

CONGESTION AWARE ADAPTIVE ROUTING

FOR NETWORK-ON-CHIP COMMUNICATION

by

Stephen Chui

Bachelor of Engineering

Ryerson University, 2012

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada

© Stephen Chui, 2016

ii

Author Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

Congestion Aware Adaptive Routing For Network-On-Chip

Communication

Stephen Chui

Master of Applied Science, 2016

Electrical and Computer Engineering

Ryerson University

Abstract

Network-On-Chip (NoC) has surpassed the traditional bus based on-chip communication

in offering better performance for data transfers among many processing, peripheral and other

cores of high performance embedded systems. Adaptive routing provides an effective way of

efficient on-chip communication among NoC cores. The message routing efficiency can further

improve the performance of NoC based embedded systems on a chip. Congestion awareness has

been applied to adaptive routing for achieving better data throughput and latency.

This thesis presents a novel approach of analyzing congestion to improve NoC throughput by

improving packet allocation in NoC routers. The routers would have the knowledge of the traffic

conditions around themselves by utilizing the congestion information. We employ header flits to

store the congestion information that does not require any additional communication links

between the routers. By prioritizing data packets that are likely to suffer the worst congestion

would improve overall NoC data transfer latency.

iv

Acknowledgement

I would like to express my sincere appreciation to my supervisor Dr. Gul N. Khan for all his

guidance and support while pursuing my graduate studies in the MASc program. I am grateful

for his contribution of many hours of his time and efforts to me during the duration of my

studies. I would also like to acknowledge NSERC and the Department of Electrical and

Computer Engineering at Ryerson University for their financial support. Finally, I would also

like to extend my thanks to my parents, Mr. and Mrs. Chui for their supportive environment as I

pursue my graduate studies.

v

Table of Contents

Author Declaration.. ii

Abstract .. iii

Acknowledgement ... iv

Table of Contents .. v

List of Figures ... xii

List of Tables ... xi

Lists of Abbreviations ... xv

Chapter 1 Introduction .. 1

1.1 NoC Systems ... 1

1.2 Motivation ... 2

1.3 Contribution .. 4

1.4 Thesis Structure ... 5

Chapter 2 Congestion Aware NoC ... 6

2.1 NoC Topology ... 6

2.2.1 Modified Mesh Topology ... 10

2.3 Data Transmission ... 10

2.3.1 Packet.. 11

2.3.2 Flits ... 12

vi

2.4 Router Architecture ... 13

2.4.1 Buffer .. 13

2.4.2 Virtual Channels ... 13

2.4.3 Arbiter ... 14

2.4.4 VC Allocator... 15

2.4.5 Switch Allocator ... 15

2.4.6 Speculative Switch Allocator ... 16

2.4.7 Crossbar .. 16

2.5 Data Flow Control ... 17

2.5.1 On-Off Flow Control .. 17

2.5.2 Credit Based Flow Control ... 18

2.6 NoC Routing ... 18

2.6.1 Route Computation ... 18

2.6.2 Look-Ahead Routing .. 19

2.6.3 Deterministic Routing... 20

2.6.4 Adaptive Routing .. 21

2.6.5 Hybrid Deterministic and Adaptive Routing .. 21

2.7 Congestion Awareness .. 22

2.7.1 Locally Adaptive .. 22

2.7.2 Regionally Adaptive ... 23

vii

2.7.3 Destination Based Adaptive Routing Algorithms .. 25

2.7.4 Globally Adaptive... 31

2.7.5 Congestion Awareness Monitors .. 32

2.7.6 Congestion Aware Scheduling ... 33

2.7.7 Summary of Methods ... 34

2.8 Summary ... 35

Chapter 3 CAAR: Congestion Aware Adaptive Routing .. 36

3.1 Congestion Awareness for Allocators ... 36

3.2 VC Allocator ... 37

3.3 Switch Allocator .. 38

3.4 Prioritizing Packets ... 41

3.4.1 Long Distance Packets .. 41

3.4.2 Quality of Service (QoS) .. 42

3.5 Hardware Implementation of CAAR .. 43

3.5.1 Hardware Implementation of Requestor... 43

3.5.2 Allocator Modification for Congestion Data .. 46

3.5.3 Hardware Implementation of VC Buffers .. 47

3.5.4 Look-ahead Routing Unit ... 49

3.5.5 CAAR Congestion Information Propagation ... 50

3.6 CAAR Router Microarchitecture .. 51

viii

3.7 Summary ... 52

Chapter 4 CAAR Modeling and Simulation ... 53

4.1 SystemC Simulation .. 53

4.2 Hardware Modeling... 54

4.3 Router Modeling ... 55

4.3.1 Buffer .. 56

4.3.2 Dynamic Sized Buffer .. 57

4.3.3 Arbiter Components ... 58

4.3.4 Route Computation ... 58

4.3.5 Allocators.. 59

4.3.6 Virtual Channel Allocator .. 62

4.3.7 Switch Allocator ... 62

4.4 Congestion Detection and Control Modeling.. 63

4.4.1 Locally Adaptive Routing .. 64

4.4.2 Regional Congestion Awareness (RCA) .. 66

4.4.3 Destination Based Adaptive Routing ... 67

4.5 Pipeline Modeling ... 68

4.6 Packet Modeling .. 70

4.6.1 Packet Organization .. 70

4.7 Source Modeling ... 72

ix

4.8 Sink Modeling ... 74

4.9 Summary ... 75

Chapter 5 Experimental Results.. 76

5.1 Traffic Generation ... 76

5.2 Traffic Pattern ... 77

5.2.1 Synthetic Traffic Patterns ... 78

5.2.2 List of Synthetic Traffic Patterns: .. 78

5.3 Performance Evaluation .. 79

5.4 Packet Tracking ... 80

5.5 Experimental Setup ... 81

5.5.1 Mesh Topology Size ... 81

5.5.2 NoC Simulation Setup .. 81

5.6 Evaluations .. 82

5.6.1 Small NoC (4x4) ... 82

5.6.2 Medium Size NoC (8x8)... 86

5.6.3 Large Size NoC (16x16) ... 90

5.7 Hardware Modeling... 93

5.7.1 Chip Area Estimation ... 93

5.7.2 Power Estimation .. 94

5.7.3 Evaluation ... 94

x

5.8 Summary ... 96

Chapter 6 Conclusions .. 97

References ... 98

xi

List of Tables

Table 2-1 – Summaries of Methods .. 34

Table 5-1 – Hardware Area Usage.. 94

Table 5-2 – Power Usage ... 94

xii

List of Figures

Figure 2-1 - Star Topology NoC ... 8

Figure 2-2 - Ring Topology NoC.. 8

Figure 2-3 - Mesh Topology NoC .. 9

Figure 2-4 - Header Flit Organization .. 12

Figure 2-5 - Body/Tail Flit Organization .. 12

Figure 2-6 - Congestion traffic information flow in Regional Congestion Awareness 24

Figure 2-7 - RCA NoC Router Microarchitecture .. 25

Figure 2-8 - Congestion traffic information flow in DAR .. 27

Figure 2-9 - DAR Congestion (Latency) to All Nodes ... 27

Figure 2-10 - Two Different Paths for Destination Based Adaptive Routing 28

Figure 2-11 - Congestion Traffic Flow in DBAR ... 29

Figure 2-12 - DBAR Preferred Directions Map Example .. 30

Figure 3-1- Congestion-Aware VC Allocation (CAAR-VA) Flow Chart 39

Figure 3-2 - Congestion-Aware Switch Allocation (CAAR-SA) Flow Chart 40

Figure 3-3 – A Congestion Aware Prioritization Switch Allocator Requester 44

Figure 3-4 - A Congestion Aware Prioritization VC Allocator Requester 45

Figure 3-5 - Circuit to Determine Prioritize Request to Output Direction 45

Figure 3-6 - Hardware for Request to iSLIP RR allocator ... 46

Figure 3-7 - Additional Hardware for Request to iSLIP RR allocator with Congestion

Prioritization ... 47

Figure 3-8 - Standard Size SRAM buffer ... 48

xiii

Figure 3-9 - Dynamically Sized Buffer .. 49

Figure 3-10 - Architecture for Look-Ahead Routing .. 50

Figure 3-11 - CAAR Congestion Awareness Router Microarchitecture 51

Figure 4-1 - Building a NoC by Components ... 55

Figure 4-2 - Baseline NoC Router Architecture ... 56

Figure 4-3 - Buffer Write Process ... 57

Figure 4-4 - Buffer Read Process.. 57

Figure 4-5 - Free Flit Selection Process .. 58

Figure 4-6 - Architecture of the iSLIP Two-Staged RR Allocator ... 60

Figure 4-7 - iSLIP Requester Process ... 60

Figure 4-8 - iSLIP Grant Process .. 61

Figure 4-9 - Locally Adaptive Buffer Availability Computation ... 64

Figure 4-10 - Locally Adaptive Hardware .. 65

Figure 4-11 - Regional Adaptive Routing with Congestion Information Links 66

Figure 4-12 - RCA Data Propagate Process ... 67

Figure 4-13 - DBAR Data Propagate Process... 68

Figure 4-14 - Pipeline without Stalls .. 69

Figure 4-15 - Pipeline Experiencing Stalls ... 70

Figure 4-16 - An 8 flit Packet with Different Types of Flits .. 71

Figure 4-17 - Flit Organization Structure in Simulator .. 71

Figure 4-18 - Packet Generation Example Waveform .. 73

Figure 4-19 - Example Waveform of the Source Generating a Packet (4 flits) 74

Figure 4-20 – Example Waveform of the Sink Receiving a Packet (4 flits) 75

xiv

Figure 5-1 - Regional Uniform Traffic Regions ... 79

Figure 5-2 - 4x4 Transpose-1 Traffic .. 83

Figure 5-3 - Details of 4x4 Transpose-1 Average Traffic .. 84

Figure 5-4 - 4x4 Transpose-2 Traffic .. 84

Figure 5-5 - 4x4 Mesh with Shuffle Traffic.. 85

Figure 5-6 - 4x4 Uniform Traffic Latency .. 86

Figure 5-7 - 8x8 Transpose-1 Traffic .. 87

Figure 5-8 - 8x8 Transpose-2 Traffic .. 87

Figure 5-9 - 8x8 Shuffle Traffic.. 87

Figure 5-10 - 8x8 Uniform Traffic .. 88

Figure 5-11 - 8x8 Regional Uniform Traffic .. 89

Figure 5-12 - 16x16 Transpose-1 Traffic.. 91

Figure 5-13 - 16x16 Transpose-2 Traffic.. 91

Figure 5-14 - 16x16 Shuffle Traffic.. 92

Figure 5-15 - 16x16 Uniform Traffic.. 92

Figure 5-16 - 16x16 Regional Uniform Traffic .. 93

xv

Lists of Abbreviations

BE Best Efforts

BW Buffer Write

CAAR Congestion Aware Adaptive Router

DAR Destination Adaptive Routing

DBAR Destination Based Adaptive Routing

DMesh Diagonal Mesh

DOR Dimension Order Routing

DyAD Dynamic-Adaptive-Deterministic

DyXY Dynamic XY

FIFO First In First Out

GCA Global Congestion Awareness

GT Guarantee Throughput

HoL Head-of-Line

IC Integrated Circuit

LT Link Transversal

xvi

MUX Multiplexor

NoC Network-on-Chip

OE Odd-Even

QoS Quality of Service

RAM Random Access Memory

RC Route Computation

RCA Regional Congestion Awareness

RR Round Robin

SA Switch Allocator

SoC System-on-a-Chip

SRAM Static Random Access Memory

VA VC Allocator

VC Virtual Channel

VCID Virtual Channel ID

VLSI Very Large Scale Integration

Xbar Crossbar

XT Crossbar Transversal

1

Chapter 1

Introduction

1.1 NoC Systems

Embedded systems on chip in the recent decade have grown substantially utilizing many

cores on a single chip known as embedded System-on-a-chip (SoC). It is important that data

within the SoC, all cores have access to the desire resources while maintaining a data load

balanced transmission links. Traditional bus-based interconnection has been able to allow high

speed data transfers within a small SoC. However as the SoC scales up in size in today‟s most

demanding applications, NoC is proven to provide better balance between traffic loads and data

access for every core. [1] NoCs are expandable to allow communication for very large SoCs. It is

not uncommon to see more than 256 cores in a NoC system, which is impossible to handle on a

bus-based system.

NoC based systems is a new strategy for data communication within the SoC. NoC

performance depends on topology, data link width, traffic patterns, routing mechanisms and

router arbitration. These parameters can be prioritized to improve performance, area of the

design layout or power dissipation of the SoC. Depending on the chosen design requirement, the

connections between routers and cores of a NoC can differ significantly.

2

NoC performance is important in high data throughput applications. It is ideal to reduce

congestion and latency for all the data transfers within the NoC. Unfortunately, by increasing the

number of cores within the NoC, congestion increases proportionally to the NoC size. Therefore,

it is necessary to manage traffic effectively for reducing congestion within the NoC to achieve

the best performance as the NoC grow in size.

1.2 Motivation

 NoC development is rapidly advancing thanks to improved manufacturing technologies

within the VLSI field allowing more processing and other cores to be embedded in a SoC. As

multi-core systems become the norm of this decade‟s technology, there is a need to allow more

cores to communicate within the SoC. The growing number of cores will contribute to

additional traffic to the expanding size NoCs which will increase congestion. There is a need to

reduce congestion and improve performance at the same time for larger size NoCs. This leads to

the needs of conducting research and developing better NoC routers that are adaptive and handle

the increasing demands of larger NoC.

As NoC usage grows within the industry, it has become necessary to have off the shelf

NoC models. A mesh topology NoC design is very common for large number of application and

it has high scalability for expansion. It is important to have a NoC design that supports high

performance in terms of throughput. By introducing congestion awareness based adaptive

routing [1,2], performance gain has occurred with the addition of some hardware components.

More importantly, the additions of these specialized components are done within the NoC thus

any developer utilizing this platform would not have to design a different interface to take

3

advantage of congestion awareness. This will also help new developers to employ adaptive NoCs

an alternative to traditional techniques such as a bus based system.

Surely the last decade, there has been ongoing research for a better routing system for

mesh topology NoCs. It started off with turn based models such as Odd Even (OE) routing [3]

which can be applied to adaptive routing. Further along, researchers have investigating routing

flexibility to reduce loading on ports in one axis. Deterministic routing such as Dimension Order

Routing (DOR) (e.g. XY Routing) has been utilized for simplicity and the ability to avoid

deadlock and livelock situations [1]. The idea of a better routing algorithm is needed to choose

between the x-axis and y-axis which was pursued to improve loads within the NoC. Adaptive

routing utilized congestion data of neighbours first. As this research area matured, adaptive

routing utilized more data from routers beyond its neighbours. A steady flow of data was needed

to achieve regional congestion awareness for adaptive routing [4]. Destination based routing has

shown to improve latency as congestion is more accurately known to the destination [5,6].

We investigate, how much congestion awareness information is necessary for a NoC with

congestion awareness to operate reliably. How congestion related data should be transmitted to

relevant routers. Moreover, how congestion data can be utilized by other components of the

router to improve latency?

4

1.3 Contribution

The main objective of the research presented in this thesis work is to improve

performance of the NoC routing by congestion awareness information received. Previously

congestion awareness is mainly used in routing decisions. This work extends congestion

information usage to other parts of the NoC routers such as to improve allocation and buffering

capabilities.

Secondly, most newly developed NoC microarchitectures are often tested with average

latency only. Although average latency provides a good measure of performance, it does not

outline the worst case scenario which is critical for embedded SoC systems. Maximum latency

performance is analyzed to understand their effects in a congestion aware adaptive router

(CAAR).

In the thesis, attempts to improve throughput and reduce latency are made by prioritizing

packets under congested situation. Packet prioritization during congestion is proposed to improve

latency between packets that are the furthest away between the source and destination cores. This

would improve the overall latency within the NoC and allow these packets to suffer lower

latencies. Moreover, VC resources would be freed up for other packets to utilize the buffer space.

In addition to prioritizing packets, this method can be extended to the application of Quality of

Service (QoS). This allows highly sensitive packets to be prioritized under congestion ensuring

on time delivery without delaying other packets under non congested operations.

5

1.4 Thesis Structure

 This thesis covers the concept of NoC communication, our congestion awareness

methodology, experimental setup and simulation results. Chapter 2 provides an overview of the

NoC and how topology, traffic patterns, router architecture and design will affect performance.

Moreover, adaptive routing and congestion awareness techniques are discussed in details such as

the different types of adaptive routing and how congestion data are transmitted within the NoC.

Chapter 3 explains the methodology for prioritizing packets and how the allocators determine

and select prioritized packets under congestion. Chapter 4 provides the developed simulator and

setup for the experiment of improving NoC performance and reducing congestion within the

NoC. It describes the development of the simulator in SystemC. Chapter 5 illustrates the results

of the experiment conducted for improving congestion the NoC. Finally, Chapter 6 concludes

this thesis with recommendations and future work.

6

Chapter 2

Congestion Aware NoC

 In this chapter, we will discuss important components of the NoC and its router for

congestion awareness. This chapter provides a description of data flow, router architecture, flow

control, traffic generation, adaptive routing and congestion awareness. We will offer an insight

of the advantages and disadvantages of different methods available for NoC design. Efforts are

made to highlight various technique employed to improve performance of the mesh topology

NoC. Moreover, we will describe the techniques relating to congestion awareness hardware,

modifying the mesh topology and the changes made to the router‟s microarchitecture.

2.1 NoC Topology

 Topology is the interconnection structure of the NoC that consists of routers, links and

cores. There are many possibly topologies for NoC including mesh, torus, ring, star, cube and

etc. [7,8]. NoC topology can expand into many dimensions. Each topology has its own

advantages and disadvantages such as flexibility, reliability, number of links, routing latency and

complexity. Performance would differ depending on topology since they are connected

differently with various numbers of links [7]. A simple topology such as ring topology has very

7

simple routing mechanics but the number of routers is limited since latency will increase

substantially if too many routers are added to the NoC. Mesh topology is generally chosen as it

has many benefits such as multiple paths to every router, supports adaptive routing and fits many

applications.

Figure 2.1 shows how a star topology is organized. This topology designates the centre

router R0 as the main router. If router R0 is congested, it affects all router to router transfers but

allows local cores within the slave routers R1-R5 to continue functioning. Each slave routers can

be further expanded into branches but in the case where cores need to communicate with other

branches, significant congestion would be created. The worst case scenario is when R0 fails as

there is no backup link causing the system to total fail. Figure 2.2 illustrates a ring topology

NoC. Unlike a start topology, the ring topology has two directions to route its data. This

topology handles fault tolerance better than a star topology. The ring topology still suffers with

the congestion issues. In the case where a router is congested, it creates a backlog of data holding

up all data transfers behind it. The mesh topology resolves these issues with many alternative

links between routers allowing multiple paths from a source to destination.

8

R0

R2R1

R5

R4

R3

C11 C8

C9C10

C7

C6

C5

C4

C3

C2C1

C0C19

C18C17

C16

C15

C14

C13

C12

Figure 2-1 - Star Topology NoC

R1

R0 R2

R3

R4

R5

R6

R7

C0 C1

C2

C3

C4

C5

C6

C7

C8C9

C10

C11

C12

C13

C14

C15

Figure 2-2 - Ring Topology NoC

9

R0

C0

R1

C1

R4

C4

R5

C5

R2

C2

R1

C3

R6

C6

R7

C7

R8

C8

R9

C9

R12

C12

R13

C13

R10

C10

R11

C11

R14

C14

R15

C15

Figure 2-3 - Mesh Topology NoC

Figure 2.3 shows a typical 4x4 mesh topology NoC. Please note the difference between

mesh and the previously illustrated topologies where each router only has a single connection to

its core. This improves performance by reducing demand on each router and allowing multiple

paths to a destination at the expense of more routers. Torus topology is an extension of this

topology that also connects the routers on the edges among each other. The mesh topology can

be stacked together to form higher dimension NoCs such as 3D cube topology.

10

2.2.1 Modified Mesh Topology

 The mesh topology is a standard topology where routers connected in all four cardinal

directions as shown in Figure 2.3. It is easily scalable and thus it has been used in many research

works as well as physical applications [9]. Mesh topology is simple and adaptive to many NoC

designs making it an attractive choice. Although the mesh topology offers a lot of flexible as a

NoC topology, it has a limitation to transmit data diagonally or directly beyond the neighbouring

routers. Qian et al. suggests that the mesh topology can be broken into regions of 4x4 and a hub

router can be added to the NoC which can dynamically reconfigurate itself to connect to

surrounding routers allowing packets to be transmitted diagonally to reduce latency [10].

Another implementation by Wang et al. modifies the mesh topology into a diagonal mesh

(DMesh) which has additional diagonal links connecting each router on the NoC [11]. Both

implementations show improvements over the traditional mesh topology at the cost of additional

links and increase complexity of each router. Crossbars have additional contention from more

input and output ports which can potentially reduce performance.

2.3 Data Transmission

NoC data transmission can be setup either by employing circuit switching or packet

switching [8,12]. Each method has its own advantages and disadvantages. Circuit switching

requires a direct path to be setup from the source to destination cores to allow the data flow from

the source to destination. Unassigned cores suffer longer waiting for the grant of physical

channel for data transmission. Packet Switching is a method where the message data is divided

into packets that are further divided into flits. With a smaller data unit such as flits, data can be

buffered easily between multiple routers of the NoC. This allows the NoC to function as

11

wormhole routing instead of store-and-forward. Store-and-forward requires all the flits of a

packet to be transmitted and stored in a router first before it can be transmitted to the

downstream router, which requires a larger amount of buffer space.

The data organization for data transmission in a packet switching NoC is commonly

known as a message. In a traditional bus based NoC system, the source and destination cores are

first determined before transistor switching for data transmission. On the other hand, a packet

switching NoC requires a source and destination to be embedded within the message since

multiple messages can travel in the NoC at any given time. Since the size of a message is

considerably large, it can be broken down into packets to allow more flexible routing in the NoC.

2.3.1 Packet

 A packet is the basic data organization unit within the NoC. A packet consists of one or

multiple flits containing information for routing purposes and the actual data that is necessary to

be transmitted from a source to the destination core. A packet typically consists of a header flit,

some body flits and a tail flit [9]. Some packets are just one flit long while others can be longer

than 12 flits. Packet size has an effect on routing and virtual channel (VC) occupation at each

buffer. In the case of wormhole routing, a packet will lock up an output port of the NoC router

until all the flits are transmitted to the downstream router. Similarly in a VC based routing NoC,

each packet arriving at a router will be assigned a virtual channel ID (VCID) and it is locked to

that specific VC until all the packet flits are transmitted.

12

2.3.2 Flits

 Flits are a sub-unit of a packet. All the flits have an indication of head, body or tail flit

and a VCID in the case of VC routing. A header flit contains has the routing information such as

destination ID and possibly source ID to identify where the packet has come from. In the case of

look-ahead routing, both output direction options are embedded in the header flit. Furthermore,

congestion information can also be transmitted in a header flit. Body and tail filts usually just

contain an indication bit for body or tail flit, the VCID (if necessary) and general data. Tail flits

are similar to body flits but has a special bit to signal to the router so that it can release the output

port (wormhole) or VC (VC routing). Figures 2.4 and 2.5 illustrate an example of the header and

body flit organization for a router that supports adaptive routing. In this example, each flit is 128

bits long. The destination ID is required for routing while the source ID may be necessary for the

application. Options 0 and 1 are the two possible directions for adaptive routing. The congestion

bit and data are used to transfer congestion data in the header flit.

Figure 2-4 - Header Flit Organization

Figure 2-5 - Body/Tail Flit Organization

13

2.4 Router Architecture

 The NoC router consists of three main components consisting of a buffer, arbiter and

crossbar switch. The arbiter allocates packets stored in the buffer using the crossbar switch. The

design of each component depends on the desired NoC performance, chip area and power

consumption constraints. A more complex router design improves performances at the expenses

of additional area and power consumption.

2.4.1 Buffer

 The NoC Buffer is a key storage component in the NoC router. The buffering system in

each NoC router allows the NoC to maintain a free-flowing data link between routers to reduce

Head-of-Line (HoL) blocking [14]. Buffers are usually implemented as First-In-First-Out (FIFO)

based data structure utilizing Static Random Access Memory (SRAM). The size of each buffer

should be approximately the average size of each packet. This would allow most packets to be

able to store completely in one buffer without having half the packet queued in the upstream

router.

2.4.2 Virtual Channels

 Buffers often are filled while the packet awaits allocation during the transmission of

another packet in the downstream router. This often causes additional congestion due to HoL

Blocking. To vastly improve congestion in the NoC, virtual channels are introduced to allow a

14

flit of multiple packets to be stored at the input port of each router [15,16]. This allows another

packet to transmit in the case that the previous packet awaits allocation. Additional VCs would

utilize additional buffer storage and chip area and increasing the power consumption. The

number of VCs in each buffer should be chosen to maximize performance while keeping the

integrated circuit (IC) area usage as low as possible. Adaptive routing requires more VCs as

compared to traditional deterministic routing to ensure performance is maintained [17,18,19]. An

additional VC for packets to escape in a deadlock situation is needed. This would be further

explained in the Adaptive Routing section.

 Normally all the VCs have the same priority which allows the Round Robin arbitration

scheme to select the next VC. Although it allows fairness, but there is no guarantee of minimum

latency. There are architectures that support prioritized VCs. An example is Æthereal, which

provides two different types of VCs, best effort (BE) and guarantee throughout (GT) VCs [20].

GT VCs are always prioritized to ensure a lower latency. Although these architectures allow

latency to be minimized, it requires distinction of two different types of VCs that maybe wasted

when they are unoccupied.

2.4.3 Arbiter

 The arbiter acts as the main controller of the router consisting of the routing mechanism,

VC allocator and switch allocator. These three components are important to determine the next

hop for all the arriving packets along with the VCID for the downstream router and assigning

which flit will gain control to transverse the physical link to the downstream routers. The arbiter

also contains the VC allocator and switch allocator. One of the most basic allocator is the round

15

robin allocator. It provides fairness and it is simple to be implemented. Simplicity comes at the

cost of less efficiency. Round robin does not always provide the best throughput [21,22]. A

modified round robin scheme known as iSLIP also requires the input VC requests to be selected

to maximize throughput [23]. Round Robin may not provide the best selection as it is based on

sequential order. Wavefront allocator which grants inputs to outputs based on a matrix allows

better matching [2]. Furthermore, Becker et al. introduces spare VC allocation which separates

all the packets into two classes. A packet would be assigned randomly to one of the classes at the

injection instances. Packets cannot change classes while being transmitted through the NoC.

With less VCs to grant, this allows lower contention between different VCs which improves the

chip area, lowers combination logic delays and saves on power and energy consumption [22].

2.4.4 VC Allocator

 In VC based NoC Routing, the VC allocator assigns virtual channel IDs (VCID) for

every packet being transmitted at every router. This allows the packet to be buffered in one of

many VC buffers at the downstream router. If a packet is unable to be assigned a VCID, the

packet must wait for the next cycle and the VC allocator attempt again. This process repeats until

the packet receives a VCID. The VC is released once the tail flit is transmitted.

2.4.5 Switch Allocator

 The switch allocator is another component that allocates incoming flits to the output

ports. Switch allocation occurs at every cycle in which it will determine the flit from the input

16

port will be selected for the output port in the case of contention [22]. Round Robin (RR)

mechanism is usually employed to determine the winner. RR offers fairness and avoids

starvation for all the fits. Some of the switch allocator designs use a modified RR scheme knows

as iSLIP to improve throughput within each router [23].

2.4.6 Speculative Switch Allocator

 Normally, VC allocation must successfully assign a VCID for the incoming packet before

the switch allocator allows any flit of that packet to be assigned for crossbar switch transversal.

Unfortunately it takes one complete clock cycle for a packet to be assigned a VCID which adds

latency to the packet at each router level. An additional switch allocator is added to the arbiter to

allow new packet arrivals without an assigned VCID to allocate an output port. This allows the

VC allocation and switch allocation process to occur in parallel to reduce latency [2]. In an event

that the switch allocator has a request for the output ports, it will have priority over the

speculative switch allocator. An additional switch allocator also requires more IC area and power

consumption.

2.4.7 Crossbar

 The crossbar switch is a set of multiplexors for each output port direction. In a 2D mesh

topology NoC, there are usually five sets of 5-to-1 multiplexers in the crossbar. The crossbar is

controlled by the switch allocator. A modified mesh topology such as DMesh can have up to

nine inputs and outputs. To avoid starvation due to large number of inputs, some of the inputs are

17

removed by using two sets of crossbars [11]. Generally, the crossbar switch requires significant

IC area as each multiplexor requires bus inputs with the width of a flit.

2.5 Data Flow Control

Flow control ensures that complete packets are delivered reliability from source to

destination cores without missing any flits. As multiple packets can compute for an output port at

any routers, buffering space can fill up which will lead to data overflow at the local buffers if

data is allowed to flow freely from the upstream routers. To ensure that overflow does not occur,

a flow control system has to be carefully designed to prevent overflow but also allow the

effective usage of the buffer by using the entire buffer capacity. Flow control can be

implemented in many different ways and each implementation has its own advantages and

drawbacks. There are mainly two types of flow control as given below.

2.5.1 On-Off Flow Control

 On-Off flow control is a simple flow control system that allows upstream router to

continuously send flits to the downstream router until the buffer is about to be full. Since there is

usually a latency of at least one clock cycle to signal the upstream router to stop sending the flits,

the signaling time must occur when the buffer is almost full to prevent overflow. On-off flow

control can be implemented easily with simple logic and without the need of any registers. There

are major drawbacks for On-Off flow control, especially for congestion awareness NoCs. For

any NoCs, On-Off flow control does not always fill up the buffers, especially for shallow depth

18

buffers where only 60-80% of the buffer is filled on average [14]. Furthermore, in adaptive

routing, On-off flow control signals cannot be used to track the congestion accurately. An off

signal cannot correctly indicate that congestion is occurring.

2.5.2 Credit Based Flow Control

 Credit based flow control is a more sophisticated flow control system that allows the

upstream router to track the exact amount of free buffer slots in the downstream router [20]. This

ensures that the buffer is fully occupied without any overflow. It ensures that the best usage of

each buffer, especially for the shallow buffers type. Credit based flow control requires a register

to track the remaining free flit space. The addition of virtual channels means that there are

multiple VC buffers per input direction each requiring their own register to track the available

free flit spaces. Credit based flow control also have the advantage of using free flit value as an

indication of congestion at the downstream router [24].

2.6 NoC Routing

2.6.1 Route Computation

 The process to determine the next direction for each arriving packet‟s header flit is the

route computation. One clock cycle is required to determine the next hop direction for each

header flit of a packet. In deterministic routing (e.g. XY routing), the next hop directions for all

packets are fixed. Deterministic route computation can be simply implemented with a single look

19

up table. In a more complex routing system such as adaptive routing, dedicated hardware are

introduced to allow routing to multiple directions based on traffic conditions to ease congestion

(M. Ramakrishna, 2013).

2.6.2 Look-Ahead Routing

 Routing computation adds a full cycle to the NoC router‟s pipeline. As additional latency

deteriorates the NoC performance, Look-Ahead Routing is used to hide any additional latency

for computing the next hop direction in parallel with another process(Towles, 2003; Bjerregaard,

2006). Unfortunately, it is impossible to compute the next hop direction in parallel to the

buffering stage and therefore the routing decision is completed in the previous or upstream

router. The upstream router would be aware of the next hop direction based on information

communicated from routing unit and it would be able to compute the direction(s) for the packet

in the downstream router. This would require a few bits in the packet‟s header flit to store the

next hop direction(s) for look-ahead routing. In the case of adaptive routing, there could be more

than one choice for the downstream router. For a mesh topology NoC, there are at the most two

possible directions for the next hop direction if the destination core is diagonally located from

the current router. Both directions would be stored in the header flit ahead of time to allow the

downstream router to select one of the two directions based on the current traffic condition

without requiring a full cycle of computation. The direction is already selected one cycle in

advance allowing the pipeline to avoid the route computation latency.

20

2.6.3 Deterministic Routing

Deterministic routing algorithms are used in many NoCs due to its simplicity in terms of

hardware implementation, IC area and power constraints. They do not require any additional

overhead for decoding the external information offering lower delays within the router and are

able to perform all the necessary routing in a NoC.

Dimension Order Routing (DOR) algorithm such as XY or YX routing are commonly

employ deterministic routing technique used in mesh topology on-chip networks due to its

simple implementation that offers livelock and deadlock avoidance for wormhole routing. DOR

algorithm routes a packet in one dimension till it reaches the desired row or column and then turn

to continue to the destination. With only one turn, DOR avoids any deadlock or livelock with or

without any Virtual Channels [15]. DOR has a disadvantage of routing traffic through hotspots,

which increases congestions and latency

Turn based routing algorithms prohibits a certain turn (e.g. West to North) which

efficiently removes any chance of a livelock while providing a better balance of traffic in the

NoC. Alternative turns must be completed if the desired turn is prohibited. Traffic would not be

routed in a straight line in turn based algorithms leading to a longer route to the destination. Odd

Even (OE) routing algorithm provides deadlock and livelock avoidance and avoids routing all

the traffic in one dimension. OE distributes traffic more evenly than DOR algorithms which

lower the average latency in the NoC [3]. OE routing also prohibits east to north and east to

south turns on even columns and north to west and south to west turns on old columns.

21

2.6.4 Adaptive Routing

An adaptive routing algorithm relies on a set of variable information to make a decision

on the route selection. Adaptive routing discussed in this thesis will make decisions based on the

congestion information to improve latency of a packet between the source and destination core.

By balancing the NoC traffic and rerouting packets to other parts of the network using

congestion information will avoid hotspots and congestion regions in the NoC, which improves

throughput as well as reduces the average latency for the entire network.

2.6.5 Hybrid Deterministic and Adaptive Routing

DyAD (Dynamic Adaptive and Deterministic) routing developed by Hu and Marculescu

[25] switches between adaptive and deterministic depending on the traffic load. It is one of the

few examples of both types of routing used in a NoC. DyAD suggests that adaptive routing will

only occur when congestion occurs within the NoC. Hybrid deterministic and adaptive routing

algorithms have not been explicitly applied in recent works such as DyXY [24] or DBAR [5].

The selection of the more optimal direction only occurs when a certain traffic load occurs at the

router hence they act similar to a hybrid algorithm. Therefore, most routing algorithms

implementations are either deterministic or adaptive as there is no need to explicitly monitor the

congestion load to control when adaptive routing should occur.

22

2.7 Congestion Awareness

 Congestion awareness can be catorgorized in three types, locally adaptive, regionally

adaptive and globally adaptive. The amount of congestion data received by each router depends

on the type of congestion awareness chosen. Locally adaptive does not need traffic flow between

routers as the amount of credits available from the credit value registers (CVRs) is sufficient

while globally adaptive need a large amount of data transfer to hold all the congestion values to

each downstream router. Congestion awareness generally sacrifices data transfer to determine a

better path for a packet to route to its destination.

2.7.1 Locally Adaptive

 Research on adaptive algorithms began with locally adaptive routing as shown in early

implementations such as DyAD [25] and DyXY [24].These implementations rely solely on

congestion data of its neighbours to select the next hop direction. Preferred Output Adaptive

Routing [26] and DyXY have used the available credits as the congestion value to adaptively

determine the direction for the next hop. DyAD uses an external 1-bit signal to indicate if there is

any congestion or not. Due to the fact that locally adaptive algorithms are greedy in nature, the

output port selected may not be the best direction. Hu and Marculescu proved [25] that DOR

(XY) routing performed better than their DyAD routing for uniform traffic. This is also proven

by Gratz et al. that locally adaptive routing performs worse than RCA due to its greediness [4].

Another technique, Neighbour-on-Path (NoP) utilizes a similar neighbouring monitor like DyXY

[27]. NoP allows non-minimal path routing to avoid the congested NoC area. Although this

improves latency, its non-minimal routing can lower the injection rate before its saturation.

23

 DyAD switches between adaptive and deterministic routing depending on traffic

conditions. Hu and Marculescu have chosen 60% as the threshold to switch between

deterministic to adaptive routing. DyAD uses the OE routing algorithm, which prohibits certain

turns depending on the current location of the packet, and when there is a choice to select one of

the two output direction, DyAD will select the output port with no congestion. When both

outputs are not congested or both are congested, then the algorithm chooses one of them

randomly.

 Preferred Output Adaptive Routing and DyXY are similar and would choose the direction

with more credits available when choices are available. Preferred output routing makes use of

route look-ahead while DyXY does not.

2.7.2 Regionally Adaptive

 Regionally adaptive routing relies on the congestion information in the neighbouring

routers as well as the information of the intermediate region provided by the neighbouring

routers. Gratz et al. have implement and demonstrated that Regional Congestion Awareness

(RCA) produced better results than locally adaptive routing [4]. RCA has been implemented

using a sideband network to propagate the congestion data. Congestion data is aggregated with

the local congestion information (credits available) and then propagated by combining

information of one to three directions depending on the RCA implementation. Weights are

assigned to the local and non-local congestion data in the aggregation process to control which

set of data have a greater effect on the adaptive routing mechanism. RCA is implemented in

three different methods, RCA 1D, RCA Fan-in and RCA Quadrant. RCA 1D only aggregates

24

information, RCA Fanin aggregates information from the row or column as well as the

neighbours of the row or column‟s routers. In RCA Quadrant, congestion data is only aggregated

in two directions leading to slightly better result but with the use of twice as much wiring

overhead.

R03

R13

R23

R33

R43

R24 R25R22R21R20

R03

R13

R23

R33

R43

R24 R25R22R21R20

R12

R02

R32

R42

R31R30 R34 R35

R44

R11R10 R14 R15

R04

R03

R13

R23

R33

R43

R24 R25R22R21R20

R12

R02

R32

R42

R31R30 R34 R35

R44

R11R10 R14 R15

R04

(a) RCA 1D (b) RCA Fan-in (c) RCA Quadrant

Figure 2-6 - Congestion traffic information flow in Regional Congestion Awareness

 Figure 2.6 shows the congestion traffic flow of RCA through a sideband network. Each

direction requires a link for downstream router to the source router in the centre of the diagrams

in Figure 2.6. Each router in the diagram have another link for transmitting congestion data in the

opposite direction. RCA 1D and Fan-in requires eight additional links while RCA Quadrant

requires 16 additional links. Each router propagates its congestion data to its neighbour at every

cycle. Figures 2.7 shows the RCA Router Microarchitecture with the congestion awareness

component shaded in gray. Please note that the additional communicate links are needed for

RCA.

25

...

Route Compute

...

VC Allocator

Switch Allocator
Input port 0

Input port n

...

Credit in

Output
port 0

Output
port n

Input 0

Input n

Credit out 0

Credit out n

Option 1

Option 0

RCA Port

... ...
RCA data in RCA data out

RCA Aggregation and
Propagation Component

Port Pre-
selection

Figure 2-7 – RCA NoC Router Microarchitecture

2.7.3 Destination Based Adaptive Routing Algorithms

Regional adaptive routing has proven to be a useful methodology for improving

performance as demonstrated by the technique of RCA [4]. Although RCA uses neighbouring

congestion data to improve the decision making for route computation, it uses general congestion

data within the region instead of data specific to the destination. RCA will deliver data beyond

the destination to the upstream routers which can lead to incorrect routing decisions, e.g.

congestion occurs beyond the destination. Gratz et al. demonstrated a breakthrough with RCA

but it suffers from interference by data aggregation and propagation processes [4]. The

26

congestion data received simply is not the raw data but instead data may contain unnecessary

noise. Newer implementations of regionally adaptive routing do not aggregate the congestion

data. Destination based adaptive routing employs more accurate congestion awareness

information by utilizing the congestion data from the source to the destination router. This

technique is employed in DAR [5] and DBAR [6] which lead to more accurate routing decisions

and improved performances over general regional congestion awareness data used in RCA.

Destination-based Adaptive Routing

Destination-based Adaptive Routing (DAR) uses latency as a measurement of congestion

and it broadcasts the pure data to neighbouring routers [5]. DAR uses a ratio to split the

incoming traffic to either the X or Y direction to balance the traffic load of the downstream

routers. The ratio varies depending on the congestion conditions. Figure 2.8 illustrates how the

congestion data flows in the region to propagate from the source router e.g. R30. Routers shaded

in black already have the congestion data from R30. Routers in gray are currently processing the

data from router R30 while white routers have yet to receive the data from router R30. At time

zero, R30 propagates data to the adjacent routers R20 and R31. At time 1, R20 will propagate to

routers R10 and R21 while R31 will propagate to R21 and R30. Router R21 would receive

latency values from both X-direction (from R20) and Y-direction (R31). R21 would use latency

info from both directions to determine a split ratio favouring the least congested direction. At

time 2, data continues to propagate to Routers R00, R11, R22 and R33. For accuracy and

removal of stale data, latency values would only propagate within a 7x7 frame of the NoC. For

routers that would receive latency values from two routers, the lower value is propagated.

27

R00

R10

R01

R11

R20 R21

R02

R12

R03

R13

R22 R23

R30 R31 R32 R33

R00

R10

R01

R11

R20 R21

R02

R12

R03

R13

R22 R23

R30 R31 R32 R33

R00

R10

R01

R11

R20 R21

R02

R12

R03

R13

R22 R23

R30 R31 R32 R33

Time 0 Time 1 Time 2

Figure 2-8 - Congestion traffic information flow in DAR

12

7

16

10

3 6

19

15

24

21

11 17

0 4 8 14

Figure 2-9 – DAR Congestion (Latency) to All Nodes

 Figure 2.9 shows an example of a congestion (latency to each node) array with the value

of latency stored for all routers. Please note that the bottom left router is the current router in the

example. For a small 4x4 NoC example, 8 bits is enough storage for latency. For larger mesh

topology NoCs such as 16x16 NoC, the router would need to use 10 to 12 bit registers to store

larger latency values.

28

Destination Based Selection Strategy

 Destination Based Selection Strategy (DBSS) for Adaptive Routing (DBAR) broadcasts

one bit of traffic information to its neighbours similar to DAR [6]. Both DAR and DBAR routes

the packet through the preferred output port based on the destination. DAR and DBAR both

estimate the shortest path to the destination that differs from RCA, which does not take

destination into account. Figure 2.10 shows two different path that the current node (Black) to

take to reach the destination (Gray). DAR estimates the latency between the two paths while

DBAR routes the packet depending on the congestion conditions. Note that both DAR and

DBAR behave in the same if the current node and the destination are in the same dimension.

R00

R10

R01

R11

Figure 2-10 - Two Different Paths for Destination Based Adaptive Routing

 The difference in congestion data receiving procedures between DAR and DBAR is

illustrated in Figures 2.8 and 2.11. Figure 2.9 showed that DAR propagated congestion

information to all the neighbours while DBAR only propagates congestion data for up to eight

routers in the same dimension (for 8x8 mesh). In Figure 2.11, DBAR could only receive

information from one dimension. Routers R10 would receive information from R00, R20 and

R30 from the X-direction while receiving R11, R12 and R13 in the Y-direction. Since it is not

29

known if there exists a lot of congestion, this greedy routing method hopes that there is less

congestion along the path.

R00

R10

R01

R11

R20 R21

R02

R12

R03

R13

R22 R23

R30 R31 R32 R33

Figure 2-11 - Congestion Traffic Flow in DBAR

 Similar to RCA, a sideband network is employed for both destinations based adaptive

routing DAR and DBAR. Destination based adaptive routing estimates the congestion from all

the routers to all other routers.

30

L E E

N E E

N N N

N N N E

E

E

E

Figure 2-12 - DBAR Preferred Directions Map Example

 In Figure 2.12, an example of the preferred output map is shown in an array. This map is

updated every clock cycle and will change with respect to congestion in the NoC. This is

implemented as a lookup table for packets. A preferred output will be returned when a header flit

requests for its desired output port with the packet‟s destination ID.

 In the case of DBAR, an array of registers will store the preferred directions to the

destination. During the direction selection process, the direction indicated by the preferred

direction array would be used. Each register will just need 3 bits to store the five directions (four

cardinal plus local).

 In terms of hardware complexity and overhead, DBAR is much simpler than the complex

latency computation modules in DAR. Both employ external links leading to the wiring

overhead. When compared with RCA 1D and Fan-in (8bits), DBAR requires wider links (9bits)

to implement the sideband congestion monitoring network. DBAR computes latency in three

31

cycles allowing the links to be reduced from 15bits to 5bits. RCA 1D, RCA Fanin, DAR and

DBAR all need 8 links to send and receive the congestion data.

Other Attempts

 Farahnakian et al. used a table and also embedded a few bits in the header to store

congestion information [28]. This method uses a table to keep track of alternative routes for

comparison with the standard route. If the alternative route is found to have a lower latency

between source and destination, the path would be chosen based on this information.

Farahnakian et al. only tested this method on a small (4x4) mesh NoC. A larger NoC would lead

to lower performance and an exponentially larger table.

2.7.4 Globally Adaptive

 If there is a way to have the knowledge of the complete network, routing will become

much easiler. Instead of relying on greedy algorithms with locally and regionally adaptive

routing strategies, globally adaptive routing can avoid the mistake of routing to a hotspot and

instead bypass a congested region completely.

 In the works of Tedesco et al., a message is routed through the network while the first

packet will establish a path [29]. Subsequent packets in the message will follow the same path

until congestion is discovered and a new path is established. Tedesco et al. suggested that fixed

path routing is better than regionally adaptive routing such as RCA. Each node along the path

would monitor congestion and send it back to the source router allowing the source to have

information of the entire path to have a global view. The congestion information is sent back via

32

a congestion packet within the standard NoC communication channel in place of to a sideband

network. The drawback to this strategy is that a message sent is assumed to have a large number

of packets. For short messages or single packet, this work has very low potential to improve the

performance in a network.

 Ramakrishna et al. suggests that by piggybacking congestion information in the header

flit, eventually each node will have the congestion information of the entire network [13]. The

globally adaptive router would first compute the shortest path to the destination based on the

congestion information available on that particular router and route the packet to the next hop.

The downstream router will recompute the shortest path and route the packet using its congestion

data. Since each router has different congestion data and when the current node is closer to the

destination, the router will have more accurate congestion information. The path will be pre-

selected with the available congestion information, and the router will also benefit from port pre-

selection.

2.7.5 Congestion Awareness Monitors

 Yuan et al. suggested that regional congestion awareness can be improved for congested

hotspot regions by using source routing and a congestion agent sending information to other

routers when congestion is detected in a hot spot [30]. This method has shown improvement over

RCA in congested hotspot traffic at the cost of more embedded data of each hop in the header for

source routing. Moreover, this method would not show significant improvement under standard

synthetic traffic.

33

2.7.6 Congestion Aware Scheduling

While congestion awareness is employed to improve routing, others have attempted to

shape traffic and improve scheduling to avoid congestion. Chao et el. have suggested that a

reconfigurable scheme along with a congestion aware scheduling algorithm can reduce

congestion for repeated traffic patterns [31]. Another proposal is to design a congestion aware

scheduler for an application specific NoC, especially for AMBA bus [32]. These scheduling

algorithms are not as useful for general cases.

34

2.7.7 Summary of Methods

Table 2-1 – Summaries of Methods

Method Congestion

Information

Transferring

Method

Congestion Data

Transfer Rate between

two routers per clock

cycle

Monitoring

Region

Data Accuracy

Locally

Adaptive

Local data

only

N/A Neighbouring

routers (up to 4

routers)

Neighbouring: high

No data beyond

neighbouring

routers

Regional

Congestion

Awareness

(RCA)

Sideband

network

RCA-Single or RCA-Fan-

in: 8+8 bits

RCA-Quadrant: 16+16

bits

8x8 Region

with accurate

data within a

few hops

Neighbouring: high

Regional: low

Destination

Based Adaptive

Routing (DAR)

Sideband

network

5+5 bits 7x7 Region Moderate due to

slow update rate

Destination

Based Selection

Strategy for

Adaptive

Routing

(DBAR)

Sideband

network

Combined 9 bits for both

uplink and downlink

All routers

inline with the

x and y axis

High

Global Adaptive

Routing (GCA)

Embedded in

Header Flit

Varies (based on header

flit frequency)

8x8 Region Moderate to high

depending on

update rate

35

2.8 Summary

 In this chapter, the concept of NoCs is described as well as congestion awareness.

Different methods of routing, simulation and adaptive routing are discussed to illustrate the

number of varieties available in NoC. NoC topology is described as well as data transmission.

The router architectures for different adaptive routing implementations are introduced along with

speculation and look-ahead routing to reduce latency for each packet transmission through the

routers. Different flow control methods are introduced and how they affect congestion awareness

data. Adaptive routing and congestion awareness is also discussed and explained in this chapter.

36

Chapter 3

CAAR:

Congestion Aware Adaptive Routing

 Congestion awareness allows a router to monitor its surrounding and mode better

decisions to be made to improve data transfer latency within a NoC. Basic congestion awareness

techniques allow the monitoring neighbouring routers while more complex strategies let the

router monitor the entire surrounding region and even the entire on-chip network. Recently,

congestion awareness information has been used for mainly adaptive routing. In this chapter,

congestion awareness for other NoC routing decisions such arbitration will be explored.

Furthermore, the development of a congestion aware adaptive routeing (CAAR) will be

explained.

3.1 Congestion Awareness for Allocators

NoC router allocation can be customized to improve performance for all packets. By

default, round-robin allocation scheme would give equal share of time for all the packets that

would impact packets travelling far distances in a NoC. There have been proposals to improve

37

allocation for the source by creating a job scheduled to ensure certain packets are transmitted on

time [33]. Such techniques would prioritize packets based on the tasks that need to be completed.

Congestion Awareness for allocation would improve latency for prioritized tasks. Congestion

affects each flit of these packets as they compete for arbitration with the closer from near routers

flits. Improving allocation by allowing long distance packets to have priority under congested

conditions could possibly improve overall latency within the NoC. Since prioritizing packets

would create additional latency for other packets, prioritization should only be used under

congestion conditions. There are two approaches to altering arbitration by firstly changing how

VCs are allocated with the VC allocator and secondly how flits are allocated by the switch

allocator.

For our implementation of CAAR, we have chosen to use regional congestion awareness

(RCA) as the baseline regional adaptive router since it offers significant improvement over local

adaptive routing by employing a moderate hardware. Destination based adaptive routing methods

such as DAR and DBAR requires more complex hardware that does not improve NoC

throughput significantly. RCA is also better for low congestion data transfers and is more

suitable for embedding congestion data into the header.

3.2 VC Allocator

VC allocation is an important process where a newly arrived packet arrivals are assigned a

VCID in the downstream router. It is critical that fairness, deadlock and livelock avoidance are

considered during this process. In the case of multiple packets requests for an output port, an

arbitration scheme is necessary to determine the packet that would be granted the output port first.

38

Normally, an arbitration scheme that is selected should ensure fairness that guarantee to avoid

starvation for certain packets. Traditionally, Round-Robin scheme is employed to ensure that

these conditions are met. Round-Robin is an excellent arbitration scheme under normal traffic

conditions.

In the proposed method, Round-Robin is modified to ensure no packets are starved while

improving the throughput of the NoC. Some packets will suffer higher latency. If some packets

that suffer higher latency due to the large amount of hops from source to destination are

prioritized, the overall average latency can be improved.

With destination-based adaptive routing such as DAR [7] and DBAR [8], and approximate

estimate of congestion is measured for the current source to destination. Using the congestion

data, the modified round-robin procedure can deny any VC allocation requests if its path to the

destination is greater than a specified threshold. If traffic congestion persists for that packet, it is

important to avoid starvation. A register is used to track the number of cycles that the packet is

spent waiting. When the counter reaches a maximum allowed waiting time, the packet will be

treated as an uncongested packet and would be allocated normally by round-robin mechanaism.

3.3 Switch Allocator

Switch allocation is a process where flits are selected for crossbar transversal at every

cycle. Under normal circumstances, Round-Robin will accept only one VC request at a time and

then prioritize for the next VC request. Once a packet allocates a flit, it will have to wait up to a

full loop for all the other VCs to be allocated. To reduce average latency and improve packets that

travel through a long distance, round robin is modified to allow those packets to allow two flits to

39

be allocated in two consecutive cycles before allowing the round robin counter to increment for

the next VC.

Start of Clock
Cycle

Header Flit
Requests?

No

End of
current

clock cycle

Round Robin to
determine which

input port
request to assign

a VCID

Yes

Any Congestion to
destination?

Yes

Remove any
non-prioritize

requests

Any Prioritized
Packets?

No

Yes

No

Assign VCID to
requesting

packet

Figure 3-1- Congestion-Aware VC Allocation (CAAR-VA) Flow Chart

Packets that have a prioritization flag will indicate to the routes that it could be prioritized.

It is important to limit the number of packets being prioritized to prevent non-prioritized packets

from suffering from starvation. Normally for standard mesh-based NoC routers, only packets

travelling through a long distance (i.e. packets travelling from one corner to the other corner of

the NoC) should be prioritized. Of course, CAAR would be extended to QoS applications where

certain packets are given priority to ensure a lower latency.

40

Our proposed VC Allocation Procedure: Figure 3.1 illustrates its flow chart to determine if

CAAR will prioritize any VC allocation requests. When an unassigned packet requests for an

output VCID and is prioritized, CAAR would ignore non-prioritized requests and allocation

between based on congestion prioritized requests only.

Our CAAR architecture includes congestion awareness based prioritization with both the

VC and switch arbitration. CAAR-VA prioritizes VC allocator while CAAR-SA only prioritizes

the switch allocator. Similarly, Figure 3.2 shows the flow chart for prioritizing the flits at the

switch allocator.

Start of Clock
Cycle

Flit Requests?
No

End of
current

clock cycle

Round Robin to
determine which

input port
request to select

Yes

Any Congestion to
destination?

Yes

Remove any
non-prioritize

requests

Any Prioritized
Packets?

No

Yes

No

Figure 3-2 - Congestion-Aware Switch Allocation (CAAR-SA) Flow Chart

41

3.4 Prioritizing Packets

 Packets can be prioritized to reduce latency of reaching from source to destination at the

expense of higher latency for other packets. Packet prioritization could achieve a number of

objectives. One is to improve the average latency of the overall NoC communication and the

second is to guarantee throughput for Quality of Service (QoS) applications. Das et al. has

presented a method of prioritizing the packets based on application awareness under heavy

loading to improve latency within the NoC [34].

3.4.1 Long Distance Packets

In a mesh topology NoC, traffic imbalance is created by the placement of routers in a 2D

grid. Any data transmissions in the central part of the mesh will experience less congestion than

to data transfers between corners to a 2D mesh. In a situation where the centre of the mesh has

more activity, the packets being sent from one corner to the other corner of the NoC will suffer

higher latency. In this situation, many packets can be transmitted between two central nodes

while one packet transmission has yet to complete from corner to corner. To combat this

situation and to improve the throughput and latency of these packets, they can be prioritized

when congestion arises. These packets will have better latency and the VCs occupied can be

reused by the other packets.

The source router is able to calculate and identify how far a packet will travel in the NoC.

In our CAAR router, we reserve 1 bit in the header flit. This allows the packet to be labeled as

prioritized under congested conditions.

42

3.4.2 Quality of Service (QoS)

Elementary QoS enabled NoCs are separate packets into two categories, best efforts (BE)

and guarantee throughput (GT) as proposed in Æthereal, which is one of the original NoC

architectures that supports packet prioritization for QoS [35]. Packets that need the lowest

latency would be prioritized and labeled as GT packets. Past work had focus on separating VCs

into two separate classes for BE and GT packets. This limits the efficiency of VC usage

effectively. When no packets need to be prioritized, GT designated VCs are left unused leading

to undesired utilization of buffering spaces. Attempts are made to prioritize packets by shaping

traffic to improve bandwidth allocation [36]. Unfortunately this method also increased hardware

usage by 200%. Wang and Bagherzadeh suggested that local adaptive routing and a uniform

buffering space for both BE and GT packets support QoS which would improve latency and

performance [11].

In our CAAR router, QoS can be enabled by allowing source cores to enable

prioritization for the desired packets. Round Robin arbitration is modified to service prioritized

packets first allowing prioritization under congested networks. Unlike Wang and Bagherzadeh‟s

method [11], we propose in CAAR that congestion triggers prioritization. In case where two

packets from two VCs from the same input port are prioritized, the packet that is heading

towards a congested direction in the NoC would receive priority.

43

3.5 Hardware Implementation of CAAR

3.5.1 Hardware Implementation of Requestor

It is necessary to identify a few parameters for every input request to the allocator to

understand if it would generate a request or not. In order to determine which request would be

prioritized, one has to determine two factors:

For each input port, which VCs have a prioritized request?

Among all the VCs of all input ports, does every output direction have at least one prioritized

requests?

The second factor is required which there is contention between two or more requests originating

from different input ports.

Figure 3.3 illustrates the proposed modified requester to the allocators for the switch

allocator. In a simple requestor, a three-input AND gate is used to determine that a request to the

allocator exists along with a signal indicating that the input VC is assigned then the credit is

available in the output port of the packet requesting from the input VC. The requester circuit is

made of combinational logic that allows it to update with new congestion data before the next

clock cycle. This allows the allocator to the service prioritized packets as congestion arises.

44

req_in
input_assigned

cred_av

req_in

input_assigned

cred_av

prioritized_packet

mux

prioritized_packet_0

prioritized_packet_n

0

1

congestion_in_output_dir

req_to_rr_allocator

prioritized_packet_waiting_
with_congestion

Figure 3-3 – A Congestion Aware Prioritization Switch Allocator Requester

We have introduced a few logic gates to check if congestion exists and which input VC

has to be prioritized. When congestion exists, the mux would select the second AND gate. This

AND gate will be set only if this VC request needs to be prioritized. By setting all the

multiplexors for each VC in one input port effectively, only the VC with a prioritized request

will be granted.

45

header_req_in

input_assigned

input_assigned
prioritized_packet

mux

prioritized_packet_0

prioritized_packet_n

0

1

congestion_in_output_dir

req_to_rr_allocator

prioritized_packet_waiting_
with_congestion

header_req_in

Figure 3-4 - A Congestion Aware Prioritization VC Allocator Requester

Similarly, Figure 3.4 presents the design requester circuit for the VC Allocator. This would allow

the VC allocator to prioritize, which input VC will be assigned to an output VCID first. This will

ensure that if there are a few packets waiting to be assigned an output VCID, the prioritized

packet will be granted first.

=
EAST (1)

output_dir_for_input_vc0

prioritize_req0

=
EAST (1)

output_dir_for_input_vc1

prioritize_req1

=
EAST (1)

output_dir_for_input_vcn

prioritize_reqn

priority_req_to_output_dir_east

Figure 3-5 - Circuit to Determine Prioritize Request to Output Direction

46

3.5.2 Allocator Modification for Congestion Data

 Out router implementation will modify the standard iSLIP allocator to accept congestion

data. The simplest modification is to reduce the number of requests to the RR allocator at a

particular clock cycle.

iSLIP Allocator

Request

Signal

Unit

Req to Allocator

Credit Av. VC Assigned

Flit Available Req.

In VC

Figure 3-6 – Hardware for Request to iSLIP RR allocator

 Figure 3.6 shows how the request system operates with the RR allocator would normally

work without any congestion data. The input port VC requests needs to be check if the output

VCID is assigned and there is credits available in the downstream router before the request

would be granted to the RR allocators.

47

iSLIP Allocator

Request

Signal

Unit

Req to Allocator

Credit Av. VC Assigned

Flit Available Req.

In VC

Congestion in Output

Direction

Figure 3-7 – Additional Hardware for Request to iSLIP RR allocator with Congestion Prioritization

By simply adding an addition circuitry to the request system, congestion data can be used

to control which VC will gain access to be allocated first. A packet with congestion in the output

direction can be assigned a VC faster than other VCs, which can possibly reduce overall latency.

The same can be employed for the switch allocator.

3.5.3 Hardware Implementation of VC Buffers

NoC router flit storage buffers exist in different forms including simple FIFOs, SRAM

buffer and dynamic buffers [14]. We have simulated and modelled a standard sized SRAM

buffer is commonly used in many NoC research experiments.

The buffer models of a SRAM type buffer that has two pointers (read and write) to

indicate where the buffer‟s next read and write location. A simple subtractor will be able to

determine when the buffer is full. Figure 3.8 shows the implementation of the standard SRAM

buffer mode. Each flit arriving at the buffer is analyzed for its VCID and then stored in the

48

corresponding VC selected by the input mux. The buffer control unit hosts the read and write

pointer along with the subtractor hardware to generate the request signal for any flits available to

be processed in the VC buffer.

IN_VC_SEL

REQ0

DEST_ID/
LOOKAHEAD_DIR

FLIT_VC_SEL BUFFER
CONTROL UNIT

RD_PTR_0 WR_PTR_0

DATA_OUT

FIFO 0

FIFO 1

FIFO 2

FIFO 3

DATA_OUT_0

DATA_IN

VC_SEL

Figure 3-8 – Standard Size SRAM buffer

Another type of buffer that is modeled is the dynamic sized buffer. The concept of a

dynamic sized buffer is relativity new compared to standard sized buffers. The dynamic sized

buffer is implemented by a large size of SRAM for all the VCs of one input port along with the

individual read and writes pointers for each VCs. An address list of free locations is available for

newly arrival flits to be allocated in the SRAM. Once the flit is allocated to the SRAM, another

list tracks all the addresses of flits allocated to that specific VC as shown in Figure 3.9. There is a

separated list of addresses for each VC.

49

Figure 3-9 - Dynamically Sized Buffer

3.5.4 Look-ahead Routing Unit

 A latency reducing method is to hide the latency of the route computation by determining

the output direction in advance in the upstream router in parallel to the VC and switch allocation

process and embed the output direction(s) in the header flit of the packet. Since the output port of

the packet is already known, that router ID is also known that allow the next hop to be

determined. Also this allows the route computation to be able to be completed in the upstream

router.

The purpose of the look-ahead routing unit is to complete the routing computation task in

advance in the upstream router. This unit is very similar to the route computation unit but instead

50

of using the current router‟s router ID for route computation, it will use the downstream router‟s

router I.

Figure 3.10 shows the architecture of a look-ahead routing unit. The next hop ID

composes of a few adders and subtractors that will determine the next hop router ID. This figure

shows two directions generated (options 0 and 1) for adaptive routing. Deterministic routing

would just have one direction. The directions would be stored in the header flit and would be

read by the downstream router.

Route

Computation

Next Hop

Router ID
Output Direction

Current Router ID

Destination ID Next Hop Option 0

Next Hop Option 1

Embed in Header Flit

Figure 3-10 - Architecture for Look-Ahead Routing

3.5.5 CAAR Congestion Information Propagation

In CAAR, we propose to embed congestion information into the header of every packet.

This allows reduction of links and the elimination of the sideband network which would reduce

switching power especially under the condition when the NoC remains relatively congestion

free. The negative effect is that the congestion conditions update will be slow. Other congestion

awareness methods such as DAR perform well with periodic updates of three cycles [5]. A small

component would monitor the input flits and extract any congestion information found in the

51

header. That information will be routed to the congestion awareness component which will

analyze the information and update the congestion tables accordingly. When a packet is being

transmitted downstream, a header modifier component will be embedding the congestion

information for downstream routers.

3.6 CAAR Router Microarchitecture

Figure 3.11 illustrates the components and their interconnection required to extract and

embedded congestion information into packet headers in our CAAR router micro-architecture.

...

Route Compute

...

VC Allocator

Switch Allocator
Input port 0

Input port n

...

Credit in

Output
port 0

Input 0

Input n

Credit out 0

Credit out n

Option 1

Option 0

RCA Port

Congestion Awareness
Component

Port Pre-
selection

Header
Extrator

Header
Replacement

Output
port n

Header
Replacement

Figure 3-11 – CAAR Congestion Awareness Router Microarchitecture

52

The CAAR router includes the standard input port buffers for storing the flits that will be sent to

a downstream router. There is a multiplexor at the output of every VC buffer to determine the

output port direction (i.e. X or Y direction). The port pre-selection will select option 0 for the X

direction and similarly option 1 for the Y direction. The port pre-selection hardware unit uses

data from the congestion awareness unit to determine the output port resulting in a lower latency.

The arbiter hardware that consists of the route computation unit, the VC allocator and the switch

allocator unit will process information for the flits in the buffer and determine their next hop

direction and allocate them to the output port. The additional details on the NoC router pipelining

will be provided in section 4.5.

3.7 Summary

This chapter explored the methodology and design for key components to construct

CAAR. This chapter gives details behind the methodology for the implementation of CAAR

along with how CAAR will utilize congestion awareness information to improve allocation to

provide better throughput for long distance packets. This chapter also describes how CAAR can

be extended to QoS application with packet prioritization. Finally, this hardware design behind

the packet prioritization is illustrated.

53

Chapter 4

CAAR Modeling and Simulation

 This chapter outlines the experimental setup and process for testing and researching the

congestion aware NoCs being investigated in this thesis. In this chapter, the development of a

suitable simulator is discussed as well as testing methods. The chapter describes the development

of each simulator components as well as traffic generation of each packets and hardware

modeling of each unit. We also discuss how to generate different types of traffic pattern and

testing features in the simulator for debugging and experimental testing.

4.1 SystemC Simulation

 SystemC is a powerful extension to C++ programming language allowing hardware to be

modeled in software. C++ already supports object orientated programming that is necessary for

creating multiple instants of each component [37]. In our case, it would be the NoC router.

 A NoC network simulator is developed using systemC to model a transaction accurate

router in an expandable mesh topology NoC. The router models a pipelined architecture with the

hardware descriptive components including the buffers, arbiter, crossbar and any additional

54

congestion awareness hardware. The simulator is able to accept different parameters under

different setups such as comparison including dimension order routing (DOR), locally adaptive

routing (e.g. DyXY) and regional adaptive routing (e.g. RCA, DAR). The number of virtual

channels (VCs) and size of the buffer for each VCs are adjustable. Moreover, the traffic

generation is adjustable so that we can compare its performance under different traffic patterns

related to varying NoC applications.

4.2 Hardware Modeling

 The router components are designed and modeled separately before it is added to the

overall NoC. SystemC supports object oriented programming making it easier to create multiple

instances of each hardware components for reusability. The NoC system simulation will track all

the packets as they are injected into the NoC by assigning a corresponding packet ID. This would

allow the NoC to verify that all the packets reach to their correct destinations as well as the

packets being stuck in the NoC when a livelock or deadlock situation occurs.

 Figure 4.1 shows the process of developing the NoC model for the simulator to test and

investigate our CAAR based methodology. First of all, individual components such as buffers,

arbiter and the crossbar are developed. The second step is to combine all these components to

create the CAAR based NoC router for a mesh topology. Finally, multiple routers are combined

together with physical channels to create the mesh topology based NoC.

55

Figure 4-1 - Building a NoC by Components

4.3 Router Modeling

The NoC router is built from three main components, the buffers, arbiter and the

crossbar. Figure 4.2 shows a simplified architecture of a NoC router. Please note that the number

of buffers in a NoC router is determined by the number of input ports of the router. For a mesh

NoC, there are five directions, the four cardinal directions and one local direction for the core. In

the simulator, each one of these components are developed separately and then combined to

create the NoC router. Once that router is verified to work correctly, it can be used to build a

mesh topology NoC.

56

...

Route Compute

...

VC Allocator

Switch Allocator
Input port 0

Input port n

...

Credit in

Output port 0

Output port n

Input 0

Input n

Credit out 0

Credit out n

Figure 4-2 – Baseline NoC Router Architecture

4.3.1 Buffer

 Figures 4.3 and 4.4 provide the pseudo-code for writing and reading a flit in the router

buffer respectively. The write process would only occurred if the enable signal is set by a request

in the input-port and a proper VC is selected by the specific VCID. Figure 4.5 shows the read

pointer increment code, once the arbiter grants the flit for transversal through the crossbar. The

buffer capacity is only for five flits per buffer, and three bits of data will exceed the number of

flit slots available. Therefore, it is necessary to check and reset the pointers when necessary.

57

Buffer Write Process:

 for (i=0; i<NVC; ++i) {

 if (en[i].read()) {

 // increment the write pointer for current vcid

 if (wr_ptr[i].read() < FIX_BUFFER_RAM_DEPTH-1) {

 wr_ptr[i].write(wr_ptr[i]+1);

 } else {

 wr_ptr[i].write(0); // if max value, reset

 }

 }

}

Figure 4-3 - Buffer Write Process

Buffer Read Process:

for (i=0; i<NVC; ++i) {

 if (req_inc_vc_ptr[i].read()) {

 // increment the read pointer for current vcid

 if (rd_ptr[i].read() < FIX_BUFFER_RAM_DEPTH-1) {

 rd_ptr[i].write(rd_ptr[i].read()+1);

 } else {

 rd_ptr[i].write(0); // if max value, reset

 }

 }

}

Figure 4-4 - Buffer Read Process

4.3.2 Dynamic Sized Buffer

 Figure 4.5 shows an example code for finding a free flit slot in the SRAM buffer. The

process is implemented as combinational logic with logic gates and multiplexors. The SRAM

pointer is the write pointer for the next available flit from the input port to be written to the

buffer.

 The read and write processes are similar to the standard SRAM buffer. The only

difference is that the addresses are updated with pointers instead of being provided from a list.

58

Next Flit Slot Section Process:

if (flit_slot_valid_table[0].read()) {

 flit_slot_avaliable.write(true);

 _sram_wr_ptr.write(0);

} else if (flit_slot_valid_table[1].read()) {

 flit_slot_avaliable.write(true);

 _sram_wr_ptr.write(1);

...

Figure 4-5 - Free Flit Selection Process

4.3.3 Arbiter Components

 The arbiter components are the most important hardware units in the NoC router. These

components make all the decisions in the router. The arbiter is mainly responsible for routing,

VC allocation as well as switch allocation. Regional congestion awareness and adaptive routing

also introduce some additional components in the arbiter to detect and quantify congestion and

make more complicated routing decisions.

4.3.4 Route Computation

 The route computation (RC) unit has the purpose of identifying the output port direction

for all the incoming packets. This unit is built by using combinational circuit that allows fast

switching instead of using a sequential machine that would compute the results in a full clock

cycle. The addition of look-ahead routing will allow route computation to simply look at the next

hop direction stored in the embedded data in the header flit of a packet. Since adaptive routing

can have up to two output port directions available, both directions (if both directions exist) are

59

necessary to be stored in the header flit. The congestion awareness unit will provide the optimal

directions for each quadrant. The simulator simply reads the data in the current flit.

4.3.5 Allocators

 VC-router based allocators usually have two staged, one for the input VC contentions and

the second for output port contentions. There are many different ways to implement the

allocators such as a simple round robin (RR), a modified Round-Robin scheme known as iSLIP

[23], or a more advanced method known as matrix allocation. In comparison to other simulators

developed for congestion awareness research, iSLIP allocation has been employed as it is

considered to improve the allocation throughput and easier to implement as compared to matrix

allocators. Our simulation environment employs the modified RR allocator i.e. iSLIP for both

VC and switch allocators.

 The iSLIP allocator is a two stage allocator that can be divided into three parts, the

requester, granter and accepter. The requester determines the input direction that will trigger a

request to the output direction. If there are multiple input directions requesting for the same

output direction, the granter will perform RR to determine, which input direction will be granted.

The accepter will accept one of the input VCs for allocation when there are multiple VCs

requesting for the same output direction.

Figure 4.6 shows the architecture of an iSLIP, RR allocator used in our CAAR simulator

for both the VC and switch allocator. The allocator is modeled by utilizing only combinational

logic, which is fast and would allow other tasks such as assigning the VCs and storing the values

to registers to take place after the allocation.

60

Requester Granter Accepter

Granter AccepterRequester

Input Request

E

Input Request

L

Output

Request E

Output

Request L

... ...

Figure 4-6 - Architecture of the iSLIP Two-Staged RR Allocator

 Figure 4.7 shows how the simulator checks all the input VCs of an input port that is

assigned to the output port 0 and determines if any of the VCs have a request to that output port.

iSLIP Requester Process:

void rr_requester::assign_request_0 () {

 bool temp_req = false;

 for (j=0; j<NVC; ++j) {

 if (req_in[j].read() && output_dir[j].read() == 0)

 temp_req=true;

 }

 req_to_output_dir[0].write(temp_req);

}

Figure 4-7 - iSLIP Requester Process

The simulator determines which input direction will be granted the next request to be assigned a

VC or crossbar transversal. Figure 4.8 shows how the simulator selects an input port with switch

and if statements.

61

iSLIP Grant Process:

switch (grant_ptr.read()) {

 case 0:

 if (req_in[0].read()) {

 grant_input_dir[0].write(true);

 grant_input_dir[1].write(false);

 grant_input_dir[2].write(false);

 grant_input_dir[3].write(false);

 grant_input_dir[4].write(false);

 granted.write(true);

 granted_dir.write(0);

 } else if (req_in[1].read()) {

 grant_input_dir[0].write(false);

 grant_input_dir[1].write(true);

 grant_input_dir[2].write(false);

 grant_input_dir[3].write(false);

 grant_input_dir[4].write(false);

 granted.write(true);

 granted_dir.write(1);

 }

......

 } else {

 grant_input_dir[0].write(false);

 grant_input_dir[1].write(false);

 grant_input_dir[2].write(false);

 grant_input_dir[3].write(false);

 grant_input_dir[4].write(false);

 granted.write(false);

 }

 break;

Figure 4-8 - iSLIP Grant Process

 A similar process applies for the iSLIP accepter which is used to select an input port VC

if there are contentions for an output port.

62

4.3.6 Virtual Channel Allocator

 The virtual channel allocator is one of the arbiter components responsible for allocating

downstream VCs for newly arriving packets. It will also release any VCs once the last flit has

been allocated by the switch allocator. The modified RR allocator, iSLIP is used in the simulator

to select which VC gets to be assigned an output VCID. In the case of a contention between two

inputs VCs to be allocate to the same output direction, only one of those VCs will be assigned an

output VCID.

The process to assign an output VCID is given below:

i. For all the output ports, determine if any VCs are free and select (if available) which

VCID will be assigned next.

ii. For all the VCs, is there a header flit of a packet that is requesting for an output VCID?

iii. For the packets that require an output VCID of the desired output port, is a VC free and

available to be assigned?

iv. If an output port VC is available, RR arbitration will determine which input VC will be

assigned an output VCID in case of any contentions.

v. The input and output VCIDs are recorded in a table. The corresponding output port is set

to occupied and cannot be used by another packet unit it is released by the current packet.

4.3.7 Switch Allocator

 The switch allocator assigns the flits to an output-port direction. If there is any

contention, by default RR will decide which flit will occupy the output port for that cycle. The

switch allocator is implemented with the modified RR allocator, iSLIP for maximum throughput.

63

The switch allocation process occurs as follows:

i. For all the VCs, is the packet assigned a downstream VCID?

ii. For each of the requesting VCs, are there any credits available in the output port?

iii. Are there any contentions among any of the output ports?

iv. If not, select the VCs that can be allocated. If there is any contention, RR determines

which input-port is selected.

v. If multiple VCs from one input-port are selected, RR determines which input VC is

allowed to be allocated.

4.4 Congestion Detection and Control Modeling

 Congestion detection and control is enabled by the additional hardware components that

monitor the congestion conditions in the surrounding routers. Additional links may be used to

improve the transfer of congestion information between routers.

The simulator would use three different congestion measuring methods to determine any

congestion in the simulated NoC. The three methods are availability of buffer spaces in the

downstream router, free VCs availability in the downstream router and crossbar contention. The

first method will count the number of free buffer space available in the downstream router.

Fortunately with a credit based flow control, the router itself knows how many free buffer spaces

are available without the needs to receive any external congestion information from the

neighbouring routers.

64

Figure 4.9 illustrates how the local router can calculate the amount of buffers space

available in the downstream router by simply adding all the credits in all the VCs of an output

port. A port pre-selection unit will determine the direction to be selected for each quadrant.

East VC0

East VC1

South VC0

West VC1

South VC1

West VC0

North VC1

North VC0

CVRs

+

Port

Pre-Selection

+
+

+

Selected direction for

NE

Selected direction for

SE

Selected direction for

SW

Selected direction for

NW

Figure 4-9 - Locally Adaptive Buffer Availability Computation

Similarly the number of free VCs available or crossbar contentions can be computed using a

similar architecture as shown in Figure 4.9.

4.4.1 Locally Adaptive Routing

 Locally adaptive routing for congestion control allows the route computation unit to

select between the X or Y directions for any packet if the destination is diagonally located from

the current router. A congestion awareness adaptive routing methodology, DyXY requires four

65

registers that tracks the direction to be selected for all the four quadrants that will be updated at

each cycle. Depending on the congestion around its neighbouring routers, it will store either the

X or Y direction. All locally adaptive routing algorithms for the mesh NoC are based on the

process similar to DyXY.

Figure 4.10 illustrates the additional hardware such as multiplexors employed for locally

adaptive routing. Since the simulator uses look-ahead routing to improve latency, the two

directions are already computed in the upstream router and appear as two options embedded in

the header flit. A small hardware unit will check the congestion condition of all the directions

and store the less congested direction in every clock cycle. Figure 4.10 shows that one of the two

options is selected for each VC.

VC0

VC1

VC2

opt0 opt1

Selected Direction

Quadrant

Selected Direction

Flit input

VCID

Figure 4-10 - Locally Adaptive Hardware

 Locally adaptive congestion awareness algorithms would read register values on the

current router to determine which directions would be selected for each quadrant. Using a

method given in sections 4.4 (describe in the previous page), congestion values can be obtained.

66

4.4.2 Regional Congestion Awareness (RCA)

 Regional Congestion Awareness (RCA) developed by Gratz et al. [4] was one of the first

NoC router microarchitecture that took regional congestion data into consideration for adaptive

routing. Our developed SystemC simulator implements this method by utilizing additional links.

Figure 4.11 illustrates how a sideband network co-operates with the standard mesh NoC.

R0

C0

R1

C1

R4

C4

R5

C5

R2

C2

R1

C3

R6

C6

R7

C7

R8

C8

R9

C9

R12

C12

R13

C13

R10

C10

R11

C11

R14

C14

R15

C15

D0 D1

D4

D8 D9

D15

D2 D3

D7D6D8

D10 D11

D14D13D12

Figure 4-11 - Regional Adaptive Routing with Congestion Information Links

The congestion data links are modeled similar to the physical channels for flit

transmission. Instead of a flit data structure link, a congestion information data structure is used

to define the links in the SystemC based model. This allows the congestion data to be

dynamically expandable in size allowing various types of congestion data required for testing.

67

RCA Data Propagate Process:

void xvc_router::process_propagate_rca_data() {

 rca_data_out[EAST].write((rca_data_in[WEST].read()+_rca_used_vc_in_output_dir[WEST].read())/2);

 rca_data_out[WEST].write((rca_data_in[EAST].read()+_rca_used_vc_in_output_dir[EAST].read())/2);

 rca_data_out[NORTH].write((rca_data_in[SOUTH].read()+_rca_used_vc_in_output_dir[SOUTH].read())/2);

 rca_data_out[SOUTH].write((rca_data_in[NORTH].read()+_rca_used_vc_in_output_dir[NORTH].read())/2);

}

Figure 4-12 – RCA Data Propagate Process

 Figure 4.12 provides the SystemC code used to implement the RCA based data

propagation process. Each direction would receive data every cycle. The data is processed and

combined with local data before it is transmitted to the next router. All the RCA processing are

completed independently from the normal NoC router operations.

4.4.3 Destination Based Adaptive Routing

Destination Based Adaptive Routing (DBAR) requires a sideband network similar to

RCA‟s sideband network shown in Figure 4.11. In DBAR, the sideband network bus size varies

between the routers depending on its location in the mesh NoC but the total bus lines between

the two routers are nine lines. There are also two additional buses connecting the routers to

transmit the destination ID of any next flits being transferred.

Figure 4.13 provides the pseudo code for the implementation of propagation data

between two routers. First of all, it is necessary to determine the number of VCs assigned. This

would be computed with combinational logic hardware. Please note that when some congestion

exists, a value of 64 is added because it‟s is the weight of most significant bit of a 7-bit value.

This indicates that congestion at the local router is the most important and the same value is

propagated to the next router.

68

DBAR Data Propagation Process:

dbss_tmp_cnt=0;

for (j=0; j<NVC; ++j) {

if (_input_vc_assigned[EAST][j].read())

 ++_dbss_tmp_cnt;

}

tmp_v=dbss_data_in[WEST].read();

tmp_v=tmp_v>>1;

if (dbss_tmp_cnt>4)

 tmp_v+=64;

dbss_data_out[i].write(tmp_v);

Figure 4-13– DBAR Data Propagate Process

 Destination based adaptive routing means that each router calculates the best routing path

to the destination router. This requires that each direction is to be calculated for every router. A

comparison between congestion values on both the X and Y axis are required and the determined

value must be stored so that it can be used by the route computation process. For simulation, a

simple 2D array Boolean variable is employed where 0 represents X-direction and 1 means Y-

direction.

4.5 Pipeline Modeling

 A high performance NoC router employs pipelining to improve the operating clock

frequency by separating the routing tasks into different stages. Normally, a NoC router is

separated into three stages. The SystemC based simulator we developed is able to model all the

stages at transaction level that is very accurately modeled as compared to hardware.

69

 The different stages for a packet to transverse the VC wormhole router include: Buffer

Write (BW), Route Computation (RC), VC Allocation (VA), Switch allocation (SA) and

Crossbar Transversal (XT). Link Transversal (LT) or Cross Channel is not a stage within the

NoC router as it does not require any clock cycle to propagate the flit from one router to another.

 The pipelining model of NoC routing is achieved by modeling each hardware component

separately at the transaction level. Although it takes longer to simulate, the simulation process is

comparable and similar to hardware transactions. Figure 4.14 shows a packet passing through a

router‟s pipeline stages that is performing perfectly without any stalls. This is usually the case

with the NoC that is relatively free.

Figure 4-14 – Pipeline without Stalls

 As packet injection rises, pipeline stalls will start to occur. Figure 4.15 shows two type of

stalls that can affect the performance and latency of a packet traversing the NoC router. The first

type of stall occurred when there are no available VCs in the downstream router. The header flit

end up spending four cycles to transverse the NoC. All the sequential flits of the same packet

will experience the same delay. Figure 4.15 also shows another type of stall that occurs when

there is no buffer space available in the downstream router.

70

Figure 4-15 – Pipeline Experiencing Stalls

4.6 Packet Modeling

 A data packet is an organization of one or more flits. Our SystemC based simulator

models a flit as the lowest level of data structure and the common data transferred between the

routers as well as being buffered or traversing the crossbar switch in any router. A packet has a

common source and destination ID. It also contains the header flit with all the routing

information and body flits. The last body flit is a special type of flit known as the tail flit. In

hardware, all these types of flit require two bits in each flit to indicate their types. The simulator

models a flit differs than the actual hardware. First of all, flits in hardware are specifically sized

(e.g. 32, 64 or 128 bit flits). The simulator model flits with a dynamic size as a data structure in

software. This allows additional debugging data items such as injection time, packet ID, etc. to

be embedded in each flit for analysis. Moreover, the standard parameter such as the VCID,

destination ID, flit type, etc. are also embedded in this way.

4.6.1 Packet Organization

 As described above, a packet is organized into many different flits. Figure 4.16 shows

that a header flit has much more information embedded than the body and tail flits. In this

71

example, there are eight flits. The header flit will pass through every router first and then the

body and tail flits will follow.

Figure 4-16 – An 8 flit Packet with Different Types of Flits

Figure 4-17– Flit Organization Structure in Simulator

72

 Figure 4.17 illustrates the flit structure used in our SystemC simulator. This is the

standard data structure for transferring and processing data within the NoC. The flit structure has

a few Boolean variables to indicate what types of flit it is. The VCID is stored as well as the

source and destination ID for routing and debugging. The two directions opt0 (option 0) and opt1

(option 1) are used for look-ahead routing. Several integer variables such as injection_start_time,

packet_id and flit_it are used purely for debugging and testing the router and NoC model within

the simulator. There is no purpose to have these fields in a hardware implementation of any NoC

flits, and a simple integer type can be chosen. Standard C++ types such as integers perform faster

than a SystemC types such as “sc_uint<32>” which is an unsigned integer type for hardware

modeling.

4.7 Source Modeling

 The source core is an important hardware unit responsible for packet generation and

injection in the NoC. The source core model has a network interface to inject flits into the NoC

router and a packet generator. Generated packets are separated into many flits and stored in a

linked list. They are injected when the credits are available. With a linked list data structure, the

simulator is able to hold unlimited flits as supported by the host computer‟s available memory.

This allows the NoC simulator to simulate traffic with high latency without any risk of crashing

the simulator.

 The packet generator is required to track the packets generated in every period of 100

cycles to simulate the desire injection rate. In our NoC simulator, when a packet is ready to be

injected into the NoC system, the whole packet is buffered in the source core until it can be sent.

The source core acts as a packet injection controller. The source core controls the injection rate

73

to avoid overflowing the NoC which causes the entire mesh NoC to saturate and dramatically

increase latency for all the routers.

 Figure 4.18 above illustrates two example packets being generated by the source core.

The packets are generated five cycles after another. Every flit of in a packet is individually

generated and defined as either a header, body or tail flit. Each packet is assigned a VCID as it is

required to be assigned to a VC at the source router. For debugging purposes, the packet ID, flit

ID and execution time is also included.

Figure 4-18 - Packet Generation Example Waveform

 Figure 4.19 illustrates how a packet with four flits is injected in a NoC router. The

simulator is designed using the credit based flow control. The source core tracks the number of

credits available in the local NoC router and injects the packet when there are credits available

meaning there is buffering space available in the VC at the downstream local router. After „body

flit 2‟, the number of credits available is zero or the downstream buffer is full, the source stops

transmitting any more flits until it receives a credit_in signal to indicate a flit slot is freed in the

downstream VC. This occurs when the downstream router process one of the flits in that VC.

74

The source will send any remaining flits at this point. The „tail flit‟ is sent as shown in Figure

4.19. Since there are no more flits waiting to be sent after the tail flit, the source core will

increase the number of credits available as it receives credit_in signals until the maximum buffer

flit slots are available in the downstream router.

Figure 4-19 - Example Waveform of the Source Generating a Packet (4 flits)

4.8 Sink Modeling

 The sink core will receive flits when they reach their destination. The sink core packages

the packet together by checking their VCID. The sink core is modeled by a simple network

interface to the router that models the physical channel. For synthetic traffic modeling, it is only

necessary to record the arrival of all the packets and verify their VCID and packet ID. In a

SystemC simulator, packet information such as injection time is embedded in each packet so that

it can be used to measure latency between the source and the sink cores.

 Figure 4.20 shows the waveform for receiving an example packet with four flits (one

header flit, two body flits and a tail flit). The sink will read flits on the positive edge when a

request is made to the sink. The sink will then process data and transmits an acknowledgement

75

(credit_out) to the upstream local router to release a credit. This will allow the local router to

transmit another flit.

Figure 4-20 – Example Waveform of the Sink Receiving a Packet (4 flits)

4.9 Summary

 This chapter reviewed the implementations of the different types of NoC architectures for

testing, research and evaluation purposes. The implementation of a NoC router and each

component are described in detail at the architectural level. Each component is described with

their timing and transaction characteristics for hardware modeling and physical component

design. In this chapter, we discussed the implementation of the transaction accurate NoC

microarchitecture is as well as the development of testing components. We also discussed how

the source and sink cores will handle packets under various traffic conditions.

76

Chapter 5

Experimental Results

This chapter will outline the experimental setup and configuration used to obtain the

experimental results. The parameters for the experimentation along with the methods to calculate

the performance will be described in details. Packet generation to be tested for various traffic

patterns is described. This chapter will also illustrate the performance of our CAAR based

adaptive NoC routing and a numbers of result graphs showing the latency for various different

traffic patterns are presented. Moreover, this chapter also describes how packets are tracked to

ensure correct delivery and how latency measurements are embedded in the simulation traffic

packets.

5.1 Traffic Generation

 NoCs are tested under various traffic conditions to determine its performance. Different

traffic conditions affect the operation and congestion within the NoC. Traffic has several

conditions such as injection rate, injection behaviour and traffic patterns that would affect the

NoC performance. Generally the higher the injection rate, the higher the latency of all the

packets to transverse the NoC. Traffic behaviours also affect congestion level for a constant

77

injection rate. For example, traffic that resembles a uniform process will perform differently than

a self-similar process [13]. The traffic pattern of the data flow within the NoC will affect the

overall performance. For testing and evaluation purposes, a specific traffic pattern can be defined

to observe the performance of NoCs. Otherwise, an application can define a specific

communication pattern or even completely irregular traffic in nature.

 The source would generate packets and flits based on what is desired for the testing

parameters. Different traffic pattern would require a slightly different definition of the

destination ID for each packet. A desired injection rate is selected and the flits are injected by the

source cores. We have already explained the detail in chapter 4 about source modeling.

 There are several types of synthetic traffic data types. Our simulation will model the

random values in terms of uniform traffic with the rand() function to generate a random value.

Other traffic patterns such as transpose are generated by calculating what the destination ID

would be based on in the current router.

5.2 Traffic Pattern

 Traffic patterns within the NoC can be regular (synthetic) or irregular (e.g. some

application related traffic). In simulation, traffic patterns are defined in the initialization phase of

the simulation and the source cores will generate the appropriate traffic pattern by computing the

destination ID for each packet at each router. The destination ID would then be embedded into

each packet allowing all the routers on its path to read it and make its own routing decisions.

78

5.2.1 Synthetic Traffic Patterns

 NoC performance estimation and evaluation can be measured by injected a testing traffic

into the NoC with a specific traffic pattern. Some traffic patterns only allow packets to be sent to

the nearby routers while in some other patterns, the packets are intended to travel across the

NoC. The size of the NoC will also limit the performance of the NoC regardless of the traffic

pattern under evaluation. A list of some synthetic traffic pattern for a mesh topology NoC are

listed below. We will consider (x, y) to be the coordinates of each router in the NoC and N to be

the size of an NxN mesh topology NoC.

5.2.2 List of Synthetic Traffic Patterns:

Uniform: Packets can be sent to any destination in the NoC

Transpose-1: Packets are sent from (x, y) to (N-y+1, N-x+1)

Transpose-2(Bit reverse): Packets are sent from (x, y) to (y, x)

Shuffle: Packets are sent from (x, y) to ((x+N-1) mod N, (y+N-1) mod N))

Tornado: Packets are sent from (x, y) to ((x+([k/2]-1) mod N), (y+([k/2]-1) mod N))

Regional Uniform: A uniform traffic pattern that favours sending packets to nearby

routers

Figures 5.1 illustrate how a regional uniform traffic pattern separates an 8x8 mesh NoC

into 4 x 4 regions. This type of traffic has a higher likelihood as NoC organizations would likely

to have cores that communicate with the closer NoC cores. Each region is organized as 4 x 4.

79

Figure 4 shows the organization of the regions. This type of traffic can be expanded to a 16 x 16

mesh. In our experiment, 80% of the traffic is sent within the region with the remaining 20% sent

to anywhere in the NoC.

5.3 Performance Evaluation

 One of the performance parameters used in NoCs is the average latency. By comparing

average latencies between different traffic type and different NoC router architectures, an

optimal architectural design can be determined. Average latency is the summation of the latency

values of all the packets injected in the NoC divided by the number of packets injected.

 Latency is simply calculated by

 Eq. 5.1

R0

R2

R1

R3

Figure 5-1 - Regional Uniform Traffic Regions

80

In our CAAR simulator, the source would embed the injection time into every flit of the

packet. Once the packet‟s last flit reaches the sink core, its latency can be calculated and added

to the running total.

 Since average latency may not illustrate the worst case scenario for NoC performance,

maximum latency can also be measured in the NoC and taken into account while predicted the

NoC performance. To measure maximum latency, each sink core would track the highest latency

packet received and send all the information to the simulator. The simulator would check all the

sink values and determine the highest latency packet received.

5.4 Packet Tracking

 Packet tracking is the process of keeping track of all the flits to ensure that all the flits

and packets follow a path from the source to the destination without backtracking. This is

important for the simulator to track while experimenting with any micro-architectural changes to

the NoC router. For the simulator to track all the packets, a tracking process reads all the output

flits at all the outputs of all the routers and sources. Every source keeps a list of all the flits and

packets injected in the NoC. When a new packet is injected from a source core, each flit creates a

new list and saves the source ID. Whenever a packet is being transmitted from a router, it

compares its flit ID and adds the new router ID to the list. All lists are implemented as a linked

list data structure which is dynamically expandable allowing millions of flits to be tracked by the

simulator.

The process to track all the flits is illustrated below:

81

i. The source will read the current excitation time and embed the execution time value into

the packet being injected into the NoC.

ii. The value will not change as the packet transverses all the NoC routers.

iii. Once the packet arrives at the sink, the sink waits until the tail flit arrives. Once the tail

flit arrives, it will subtract the current execution time with the injection execution time to

determine the latency.

5.5 Experimental Setup

 NoC performance of the NoC router architecture is tested by the average latency of

packets traversing the mesh NoC. The simulator is setup to allow experimental testing of many

different configurations such as mesh topology size, injection rates, traffic patterns, length of the

packets, the number of VCs, etc.

5.5.1 Mesh Topology Size

Our CAAR modeling experiment includes various size topologies. Since the industry is

always looking to increase the number of cores and complexity of NoCs, smaller size NoCs such

as 4 x 4 may not be very useful as today. We evaluated 8 x 8 and 16 x 16 mesh to determine the

usefulness of our proposed CAAR based router and NoC.

5.5.2 NoC Simulation Setup

A transaction level SystemC simulator has been developed to model the

microarchitecture of the router described in the previous section. The pipelined NoC router

82

consists of two cycles, one for VA/SA and the second for Crossbar switch transversal. An

additional cycle is required for Link Transversal. Different routing algorithms have been used

including DOR, Local Adaptive and destination based regional adaptive techniques. Fully

adaptive algorithm is based on Duato‟s methodology, which employs an escape VC to break the

deadlock [19]. In our experimental setup, the router uses 8 VCs with 5 flits per VC for the static

sized VC buffer and various sized dynamically managed buffer. During evaluation, the simulator

is initialized for 10,000 cycles and capable of capturing the results for 100,000 cycles afterwards.

We evaluate each traffic pattern by employing a burst-based traffic injection process. We

evaluate both average latency and maximum latency. As described earlier in section 5.3.3,

maximum latency demonstrates the worst case scenario which is important to latency sensitive

applications.

5.6 Evaluations

The Microsoft Excel software is used to produce the graphs for our evaluation results.

5.6.1 Small NoC (4x4)

We start to evaluate a small 4x4 mesh NoC. Since CAAR involves a prioritization technique,

we do not expect CAAR to perform significantly different than RCA or any other regional

congestion awareness. The average latency results are shown left along with the maximum

latency on the right side.

83

Figure 5-2 – 4x4 Transpose-1 Traffic

For Transpose-1 traffic and 4x4 mesh topology results of Figure 5-2, we can observe that CAAR

has a slightly better maximum-latency over RCA. This is due to prioritization of packets sent

between the corners of a mesh NoC. The results from Figures 5-2 and 5-4 show that Transpose-2

traffic has a slightly better average latency than RCA since there is less long distance packets

being transmitted as compared to Transpose-1.

20

40

60

80

30 34 38 42 46 50 54 58

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

4x4 Transpose1 Average Latency

XY
Local
RCA
DBAR
CAAR
GCA 0

150

300

450

28 32 36 40 44 48 52

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

4x4 Transpose1 Max Latency

XY
local
RCA
DBAR
CAAR
GCA

84

Figure 5-3 – Details of 4x4 Transpose-1 Average Traffic

Figure 5-4 – 4x4 Transpose-2 Traffic

20

40

60

80

30 34 38 42 46 50 54 58

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

4x4 Transpose1 Average Latency

XY

Local

RCA

DBAR

CAAR

GCA

20

40

60

80

28 32 36 40 44 48 52

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

4x4 Transpose2 Average Latency

XY

Local

RCA

DBAR

CAAR

GCA

0

150

300

450

28 32 36 40 44 48

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

4x4 Transpose2 Max Latency

XY
local
RCA
DBAR
CAAR
GCA

85

Figure 5-5-4x4 Transpose-2 Average Traffic

As expected, there would not be any improvement for shuffle traffic as all the

destinations are within half the maximum distance of the mesh. Surprisingly XY routing

performance is significantly better when enough number of VCs are available.

Figure 5-5 – 4x4 Mesh with Shuffle Traffic

20

40

60

80

28 32 36 40 44 48 52

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

4x4 Transpose2 Average Latency

XY

Local

RCA

DBAR

CAAR

GCA

0

50

100

150

200

26 30 34 38 42 46 50 54

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

4x4 Shuffle Average Latency

XY

Local

RCA

DBAR

CAAR

GCA

0

100

200

300

400

500

26 30 34 38 42 46 50 54

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

4x4 Shuffle Max Latency

XY

local

RCA

DBAR

CAAR

GCA

86

Figure 5-6 – 4x4 Uniform Traffic Latency

Under uniform traffic especially for a small 4x4 mesh, CAAR nor adaptive routing is

expected to perform much better than XY routing. CAAR performed the same as RCA as there is

a very low chance prioritization is required within uniform traffic. Uniform Regional traffic is

not evaluated under the 4x4 mesh since it would have the same result as uniform traffic as the

region size is 4x4.

5.6.2 Medium Size NoC (8x8)

In this section, we evaluated CAAR for an 8x8 mesh NoC with 8VCs. CAAR shows

moderate improvement over RCA for transpose traffic as long distance packets have benefited

from CAAR. Similar to 4x4, CAAR is able to improve throughput for transpose traffic. As

shown in Figure 5-8, CAAR is able to gain small improvement with Transpose-1 traffic in

contrast to 4x4 mesh NoC. Similarly CAAR has a larger performance gain with Transpose-2

traffic pattern (see Figure 5-9).

0

50

100

150

200

26 30 34 38 42 46 50 54

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

4x4 Uniform Average Latency

XY
Local
RCA
DBAR
CAAR
GCA

0

150

300

450

26 30 34 38 42 46 50 54

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

4x4 Uniform Max Latency

XY

local

RCA

DBAR

CAAR

GCA

87

Figure 5-7 – 8x8 Transpose-1 Traffic

Figure 5-8 - 8x8 Transpose-2 Traffic

Figure 5-9 - 8x8 Shuffle Traffic

0

50

100

150

200

6 10 14 18 22 26 30 34

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

8x8 Transpose1 Average Latency

XY
Local
RCA
DBAR
CAAR
GCA

0

250

500

750

1000

6 10 14 18 22 26 30 34

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Transpose1 Max Latency

XY
local
RCA
DBAR
CAAR
GCA

0

50

100

150

200

6 10 14 18 22 26 30 34

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Transpose2 Average Latency

XY
Local
RCA
DBAR
CAAR
GCA

0

250

500

750

1000

6 10 14 18 22 26 30 34

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Transpose2 Max Latency

XY
local
RCA
DBAR
CAAR
GCA

0

50

100

150

200

6 10 14 18 22 26 30 34 38 42 46 50

L
a

te
n

c
y

 (
c.

c.
)

Injection rate (per 100 cycles)

8x8 Shuffle Average Latency

XY
Local
RCA
DBAR
CAAR
GCA

0

250

500

750

1000

6 10 14 18 22 26 30 34 38 42 46 50

La
te

n
cy

 (
c.

c)

Injection rate (per 100 cycles)

8x8 Shuffle Max Latency

XY

local

RCA

DBAR

CAAR

GCA

88

Similarly with shuffle traffic as shown in Figure 5-10, CAAR performed equally as good

as RCA with XY performing significantly better. Under uniform traffic for an 8x8 mesh, average

latency remains the same between RCA and CAAR but RCA performed slightly better than

CAAR as shown in the results of Figure 5-11. This is due to an increased prioritization of long

distance packets.

Figure 5-10 - 8x8 Uniform Traffic

Finally in figure 5-12, we present the evaluation results for a regional uniform traffic.

Under this traffic condition, there is approximately 10% improvement in the case of CAAR

when compared with RCA. With a small amount of packets that can be prioritized, the allocators

are able to improve performance for the long distance packets.

0

50

100

150

200

6 10 14 18 22 26 30 34 38

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Uniform Average Latency

XY
Local
RCA
DBAR
CAAR
GCA

0

250

500

750

1000

6 10 14 18 22 26 30 34

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Uniform Max Latency

XY
local
RCA
DBAR
CAAR
GCA

89

Figure 5-11 - 8x8 Regional Uniform Traffic

Figures 5-13 and 5-14 shows the results for regional uniform traffic on a larger scale to

illustrate and highlight the better performance of CAAR based routing as compared to other

schemes.

Figure 5-13 – Larger Scale of 8x8 Regional Uniform Traffic Average Traffic

20

40

60

80

100

6 10 14 18 22 26 30

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Regional Uniform Average Latency

XY

Local

RCA

DBAR

CAAR

GCA

0

100

200

300

400

500

6 10 14 18 22 26 30

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Regional Uniform Max Latency

XY

local

RCA

DBAR

CAAR

GCA

20

40

60

80

100

22 26 30

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Regional Uniform Average Latency

XY

Local

RCA

DBAR

CAAR

GCA

90

Figure 5-14 - Larger Scale of 8x8 Regional Uniform Traffic Max Traffic

5.6.3 Large Size NoC (16x16)

In this section the results are presented for 16x16 size mesh NoC in Figures 5-15 to 5-19.

In a large size mesh NoC and for Transpose traffic, RCA shows a similar throughput as of

CAAR but performs slightly better in the case of latencies when the NoC begins to saturate.

For the 16x16 mesh NoC and shuffle traffic, CAAR does show some improvements over

RCA although the maximum for RCA is slightly better than CAAR the point of saturation.

Under uniform traffic, CAAR showed more improvement as compared to RCA. In terms

of average latency, the deterministic XY routing performs better than RCA but CAAR performs

better than both of them.

100

200

300

400

500

18 22 26 30

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

8x8 Regional Uniform Max Latency

XY

local

RCA

DBAR

CAAR

GCA

91

Figure 5-12 – 16x16 Transpose-1 Traffic

Figure 5-13- 16x16 Transpose-2 Traffic

0

50

100

150

200

5 7 9 11 13

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

16x16 Transpose-1 Average Latency

XY

Local

RCA

DBAR

CAAR

GCA
0

250

500

750

1000

5 7 9 11 13

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

16x16 Transpose-1 Max Latency

XY
local
RCA
DBAR
CAAR
GCA

0

50

100

150

200

5 7 9 11 13

L
a

te
n

c
y

 (
c.

c)

Injection rate (per 100 cycles)

16x16 Transpose-2 Average Latency

XY
Local
RCA
DBAR
CAAR
GCA 0

250

500

750

1000

5 7 9 11 13

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

16x16 Transpose-1 Max Latency 8VC

XY

local

RCA

DBAR

CAAR

GCA

92

Figure 5-14 - 16x16 Shuffle Traffic

Figure 5-15 - 16x16 Uniform Traffic

Finally, in the case of regional uniform traffic, both RCA and CAAR performed similarly as

most the traffic does not include any packets traveling from one corner of the NoC to an opposite

corner.

0

50

100

150

200

6 10 14 18 22 26

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

16x16 Shuffle Average Latency

XY

Local

RCA

DBAR

CAAR

GCA 0

250

500

750

1000

6 10 14 18 22 26

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

16x16 Shuffle Max Latency

XY

local

RCA

DBAR

CAAR

GCA

0

50

100

150

200

6 10 14 18 22 26

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

16x16 Uniform Average Latency

XY

Local

RCA

DBAR

CAAR

GCA
0

250

500

750

1000

6 10 14 18 22 26

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

16x16 Uniform Max Latency

XY

local

RCA

DBAR

CAAR

GCA

93

Figure 5-16 - 16x16 Regional Uniform Traffic

5.7 Hardware Modeling

In this section, we evaluate the power and area overhead associated with the additional

hardware required for CAAR implementation. We‟ll make a comparison between the baseline

adaptive routing with our CAAR implementation. The implementation of CAAR is done by

using System Verilog.

5.7.1 Chip Area Estimation

 Chip area estimation is the process of finding the area required for each router on the

NoC chip. It is necessary to find out which component takes up more IC space and the changes

in the chip size of the NoC router when more hardware is added to the router. For example,

congestion awareness requires additional logical components that occupy more area space. Area

estimation tools such as Synopsys Design Vision will be able to generate a report of the IC area

usage.

0

50

100

150

200

6 10 14 18 22 26 30

L
a

te
n

c
y

 (
c.

c)

Injection rate (per 100 cycles)

16x16 Regional Uniform Average Latency

XY

Local

RCA

DBAR

CAAR

GCA

0

250

500

750

1000

6 10 14 18 22 26 30

L
a

te
n

cy
 (

c.
c)

Injection rate (per 100 cycles)

16x16 Regional Uniform Max Latency

XY

local

RCA

DBAR

CAAR

GCA

94

5.7.2 Power Estimation

 Hardware components require power to operate. Depending on the size and type of logic

used in CAAR implementation, power usage can increase significantly. It is necessary to

measure power usage of each router component, especially the power consumed by additional

congestion awareness components.

5.7.3 Evaluation

We employed Synopsys Design Vision to analyze the area and power usage of our

proposed CAAR router. We have used Nangate‟s Open Cell Library with a 15nm process at 1V

[38]. The area and power usage estimates are presented in Table-1 for CAAR as compared to

RCA and DBAR.

Table 5-1 – Hardware Area Usage

 Buffer Other Logic Allocator Crossbar Total

Baseline Local

Adaptive

RCA

DBAR

CAAR

GCA

Table 5-2 – Power Usage

 Buffer Other Logic Allocator Crossbar Total

Baseline Local

Adaptive

4.04mW 1.66mW 2.31mW 2.00mW 10.01mW

RCA 4.04mW 2.06mW 2.31mW 2.00mW 10.41mW

DBAR 4.04mW 3.02mW 2.31mW 2.00mW 11.37mW

CAAR 4.04mW 1.94mW 2.86mW 2.00mW 10.84mW

GCA 4.04mW 2.18mW 2.31mW 2.00mW 10.53mW

95

For an 8VC implementation, CAAR has an additional overhead of 5.2% over RCA and

13.3% over the baseline adaptive router. We believe this is justified as it is only a small overhead

to improve the performance for far distance packets. Other proposed designs also have an

overhead over RCA and the baseline adaptive router. CAAR has a power overhead of 4.1% over

RCA and 8.3% over the baseline locally adaptive router. Compared to DBAR, CAAR has slight

advantage in terms of both area usage and power consumption. DBAR would have higher power

consumption every clock cycle as it needs to update all the destination information in the entire

table. GCA has better hardware usage but is not as effective in terms of performance

improvement over RCA.

Although there is a small increase of IC area and power consumption, congestion aware

NoC routers are designed for high throughput applications where performance is the most

important. For parallel high performance computing systems, a small increase in NoC router

hardware is not significant as compared to the IC area size of the CPU cores.

96

5.8 Summary

This chapter provided the evaluation methods and results related to the performance of

CAAR in relation with locally and regional adaptive routing. In this chapter, the methods of

evaluation are identified along with the types of synthetic traffic used to test the proposed CAAR

router. The results are illustrated along with a short reviewed to describe the situation.

Furthermore, hardware overhead is also evaluated to determine CAAR‟s implementation in

actual hardware. CAAR router allocator consumes much more chip area and there is need to

investigate an area efficient CAAR allocator.

97

Chapter 6

Conclusions

This thesis presents a novel approach that improves NoC throughput by packet

prioritization. The objective is to increase the NoC throughput by using congestion aware

information. Congestion awareness information has already been applied for on-chip

communication to improve NoC routing. We have expanded adaptive routing by employing

regional congestion data to latency for packet routing. We have described the methodology of

expanding the regional congestion awareness data to improve packet selection for both VC and

switch allocators. A new methodology of Congestion Aware Adaptive Routing (CAAR) is

designed to prioritize the packet/flit allocation that suffers the most latency while travelling

between NoC cores. Moreover, to improve on hardware usage and to avoid any additional links

between routers, CAAR removes the sideband network to transfer congestion data and instead

adds the congestion information into the header flit of a packet.

Experiment and simulations have been conducted on various size mesh based NoCs

ranging from 4x4 to 8x8 and up to 16x16. Our CAAR methodology experimental results

demonstrate performance improvement for long distance packets, which are prioritized in

congested NoC situations.

98

References

[1] W. Dally and B. Towles, Principles and Practices of Interconnection Networks. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[2] L. Peh N. Enright Jerger, On-Chip Network, Synthesis Lectures on Computer Architecture.:

Morgan & Claypool Publishers, 2009.

[3] G.-M. Chiu, "The Old-Even Turn Model for Adaptive Routing," in IEEE Transactions on

Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-738, July 2000.

[4] B. Grot, S.W. Keckler P. Gratz, "Regional Congestion Awareness for Load Balance in

Network-on-Chip," High performance Computer Architecture (HPCA), pp. 203-214, 2008.

[5] B. Lin R.S. Ramanujam, "Destination-Based Adaptive Routing on 2D Mesh Networks," in

Proceedings of Architectures for Networking and Communications Systems (ANCS), 2010

ACM/IEEE Symposium on, pp. 1-12, 25-26 October 2010.

[6] N. Enright Jerger, Z. Wang S. Ma, "DBAR: An Efficient Routing Algorithm to Support

Multiple Concurrent Applications in Network-on-Chip," in Proceedings of Computer

Architecture (ISCA), 2011 38th Annual International Symposium on, pp. 413-424, 4-8 June

2011.

[7] T. Takabatake, "Simulations of NoC topologies for generalized hierarchical completely-

connected networks," in Proceedings of the 6th International Workshop on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), vol. , no. , pp. 1-5, 20-22 Jun. 2011.

99

[8] A., Saoud, S. Achballah, "A Survey of Network-On-Chip Tools," International Journal of

Advanced Computer Science and Applications (IJACSA), vol. 4, no. 9, pp. 61-67, Dec.

2013.

[9] T., Mahadevan, S. Bjerregaard, "A Survey of Research and Practices of Network-on-Chip,"

ACM Computing Surveys, vol. 38, no. 1, pp. 1-51, Jun 2006.

[10] P. Bogdan, G. Wei, C.Y. Tsui, R. Marculescu Z. Qian, "A Traffic-aware Adaptive Routing

Algorithm on a Highly Reconfigurable Network-on-Chip Architecture," in Proceedings of

International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), vol. , no. , pp. 161-170, October 2012.

[11] C., Bagherzadeh, N. Wang, "Design and evaluation of a high throughput QoS-aware and

congestion-aware router architecture for Network-on-Chip," in proceedings of the 20th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing, pp. 457-464, 15-17 Feb. 2012.

[12] S. Liu, A. Jantsch, and Z. Lu, "Analysis and Evaluation of Circuit Switched NoC and Packet

Switched NoC," in the Proceeding of the 16th Euromicro Conference on Digital System

Design, pp. 21-28, 4-6 Sept. 2013.

[13] P. Gratz, A. Sprintson M. Ramakrishna, "GCA: Global Congestion Awareness for Load

Balance in Network-on-Chip," in Proceeding of the 7
th

 IEEE/ACM International Symposium

on Networks on Chip (NoCS), pp. 1-8, 21-24 April 2013.

[14] C.A. Nicopoulos et al., "ViChaR: A Dynamic Virtual Channel Regulator for Network-on-

100

Chip Routers," in Proceeding of International Symposium on Microarchitecture, 2006.

MICRO-39. 39th Annual IEEE/ACM, pp. 333-346, 9-13 Dec. 2006.

[15] W. J. Dally and H. Aoki, "Deadlock-free Adaptive Routing in Multicomputer Networks

Using Virtual Channels," IEEE Transactions on Parallel and Distributed Systems, vol. 4,

no. 4, pp. 466-475, April 1993.

[16] A. West, S. Moore R. Mullins, "Low-Latency Virtual-Channel Routers for On-Chip

Networks," in Proceedings of the 31st Annual International Symposium on Computer

Architecture (ISCA). Munich, Germany., pp. 188-197, 19-23 June 2004.

[17] J. Duato, "A Necessary and Sufficient Condition for Deadlock-Free Adaptive Routing in

Wormhole Networks," IEEE Transactions of Parallel and Distributed Systems, vol. 6, no.

10, pp. 1055–1067, October 1995.

[18] J. Duato, "A Necessary and Sufficient Condition for Deadlock-Free Routing in Cut-Through

and Store-and-Forward Networks," IEEE Transactions on Parallel and Distributed Systems,

vol. 7, no. 8, pp. 841–854, August 1996.

[19] J. Duato, "A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks,"

IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 12, pp. 1320–1331,

December 1993.

[20] T. Lehtonen, J. Plosila V. Rantala, "Network on Chip Routing Algorithms," Turku Centre

for Computer Science, August 2006.

101

[21] K. Jain, S.K. Singh, A. Majumder, and A.J Mondai, "Problems encountered in various

arbitration techniques used in NOC router: A survey," in Proceeding of the International

Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV)

, pp. 62-67, 29-30 Jan. 2015.

[22] W. Dally and D. Becker, "Allocator implementations for network-on-chip routers,"

Proceedings of the Conference on High Performance Computing Networking, Storage and

Analysis (SC), November 2009.

[23] N McKeown, "The iSLIP Scheduling Algorithm for Input-Queued Switches," in IEEE

Transactions on Networks, vol. 7, no. 2, pp. 188-201, Apr. 1999.

[24] Q.-A. Zeng, W.-B. Jone and M. Li, "DyXY – A Proximity Congestion-Aware Deadlock-

Free Dynamic Routing Method for network on Chip," in proceeding of the 43rd Design

Automation Conference. San Francisco, CA, pp. 849-852, July 2006.

[25] J., Marculescu and R. Hu, "DyAD-Smart Routing for Network-on-Chip," in Proceeding of

41th Design Automation Conference. San Diego, CA., pp. 260-263, June 2004.

[26] D. Park, T. Theocharides, N. Vijaykrishnan, C.R. and Das J. Kim, "A Low Latency Router

Supporting Adapitivity for On-Chip Interconnects," in Proceeding of 42th Design

Automation Conference, pp. 559-564, June 2005.

[27] V. Catania, M. Palesi, D. Patti and G. Ascia, "Implementation and Analysis of a New

Selection Strategy for Adaptive Routing in Networks-on-Chip," IEEE Transaction in

Computers, vol. 57, no. 6, pp. 809-820, Apr. 2008.

102

[28] F. Farahnakian, M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and J. Plosila, "Q-learning

based congestion-aware routing algorithm for on-chip network," in Proceeding of the 2nd

International Conference on Networked Embedded Systems for Enterprise Application, pp.

1-7, 8-9 Dec. 2011.

[29] L.Clermidy, F. Moraes, and F. Tedesco, "A Monitoring and Adaptive Routing Mechanism

for Qos Traffic on Mesh NoC Architectures," in Proceedings of International Conference

on Hardware/Software Codesign and System Synthesis (CODES+ISSS). Grenoble, France,

pp. 109-117, June 2009.

[30] M., Fu, W., Chen, T., Hu, W., Wu, and M. Yuan, "CABSR: Congestion Agent Based

Source Routing for Network-on-Chip," in Proceeding of the Intl Symp on Cyberspace Safety

and Security on High Performance Computing and Communications, pp. 669-676, 20-22

Aug. 2014.

[31] H.-L. Chen, Y.R., Tung, S.-Y., Hsiung, P.-A., Chen, and S.-J. Chao, "Congestion-aware

scheduling for NoC-based reconfigurable systems," in Proceeding of Design, Automation &

Test in Europe Conference & Exhibition (DATE) on , vol. pp. 1561-1566, 12-16 Mar. 2012.

[32] M. Daneshtalab, M. Ebrahimi, J. Plosila, and H. Tenhunen, "CARS: Congestion-aware

request scheduler for network interfaces in NoC-based manycore systems," in Proceeding of

Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1048-1051, 18-

22 Mar. 2013.

[33] D. Zydek and H. Selvaraj, "Processor Allocation Problem for NoC-Based Chip

Multiprocessors," in the Proceeding of the Sixth International Conference on Information

103

Technology: New Generations (ITNG), pp. 96-101, 27-29 Apr. 2009.

[34] R. Das, O. Mutlu, T. Moscibroda, and C.R. Das, "Application-aware prioritization

mechanisms for on-chip networks," in the Proceeding of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 280-291, 12-16 Dec. 2009.

[35] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal network on chip: concepts,

architectures, and implementations," IEEE Design & Test of Computers, vol. 22, no. 5, pp.

414-421, Sept.-Oct. 2005.

[36] J. Diemer, R. Ernst, and M Kauschke, "Efficient throughput-guarantees for latency-sensitive

networks-on-chip," in Proceeding of 15th Asia and South Pacific on Design Automation

Conference (ASP-DAC), pp. 529-534, 18-21 Jan. 2010.

[37] Accellera. (2015) SystemC. [Online]. http://accellera.org/downloads/standards/systemc

[38] J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, J. Michelsen and M. Martins,

"Open Cell Library in 15nm FreePDK Technology," in Proceedings of the International

Symposium on Physical Design (ISPD), pp. 171-178, 29 Mar. 2015.

http://accellera.org/downloads/standards/systemc

