
∑

i∈S3
hiki

ln 2
∑

i∈S3
I0 + hili

,

[

Ahiki
ln 2(I0 + hili)

]

Max

}

, (12.13)

where ki and li are defined at the beginning of the proof below.

Proof: Let [1/hi] denote the column matrix with entries 1/hi and ki denote the entry in

the ith row of the column vector that is obtained by the matrix productM−1[1/hi]. Similarly,
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use li to denote the entry in the ith row of the result of the product M−1[Ni − P
∑

j∈S2
aij].

We can now use (12.12) and write the dependency of the Nash equilibrium power pi on C as

pi =
A

C ln 2
ki − li, where pi ∈ [0, P ] and hiP ≤ I0. (12.14)

Substituting this in the utility of the operator

Uo =
∑

i∈S3

B − CI0 +
Ahiki
ln 2

− Chili −
AThiki
C ln 2

− Thili, (12.15)

from which,
d2Uo

dC2
= −

∑

i∈S3

2AThiki
C3 ln 2

< 0. (12.16)

This shows that Uo is concave in C. If the domain of U0 is unlimited, then the maximum of

Uo will occur when
dUo

dC
=
∑

i∈S3

−I0 − hili +
AThiki
C2 ln 2

= 0, (12.17)

from which,

C =

√

AT
∑

i∈S3
hiki

ln 2
∑

i∈S3
I0 + hili

(12.18)

However, the conditions in (12.14) limit the domain of U0 and the maximum of U0 could

occur at the end point where one of the customers’ interference reaches the threshold I0.

This will happen when

pi =
I0
hi

for some i. (12.19)

Using (12.14),
A

C ln 2
ki − li =

I0
hi

(12.20)

Rearranging,

C =
Ahiki

ln 2(I0 + hili)
(12.21)
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Note that this equation gives us many C values. We must watch out for the highest of these

values because the moment the C value in (12.18) becomes less than this, the position of the

maximum will switch from (12.18) to (12.21). Keeping this in mind, we finally arrive at the

the Stackelberg discount rate C∗ as,

C∗ = Max

{

√

AT
∑

i∈S3
hiki

ln 2
∑

i∈S3
I0 + hili

,

[

Ahiki
ln 2(I0 + hili)

]

Max

}

(12.22)
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Figure 12.2: Simulation details (Only one of the 4 transceivers is shown here.)

12.6 Numerical results

In this section, we present numerical results obtained through simulations that support the

analysis of the previous section. We placed four customer transceivers randomly and used a

path loss exponent of 4 to calculate the channel gains. Further details of the simulation are

given in Fig. 12.2.
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Figure 12.3: Utility function of Customer 1
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Figure 12.4: Convergence of the fixed point algorithm
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Figure 12.6: Utility of the operator
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For one of the placement, the utility function of customer 1 as a function of its power,

while the power levels of the others were fixed at 0.1 Watts, for four different values of the

discount rate C set by the operator are shown in Fig. 12.3. The discount rate numbers in

this figure are in 100’s of Dollars/micro Watts. We observe that the utilities are concave just

as claimed in the proof of Theorem 12.5.1. The vertical dashed lines in Fig. 12.3 indicate

the analytical best responses of customer 1 for each discount rate as given by (12.8). We see

these values agree with the maximum values of the graphs. We also see that as the discount

rate increases, the customer is buying less power, so it can stay far way from the interference

threshold and pay a lesser price for the spectrum.

Next we provide a result that verifies our closed form solution for the Nash equilibrium

powers of the customers. For a particular placement of the transceivers, we started with the

power levels of 0.1 Watts for all, and then ran the simple fixed point algorithm p∗i (t + 1) =

BRi(p
∗
−i(t)) for i = 1, 2, 3, 4. The convergence of this algorithm, to the power levels of the

Nash equilibrium dictated by Theorem 12.5.1 in (12.14), is shown in Fig. 12.4.

The effect of the distance from a measuring point on a customer’s equilibrium power

is investigated in Fig. 12.5. As expected, the farther away from the measuring point the

customer is, the greater its power is.

The utility of the operator for a particular realization of the customers is shown in Fig.

12.6. The vertical dashed line indicates the analytical Stackelberg equilibrium discount rate

given by Theorem 12.5.2, which is in close agreement with the simulated maximum seen

from the graph.

12.7 Conclusion

This chapter used the structure of a game within a game to model and analyze the pricing

scheme offered by an operator who subleases spectrum to wireless ad hoc networks. The

operator divides an urban center into regions and subleases spectrum to one agency in each
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region on the condition that interference measured at boundary points do not exceed a

threshold. The price of spectrum has a fixed part as well as a variable part. The variable

part is essentially a sliding scale that offers a discount based on the margin between the

interference threshold and the actual interference. The operator uses a Stackelberg game

inside a strategic game to competitively decide the discount rate. For a fixed discount

rate, the competition among the customers on a subchannel becomes a strategic game. We

proved that this strategic game has a unique Nash equilibrium and obtained an explicit

closed form solution for the equilibrium point. This result then becomes the input to the

Stackelberg game between the customers as a whole against the operator. The best response

of the operator was derived, and was used to obtain the optimum (Stackelberg equilibrium)

discount rate the operator would want to offer. We also presented numerical results obtained

through simulations that supported our analysis.
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Chapter 13

Conclusion and future work

In Chapter 2, we opined that unless the techniques to solve nonconvex problems approach

convex optimization techniques, in terms of speed, they would not be useful for the industry.

This dissertation presented solutions to five non-convex problems, four of which have speeds

equal to or better than convex optimization techniques. In solving the optimization prob-

lems, this dissertation contributed both in theory as well as algorithm development. The

next section summarizes these contributions while the section that follows discusses possible

directions for future research.

13.1 Contributions

13.1.1 Theory

Chapter 8 presented a new approach to solving a resource allocation problem with propor-

tional output constraints. In the absence of any knowledge about the geometrical structure

(convex or not) of the objective function, it used analytical geometry to locate the global

extrema.

Chapter 9 established the generalized convex structure (invex) of the GIC along the way
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to characterize the global optimum point using the KKT condition. To the best of our

knowledge, this was the first application of invexity to a real world problem.

Another first in the optimization field was presented in Chapter 10. To the best of

our knowledge, this was the first time the equations from the KKT conditions from a fairly

complex asymmetrical problem were solved directly to obtain the solution to the optimization

problem. Until now the common water level that led to the EE maximizing power allocation

in OFDMA was obtained through iterative algorithms. Chapter 10 showed that this water

level can be obtained by solving a single non-linear equation.

The first ever application (to the best of our knowledge) of genetic algorithm (GA) for

channel allocation that maximizes the EE in OFDMA was presented in Chapter 11. It is

not clear why other researchers did not consider genetic algorithm for this purpose. It is

possible that they were not successful in overcoming a certain problem regarding the fitness

function. The fitness function can only be calculated by going through another optimization

procedure, and this has to be done for every individual in every generation. This is prohibitive

computationally and would make the application of GA worthless. An approximation to the

fitness function could have been used but, as mentioned before, the maximum possible EE

was obtained through an iterative algorithm. It is not possible to approximate the end result

of a such an algorithm. Our work on Chapter 10 with proportional rate constraints gave us

the suitable closed form approximation.

Chapter 12 used a game within a game structure (a composite game) to simultaneously

solve several interconnected optimization problems. At the time of the publication of this

work we thought we were the first one to use a composite game. A few months later we

stumbled upon a paper by other authors that had used a game within game structure for a

different problem. Upon reading the paper we realized that the authors did not realize the

theoretical significance of what they have done. The phrases “game within a game” or “a

composite game” were not mentioned in that paper.
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13.1.2 Development of algorithms

This dissertation presented six state of the art optimization algorithms; the new idea used in

one of these algorithm (the projected gradient) has application beyond the current problem

it solves - in the broader area of convex optimization. Table 13.1 lists these algorithms.
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Figure 13.1: The optimization problems solved

Spectral efficiency in GIC

Chapter 8 demonstrated how to go from an analytical description of the optimum point to

an algorithm that can locate that point in practical time. Initial description of the optimal
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point was then re-interpreted so that mature technologies can be used to arrive at an efficient

and stable algorithm.

Chapters 8 and 9 offered the first ever throughput maximizing algorithms with total power

constraints. Three of them used proportional rate and total power constraints (N is the

number of users in the system):

• A centralized algorithm with complexity N3.

• A distributed algorithm with linear complexity.

• A distributed algorithm that uses a shared memory with constant complexity.

The fourth algorithm worked with minimum rate and total power constraints. It is a cen-

tralized algorithm with complexity O(N3).

Energy efficiency in OFDMA

In OFDMA, the dissertation offered the energy efficiency maximizing power allocation via

the solution of a single non-linear equation. For subchannel assignment that maximizes the

EE in OFDMA, the dissertation proposed a solution to the problem using genetic algorithm

with an approximate fitness function.

Subchannel pricing for ad-hoc networks

An explicit solution for the price was obtained in terms of the solution of a linear system of

equations.
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13.2 Future directions for research

13.2.1 EE in GIC

Centralized approach

To the best of our knowledge, energy efficiency (EE) of transmissions in the Gaussian inter-

ference channel (GIC) has not been addressed in the literature. This is understandable given

that EE is the ratio of the throughput to the sum power, and throughput maximization itself

remained difficult enough. Now that we have established the generalized convex structure

of the throughput in the GIC, attacking the EE may be plausible.

In the OFDMA where the throughput is concave in the powers (and the sum power is

affine), the EE was shown to be quasi-concave. Charnes-Cooper transformation was then

used to convert the EE into a concave function. In this dissertation, we showed that the

throughput in the GIC is incave. So what structure might EE in GIC have? This is indeed

an intriguing future research direction.

Distributed approach

Consider the power allocation that optimizes the EE in GIC. Suppose we are willing to settle

for a competitive equilibrium among the users who attempt to maximize their individual EE,

motivated by the possibility of a distributed solution. Each user’s throughput is concave and

its power is linear. Hence its EE is quasi-concave, and can be converted to a concave objective

by Charnes-Cooper Transformation (CCT). The strategic game with the new objectives as

the payoff functions will have a Nash equilibrium. We can also experiment by creating a

utility function that is the difference between the above payoff function and a function of

the user’s power expenditure.
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13.2.2 EE in OFDMA

Centralized approach

In this dissertation we had used genetic algorithm for EE maximizing subchannel allocation.

Obviously, this approach for subchannel assignment has high computational complexity. The

main purpose in the dissertation was first, to see if we can improve on the EE attained by

simple heuristic channel assignment protocols, and second, to test the effectiveness of the

closed form indicators of the maximum possible EE from a given channel assignment. Now

that we know these indicators are effective in improving the EE, we can attempt to come up

with new heuristic channel assignment protocols based on these indicators.

Distributed approach

Every thing mentioned in the last section for GIC applies here verbatim with the qualification

that we are talking about the power allocation that maximizes the EE for a fixed channel

assignment.

13.2.3 Is the throughput in GIC actually concave?

A significant theoretical progress made in this dissertation was the proof that the throughput

of the GIC is invex and incave in the powers. Is there more to this than it appears? Is it

possible that the throughput is actually concave?

If it is concave what are the ramification? Of course, throughput maximization is al-

ready solved in this dissertation with the same speed as convex optimization. Whether the

throughput restricted to the total power constraint is incave or concave, the best algorithm

to find the optimal power allocation will be the same - the one presented in this dissertation.

However, if the throughput is actually concave then the EE maximization in the GIC opens

up. Charnes-Cooper transformation can be now applied in the GIC as well. We probably

will not have common water level solution like in the OFDMA, but certainly we can have
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a solution based on an iterative algorithm. Hence the question of if the throughput of the

GIC is concave is worth investigating.
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Appendix A

Review of power allocation in CDMA

and GIC using game theory

In GIC, each user’s throughput depends on all the users’ power levels. If a user unilaterally

increase its power, its transmission rate will increase but all the other user’s transmission

rates will decrease because of the increase in interference. However, the throughput of each

user is concave in that user’s power. If all users attempt to maximize their transmission rates

at the same time, the resulting simultaneous optimization process becomes a strategic game.

Nash equilibrium will provide the “optimum” power levels for the users. An important point

to note here is that a total power constraint on the users in the system cannot be used here.

Only individual power constraints can be used. The strategy space of a user could be [0, P ],

where P is the maximum transmission power that user can employ.

If each user’s payoff function is its transmission rate and the strategy space is [0, Pi],

then it can be shown that the Nash equilibrium will occur at the power levels Pi. That is,

each user will use the maximum transmission power it can. This will change if we use the

concepts of utility and pricing from economics, and use a payoff function that is supposed

to indicate the “level of satisfaction” of each user.
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A.1 Power control for CDMA

Application of game theory to power control in wireless communication originated at Rut-

gers University in New Jersey. In a series of papers published between 1998 and 2002,

Mandayam, Goodman, and their students developed a new framework for power control in

CDMA networks using the concepts of utility and pricing from economics [36] - [39]. Man-

dayam and Goodman [36] - [39] considered the CDMA based uplink of a single cell, where

user i transmits L information bits in frames of length M bits, at a rate of R bits/seconds

using pi Watts of power. They formed a utility function ui that is indicative of the “level of

satisfaction” of each user i.

ui =
LR(1− 2Pe(γi))

M

Mpi
(A.1)

where Pe is the bit error rate and γi is the SINR of user i at the receiver. If hi is the path

gain from user i to the base station,

γi =
W

R

[

hipi
N +

∑

j 6=i hjpj

]

(A.2)

where W is the available spread-spectrum bandwidth, and N is the AWGN power at the

receiver1.

Mandayam and Goodman proceeded to formulate a strategic game played by the users

currently in the cell, where each user’s power pi is its strategy, and ui its payoff function.

Since the utility function ui is concave in pi, this strategic game has a Nash equilibrium.

Mandayam and Goodman proved that at the Nash equilibrium, all users end up with the

same SINR at their receivers.

In order to move the equilibrium towards a point that is Pareto optimal, they modified

the payoff function by introducing the pricing of the power. The new payoff function uci

1Please note that the CDMA uplink model here is a spacial case of the GIC. If all the receivers in GIC
are located at the same location (base station), then GIC model becomes the CDMA model
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is the difference of two functions: first is the utility function ui above and the second is a

function that is proportional to the power employed by the user.

uci = ui − cαipi, (A.3)

where c is a constant for the system and αi is a constant for user i. Mandayam and Goodman

proceeded to note that the new payoff function is not quasi concave and, therefore, the

techniques that are usually used to prove the existence of Nash equilibria under the strong

assumption of convexity are no longer applicable. Instead they turned to supermodular game

theory and proved that the new game has many Nash equilibria.

Sung et al. derived a particular transmission technology specific upper and lower bounds

on capacity and employed them in their utility function [42]. They also changed the inde-

pendent variable from transmission power to received power. Sung et al. then introduced

pricing to shape the users’ behavior so as to improve the performance from a system view-

point. They suggested a pricing based on normalized interference and formulated the pricing

function for user i as

ci =
λQi

N +
∑

j Qj

(A.4)

where λ is a constant. They proceeded to prove the existence and uniqueness of the Nash

equilibrium to TMG with pricing.

Ghasemi et al. went back to Mandayam et al.’s utility function and made a modification

to the pricing function [43]. Instead of making the pricing function proportional to the user

power, Ghasemi et al. made it proportional to the user SINR. They motivated the new

pricing function in the following way. A pricing function based solely on power does not

take into account the channel conditions. Whereas a pricing function proportional to the

SINR would impose a lower price for users with good channel conditions. They argued this

is consistent with the idea that the network efficiency and throughput are improved when

terminals with bad channel conditions are forced to work with smaller SINR. Ghasemi et
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al. proceeded to prove the existence of a Nash equilibrium and provided simulation results

that show that pricing based on SINR leads to equilibrium points with less power but higher

utility compared to pricing based on power.

A.2 Power control for early cognitive radio

At the beginning of the this millennium, a survey of the crowded spectrum [125] revealed

that the frequency bands permanently licensed to many organizations are not utilized around

the clock. This led to the proposal of a concept called cognitive radio [126–128] devices that

are envisioned to eventually have the capabilities of scanning the airwaves and choosing the

empty bands to be used in their communication. In the early stages of cognitive radio, a

model considered by researchers called overlay envisioned cognitive (secondary) devices to

use even the frequency bands that are currently in use, as long as the cognitive devices are

geographically separated from the licensed (primary) devices with the condition that the

interference to the licensed devices is below a threshold. At that time, many researchers

considered CDMA to be the technology used by cognitive devices. It should be noted that

we decided to include the review of the literature on power control for cognitive radio only

because CDMA is a special case of GIC when it comes to optimizing power allocation.

The first game theoretic analysis of power control for a cognitive network appears on a

work by Wang, Peng and Wang in 2006 [44]. Wang et al. formed a power control game

model for the unlicensed users in a cognitive network that is not much different from the

uplink of a single cell considered in Mandayam and Goodman, where, a number of cognitive

transmitters all communicate with a cognitive base station. This allowed Wang et. al to

directly borrow the CDMA interference model of Mandayam and Goodman with a small

modification. The total interference and noise Ii for the ith cognitive receiver (in the base

station) is

Ii = N +Qp +
∑

j 6=i

Qj (A.5)
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where N is the AWGN power and Qp is the total interference caused by all the licensed users.

They also seemed to use the same utility function as Mandayam and Goodman, however,

this was not clear in their paper. The pricing function ci has two parts c
(1)
i and c

(2)
i . The

first part c
(1)
i is identical to the one used by Sung et al [42]. The novelty is in the second

part c
(2)
i , which discourages the interference to the licensed users.

c
(1)
i =

λQi

Qi + Ii
c
(2)
i =

λQi

Qi + Ii
exp

(

Qi + Ii −Qp −QT

QT

)

(A.6)

where QT is a constant that denotes the maximum allowable interference to the licensed

users. Wang et al. mentioned that the interference to the licensed users are measured at

the licensed user’s receivers but failed to mention where these receivers are located. Judging

from the formulation of c
(2)
i , it appears that the licensed receivers are located at the cognitive

base station. The authors concluded the paper by proving the existence and uniqueness of

the Nash equilibrium for their power control game with pricing.

A.2.1 Sigmoid function based utility

Xia and Qi formed a utility function [45] that is based on the sigmoid function , [46].

ui(pi) =
LR

Mpi(1 + exp(10− γi))
(A.7)

where L, M and R are as in Mandayam and Goodman (number of information bits, packet

length and transmission rate respectively). They used a pricing function that includes the

power as well as the path gain and form the payoff function as

ui(pi) =
LR

Mpi(1 + exp(10− γi))
− λhipi (A.8)

Xia and Qi showed that their game is supermodular and proved the existence and uniqueness

of the Nash equilibrium.
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A.2.2 Game with fairness

Wang et.al proposed a power control game for cognitive radios with fairness [47], [48]. They

considered the uplink of a cognitive radio network with a cognitive base station and expressed

the SINR of user i as

γi =
pihi

N +Qp +
∑

j 6=i pjhj
(A.9)

where Qp is the interference brought by the licensed users. They used the throughput of

user i as the utility and defined

ui(γi) = Rif(γi) (A.10)

where Ri is the transmission rate and f(γi) denotes the probability of correct reception at

the receiver. The pricing function was defined as

ci(pi) = λ1
Iih̄i
hi

pi + λ2
∑

m

pih
2
m (A.11)

where Ii is the total interference user i suffers, hm is the path gain from user i to licensed

base station m, hi is the path gain to the cognitive base station, h̄i is the average of hi in the

last time slot and λ1, λ2 are pricing coefficients. The second term above imposes a penalty

for the cognitive users for the interference they cause to the licensed users.

According to Wang et al., the first part of the pricing function takes into consideration

the throughput and fairness. Ii/hi reflects the condition of the transmission channel: if

channel i is in a good condition, then Ii/hi will be small, and in order to use this situation

opportunistically the price will be small. But this is unfair for the users who are far from

the base stations or users with bad channels, and h̄i was introduced to overcome this. They

argued that if channel i was in a good condition during the last time slot, h̄iwill be higher,

which will impose a higher price for user i during the current time slot, thus introducing some

fairness. Wang et al. then established the existence and uniqueness of Nash equilibrium for

their power control game.
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Figure A.1: A summary of game theory work on power control
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A.3 Power control in the GIC

Competition for transmission rates in the Gaussian interference channel was modeled using

a strategic game by Yu and Cioffi [40]. They considered two transmitter receiver pairs

communicating over a single channel with bandwidth F, with power distributions P1(f) and

P2(f) and constraints
∫ F

0
P1(f)df ≤ Pmax

1 and
∫ F

0
P2(f)df ≤ Pmax

2 . Each user was trying to

maximize its own transmission rate and the payoff functions of the two users were defined

using the Shannon’s formula:

u1 =

∫ F

0

log

(

1 +
P1(f)

N1(f) + a2(f)P2(f)

)

df (A.12)

u2 =

∫ F

0

log

(

1 +
P2(f)

N2(f) + a1(f)P2(f)

)

df (A.13)

Yu and Cioffi pointed out that for a fixed power distribution P1(f) of user one, the best

response by user two is the water filling of its power with respect to the combined noise and,

interference from P1(f). Similarly, for a fixed P2(f), the best response by user one is the

water filling of its power with respect to the combined noise and, interference from P2(f). If

there are power distributions P1(f), P2(f) such that water filling is achieved simultaneously

for both users, a Nash equilibrium is reached. They proved that indeed such P1(f) and P2(f)

exist, if the interference coefficients a1 and a2 satisfy a certain condition.

Yu and Cioffi’s work is best understood by transforming their channel model into the one

we have been using in this document so far. Break up the channel of bandwidth F into K

number of subchannels of small enough bandwidth so that the fading is flat in each of the

subchannels. Now we can consider two transceiver pairs trying to communicate over these

K subchannels. Each subchannel is used by both users and the power allocation problem is

to decide how each user will distribute its power among the K subchannels.

If one user fixes his powers, then the optimal power distribution for the other user is

the watter filling with respect to the combined noise and interference. If there are power
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distributions that watter fill each user with respect to the combined noise and interference,

then it must be a Nash equilibrium as no user can increase its rate by unilaterally deviating

from this power allocation. What Yu and Cioffi did is to prove that such a power allocations

must exist.

A.3.1 Iterative water filling

The procedure Yu and Cioffi used to prove the existence of the Nash equilibrium in the two

user Gaussian interference channel game is actually an algorithm that can take us to this

equilibrium point. In the years that followed, this algorithm has come to be known as itera-

tive water filling algorithm (ITF). One user starts with an arbitrary power distribution. The

other uses water filling to compute his power allocation based on this. The first reallocates

its power using water filling based on the second user’s power distribution and so on until

each attains water filling with respect to the other. The convergence of the iterative watter

filling algorithm for the two user case is proved by Yu and Cioffi in a later paper in 2002 [59].

Leung et al. proved that the iterative water filling algorithm would converge even if the

users simultaneously updated their powers [60].
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Appendix B

List of Publications

B.1 Journal Publications

1. On the power allocation problem in the Gaussian interference channel with

proportional rate constraints

K. Illanko, A. Anpalagan, E. Hossain, and D. Androutsos

IEEE Transactions on Wireless Communications, vol. 13, issue 2, 2014, pp. 1101 -

1115.

2. Frequency and power allocation for energy efficient OFDMA systems with

proportional rate constraints

K. Illanko, M. Naeem, A. Anpalagan, and D. Androutsos

IEEE Wireless Communication Letters vol. 3, issue 3, 2014, pp. 313 - 316

3. Energy efficient frequency and power allocation for cognitive radios in tele-

vision systems

K. Illanko, M. Naeem, A. Anpalagan, and D. Androutsos

Under revision in IEEE Systems Journal.

4. Decode and forward relaying for energy-efficient multiuser cooperative cog-
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nitive radio network with outage constraints

M. Naeem, K. Illanko, A. Karmokar, A. Anpalagan, and M. Jaseemuddin

IET Journal of Communications, vol. 8 , issue 5, 2014 , pp. 578 - 586

5. Optimal power allocation for green cognitive radio: fractional programming

approach

M. Naeem, K. Illanko, A. Karmokar, A. Anpalagan, and M. Jesemuddin

IET Journal of Communications, vol. 7, issue 12, 2013, pp. 1279 - 1286

B.2 Conference Publications

1. Energy efficiency of cooperative cognitive radio network with outage con-

straints

M. Naeem, K. Illanko, A. Karmokar, A. Anpalagan, and M. Jaseemuddin

Proc. IEEE Radio and Wireless Symposium, Newport Beach, CA, USA, Jan 19 - 23,

2014

2. Power allocation in decode and forward relaying for green cooperative cog-

nitive radio systems

M. Naeem, K. Illanko, K. A. Karmokar, A. Anpalagan, and Jaseemuddin

Proc. IEEE Wireless Communications and Networking Conference, Shanghai, China,

April 7 - 10, 2013

3. Low complexity energy efficient power allocation for green cognitive radio

with rate constraints

K. Illanko, M. Naeem, A. Anpalagan, and D. Androutsos

Proc. IEEE Global Communications Conference, Anaheim, USA, December 3 - 7,

2012.
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4. Competitive pricing for spectrum subleasing for future wireless ad hoc net-

works

K. Illanko, A. Anpalagan, and D. Androutsos

Proc. IEEE International Conference on Communications, Ottawa, Canada, June

10-15, 2012

5. Iterative power allocation for downlink green cognitive network

M. Naeem, K. Illanko, A. Karmokar, A. Anpalagan, and M. Jaseemuddin

Proc. IEEE Global Communications Conference, Anaheim, USA, Dec. 3 - 7, 2012.

6. Convex structure of the sum rate on the boundary of the feasible set for

coexisting radios

K. Illanko, A. Anpalagan, and D. Androutsos

Proc. IEEE International Conference on Communications, Kyoto, Japan, June 5 - 9,

2011

7. Stackelberg game on the boundary of coexistence

K. Illanko, A. Anpalagan, and D. Androutsos

Proc. IEEE International Conference on Communications, Kyoto, Japan, June 5 - 9,

2011

8. Dual methods for power allocation for radios coexisting in unlicensed spec-

tra

K. Illanko, A. Anpalagan, and D. Androutsos

Proc. IEEE Global Communications Conference, Miami, Florida, USA, December 6 -

10, 2010.

9. An Optimal and fair distributed algorithm for power allocation for radios

coexisting in unlicensed spectra

K. Illanko, A. Anpalagan, and D. Androutsos
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Proc. IEEE International Conference on Communications, Cape Town, South Africa,

May 23 - 27, 2010.

10. Adaptive demodulation using Raptor codes: Analytical results and exten-

sion to fading channels

K. Illanko, A. Anpalagan, and D. Androutsos

Proc. 11th Canadian Workshop on Information Theory, Ottawa, Canada, May 13 -

15, 2009

11. Cooperative communication using bit-selective adaptive demodulation and

Raptor codes: The Gaussian relay channel case

K. Illanko, A. Anpalagan, and D. Androutsos

Proc. IEEE Vehicular Technology Conference (VTC), Barcelona, Spain, April 26 - 29,

2009

12. Sub-channel and power allocation for multiuser OFDM with fairness using

genetic algorithm

K. Illanko, K . Raahemifar, and A. Anpalagan

Proc. IEEE Pacific Rim Conference on Communications, Computers and Signal Pro-

cessing, Aug. 23 - 26, 2009
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