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Abstract 

Characterization of the Hemodynamic Responses of the Hippocampal and Parahippocampal 

Regions using fMRI 

Priyanka Mehta 

Master of Science, Biomedical Physics 

Ryerson University, 2016 

 

Previous neuroimaging studies have suggested a dominant role of the right medial temporal lobe (MTL) 

structures- the hippocampal and parahippocampal regions in spatial memory processing. However, the 

underlying physiological hemodynamic response functions (HRF) of the MTL substructures remain 

undefined. Given the neuroanatomical differences between these substructures, it is posited that their 

hemodynamic characteristics are distinct. In this study, the hemodynamic responses of the MTL 

substructures are investigated using an optimization algorithm that penalizes the curvature (i.e. second 

derivative) of HRF.  The time-to-peak characteristic of the hemodynamic responses revealed that the right 

CA3 and DG subfields of the hippocampus are significantly more active than the right CA1 subfield during 

a specific spatial memory task. Further, the hemodynamic responses of the entorhinal, perirhinal and 

parahippocampal cortices are presented. Together, these findings may help advance our understanding of 

neurodegenerative diseases like epilepsy and Alzheimer’s disease that are strongly associated to 

hippocampal dysfunction.  
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 Introduction 

1.1 Overview  

The hippocampus, embedded in the medial temporal lobe of each hemisphere is one of the most 

comprehensively studied areas of the brain because of its distinctive structure and fundamental role in 

memory. The large, bulging structure of the hippocampus resembling the horns of a ram impressed ancient 

anatomists. The advent of a histological technique, now called the Golgi method developed by Camillo 

Golgi provided the first big advancement in unravelling the cellular organization of the hippocampus. The 

principal cells in the hippocampus are arranged in a single layer, a layout very different from other 

neocortical areas. This finding further reinforced the interest in the hippocampal investigations. Early 

research suggested the possible role of the hippocampus in olfactory (Ferrier, 1876), emotion (Papez, 1937) 

and attention control (Sloan and Jasper, 1950) functions. However, the pivotal role of the hippocampus in 

memory became evident in the early 1950s when Henry Molaison, famously known as Patient H.M., 

suffered a pure memory deficit after a bilateral resection of the medial temporal lobe for relief of epilepsy 

(Scoville and Milner, 1957). Ever since, numerous studies have been conducted in an effort to fathom the 

function of the hippocampus and the medial temporal lobe structures in general.  

In this thesis, the function of the medial temporal lobe structures as related to spatial memory are 

examined. The hippocampus proper and entorhinal cortex collectively referred to as the hippocampal 

formation and the perirhinal and parahippocampal cortex collectively referred to as the parahippocampal 

regions. Specifically, the hemodynamics of the medial temporal lobe structures in response to a spatial 

memory task are investigated. In so doing, MRI brain scans of the participants are acquired while they 

perform a spatial memory task. These scans are analysed using an optimization algorithm proposed in this 
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thesis to compute the hemodynamic responses of the regions of interest- hippocampal and parahippocampal 

regions in this case.  

This thesis is organized as follows: The relevant literature review describing the roles of the medial 

temporal lobe structures in spatial memory are given in this Chapter. The objectives and significance of 

this study are also stated. The principles of Magnetic Resonance Imaging and functional Magnetic 

Resonance Imaging are provided in Chapter 2. Additionally, the anatomy of the hippocampus and the 

surrounding parahippocampal regions and their relation to spatial memory processing are also detailed.  

The experimental methods used for this study are described in Chapter 3. In particular, the spatial memory 

task, image acquisition techniques and participant data for this study are discussed. In Chapter 4, the 

exploratory data analysis technique used for preprocessing in this study- Independent Components 

Analysis is introduced. An algorithm for deconvolution of the physiological hemodynamic response 

functions from the acquired fMRI time series is also proposed. The results of the Independent Components 

Analysis and the hemodynamic responses from the regions that are of interest are presented in Chapter 5. 

The main findings are discussed in Chapter 6. A list of frequently used list acronyms are given in Appendix 

A.  

1.2 The Medial Temporal Lobe  

The hippocampal formation along with the parahippocampal regions form a part of the medial 

temporal lobe (MTL) memory system of the human brain. Deep within the temporal lobe of the human 

brain as seen in Figure 1.1 (a), on its medial surface lies a group of many millions of neurons called the 

hippocampal formation. The hippocampal formation measures up to 4.5–5 cm and comprises of the 

hippocampus proper, dentate gyrus, subicular complex and entorhinal cortex as seen in Figure 1.1 (b). The 

hippocampus proper is further divided into three main subdivisions: CA1, CA2, and CA3. CA stands for 

‘Cornu Ammonis’, named after the ancient Egyptian god Amun Kneph. Curled tightly around the CA3 
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subfield is a V-shaped or U-shaped structure called the Dentate Gyrus (DG). Positioned between the 

hippocampus proper and entorhinal cortex and a range of cortical and subcortical structures is the subicular 

complex. The subicular complex includes the subiculum, presubiculum and parasubiculum regions. The 

entorhinal cortex is surrounded by a number of cortical areas. Medially, the entorhinal cortex fuses with 

structures that belong either to the hippocampal formation or the parahippocampal region, such as the 

amygdalo-hippocampal transition, and the parasubiculum. The lateral and posterior borders are with the 

other two major constituents of the parahippocampal region, the perirhinal cortex laterally and the 

parahippocampal cortex posteriorly. Throughout this thesis, the term ‘hippocampus’ is used to refer to the 

CA1, CA3, DG and subiculum collectively, the term ‘hippocampal formation’ is used to refer to the CA1, 

CA3, DG, subiculum and entorhinal cortex collectively while ‘parahippocampal region’ is used to refer to 

the perirhinal cortex and parahippocampal cortex collectively. 

 

 

CA1 

CA3 

Dentate  
Gyrus 

Subiculum 

Entorhinal  
Cortex 

Perirhinal  
Cortex 

(a) (b) 

Figure 1.1: Anatomy of the Medial temporal lobe. (a) A coronal slice of a 

weighted structural MR image through the medial temporal lobe 

region, as indicated by the box. (b) MTL sub-structures displayed on 

the magnified structural image. 
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1.2.1 Neural Pathways 

The hippocampus forms a primarily unidirectional network with the entorhinal cortex (Broadmann 

Area 28). The entorhinal cortex (EC) is the neocortical nodal point sending projections into the 

hippocampus and communicating its output to other neocortical structures.  As described by Ramon y Cajal 

(1893, 1911) and reproduced here in Figure. 1.2 (a), cells in the superficial layer (layer II) of the EC project 

their output to granule cells of DG and pyramidal cells of CA3 via the perforant pathway. DG granule cells 

project to CA3 region via mossy fiber pathway. In turn, projections from CA3 pyramidal cells include 

collaterals to other CA3 pyramidal cells comprising an extensive system of associational connections 

within the region. Projections from CA3 also include the Schaffer collaterals which constitute the major 

projection to CA1 pyramidal cells. CA1 receives additional input from EC (layer III) as part of direct 

pathway (monosynaptic). CA1 then projects to both the subiculum and deeper layers of EC. Unlike CA3 

field, there are few associational connections within CA1.  

As seen in Figure. 1.2 (b) the EC receives most of its highly processed neocortical input from the 

perirhinal and parahippocampal cortices which in turn is conveyed to the hippocampal formation. 

Perirhinal cortex projects primarily to the anterior two-thirds of EC while parahippocampal cortical 

projections terminate primarily in the posterior third. The Entorhinal Cortex also relays output from the 

subiculum of the hippocampal formation to the different neocortical regions. The EC therefore acts as an 

interface. 

1.2.2 Role in Spatial Memory 

The function of the hippocampus has long been implicated in two major memory forms: episodic 

memory - memory of past personally experienced events that can be explicitly stated and spatial memory- 

formation of cognitive maps and their use in navigation through space. The discovery of ‘place cells’ in  



 
5 

 
 

 

  

 

the hippocampus of freely moving rats by O'Keefe and Dostrovsky in 1971 motivated a number of studies 

in spatial memory. The Cognitive Map Theory (O'Keefe and Nadel, 1978) postulated that the place 

cellsencode a cognitive representation of a specific location in space to create a cognitive map. These cells 

fire when an animal traverses a specific location in its environment also known as the ‘place field’. About 

a decade later, ‘head-direction cells’ that encode the orientation of the head in space were reported in the 

dorsal presubiculum of the hippocampal formation (Taube, Muller and Ranck, 1990). Soon after, ‘grid 

cells’ that provide information about distances traveled in a particular direction were discovered in a 

structure that is fused to the hippocampus called the medial entorhinal cortex (Hafting et al., 2005). The 

discovery of these cells in animals led to the origination of the idea that medial temporal lobe structures 

may likely play a central role in spatial memory in humans as well.  

A study conducted by placing electrodes in the brain for recording single unit activity was conducted 

by Ekstrom and colleagues in 2003. This study involved recording of data from electrodes implanted in 

Figure 1.2: (a) Model of the hippocampal formation depicting the trisynaptic loop (not to scale). EC 

→ DG via the perforant pathway (synapse 1), DG → CA3 via mossy fibres (synapse 2), 

CA3 → CA1 via Schaffer collaterals (synapse 3). (b) Simplified circuit diagram of 

neuroanatomical connectivity of the MTL region reflecting dominant pathways. 
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the cells of the hippocampus, parahippocampal region, amygdala and frontal lobe while participants 

pretended to be taxi drivers navigating through a virtual town. It was noted that cells that respond to specific 

spatial locations are found in the hippocampus (Ekstrom et al., 2003). As seen in Figure 1.1 (a), the firing 

rate of a right hippocampal cell increases in frequently traversed spatial locations as compared to other 

locations. The places responsive cells were found to be clustered in the hippocampus Figure 1.1 (b).  

The entorhinal cortex acts as an interface between the hippocampus and the neocortical regions. Recent 

fMRI data provided evidence for presence of grid-like cells which have been identified in rats in the 

entorhinal cortex of human participants navigating through a virtual reality arena (Doeller, Barry and 

Burgess, 2010). This study further showed that the hemodynamic activity in the entorhinal cortex is 

modulated by the direction of movement. Direct recordings from electrodes implanted in the entorhinal 

cortex further established its role in spatial memory (Jacobs et al., 2013). The locations at which increased 

firing rates of the cells were recorded were arranged in a triangular grid, similar to patterns observed in 

rodents (Hafting et al., 2005; Sargolini et al., 2006).  

 

                   

Figure 1.3: Place responsive cells. Letters 𝑆𝐴, 𝑆𝐵, 𝑆𝐶 indicate shop locations, white boxes indicate non-

target buildings and the red line indicates the participant's trajectory. (a) Firing rate (in Hz) of 

a right hippocampal cell at various spatial locations. (b) Comparison of place responsive cells 

in the hippocampus (H), parahippocampal region (PR), amygdala (A) and the frontal lobe 

(FR). (Courtesy: Ekstrom et al., 2003)  

 

(a) (b) 
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The indication of the extra-hippocampal medial temporal lobe structures’ involvement in spatial 

memory comes from fMRI studies on patients with lesions. The parahippocampal regions- the perirhinal 

cortex and parahippocampal cortex belong to the visual processing stream. It has been shown that the 

perirhinal cortex is crucial for the perception and memory of complex visual objects (Pihlajamaki et al., 

2004; Barense, Gaffan and Graham, 2007) whereas the parahippocampal cortex, as suggested by (Ploner 

et al., 2000) plays a greater role in the processing of visuospatial information. Consistent with these 

findings was an fMRI study by (Buffalo, Bellgowan and Martin, 2006). In this study, subjects were 

presented with a series of stimuli similar to those shown in Figure 1.2 (a) and were instructed to memorize 

the object (Object task) or memorize the location (Spatial task). During the recall phase, subjects were 

shown three old objects and three new objects (Object task) or objects in three old locations and three new 

locations (Spatial task). For each stimulus, subjects identified whether the presented object/location is 

old/new. Notably, the perirhinal cortex exhibited activity during object recognition as well as spatial 

encoding while the anterior parahippocampal cortex exhibited activity during spatial encoding as seen in 

Figure 1.2 (b).   

             

Figure 1.4: (a) Task design for the object task (left) and the spatial task (right). (b) Comparison of the 

activations in the perirhinal, anterior parahippocampal (PH) cortex and posterior 

parahippocampal (PH) cortex for the Object task and Spatial Task. (Courtesy: Buffalo, 

Bellgowan and Martin, 2006) 

 

(a) (b) 
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Studies on patients who had undergone unilateral lobectomy - a surgical excision of the 

hippocampus, amygdala and surrounding structures revealed the differences in the memory functions of 

the left and right temporal lobe structures. In their seminal work, Smith and Milner (1981) provided 

evidence of spatial memory impairment in patients with right unilateral temporal lobectomy (TL). Smith 

and Milner tested patients with right and left TL on a task that involved memorizing the names and 

locations of 16 objects places at various locations on a blank piece of paper. The left TL group showed 

normal memory for item location while the right TL group showed impaired memory for item location. 

Subsequent studies confirmed Smith and Milner’s findings (Feigenbaum, Polkey and Morris, 1996; 

Abrahams et al., 1997; Bohbot et al., 1998).  Frisk and Milner’s experiment on normal subjects and patients 

with left lobectomy showed distinct capabilities of learning a short paragraph and retaining it in memory. 

Patients with left TL demonstrated difficulty in learning the story content as well as performed poorly in 

retention of content after a 20 minute delay (Frisk and Milner, 1990). These results indicate that the left 

temporal lobe structures play a dominant role in episodic memory whereas the right temporal lobe 

structures play a dominant role in spatial memory.  

Together the findings from previous studies emphasize the involvement of the right medial temporal 

lobe structures- hippocampus, entorhinal cortex, perirhinal cortex and parahippocampal cortex in spatial 

memory tasks.  

1.3 Hippocampus and Alzheimer’s disease  

Structural MRI scans are most widely used to measure atrophy of the hippocampus for diagnosis of 

Alzheimer’s disease (AD). However, it has been suggested that the onset of pathophysiological process of 

Alzheimer's disease (AD) occurs years before the clinical diagnosis (Morris, 2005). Based on the scientific 

evidence available, recently, The National Institute on Aging and the Alzheimer's Association proposed a 

conceptual framework for diagnosis of pathophysiological process of AD for clinical research studies 
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(Sperling et al., 2011). It has been suggested that cognitive studies hold potential for early detection of AD. 

Therefore, one approach is to use an experimental paradigm that “stresses” the brain or structure that is 

known to be affected in the preclinical stages of the disease. Since impairment of spatial memory is often 

one of the first symptoms experienced by patients with dysfunction of the medial temporal lobes (e.g. Kolb 

and Wishaw, 1996), a spatial learning paradigm can be used to test the activity of the hippocampus. 

Therefore, determination of alterations in hippocampal function in response to a spatial memory task 

provides as a sensitive measure of early AD. Evolving modalities such as functional Magnetic Resonance 

Imaging (fMRI) represents a promising approach for detection of AD associated neurodegeneration. 

1.4 Neuroimaging Techniques 

With the accelerating pace of research in functional neuroimaging there has been an increase in the 

number of techniques used for the non-invasive assessment of the brain activity. Among these, the most 

widely used technique is functional Magnetic Resonance Imaging (fMRI). The fMRI technique measures 

the blood oxygenation level dependent (BOLD) effect. The BOLD effect is an indirect measure of the 

underlying neural activity evoked due to a stimulus, as shown in Figure 1.3. The neural activity results in 

local increases in cerebral metabolic rate of oxygen extraction (CMRO2), cerebral blood flow (CBF) and 

cerebral blood volume (CBV). These changes induce a change in the measured MRI signal and is called 

the BOLD signal. The BOLD signal is explained in greater detail in section 2.4.1. 

http://www.sciencedirect.com/science/article/pii/S0896627302008309#BIB82
http://www.sciencedirect.com/science/article/pii/S0896627302008309#BIB82
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Figure 1.5: The generation of a blood oxygenation level dependent (BOLD) signal in fMRI. 

 

In this study, fMRI is used to acquire volumetric functional scans of the brain. The fMRI technique 

is favourable over other methods available for functional neuroimaging for a number of reasons. Firstly, 

fMRI is completely non-invasive and does not involve the injection of an exogenous contrast agent as in 

the case of Positron Emission Tomography. Secondly, fMRI provides a solution to the spatial – temporal 

resolution trade-off. fMRI possesses the capability of producing images with temporal resolution higher 

than Positron Emission Tomography as well as spatial resolution better than Electroencephalography and 

Magnetoencephalography techniques (Cohen and Bookheimer, 1994). Lastly, fMRI experiments can be 

performed using a standard clinical MRI scanner.  

1.5 Hypothesis  

During the last three decades, electrophysiological and functional imaging studies on healthy participants 

as well as patients with lesions and lobectomies, have established the importance of the right medial 

temporal lobe (MTL) for spatial memory in humans. The hippocampus and its associated structures - 

entorhinal cortex, perirhinal cortex and parahippocampal cortex play a key role in spatial memory, yet the 
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CBF BOLD 

Signal 

CMRO2 

CBV 



 
11 

 
 

 

underlying physiological hemodynamics remain unknown. Previous studies have shown that the 

hemodynamic response differs between individuals and probably also between different regions of the 

brain (Aguirre, Zarahn and D'Esposito, 1998).  

In this thesis, we tested the hypothesis that the right hippocampal region together with the 

surrounding entorhinal, perirhinal and parahippocampal cortices are involved in spatial memory 

processing and that the hemodynamic responses to a specific spatial task vary among subregions. 

Furthermore it is also hypothesized that the hemodynamic responses vary among individuals.  

In so doing, we evaluated the hemodynamic responses of the seven medial temporal substructures 

implicated in spatial memory; namely the hippocampal sub-regions (CA1, CA3, Dentate Gyrus, and 

subiculum), entorhinal cortex, perirhinal cortex and parahippocampal cortex. Since the aim of this study is 

to investigate the hemodynamic responses to spatial memory, participants are tested on a spatial memory 

task. While the participants performed the task, they were scanned using the fMRI technique. The acquired 

scans were pre-processed using an Independent Component Analysis technique to improve the quality of 

data. The task-related physiological responses of the medial temporal lobe structures were computed from 

the pre-processed scans using an optimization algorithm proposed in this thesis.  
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 Theory 

2.1 Overview 

This chapter summarizes the fundamentals of Magnetic Resonance Imaging (MRI) and functional 

Magnetic Resonance Imaging (fMRI). The principles of MRI and fMRI are governed by the Nuclear 

Magnetic Resonance (NMR) phenomenon. This phenomenon was discovered by researchers Edward 

Purcell at Harvard University and Felix Bloch at Stanford University when samples were placed in a 

magnetic field. Bloch and Purcell shared the 1952 Nobel Prize for Physics for their joint discovery. In the 

1970s, researcher Paul Lauterbur made pioneering contributions for further developing methods for 

application of the nuclear magnetic resonance phenomenon in diagnostic imaging (Lauterbur, 1973). 

During the 1990s Ogawa et al., recognized that the differences in magnetic properties of oxygenated 

haemoglobin and deoxygenated haemoglobin can be exploited to induce changes in the MRI signal. This 

signal, called the blood oxygenation level dependent (BOLD) signal forms the basis of functional Magnetic 

Resonance Imaging (fMRI).  

2.2 Nuclear Magnetic Resonance 

The atomic nucleus consists of protons and neutrons. An intrinsic property of protons and neutrons 

is that they possess an angular momentum or ‘spin’. This spin is determined by the number of constituent 

protons and neutrons in the nucleus.  If the number of protons and neutrons in a given nucleus are even, 

then there exists no net spin. However, if the number of protons and neutrons is odd, the net spin is non-

zero and therefore the nucleus also possesses a magnetic moment due to the positive charge of the protons.  

The hydrogen-1 nucleus consists of odd number of protons (Z =1) and therefore possesses a net spin and 
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a magnetic moment. Since the hydrogen molecule is a component of the water molecule which is abundant 

in the human body, we therefore focus on the hydrogen nucleus.   

The NMR phenomenon can be explained using a sample consisting of a large number of hydrogen 

nuclei. In absence of an applied magnetic field, all the spins in the sample are randomly oriented as shown 

in Figure. 2.1 (a). These spins cancel each other out and the net spin and net magnetic moment of the 

sample is zero. However, when the sample is placed in a magnetic field 𝐵𝑜 applied along the z-axis, 

hydrogen nuclei with spin number I = ½ occupy (2I + 1) energy levels. Therefore the hydrogen proton 

aligns along one of the two orientations: either parallel or anti-parallel to the applied magnetic field 𝐵𝑜 as 

shown in Figure. 2.1 (b). The alignment of nuclei parallel to the applied magnetic field 𝐵𝑜 is the lower 

energy level and the alignment of nuclei anti-parallel to the applied magnetic field 𝐵𝑜 is the higher energy 

level. In the absence of thermal agitation of the nuclei, all spins would attain the lower energy state and the 

sample would be in its absolute minimum state. However, at physiological temperatures, the thermal 

agitation leads to a slight excess of spins that align parallel to the applied magnetic field than anti-parallel. 

Thus, there will be a net magnetic vector 𝑀 pointing in the direction of the applied magnetic field  𝐵𝑜 as 

shown in Figure. 2.1 (c). The applied magnetic field also creates a torque that causes the magnetic moments 

of the hydrogen nuclei to rotate, or precess, about the z-axis. The frequency of this precession is given by 

the Larmor equation, 

𝑣 =  𝛾𝐵𝑜 

where 𝑣 is the frequency of precession in MHz, 𝛾 is the gyromagnetic ratio in 
MHz

Tesla
  and 𝐵𝑜 is the magnetic 

field strength in 𝑇𝑒𝑠𝑙𝑎. Due to the precession of all the nuclei in phase with each other, the resultant 

magnetic vector M also rotates about the applied magnetic field 𝐵𝑜. In order to detect a signal, the spins  

(2.1) 
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Figure 2.1:  Behaviour of a sample when placed in a strong magnetic field. (a) The nuclear magnetic 

moments are randomly oriented when no external field is applied. (b) When an external 

magnetic field is applied the moments align either parallel to the field or anti-parallel. (c) 

The slight preferential alignment parallel to the field gives rise to a net magnetization 

vector M. (d) When an RF pulse is applied, the magnetization vector changes its 

orientation from the z-axis into the xy-plane. Due to the non-uniformity of static magnetic 

field within each voxel and spin-spin interactions, the transverse magnetization vector 

decays exponentially with time constant 𝑇2 
∗ . 
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tip away from the z-axis into the transverse xy-plane as shown in Figure. 2.1 (d). Because the frequency of 

this applied magnetic field lies in the radio-frequency range and causes the net magnetization vector to flip 

by a 90° angle, it is referred to as a 90° RF-pulse. The excited spins eventually dissipate their energy and 

return to the equilibrium state. Therefore the z-axis component of the magnetization vector begins to 

recover. This recovery of the z-component is an exponential process and is measured by a time constant 𝑇1. 

This is called the 𝑇1 relaxation process or spin-spin relaxation process. 

Right after the 90° RF-pulse is applied, the net magnetization vector aligned along the z-axis is 

tipped into the xy-plane. In a perfect magnet and ideal sample all the spins constituting the net 

magnetization vector M experience the same magnetic field and continue to precess coherently at the 

larmor frequency. However, due to random tumbling of neighboring nuclei, the magnetic fields 

experienced by each nucleus in the sample begins to vary, thereby altering their individual larmor 

frequencies. The differences in larmor frequencies causes the spins to lose their coherence and the spins 

begin to de-phase. Therefore, the transverse component of the magnetization vector starts to decay. This 

decay process is exponential and measured by a time constant 𝑇2. This is called the 𝑇2 relaxation process 

or spin-lattice relaxation process. 

Similar to 𝑇2 decay, 𝑇2
∗ decay is also an effect of variations in the magnetic field. However, the 

processes that drive 𝑇2
∗ relaxation are different from those that drive 𝑇2 relaxation. 𝑇2 

∗  relaxation is caused 

due to the varying responses of the different regions of the sample to the applied magnetic field. For 

example, in the human head, the very steep differences in the magnetic susceptibility of air and tissue at 

the air/tissue interface causes rapid local 𝑇2
∗ relaxation. Similarly varying levels of deoxygenated 

hemoglobin in the blood vessels affects the 𝑇2
∗ in the tissue surrounding the blood vessels. This effect 

observed in the tissues surrounding the blood vessels due to varying magnetic susceptibility forms the basis 

of BOLD contrast in fMRI as will be discussed further in this chapter.  
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2.3 Magnetic Resonance Imaging 

The relaxation times  𝑇1 and  𝑇2 are tissue type dependent. Typical  𝑇1 and  𝑇2 relaxation times for 

3T magnetic field for different tissues types in the human brain are given in Table 2.1.     

 

Table 2.1: Typical 𝑇1 and 𝑇2 values for grey & white matter at 3.0 T magnetic field (Wansapura et al., 

1999). 

 

 

 

 

The key step in the advancement of MRI was the realization that a spatially resolved NMR signal 

can be obtained by using a spatially varying magnetic field. The gradient magnetic field would slightly 

modify the static magnetic field 𝐵𝑜. As per the larmor equation, the gradient magnetic field will alter the 

larmor frequencies of the spins based on their spatial location. Since the larmor frequency for a specific 

location is known, their spatial locations can be resolved. 

 

 

 𝑻𝟏(ms) 𝑻𝟐(ms) 

Grey Matter 1300 110 

White Matter 830 80 

(a) (b) (c) 
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Figure 2.2: Examples of MRI scans. (a) 𝑇1- weighted anatomical scan. (b) 𝑇2- weighted anatomical scan. 

(c) 𝑇2
∗- weighted functional scan. 

2.4 Functional Magnetic Resonance Imaging 

The aim of fMRI is to assess neuronal activity which is intimately coupled to blood oxygenation 

level as will be explained in the next section. Since 𝑇2
∗ time constant is an indicator of the blood 

oxygenation levels, 𝑇2
∗ time constant is perhaps of more significance to functional Magnetic Resonance 

Imaging. In-vivo fMRI images with image contrast reflecting the level of oxygenation was first 

demonstrated by Ogawa et al. in 1990. fMRI is a favourable method for functional imaging for a number 

of reasons. Firstly, this technique is completely non-invasive and does not involve the injection of an 

exogenous contrast agent as in the case of Positron Emission Tomography. Secondly, fMRI possesses the 

capability of producing images with higher spatial resolution compared to Electroencephalography and 

Positron Emission Tomography. Lastly, fMRI experiments can be performed using a standard clinical MRI 

scanner. fMRI is used for research studies as well as for pre-surgical investigations. In neuroimaging, fMRI 

is used to measure brain activity to further our understanding of the brain processes. It is also used to assess 

brain function prior to surgery (removal of tumor for example) thereby being able to make a well informed 

decision about a surgery.  

The Echo Planar Imaging (EPI) sequence developed by Mansfield (1977) is able to measure the 𝑇2
∗ 

time constant.  Because of its high susceptibility to local magnetic field inhomogeneities, EPI is not used 

for generating anatomical images. However, it is widely used for functional imaging as it is the fastest 

available MRI sequence. 

2.4.1 BOLD Signal 

The activation of neurons require a supply of energy in the form of adenosine tri-phosphate (ATP) 

which is generated in the mitochondria within the cells. The formation of ATP via glucose consumption 
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requires oxygen. To meet the brain’s substantial demand for oxygen, the local cerebral blood flow to that 

region increases. This oxygen is supplied by the blood attached to a haemoglobin molecule. Haemoglobin 

(Hb) contains iron which possesses magnetic properties. fMRI takes advantage of the differences in the 

magnetic properties of oxygenated Hb and deoxygenated Hb. In presence of an attached oxygen molecule 

to the Hb molecule, the iron atom is shielded and it behaves as a diamagnet. Therefore the Hb molecule 

becomes almost magnetically inactive. This effect causes the spins to de-phase slowly and produces longer 

𝑇2
∗ times. The absence of oxygen has an opposite effect. Since the iron atom is exposed, the molecule 

becomes paramagnetic and distorts the magnetic field. This effect causes rapid dephasing of spins, thereby 

producing very short 𝑇2
∗ times. This change in the MR signal which depends on the blood oxygen levels is 

referred as the blood oxygenation level dependent (BOLD) effect. 

 

 

Figure 2.3: (a) In a baseline state the neurons require a certain amount of oxygen. (b) When neuronal 

activity increases, the demand for also increases thereby increasing the blood flow. This 

results in a sudden increase in the blood oxygen concentration in an active state compared to 

the baseline state. 

 

The regional neuronal activity is closely coupled with the blood flow. Logothetis et al., tested this 

on monkeys by simultaneously measuring the BOLD signal which is an indirect measure of neurones’ 

activity and the EEG which is a direct measure of neurones’ electrical activity and concluded that the two 

are positively correlated. 
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2.4.2 Hemodynamic Response Function 

The intensity variations on a 𝑇2
∗- weighted MR image are observed due to the changes in local 

blood oxygenation level in the brain induced by an experiment. A model is needed to describe the expected 

intensity variations due to the stimuli presented in the experimental paradigm. The expected intensity 

variations or the BOLD signal is thought of as an output of experimental paradigm that passes through two 

systems (human brain and imaging system) as shown in Figure 2.4.  

 

 

Typically, the BOLD signal has a delayed response to stimuli. Therefore, the relationship between 

stimuli and the BOLD response is expressed using a convolution. In this model, the human brain and the 

imaging system are assumed to be linear time invariant (LTI) systems. The linearity assumption holds true 

in most situations (Boynton et al., 1996). In an LTI system the expected BOLD response is modeled as a 

convolution of a stimulus function and an impulse response that can be expressed as follows,  

𝑋(𝑡) = 𝑢(𝑡)⨂ℎ(𝜏) =  ∫ 𝑢(𝑡 − 𝜏) ℎ(𝜏) 𝑑𝜏
𝑇

0

 

where ⊗ denotes the convolution operation, 𝑢(𝑡) is the stimulus function and ℎ(𝜏) is the impulse response 

function and it is known as the hemodynamic response function (HRF). A schematic of a typical 

hemodynamic response is shown in Figure 2.5. The hemodynamic responses are sluggish in nature due to 

the time delay in supply of blood, initially (1-2s) after the onset of neuronal activity. After the initial delay, 

oxygenated Hb is supplied to the activated region via blood. However, the amount of oxygenated Hb that 

Human Brain Imaging System 
Experimental 

Paradigm 
BOLD 

signal 

Figure 2.4: The experimental paradigm passes through the brain dynamics and the MRI scanner 

before being measured as an fMRI signal. 

(2.2) 
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is supplied is more than that extracted from the blood. It is this ‘overcompensation’ that causes an increase 

in the oxygenated Hb level in the blood. This is seen as a positive increase in the MR signal for the next 3-

4s with a peak at around 5-6s. Once the neuronal activity returns to baseline, the local blood flow to the 

region decreases. Subsequently, this causes a drop in the MR signal extending below the baseline and is 

seen as an ‘undershoot’ in the MR signal (Malonek and Ginvald, 1996). The existence of an ‘undershoot’ 

typically depends on the duration of the stimulus (Hirano, Stefanovic and Silva, 2011).  For short stimulus 

durations, only the local vasculature is engaged for supply of oxygenated Hb. The extraction of oxygen 

from this supply of oxygenated Hb leads to smaller amounts of deoxygenated Hb which does not cause an 

‘undershoot’ in the signal. Whereas for long stimulus duration, remote vasculature is also engaged along 

with the local vasculature causing a large oversupply of oxygenated Hb. The extraction of oxygen from 

this oversupply of oxygenated Hb leads to large amounts of deoxygenated Hb which is represented by a 

drop in the MR signal as an ‘undershoot’. The signal eventually returns to baseline in the next 12-18s.  

 

 

Figure 2.5: Schematic representation of a typical hemodynamic response function. 
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 Materials & Methods 

3.1 Overview 

Seven participants were scanned while they performed a spatial memory task. The task comprised 

of a series of images of pairs of objects placed at a certain distance from each other. The participants 

responded as per the instructions that were given to them prior to the scanning session. The scan was 

performed using a 3.0 Tesla MRI scanner using an echo planar imaging sequence. This chapter provides 

further details about the participants of the study, the design of the spatial memory experiment and the 

scanning parameters that were used for acquiring the fMRI images. The computational requirements for 

the data analysis are also discussed. 

3.2 Participants 

Over 80 young, healthy adults (age group: 21- 30 years) from a cohort of students of University of 

Colorado, Boulder participated in a screening test. The screening test comprised of a spatial memory task, 

similar to the task described in section 3.3. Participants were asked to respond accurately and as quickly as 

possible. Based on each participant’s response accuracy (percentage of correct answers) and mean reaction 

time, the best twenty-four participants were selected for the study (Appendix B).  The twenty-four qualified 

participants were given instructions about the spatial memory task before the scan. After informed consent 

was obtained, the participants were scanned while they performed a spatial memory task. Participants with 

poor accuracy and reaction time or severe head movements during scanning were further eliminated from 

the data analysis. Seven participants’ (mean age: 22.86 ± 2.04 years) scans were chosen for data analysis. 
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All the participants were right- handed individuals with no history of neurological disorders and 20/20 or 

corrected vision. 

Table 3.1: Demographics of the participants 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Spatial Memory Task 

The study design involved viewing of a series of images or ‘stimuli’ and correctly identifying one 

of the five presented conditions summarized in Table 3.2. Each stimulus consisted of a pair of objects 

placed diagonally at a certain distance from each other. When a stimulus with a pair of objects is presented 

for the first time, it represents a ‘new’ or ‘E0’ condition. When a previous pair of objects is repeated, it 

represents a ‘repeat’ or ‘E1’ condition. When a pair of objects is repeated with a small change in the 

distance between them, it represents a ‘lure 1’ or ‘E2’ condition. When a pair of objects is repeated with a 

medium change in the distance between them, it represents a ‘lure 2’ or ‘E3’ condition. When a pair of 

objects is repeated with a large change in the distance between the objects, it represents a ‘lure 3’ or ‘E4’ 

condition. Since fMRI does not measure absolute neural activity, study designs provide a rest or baseline 

Participant# Subject ID Gender Age Handedness 

1 141 Female 23 Right 

2 131 Female 25 Right 

3 58 Female 21 Right 

4 36 Male 21 Right 

5 5 Male 26 Right 

6 1 Male 21 Right 

7 0 Female 23 Right 
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condition to contrast the neuronal activity. Moreover, the brain is constantly engaged in various control 

functions even during rest. Therefore, a baseline task or a rest period is introduced to be able to quantify 

the relative changes of brain activity. Interleaved with the E0, E1, E2, E3 and E4 stimuli were the baseline 

stimuli ‘N’, during which a simple arithmetic problem was presented on pixelated images. The subjects 

were instructed to add the numbers from the two images in the baseline stimulus and indicate their answer 

via button press.  

 

Table 3.2: Description of stimuli conditions presented for the spatial memory task. 

Condition Description 

E0 Original/ New 

E1 Repeat 

E2 Small distance 

E3 Medium distance 

E4 Large distance 

N Number/Baseline  

 

 

An event related paradigm was used to present the stimuli. Each stimulus was presented for a period 

of 3s during which the participants viewed the stimulus and indicated their responses. 450 stimuli similar 

to those shown in Figure. 3.1(a) were presented in total. Following each activity and baseline stimulus, a 

blank screen was presented for a period of 1s for rest as shown in Figure 3.1 (b). Participants viewed stimuli 

through a mirror attached to the head coil as shown in Figure 3.2 (a). This mirror reflected the projections 

from E-Prime Version 2.0 (Psychology Software Tools, Inc., Pennsylvania, USA), a software which was 

used to display the stimuli. The participants responded using an MR-compatible button press.   
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Figure 3.1:  Design of the fMRI spatial memory task. (a) Example of stimuli interleaved with baseline 

task. (b)  A total of n=450 stimuli were displayed. Each stimulus was displayed for 3s 

followed by a 1s blank/rest period. 

  

(a) 

(b) 
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3.4 Image Acquisition 

Before the scanning session, participants were informed about the possible occurrence of symptoms 

like temporary dizziness or sensory irritations due to the high magnetic field. They were asked for any MR 

contraindications such as electronic implants (e.g. pacemakers, stimulators, metal splinters in the eye, etc.), 

electrically conductive implants and prostheses, metallic intra- uterine devices, etc. The participants were 

requested to remove all electrically conducting objects, e.g. necklaces, rings, braces, hair clips, piercings 

as well as jewelry. The participants were instructed to remove all clothing and were asked to wear a gown. 

Each participant was positioned on the MRI table and were asked to lay immobile during the scan because 

of MR imaging procedures’ sensitivity to movement. Two runs of functional scans were collected on a 3.0 

Tesla Siemens MAGNETOM TrioTim syngo MR B17 scanner with a 32 channel head coil at the MRI 

facility of University of Colorado, Boulder.  

A set of high-resolution  𝑇1-weighted whole-brain images were acquired using the following 

scanning parameters: TE/TR/flip angle = 2.01ms/2400ms/8°, 224 slices, voxel size = 0.8 × 0.8 × 0.8 mm3 

as an anatomical reference prior to the acquisition of functional images. A standard gradient-recalled echo-

planar imaging sequence with the following scanning parameters: TR/TE/flip angle = 765ms/30ms/44°, 

voxel size =1.6 × 1.6 × 2.0 𝑚𝑚3, multislice and interleaved mode was used to acquire 2380 volumes of 

𝑇2
∗-weighted functional images during the spatial memory paradigm as shown in Figure 3.2 (b).  

3.5 Computational Requirements 

A Dell Precision T3610 workstation was used for performing the data analysis. This workstation 

consisted of Intel© Xeon© CPU E5-1620 v2 @ 3.70 GHz processor with 8 cores. The pre-installed 8 GB 

RAM was upgraded to 48 GB to improve the data analysis performance. The workstation was dual-booted 

to ensure compatibility of the data analysis software. One hard-drive with Windows 7 Professional (64-  
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bit) operating system and an additional hard-drive with Linux (CentOS 6.0) were installed. Software 

compatible with the Linux operating system like FMRIB’s Software Library (FSL), FreeSurfer, dcm2nii 

and Advanced Normalization Tools (ANTs) were installed on the CentOS. MATLAB was installed on 

Windows 7 OS. 

 

  

Figure 3.2: (a) Schematic of the fMRI experiment setup. (b) A total of 2380 volumes of 𝑇2
∗ - 

weighted scans were acquired every 0.765s. 
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 Data Analysis 

4.1 Overview 

An fMRI examination involves scanning of the brain volume while the subject performs a task. 

During an fMRI examination, multiple 3-dimensional volumes are acquired over a period of time resulting 

in a 4-dimensional spatio-temporal data-set. This data-set comprises of some voxels that are ‘activated’ 

during the task and their corresponding time course that contains an underlying physiological process of 

interest i.e. the BOLD response. The activated voxel’s time course is also contaminated by fluctuations 

due to head motion during scanning, cardiac and pulmonary pulses as well as scanner artifacts. The end 

goal of the fMRI examination is to investigate the BOLD response present in the active voxels. 

Consequently it is necessary to separate the physiological signal of interest from the non-physiological 

temporal fluctuations. Hence, fMRI experimental data is usually preprocessed to improve the quality the 

data.  

In general, two categories of data analyses are employed in functional neuroimaging: (i) hypothesis-

driven (inferential or model-based), and (ii) data-driven (exploratory or model-free) analysis. The former 

involves fitting of the observed data to a model for e.g., General Linear Model which is explained later in 

the chapter. The model uses regressors of interest in a multiple linear regression framework and the 

estimated regression coefficients are tested against a null hypothesis to generate statistical parametric maps 

(SPM). The models also make prior assumptions about the spatio-temporal characteristics of the signal. 

However, the possible presence of unmodeled signals, particularly artefactual activity and the strong prior 

assumptions which may be invalid, render the analysis sub-optimal. The exploratory data analysis 

technique is a model free approach that extract features of the underlying signals that are ‘interesting’ - 
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spatio-temporal characteristics of the signal are frequently unknown. Independent Components Analysis 

(ICA) is an exploratory data analysis approach that provides separation of the BOLD response from noise 

which makes it an attractive pre-processing tool in fMRI. The statistically independent components 

generated by ICA can be inspected and be used to separate signal from noise. An automated method for 

classification of signal and noise components is FMRIB’s ICA-based X-noiseifier (Salimi-Khorshidi et al., 

2014). For each component FMRIB’s ICA-based X-noiseifier generates a large number of distinct spatial 

and temporal features, each describing a different aspect of the data. The set of features are fed into a once-

hand trained multi-level classifier. The noise components can then be regressed out of the original data 

thus providing an automated ‘clean-up’ of fMRI data. 

4.2 Independent Components Analysis 

The separation of source signals from a mixture of signals without any prior knowledge of the source 

signals or the mixing processes is what is known in signal processing as blind source separation (BSS) 

techniques. The goal of ICA is to solve the BSS problem by expressing a set of observations as linear 

combination of statistically independent source signals. In classical ICA, a p-dimensional vector X 

consisting of individual observations is assumed to be generated from a linear combination of a set of n 

statistically independent non-Gaussian source signals 𝑆 and an unknown mixing function A. The p  n 

mixing matrix A is also often assumed to be a square matrix, i.e. p = n. The observations can therefore be 

expressed as,  

𝑋 = 𝐴 𝑆 

The ICA attempts to find an unmixing matrix W, where 𝑊 = 𝐴−1such that each row of matrix S 

is mutually independent.  However, this technique uses a ‘noise- free’ model which means that it does not 

include a model for Gaussian noise sources. This often leads to identification of noise as a ‘real effect’ and 

therefore causes ‘overfitting’ of a noise-free generative model to noisy observations. Another assumption 

(4.1) 
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that a classical ICA model makes is that the mixing matrix is square. This means that number of source 

processes is equal to the number of observations which is an invalid assumption for fMRI data. This is 

because the number of observations in our study is >100,000 and we have no reason to believe that there 

are more than 100,000 source signals present in the data. A solution to these problems is to use a 

probabilistic ICA approach which assumes that the observed data are confounded by additive Gaussian 

noise and the mixing matrix is non-square.  

4.2.1 Probabilistic Independent Components Analysis 

Similar to the noise-free ICA model, the probabilistic ICA model characterizes the observed data 

as a linear combination of source signals and a mixing matrix with an additional assumption that the 

observations are corrupted by additive Gaussian noise. It further allows for more general non-square 

mixing. Therefore the model is now given by,  

𝑋 = 𝐴 𝑆 +  𝐸 

 

 

 

Figure 4.1: Independent Components Analysis- An fMRI spatio-temporal dataset is expressed as a linear 

combination of independent spatial maps and its associated time courses. 

(4.2) 
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In analogy to fMRI data, X is a TV matrix consisting of V voxels obtained over T time points and A is a 

KV matrix comprising of K spatial components of independent sources and A is the T  K matrix of K 

corresponding time courses as shown in Figure. 4.1. E denotes a p-dimensional vector of Gaussian noise 

sources. 

ICA is believed to work well when a large number of data points are available. Since the fMRI 

data set acquired in this study consists of a larger number of samples in the spatial domain than the temporal 

domain, spatial ICA was performed. Moreover, ICA is believed to be more robust in the spatial domain 

since neural processes in the data may well be more non-Gaussian in space than in time (Smith et al., 2012). 

Spatial ICA on fMRI data acquired for this study was implemented using FMRIB Software Library’s 

Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC). 

Version 3.0 of this software (Beckmann and Smith, 2004) is documented and freely available for download 

online at (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). 

The number of independent components to be extracted from the data is a problem of model-order 

selection. As discussed in the previous section, over-fitting occurs if the model estimators are too flexible 

allowing it to identify noise sources as neural signals. In contrast, under-fitting occurs if the model 

estimators are not flexible enough to capture the underlying neural signals in the data.  The aim of model 

order selection is finding an optimal number of independent components such that good estimates of the 

data are obtained while preventing over-fitting and under-fitting issues. In a nutshell, model order in 

MELODIC is determined from the covariance matrix of observations using a Bayesian framework. ICA 

estimation is carried out using the FastICA approach. The extracted spatial maps are converted into ‘Z 

statistic’ maps based on the estimated standard error of the residual noise. These maps are assessed for 

significantly modulated voxels using a Gaussian Mixture Model for the distribution of intensity values.  

According to Central Limit Theorem, random mixing of signals result in more Gaussian shaped probability 

density functions (p.d.fs). Conversely if mixing matrix produces non-Gaussian shaped p.d.f, this is unlikely 
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to be a random result. The technical details about the procedures in FSL can be found in the previous 

publications (Jenkinson et al., 2012; Woolrich et al., 2009; Smith et al., 2004). 

4.2.2 Classification of Components 

Once the fMRI data-set is broken down into its independent components, the next step in the process 

is to identify whether a component is signal or noise. This can be done by visually inspecting each 

component’s thresholded spatial map. One can look at the distribution of activation clusters and the cluster 

size in the spatial map of a component. A signal component is expected to have a relatively small number 

of fairly large sized clusters. Whereas, a noise component is expected to have a smaller sized clusters 

spread throughout the spatial map. Next, the proportion of signal in the high frequency range of a temporal 

power spectrum is an indicator of whether a component consists of signal or noise. Finally, sudden spikes, 

sawtooth pattern or drift in the time series is also an indicator of noise. However, manual screening of each 

component is a time consuming process and also requires a great deal of expertise and is subjective. Instead, 

a recently introduced automated denoising tool available as an FSL plugin- FMRIB’s ICA-based X-

noiseifier (FIX) can be used (Salimi-Khorshidi et al., 2014). FIX attempts to extract more than 180 distinct 

spatial and temporal features from each component. Spatial features capture various attributes of an IC’s 

spatial map while temporal features capture the dynamics of the time course which help in identifying an 

IC as “signal” or “noise”. Some of the temporal features that are estimated by FIX include skewness of 

time series, difference between time series mean and its median, time series jump characteristics, ratio of 

the sum of power above 0.1Hz to sum of power below 0.1Hz, comparing time series with their null model 

(i.e. convolving white noise with HRF), etc. Some of the spatial features that are estimated by FIX include 

spatial maps’ supra-threshold cluster-size distribution characteristics, balance of negative and positive 

voxels, edge-mask features, correlation with gray matter, cerebrospinal fluid and white matter masks, etc. 
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These features are fed to a hierarchical classifier which makes a decision whether a component is 

“signal” or “noise”. Components that do not fall in the “signal” or “noise” categories are identified as 

“unknown”. Once the signal and noise components are separated, the noise components are subtracted (or 

regressed) from the data. “Unknown” components are retained in the data.  

4.3 Cortical Reconstruction and Hippocampal Subfield Segmentation 

Cortical reconstruction and volumetric segmentation was performed with the Freesurfer image 

analysis suite, which is documented and freely available for download online 

(http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures are described in prior 

publications (Dale et al., 1999; Dale and Sereno, 1993; Fischl and Dale, 2000; Fischl, Liu and Dale, 2001; 

Fischl et al., 2002; Fischl et al., 2004; Fischl et al., 1999; Han et al., 2006; Jovicich et al., 2006; Segonne 

et al., 2004, Reuter et al. 2010, Reuter et al. 2012). Briefly, this processing includes motion correction and 

averaging (Reuter et al. 2010) of 𝑇1 - weighted images, removal of non-brain tissue using a hybrid 

watershed/surface deformation procedure (Segonne et al., 2004), automated Talairach transformation, 

segmentation of the subcortical white matter and deep gray matter volumetric structures (including 

hippocampus, amygdala, caudate, putamen, ventricles) (Fischl et al., 2002; Fischl et al., 2004a) intensity 

normalization (Sled, Zijdenbos and Evans, 1998) tessellation of the gray matter white matter boundary, 

automated topology correction (Fischl, Liu and Dale, 2001; Segonne, Pacheco and Fischl, 2007), and 

surface deformation following intensity gradients to optimally place the gray/white and gray/cerebrospinal 

fluid borders at the location where the greatest shift in intensity defines the transition to the other tissue 

class (Dale et al., 1999; Dale and Sereno, 1993; Fischl and Dale, 2000). Once the cortical models are 

complete, a number of deformation procedures can be performed for further data processing and analysis 

including surface inflation (Fischl et al., 1999), registration to a spherical atlas which is based on individual 

cortical folding patterns to match cortical geometry across subjects (Fischl et al., 1999b), parcellation of 

the cerebral cortex into units with respect to gyral and sulcal structure (Desikan et al., 2006; Fischl et al., 
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2004). Freesurfer morphometric procedures have been demonstrated to show good test-retest reliability 

across scanner manufacturers and across field strengths (Han et al., 2006; Reuter et al., 2012). 

Iglesias et al., 2015 manually segmented ultra-high resolution ex-vivo  𝑇1-weighted MRI scans of 

fifteen autopsy brain samples. The hippocampal formation was segmented into thirteen component 

substructures. High precision segmentation was achieved due to the ultra- high resolution of the  𝑇1 images. 

These segmentations along with a computational atlas building algorithm based on Bayesian inference 

methods are used for automatic segmentation of the hippocampal formation in FreeSurfer.  

4.4 Registration 

Registration refers to the spatial alignment of two or more images acquired from different 

modalities, e.g. registration of a low resolution 𝑇2
∗ scan (EPI image) to high resolution 𝑇1 structural image 

from the same individual. Registration involves estimating a set of parameters describing a spatial 

transformation that best matches the images together. This was achieved in two steps as shown in Figure 

4.2. First, the anatomical image  𝑇1 is registered to the mean functional image 𝑇2
∗ as shown in Figure 4.2 

(a). The 𝑇1 image is used as a moving image while the mean functional scan is used as the fixed image. 

The moving image is deformed to match the fixed image. This step produces an output matrix consisting 

of parameters describing the transformation. The hippocampal segmentation and cortical reconstruction 

described in the previous section were acquired using a  𝑇1 image. Therefore, the transformation matrix 

from the first step can be applied to the segmentation to map the segmentation to functional space as shown 

in Figure 4.2 (b). An open-source software Advanced Normalization Tools (ANTs) freely available for 

download online (http://picsl.upenn.edu/software/ants/) was used for registration of segmentation to the 

functional image (Avants et al., 2008). The registration step enables one to link the anatomical to the 

functional scans which can then be used for further processing. 
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4.5 The General Linear Model 

This section introduces and provides a brief review of the General Linear Model (GLM) in context with its 

application to fMRI. The GLM has become the core tool for fMRI data analysis after its introduction to 

(a) (b) 

Figure 4.2: Two-step process for registration of the subfields to the functional scan. (a) The anatomical 

𝑇1- weighted image is registered to the mean functional image𝑇2
∗. This process produces a 

transformation matrix. (b) The transformation matrix can be applied to the hippocampal 

subfield segmentation obtained from FreeSurfer since the segmentation is derived from the 

𝑇1-weighted image. 
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neuroimaging by Friston and colleagues (Friston et al., 1994). The most common approach is a mass 

univariate analysis which constructs a model for each voxel independently.  

GLM treats the observed fMRI time course as a linear combination of predictor variables. Linear refers to 

the weighted sum of several predictor variables. The GLM is defined by the equation:  

𝑌 = 𝑋𝛽 +  𝜀                     𝜀 ~ 𝑁 (0, 𝑉) 

where Y is the observed fMRI time course of a voxel, matrix X comprises of predictor time courses or the 

BOLD response as column vectors and is known as the design matrix and 𝛽 are associated coefficients of 

X, quantifying its potential contribution in explaining the voxel time course y. 𝜀 represents the residual 

errors, prediction errors or noise which quantify the deviation of the measured voxel time course from the 

predicted time course. 

In the matrix form the General Linear Model can be expressed as,  

[
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The design matrix X comprises of predictor time courses or the BOLD response as column vectors.  The 

BOLD signal is modeled as a convolution of the reference function with the hemodynamic response 

function (HRF) as shown in Figure 4.3.  The reference function, also called as regressor, corresponds to 

the ideal time course of expected BOLD response. It is represented as a box-car function with active 

conditions defined by values 1 (‘on state’) and 0 (‘off state’) at all other time points for different conditions 

 of the experimental paradigm. The regressors of interest for this study are summarised in the Table 4.1. 

The Difference of Gamma functions HRF model is used similar to (Glover, 1999).  

(4.3) 

(4.4) 
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Table 4.1: The regressors of interest. 

Regressor Description 

E0|E0 Participant correctly responded ‘E0’ 

when the E0 condition was presented. 

(a) 

Figure 4.3: Modelling the BOLD response. (a) The reference function is specified as a box-car function 

with ‘1’ indicating the ‘ON’ condition and ‘0’ indicating the ‘OFF’ condition. This function 

is convolved with (b) the hemodynamic response function to produce (c) the expected BOLD 

signal. 

(b) 

 

(c) 
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~E0|E0 Participant did not respond ‘E0’ when the 

E0 condition was presented. 

E1|E1 Participant correctly responded ‘E1’ 

when the E1 condition was presented. 

~E1|E1 Participant did not respond ‘E1’ when the 

E1 condition was presented. 

E2 E3 E4|E2 Participant responded ‘E2’, ‘E3’ or ‘E4’ 

when the E2 condition was presented. 

~E2 E3 E4|E2 Participant did not respond ‘E2’, ‘E3’ or 

‘E4’ when the E2 condition was 

presented. 

E2 E3 E4|E3 Participant responded ‘E2’, ‘E3’ or ‘E4’ 

when the E3 condition was presented. 

~E2 E3 E4|E3 Participant did not respond ‘E2’, ‘E3’ or 

‘E4’ when the E3 condition was 

presented. 

E2 E3 E4|E4 Participant responded ‘E2’, ‘E3’ or ‘E4’ 

when the E4 condition was presented. 

~E2 E3 E4|E4 Participant did not respond ‘E2’, ‘E3’ or 

‘E4’ when the E4 condition was 

presented.  

N duration The duration for which the baseline 

stimulus was presented (3s). 

Begin duration Ten seconds countdown before the task. 

Blank Duration The 1s rest/blank period after a stimulus. 

Blank Duration after 

number stimulus 

The 1s rest/blank period after a baseline 

stimulus. 

End The duration after the end of the task 

while scanner is still on. (~10.7s) 

 

Given the observed data y and the design matrix X, the goal of the GLM is to find a set of 𝛽 such 

that the sum of square error is minimized. The predictor time courses for the model are given by: 

𝑦̂ = 𝑋𝛽 (4.5) 
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Therefore rearranging the equations, we get: 

𝜀 = 𝑦 − 𝑋𝛽 = 𝑦 − 𝑦̂  

The sum of squared error becomes: 

𝜀𝜀′ = 𝜀2 = (𝑦 − 𝑋𝛽) (𝑦 − 𝑋𝛽)′ 

The optimal 𝛽 estimates are the least square estimates determined by, 

𝛽 = (𝑋′𝑋)−1𝑋′𝑦 

The term 𝑋′𝑋 results in a square matrix with number of rows and columns corresponding to the number of 

predictors. Each value contained in the 𝑋′𝑋 matrix is a scalar product of two predictor vectors. The scalar 

product is obtained by summing all products of corresponding entries of two vectors corresponding to the 

calculation of covariance. This 𝑋′𝑋 matrix, thus, corresponds to the predictor variance-covariance matrix. 

Each term in the 𝑋′𝑦 matrix is a scalar product (covariance) of a predictor time course with the observed 

voxel time course. 

4.6 Algorithm for deconvolution of time series 

Deconvolution of the time series was performed using a cross-validation approach (e.g. Mahmoudi 

et al., 2012). Cross-validation was carried out in two steps:  in the estimation step, using one half of the 

time series a set of parameters of the hemodynamic response function (HRF) were estimated. In the 

validation step, using the other half of the time series, the best set of parameters is determined by choosing 

the set of parameters from the previous step that minimize the optimization criterion. These steps were 

repeated by interchanging the part of the time series used for estimation and validation. The average of 

parameters from the two processes was considered to be the optimal set of parameters for a given voxel.  

(4.6) 

(4.7) 

(4.8) 
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In the following sections, details of the algorithm are specified. The algorithm is summarized in a flowchart 

in Figure 4.5. 

4.6.1 Selection of voxels 

             The individual segmentation produced by FreeSurfer are registered to the mean functional scan of 

a run for a given participant. The segmentation can now be overlaid on the corresponding pre-processed 4-

dimensional functional run to select a region of interest (ROI). The co-ordinates of the voxels of the mean 

functional scan overlapping with the segmentation are recorded. The time series for individual voxels for 

a given run are extracted by recording the voxel’s values at each of these co-ordinates from all the 

functional scans. The number of voxels recorded within each sub-region averaged across all participants 

are summarised in Table 4.2. 

 

Table 4.2:  Number of voxels recorded within each sub-region averaged across all the participants and 

their corresponding standard deviations. 

Sub-region Left Right 

CA1 169 ± 15 184 ± 23 

CA3 66 ± 7 70 ± 12 

Subiculum 94 ± 19 119 ± 21 

Dentate Gyrus 103 ± 5 108 ± 11 

Entorhinal Cortex 240 ± 28 288 ± 34 

Perirhinal Cortex 210 ± 22 232 ± 27 

Parahippocampal Cortex 497 ± 35 568 ± 41 
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4.6.2 Hemodynamic response function model  

Various forms of the hemodynamic response function (HRF) such as Poisson model (Friston et al., 

1994), Gamma model (Boynton et al., 1996), Gaussian model (Rajapakse et al., 1998) and Difference of 

Gamma model (Friston et al. 1998) have been introduced.  In this study, the widely used Difference of 

Gamma HRF model is used which is able to model the delay and undershoot observed in the hemodynamic 

response. The “standard” Difference of Gamma HRF which can be expressed as, 

ℎ𝑟𝑓 = (
𝑡
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)
6

𝑒−(𝑡−6) − 
1

6
(

𝑡
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)
16
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The general HRF is modeled by making 6 and 16 arbitrary constants.  

Substituting 𝑎1 = (
1

6
)
6
𝑒6, 𝑎2 = 6, 𝑎3 = (

1

16
)
16

𝑒16, 𝑎4 = 16 

 

 

ℎ𝑟𝑓 = ( 𝑎1𝑡
𝑎2 − 𝑎3𝑡

𝑎4) 𝑒−𝑡 

 

Therefore, a seven parameter HRF can be reduced to a four parameter HRF for simplifying the estimation 

process. We can normalize the HRF using 𝑎1 = 1. The remaining three parameters of the HRF can be 

abbreviated by,  

𝑥 = {𝑎2, 𝑎3, 𝑎4} (4.13) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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4.6.3 Estimation of the HRF parameters 

The observed time course of a voxel is split into two halves. One half of the time series is used for 

estimation, other half is used for validation step. The design matrix X is first set up with the columns as 

regressors. The regressors of interest are summarised in the Table 4.1. E0 represents a new stimulus, E1 

represents a repeated stimulus with same distance between objects, E2 represents a repeated stimulus with 

small distance change between objects, E3 represents a repeated stimulus with medium distance change 

between objects, and E4 represents a repeated stimulus with a large change in distance between objects. 

These regressors are convolved with the HRF to create a design matrix X. Since the TR at which original 

data is acquired is 0.765s, the design matrix is also sampled every 0.765s. The β or the linear least squares 

solution 𝑋+ 𝑦. 

A set of optimal parameters that minimizes the optimization criterion are determined for different 

values of average curvature (𝜇) of HRF. The objective function or optimization criterion is then stated as:  

{𝑥,µ} = argmin
𝑥

((𝑥) +   |∫ |
𝜕2 ℎ𝑟𝑓(𝑥, 𝑡)

𝜕𝑡2
|

30𝑠

0

𝑑𝑡 −  𝜇|)   for fixed , μ 

 

where (𝑥) is the mean squared error computed as the variance of (y - X β). The penalty term  is L1 

norm-type that penalizes the curvature of the HRF. According to the concepts of numerical optimization, 

the L1 norm-type penalties are exact and it is sufficient to find one appropriate value of  that is large 

enough where solution of equality constraint is satisfied for a given average curvature µ (Nocedal and 

Wright, 2006). In our case, =1 for all µ ϵ [1, 30]. The term ∫ |
𝑑2 ℎ𝑟𝑓(𝑥,𝑡)

𝑑𝑡2 |
30𝑠

0
𝑑𝑡  represents the curvature 

of the HRF averaged over the typical time duration of an HRF i.e. 0-30s. The optimization problem is 

solved using the common Nelder-Mead algorithm, a derivative-free optimization method available in 

MATLAB (The MathWorks, Inc.).  

(4.14) 
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4.6.4 Validation of parameters  

Once a set of optimal parameters for each curvature of HRF (𝜇) are determined, the other half of 

the time course is chosen. The HRF is set up using parameters obtained from the previous step. The 

optimized parameters are determined by,  

𝑥,µ
∗ = arg min

{𝑥,µ̃}
((𝑥)) 

4.6.5 Determining the best parameters 

The estimation and validation steps are repeated by interchanging the part of time course used for 

each step. Another optimal set of parameters are generated using this approach. The best parameters are 

determined by calculating the mean of the parameters determined from the two approaches. The mean of 

the parameters is considered to be the optimal set of parameters for the given voxel. 

 

 

 

 

 

 

 

 

 

(4.15) 
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For each voxel, split the time series into two. Choose Data1 = first half of the time 

series. Data2 = second half of the time series. 

 

For each voxel, split the time series into two. Choose Data1 = first half of the time 

series. Data2 = second half of the time series. Set up the design matrix 𝑋 = [𝑋1 …𝑋15] and sample at TR = 0.765s. 

Calculate residual squared error  = 𝜀𝜀′ = 𝜀2 = (𝑦 − 𝑋𝛽) (𝑦 − 𝑋𝛽)′ 

Where y is one half of the voxel time series and 𝑏 =  𝑋+ 𝑦 is the linear least squares solution for 

GLM. Determine optimal set of parameters for each mu that minimizes the optimization criterion: 

{𝑥,µ} = argmin
𝑥

((𝑥) +   |∫ |
𝑑2 ℎ𝑟𝑓(𝑥, 𝑡)

𝑑𝑡2
|

30𝑠

0

𝑑𝑡 −  𝜇|)   𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 , 𝜇 

 

Set up the design matrix 𝑋 = [𝑋1 …𝑋15] and sample at TR = 0.765s. 

Calculate residual squared error  = 𝜀𝜀′ = 𝜀2 = (𝑦 − 𝑋𝛽) (𝑦 − 𝑋𝛽)′ 

Where y is one half of the voxel time series and 𝑏 =  𝑋+ 𝑦 is the linear least squares solution for 

GLM. Determine optimal set of parameters for each mu that minimizes the optimization criterion: 

{𝑥,µ} = argmin
𝑥

((𝑥) +   |∫ |
𝑑2 ℎ𝑟𝑓(𝑡)

𝑑𝑡2
|

30𝑠

0

𝑑𝑡 −  𝜇|)   𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 , 𝜇 

Using each set of parameters obtained from the previous step, the value of the optimization 

criterion is determined for the other half of the time series. The set that gives the minimum 

value of optimization criterion is the optimal set for a specific time series. 

𝑥,µ
∗ = arg min

{𝑥,µ̃}
((𝑥)) 

 

Using each set of parameters obtained from the previous step, the value of the optimization 

criterion is determined for the other half of the time series. The set that gives the minimum 

value of optimization criterion is the optimal set for a specific time series. 

𝑥,µ
∗ = arg min

{𝑥,µ̃}
((𝑥)) 

Average of the parameters from the two iterations is used to determine the HRF for 

the given time series. 

 

Average of the parameters from the two iterations is used to determine the HRF for 

the given time series 
Figure 4.4: Flowchart of the algorithm. 

Choose Data1 = second half of the time series. 

Data2 = First half of the time series. 
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 Results 

5.1 Overview 

Independent components analysis (ICA) was used for obtaining independent spatial maps and 

associated time courses of the fMRI data set for each participant. Pre-processing was performed using FIX 

to remove the noise components. The pre-processed data-set along with the hippocampal subfields and 

cortical labels are used to obtain the hemodynamic response functions of the different regions. 

In this chapter, the independent components generated by ICA are presented. A visual inspection of 

the components is carried out to illustrate how ‘signal’ and ‘noise’ components are identified by FIX. Next, 

the segmentation of the hippocampal formation and the cortical reconstruction are shown. The 

hippocampal subfields obtained after the segmentation process are registered to the functional MRI scan. 

Lastly, the hemodynamic response functions of the hippocampal and parahippocampal regions are 

presented. 

5.2 Independent Components Analysis Results 

The ICA process for each fMRI data-set using FSL’s MELODIC takes about 72- 96 hours to 

complete. Since an 8 core workstation was used for this study, it was possible to process 3-4 fMRI data-

sets simultaneously. Example of two independent spatial maps as estimated by ICA are shown in Figure 

5.1. The corresponding z-scores for both spatial maps are presented indicating the regions of activation 

(blue), inactivation (yellow) and intermediate activation/inactivation. As can be seen from Figure 5.1(a), 

the activation clusters in component 1 are fairly small in size and uniformly spread throughout the spatial 

map. These activation are not within the white matter- grey matter boundaries indicating that this 
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component is a noise component. This can be further confirmed by inspecting the power spectrum and the 

time course of the signal. As seen in the power spectrum Figure 5.2(a), a large proportion of the signal 

belongs to the high frequency range. The time course of the signal demonstrated a sawtooth like pattern 

indicating the signal is due to noise or artefact.  

As seen in Figure 5.1(b), the activation clusters are large in size and localised within the grey matter 

or white matter boundaries. A major proportion of the power spectrum of component in Figure 5.2(b) lies 

in the low frequency range and the time course does not look artefact related. Therefore this component 

can be identified as a signal component. Since manual classification of components is subjective and rather 

time consuming, FIX is used for classification of the components instead. It takes about 6-8 hours for the 

FIX process to complete. 

 

 

 

 

 

 

  

(a) 

 
(b) 

 

Figure 5.1: Example of spatial component maps generated by ICA. (a) Component 1: Noise (b) Component 

2: Signal. 
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(a) 

(b) 

 

Figure 5.2: The power spectrum and time course associated with the spatial maps. (a) Component 1: Noise. 

(b) Component 2: Signal. 
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5.3 Hippocampal Formation Segmentation 

Segmentation of the hippocampal formation was performed using FreeSurfer tools. FreeSurfer takes 

about 10-12 hours for cortical reconstruction along with hippocampal segmentation of each  𝑇1-weighted 

scan.  The segmented hippocampal formation overlaid on the 𝑇1 weighted MR image are shown in Figures 

5.3 and 5.4. The participant number is indicated on the top left corner of each image. For each participant, 

the segmented hippocampal formation is shown in the axial (top) and coronal (bottom) slices passing 

through the medial temporal lobe.   

1 

 

2 

 

4 

 

Figure 5.3: Segmented hippocampal formation for participants 1 through 4 overlaid on a 𝑇1- weighted MR 

image. Blue, red, green and cyan colors indicate the subiculum, CA1, CA3 and dentate gyrus 

subfields respectively. 

3 
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5 

 

6 

7 

 

Figure 5.4:  Segmented hippocampal formation for participants 5 through 7 overlaid on a 𝑇1-weighted MR 

image. Blue, red, green and cyan colors indicate the subiculum, CA1, CA3 and dentate gyrus 

subfields respectively. 

3 
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5.4 Cortical Reconstruction 

The entorhinal cortex, perirhinal cortex and parahippocampal cortex labels are obtained through 

cortical parcellation of the 𝑇1 - weighted image using FreeSurfer tools. These cortical labels are overlaid 

on an inflated left and right hemisphere of each participant’s brain as shown in Figure 5.5, 5.6. The 

participant number is indicated on the top left corner of each image. 

1 

 

2 

 

3 

 

4 

 

3 

Figure 5.5: Cortical labels for participants 1 through 4, overlaid on the left (left panel) and right (right 

panel) inflated hemispheres. Yellow, blue and magenta colors indicate the parahippocampal, 

entorhinal and perirhinal cortices respectively. 
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5 

6 

7 

Figure 5.6: Cortical labels for participants 5 through 7, overlaid on the left (left panel) and right (right 

panel) inflated hemispheres. Yellow, blue and magenta colors indicate the parahippocampal, 

entorhinal and perirhinal cortices respectively. 



 
51 

 
 

 

5.5 ANTs Registration 

The cortical labels and hippocampal subfields that are obtained from the parcellation and 

segmentation of 𝑇1-weighted image respectively are aligned to the low-resolution functional image. This 

transformation of the labels and subfields to the functional image is implemented using ANTs tools. The  

transformed hippocampal subfields overlaid on the functional image is shown in Figure. 5.7.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

(b) 

(c) 

 

(c) 

Figure 5.7: The hippocampal subfields after registration to the mean functional scan 𝑇2
∗ as seen in the (a) 

axial (b) sagittal and (c) coronal slices. 

(a) 

 

(c) 
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5.6 Hemodynamic Response Functions 

The optimized parameters of the hemodynamic response functions (HRF) of the different 

hippocampal and parahippocampal substructures were estimated using the algorithm described in section 

4.6. The cross-validation result for one of the voxels is shown in Figure 5.8. It explicitly shows how the 

functional form of the HRF changes for the average curvature μ = ∫ |
𝜕2 ℎ𝑟𝑓(𝑡)

𝜕𝑡2 |
30𝑠

0
𝑑𝑡.  For three different 

values of µ= 2.7, 4.5, 7.1 the functional form of the HRF is shown in figures A, B and C. The best HRF 

has two maximas and minimum. Therefore, the best estimate of HRF is given by the parameters that 

minimize the optimization criterion.  

The hemodynamic response functions for the left and right MTL substructures are plotted for 

individual subjects in Figures 5.9-16. Note that the hemodynamic response functions are variance 

normalized. For each hemodynamic response function one of the important characteristics, the time taken 

to attain maximum amplitude or referred to here as the time-to-peak, was also computed and compared 

using a bar graph.  

The uncertainties in the function HRF were determined using propagation of error rule. Since HRF 

is a combination of non-linear variables 𝑎2, 𝑎3 and 𝑎4 propagation of error can be given by Taylor series 

expansion. The standard deviation in the function HRF is given by:  

𝑠ℎ𝑟𝑓 = √(
𝜕ℎ𝑟𝑓

𝜕𝑎2
)
2

𝑠𝑎2
2 + (

𝜕ℎ𝑟𝑓

𝜕𝑎3
)
2

𝑠3
2 + (

𝜕ℎ𝑟𝑓

𝜕𝑎4
)
2

𝑠𝑎4
2  

where 𝑠ℎ𝑟𝑓 represents the standard deviation or uncertainty of the function HRF, 𝑠𝑎2
 represents the standard 

deviation of variable 𝑎2, 𝑠𝑎3
 represents the standard deviation of variable 𝑎3, and 𝑠𝑎4

 represents the 

standard deviation of variable 𝑎4.  Table 5.1 summarizes the average time-to-peak (time delay in achieving 

maximum amplitude) for the sub-regions and the associated uncertainties of the hemodynamic response 

function at the time point when the peak amplitude occurs.  

(5.1) 
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C 
 

C 

Figure 5.8:  Result for the validation step of one of the voxels. The best HRF is obtained at the minimum of 

the objective function (µ = 4.5). The graph depicts how the functional form of the HRF changes 

with µ. Three hemodynamic response functions are shown above the graph corresponding to 

µ=2.7 (small figure A), µ=4.5 (small figure B) and µ=7.1 (small figure C). 

A 
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Figure 5.9: The physiological hemodynamic response functions averaged across all voxels within a sub-

region from both runs for participant #1. (a) HRF for right medial temporal lobe structures. (b) 

HRF for left medial temporal lobe structures. (c) Comparison of the average time-to-peak of the 

HRF and error bars representing its associated standard deviation. 
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Figure 5.10: The physiological hemodynamic response functions averaged across all voxels within a sub-

region from both runs for participant #2. (a) HRF for right medial temporal lobe structures. (b) 

HRF for left medial temporal lobe structures. (c) Comparison of the average time-to-peak of the 

HRF and error bars representing its associated standard deviation. 
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Figure 5.11: The physiological hemodynamic response functions averaged across all voxels within a sub-

region from both runs for participant #3. (a) HRF for right medial temporal lobe structures. (b) 

HRF for left medial temporal lobe structures. (c) Comparison of the average time-to-peak of the 

HRF and error bars representing its associated standard deviation. 
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Figure 5.12: The physiological hemodynamic response functions averaged across all voxels within a sub-

region from both runs for participant #4. (a) HRF for right medial temporal lobe structures. (b) 

HRF for left medial temporal lobe structures. (c) Comparison of the average time-to-peak of the 

HRF and error bars representing its associated standard deviation. 
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(a) 

Figure 5.13: The physiological hemodynamic response functions averaged across all voxels within a sub-

region from both runs for participant #5. (a) HRF for right medial temporal lobe structures. (b) 

HRF for left medial temporal lobe structures. (c) Comparison of the average time-to-peak of the 

HRF and error bars representing its associated standard deviation. 
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Figure 5.14: The physiological hemodynamic response functions averaged across all voxels within a sub-

region from both runs for participant #6. (a) HRF for right medial temporal lobe structures. (b) 

HRF for left medial temporal lobe structures. (c) Comparison of the average time-to-peak of the 

HRF and error bars representing its associated standard deviation. 
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Figure 5.15: The physiological hemodynamic response functions averaged across all voxels within a sub-

region from both runs for participant #7. (a) HRF for right medial temporal lobe structures. (b) 

HRF for left medial temporal lobe structures. (c) Comparison of the average time-to-peak of the 

HRF and error bars representing its associated standard deviation. 
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Table 5.1: Summary of time-to-peak (in seconds) for the left and right sub-regions and their associated 

propagated uncertainties calculated using the Equation 5.1. 

Participant#   CA1 CA3 DG PeriC ParaC EntoC Sub 

1 
R 3.5±0.082 2.4±0.088 2.4±0.088 2.4±0.088 3.3±0.083 2.5±0.083 2.7±0.087 

L 3.5±0.042 3.4±0.048 3.0±0.065 3.7±0.031 3.4±0.050 3.0±0.072 3.3±0.048 

2 
R 3.0±0.060 2.5±0.079 2.5±0.076 2.6±0.095 1.9±0.081 2.7±0.104 2.5±0.077 

L 2.4±0.088 1.8±0.124 2.6±0.078 2.7±0.068 3.3±0.056 2.0±0.115 3.2±0.051 

3 
R 2.9±0.055 1.8±0.083 2.0±0.086 1.6±0.100 2.2±0.083 1.2±0.102 1.6±0.083 

L 1.7±0.087 3.4±0.057 2.3±0.081 2.7±0.081 2.4±0.079 2.7±0.084 2.2±0.080 

4 
R 3.3±0.049 2.1±0.083 2.5±0.074 2.5±0.073 2.7±0.074 2.5±0.077 2.3±0.077 

L 3.2±0.052 3.2±0.055 2.7±0.070 2.8±0.062 2.8±0.066 2.5±0.072 3.0±0.064 

5 
R 2.4±0.078 1.4±0.096 1.6±0.094 1.5±0.098 1.7±0.086 1.6±0.101 2.4±0.073 

L 1.5±0.097 1.9±0.087 2.7±0.065 1.2±0.098 2.2±0.088 2.3±0.076 2.8±0.063 

6 
R 3.6±0.049 1.1±0.103 1.9±0.098 1.8±0.093 2.8±0.076 2.5±0.065 3.8±0.039 

L 3.0±0.064 2.8±0.112 3.4±0.093 2.4±0.091 3.0±0.070 2.8±0.076 3.1±0.036 

7 
R 2.6±0.077 2.2±0.097 3.1±0.052 2.1±0.090 1.9±0.099 2.1±0.092 2.3±0.098 

L 3.1±0.060 3.0±0.057 3.3±0.047 2.0±0.096 3.0±0.067 2.7±0.080 2.6±0.071 

 

 

An independent-samples t-test was used to determine if there were differences in the time-to-peak 

between CA1 and CA3 as well as between CA1 and DG. The t-test revealed that for six out of seven 

participants, the time taken by hemodynamic response of the CA1 subfield is significantly greater than the 

time taken by hemodynamic response of the CA3 subfield (Participant #1: t (128) = 1.99, p = 0.024; 

Participant #2: t (142)= 2.46, p= 0.007; Participant #3: t (108)= 2.69, p= 0.005; Participant #4: t (244)= 

2.38, p= 0.009; Participant #5: t (175)= 4.72, p= 0.0002; Participant #6: t (142)= 2.46, p= 0.007; Participant 

#6: t (175)= 4.72, p= 0.0002) but not for participant #7 (t(219)=1.29, p= 0.09).  Another set of t-tests for 

testing difference between the time-to-peak between CA1 and DG was carried out.  It was found that for 

five participants, the time-to-peak for CA1 was significantly higher than time-to-peak for DG (Participant 

#1: t (130) = 2.08, p = 0.01; Participant #3: t (186)= 2.28, p= 0.01; Participant #4: t (270)= 2.071, p= 0.019; 

Participant #5: t (215)= 3.841, p= 0.0008; Participant #7: t (318)= 2.393, p= 0.008) but not for two 

participants (Participant #2: t (115)= 6.169, p= 0.269 and Participant #7: t(188) = 1.791, p=0.963).   
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 Discussions &  

Conclusions 

The independent components obtained after ICA that were pre-processed using FIX were also 

manually investigated for any possible signal components that may have been regressed out in the process. 

Overall, FIX performed well in eliminating the noise components while retaining the signal components 

and ‘unknown’ components. As seen from the Figures 5.3- 6 the hippocampal segmentation using 

FreeSurfer achieved satisfactory delineations of the CA1, CA3, DG and subiculum volumes. Furthermore, 

the cortical labels for entorhinal, perirhinal and parahippocampal cortex represent every location that could 

possibly be in either label. Unless they could be predicted perfectly, there exists a minor overlap since the 

labels share a border. ANTs registration was performed in an effort to transform the volumes/labels 

obtained from the segmentation of the 𝑇1 anatomical scan to the 𝑇2
∗ functional scan. This registration 

allowed for obtaining the time courses of the voxels in the regions of interest for further processing. 

The primary goal of this research was to compute and compare the hemodynamic response functions 

of the hippocampus (CA1, CA3 and DG), entorhinal cortex and the parahippocampal regions (perirhinal 

cortex and parahippocampal cortex) in both hemispheres between subjects as well as between regions 

within a subject. The optimization algorithm proposed in this thesis identified these differences in the 

hemodynamic responses. As observed from the plots of the hemodynamic responses in the previous 

chapter, the responses varied from person to person. Even though each participant performed a similar 

spatial memory task, their hemodynamic responses are quite different from one another. Furthermore, it 

was hypothesized that for an individual, the medial temporal lobe substructures may exhibit distinct 

hemodynamics in response to the spatial task. The results from the present study have provided evidence 
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of this distinction between the hippocampal and parahippocampal regions. The hemodynamic responses of 

each sub-region was found to be different from the other. These findings support the idea that the 

hemodynamic responses are subject specific and region specific (Boynton et al., 1996; Richter, Ugurbil 

and Kim, 1996; Zarahn, Aguirre and D'Esposito, 1998).  

An interesting feature of the hemodynamic responses that was common to all the regions and 

participants is that they do not possess an ‘undershoot’ unlike a typical hemodynamic response function 

discussed in section 2.4.2. Since short stimulus durations, like 3s used in this study, do not allow for pooling 

of oxygenated Hb from remote vasculature, the amount of deoxygenated Hb generated is small leading to 

no undershoot in the signal. Additionally, for a typical hemodynamic response function, the maximum 

amplitude occurs at about 5-6s after it has been stimulated. In contrast, the hemodynamic responses 

observed in this study achieved maximum amplitudes in much shorter times (< 5s). These characteristics 

of the hemodynamic responses observed suggest that the medial temporal lobe structures were greatly 

active during the spatial memory task.  

Previous studies have established the role of the right MTL in spatial memory and the left MTL in 

episodic memory. The present study investigated the role of the right MTL in a spatial memory task. This 

was determined by comparing the hemodynamic responses of the left MTL substructures to those of the 

right MTL substructures. In most cases, it was found that the right MTL substructures achieved maximum 

amplitude in times shorter than the left medial temporal lobe structures. This indicates that the right MTL 

substructures achieved overall higher firing rates than the left MTL substructures. This behaviour of the 

left hippocampal and parahippocampal regions further corroborated with the previous findings that suggest 

that the left MTL structures may be not be supporting spatial memory. Moreover, these outcomes suggest 

the substantial involvement of the right hippocampal and parahippocampal sub-regions in spatial memory 

processing. The right MTL substructures operate in conjunction with other networks and brain structures. 

Therefore, any claim that the MTL structures are required for spatial memory does not mean that other 

brain areas are not involved as well. 



 
64 

 
 

 

A study conducted by Bakker and colleagues in 2008 showed that the CA3/DG subfields of the 

hippocampus are more likely to fully remap than CA1 across similar environments (pattern separation like 

signal). Therefore, it is hypothesized that the CA3 and DG sub-regions fire at rates higher than the CA1 

sub-region. In the present study, the hemodynamic responses of the CA3/DG sub-regions are compared 

with the CA1 sub-regions for each subject to quantify the differential activity. In particular, the time taken 

by the hemodynamic responses of the sub-regions to attain maximum amplitude was compared. In most 

cases, a t-test revealed statistically significant differences between the CA1 and CA3 sub-regions as well 

as CA1 and DG sub-regions. These findings confirm that the firing rates of CA3/DG are higher than the 

CA1 subfield during spatial memory tasks.  

By virtue of its anatomy, the entorhinal cortex acts as a neocortical ‘gate-keeper’. It receives very 

highly processed multimodal input from the neocortical regions (perirhinal and parahippocampal cortex in 

particular) and relays synaptic information from the hippocampal formation. The entorhinal cortex, 

perirhinal cortex and parahippocampal cortex are closely associated to the hippocampal formation. 

Therefore the findings that the hippocampal formation is crucially involved in spatial memory processes 

suggests that this should also be the case for the entorhinal cortex, perirhinal cortex and parahippocampal 

cortex. Although the specific functional contributions of these cortical regions to spatial memory remain 

to be established, they are most likely different from, but complementary to those of the hippocampus. As 

seen from the plots of hemodynamic responses in the previous chapter the right entorhinal, perirhinal and 

parahippocampal cortices demonstrated characteristics similar to those of the hippocampal formation. 

These findings promote the hypothesized involvement of the right entorhinal, perirhinal and 

parahippocampal cortex in spatial memory and are convergent with the findings of previous studies 

(Sargolini et al., 2006; Pihlajamaki et al., 2004; Ploner et al., 2000). 

The ability to remember and navigate spatial environments is critical for everyday life. So far it has 

been established that the hippocampus and its surrounding cortical structures are crucial for spatial 

memory. Studies in the past have shown that the DG subfield is particularly vulnerable to the effects of 
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aging (West, 1993) and the dysfunction of the hippocampus is one of the first symptoms of AD (e.g. Kolb 

and Wishaw, 1996). Therefore comprehending the functions of these structures is important.  The present 

research is an attempt to understand the underlying physiological processes of the MTL substructures.  The 

findings of this research may allow us a greater understanding of how the human brain actually works. 

Furthermore, we can take this basic understanding of the brain and use it for the future treatment of 

neurological disorders.  

A strength of this research is that the computed hemodynamic response functions were derived using 

an optimization algorithm implementing a cross validation approach instead of a convolution approach. 

The hemodynamic response function was parametrized with forms previously established and the 

parameters of the hemodynamic response function were allowed all possible values.  A second order 

derivative and constraints were explicitly introduced to allow for subject specific variations of the 

hemodynamic response function. Each time course was split into two datasets and each dataset was used 

once for estimation and once for validation. The average from the two approaches thus provided the most 

optimal estimation of parameters of the hemodynamic response function.  

One of the limitations of this study is that only 7 out of 24 participants that were scanned were 

included in the analysis of the study. A greater sample size would have given greater power to detect 

differences. However, the remaining 17 participants had to be eliminated either due to poor performance 

during the spatial memory paradigm and/or due to a great deal of head motion during scanning that 

negatively impacted the image quality. Secondly, the participants chosen for the study belonged to a narrow 

age group. The reason for this was since the scanning was carried out at the MRI facility at the University 

of Colorado, Boulder, it was convenient to recruit university students. Therefore the participants chosen 

for this study belonged to the 21- 30 year age group. Due to the exclusion of the elderly in this study I was 

unable to assess the impact of age on spatial memory performance. Lastly, the relationship of the left MTL 

structures in episodic memory were unexplored. An additional paradigm for episodic memory may have 

aided in understanding the physiological hemodynamics of the left MTL substructures, however this would 

http://www.sciencedirect.com/science/article/pii/S0896627302008309#BIB82
http://www.sciencedirect.com/science/article/pii/S0896627302008309#BIB82
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require additional scanning time which in turn would increase the problem associated with subject motion 

and also be expensive.  

As discussed in this thesis the right hippocampal formation and its associated structures are central to 

spatial memory. Now that our insights into the physiological hemodynamics of the hippocampal and 

parahippocampal regions are much more detailed, a future step would be to perform dynamic functional 

connectivity analysis, a technique to probe the relationship between spatially separated brain areas, in order 

to understand the integrated relationship between these structures.  

To summarize, the optimization algorithm proposed allows for estimation of the hemodynamic 

characteristics from the BOLD signal. This study shows that the parahippocampal regions and the 

hippocampal formation are critically involved in spatial memory. The differentiation of the hemodynamic 

function between the regions of the hippocampal formation and adjacent parahippocampal structures is 

demonstrated in this work. Decoding the physiological processes has revealed the fundamental 

characteristics of the MTL substructures in response to a specific spatial memory task. 

In conclusion, this research found evidence for the predicted difference between the time-to-peak 

characteristic of the hemodynamic response function of the MTL structures to a specific spatial memory 

task. These results are also consistent with a theoretical view which holds that the right MTL substructures 

play a crucial role in spatial memory. Additionally, it was also found that the hemodynamic response 

functions are different for different individuals. 
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Appendix 

Appendix A: The accuracy (percent correct responses) and response time (in seconds).  

 

Subject ID Run Accuracy (%) Response Time (s) 

0 1 72.23 1.522 

 2 74.23 1.364 

1 1 82.67 1.693 

 2 87.56 1.595 

2 1 47.56 2.172 

 2 60.67 1.9 

5 1 72.45 1.738 

 2 82 1.654 

7 1 63.78 1.738 

 2 61.11 1.31 

8 1 65.56 2.159 

 2 51.78 2.027 

13 1 63.34 1.782 

 2 47.12 1.67 

15 1 74 1.903 

 2 77.78 1.683 

16 1 64.23 1.535 

 2 66.45 1.424 

20 1 67.56 1.914 

 2 76.45 1.771 

30 1 70.45 1.863 

 2 71.78 1.76 

33 1 67.56 1.509 

 2 76.89 1.539 
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Subject ID Run Accuracy (%) Response Time (s) 

36 1 75.11 2.259 

 2 76.44 2.04 

39 1 64.67 1.626 

 2 68.22 1.574 

44 1 66 1.658 

 2 65.34 1.582 

47 1 69.11 2.1 

 2 70 1.71 

52 1 54.67 2.175 

 2 69.56 2.134 

58 1 75.11 1.817 

 2 74 1.754 

70 1 57.78 1.744 

 2 66.89 1.693 

85 1 63.55 1.778 

 2 72.22 1.588 

89 1 73.12 1.942 

 2 78 1.607 

131 1 75.12 1.691 

 2 80.89 1.762 

141 1 72.67 1.487 

 2 78.23 1.42 

144 1 58.67 1.67 

 2 74.23 1.572 
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