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ABSTRACT 

Title of Thesis 

POWER EFFICIENT RAPID DESIGN SPACE EXPLORATION OF INTEGRATED 

SCHEDULING AND MODULE SELECTION IN HIGH LEVEL SYNTHESIS  

 

Thesis Submitted By: 

                                    Pallabi Sarkar, Master of Applied Science, 2011 

Optimization Problems Research and Application Laboratory (OPR-AL) 

Electrical and Computer Engineering Department, Ryerson University 

 

Thesis Directed By: 

Dr. Reza Sedaghat 

Electrical and Computer Engineering Department, Ryerson University 

 

High level Synthesis (HLS) or Electronic System Level (ESL) synthesis requires scheduling 

algorithms that have strong capability to reach optimal/near-optimal solutions with significant 

rapidity and greater accuracy. A novel power efficient scheduling approach using ‘PI’ method 

has been presented in this thesis that reduces the final power consumption of the solution at the 

expenditure of minimal latency clock cycles. The proposed scheduling approach is based on 

‘Priority indicator (PI)’ metric and ‘Intersect Matrix’ topology methods that have a tendency to 

escape local optimal solutions and thereby reach global solutions. Application of the proposed 

approach results in even distribution of allocated hardware functional units thereby yielding 

power efficient scheduling solutions. The two main novel and significant aspects of the thesis 

are: a) Introduction of ‘Intersect Matrix’ topology with its associated algorithm which is used to 

check for precedence violation during scheduling b) Introduction of PI method using Priority 
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indicator metric that assists in choosing the highest priority node during each iteration of the 

scheduling optimization process. Comparative analysis of the proposed approach has been done 

with an existing design space exploration method for qualitative assessment using proposed 

‘Quality Cost Factor (Q- metric)’.  This Q-metric is a combination of latency and power 

consumption values for the solution found, which dictates the quality of the final solutions found 

in terms of cost for both the proposed and existing approaches. An average improvement of 

approximately 12 % in quality of final solution and average reduction of 59 % in runtime has 

been achieved by the proposed approach compared to a current scheduling approach for the DSP 

benchmarks. 
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Chapter 1    

Introduction 

 1.1 Overview 

The increased demand for performance improvement of Very Large Scale Integration 

(VLSI) systems, has forced VLSI designers to optimize the design at different levels of 

abstractions. Compared to the lower level of abstraction, it is well known that the optimization at 

the high level of abstraction has more impact on the design performance. Hence optimization at 

much higher level of abstraction known as ‘architectural/algorithmic level’ has gained 

momentum and the focus of many researches. A VLSI design at high-level of abstraction could 

be expressed in the behavioral domain in terms of algorithms. The algorithmic description 

specifies the inputs and outputs of the behavior of the algorithm in terms of operations to be 

preformed and data flow.  

Moreover, the never ending increase in growth of the chip complexity has only been 

possible owing to efficient scheduling and exploration techniques proposed so far. The growth in 

capacity of the chip has enabled processing of huge amounts of data with greater flexibility and 

lesser expense. But the above condition can only prevail if the implementation cost satisfies the 
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user specified requirement of power consumption and latency. The application domain of the 

above mentioned requirements can be found out in the area of Digital Signal Processing (DSP), 

communications and network processing [1][2][3].  

 

In the recent years there has been a major trend toward automating the design synthesis 

process at even higher levels of the design hierarchy. This automated design synthesis process 

called ‘high-level synthesis’ is therefore a process of conversion of the application from the 

algorithmic level to its respective RTL structure. High-level synthesis is gradually gaining 

acceptance in industry, and there has been considerable interest shown in Electronic system level 

designing by many well established EDA CAD vendors. Integrated Design Space Exploration of 

scheduling, allocation and binding in High Level Synthesis is often the most tedious process in 

the design process. Accurate exploration leads to high quality system design but may require 

extensive analysis resulting in increased design time. On the other hand, rapid exploration leads 

to reduced design time which eventually results in rapid marketing of the final end product, but 

may often be a victim of inferior quality solution due to limited precision during evaluation 

process. Hence a combination of the above two aspects of design space exploration: i) quality of 

the final exploration result ii) speed of the exploration process needs to be concurrently 

addressed in the design space exploration process based on the user specified objectives. This 

complicated process of design space exploration therefore involves tradeoffs between conflicting 

situations besides the contradictory objective parameters [1] [3]. Henceforth, exploration of an 

optimal/near-optimal solution that has the capability to encounter conflicting condition such as 

speed of the exploration process and quality of the solution found is extremely significant. 
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Moreover, the complicated process of exploration of final solution also requires tradeoff between 

the contradictory parameters of power and latency, besides the contradictory demands [3].  

Additionally, recent advancements in areas of signal processing and multimedia have resulted 

in the growth of extensive array of applications requiring huge data processing at minimal power 

consumption expenditure. Such computation intensive applications demand acceptable 

performance with power competent hardware solutions. Hardware solutions should satisfy 

multiple contradictory performance parameters such as power consumption and time of 

execution. Since the selection process for the best design architecture is complex, an efficient 

approach to explore the design space for selecting the best design option is needed.  

 

1.2 Related Works  

In [1], the researchers have proposed an approach for design space exploration using priority 

factor method. The method uses a mathematically deduced framework called priority factor that 

is used for hierarchical arrangement of the vector design space consisting of all possible 

combination of design variants. Once the vector design space is hierarchically sorted in 

ascending/descending order then the border variant of each parameter from the design space is 

determined. Finally the Pareto optimal set is obtained that yields the final solution. The approach 

is highly efficient in terms of the exploration speed. But the drawback with this approach is the 

final quality of solution found, since in most cases due to partially arranged nature of the design 

space, the final solution found was local optimal in nature. Furthermore, authors in [2] introduce 

a tool called SystemCoDesigner that offers rapid design space exploration with rapid prototyping 

of behavioral systemC models. An automated integrated approach was developed by integrating 

behavioral synthesis into their design flow. SystemCoDesigner is a completely automated ESL 
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tool that provides a platform for hardware/software generation of System-on-Chip 

implementations. The approach performed tradeoffs between hardware cost and throughput. 

Since the thesis basically focused on bridging the gap from ESL to RT-level, hence scheduling 

algorithm was not the main focus of the work. But the proposed work focuses on ASAP latency 

constrained power efficient scheduling algorithm that mostly escapes the local optimal solutions. 

Authors in [4] have proposed a power optimization in SoC data flow systems. Authors have 

applied their optimization approach on 4G telecommunication modem system in order to show 

the power/energy savings obtained by their approach compared to existing approaches. Although 

the proposed optimization yielded significant results, but the focus of their work was not on 

scheduling approach but rather power optimization hardware during exploration. In [5], Genetic 

Algorithm (GA) has been suggested to yield better results for the design space exploration 

process. Authors have proposed the use of compact genetic algorithms for intrinsically evolvable 

hardware. Authors have improved upon the existing compact genetic algorithm that is based on 

probability vector based genetic algorithm that can be proficiently implemented in hardware. The 

results obtained on the benchmark resulted in increased efficiency and datapath design for 

implantation. The use of GA has also been suggested in [6] as a promising framework for DSE 

of data paths in high level synthesis. Their work employs robust search capabilities of the GA to 

resolve the datapath synthesis of scheduling and allocation of resources with the objective of 

finding a combination of scheduling and module/storage selection. Moreover the authors have 

used two different chromosome representations to encode the datapath schedules and functional 

unit part. Another approach introduced by researchers in [3] was based on Pareto optimal 

analysis using hybrid fuzzy searching algorithm. According to their work, the design space was 

arranged in the form of an architecture vector design space for architecture variant analysis and 



5 

 

optimization of performance parameters and then the proposed fuzzy search algorithm was 

applied for exploration. The fuzzy searching algorithm proposed is based on sets of fuzzy 

membership value functions that finds the border variant of architecture for the power 

consumption and performance parameters Although the method is extremely fast for exploration 

that reduces the final design time, but the approach also has a tendency to mostly yield local 

optimal solutions. Furthermore in [7] and [8], authors described another approach for DSE in 

high level systems based on binary encoding of the chromosomes. Authors in [7] have proposed 

a scheme for scheduling and allocation for functional and storage units. The method is based on 

power and latency constraint and performs pretty well for large designs. But the main drawback 

with this approach is the slow speed of exploration as well as the tendency to mostly find near-

optimal solution.  But the proposed approach aims to find a power efficient optimal solution at 

the expense of minimal latency expenditure which mostly has the tendency to reach global 

optimal.  Authors in [9] have used an evolutionary algorithm for successful evaluation of the 

design for an application specific System on Chip. The work shown in [10] discusses about the 

optimization of area, delay and power in behavioral synthesis. But the work shown does not 

focus on an iterative hill climbing based design space exploration approach using selection value 

for power consumption and minimal latency constraint. The problem of exploration was also 

addressed in [11] by suggesting order of efficiency, which assists in deciding preferences 

amongst the different Pareto optimal points, while authors in [12] describe current state-of-the-

art high-level synthesis techniques for dynamically reconfigurable system.  In addition to above, 

authors in [13] have used GA to apply to the binding and allocation phase. The authors have 

introduced an unconventional crossover technique depending on a force directed datapath 

binding completion algorithm. One of the key features of their approach is the use of multiport 
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memories. The main drawback of the presented approach is that it accepts as input the scheduled 

data flow graph, thus is unable to handle the scheduling problem. This is because approach [13] 

is incapable to perform scheduling as mentioned. This is further evident because [13] can only 

perform exploration by accepting an already scheduled application. This is the major bottleneck 

in [13] since it needs some other approach to perform scheduling which could be used as an 

input for [13]. Besides, authors in [14], presented a time constrained scheduling based on genetic 

algorithm technique. The use of list decoder has been made to decode chromosome encoding by 

permutation of operations, into a valid schedule. Although the method is promising, but the 

method is slow compared to the other GA approaches. This is because [14] is based on Genetic 

Algorithm (GA) which has exponential time complexity unlike the proposed approach. 

Moreover, in order to find a good quality solution, the number of generations is always set to a 

value more than or equal to 100. This increases the total runtime to explore a good solution. In 

addition to above, authors in [15] have proposed a problem space genetic algorithm for design 

space exploration of data paths. The authors have used the concept of heuristic/problem pair to 

convert a data flow graph into a valid schedule. Another class of scheduling algorithms presented 

before were constructive approaches like As Soon As Possible (ASAP) [16], As Late As Possible 

(ALAP) [17], list scheduling [18], Force Directed scheduling [19]. The above approaches are 

very simple and fast in nature. The implementation complexity is also minimal for the above 

algorithms, but the above methods suffer from yielding poor solution in terms of hardware cost. 

Moreover Researchers in [20] have proposed an approach for synthesis of heterogeneous 

embedded systems by using Pareto Front Arithmetic (PFA) to explore the giant search spaces. 

Their method exploited the hierarchical problem structure for exploring the set of Pareto optimal 

solutions. Their method is quite promising, but the implementation complexity is large. Further 
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[20], does not consider power consumption optimization under minimal latency constraint during 

the scheduling process. Thus all the existing approaches on scheduling and design space 

exploration in ESL or high level synthesis has its own respective advantages and disadvantages. 

 

 1.3 Summary of Contribution 

This thesis contributes to the following areas: 

• Introduces a new topology for data dependency violation check of data flow graph based 

problems called ‘Intersect Matrix’. 

• Proposes a new algorithm in co-relation with the intersect matrix topology for 

determination of the parent-child relationship during data dependency violation check. 

• Proposes a mathematical expression for Power Fluctuation based on the power 

consumption rate, which is used during determination of high priority nodes while 

searching for an optimal/near optimal scheduling solution.  

• Presents a new priority function based selection criterion that takes into account the 

power fluctuation called ‘Priority indicator (PI)’. 

• Proposes a new iterative scheduling algorithm based on PI method. 

• Presents a novel approach for finding the optimal/near optimal integrated solution to the 

problem of scheduling and module selection in High Level Synthesis. 

• Provides a complete automated Design Space Exploration tool for rapid exploration of 

scheduling and module selection in high level synthesis design process. 

• The proposed approach has successfully improved the quality of final solution on an 

average by 12% and reduced the exploration runtime on an average by 59% compared to 

a current approach for all the tested standard DSP Benchmarks. 
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1.4 Organization of the Thesis 

The remaining part of the thesis is organized as follows: Chapter 2 gives a generic overview and 

background information on High Level Synthesis (HLS) and Design Space Exploration (DSE). 

Chapter 3 describes the proposed Dependency Matrix Topology for indicating the Data 

Dependency of Data Flow Graph (DFG). Chapter 4 provides the proposed Design Space 

Exploration Approach for Integrated Scheduling and Module Selection in High Level Synthesis. 

Chapter 5 demonstrates the proposed DSE Approach using the case study of Discrete Wavelet 

Transformation (DWT) Benchmark while Chapter 6 demonstrates the proposed Exploration by 

Considering Resource Binding (Interconnect Units) which uses the case study of Finite Impulse 

Response (FIR) Benchmark. Chapter 7 provides the experimental results, analysis and a vivid 

discussion of the proposed approach on DSP Benchmarks. Chapter 8 is dedicated to the 

conclusion and the future scope of the proposed work in this area. The list of publications related 

to this field of research study and the total list of citations are also provided thereafter. The thesis 

finally ends with the appendix. 
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Chapter 2 

Background Information 

2.1 A General Overview on High Level Synthesis 

 High-Level Synthesis (HLS) is an integral part of VLSI Electronic System Level designs. 

Lately, high-level synthesis has attracted significant attention in the CAD society. A lot of 

Electronic Design Automation (EDA) vendors based on CAD designs have shifted their design 

process to high-level synthesis. High-level synthesis traditionally is the conversion of the 

behavioral abstract description of the algorithm to its Register Transfer level (RTL) hardware 

structure. Important ingredients of high-level synthesis such as scheduling, allocation, binding 

and design space exploration have recently gathered renewed attention amongst the CAD 

researchers owing to its high capability to generate optimized hardware structures from high 

level specifications. High-level synthesis is the conversion from the abstract behavioral 
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description to its respective hardware description in the form of memory elements, storage units, 

multiplexers/demultiplexers and the necessary interconnections (called Register Transfer Level). 

But, this general process of High-level synthesis comprises of different complex procedural 

steps. These steps are very important in terms of the different research aspects of high-level 

synthesis. Research has been conducted and carried out in these different stratums of high-level 

synthesis.  

 

2.2 Generic High-level synthesis Procedure 

This section gives a vivid description of the different steps to be followed while reaching the 

final level called Register Transfer level (RTL). A framework has been constructed for the 

different procedural steps for high-level synthesis by discussing the General high-level synthesis 

procedure in this section. The generic high-level synthesis procedure can be described as 

follows. First,  the process starts with the high level system specification such as area occupied 

by each resource, number of clock cycles needed to perform each operation by a specific 

resource, power consumed at a given frequency and also the user specified constraints for area, 

execution time and power consumption. Next the behavior or application required for the system 

is taken as an input which is then converted into a data flow graph. Subsequently the design 

space exploration (details about design space exploration are discussed in the next section) is 

carried out based on the user specified constraints like area, execution time, power etc. The 

following step called Scheduling represents the data flow graph of the application in the form of 

a sequencing flow graph into different time slots and binding the same type of operations i.e. 

grouping the same operations in same or different time slots. Scheduling can be represented in 

two different forms: time constrained scheduling and resource constrained scheduling. Time 
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constrained scheduling refers to finding the minimum cost schedule that satisfies the given set of 

constraints with the given maximum number of control steps. Resource constraint scheduling, on 

the other hand, refers to finding the fastest possible schedule that satisfies the given set of 

constraints with the given maximum number of resources. After the scheduling is correctly 

accomplished, the block diagram of the data path circuit is then developed. The controller 

structure is built next which provides the necessary synchronization signals. Finally, the 

combined structure consisting of the data path and the control path is the resulting system for the 

given application at the Register Transfer Level (RTL). The generic high-level synthesis 

overview is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

2.3 Overview on Design Space Exploration 

The design of any modular VLSI systems is implementable in innumerable ways. 

Therefore the major challenge during the high-level synthesis designing process is to find the 

most suitable implementable hardware through design space exploration. Design space 

Figure 1. The Generic High-level synthesis 

High level specification

Application Benchmarks 

such as Filter, FFT, DWT, 

DCT, etc  

Conversion of the application to 

Data Flow Graph (DFG)  

Design Space Exploration of 

possible Architectures 

Scheduling, Allocation 

and Binding

Determination of 

Data Path Circuit  

Determination of 

Control Path Circuit 

Development of the Full System by 

combination of Data and Control path RTL Structure

Integrated Design Space Exploration
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exploration therefore generally involves the evaluation and selection of the optimal architecture 

based on the user specified requirements from the huge design space consisting of innumerable 

design alternatives. It is a procedure for analyzing the various design architectures in the design 

space to obtain the optimum architecture for the behavioral description according to the 

predefined user specifications. 

Based on the constraints and specifications, the exploration of the optimal design point is 

very essential because this solution is to be carried forward in the next steps of high-level 

synthesis to reach the RTL structure. Also, if the constraints are satisfied while exploring the 

design space, an optimum result is expected further in the lower levels of abstraction.  Based on 

the research performed till date, design space exploration in high-level synthesis can be broadly 

classified into two categories. First, design space exploration of architectures and second, the 

integrated design space exploration of scheduling, allocation and binding as discussed in the 

following two paragraphs respectively. 

For the modular multi objective computing systems, fast and precise evaluation of the 

optimal system architecture is one of the most significant stages in the development process. The 

assessment and selection of the optimal design point is generally a complex procedure that 

requires lot of elaborate analysis. This process of architecture evaluation based on the user 

provided objective parameters are done through a sophisticated process called Design Space 

Exploration (DSE) of architectures. With the help of this exploration, several aspects are 

determined like the number of optimum resources, clock frequency etc. 

 For the modular VLSI computing architectures, the problem of solving the exploration 

process in a fast and accurate manner is very important. High-level synthesis is comprised of 

interdependent tasks such as scheduling, allocation, and module selection. For today’s VLSI 
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designs, the cost of solving the combined scheduling, allocation, and module selection problem 

by exhaustive search is prohibitive. However, to meet design objectives, an extensive design 

space exploration is often critical to obtaining superior designs. Integrated design space 

exploration addresses multiple issues encountered during high-level synthesis such as 

scheduling, allocation and binding. These issues are highly critical for successful functioning of 

the system based on the user specified objectives. The characteristic of the integrated exploration 

lies in the fact that it does not only find the optimal architecture for the design but also explores 

the optimal scheduling and allocation needed to accomplish the task in given provided 

constraints. 

 

2.4 Abstraction Level of Optimization in VLSI Design 

In recent VLSI system designing, specifications are provides at a higher level of 

abstraction in order to attain maximum performance benefits at minimal cost. Further, specifying 

the requirements at a higher level of abstraction provides the designer with maximum flexibility 

for design optimization. Currently all the major EDA tool vendors are relying on high level 

synthesis which is designing the system from the highest level of abstraction. The EDA tools 

accept the application expressed in a high-level language as input and automatically produces the 

corresponding Register Transfer level implementation. All hardware systems can be classified 

into various levels of abstraction such as System level, Architecture level, Register Transfer 

Level (RTL), Layout level and Transistor level. In order to make the search for the optimal 

solution as effective as possible, the design decision taken at a very early stage of the 

development process provides more benefit in terms of the development time and also accuracy 
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in system development. Therefore, the focus for researchers has shifted towards optimization of 

multi parameters due to time to market pressure.  

 

2.4 Importance and Significance of High Level Synthesis 

In recent years there has been a trend towards automating synthesis at higher levels of the 

design hierarchy. Logic synthesis has gained acceptance in industry and there has been 

substantial interest shown in Register Transfer Level (RTL) synthesis. The significance of high 

level-synthesis are as follows [31]: 

Reduction in errors and increase in reliability: If the synthesis process can be verified to be 

right-then there lies a greater assurance of the final design corresponding to the initial 

specification. This implies reduction in errors and an increase in reliability for new chips. 

The ability to seek and explore the design space: A good synthesis system can produce several 

designs from the same specification in a reasonable amount of time. This allows the developer to 

explore different tradeoffs between cost, speed, power etc., or to take an existing design and 

produce a functionally equivalent one that is faster or less expensive. Even if the design is 

ultimately produced manually, automatically synthesized designs can suggest tradeoffs to the 

designer. 

Decrease in the design cycle: If more of the design process is automated, it is possible to 

complete a design faster, and thus have a better chance of hitting the market window for the 

design. Moreover, since much of the cost of the chip is in design development, automating more 

of that process can lower the cost appreciably. 

Documenting the design process: A track of design decisions made with their reasons and the 

effect of those decisions can be kept under the surveillance of an automated system. 
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Chapter 3  

Proposed Dependency Matrix Topology 

 

3.1 Dependency Matrix – A Matrix Topology for indicating the Data Dependency of the 

DFG 

This section introduces a new matrix topology called ‘Dependency Matrix’ which illustrates 

the data dependency present between the nodes of the data flow graph. Dependency Matrix 

represents all the information of the precedence relation present between the nodes of the DFG. 

This matrix is used in the proposed work for checking the data dependency between the 

predecessor and successor nodes during the scheduling process when during each iteration; a 

specific node will be moved for improving the scheduling solution. Thus a node is selected for 

movement as long as the node does not violate any precedence relationship indicated by the 

‘Dependency Matrix’. The concept of ‘Dependency Matrix’ is demonstrated with the aid of a 

popular DSP benchmark ‘Discrete Wavelet Transformation (DWT)’ as shown in Figure 2. The 
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role of ‘Dependency Matrix’ only comes into action when the scheduling of the DFG is to be 

performed. Thus the concept of ‘Dependency Matrix’ can be explained through the data flow 

graph of the DWT benchmark shown in Figure 2.  

 

The ‘Dependency Matrix’ is a matrix consisting of nodes of the DFG where any edge 

between the two nodes under test (‘i’ and ‘j’) is denoted by ‘1’, while any non-existence of edge 

between the two nodes under test (‘i’ and ‘j’ is denoted by ‘0’. Therefore, the dependency 

relationship for an example matrix can be defined as follows. Let a ‘Dependency Matrix’ M is 

defined as: 

 

Figure2. DFG of the Discrete Wavelet Transformation  
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Where ‘i’ is the row of the matrix ‘M’ and ‘j’ is the column of the matrix ‘M’. In the above 

matrix ‘M’ the dependency relation is defined as follows: 

a) Xij = 1; if there exists an edge between the two nodes under test (‘i’ and ‘j’). 

b) Xij = 0; if there exists no edge between the two nodes under test (‘i’ and ‘j’). 

c) Xij = Z ; if i = j (This means that only one node is under test). 

 

Where, Xij denotes any element of the matrix Mi × j ranging from aij to iij. Further, Xij can 

contain any intersect value ‘0’, ‘1’, or ‘Z’. From the previous general definitions on 

Figure3. The Dependency Matrix for the Discrete Wavelet Transformation 

Z 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 Z 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 Z 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 Z 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 Z 0 0 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 Z 0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 Z 0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 Z 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 Z 0 0 0 0 0 0 0 1 
0 1 0 0 0 1 0 0 0 Z 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 Z 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 Z 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 1 Z 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 Z 1 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 1 Z 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Z 1 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 Z 
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‘Dependency Matrix’, the ‘Dependency Matrix’ (M) for the discrete wavelet transformation 

benchmark is described above in Figure 3. Therefore as visible from the ‘dependency matrix’ in 

Figure 3, the matrix strictly follows the three rules enlisted before. The matrix consists of 17 

nodes (operations) from the DFG of DWT, where each element of the matrix (Xij) has been 

assigned an intersect value (0, 1 or Z).  Once the dependency matrix is formed then the 

information of data dependency is clearly visible. But the determination of the parent and child 

from the matrix is still not evident. Hence, an additional algorithm has been proposed to 

determine (indicate) the parent and child for the two nodes under test. For example, in Figure 3, 

the intersect value of element X16 = 1. So this means that the two nodes under test (node 1 and 

node 6) do have a parent child relationship. But still we don’t know who the parent is and who 

the child is (in other words, the parent and child is not yet indicated). Hence the determination of 

parent-child is not evident. Similarly, arguments apply for elements, X37, X59 etc. The algorithm 

in Figure 4 is proposed to find out the parent-child status. According to the algorithm if the 

intersect value is ‘0’ or ‘Z’ for the two nodes under test then the algorithm stops and does not 

need to determine the parent and child since there exists no parent-child relationship. But if the 

intersect value is ‘1’ then the algorithm goes to step 2, to determine the parent and child. For 

example, in case of element X16 (for node 1 and node 6 under test), the intersect value is ‘1’ 

signifying a parent-child relationship. Next according to step 2 of the algorithm, since the 1<6, 

hence node 1 is the parent and node 6 is the child. This conclusion is in compliance with the 

DFG in Figure 2. Hence, the dependency matrix and the algorithm in Figure 4 both provide a 

medium for precedence violation check during scheduling process. 
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Algorithm for Precedence Violation check and determination of Parent-Child status 

1. If the intersect value is ‘0’ between the two nodes under test (‘i’ and ‘j’) in the 

dependency matrix, then it indicates that no parent-child relationship exists between 

the two nodes.  

Next stop 

 

        Else if the intersect value is ‘1’ between the two nodes under test (‘i’ and ‘j’) in the 

dependency matrix then it signifies that a parent-child relationship exists.  

        Next Goto Step 2 

 

        Else if the intersect value is ‘Z’ in the dependency matrix for a same node under test  

(‘i’ = ‘j’) then it signifies that no parent-child relationship exists.  

        Next stop 

 

2. If  i < j (if the numerical value of node ‘i’ is less than the numerical value of node ‘j’), 

then i = Parent node and j = Child node 

        Else, i = Child node and j = Parent node.    

         

Figure4. Algorithm for Parent-Child Determination and Precedence violation check 
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Chapter 4  

Proposed Design Space Exploration Approach for 

Integrated Scheduling and Module Selection in High 

Level Synthesis 

4.1 Proposed Concept behind the Exploration Process 

The input to the proposed DSE approach is a data flow graph of the application along with the 

set of all the module library information’s. This consists of area, delay, and power consumption 

etc of the functional units. Once the DFG of the application is taken as an input then the As Soon 

As Possible (ASAP) scheduling is performed to schedule the operations in the least possible 

control step (CS). This is done in order to have an initial scheduling solution to the DFG 

problem. Although the initial solution obtained is not efficient in terms of hardware area usage 

but still ASAP algorithm is used as a preliminary method of finding the initial solution because 
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this algorithm schedules the operations in the earliest possible control step, thus providing an 

opportunity to the proposed approach to improve the quality of the scheduling solution by taking 

into account the power consumption rate and minimization of hardware area at minimal possible 

latency expenditure. The improvement in scheduling quality is obtained gradually in each 

iteration by selecting the high priority nodes using a selector metric called Priority Indicator (PI) 

which is a function of power fluctuation and cost of potentially movable resource. The short 

definition of power fluctuation is given in equation (1). The detailed explanation and application 

about equation (1) is given later in section 4.3. 

Power fluctuation = [Difference in total power consumption rate between control step 

T(j) and T(k) before movement of operation (oi)]  −  [Difference in total power 

consumption rate between control step T(j) into T(k) after movement of operation (oi)];  

Where power consumption rate: 
)(

)(

12

12

TT

PP

T

P

−

−
=

∆

∆
                                                                                                                                      (1)                                                      

 

Where initial power consumption (P1) is assumed to be zero watts because of no 

functional operation at initial time instant (T1=0) while P2 is the power consumed at any other 

time instant (T2); Assuming constant clock frequency for above equation described above; ‘P’ is 

the power consumption at constant clock frequency; T(j) and T(k) are the consecutive control 

steps in the ASAP scheduled graph. Equation (1) is described in details later in equation (2) and 

(3) in section 4.3. 

4.2 Proposed Framework of the Iterative Design Space Exploration Method 

 The Proposed framework for the design space exploration of scheduling and module 

selection is based on an iterative algorithm that takes into account the minimization of power 
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consumption rate of the resources and minimization of hardware area at the expense of least 

latency expenditure. The proposed approach is based on hill-climbing property where the inferior 

solutions obtained due to the bad moves is accepted hoping for a better solution. The resultant 

integrated solution obtained at the end through the proposed approach is a solution with 

minimum power consumption under ASAP constrained latency. The proposed approach accepts 

the DFG of the application as an input along with the set of module library information. Once the 

DFG is provided as an input, the approach first converts the DFG into an ASAP scheduling 

solution by always keeping a check on the precedence violation using the proposed dependency 

matrix and the algorithm in Figure4. The schedule solution along with the FU’s needed to 

implement the ASAP acts as the initial solution for the proposed design space exploration 

approach. The proposed exploration approach uses this initial solution to find out an 

optimal/near-optimal integrated solution while the objectives are simultaneously met. The 

approach works on an iterative manner like algorithms such as simulated annealing, genetic 

algorithm etc, trying to improve the quality of the solution produced.  According to the proposed 

approach, in each iteration only one operation (node) can be moved at a time into its next 

immediate control step as long as the dependency is obeyed. The selection of a particular 

operation (node) is chosen based on the value of ‘PI’. The ‘PI’ acts as a determining metric to 

choose the highest priority node (operation) among the existing available movable operations 

that can result in reducing the cost of the final solution. The PI proposed in this work is a 

function of power fluctuation and cost of a particular resource since the main objective is to 

reduce the power consumption rate of the resources and minimize the hardware cost. The 

overview of the proposed design space exploration approach is shown in Figure5. 



23 

 

 

Proposed Scheduling Approach using PI Method 

1. User specified module library with area, latency and power consumed per area unit is taken as 

an input. 

 

2. Data flow graph (DFG) of the application is taken as the input. 

 

3. ASAP scheduling will be performed for the data flow graph (Note: By keeping a check on the 

precedence violation of the nodes using the proposed dependency matrix and the dependency 

algorithm). Once the ASAP schedule is done then the cost of the initial solution is calculated. 

 

4. ASAP scheduling imposes a restriction on the number of control steps i.e. Latency constraint is 

imposed. Hence now the algorithm tries to improve the scheduling solution by minimizing the 

power fluctuation and hardware area. 

 

5. In each iteration, all the movable operations are identified and then the value of ‘Priority 

indicator (PI)’ is calculated for each movable operation (node). The ‘Priority indicator’ is 

function of power fluctuation and cost of each resource.  

 

6. The movable operation (node) with the highest ‘Priority indicator (PI)’value is selected for 

movement into its next immediate control step (Note: Before the node selected by the ‘PI’ is 

moved, precedence violation check is performed using dependency matrix and the dependency 

algorithm).  

 

� If there is a tie between the Priority indicator values then randomly any operation is chosen 

for movement. Once the new scheduling solution is found after the current iteration then the 

cost of the scheduling solution is again calculated. 

 

7. This above procedure is repeated till the terminating condition is reached (The terminating 

condition chosen is the maximum number of nodes in the DFG. i.e. # of iterations = # of nodes 

in the DFG). 

 

8. Finally, the integrated optimal/near-optimal solution with respect to hardware cost and power 

consumption is yielded. The solution indicates the optimal/near-optimal scheduling of the 

DFG and the optimal/near-optimal resource combination (FU’s) needed for allocation. 

 

(Note: The iteration which yielded the solution with the minimum cost among all 

iterations is chosen as the final optimal solution). 

 

 

Figure5. The overview of the proposed design space exploration approach 
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4.3 Proposed Priority indicator (PI) metric used for Selection of high priority 

nodes during movement 

Let us now elaborate the mathematical expression of power fluctuation defined before in 

section 4.1. The mathematical expression of power fluctuation as given from equation (1) before 

is explained in equation (2) and (3) respectively: 

Power Fluctuation = S before − S after                                          (2)     

Where, S before = Difference in power consumption rate before movement (CS (j), CS (k)) 

And, S After = Difference in power consumption rate after movement (CS (j), CS (k)). 

Therefore, from equation (2) above:  

Power Fluctuation (PF) = [Difference in power consumption rate before movement              

(CS (j), CS (k))] – [Difference in power consumption rate after movement (CS (j), CS (k))]                                               

Equation (2) above can be further expanded into equation (3) as shown below: 

PF = [Power consumption rate at CS (j) - Power consumption rate at CS (k)] –  

[{Power consumption rate at CS (j) – Power consumption rate for opn (i)} – {Power          

consumption rate at CS (k) + Power consumption rate for opn (i)}]                           (3) 

 

Where, CS (j) and CS (k) are the two immediate control steps in the temporary scheduling 

solution, opn (i) is the operation selected for movement through the Priority indicator (PI) metric.  

The metric above called ‘power fluctuation’ defined in equation (2) and (3) will be used in a 

function described later in equation (4) for selection of the highest priority node for movement 

during optimization (design space exploration). Power fluctuation defined above takes into 

account the change in power consumption rate when a certain operation is moved from one 

control step to another. The reduction in power consumption that can be achieved by the 
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proposed DSE is possible owing to balance in distribution of resources in the scheduling solution 

after the application of the proposed approach (which thereby helps in reducing the power 

consumption rate). Thus the balance in number of functional units can be obtained by decreasing 

the number of functional units in the control step where the power consumption rate is maximal. 

The concept above has been illustrated in the following chapters 5 and 6 where case studies of 

Discrete Wavelet Transformation (DWT) and Finite Impulse Response (FIR) benchmarks have 

been shown to demonstrate the proposed DSE approach.  

Let us now introduce the proposed ‘Priority indicator (PI)’ metric used for selection of 

high priority nodes during movement. The proposed ‘Priority indicator’ is shown in equation (4) 

below: 

)]([*)](),([_ iOpnCostk
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P
j
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MaxnfluctuatioPowerPI

∆
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∆
∗=                           (4)                                                  

Where ‘Cost [opn (i)]’ is obtained from the module library, power fluctuation is obtained from 

equation (3) and ‘Max [∆P/∆T (j), ∆P/∆T (k)]’ signifies the maximum of the power consumption 

rate between CS (j) and CS (k). 
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Chapter 5 

 Demonstration of Proposed DSE Approach  

5.1 Case Study of Discrete Wavelet Transformation (DWT) Benchmark  

This section illustrates the proposed integrated design space exploration framework described 

above with an example of discrete wavelet transformation benchmark. Application of the 

proposed DSE on DWT benchmark yielded impressive final results in terms of reduced power 

consumption (hence hardware area) under latency constraint. The final runtime taken to find the 

final global solution is also very less compared to other heuristic based approaches.  

The Data Flow Graph of the DWT benchmark is shown in Figure 2 before and the As Soon 

As Possible (ASAP) scheduling of DWT is shown in Figure 6. This ASAP scheduling solution 

found acts as an initial solution for the proposed approach as mentioned in Figure 5. The latency 

of the ASAP scheduling solution calculated is 28 clock cycles (Note: assuming that 

adder/subtractor and multiplier takes 2clock cycles (cc) and 4 cc respectively as specified in the 
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module library). Hence ASAP scheduling imposes a latency constraint on the final solution that 

has to be found by the proposed approach. The cost of each schedule solution found is calculated 

using equation (5): 

 

Cost ini = {(Nmul * Amul) + (Nadd/sub * Aadd/sub)} * pc                                                                    (5) 

  

Where Nmul and Nadd/sub are the number of multipliers and adder/subtractors respectively present 

in the scheduling solution. Amul and Aadd/sub is the area occupied by a multiplier and an 

adder/subtractor respectively and pc is the power consumed per area unit at a particular 

frequency of operation. 
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Figure6. ASAP scheduling of DWT benchmark 
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Therefore using equation (5) as mentioned before, the cost of initial ASAP schedule 

solution (of figure 6) is: 

 Cost ini = {(5 * 100) + (4 * 20)} * 1 = 0.58 Watts.  

(Note: assuming multiplier and adder/subtractor occupies 100 CLB’s and 20 CLB’s 

respectively; where 1 area unit (au) = 1 CLB has been assumed; Power consumed per au (pc) at 

24 MHz clock frequency is 1 milli-watt. The costs of multiplier and adder/subtractor have been 

assumed to be 5 units and 3 units respectively.) 

   

5.2 Description of the Iteration Process 

 After determining the cost of initial ASAP schedule solution as illustrated in section 5.1 

before, the next step of the algorithm (as proposed in Figure 5) is to identify all the movable 

candidate operations. Once the movable operations (opn) are identified then the iteration process 

begins to improve the initial scheduling solution. The iteration process is described below: 

     Iteration (1): 

i) Movement – opn 2 (1→2)                                                                                                 (a) 

ii) Movement – opn 7 (2→3)                                                                                                 (b) 

iii) Movement – opn 8 (2→3)                                                                                                 (c) 

iv) Movement – opn 9 (2→3)                                                                                                 (d) 

For example equation (a) above signifies that opn 2 is one of the identified movable 

operations that can be moved from Control Step (CS) 1 to CS 2. Now the ‘PI’ for each identified 

movable operation is calculated using equation (4). But before the ‘PI’ is calculated, the ‘power 

fluctuation’ is determined as follows using equation (3): 

 



29 

 

Power fluctuation = [Power consumption rate at CS (j) - Power consumption rate at CS (k)]  

– [{Power consumption rate at CS (j) – Power consumption rate for opn (i)} – {Power 

consumption rate at CS (k) + Power consumption rate for opn (i)}] 

As shown in Figure 6, power consumption rate for adder is (20au * 1mW)/2cc = 10, while for 

multiplier is (100au * 1mW)/4cc = 25. (Note: From [1] [2], total power consumption of resource 

(Ri) is: PRi= ARi * pc , where ARi is the area of Ri. Power consumed per au (pc) at 24 MHz clock 

frequency is 1 milli-watt. Further, the production costs of multiplier and adder/subtractor have 

been assumed to be 5 units and 3 units respectively.) 

Before substituting in equation (4), the power fluctuation for the first case a) between CS (j) and 

CS (k) is calculated from Figure 6 using equation (3) as follows: 

= [(25 + 25 + 25 + 25 +25) – (10 + 10 + 10 + 10)] – [(25 + 25 + 25 + 25) – (10 + 10 + 10 + 10 + 

25)] 

= [125 – 40] – [100 – 65] = 50. 

Now the value for ‘Power Fluctuation’ calculated above is substituted in equation (4) as shown 

below: 
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a) PI 
opn 2 

(1→2) = 50 * Max (125, 40) * 5 = 31,250 (selected). 

Similarly, calculating the ‘Power Fluctuation’ for each case and then finding the Priority 

Indicator yields: 

b) PI 
opn 7 

(2→3) = 20 * Max (40, 10) * 3    = 2400. 

c) PI 
opn 8 

(2→3) = 20 * Max (40, 10) * 3    = 2400. 

d) PI 
opn 2 

(1→2) =20 * Max (40, 10) * 3    = 2400. 
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According to the next step of the algorithm, the highest PI is selected for movement; which is a) 

in this case. The respective scheduling solution found after iteration 1 is shown in Figure 7.  The 

cost of the scheduling solution is:   

Cost = {(4 * 100) + (4 * 20)} * 1 = 0.48 Watts.  

Thus we see that the cost in terms of power consumption reduces from the initial solution. 

 

Iteration (2): 

i) Movement – opn 7 (2→3)                                                                                                (a) 

ii) Movement – opn 8 (2→3)                                                                                                (b) 

iii) Movement – opn 9 (2→3)                                                                                                (c) 
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Figure7. Scheduling of DWT benchmark after 1
st
 Iteration 
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Therefore the PI obtained for each operation is:  

a) PI 
opn 7 

(2→3) = 3900 (selected). 

b) PI 
opn 8 

(2→3) = 3900. 

c) PI 
opn 9 

(2→3) = 3900. 

Since there is a tie between the PI values hence the tie is randomly broken as per the algorithm in 

Figure 5. Thus operation 7 is chosen randomly for movement. The respective temporary 

scheduling solution found after iteration 2 is shown in Figure 8. The cost of this solution is:  

Cost = {(4 * 100) + (3 * 20)} * 1 = 0.46 Watts. 

 Again after this iteration a reduction in power consumption is noted.  
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Figure8. Scheduling solution of DWT benchmark after 2
nd

 Iteration 
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Iteration (3): 

i) Movement – opn 3 (1→2)                                                                                     (a) 

ii) Movement – opn 8 (2→3)                                                                                     (b) 

iii) Movement – opn 7 (3→4)                                                                                     (c) 

iv) Movement – opn 9 (2→3)                                                                                     (d) 

Therefore the PI obtained for each operation is:  

a) PI 
opn 3 

(1→2) = 25000 (selected). 

b) PI 
opn 8 

(2→3) = 3300. 

c) PI 
opn 7 

(3→4) = 1500. 

d) PI 
opn 9 

(2→3) = 3300. 

According to the algorithm, the highest PI is selected for movement which is a) in this case. The 

respective scheduling solution found after iteration 3 is shown in Figure 9.  
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Figure9. Scheduling solution of DWT benchmark after 3
rd

 Iteration 
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The cost of this respective scheduling solution is: 

Cost = {(3 * 100) + (3 * 20)} * 1 = 0.36 Watts.  

Again after this iteration a reduction in power consumption is noted compared to the 

previous scheduling solution. 

 

Iteration (4): 

i) Movement – opn 7 (3→4)                                                                                          (a) 

ii) Movement – opn 8 (2→3)                                                                                          (b) 

iii) Movement – opn 9 (2→3)                                                                                          (c) 

Therefore the PI obtained for each operation is:  

a) PI 
opn 7 

(3→4) = 20 * Max (20, 25) * 3   = 1500. 

b) PI 
opn 8 

(2→3) = 20 * Max (80, 20) * 3   = 4800 (selected). 

c) PI 
opn 9 

(2→3) = 20 * Max (80, 20) * 3   = 4800. 

Where, the calculated value of ‘power fluctuation’ is 20 in all the above cases. 

According to the algorithm, the highest PI is selected for movement which is b) in this case. The 

respective scheduling solution found after iteration 4 is shown in Figure 10. The cost of this 

respective scheduling solution is: 

Cost = {(3 * 100) + (3 * 20)} * 1 = 0.36 Watts.  

No reduction in power consumption is noted in this scheduling solution. Since the algorithm will 

not be terminated until # of iterations = # of nodes in the DFG, hence any local optimal solution 

found will not restrict the algorithm from stopping.  
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Iteration (5): 

i) Movement – opn 4 (1→2)                                                                                     (a) 

ii) Movement – opn 8 (3→4)                                                                                     (b) 

iii) Movement – opn 9 (2→3)                                                                                     (c) 

iv) Movement – opn 7 (3→4)                                                                                     (d) 

Therefore the PI obtained for each operation is:  

a) PI 
opn 4 

(1→2) = 18750 (selected). 

b) PI 
opn 8 

(3→4) = 1800.  

c) PI 
opn 9 

(2→3) = 4200. 

8 
+ 

* 3 

7 + 

2 

Figure10. Scheduling solution of DWT benchmark after 4
th
 Iteration 
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d) PI 
opn 7 

(3→4) = 1800. 

According to the algorithm, the highest PI is selected for movement which is a) in this case. The 

cost of this respective scheduling solution is:  

  Cost = {(3 * 100) + (3 * 20)} * 1 = 0.36 Watts.  

Again no reduction in power consumption is noted in this scheduling solution. Since the 

algorithm will not be terminated until # of iterations = # of nodes in the DFG, hence the local 

optimal solution found does not restrict the algorithm from stopping. This above iteration 

continues until the algorithm reaches iteration 17 (Since the maximum number of nodes present 

in this DFG is 17). Finally the algorithm yields the solution with the minimum final cost in these 

17 iterations. Experiment revealed that iteration 11 yielded the scheduling solution with the 

minimum cost. The iteration 11 is described below: 

 

Iteration (11): 

i) Movement – opn 4 (2→3)                                                                                     (a) 

ii) Movement – opn 8 (4→5)                                                                                     (b) 

iii) Movement – opn 9 (3→4)                                                                                     (c) 

iv) Movement – opn 7 (4→5)                                                                                     (d) 

Therefore the PI obtained for each operation is:  

a) PI 
opn 4 

(2→3) = 21250 (selected). 

b) PI 
opn 8 

(4→5) = 2700.  

c) PI 
opn 9 

(3→4) = 2700. 

d) PI 
opn 7 

(4→5) = 2700. 
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According to the algorithm, the highest PI is selected for movement which is a) in this case. The 

respective scheduling solution found after iteration 11 is shown in Figure 11. 

 

The cost of this respective scheduling solution is: 

Cost = {(2 * 100) + (2 * 20)} * 1 = 0.24 watts.  

Hence iteration 11 found the optimal solution to the scheduling problem. The final reduction in 

cost in terms of power consumption obtained compared to the initial solution (in Figure 6) is 

0.58 Watts – 0.24 Watts = 0.34 Watts. 
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Figure11. Scheduling solution of DWT benchmark after 11
th
 Iteration 
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Chapter 6  

Demonstration of the Proposed Exploration by 

Considering Resource Binding (Interconnect Units) 

6.1 Case Study of Finite Impulse Response (FIR) Benchmark  

This section illustrates the proposed integrated design space exploration framework with an 

example of finite impulse response benchmark. Application of the proposed DSE on FIR 

benchmark yielded impressive final results in terms of reduced power consumption (hence 

hardware area) under maximum latency constraint. The final runtime taken to find the final 

global solution is also very less compared to other heuristic based approaches.   
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The DFG of the FIR benchmark is shown in Figure 12 and the ASAP scheduling of FIR is 

shown in Figure 13. This ASAP scheduling solution found acts as an initial solution for the 

proposed approach as mentioned in Figure 5. The latency of the ASAP scheduling solution 

calculated is 20 clock cycles (Note: assuming that adder/subtractor and multiplier takes 2 clock 

cycles (cc) and 4 cc respectively as specified in the module library). Hence ASAP scheduling 

imposes a latency constraint on the final solution that has to be found by the proposed approach. 

The cost (power consumption) of the each schedule solution found is calculated using equation 

(6) from [1] [3] [22]: 

Power consumption (Cost ini) = {(Nmul * Amul) + (Nadd/sub * Aadd/sub) + (Nmux * Amux) + (Ndemux *        

Ademux) + ( Nreg * Areg )} * pc                                                    (6)                                                                    

                                                                                          

Where, Nmul and Nadd/sub are the maximum number of multipliers and adder/subtractors needed 

for implementing the scheduling solution respectively. Amul and Aadd/sub are the area occupied by 

Figure12. DFG of the Finite Impulse Response (FIR) benchmark 
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multipliers and adder/subtractors respectively. Further Nmux, Ndemux and Nreg are the number of 

multiplexers, demultiplexers and registers needed respectively, while Amux , Ademux and Areg are 

the area of each multiplexer, demultiplexer and register in area units (au) respectively; ‘pc’ is the 

power consumed per area unit at a particular frequency of operation. 

Therefore using equation (6), the cost of initial ASAP schedule solution (of figure 13) is Cost 

ini = {(8 * 100) + (8 * 20) + (32 * 3) + (16 * 3) + (23 * 5)}* 4 = 4.87 Watts. (Note: assuming 

multiplier and adder/subtractor occupies 100 au and 20 au respectively; also assuming each 

mux/demux is 3 au and each register is 5 au respectively; Power consumed per au (pc) at 50 

MHz clock frequency is 4 milli-watt. Further, the production costs of multiplier and 

adder/subtractor have been assumed to be 5 units and 3 units respectively.) 

Now according to the next step of the algorithm proposed in Figure 5, all the movable 

∆P/ ∆T = 400mW/4cc = 

100 

∆P/ ∆T = 80mW/2cc = 

40 

∆P/ ∆T = 80mW/2cc = 

40 

Figure13. ASAP scheduling for FIR benchmark 
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candidate operations are now identified for movement. Once the movable operations are 

identified then the iteration process begins to improve the initial scheduling solution. The 

iteration process is described below: 

Iteration (1): 

i) Movement – opn 11 (2→3)                                                                                               (a) 

ii) Movement – opn 12 (2→3)                                                                                              (b) 

iii) Movement – opn 13 (2→3)                                                                                              (c) 

iv) Movement – opn 14 (2→3)                                                                                             (d) 

v) Movement – opn 15 (2→3)                                                                                             (e) 

vi) Movement – opn 16 (2→3)                                                                                             (f) 

 

For example in equation (a) above signifies that opn 11 is one of the identified movable 

operations that can be moved from CS 2 into next CS 3. Now the Priority indicator (PI) for each 

identified movable operation is calculated using equation (4). But before the PI is calculated, the 

‘power fluctuation’ is determined as follows using equation (3): 

Power fluctuation = [Power consumption rate at CS (j) - Power consumption rate at CS (k)]  

– [{Power consumption rate at CS (j) – Power consumption rate for opn (i)} – {Power 

consumption rate at CS (k) + Power consumption rate for opn (i)}] 

As shown in Figure 13, power consumption rate for adder is (20au * 4mW)/2cc = 40, while for 

multiplier is (100au * 4mW)/4cc = 100. (Note: From [1][2], total power consumption of resource 

(Ri) is: PRi= ARi * pc ,where ARi is the area of Ri).  
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Before substituting in equation (4), from Figure 13, the power fluctuation between CS (j) and CS 

(k) for the first case a) is calculated as follows: 

= [(400/4 +400/4 + 400/4 + 400/4 +400/4 +400/4 +400/4 + 400/4) – (80/2)] – [(400/4 + 400/4 + 

400/4 + 400/4 + 400/4 + 400/4 + 400/4) – (80/2 + 400/4)] 

= [800 – 40] – [700 – 140] = 200. 

Now substituting the value for ‘Power Fluctuation’ calculated above in equation (4) yields: 

 PI 
opn 11 

(2→3) = 200 * Max (800, 40) * 5 = 800000 (selected). 

Similarly, calculating the ‘Power Fluctuation’ for each case and then finding the Priority 

indicator (PI) yields: 

b)  PI 
opn 12 

(2→3) = 200 * Max (800, 40) * 5    =800000. 

c) PI 
opn 13 

(2→3) = 200 * Max (800, 40) * 5    =800000. 

d) PI
 opn 14 

(2→3) = 200 * Max (800, 40) * 5    =800000. 

e) PI 
opn 15 

(2→3) = 200 * Max (800, 40) * 5    =800000. 

f) PI 
opn 14 

(2→3) = 200 * Max (800, 40) * 5    =800000. 

Since there is a tie between the ‘PI’ hence the tie is randomly broken as per the algorithm in 

Figure 5. The respective scheduling solution found after iteration 1 is shown in Figure 14.  The 

cost of the scheduling solution is {(7 * 100) + (8 * 20) + (30 * 3) + (15 *3) + (23 * 5)} * 4 = 4.44 

Watts. Thus we see that the cost in terms of power consumption reduces from the initial solution. 

Iteration (2): 

i) Movement – opn   3 (1→2)                                                                                                    (a) 

ii) Movement – opn 12 (2→3)                                                                                                   (b) 

iii) Movement – opn 13 (2→3)                                                                                                  (c) 
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iv) Movement – opn 14 (2→3)                                                                                                 (d) 

v) Movement – opn 15 (2→3)                                                                                                  (e) 

vi) Movement – opn 16 (2→3)                                                                                                 (f) 

Therefore the PI obtained for each operation is:  

a) PI 
opn 3 

(1→2) = 168000. 

b) PI 
opn 12 

(2→3) = 700000 (selected). 

c) PI 
opn 13 

(2→3) =700000. 

d) PI 
opn 14

(2→3) =700000. 

* 11 

Figure14. Scheduling solution of FIR after 1
st
 Iteration  
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e) PI 
opn 15 

(2→3) =700000. 

f) PI 
opn 16 

(2→3) =700000. 

Since there is a tie again between the ‘PI’ of cases b), c), d), e) and f) hence the tie is randomly 

broken as per the algorithm in Figure 5. Thus operation 12 is chosen randomly for movement. 

The respective temporary scheduling solution found after iteration 2 is shown in Figure 15. The 

cost of this solution is {(6 * 100) + (8 * 20) + (28 * 3) + (14 * 3) + (24 * 5)} * 4 = 4.024 Watts. 

Again after this iteration a reduction in power consumption is noted.  

Iteration (3): 

i) Movement – opn 3 (1→2)                                                                                                      (a) 

* 12 * 11 

Figure15. Scheduling solution of FIR benchmark after 2
nd

 Iteration  
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ii) Movement – opn 4 (1→2)                                                                                                  (b) 

iii) Movement – opn 12 (3→4)                                                                                               (c) 

iv) Movement – opn 13 (2→3)                                                                                               (d) 

v) Movement – opn 14 (2→3)                                                                                                (e) 

vi) Movement – opn 15 (2→3)                                                                                               (f) 

vii) Movement – opn 16 (2→3)                                                                                              (g) 

Therefore the PI obtained for each operation is: 

 a) PI 
opn 3 

(1→2) = 144000. 

b) PI 
opn 4 

(1→2) = 144000. 

c) PI 
opn 12 

(3→4) = 240000. 

d) PI 
opn 13 

(2→3) = 600000 (selected). 

e) PI 
opn 14 

(2→3) =600000. 

e) PI 
opn 15 

(2→3) =600000. 

g) PI 
opn 16 

(2→3) =600000. 

 

According to the algorithm, the highest ‘PI’ is selected for movement is d). The cost of this 

respective scheduling solution is {(5 * 100) + (8 * 20) + (26 * 3) + (13 * 3) + (25 * 5)} * 4 = 

3.60 Watts. Again after this iteration a reduction in power consumption is noted compared to the 

previous scheduling solution. Since the algorithm will not be terminated until # of iterations = # 

of nodes in the DFG, hence the local optimal solution found does not restrict the algorithm from 

stopping. This above iteration continues until the algorithm reaches iteration 24 (Since the 

maximum number of nodes present in this DFG is 24). 
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Iteration (24): 

i) Movement – opn 4 (2→3)                                                                                                  (a) 

ii) Movement – opn 5 (1→2)                                                                                                 (b) 

iii) Movement – opn 6 (1→2)                                                                                                (c) 

iv) Movement – opn 7 (1→2)                                                                                                (d) 

v) Movement – opn 8 (1→2)                                                                                                 (e) 

Therefore the ‘PI’ obtained for each operation is:  

a) PI 
opn 4 

(2→3) = 67200. 

b) PI
 opn 5 

(1→2) = 67200(selected).  

* 

+ 

15 

* 13 

* 12 

* 11 

Figure16. Scheduling solution of FIR benchmark after 24
th
 Iteration 
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c) PI 
opn 6 

(1→2) = 67200. 

d) PI 
opn 7 

(1→2) = 67200. 

e) PI 
opn 8 

(1→2) = 67200. 

According to the algorithm, randomly operation 5 is selected for movement as shown below in 

Figure 16. The respective scheduling solution found after iteration 24 is shown in Figure 16. The 

cost of this respective scheduling solution is {(2 * 100) + (5 * 20) + (14 * 3) + (7 * 3) + (22 * 5)} 

* 4 = 1.89 watts. Hence iteration 24 found the local optimal solution to the scheduling problem. 

The final reduction in cost in terms of power consumption obtained compared to the initial 

solution (in Figure 5) is 4.87 Watts – 1.89 Watts = 2.98 Watts (Since according to the algorithm, 

the iteration continues until the iteration # = maximum node #, hence the iteration continues  till 

iteration 24 to eventually find an optimal solution).  
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Chapter 7  

Experimental Results for the Benchmarks 

7.1 Implementation Details 

A number of well known standard high level synthesis benchmarks were drawn from the 

literature for verification and comparison. The benchmarks adopted were IIR Chebyshev Digital 

Filter, Finite Impulse Response (FIR) [17], Discrete Wavelet Transformation (DWT) [17] [21], 

IIR Digital Butterworth filter, MPEG Motion Vectors (MMV) [17] and Band Pass Filter (BPF) 

[17]. The parameters for test chosen for the experiment were a) latency of the final scheduling 

solution (in clock cycles), b) the final allocated resource combination (FU’s, mux, demux and 

registers) found, c) the cost of the final solution found in terms of power consumption, d) power 

reduction achieved and e) the runtime of the whole scheduling process.  

The proposed integrated design space exploration approach has been implemented in C 

language and run on AMD Athlon 64 Processor with 3GB RAM with processor frequency 1.6 
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GHz. Previous approaches [6], [7], [8], [9], [13], [14] are all based on Genetic Algorithm (GA) 

which has exponential time complexity unlike the proposed approach. Approach [6] has already 

proved to be superior to other GA based approaches in terms of speed and quality. Hence [6] was 

selected for comparison with proposed approach. In order to perform a qualitative assessment of 

the proposed approach, the proposed approach has been compared with a GA based approach 

[6]. Moreover, the GA based approach [6] chosen from the literature for comparison is a well 

known design space exploration approach for scheduling and module selection. By using the 

exact parameters (such as terminating condition, user specified choice of constraints, genetic 

operators etc) as mentioned in [6], the proposed approach was compared. The user preference 

weight of each constraint for the DSE approach [6] was kept at 0.5 during the experiment, 

signifying that both the constraints (power consumption and latency) were given equal priority.  

In the comparison of the proposed approach with [6], the parameters of comparison chosen were:  

a) The quality of the final solution found measured in terms of Quality Cost Factor (Q-metric). 

Q-metric is a metric which determines the quality of final solution found by both approaches. 

The metric is a combination of latency and power consumption of the scheduling solution which 

is given by equation (7) below: 

maxmax

21
P

P
W

L

L
WmetricQ ⋅+⋅=−                                                                                                (7) 

Where, W1 and W2 are the weightage of the operating constraints for latency and power 

consumption (Note: 0<=W1<=1 and 0<=W2<=1). In our experiment, W1 = W2 = 0.5 has been 

kept, since equal priority was given to both latency of the final solution and the power 

consumption of the scheduling solution. ‘L’ and ‘P’ are the latency and power consumption of 

the solution found respectively. ‘Lmax’ and ‘Pmax’ are the values of maximum latency (found by 
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using minimum FU’s) and maximum power consumption (using maximum FU’s) respectively. 

Equation (7) has been divided with maximum values of latency and power respectively in order 

to obtain normalized values for each.  

The value of total power consumption (P) is calculated using equation (8) from current 

literature [1, 3, 22, 23, 24, 25, 26, 27, 28] as shown below: 

cpRAP ⋅= ∑ )(                                                                                                                           (8) 

Where pc’ is the power consumed per au at a particular frequency of operation; ‘A(R)’ is the area 

of the hardware resources including FU’s (ARi), mux (Amux), demux (Ademux) and registers (Areg) 

and is calculated as shown in equation (9): 

regdemuxmuxRi AAAARA +++=)(                                                                                                    (9) 

   Where ARi = NRi. KRi ; Where NRi represents the number of resource ‘Ri’ and ‘KRi’ represents 

the area occupied per unit resource Ri. 

b) The actual runtime taken by both the scheduling approaches. The speed of the scheduling 

process was chosen as a parameter for comparison because in this current generation of 

Electronic Design Automation (EDA), reducing the design time helps in rapid marketing of the 

final end user product. The above metric was proposed for comparison since the quality of a 

solution cannot be solely determined from the latency expenditure or the power consumption, but 

rather a combination of both together.  

7.2 Results of the proposed approach on DSP benchmarks 

The discussion of the results obtained through the proposed approach is shown in Table I. The 

complexity of the design (benchmarks tested) has been taken into account with respect to the size 

of the application (no: of nodes). Wires and busses have not been considered in the proposed 
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approach, although interconnect units and storage elements besides FU have been considered. 

The optimization (minimization) obtained for the final resource combination (in terms of FU’s, 

mux, demux and registers) as noted from the results for all DSP benchmarks such as DWT, BPF, 

FIR, Digital Butterworth filter, Chebyshev filter and  MPEG are definitely noteworthy. For 

example, in case of DWT benchmark, the final resource combination found is 2(*), 2(+), 8 

Table I. Experimental Results of the Proposed DSE approach for the DSP Benchmarks  

DSP Benchmarks 
[29] [30] 

Experimental Parameters  
(Note: cc = clock cycles)  

Resource combinations  

(Functional 

Units/Mux/Demux/ 

Registers) 

Latency 

(cc) 
Initial Cost 

 in terms of 

Power 

consumption 

(using eqn. 6)  

Final Cost 

through 

proposed PI 

method 

(Power 

consumption) 

% Reduction in 

Power 

consumption  

(cost reduction) 

through 

proposed PI 

method 

Runtime 

of 

proposed 

PI 

method 

(secs) 
Initial 

Solution 

Proposed 

PI method 

Proposed 

PI 

method 

Discrete Wavelet 

Transformation 

 (DWT) 

5(*), 4(+) 2(*), 2(+) 

28 cc 2.94 Watts 1.38 Watts 53.06 % 3.18 secs 
18 (mux),  

9 (demux),  

15 

(registers) 

8 (mux), 

4(demux),  

14 

(registers) 

Band Pass Filter  

(BPF) 

4(*), 3(+/-) 2(*), 3(+/-) 

26 cc 2.49 Watts 1.60 Watts 35.74 % 1.38 secs 
14 (mux),  

7 (demux), 

20 

(registers) 

10 (mux), 

5(demux),  

19 

(registers) 

Finite Impulse Response 

(FIR) 

8(*), 8(+) 2(*), 5(+)  

20 cc 4.87 Watts 1.89 Watts 61.19 % 5.63 secs 

32 (mux), 

 16 

(demux), 

23 

(registers) 

14 (mux), 

7(demux),  

22 

(registers) 

IIR Digital Butterworth 

Filter 

5(*), 1(+/-) 2(*), 1(+/-) 

12 cc 2.57 Watts 1.20 Watts 53.30 % 2.08 secs 
12 (mux),  

6 (demux), 

14 

(registers) 

6 (mux),  

3 (demux), 

11 

(registers) 

IIR Digital Chebyshev 

Filter 

5(*), 2(+) 3(*), 2(+) 

8 cc 2.60 Watts 1.86 Watts 28.46 % 1.56 secs 
14(mux),  

7 (demux), 

16 

(registers) 

10 (mux),  

5 (demux), 

16 

(registers) 

MPEG Motion Vectors  

(MMV) 

14(*), 5(+) 5(*), 5(+) 

10 cc 7.52 Watts 3.42 Watts 54.52 % 1.95 secs 

38(mux),  

19 

(demux), 

42 

(registers) 

20(mux),  

10 

(demux), 

33 

(registers) 
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(mux), 4(demux) and 14 (register) compared to initial resource combination 5(*), 4(+), 18 (mux), 

9(demux) and 15(register). Further, a drastic reduction in final cost (in terms of power 

consumption) is obtained through the proposed approach as reflected in Table I. Significant 

reduction in final cost of as high as 61.19 % and 54.52 % were noted for FIR and MPEG 

benchmarks respectively. For others benchmarks such as DWT, IIR Butterworth filter and BPF 

the proposed DSE also yielded significant minimization in final cost in terms of power 

consumption.  

7.3 Results and Analysis of the comparison with recent Exploration approach 

The implementation runtime of the proposed design space exploration and its comparison with a 

recent DSE approach [6] is illustrated in Table II. Table II also reflects the comparison of the 

final solution found by both the approaches. Since performing ASAP scheduling first as an initial 

schedule solution imposes a latency restriction on the final solution, hence it becomes very 

mandatory for the proposed DSE approach to arrive at the final solution keeping the latency 

constraint under consideration.  Similarly, the GA based approach [6] was kept under exact same 

latency constraint limitation with maximum limitation on FU’s, during the comparative analysis. 

Maximum limitation (minimum area) constraint has been imposed on [6] along with the same 

latency constraint (determined from ASAP schedule) as the proposed approach because the 

objective of the proposed approach is to find the final solution with minimum area overhead (or 

power consumption) under ASAP determined latency constraint. Therefore, for the sake of 

performing a qualitative estimation of the proposed DSE approach, two major parameters of 

comparison viz. a) Q-metric and b) runtime were chosen. Q-metric provides a comprehensive 

measurement of the quality of the final solution found (Note: Q-metric is measured in terms of 
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latency and power consumption of the hardware resources for the final solution) while runtime 

provides a solid summary of the speed of the exploration process.  

Table II also highlights the percentage improvement in the quality of the final solution 

found by the proposed approach and the percentage reduction in runtime obtained by the 

proposed approach. For example, in case of small benchmark such as IIR digital Butterworth 

filter the improvement obtained in the quality of final solution by the proposed approach 

compared to [6] is 14.28 %. Furthermore for medium complexity benchmarks such as DWT and 

FIR, the improvement in the quality of final solution achieved is 9.03 % and 14.73 % 

respectively. Moreover, for high complexity benchmarks such as BPF and MPEG, the 

improvement in the quality of final solution achieved compared to [6] is 10 % and 14.28 % 

respectively. The results obtained indicated that the proposed approach has been capable to find 

better quality solutions for all benchmarks as compared to [6]. Thus application of proposed DSE 

Table II. Results of comparison between proposed approach and [6] for DSP Benchmarks  

DSP Benchmarks 

[29][30] 

Experimental Parameters for Comparison 

Quality Cost Factor  

(Q-metric) 
% 

Improvement 

in quality of 

final solution 

%Average 

Improvement 

of quality  

final solution 

Runtime (seconds) % 

Reduction 

in Runtime 

using 

 PI method 

% Average 

reduction 

in runtime 

obtained [6] 
Proposed 

PI method 
[6] 

Proposed 

PI 

method 

Discrete Wavelet 

Transformation 

 (DWT) 

0.64 0.58 9.03 % 

11.62 % 

7.53 secs 3.18 secs 57.76 % 

59.10 % 

Band Pass Filter  

(BPF) 
0.60 0.54 10.00 % 13.96 secs 1.38 secs 90.11 % 

Finite Impulse 

Response (FIR) 
0.48 0.41 14.73 % 11.04 secs 5.63 secs 49 % 

IIR Digital 

Butterworth Filter 
0.56 0.48 14.28 % 3.04 secs 2.08 secs 31.57 % 

IIR Digital 

Chebyshev Filter 
0.58 0.53 7.41 % 2.69 secs 1.56 secs 42 % 

MPEG Motion 

Vectors  

(MMV) 

0.35 0.30 14.28 % 12.32 secs 1.95 secs 84.17 % 
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on DSP benchmarks has lead to an average percentage improvement of 11.62 % in quality of 

final solution compared to [6], which is quite significant. A comparison of the effective time 

taken to explore the optimal/near-optimal solution has been performed with the help of 

implementation runtime for both the DSE approaches. As revealed in Table II, for all 

benchmarks such as DWT, BPF, FIR, MPEG and IIR digital filter, the reduction in runtime has 

been imposing. The average reduction in runtime for all benchmarks is around 60 % as shown in 

Table II. Therefore it can be clearly seen that the proposed DSE has been capable to find better 

quality solutions for all benchmarks at the expense of approximately half runtime as [6]. In 

particular, for benchmarks such as BPF and MPEG, the reduction in runtime obtained is 90.11 % 

and 84.17 % respectively, which is definitely notable. Similarly for IIR digital filter and FIR 

benchmarks the reduction obtained is also significant ranging from 42 % to 49 % respectively. 

Hence, in both the proportions of comparative analysis a) quality of final solution and b) 

exploration runtime, the proposed approach has been able to perform better compared to 

scheduling approach [6].  

In Figure 17, the variation of reduction in runtime and the improvement in quality of final 

solution obtained compared to [6] with the complexity of the benchmarks is shown. As clearly 

visible from Figure 17, a general increase in trendline in the percentage improvement of the 

quality of final solution with the increase in complexity of the benchmarks can be noted.  In 

particular for medium and largely complex benchmarks such as FIR and MPEG, the value of 

improvement obtained in final quality of solution is seen to be quite significant. Furthermore, as 

seen in Figure 18, a general increase in trendline in the percentage reduction of runtime with 

increase in complexity of benchmarks can be noted. For complex benchmarks such as BPF and 

MPEG, the reduction in exploration runtime is seen to be significantly large, which proves that 
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the proposed DSE also has good scalability property. The % improvement in quality of final 
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Figure17. A general increase in trendline in the % improvement of quality of final solution with increase 

in complexity of the benchmarks 
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Figure18. A general increase in trendline in the percentage reduction of runtime with increase in 

complexity of benchmarks 
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solution and reduction in implementation runtime for the proposed approach compared to [6] is 

therefore seen to be equally improved for small, medium and large complexity benchmarks. 

Moreover a careful observation in Figure 17 and Figure 18 also reveals that for medium and high 

complexity benchmarks such as FIR, BPF and MPEG, the proposed approach is seen to perform 

better both in terms of providing better quality solution (an average improvement over 10 %) and 

reducing the time taken (an average reduction over 50 %) to yield the final optimal solution. As 

verified through the results obtained the proposed approach handles small, medium and large 

size applications in short runtime which dictates the ability of the proposed approach to handle 

growing size of the problem in a reasonable time. For example, small size and less complex 

benchmark such as IIR Digital filter the quality improvement and runtime reduction was 10 % 

and 31.57 %. For medium size problems, such as FIR, the quality improvement and runtime 

reduction was 14.73 % and 49 %. Finally, for large size and highly complex benchmark, MPEG 

the quality improvement and runtime reduction was 14.28 % and 84.17 %. This proves that the 

proposed approach has the ability to handle growing size of the problem in a reasonable time. 

Hence the approach is scalable. The implementation results for the DWT benchmark have been 

also shown in Figure 19 and Figure 20 respectively. 
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Figure19. Portion of the implementation result for DWT showing the iterations of the proposed method. 
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Figure20. Portion of the implementation result for DWT benchmark showing the final result obtained 

using the proposed approach. 
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Chapter 8 

Conclusion and Future Work 

8.1 Conclusion 

 This thesis introduced a novel power efficient rapid integrated design space exploration 

approach for scheduling and module selection in high level synthesis. The proposed DSE 

approach reduced the total power consumption of the resources at the expense of minimal 

latency expenditure. Thus the introduced DSE was capable of minimizing the power 

consumption and hardware area under strict minimal latency constraints. The DSE approach 

using iterative technique based on ‘Priority indicator (PI method)’ function selects the operation 

with the highest PI from the available list of movable operations for further optimization. This 

scheduling process is repeated until an optimal solution is found. The second aspect of this thesis 

is the introduction of a novel topology called ‘Intersect Matrix’ with its associated algorithm 
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used for checking the precedence violation between operations during the scheduling process. 

This topology is easy to implement because of its minimal complexity and straight forward 

characteristic. 

 The proposed approach was qualitatively compared with [6] in terms of quality of final 

solution and exploration runtime. A new metric called ‘Quality Cost Factor (Q-metric)’ was 

proposed to compare the quality of solutions yielded by both approaches. The above metric was 

proposed since the quality of a solution cannot solely be determined from the latency expenditure 

or the occupied hardware area, but rather a combination of both. Results of comparison by Q-

metric indicate that the proposed approach was able to provide ≈ 12 % improvement in the 

quality of final solution compared to [6]. Further, comparison of exploration runtime for both 

approaches indicates that the proposed approach was able to find an average reduction of 59.10 

% in runtime compared to [6]. Therefore the proposed DSE found a better solution in half of the 

exploration runtimes compared to [6]. Hence the approach presented in this thesis is a novel 

versatile design space exploration approach that is rapid, power efficient in nature, and highly 

useful for data path synthesis in Electronic System Level (ESL) design. The approach has the 

ability to escape from the local optimal solution and therefore a tendency to reach global optimal 

solution.  

 

8.2 Scope of Future Work 

Further, global optimal solutions were found for almost all benchmarks, which dictate the 

capability of the proposed approach to escape local optima and find global optimal solutions. 

Although efficient in finding global optimal solutions in most cases, there may be few cases 
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where the proposed method is unable to find the global optima. This usually results in local 

optimal solutions where further scope for optimization is possible. Therefore, there is an aspect 

related to the suitable terminating condition of the proposed approach where further 

improvements can be made. Selecting an accurate terminating condition maintains the right 

balance between obtaining a high precision solution and minimizing the exploration runtime. 

Hence, future works are geared towards experimenting with various terminating conditions to 

evaluate the tradeoffs between solution accuracy and exploration runtime. This would help in 

selecting an optimal termination condition for the proposed approach to further improve the 

quality of solution. 
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