
Configurable Simultaneously Single-Threaded

(Multi-)Engine Processor

by

Anita Tino

Bachelor of Engineering (B.Eng), Ryerson University, 2009

Master of Applied Science (M.A.Sc), Ryerson University, 2011

A dissertation presented to Ryerson University

in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017
c©Anita Tino, 2017

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF

A DISSERTATION

I hereby declare that I am the sole author of this thesis dissertation.

This is a true copy of the dissertation, including any required final revi-

sions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institu-

tions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by

photocopying or by other means, in total or in part, at the request of

other institutions or individuals for the purpose of scholarly research.

I understand that my dissertation may be made electronically available

to the public.

-Anita Tino

ii

Configurable Simultaneously Single-Threaded

(Multi-)Engine Processor

Anita Tino
Doctor of Philosophy, 2017,

Electrical and Computer Engineering,

Ryerson University

Abstract

As the multi-core computing era continues to progress, the need to increase single-

thread performance, throughput, and seemingly adapt to thread-level parallelism

(TLP) remain important issues. Though the number of cores on each processor

continues to increase, expected performance gains have lagged. Accordingly, com-

puting systems often include Simultaneously Multi-Threaded (SMT) processors as

a compromise between sequential and parallel performance on a single core. These

processors effectively improve the throughput and utilization of a core, however often

at the expense of single-thread performance as threads per core scale. Accordingly,

applications which require higher single-thread performance must often resort to

single-thread core multi-processor systems which incur additional area overhead and

power dissipation. In attempts to improve single- and multi-thread core efficiency,

this work introduces the concept of a Configurable Simultaneously Single-Threaded

(Multi-)Engine Processor (ConSSTEP). ConSSTEP is a nuanced approach to multi-

threaded processors, achieving performance gains and energy efficiency by invoking

low overhead reconfigurable properties with full software compatibility. Experimen-

tal results demonstrate that ConSSTEP is able to increase single-thread Instruc-

tions Per Cycle (IPC) up to 1.39x and 2.4x for 2-thread and 4-thread workloads,

respectively, improving throughput and providing up to 2x energy efficiency when

compared to a conventional SMT processor.

iii

iv

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Kaamran Raahemifar,

for his guidance and support of unconventional approaches and ideas throughout my

PhD studies. I am truly grateful for the sincere trust and patience he has placed in

me to develop the work presented in this thesis. I would like to thank the Ontario

Graduate Scholarship (OGS) program and the Faculty of Engineering, Architec-

ture, and Science (FEAS) for their financial support throughout my PhD studies.

A special thanks to my thesis defense committee - Dr. Lev Kirischian, Dr. Ebrahim

Bagheri, Dr. Issaac Woungang, and Dr. George Stamoulis, for their valuable feed-

back and comments which have greatly enhanced the quality of this thesis.

I would also like to thank Dr. Gul N. Khan for his advice and support through-

out my graduate studies, and especially for granting me with opportunities that

have truly enhanced my experience at Ryerson. To Ryerson’s faculty and staff, I

would like to thank them for sharing their wisdom and knowledge throughout the

years, making my Ryerson experience memorable. Also a special thanks to Jason,

Luis, Dan, and Nipin for all their guidance, assistance, and laughs throughout the

years. Sincere thanks to Luis for his help on the development of this written thesis.

Finally to those closest to me: To my mom, sister Cassandra, my loving grand-

parents and family, I would like to sincerely thank them for their constant support

and encouragement to pursue my studies, and especially for tolerating my never

ending university workload. I am truly blessed to have such a supportive and lov-

ing family, and would not be where I am today without them. To my best friend

Cristina who has been nothing but supportive, encouraging, and loving since day

one and especially throughout my graduate studies - words cannot express how truly

grateful I am. And finally to Matthew - we’ve developed an exponential closeness

throughout the past years. You push me to be the best I can be with endless love

and encouragement, and I am sincerely thankful to have you in my life.

v

vi

Contents

Author’s Declaration ii

Abstract iii

Acknowledgements v

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.1.1 Processor Performance Plateau 1

1.1.2 Computing Model Classifications 3

1.1.3 Limitations of ISAs and Compilers 5

1.1.4 Single Core Bottlenecks . 7

1.1.5 Multi-Threaded Processors . 9

1.2 Research Objectives . 13

1.3 Thesis Contributions . 14

1.4 Thesis Statement . 16

1.5 Dissertation Outline . 16

2 Background 18

2.1 Introduction . 18

2.2 In-order, Single (Scalar) Issue Processors 18

2.3 Instruction Set Architectures (ISA) 20

2.4 Superscalar/Out-of-Order Models . 23

2.4.1 Architectural Design . 24

2.4.2 Speculative Execution . 25

vii

2.4.3 Limitations of OoO Superscalar Processors 30

2.5 Parallelism Granularity and Application Flow 31

2.5.1 Instruction-Level Parallelism (ILP) 31

2.5.2 Thread-Level Parallelism (TLP) 32

2.5.3 Data-Level Parallelism (DLP) 32

2.5.4 Control-Flow vs Dataflow . 33

2.6 Single-Thread vs Multi-Threading . 34

2.6.1 Fine-Grained Multi-Threading 35

2.6.2 Coarse-Grained Multi-Threading 35

2.6.3 Simultaneous Multi-Threading (SMT) 35

2.7 Multi-Core Models . 36

2.7.1 Motivation . 37

2.7.2 Limitations . 38

2.8 Very Long Instruction Word (VLIW) 39

2.9 Explicitly Parallel Instruction Processors (EPIC) 40

2.10 Digital Signal Processors (DSP) . 41

2.11 Co-Designed Virtual Machines . 41

2.12 Summary . 42

3 ConSSTEP Overview 44

3.1 Introduction . 44

3.2 General Overview . 44

3.3 Assumptions . 46

3.4 Compilation Process . 47

3.5 Architectural Flow and Pipeline . 49

3.6 Execution Example . 53

3.7 ConSSTEP vs Conventional CPUs 54

3.7.1 Execution . 54

3.7.2 Storage & Interconnect . 55

3.7.3 ConSSTEP vs VLIWs . 56

3.8 Tradeoffs of ConSSTEP . 57

3.9 Summary . 59

4 Related Work 60

4.1 Introduction . 60

4.2 Hybrid Data-flow Architectures . 61

4.3 Distributed and Coarse-Grained Architectures 64

viii

4.4 Reconfigurable Architectures and CGRAs 67

4.5 Other Architecture Models . 71

4.5.1 Stream Processors . 71

4.5.2 Transport Triggered Architectures 71

4.6 Summary . 72

5 Architecture 73

5.1 Introduction . 73

5.2 rS Interconnect . 73

5.3 Read Register Buffer (RRB) . 76

5.4 Write Register Buffer (WRB) . 76

5.5 Functional Units . 77

5.6 External Register File . 78

5.7 Configuration & Setup . 79

5.7.1 Setup Mitigation Techniques 79

5.7.2 Floating Point (FP) Execution 81

5.7.3 Branch Prediction & Loop Acceleration 82

5.8 Exception Handling . 83

5.9 Scheduler . 85

5.10 Data Memory Accesses . 87

6 Compilation 89

6.1 Introduction . 89

6.2 Logical Compiler . 89

6.3 Physical Compiler (PhysC) . 90

6.3.1 Bundle Formation . 90

6.3.2 Data Dependency Analysis . 92

6.3.3 Instruction Analysis . 92

6.3.4 Engine Mapping . 93

6.3.5 Instruction-to-FU Mapping 93

6.3.6 rS & Unit Mapping . 95

6.3.7 Configuration Data Generation 98

6.4 Summary . 98

7 Experimental Methodology 99

7.1 Introduction . 99

7.2 Architectural Framework . 99

ix

7.2.1 Simulators . 99

7.2.2 Benchmarks . 104

7.3 Physical Modelling . 105

7.3.1 Area Estimates . 105

7.3.2 Wire Delays . 105

7.3.3 Cycle Time Determination . 108

7.4 Summary . 109

8 Sensitivity Studies 110

8.1 Introduction . 110

8.2 Intra-Scheduling Algorithm Efficiency 111

8.2.1 rS Latch Utilization . 112

8.2.2 rS Utilization during Propagation 114

8.2.3 IPC . 117

8.2.4 Hop Count . 119

8.2.5 Summary - Intra-Scheduling 119

8.3 Inter-Scheduling: Bundle to Engine Mapping 122

8.4 Summary . 123

9 Experimental Results and Analysis 124

9.1 Introduction . 124

9.2 Two-Thread Comparison . 126

9.2.1 Configuration Overhead Concealment Techniques 126

9.2.2 Area . 127

9.2.3 Energy and Power . 128

9.2.4 Performance . 132

9.2.5 Performance/Unit Area . 137

9.2.6 Performance/Watt . 137

9.3 Four-Thread Results . 138

9.3.1 Area . 138

9.3.2 Performance . 139

9.3.3 Performance/Unit Area . 142

9.3.4 Energy and Power . 143

9.3.5 Performance/Watt Comparison 145

9.4 Other Architectural Statistics . 146

9.4.1 Configuration Memory . 146

9.4.2 Revisiting Tseng and Patt with ConSSTEP 147

x

9.4.3 Load/Store Unit Scaling . 148

9.5 Summary . 149

9.5.1 2-Thread ConSSTEP . 149

9.5.2 4-Thread ConSSTEP . 149

9.6 Conclusion . 150

10 Conclusions and Future Work 152

10.1 Addressing Limitations . 155

10.2 Future Work . 156

Bibliography 158

xi

xii

List of Figures

1.1 Architectural Advances and Energy Efficiency 2

1.2 CPU Trends . 2

1.3 Achievable Single-Thread Performance Improvement for SMT 11

1.4 SMT Throughput Advantage Over Single-Thread Core 11

2.1 Simple In-Order Pipeline . 20

2.2 Superscalar OoO Pipeline . 24

3.1 ConSSTEP Top-Level Overview . 47

3.2 ConSSTEP Execution Process (Single Engine) 48

3.3 rS Architectural Functionality (Single Input and Output Port) 49

3.4 ConSSTEP Basic Pipeline . 50

3.5 rS Unit - Double Configuration Register Setup 51

3.6 ConSSTEP Aggressive Pipeline (2 Engines) 52

3.7 ConSSTEP Execution Example for 4-FU Engine 53

5.1 External rS Architecture . 74

5.2 Internal rS Architecture . 74

5.3 Internal RRB Architecture . 76

5.4 Internal FU Architecture (ALU example) 78

5.5 rS Unit - Double Configuration Register Setup 80

5.6 FP Engine Architecture . 81

5.7 ConSSTEP Cache System (to match conventional CPU model) 87

6.1 ConSSTEP’s PhysC Flow . 91

6.2 Sequence Graph of an Instruction Bundle 95

6.3 Scheduled Sequence Graph with Resource Binding, Data Latching

and Transport . 96

6.4 Timing Schedule for Engine Structures 97

xiii

7.1 In-house Simulator Framework . 100

7.2 ConSSTEP 2T 〈4x6〉 High-level Core Layout 102

7.3 Instruction Distribution for all Benchmarks 104

8.1 rS Latch Utilization Comparison for Engine Configurations 113

8.2 Comparison of rS Utilization During Propagation for 2-Thread 115

8.3 Comparison of Delays due to Propagation Contention for 2-Thread . 116

8.4 IPC - Performance Comparison for 2-Thread Engine Configurations . 118

8.5 Hop Count Comparison for 2-Thread Engine Configurations 120

8.6 Average IPC per Algorithm for all Benchmarks - 2T Workload 121

8.7 Average Hops per Algorithm for all Benchmarks - 2T Workload . . . 122

8.8 Heterogeneous Performance Analysis of Inter-Scheduling Algorithm -

4-Threads . 123

9.1 Configuration Overhead Performance - Hardware Double Configura-

tion Register Improvement over Software PhysC Scheduling Technique126

9.2 Energy Reduction for Various ConSSTEP Configurations 129

9.3 Energy Distribution for ConSSTEP Structures, Averaged for all Bench-

marks . 130

9.4 SMT Energy Distribution for 2T and 4T SMT 131

9.5 Comparison of Data Movement Energy for 2T ConSSTEP Configu-

rations . 132

9.6 Power Consumptions Savings for 2T ConSSTEP Configurations, Nor-

malized to SMT . 133

9.7 Single-Thread IPC Improvement Over 2-Core STSC 134

9.8 Single-Thread IPC Improvement per 2T Configuration, Averaged for

all Benchmarks (Normalized to 2-Core STSC) 134

9.9 Cycle Increase Due to Contention for Various ConSSTEP Configura-

tions . 135

9.10 Two-Thread Throughput Improvement Normalized over SMT 135

9.11 Averaged 2T Throughput Improvement Normalized over SMT 136

9.12 Two-Thread ConSSTEP Performance/mm2 Improvement 137

9.13 Two-Thread ConSSTEP Core Throughput/Power Consumption Im-

provement . 138

9.14 Four-Thread IPC for Various ConSSTEP Configurations 140

9.15 Four-Thread Throughput Comparison for Various ConSSTEP Con-

figurations . 141

xiv

9.16 Four-Thread Performance/mm2 Comparison for ConSSTEP Config-

urations . 142

9.17 Four-Thread Energy Distribution for ConSSTEP Structures 143

9.18 Four-Thread Energy Saving for Various ConSSTEP Engine Configu-

rations versus SMT . 143

9.19 Power Consumption Savings for 4T ConSSTEP Configurations, Nor-

malized to SMT . 144

9.20 Four-Thread Throughput/Power Comparison for ConSSTEP Config-

urations . 145

9.21 Propagation, Temporary Storage, and External Read/Write Require-

ments of Operand Dependencies with ConSSTEP 147

9.22 Two-Thread ConSSTEP LSU Scaling 148

xv

List of Tables

7.1 Simulation & Modelling Parameters 103

7.2 Benchmark Descriptions . 104

7.3 Delay, Energy per Access, and Area Results 107

7.4 Derived cycle time per processor/engine 108

9.1 2-Thread Area Comparison (mm2) 128

9.2 4-Thread Area Comparison (mm2) 139

9.3 Configuration Memory Specifications 146

xvi

Chapter 1

Introduction

1.1 Motivation

1.1.1 Processor Performance Plateau

Computers and similar devices play an essential role in our daily lives, whether it be

our laptops, tablets, and/or cell phones etc. The past 10 to 15 years within comput-

ing have demonstrated major technological progression. One of the most influential

roles in such devices is the role of the processor, i.e. the computer’s “brain”. A

difficult challenge within computing is how to provide an increase in performance

and energy efficiency per processor generation. Although performance gains have

been prominent throughout the history of computing, we have observed a plateau

in more recent multi-core computing generations. Accordingly, Fig. 1.1 displays

eminent Intel processors from the dawn of the first on-chip cache processor, with

the x axis representing the performance gain per processor generation with respect

to the previous generation. The figure was originally captured by Borkar and Chien

[1], and extended here for applicability of Central Processing Unit (CPU) trends to

date. As verified in the figure, the past few processor generations have demonstrated

negligible performance gains.

Fig. 1.1 also demonstrates industry’s recent continuous emphasis on the mul-

ticore generation. An application however consists of both sequential and parallel

sections. Therefore, although the parallelizable sections continue to be the main fo-

cus of recent computing trends, applications may only benefit from such multi-cores

to a certain extent as applications are still bound by their sequential counterparts,

supported by the theory of Amdahl’s law[2]. Furthermore, only so much parallel

1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 1.1: Architectural Advances and Energy Efficiency

Figure 1.2: CPU Trends

performance may be gained from multi-cores as applications possess variable and/or

limited thread-level parallelism (TLP) [3].

Majority of single-thread (sequential) performance gains have been achieved by

a reliance on transistor scaling. Specifically, transistor scaling has accounted for al-

most three-orders of magnitude in performance improvement over the past 20 years

of processor history (i.e. increasing a chip’s attainable frequency to increase the

instructions processed per second)[1]. Accompanying Fig. 1.1, Fig. 1.2 presents

CPU trends from the 1970’s until 2016, illustrating the transistor count, frequency

of operation, and thermal design power of various microprocessors. As seen in the

figure, we have now reached a plateau in transistor and frequency scaling, correlating

to the performance plateau observed in Fig. 1.1. Consequently very little single-

thread performance improvement has actually been attained due to architectural

optimizations on chip, and accordingly such trends scale as more and more cores

2 Chapter 1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

are integrated onto a die (considering homogeneous multi-cores, which replicate the

same core on a die). As industry can no longer rely on transistor scaling, the need

to increase processor performance through architectural optimizations and/or alter-

nate designs and technologies are therefore the only viable solutions.

In response to the multi-core processor plateau, computing has now steered

towards the heterogeneous computing era which integrates cores of various types

on a single chip. Such a heterogeneous approach encompasses both latency- and

throughput-oriented cores on a die to provide efficient single-thread performance

and thread-level parallelism, respectively. Although these systems cater to various

workloads, a single core’s architecture must still be considered within a multi-core

system as it scales to provide performance gains. Accordingly, there is much inge-

nuity to be discovered if transistor budgets are allocated to improving and sophis-

ticating processing element performance, versus adopting the mantra of integrating

more cores and memory on a single die[4]. Such a concept provides motivation for

this thesis work.

1.1.2 Computing Model Classifications

Computing systems may be divided into three general categories: Computing Sys-

tems with Programmable Procedure (CSPP), computing systems with Application

Specific Processing (ASP), and Reconfigurable Computing Systems (RCS) [5]. Each

type of computing system has their advantages and limitations depending on the

workload considered. Accordingly, a computing architecture, A, may be defined as

a triple set of [5]:

1. Functional components (Ci)

2. Communication links between the components (Li,j), and

3. Functional procedures associated with C and L (Pi,j)

Depending on the computing system, any of the given elements in the triple set

may have fixed, x, or programmable, ∼ x, functionality.

Conventional processors are considered as CSPP models, such that ACSPP ={
Ci, Li,j, ∼ Pi,j

}
[5]. In this case, its links and components are fixed, however

Chapter 1 3

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

the computing system executes programmable procedures (programs). The pro-

grammable procedures are more commonly referred to as general purpose applica-

tions which are designed to execute a given algorithm as coded by the programmer.

The CSPP model provides a universal computing system with its application flexibil-

ity and low-cost manufacturing process to process data. Aside from its technological

reliance mentioned previously (i.e. frequency, transistor scaling etc), limitations of

the model include the processing overhead incurred per instruction. That is, a pro-

cessor requires that a program to be divided into a sequence of elementary subtasks,

referred to as instructions [5], formatted according to the specifications supported

by the underlying architecture. An instruction consists of an operation, where in-

structions collectively execute the desired program. Specifically, each instruction

specifies a basic operation, its data input operands, and an output operand. The

exact formatting and data support for the instructions is dictated by the processor’s

target Instruction Set Architecture (ISA)1.

The CSPP model requires several steps to process an instruction: initiation and

decoding, input source data delivery, data processing, and result storage [5]. These

steps are overlapped to create a pipeline which the processor uses to simultaneously

process multiple successive instructions of a program. Such steps however create

much control logic overhead in CSPP models as they must process such elemen-

tary data operations at the expense of time, energy, and hardware logic overhead.

Therefore many clock cycles in a conventional processor pipeline2 are spent on ser-

vicing and processing control information per instruction versus actually executing

instruction data.

Heterogeneous systems integrate a variety of CSPP models and other compute

models to achieve performance improvements. The other compute models integrated

into such heterogeneous systems however are usually optimized to execute certain

types of applications/algorithms and data structures. Such a compute model is re-

ferred to as an Application Specific Integrated Circuit (ASIC) or ASC, such that

AASC =
{

Ci, Li,j,Pi,j

}
. Accordingly, all components in the computing model are

fixed and the system’s efficiency is at the expense of no application flexibility. Per-

formance gain and energy efficiency is therefore possible as the circuits were designed

and optimized to execute a particular algorithm, versus CSPPs which were designed

1Chapter 1.1.3 provides further information on ISAs
2Chapter 2.2 provides more insight on the advantages and drawbacks of pipelining

4 Chapter 1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

to execute any application. In order to compromise between conventional CPUs and

ASICs, Reconfigurable Computing Systems (RCS) may also be used to provide total

architectural flexibility such that ARCS = {∼ Ci, ∼ Li,j, ∼ Pi,j}. RCS models may

rapidly adapt to any application using its programmable links and components, how-

ever at the expense of hardware, power, and re-programmability overhead. Intel’s

recent acquisition of Altera however suggests that this RCS approach will soon be

underway, integrating CSPP models with FPGA-based accelerators. Heterogeneous

systems may also integrate Graphic Processing Units (GPUs) on a die to provide

throughput-oriented execution. Such a core however may be classified as a CSPP,

demonstrating the same general advantages and limitations of the model.

Each of the three computing models discussed in this section have their advan-

tages and limitations. Considering an objective to improve the CSPP model, the

non-flexible characteristics exhibited by the ASIC model would not benefit the pro-

grammable procedure objective sought by such general purpose processors. The RCS

model however poses as an attractive solution to overcome the shortcomings of a

processor’s architecture. As mentioned previously, the advantages of reconfigurabil-

ity are at the expense of the additional latencies incurred by flexible logic, hardware

overhead (in comparison to a dedicated circuitry), and the additional memory re-

quired to store such configuration logic. These configuration latency penalties would

therefore be detrimental to increasing the performance of general purpose proces-

sors. Such penalties however are primarily problematic due to the way the CSPP

model was designed, and not inherently in computing itself. It may therefore be

possible to revisit the design fundamentals of a conventional processor by using cur-

rent computing knowledge to re-design the CSPP model, originally created over half

a century ago under vastly different technological circumstances. Accordingly, a nu-

anced processor architecture with an adaptive computing model for programmable

procedures may be possible.

1.1.3 Limitations of ISAs and Compilers

In addition to the conventional processor bottlenecks discussed, processor architec-

tures are also stagnated by the concept of an Instruction Set Architecture (ISA).

Conventional processors execute instructions according to a given ISA which pro-

vides a programmer with a simplified view of the microarchitecture – the underlying

implementation and organizational details of the processor’s hardware [5]. As pre-

Chapter 1 5

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

viously mentioned, the ISA specifies the instruction formats, operands, operations,

addressing, and data types that are supported by the processor.

A compiler’s role is to translate a program into a set of instructions. Thus when

the compiler accepts an application as input, it generally has an unrestricted view

of the program with knowledge of instruction dependencies, operand usage, and life-

times [6]. Such information however is eliminated during the last compilation stage

which generates machine code for the processor according to the ISA. Consequently,

the compiler is only able to express the program through basic instructions, and the

processor hardware must dedicated a considerable portion of its logic to (dynami-

cally) rediscover program characteristics which were known by the compiler. The

hardware structures used to compensate for the ISA are at the expense of a core’s

power, area overhead, and latency per die. ISAs therefore reflect a division of labour

between hardware and software that was created decades ago, again under vastly

different technological circumstances [7].

It is possible however for processors to employ a smarter compilation process by

resolving dependencies statically to eliminate complex hardware logic, while sup-

porting wide-issue execution (i.e. the execution of many simultaneous instructions)

per cycle. Eminent examples of such models include Very Large Instruction Word

(VLIW) processors3 and Explicitly Parallel Instruction Computing (EPIC) which

use static scheduling methods and an exposed pipeline4 to execute instructions.

By using such a strategy however, an alteration to the underlying architecture re-

quires compiler amendments, in turn contributing to software compatibility issues

(re-compilation, backwards compatibility issues etc.) for newer generation models.

Such a compiler model also imposes limitations on instruction execution as general

purpose applications have varying degrees of operation-type parallelism. Conse-

quently depending on the application, wide-issue architectures may lead to frequent

core underutilization, while also requiring demanding register file ports for such

wide-issue execution, contributing to additional power consumption, complexities,

and critical path latencies5. Consequently, a solution is sought to compromise

between hardware and compiler directives while maintaining software compatibility

3See Chapter 2.8
4Exposed pipeline is a technique which provides the compiler with direct knowledge of the

underlying architecture, for instance the clock cycle required to perform a given operation, the

number of physical registers on core etc.
5Latencies which determine a structure’s operating frequency

6 Chapter 1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

to overcome various ISA limitations.

1.1.4 Single Core Bottlenecks

The following section reflects on further bottlenecks exhibited in more aggressive

conventional processor models, namely Out-of-Order (OoO) superscalar models.

Such processors support the execution of multiple instructions simultaneously (i.e.

superscalar), where instructions may execute once their operands are ready (i.e.

OoO). Such a model promotes dynamic and data-flow like instruction execution in

an otherwise sequential instruction stream of a program. In order to support such

an execution style however, the processor must integrate more complex logic cir-

cuits which extract dependencies and guarantee that instructions leave the pipeline

in program order for application integrity6. Bottlenecks of the OoO superscalar

model include increasing issue-width to expose higher Instruction Level Parallelism

(ILP, the overlap of instruction execution in a pipeline to improve performance),

unscalable and redundant data operand transport, and the cost of mispredictions

and exceptions. Such issues are elaborated in the following subsections.

Issue Width and Increasing Instruction Level Parallelism

Considering an OoO superscalar processor, issue width (IW) is the maximum num-

ber of instructions that can be issued/executed within the same clock cycle for a

given processor core. IW therefore effectively contributes to a processor’s maximum

attainable ILP. The number of instructions present in a pipeline is also limited by

an instruction window, referred to as the Re-Order Buffer (ROB - a structure which

holds a list of ordered instructions as they are initiated in a pipeline, allowing in-

structions to execute OoO and leave the pipeline in-order). Theoretically, increasing

the IW and instruction window of a pipeline could potentially increase a processor’s

attainable performance.

Pipeline structures which lie on a processor’s critical path include register re-

naming and the Issue Queue (IQ), both of which are used to eliminate and monitor

operand dependencies, respectively. The bypass network also lies on the critical path

and is responsible for forwarding all functional unit (FU) results to their respective

consumers which may be present at various stages in the pipeline. Consequently,

6Detailed information on superscalar OoO models provided in Chapter 2.4

Chapter 1 7

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

increasing a core’s IW and FUs increases bypass network complexity, in turn im-

pacting frequency [3]. In the case that the bypass network was lengthened, the

IQ would also require an increase in capacity to meet the instruction demands of

the execution stage, also impacting the number of register file’s read/write ports

required, which contribute to increasing operand latencies. By increasing the size

of the IQ, the fetch bandwidth (i.e initiation, or rather the number of instructions

fetched per cycle) would also need to increase to provide the processor with instruc-

tions to process. Increasing the fetch bandwidth however would especially prove

problematic for the complex decoding stage of CISC-based ISAs such as x867[3].

The general scalability of conventional processor pipelines therefore exhibits a cu-

mulative effect of drawbacks which inherently limit a processor’s ability to increase

ILP and sequential performance.

Costly Recovery of Mispredictions/Exceptions

The dynamic execution of conventional processors has led to the implementation and

integration of various prediction mechanisms to increase performance, referred to as

speculative (instruction) execution. The cost of a misprediction however requires

various hardware recovery structures in order to restore the state of the proces-

sor previous to the offending instruction. Exception and interrupt handling within

a processor follow very similar procedures. The recovery process to handle such

events include pipeline flushing, saving and restoring the last non-offending com-

mitted state, and in the case of an exception, executing the handler between the

saving and restoring process. Due to the latencies incurred for handling such mis-

predictions and/or exceptions, processors suffer performance loss.

Pipeline complexities for restoring state also contribute to additional core power

consumption and area overhead. It is therefore possible that a completely new

approach to a processor’s model may take these latencies into consideration, while

applying alternative and non-intrusive methods to handle such events.

Data Transport and Redundant Bandwidth

Data transport in a processor is the way which a data result (producer) is deliv-

ered within the pipeline to its dependent (consumer) instructions. Since proces-

sors implement pipelining, its possible that an instruction’s dependencies may be

7Further discussed in Chapter 2.3

8 Chapter 1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

located and/or buffered at various locations/structures in the pipeline. Data trans-

port therefore ensures that a result is forwarded to all its consumers within the

pipeline. To achieve such forwarding, more aggressive (superscalar OoO) processor

models require that each executed result be written to the register file, and simul-

taneously broadcasted to the IQ to “wakeup” possible consumer operands. In the

case that a consumer was scheduled directly after the executed result, the result is

also forwarded on the bypass network directly to its consumer, effectively improving

a core’s performance.

Studies have demonstrated however that results written to the register file are

actually consumed almost immediately within a pipeline [6, 8]. Specifically, 70% of

the broadcasts sent to the IQ are unnecessary as they have been forwarded to their

single consumer previously on the bypass network, where 74% of the results stored

to the register file have already been forwarded to their single consumer and/or

never read and/or overwritten by subsequent instructions. 80% of such values also

have a lifetime of 32 instructions or fewer [6]. This study therefore emphasizes

the redundant bandwidth and unnecessary register reads/writes present in the pro-

cessor pipeline to accommodate data transport. Accordingly, the elimination of

such redundant bandwidth by using a smarter data forwarding process to improve

performance, energy efficiency, and register storage allocation with an alternate dat-

apath solution poses as an attractive solution. Grouping related instructions, i.e.

coarse-grained, versus the fine-grained execution approach imposed by conventional

processors could also contain operand lifetimes in a localized manner to effectively

improve the data transport problem.

1.1.5 Multi-Threaded Processors

The inefficiency of single-threaded cores arise when applications exhibit low inherent

ILP and/or cache misses [9]. In the case of a cache miss, an instruction may take

hundreds of clock cycles to fetch data from the lower levels of the memory hierarchy

and return. The processor therefore is not utilized during this time, simply stalling

until the instruction is resolved. In the case of low inherent ILP, the number of inde-

pendent instructions executing simultaneously in the pipeline may not be sufficiently

utilizing the pipeline structures, causing underutilization of core resources and un-

necessary power consumption. To mitigate such cases, Simultaneous Multi-thread

(SMT) processors were proposed as an augmentation to a conventional superscalar,

Chapter 1 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

sharing or duplicating pipeline structures so that multiple threads simultaneously

traverse the pipeline to increase core utilization and throughput[10].

Although SMTs were proposed as a way to increase core efficiency, the model’s

single-thread performance is often sacrificed as thread’s scale, especially for more

algorithmic- and computationally-intensive workloads. Specifically, certain threads

are optimized for independent operations and are intended to fully exploit the core’s

hardware structures (registers, cache lines and FUs). Consequently when an opti-

mized thread shares core resources with other threads, contention and blocking of

pipeline structures arise, causing performance degradation and hindering the bene-

fits of multi-threaded execution[11]. The general sharing of pipeline structures also

limits a thread’s instruction window, where the IQ and ROB of a fixed size must be

divided among the threads in comparison to a single-thread core which may use the

entire structure to extract dataflow-like execution. Consequently, the advantages of

SMT throughput and utilization as thread’s scale are at the expense of individual

thread performance loss.

To mitigate thread blocking, larger and/or duplicated hardware structures are

integrated into a SMT pipeline, in addition to a fetch policy which invokes an al-

gorithm to mitigate thread contention throughout the pipeline. To support such

features and accomodate larger structures, more physical pipeline stages must be

added to allow for an acceptable frequency of operation, in turn contributing to

an increase in instruction latency, core area and power. SMTs main objective of

utilizing a CPU’s existing structures has therefore shifted towards the integration

of larger hardware in a pre-existing complex pipeline. Consequently, applications

requiring more aggressive single-thread performance often resort to alternate mod-

els which do not incur such performance penalties, i.e. single-thread core multi-cores.

To provide more insight on the SMT single-thread and throughput issue, Figures

1.3 and 1.4 present select benchmarks of the PARSEC [12] and SPLASH-2 [13] suite.

Fig 1.3 displays the average single-thread IPC improvement over an equivalent SMT

core, considering a multi-core of single-thread cores (STC) and the average IPC

attained per core. As seen in Fig. 1.3, single-thread latency increases in SMT pro-

cessors, where certain threads benefit from executing on multi-core STCs more than

others (i.e. approximately 1.34x and 1.95x for 2 and 4 threads, respectively). The

greater the IPC gain of the multi-core STC, the higher the level of contention expe-

10 Chapter 1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

rienced by the threads in the SMT due to resource sharing and blocking. As seen in

the figure, even more performance gains are attained by 4-Thread (4T) workloads

for such reasons.

Figure 1.3: Achievable Single-Thread Performance Improvement for SMT

Figure 1.4: SMT Throughput Advantage Over Single-Thread Core

Conversely, Fig. 1.4 displays a SMT’s throughput advantage over an average

STC. The figure clearly displays that although there is a certain amount of single-

thread IPC loss in a SMT core, throughput of the core is in fact improved per

core on average by 1.32x and 1.55x for 2 and 4 threads, respectively. This provides

motivation for designing a new core which exploits both TLP and single-thread per-

formance concurrently in a scalable manner. This objective is especially important

as we continue to proceed in a heterogeneous computing era which compromises

Chapter 1 11

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

between both ILP and TLP.

Referring back to fetch policies, a major SMT design issue is selecting a policy

which mitigates IQ clogging and provides a sufficient instruction window per active

thread. Therefore an ideal fetch policy would allow active threads of an application

to proceed throughout the pipeline and execute, while stalled threads are not fetched

and utilize minimal resources. Such sources for IQ clogging include [14]:

• Long latency instructions: Loads which miss in the data cache consume

pipeline resources, possibly preventing commits if the instruction is head of

the ROB. Such a thread then contributes to IQ clog and limit the instruc-

tion window for other threads. Minor clogging issue may also arise in the

case of successive and dependent floating point instructions i.e. long latency

operations.

• Long data dependence chains: If an instruction relies on another in-

struction with a load miss, all dependent instructions will also stall until the

memory load is resolved, causing IQ clogging for other threads.

• Contention for Functional Units: Since threads must share pipeline

structures, structural hazards may arise (i.e. the unavailability of a resource),

contributing to performance loss. Issue width in most cases can not be widened

(i.e. including additional FUs) due to the scalability problems discussed pre-

viously.

In order to alleviate clogging, many fetch policies have been proposed, along

with the concept of runahead threads [11, 15–18]. Such fetch policies aim to re-

duce resource monopolization based on certain criteria and/or events, often causing

an under utilization of resources and/or unintentional thread stalling until certain

thresholds are reached [17].

Conversely when the oldest instruction in the pipeline is a Level 2 cache (L2)

miss (or locks in the case of multiprocessors), runahead threads allow a conventional

pipeline to continue executing instructions using a fake value to represent the load

miss. Using the value, the instruction stream continues to execute, allowing future

load/store instructions to issue and prefetch data, decreasing the chances of future

cache misses. Context must be saved however so that the previous state prior to

the fake value is restored once the L2 miss returns. All instructions which execute

12 Chapter 1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

after the L2 miss are therefore only required for prefetching and must be squashed

(eliminated from the pipeline). Consequently runahead consumes consume addi-

tional dynamic power as the pipeline must be restored whether or not the fake value

used was correct. Consequently, runahead threads require an increased number of

executed/squashed instructions which adversely affect a core and/or SMT’s energy

efficiency [18]. Such policies and runahead techniques also do not provide the same

single-thread performance of single-thread cores.

A recent study conducted by Eyerman and Eckhout compared a homogeneous

SMT multi-core system to heterogeneous (non-SMT) multi-core systems for various

applications, considering the same power budget per core [19]. The study concluded

that SMT multi-cores generally perform better than heterogeneous multicores as each

SMT core adapts to varying degrees of TLP while providing adequate single-thread

performance. Therefore each SMT core was generally able to outperform each op-

timized heterogeneous core in a certain aspect while eliminating communication

latencies and data sharing overhead between threads and cores, typical of heteroge-

neous systems. As previously discussed however, the SMT model possesses several

limitations which may be improved. Therefore if such improvements may be applied

to homogeneous systems, more performance gains may be achieved. Such SMT lim-

itations therefore act as the prime motivation of this work.

1.2 Research Objectives

According to the motivation provided in this chapter, the objective of this research

work is to develop a processor architecture which provides a nuanced approach to

conventional CPUs/CSPPs. The goal of such a core is to provide enhanced single-

thread performance for multi-threaded workloads, while eliminating several con-

ventional CPU and SMT model bottlenecks. Accordingly, such a processor should

provide more architectural flexibility to efficiently execute and adapt to various

degrees of thread-level parallelism (TLP) and programmable procedure workloads,

while mitigating the instruction servicing latencies and redundant bandwidth that

general purpose architecture impose on conventional pipelines.

The main emphasis of this thesis is therefore to develop a completely new ap-

proach to general purpose processor architectures. Primarily, processor performance

and the transistor/frequency scaling plateau suggests that industry and academia

Chapter 1 13

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

must consider computing in an unconventional way. Although computing has steered

towards heterogeneous core alternatives, a single core’s architecture and performance

is essential to performance gain, where a processor’s programmable procedure model

must be considered.

To accomplish such an objective, several queries were raised which lead to cor-

responding topics of investigation. These topics were researched and the result of

the investigations were used to design the processor presented in this thesis. Such

research queries and their respective topics are listed below.

Research Question 1: What nuanced computing model and datapath design

may mitigate instruction control and processing overhead to emphasize data pro-

cessing and increase a single-thread’s performance? How can the model be applied

to a multi-threaded workload domain to improve upon a SMT model’s limitations?

Research Question 2: Is it possible to alter the triple set characteristics of a

Computing System with Programmable Procedure (CSPP) in order to mitigate the

effects of redundant bandwidth, unscalable structures, and the general bottlenecks

raised in Research Question 1? If the triple set is altered, how will this affect the

ISA and software/compiler compatibility?

Research Question 3: Is it possible to have a smarter compilation process to

extract application characteristics and eliminate various datapath structures? If so,

is it possible to maintain compatibility with standard software, ISAs, and program-

ming models? If compatibility is maintained, how will the software interact with

the processor’s hardware to convey such application characteristics?

Research Question 4: Once the processor is built, how will exceptions and/or

mispredictions be handled?

1.3 Thesis Contributions

The main contributions of this thesis are two-fold. The first main contribution is

the proposal of a nuanced general purpose, configurable processor architecture de-

signed to improve single- and multi-thread performance. Specifically, to the best

14 Chapter 1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

of our knowledge, this is the first general purpose architecture which integrates

configurable datapath logic to eliminate various data transport and instruction pro-

cessing overhead issues in a conventional processor. The design effectively increases

the single-thread performance per thread of a given multi-threaded workload, while

supporting aggressive speculative execution and a simple misprediction/exception

recovery process.

The second main contribution of this thesis is the concept of a compiler com-

patible process and framework to support such a configurable general purpose pro-

cessing architecture, referred to as the Physical Compiler (PhysC). Many previous

works have attempted to support unconventional underlying architectures through

the design of custom primary compilers and/or instruction set extensions. Such

approaches however sacrifice software compatibility and are therefore not effective

solutions considering general purpose workloads. Conversely, the concept of a PhysC

is able to maintain software compatibility by applying a secondary, independent layer

to the compilation process. The PhysC may be considered as a static and hybrid co-

designed VM [7] compiler. Specifically, as opposed to translating one ISA instruction

to another dynamically, the PhysC performs application macro-processing8, which

follows an application’s instruction flow, generating and translating macro-data to

configuration logic for execution on the underlying configurable processor. Accord-

ingly, the proposed approach eliminates many front-end bottlenecks, the fine-grained

instruction issues of conventional processors, and limitations of co-designed VMs and

static compilation, while increasing performance and energy efficiency.

Both contributions were implemented, tested, and compared to conventional pro-

cessor models using a variety of multi-threaded benchmarks. Results verified that

the proposed approach 1) can successfully increase both single-thread performance

and TLP on a single chip when compared to both a SMT and single-threaded core

model, and 2) achieve such results with up to half the area and 63% of the energy

required of conventional models.

The result of this research work is the proposal of a Configurable Simultaneously

Single-Threaded (Multi-)Engine Processor (ConSSTEP) which implements the ar-

chitecture, control, functionality, and software translation process for a nuanced

8Macro-processing assembles blocks of code from a program, versus processing individual in-

structions as typical VMs

Chapter 1 15

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

multi-threaded processor core. According to the computing system classification

presented previously, ConSSTEP revisits the design of conventional processor ar-

chitectures to rebuild a core, considering the limitations of such systems are in the

way which they are designed and programmed, and not necessarily inherent in com-

puting itself. In attempts to redefine the CSPP model and the limitations imposed

by ISAs, ConSSTEP proposes both a configurable topology and programmable pro-

cedure, such that AConSSTEP = {Ci, ∼ Li,j, ∼ Pi,j}. ConSSTEP may therefore be

considered as a reconfigurable processor, where the core’s topology adapts to a

given programmable procedure with fixed (heterogeneous) functional components.

Accordingly, such a processor is able to increase single-thread and throughput per-

formance by dynamically configuring and adapting its underlying architecture to the

communication patterns of a given workload while eliminating instruction processing

overhead. Such configurability is implemented at a coarse instruction granularity to

provide minimal overhead for an aggressive, configurable general purpose processor.

1.4 Thesis Statement

ConSSTEP demonstrates that a core’s single-thread performance, throughput, and

energy efficiency may be improved effectively and efficiently by rethinking the mi-

croarchitecture, architecture, and compilation process of a conventional processor

while maintaining full software compatibility.

1.5 Dissertation Outline

This thesis dissertation is organized as follows: Chapter 2 provides background and

details of various conventional processor designs, outlining both their advantages

and disadvantages. Based on limitations addressed, Chapter 3 provides a general

overview of the ConSSTEP flow and execution process, then outlining the chal-

lenges overcome by ConSSTEP in comparison to conventional CPUs in addition to

ConSSTEP’s trade-offs. Chapter 4 covers various related works which have also

deviated from the conventional style of computing, which are directly compared to

the ConSSTEP approach.

Next, Chapter 5 provides details of the ConSSTEP architecture, where Chapter

6 details the overall compilation process. Chapter 7 then presents the experimental

methodologies used to simulate and emulate the proposed processor and baselines for

16 Chapter 1

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

performance, power, and area to obtain statistics and analysis. Chapter 8 provides

sensitivity studies to determine the ideal scheduling algorithms and engine sizes for

the ConSSTEP architecture. Chapter 9 then presents and discusses experimental

results. Finally, Chapter 10 provides conclusions based on the findings presented

during experimental results, outlining advantages, limitations and possible future

work for the ConSSTEP architecture.

Chapter 1 17

Chapter 2

Background

2.1 Introduction

The following chapter provides background information on various conventional

CPU models and their respective advantages and limitations. The background here

elaborates on the facts discussed during the introduction, while also providing mo-

tivation behind the transition of one computing generation to the next. The main

objective of such background knowledge is therefore to provide insight on the limita-

tions and challenges posed by conventional models, which has lead to the motivation

behind the ConSSTEP architecture.

Accordingly, this chapter first overviews details of the conventional in-order

scalar CPU. Thereafter the chapter describes various ISA models, and the need to

increase core performance, bringing forth the superscalar Out-of-Order processor.

Several of the core’s advantages and limitations are discussed, thereafter provid-

ing details of parallelism granularity in general purpose applications. The chapter

then explains the need for multi-threaded architectures, and computing’s transition

to the current multi-core generation. Finally, the chapter discusses alternate com-

pute models such as VLIWs, EPIC, and Digital Signal Processors (DSPs), and the

concept of co-designed virtual machines (VMs).

2.2 In-order, Single (Scalar) Issue Processors

The conventional Von Neumann (VN) computing model can be defined as a store

program computer consisting of the following four main blocks [20]:

18

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

1. Central Processing Unit (CPU)- Responsible for obtaining instructions

of a program and processing the data incrementally through a set of pipeline

stages. Specifically, the CPU contains a Program Counter (PC) to keep track

of the next instruction’s address, an on-chip register file for quick access to

instruction operands, Arithmetic Logic Unit (ALU) for the arithmetic and

logical execution of instructions, a datapath which statically connects all the

hardware components to provide pipeline functionality, and a control unit

which interprets instructions and the CPU’s functional state. Note that the

CPU may also contain branching, Floating-Point (FP), complex integer, and

load/store units (LSU) for non-arithmetic/logic instructions1.

2. Memory - used to store program instructions, data, and any information

pertaining to the CPU and OS, whether intermediate and/or final results.

Although memory was implemented as a single block in the original VN model,

it is now a memory hierarchy.

3. Input - obtains external data and instructions, storing/processing the infor-

mation for the computer’s use through interfacing protocols.

4. Output - displays and/or transmits data from the computer to the external

environment, also through interface protocols.

The blocks listed above work together to provide the functionality of the VN

computing model. As mentioned above, the CPU uses pipelining for program exe-

cution. Pipelining is a technique used to increase a processor’s instruction through-

put by dividing the execution of an instruction into several simple, single cycle stages

which overlap with successive instructions of an instruction stream [5, 21]. A ba-

sic conventional CPU pipeline is presented in Fig. 2.1 consisting of the stages: 1)

Instruction Fetch (IF), 2) Instruction Decode (ID), 3) Execute (EXE), 4) Memory

(MEM) and 5) Writeback (WB) to the register file [21]. Using a pipeline technique,

the execution of the first instruction may be overlapped with the second instruction’s

decoding, and the third instruction’s fetch. Therefore, as opposed to dedicating five

clock cycles per instruction for fetch, decode, etc., pipelining effectively increases the

processor’s performance and ability to process multiple instructions simultaneously

for a given programmable procedure.

1All units which possess more than arithmetic/logic functionality are referred to as Functional

Units (FUs)

Chapter 2 19

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 2.1: Simple In-Order Pipeline

During IF, an instruction is read (fetched) from memory according to the address

specified by the PC. The instruction is then latched by a pipeline buffer/register for

the next pipeline stage to read, where the PC is also incremented reflecting the next

instruction to fetch. In the next clock cycle, the instruction is passed to ID, which

decodes the instruction’s fields to obtain details including the opcode/operation,

input and output operands, and/or addresses for memory or branch instructions,

where the instruction metadata is again buffered by the next pipeline latch. Assum-

ing all operands are ready (in-order model), the processor then reads the operands

specified by the instruction from the register file and applies them as inputs to the

ALU during EXE, which performs a given operation as also specified by the instruc-

tion. The result computed by the ALU is obtained and written back to either the

register file (WB), or to memory (MEM), or to the PC register for branches depend-

ing on the instruction type. In order to maintain program order and correctness, it

is also necessary that all instructions and memory accesses are written and read in

program order.

2.3 Instruction Set Architectures (ISA)

An Instruction Set Architecture (ISA) is the functional definition of the operations,

modes, instruction encoding, and storage supported by the processor hardware [21].

Although the precise implementation of an ISA within a processor architecture may

vary depending on vendors and/or processor models, it provides a simplified view of

the microarchitecture to the programmer, where each processor supports one target

ISA [5]. The role of the ISA is to divide labour between hardware and software [7],

allowing for universal software compatibility for various processors and across gen-

erations of processor models. Using an ISA, the programmer may design a software

program which is compiled and converted to a set of instructions encoded according

to a given ISA. The underlying processor which supports the target ISA then ob-

20 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

tains the instructions and executes the program. Thus the ISA acts as an interface

which allows programmers and computer architects to work independently with the

same objective.

ISA’s may be classified into three categories: Complex Instruction Set Comput-

ing (CISC), Reduced Instruction Set Computing (RISC), and Application Specific

Instruction-set Processors (ASIP). To date, common ISAs aside from x86 include

ARM (aarch32 and aarch64), the Itanium series IA-64, SPARC, and PowerPC.

CISC is an instruction set which invokes several complex operations per instruc-

tion [5]. Such instructions are of variable length and possess fairly complicated

addressing modes. During the 1960s and 70s, CISC was the predominant ISA for

computers mainly due to the memory wall – noting that memory access times were

much slower than they are today, CISC was able to embed multiple programming

constructs into one instruction. Thus CISC required fewer memory accesses while

providing code density and performance gains. The overlapped pipelining technique

discussed previously however was not originally supported by CISC due to its com-

plex instruction set. Thus as technology scaled and transistors became faster, the

RISC ISA emerged in the 1980s, “reducing” the number of instructions, addressing

modes, formats and complexity per instruction in comparison to a typical CISC ISA

[22].

Accordingly, RISC is an instruction set which possesses one operation per in-

struction. The ISA employs a general purpose register file (GPR) with fixed length

instruction encoding, simple operations, and addressing modes. An instruction’s

inputs are read from the GPR, where only load/store type instructions are permit-

ted to access memory, contrary to CISC architectures. Due to its formatting, RISC

ISAs may support simpler processor designs and control units, where registers allow

faster accesses per instruction operand. Although CISC-type processors may also

possess GPRs, their operands may be read/written from/to memory or the GPR

according to a given instruction’s specifications, and hence the architecture must

deal with such implementation variability.

Both CISC and RISC ISA’s were developed for the general purpose processor do-

main. However as the embedded computing market continues to thrive, ASIPs have

emerged to optimize more catered systems as CISC and RISC ISAs have many fea-

Chapter 2 21

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

tures which are not necessarily required. Specifically, ASIPs are developed with the

intention of accelerating a specific application domain’s attainable performance and

energy efficiency [23]. Such acceleration is accomplished by developing customized

instructions which exploit underlying architectural features for higher application

performance. Such ISAs however may only execute a handful of applications as

opposed to the generic nature of RISC and CISC. Thus ASIPs have been mostly

utilized in Digital Signal Processors (DSP) and Neural Processing Units (NPUs)

[23]. Accordingly, the rest of this section focuses on RISC and CISC ISAs for com-

puting systems with programmable procedures.

RISC and CISC each have their individual advantages and limitations. For

instance, since RISC employs one operation per instruction, a higher number of in-

structions are required per application in comparison to CISC. Consequently more

instruction memory must be allocated, possibly contributing to higher instruction-

cache misses. Conversely, CISC was designed with the objective to complete a task

in as few assembly lines as possible. Such instructions however are at the expense of

more complex pipeline hardware structures, especially that of instruction decoding.

RISC’s instruction memory overhead is therefore at the advantage of simpler hard-

ware structures, promoting the concept of pipelining which CISC did not initially

implement. Specifically, since RISC instructions contain one operation, instructions

may execute in a uniform time as opposed to CISC which contain a varying number

of operations per instruction. One RISC instruction may therefore be fetched, de-

coded, executed etc per single clock cycle whereas CISC possesses a variable number

of cycles per instruction. To achieve RISC-like simplicity, CISC-based processors in-

voke a more complex decoding stage which divides instructions into micro-operations

(uops) so that the new “instruction”(uop) contains one operation. These uops may

then execute with the same pipelining benefits and structures as RISC models.

The pipelining techniques invoked by RISC ISAs have also impacted the memory

system of classical computing systems. Specifically, the Von Neumann architecture

consists of a single memory which holds both a program’s instruction and data.

Thus CISC was designed with the concept of such a memory system, using complex

instructions for fewer memory accesses, making the ISA inherently slower; CISC

ISAs must manage instruction and data accesses from the same memory and so

fewer instruction accesses are favourable. In contrast, RISC’s pipelined implemen-

tation, specifically the IF and MEM stages, require simultaneously access to the

22 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

memory system which causes structural hazards as both stages attempt to access

the memory system with different intentions (i.e. read/write instructions versus

data). Accordingly the Harvard architecture was brought forth, separating instruc-

tion and data memory so that the two pipeline stages could concurrently access

memory without hazards and additional latencies (increased read/write ports etc).

As such, RISC may only be implemented as a Harvard architecture, and CISC as

both Von Neumann and Harvard.

As RISC and CISC ISAs continue to be predominant in general purpose proces-

sors, history dictates that ISAs experience long lifetimes as introducing new instruc-

tion sets may raise compatibility issues and disrupt co-operative hardware/software

development. Conversely, slow evolving ISAs eventually become a poor match to

rapidly changing systems and create gaps between architecture, technology, and pos-

sible advancements [24]. Although these traditional means of compiling and com-

puting have more than served their purpose in the past, both ISAs and fine-grained

instruction execution have become increasingly confining and partially responsible

for stagnating innovation in computer architecture.

2.4 Superscalar/Out-of-Order Models

While in-order pipelining was able to provide adequate scalar processor performance,

the model was still bound by a maximum throughput of one instruction per cycle.

In order to overcome this limitation, the superscalar pipeline was introduced, in-

corporating multiple ALUs and/or functional units (FU) into the CPU’s pipeline

(where FUs may perform other operations than the basic arithmetic operations sup-

ported by ALUs). The incorporation of multiple ALUs/FUs allowed superscalars

to execute several instructions simultaneously per cycle [25]. Processors may also

be Out-of-Order (OoO), allowing instructions to execute in a different order from a

given program’s PC-bounded instruction stream. In this way, instructions may exe-

cute once their respective operands and hardware units become available, regardless

of program order, the increase overall performance. Such a technique is especially

beneficial for long latency instruction, such as cache misses. In such cases, other

independent instructions may continue to execute when ready while the miss is re-

solved, versus the concept of in-order execution which stalls further execution until

the instructions is resolved.

Chapter 2 23

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Monolithic (aggressive) CPUs combine the methods of superscalar and OoO

processing to execute instructions with higher ILP and more of a dataflow-like exe-

cution. The Von Neumann/Harvard under linings however require that a program

commit its instructions in-order, so that the CPU may maintain memory ordering

and precise state in the case of exceptions or other events. As a result, OoO super-

scalars rely on large centralized hardware resources to support such requirements

while simultaneously avoiding data, control, and structural hazards. Centralized

structures include register renaming, branch prediction, caches, Issue Queue (IQ),

the reorder buffer (ROB), and the bypass network(s).

Figure 2.2: Superscalar OoO Pipeline

2.4.1 Architectural Design

Fig. 2.2 illustrates the superscalar OoO pipeline, where its logical structure and

operation have remained the same for decades. In the first stages of the pipeline,

several instructions may be fetched in parallel and decoded. Decoding determines the

operands and operation(s) required by the instruction. Since the ISA imposes a set

of (limited) architectural registers, the instruction source and destination register-

based operands are renamed with a pool of the CPU’s physical registers to eliminate

false data dependencies. False dependencies are created due to the lack of registers

present in the ISA. Therefore two instructions may write to the same destination

register however no actual dependency exists due to the limited architectural regis-

ters. Physical registers exist to eliminate such issues, however these registers must

still be limited to maintain fast access speeds.

Once renamed, instructions are then dispatched into the issue queue (IQ), and

24 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

also placed in the reorder buffer (ROB) to maintain the program’s order for OoO ex-

ecution (later used by the commit stage). When the IQ and its associative matching

logic determine that an instruction’s operands are ready and available, the instruc-

tion is placed in the dispatch queue which awaits structural hazard resolution and

an available ALU/FU for execution according to the instruction’s operation. All

operands to be executed by the ALUs/FUs are obtained from the register file, or by-

pass network. The bypass network allows computed results to be directly forwarded

to their producers, bypassing register latencies so that dependent instructions may

execute as soon as possible. Thereafter, once instruction(s) have been dispatched

and computed, the instructions await in the ROB to commit in program order.

Thus when an instruction is at the head of the ROB, it may be committed (i.e. be

removed safely from the pipeline).

All instructions are kept in program order at the front of the pipeline until the

rename stage. All stages prior to the rename stage are referred to as the pipeline’s

front-end. Subsequent pipeline stages are referred to as the backend which execute

OoO until the commit stage where instructions retire in program order. Conven-

tional coding and compilation strictly rely on these semantics to maintain memory

ordering and precise state.

To further improve the performance of an aggressive processor, certain techniques

may be used, referred to as speculative execution, and described in the following

section.

2.4.2 Speculative Execution

The instruction to be fetched in the next cycle is maintained by the program counter

(PC) as previously discussed. A pipelined machine achieves its maximum through-

put when in a streaming mode (i.e. continuous fetching of instructions from sequen-

tial locations in program memory) [25]. Thus the most ideal of applications would

simply increment its PC on every instruction fetch, pointing to the next sequential

instruction which is fetched etc. However in actuality, applications possess various

conditional statements which redirect control-flow based on a given condition. The

ISA expresses such conditions as branch instructions which are processed by the

CPU’s branch FU. During execution, the branch FU refers to a set of status reg-

isters holding conditional flags (i.e zero flags, carry bit set etc) to determine the

Chapter 2 25

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

outcome of the branch instruction. As an application executes, the status of the

bits are updated to reflect state status (for example, the last instruction’s result was

equal to zero raises a zero flag). Based on the status of the flags, the application’s

control flow may be redirected to a non-sequential instruction address if a branch

instruction is encountered and depending on its type. For instance, if the Branch-

if-equal (BEQ) instruction reads that the zero flag is set in the status register, the

program fetches from the address specified by the branch, otherwise the next se-

quential instruction is fetched (where multiple other branch type instructions exist,

including BNE, BGT, BLT, etc).

Consider a very simplistic in-order CPU. When a branch is encountered, the

outcome of a branch may only be determined once the branch is executed in the

backend, an therefore the PC does not know what address to fetch from until the

branch is resolved/executed. Therefore once a branch is fetched, the front-end must

stall until the branch is resolved thereafter sending the effective address back to the

PC so that the CPU may fetch the next specified instruction. In this case, perfor-

mance is significantly degraded in proportion to the length of the pipeline from IF

to EXE. A simple technique to mitigate stalling would be for the compiler to insert

(branch) independent instructions after a branch until it is resolved in the back-

end. When no independent instructions exist, No Operation instructions (NOOPs)

may be inserted by the compiler so that the CPU may continue to execute until

the branch is resolved, increasing the program size and decreasing a core’s energy

efficiency. Furthermore, as pipeline stages vary from processor to processor, the

number of branch-independent instructions also vary, inevitably leading to pipeline

stalls and performance degradation. For this reason, the hardware solution of branch

prediction was introduced.

CPUs use branch prediction as a means to anticipate the behaviour of branch in-

structions so that performance penalties are minimized, and instruction flow through-

put is maximized [25]. To achieve such behaviour, branch prediction dynamically

speculates branch outcomes (in addition to their target addresses) in the front-end

and uses this knowledge to effectively predict a branch outcome, an application’s

future behaviour, versus waiting until the branch is resolved to fetch the next in-

struction. To make such predictions, additional hardware logic is placed in the

pipeline to speculate and maintain branch histories, where the backend is respon-

sible for performing prediction validation once the branch is executed, performing

26 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

misprediction recovery if required. Accordingly, the accuracy of the branch predic-

tor has a significant impact on processor performance.

Common dynamic branch techniques include bi-modal predictors (i.e. 2 bit sat-

urating counters to determine branch outcomes), G-Share (hashing the PC address

with history to determine a branch outcome and minimize branch aliasing) [26], and

TAGE (a hybrid approach with partial tagging to determine branches with high cer-

tainty, using various history tables of different lengths to select the branch direction)

[27]. The quality of branch predictors also depends on various parameters such as

history lengths, the scope of the history (including nested branches), warmup peri-

ods (no solid history of the application is known), and benchmark characteristics.

Branch Prediction and Mispredictions: When a branch is mispredicted, the

incorrect path must be discarded from the pipeline. Therefore a pipeline flush is

required for all instructions subsequent to the branch, where the processor’s state

prior to the misprediction must be restored, and the alternate direction must be

fetched and replayed. The front-end recovery process also requires the PC to be up-

dated to the correct fetch address, while the incorrect prediction is updated in the

history tables, Branch Target Buffer (BTB) i.e. prediction of the branch addresses.

Misprediction may also be costly in the backend if all instructions prior to the branch

must wait to be committed in the ROB prior to the pipeline flush to maintain pro-

gram order (especially when considering an OoO superscalar CPU). Thus a low

latency technique for branch misprediction is sought. To accomplish such a task,

checkpointing mechanisms/structures are used in OoO superscalars. Accordingly,

for every branch fetched/decoded, certain pipeline structures are copied or ”snap-

shot” so that the processor state prior to the branch may be used to recover in the

case of a misprediction. Such snapshotted structures include the register file, the

Register Alias Table (RAT) for register renaming, and the PC, where ROB contents

subsequent to the offending branch may simply be cleared using the checkpoint

method. Therefore the PC must be updated to the correct address in the predictor,

checkpoints must be restored, and the processor state must be rolled back prior to

the branch. Once restored, the processor may then resume its normal state and

fetch from the corrected path while incrementally re-filling the pipeline.

In terms of the processor’s architecture, the greater the number of pipeline stages

between fetch to execute, the greater the cost of a misprediction and the recovery

Chapter 2 27

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

process for re-filling the pipeline with the correct instructions. Likewise as proces-

sor architectures and microarchitectures become more aggressive and complex, so

does the mispeculation recovery process. Therefore although branch predictors may

provide a 90%+ accuracy, the possibility of minor mispredictions still requires check-

pointing mechanism integration, with a performance dependency on the number of

front-end stages.

Exceptions: It is possible that certain instructions or conditions within the

processor and/or its surrounding system may cause exceptions, unexpected changes

in control flow causing other instructions within the pipeline to abort prior to their

completion [28]. Such exceptional events include IO device requests, OS user ser-

vices, arithmetic overflow, page faults, memory misalignments or protection viola-

tions, hardware malfunctions and power failures.

The listed exceptions may be further classified into two categories: 1) interrupts,

and 2) traps. Interrupts are caused by external events (i.e. IOs, page faults, sys-

tem calls etc) and are asynchronous to program execution. Therefore such external

events may be handled between instructions, i.e. after completion of current in-

struction, where the program may simply resume execution once the exceptional

instruction has been injected. Conversely, traps are caused by internal events (i.e.

overflows, undefined instructions etc) and are synchronous to program execution.

In the case of a trap, the program is suspended, where the exception is remedied

by its respective handler. Once the handler has completed, the program resumes its

execution (or aborts in certain cases).

When considering the execution of a single instruction, the pipelined processor

executes the instruction in segments[28]. In the case of an exception, the offending

instruction must always halt execution. Therefore all instructions preceding the ex-

ception must complete in the pipeline, where all subsequent instructions are flushed.

As the case of mispredictions, the state of the processor must also be saved prior

to the exception (including the offending instruction’s address, registers, and other

structures). The PC is then redirected to the handler’s address, where the excep-

tion handler is executed. Once complete, the processor restores its state and may

continue executing as normal (assuming the exception is recoverable).

Although it is expected that the probability of such exceptional events low, when

28 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

exceptions are raised however, the processor must spend time trying to preserve, han-

dle, and restore state to resolve the issue. Consequently, current implementations

of exception handling are latency intensive.

Loop unrolling: A loop is a method used in programming to repeat the exe-

cution of a set of instructions (task) multiple times, based on a number of iterations

or until a certain condition is reached. Loop unrolling is a technique used by com-

pilers to replicate a loop’s body multiple times assuming independent instructions

exist between the iterations, adjusting the loop’s termination condition to aid in

the overlapping of various instructions in the pipeline. Consequently, loop unrolling

takes advantage of ILP in the instruction stream while fully utilizing the FUs of a

processor [21]. Loop unrolling is also used to improve instruction scheduling laten-

cies as it may conceal potential branches and overlap independent load and store

accesses between iterations.

Loop unrolling is limited however if the overhead amortized by each unroll de-

creases, yielding insignificant performance gains every iteration. If the unrolling is

also performed for a rather large loop, the code size may increase leading to a larger

memory footprint, and likely higher instruction cache miss rates which degrades

performance. Furthermore, depending on the code size and aggressiveness of the

compiler’s loop scheduling, register pressure may also increase due to the demand

of live registers needed by the processor at a given time. Thus if the processor pos-

sesses a shortage of physical registers, although the code is theoretically faster, such

unrolling would not be physically possible in the core [21]. Therefore a compiler’s

unrolling aggressiveness must be effective for increasing performance, and dependent

on the underlying architecture.

A type of hardware loop detection may also be accomplished dynamically in

the processor. Employed by many Intel CPUs [29], loop detection logic discovers

when the CPU is executing a loop. When a loop is detected, branch prediction and

the instruction fetch stage are temporarily disabled for the duration of the loop,

where the detector injects the loop’s instructions (possibly also decoded) to the

pipeline. Accordingly, this loop detector unit is used to increase the performance of

loops consisting of up to 18 micro-operations (uops), and eliminating 2-3 pipeline

stages while maintaining the state of the branch predictor prior to the loop. Such

cycle savings performance is at the expense of extra hardware units and constant

Chapter 2 29

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

loop detection surveillance, increasing the power and area requirements of the core.

Accordingly, the general limitations of OoO superscalars are now discussed.

2.4.3 Limitations of OoO Superscalar Processors

Although the OoO execution pipeline is able to substantially increase performance

in comparison to a simple in-order scalar core, it does so at the expense of hardware

and power consumption. Specifically, the model centers around a sequential instruc-

tion fetch stage which introduces control dependencies between all instructions due

to a PC-driven approach. The overall ILP achieved by OoO superscalars is also

limited by the issue width, instruction window (ROB), IQ size, and the capacity of

other hardware units in the pipeline (i.e. physical registers, dispatch queues etc).

As a result, all these factors make the conventional processor model fundamentally

sequential [30].

Branch mispredictions also require pipeline flushes and complex check point-

ing mechanisms to recover from mis-speculation, where exceptions and recovery are

fairly latency intensive. The associative hardware logic of the IQ which determines

ready instructions is also quite demanding and centralized, where only certain issue

widths may be sustained before the matching latency and power become signifi-

cant bottlenecks [3]. Thus we observe superscalars devoting a large share of their

hardware and complexity to reconstructing a limited view of program dataflow at

runtime [6] where such dependencies are actually known by the compiler and limited

by the ISA.

Another major disadvantage of the superscalar pipeline is data movement and

transport as discussed in Chapter 1. In the front-end, tags and data needed for

matching and forwarding are continuously copied and buffered from one pipeline

stage to the next, requiring hardware and interconnection which is often redundant.

Likewise, the bypass logic in the backend consists of a complex interconnect, where

the greater the number of ALUs/FUs, the more complex the communication in-

frastructure and the greater the number of register ports required [3]. Furthermore

regardless of value bypassing, values must still be written to the register file even if

unnecessary, contributing to redundant bandwidth.

Overall, it is evident that superscalar models do not scale well due to vast in-

30 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

frastructure of slow networks, associative searches, and complex control logic [7].

It is also clear that the model is very centralized, meaning that there are several

single points of control which govern the hardware’s execution. This centralization

represents a single point of failure, and can often lead to faults disabling an entire

core [31]. Thus as technology and transistors continue to scale, reliability must be

considered also for die costs and manufacturing [32].

2.5 Parallelism Granularity and Application Flow

Applications may contain up to three types of parallelism: Instruction Level Paral-

lelism (ILP), Data Level Parallelism (DLP), and Thread Level Parallelism (TLP).

A processor is typically designed to handle all types of application parallelism, how-

ever certain models are more optimized for handling specific types of parallelism in

comparison to others. This section highlights the concept and ways which processors

address the various types of parallelism. Thereafter, the concept of control-flow and

dataflow processors are discussed.

2.5.1 Instruction-Level Parallelism (ILP)

Instruction Level Parallelism (ILP) is the overlap of instruction execution in a

pipeline to improve performance [21]. The overall objective of ILP is to reduce

execution time by overlapping the execution of as many independent instructions

for execution as possible within a given clock cycle. To achieve ideal ILP, super-

scalars must overcome three issues, namely: an uninterrupted supply of instructions

for execution, just-in-time data for the execution of instructions, and the analysis of

data dependencies within a window of instructions to initiate concurrent execution

of the ready instructions [33].

Typical approaches for exploiting ILP within high performance cores involve em-

ploying either a hardware or software approach. In the hardware approach (specifi-

cally within superscalars), the IQ is responsible for monitoring operand dependencies

dynamically and dispatching the ready instructions [34]. The issue width of the CPU

therefore determines how many instructions may execute concurrently. Accordingly,

the memory system’s bandwidth and latency determines the overlap of instruction

data in the pipeline, with the register file providing instruction operands, and the

cache supplying memory instructions. Typical OoO superscalar processors aim to

Chapter 2 31

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

optimize these design constraints to extract higher ILP. Designing wider machines

however incurs a geometric complexity increase in control logic, where issue width

is also bounded by bypass scalability, and the L1 cache’s bandwidth. [28] [3].

In the software approach, the compiler relies on software functionality to find in-

struction parallelism statically during application compilation. The compiler design

also strictly depends on the underlying architecture, its issue width, and an exposed

pipeline. Consequently this technique raises issues of binary and software compat-

ibility as a compiler must support multiple underlying architectures and processor

generations, versus superscalars which support dynamic scheduling regardless of its

architecture. Furthermore, certain applications may possess limited ILP and there-

fore providing a processor with a very wide instruction width may not be beneficial,

leading to an under utilization of processor resources. This technique is mainly used

by VLIW and EPIC processors, further discussed in Chapter 2.8.

2.5.2 Thread-Level Parallelism (TLP)

Thread-Level Parallelism is a processor’s ability to execute independent programs

and/or thread contexts simultaneously on a single core [21]. TLP models allow

multiple threads to traverse the pipeline in parallel, giving the illusion of a multi-

tasking processor. Such TLP and/or multi-tasking relies on the OS which creates

and overlaps multiple threads of execution for the CPU to process concurrently. By

supporting TLP, a processor may improve its core throughput to conceal various

latencies (in comparison to executing a single-thread workload). Such TLP proces-

sor models include Simultaneous Multi-Threading (SMT), Fine-grained MT, and

Coarse-grained MT (described in the Single-Thread vs Multi-Threading section of

this chapter).

2.5.3 Data-Level Parallelism (DLP)

Data-Level Parallelism (DLP) is the ability for multiple threads of execution to per-

form identical operations on different data sets simultaneously [21]. The technique

of DLP involves exploiting parallelism using data streams, whereas conventional

ILP/TLP aim to exploit parallelism for multiple instructions using the same data

stream. CPUs exploit DLP through Single Instruction Multiple Data (SIMD) op-

erations, which are executed on dedicated backend SIMD FUs. SIMD operations

behave as vector processing units, where the same instruction is executed on a row

32 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

of data elements simultaneously. Such DLP is exploited in the source code statically,

where performance is highly dependent on the programmer’s ability to express such

computations as parallel vectors, and for the compilers to detect such operations.

To exploit DLP operations, ISAs are often augmented with SIMD instruction

set extensions. SIMD extensions were originally introduced ISAs for computing

multimedia-based applications, i.e. MMX (128b vectors), but were soon also ap-

plied to scientific applications. Such SIMD extensions include SSE (256b) and AVX

(512b) for the x86 ISA, with NEON for the ARM ISA. Accordingly, vector lengths

vary between architectures and ISA extensions. Consequently software may need to

be re-compiled or even rewritten for portability and compatibility between various

processor platforms of different vector lengths [35]. Thus DLP issues remain beyond

the scope of this work.

2.5.4 Control-Flow vs Dataflow

The processors discussed in this chapter, also referred to as Control-Flow based pro-

cessors, use a memory system to store instructions and data, where instruction flow

is driven by a program counter (PC). A program however is an implementation of

an algorithm, which can be represented as a dataflow graph. Such dataflow graphs

consists of vertices and edges which represent instructions and their dependencies,

respectively. Accordingly, complex pipeline structures such as the IQ are used to

reconstruct a limited view of this program dataflow at runtime.

To extract such program dataflow, many works have proposed pure dataflow

processors, which require dedicated programming languages to represent a given

algorithm as a dataflow graph[36, 37]. In dataflow processor systems, the execu-

tion of an instruction is triggered purely by the availability of an instruction’s input

operand data. Triggers are implemented using tokens, where an instruction may

execute when all its input tokens are present. Once executed the result token is dis-

tributed to its consumers, thereafter triggering other ready dependent instructions.

Tokens therefore contain such metadata and independently traverse the pipeline to

trigger functionality. Such a design eliminates the need for a PC and control-flow

processing execution style, where data results may be passed directly from producer

to consumers without the need for complex logic structures as the case of sequen-

Chapter 2 33

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

tial instruction streams. Instructions in data-flow processors may also be discarded

from the datapath/pipeline once executed, versus the ROB method employed by

OoO superscalars.

Accordingly, the success of dataflow machines have heavily relied on the follow-

ing requirements: 1) the ability to support imperative languages, 2) the efficiency

of executing hybrid control-flow/dataflow based operations, 3) the need to manage

data structures, memory organization, loops, and sub-functions in hybrid models

and 4) the importance of understanding static and dynamically allocated instruc-

tion placement, tokens etc. Such dataflow processors often require custom compil-

ers and ISA enhancements to support such custom languages. These architectures

therefore cause software compatibility issues in modern programming and comput-

ing. For these reasons, control-flow machines have remained prominent. However

recent works have invoked hybrid control and data-flow techniques to propose ways

to compromise between the advantages of both processor approaches. Such works

are discussed in Chapter 4.2.

Next, this chapter discusses details of multi-threading for increasing performance

and better utilizing a given processor core.

2.6 Single-Thread vs Multi-Threading

A conventional single-thread CPU executes one thread per pipeline. As previously

mentioned, in the case of interrupt, exception or OS call, the pipeline state must be

saved, flushed, where an alternate thread then starts/restores its state and executes.

Similarly for cache misses and branch mispredictions, a single-threaded pipeline may

be stalled for several cycles until resolved, leading to an under utilization of hard-

ware. Therefore although such events are application dependent, single-threaded

cores limit the maximum instruction throughput of CPUs. This leads us to the

concept of executing multiple thread contexts to increase core ILP and TLP. To

accommodate multiple thread contexts, a single CPU core may be amended to sup-

port different granularities of Multi-Threading (MT). The following describes the

three main techniques employed by processors for achieving multi-threading (MT)

on a core: Fine-grained, coarse-grained, and simultaneous.

34 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

2.6.1 Fine-Grained Multi-Threading

Fine-Grained MT processors fetch instructions from a different thread per clock cy-

cle, such that every pipeline stage possesses a different thread’s instructions. This

technique improves pipeline utilization while tolerating control and data latencies,

yielding sufficient throughput by overlapping threads with useful work [38]. Instruc-

tion/data dependency mechanisms and branch prediction are typically not required

as threads do not overlap in the pipeline. Although this may be an effective tech-

nique for hiding latency, single thread performance suffers greatly since one instruc-

tion fetch is performed per thread every P cycles (where P is the total pipeline

stages). Hardware complexities, selection logic, and certain resource contentions are

also problematic.

2.6.2 Coarse-Grained Multi-Threading

Coarse-Grained MT processors execute a single thread context in the processor

until a stalling event occurs. The pipeline’s state is then saved and flushed on such

events, where a different (ready) thread is selected to run in the pipeline. The new

thread is then restored to its previous state and executed. Such context switches

however incur latency overhead, where deeper pipelines are subjected to suffer higher

performance losses [37]. Although this method is much easier to implement in

comparison to other MT techniques, coarse-grained MT suffers from low single-

thread performance while yielding non-deterministic delays and performance.

2.6.3 Simultaneous Multi-Threading (SMT)

Similar to coarse- and fine-grained MT processors, SMT also fetches from one thread

per cycle, however allows multiple threads to dispatch and execute their instructions

concurrently on a given core [15]. Such a technique is supported through the sharing

and duplication of multiple pipeline structures, allowing for highly utilized pipeline

stages and the execution of independent operations from various thread workloads.

As some structures are shared, tags are also necessary for distinguishing thread

contexts and their respective dependencies. SMT therefore requires additional com-

plexities within a processor for better utilizing the datapath and providing higher

throughput.

Diminishing performance returns in SMT CPUs remain an issue as the proces-

Chapter 2 35

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

sor scales to support more thread contexts. Such scalability limitations are due

to blocking, contention, structural hazards, potentially longer pipelines, and thread

over utilization. Accordingly commercial CPUs do not exceed 2 threads per core for

more strict memory models (i.e. x862), and up to 8 threads for relaxed memory mod-

els (i.e. SPARC etc). Similar to other MT techniques, single-thread performance

also degrades as threads scale due to thread selection, resource sharing and block-

ing. Consequently, the amount of threads executing per core must be restricted to

trade-off performance and hardware constraints, resource contention, and the over-

all instruction parallelism found within a general purpose workload. SMT support

for embedded CPUs however has not been implemented since a slight increase in

performance for embedded workloads is at the expense of energy consumption and

extra hardware logic.

Although SMTs have both their advantages and disadvantages, multi-threaded

workloads may also be deployed on multi-core models, described next.

2.7 Multi-Core Models

Technological innovation stems from the principles of Moore’s Law and Dennard

scaling. Dennard scaling suggests that maintaining constant electric fields and re-

ducing transistor dimensions by 30% every two years will allow MOSFETs to con-

sume less power and maintain reliability [1]. Thus Dennard forms the basis of

Moore’s Law: as transistors continue to scale, the number of transistors within a

chip will double approximately every two years.

Transistor scaling has accounted for almost three-orders of magnitude in perfor-

mance improvement over the past 20 years of processor history [1]. According to

Dennard’s scaling, as transistors are scaled by 30%, their area reduces by 50% to

double the density of every technological generation. Scaling also reduces a tran-

sistor’s delay by approximately 0.7x, conversely increasing frequency by 1.4x [1].

Furthermore, by keeping the electric field constant, supply voltage (Vdd) can be re-

duced by 30%, in turn reducing power by 50%3. Chip architects have been successful

at increasing frequency and creating complex architectures within a power budget

by exploiting these transistor trends.

2Referred to as Hyper Threading (HT) by Intel
3Since Pdyn = αCV2

ddf, assuming a constant activity factor α

36 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

As presented in the Introduction chapter of this thesis, Fig. 1.2 outlined CPU

trends from the 1970’s until 2016, including the number of transistors, frequency

of operation, and the thermal design power per microprocessor for more eminent

architectures. Similarly Fig. 1.1 displayed the architectural advances and energy

efficiency of processor styles. Specifically, Fig. 1.2 displays that beginning in the

early 2000’s, transistor counts continued to increase while the effects of clock speed,

power, and performance concurrently became elusive. As a result, the CPU scaling

trend no longer followed Moore’s law or Dennard’s scaling. In order to restore such

parallelism, performance, and the benefits of CPU scaling, multicore architectures

were introduced around the mid 2000’s. As seen in Figure 1.1, these multicore (non-

deep pipelining) methods were able to revive performance and power scaling by

liberating processors of their expensive and inefficient techniques, towards a simpler

means of extracting parallelism. It is evident however that the last few multicore

generations have provided a performance/watt plateau as displayed in Fig. 1.1.

2.7.1 Motivation

The main concept behind multicore systems as demonstrated in Fig. 1.1 and 1.2

is to trade design complexity for power/area efficiency. Accordingly, symmetric

(homogeneous) multicore (SM) architectures employed often adopt one of two de-

sign methodologies: connect a large number of small, simple in-order cores to deliver

high thread-level parallelism and power efficiency, or a smaller number of OoO SMT-

based superscalars to negotiate between single- and multi-threaded performance [39].

Additional hardware units are also necessary for symmetric multicores to maintain

coherency, communication, and memory semantics among the cores.

Although certain SM’s may tolerate low-power in-order cores by compensating

low single-thread performance for an abundance of thread-level parallelism, general

purpose systems still require the single-thread performance and high ILP provided

by aggressive, OoO processors [40, 41]. In order to directly compensate for the lack of

single-thread performance in symmetric multicore systems, heterogeneous multicores

were proposed [38]. These systems contain cores of various sizes, performance, and

complexity to compromise between single- and multi-thread performance. They

typically consist of few aggressive cores for sequential code execution and other

core models (i.e. SMT, simple in-order) which are dedicated to increasing on-chip

Chapter 2 37

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

throughput and TLP. Although results suggest that the cores are able to speed up

sequential applications in comparison to a purely symmetric approach, several issues

such as scheduling, core configuration, uniform ISAs, and utilization remain an area

of research [1, 42]. Successful implementations of heterogeneous MP include ARM’s

big.LITTLE processor series.

2.7.2 Limitations

Since 2005, processor designers have steered towards increasing core counts to exploit

Moore’s Law rather than focusing on the importance of single-thread performance.

As seen in Fig. 1.1, non-deep pipelines in conjunction with a multicore architec-

ture obtained a 3.5x performance/watt average improvement in comparison to the

previous generation. However slow performance improvements have been observed

thereafter as chip architects must limit the frequency and number of cores to keep

power within reasonable limits [1]. It is also imperative that a certain performance

gain is acquired with every advancing computing generation despite the decline of

transistor and frequency scaling [43]. Majority of multicore hardware research how-

ever has been directed towards energy efficiency and specialization.

The work of Esmaeilzadeh et al [43] assess Dennard’s scaling and various other

characteristics to predict the number of future multicore scaling generations we are

to expect. Combined with ITRS’s optimistic projections, the study predicts that

the best average speedup attainable from multicore systems will be 16% per year

until 2024 when the 8nm technology is reached [43]. This figure is fairly accurate

given that Intel’s Haswell processor only provides a 14% performance improvement

(on average) when compared to its predecessor.

Based on these trends it is evident that the performance gains and energy effi-

ciency we have grown accustomed to cannot be achieved through advances in con-

ventional architectures and simply relying on transistor scaling. Whether these

trends terminate due to energy/performance scaling issues or Moore’s law remains

unknown. Regardless, the goal of delivering performance and compatibility with ev-

ery advancing computing generation will remain a constant goal for architects. To

continue these trends, it is important that technological dependencies are mitigated

by researching novel architectures which diverge from the standard model of com-

puting. This thesis now briefly discusses other well-known alternative computing

38 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

models.

2.8 Very Long Instruction Word (VLIW)

VLIW processors move the complexity of the hardware to the compiler, providing

more of an intuitive compilation process. Using this technique, the compiler may

extract higher ILP from a sequential instruction stream using a wider issue width.

VLIW architectures exploit such operation parallelism by positioning ALUs/FUs of

specific types horizontally in the processor. Very long instruction words are created

statically by the compiler according to the pipeline of the underlying architecture.

The processor then fetches these long instructions consisting of multiple operations

which must simply be decoded and executed, effectively reducing front-end band-

width (i.e. fetch, decode, rename etc). A demanding amount of memory however is

required to store such wide instructions.

As VLIWs are more compiler intensive, the CPU’s hardware and logic are also

much simpler in design, exhibiting lower power consumption and on-chip real estate

in comparison to superscalar OoO models. In addition, VLIWs do not require haz-

ard detection or hardware units such as register renaming or ROBs since all issues

are resolved by the compiler through static scheduling. Although VLIWs are simpler

in design and obtain a higher frequency of operation, the ingenuity of superscalar

designs were able to quickly match such performance gains. Examples of VLIW

processors include Intel’s i860 and Transmeta’s Crusoe [44].

VLIWs ideally depend on an abundance of application ILP and operation paral-

lelism to exploit their full potential. However, if insufficient application parallelism

is present, the architecture hardware units are underutilized and unscheduled slots

translate to wasted power and hardware. To address such limitations, techniques

such as loop unrolling have been used for aggressive execution in VLIWs at the

cost of increased code size and additional memory storage. VLIW binary compati-

bility also poses as a problem, since the compiler is designed based on an exposed

pipeline (i.e. the pipeline specifications and latencies of the ALUs/FUs present in

the processor). Different VLIW processor implementations may consist of different

microarchitectures per generation, and hence maintaining binary compatibility for

software across various models becomes problematic. Therefore VLIW advantages

are at the expense of a complicated compiler design, and the loss of a pure dynamic

Chapter 2 39

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

issue/execution method as the case of superscalar OoO processors.

OoO execution allows a core to dynamically determine its operand status, versus

VLIWs which assume and schedule instructions based on the compiler’s knowledge

of the microarchitecture. Thus if the instruction takes longer than anticipated, i.e.

a cache miss, the processor must stall as the compiler considered a certain latency

for the cache access; the compiler can not predict the outcome of a branch. Con-

versely OoO superscalars may schedule and execute other independent instructions

in such cases, effectively increasing performance. The dynamic approach of the OoO

superscalar therefore allows compatibility across processor generations with generic

compilation processes which is independent of the underlying architecture unlike the

static compilation.

2.9 Explicitly Parallel Instruction Processors (EPIC)

EPIC architectures extend many VLIW concepts by integrating both a static and

dynamic approach for handling instruction streams. Although EPIC processors are

statically scheduled, they require extensive software/hardware assistance to pro-

vide the processor with information to deal with events such as branch prediction,

load speculation, and necessary exception handling. As a result EPIC architectures

require mechanisms to communicate this parallelism to its underlying hardware [45].

Many measures have been taken by EPIC-based architectures (such as the Ita-

nium IA-64) to mitigate the effects of VLIW processors. For instance, decreased

code sizes are managed by compressed instruction storage [20] and software pipelin-

ing [46]. To address binary compatibility, processors such as the IA-64 provide ex-

tensions for aggressive software speculation which overcome hardware dependency

limitations [21]. For branching, methods such as predicated branch execution and

trace scheduling have been employed. Latency and memory operations also remain

problematic, with possible solutions including software prefetching and cache hier-

archy storage prediction [46, 47]. Consequently, although EPIC models solve certain

VLIW limitations, they also have much room for improvement.

40 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

2.10 Digital Signal Processors (DSP)

DSPs are considered special type of processors used in embedded applications for

digital signal processing. DSP hardware units are somewhat diverse from traditional

general purpose processors, consisting of special purpose hardware to directly deal

with signal processing. For instance, a DSP will often be chosen over other embedded

processors if an application is in extensive need for a Multiply-Accumulate (MAC)

unit - a unit capable of executing a multiplication and addition/accumulation as one

instruction [21]. DSPs are also used for other dedicated communication algorithm

accelerators.

DSPs are often employed for fixed-point calculations and accordingly possess

extra wide registers that guard against rounding errors. Word sizes in DSPs are

also not restricted to power of 2 sizes as in the case of general processors. Thus

DSPs, such as the Motorola DSP56301, possess a 24-bit data width and 56-bit

accumulator width, versus a typical processor width of 32-bit, 64-bit, etc. For many

of these reasons, DSPs remain predominant mostly in the embedded industry for

signal processing.

2.11 Co-Designed Virtual Machines

As demonstrated throughout this chapter, a processor’s hardware has architecturally

transitioned per computing generation, especially when compared to the original

logic captured by general purpose ISAs. To minimize these interfacing effects and

promote the role of the processor, the concept of virtualization is used. Virtual-

ization places an abstraction layer between resources and the user of the resources

so that the logical view of the system is different from the physical view[7]. This

concept brings forth Virtual machines (VMs) which virtualize a full set of hardware

resources, i.e. a processor, memory, storage and peripheral devices, and emulate

them on another underlying system. Specifically, VMs may be implemented as in-

dividual process and/or complete OS environments. Such virtualization therefore

allows for program to architecture flexibility.

Co-designed VM technologies however differ from VMs as their prime goal is

to provide intrinsic compatibility at the ISA level [7]. Co-design VMs relieve ISA

impositions by virtualizing one processor’s instruction set to another. Specifically,

Chapter 2 41

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

VM software is used to maintain software compatibility, translating a program’s

instructions of a given target ISA to another (possibly new) ISA which is supported

by an alternate underlying processor. Such a process therefore translates virtual

instructions to real instructions so that they may be understood by the underlying

architecture. This method is primarily invoked to enhance and/or remove function-

ality from the catered underlying architecture to increase a processor’s performance

and/or energy efficiency. It is therefore required that co-designed VM software be

designed concurrently to a processor’s architecture to promote such ISA flexibility

and software compatibility.

Eminent works of co-designed VM implementations include Transmeta’s Crusoe[44]

and Nvidia’s Denver [48]. These works have attempted to implement runtime (dy-

namic) co-designed VMs to accelerate performance on-chip at the trade-off of soft-

ware complexity. Both works implemented software compatible VLIW pipelines

to support wide issue execution, aiming to simplify the underlying hardware and

maintain software compatibility for VLIW processors. To mitigate runtime soft-

ware overhead, these co-designed VM cores include translation caches which hold

previously translated (recurring) functions to speedup execution[48]. Consequently

non-previously decoded phases suffer a decoding penalty to support dynamic soft-

ware translation process especially when compared to hardware execution. To de-

crease this decoding overhead, processors such as Denver multiplex the VM with a

hardware-based decoding stage so that previously non-translated code phases may

be redirected to hardware, effectively decreasing software overhead [48].

Co-designed VMs are a viable solution for enabling new hardware architecture

and techniques which may otherwise be limited by ISAs and prohibited by backwards

compatibility. Although there are certain difficulties to the approach, more research

emphasis would prove promising for increasing performance of software/hardware

in processor architectures.

2.12 Summary

This chapter provided detailed information pertaining to various factors within pro-

cessor computing. The background provided in this chapter illustrated various con-

ventional processor models, discussed the concept of instruction sets, and demon-

strated the general need for the improvement, scalability, and innovation within cur-

42 Chapter 2

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

rent generation processors. Accordingly, the need to design unconventional models

which completely deviate from conventional models poses as an attractive solution.

This thesis now discusses and overviews the proposed architecture design of this

thesis.

Chapter 2 43

Chapter 3

ConSSTEP Overview

3.1 Introduction

Now that sufficient background knowledge has been provided on processor architec-

tures, this chapter provides a general overview of the thesis’ proposed approach –

ConSSTEP, outlining the core’s compilation process and architecture. Specifically,

this chapter provides an overview of the ConSSTEP core, detailing any assump-

tions made throughout the processor’s design. Thereafter the general compilation

process is described, along with the microarchitectural and architectural flow for

executing the compiled data, where an example of ConSSTEP’s execution flow is

then provided. Thereafter, a brief discussion on the advantages of the ConSSTEP

approach is provided, and directly compared to the limitations of conventional pro-

cessor methods, structures, and pipeline stages, in addition to the static compilation

approach of VLIWs. Finally, although ConSSTEP presents many advantages such

is accomplished at certain trade-offs, discussed in detail during the final section of

this chapter.

3.2 General Overview

The overall ConSSTEP flow is presented in Fig. 3.1. ConSSTEP is a multi-threaded

configurable processor consisting of multiple engines. Each engine possesses a vary-

ing number and type of functional units (FUs) connected through a registerSwitch

(rS) interconnect. Each engine is dedicated to a single thread’s workload using a

low complexity and scalable logic design. Multiple engines work simultaneously on

a core to provide high throughput and TLP flexibility for multi-threaded applica-

44

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

tions. FUs present in the engine may possess varying integer-based functionality

ranging from simple ALU operations, barrel shifting, to complex integer execution,

and hence are referred to as FUs.

An engine’s components execute configuration data as opposed to ISA based in-

structions. Engines mitigate much of the overhead associated with reconfigurability

by compromising between CSPP and RCS approaches to increase performance. Such

configuration logic is generated through a two-layer compilation process. This lay-

ered approach is used to maintain compatibility with current software while catering

to an underlying configurable architecture. The first layer of compilation is referred

to as Logical compilation (i.e. the standard compilation process), and the second

stage referred to as Physical compilation (i.e configuration data generation).

The overall goal of a PhysC is to provide the advantages of a smarter compilation

process1 and the software compatibility of co-designed VMs [44, 48] with minimal

runtime overhead. A PhysC’s main objective is to obtain a compiled binary and

perform macro-processing, generating bundles of microcode logic so that a general

purpose application may execute on an underlying configurable architecture. The

PhysC’s approach eliminates software compatibility issues such as those experienced

by VLIWs and VMs by co-designing the PhysC with the processor architecture, how-

ever taking a pure hardware approach during runtime. Accordingly, a coarse-grained

macro-processing approach is used to translate data/instructions versus co-designed

VMs which simply convert one ISA to another (fine-grained method), incurring high

software overhead. Instructions are decoded, renamed, ordered, and translated to

configuration logic, to eliminate the runtime bottleneck of VMs and execute purely

on hardware. The ConSSTEP architecture also completely deviates from conven-

tional models by using such configuration logic, and is able to adapt to general

purpose workloads, eliminating many VLIW and superscalar impositions through

a new datapath design. By using such a layered approach, ConSSTEP is able to

modify internal microcode between processor generations with full software compat-

ibility.

1Referring to the static and intuitive compilation processes of VLIWs and EPICs

Chapter 3 45

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

3.3 Assumptions

The following work and methods assume a Unix-based file system and RISC target

ISA. This approach allows the PhysC to implement a simple instruction decoding

phase, with fixed length instructions and one operation per instruction. The PhysC

flow also assumes that a given benchmark may be translated to instructions using

any compiler, however the methodology elaborated upon in this work assumes a

gcc/g++ compiler for a target RISC ISA. The architecture also assumes precise

exception handling. Although a PhysC and ConSSTEP core may be designed and

scaled to any Operating Systems (OS), compilers, and ISAs, such implementation

remains future work.

It is also assumed that benchmark applications may be of single and/or multi-

threaded programming models such as OpenMP [49] and PThreads. As the main

objective of this work is to increase single-thread performance within multi-threaded

workloads, such programming models must be considered. In the case of OpenMP,

the thread parallelizing model is initiated from a master thread which spawns (i.e.

forks) slave threads when a given task in the program is specified as parallelizable.

A task is specified as parallelizable using ”pragma” keyword statements embedded

by the programmer into the code[49]. The OpenMP model therefore takes a higher-

level approach to coding multi-threading applications, where the master thread forks

threads during runtime at pragma locations so that threads may execute concur-

rently. Threads then join back to the master thread once the parallelized code

has been executed using barriers (i.e. thread wait statements which synchronize all

threads).

PThreads conversely follow a more lower-level model with complex programming

constructs, requiring explicit programming effort at a fine-grained instruction level.

Accordingly, the programmer must specify forks, joins, mutexes, and signalling be-

tween the threads and ensure program correctness. Due to such a low-level multi-

threading approach, Pthreads are invoked in the C programming language, whereas

the higher-level OpenMP model may be applied to a wider variety of languages (C,

C++, Fortran). Accordingly, ConSSTEP and the PhysC support all such languages

and multi-threaded models.

Finally, considering other programming models such as OpenCL, CUDA etc

46 Chapter 3

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

which integrate various processing models within a heterogeneous core (i.e. GPUs,

accelerators etc), ConSSTEP may be fully supported. Specifically, ConSSTEP was

designed as a power and performance efficient substitute to a SMT model. Since

the heterogeneous compilation process extracts program phases and compiles them

according to the core which it must be redirected to, ConSSTEP may be fully

supported. That is, ConSSTEP is fully compatible with conventional single- and

multi-threaded ISAs and compilers, and therefore may retrieve the binary which is

generated, redirecting it for processing to the PhysC. Since ConSSTEP also sup-

ports barriers and memory coherency in a similar manner as conventional CPUs, no

issues arise for core integration within a heterogeneous system.

Figure 3.1: ConSSTEP Top-Level Overview

3.4 Compilation Process

The left of Fig. 3.1 illustrates a standard compilation process. That is, a bench-

mark is input to the logical compiler (i.e. any standard compiler) to generate a

binary. Precompiled binaries therefore do not require any recompilation assuming

the next step, i.e. Physical Compilation (PhysC) also supports the same target ISA.

Chapter 3 47

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

In order to generate data for the underlying configurable architecture, the binary is

sent to the PhysC for further processing. With the binary, the PhysC is able to use

its embedded microarchitectural information to 1) gather instructions to form bun-

dles (terminated on conditional branches), 2) perform instruction analysis within a

bundle to eliminate internal data hazards, which is then used to 3) extract intra-

and inter-bundle dependencies, where duplicate bundles are removed, 4) select the

most suitable execution engine per thread, assigning individual instructions to an

engine’s internal FUs, 5) determine the data transport of operands with respect to

their dependencies (rS interconnect, storage, propagation etc), and finally 6) gener-

ate configuration data for the engines and their respective configurable components

to execute the given thread workloads.

Once generated, configuration data is routed to its respective engine and con-

figuration memory bank (Fig. 3.2), where bundle addresses and dependencies are

provided to the scheduler. Alternatively, scheduling may also be handled by the

OS. However since this work’s objective is to maintain software-based compatibil-

ity, it assumes an on-chip hardware scheduler where threads are managed by the OS.

Figure 3.2: ConSSTEP Execution Process (Single Engine)

48 Chapter 3

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

3.5 Architectural Flow and Pipeline

As previously mentioned, ConSSTEP is a general purpose multi-threaded proces-

sor consisting of variable sized engines, where each engine comprises of FUs in-

terconnected through a registerSwitch (rS) network, shown in Fig. 3.2. The rS

interconnect is a configurable topology where rS units are programmed by the gener-

ated configuration logic, dictating the topology’s communication characteristics for

a workload. That is, an rS interconnect may be programmed to provide distributed

storage and/or single-cycle data propagation between dependent instructions per

clock cycle. Accordingly, an rS interconnect allows an engine to temporally con-

figure itself per cycle to support various data transfers and storages, adapting to a

given thread’s execution workload. A simple example of an rS unit’s architecture

for the latching and/or propagation of data (consisting of a single input and output

port) is displayed in Fig. 3.3. The configuration registers shown are loaded with the

PhysC’s generated bits, in turn dictating the control logic for a given rS port at a

given cycle. A given input port may temporarily store and/or propagate a value as

required, mitigating unnecessary buffering and/or data movement (further details

provided in Chapter 5.2). The FU functionality itself is not configurable, however

the PhysC must determine each FUs operation per cycle according to the workload.

Figure 3.3: rS Architectural Functionality (Single Input and Output Port)

Each engine also possesses a small external architectural register file (EARF)

to maintain software compatibility and the basic registers required of the target

ISA. Specifically, the rS interconnect is responsible for managing propagation and

temporary storage among instruction within a bundle, i.e. intra-bundle dependen-

cies, without the need of register file intervention. However a thread consists of

Chapter 3 49

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

many bundles, where a bundle’s final operands may be input to the next (depen-

dent) bundle scheduled afterwards i.e. inter-bundle dependencies. To satisfy such

inter-bundle dependencies, any final architectural register values present within a

bundle (operand results which are not required further by instruction consumers)

are written to the EARF, where subsequent bundles may use such data to satisfy

the inter-bundle dependencies of a thread. However since the rS interconnect is able

to maintain majority of operand lifetime within an engine/bundle, reads and writes

to the EARF are decreased significantly.

Figure 3.4: ConSSTEP Basic Pipeline

ConSSTEP’s basic pipeline is shown in Fig. 3.4. As seen in the figure, Con-

SSTEP eliminates majority of conventional pipeline stages and places more empha-

sis on data processing. According to the pipeline’s first stage, the scheduler sends

out a bundle ID for execution which is read from the configuration memory. In the

second stage, the engine is configured while any input data is read from its respective

location (EARF or cache). The third phase executes the bundle while performing

any writebacks, where the final pipeline stage is responsible for final writebacks and

providing the scheduler with the branch outcome. Using the outcome, the scheduler

then determines the next bundle to execute, where the respective bundle ID’s sent

out by the scheduler for configuration and pipeline flow continues. It is also worth

mentioning that although the configuration and execution pipeline stages are pre-

sented as a single pipeline stage, each stage is inherently pipelined and takes several

cycles to complete (i.e. configuration may take up to 10 clock cycles, execution of a

bundle varies etc). Each stage however is represented as one in the pipeline figure

as they are considered the same pipeline phase.

Although the presented pipeline eliminates many conventional front-end stages

and logic, it is not ideal as the clock cycles attained by eliminating such processing

overhead have been redirected to the cycles required for engine configuration. Con-

50 Chapter 3

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

sequently very minor performance gains, if any, would be expected of ConSSTEP

with such a pipeline. A more aggressive technique is therefore sought to conceal

such latencies and exceed the performance of current SMT and monolithic OoO

superscalar cores.

Figure 3.5: rS Unit - Double Configuration Register Setup

To adequately conceal configuration overhead, a two configuration register setup

is used by ConSSTEP’s engine structures. The idea behind such a registration

scheme is to simultaneously pre-configure and execute a bundle for a given engine.

An example of an rS unit’s double configuration register setup is shown in Fig. 3.5.

As seen in the figure, while the multiplexer is set to execute one configuration reg-

ister set (select bit), the other may concurrently be configured to effectively conceal

any setup overhead.

Using double configuration registers, the proposed aggressive pipeline is pro-

vided in Fig. 3.6, consisting of two engines with a single-thread’s workload mapped

to each. As seen in the figure, such a pipeline now eliminates both conventional

front-end limitations, in addition to configuration overhead. The scheduler however

must now keep track of bundle dependencies, predictions, and completions for all

running engines. A more illustrative example which explains the pipeline in further

detail, referring to the execution process presented in Fig. 3.2.

As seen in Fig. 3.2 (Step 1), the scheduler outputs an ID i.e. configuration

(config) address when a bundle is ready for execution. The bundle’s config mem-

ory address is then used by each engine structure’s memory bank to read in the

configuration bits contiguously stored (Step 2a). These bits are then loaded onto

each engine component’s configuration register, where any external values (EARF

Chapter 3 51

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 3.6: ConSSTEP Aggressive Pipeline (2 Engines)

reads and/or cache loads) needed are simultaneously obtained and stored to the

Read Register Buffer (RRB) (Step 2b). This phase is referred to as the engine

configuration and external read process (external values required for the bundle to

commence execution). Once loaded, each individual bit in the configuration register

is used to dictate the unit’s control logic per clock cycle during execution.

Therefore once the configuration and external read phase have completed, execu-

tion commences (Step 3b). As instructions execute on the FUs, data is propagated

throughout the rS interconnect as topologically configured, where data may also be

temporarily stored in the distributed rS units if needed later by proceeding instruc-

tion(s). External FUs not present within the main engine may be shared between

engines for more complex instruction execution such as load/store units (LSU) for

memory references. Such unit interfacing is completed on behalf of an engine’s

RRB and Write Register Buffer (WRB). Each engine also possesses a condi-

tional branch unit for executing branches (as bundles terminate upon conditional

branches) (Step 4a), which is also predicted by the scheduler’s branch predictor.

Therefore when the correct branch outcome is computed by the engine during ex-

ecution, it is sent to the scheduler to verify its prediction and signal bundle com-

pletion. At this time, any final data values pending in the WRB are also written

or stored to the external register file and cache, respectively. Since the engine has

already been pre-configured for the next bundle, it may read any external values

necessary while the scheduler verifies its branch prediction. Assuming a correct pre-

diction, the new bundle then continues to execute where the next predicted bundle

configures the alternate register set (i.e. the register set which has just completed

52 Chapter 3

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

execution, assuming the correct branch prediction outcome). Further architectural

and execution details, including branch mispredictions are discussed in Chapter 5.

3.6 Execution Example

An example of a bundle executed on a four-FU (4-FU) ConSSTEP engine is pre-

sented in Fig. 3.7. The bundle to be executed (represented as instructions here)

is provided to the right of Fig. 3.7, where the circled numbers signify an instruc-

tion’s execution time as determined by the PhysC. Instructions are displayed as

<operation, result, operand1, operand2>. The engine’s path of execution for the

listed instructions is provided on the engine’s datapath, temporally and spatially

configured with the bits loaded to each component’s configuration register. Various

dashed lines and colours used in the figure represent execution in different clock

cycles.

Figure 3.7: ConSSTEP Execution Example for 4-FU Engine

In the first cycle, the OR and AND instructions are executed (opcodes buffered

in their respective FUs), each obtaining their source data from the RRB (i.e. ex-

ternal register reads and/or immediate values buffered during configuration). The

result generated by the OR instruction is then needed twice thereafter by the SUB

instruction executed during the second cycle. The first cycle’s AND instruction

is also a producer for two other instructions, once in the next cycle for the ADD

instruction, and once in the third clock cycle for XOR. Since the operand (’5’) is

Chapter 3 53

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

required at two different times, the result must be both propagated and stored in

the first clock cycle. Therefore during the 3rd clock cycle, the operand is obtained

from the rS unit storage (marked ’S’ in the 2nd row, 1st column rS), and propagated

to its consumer as required. ’5’ is also a final register value and must be written to

the external register file. In this example, the PhysC schedules the external register

write during the third clock cycle, with the final store instruction (7) also written

to the WRB and thereafter forwarded to the D-cache. As seen in this example, FUs

may execute various instructions, one per cycle, where data flows throughout the rS

interconnect. Instructions continue to execute similarly until bundle termination,

dictated by the branch.

3.7 ConSSTEP vs Conventional CPUs

Now that the ConSSTEP process has been sufficiently reviewed, this section dis-

cusses the benefits of ConSSTEP in comparison to conventional processor structures,

interconnects, and pipeline stages.

3.7.1 Execution

Standard CPUs (including VLIWs) consist of a static set of predefined FUs and/or

sets of FUs (i.e. two ALUs, one Multiplier/Divider, one Branch etc) which dictate a

core’s issue width. CPU’s execute an out-of-order, yet fairly sequential instruction

stream creating a limited view of an application’s data dependency graph using the

IQ. The IQ monitors its dependencies through complex control logic and associative

searches, dispatching instructions once ready. Due to this backend design, a re-

striction exists with respect to the type of instructions and maximum issue width a

CPU may support, and is further limited within SMT models. This limitation brings

forth the need to execute more demanding workloads on heterogeneous multi-cores

to compromise between single and multi-threaded workloads. However only so much

TLP and ILP may be extracted from these workloads as performance is still limited

by sequential execution and a single core’s architecture [38, 50].

ConSSTEP’s back-end consists of execution engines, each which may comprise

of a different number and combination of FUs that execute concurrently and in-

dependently. It is arguable however that not all FUs are needed at a given time,

54 Chapter 3

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

considering both computationally- and memory-intensive workloads. On the con-

trary, the inclusion of such FUs and rS units allow engines to possess flexible issue

widths and distributed storage locations. Such a backend design also eliminates

effects of:

• Continuous access to a centralized register file, with increased read/write port

requirements for wide issue execution

• Unscalable issue widths

• Fine-grained dispatch

• Tile-based hotspots (for distributed architectures)

• Unnecessary broadcasts to the IQ, bypass network, and register file

• Increased logic complexities and the general unscalability of multi-stage bypass

networks.

Encompassing a variety of FUs and engine types also allows ConSSTEP to adapt

from simple to more complex workloads on a single chip, in addition to varying

degrees of TLP while extracting higher performance and ILP. It is also less expensive

in terms of hardware, area, and power to include a few additional FUs and rS units

versus several processors in the case of multi-cores, if similar or better performance

is achieved.

3.7.2 Storage & Interconnect

Several works have addressed issues of value lifetime and redundant register file

bandwidth [6, 8]. According to Tseng and Patt [6], 80% of these values have an

average lifetime of 32 instructions or fewer. Using the PhysC to form bundles and

extract instruction dependencies, experimental testing reveals that on average a

bundle includes approximately 28 instructions, and does not exceed 80 instructions.

Hence majority of operand lifetime may be maintained within a bundle through

such coarse-grained execution (topic revisited in Chapter 9.4.2).

Optimistically assuming computation energy costs continue to decrease through

voltage scaling, that frequency remains fairly constant, and increasing performance

will remain a constant goal, the cost of data movement within a processor begins to

dominate energy efficiency [1, 43]. It is therefore important that data movement be

Chapter 3 55

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

restricted to achieve the increasing benefits of performance scaling. This signifies

that data must be kept as local as possible, and that either the size of the local

storage must be increased (preferably in a distributed manner to maintain access

speeds) and/or producer-consumer dependencies between instructions must be bet-

ter exploited.

rS interconnects within a ConSSTEP engine achieved interconnect scalability

using a torus-like topological infrastructures which possesses temporal storage prop-

erties and single-cycle multi-hop data communication between dependent instruc-

tions. The rS units therefore maintain data locality and propagate multiple results

to their consumers only when required while also eliminating the need for register file

hierarchies (discussed in Chapter 4). Furthermore, configuration data generated by

the PhysC eliminates the need to propagate tags throughout the network as the case

of dataflow architectures, further mitigating data movement and improving energy

efficiency.

3.7.3 ConSSTEP vs VLIWs

ConSSTEP shares similarities to the static compilation approach of VLIWs. VLIWs

however general extend instruction sets with specific instructions, whereas Con-

SSTEP extends the functionality of the ISA by generating control logic for a con-

figurable underlying architecture. By also using a coarse-grained approach, Con-

SSTEP provides more flexibility than VLIWs, extracting both operation parallelism

and data transport patterns while maintaining software compatibility. ConSSTEP

may also execute a variable amount of instructions per clock cycle per thread for

multi-threaded workloads, whereas VLIWs execute single thread workload which

cause core underutilization. The drawbacks of static compilation techniques such as

cache misses, are also mitigated in ConSSTEP with sufficient instruction parallelism

from other concurrently executing threads.

Although certain aspects of the PhysC may resemble a VLIW-like compiler,

the PhysC adopts certain principles from co-designed VMs to support standard

compilers, however implementing a reconfigurable (and/or adaptable) underlying

architecture. VLIWs conversely employ customized primary compilers specific to

their underlying architecture during compilation, causing certain software compat-

ibility issues (i.e IA32/IA64, backwards compatibility issues, and the need for re-

56 Chapter 3

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

compilation). Evidently, the notion of a PhysC allows applications to be distributed

on a wide range of processor types to increase efficiency and promote the processor’s

role, while concurrently managing to conceal the software from the target architec-

ture and avoid the need for re-compilation.

In terms of the architecture, VLIWs also require demanding amounts of register

file ports for wide-issue which contribute to additional power consumption, logic

complexities, and latencies. Conversely, ConSSTEP promotes both scalable logic

and interconnect solutions, reducing register ports, accesses, and storage require-

ments significantly, while supporting scalable data propagation.

3.8 Tradeoffs of ConSSTEP

Although ConSSTEP provides many potential performance, area, and energy effi-

ciency improvements over conventional processors and SMTs, there are trade-offs to

such advantages: configuration memory requirements, and the hardware/software

co-designed PhysC.

Generally, the advantages of configurablity are often at the expense of additional

hardware logic, latencies, and memory storage requirements. These factors are es-

pecially true for architectures which are augmented with configurable logic, such

as the previous work discussed in Chapter 4.4 (i.e. MorphCore, CoreFusion etc).

Conversely ConSSTEP directly considers such constraints by completely redesigning

the datapath to accommodate configurability in a simplistic manner while enhanc-

ing the single-thread performance of multi-threaded workloads. To mitigate latency

overhead, ConSSTEP distributes configuration memory and supports an aggres-

sive pipeline. ConSSTEP also integrates configurable hardware within its datapath

structures to eliminate unnecessary hardware logic, and is able to increase opera-

tional frequency in comparison to conventional processors due to its simplistic logic.

The aggregated memory storage requirements for the configuration data however

are much higher in comparison to a typical processor’s I-Cache (verified in Chapter

9.4.1).

ConSSTEP’s extra memory storage requirements however are at the advantage

of eliminating several front-end pipeline and OoO re-ordering structures, decreasing

the dynamic power and area overhead of a processor. In such a case, the elim-

Chapter 3 57

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

inated front-end (dynamic) logic is replaced with configuration caches which are

used sparsely in comparison to every clock cycle as the case of superscalars (i.e.

once per bundle). The configuration logic used to mitigate the processing overhead

of conventional CPUs however is generated at the cost of a increased software com-

plexity and hardware/software trade-off. That is, the software-based PhysC which

generates configuration logic is used to eliminate hardware-based instruction pro-

cessing overhead and potentially increase issue width.

As previously discussed, the works of Transmeta’s Crusoe [44] and Nvidia’s Den-

ver [48] have attempted to implement runtime co-designed VMs (software) to elim-

inate front-end structures and accelerate performance on-chip at the trade-off of

software complexity. The PhysC concept takes an alternate approach to the Trans-

meta and Nvidia translation/processor envision. Rather than converting one ISA

instruction to another on-the-fly (where both Transmeta and Denver possess an

in-order VLIW-like underlying architecture), the PhysC promotes a static and com-

patible macro-processing translation flow which generates control logic for config-

urable processor architectures, also mitigating several VLIW bottlenecks. Thus the

PhysC compromises between the benefits of a smarter static compilation process

in comparison to VLIWs while supporting the binary compatibility objective of co-

designed VMs. The PhysC concept however requires much more research, especially

regarding the elimination of various memory and aliasing issues. For this reason, the

PhysC is implemented using a trace-based technique in this work to mimic steady-

state behaviour and leave such issues as future work.

The concept of a PhysC therefore remains the greatest trade-off of the Con-

SSTEP architecture, and is heavily reliant on its feasibility. As history dictates how-

ever, VMs themselves were considered as mere academic curiosities which provided

extraordinary system flexibility for certain unique applications [51]. The progress

and research placed in such VMs within the past decade clearly demonstrate that

programmers and research have greater enhanced the area of VMs, and therefore a

PhysC concept may in fact be feasible within the near future.

Finally, it is worth mentioning that the static approach invoked by the PhysC is

also at a loss of the pure dynamic execution style typical of superscalar OoO CPUs.

As discussed in Chapter 2.8, conventional OoO execution allows a core to dynam-

ically determine operand status and execute, versus a static compilation approach

58 Chapter 3

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

which assumes a certain latency during instruction scheduling. Thus if an instruc-

tion takes longer than anticipated, i.e. a cache miss, the processor must stall as the

compiler can not anticipate the miss. Conversely OoO superscalars may continue ex-

ecuting independent instructions to effectively increase performance in comparison

to VLIW. However considering that ConSSTEP directly improves the performance

of multi-threaded workloads and decreases the processing overhead per instruction,

such disadvantages are relieved. The work of Hilly and Seznec has also demonstrated

that even an in-order 4-thread SMT may reach 85% of the performance of a 4T OoO

processor through multi-threaded workloads[52]. Accordingly, the effects of a static

compilation approach are mitigated by supporting such multi-threaded workloads,

OoO compiled execution, and a nuanced underlying architecture.

3.9 Summary

This chapter provided a general overview of the proposed ConSSTEP architecture,

outlining the mechanics of the core. The chapter provided a brief outline of the

compilation procedure, the micro-architectural and architectural flow, any any as-

sumptions made throughout the process. An example illustrating the execution flow

for the proposed core model was provided. Thereafter, the chapter outlined the ad-

vantages which the ConSSTEP architecture possesses over conventional processor

methods, where the chapter concludes with a discussion on the trade-offs to which

ConSSTEP achieves such advantages over conventional core – namely additional

memory to support an re-configurable underlying architecture and the compromise

between hardware and software complexity of the PhysC.

Accordingly, now that the ConSSTEP methodology is understood, the next chap-

ter discusses related work of various processor system research, and compares each

work to the ConSSTEP architecture. Further details pertaining to the ConSSTEP

architecture and compilation process are provided thereafter in Chapter 5 and 6,

respectively.

Chapter 3 59

Chapter 4

Related Work

4.1 Introduction

This chapter provides background on several related processors which have at-

tempted to deviate from conventional models. To discuss thesee works, this chapter

is categorized into the following sections: hybrid data-flow architectures, distributed

and coarse-grained models, reconfigurable architectures and CGRAs, and other ar-

chitectural models. All models are then contrasted and compared to the method

proposed by ConSSTEP.

Hybrid data-flow architectures attempt to expose data-flow like execution in

conventional control-flow instruction streams to increase ILP and TLP. Data-flow

machines previous to these hybrid models were successful, however experienced sev-

eral software compatibility issues and required custom programming languages to

eliminate control-flow instructions. The hybrid approach discussed in this chapter

however maintains software compatibility by integrating ISA extensions and/or cus-

tom compilers to support data-flow techniques (i.e. data triggered execution) for a

given architecture. Accordingly, the first section of this chapter discusses the emi-

nent hybrid architectures of WaveScalar [30] and TRIPS [34, 53]

Distributed and/or Coarse-grained models aim to eliminate the centralized struc-

tures and/or fine-grained instruction execution of conventional CPUs, respectively.

Accordingly, distributed models duplicate and simplify compute units, dispersing

the structures throughout the core. Such units work concurrently to provide higher

TLP and ILP in comparison to conventional cores. Likewise, coarse-grained models

60

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

employ custom compiling techniques to group instructions for coarse-grained ex-

ecution, mitigating some of the control-flow limitations imposed on conventional

processors. Accordingly, this section describes the eminent works of Task Super-

Scalar [54], BRAID [6], WiDGET [55], and CRIB [50].

Next, reconfigurable architectures and Coarse-Grained Reconfigurable Acceler-

ators (CGRAs) are discussed. CGRAs propose the idea of integrating configurable

accelerators into a pipeline or as co-processor for the main CPU, such that the

accelerator may dynamically configure for recurring phases of code. Since the use

of dedicated accelerators may only benefit certain applications, the concept of re-

configurability poses as an attractive solution for a wide selection of workloads.

Similarly, the reconfigurable architectures discussed in this chapter possess certain

properties which allow a core to transition from one core to another dynamically

(i.e. in-order SMT to OoO single-thread and vice versa), compromising between

performance and energy efficiency. Works discussed in this section include DySER

[56], MorphCore[10], and CoreFusion[57].

Finally, other processor models which do not fall into any of the previous cat-

egories with similar objectives to ConSSTEP are discussed in Other Architectural

Models. The models discussed include Stream Processors, and Transport Triggered

Architectures (TTAs).

4.2 Hybrid Data-flow Architectures

Many previous works have applied hybrid data-flow concepts to deviate from the

conventional control-flow OoO processor models to exploit dataflow, instruction and

data-level parallelism. Such architectures aim to provide both execution efficiency

and compatibility with legacy software.

Wavescalar is a custom compiler which works on an extension of the Alpha ISA,

designed for dataflow-like execution [30]. The compiler generates “waves” (i.e. bun-

dles of instructions) which execute on the WaveCache processor. The WaveCache

processor itself is a tile-based processor, where instructions execute on processing

elements (PE), each consisting of a five-stage dynamic pipeline. The internal archi-

tecture is very much similar to a conventional CPU, however functioning on the data

firing rules and tokens of data-flow models. The placement of instructions is deter-

Chapter 4 61

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

mined both at compile-time and runtime, where a hierarchical interconnect is used

to provide data-flow communication among dependent instructions, which may add

latencies for the data bypassing of instructions that are not within the same vicinity.

Although Wavescalar is a novel approach for transitioning away from a con-

ventional CPU model, start-up costs, dynamic instruction loading, discarding, and

context switching exhibit large latency penalties due to the hierarchical intercon-

nect and outer bound L2 data cache placement. Consequently, Wavescalar’s per-

formance is negatively affected for memory-intensive applications. Sequential work-

loads also suffer a performance loss when highly dependent instructions become

scattered throughout the WaveCache, increasing communication costs and intercon-

nect traffic. The compiler and WaveScalar ISA are also strictly dependent on the

WaveCache architecture for instruction placement, and so other execution models

do not necessarily benefit from the WaveScalar ISA.

The TRIPS model is a distributed, polymorphic architecture, capable of stat-

ically configuring its hardware to support variable instruction granularities and di-

verse workloads [34, 53]. TRIPS functions on the innovative and custom Explicit

Data Graph Execution (EDGE) ISA for mixed dataflow/control-flow based execu-

tion. EDGE uses the notion of hyperblocks (i.e. blocks of instructions), where the

role of the compiler is to statically schedule the blocks on the execution model and

exploit dependencies critical to performance. One of EDGE’s most defining fea-

tures however is its direct communication among dependent instructions, achieved

by embedding target operands within an instruction so that results produced can be

directly forwarded to targets versus the register file for dataflow like execution. The

TRIPS processor itself consists of five different types of tiles that are duplicated and

distributed across a platform, where each tile provides a specific pipeline function,

interconnected through various micro-networks.

Although TRIPS provides a significant effort to deviate from conventional mod-

els, the core is only able to obtain limited performance gain due to its microarchitec-

tural organization. As certain micro-networks and tiles lie on critical paths between

dependent instructions, operand delivery and/or data communication act as bot-

tlenecks for purely sequential applications, contributing to unnecessary congestion.

Memory and communication overhead also prove problematic for memory-intensive

applications due to tile positioning of memory. Similarly, although there are many

62 Chapter 4

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

advantages to the EDGE ISA, there are also limitations regarding block and branch

prediction, the high fanout of instruction targets needed to deliver producer results

to their consumers, and compiler dependencies on a grid-like architecture. Further-

more, embedding more information into instructions contributes to fairly large code

sizes, storage requirements, and instruction cache misses. Since the TRIPS architec-

ture employs a custom compiler, the EDGE compiler also lacks certain optimizations

in comparison to other eminent compilers.

Comparison to ConSSTEP

Unlike TRIPS and WaveScalar, ConSSTEP may employ any ISA and/or compiler by

utilizing a two layer compilation approach, eliminating burden on the primary com-

piler and the need to implement ISA extensions. It is true however that both TRIPS

and WaveScalar may also apply a PhysC technique to their works. Therefore when

directly comparing the TRIPS and WaveScalar architecture to ConSSTEP, both

TRIPS and WaveScalar maintain a conventional n-stage pipeline and simply apply

it in a spatially-oriented manner.

Specifically, in the case of TRIPS, tiles are scattered throughout the core, where

each is responsible for a certain pipeline function. ConSSTEP completely deviates

from such a pipeline, allowing the PhysC to handle the front-end stages, where the

actual hardware is solely responsible for execution and data writeback to improve

energy efficiency. Engines also maintain one transport network, whereas TRIPS

requires six, contributing to various contention and hotspot points due to its large,

mesh topology.

Conversely WaveScalar also spatially distributes execution engines within a core

as the case of ConSSTEP. WaveScalar however uses a complete dataflow technique

to transport data through a hierarchical interconnection per wave. Such a trig-

gered dataflow method requires complex tag manipulation and data routing among

FUs. Its hierarchical interconnect (similar to TRIPS) also incurs additional and

undeterministic delays during data transport. Conversely, ConSSTEP maintains

all operand communication within an engine with minimal contention due to the

rS interconnect’s temporary storage system, providing configurability and workload

adaptation. ConSSTEP also maintains a conventional memory system layout, while

amending the pipeline functionality to match or exceed the performance of conven-

tional processors.

Chapter 4 63

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

4.3 Distributed and Coarse-Grained Architectures

Task SuperScalar (TaskSs) [54] provides a well-designed solution for mitigating

the performance effects of control-flow instruction streams by creating tasks using

the OmpSs programming model. The OmpSs model is employed to support parallel

task execution and is extremely similar to the OpenMP paradigm (and in fact has

influenced several OpenMP v4.0 features [58]). OmpSs programs are compiled using

the Mecurium compiler, and spawns a task-generating thread which sends compiled

tasks to the TaskSs front-end. The front-end then decodes inter-task dependencies

at runtime in a similar manner to conventional superscalars, however at a coarser

granularity. Once a task’s dependencies have been met, the task is dispatched to

the backend which consists of a series of interconnected superscalar processors to

execute the ready task(s).

Although TaskSs is able to mitigate several issues of coarse-granular execution

by employing an amended front-end and OmpSs programming model, the TaskSs

back-end simply consists of multiple processors. Therefore the tasks must traverse

through another processor pipeline to execute its intra-task instructions. Hence area

overhead and power consumption are not efficient nor ideal.

The BRAID [6] architecture aims to provide a wide execution core with OoO

performance and in-order complexity by exploiting the small fanout and short life-

times of values produced by a program [6]. Braids are bundles of instructions gener-

ated using an augmented compiler, ISA, and microarchitecture. The BRAID com-

piler invokes a binary profiling and translation process to extract producer-consumer

dependencies for each instruction, embedding hints within the instructions for the

BRAID architecture to exploit at runtime. The architecture itself consists of re-

duced complexity OoO pipeline, where FUs are replaced with Braid Execution Units

(BEU). BEUs execute braids in-order and bypass values to a BEU’s issue queue,

internal register file (for short-lived operands) or the external register file (for other

BRAIDs and BEUs to use), with the aid of the ISA extension. Such a design is able

to reduce each structure’s complexity and the size of the register files.

Significant energy savings come from BRAID’s shorter rename stage and reduced

64 Chapter 4

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

register file accesses. BRAID is also able to give a slight performance increase (1.5%)

when compared to an OoO core equivalent.

The Wisconsin Decoupled Grid Execution Tiles (WiDGET) [55] architec-

ture aims to provide an energy efficient computing structure for OoO single-thread

performance using an in-order approach, decoupling thread management using sev-

eral distributed and clustered simple in-order Execution Units (EUs). Specifically,

the EU’s may execute one instruction at a time (either int ALU, FP ALU, or Address

Generation Unit), where several EUs work concurrently. Once executed, instruction

dependencies are redirected to their dependent EU through instruction steering logic

among the EU clusters. WiDGET aims to provide such scalability without the need

for compiler and/or ISA support. Accordingly, the architecture supports the SPARC

ISA while implementing a priori static allocation policy to map instructions to EUs

and provide performance efficiency.

Experimental testing proved that the in-order resources which WiDGET invokes

are able to provide OoO-like aggressive single-thread performance for majority of

computationally-intensive SPEC benchmarks. However great performance losses

were observed in memory-intensive applications due to its architectural layout.

In attempts to depart from the confinement of traditional OoO processors, the

Consolidated Rename Issue Bypass (CRIB) [50] architecture implements an

innovative approach to the rename, issue, and bypass pipeline stages through struc-

ture consolidation while also maintaining compatibility with current software stacks.

CRIB eliminates large multi-ported physical register files, reservation stations, Reg-

ister Alias Tables (RAT) and the ROB to provide performance and energy effi-

ciency through in-place execution. Specifically, the CRIB architecture employs a

standard gcc compiler and the x86-64 ISA, where instructions are grouped into

bundles of four decoded micro-ops during runtime according to the fetched instruc-

tion stream. The CRIB architecture consists of many in-place execution engines

i.e. entries, where multiple entries form a partition. An entry’s architecture is ar-

ranged in two-dimensions, where data is latched horizontally upon completion, and

computed/propagated vertically upwards (from bottom to top) in program order.

Operands are obtained from the bottom row’s Architectural Register File (ARF)

columns and routed vertically upwards to and from appropriate source and desti-

nation columns for ALU row computation. Once all four (micro) instructions have

Chapter 4 65

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

been executed in every entry and partition, they are committed in a circular fashion

by all CRIB partitions, adhering to program order and eliminating the need for the

ROB.

CRIB relies on a program ordered instruction stream to determine its instruc-

tion chains. Therefore instructions grouped together do not necessarily comprise of

producer and consumer dependencies, limiting the possibility to execute longer in-

struction chains and utilize partitions more efficiently. Consequently such PC-based

ordering imposes negative effects on CRIB performance.

Comparison to ConSSTEP

Both WiDGET and BRAID attempt to provide the benefits of OoO execution with

in-order complexities and energy efficiency. In the case of BRAID, compiler and ISA

augmentations are required by the core which cause certain compatibility issues for

general purpose computing. Conversely, WiDGET is able to provide full compati-

bility, however its general layout and the use of small cores operating in lock step

contribute to inter-core communication costs which prevent the architecture from

attaining further performance. With regards to value lifetime in the case of BRAID,

having multiple copies of architectural register files and an external register file does

not completely address nor provide a complete solution to the data transport prob-

lem.

Conversely, ConSSTEP addresses compatibility issues and value lifetime by al-

lowing the secondary compiler to relieve the burden of redesigning the primary

compiler, while also extracting instruction dependencies within bundles. No amend-

ments are needed by the ISA or primary compiler, while an rS interconnect is used

for both communication, bypassing, and temporary storage between dependent in-

structions to completely mitigate unnecessary data movement and/or register file

hierarchies.

With regards to the TaskSs architecture, although the work is successful at ad-

dressing coarse-granular dependencies dynamically through hardware, it does not

directly address the back-end execution bottleneck. In fact, TaskSs increases power

consumption while requiring the OmpSs programming model which may require re-

programming and re-compilation for certain applications.

66 Chapter 4

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Finally, when compared to CRIB, the CRIB core does not extract instruction

dependencies in the same manner as a PhysC, contributing to additional dependen-

cies and latencies. Each CRIB entry supports 4-entries in a static-like nature, while

consolidating many pipeline stages to decrease on-chip power consumption. The

benefits of a static dataflow-like execution which CRIB tries to extract are funda-

mentally limited by the architecture, instruction streams, and the need to maintain

compatibility with the x86 ISA. On the contrary, a ConSSTEP engine may comfort-

ably support and execute a multitude of instructions per engine in a dataflow-like

manner while also avoiding the burden of ROBs, register renaming, physical register

files, and the issue stage. ConSSTEP avoids ISA and compiler compatibility issues

using the PhysC, and is able to mitigate the power consumption of many other

pipeline stages using a completely nuanced approach to a processor’s architecture.

4.4 Reconfigurable Architectures and CGRAs

The reconfigurable style of computing has received much attention in the past few

years as it has the potential to provide both higher performance and system flex-

ibility at the expense of certain programming effort. Intel’s recent acquisition of

Altera has also steered commercial research towards the possibility of reconfigurable

computing, which would especially be beneficial for high performance applications

which require application acceleration.

An FPGA’s bit-level configurable approach however requires very fine-grained

application customization, a significant increase in design effort, and long compila-

tion times which prove problematic for general purpose computing. Coarse-Grained

Reconfigurable Accelerators (CGRA) have been proposed to mitigate FPGA ef-

fects, raising configurability to the word-level similar to ConSSTEP and reducing

the amount of configuration information necessary for the dynamic customization of

computing systems. CGRAs act as accelerators and/or co-processors to monolithic

CPUs, and encompass several internal computing elements which are interconnected

for dataflow-like execution [56, 59]. CGRAs increase performance however at the

expense of ISA, compiler, and microarchitecture modifications to support custom

instructions which redirect applicable code phases to the backend CGRA unit(s).

Certain CGRAs also require custom programming languages, design flows, and OS

support however [59–61]. Below describes examples of CGRAs also briefly covers

eminent works in the area reconfigurable computing architectures.

Chapter 4 67

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

DySER (Dynamic Specialized Execution Resource) [56] is a CGRA em-

bedded in the backend of a monolithic processor. DySER requires a LLVM designed

compiler and amends the SPARC ISA with custom extensions for interfacing DySER

to a conventional processor. The compiler is responsible for profiling and evaluating

application kernels, determining if sufficient acceleration exists to benefit from a

dedicated pipeline accelerator. The compiler then selects the most prominent recur-

rent kernels, generating memory and computation data for DySER to reconfigure

dynamically according to the kernel’s dataflow requirements. Therefore, when an

accelerated phase of the program is approaching, DySER dynamically reconfigures

to the kernel’s data-flow, acting as a dedicated accelerator within the pipeline.

Although DySER displays significant energy and performance savings, the data

and control communication overhead penalty between the accelerator block and the

CPU pipeline is high. A heavy reliance also exists on the CPU pipeline to provide

DySER with data. DySER’s integration into the CPU pipeline therefore complicates

an already fairly complex front-end, where DySER portrays intrusive integration for

more high performance processors. Furthermore, many compiler amendments are re-

quired to embed and provide phase predictions in advance to dynamically configure

DySER and conceal latency overhead. This is especially difficult and problematic

when considering irregular control-flows and speculative execution. Finally, appli-

cations that do not possess sufficient recurring phases do not benefit from DySER,

in turn increasing static power dissipation.

Other tightly-coupled CGRAs include Matrix [60] and CHIMAERA [62] etc.

which are also integrated within monolithic backend pipelines for executing data-

flow-like phases of an application. Similar to DySER, the ISA, compiler and pro-

cessor microarchitecture require modification to support custom instructions which

redirect applicable code phases to the CGRA unit. Conversely, loosely-coupled

CGRAs such as PipeRench [61] and FPCA [59] etc., act as coprocessors to the

CPU and thus are located externally from the main core. Since the CGRA is

not within the processor pipeline, such coprocessors may be customized for larger

application phases while achieving high energy efficiency for a given kernel. This

flexibility however often comes at the expense of custom programming languages,

design flows, and compilers which contribute to software compatibility issues and

an increase in offload/communication latencies for general purpose processors.

68 Chapter 4

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

MorphCore [10] is a processor core which has the ability to run as a highly-

threaded in-order SMT core for multi-threaded workloads, or an aggressive OoO core

for single (active) thread workloads. MorphCore takes advantage of the fact that ag-

gressive OoO cores are ideal for providing high single-thread performance, whereas

SMT workloads may achieve almost the same performance as an OoO core using

in-order cores at a fraction of the power. In order to achieve such a compromise,

the architecture monitors the number of active threads in a workload, reconfiguring

from one core to the other when a certain “thread” threshold is reached. Specifi-

cally, when the threshold is surpassed, the core runs as an in-order SMT, whereas

when only a single-thread is active, the core runs as an aggressive OoO engine.

Mode switching is at the cost of draining the pipeline, spilling and refilling the ar-

chitectural registers with the active thread(s) data, and shutting down the required

pipeline structures when switching to in-order SMT mode. Consequently, depending

on the overhead of the workload, such switches may be fairly expensive.

Due to MorphCore’s reconfigurable properties, the core can not run at the same

frequencies as its core equivalent, i.e. overheads from switching and the additional

pipeline logic required to reconfigure the structures add to critical path latencies.

Therefore the core can only achieve performance in close range to the throughput

optimized cores, however still experiencing the thread blocking and sharing issues of

a conventional CPU. MorphCore however is able to provide improvements in energy

efficiency.

CoreFusion [57] consists of multiple and identical two-issue OoO cores, where

a bus is used to connect the sets and respective L1 I- and D-Caches to provide

coherence (all cores sharing the L2 cache). When required, each core may execute

independently for high thread-level performance, or be fused in groups of 2-4 cores

to form larger more aggressive cores for wide-issue execution and efficient single-

thread performance. Additional hardware logic is necessary to coordinate the cores,

however contributing to additional energy requirements and limited performance.

Furthermore, larger core configuration have lower performance and higher energy

consumption in comparison to a conventional OoO due to the latencies incurred in

mode/content switching, also requiring pipeline flushes and data migration as in the

case of MorphCore. Experimental testing reveals that MorphCore is able to exceed

the performance and energy efficiency of CoreFusion however.

Chapter 4 69

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

The ReMap [63] and ReKonf [64] architectures also address reconfigurabil-

ity in chip multi-core processor systems in alternate ways. Specifically, the ReMap

architecture provides a solution for reconfigurable fabrics on heterogeneous multi-

core systems, where the fabric is able to build and collapse on-chip communication

buses for customized data transfers between cores according to an application’s re-

quirements. Therefore ReMap provides more flexibility in comparison to hard-wired

busses to overcome limitations of contention in general purpose multi-processors.

On the other hand, the ReKonf architecture reconfigures entire multi-core processor

system environments, activating a certain multi-core setup (i.e. x-CPUs, y-caches)

depending on an application’s requirements, monitored dynamically by the system

which detects such thresholds of operation.

Comparison to ConSSTEP

The processors and CGRAs presented in this section reconfigure to match and/or

accelerate performance, with impositions that come at the hardware and latency cost

of reconfigurability. Conversely, ConSSTEP provides reconfigurable properties with-

out such overhead and performance losses exhibited in majority of these works, in

fact ConSSTEP is able to achieve greater operational frequencies than conventional

cores (see Experimental Results). Specifically, architectures such as MorphCore and

CoreFusion require complete pipeline flushes and context saves in order to transition

to different modes which ultimately contribute to performance loss. ConSSTEP on

the other hand is able to conceal the effect of configuration overhead using a double

configuration register approach, while only suffering configuration overhead during

branch mispredictions and/or exceptional events. In addition, although MorphCore,

CoreFusion, ReKonf and ReMap are able to reconfigure to different core architec-

tures, the architectures still face the same impositions of conventional processor

cores. ConSSTEP instead applies the concept of reconfigurability to directly ad-

dress impositions of a conventional processor with a diverse design for increased

ILP and TLP.

In comparison to DySER and other CGRAs, ConSSTEP is able to extract

dataflow from kernels, but also from the general instruction stream, while integrat-

ing reconfigurable properties within the datapath itself. ConSSTEP conceals setup

latencies and interacts with the memory in the same manner as conventional CPUs

to provide performance gains and the energy efficiency sought by CGRAs. Fur-

70 Chapter 4

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

thermore, the core mitigates the need for any additional logic complexities, while

avoiding alterations to the compiler and ISA, with full software support.

4.5 Other Architecture Models

4.5.1 Stream Processors

Stream processors [65, 66] rely on an abundance of application parallelism and are

optimized for the stream/throughput-oriented execution model. SPs aim to extract

multiple levels of data locality, and the predictability of data accesses in order to

accelerate the throughput-oriented application domain. Such processors contain a

large pool of ALUs, and a two-level register file hierarchy to expose the deep storage

properties and data locality typical of throughput-oriented applications. In order

to reduce hardware complexities for such a register file organization, SPs invoke a

VLIW-like underlying architecture, redirecting result operands to their appropriate

destinations and register file levels.

ConSSTEP’s goal conversely is to improve upon both latency- and throughput-

oriented applications by limiting the disadvantages of SMT CPUs. ConSSTEP does

not require an abundance of ALUs, and maintains compatibility with conventional

compilers and ISAs. SP’s ILP and fine-grained thread limitations are mitigated by

invoking a PhysC using scalable engine structures and the rS interconnect which

relieves the need for register file hierarchies. The PhysC also eliminates the need to

use a static VLIW ISA which contributes to further software compatibility issues.

4.5.2 Transport Triggered Architectures

Transport Triggered Architectures (TTA) [8, 67] are a superclass of traditional

VLIW cores. As opposed to solely extracting operation parallelism as in the case of

VLIWs, a TTA-based compiler also exploits parallelism at the data transport level.

Similar to the objective of BRAID, TTAs exploit the fact that value lifetime and

register file bandwidth are largely redundant. TTAs therefore opt to completely

redesign the datapath to provide data transport and issue-width scalability.

TTAs consist of several FUs and a transport network consisting of various trans-

port buses. Each FU in the TTA is connected to the transport network using one

or more of the bus sockets. FUs are triggered to execute when appropriate data

Chapter 4 71

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

has been moved to its FU-triggered registers (similar to dataflow tokens), where

the result is stored to a FU-result register. Operands may be obtained from FU-

operand registers, FU-result registers, or the general purpose register file. Thus the

compiler must maintain these data locality details while scheduling instructions. In

certain cases, the transport layer for a single instruction may require several moves

to/from the various register types (i.e. result register to operand register, etc). Con-

sequently, for certain applications TTAs require high register to register movement,

where the compiler must integrate optimization techniques so that they may avoid

dead instructions and common operands to decrease register movement.

The compiler compatibility of TTAs raise issues for general purpose computing

for reasons similar to VLIWs. Hence most realizations of TTAs have been employed

for specific applications [67, 68]. The compiler design is also fairly complex, re-

quiring customization depending on the transport buses, clustered connections etc.

Conversely, ConSSTEP aims to exploit both operation parallelism and data trans-

port for general purpose applications while considering engine compatibility. The rS

interconnect mitigates the TTA’s abundance of move instructions using the configu-

ration data generated by the PhysC, where data is only moved if required by another

instruction. Therefore ConSSTEP presents a scalable interconnect and feasible solu-

tion for exploiting value lifetime in general purpose applications, as opposed to TTAs

which may only execute a fixed set of applications and must manually optimized

customized interconnects according to an application’s communication characteris-

tics.

4.6 Summary

Several works in unconventional processor models were discussed in this chapter,

comparing and contrasting the methods used to the proposed approach invoked

by ConSSTEP. All models displayed various advantages, yet certain disadvantages

which ConSSTEP addresses. Accordingly, this thesis now introduces details of the

ConSSTEP architecture in the next chapter, with two-level compilation specifica-

tions discussed in the following chapter.

72 Chapter 4

Chapter 5

Architecture

5.1 Introduction

This chapter outlines the architectural and microarchitectural details of ConSSTEP.

Each structure in the architecture is thoroughly described in this section, including

the rS units, Read Register Buffer (RRB), Write Register Buffer (WRB), Functional

Units (FUs), the external architectural register file (EARF), and configuration pro-

cess for concealing overhead. Floating Point (FP) execution is also discussed, in

addition to exception handling, and data memory accesses. This chapter is pre-

sented prior to the compilation process so details of the ConSSTEP architecture

and microarchitecture are well understood prior to discussing the compilation pro-

cess.

5.2 rS Interconnect

The two types of rS units present in an engine’s interconnect are referred to as ex-

ternal and internal. Referring to Fig. 3.2, the external rS are found at the very

top of the interconnect, connected directly to the RRB and consist of four ports -

two input and two output. An example of an external rS architecture’s port design

is provided in Figure 5.1. These rS act as an interface between the RRB and FU

inputs, and connect the bottom rS units to the top of the torus topology. External

switches do not require storage properties since they are directly connected to the

RRB (which buffer data) and do not receive any FU output. Horizontal propaga-

tion is also not supported by external switches due to an xy routing protocol for the

data transport of operands. Therefore data must first be propagated horizontally

73

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

in the lower levels of the torus network, and traversed upwards. These factors allow

external switches to possess low hardware area and a reduced number of IO ports.

Figure 5.1: External rS Architecture

Internal rS are present in the main communication network (i.e. 2nd rS row

onwards of Fig. 3.2) and consist of six ports- three inputs and three outputs, with

an example of an output port shown in Fig. 5.2. As seen in the figure, all internal

rS input ports consist of a 2:1 multiplexer that may 1) propagate input data, 2)

output a stored value, or 3) simultaneously store and propagate a value. As shown

in the figure, an output port multiplexes all input ports, and therefore all rS output

ports may propagate data simultaneously to neighbouring rS, where all control bits

are determined by the PhysC.

Figure 5.2: Internal rS Architecture

The rS interconnect was designed to support single cycle multi-hop traversal,

signifying that any result may be sent to any FU source input (including its own)

within one clock cycle. To support this feature, the frequency of operation is lim-

ited by an engine’s critical path. As each ConSSTEP engine may vary in topological

size, its respective maximum frequency also varies. As will be further discussed in

74 Chapter 5

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Chapter 7.3.2 however, wire delays only slightly increase as FUs are added to an

engine. This is possible due to the torus topology which the rS interconnect adopts,

stemming from the principles of Network-on-Chip (NoC) architectures.

The objective of NoCs are to replace lengthy buses in computing systems with

short links and switches/routers to provide direct data communication between pro-

ducers and consumers, especially beneficial for latency critical applications. Specif-

ically, the switches are responsible for directing data throughout the network either

statically (according to a packet’s embedded header data), or dynamically (through

Look-Up-Tables and algorithms in the switch). Conversely, the rS units invoke

much simpler configurable logic which dictates the interconnect topology per clock

cycle, versus the static or dynamic overhead which NoCs incur. The link length

between the switches for both NoCs and ConSSTEP are short, and so their delays

remain constant. Such links also allow for lower power and faster performance due

to reduced contention per transfer, decreased wirelength, and lower bus traffic when

directly compared to conventional bus networks [69].

By using a torus topology, performance of the rS interconnect is further enhanced

by allowing opposite edges of the interconnect to be directly connected, effectively

reducing contention and the number of rS units travelled between data dependen-

cies. Such an advantage however comes at the complexity and cost of physically

implementing two different length wires [69] i.e. managing the RC delays of the

main short links and the longer outer grid links. However since the engine size is

restricted to provide single-cycle interconnect latency, these disadvantages do not

affect ConSSTEP as they are directly considered within the design. Performance

is also enhanced with rS units as data travels in the worst case at a critical path

length within one clock cycle and as verified in Chapter 7.3.1, is in the magnitude

of picoseconds. On the contrary, conventional NoCs must make routing decisions

every clock cycle and require pipelining per switch which takes several cycles to

deliver data in comparison to a rS interconnect. Thus the rS design, its single-cycle

delay, and configurabile topology allow for enhanced performance which is especially

important in the latency-sensitive operations required in processor design.

Chapter 5 75

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

5.3 Read Register Buffer (RRB)

Figure 5.3: Internal RRB Architecture

The Read Register Buffer (RRB) is responsible for managing external data input

and communicating such data to the engine’s components as needed during execu-

tion. An example of a RRB’s architecture is provided in Fig. 5.3. In general, RRB’s

manage:

• External register file reads and loads during configuration and communicate

these values to the required rS during execution.

• Internal loads (requested by the WRB during execution) and communicate

these loaded values to the required rS

• The communication of immediate values to the required rS, as configured by

the scheduler/bundle data

• Incoming external unit results, which are communicated as programmed to

the correct rS

Similar to the rS interconnect, the RRB is also provided with configuration data

so that multiplexers directly connected inside the RRB to the rS interconnect may

communicate data to each of the four external rS engine inputs as propagated.

5.4 Write Register Buffer (WRB)

The WRB’s main objectives are to manage external instructions issued by the en-

gine, and to communicate the data to their respective external units. Although the

76 Chapter 5

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

WRB is not as complicated as the RRB design, it must properly interface external

units and manage concurrent requests made by the engine. For this reason, a queue

is included in the WRB to manage pending requests, but is infrequently required

due to the scheduling techniques provided by the PhysC. The WRB must also han-

dle the request and grant signals to external units shared between multiple engines.

Based on these signals, if the RRB has not received a result after a specific time

(i.e. four clock cycles for a load etc), the engine will stall until the pending data is

received. Finally, the WRB manages the writeback of its final bundle values to the

external register file as executed and configured.

5.5 Functional Units

FUs present within a ConSSTEP engine may be of any type including (but not lim-

ited to) ALUs (with barrel shifters), complex integer (including multiplier/divider),

Multiplier-Accumulator units (MAC), and accordingly referred to as FUs. A low

complexity conditional branch unit is also included to execute each bundle’s final

branch instruction. To support conditional branch execution, an engine contains a

flag status register which is updated as instructions execute.

An example of the general FU architecture used by ConSSTEP is presented in

Fig. 5.4. The configuration setup is similar to the rS, however the functionality of

each FU/ALU is not programmable. Rather, the functionality of each FU is deter-

mine a priori, however the operation which the FU executes per cycle is determined

by the PhysC. Once executed, the result is latched and thereafter propagated and/or

stored as required in the next clock cycle. In the case of FP FUs or other more com-

plex operations, such units and the respective data must be pipelined; however the

overall architecture remains the same.

External to each engine are dedicated load/store unit(s) (LSU). This unit receives

load requests made by the engine’s WRB, fetches the cache data, and outputs the

received data to the RRB, in turn propagating the value to the requested FU/rS. A

load therefore takes approximately four clock cycles to execute, as standard in ma-

jority of conventional processors. The LSU also executes and sends stores to cache,

where the Load/Store Queue (LSQ) and Miss Status Holding Register (MSHR) are

responsible for handling any misses and memory dependencies.

Chapter 5 77

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 5.4: Internal FU Architecture (ALU example)

Any external units shared between engines are interfaced in a similar manner

to the LSU. Such external units may include complex integer, multiplication and

division units etc depending on the architecture and frequency of such operations in

general purpose applications. A separate engine unit is also dedicated for FP instruc-

tion execution, where FP and integer data are forwarded to their complementary

engines through the RRB and WRB (further details of FP execution provided in

Section 5.7.2). Accordingly, the PhysC relies on an exposed pipeline to plan for the

execution and transport of various instruction types and operations.

5.6 External Register File

A small architectural register file is placed in the ConSSTEP backend per engine,

referred to as the external architectural register file (EARF). As mentioned previ-

ously, the PhysC is responsible for renaming and hence a large physical RF and

its associated renaming logic is not required by the processor. The external RF

is therefore an architectural RF with the basic registers required by the ISA. The

EARF is accessed by an engine prior to bundle execution for reading bundle input

values, used during execution, where final register values are written back to the

EARF as they are produced within the engine for subsequent bundles to read as

input data. Since ConSSTEP directly addresses the single-thread performance of

multi-threaded processors, external register files are replicated i.e. one EARF per

engine (per thread context), where data is shared between threads using shared L1

cache and lower level memory hierarchies.

78 Chapter 5

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

5.7 Configuration & Setup

Each engine possesses its own configuration memory which is banked into several

partitions to quickly configure engine components as shown in Figure 3.2. Specif-

ically, separate memories are provided for the RRB, WRB, per row of ALUs, and

two dedicated banks for every row of rS to allow for a maximum configuration time

of 10 clock cycles (c.c) per engine (64-bit datawidth). The external register read

and load configuration data also possess individual memory banks to obtain their

values. For more demanding workloads, a multi-level cache system may be invoked

by the configuration memory. In this work however, we assume the configuration

memory footprint resides in the first level cache, where multi-level caches remain

future work. Experimental testing displays that the average external register reads

and writes required per bundle are approximately 4.8 and 3.4 respectively (consid-

ering a dual-port register file per engine), approximately 2 reads per FP engine, and

an average of one to maximum two loads per engine. Hence such requirements meet

the 10c.c/engine configuration time, where instructions exceeding such specifications

are mapped to the next bundle (pending dependency analysis).

5.7.1 Setup Mitigation Techniques

As setup latencies may cause a significant amount of overhead in a reconfigurable

architecture, two propositions for the ConSSTEP architecture are investigated in

this work to reduce setup overhead - the 1) software and 2) hardware approach.

Note however that the hardware approach is considered during the architectural

explanations provided in the previous chapters and subsequent chapters.

Software

In the software approach, a variable configuration time technique is employed by

the PhysC to reduce setup overhead. As applications and thread workloads vary,

the average configuration data required for each bundles execution also varies. Con-

sequently not all applications and execution engines require the same number of

clock cycles during the reconfiguration process (i.e. less than or equal to 10c.c).

Therefore, the concept of variable reconfiguration allows the PhysC to monitor an

application’s configuration time required per engine during compilation.

To support such a feature, the PhysC must monitor the maximum configuration

Chapter 5 79

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

time required by each engine’s component for all application bundles (per thread)

during compilation. Thus using this technique, the PhysC’s Config Data Generation

(see Chapter 6) step is adjusted to keep count of the maximum configuration time

required for all engine components. The PhysC then generates and sends 4-bits, i.e.

representing x cycles, to each engine (once per application thread), dictating the

absolute max configuration time necessary from the configuration memory address

for x clock cycles (versus 10 static clock cycles per banked memory). Accordingly,

an engine must possess a 4-bit register in this case.

Hardware

To provide ConSSTEP with a performance gain and decrease configuration over-

head during execution and/or branch prediction, each engine unit in the hardware

approach contains two configuration registers, for all components, shown again in

Figure 5.5 - one set which dictates control for the currently executing bundle, and a

second set of configuration registers which are configured concurrently for the next

(predicted) bundle. Since configuration memory is distributed and each engine com-

ponent contains its own dedicated configuration memory, the ability to concurrently

execute and configure the engine for the next bundle is feasible. Thus, once the

current bundle has finished executing, the next predicted bundle has already been

configured and may read any external data values, executing while the branch out-

come is sent and verified by the scheduler’s predictor.

Figure 5.5: rS Unit - Double Configuration Register Setup

If the bundle is correctly predicted, the pre-configured bundle continues to ex-

ecute while the next predicted bundle is sent to the engine by the scheduler, suffi-

ciently concealing configuration overhead. If the prediction is incorrect however, the

engine halts its execution (or memory read setup) and reconfigures for the correct

80 Chapter 5

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

bundle while updating the predictor’s branch history. Therefore ConSSTEP suf-

fers a penalty on branch mispredictions only. Performance is also greatly enhanced

in multi-threaded workloads as several engines execute concurrently in ConSSTEP,

where each engine configures and executes in a concealed manner.

5.7.2 Floating Point (FP) Execution

Figure 5.6: FP Engine Architecture

A FP engine is placed adjacent to its integer (INT) engine equivalent as seen

in Fig. 5.6, where the integer unit communicates values through its WRB to the

FP RRB. Considering the frequency of FP instructions, its expensive hardware im-

plementation, and the fact that FP FUs are pipelined, invoking a 2-FU FP engine

was determine to be the favourable solution by compromising between energy, per-

formance, and PhysC complexity. To keep the FP engine simple, rS units are also

eliminated, where the WRB is responsible for controlling dataflow, and the values

temporarily held in the FP register file. Accordingly, the FP WRB is responsible

for forwarding data to the RRB, FP register file, and/or back to the integer RRB

depending on the instruction dependencies and configuration data provided. In the

case where the application and/or thread assigned to the engine does not require

FP support, the FP engine is disabled, determined by the PhysC.

The INT to FP engine dataflow exploits the concept of an exposed pipeline to

route its data and execute operations. Hence, the pipeline latencies and underlying

Chapter 5 81

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

architectures of the FP FUs must be known by the PhysC to form and map bundle

dataflows. FP FUs therefore possess the same pipeline latencies across all engines,

while supporting the same functions as the FUs of a conventional CPU.

5.7.3 Branch Prediction & Loop Acceleration

As previously discussed, the concept of branch prediction in ConSSTEP allows en-

gines to start the next bundle’s configuration process prior to explicitly resolving

the current bundle’s branch. Therefore, by implementing two configuration regis-

ters per component, ConSSTEP is able to mitigate setup overhead and increase

system performance. Referring to Figure 3.2 (Step 4a) however, when an incorrect

prediction is encountered, engine configuration must halt while the correct bundle

ID is sent by the scheduler for engine reconfiguration. Since an engine contains two

configuration register sets per component, it is possible however that misprediction

penalties may be further reduced by consulting the alternate register set (i.e. the

register set which has just completed execution).

As previously discussed, superscalar OoO processors may achieve loop accel-

eration by using dedicated pipeline units to monitor loops. These units may be

duplicated per thread and/or shared by a SMT models. Conversely, processors with

exposed pipelines, such as VLIWs and EPIC, use software pipelining techniques to

detect loops statically in the code, where all dynamic and static models use loop

unrolling compiler techniques to speedup execution. As opposed to invoking dedi-

cated loop units or compiler techniques, ConSSTEP relies on its engine structures

and branch predictor for loop acceleration. Specifically, as branch predictors may

also detect the presence of loops within an instruction stream, the correct bundle

may also possibly to be present in the alternate set of configuration registers.

The latency incurred for a correct branch prediction in ConSSTEP is simply

reading register values from the external register file and commencing bundle exe-

cution. However in the cold case of loop detection (especially considering a bimodal

predictor), the predictor may likely make an incorrect prediction. To mitigate such

cold cases, upon a misprediction the scheduler also compares the bundle ID which

has just completed execution to the ID of the correct bundle. In the case of a

match, the misprediction penalty is mitigated at the expense of two additional clock

cycles which allows the scheduler to send a control code to the engine (i.e. exe set

82 Chapter 5

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

bit shown in Figure 5.5) so that it may retain the last bundle and read new input

register values. Thereafter, the branch history is corrected and the next bundle

prediction is sent to the alternate set of configuration registers for configuration.

In the case that the previously executed bundle and predicted bundle are both

incorrect, the engine configuration registers are cleared and reconfigured, enduring a

10 c.c penalty, while other threads concurrently execute in their respective assigned

engines. Consequently in the case of smaller bundles, it is possible that values may

have been written to the external register file during execution of the mispredicted

bundle. In this case, a flash copy of the last committed bundle’s register file is main-

tained. Accordingly upon a misprediction, the flash copy EARF becomes the active

external register file while the other copy is restored as the engine is reconfigured

for the new bundle. This latency penalty however is minor when considering the

flushing and refilling of a conventional pipeline, and the general performance gains

attained by ConSSTEP.

Finally, ConSSTEP also avoids the need for a ROB by dedicating one engine per

thread, where the PhysC ensures instruction dependency requirements and memory

ordering, stalling in the case of an unexpected event (i.e. cache miss etc). Ac-

cordingly once a bundle’s branch outcome is verified as correct, the next bundle’s

instructions are also guaranteed to be correct, avoiding the need to maintain explicit

fine-grained instruction program order through hardware structures.

5.8 Exception Handling

As discussed in Chapter 2.4.2, exception handling in conventional processors requires

the pipeline to save state prior to the exception, flush subsequent instructions from

the pipeline, execute the handler, and to restore the saved state. Since ConSSTEP

takes an alternate approach to a processor’s architecture which must also handle

exceptions, bundles must also be created and distributed for exception handlers.

Accordingly, when an exception is raised in the ConSSTEP architecture, the sched-

uler and offending engine interact, where a control code and “handler bundle” ID

is sent by the scheduler. An engine however in this case “pauses” execution at the

given offending instruction cycle. If the exception was due to a Translation Looka-

side Buffer (TLB) miss or a similar case where the fault is generated external to the

engine, the engine which raised or issued the exception is paused.

Chapter 5 83

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Since ConSSTEP possesses two sets of configuration registers per component, the

processor may forgo the need to save state by using this “pausing” technique on the

exception cycle, while configuring the alternate set to handle the exception. Since

the engine is not configured for the exception handler, it incurs a standard latency

penalty of 10c.c. The scheduler must also save the alternate set’s bundle ID which

is overwritten by the handler so that the bundle may be restored once the handler

has finished executing. Such a technique allows ConSSTEP to implement precise

exception handling with less complexity in comparison to conventional processors,

where ConSSTEP suffers a configuration cost at the advantage of avoiding pipeline

flushing and state restoration. Likewise other threads may concurrently continue to

execute in their respective engines, where single-thread performance remains unaf-

fected.

Since temporary data may be present in the rS latches when an exception is

raised, handler bundles are generated without the ability to temporarily store val-

ues in rS units. Therefore handler bundles are formed under the assumption that the

rS units are only used for data propagation, where the EARF is responsible for any

operand writes and/or reads. Under such an assumption, it is also possible that the

handler may require value(s) which are temporarily latched and not written back to

the EARF during the time an exception is raised. To accommodate such cases, the

datawidth of the interconnect wires are widened by 5 bits, where the most signifi-

cant bit signifies data validity, and the next 4 bits represent the value’s writeback

register should an exception occur. Thus during a handler’s configuration process,

the engine simultaneously performs a writeback phase which allows each individual

row to write out (valid) temporary values to the EARF per cycle (i.e. first cycle

bottom rS latches, 2nd cycle the last row of ALUs, the next cycle the 2nd last row

of rS latches etc), where input values required for the handler are read after the

configuration process.

Once the handler has completed execution, the engine sends a completion signal

to the scheduler. When the system is verified as stable, the scheduler sends a signal

back to the paused engine to continue execution, where the configuration register

set which handled the exception is also reconfigured to its previously predicted

bundle re-sent by the scheduler. This technique of engine “pausing” is also used

to maintain synchronization between thread barriers, monitored by the scheduler.

84 Chapter 5

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Note that the concept of exception handling presented here may also be applied to

interrupt handling if required.

5.9 Scheduler

The scheduler plays an essential role in the ConSSTEP core. Specifically, it is

responsible for dynamically monitoring engine execution (i.e. n-threads simultane-

ously executing) and acting according to each engine’s state. Branch prediction in

ConSSTEP assumes identical functionality to conventional processors. Therefore al-

though engines execute bundles created statically by the PhysC, the branch outcome

must be resolved dynamically by the scheduler to verify whether the taken/not-

taken branch outcomes per thread were predicted correctly. Hence the scheduler

(per thread) must 1) implement branch prediction, 2) determine the next bundle

ID to send to the engine based on the taken/not-taken prediction for engine pre-

configuration, and 3) verify branch prediction outcomes. It must also dynamically

monitor and handle any exceptions raised across the thread workloads.

In the cold case of scheduling, an initial bundle ID is generated by the PhysC

and provided to the scheduler (per thread) for commencing execution. Since all

bundles are terminated on conditional branches (or indirect unconditional) using

an aggressive pipeline, branch predictions must occur on the fly. Therefore the

scheduler possesses a branch predictor per thread which predicts the outcome of the

executing bundle’s branch instruction, where the predicted bundle ID is sent to the

engine for pre-configuration. In order to distinguish bundle ID’s based on taken or

not-taken branch outcomes, each thread in the scheduler possesses a 2-way direct

mapped cache so that the current bundle ID may be indexed and its respective

taken/not-taken (predicted) bundle ID may be obtained.

The scheduler must also monitor flags raised. In particular during regular exe-

cution, the scheduler must monitor branch flags sent back by the engine indicating

bundle completion and the branch outcome (0 = not taken, 1 = taken). Thus if

predicted correctly, the scheduler’s branch predictor uses its history to predict the

next bundle’s outcome, indexing and sending out the next predicted bundle ID for

the engine’s pre-configuration as the correctly predicted bundle continues to exe-

cutes. However if a misprediction occurs, the scheduler must 1) send out a stop

signal to the engine to halt its execution, 2) verify that the misprediction is not

Chapter 5 85

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

a loop, 3) correct its branch history given the misprediction, and 4) send out the

correct bundle ID if required.

If the prediction was in fact a loop, this signifies that the correct bundle currently

resides in the configuration set which just finished executing. Therefore the sched-

uler sends out a “loop” signal to the engine so that new external values may be read

into the RRB and the multiplexer bit in the engine’s structures are redirected to ex-

ecute from the previous configuration register set. Once these steps have completed

and the branch predictor’s history is corrected, the newly predicted bundle may be

sent for pre-configuration as the loop executes. In the case of a total misprediction

(i.e. both configuration register sets are incorrect), the scheduler must send a “clear”

signal to the offending engine so that its contents may be cleared, where the correct

bundle ID is then sent to be configured (undergoing a 10 clock cycle configuration

penalty in total). Once the branch history has been corrected, a prediction is made

on the next bundle to be executed, which is send out for pre-configuration as the

corrected bundle executes.

Finally the scheduler must also monitor any exceptions raised considering a gen-

eral purpose processing environment. In the case of an exception, the scheduler

sends out the “exception” flag, thereafter indexing the respective exception vector

and ID to be sent to the engine for handling the event. The scheduler then waits

for the engines completion signal to verify the exception was handled and a normal

processing state has resumed. The scheduler may then send a signal back to the

engine to continue from the paused cycle in the alternate configuration register set.

Although the scheduler is not very complex in design, it is of a unified nature

and therefore must monitor n-threads simultaneously, updating/verifying each en-

gines respective predictions, exceptions etc. Its hardware must also integrate direct

map caches for indexing taken/not-taken bundle predictions per thread. Thus it is

expected that a unified scheduler approach will require an increase in logical com-

plexity as threads scale in ConSSTEP, especially in terms of IO ports and storage

requirements. Hence the design and implementation of a distributed scheduling unit

remains future work for ConSSTEP scalability.

86 Chapter 5

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 5.7: ConSSTEP Cache System (to match conventional CPU model)

5.10 Data Memory Accesses

As ConSSTEP may support up to n engines operating concurrently, the data cache

may also be required (in the worst case) to access up to n words, possibly belong-

ing to n unique cache lines and/or virtual pages simultaneously. Consequently, the

cost of adding n ports to the data cache may not be feasible in terms of energy

and/or latency per memory instruction depending on the number of engines per

core. Therefore, ConSSTEP employs a banked data cache, where banking is per-

formed at the cache line granularity similar to conventional SMT models. Although

engines are configured to access different banks, they may also access the same el-

ement for certain (and/or atomic) data operations. In the case of a bank conflict,

the memory controller randomly selects which thread may access the cache, while

the other thread/engine data is buffered in the crossbar.

ConSSTEP employs a conjoined system between LSUs and the engines so that

the varying memory demands of the threads may be managed fairly, whoen seen in

Fig. 5.7. For instance, if an engine requires two memory requests while the other

engines make no requests, such a memory system may sufficiently tolerate these

varying demands. Specifically, in a 2-Thread (2T) ConSSTEP configuration, two

LSUs are assigned to each engine, where the 4-Threaded (4T) configurations are

assigned one LSU per engine and are shared between engines as seen in Fig. 5.7.

Signals sent to the shared LSUs are managed by WRBs and RRBs, where the LSQ

buffers pending memory requests and manages cache accesses. If two engines con-

tend for a shared LSU, one engine will be stalled until the load/store instruction is

Chapter 5 87

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

resolved in the alternate engine (using a round-robin algorithm).

The memory system for both the conventional processor baselines and Con-

SSTEP were designed with the same configurations (ports, banks etc) to simulate

identical data memory system. This framework allows the architectures to be di-

rectly compared without memory related interference, and for ConSSTEP to achieve

identical memory accesses latencies. Therefore, any additional LSUs present in the

ConSSTEP architecture in comparison to the baseline are multiplexed (similar to

Fig. 5.7) to maintain the same memory parameters as the baseline processors. Since

the same memory system is used by ConSSTEP, the respective bottleneck properties

typical of conventional memory system hierarchies are not eliminated, and therefore

also endured by the core. Thus the purpose of ConSSTEP is purely to improve upon

the performance of the processor itself considering the same memory limitations of

conventional CPUs.

88 Chapter 5

Chapter 6

Compilation

6.1 Introduction

This chapter outlines the specifications of ConSSTEP’s compilation process, from

benchmark input to configuration data output. Accordingly, this chapter discusses

the concept of a logical compiler (a term coined in this thesis for the concept of a

conventional compiler) and respectively efficient target ISAs for such a compilation

approach. The chapter then outlines the Physical Compilation (PhysC) process

introduced in this thesis, and specifications pertaining to thread bundle formation,

inter- and intra-bundle dependencies, and its respective mapping algorithms which

are tested for performance and energy efficiency in Chapter 8. The chapter then

discusses the PhysC’s use of sequence graphs which are used to map instructions

and bundles temporally and spatially throughout the ConSSTEP core. Thereafter

the generation of configuration data is discussed which is used to execute the thread

workloads of a multi-threaded application.

6.2 Logical Compiler

A logical compiler is a standard compiler used by modern computing systems. Any

compiler may be chosen for ConSSTEP, however physical compilers benefit from

RISC-like target architectures. Specifically, three-operand architectures (i.e. typical

RISC ISAs such as ARM) allow destination registers to be distinct from their source

registers, providing more renaming and execution flexibility, and most importantly

fixed length instruction decoding. Conversely, two-operand architectures (i.e. typ-

ical CISC-like ISA’s such as x86) use one of their operands as both a source and

89

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

destination register, and possess variable instruction length decoding [70]. Therefore

CISC-like formats impose greater difficulties for extracting register and instruction

dependencies, leading to more complex designs for the next compilation phase. Re-

gardless of such issues however, the compilation process may be implemented for

any target ISA.

For this work, the ARMv7 ISA was selected for both the physical and logical

compiler target architecture (other ISAs remaining future work) with a GNU-based

gcc compiler. Therefore the logical compiler may compile any C, C++, and Fortran

language while supporting a variety of programming models as previously discussed

in Chapter 3.

6.3 Physical Compiler (PhysC)

A PhysC is the joint effort between compiler designers and computer architects,

used for promoting a smarter compilation process and maintaining compiler, soft-

ware, and binary compatibility. A PhysC’s main objective is to obtain a compiled

binary and perform macro-processing, generating bundles of microcode logic to ex-

ecute a given application on an underlying configurable architecture. For this work,

input traces are provided to the PhysC as the focus of this work is primarily on the

feasibility of the ConSSTEP architecture and the general compilation flow required

to support such an underlying architecture. Consequently in the case of memory

references, disambiguation is handled easily (in addition to other phases such as alias

analysis), which allows for a less complex PhysC design. Similar traceless translation

processes have also been proposed [44, 48], demonstrating that such a compatible

binary translation process is feasible. For this thesis work, the PhysC invokes trace-

based input to mimic steady-state behaviour. The overall physical compilation flow

is shown in Fig. 6.1.

6.3.1 Bundle Formation

Bundle formation is the first stage of physical compilation. A bundle is defined as an

entity which is identified during physical compilation. Specifically, a bundle is a set

of inter-related instructions extracted from an instruction stream, terminated once

a conditional (or indirect unconditional) branch is encountered. For this work, the

90 Chapter 6

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 6.1: ConSSTEP’s PhysC Flow

Gem5 simulator [71] was used to obtain instruction traces for various multithreaded

workloads, where the traces were provided as input to the PhysC. The PhysC then

creates bundles based on the provided instruction streams per thread, following

thread traces until bundle terminating branches. The instructions collected prior to

a given branch are labelled part of the same bundle, where unconditional (direct)

branches may be eliminated since they are simply required for redirection. Once a

conditional branch is reached, the taken and not taken bundle IDs are generated

and saved for inter-dependency analysis. In this work, exception handlers and their

respective vector addresses must be directly provided to the PhysC for handler bun-

dle generation.

Since the ARMv7 ISA is employed in this work, conditional instruction suffixes

(i.e. branch elimination for smaller If-Then statements) may be generated by the

compiler. This is dependent on the level of compiler optimization, and referred to

by ARM as IT blocks (i.e. ITE (If/Then-Else) for one if and else statement in

the code, ITTE for two then, and one else statement etc). The suffix appended

to each assembly instruction dictates whether the instruction belongs to the IF

or ELSE block. Such suffixes are analyzed by the PhysC and inserted into the ap-

propriate taken or not-taken bundle. This process occurs for all application bundles.

Once a conditional branch is reached, Gem5’s predicted branch route is followed

by the simulator, where the PhysC continues to create new bundles with the provided

trace. Gem5’s predicted route (i.e. taken or not taken) is stored as metadata to

Chapter 6 91

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

the previous bundle and assumed correct during trace replay in the PhysC. When a

bundle/branch misprediction is encountered however, Gem5’s simulation stream is

redirected in Gem5. Hence in this case of a misprediction, the PhysC must:

• Stop the current bundle’s formation

• Adjust the previous bundle’s prediction to the correct one

• Start bundle formation with the correct route’s bundle.

Bundles which are mispredicted yet executed by ConSSTEP (but not traced by

Gem5) are filled with few dummy instructions that the engine may execute and clear

once the correct branch outcome is determined.

6.3.2 Data Dependency Analysis

Bundle formation allows the PhysC to generate a dependency graph, while also il-

lustrating the dependencies between both taken and not taken bundles. This step

allows the PhysC to extract inter-bundle dependencies, which are used to temporally

sort the application bundles at a coarser-granularity to implement branch prediction

routes. The PhysC also checks for bundle duplication at this stage so that config-

uration time may be reduced and optimized, with less memory storage required in

the backend.

6.3.3 Instruction Analysis

After generating bundles and determining inter-dependencies, the PhysC assesses

intra-dependencies between bundle instructions, eliminating false dependencies (i.e.

Write-After-Write (WAW) and Write-After-Read (WAR)), and extracting producer-

consumer dependencies without the need for explicit hardware register renaming.

Since no physical register file exists in ConSSTEP to limit the number of register

renames permitted, the PhysC is free to rename operands as necessary with no

hardware restrictions, while keeping track of final architectural register values to

be written to a thread’s EARF. The compiler must also keep track of instruction

types (i.e. integer, FP etc.) and its associated dataflow between types. This phase in

general allows ConSSTEP to extract and transform a restricted dataflow binary (i.e.

logically compiled) to a dataflow-like executable on its engines. Memory dependency

orders are also analyzed and maintained temporally as imposed by the ISA’s memory

model.

92 Chapter 6

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

6.3.4 Engine Mapping

To appropriately assign thread bundles to an engine, the bundle’s respective instruc-

tions and inter-bundle dependencies are analyzed and compared to the available (and

ideal) execution engines present in the core. Contrary to Single-Instruction Multiple

Thread (SIMT) models (i.e. GPUs) which assign threads to identical SIMD units for

execution, ConSSTEP supports various engine sizes. Thus inter-bundle placement

may be quite impactful on increasing ConSSTEP’s performance. For instance, plac-

ing a computationally-intensive bundle on a small engine may affect performance

negatively in comparison to mapping the same bundle to a larger engine which can

support wider issue widths and more temporary data storage.

Accordingly, a set of mapping algorithms will be assessed during Chapter 8 to

determine engine-to-bundle assignments and their effect on performance and energy

efficiency. The following three bundle placement algorithms are used in this study:

• First Come First Serve (FCFS): Assigns the first ready bundle to the first

available engine.

• Random (Rand): Selects a random (available) engine for a given bundle’s

execution.

• Demand: Considers the total number of instructions per bundle, the com-

putational intensity of the bundle, and the max number of instructions that

may execute at once. The bundles are then classified and assigned to the most

suitable engine, if available. Else, the method will search for the next suitable

engine for the bundle’s execution.

To maintain low hardware complexity, once all bundles have been mapped to their

preferred engine, bundles of a thread are assigned to one specific engine according

to the average preffered engine mapping per thread.

6.3.5 Instruction-to-FU Mapping

Once all threads and their bundles have been assigned to an appropriate engine, the

next PhysC stage maps instructions of a bundle to FUs according to the producer-

consumer dependencies generated and/or any FU type dependencies based on the

instruction’s operation. All instructions are time sorted according to dependencies

and the availability of FUs. Thus if FU conflicts exist, the instruction is scheduled

Chapter 6 93

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

for the next clock cycle. This phase of the PhysC is also responsible for exploiting

ILP within the bundles, using a maximum issue width dictated by the number of

FUs present in the given engine. If the instructions scheduled for that cycle exceed

the engine’s issue width, they are then scheduled for the next clock cycle with all

its dependencies scheduled thereafter. In such ILP exceeding cases, priority is given

to instructions with a higher number of dependencies so that such instructions and

their future dependent instructions may execute as soon as possible.

As results produced in an engine may also traverse any number of rS hops to its

consumers in a single cycle, dependent instructions experience combinational logic

delays. Thus majority of the effects regarding intra-bundle placement arise in energy

efficiency by reducing hop counts between dependent instructions. Accordingly, this

work employs the following four instruction placement algorithms which are analyzed

for efficiency during Chapter 8

• Static-Filler (Static): Assigns instructions to the engine’s FUs in a round-

robin fashion until completely filled, and then starts assigning instructions to

the first FU once again in the next time slot if the issue width is exceeded.

Instruction belonging to the next clock cycle are then filled in the same manner,

starting the first FU etc.

• Dynamic-Filler (Dyn): Maps a bundle’s instructions to FUs considering

data dependencies. The method places dependent instruction in the first avail-

able FU found in the row directly below the producer instruction, or nearest

row if the subsequent row is not available. If no dependencies exist, the in-

struction is placed in the first available FU. Therefore a direct consideration

for reducing hop count between dependent instructions in the main grid is the

objective of Dyn.

• Depend-Filler (Dep): Maps instructions in a similar manner as Dyn, how-

ever giving top priority to external unit dependencies. That is, if an instruction

has an external unit dependency, it will be placed in the bottom rows of the

engine to minimize hop count to the WRB and external unit. If no FUs are

available, the next best case FU will be considered etc. Dep then gives second

priority to the method invoked by Dyn.

• Random (Rand): Assigns each instruction randomly to a FU in the assigned

engine. In order to reduce mapping time, if a free FU has not been selected

94 Chapter 6

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

after 3 tries, a reverse Static-Filler approach is applied i.e. search the engine’s

last FU first, and decrement thereafter to find first available FU.

It is important to note that load, store, and/or any external unit instructions within

a bundle are extracted prior to this step as these instructions must execute on

external units.

6.3.6 rS & Unit Mapping

Once instructions have been successfully mapped to their respective FUs, the PhysC

then evaluates the mappings to determine how each rS unit and engine structure

should be temporally configured, considering the data transport of producer-to-

consumer dependencies and the temporal/spatial placement according to the FU

mapping determined previously.

Figure 6.2: Sequence Graph of an Instruction Bundle

An example of the process used by the PhysC to determine control logic per

component is demonstrated in Fig. 6.2 and 6.3, adapted and altered from the prin-

ciples of Reconfigurable Computing Systems presented by L. Kirischian [5]. Fig.

6.2 displays a sequence graph (SG) of the bundle provided in the execution exam-

ple of Chapter 3.6. Such a SG is representative of bundle’s data flow and control

sequences during computation, using the information derived from previous PhysC

stages. Specifically, the vertices of the SG represent the functionality required by

the engine to process an instruction at a given time, whereas the arcs display the

Chapter 6 95

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

data dependencies between the instructions. The SG therefore represents a polar

and acyclic graph for a given bundle, vertically ordered with respect to increasing

time [5]. External inputs are illustrated at t0, whereas final outputs are represented

by a dashed arrow as displayed in the example above.

Since the preceding “Instruction-to-FU” PhysC stage determined the FU map-

pings per instruction (referred to as resource binding in RCS), this stage is respon-

sible for determining the interconnect propagation/latching, and engine structure

mapping based on such information. The basic mapping scheme used by the PhysC

is shown in Fig. 6.3, where the constants a, b and c are high level representations of

the immediate values found in the bundle’s instruction stream (0x3, 0x5, and 0x0,

respectively), with the FU mappings are displayed accordingly.

Figure 6.3: Scheduled Sequence Graph with Resource Binding, Data Latching and

Transport

External inputs of engines are latched by the RRB. It is possible however that

the RRB must output other external data from the same port at a given. To accom-

modate this possibility, values such as c and b must be temporarily latched in the SG

representation so that subsequent RRB values may propagate to their consumers.

Such values are labelled ”tmp ” and may be either latched by an rS or buffered by

the RRB if no other data is required for output in the next cycle. Such latching

strategies are determined by the PhysC during this stage. On the contrary, the r2,

96 Chapter 6

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

r1, and ’a’ values do not require temporary latching as they are consumed immedi-

ately. In the case of the AND instruction, the result requires both propagation and

storage as previously discussed, and therefore such cases are marked as ”rS str” in

the SG so that the PhysC may determine the best rS unit for mapping. Finally,

external outputs represented on the SG are latched by the WRB (represented as a

unified latch in the figure), where the external units are also included. The exter-

nal FUs are represented on the SG as well so that the PhysC may generate WRB

request signals to interface the units on the given cycle.

Once all components and latching requirements have been determined, the PhysC

may then route data according to the timing schedule derived from the binded SG.

For instance in the case of the RRB and its constants c and b, since no values are

required for output within the next two clock cycles, the immediate value ‘c’ may

be buffered by the RRB until clock cycle 3, where it may thereafter be propagated

directly to FU0, with a similar case for ‘b’. Detailed timing requirements for each

component are then derived, with an example of the FU, RRB, and WRB timing

requirements of Fig. 6.3 displayed in Fig. 6.4. As seen in Fig. 6.4, FUs are assigned

their operation per clock cycle during this stage, and similarly the RRB and WRB

are also assigned their input/output values per port per clock cycle. Thus the PhysC

takes this information and generates control logic for each engine structure’s and

configuration latch. The EARF input registers, immediate values, and final EARF

output registers are also determined during this time.

Figure 6.4: Timing Schedule for Engine Structures

In the case of the rS units, such programmable logic is slightly more difficult to

generate. Specifically, the rS propagation and/or temporary storage details specified

in the SG must be determined. In the case of a temporary storage, the value

Chapter 6 97

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

may be stored to any route-able and available latch. Propagation however must

strictly follow an xy routing protocol to manage PhysC complexity. In the case of

storage conflicts and/or contention during data transport, the PhysC may resort

to re-routing in the case of propagation, alternative storage locations in the case

of temporal latching, or in the worst case delaying execution by a clock cycle if

neither option is possible. All such rS propagation and storage mappings are then

determined. More detailed studies regarding contention and utilization during the

rS mapping phase is elaborated during Chapter 8. With regards to FP engines,

since such engine types do not possess rS units, the FP RRB, WRB, external register

reads/writes and data flow configurations between unit types must also be considered

in a similar manner.

6.3.7 Configuration Data Generation

Once all structures and routes have been successfully mapped and determined, the

configuration data needed by ConSSTEP engines are generated for each rS, ALU

(opcodes), RRB, WRB, and external memory access based on the information pro-

vided in the timing schedule of the previous stage. All configuration data is then

passed to its respective banked memory and the scheduler.

6.4 Summary

This chapter discussed the details of the logical and physical compilation process

used in this work, from application input to configuration logic generation for the

underlying architecture. Now that the ConSSTEP architecture is well understood,

the experimental methodology may now be presented, which is used for experimental

testing, results, and analysis.

98 Chapter 6

Chapter 7

Experimental Methodology

7.1 Introduction

This chapter outlines details pertaining to the experimental methodology used to

obtain the results presented in the next two chapters. Specifically, this chapter

outlines various details of the architectural framework/performance modelling and

physical modelling (latency, area and power/energy) used to elaborate the Con-

SSTEP architecture and all baseline processors.

This chapter opens with the architectural framework section, which discusses

details of the simulator and all processor core specifications used during testing

and evaluation. The benchmarks used to evaluate the cores are then discussed,

where physical modelling specifications are provided thereafter. Specifically, physical

modelling discussed details of hardware logic area, its respective wire delay, and cycle

time.

7.2 Architectural Framework

7.2.1 Simulators

To validate ConSSTEP’s performance, an in-house simulator with trace-driven ex-

ecution was used to simulate the core shown in Fig. 7.1. The simulator accepts

benchmark thread traces as input (logically compiled), and a data file specifying

the the number of threads per core and the configuration of the ConSSTEP core,

i.e. x-FUs by y-FU engine, x1-FU by y1-FU engine etc. The traces are then pro-

cessed by the PhysC, where the simulator assembles the core configuration specified

99

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

by the data file for both ConSSTEP and the baselines. The bundles are then as-

signed to their respective distributed Configuration Caches (C-Caches), where the

scheduler commences simulation. Once simulated, the simulator outputs various

performance statistics, used in Chapter 9.

Figure 7.1: In-house Simulator Framework

Although an in-house simulator was used to assess performance, the Gem5 [71]

simulator was also used to generate the traces using Full-System (FS) mode to obtain

various execution details required by the ConSSTEP simulator. Since Gem5’s SMT

simulation was problematic for both System-call Emulation (SE) and FS mode at

the time of this work, a trace-driven simulator for both the SMT processor and the

Single-Thread Core (STC) multi-core were also developed. All traces were obtained

using the Linux aarch-ael image, and m5op definitions to instantiate application

checkpoints, loaded onto the virtual file system consisting of n-processors, where

each processor runs one thread’s workload for the n total threads. Thereafter the

traces were collected and provided to the PhysC. The ARM ISA was selected for

both the physical and logical compiler target architecture, using GNU-based gcc.

The trace-based, in-house simulators for both ConSSTEP and the baselines were

coded in C++, running on a Ubuntu OS and the Intel Core i7-5820K CPU at

3.30GHz with 8GB of RAM. Details of each simulator are provided in Table 7.1.

The simulators specifically were designed for the architectural comparisons of a sin-

gle ConSSTEP core, a SMT core, and a multi-core system consisting of monolithic

STCs (i.e. one thread/core). Since the ARM ISA is used, engine configurations for

the baselines were modelled on a plausible SMT version of the ARM Cortex-A57

architecture, replicating the branch predictor, Instruction Fetch, rename logic, and

100 Chapter 7

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

physical register file per thread, where other structures are shared as outlined in

Table 7.1. Accordingly, this work considers 2-thread(2T) and 4-thread(4T) multi-

threaded models during experimental testing, which were imposed by maximum die

size constraint of the SMT model.

The baseline simulators (the Single-Thread (multi-)core and SMT simulator)

consist of an 8K Bi-Modal branch predictor with 2K Branch Target Buffer (BTB)

per thread. The specifications of the baseline CPUs assume a Harvard architec-

ture, 12-stage front-end, a 2 clock cycle issue-to-dispatch latency, 3-wide instruction

fetch and decode, 8-way issue consisting of 64-entry IQ, 36-entry Physical Register

File (PRF), 128-entry FP PRF, 4-wide commit and ROB size of 128 entries. The

backend FUs consist of 2 ALUs, 2 LSUs, 1 complex Integer unit, 2 FP units, and

1 branch unit. Evaluations for all baselines consider a multi-core environment by

simulating the processors using a throughput-limited DRAM memory of 2GB/s per

core, representative of current multi-core systems [35].

Several configurations for the ConSSTEP architecture were also tested, as de-

tailed in the forthcoming chapter. Of the FUs specified in the data input file, half

the FUs are assigned complex integer functionality by the simulator, where the rest

are assigned basic ALU functionality. As previously mentioned, LSUs are conjoined

between engines for 4T configurations, where 2 LSUs are assigned per engine for a

2T configuration. Each engine also possesses a conditional branch unit and branch

predictor per thread, with a respective 2-FU FP engine. The memory system for

ConSSTEP also assumes the same throughput-limited DRAM memory of 2GB/s

per core, where all cores, including the baselines, invoke a 32KB 4-way L1 D-Cache

with 64B lines, and 64-entry dual-port TLB. A sample 2T 〈4x6〉 ConSSTEP archi-

tectural layout is provided in Fig. 7.2.

Locks and other thread synchronization primitives require special semantics

within the simulator to handle a multi-threaded trace-driven approach. Specifi-

cally, all calls to synchronization primitives in the benchmarks were recorded and

enforced within the simulator’s scheduler during replay. Therefore both the Con-

SSTEP and baseline core simulators invoke execution-driven simulation for syn-

chronization primitives, while maintaining a trace-driven approach for the standard

execution of traces.

Chapter 7 101

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 7.2: ConSSTEP 2T 〈4x6〉 High-level Core Layout

102 Chapter 7

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

T
ab

le
7.

1:
S
im

u
la

ti
on

&
M

o
d
el

li
n
g

P
ar

am
et

er
s

F
e
a
tu

re
C

o
n

S
S

T
E

P
B

a
se

li
n

e
,

O
o
O

S
M

T
/
S

T
S

C
A

R
M

C
P

U

B
ra

n
ch

P
re

d
ic

to
r

8K
B

i-
M

o
d

al
B

ra
n

ch
p

re
d

ic
to

r,
w

/
2K

B
T

B
en

tr
ie

s,
p

er
th

re
a
d

F
u

n
c
ti

o
n

a
l

U
n

it
s

P
er

n
-F

U
en

gi
n

e:
n

-A
L

U
s

(1
in

cl
co

m
p

le
x

IN
T

),
2

A
L

U
s,

2
L

D
/S

T
R

,
1

co
m

p
le

x
IN

T
(4

c.
c)

2
L

S
U

/e
n

gi
n

e
(2

T
)/

sh
ar

ed
fo

r
4T

,
2

F
P

U
,

L
D

/S
T

R
co

n
fl

ic
ts

b
u

ff
er

ed
in

ca
ch

e
cr

o
ss

b
a
r

1
co

n
d

b
ra

n
ch

,
2

F
P

U
/F

P
en

gi
n

e
M

o
d

el
le

d
ac

co
rd

in
g

to
A

R
M

C
o
rt

ex
-A

5
7

a
rc

h
it

ec
tu

re
w

it
h

L
D

/S
T

R
co

n
fl

ic
ts

b
u

ff
er

ed
in

ca
ch

e
cr

os
sb

ar
S

M
T

m
u
lt

i-
th

re
ad

in
g

E
x
e
c
u

ti
o
n

n
x
m

IN
T

en
gi

n
es

(T
-T

h
re

ad
s)

.
1x

2
F

P
en

gi
n

es
3-

w
id

e
fe

tc
h

,
4-

w
id

e
co

m
m

it
,

6
4
-e

n
tr

y
IQ

(i
.e

.
8
-w

ay
is

su
e)

P
a
ra

m
e
te

rs
A

t
le

as
t

on
e

m
u

l/
d

iv
p

er
en

gi
n

e
12

-s
ta

ge
fr

on
t-

en
d

,
2c

.c
is

su
e/

d
is

p
,

sq
u

a
sh

re
co

ve
ry

16
-e

n
tr

y
in

t
&

F
P

A
R

F
p

er
en

gi
n

e
36

-e
n
tr

y
P

R
F

,
24

-e
n
tr

y
F

P
P

R
F

,
1
2
8
-e

n
tr

y
R

O
B

B
ra

n
ch

P
re

d
ic

to
r

p
er

en
gi

n
e

S
M

T
R

e
p

li
c
a
te

s:
B

ra
n

ch
,

IF
/
P

C
,

R
en

a
m

e,
P

R
F

M
e
m

o
ry

S
y
st

e
m

32
K

B
D

$
4-

w
ay

,
64

B
li
n

e
(2

c.
c)

32
K

B
D

$
4-

w
ay

,
64

B
li

n
e

(2
c.

c)

64
-e

n
tr

y
d

u
al

-p
or

t
T

L
B

64
-e

n
tr

y
d
u

al
-p

or
t

T
L

B

T
ot

al
ag

gr
eg

at
ed

74
6K

B
C

$
(m

ax
b

an
k

=
64

K
B

)
32

K
B

I$
,

2-
w

ay
,

64
B

li
n

e
(2

c.
c)

L
2

D
$,

4M
B

16
-w

ay
12

c.
c,

m
is

s
la

t.
21

5
c.

c
L

2
D

$,
4M

B
16

-w
ay

12
c.

c,
m

is
s

la
t.

2
1
5

c.
c

Chapter 7 103

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

7.2.2 Benchmarks

Table 7.2: Benchmark Descriptions

Benchmark Common Characteristics (Type, L1...)

Barnes INT, SPr, low L1 miss rates

Blackscholes INT, SPr, low L1 miss rates, high bank conflicts on reads,

high branch count

Fluidanimate INT, SMT, low L1 miss rates, high branch count

Cholesky INT, SMT, fair shared L1/L2 accesses

OceanNP FP+INT, SMT, low L1 miss rates, computationally-intensive

Swaptions INT, SMT, low L1 miss rates and shared accesses

FFT INT, SMT, high shared L1 reads and bank conflicts

Streamcluster INT, SMT, high L2 miss rates

Water-Spatial FP+INT, SMT, low L1 miss rates, computationally-intensive

LU FP+INT, SMT, high L1 shared write accesses, computationally-intensive

Figure 7.3: Instruction Distribution for all Benchmarks

As ConSSTEP’s main objective is to improve the performance of multi-threaded

workloads, we evaluate all processor models using the multi-threaded PARSEC [12]

and SPLASH-2 [13] benchmark suites. Specifically ten benchmarks with different

characteristics are used to evaluate ConSSTEP: Barnes, Blackscholes, Fluidanimate,

Cholesky, Ocean NP, Swaptions, FFT, StreamCluster, Water-Spatial, and LU. Fig.

7.3 outlines the instruction type distribution for all the benchmarks, where Table

7.2 specifies the predominant memory and multi-threading characteristics for each

benchmark. Benchmarks which specify SMT workloads generally consist of multiple

104 Chapter 7

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

threads where each thread is assigned a specific workload. Conversely benchmarks

labelled as Speculative Precomputation (SPr) are multi-threaded workloads con-

sisting of one or more helper threads which solely provide data-prefetch, while the

other thread(s) compute(s). Such SPr benchmarks therefore signify more memory-

intensive benchmarks.

7.3 Physical Modelling

To assess factors of latency, area, and power consumption, hardware structures

for all processors were modelled using a combination of synthesis and CACTI 6.5

[72]. Structures that required small storage (reservation stations etc), or struc-

tures which were more customized in nature (i.e. rS units) were modelled using

VHDL and synthesized using Synopsys Design Compiler at the 45nm technology

node with the OpenPDK library (NCSU/OSU). Larger structures consisting mostly

of SRAM (such as the caches etc) were modelled using CACTI also at the 45nm

node. The following sections outline the various physical modelling details used

to assess and validate the ConSSTEP architecture during experimental results and

analysis (Chapter 9).

7.3.1 Area Estimates

During experimental testing, this work considers the rS interconnect wiring dimen-

sions for all engine types (integer and FP), laid out horizontally and vertically.

Metal layer 4 was selected for the rS column wiring, and layer 3 for the vertical

wiring. Following the 45nm library layout rules, metal layer 3 and 4 both required

a minimum spacing width of 0.14um. The total width for the wiring of the integer

engines considering 4-, 6-, and 8-FUs (and the longest torus wire) were 134.8um,

218.9um, and 269.6um respectively. Similarly, the total width for the wiring of a

2-FU FP-based engine was approximately 265.0um. The total wiring widths for

both types of engines were therefore less than the square root of their respective

engine areas (see Table 7.3). Based on these results, ConSSTEP’s area in all cases

is not wire-dominated.

7.3.2 Wire Delays

Wire delays for architectural modelling were calculated using the distributed RC

model, 1/2RwireCwire [73]. For metal layer 3 with the worst case dimensions of

Chapter 7 105

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

134.8um x 0.14um (i.e. longest torus wire), the delay was approximately 0.174ps

for a 4-FU engine, 0.458ps for the 6-FU engine, and 0.872ps for the 8-FU engine.

These results were calculated according to the parameters specified by the 45nm

OpenPDK library, considering Rwire equal to 0.25 ohms per square distance, and

Cwire 0.00015pF per square distance. According to these results, such single-cycle

wire delays are therefore considered negligible during cycle time calculation. In gen-

eral, wire delay issues were mitigated by using short wires between rS units while

also considering the longest torus connection which is also negligible as seen in the

calculations provided here (and further enforced by restraining engine size).

Although the rS interconnect adopts Network-on-Chip (NoC) methods, data may

traverse a maximum rS unit critical path length per engine and such wire delays

must be considered. Although the wires are kept short using the rS interconnect as

shown above, wire repeaters [74] are inserted at every rS unit to maintain the signal

speed and integrity of NoCs. Thus considering that data may traverse a critical

path length, and that there are three gates per multiplexer, two multiplexers per rS,

and one gate per repeater, a 2-FU engine will experience 36 gate delays (gd), a 3-FU

engine 39gd, a 4-FU engine 42gd, a 6-FU engine 48gd, and an 8-FU engine 54 gd. As-

suming 4ps per gd at the 45nm node[74], there is an approximate 24ps difference in

critical path delay per engine configuration, demonstrating ConSSTEP’s scalability

in terms of frequency. Thus the two extremes of a 2-FU engine and 8-FU engine have

a maximum wire delay of 0.14ns and 0.216ns, respectively, and considered negligible.

106 Chapter 7

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

T
ab

le
7.

3:
D

el
ay

,
E

n
er

gy
p

er
A

cc
es

s,
an

d
A

re
a

R
es

u
lt

s

C
o
n

S
S

T
E

P
B

a
se

li
n

e
S

M
T

O
o
O

C
P

U

C
o
m

p
o
n

e
n
t

D
e
la

y
(n

s)
E

n
e
rg

y
(p

J
)

A
re

a
(u

m
2
)

D
e
la

y
(n

s)
E

n
e
rg

y
(p

J
)

A
re

a
(u

m
2
)

2T
/4

T
S

ch
ed

u
le

r
v
s

F
et

ch
0.

37
/0

.9
4

1.
01

/
4.

0
58

44
80

/
24

50
00

0
1.

84
4
.6

6
2
7
8
3
1
.4

D
ec

o
d

e
U

n
it

(3
-w

ay
)

-
-

-
3.

01
4
.1

9
9
4
6
8
.6

R
en

am
e

(3
-w

ay
)

-
-

-
3.

28
1
0
.4

1
3
1
1
2
5
.8

R
O

B
-

-
-

0.
53

1
.1

0
1

2
0
4
3
0
0

8-
en

tr
y

IQ
-

-
-

2.
32

4
.3

4
8

1
8
9
6
1
.6

C
on

fi
g

R
eg

W
ri

te
(6

4b
)/

R
ea

d
(1

b
)

2.
18

/0
.0

1
1.

16
/0

.0
1

39
17

.2
-

-
-

P
ay

lo
ad

R
A

M
-

-
-

0.
70

2
.6

1
1

1
9
9
2
6
.0

IN
T

A
R

F
v
s

P
R

F
1.

27
2.

54
18

68
0

1.
37

1
6
.5

2
1
3
5
2
5
4
.4

F
P

A
R

F
v
s

F
P

P
R

F
1.

89
8.

4
41

37
0.

2
2.

1
2
3
.7

7
1
4
6
2
7
8

C
on

S
S

T
E

P
IN

T
A

L
U

v
s

A
L

U
+

B
y
p

as
s

1.
48

1.
13

78
69

.6
9

3.
50

1
0
.1

5
4
8
1
4
0
.8

C
om

p
le

x
IN

T
A

L
U

1.
84

1.
23

90
01

.7
2

1.
84

1
.2

3
9
0
0
1
.7

2

In
te

rn
al

rS
/E

x
te

rn
al

rS
0.

22
/0

.0
6

0.
20

9/
0.

01
11

15
.0

/1
65

.1
9

-
-

-

IN
T

R
R

B
/

F
P

R
R

B
1.

66
/

2.
17

11
.0

9
/

16
.9

9
68

83
1.

3
/

15
56

5.
7

-
-

-

IN
T

W
R

B
/

F
P

W
R

B
2.

1
/

2.
27

2.
55

/
4.

74
70

68
.6

/
13

94
2.

4
-

-
-

I$
v
s

-
-

-
0.

68
0
.1

9
1
4
5
5
0
0
0

In
te

rn
al

rS
C

$
2.

02
7

0.
20

8
11

96
85

1
-

-
-

E
x
te

rn
al

rS
C

$
0.

43
8

0.
03

8
17

07
89

-
-

-

F
P

/A
L

U
s

C
$

0.
50

9
0.

05
2

31
00

00
-

-
-

(I
N

T
/F

P
)

R
R

B
C

$
0.

44
5

0.
03

9
24

39
75

-
-

-

(I
N

T
/F

P
)

W
R

B
C

$
0.

20
6

0.
01

49
39

3
-

-
-

P
re

-L
oa

d
/E

x
t

A
R

F
C

$
0.

11
66

0.
01

23
84

5
-

-
-

Chapter 7 107

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

7.3.3 Cycle Time Determination

Cycle time is derived for the baseline processor by finding the longest (latency)

pipeline stage. In this case, cycle time was determined by the FU+bypass pipeline

delay for both baseline processors [3], giving a cycle time of 3.5ns for the SMT and

STC, where the SMT incurs two additional pipeline stages. For ConSSTEP, cycle

time was derived using the following equations:

1) CycleT ime = max(Texe/engine, Tconfig), where

2) Texe/engine = max(rS propagation latency (lat.) + ALU execution lat., RRB lat.,

WRB lat.)

3) Tconfig = max(read C$ bank lat., write config register lat., read config register

lat.)

Table 7.4: Derived cycle time per processor/engine

Processor Clock Cycle (ns)

SMT and STC 3.5

〈2FU〉 Engine 2.2

〈3FU〉 Engine 2.42

〈4FU〉 Engine 2.64

〈6FU〉 Engine 3.0

〈8FU〉 Engine 3.52

Texe/engine considers the worst case latency for traversing data on the rS in-

terconnect from result generation to dependent ALU source input, including any

intermediate result latching in the rS. Texe/engine is therefore mainly dependent on

propagation latencies and engine size. Conversely, Tconfig is the maximum latency

incurred when configuring engine components, considering both the configuration

caches and dedicated registers per component. The values for all synthesized laten-

cies are given Table 7.3, and are independent of engine size (considering all latching

and combinational delays). Based on these latency derivations, the worst case 4-FU

engine cycle time was calculated as follows:

4) CriticalPath = ext rS lat. + int rS lat. + ALU lat.

Therefore, 5x0.22ns+0.06ns+1.48ns = 2.64ns cycle time, where the 6-FU engine

108 Chapter 7

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

similarly yields a 3ns cycle time etc. This signifies that there is a slight difference

in cycle time between engines depending on their configurations, and is strictly de-

pendent on the worst case propagation delay to maintain single-cycle interconnect

latency.

Results for all baseline and ConSSTEP engine cycle times are presented in Table

7.4. The SMT operates at the same frequency as the STC, however considering

two additional pipeline stages, including thread select and pick. The cycle time of

multi-core STC baselines also do not consider interconnect latencies. As seen in the

table, in comparison to the conventional CPU, ConSSTEP displayed a significant

advantage in terms of achievable frequency due to its simplistic design and scalable

data transport. Likewise observing Table 7.3, we observe that FP engines easily

achieve the same frequency as integer-based engines. Thus for heterogeneous Con-

SSTEP configurations which contain multiple engine sizes, the slowest engine’s

cycle time determines ConSSTEP’s frequency of operation, where the

limiting cycle time is applied to all engines.

7.4 Summary

This chapter outlined the experimental methodology used for deriving and assessing

the ConSSTEP core and baseline processors presented in the next two chapters.

Specifically, this chapter outlined architectural framework specifications for assess-

ing performance factors, and the details of physical modelling to evaluate factors

of latency, power/energy and area overhead across all core types. Now that such

evaluation procedures have been clearly stated, the next chapter presents various

sensitivity studies to determine optimal scheduling algorithms and topology config-

urations for the ConSSTEP architecture.

Chapter 7 109

Chapter 8

Sensitivity Studies

8.1 Introduction

This purose of this chapter is to conduct many experiments on the intra- and inter-

bundle scheduling algorithms discussed in Chapter 6, assessing the best option(s) for

PhysC integration. Specifically factors of performance and energy efficiency must

be assessed, in addition to the best combination of the two factors for scheduling

efficiency. The algorithms used in this chapter are tested using the multi-threaded

SPLASH-2 and PARSEC benchmarks presented in the previous chapter. Accord-

ingly, the specific objectives of this chapter are to:

• Determine the intra-scheduling algorithms which contribute to the least con-

tention and highest performance overall for various ConSSTEP engine config-

urations. Algorithms with considerable contention will not be considered for

PhysC integration.

• Determine the intra-scheduling algorithms which provide low hop count (i.e.

lowest rS units traversed) to mitigate data movement, while also considering

the performance attained in the previous stage. Thereafter, the best intra-

scheduling algorithm may be determined.

• Observe the engine configuration(s) which prove problematic towards perfor-

mance and/or energy efficiency. Such configurations will not be considered

during experimental results which evaluate ConSSTEP to the baseline proces-

sor cores.

• Verify the best inter-scheduling algorithm using the intra-scheduling algorithm

selected previously. To test for the best algorithm, bundles will be scheduled

110

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

using extreme heterogeneous engine topologies.

Based on the results obtained in this chapter, the corresponding best options

for the intra- and inter-bundle algorithm will be integrated into the PhysC for the

experimental testing conducted in the next chapter. Thereafter during Experimen-

tal Results, several heterogeneous and homogeneous engine configurations may be

tested for various 2-thread (2T) and 4-thread (4T) workloads, and compared to con-

ventional SMT cores and STC multi-core systems.

Accordingly, this chapter will first test the scheduling efficiency of the intra-

bundle algorithms Depend (Dep), Dynamic (Dyn), First Come First Serve (FCFS)

and Random (Rand), with the inter-bundle algorithms Demand, Static, and Ran-

dom. Specifically, 2T homogeneous engine configurations for ConSSTEP will be

assessed across the algorithms, determining how factors of utilization on the in-

terconnect, i.e. rS latch utilization for temporary storage, rS utilization during

propagation, and re-routing delays incurred due to utilizations conflicts, affect per-

formance for a given engine topology. Thereafter IPC and hop count are assessed

and correlated to the previous utilization and contention results. By solely test-

ing 2T homogeneous cores, each engine’s individual behaviour may be understood,

where the best engines may be selected for testing and analysis during the experi-

mental results of the next chapter.

8.2 Intra-Scheduling Algorithm Efficiency

The following section presents experimental testing for all intra- and inter-scheduling

algorithms considering 2-Thread (2T) homogeneous ConSSTEP architectures. En-

gine configurations are listed as 〈xFUs x yFUs〉, signifying dimensions of the engine

tested i.e. x FUs on the x-axis, y FUs on the y-axis, for a total of x*y FUs. Engines

consisting of 2 or 3 FUs (i.e. asymmetric) with one y FU and multiple x FUs sug-

gests a horizontally-oriented engine configuration (i.e. 〈2x1〉), whereas one x and

multiple y FUs signify vertically-oriented engine (i.e. 〈1x2〉). Other engines tested

are of symmetric orientations and hence are not referred to as vertically or horizon-

tally oriented. For reasons of asymmetric topological orientation, 5-FU engines have

been omitted during experimental testing. Accordingly, configurations with 2FUs,

3FUs, 4FUs, 6FUs, and 8FUs are evaluated during this chapter.

Chapter 8 111

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

8.2.1 rS Latch Utilization

The first factor assessed for ConSSTEP performance and algorithm efficiency is rS

storage i.e latch utilization within the rS interconnect. Since an internal register file

is not invoked in ConSSTEP, the rS latch usage must be monitored. Consequently,

if latches are highly utilized and an insufficient number are available for temporary

storage, extra delays are incurred by the engine until a latch becomes available.

Latch utilization in this case signifies the number of latches being utilized at a given

time. Fig. 8.1 provides the utilization breakdown for each 2T homogeneous configu-

ration, for all scheduling algorithms. Specifically, the graphs outline the percentage

of utilized latches for a given amount of time, considering the total duration of the

benchmark’s execution. Thus in general, the greater the time spent in the higher

utilized categories (i.e 76-100%), the more likely the algorithm experiences stalls due

to the lack of available latches.

As seen in the figure, the Dep and Dyn intra-scheduling algorithms generally pro-

vided the best (lowest) latch utilization, where the Rand algorithm demonstrated

slightly lower utilization than Static due to its random placement, effectively reduc-

ing storage contention. Comparing the two 2-FU orientations, the 〈2x1〉 configura-

tion shown in Fig. 8.1(a) was able to provide lower latch utilization in comparison

to 〈1x2〉 (Fig. 8.1(b)) due to an increase in propagation contention, discussed in

the next subsection. Consequently such propagation contention contributes to more

routing delays and likewise lower storage utilization per cycle. Conversely, the 〈2x2〉
(4-FU), engine’s symmetric orientation, shown in Fig. 8.1(e), was able to provide

more storage locations in a distributed manner, with less propagation contention

and a wider spectrum of rS utilization. Similar utilization characteristics were also

observed in the 〈3x1〉 (Fig. 8.1(c)) and 〈1x3〉 engine Fig. 8.1(d)) configurations.

The vertical orientations in general however were able to distribute latch locations

between rows more efficiently across the algorithms, demonstrating higher usage.

Therefore as seen in the respective figures, the vertical orientations of the 2- and

3-FU engines (i.e. 〈1x2〉 and 〈1x3〉) utilized more latches (with less contention im-

pact) than their horizontal counterparts. It was observed that the more rS units

integrated on the interconnect in a distributed and spatial manner, the better the

performance observed.

For 4-FU and 6-FU engines shown in Fig. 8.1(e) and (f), respectively, all al-

112 Chapter 8

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

(a) 〈2x1〉〈2x1〉 Engine (2-FU Engines) (b) 〈1x2〉〈1x2〉 Engine (2-FU Engines)

(c) 〈3x1〉〈3x1〉 Engine (3-FU Engines) (d) 〈1x3〉〈1x3〉 Engine (3-FU Engines)

(e) 〈2x2〉〈2x2〉 Engine (4-FU Engines) (f) 〈2x3〉〈2x3〉 Engine (6-FU Engines)

(g) 〈2x4〉〈2x4〉 Engine (8-FU Engines)

Figure 8.1: rS Latch Utilization Comparison for Engine Configurations
Chapter 8 113

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

gorithms provided fair utilization as an abundance of latches were present in the

network, with minor storage contention issues in comparison to the smaller engines.

Accordingly, the Dep and Dyn intra-scheduling algorithms demonstrated the best

utilization when compared to Rand and Static. For the 8-FU (Fig. 8.1(g)) engine,

the best latch utilization was surprisingly obtained by the Rand algorithm, mainly

due to its random nature, which sparsely mapped instructions to allow for low latch

utilization. Finally as expected, the inter -scheduling algorithms did not effect latch

utilization due to the homogeneous architecture tested. Hence no performance gain

was attained as both engines provided the same advantages and limitations regard-

less of the inter-scheduling algorithm.

8.2.2 rS Utilization during Propagation

For all homogeneous configurations and algorithms tested, Fig. 8.2 displays rS unit

utilization during data propagation with respect to the total duration of a bench-

mark’s execution. As seen in the figure, majority of the applications tested demon-

strated a 0-25% utilization of rS units during propagation. For smaller engines such

as the 2-FUs of Fig. 8.2(a) and (b), this distribution signifies blocking due to the xy

routing protocol. This may be verified in Fig. 8.3 which demonstrates the associ-

ated delay incurred during propagation due to contention in the rS interconnect. As

verified in Fig. 8.3(a) and (b), contention especially dominates the rS interconnect’s

lower level for the 2-FU configurations, and hence only a certain number of rS may

be utilized per clock cycle.

As seen in Fig. 8.3(a) and Fig. 8.3(c), the Static and Rand algorithms gener-

ate high contention for such horizontally-oriented topologies, where Dep and Dyn

are able to outperform these algorithms due to their intuitive instruction mapping.

Considering Dyn and Dep for 4-FU (shown in Fig. 8.3(e)), 6-FU (Fig. 8.3(f)), 8-FU

(Fig. 8.3(g)) and 〈1x3〉 (Fig. 8.3(d)), it is seen that these algorithms also utilize the

rS interconnect efficiently, which is again due to the scheduling algorithm’s ability to

directly addressing instruction dependencies and placement. Although not all the rS

are utilized in these engines, less re-routing is required in comparison to the other

scheduling methods as verified in the respective sub-figures of Fig. 8.3. Overall

according to the results obtained, Dep proves best for all configurations types, and

especially for SPr benchmarks Barnes and Black (Fig. 8.3) which access memory

frequently. Therefore the Dep algorithm is able to adequately reduce propagation

114 Chapter 8

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

(a) 〈2x1〉〈2x1〉 Engine (2-FU Engines) (b) 〈1x2〉〈1x2〉 Engine (2-FU Engines)

(c) 〈3x1〉〈3x1〉 Engine (3-FU Engines) (d) 〈1x3〉〈1x3〉 Engine (3-FU Engines)

(e) 〈2x2〉〈2x2〉 Engine (4-FU Engines) (f) 〈2x3〉〈2x3〉 Engine (6-FU Engines)

(g) 〈2x4〉〈2x4〉 Engine (8-FU Engines)

Figure 8.2: Comparison of rS Utilization During Propagation for 2-Thread

Chapter 8 115

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

(a) 〈2x1〉〈2x1〉 Engine (2-FU Engines) (b) 〈1x2〉〈1x2〉 Engine (2-FU Engines)

(c) 〈3x1〉〈3x1〉 Engine (3-FU Engines) (d) 〈1x3〉〈1x3〉 Engine (3-FU Engines)

(e) 〈2x2〉〈2x2〉 Engine (4-FU Engines) (f) 〈2x3〉〈2x3〉 Engine (6-FU Engines)

(g) 〈2x4〉〈2x4〉 Engine (8-FU Engines)

Figure 8.3: Comparison of Delays due to Propagation Contention for 2-Thread

116 Chapter 8

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

prone contention for such low performing memory-intensive applications. Dyn how-

ever does come very close to the Dep algorithm’s results, and is especially beneficial

for more computationally-intense applications.

8.2.3 IPC

Fig. 8.4 displays the IPC outcomes for all homogeneous engine configurations and

algorithms listed, normalized to the IPC attained by a 2 core STC system, i.e. 1

thread workload/core, average attained IPC, considering a 2T workload. Theoret-

ically, intra-scheduling algorithms scheduled on a homogeneous ConSSTEP archi-

tecture should solely impact hop count (the number of Rs units traversed between

dependent instructions) and its respective energy efficiency. Thus bundle placement

considering a homogeneous setting should not effect IPC. However as discussed in

the previous subsections, intra-placement algorithms have a direct impact on both

propagation and storage contention, and therefore also impact performance. In ad-

dition the results obtained in the previous section, Fig. 8.4 also verifies that the

more naive intra-scheduling approaches such as Static and Rand exhibit lower per-

formance (IPC) due to increased contention, causing higher re-scheduling and delay

requirements during instruction routing, whereas more involved algorithms such as

Dep and Dyn are able to avoid contention. Therefore, Dep again provides the best

performance outcome, achieving less rS contention for data stores and propagation

of horizontally-oriented configurations. The Dyn algorithm however was also able

to achieve performance within 0.8% of the Dep algorithm.

When compared specifically to the Rand and Static intra-placement algorithms,

Dep was able to improve performance on average for 2-FU engines by 37.3% (seen

in Fig. 8.4(a) and (b)), 3-FU by 18.86% (Fig. 8.4(c) and (d)), 4-FU by 20.63% (Fig.

8.4(e)), 6-FU by 25.74% (Fig. 8.4(f)), and 8-FU by 21.03% (Fig. 8.4(g)). Since

more FUs and rS units were available for 8-FU engines, contention was less of a

factor across the routing algorithms tested, and hence the 8-FU exhibited more per-

formance improvement than the 6-FU engines in general. Similarly, the 〈1x3〉〈1x3〉
ConSSTEP architecture received very little performance variation across all algo-

rithms as seen in Fig. 8.4(d). However referring back to the contention displayed

in Fig. 8.3(d), it is evident that contention in general was also very minimal due to

the vertical topology layout, and therefore negligible variation in IPC.

Chapter 8 117

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

(a) 〈2x1〉〈2x1〉 Engine (2-FU Engines) (b) 〈1x2〉〈1x2〉 Engine (2-FU Engines)

(c) 〈3x1〉〈3x1〉 Engine (3-FU Engines) (d) 〈1x3〉〈1x3〉 Engine (3-FU Engines)

(e) 〈2x2〉〈2x2〉 Engine (4-FU Engines) (f) 〈2x3〉〈2x3〉 Engine (6-FU Engines)

(g) 〈2x4〉〈2x4〉 Engine (8-FU Engines)

Figure 8.4: IPC - Performance Comparison for 2-Thread Engine Configurations

118 Chapter 8

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

The most important observation however was that the 2-FU engines were not

able to exceed the IPC of a conventional STC, defeating the purpose of a ConSSTEP

core. It is also evident that the vertically-oriented engine topologies provides better

performance and generally less contention than their horizontal counterpart.

8.2.4 Hop Count

Fig. 8.5 provides the hop count distribution for the scheduling algorithms tested

across all benchmarks. Hop count is directly associated with the energy efficiency

of data movement i.e. the less hops/rS units traversed, the more energy efficient the

algorithm. Therefore the most ideal intra-scheduling algorithm will provide both

high performance and low hop count.

As seen in Fig. 8.5, the Dep and Dyn intra-bundle scheduling algorithms were

able to provide the best hop count, improving upon the other algorithms in the

range of 8-28%. According to the figure, the horizontally-oriented configurations

provide lower hop count and therefore higher energy efficiency when compared to

the vertically-oriented engines for the 2 and 3-FU topologies. As seen in the pre-

vious subsection however, such hop count mitigation was at the expense of some

performance loss in these configurations.

Observing the results between the two most efficient algorithms, Dyn provides

approximately 22.8% more hop efficiency than Dep. That is, since Dep places greater

priority on the data traversal of external operations, dependencies of other instruc-

tion located in the main grid are given second priority, in turn increasing hop count

in the main engine. Therefore, such results demonstrate that focusing on main

grid dependencies proves beneficial to energy efficiency, and especially for the more

computationally-intensive workloads. Therefore the Dyn intra-bundle scheduling

algorithm provides the best solution for reducing hop count, and improving energy

efficiency.

8.2.5 Summary - Intra-Scheduling

Fig. 8.6 and 8.7 display the average performance and hop increase, respectively,

considering a 2T architecture per intra-scheduling algorithm, normalized to a 2-core

STC for all benchmarks. Since intra-scheduling algorithms gave the same outcomes

Chapter 8 119

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

(a) 〈2x1〉〈2x1〉 Engine (2-FU Engines) (b) 〈1x2〉〈1x2〉 Engine (2-FU Engines)

(c) 〈3x1〉〈3x1〉 Engine (3-FU Engines) (d) 〈1x3〉〈1x3〉 Engine (3-FU Engines)

(e) 〈2x2〉〈2x2〉 Engine (4-FU Engines) (f) 〈2x3〉〈2x3〉 Engine (6-FU Engines)

(g) 〈2x4〉〈2x4〉 Engine (8-FU Engines)

Figure 8.5: Hop Count Comparison for 2-Thread Engine Configurations

120 Chapter 8

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

for all inter-scheduling algorithms, only intra-algorithms are provided in these fig-

ures. As seen in Fig. 8.6, the greater the number of FUs present in an engine, the

more likely the PhysC was able to take advantage of the wider issue width, which

also mitigates contention to provide further performance gains. Also observed in

the figures are the trends of the vertically-oriented topologies which achieve slight

performance advantages to their horizontal counterparts, mainly due to reduced

contention and more distributed storage locations.

In terms of energy efficiency and hop count as displayed in Fig. 8.7, it is observed

that the Dyn intra-scheduling algorithm provided the best efficiency, where Static

was able to match Dep hop count in certain cases. Considering both performance and

energy efficiency however, the Dyn intra-scheduling algorithm proves most efficient,

and will therefore be used for further experimental testing in the subsequent sections.

Figure 8.6: Average IPC per Algorithm for all Benchmarks - 2T Workload

As previously mentioned, this thesis also deduces by analysis that both 2-FU

engine orientation were problematic for achieving performance gains, and providing

adequate storage area for temporary values. Specifically, performance is lower than

that of a STC, defeating the purpose of such an architecture for high single-thread

and throughput performance. Thus all 3-FU engines and larger will be considered

during experimental testing for evaluating ConSSTEP’s feasibility and advantage

over multicore STC and SMT processors.

The subsequent section will present an extreme heterogeneous configuration case,

demonstrating the performance effects of inter-scheduling algorithms in a brief and

Chapter 8 121

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 8.7: Average Hops per Algorithm for all Benchmarks - 2T Workload

concise manner, as we have clearly observed in this section that more involved

algorithms are optimal for routing and storage placement problems. Thus the inter-

scheduling algorithms which map thread bundles to engines i.e. Demand, FCFS and

Rand will be tested using a 4-threaded core with extreme variation in engine sizes,

using 〈1x2〉 (2-FU) and 〈2x4〉 (8-FU) engines, while using the Dyn intra-scheduling

algorithm to map instructions to their respective FUs. Since there is much variation

in the engine sizes selected, the mappings and respective performance outcomes

will also quickly demonstrate the performance effects of inter-bundle placement.

Based on the outcome, the Experimental Results section will then employ the best

algorithm pair, invoking various engine configurations to find the most efficient and

suitable ConSSTEP architecture for single-thread and throughput performance on

a single core.

8.3 Inter-Scheduling: Bundle to Engine Mapping

Figure 8.8 presents the results of a 〈1x2〉〈2x4〉〈1x2〉〈2x4〉 4-Threaded (4T) Con-

SSTEP architecture, comparing the Demand, Random, and FCFS inter-algorithms,

paired with the Dyn intra-scheduling algorithm. As seen in the Figure, the De-

mand algorithm surpasses the FCFS algorithm by 1.11x, whereas Demand observes

a 1.152x speedup in comparison to Rand. Thus the Depend algorithm (as expected)

outperforms and/or matches in the worst case the performance of the other inter-

scheduling algorithms, considering a 4-Thread processor. Accordingly, the next

section will present various 2T and 4T ConSSTEP configurations considering the

122 Chapter 8

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 8.8: Heterogeneous Performance Analysis of Inter-Scheduling Algorithm -

4-Threads

Demand-Dynamic (Dem-Dyn) algorithm, while using the engine combinations of

(vertically-oriented) 3-FU, 4-FU, 6-FU and 8-FU engines.

8.4 Summary

This chapter provided various sensitivity studies to determine the ideal ConSSTEP

scheduling algorithms for the PhysC to attain the best overall performance and

energy efficiency. Based on results, it was determined that the Demand-Dynamic

(Dem-Dyn) algorithm combination generally provided the best results for all engine

combinations. Based on the tests, it was also determined that the 2-FU engine

configurations, both vertical and horizontal, suffered performance losses largely due

to contention for the topological orientation of the core and lack of storage locations.

Therefore the next chapter will compare various 3-FU (vertically-oriented), 4-FU, 6-

FU and 8-FU engine configurations to the baseline cores, determining ConSSTEP’s

feasibility as a configurable multi-threaded processor.

Chapter 8 123

Chapter 9

Experimental Results and Analysis

9.1 Introduction

The previous chapter determined the most efficient scheduling algorithm for the

PhysC in terms of performance and energy efficiency - Dem-Dyn. This chapter in-

tegrates the algorithm into the PhysC, and assesses various engine configurations

according to the topologies verified in the previous chapter, comparing such varia-

tions of ConSSTEP cores to conventional SMT (multi-core) single-thread core (STC)

baselines. Such comparisons are used to determine factors of performance, energy

efficiency, and area overhead which may validate the feasibility of ConSSTEP. The

most ideal ConSSTEP engine configurations will also be determined for 2T and 4T

workloads. Accordingly, this section will assess the following factors and answer the

following questions:

• Performance:

– Single-thread IPC improvement: One of ConSSTEP’s main objectives

is to increase single-thread performance for multi-threaded workloads.

Based on the results provided in this chapter, the following chapter will

determine whether ConSSTEP was able to provide an improvement in

single-thread IPC in comparison to SMT. And more importantly, was

ConSSTEP able to achieve a single-thread performance gain in compari-

son to a STC?

– Throughput improvement. Throughput considers attainable frequency

and how fast an application may execute in instructions/second. Thus

the topology of an engine and its simple logic may allow ConSSTEP to

124

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

execute at a faster rate than complex conventional CPUs. Is ConSSTEP

therefore able to provide similar or better throughput when directly com-

pared to a SMT considering all benchmarks? Does ConSSTEP provide

better throughput than a SMT provides over a STC?

• Power and Energy: Power is expressed in Watts (W) representing the in-

stantaneous rate of energy transfer for both the active (dynamic) and inactive

(static) transistors/components on a core. Energy conversely is measured in

Joules (J), i.e. Watts per second, and expresses the power required of a core

within a specified time frame (i.e. switching energy). Energy in this chapter

therefore signifies the number of joules required to complete an operation and

in this case the energy required to execute a given application. Likewise, an

increase in frequency may possibly lead to less energy per application due to

such execution speedup, however may also contribute to an increase in dynamic

power consumption. Thus both power and energy are taken into consideration

to assess and compare ConSSTEP to the baselines. This section of the chapter

will then answer the following questions:

– Does ConSSTEP increase energy efficiency for multi-threaded applica-

tions in comparison to a SMT core?

– As ConSSTEP scales across various core configurations, are the number

of FUs required per engine, its frequency, and its respective attainable

performance justified in comparison to a SMT core when considering

static and dynamic power consumption?

Only an SMT will be compared in this section to assess power and energy as

a multi-core STC will consume much more than ConSSTEP cores (i.e. a core

replicated many times on a die).

• Area overhead: Considering the performance and energy efficiency of Con-

SSTEP, what is the relative die size in comparison to the baselines to achieve

such gains? Was ConSSTEP able to simplify pipeline logic and reduce die

overhead even though it relies on the replication of engines for single- and

multi-thread execution efficiency?

• Performance/unit area and Performance/Watt: Based on the param-

eters obtained above, the rate of computation per unit area, and the rate of

computation per watt may be scaled and compared across the cores. That

Chapter 9 125

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

is, the performance results may be directly compared considering a fixed area

and power constraint per core for both ConSSTEP and the SMT core. Such

metrics are especially important in parallel computers as the cost of powering

a processor may outweigh the cost of the CPU itself [75].

Using the experimental inquiries discussed above, the results presented in this

chapter will determine the feasibility of ConSSTEP on various levels in comparison

to a conventional SMT and multi-core system. As previously discussed, 2T and 4T

configurations are assessed for all core types where ConSSTEP is constrained by the

maximum size of an equivalent SMT die. Specifically, the first section of this chap-

ter addresses 2-thread (2T) processor prototypes for performance, power/energy and

area, where the findings are then extended to 4-Thread (4T) prototypes in the sec-

ond section of the chapter. Finally, the chapter then addresses other architectural

details and results, including configuration memory requirements and general statis-

tics of propagation and storage through coarse-grained execution by revisiting the

study conducted by Tseng and Patt [6].

9.2 Two-Thread Comparison

9.2.1 Configuration Overhead Concealment Techniques

Figure 9.1: Configuration Overhead Performance - Hardware Double Configuration

Register Improvement over Software PhysC Scheduling Technique

Although the sensitivity studies provided in the previous chapter considered a

hardware approach using a double configuration technique, this section provides

126 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

insight on both a software and hardware technique for concealing overhead. Specif-

ically, this section presents the general performance attained by ConSSTEP using

two overhead concealing techniques discussed in chapter: 1) Software: the PhysC’s

determination of the maximum clock cycles needed to configure a given engine per

thread, versus 2) Hardware: a double configuration register approach, where each

configuration register is pre-configured with the predicted bundle determined by the

scheduler. The engine configurations presented in this chapter are expressed as 〈n-

FU engine x m-FU engine〉 using the 〈x x y〉 topology annotations derived in the

previous chapter, where the number of FUs per engine equals x*y and the total FUs

per core equals n+m.

Fig. 9.1 presents the IPC improvement which the hardware approach provides

over the software technique, averaged across all benchmarks. As seen in the figure,

the hardware approach for all 2T configurations provided more than a 2x perfor-

mance gain as the method purely mitigated overhead penalty except in the case

of mispredictions, whereas a PhysC technique was only able to conceal a few clock

cycles of the total 10 c.c penalty per configuration. As also observed in the figure,

the larger the engine, the greater the performance gain using the hardware approach

since the larger engines are generally able to increase issue width and performance.

Therefore such aggressive execution with overhead concealment provides more of a

performance gain for such engines.

As verified by the results obtained here, the double configuration register ap-

proach achieves the best performance and will continue to be used for the experi-

mental testing of this work.

9.2.2 Area

The area of ConSSTEP and the baseline SMT ARM CPU for 2-Threads (2T) are

modelled according to the specifications previously discussed in Chapter 7 and pro-

vided in Table 7.1. Area comparisons for the several ConSSTEP configurations and

baseline SMT CPU models are provided in Table 9.1, presented in mm2. As seen

in the table, the baseline for a 2T ARM CPU possesses the highest area overhead

overall. The ConSSTEP core containing 3 FUs - 〈3x3〉 (i.e. 〈1x3〉〈1x3〉) was able

to decrease area by 56.3%, whereas the largest engine consisting of 8-FUs still de-

Chapter 9 127

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Table 9.1: 2-Thread Area Comparison (mm2)

Processor Area (mm2)

2-Thread SMT 15.87

〈3x3〉 6.928

〈3x4〉 6.97

〈4x4〉 6.94

〈3x6〉 6.987

〈4x6〉 6.985

〈6x6〉 7.485

〈3x8〉 7.048

〈4x8〉 7.475

〈6x8〉 7.51

〈8x8〉 7.523

creased area by 52.6% in comparison to the SMT. Similarly, as seen in the figure

the 4-FU and 6-FU engines also decreased area overhead for 2T cores.

When assessing the transistor budget for all processor structures, ConSSTEP

dedicated approximately 5-10% of its die area for computing, 5-17% of the die to

scheduling, and 73-90% for configuration memory depending on the engine size.

This hardware allocation was also considered at a smaller die size in comparison

to the SMT. Similarly, the SMT CPU die dedicated roughly 80% of its die area

to instruction memory, only 4-5% to computation, and the remaining 15-16% to

hardware which rediscovers and eliminates data dependencies and maintains pro-

gram order - all of which are known by the compiler and imposed by the ISA. Thus

ConSSTEP was able to alleviate such unnecessary hardware by invoking the PhysC

and redesigning the datapath to save area overhead per die, however allotting much

more memory for configuration purposes.

9.2.3 Energy and Power

Fig. 9.2 demonstrates various 2T ConSSTEP cores and their respective energy re-

duction for all benchmark applications in comparison to a 2T SMT processor. The

figure only considers the energy required of the active structures to execute the given

128 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.2: Energy Reduction for Various ConSSTEP Configurations

application, referred to as switching energy. As seen in the figure, the 2T configu-

rations are able to save on average 37.5% energy, with the 〈3x3〉 engine obtaining

slightly more energy efficiency (37.68% on average). Energy consumption differs be-

tween configurations in the magnitude of pJ - nJ since only a few more links and rS

units may be active for benchmark execution, acknowledging that only the switching

energy required to execute the application is calculated. Hence values plotted per

benchmark demonstrated very little energy variation between configurations when

directly compared to the SMT, however still significant when compared to its 2T

SMT equivalent.

As previously mentioned, energy reduction is attributed to the speedup in exe-

cution time (performance further discussed in the next subsection) and therefore for

certain applications, larger engines may demonstrate higher energy efficiency as they

are able to extract higher ILP, generally executing applications faster and requiring

less energy. As exhibited in the figure however, 〈3x3〉 is able to operate at a higher

frequency and achieves the best energy efficiency across all benchmarks. However

for the more memory-intensive and SPr applications such as Barnes and Black which

are bound by the memory system, engine size contributes very slightly to energy

efficiency as speedup is still bounded by load/store instructions. In these cases,

larger engines are actually less efficient as the applications may activate more com-

ponents overall with little speedup in comparison to the other engine configurations.

Fig. 9.3 presents the energy distribution per component for all applications, av-

eraged across all 2T ConSSTEP configurations, as all configurations demonstrated

Chapter 9 129

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.3: Energy Distribution for ConSSTEP Structures, Averaged for all Bench-

marks

roughly the same relative energy consumption per component considering identical

computation and external read/write requirements per benchmark. As observed in

the figure, energy distribution was highly reliant on the application’s characteris-

tics. For instance, applications such as Ocean with high arithmetic intensity and

fewer memory and branch instructions, demonstrated FUs (integer and FP) ac-

counting for a bigger share of the energy consumption in comparison to the other

benchmarks. Although LU and Water were also computationally intensive, they

experienced higher shared write accesses and higher memory accesses, respectively,

and as observed in the figure, a larger portion of energy was dedicated to the RRB

for interfacing external units. Benchmarks such as Blackscholes which experienced

higher banking conflicts (i.e. SPr workloads) and branch instructions also required

frequent access to external units as illustrated in Fig. 9.3. Therefore higher en-

ergy consumption was observed for the WRB and RRB structures for such memory

demands. A direct correlation between the EARF energy and the number of exter-

nal read/writes required by application bundles was also observed, i.e. Ocean and

Stream, generally required more EARF reads/writes per bundle than the average

bundle. The energy dissipation for configuration (Config) which included mispre-

dicted bundles, accounted for a small portion of the overall energy consumption and

therefore configuration was a minimal energy penalty for the ConSSTEP core. Sim-

ilarly, rS energy accounted for roughly 3-4% of the total energy due to its simplistic

design and the PhysC’s efficient hop count algorithm.

Next, Fig. 9.4 displays the energy distribution for the 2T and 4T SMT pro-

130 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.4: SMT Energy Distribution for 2T and 4T SMT

cessor cores. According to the results observed, approximately 80-83% of the SMT

energy consumption was attributed to the backend, including reads and writes to

the register file, IQ, and bypass network communication. Observing Fig. 9.3, Con-

SSTEP in comparison eliminated such requirements by 20-30% on average through

configuration logic and the rS interconnect, propagating values only when necessary

and maintaining scalability without conventional CPU impositions and structures.

Accordingly, the rS interconnect mitigated register file energy consumption on av-

erage by 9.71x and 7.77x for the 2T and 4T SMT respectively. In turn, these

savings amounted to an average of 52.37% less register reads and 55.43% register

writes+bypass for all applications. Similarly, the elimination of conventional front-

end structures roughly accounted for 15% energy savings of the SMT’s total energy,

in addition to the ROB and IQ which attributed to 20% of the overall SMT energy.

Fig. 9.5 displays the data movement energy required per engine, averaged across

the benchmark kernels. According to the figure, 〈3x3〉, 〈3x4〉 and 〈4x4〉 provided the

most efficient data movement for the ConSSTEP processor, saving approximately

13% energy compared to the other configurations. As expected, the most energy

consuming were the larger engines, 〈8x8〉 and 〈6x8〉, consuming up to 41% more

energy in comparison to the smaller engines. However referring back to Fig. 9.2,

such data movement energy consumption is minimal when directly comparing en-

ergy savings to the SMT core, yet this factor must still be considered as transistors

scale.

Finally, Fig. 9.6 presents the power savings (dynamic and static) of the various

Chapter 9 131

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.5: Comparison of Data Movement Energy for 2T ConSSTEP Configura-

tions

2T ConSSTEP configuration, normalized to a 2T SMT core and averaged for all

benchmarks. As expected, 〈3x3〉 was the most efficient core, saving approximately

59% power when compared to the SMT due to its simplistic logic and design. Con-

versely, the 〈8x8〉 configuration saved the least power (32%), with an average savings

of 47% across all 2T configurations. As seen in the figure, as more functional units

are added to the core, power savings are decreased due to both static and dynamic

power consumption of the structures for a given ConSSTEP core.

9.2.4 Performance

Instructions Per Cycle (IPC)

Fig. 9.7 presents the single-thread IPC improvement for all baseline models, nor-

malized to a 2T SMT core. The first column in the figure presents the improvement

which an average core on a multi-core STC system provides over a 2T SMT core. As

displayed, ConSSTEP configurations on average provide an improvement of 1.39x,

where the 2-core STC achieves a 1.25x single-thread IPC improvement in comparison

to its SMT equivalent. Accordingly, ConSSTEP also improves the single-thread per-

formance of a STC on average by 1.11x across all benchmarks. As seen in the figure

however, certain IPC fluctuations exist across engine configurations, in particular

the performance attained by heterogeneous engines in comparison to homogeneous

core configurations (for example 〈3x8〉 versus 〈4x4〉). Since engines may only be as-

signed to one thread’s workload, the more algorithmic intensive bundles which exist

in a thread (considering a heterogeneous core) may be mapped to a smaller engine

132 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.6: Power Consumptions Savings for 2T ConSSTEP Configurations, Nor-

malized to SMT

versus the ideal larger engine. Hence minor performance loss may be exhibited due

to the PhysC’s thread mapping algorithm within heterogeneous cores. Despite these

effects, ConSSTEP’s performance gain is still substantial when compared to conven-

tional SMT cores and STC models.

Referring to the individual benchmarks of Fig. 9.7, it is evident that Ocean

obtained the greatest single-thread IPC improvement due to its high computational

intensity and inherent ILP. Since thread sharing and blocking in the Ocean bench-

mark was exhibited in the SMT pipeline, larger ConSSTEP configurations were able

to adequately support such demanding thread workloads. Conversely, benchmarks

such as FFT (which experienced high banking conflicts for independent sequential

memory accesses) and SPr workloads (Barnes and Blackscholes) received a small

margin of performance improvement with 2T ConSSTEP (approx. 25%). Specifi-

cally, benchmarks such as Blackscholes and FFT exhibited less performance gains

for the smaller engines due to memory scheduling conflicts across the threads. How-

ever the larger engines which possess larger issue widths were able to overlap more

instruction execution to mitigate such memory conflicts in comparison to the smaller

engines which stalled more frequently and therefore achieved similar results to the

SMT. Such benchmarks however with more memory-intensive applications and/or

conflicting accesses in general achieved similar results to the standard 2T SMT, how-

ever with slight single-thread IPC improvement of approximately 1.77% or greater

Chapter 9 133

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.7: Single-Thread IPC Improvement Over 2-Core STSC

in comparison due to increased frequency.

Figure 9.8: Single-Thread IPC Improvement per 2T Configuration, Averaged for all

Benchmarks (Normalized to 2-Core STSC)

In accordance with Fig. 9.7, Fig. 9.8 displays the average single-thread IPC

improvement for the 2T ConSSTEP configurations, averaged across all benchmarks

and normalized to the 2T SMT. According to the results obtained, 〈3x3〉, 〈3x4〉
provide roughly the IPC same improvement to an average STC, whereas the other

engines were able to support wider issue widths which benefited certain benchmarks

as discussed previously to provide higher IPC gains.

134 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.9: Cycle Increase Due to Contention for Various ConSSTEP Configurations

Fig. 9.9 demonstrates the percent increase in cycle required by a given config-

uration due to contention exhibited by the Demand-Dynamic algorithm across all

benchmarks (determined to be the most efficient for both performance and energy).

As seen in the figure, all configurations contributed to less than a 0.6% increase in

cycles due to contention. Particularly interesting is 〈3x3〉 (i.e. 〈1x3〉〈1x3〉 topology)

where the PhysC is able to comfortably re-route and prevent majority of contention

due to its vertical topological orientation.

Throughput

Figure 9.10: Two-Thread Throughput Improvement Normalized over SMT

Fig. 9.10 and 9.11 demonstrate the throughput per benchmark, and average

throughput for all benchmarks, respectively, for all 2T engine configurations. The

Chapter 9 135

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.11: Averaged 2T Throughput Improvement Normalized over SMT

first column in each graph illustrates the SMT improvement over an average single-

thread core within a dual-core system. Contrary to IPC improvements presented

in the previous section, throughput also considers the frequency of operation per

engine, where ConSSTEP’s frequency is limited by the slowest engine present

on the core which is applied to all engines. Accordingly the dashed lines of Fig.

9.11 are used to categorize configurations according to the slowest engine presenton

a core. As seen in the figures, smaller engines present in more extreme configuration

cases such as 〈3x8〉 suffer performance losses as the 〈3〉 engine’s primary advantage

is running at a higher frequency versus exploiting issue width/ILP as the case of

the 〈8〉 engines. Therefore bundles mapped to the 〈3〉 engine suffer a performance

loss due to such a design limitation. As such, cores with 3-FU engines benefit when

paired with other smaller engines. Fig. 9.11 also demonstrates that homogeneous

ConSSTEP configurations generally outperform the heterogeneous configurations

within the same frequency category, as each engines within the homogeneous core

is able to operate at the maximum issue-width and frequency for the given classifi-

cation.

Fig. 9.10 and 9.11 demonstrate that ConSSTEP configurations achieve a per-

formance advantage over both SMT and STC multi-cores. According to the re-

sults obtained, the SMT on average achieves 1.32x the throughput of a single core,

whereas the ConSSTEP engines achieves 2.4x the throughput of a SMT core due

to frequency scaling. As seen in Fig. 9.10, benchmarks generally performed best

with the 〈3x3〉 core which provides a higher frequency and manageable issue-width

per thread. However in certain cases such as the computationally-intensive bench-

mark Ocean (and certain other cases such as LU and Stream), ConSSTEP actu-

136 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

ally benefits from slightly wider issue-widths for code phases which require higher

ILP. Conversely, applications which are more memory intensive such as Barnes and

Blackscholes slightly benefit from frequency gains since they are still limited by the

memory system hierarchy.

9.2.5 Performance/Unit Area

Figure 9.12: Two-Thread ConSSTEP Performance/mm2 Improvement

Although this thesis work considers ConSSTEP as a single core architecture

during experimental testing, assuming that performance for all CPUs and Con-

SSTEP scale fairly linearly as additional cores are integrated within a multi-core

system, Fig. 9.12 displays ConSSTEP’s instructions per second per square millime-

tre (performance/mm2) improvement when compared to the SMT baseline proces-

sor. On average, 2T ConSSTEPs were able to improve the performance/mm2 of

SMTs by 4.09x. 〈3x3〉 in general provided the best performance/unit area, with the

〈6x8〉 and 〈8x8〉 providing the least improvement mainly due to frequency and area

overhead in comparison to the smaller engines. Such engines however still provide a

considerable performance/area gain when compared to a conventional SMT (greater

than 3.5x).

9.2.6 Performance/Watt

Fig. 9.13 plots ConSSTEP’s performance/watt improvement over a 2T SMT con-

sidering the same power constraint for both dies. According to the figure, 〈3x3〉
appears to be the most efficient mainly due to its speedup in throughput and low

power consumption, followed close by the 〈3x4〉 core. 〈3x3〉 however demonstrates

Chapter 9 137

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.13: Two-Thread ConSSTEP Core Throughput/Power Consumption Im-

provement

an average 11.99% improvement over all other configurations, and therefore pro-

vides the most efficient performance/watt for a 2T core. In comparison to the SMT,

all configurations demonstrate an average SMT performance/watt improvement of

1.18x.

Since 〈8x8〉 generally possesses the least gains for performance/area and per-

formance/watt, the next section omits 8-FU engines and conducts further tests for

4-Thread configurations and efficient area, power, and performance per core.

9.3 Four-Thread Results

9.3.1 Area

Area comparisons for the 4T processors employ the same evaluation methodology as

discussed for 2T, however considering a 4T pipeline, i.e. extra buffering, extended

bit tags, and the thread select logic required for a 4T SMT versus 2T. Table 9.2

presents all processor die area results. The 4T SMT required less than a 1% area

overhead for adding two more threads to the datapath. ConSSTEP’s area overhead

however increased linearly with the two threads added due to replicated engine logic

and the scheduler which must monitor two more engines concurrently. Nevertheless,

the ConSSTEP architecture is still able to reduce area overhead in the best case

by 13.05% (i.e. 〈3x3x3x3〉), and in the worst case (i.e. 〈6x6x6x6〉) by 6.5% for a

4T core. The same transistor budget allocation for memory, scheduling etc. which

138 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Table 9.2: 4-Thread Area Comparison (mm2)

Processor Area (mm2)

4-Thread SMT 16.01

〈3x3x3x3〉 13.856

〈3x4x3x3〉 13.868

〈3x3x4x4〉 13.898

〈3x3x3x6〉 13.913

〈3x3x4x6〉 13.915

〈4x4x4x4〉 13.88

〈3x4x4x6〉 13.955

〈3x3x6x6〉 14.413

〈4x4x4x6〉 13.925

〈3x4x6x6〉 14.425

〈4x4x6x6〉 14.455

〈3x6x6x6〉 14.472

〈3x4x4x4〉 13.91

〈6x6x6x6〉 14.97

was discussed previously for 2T ConSSTEP scaled in the same manner for a 4T

ConSSTEP core, except at a slightly larger die size. In addition to the overhead

obtained by adding two additional thread’s engines, Chapter 7’s Table 7.3 demon-

strates the additional unified scheduling logic required by ConSSTEP. Specifically,

the scheduler’s area nearly quadrupled to accommodate two extra threads, mainly

attributed to the increased number of ports required by the scheduler to monitor all

threads concurrently. Thus scheduler scalability remains future work.

9.3.2 Performance

IPC

Fig. 9.14 presents the single-thread IPC improvement of various 4T core models

normalized to a 4T SMT, where the first column represents an average STC’s IPC

improvement within a 4T multi-core in comparison to a 4T SMT. Based on the

results obtained, ConSSTEP provides an average single-thread IPC improvement of

1.418x over a 4-core STC, and 2.41x improvement in comparison to the 4T SMT.

Chapter 9 139

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Figure 9.14: Four-Thread IPC for Various ConSSTEP Configurations

Similarly, the STC is able to provide a 2x the single-thread performance gain on

average in comparison to its SMT equivalent. Thus ConSSTEP is able to provide a

IPC performance gain in comparison to both the SMT core and STC.

Considering a 4T model, it is theoretically expected that the larger the engines

present in a given ConSSTEP core, the greater the IPC gain as the core may support

a greater issue width. In actuality, as previously discussed in the case of 2T cores,

the PhysC’s scheduling algorithms have an effect on heterogeneous configurations.

Consequently, performance in certain cases do not follow the expected trends and

demonstrate slightly less performance gains when compared to other homogeneous

cores. Additionally, certain threads may also possess low inherent ILP and therefore

when executed on larger engines do not exhibit substantial IPC gains in comparison

to other configurations (i.e. the memory-intensive applications such as Black etc).

For more computationally-intensive such as Ocean however, it is observed that cores

with generally larger engines benefit from their higher inherent ILP per thread ac-

cording to expected trends.

As seen in the figure, statistical observation concludes that the 〈6x6x6x6〉 on av-

erage provides the greatest gain due to larger engine size, issue width, and more re-

source availability for more computationally intensive applications. All ConSSTEP

engines in general however were able to fully support the given workloads as threads

scale, each engine exhibiting minimal pipeline contention in comparison to the SMT

with the exception of certain memory operations. Conversely, for 4T workloads,

140 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

conventional SMT pipelines experienced greater contention delays as the number of

threads in the pipeline scaled due to resource sharing and thread blocking. Conse-

quently, a penalty in single-thread IPC performance was exhibited. For memory-

intensive applications (SPr), and in even the worst case of Stream with high cache

misses, the best ConSSTEP configuration was still able to achieve a 25.1% single-

thread performance gain over 4T STC model due to the reduction of instruction

processing overhead and misprediction penalties.

Throughput

Figure 9.15: Four-Thread Throughput Comparison for Various ConSSTEP Config-

urations

Fig. 9.15 demonstrates the average throughput per 4T engine configuration, and

the multicore STC throughput improvement over a 4T SMT equivalent. Similar to

the 2T throughput section, the configurations are also divided in the figure according

to the engine which limits attainable frequency of operation. The 4T trends exhib-

ited in the figure follow the same trends as those of the 2T ConSSTEP cores, i.e.

homogeneous cores achieve the best throughput results over heterogeneous cores as

all engines operate at the maximum issue-width and frequency possible considering

the given classification.

As seen in the results, the 4-core STC achieves 1.55x throughput improvement

over a 4T SMT, where ConSSTEP engines on average achieve 3.13x the through-

put of the SMT due to frequency, wider widths and reduced instruction processing

overhead. In comparison to the 2T ConSSTEP configurations presented previously,

a greater performance gain was also exhibited as all engines work concurrently with

Chapter 9 141

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

minimal thread blocking in comparison to the SMT. ConSSTEP’s overall limita-

tion for additional performance gain however is directly related to the scheduler’s

scaling limitation of area overhead and power consumption. Therefore considering

the maximum die size presented by the SMT, ConSSTEP is limited to 4-6 threads

depending on the configuration, due to such scheduler scalability. Accordingly, this

chapter now presents performance/unit area, where the scheduler issue is further

discussed in Chapter 10.

9.3.3 Performance/Unit Area

Figure 9.16: Four-Thread Performance/mm2 Comparison for ConSSTEP Configu-

rations

Fig. 9.16 displays instruction throughput per square millimetre (performance/mm2),

improvement when compared to the 4T SMT baseline processor equivalent. On av-

erage, 4T ConSSTEP was able to improve the performance/mm2 by 2.27x, where

〈3x3x3x3〉 provided the best performance/unit area of 2.5x, and 〈3x3x3x6〉 and

〈3x3x6x6〉 provided the least improvement (however still greater than 2.2x). Such

heterogeneous engine configurations were therefore limited by the largest engine,

with direct correlation to throughput analysis discussed previously. The 4T config-

urations in general provided less of a performance/area improvement over the 2T

configurations since the engines and scheduler doubled in area to scale the threads.

Accordingly, ConSSTEP’s performance/unit area gain was halved to support an

additional two threads, nevertheless still achieving more than double the perfor-

mance/unit improvement of an SMT, and magnitudes of improvement over a 4-core

STC (i.e. four copies of the same core on a die versus a single ConSSTEP core).

142 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

9.3.4 Energy and Power

Figure 9.17: Four-Thread Energy Distribution for ConSSTEP Structures

Figure 9.18: Four-Thread Energy Saving for Various ConSSTEP Engine Configura-

tions versus SMT

Fig. 9.17 presents the energy distribution per ConSSTEP core structure per ap-

plications, averaged across all 4T ConSSTEP configurations. Similar to 2T cores, all

configurations demonstrated the same relative energy consumption per component

considering the overall system and equivalent operations required per benchmark.

Accordingly consumption was also highly reliant on an application’s characteris-

tics for 4T cores. As expected, when directly comparing the 2T ConSSTEPs to 4T

equivalents, the scheduler consumed a greater amount of energy. Since the scheduler

monitored two more threads concurrently, more energy was required and hence a

Chapter 9 143

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

greater portion of the total energy distribution was allotted to the scheduler. Aside

from the scheduler’s energy, all other structures remained similar to the 2T, con-

suming energy according to benchmark properties discussed previously.

Fig. 9.18 demonstrates the energy savings of a 4T ConSSTEP core in compari-

son to a 4T SMT, displaying similar, slightly varying energy consumption trends per

core type (as the case of the 2T ConSSTEP). 4T ConSSTEP cores save on average

approximately 58.93% energy in comparison to the 4T SMT. Specifically, the 4T

cores increase energy/application efficiency by approximately 1.57x in comparison

to an SMT core equivalent. Such improvement is again attributed to the speedup

in execution time and the non-blocking characteristics of the engines as threads

scale, whereas contention and blocking increases in SMT processors as threads scale,

increases the execution time and energy required per thread. However since the

number of structures increases within a ConSSTEP core as threads scale, power

consumption likely also increases as discussed next.

Figure 9.19: Power Consumption Savings for 4T ConSSTEP Configurations, Nor-

malized to SMT

Fig. 9.19 presents the dynamic and static power savings for various 4T Con-

SSTEP configuration, normalized to its SMT core equivalent. In the case of 4T

cores, results demonstrate that the most efficient configuration is the 〈3x3x3x3〉 and

〈3x4x3x3〉 core, saving approximately 24% and 22% power when compared to the

SMT, respectively. In the case of 4T cores however, more power is consumed in

144 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

comparison to the 2T versions due to the additional logic required to scale Con-

SSTEP to four threads. Thus power savings are less than the savings discussed for

2T, nevertheless still saving a conservative amount of power when compared to a

standard SMT. Conversely, the 〈6x6x6x6〉 configuration consumes more power than

the SMT and hence this irregularity is observed in the figure; the irregularity is

due to the increased number of integer-based FUs and the scheduler. Similarly the

〈3x6x6x6〉 and 〈4x4x6x6〉 consume nearly the same power as the SMT, for similar

reasons, i.e. more 6-FU engines present on the core and the monitoring required

by the scheduler. An average power savings of 11% however exists across all 4T

configurations.

9.3.5 Performance/Watt Comparison

Figure 9.20: Four-Thread Throughput/Power Comparison for ConSSTEP Configu-

rations

Fig. 9.20 plots the throughput improvement/watt savings normalized to the

4T SMT, displaying the most efficient configurations in terms of performance and

power, for various 4T ConSSTEP configurations. According to the plot, 〈3x3x3x3〉
provides the best performance per Watt due to its increased frequency and smaller

engine sizes, whereas 〈6x6x6x6〉 yield the least improvement as expected based on

the power outcomes presented in the previous subsection. Overall, the 〈3x3x3x3〉 is

on average 2x more efficient than the other configurations presented.

Chapter 9 145

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

9.4 Other Architectural Statistics

9.4.1 Configuration Memory

Table 9.3: Configuration Memory Specifications

Config Mem Timing Specifications Total Storage(KB)

rS 5 c.c/rS 240

FUs 2 c.c/FU 120

RRB 4 c.c 20

WRB 4 c.c 4

(Pre-) Load Memory 2-3 c.c/load 2

Extern Reg File 2 c.c/two reads (multi-port) 1

Many conventional pipeline structures are eliminated in ConSSTEP through the

use of configuration data and simple engine structures i.e. the IQ, ROB, Rename, ID,

Bypass etc. Therefore this section assesses the requirements imposed by such con-

figuration data storage. The following outlines the average configuration (banked)

memory storage requirements per engine component:

- FUs: Configured in twos - 16Kb (i.e. 8Kb per ALU)

- rS: Configured in twos - 16Kb

- RRB: 8Kb

- WRB: 1Kb

- EARF R/W: 0.25 Kb

- Pre-Load Memory: 0.5kB

The total memory requirements per engine component (aggregated storage) are

also outlined in Table 9.3 and are averaged per application. Assuming larger and

more intensive applications than the benchmarks presented here, the configuration

memories must then be treated as data/instruction caches, transferring configuration

data with multiple levels of cache. Overall, the statistics presented here demonstrate

that the scalability and reconfigurability of the engines and interconnect come with

the cost of approximately 5KB per additional row added to an engine. Therefore,

ConSSTEP requires more C-Cache data storage in comparison to a conventional

CPU’s I-Cache, however at the advantage of eliminating various dynamic pipeline

146 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

structures while providing performance gains and an energy efficient design.

9.4.2 Revisiting Tseng and Patt with ConSSTEP

Figure 9.21: Propagation, Temporary Storage, and External Read/Write Require-

ments of Operand Dependencies with ConSSTEP

One of the prime objectives of ConSSTEP is to eliminate data transport issues

by exploiting value lifetime. This section revisits and analyzes ConSSTEP’s storage

and propagation statistics, and compares them to the findings presented by Tseng

and Patt [6]. Fig. 9.21 demonstrates the overall operand dependency characteris-

tics observed by ConSSTEP, averaged across all 2T and 4T configurations for each

benchmark. Specifically, the figure displays the percentage of instruction operands

which require propagation, temporary storage on the rS network, and external regis-

ter file storage during bundle execution. Referring back to the benchmark statistics

gathered by Tseng and Patt [6], 70% of the broadcasts in conventional processors

which are sent to the IQ are not required as they have been forwarded to their

single consumer using the bypass network. Similarly, 74% of the results stored to

the register file have already been forwarded to their single consumer, never read,

and/or overwritten by other instructions, where 80% of the values have a lifetime

of 32 instructions or fewer.

According to the statistics obtained by ConSSTEP during experimental testing,

approximately 58.25% of the operands were directly propagated to their consumers

throughout the network, 36.33% of the operands required temporary storage for an

average of two instructions or less, and on average 5.42% of the operands required

Chapter 9 147

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

external register file storage due to inter-bundle dependencies. Therefore by us-

ing the ConSSTEP approach, operand lifetimes were able to be maintained within

the bundles, allowing approximately 94.58% of instruction operands to be directly

forwarded to their consumer(s) without register file intervention (whether directly

propagated or briefly stored in the engine), where only 5.42% of the operands re-

quired EARF reads and writes. In comparison to the statistics obtained by Tseng

and Patt, ConSSTEP therefore improves operand forwarding by 20.58% due to reg-

ister file access avoidance during bundle execution, effectively minimizing IO register

port requirements, its centralized access, and the general unscalability of the bypass

network.

9.4.3 Load/Store Unit Scaling

Given that the number of FUs per engine have been increased in ConSSTEP to

obtain a computational performance gain in comparison to conventional processors,

it was observed that various benchmarks are further bound by memory operations.

To view the effects of increasing concurrent memory operations in ConSSTEP, Fig.

9.22 presents the IPC, cycle time, and energy/access increase by scaling the number

of LSUs per engine which access the cache, averaged for all benchmarks. The figure

displays trends for a 2T ConSSTEP core, normalized to 2 LSUs/engine for cycle

time and energy access, where IPC is normalized to a STC. Cycle time (ns) and

energy per access (nJ) were both obtained using CACTI estimates.

Figure 9.22: Two-Thread ConSSTEP LSU Scaling

As seen in Fig. 9.22, an average performance improvement of 4% was obtained

by using 2 LSU/engine in comparison to one LSU. Adding an additional LSU/engine

only displayed 1% further IPC improvement due to contention, where two more LSUs

only provided a 0.75% performance increase. On average, cycle time increased at a

148 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

slow linear rate, whereas energy/access increased rather exponentially. Accordingly,

the inclusion of two LSUs per engine (multiplexed to a 2-write port D-cache) pro-

vided fair performance gains while maintaining energy/access of the cache within

reasonable bounds.

9.5 Summary

9.5.1 2-Thread ConSSTEP

According to the results obtained, the most efficient 2T ConSSTEP engine config-

uration was the 〈3x3〉 core due to its small relative size, low power consumption,

higher frequency, and low area overhead. Its minimized critical path was therefore

able to increase throughput in comparison to the other configurations tested, how-

ever at the expense of a lower issue width in comparison to a 2T STC. 〈3x3〉 however

demands less of other architectural structures such as configuration memory, FUs,

and general PhysC complexity. In the case that the frequency of operation may

be further optimized however (whether by variable frequency per engine or deeper

pipelining techniques within each engine), and that area overhead may be further

mitigated, the larger configurations such as 〈4x6〉, 〈4x8〉 also appear as promising

solutions for increasing issue width and the general performance of a core. However,

considering the architectural design presented in this thesis, the most efficient 2T

ConSSTEP configuration was determined to be the 〈3x3〉 core.

9.5.2 4-Thread ConSSTEP

Similar to the 2T case presented, based on the results obtained the most efficient

4T ConSSTEP configuration evaluated was the 〈3x3x3x3〉 engine architecture. In

accordance with the reasons mentioned above for 2T, as threads scale on a Con-

SSTEP core, area overhead and power consumption also increased. Consequently

the larger the engines and the more threads supported per core, the greater the

area and power overhead required. However as seen in the results, ConSSTEP nev-

ertheless presented a more performance scalable solution than the SMT as thread

blocking is still problematic in such a model.

Chapter 9 149

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

9.6 Conclusion

This chapter provided experimental results for the ConSSTEP architecture, with

detailed comparisons to the SMT and STC multi-core baselines. Specifically this

chapter raised various questions pertaining to performance, energy efficiency, power

consumption, and area overhead of ConSSTEP to determine the results and feasi-

bility of the core. The following is a summary of the findings based on the 2T and

4T core prototypes tested:

• Performance:

– IPC: On average, ConSSTEP was able to improve single-thread IPC

of a 2T SMT by 1.39x, and achieve a 1.11x single-thread performance

gain over STC models. Scaling the core to 4T, ConSSTEP improved

IPC by 2.41x in comparison to a 4T SMT and 1.41x the single-thread

IPC STC. ConSSTEP was therefore successful at mitigating much of the

thread blocking imposed of typical SMTs, while eliminating much of the

processing overhead per instruction, which is especially effective during

speculative execution and respective single-thread performance.

– Throughput: Considering the increase in attainable frequency of op-

eration, an average 2T ConSSTEP core was able to achieve 2.4x the

throughput of a SMT, whereas a 4T core achieved 3.13x the throughput

as threads scaled. Hence the simple logic which increased ConSSTEP’s

frequency greatly contributed to ConSSTEP’s performance increase, es-

pecially for non memory-intensive applications. Memory-intensive appli-

cations however were also able to receive slight benefits from the increase

in frequency and/or issue-width attained by ConSSTEP.

• Energy Efficiency: Through experimental results, ConSSTEP was able to

achieve 37.5% more energy efficiency when compared to a 2T SMT, and 58.93%

when compared to a 4T SMT. In comparison to a STC multi-core system which

duplicates cores on a die, ConSSTEP would therefore exhibit exponential en-

ergy efficiency.

• Power consumption: Considering all active and inactive components on

chip, ConSSTEP achieved 59% power savings in comparison to 2T SMT, and

on average 11% for 4T SMT, mostly due to component duplication and sched-

uler complexity of the ConSSTEP core.

150 Chapter 9

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

• Area overhead: According to the physical model results obtained for the

cores, ConSSTEP was able to reduce area overhead of a 2T SMT die on average

between 52.6% - 56.3%, and 6.5 - 13.05% for a 4T SMT. Due to component

duplication and the scalability issues of the scheduler, ConSSTEP was limited

to 4 threads per core. ConSSTEP however greatly increased performance

while providing non-blocking thread behaviour in multi-threaded workloads

when compared to conventional processor cores for the given die area.

• Performance/Unit Area: According to the results obtained from the sim-

ulator and physical modelling, considering the same area per core, an average

2T ConSSTEP core was able to achieve 4.09x the performance/unit area of a

2T SMT, and 2.27x that of a 4T SMT.

• Performance/Watt: Similarly, considering the same power constraint per

die, ConSSTEP on average achieved 1.18x the performance/watt of a 2T SMT,

and 2x that of a 4T SMT.

Therefore according to the experimental results presented in this chapter, Con-

SSTEP is a feasible solution to increase a SMT’s single-thread performance, through-

put, and energy efficiency with generally less area overhead per die. ConSSTEP is

able to support up to 4 threads considering a conventional SMT’s maximum die

size.

Chapter 9 151

Chapter 10

Conclusions and Future Work

Increasing both single-thread performance and throughput on a single-core is a

challenging and difficult task, especially considering issues of hardware complexity

and power consumption. This dissertation introduced the ConSSTEP core which

completely deviated from conventional processor designs, integrating reconfigurable

properties to allow for higher issue widths, the elimination of several datapath bot-

tlenecks, scalable data transport, and higher single-thread performance and energy

efficiency on a single chip.

ConSSTEP is a configurable multi-threaded processor which employs the concept

of logical and physical compilation to support an underlying reconfigurable archi-

tecture. Specifically, the core consists of a variety of execution units (engines), each

containing functional units (FUs) interconnected through a configurable, single-cycle

multi-hop registerSwitch (rS) interconnect. The rS units solve the data transport

bottleneck of conventional processors by providing both temporary distributed stor-

age and data propagation properties, relieving the need for constant access to a

register file, bypass network, and instruction queue.

Each thread of a multi-threaded workload receives a dedicated engine, where

multiple engines work concurrently on a chip to provide high instruction through-

put. Thus single-thread performance remains unaffected by resource contention as

the case of other multi-threading models. The ConSSTEP architecture and physi-

cal compilation technique therefore were successful at increasing both single-thread

performance and the throughput of multi-threaded workloads.

Accordingly, the following answer the Research Questions raised in Chapter 1.2:

152

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Research Question 1: What nuanced computing model and datapath design may

mitigate instruction control and processing overhead to emphasize data processing

and increase a single-thread’s performance? How can the model be applied to a

multi-threaded workload domain to improve upon a SMT model’s limitations?

Answer 1: A configurable datapath model, referred to as ConSSTEP, was

defined as a nuanced computing model. The processor successfully mitigated in-

struction control and processing overhead, where the datapath was completely al-

tered to eliminate several conventional core and SMT model limitations. The Con-

SSTEP model effectively increased single-thread performance, and was directly ap-

plied to the multi-threaded workload domain which significantly improved area,

performance, and energy efficiency per core.

Research Question 2: Is it possible to alter the triple set characteristics of a Com-

puting System with Programmable Procedure (CSPP) in order to mitigate the effects

of redundant bandwidth, unscalable structures, and the general bottlenecks raised in

Research Question 1? If the triple set is altered, how will this affect the ISA and

software/compiler compatibility?

Answer 2: The triple set characteristics of the Computing System with Pro-

grammable Procedure (CSPP) model was re-defined successfully as AConSSTEP =

{Ci, ∼ Li,j, ∼ Pi,j}. Configurable properties were integrated into the datapath, i.e.

flexible links (∼L) interconnecting the functional components (C), which mitigated

several conventional CPU effects including redundant bandwidth, buffering, instruc-

tion processing overhead, and unscalable hardware structures. Configurable bottle-

neck properties (i.e. additional latencies, hardware overhead, configuration memory)

were decreased by taking these factors into consideration during the datapath’s de-

sign. Specifically, configuration latencies were eliminated using a distributed config-

uration banking system and an aggressive pipeline with simultaneous execution and

configuration. Hardware overhead was also eliminated by integrating configurable

logic within the processor’s design. However additional configuration memory re-

quirements were necessary in place of the Instruction cache (I-cache).

In terms of software/compiler compatibility, the reconfigurable triple set required

a secondary compilation phase, referred to as the Physical Compiler (PhysC) to gen-

erate the configuration logic. The first phase referred to as a Logical Compiler, i.e.

Chapter 10 153

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

any standard compiler, was kept to maintain software and binary compatibility.

This the compilation phase provided an application binary, where the binary was

then input to the PhysC generating bundles of instructions which were translated

to configuration logic. Such logic was then used by the underlying architecture for

execution of bundles based on their respective dependencies. Therefore current ISAs

and software/compilers remain fully compatible using ConSSTEP.

Research Question 3: Is it possible to have a smarter compilation process to ex-

tract application characteristics and eliminate various datapath structures? If so, is

it possible to maintain compatibility with standard software, ISAs, and programming

models? If compatibility is maintained, how will the software interact with the pro-

cessor’s hardware to convey such application characteristics?

Answer 3: As mentioned in Answer 2, a two layer compilation process was

developed in this thesis to successfully extract application characteristics within

the compiler, eliminating several front-end datapath structures. Accordingly such

a framework required no ISA amendments/extensions and maintained full software

compatibility. The software was able to interact and convey application charac-

teristics to the underlying processor hardware through reconfigurable logic and its

respective hardware properties. Specifically, as ConSSTEP invokes a configurable

interconnect, the PhysC generates the core’s configuration data based on the given

workload’s communication characteristics and data dependencies. This data conveys

the application’s requirements to the underlying hardware as simple control logic,

eliminating the need for conventional structures to re-discover application charac-

teristics at the cost of area, power and additional process latencies.

Research Question 4: Once the processor is built, how will exceptions and/or

mispredictions be handled?

Answer 4: Based on ConSSTEP’s architecture, mispredictions and exceptions

were designed to be handled in a simplistic and efficient manner, especially when

directly compared to conventional processors. Exceptions are handled through the

technique of “pausing” which uses the double configuration register approach as

introduced in this thesis. Specifically, when an exception is raised by the execut-

ing configuration register set, the alternate set may be reconfigured to execute the

exception handler while the executing set is simply paused and resumed after the ex-

154 Chapter 10

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

ception is resolved. Similarly, mispredictions use the alternate set to verify that the

misprediction is not a loop. If the misprediction is not a loop, then a reconfiguration

penalty is endured. Else the misprediction penalty is completely avoided. However

both approaches completely eliminate the need to flush the pipeline and checkpoint

various structures i.e. store and restore state prior to the exception/misprediction.

Thus ConSSTEP handles exceptions simplistically and efficiently.

10.1 Addressing Limitations

Although there were many advantages to the ConSSTEP architecture, limitations

did exist as discussed in Chapter 3 and during experimental results. Therefore this

section presents and lists possible solutions for addressing such limitations in future

work:

Scheduler Scalability: This thesis presented a unified scheduler approach for

monitoring thread workloads and distributing bundles to each thread’s engine con-

currently. A unified scheduler was especially required to provide thread synchro-

nization across the threads and to simplify exception handling. As seen during

experimental results however, such a unified approach led to double the area and

power consumption for every two threads added to the system, limiting massive

scalability on chip. Future work therefore involves a design which provides sched-

uler scalability in ConSSTEP.

A possible solution to allow for such scheduler scalability may involve adding

dedicated synchronization mechanisms to monitor barriers, while integrating indi-

vidual thread schedulers per engine. Similarly, a dedicated exception handling unit

could be included in the core, however in a scalable manner without IO port explo-

sion. Although such a scheduler design could possibly benefit ConSSTEP, a core’s

scalability would thereafter depend on the memory system bottleneck, as the case

of conventional CPUs.

Sharing FP Units Between Engines: A minor scalability issue in ConSSTEP

involved FP engines. Specifically, a FP unit was assigned to each engine/thread to

ease the PhysC’s scheduling complexity. As seen in the experimental results pro-

vided however, such FP logic added to the area overhead and power consumption

per engine. FP operations in general were also infrequent across the applications.

Chapter 10 155

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

Therefore a more ideal solution would be to share FP engines between integer en-

gines for greater area and power scalability. A dynamic protocol between the integer

WRB to the FP RRB would therefore be required to implement such sharing tactics,

and remains future work.

Runahead Techniques for Improving Memory Performance: The mem-

ory system invoked by ConSSTEP was implemented in an identical manner to the

baseline cores to directly assess the benefits of a nuanced processor architecture.

Experimental testing demonstrated that ConSSTEP was successful at increasing

the performance of multi-threaded workloads, with a slight performance advantage

for more memory-intensive/SPr applications. Given that ConSSTEP mitigates the

many impositions of pipeline flushes and state restoring, it would be possible to

increase its memory performance using runahead thread techniques[17, 18].

Runahead threads allow a conventional pipeline to continue executing instruc-

tions with a fake “load/store” value when the oldest instruction in the pipeline is a

L2 miss (or locks in the case of multi-threaded workloads). The instruction stream

continues to execute with the fake value, where future load/store instructions are

issued in order to prefetch data and mitigate future misses. Context must be saved

in runahead mode however so that the previous state (prior to the fake value) may

be restored once the L2 miss returns. Thus all instructions which execute after the

L2 miss must be squashed, which consumes dynamic power for the possibility of

data prefetching, where the pipeline must be restored regardless of the value used

for runahead.

Similar to the case of exception handling, storing, restoring, and flushing pipeline

latencies are costly to process performance. Since ConSSTEP possesses much sim-

pler “pausing” logic to handle such situations faster, using a revised runahead

method would prove promising without the need to save/restore state for prefetching

techniques and further performance gains in memory-intensive workloads. Hence a

runahead ConSSTEP implementation remains future work.

10.2 Future Work

The following presents other possible solutions to further improve the quality and

functionality of the ConSSTEP processor:

156 Chapter 10

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

SIMD Support: This thesis directly addresses issues of ILP and TLP, leav-

ing Data-Level Parallelsim (DLP) as future work, i.e. the integration of SIMD units

in the core. It is possible that a technique such as that employed for the FP engine

may be used to integrate SIMD units, however in a shared manner. Direct consider-

ation of the memory banking requirements for SIMD and general vector processing

must also be investigated. It is possible that the engine units themselves may also

be vectorized, invoking rS unit techniques for temporary storage. However due to

such complexities and design issues, SIMD support remains future work.

Apply core morphing to ConSSTEP: Similar to the CoreFusion [57] and Mor-

phCore [10] approaches discussed, ConSSTEP may apply dynamic thread monitor-

ing in the core to temporarily shut down engines, or fuse engines together to provide

higher issue-width for more computationally-intensive workloads such as Ocean.

Revising the primary compiler to avoid unnecessary register spilling: As

ConSSTEP was successful at mitigating register file accesses and exploiting operand

lifetimes using engines and the rS interconnect, it is possible that loads and stores

due to register spilling may be tolerated in a more efficient manner by the primary

compiler. That is, reducing the memory accesses generated by the compiler due to

the insufficient architectural registers present in the ISA. Although a fairly complex

endeavour, such a compilation approach remains future work.

Multi-core adaptability: The ConSSTEP architecture presented in this work,

considers a single-core multi-threaded processor. However ConSSTEP may easily be

adapted to a multi-core design to provide more significant performance gains. Since

the memory system invoked by ConSSTEP core is identical to that of conventional

cores, the microarchitectural design presented in this thesis may easily support the

same coherence protocols without any architectural modifications. Accordingly the

ConSSTEP cores presented in this thesis work may be applied to heterogeneous

and/or homogeneous multi-core systems without amendments and remains future

work.

Chapter 10 157

Bibliography

[1] S. Borkar and A. Chien. The future of microprocessors. In Communications of

the ACM, volume 54, pages 67–77, 2011.

[2] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. In IEEE

Computer, pages 33–38, 2008.

[3] P. Michaud, A. Mondelli, and A. Seznec. Revisiting clustered microarchitecture

for future superscalar cores: A case for wide issue clusters. In ACM TACO,

volume 13, pages 22–33, 2015.

[4] Y. Patt. Future microprocessors: What must we do differently if we are to

effectively utilize multi-core and many-core chips. In IPSI BGD Transactions

on Internet Research, volume 5, pages 2–10, 2009.

[5] L. Kirischian. Reconfigurable Computing Systems Engineering: Virtualization

of Computing Architecture. Taylor & Francis, 2016.

[6] F. Tseng. Braids: Out-of-order performance with almost in-order complexity.

In Doctoral Dissertation, University of Texas at Austin, 2008.

[7] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems

and Processes (The Morgan Kaufmann Series in Computer Architecture and

Design). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[8] H. Corporaal. Design of transport triggered architectures. In Design Automa-

tion of High Performance VLSI Systems, pages 130–135, 1994.

[9] E. Athanasaki, N. Anastopoulos, K. Kourtis, and N. Koziris. Exploring the

performance limits of simultaneous multithreading for memory intensive appli-

cations. Journal of Supercomputing, 44:44–64, 2008.

158

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

[10] Khubaib, M. Aater Suleman, M. Hashemi, C. Wilkerson, and Y. Patt. Mor-

phcore: An energy-efficient microarchitecture for high performance ilp and high

throughput tlp. In Proceedings of MICRO, pages 305–316, 2012.

[11] S. Everman and L. Eeckhout. A memory-level parallelism aware fetch policy

for smt processors. In Proceedings of HPCA, pages 240–249, 2007.

[12] C. Bienia, S. Kumar, J. Singh, and K. Li. The parsec benchmark suite: Charac-

terization and architectural implications. In Proceedings of ACM PACT, pages

72–81, 2008.

[13] N. Barrow-Williams, C. Fensch, and S. Moore. A communication characterisa-

tion of splash-2 and parsec. In Proceedings of IISWC, pages 86–97, 2009.

[14] A. El-Moursy and D. H. Albonesi. Front-end policies for improved issue effi-

ciency in smt processors. In IEEE High Performance Computing Architectures

(HPCA), 2003.

[15] D. Tullsen and J. A. Brown. Handling long-latency loads in a simultaneous

multithreading processor. In Proceedings of MICRO, pages 318–327, 2001.

[16] K. Van Craeynest, K. Eyerman, and S. Eeckhout. Mlp-aware runahead threads

in a simultaneous multithreading processor. In Proceedings of HiPEAC, pages

110–124, 2009.

[17] T. Ramirez, A. Pajuelo, O. Santana, and M. Valero. Runahead threads to

improve smt performance. In Proceedings of HPCA, pages 16–20, 2008.

[18] T. Ramirez, A. Pajuelo, O. Santana, O. Mutlu, and M. Valero. Efficient runa-

head threads. In Proceedings of PACT, pages 443–452, 2010.

[19] S. Eyerman and L. Eeckhout. The benefit of smt in the multi-core era: Flexi-

bility towards degrees of thread-level parallelism. In Proceedings of ASPLOS,

pages 591–606, 2014.

[20] J. Baer. Microprocessor architecture: From simple pipelines to chip multipro-

cessors. In Cambridge University, 2010.

[21] J. Hennessy and D. Patterson. Computer architecture: A quantitative ap-

proach. Morgan Kaufmann Publishers Inc: San Francisco, 2011.

[22] T. Jamil. Risc versus cisc. In IEEE Potentials, volume 15, pages 13–16, 1995.

Chapter 10 159

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

[23] K. Karuri and R. Leupers. The ASIP Design Space. Springer New York, 2011.

[24] K. Beyls and E. H. D’Hollander. Generating cache hints for improved program

efficiency. In Journal of Systems Architecture, volume 51, pages 233–250, 2005.

[25] J. Shen and M. Lipasti. Modern processor design: Fundamentals of superscalar

processors. In McGraw-Hill Publishers, 2004.

[26] P. Y Chang, M. Evers, and Y. N. Patt. Improving branch prediction accu-

racy by reducing pattern history table interference. In Porceedings of Parallel

Architectures and Compilation Techniques (PACT), pages 48–58, 1996.

[27] A. Seznec and P. Michaud. A case for (partially) tagged geometric history

length branch prediction. In Journal of Instruction Level Parallelism (JILP),

pages 1–23, 2006.

[28] J. Hennessy. Processor design and other challenges in the post-pc era. In

Proceeding of Microprocessor Forum,, Cahners Microdesign Resources, 1999.

[29] Intel 64 and ia-32 architectures optimization reference manual. In Technical

Report 248966-026, 2012.

[30] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. Wavescalar. In Inter-

national Symposium on Microarchitecture, pages 291–302, 2003.

[31] A. Pellegrini, J. Greathouse, and V. Bertacco. Viper: Virtual pipelines for en-

hanced reliability. In Proceedings of the International Symposium on Computer

Architecture, pages 344–355, 2012.

[32] E. B. Nightingale, J. R Douceur, and V. Orgovan. Cycles, cells and platters: An

empirical analysis of hardware failures on a million consumer pcs. In Proceedings

of EuroSys, pages 343–356, 2011.

[33] R. Nagarajan. Design and analysis of technology scalable architectures. In PhD

Thesis - University of Texas at Austin, 2006.

[34] K. Sankaralingam. Polymorphous architectures: A unified approach for ex-

tracting concurrency of different granularities. In PhD Thesis - University of

Texas at Austin, 2006.

160 Chapter 10

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

[35] S. Kalathingal, S. Collange, B. N. Swamy, and A. Seznec. Dynamic inter-

thread vectorization architecture: Extracting dlp from tlp. In Proceedings of

SBAC-PAD, 2016.

[36] G. M. Papadopoulos and D. E. Culler. Monsoon: an explicit token-store archi-

tecture. In ACM SIGARCH Computer Architecture News, pages 82–91, 1990.

[37] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Dubiatowicz,

B. Lim, K. Mackenzie, and D. Yeung. The mit alewife machine: Architec-

ture and performance. In International Symposium on Computer Architecture

(ISCA), pages 1–12, 1995.

[38] P. Kontegira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded

sparc processor. In IEEE MICRO, pages 21–29, 2005.

[39] R. Kalla, B. Sinharoy, and J. M Tendler. Ibm power5 chip: A dual-core mul-

tithreaded processor. In IEEE Micro: Hot Chips, volume 24, pages 40–48,

2004.

[40] J. Chiu, Y. Chou, and P. Chen. Hyperscalar: A novel dynamically reconfig-

urable multi-core architecture. In Proceedings of the International Conference

on Parallel Processing (ICPP), pages 277–285, 2010.

[41] D. Tarjan M. Boyer and K. Skadron. Federation: Repurposing scalar cores

for out-of-order instruction issue. In Proceedings of the Design Automation

Conference (DAC), pages 772–775, 2008.

[42] M. Qayum, N. Siddique, M. Haque, and A. S Tayeen. Future of multipro-

cessors: Heterogeneous chip multiprocessors. In International Conference on

Informatics, Electronics and Vision (ICIEV), pages 372–376, 2012.

[43] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for

general-purpose approximate programs. In IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), pages 449–460, 2012.

[44] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber, and

J. Mattson. The transmeta code morphing software: Using speculation, recov-

ery, and adaptive retranslation to address real-life challenges. In Proceedings of

CGO, pages 1–10, 2003.

Chapter 10 161

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

[45] V. Packirisamy, Y. Luo, W. Hung, A. Zhai, P. C. Yew, and T. Ngai. Efficiency

of thread-level speculation in smp and cmp architectures - performance, power,

and thermal perspective.

[46] M. Ros and P. Sutton. A hamming distance based vliw/epic code compres-

sion technique. In International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems (CASES), pages 132–139, 2004.

[47] H. Sharangpani and H. Arora. Itanium processor microarchitecture. In IEEE

MICRO, volume 20, pages 24–43, 2000.

[48] NVIDIA Charts Its Own Path to ARMv8, 2014.

[49] L. Dagum and R. Menon. Openmp: an industry standard api for shared-

memory programming. Computational Science & Engineering, IEEE, 5(1):46–

55, 1998.

[50] E. Gunadi and M. Lipasti. Crib: Consolidated rename, issue, and bypass. In

International Symposium on Computer Architecture (ISCA), pages 23–32, 2011.

[51] R. P Goldberg. Survey of virtual machine research. In IEEE Computer, vol-

ume 7, pages 34–45, 1974.

[52] S. Hilly and A. Seznec. Out-of-order execution may not be cost-effective on

processors featuring simultaneous multithreading. In Proceedings of HPCA,

pages 64–67, 1999.

[53] K. Sankaralingam, R. Nagarajan, H. Lui, C. Kim, J. Huh, N. Ranganathan,

D. Burger, and S. Keckler et al. Trips: A polymorphous architecture for ex-

ploiting ilp, tlp, and dlp. In ACM TACO, 2004.

[54] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, and et al. Task superscalar: An

out-of-order task pipeline. In IEEE/ACM International Symp. on Microarchi-

tecture (MICRO), pages 89–100, 2010.

[55] Y. Watanabe, J. D. Davis, and D. A. Wood. Widget: Wisconsin decoupled grid

execution tiles. In International Symposium on Computer Architecture (ISCA),

pages 2–13, 2010.

[56] V. Govindaraju, C. Ho, and K. Sankaralingam. Dynamically specialized dat-

apaths for energy efficient computing. In IEEE MICRO, volume 32, pages

503–514, 2011.

162 Chapter 10

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

[57] E. Ipek, M. Kiman, N. Kiman, and J. F. Martinez. Core fusion: Accommodat-

ing software diversity in chip multiprocessors. In Proceedings of ISCA, pages

186–197, 2007.

[58] Barcelona Supercomputing Center. Programming with ompss. In BSC Pro-

gramming Models - Technical Document, 2017.

[59] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou. A fully pipelined and

dynamically composable architecture of cgra. In IEEE Symp on FPGA Custom

Computing Machines (FCCM), pages 9–16, 2014.

[60] E. Mirsky and A. Dehon. Matrix: A reconfigurable computing architecture

with configurable instruction distribution and deployable resources. In IEEE

Symp on FPGA Custom Computing Machines (FCCM), pages 137–166, 1996.

[61] S. Goldstein, H. Schmit, M. Budio, and et al. Piperench: A reconfigurable

architecture and compiler. In IEEE Computer, volume 33, pages 70–77, 2000.

[62] Z. A. Ye, A. Moshovos, S. Hauch, and P. Banerjee. Chimaera: A high-

performance architecture with a tightly-coupled reconfigurable functional unit.

In International Symposium on Computer Architecture (ISCA), pages 225–235,

2000.

[63] M. A. Watkins and D. H. Albonesi. Remap: A reconfigurable architecture for

chip multiprocessors. In IEEE MICRO, pages 65–77, 2011.

[64] R. K. Pal, K. Paul, and S. Prasad. Rekonf: A reconfigurable adaptive manycore

architecture. In IEEE Parallel and Distributed Processing with Applications

(ISPA), 2012.

[65] J. H. Ahn, M. Erez, and W. J. Dally. Tradeoff between data-, instruction-,

and thread-level parallelism in stream processors. In Proceedings of ICS, pages

126–137, 2007.

[66] W. J. Dally, P. Hanrahan, M. Erez, and T. J. Knight. Merrimac: Supercom-

puting with streams. In Proceedings of ACM/IEEE Conference on SC, page 35,

2003.

[67] H. Corporaal and M. Arnold. Using transport triggered architectures for embed-

ded processor design. In Integrated Computer-Aided Engineering, pages 19–38,

1998.

Chapter 10 163

Configurable Simultaneously Single-Threaded (Multi-)Engine Processor

[68] S. Shahabuddin, J. Janhunen, and M. J. Juntti. Design of a transport

triggered architecture processor for flexible iterative turbo decoder. CoRR,

abs/1501.04192, 2014.

[69] G. De Micheli and L. Benini. Networks on Chips: Technology and Tools. Morgan

Kaufmann Publishers Inc., 2006.

[70] G. McFarland. Microprocessor design: A practical guide from design planning

to manufacture. In McGraw-Hill, 2006.

[71] N. Binkert, B. Beckmann, and G. Black et al. The gem5 simulator. In

SIGARCH Computer Architecture News, volume 39, pages 1–7, 2011.

[72] N. Muralimanohar, R. Balasubramonian, and N. P Jouppi. Cacti 6.0: A tool

to understand large caches. In Technical Report, Hewlett-Packard Labs, 2008.

[73] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. In Proceedings of

the IEEE, volume 89, pages 490–504, 2001.

[74] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Per-

spective. Pearson - Addison Wesley, 2005.

[75] S. Shankland. Power could cost more than servers, google warns. In CNET web

article, 2006.

164 Chapter 10

