
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

Power Efficient Rapid Design Space Exploration of
Integrated Scheduling and Module Selection in
High Level Synthesis
Pallabi Sarkar
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer and Systems Architecture Commons, and the VLSI and circuits, Embedded

and Hardware Systems Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Sarkar, Pallabi, "Power Efficient Rapid Design Space Exploration of Integrated Scheduling and Module Selection in High Level
Synthesis" (2011). Theses and dissertations. Paper 799.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/799?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

POWER EFFICIENT RAPID DESIGN SPACE

EXPLORATION OF INTEGRATED SCHEDULING

AND MODULE SELECTION IN HIGH LEVEL

SYNTHESIS

By

Pallabi Sarkar

 Bachelor of Technology

 Electronics and Communication Engineering

West Bengal University of Technology

 Kolkata, India, 2008

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2011

©Pallabi Sarkar 2011

iii

Author's Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or

individuals for the purpose of scholarly research.

* Signature

 Pallabi Sarkar

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

* Signature

 Pallabi Sarkar

iv

ABSTRACT

Title of Thesis

POWER EFFICIENT RAPID DESIGN SPACE EXPLORATION OF INTEGRATED

SCHEDULING AND MODULE SELECTION IN HIGH LEVEL SYNTHESIS

Thesis Submitted By:

 Pallabi Sarkar, Master of Applied Science, 2011

Optimization Problems Research and Application Laboratory (OPR-AL)

Electrical and Computer Engineering Department, Ryerson University

Thesis Directed By:

Dr. Reza Sedaghat

Electrical and Computer Engineering Department, Ryerson University

High level Synthesis (HLS) or Electronic System Level (ESL) synthesis requires scheduling

algorithms that have strong capability to reach optimal/near-optimal solutions with significant

rapidity and greater accuracy. A novel power efficient scheduling approach using ‘PI’ method

has been presented in this thesis that reduces the final power consumption of the solution at the

expenditure of minimal latency clock cycles. The proposed scheduling approach is based on

‘Priority indicator (PI)’ metric and ‘Intersect Matrix’ topology methods that have a tendency to

escape local optimal solutions and thereby reach global solutions. Application of the proposed

approach results in even distribution of allocated hardware functional units thereby yielding

power efficient scheduling solutions. The two main novel and significant aspects of the thesis

are: a) Introduction of ‘Intersect Matrix’ topology with its associated algorithm which is used to

check for precedence violation during scheduling b) Introduction of PI method using Priority

v

indicator metric that assists in choosing the highest priority node during each iteration of the

scheduling optimization process. Comparative analysis of the proposed approach has been done

with an existing design space exploration method for qualitative assessment using proposed

‘Quality Cost Factor (Q- metric)’. This Q-metric is a combination of latency and power

consumption values for the solution found, which dictates the quality of the final solutions found

in terms of cost for both the proposed and existing approaches. An average improvement of

approximately 12 % in quality of final solution and average reduction of 59 % in runtime has

been achieved by the proposed approach compared to a current scheduling approach for the DSP

benchmarks.

.

vi

Acknowledgement

I would like to thank my supervisor, Dr. Reza Sedaghat for his thoughtful guidance and OPR-AL

members for their endless support.

I am highly indebted to my parents for their great guidance and sacrifice all throughout my life.

Further I highly owe them for being a constant source of love and motivation throughout my life,

particularly in times of hardships and difficulty.

Moreover I am highly obliged to my grandparents for continuously supporting me and inspiring

me to always do better than before.

I am also very thankful to my sister, my relatives and my friends, who helped me in tough times

and provided me with encouraging words to accomplish my goals.

vii

Table of Contents

Abstract ---iv

Acknowledgement ---vi

Table of Contents ---vii

List of Tables ---x

List of Figures --xi

Nomenclature --xii

Chapter 1 Introduction ---1

1.1 Overview ---1

1.2 Related works ---3

1.3 Summary of Contribution --7

1.4 Organization of Thesis ---7

Chapter 2 Background Information ---9

 2.1 A General Overview on High Level Synthesis--9

 2.2 Generic High-level synthesis Procedure --10

 2.3 Overview on Design Space Exploration--11

 2.4 Abstraction Level of Optimization in VLSI Design --------------------------------------13

 2.5 Importance and Significance of High Level Synthesis------------------------------------14

Chapter 3 Proposed Dependency Matrix Topology ---15

 3.1 Dependency Matrix – A Matrix Topology for indicating the Data Dependency of the

DFG ---15

viii

Chapter 4 Proposed Design Space Exploration Approach for Integrated Scheduling and

Module Selection in High Level Synthesis --20

 4.1 Proposed Concept behind the Exploration Process---------------------------------------20

 4.2 Proposed Framework of the Iterative Design Space Exploration Method-------------21

 4.3 Proposed Priority Indicator (PI) metric used for Selection of high priority nodes

during movement --24

Chapter 5 Demonstration of Proposed DSE Approach --26

 5.1 Case Study of Discrete Wavelet Transformation (DWT) Benchmark -----------------26

 5.2 Description of the Iteration Process--28

Chapter 6 Demonstration of the Proposed Exploration by Considering Resource Binding

(Interconnect Units) ---37

 6.1 Case Study of Finite Impulse Response (FIR) Benchmark ------------------------------37

Chapter 7 Experimental Results for the Benchmarks--47

 7.1 Implementation details--47

 7.2 Results of the proposed approach on DSP benchmarks----------------------------------49

 7.3 Results and Analysis of the comparison with recent Exploration approach-----------51

Chapter 8 Conclusion and Future work -- 57

Publications --60

ix

References --62

Appendix --67

x

List of Tables

Table 1 Experimental Results of proposed approach for the DSP Benchmarks ------50

Table 2 Experimental Results of comparison between the proposed approach and

current approach for the DSP Benchmarks --52

xi

List of Figures

Figure 1 Generic High-level synthesis --11

Figure 2 DFG of the Discrete Wavelet Transformation (DWT) benchmark-----------16

Figure 3 Dependency Matrix for the Discrete Wavelet Transformation DFG---------17

Figure 4 Algorithm for Parent-Child Determination and Precedence check-----------19

Figure 5 Overview of the proposed design space exploration approach ----------------23

Figure 6 ASAP scheduling of DWT benchmark --27

Figure 7 Scheduling solution of DWT benchmark after 1st Iteration--------------------30

Figure 8 Scheduling solution of DWT benchmark after 2nd Iteration-------------------31

 Figure 9 Scheduling solution of DWT benchmark after 3rd Iteration-------------------32

Figure 10 Scheduling solution of DWT benchmark after 4th Iteration ------------------34

Figure 11 Scheduling solution of DWT benchmark after 11th Iteration -----------------36

Figure 12 DFG of the Finite Impulse Response (FIR) benchmark -----------------------38

Figure 13 ASAP scheduling for FIR benchmark --39

Figure 14 Scheduling solution of FIR benchmark after 1st Iteration ---------------------42

Figure 15 Scheduling solution of FIR benchmark after 2nd Iteration --------------------43

Figure 16 Scheduling solution of FIR benchmark after 24th Iteration---------------------45

Figure 17 A general increase in trendline in the percentage improvement of quality of
final solution with increase in complexity of the benchmark--------------------54

Figure 18 A general increases in trendline in the percentage reduction of runtime with
increase in complexity of benchmarks---55

Figure 19 Portion of the implementation result for DWT benchmark showing the
iterations of the proposed method--55

Figure 20 Portion of the implementation result for DWT benchmark showing the final
result obtained using the proposed approach--------------------------------------56

xii

Nomenclature

PF
Power fluctuation

T
Any arbitrary time instant

P
The power consumption at constant clock frequency

CS Control step

Opn(i) Movable operation under consideration

S before Difference in power consumption rate before movement of Oi

S After Difference in power consumption rate after movement of Oi

Nmul The number of multipliers present in the scheduling solution

Nadd/sub The number of adder/subtractors present in the scheduling solution

Amul The area occupied by a multiplier

Aadd/sub The area occupied by an adder/subtractors

pc
Power consumed per area unit resource at a particular frequency

Nmux The number of multiplexers required for the scheduling solution

Ndemux The number of demultiplexers required for the scheduling solution

Nreg The number of registers required for the scheduling solution

Amux The area occupied by each multiplexer

Ademux The area occupied by each demultiplexer

Areg The area occupied by each register

W1 The weightage of the operating constraints for latency

W2 The weightage of the operating constraints for power consumption

L The latency of the solution found

xiii

P
Power consumption of the solution found

Lmax

The value of maximum latency found by using minimum Functional

Units

 Pmax

The value of maximum power consumption found by using maximum

Functional Units

1

Chapter 1

Introduction

 1.1 Overview

The increased demand for performance improvement of Very Large Scale Integration

(VLSI) systems, has forced VLSI designers to optimize the design at different levels of

abstractions. Compared to the lower level of abstraction, it is well known that the optimization at

the high level of abstraction has more impact on the design performance. Hence optimization at

much higher level of abstraction known as ‘architectural/algorithmic level’ has gained

momentum and the focus of many researches. A VLSI design at high-level of abstraction could

be expressed in the behavioral domain in terms of algorithms. The algorithmic description

specifies the inputs and outputs of the behavior of the algorithm in terms of operations to be

preformed and data flow.

Moreover, the never ending increase in growth of the chip complexity has only been

possible owing to efficient scheduling and exploration techniques proposed so far. The growth in

capacity of the chip has enabled processing of huge amounts of data with greater flexibility and

lesser expense. But the above condition can only prevail if the implementation cost satisfies the

2

user specified requirement of power consumption and latency. The application domain of the

above mentioned requirements can be found out in the area of Digital Signal Processing (DSP),

communications and network processing [1][2][3].

In the recent years there has been a major trend toward automating the design synthesis

process at even higher levels of the design hierarchy. This automated design synthesis process

called ‘high-level synthesis’ is therefore a process of conversion of the application from the

algorithmic level to its respective RTL structure. High-level synthesis is gradually gaining

acceptance in industry, and there has been considerable interest shown in Electronic system level

designing by many well established EDA CAD vendors. Integrated Design Space Exploration of

scheduling, allocation and binding in High Level Synthesis is often the most tedious process in

the design process. Accurate exploration leads to high quality system design but may require

extensive analysis resulting in increased design time. On the other hand, rapid exploration leads

to reduced design time which eventually results in rapid marketing of the final end product, but

may often be a victim of inferior quality solution due to limited precision during evaluation

process. Hence a combination of the above two aspects of design space exploration: i) quality of

the final exploration result ii) speed of the exploration process needs to be concurrently

addressed in the design space exploration process based on the user specified objectives. This

complicated process of design space exploration therefore involves tradeoffs between conflicting

situations besides the contradictory objective parameters [1] [3]. Henceforth, exploration of an

optimal/near-optimal solution that has the capability to encounter conflicting condition such as

speed of the exploration process and quality of the solution found is extremely significant.

3

Moreover, the complicated process of exploration of final solution also requires tradeoff between

the contradictory parameters of power and latency, besides the contradictory demands [3].

Additionally, recent advancements in areas of signal processing and multimedia have resulted

in the growth of extensive array of applications requiring huge data processing at minimal power

consumption expenditure. Such computation intensive applications demand acceptable

performance with power competent hardware solutions. Hardware solutions should satisfy

multiple contradictory performance parameters such as power consumption and time of

execution. Since the selection process for the best design architecture is complex, an efficient

approach to explore the design space for selecting the best design option is needed.

1.2 Related Works

In [1], the researchers have proposed an approach for design space exploration using priority

factor method. The method uses a mathematically deduced framework called priority factor that

is used for hierarchical arrangement of the vector design space consisting of all possible

combination of design variants. Once the vector design space is hierarchically sorted in

ascending/descending order then the border variant of each parameter from the design space is

determined. Finally the Pareto optimal set is obtained that yields the final solution. The approach

is highly efficient in terms of the exploration speed. But the drawback with this approach is the

final quality of solution found, since in most cases due to partially arranged nature of the design

space, the final solution found was local optimal in nature. Furthermore, authors in [2] introduce

a tool called SystemCoDesigner that offers rapid design space exploration with rapid prototyping

of behavioral systemC models. An automated integrated approach was developed by integrating

behavioral synthesis into their design flow. SystemCoDesigner is a completely automated ESL

4

tool that provides a platform for hardware/software generation of System-on-Chip

implementations. The approach performed tradeoffs between hardware cost and throughput.

Since the thesis basically focused on bridging the gap from ESL to RT-level, hence scheduling

algorithm was not the main focus of the work. But the proposed work focuses on ASAP latency

constrained power efficient scheduling algorithm that mostly escapes the local optimal solutions.

Authors in [4] have proposed a power optimization in SoC data flow systems. Authors have

applied their optimization approach on 4G telecommunication modem system in order to show

the power/energy savings obtained by their approach compared to existing approaches. Although

the proposed optimization yielded significant results, but the focus of their work was not on

scheduling approach but rather power optimization hardware during exploration. In [5], Genetic

Algorithm (GA) has been suggested to yield better results for the design space exploration

process. Authors have proposed the use of compact genetic algorithms for intrinsically evolvable

hardware. Authors have improved upon the existing compact genetic algorithm that is based on

probability vector based genetic algorithm that can be proficiently implemented in hardware. The

results obtained on the benchmark resulted in increased efficiency and datapath design for

implantation. The use of GA has also been suggested in [6] as a promising framework for DSE

of data paths in high level synthesis. Their work employs robust search capabilities of the GA to

resolve the datapath synthesis of scheduling and allocation of resources with the objective of

finding a combination of scheduling and module/storage selection. Moreover the authors have

used two different chromosome representations to encode the datapath schedules and functional

unit part. Another approach introduced by researchers in [3] was based on Pareto optimal

analysis using hybrid fuzzy searching algorithm. According to their work, the design space was

arranged in the form of an architecture vector design space for architecture variant analysis and

5

optimization of performance parameters and then the proposed fuzzy search algorithm was

applied for exploration. The fuzzy searching algorithm proposed is based on sets of fuzzy

membership value functions that finds the border variant of architecture for the power

consumption and performance parameters Although the method is extremely fast for exploration

that reduces the final design time, but the approach also has a tendency to mostly yield local

optimal solutions. Furthermore in [7] and [8], authors described another approach for DSE in

high level systems based on binary encoding of the chromosomes. Authors in [7] have proposed

a scheme for scheduling and allocation for functional and storage units. The method is based on

power and latency constraint and performs pretty well for large designs. But the main drawback

with this approach is the slow speed of exploration as well as the tendency to mostly find near-

optimal solution. But the proposed approach aims to find a power efficient optimal solution at

the expense of minimal latency expenditure which mostly has the tendency to reach global

optimal. Authors in [9] have used an evolutionary algorithm for successful evaluation of the

design for an application specific System on Chip. The work shown in [10] discusses about the

optimization of area, delay and power in behavioral synthesis. But the work shown does not

focus on an iterative hill climbing based design space exploration approach using selection value

for power consumption and minimal latency constraint. The problem of exploration was also

addressed in [11] by suggesting order of efficiency, which assists in deciding preferences

amongst the different Pareto optimal points, while authors in [12] describe current state-of-the-

art high-level synthesis techniques for dynamically reconfigurable system. In addition to above,

authors in [13] have used GA to apply to the binding and allocation phase. The authors have

introduced an unconventional crossover technique depending on a force directed datapath

binding completion algorithm. One of the key features of their approach is the use of multiport

6

memories. The main drawback of the presented approach is that it accepts as input the scheduled

data flow graph, thus is unable to handle the scheduling problem. This is because approach [13]

is incapable to perform scheduling as mentioned. This is further evident because [13] can only

perform exploration by accepting an already scheduled application. This is the major bottleneck

in [13] since it needs some other approach to perform scheduling which could be used as an

input for [13]. Besides, authors in [14], presented a time constrained scheduling based on genetic

algorithm technique. The use of list decoder has been made to decode chromosome encoding by

permutation of operations, into a valid schedule. Although the method is promising, but the

method is slow compared to the other GA approaches. This is because [14] is based on Genetic

Algorithm (GA) which has exponential time complexity unlike the proposed approach.

Moreover, in order to find a good quality solution, the number of generations is always set to a

value more than or equal to 100. This increases the total runtime to explore a good solution. In

addition to above, authors in [15] have proposed a problem space genetic algorithm for design

space exploration of data paths. The authors have used the concept of heuristic/problem pair to

convert a data flow graph into a valid schedule. Another class of scheduling algorithms presented

before were constructive approaches like As Soon As Possible (ASAP) [16], As Late As Possible

(ALAP) [17], list scheduling [18], Force Directed scheduling [19]. The above approaches are

very simple and fast in nature. The implementation complexity is also minimal for the above

algorithms, but the above methods suffer from yielding poor solution in terms of hardware cost.

Moreover Researchers in [20] have proposed an approach for synthesis of heterogeneous

embedded systems by using Pareto Front Arithmetic (PFA) to explore the giant search spaces.

Their method exploited the hierarchical problem structure for exploring the set of Pareto optimal

solutions. Their method is quite promising, but the implementation complexity is large. Further

7

[20], does not consider power consumption optimization under minimal latency constraint during

the scheduling process. Thus all the existing approaches on scheduling and design space

exploration in ESL or high level synthesis has its own respective advantages and disadvantages.

 1.3 Summary of Contribution

This thesis contributes to the following areas:

• Introduces a new topology for data dependency violation check of data flow graph based

problems called ‘Intersect Matrix’.

• Proposes a new algorithm in co-relation with the intersect matrix topology for

determination of the parent-child relationship during data dependency violation check.

• Proposes a mathematical expression for Power Fluctuation based on the power

consumption rate, which is used during determination of high priority nodes while

searching for an optimal/near optimal scheduling solution.

• Presents a new priority function based selection criterion that takes into account the

power fluctuation called ‘Priority indicator (PI)’.

• Proposes a new iterative scheduling algorithm based on PI method.

• Presents a novel approach for finding the optimal/near optimal integrated solution to the

problem of scheduling and module selection in High Level Synthesis.

• Provides a complete automated Design Space Exploration tool for rapid exploration of

scheduling and module selection in high level synthesis design process.

• The proposed approach has successfully improved the quality of final solution on an

average by 12% and reduced the exploration runtime on an average by 59% compared to

a current approach for all the tested standard DSP Benchmarks.

8

1.4 Organization of the Thesis

The remaining part of the thesis is organized as follows: Chapter 2 gives a generic overview and

background information on High Level Synthesis (HLS) and Design Space Exploration (DSE).

Chapter 3 describes the proposed Dependency Matrix Topology for indicating the Data

Dependency of Data Flow Graph (DFG). Chapter 4 provides the proposed Design Space

Exploration Approach for Integrated Scheduling and Module Selection in High Level Synthesis.

Chapter 5 demonstrates the proposed DSE Approach using the case study of Discrete Wavelet

Transformation (DWT) Benchmark while Chapter 6 demonstrates the proposed Exploration by

Considering Resource Binding (Interconnect Units) which uses the case study of Finite Impulse

Response (FIR) Benchmark. Chapter 7 provides the experimental results, analysis and a vivid

discussion of the proposed approach on DSP Benchmarks. Chapter 8 is dedicated to the

conclusion and the future scope of the proposed work in this area. The list of publications related

to this field of research study and the total list of citations are also provided thereafter. The thesis

finally ends with the appendix.

9

Chapter 2

Background Information

2.1 A General Overview on High Level Synthesis

 High-Level Synthesis (HLS) is an integral part of VLSI Electronic System Level designs.

Lately, high-level synthesis has attracted significant attention in the CAD society. A lot of

Electronic Design Automation (EDA) vendors based on CAD designs have shifted their design

process to high-level synthesis. High-level synthesis traditionally is the conversion of the

behavioral abstract description of the algorithm to its Register Transfer level (RTL) hardware

structure. Important ingredients of high-level synthesis such as scheduling, allocation, binding

and design space exploration have recently gathered renewed attention amongst the CAD

researchers owing to its high capability to generate optimized hardware structures from high

level specifications. High-level synthesis is the conversion from the abstract behavioral

10

description to its respective hardware description in the form of memory elements, storage units,

multiplexers/demultiplexers and the necessary interconnections (called Register Transfer Level).

But, this general process of High-level synthesis comprises of different complex procedural

steps. These steps are very important in terms of the different research aspects of high-level

synthesis. Research has been conducted and carried out in these different stratums of high-level

synthesis.

2.2 Generic High-level synthesis Procedure

This section gives a vivid description of the different steps to be followed while reaching the

final level called Register Transfer level (RTL). A framework has been constructed for the

different procedural steps for high-level synthesis by discussing the General high-level synthesis

procedure in this section. The generic high-level synthesis procedure can be described as

follows. First, the process starts with the high level system specification such as area occupied

by each resource, number of clock cycles needed to perform each operation by a specific

resource, power consumed at a given frequency and also the user specified constraints for area,

execution time and power consumption. Next the behavior or application required for the system

is taken as an input which is then converted into a data flow graph. Subsequently the design

space exploration (details about design space exploration are discussed in the next section) is

carried out based on the user specified constraints like area, execution time, power etc. The

following step called Scheduling represents the data flow graph of the application in the form of

a sequencing flow graph into different time slots and binding the same type of operations i.e.

grouping the same operations in same or different time slots. Scheduling can be represented in

two different forms: time constrained scheduling and resource constrained scheduling. Time

11

constrained scheduling refers to finding the minimum cost schedule that satisfies the given set of

constraints with the given maximum number of control steps. Resource constraint scheduling, on

the other hand, refers to finding the fastest possible schedule that satisfies the given set of

constraints with the given maximum number of resources. After the scheduling is correctly

accomplished, the block diagram of the data path circuit is then developed. The controller

structure is built next which provides the necessary synchronization signals. Finally, the

combined structure consisting of the data path and the control path is the resulting system for the

given application at the Register Transfer Level (RTL). The generic high-level synthesis

overview is shown in Figure 1.

2.3 Overview on Design Space Exploration

The design of any modular VLSI systems is implementable in innumerable ways.

Therefore the major challenge during the high-level synthesis designing process is to find the

most suitable implementable hardware through design space exploration. Design space

Figure 1. The Generic High-level synthesis

High level specification

Application Benchmarks

such as Filter, FFT, DWT,

DCT, etc

Conversion of the application to

Data Flow Graph (DFG)

Design Space Exploration of

possible Architectures

Scheduling, Allocation

and Binding

Determination of

Data Path Circuit

Determination of

Control Path Circuit

Development of the Full System by

combination of Data and Control path RTL Structure

Integrated Design Space Exploration

12

exploration therefore generally involves the evaluation and selection of the optimal architecture

based on the user specified requirements from the huge design space consisting of innumerable

design alternatives. It is a procedure for analyzing the various design architectures in the design

space to obtain the optimum architecture for the behavioral description according to the

predefined user specifications.

Based on the constraints and specifications, the exploration of the optimal design point is

very essential because this solution is to be carried forward in the next steps of high-level

synthesis to reach the RTL structure. Also, if the constraints are satisfied while exploring the

design space, an optimum result is expected further in the lower levels of abstraction. Based on

the research performed till date, design space exploration in high-level synthesis can be broadly

classified into two categories. First, design space exploration of architectures and second, the

integrated design space exploration of scheduling, allocation and binding as discussed in the

following two paragraphs respectively.

For the modular multi objective computing systems, fast and precise evaluation of the

optimal system architecture is one of the most significant stages in the development process. The

assessment and selection of the optimal design point is generally a complex procedure that

requires lot of elaborate analysis. This process of architecture evaluation based on the user

provided objective parameters are done through a sophisticated process called Design Space

Exploration (DSE) of architectures. With the help of this exploration, several aspects are

determined like the number of optimum resources, clock frequency etc.

 For the modular VLSI computing architectures, the problem of solving the exploration

process in a fast and accurate manner is very important. High-level synthesis is comprised of

interdependent tasks such as scheduling, allocation, and module selection. For today’s VLSI

13

designs, the cost of solving the combined scheduling, allocation, and module selection problem

by exhaustive search is prohibitive. However, to meet design objectives, an extensive design

space exploration is often critical to obtaining superior designs. Integrated design space

exploration addresses multiple issues encountered during high-level synthesis such as

scheduling, allocation and binding. These issues are highly critical for successful functioning of

the system based on the user specified objectives. The characteristic of the integrated exploration

lies in the fact that it does not only find the optimal architecture for the design but also explores

the optimal scheduling and allocation needed to accomplish the task in given provided

constraints.

2.4 Abstraction Level of Optimization in VLSI Design

In recent VLSI system designing, specifications are provides at a higher level of

abstraction in order to attain maximum performance benefits at minimal cost. Further, specifying

the requirements at a higher level of abstraction provides the designer with maximum flexibility

for design optimization. Currently all the major EDA tool vendors are relying on high level

synthesis which is designing the system from the highest level of abstraction. The EDA tools

accept the application expressed in a high-level language as input and automatically produces the

corresponding Register Transfer level implementation. All hardware systems can be classified

into various levels of abstraction such as System level, Architecture level, Register Transfer

Level (RTL), Layout level and Transistor level. In order to make the search for the optimal

solution as effective as possible, the design decision taken at a very early stage of the

development process provides more benefit in terms of the development time and also accuracy

14

in system development. Therefore, the focus for researchers has shifted towards optimization of

multi parameters due to time to market pressure.

2.4 Importance and Significance of High Level Synthesis

In recent years there has been a trend towards automating synthesis at higher levels of the

design hierarchy. Logic synthesis has gained acceptance in industry and there has been

substantial interest shown in Register Transfer Level (RTL) synthesis. The significance of high

level-synthesis are as follows [31]:

Reduction in errors and increase in reliability: If the synthesis process can be verified to be

right-then there lies a greater assurance of the final design corresponding to the initial

specification. This implies reduction in errors and an increase in reliability for new chips.

The ability to seek and explore the design space: A good synthesis system can produce several

designs from the same specification in a reasonable amount of time. This allows the developer to

explore different tradeoffs between cost, speed, power etc., or to take an existing design and

produce a functionally equivalent one that is faster or less expensive. Even if the design is

ultimately produced manually, automatically synthesized designs can suggest tradeoffs to the

designer.

Decrease in the design cycle: If more of the design process is automated, it is possible to

complete a design faster, and thus have a better chance of hitting the market window for the

design. Moreover, since much of the cost of the chip is in design development, automating more

of that process can lower the cost appreciably.

Documenting the design process: A track of design decisions made with their reasons and the

effect of those decisions can be kept under the surveillance of an automated system.

15

Chapter 3

Proposed Dependency Matrix Topology

3.1 Dependency Matrix – A Matrix Topology for indicating the Data Dependency of the

DFG

This section introduces a new matrix topology called ‘Dependency Matrix’ which illustrates

the data dependency present between the nodes of the data flow graph. Dependency Matrix

represents all the information of the precedence relation present between the nodes of the DFG.

This matrix is used in the proposed work for checking the data dependency between the

predecessor and successor nodes during the scheduling process when during each iteration; a

specific node will be moved for improving the scheduling solution. Thus a node is selected for

movement as long as the node does not violate any precedence relationship indicated by the

‘Dependency Matrix’. The concept of ‘Dependency Matrix’ is demonstrated with the aid of a

popular DSP benchmark ‘Discrete Wavelet Transformation (DWT)’ as shown in Figure 2. The

16

role of ‘Dependency Matrix’ only comes into action when the scheduling of the DFG is to be

performed. Thus the concept of ‘Dependency Matrix’ can be explained through the data flow

graph of the DWT benchmark shown in Figure 2.

The ‘Dependency Matrix’ is a matrix consisting of nodes of the DFG where any edge

between the two nodes under test (‘i’ and ‘j’) is denoted by ‘1’, while any non-existence of edge

between the two nodes under test (‘i’ and ‘j’ is denoted by ‘0’. Therefore, the dependency

relationship for an example matrix can be defined as follows. Let a ‘Dependency Matrix’ M is

defined as:

Figure2. DFG of the Discrete Wavelet Transformation

17

* 11

+ 12

*
13

+ 14

* 15

+ 16

+

+
10

+
7 8 9

+ + + 6

1 * * * *

NOP

*
2 3 4 5

17

Where ‘i’ is the row of the matrix ‘M’ and ‘j’ is the column of the matrix ‘M’. In the above

matrix ‘M’ the dependency relation is defined as follows:

a) Xij = 1; if there exists an edge between the two nodes under test (‘i’ and ‘j’).

b) Xij = 0; if there exists no edge between the two nodes under test (‘i’ and ‘j’).

c) Xij = Z ; if i = j (This means that only one node is under test).

Where, Xij denotes any element of the matrix Mi × j ranging from aij to iij. Further, Xij can

contain any intersect value ‘0’, ‘1’, or ‘Z’. From the previous general definitions on

Figure3. The Dependency Matrix for the Discrete Wavelet Transformation

Z 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 Z 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 Z 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 Z 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 Z 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 Z 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 Z 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 Z 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 Z 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 Z 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 Z 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 Z 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 Z 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 Z 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 Z 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Z 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 Z

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Operation

X11 X 12 X13

X 21 X 22 X 23

X 31 X32 X 33

‘Dependency Matrix’, M i × j =

‘j’ changes

‘i’ changes

18

‘Dependency Matrix’, the ‘Dependency Matrix’ (M) for the discrete wavelet transformation

benchmark is described above in Figure 3. Therefore as visible from the ‘dependency matrix’ in

Figure 3, the matrix strictly follows the three rules enlisted before. The matrix consists of 17

nodes (operations) from the DFG of DWT, where each element of the matrix (Xij) has been

assigned an intersect value (0, 1 or Z). Once the dependency matrix is formed then the

information of data dependency is clearly visible. But the determination of the parent and child

from the matrix is still not evident. Hence, an additional algorithm has been proposed to

determine (indicate) the parent and child for the two nodes under test. For example, in Figure 3,

the intersect value of element X16 = 1. So this means that the two nodes under test (node 1 and

node 6) do have a parent child relationship. But still we don’t know who the parent is and who

the child is (in other words, the parent and child is not yet indicated). Hence the determination of

parent-child is not evident. Similarly, arguments apply for elements, X37, X59 etc. The algorithm

in Figure 4 is proposed to find out the parent-child status. According to the algorithm if the

intersect value is ‘0’ or ‘Z’ for the two nodes under test then the algorithm stops and does not

need to determine the parent and child since there exists no parent-child relationship. But if the

intersect value is ‘1’ then the algorithm goes to step 2, to determine the parent and child. For

example, in case of element X16 (for node 1 and node 6 under test), the intersect value is ‘1’

signifying a parent-child relationship. Next according to step 2 of the algorithm, since the 1<6,

hence node 1 is the parent and node 6 is the child. This conclusion is in compliance with the

DFG in Figure 2. Hence, the dependency matrix and the algorithm in Figure 4 both provide a

medium for precedence violation check during scheduling process.

19

Algorithm for Precedence Violation check and determination of Parent-Child status

1. If the intersect value is ‘0’ between the two nodes under test (‘i’ and ‘j’) in the

dependency matrix, then it indicates that no parent-child relationship exists between

the two nodes.

Next stop

 Else if the intersect value is ‘1’ between the two nodes under test (‘i’ and ‘j’) in the

dependency matrix then it signifies that a parent-child relationship exists.

 Next Goto Step 2

 Else if the intersect value is ‘Z’ in the dependency matrix for a same node under test

(‘i’ = ‘j’) then it signifies that no parent-child relationship exists.

 Next stop

2. If i < j (if the numerical value of node ‘i’ is less than the numerical value of node ‘j’),

then i = Parent node and j = Child node

 Else, i = Child node and j = Parent node.

Figure4. Algorithm for Parent-Child Determination and Precedence violation check

20

Chapter 4

Proposed Design Space Exploration Approach for

Integrated Scheduling and Module Selection in High

Level Synthesis

4.1 Proposed Concept behind the Exploration Process

The input to the proposed DSE approach is a data flow graph of the application along with the

set of all the module library information’s. This consists of area, delay, and power consumption

etc of the functional units. Once the DFG of the application is taken as an input then the As Soon

As Possible (ASAP) scheduling is performed to schedule the operations in the least possible

control step (CS). This is done in order to have an initial scheduling solution to the DFG

problem. Although the initial solution obtained is not efficient in terms of hardware area usage

but still ASAP algorithm is used as a preliminary method of finding the initial solution because

21

this algorithm schedules the operations in the earliest possible control step, thus providing an

opportunity to the proposed approach to improve the quality of the scheduling solution by taking

into account the power consumption rate and minimization of hardware area at minimal possible

latency expenditure. The improvement in scheduling quality is obtained gradually in each

iteration by selecting the high priority nodes using a selector metric called Priority Indicator (PI)

which is a function of power fluctuation and cost of potentially movable resource. The short

definition of power fluctuation is given in equation (1). The detailed explanation and application

about equation (1) is given later in section 4.3.

Power fluctuation = [Difference in total power consumption rate between control step

T(j) and T(k) before movement of operation (oi)] − [Difference in total power

consumption rate between control step T(j) into T(k) after movement of operation (oi)];

Where power consumption rate:
)(

)(

12

12

TT

PP

T

P

−

−
=

∆

∆
 (1)

Where initial power consumption (P1) is assumed to be zero watts because of no

functional operation at initial time instant (T1=0) while P2 is the power consumed at any other

time instant (T2); Assuming constant clock frequency for above equation described above; ‘P’ is

the power consumption at constant clock frequency; T(j) and T(k) are the consecutive control

steps in the ASAP scheduled graph. Equation (1) is described in details later in equation (2) and

(3) in section 4.3.

4.2 Proposed Framework of the Iterative Design Space Exploration Method

 The Proposed framework for the design space exploration of scheduling and module

selection is based on an iterative algorithm that takes into account the minimization of power

22

consumption rate of the resources and minimization of hardware area at the expense of least

latency expenditure. The proposed approach is based on hill-climbing property where the inferior

solutions obtained due to the bad moves is accepted hoping for a better solution. The resultant

integrated solution obtained at the end through the proposed approach is a solution with

minimum power consumption under ASAP constrained latency. The proposed approach accepts

the DFG of the application as an input along with the set of module library information. Once the

DFG is provided as an input, the approach first converts the DFG into an ASAP scheduling

solution by always keeping a check on the precedence violation using the proposed dependency

matrix and the algorithm in Figure4. The schedule solution along with the FU’s needed to

implement the ASAP acts as the initial solution for the proposed design space exploration

approach. The proposed exploration approach uses this initial solution to find out an

optimal/near-optimal integrated solution while the objectives are simultaneously met. The

approach works on an iterative manner like algorithms such as simulated annealing, genetic

algorithm etc, trying to improve the quality of the solution produced. According to the proposed

approach, in each iteration only one operation (node) can be moved at a time into its next

immediate control step as long as the dependency is obeyed. The selection of a particular

operation (node) is chosen based on the value of ‘PI’. The ‘PI’ acts as a determining metric to

choose the highest priority node (operation) among the existing available movable operations

that can result in reducing the cost of the final solution. The PI proposed in this work is a

function of power fluctuation and cost of a particular resource since the main objective is to

reduce the power consumption rate of the resources and minimize the hardware cost. The

overview of the proposed design space exploration approach is shown in Figure5.

23

Proposed Scheduling Approach using PI Method

1. User specified module library with area, latency and power consumed per area unit is taken as

an input.

2. Data flow graph (DFG) of the application is taken as the input.

3. ASAP scheduling will be performed for the data flow graph (Note: By keeping a check on the

precedence violation of the nodes using the proposed dependency matrix and the dependency

algorithm). Once the ASAP schedule is done then the cost of the initial solution is calculated.

4. ASAP scheduling imposes a restriction on the number of control steps i.e. Latency constraint is

imposed. Hence now the algorithm tries to improve the scheduling solution by minimizing the

power fluctuation and hardware area.

5. In each iteration, all the movable operations are identified and then the value of ‘Priority

indicator (PI)’ is calculated for each movable operation (node). The ‘Priority indicator’ is

function of power fluctuation and cost of each resource.

6. The movable operation (node) with the highest ‘Priority indicator (PI)’value is selected for

movement into its next immediate control step (Note: Before the node selected by the ‘PI’ is

moved, precedence violation check is performed using dependency matrix and the dependency

algorithm).

� If there is a tie between the Priority indicator values then randomly any operation is chosen

for movement. Once the new scheduling solution is found after the current iteration then the

cost of the scheduling solution is again calculated.

7. This above procedure is repeated till the terminating condition is reached (The terminating

condition chosen is the maximum number of nodes in the DFG. i.e. # of iterations = # of nodes

in the DFG).

8. Finally, the integrated optimal/near-optimal solution with respect to hardware cost and power

consumption is yielded. The solution indicates the optimal/near-optimal scheduling of the

DFG and the optimal/near-optimal resource combination (FU’s) needed for allocation.

(Note: The iteration which yielded the solution with the minimum cost among all

iterations is chosen as the final optimal solution).

Figure5. The overview of the proposed design space exploration approach

24

4.3 Proposed Priority indicator (PI) metric used for Selection of high priority

nodes during movement

Let us now elaborate the mathematical expression of power fluctuation defined before in

section 4.1. The mathematical expression of power fluctuation as given from equation (1) before

is explained in equation (2) and (3) respectively:

Power Fluctuation = S before − S after (2)

Where, S before = Difference in power consumption rate before movement (CS (j), CS (k))

And, S After = Difference in power consumption rate after movement (CS (j), CS (k)).

Therefore, from equation (2) above:

Power Fluctuation (PF) = [Difference in power consumption rate before movement

(CS (j), CS (k))] – [Difference in power consumption rate after movement (CS (j), CS (k))]

Equation (2) above can be further expanded into equation (3) as shown below:

PF = [Power consumption rate at CS (j) - Power consumption rate at CS (k)] –

[{Power consumption rate at CS (j) – Power consumption rate for opn (i)} – {Power

consumption rate at CS (k) + Power consumption rate for opn (i)}] (3)

Where, CS (j) and CS (k) are the two immediate control steps in the temporary scheduling

solution, opn (i) is the operation selected for movement through the Priority indicator (PI) metric.

The metric above called ‘power fluctuation’ defined in equation (2) and (3) will be used in a

function described later in equation (4) for selection of the highest priority node for movement

during optimization (design space exploration). Power fluctuation defined above takes into

account the change in power consumption rate when a certain operation is moved from one

control step to another. The reduction in power consumption that can be achieved by the

25

proposed DSE is possible owing to balance in distribution of resources in the scheduling solution

after the application of the proposed approach (which thereby helps in reducing the power

consumption rate). Thus the balance in number of functional units can be obtained by decreasing

the number of functional units in the control step where the power consumption rate is maximal.

The concept above has been illustrated in the following chapters 5 and 6 where case studies of

Discrete Wavelet Transformation (DWT) and Finite Impulse Response (FIR) benchmarks have

been shown to demonstrate the proposed DSE approach.

Let us now introduce the proposed ‘Priority indicator (PI)’ metric used for selection of

high priority nodes during movement. The proposed ‘Priority indicator’ is shown in equation (4)

below:

)]([*)](),([_ iOpnCostk
T

P
j

T

P
MaxnfluctuatioPowerPI

∆

∆

∆

∆
∗= (4)

Where ‘Cost [opn (i)]’ is obtained from the module library, power fluctuation is obtained from

equation (3) and ‘Max [∆P/∆T (j), ∆P/∆T (k)]’ signifies the maximum of the power consumption

rate between CS (j) and CS (k).

26

Chapter 5

 Demonstration of Proposed DSE Approach

5.1 Case Study of Discrete Wavelet Transformation (DWT) Benchmark

This section illustrates the proposed integrated design space exploration framework described

above with an example of discrete wavelet transformation benchmark. Application of the

proposed DSE on DWT benchmark yielded impressive final results in terms of reduced power

consumption (hence hardware area) under latency constraint. The final runtime taken to find the

final global solution is also very less compared to other heuristic based approaches.

The Data Flow Graph of the DWT benchmark is shown in Figure 2 before and the As Soon

As Possible (ASAP) scheduling of DWT is shown in Figure 6. This ASAP scheduling solution

found acts as an initial solution for the proposed approach as mentioned in Figure 5. The latency

of the ASAP scheduling solution calculated is 28 clock cycles (Note: assuming that

adder/subtractor and multiplier takes 2clock cycles (cc) and 4 cc respectively as specified in the

27

module library). Hence ASAP scheduling imposes a latency constraint on the final solution that

has to be found by the proposed approach. The cost of each schedule solution found is calculated

using equation (5):

Cost ini = {(Nmul * Amul) + (Nadd/sub * Aadd/sub)} * pc (5)

Where Nmul and Nadd/sub are the number of multipliers and adder/subtractors respectively present

in the scheduling solution. Amul and Aadd/sub is the area occupied by a multiplier and an

adder/subtractor respectively and pc is the power consumed per area unit at a particular

frequency of operation.

* 11

+
12

*
13

+
14

* 15

+ 16

+
17

4

5

6

7

8

9

10

M1

A1

+
10

1

3

2 +
7 8 9

+ + +
A2

A3
A4

1 M2 *

2 3 4 5

* * * M4 M3 M5 *

NOP

6

Figure6. ASAP scheduling of DWT benchmark

∆P/ ∆T = 100mW/4cc

= 25

∆P/ ∆T = 100mW/4cc

= 25

∆P/ ∆T = 20mW/2cc

= 10

28

Therefore using equation (5) as mentioned before, the cost of initial ASAP schedule

solution (of figure 6) is:

 Cost ini = {(5 * 100) + (4 * 20)} * 1 = 0.58 Watts.

(Note: assuming multiplier and adder/subtractor occupies 100 CLB’s and 20 CLB’s

respectively; where 1 area unit (au) = 1 CLB has been assumed; Power consumed per au (pc) at

24 MHz clock frequency is 1 milli-watt. The costs of multiplier and adder/subtractor have been

assumed to be 5 units and 3 units respectively.)

5.2 Description of the Iteration Process

 After determining the cost of initial ASAP schedule solution as illustrated in section 5.1

before, the next step of the algorithm (as proposed in Figure 5) is to identify all the movable

candidate operations. Once the movable operations (opn) are identified then the iteration process

begins to improve the initial scheduling solution. The iteration process is described below:

 Iteration (1):

i) Movement – opn 2 (1→2) (a)

ii) Movement – opn 7 (2→3) (b)

iii) Movement – opn 8 (2→3) (c)

iv) Movement – opn 9 (2→3) (d)

For example equation (a) above signifies that opn 2 is one of the identified movable

operations that can be moved from Control Step (CS) 1 to CS 2. Now the ‘PI’ for each identified

movable operation is calculated using equation (4). But before the ‘PI’ is calculated, the ‘power

fluctuation’ is determined as follows using equation (3):

29

Power fluctuation = [Power consumption rate at CS (j) - Power consumption rate at CS (k)]

– [{Power consumption rate at CS (j) – Power consumption rate for opn (i)} – {Power

consumption rate at CS (k) + Power consumption rate for opn (i)}]

As shown in Figure 6, power consumption rate for adder is (20au * 1mW)/2cc = 10, while for

multiplier is (100au * 1mW)/4cc = 25. (Note: From [1] [2], total power consumption of resource

(Ri) is: PRi= ARi * pc , where ARi is the area of Ri. Power consumed per au (pc) at 24 MHz clock

frequency is 1 milli-watt. Further, the production costs of multiplier and adder/subtractor have

been assumed to be 5 units and 3 units respectively.)

Before substituting in equation (4), the power fluctuation for the first case a) between CS (j) and

CS (k) is calculated from Figure 6 using equation (3) as follows:

= [(25 + 25 + 25 + 25 +25) – (10 + 10 + 10 + 10)] – [(25 + 25 + 25 + 25) – (10 + 10 + 10 + 10 +

25)]

= [125 – 40] – [100 – 65] = 50.

Now the value for ‘Power Fluctuation’ calculated above is substituted in equation (4) as shown

below:

)]([*)](),([_ iOpnCostk
T

P
j

T

P
MaxnfluctuatioPowerPI

∆

∆

∆

∆
∗=

a) PI
opn 2

(1→2) = 50 * Max (125, 40) * 5 = 31,250 (selected).

Similarly, calculating the ‘Power Fluctuation’ for each case and then finding the Priority

Indicator yields:

b) PI
opn 7

(2→3) = 20 * Max (40, 10) * 3 = 2400.

c) PI
opn 8

(2→3) = 20 * Max (40, 10) * 3 = 2400.

d) PI
opn 2

(1→2) =20 * Max (40, 10) * 3 = 2400.

30

According to the next step of the algorithm, the highest PI is selected for movement; which is a)

in this case. The respective scheduling solution found after iteration 1 is shown in Figure 7. The

cost of the scheduling solution is:

Cost = {(4 * 100) + (4 * 20)} * 1 = 0.48 Watts.

Thus we see that the cost in terms of power consumption reduces from the initial solution.

Iteration (2):

i) Movement – opn 7 (2→3) (a)

ii) Movement – opn 8 (2→3) (b)

iii) Movement – opn 9 (2→3) (c)

7 + 2

Figure7. Scheduling of DWT benchmark after 1
st
 Iteration

* 11

+ 12

* 13

+ 14

* 15

+ 16

+ 17

4

5

6

7

8

9

10

+ 10

1

3

2 + 8 9
+ + 6

1

*

* * *

NOP

* 3 4 5

31

Therefore the PI obtained for each operation is:

a) PI
opn 7

(2→3) = 3900 (selected).

b) PI
opn 8

(2→3) = 3900.

c) PI
opn 9

(2→3) = 3900.

Since there is a tie between the PI values hence the tie is randomly broken as per the algorithm in

Figure 5. Thus operation 7 is chosen randomly for movement. The respective temporary

scheduling solution found after iteration 2 is shown in Figure 8. The cost of this solution is:

Cost = {(4 * 100) + (3 * 20)} * 1 = 0.46 Watts.

 Again after this iteration a reduction in power consumption is noted.

7 +

2

Figure8. Scheduling solution of DWT benchmark after 2
nd

 Iteration

* 11

+ 12

* 13

+ 14

* 15

+ 16

+ 17

4

5

6

7

8

9

10

+ 10

1

3

2 + 8 9
+ + 6

1

*

* * *

NOP

* 3 4 5

32

Iteration (3):

i) Movement – opn 3 (1→2) (a)

ii) Movement – opn 8 (2→3) (b)

iii) Movement – opn 7 (3→4) (c)

iv) Movement – opn 9 (2→3) (d)

Therefore the PI obtained for each operation is:

a) PI
opn 3

(1→2) = 25000 (selected).

b) PI
opn 8

(2→3) = 3300.

c) PI
opn 7

(3→4) = 1500.

d) PI
opn 9

(2→3) = 3300.

According to the algorithm, the highest PI is selected for movement which is a) in this case. The

respective scheduling solution found after iteration 3 is shown in Figure 9.

8 * 3

7 +

2

Figure9. Scheduling solution of DWT benchmark after 3
rd

 Iteration

* 11

+ 12

* 13

+ 14

* 15

+ 16

+ 17

4

5

6

7

8

9

10

+ 10

1

3

2
+ 9 + + 6

1

*

* *

NOP

*
4 5

33

The cost of this respective scheduling solution is:

Cost = {(3 * 100) + (3 * 20)} * 1 = 0.36 Watts.

Again after this iteration a reduction in power consumption is noted compared to the

previous scheduling solution.

Iteration (4):

i) Movement – opn 7 (3→4) (a)

ii) Movement – opn 8 (2→3) (b)

iii) Movement – opn 9 (2→3) (c)

Therefore the PI obtained for each operation is:

a) PI
opn 7

(3→4) = 20 * Max (20, 25) * 3 = 1500.

b) PI
opn 8

(2→3) = 20 * Max (80, 20) * 3 = 4800 (selected).

c) PI
opn 9

(2→3) = 20 * Max (80, 20) * 3 = 4800.

Where, the calculated value of ‘power fluctuation’ is 20 in all the above cases.

According to the algorithm, the highest PI is selected for movement which is b) in this case. The

respective scheduling solution found after iteration 4 is shown in Figure 10. The cost of this

respective scheduling solution is:

Cost = {(3 * 100) + (3 * 20)} * 1 = 0.36 Watts.

No reduction in power consumption is noted in this scheduling solution. Since the algorithm will

not be terminated until # of iterations = # of nodes in the DFG, hence any local optimal solution

found will not restrict the algorithm from stopping.

34

Iteration (5):

i) Movement – opn 4 (1→2) (a)

ii) Movement – opn 8 (3→4) (b)

iii) Movement – opn 9 (2→3) (c)

iv) Movement – opn 7 (3→4) (d)

Therefore the PI obtained for each operation is:

a) PI
opn 4

(1→2) = 18750 (selected).

b) PI
opn 8

(3→4) = 1800.

c) PI
opn 9

(2→3) = 4200.

8
+

* 3

7 +

2

Figure10. Scheduling solution of DWT benchmark after 4
th
 Iteration

* 11

+ 12

* 13

+ 14

* 15

+ 16

+ 17

4

5

6

7

8

9

10

+ 10

1

3

2
+ 9 + 6

1

*

* *

NOP

* 4 5

35

d) PI
opn 7

(3→4) = 1800.

According to the algorithm, the highest PI is selected for movement which is a) in this case. The

cost of this respective scheduling solution is:

 Cost = {(3 * 100) + (3 * 20)} * 1 = 0.36 Watts.

Again no reduction in power consumption is noted in this scheduling solution. Since the

algorithm will not be terminated until # of iterations = # of nodes in the DFG, hence the local

optimal solution found does not restrict the algorithm from stopping. This above iteration

continues until the algorithm reaches iteration 17 (Since the maximum number of nodes present

in this DFG is 17). Finally the algorithm yields the solution with the minimum final cost in these

17 iterations. Experiment revealed that iteration 11 yielded the scheduling solution with the

minimum cost. The iteration 11 is described below:

Iteration (11):

i) Movement – opn 4 (2→3) (a)

ii) Movement – opn 8 (4→5) (b)

iii) Movement – opn 9 (3→4) (c)

iv) Movement – opn 7 (4→5) (d)

Therefore the PI obtained for each operation is:

a) PI
opn 4

(2→3) = 21250 (selected).

b) PI
opn 8

(4→5) = 2700.

c) PI
opn 9

(3→4) = 2700.

d) PI
opn 7

(4→5) = 2700.

36

According to the algorithm, the highest PI is selected for movement which is a) in this case. The

respective scheduling solution found after iteration 11 is shown in Figure 11.

The cost of this respective scheduling solution is:

Cost = {(2 * 100) + (2 * 20)} * 1 = 0.24 watts.

Hence iteration 11 found the optimal solution to the scheduling problem. The final reduction in

cost in terms of power consumption obtained compared to the initial solution (in Figure 6) is

0.58 Watts – 0.24 Watts = 0.34 Watts.

+

7 8 +

* 3

+

* 5

9 + * 4

2

Figure11. Scheduling solution of DWT benchmark after 11
th
 Iteration

*
11

+ 12

* 13

+ 14

* 15

+ 16

17

4

5

6

7

8

9

10

+ 10

1

3

2 + 6

1

*

NOP

*

37

Chapter 6

Demonstration of the Proposed Exploration by

Considering Resource Binding (Interconnect Units)

6.1 Case Study of Finite Impulse Response (FIR) Benchmark

This section illustrates the proposed integrated design space exploration framework with an

example of finite impulse response benchmark. Application of the proposed DSE on FIR

benchmark yielded impressive final results in terms of reduced power consumption (hence

hardware area) under maximum latency constraint. The final runtime taken to find the final

global solution is also very less compared to other heuristic based approaches.

38

The DFG of the FIR benchmark is shown in Figure 12 and the ASAP scheduling of FIR is

shown in Figure 13. This ASAP scheduling solution found acts as an initial solution for the

proposed approach as mentioned in Figure 5. The latency of the ASAP scheduling solution

calculated is 20 clock cycles (Note: assuming that adder/subtractor and multiplier takes 2 clock

cycles (cc) and 4 cc respectively as specified in the module library). Hence ASAP scheduling

imposes a latency constraint on the final solution that has to be found by the proposed approach.

The cost (power consumption) of the each schedule solution found is calculated using equation

(6) from [1] [3] [22]:

Power consumption (Cost ini) = {(Nmul * Amul) + (Nadd/sub * Aadd/sub) + (Nmux * Amux) + (Ndemux *

Ademux) + (Nreg * Areg)} * pc (6)

Where, Nmul and Nadd/sub are the maximum number of multipliers and adder/subtractors needed

for implementing the scheduling solution respectively. Amul and Aadd/sub are the area occupied by

Figure12. DFG of the Finite Impulse Response (FIR) benchmark

6

NOP

+
1 2 3 4 5 7 8

9 16 11 10 12 13 14 15

17

18

19

20

21

22

23

24

+ + + + + + +

* * * * * * * *

+

+

+

+

+

+

+

NOP

39

multipliers and adder/subtractors respectively. Further Nmux, Ndemux and Nreg are the number of

multiplexers, demultiplexers and registers needed respectively, while Amux , Ademux and Areg are

the area of each multiplexer, demultiplexer and register in area units (au) respectively; ‘pc’ is the

power consumed per area unit at a particular frequency of operation.

Therefore using equation (6), the cost of initial ASAP schedule solution (of figure 13) is Cost

ini = {(8 * 100) + (8 * 20) + (32 * 3) + (16 * 3) + (23 * 5)}* 4 = 4.87 Watts. (Note: assuming

multiplier and adder/subtractor occupies 100 au and 20 au respectively; also assuming each

mux/demux is 3 au and each register is 5 au respectively; Power consumed per au (pc) at 50

MHz clock frequency is 4 milli-watt. Further, the production costs of multiplier and

adder/subtractor have been assumed to be 5 units and 3 units respectively.)

Now according to the next step of the algorithm proposed in Figure 5, all the movable

∆P/ ∆T = 400mW/4cc =

100

∆P/ ∆T = 80mW/2cc =

40

∆P/ ∆T = 80mW/2cc =

40

Figure13. ASAP scheduling for FIR benchmark

14

6

NOP
10

*

NOP

+ + + + + + + +

* * * * * * *

+

+

+

+

+

+

+

1 2 3 4 5 7 8

9 16 11 10 12 13 15

17

18

19

20

21

22

23

24

1

2

3

4

5

6

7

8

9

40

candidate operations are now identified for movement. Once the movable operations are

identified then the iteration process begins to improve the initial scheduling solution. The

iteration process is described below:

Iteration (1):

i) Movement – opn 11 (2→3) (a)

ii) Movement – opn 12 (2→3) (b)

iii) Movement – opn 13 (2→3) (c)

iv) Movement – opn 14 (2→3) (d)

v) Movement – opn 15 (2→3) (e)

vi) Movement – opn 16 (2→3) (f)

For example in equation (a) above signifies that opn 11 is one of the identified movable

operations that can be moved from CS 2 into next CS 3. Now the Priority indicator (PI) for each

identified movable operation is calculated using equation (4). But before the PI is calculated, the

‘power fluctuation’ is determined as follows using equation (3):

Power fluctuation = [Power consumption rate at CS (j) - Power consumption rate at CS (k)]

– [{Power consumption rate at CS (j) – Power consumption rate for opn (i)} – {Power

consumption rate at CS (k) + Power consumption rate for opn (i)}]

As shown in Figure 13, power consumption rate for adder is (20au * 4mW)/2cc = 40, while for

multiplier is (100au * 4mW)/4cc = 100. (Note: From [1][2], total power consumption of resource

(Ri) is: PRi= ARi * pc ,where ARi is the area of Ri).

41

Before substituting in equation (4), from Figure 13, the power fluctuation between CS (j) and CS

(k) for the first case a) is calculated as follows:

= [(400/4 +400/4 + 400/4 + 400/4 +400/4 +400/4 +400/4 + 400/4) – (80/2)] – [(400/4 + 400/4 +

400/4 + 400/4 + 400/4 + 400/4 + 400/4) – (80/2 + 400/4)]

= [800 – 40] – [700 – 140] = 200.

Now substituting the value for ‘Power Fluctuation’ calculated above in equation (4) yields:

 PI
opn 11

(2→3) = 200 * Max (800, 40) * 5 = 800000 (selected).

Similarly, calculating the ‘Power Fluctuation’ for each case and then finding the Priority

indicator (PI) yields:

b) PI
opn 12

(2→3) = 200 * Max (800, 40) * 5 =800000.

c) PI
opn 13

(2→3) = 200 * Max (800, 40) * 5 =800000.

d) PI
 opn 14

(2→3) = 200 * Max (800, 40) * 5 =800000.

e) PI
opn 15

(2→3) = 200 * Max (800, 40) * 5 =800000.

f) PI
opn 14

(2→3) = 200 * Max (800, 40) * 5 =800000.

Since there is a tie between the ‘PI’ hence the tie is randomly broken as per the algorithm in

Figure 5. The respective scheduling solution found after iteration 1 is shown in Figure 14. The

cost of the scheduling solution is {(7 * 100) + (8 * 20) + (30 * 3) + (15 *3) + (23 * 5)} * 4 = 4.44

Watts. Thus we see that the cost in terms of power consumption reduces from the initial solution.

Iteration (2):

i) Movement – opn 3 (1→2) (a)

ii) Movement – opn 12 (2→3) (b)

iii) Movement – opn 13 (2→3) (c)

42

iv) Movement – opn 14 (2→3) (d)

v) Movement – opn 15 (2→3) (e)

vi) Movement – opn 16 (2→3) (f)

Therefore the PI obtained for each operation is:

a) PI
opn 3

(1→2) = 168000.

b) PI
opn 12

(2→3) = 700000 (selected).

c) PI
opn 13

(2→3) =700000.

d) PI
opn 14

(2→3) =700000.

* 11

Figure14. Scheduling solution of FIR after 1
st
 Iteration

14

6

NOP
10

*

NOP

+ + + + + + + +

* * * * * *

+

+

+

+

+

+

+

1 2 3 4 5 7 8

9 16 10 12 13 15

17

18

19

20

21

22

23

24

1

2

3

4

5

6

7

8

9

43

e) PI
opn 15

(2→3) =700000.

f) PI
opn 16

(2→3) =700000.

Since there is a tie again between the ‘PI’ of cases b), c), d), e) and f) hence the tie is randomly

broken as per the algorithm in Figure 5. Thus operation 12 is chosen randomly for movement.

The respective temporary scheduling solution found after iteration 2 is shown in Figure 15. The

cost of this solution is {(6 * 100) + (8 * 20) + (28 * 3) + (14 * 3) + (24 * 5)} * 4 = 4.024 Watts.

Again after this iteration a reduction in power consumption is noted.

Iteration (3):

i) Movement – opn 3 (1→2) (a)

* 12 * 11

Figure15. Scheduling solution of FIR benchmark after 2
nd

 Iteration

14

6

NOP
10

*

NOP

+ + + + + + + +

* * * * *

+

+

+

+

+

+

+

1 2 3 4 5 7 8

9 16 10 13 15

17

18

19

20

21

22

23

24

1

2

3

4

5

6

7

8

9

44

ii) Movement – opn 4 (1→2) (b)

iii) Movement – opn 12 (3→4) (c)

iv) Movement – opn 13 (2→3) (d)

v) Movement – opn 14 (2→3) (e)

vi) Movement – opn 15 (2→3) (f)

vii) Movement – opn 16 (2→3) (g)

Therefore the PI obtained for each operation is:

 a) PI
opn 3

(1→2) = 144000.

b) PI
opn 4

(1→2) = 144000.

c) PI
opn 12

(3→4) = 240000.

d) PI
opn 13

(2→3) = 600000 (selected).

e) PI
opn 14

(2→3) =600000.

e) PI
opn 15

(2→3) =600000.

g) PI
opn 16

(2→3) =600000.

According to the algorithm, the highest ‘PI’ is selected for movement is d). The cost of this

respective scheduling solution is {(5 * 100) + (8 * 20) + (26 * 3) + (13 * 3) + (25 * 5)} * 4 =

3.60 Watts. Again after this iteration a reduction in power consumption is noted compared to the

previous scheduling solution. Since the algorithm will not be terminated until # of iterations = #

of nodes in the DFG, hence the local optimal solution found does not restrict the algorithm from

stopping. This above iteration continues until the algorithm reaches iteration 24 (Since the

maximum number of nodes present in this DFG is 24).

45

Iteration (24):

i) Movement – opn 4 (2→3) (a)

ii) Movement – opn 5 (1→2) (b)

iii) Movement – opn 6 (1→2) (c)

iv) Movement – opn 7 (1→2) (d)

v) Movement – opn 8 (1→2) (e)

Therefore the ‘PI’ obtained for each operation is:

a) PI
opn 4

(2→3) = 67200.

b) PI
 opn 5

(1→2) = 67200(selected).

*

+

15

* 13

* 12

* 11

Figure16. Scheduling solution of FIR benchmark after 24
th
 Iteration

14

6

NOP
10

NOP

+ +

+ + +

+ + +

*

*

*

*

+

+

+

+

+

+

1 2

3 4 5

7 8

9

16

10

17

18

19

20

21

22

23

24

1

2

3

4

5

6

7

8

9

46

c) PI
opn 6

(1→2) = 67200.

d) PI
opn 7

(1→2) = 67200.

e) PI
opn 8

(1→2) = 67200.

According to the algorithm, randomly operation 5 is selected for movement as shown below in

Figure 16. The respective scheduling solution found after iteration 24 is shown in Figure 16. The

cost of this respective scheduling solution is {(2 * 100) + (5 * 20) + (14 * 3) + (7 * 3) + (22 * 5)}

* 4 = 1.89 watts. Hence iteration 24 found the local optimal solution to the scheduling problem.

The final reduction in cost in terms of power consumption obtained compared to the initial

solution (in Figure 5) is 4.87 Watts – 1.89 Watts = 2.98 Watts (Since according to the algorithm,

the iteration continues until the iteration # = maximum node #, hence the iteration continues till

iteration 24 to eventually find an optimal solution).

47

Chapter 7

Experimental Results for the Benchmarks

7.1 Implementation Details

A number of well known standard high level synthesis benchmarks were drawn from the

literature for verification and comparison. The benchmarks adopted were IIR Chebyshev Digital

Filter, Finite Impulse Response (FIR) [17], Discrete Wavelet Transformation (DWT) [17] [21],

IIR Digital Butterworth filter, MPEG Motion Vectors (MMV) [17] and Band Pass Filter (BPF)

[17]. The parameters for test chosen for the experiment were a) latency of the final scheduling

solution (in clock cycles), b) the final allocated resource combination (FU’s, mux, demux and

registers) found, c) the cost of the final solution found in terms of power consumption, d) power

reduction achieved and e) the runtime of the whole scheduling process.

The proposed integrated design space exploration approach has been implemented in C

language and run on AMD Athlon 64 Processor with 3GB RAM with processor frequency 1.6

48

GHz. Previous approaches [6], [7], [8], [9], [13], [14] are all based on Genetic Algorithm (GA)

which has exponential time complexity unlike the proposed approach. Approach [6] has already

proved to be superior to other GA based approaches in terms of speed and quality. Hence [6] was

selected for comparison with proposed approach. In order to perform a qualitative assessment of

the proposed approach, the proposed approach has been compared with a GA based approach

[6]. Moreover, the GA based approach [6] chosen from the literature for comparison is a well

known design space exploration approach for scheduling and module selection. By using the

exact parameters (such as terminating condition, user specified choice of constraints, genetic

operators etc) as mentioned in [6], the proposed approach was compared. The user preference

weight of each constraint for the DSE approach [6] was kept at 0.5 during the experiment,

signifying that both the constraints (power consumption and latency) were given equal priority.

In the comparison of the proposed approach with [6], the parameters of comparison chosen were:

a) The quality of the final solution found measured in terms of Quality Cost Factor (Q-metric).

Q-metric is a metric which determines the quality of final solution found by both approaches.

The metric is a combination of latency and power consumption of the scheduling solution which

is given by equation (7) below:

maxmax

21
P

P
W

L

L
WmetricQ ⋅+⋅=− (7)

Where, W1 and W2 are the weightage of the operating constraints for latency and power

consumption (Note: 0<=W1<=1 and 0<=W2<=1). In our experiment, W1 = W2 = 0.5 has been

kept, since equal priority was given to both latency of the final solution and the power

consumption of the scheduling solution. ‘L’ and ‘P’ are the latency and power consumption of

the solution found respectively. ‘Lmax’ and ‘Pmax’ are the values of maximum latency (found by

49

using minimum FU’s) and maximum power consumption (using maximum FU’s) respectively.

Equation (7) has been divided with maximum values of latency and power respectively in order

to obtain normalized values for each.

The value of total power consumption (P) is calculated using equation (8) from current

literature [1, 3, 22, 23, 24, 25, 26, 27, 28] as shown below:

cpRAP ⋅= ∑)((8)

Where pc’ is the power consumed per au at a particular frequency of operation; ‘A(R)’ is the area

of the hardware resources including FU’s (ARi), mux (Amux), demux (Ademux) and registers (Areg)

and is calculated as shown in equation (9):

regdemuxmuxRi AAAARA +++=)((9)

 Where ARi = NRi. KRi ; Where NRi represents the number of resource ‘Ri’ and ‘KRi’ represents

the area occupied per unit resource Ri.

b) The actual runtime taken by both the scheduling approaches. The speed of the scheduling

process was chosen as a parameter for comparison because in this current generation of

Electronic Design Automation (EDA), reducing the design time helps in rapid marketing of the

final end user product. The above metric was proposed for comparison since the quality of a

solution cannot be solely determined from the latency expenditure or the power consumption, but

rather a combination of both together.

7.2 Results of the proposed approach on DSP benchmarks

The discussion of the results obtained through the proposed approach is shown in Table I. The

complexity of the design (benchmarks tested) has been taken into account with respect to the size

of the application (no: of nodes). Wires and busses have not been considered in the proposed

50

approach, although interconnect units and storage elements besides FU have been considered.

The optimization (minimization) obtained for the final resource combination (in terms of FU’s,

mux, demux and registers) as noted from the results for all DSP benchmarks such as DWT, BPF,

FIR, Digital Butterworth filter, Chebyshev filter and MPEG are definitely noteworthy. For

example, in case of DWT benchmark, the final resource combination found is 2(*), 2(+), 8

Table I. Experimental Results of the Proposed DSE approach for the DSP Benchmarks

DSP Benchmarks
[29] [30]

Experimental Parameters
(Note: cc = clock cycles)

Resource combinations

(Functional

Units/Mux/Demux/

Registers)

Latency

(cc)
Initial Cost

 in terms of

Power

consumption

(using eqn. 6)

Final Cost

through

proposed PI

method

(Power

consumption)

% Reduction in

Power

consumption

(cost reduction)

through

proposed PI

method

Runtime

of

proposed

PI

method

(secs)
Initial

Solution

Proposed

PI method

Proposed

PI

method

Discrete Wavelet

Transformation

 (DWT)

5(*), 4(+) 2(*), 2(+)

28 cc 2.94 Watts 1.38 Watts 53.06 % 3.18 secs
18 (mux),

9 (demux),

15

(registers)

8 (mux),

4(demux),

14

(registers)

Band Pass Filter

(BPF)

4(*), 3(+/-) 2(*), 3(+/-)

26 cc 2.49 Watts 1.60 Watts 35.74 % 1.38 secs
14 (mux),

7 (demux),

20

(registers)

10 (mux),

5(demux),

19

(registers)

Finite Impulse Response

(FIR)

8(*), 8(+) 2(*), 5(+)

20 cc 4.87 Watts 1.89 Watts 61.19 % 5.63 secs

32 (mux),

 16

(demux),

23

(registers)

14 (mux),

7(demux),

22

(registers)

IIR Digital Butterworth

Filter

5(*), 1(+/-) 2(*), 1(+/-)

12 cc 2.57 Watts 1.20 Watts 53.30 % 2.08 secs
12 (mux),

6 (demux),

14

(registers)

6 (mux),

3 (demux),

11

(registers)

IIR Digital Chebyshev

Filter

5(*), 2(+) 3(*), 2(+)

8 cc 2.60 Watts 1.86 Watts 28.46 % 1.56 secs
14(mux),

7 (demux),

16

(registers)

10 (mux),

5 (demux),

16

(registers)

MPEG Motion Vectors

(MMV)

14(*), 5(+) 5(*), 5(+)

10 cc 7.52 Watts 3.42 Watts 54.52 % 1.95 secs

38(mux),

19

(demux),

42

(registers)

20(mux),

10

(demux),

33

(registers)

51

(mux), 4(demux) and 14 (register) compared to initial resource combination 5(*), 4(+), 18 (mux),

9(demux) and 15(register). Further, a drastic reduction in final cost (in terms of power

consumption) is obtained through the proposed approach as reflected in Table I. Significant

reduction in final cost of as high as 61.19 % and 54.52 % were noted for FIR and MPEG

benchmarks respectively. For others benchmarks such as DWT, IIR Butterworth filter and BPF

the proposed DSE also yielded significant minimization in final cost in terms of power

consumption.

7.3 Results and Analysis of the comparison with recent Exploration approach

The implementation runtime of the proposed design space exploration and its comparison with a

recent DSE approach [6] is illustrated in Table II. Table II also reflects the comparison of the

final solution found by both the approaches. Since performing ASAP scheduling first as an initial

schedule solution imposes a latency restriction on the final solution, hence it becomes very

mandatory for the proposed DSE approach to arrive at the final solution keeping the latency

constraint under consideration. Similarly, the GA based approach [6] was kept under exact same

latency constraint limitation with maximum limitation on FU’s, during the comparative analysis.

Maximum limitation (minimum area) constraint has been imposed on [6] along with the same

latency constraint (determined from ASAP schedule) as the proposed approach because the

objective of the proposed approach is to find the final solution with minimum area overhead (or

power consumption) under ASAP determined latency constraint. Therefore, for the sake of

performing a qualitative estimation of the proposed DSE approach, two major parameters of

comparison viz. a) Q-metric and b) runtime were chosen. Q-metric provides a comprehensive

measurement of the quality of the final solution found (Note: Q-metric is measured in terms of

52

latency and power consumption of the hardware resources for the final solution) while runtime

provides a solid summary of the speed of the exploration process.

Table II also highlights the percentage improvement in the quality of the final solution

found by the proposed approach and the percentage reduction in runtime obtained by the

proposed approach. For example, in case of small benchmark such as IIR digital Butterworth

filter the improvement obtained in the quality of final solution by the proposed approach

compared to [6] is 14.28 %. Furthermore for medium complexity benchmarks such as DWT and

FIR, the improvement in the quality of final solution achieved is 9.03 % and 14.73 %

respectively. Moreover, for high complexity benchmarks such as BPF and MPEG, the

improvement in the quality of final solution achieved compared to [6] is 10 % and 14.28 %

respectively. The results obtained indicated that the proposed approach has been capable to find

better quality solutions for all benchmarks as compared to [6]. Thus application of proposed DSE

Table II. Results of comparison between proposed approach and [6] for DSP Benchmarks

DSP Benchmarks

[29][30]

Experimental Parameters for Comparison

Quality Cost Factor

(Q-metric)
%

Improvement

in quality of

final solution

%Average

Improvement

of quality

final solution

Runtime (seconds) %

Reduction

in Runtime

using

 PI method

% Average

reduction

in runtime

obtained [6]
Proposed

PI method
[6]

Proposed

PI

method

Discrete Wavelet

Transformation

 (DWT)

0.64 0.58 9.03 %

11.62 %

7.53 secs 3.18 secs 57.76 %

59.10 %

Band Pass Filter

(BPF)
0.60 0.54 10.00 % 13.96 secs 1.38 secs 90.11 %

Finite Impulse

Response (FIR)
0.48 0.41 14.73 % 11.04 secs 5.63 secs 49 %

IIR Digital

Butterworth Filter
0.56 0.48 14.28 % 3.04 secs 2.08 secs 31.57 %

IIR Digital

Chebyshev Filter
0.58 0.53 7.41 % 2.69 secs 1.56 secs 42 %

MPEG Motion

Vectors

(MMV)

0.35 0.30 14.28 % 12.32 secs 1.95 secs 84.17 %

53

on DSP benchmarks has lead to an average percentage improvement of 11.62 % in quality of

final solution compared to [6], which is quite significant. A comparison of the effective time

taken to explore the optimal/near-optimal solution has been performed with the help of

implementation runtime for both the DSE approaches. As revealed in Table II, for all

benchmarks such as DWT, BPF, FIR, MPEG and IIR digital filter, the reduction in runtime has

been imposing. The average reduction in runtime for all benchmarks is around 60 % as shown in

Table II. Therefore it can be clearly seen that the proposed DSE has been capable to find better

quality solutions for all benchmarks at the expense of approximately half runtime as [6]. In

particular, for benchmarks such as BPF and MPEG, the reduction in runtime obtained is 90.11 %

and 84.17 % respectively, which is definitely notable. Similarly for IIR digital filter and FIR

benchmarks the reduction obtained is also significant ranging from 42 % to 49 % respectively.

Hence, in both the proportions of comparative analysis a) quality of final solution and b)

exploration runtime, the proposed approach has been able to perform better compared to

scheduling approach [6].

In Figure 17, the variation of reduction in runtime and the improvement in quality of final

solution obtained compared to [6] with the complexity of the benchmarks is shown. As clearly

visible from Figure 17, a general increase in trendline in the percentage improvement of the

quality of final solution with the increase in complexity of the benchmarks can be noted. In

particular for medium and largely complex benchmarks such as FIR and MPEG, the value of

improvement obtained in final quality of solution is seen to be quite significant. Furthermore, as

seen in Figure 18, a general increase in trendline in the percentage reduction of runtime with

increase in complexity of benchmarks can be noted. For complex benchmarks such as BPF and

MPEG, the reduction in exploration runtime is seen to be significantly large, which proves that

54

the proposed DSE also has good scalability property. The % improvement in quality of final

G e n e ra l in c re a s e in tre n d lin e in th e p e rc e n ta g e

im p ro v e m e n t o f th e q u a lity o f fin a l s o lu tio n w ith th e

in c re a s e in c o m p le x ity o f th e b e n c h m a rk s

7 .4 1 %

1 4 .2 8 %

9 .0 3 %

1 4 .7 3 %

1 0 .0 0 %

1 4 .2 8 %

0 .0 0 %

2 .0 0 %

4 .0 0 %

6 .0 0 %

8 .0 0 %

1 0 .0 0 %

1 2 .0 0 %

1 4 .0 0 %

1 6 .0 0 %

II
R

 D
ig

it
a
l

C
h
e
b
y
s
h
e
v

F
ilt

e
r

II
R

 D
ig

it
a
l

B
u
tt

e
rw

o
rt

h

F
ilt

e
r

D
W

T

F
IR

B
P

F

M
P

E
G

B e n c h m a rk s

%
 i

m
p

ro
v
e
m

e
n

t

Figure17. A general increase in trendline in the % improvement of quality of final solution with increase

in complexity of the benchmarks

General increase in trendline in the percentage

reduction of runtime with increase in complexity of

benchmarks

90.11%
84.17%

31.57%

42%
49%

57.76%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

II
R

 D
ig

it
a
l

C
h
e
b
y
s
h
e
v

F
ilt

e
r

II
R

 D
ig

it
a
l

B
u
tt

e
rw

o
rt

h

F
ilt

e
r

D
W

T

F
IR

B
P

F

M
P

E
G

Benchmarks

%
 R

e
d

u
c
ti

o
n

 i
n

 r
u

n
ti

m
e

Figure18. A general increase in trendline in the percentage reduction of runtime with increase in

complexity of benchmarks

55

solution and reduction in implementation runtime for the proposed approach compared to [6] is

therefore seen to be equally improved for small, medium and large complexity benchmarks.

Moreover a careful observation in Figure 17 and Figure 18 also reveals that for medium and high

complexity benchmarks such as FIR, BPF and MPEG, the proposed approach is seen to perform

better both in terms of providing better quality solution (an average improvement over 10 %) and

reducing the time taken (an average reduction over 50 %) to yield the final optimal solution. As

verified through the results obtained the proposed approach handles small, medium and large

size applications in short runtime which dictates the ability of the proposed approach to handle

growing size of the problem in a reasonable time. For example, small size and less complex

benchmark such as IIR Digital filter the quality improvement and runtime reduction was 10 %

and 31.57 %. For medium size problems, such as FIR, the quality improvement and runtime

reduction was 14.73 % and 49 %. Finally, for large size and highly complex benchmark, MPEG

the quality improvement and runtime reduction was 14.28 % and 84.17 %. This proves that the

proposed approach has the ability to handle growing size of the problem in a reasonable time.

Hence the approach is scalable. The implementation results for the DWT benchmark have been

also shown in Figure 19 and Figure 20 respectively.

56

Figure19. Portion of the implementation result for DWT showing the iterations of the proposed method.

57

Figure20. Portion of the implementation result for DWT benchmark showing the final result obtained

using the proposed approach.

58

Chapter 8

Conclusion and Future Work

8.1 Conclusion

 This thesis introduced a novel power efficient rapid integrated design space exploration

approach for scheduling and module selection in high level synthesis. The proposed DSE

approach reduced the total power consumption of the resources at the expense of minimal

latency expenditure. Thus the introduced DSE was capable of minimizing the power

consumption and hardware area under strict minimal latency constraints. The DSE approach

using iterative technique based on ‘Priority indicator (PI method)’ function selects the operation

with the highest PI from the available list of movable operations for further optimization. This

scheduling process is repeated until an optimal solution is found. The second aspect of this thesis

is the introduction of a novel topology called ‘Intersect Matrix’ with its associated algorithm

59

used for checking the precedence violation between operations during the scheduling process.

This topology is easy to implement because of its minimal complexity and straight forward

characteristic.

 The proposed approach was qualitatively compared with [6] in terms of quality of final

solution and exploration runtime. A new metric called ‘Quality Cost Factor (Q-metric)’ was

proposed to compare the quality of solutions yielded by both approaches. The above metric was

proposed since the quality of a solution cannot solely be determined from the latency expenditure

or the occupied hardware area, but rather a combination of both. Results of comparison by Q-

metric indicate that the proposed approach was able to provide ≈ 12 % improvement in the

quality of final solution compared to [6]. Further, comparison of exploration runtime for both

approaches indicates that the proposed approach was able to find an average reduction of 59.10

% in runtime compared to [6]. Therefore the proposed DSE found a better solution in half of the

exploration runtimes compared to [6]. Hence the approach presented in this thesis is a novel

versatile design space exploration approach that is rapid, power efficient in nature, and highly

useful for data path synthesis in Electronic System Level (ESL) design. The approach has the

ability to escape from the local optimal solution and therefore a tendency to reach global optimal

solution.

8.2 Scope of Future Work

Further, global optimal solutions were found for almost all benchmarks, which dictate the

capability of the proposed approach to escape local optima and find global optimal solutions.

Although efficient in finding global optimal solutions in most cases, there may be few cases

60

where the proposed method is unable to find the global optima. This usually results in local

optimal solutions where further scope for optimization is possible. Therefore, there is an aspect

related to the suitable terminating condition of the proposed approach where further

improvements can be made. Selecting an accurate terminating condition maintains the right

balance between obtaining a high precision solution and minimizing the exploration runtime.

Hence, future works are geared towards experimenting with various terminating conditions to

evaluate the tradeoffs between solution accuracy and exploration runtime. This would help in

selecting an optimal termination condition for the proposed approach to further improve the

quality of solution.

61

Refereed Publications

Patents/Inventions

1. Reza Sedaghat, Pallabi Sarkar, Anirban Sengupta, “Power Efficient Rapid Scheduling

Algorithm in High Level Synthesis for Computation-intensive Applications using PI

Method”, Invention filed to MARS Innovation, Govt. of Canada, November 2010.

Refereed Journals

2. Pallabi Sarkar, Reza Sedaghat, Anirban Sengupta, “Power Efficient Rapid Design Space

Exploration of Integrated Scheduling and Module Selection in High Level Synthesis”

‘Journal of Microelectronics Reliability’, Elsevier, 2010, Ref. No.: MR-D-10-00484.

3. Anirban Sengupta, Reza Sedaghat, Pallabi Sarkar, “Rapid Exploration of Integrated

Scheduling and Module Selection in High Level synthesis for Application Specific

Processor Design”, ‘Journal of Microprocessor and Microsystems’, Elsevier, 2010.

62

Refereed Conferences

4. Pallabi Sarkar, Anirban Sengupta, Reza Sedaghat, “Power Efficient Rapid Scheduling

Approach in High Level Synthesis using PI Method”, IEEE/ACM Design Automation

Conference (DAC), 2011, Submitted.

5. Pallabi Sarkar, Reza Sedaghat, Anirban Sengupta, “Priority Function Based Power

Efficient Rapid Design Space Exploration of Scheduling and Module Selection in High

Level Synthesis”, 24
th

 IEEE Canadian Conference on Electrical and Computer

Engineering, 2011, Submitted.

63

References

[1] Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Rapid Design Space Exploration for

multi parametric optimization of VLSI designs”, In Proceedings of 2010 IEEE International

Symposium on Circuits and Systems (ISCAS), Paris, pages: 3164-3167, 2010.

[2] Keinert, J., Streubuhr, M., Schlichter, T., Falk, J., Gladigau, J., Haubelt, C., and Teich, J.

“SYSTEMCODESIGNER—An automatic ESL synthesis approach by design space

exploration and behavioral synthesis for streaming application”, ACM Transactions on

Design Automation of Electronic Systems (TODAES), January 2009, vol.14, issue: 1, Article

1.

[3] Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Rapid Design Space Exploration by

Hybrid Fuzzy Search Approach for Optimal Architecture determination of Multi Objective

Computing Systems”, Journal of Microelectronics Reliability, September 2010, Elsevier,

doi:10.1016j.

[4] Philippe Grosse, Yves Durand, Paul Feautrier, "Methods for power optimization in SOC-

based data flow systems", ACM Transactions on Design Automation of Electronic Systems

(TODAES), 2009, vol. 14, issue 3, Article no.: 38.

[5] J. C. Gallagher, S. Vigraham, and G. Kramer “A family of compact genetic algorithms for

intrinsic evolvable hardware,” IEEE Trans. Evolutionary Computation., April 2004, vol. 8,

no. 2, pages: 111–126.

[6] Vyas Krishnan and Srinivas Katkoori, “A Genetic Algorithm for the Design Space

Exploration of Datapaths During High-Level Synthesis”, IEEE Transactions on Evolutionary

Computation, June 2006, vol.10, no.3, pages: 213-229.

64

[7] E. Torbey and J. Knight, “High-level synthesis of digital circuits using genetic algorithms,”

in Proc. Int. Conf. Evol. Comput., May 1998, pages: 224–229.

[8] E. Torbey and J. Knight, “Performing scheduling and storage optimization simultaneously

using genetic algorithms,” in Proc. IEEE Midwest Symp. Circuits Systems, 1998, pages:

284–287.

[9] Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti,

“Efficient design space exploration for application specific systems-on-a-chip” Journal of

Systems Architecture, Elsevier, 2007, vol. 53, issue 10, pages: 733–750.

[10] A.C.Williams, A.D.Brown and M.Zwolinski, “Simultaneous optimisation of dynamic

power, area and delay in behavioural synthesis”, IEE Proc.-Comput. Digit. Tech, November

2000, vol. 147, no. 6, pages: 383-390.

[11] I. Das. “A preference ordering among various Pareto optimal alternatives”. Structural and

Multidisciplinary Optimization, Aug. 1999, vol.18, issue: 1, pages: 30–35.

[12] Xuejie Zhang and Kam W. Ng, “A review of high-level synthesis for dynamically

reconfigurable FPGAs”, Microprocessors and Microsystems, Elsevier, August 2000, vol. 24,

issue 4, pages 199-211,1.

[13] C. Mandal, P. P. Chakrabarti, and S. Ghose, “GABIND: A GA approach to allocation and

binding for the high-level synthesis of data paths,” IEEE Transaction on VLSI, Oct. 2000,

vol. 8, no. 5, pages: 747–750.

[14] M. J. M. Heijlingers, L. J. M. Cluitmans, and J. A. G. Jess, “High-level synthesis scheduling

and allocation using genetic algorithms,” in Proc. Asia South Pacific Design Automation

Conf., 1995, pages: 61–66.

65

[15] M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker, “Datapath synthesis using a

problem-space genetic algorithm,” IEEE Trans.Comput.-Aided Des., 1995, vol. 14, pages:

934–944.

[16] G. De Micheli, “Synthesis and Optimization of Digital Circuits”. New York: McGraw-Hill,

1994.

[17] Saraju P. Mohanty, Nagarajan Ranganathan, Elias Kougianos and Priyadarsan Patra, “Low-

Power High-Level Synthesis for Nanoscale CMOS Circuits” Chapter- High-Level Synthesis

Fundamentals, Springer US, 2008.

[18] D. Gajski, N. Dutt, A.Wu, and S. Lin, High Level Synthesis: “Introduction to Chip and

System Design”. Norwell, MA: Kluwer, 1992.

[19] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioral synthesis of

ASICs,” IEEE Trans. Comput.-Aided Des., 1989, vol. 8, no.6, pages: 661–679.

[20] Christian Haubelt, Jurgen Teich,“Accelerating Design Space Exploration Using Pareto-

Front Arithmetic’s”, In Proceedings of Asia and South Pacific Design Automation Conference

(ASP-DAC’03), Japan, 2003, pages: 525-531.

[21] Jain, R., Panda, P.R. “An efficient pipelined VLSI architecture for lifting-based 2d-discrete

wavelet transform”, in Proceedings of the International Symposium on Circuits and Systems

(ISCAS), 2007, pages: 1377– 1380.

[22] Zhipeng Zeng, Reza Sedaghat, Anirban Sengupta, “A Framework for Fast Design Space

Exploration using Fuzzy search for VLSI Computing Architectures”, In Proceedings of IEEE

International Symposium on Circuits and Systems (ISCAS), Paris, 2010, pages: 3176-3179.

[23] Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “A High Level Synthesis design flow

with a novel approach for Efficient Design Space Exploration in case of multi parametric

66

optimization objective”, Journal of Microelectronics Reliability, Elsevier, 2010, vol. 50, issue

3, pages 424-437.

[24] Anirban Sengupta, Reza Sedaghat, Zhipeng Zeng, “Hardware Efficient Design of speed

optimized Power stringent Application Specific Processor”, In Proceedings of IEEE 21
st

International Conference on Microelectronics (ICM), 2009, pages: 167-170.

[25] Zhipeng Zeng, Reza Sedaghat, Anirban Sengupta, “A Novel Framework of Optimizing

Modular Computing Architecture for multi objective VLSI designs”, In Proceedings of IEEE

21
st
 International Conference on Microelectronics (ICM), 2009, pages: 322-325.

[26] Summit Sehgal, Reza Sedaghat, Anirban Sengupta, Zhipeng Zeng, “Multi Parametric

Optimized Architectural Synthesis of an Application Specific Processor”, IEEE 14
th

International CSI Computer Conference, 2009, pages: 89-94.

[27] Anirban Sengupta, Reza Sedaghat, “Rapid Exploration of Power-Delay Tradeoffs using

Hybrid Priority Factor and Fuzzy Search”, Accepted for Publication in Proceedings of 22
nd

IEEE International Conference on Microelectronics (ICM), Cairo, Egypt, 2010, pp.355-358.

[28] Anirban Sengupta, Reza Sedaghat, “Integrated Scheduling, Allocation and Binding in High

Level Synthesis using Multi Structure Genetic Algorithm based Design Space Exploration

System”, Accepted for Publication in Proceedings of 12th IEEE International Symposium on

Quality Electronic Design (ISQED 2011), California, USA, March 2011.

[29] Express: High-Level Synthesis Benchmarks. http://express.ece.ucsb.edu/benchmark/

[30] Express Benchmark Suite, http://express.ece.ucsb.edu/benchmark/ (From University of

California, Santa Barbara).

[31] McFarland, M.C. Parker, A.C. Camposano, R. "The high-level synthesis of digital

systems", Proceedings of the IEEE, Feb 1990, Volume: 78, Issue: 2, page(s): 301-318.

67

APPENDIX

Implementation Result of MPEG (Motion Vectors) Benchmark in the Proposed Automated

Exploration Tool – Part I

68

Implementation Result of MPEG (Motion Vectors) Benchmark in the Proposed Automated

Exploration Tool – Part II

69

Implementation Result of FIR Benchmark in the Proposed Automated Exploration Tool

(Part I)

70

Implementation Result of FIR Benchmark in the Proposed Automated Exploration Tool

(Part II)

71

Implementation Result of FIR Benchmark in the Proposed Automated Exploration Tool –

Part III

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	Power Efficient Rapid Design Space Exploration of Integrated Scheduling and Module Selection in High Level Synthesis
	Pallabi Sarkar
	Recommended Citation

