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Abstract 

 

Network-On-Chip (NoC) has surpassed the traditional bus based on-chip communication 

in offering better performance for data transfers among many processing, peripheral and other 

cores of high performance embedded systems. Adaptive routing provides an effective way of 

efficient on-chip communication among NoC cores. The message routing efficiency can further 

improve the performance of NoC based embedded systems on a chip. Congestion awareness has 

been applied to adaptive routing for achieving better data throughput and latency.  

 

This thesis presents a novel approach of analyzing congestion to improve NoC throughput by 

improving packet allocation in NoC routers. The routers would have the knowledge of the traffic 

conditions around themselves by utilizing the congestion information. We employ header flits to 

store the congestion information that does not require any additional communication links 

between the routers. By prioritizing data packets that are likely to suffer the worst congestion 

would improve overall NoC data transfer latency. 
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Chapter 1  

Introduction 

 

1.1 NoC Systems 

Embedded systems on chip in the recent decade have grown substantially utilizing many 

cores on a single chip known as embedded System-on-a-chip (SoC). It is important that data 

within the SoC, all cores have access to the desire resources while maintaining a data load 

balanced transmission links. Traditional bus-based interconnection has been able to allow high 

speed data transfers within a small SoC. However as the SoC scales up in size in today‟s most 

demanding applications, NoC is proven to provide better balance between traffic loads and data 

access for every core. [1] NoCs are expandable to allow communication for very large SoCs. It is 

not uncommon to see more than 256 cores in a NoC system, which is impossible to handle on a 

bus-based system. 

NoC based systems is a new strategy for data communication within the SoC. NoC 

performance depends on topology, data link width, traffic patterns, routing mechanisms and 

router arbitration. These parameters can be prioritized to improve performance, area of the 

design layout or power dissipation of the SoC. Depending on the chosen design requirement, the 

connections between routers and cores of a NoC can differ significantly. 



2 

 

NoC performance is important in high data throughput applications. It is ideal to reduce 

congestion and latency for all the data transfers within the NoC. Unfortunately, by increasing the 

number of cores within the NoC, congestion increases proportionally to the NoC size. Therefore, 

it is necessary to manage traffic effectively for reducing congestion within the NoC to achieve 

the best performance as the NoC grow in size. 

 

1.2 Motivation 

 NoC development is rapidly advancing thanks to improved manufacturing technologies 

within the VLSI field allowing more processing and other cores to be embedded in a SoC. As 

multi-core systems become the norm of this decade‟s technology, there is a need to allow more 

cores to communicate within the SoC.  The growing number of cores will contribute to 

additional traffic to the expanding size NoCs which will increase congestion. There is a need to 

reduce congestion and improve performance at the same time for larger size NoCs. This leads to 

the needs of conducting research and developing better NoC routers that are adaptive and handle 

the increasing demands of larger NoC. 

As NoC usage grows within the industry, it has become necessary to have off the shelf 

NoC models. A mesh topology NoC design is very common for large number of application and 

it has high scalability for expansion. It is important to have a NoC design that supports high 

performance in terms of throughput. By introducing congestion awareness based adaptive 

routing [1,2], performance gain has occurred with the addition of some hardware components. 

More importantly, the additions of these specialized components are done within the NoC thus 

any developer utilizing this platform would not have to design a different interface to take 
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advantage of congestion awareness. This will also help new developers to employ adaptive NoCs 

an alternative to traditional techniques such as a bus based system. 

Surely the last decade, there has been ongoing research for a better routing system for 

mesh topology NoCs. It started off with turn based models such as Odd Even (OE) routing [3] 

which can be applied to adaptive routing. Further along, researchers have investigating routing 

flexibility to reduce loading on ports in one axis. Deterministic routing such as Dimension Order 

Routing (DOR) (e.g. XY Routing) has been utilized for simplicity and the ability to avoid 

deadlock and livelock situations [1]. The idea of a better routing algorithm is needed to choose 

between the x-axis and y-axis which was pursued to improve loads within the NoC. Adaptive 

routing utilized congestion data of neighbours first. As this research area matured, adaptive 

routing utilized more data from routers beyond its neighbours. A steady flow of data was needed 

to achieve regional congestion awareness for adaptive routing [4]. Destination based routing has 

shown to improve latency as congestion is more accurately known to the destination [5,6]. 

 

We investigate, how much congestion awareness information is necessary for a NoC with 

congestion awareness to operate reliably. How congestion related data should be transmitted to 

relevant routers. Moreover, how congestion data can be utilized by other components of the 

router to improve latency? 
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1.3 Contribution 

The main objective of the research presented in this thesis work is to improve 

performance of the NoC routing by congestion awareness information received. Previously 

congestion awareness is mainly used in routing decisions. This work extends congestion 

information usage to other parts of the NoC routers such as to improve allocation and buffering 

capabilities. 

Secondly, most newly developed NoC microarchitectures are often tested with average 

latency only. Although average latency provides a good measure of performance, it does not 

outline the worst case scenario which is critical for embedded SoC systems. Maximum latency 

performance is analyzed to understand their effects in a congestion aware adaptive router 

(CAAR). 

In the thesis, attempts to improve throughput and reduce latency are made by prioritizing 

packets under congested situation. Packet prioritization during congestion is proposed to improve 

latency between packets that are the furthest away between the source and destination cores. This 

would improve the overall latency within the NoC and allow these packets to suffer lower 

latencies. Moreover, VC resources would be freed up for other packets to utilize the buffer space. 

In addition to prioritizing packets, this method can be extended to the application of Quality of 

Service (QoS). This allows highly sensitive packets to be prioritized under congestion ensuring 

on time delivery without delaying other packets under non congested operations. 

 



5 

 

1.4 Thesis Structure 

 This thesis covers the concept of NoC communication, our congestion awareness 

methodology, experimental setup and simulation results. Chapter 2 provides an overview of the 

NoC and how topology, traffic patterns, router architecture and design will affect performance. 

Moreover, adaptive routing and congestion awareness techniques are discussed in details such as 

the different types of adaptive routing and how congestion data are transmitted within the NoC. 

Chapter 3 explains the methodology for prioritizing packets and how the allocators determine 

and select prioritized packets under congestion. Chapter 4 provides the developed simulator and 

setup for the experiment of improving NoC performance and reducing congestion within the 

NoC. It describes the development of the simulator in SystemC. Chapter 5 illustrates the results 

of the experiment conducted for improving congestion the NoC. Finally, Chapter 6 concludes 

this thesis with recommendations and future work.  
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Chapter 2  

Congestion Aware NoC 

 

 In this chapter, we will discuss important components of the NoC and its router for 

congestion awareness. This chapter provides a description of data flow, router architecture, flow 

control, traffic generation, adaptive routing and congestion awareness. We will offer an insight 

of the advantages and disadvantages of different methods available for NoC design. Efforts are 

made to highlight various technique employed to improve performance of the mesh topology 

NoC. Moreover, we will describe the techniques relating to congestion awareness hardware, 

modifying the mesh topology and the changes made to the router‟s microarchitecture. 

 

2.1 NoC Topology 

 Topology is the interconnection structure of the NoC that consists of routers, links and 

cores. There are many possibly topologies for NoC including mesh, torus, ring, star, cube and 

etc. [7,8]. NoC topology can expand into many dimensions. Each topology has its own 

advantages and disadvantages such as flexibility, reliability, number of links, routing latency and 

complexity. Performance would differ depending on topology since they are connected 

differently with various numbers of links [7]. A simple topology such as ring topology has very 
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simple routing mechanics but the number of routers is limited since latency will increase 

substantially if too many routers are added to the NoC. Mesh topology is generally chosen as it 

has many benefits such as multiple paths to every router, supports adaptive routing and fits many 

applications.  

Figure 2.1 shows how a star topology is organized. This topology designates the centre 

router R0 as the main router. If router R0 is congested, it affects all router to router transfers but 

allows local cores within the slave routers R1-R5 to continue functioning. Each slave routers can 

be further expanded into branches but in the case where cores need to communicate with other 

branches, significant congestion would be created. The worst case scenario is when R0 fails as 

there is no backup link causing the system to total fail. Figure 2.2 illustrates a ring topology 

NoC. Unlike a start topology, the ring topology has two directions to route its data. This 

topology handles fault tolerance better than a star topology. The ring topology still suffers with 

the congestion issues. In the case where a router is congested, it creates a backlog of data holding 

up all data transfers behind it. The mesh topology resolves these issues with many alternative 

links between routers allowing multiple paths from a source to destination.  
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Figure 2-1 - Star Topology NoC 
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Figure 2-2 - Ring Topology NoC 
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Figure 2-3 - Mesh Topology NoC 

 

Figure 2.3 shows a typical 4x4 mesh topology NoC. Please note the difference between 

mesh and the previously illustrated topologies where each router only has a single connection to 

its core. This improves performance by reducing demand on each router and allowing multiple 

paths to a destination at the expense of more routers. Torus topology is an extension of this 

topology that also connects the routers on the edges among each other. The mesh topology can 

be stacked together to form higher dimension NoCs such as 3D cube topology. 
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2.2.1 Modified Mesh Topology 

 The mesh topology is a standard topology where routers connected in all four cardinal 

directions as shown in Figure 2.3. It is easily scalable and thus it has been used in many research 

works as well as physical applications [9]. Mesh topology is simple and adaptive to many NoC 

designs making it an attractive choice. Although the mesh topology offers a lot of flexible as a 

NoC topology, it has a limitation to transmit data diagonally or directly beyond the neighbouring 

routers. Qian et al. suggests that the mesh topology can be broken into regions of 4x4 and a hub 

router can be added to the NoC which can dynamically reconfigurate itself to connect to 

surrounding routers allowing packets to be transmitted diagonally to reduce latency [10]. 

Another implementation by Wang et al. modifies the mesh topology into a diagonal mesh 

(DMesh) which has additional diagonal links connecting each router on the NoC [11]. Both 

implementations show improvements over the traditional mesh topology at the cost of additional 

links and increase complexity of each router. Crossbars have additional contention from more 

input and output ports which can potentially reduce performance.  

2.3 Data Transmission  

NoC data transmission can be setup either by employing circuit switching or packet 

switching [8,12]. Each method has its own advantages and disadvantages. Circuit switching 

requires a direct path to be setup from the source to destination cores to allow the data flow from 

the source to destination. Unassigned cores suffer longer waiting for the grant of physical 

channel for data transmission. Packet Switching is a method where the message data is divided 

into packets that are further divided into flits. With a smaller data unit such as flits, data can be 

buffered easily between multiple routers of the NoC. This allows the NoC to function as 
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wormhole routing instead of store-and-forward. Store-and-forward requires all the flits of a 

packet to be transmitted and stored in a router first before it can be transmitted to the 

downstream router, which requires a larger amount of buffer space. 

The data organization for data transmission in a packet switching NoC is commonly 

known as a message. In a traditional bus based NoC system, the source and destination cores are 

first determined before transistor switching for data transmission. On the other hand, a packet 

switching NoC requires a source and destination to be embedded within the message since 

multiple messages can travel in the NoC at any given time. Since the size of a message is 

considerably large, it can be broken down into packets to allow more flexible routing in the NoC. 

 

2.3.1 Packet 

 A packet is the basic data organization unit within the NoC. A packet consists of one or 

multiple flits containing information for routing purposes and the actual data that is necessary to 

be transmitted from a source to the destination core. A packet typically consists of a header flit, 

some body flits and a tail flit [9]. Some packets are just one flit long while others can be longer 

than 12 flits. Packet size has an effect on routing and virtual channel (VC) occupation at each 

buffer. In the case of wormhole routing, a packet will lock up an output port of the NoC router 

until all the flits are transmitted to the downstream router. Similarly in a VC based routing NoC, 

each packet arriving at a router will be assigned a virtual channel ID (VCID) and it is locked to 

that specific VC until all the packet flits are transmitted. 
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2.3.2 Flits 

 Flits are a sub-unit of a packet. All the flits have an indication of head, body or tail flit 

and a VCID in the case of VC routing. A header flit contains has the routing information such as 

destination ID and possibly source ID to identify where the packet has come from. In the case of 

look-ahead routing, both output direction options are embedded in the header flit. Furthermore, 

congestion information can also be transmitted in a header flit. Body and tail filts usually just 

contain an indication bit for body or tail flit, the VCID (if necessary) and general data. Tail flits 

are similar to body flits but has a special bit to signal to the router so that it can release the output 

port (wormhole) or VC (VC routing). Figures 2.4 and 2.5 illustrate an example of the header and 

body flit organization for a router that supports adaptive routing. In this example, each flit is 128 

bits long. The destination ID is required for routing while the source ID may be necessary for the 

application. Options 0 and 1 are the two possible directions for adaptive routing. The congestion 

bit and data are used to transfer congestion data in the header flit. 

 

Figure 2-4 - Header Flit Organization 

 

 

Figure 2-5 - Body/Tail Flit Organization 
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2.4 Router Architecture 

 The NoC router consists of three main components consisting of a buffer, arbiter and 

crossbar switch. The arbiter allocates packets stored in the buffer using the crossbar switch. The 

design of each component depends on the desired NoC performance, chip area and power 

consumption constraints. A more complex router design improves performances at the expenses 

of additional area and power consumption. 

 

2.4.1 Buffer 

 The NoC Buffer is a key storage component in the NoC router. The buffering system in 

each NoC router allows the NoC to maintain a free-flowing data link between routers to reduce 

Head-of-Line (HoL) blocking [14]. Buffers are usually implemented as First-In-First-Out (FIFO) 

based data structure utilizing Static Random Access Memory (SRAM). The size of each buffer 

should be approximately the average size of each packet. This would allow most packets to be 

able to store completely in one buffer without having half the packet queued in the upstream 

router. 

 

2.4.2 Virtual Channels 

 Buffers often are filled while the packet awaits allocation during the transmission of 

another packet in the downstream router. This often causes additional congestion due to HoL 

Blocking. To vastly improve congestion in the NoC, virtual channels are introduced to allow a 



14 

 

flit of multiple packets to be stored at the input port of each router [15,16]. This allows another 

packet to transmit in the case that the previous packet awaits allocation. Additional VCs would 

utilize additional buffer storage and chip area and increasing the power consumption. The 

number of VCs in each buffer should be chosen to maximize performance while keeping the 

integrated circuit (IC) area usage as low as possible. Adaptive routing requires more VCs as 

compared to traditional deterministic routing to ensure performance is maintained [17,18,19]. An 

additional VC for packets to escape in a deadlock situation is needed. This would be further 

explained in the Adaptive Routing section. 

 Normally all the VCs have the same priority which allows the Round Robin arbitration 

scheme to select the next VC. Although it allows fairness, but there is no guarantee of minimum 

latency.   There are architectures that support prioritized VCs. An example is Æthereal, which 

provides two different types of VCs, best effort (BE) and guarantee throughout (GT) VCs [20]. 

GT VCs are always prioritized to ensure a lower latency. Although these architectures allow 

latency to be minimized, it requires distinction of two different types of VCs that maybe wasted 

when they are unoccupied. 

 

2.4.3 Arbiter 

 The arbiter acts as the main controller of the router consisting of the routing mechanism, 

VC allocator and switch allocator. These three components are important to determine the next 

hop for all the arriving packets along with the VCID for the downstream router and assigning 

which flit will gain control to transverse the physical link to the downstream routers. The arbiter 

also contains the VC allocator and switch allocator. One of the most basic allocator is the round 
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robin allocator. It provides fairness and it is simple to be implemented. Simplicity comes at the 

cost of less efficiency. Round robin does not always provide the best throughput [21,22]. A 

modified round robin scheme known as iSLIP also requires the input VC requests to be selected 

to maximize throughput [23]. Round Robin may not provide the best selection as it is based on 

sequential order. Wavefront allocator which grants inputs to outputs based on a matrix allows 

better matching [2]. Furthermore, Becker et al. introduces spare VC allocation which separates 

all the packets into two classes. A packet would be assigned randomly to one of the classes at the 

injection instances. Packets cannot change classes while being transmitted through the NoC. 

With less VCs to grant, this allows lower contention between different VCs which improves the 

chip area, lowers combination logic delays and saves on power and energy consumption [22]. 

  

2.4.4 VC Allocator 

 In VC based NoC Routing, the VC allocator assigns virtual channel IDs (VCID) for 

every packet being transmitted at every router. This allows the packet to be buffered in one of 

many VC buffers at the downstream router. If a packet is unable to be assigned a VCID, the 

packet must wait for the next cycle and the VC allocator attempt again. This process repeats until 

the packet receives a VCID. The VC is released once the tail flit is transmitted. 

 

2.4.5 Switch Allocator 

 The switch allocator is another component that allocates incoming flits to the output 

ports. Switch allocation occurs at every cycle in which it will determine the flit from the input 
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port will be selected for the output port in the case of contention [22]. Round Robin (RR) 

mechanism is usually employed to determine the winner. RR offers fairness and avoids 

starvation for all the fits. Some of the switch allocator designs use a modified RR scheme knows 

as iSLIP to improve throughput within each router [23]. 

 

2.4.6 Speculative Switch Allocator 

 Normally, VC allocation must successfully assign a VCID for the incoming packet before 

the switch allocator allows any flit of that packet to be assigned for crossbar switch transversal. 

Unfortunately it takes one complete clock cycle for a packet to be assigned a VCID which adds 

latency to the packet at each router level. An additional switch allocator is added to the arbiter to 

allow new packet arrivals without an assigned VCID to allocate an output port. This allows the 

VC allocation and switch allocation process to occur in parallel to reduce latency [2]. In an event 

that the switch allocator has a request for the output ports, it will have priority over the 

speculative switch allocator. An additional switch allocator also requires more IC area and power 

consumption. 

 

2.4.7 Crossbar 

 The crossbar switch is a set of multiplexors for each output port direction. In a 2D mesh 

topology NoC, there are usually five sets of 5-to-1 multiplexers in the crossbar. The crossbar is 

controlled by the switch allocator. A modified mesh topology such as DMesh can have up to 

nine inputs and outputs. To avoid starvation due to large number of inputs, some of the inputs are 
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removed by using two sets of crossbars [11]. Generally, the crossbar switch requires significant 

IC area as each multiplexor requires bus inputs with the width of a flit. 

 

2.5 Data Flow Control 

Flow control ensures that complete packets are delivered reliability from source to 

destination cores without missing any flits. As multiple packets can compute for an output port at 

any routers, buffering space can fill up which will lead to data overflow at the local buffers if 

data is allowed to flow freely from the upstream routers. To ensure that overflow does not occur, 

a flow control system has to be carefully designed to prevent overflow but also allow the 

effective usage of the buffer by using the entire buffer capacity. Flow control can be 

implemented in many different ways and each implementation has its own advantages and 

drawbacks. There are mainly two types of flow control as given below. 

 

2.5.1 On-Off Flow Control 

 On-Off flow control is a simple flow control system that allows upstream router to 

continuously send flits to the downstream router until the buffer is about to be full. Since there is 

usually a latency of at least one clock cycle to signal the upstream router to stop sending the flits, 

the signaling time must occur when the buffer is almost full to prevent overflow. On-off flow 

control can be implemented easily with simple logic and without the need of any registers. There 

are major drawbacks for On-Off flow control, especially for congestion awareness NoCs. For 

any NoCs, On-Off flow control does not always fill up the buffers, especially for shallow depth 
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buffers where only 60-80% of the buffer is filled on average [14]. Furthermore, in adaptive 

routing, On-off flow control signals cannot be used to track the congestion accurately. An off 

signal cannot correctly indicate that congestion is occurring. 

 

2.5.2 Credit Based Flow Control 

 Credit based flow control is a more sophisticated flow control system that allows the 

upstream router to track the exact amount of free buffer slots in the downstream router [20]. This 

ensures that the buffer is fully occupied without any overflow. It ensures that the best usage of 

each buffer, especially for the shallow buffers type. Credit based flow control requires a register 

to track the remaining free flit space. The addition of virtual channels means that there are 

multiple VC buffers per input direction each requiring their own register to track the available 

free flit spaces. Credit based flow control also have the advantage of using free flit value as an 

indication of congestion at the downstream router [24].  

 

2.6 NoC Routing  

2.6.1 Route Computation 

 The process to determine the next direction for each arriving packet‟s header flit is the 

route computation. One clock cycle is required to determine the next hop direction for each 

header flit of a packet. In deterministic routing (e.g. XY routing), the next hop directions for all 

packets are fixed. Deterministic route computation can be simply implemented with a single look 
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up table. In a more complex routing system such as adaptive routing, dedicated hardware are 

introduced to allow routing to multiple directions based on traffic conditions to ease congestion 

(M. Ramakrishna, 2013). 

 

2.6.2 Look-Ahead Routing 

 Routing computation adds a full cycle to the NoC router‟s pipeline. As additional latency 

deteriorates the NoC performance, Look-Ahead Routing is used to hide any additional latency 

for computing the next hop direction in parallel with another process(Towles, 2003; Bjerregaard, 

2006). Unfortunately, it is impossible to compute the next hop direction in parallel to the 

buffering stage and therefore the routing decision is completed in the previous or upstream 

router. The upstream router would be aware of the next hop direction based on information 

communicated from routing unit and it would be able to compute the direction(s) for the packet 

in the downstream router. This would require a few bits in the packet‟s header flit to store the 

next hop direction(s) for look-ahead routing. In the case of adaptive routing, there could be more 

than one choice for the downstream router. For a mesh topology NoC, there are at the most two 

possible directions for the next hop direction if the destination core is diagonally located from 

the current router. Both directions would be stored in the header flit ahead of time to allow the 

downstream router to select one of the two directions based on the current traffic condition 

without requiring a full cycle of computation. The direction is already selected one cycle in 

advance allowing the pipeline to avoid the route computation latency.  
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2.6.3 Deterministic Routing 

Deterministic routing algorithms are used in many NoCs due to its simplicity in terms of 

hardware implementation, IC area and power constraints. They do not require any additional 

overhead for decoding the external information offering lower delays within the router and are 

able to perform all the necessary routing in a NoC. 

Dimension Order Routing (DOR) algorithm such as XY or YX routing are commonly 

employ deterministic routing technique used in mesh topology on-chip networks due to its 

simple implementation that offers livelock and deadlock avoidance for wormhole routing. DOR 

algorithm routes a packet in one dimension till it reaches the desired row or column and then turn 

to continue to the destination. With only one turn, DOR avoids any deadlock or livelock with or 

without any Virtual Channels [15]. DOR has a disadvantage of routing traffic through hotspots, 

which increases congestions and latency 

Turn based routing algorithms prohibits a certain turn (e.g. West to North) which 

efficiently removes any chance of a livelock while providing a better balance of traffic in the 

NoC. Alternative turns must be completed if the desired turn is prohibited. Traffic would not be 

routed in a straight line in turn based algorithms leading to a longer route to the destination. Odd 

Even (OE) routing algorithm provides deadlock and livelock avoidance and avoids routing all 

the traffic in one dimension. OE distributes traffic more evenly than DOR algorithms which 

lower the average latency in the NoC [3]. OE routing also prohibits east to north and east to 

south turns on even columns and north to west and south to west turns on old columns. 
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2.6.4 Adaptive Routing 

An adaptive routing algorithm relies on a set of variable information to make a decision 

on the route selection. Adaptive routing discussed in this thesis will make decisions based on the 

congestion information to improve latency of a packet between the source and destination core. 

By balancing the NoC traffic and rerouting packets to other parts of the network using 

congestion information will avoid hotspots and congestion regions in the NoC, which improves 

throughput as well as reduces the average latency for the entire network. 

 

2.6.5 Hybrid Deterministic and Adaptive Routing 

DyAD (Dynamic Adaptive and Deterministic) routing developed by Hu and Marculescu 

[25] switches between adaptive and deterministic depending on the traffic load. It is one of the 

few examples of both types of routing used in a NoC. DyAD suggests that adaptive routing will 

only occur when congestion occurs within the NoC. Hybrid deterministic and adaptive routing 

algorithms have not been explicitly applied in recent works such as DyXY [24] or DBAR [5]. 

The selection of the more optimal direction only occurs when a certain traffic load occurs at the 

router hence they act similar to a hybrid algorithm. Therefore, most routing algorithms 

implementations are either deterministic or adaptive as there is no need to explicitly monitor the 

congestion load to control when adaptive routing should occur. 

 



22 

 

2.7 Congestion Awareness 

 Congestion awareness can be catorgorized in three types, locally adaptive, regionally 

adaptive and globally adaptive. The amount of congestion data received by each router depends 

on the type of congestion awareness chosen. Locally adaptive does not need traffic flow between 

routers as the amount of credits available from the credit value registers (CVRs) is sufficient 

while globally adaptive need a large amount of data transfer to hold all the congestion values to 

each downstream router. Congestion awareness generally sacrifices data transfer to determine a 

better path for a packet to route to its destination. 

 

2.7.1 Locally Adaptive 

 Research on adaptive algorithms began with locally adaptive routing as shown in early 

implementations such as DyAD [25] and DyXY [24].These implementations rely solely on 

congestion data of its neighbours to select the next hop direction. Preferred Output Adaptive 

Routing [26] and DyXY have used the available credits as the congestion value to adaptively 

determine the direction for the next hop. DyAD uses an external 1-bit signal to indicate if there is 

any congestion or not. Due to the fact that locally adaptive algorithms are greedy in nature, the 

output port selected may not be the best direction. Hu and Marculescu proved [25] that DOR 

(XY) routing performed better than their DyAD routing for uniform traffic. This is also proven 

by Gratz et al. that locally adaptive routing performs worse than RCA due to its greediness [4]. 

Another technique, Neighbour-on-Path (NoP) utilizes a similar neighbouring monitor like DyXY 

[27]. NoP allows non-minimal path routing to avoid the congested NoC area. Although this 

improves latency, its non-minimal routing can lower the injection rate before its saturation.   
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 DyAD switches between adaptive and deterministic routing depending on traffic 

conditions. Hu and Marculescu have chosen 60% as the threshold to switch between 

deterministic to adaptive routing. DyAD uses the OE routing algorithm, which prohibits certain 

turns depending on the current location of the packet, and when there is a choice to select one of 

the two output direction, DyAD will select the output port with no congestion. When both 

outputs are not congested or both are congested, then the algorithm chooses one of them 

randomly. 

 Preferred Output Adaptive Routing and DyXY are similar and would choose the direction 

with more credits available when choices are available. Preferred output routing makes use of 

route look-ahead while DyXY does not.  

 

2.7.2 Regionally Adaptive 

 Regionally adaptive routing relies on the congestion information in the neighbouring 

routers as well as the information of the intermediate region provided by the neighbouring 

routers. Gratz et al. have implement and demonstrated that Regional Congestion Awareness 

(RCA) produced better results than locally adaptive routing [4]. RCA has been implemented 

using a sideband network to propagate the congestion data. Congestion data is aggregated with 

the local congestion information (credits available) and then propagated by combining 

information of one to three directions depending on the RCA implementation. Weights are 

assigned to the local and non-local congestion data in the aggregation process to control which 

set of data have a greater effect on the adaptive routing mechanism. RCA is implemented in 

three different methods, RCA 1D, RCA Fan-in and RCA Quadrant. RCA 1D only aggregates 
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information, RCA Fanin aggregates information from the row or column as well as the 

neighbours of the row or column‟s routers. In RCA Quadrant, congestion data is only aggregated 

in two directions leading to slightly better result but with the use of twice as much wiring 

overhead. 
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(a) RCA 1D    (b) RCA Fan-in   (c) RCA Quadrant 

Figure 2-6 - Congestion traffic information flow in Regional Congestion Awareness 

 

 

 Figure 2.6 shows the congestion traffic flow of RCA through a sideband network. Each 

direction requires a link for downstream router to the source router in the centre of the diagrams 

in Figure 2.6. Each router in the diagram have another link for transmitting congestion data in the 

opposite direction. RCA 1D and Fan-in requires eight additional links while RCA Quadrant 

requires 16 additional links. Each router propagates its congestion data to its neighbour at every 

cycle. Figures 2.7 shows the RCA Router Microarchitecture with the congestion awareness 

component shaded in gray. Please note that the additional communicate links are needed for 

RCA. 
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Figure 2-7 – RCA NoC Router Microarchitecture 

 

2.7.3 Destination Based Adaptive Routing Algorithms 

Regional adaptive routing has proven to be a useful methodology for improving 

performance as demonstrated by the technique of RCA [4]. Although RCA uses neighbouring 

congestion data to improve the decision making for route computation, it uses general congestion 

data within the region instead of data specific to the destination. RCA will deliver data beyond 

the destination to the upstream routers which can lead to incorrect routing decisions, e.g. 

congestion occurs beyond the destination. Gratz et al. demonstrated a breakthrough with RCA 

but it suffers from interference by data aggregation and propagation processes [4]. The 
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congestion data received simply is not the raw data but instead data may contain unnecessary 

noise. Newer implementations of regionally adaptive routing do not aggregate the congestion 

data. Destination based adaptive routing employs more accurate congestion awareness 

information by utilizing the congestion data from the source to the destination router. This 

technique is employed in DAR [5] and DBAR [6] which lead to more accurate routing decisions 

and improved performances over general regional congestion awareness data used in RCA. 

Destination-based Adaptive Routing  

Destination-based Adaptive Routing (DAR) uses latency as a measurement of congestion 

and it broadcasts the pure data to neighbouring routers [5]. DAR uses a ratio to split the 

incoming traffic to either the X or Y direction to balance the traffic load of the downstream 

routers. The ratio varies depending on the congestion conditions. Figure 2.8 illustrates how the 

congestion data flows in the region to propagate from the source router e.g. R30. Routers shaded 

in black already have the congestion data from R30. Routers in gray are currently processing the 

data from router R30 while white routers have yet to receive the data from router R30. At time 

zero, R30 propagates data to the adjacent routers R20 and R31. At time 1, R20 will propagate to 

routers R10 and R21 while R31 will propagate to R21 and R30. Router R21 would receive 

latency values from both X-direction (from R20) and Y-direction (R31). R21 would use latency 

info from both directions to determine a split ratio favouring the least congested direction. At 

time 2, data continues to propagate to Routers R00, R11, R22 and R33. For accuracy and 

removal of stale data, latency values would only propagate within a 7x7 frame of the NoC. For 

routers that would receive latency values from two routers, the lower value is propagated. 
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Figure 2-8 - Congestion traffic information flow in DAR 
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Figure 2-9 – DAR Congestion (Latency) to All Nodes 

 

 Figure 2.9 shows an example of a congestion (latency to each node) array with the value 

of latency stored for all routers. Please note that the bottom left router is the current router in the 

example. For a small 4x4 NoC example, 8 bits is enough storage for latency. For larger mesh 

topology NoCs such as 16x16 NoC, the router would need to use 10 to 12 bit registers to store 

larger latency values. 
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Destination Based Selection Strategy 

 Destination Based Selection Strategy (DBSS) for Adaptive Routing (DBAR) broadcasts 

one bit of traffic information to its neighbours similar to DAR [6]. Both DAR and DBAR routes 

the packet through the preferred output port based on the destination. DAR and DBAR both 

estimate the shortest path to the destination that differs from RCA, which does not take 

destination into account. Figure 2.10 shows two different path that the current node (Black) to 

take to reach the destination (Gray). DAR estimates the latency between the two paths while 

DBAR routes the packet depending on the congestion conditions. Note that both DAR and 

DBAR behave in the same if the current node and the destination are in the same dimension. 

R00

R10

R01

R11
 

Figure 2-10 - Two Different Paths for Destination Based Adaptive Routing 

  

 The difference in congestion data receiving procedures between DAR and DBAR is 

illustrated in Figures 2.8 and 2.11. Figure 2.9 showed that DAR propagated congestion 

information to all the neighbours while DBAR only propagates congestion data for up to eight 

routers in the same dimension (for 8x8 mesh). In Figure 2.11, DBAR could only receive 

information from one dimension. Routers R10 would receive information from R00, R20 and 

R30 from the X-direction while receiving R11, R12 and R13 in the Y-direction. Since it is not 
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known if there exists a lot of congestion, this greedy routing method hopes that there is less 

congestion along the path. 
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Figure 2-11 - Congestion Traffic Flow in DBAR  

 

 

 Similar to RCA, a sideband network is employed for both destinations based adaptive 

routing DAR and DBAR. Destination based adaptive routing estimates the congestion from all 

the routers to all other routers.  



30 

 

L E E

N E E

N N N

N N N E

E

E

E

 

Figure 2-12 - DBAR Preferred Directions Map Example  

 In Figure 2.12, an example of the preferred output map is shown in an array. This map is 

updated every clock cycle and will change with respect to congestion in the NoC. This is 

implemented as a lookup table for packets. A preferred output will be returned when a header flit 

requests for its desired output port with the packet‟s destination ID.  

 In the case of DBAR, an array of registers will store the preferred directions to the 

destination. During the direction selection process, the direction indicated by the preferred 

direction array would be used. Each register will just need 3 bits to store the five directions (four 

cardinal plus local). 

 In terms of hardware complexity and overhead, DBAR is much simpler than the complex 

latency computation modules in DAR. Both employ external links leading to the wiring 

overhead. When compared with RCA 1D and Fan-in (8bits), DBAR requires wider links (9bits) 

to implement the sideband congestion monitoring network. DBAR computes latency in three 
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cycles allowing the links to be reduced from 15bits to 5bits. RCA 1D, RCA Fanin, DAR and 

DBAR all need 8 links to send and receive the congestion data. 

Other Attempts 

 Farahnakian et al. used a table and also embedded a few bits in the header to store 

congestion information [28]. This method uses a table to keep track of alternative routes for 

comparison with the standard route. If the alternative route is found to have a lower latency 

between source and destination, the path would be chosen based on this information. 

Farahnakian et al. only tested this method on a small (4x4) mesh NoC. A larger NoC would lead 

to lower performance and an exponentially larger table. 

 

2.7.4 Globally Adaptive 

 If there is a way to have the knowledge of the complete network, routing will become 

much easiler. Instead of relying on greedy algorithms with locally and regionally adaptive 

routing strategies, globally adaptive routing can avoid the mistake of routing to a hotspot and 

instead bypass a congested region completely. 

 In the works of Tedesco et al., a message is routed through the network while the first 

packet will establish a path [29]. Subsequent packets in the message will follow the same path 

until congestion is discovered and a new path is established.  Tedesco et al. suggested that fixed 

path routing is better than regionally adaptive routing such as RCA. Each node along the path 

would monitor congestion and send it back to the source router allowing the source to have 

information of the entire path to have a global view. The congestion information is sent back via 
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a congestion packet within the standard NoC communication channel in place of to a sideband 

network. The drawback to this strategy is that a message sent is assumed to have a large number 

of packets. For short messages or single packet, this work has very low potential to improve the 

performance in a network. 

 Ramakrishna et al. suggests that by piggybacking congestion information in the header 

flit, eventually each node will have the congestion information of the entire network [13]. The 

globally adaptive router would first compute the shortest path to the destination based on the 

congestion information available on that particular router and route the packet to the next hop. 

The downstream router will recompute the shortest path and route the packet using its congestion 

data. Since each router has different congestion data and when the current node is closer to the 

destination, the router will have more accurate congestion information. The path will be pre-

selected with the available congestion information, and the router will also benefit from port pre-

selection. 

 

2.7.5 Congestion Awareness Monitors 

 Yuan et al. suggested that regional congestion awareness can be improved for congested 

hotspot regions by using source routing and a congestion agent sending information to other 

routers when congestion is detected in a hot spot [30]. This method has shown improvement over 

RCA in congested hotspot traffic at the cost of more embedded data of each hop in the header for 

source routing. Moreover, this method would not show significant improvement under standard 

synthetic traffic. 
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2.7.6 Congestion Aware Scheduling 

While congestion awareness is employed to improve routing, others have attempted to 

shape traffic and improve scheduling to avoid congestion. Chao et el. have suggested that a 

reconfigurable scheme along with a congestion aware scheduling algorithm can reduce 

congestion for repeated traffic patterns [31]. Another proposal is to design a congestion aware 

scheduler for an application specific NoC, especially for AMBA bus [32]. These scheduling 

algorithms are not as useful for general cases. 
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2.7.7 Summary of Methods 

Table 2-1 – Summaries of Methods 

Method Congestion 

Information 

Transferring 

Method 

Congestion Data 

Transfer Rate between 

two routers per clock 

cycle 

Monitoring 

Region 

Data Accuracy 

Locally 

Adaptive 

Local data 

only 

N/A Neighbouring 

routers (up to 4 

routers) 

Neighbouring: high 

No data beyond 

neighbouring 

routers 

Regional 

Congestion 

Awareness 

(RCA) 

Sideband 

network 

RCA-Single or RCA-Fan-

in: 8+8 bits  

RCA-Quadrant: 16+16 

bits 

8x8 Region 

with accurate 

data within a 

few hops 

Neighbouring: high 

Regional: low 

Destination 

Based Adaptive 

Routing (DAR) 

Sideband 

network 

5+5 bits 7x7 Region Moderate due to 

slow update rate 

Destination 

Based Selection 

Strategy for 

Adaptive 

Routing 

(DBAR) 

Sideband 

network 

Combined 9 bits for both 

uplink and downlink 

All routers 

inline with the 

x and y axis 

High 

Global Adaptive 

Routing (GCA) 

Embedded in 

Header Flit  

Varies (based on header 

flit frequency) 

8x8 Region Moderate to high 

depending on 

update rate 
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2.8 Summary 

 In this chapter, the concept of NoCs is described as well as congestion awareness. 

Different methods of routing, simulation and adaptive routing are discussed to illustrate the 

number of varieties available in NoC. NoC topology is described as well as data transmission. 

The router architectures for different adaptive routing implementations are introduced along with 

speculation and look-ahead routing to reduce latency for each packet transmission through the 

routers. Different flow control methods are introduced and how they affect congestion awareness 

data. Adaptive routing and congestion awareness is also discussed and explained in this chapter. 
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Chapter 3  

CAAR:  

Congestion Aware Adaptive Routing 

 

 Congestion awareness allows a router to monitor its surrounding and mode better 

decisions to be made to improve data transfer latency within a NoC. Basic congestion awareness 

techniques allow the monitoring neighbouring routers while more complex strategies let the 

router monitor the entire surrounding region and even the entire on-chip network. Recently, 

congestion awareness information has been used for mainly adaptive routing. In this chapter, 

congestion awareness for other NoC routing decisions such arbitration will be explored. 

Furthermore, the development of a congestion aware adaptive routeing (CAAR) will be 

explained. 

 

3.1 Congestion Awareness for Allocators 

NoC router allocation can be customized to improve performance for all packets. By 

default, round-robin allocation scheme would give equal share of time for all the packets that 

would impact packets travelling far distances in a NoC. There have been proposals to improve 
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allocation for the source by creating a job scheduled to ensure certain packets are transmitted on 

time [33]. Such techniques would prioritize packets based on the tasks that need to be completed. 

Congestion Awareness for allocation would improve latency for prioritized tasks. Congestion 

affects each flit of these packets as they compete for arbitration with the closer from near routers 

flits. Improving allocation by allowing long distance packets to have priority under congested 

conditions could possibly improve overall latency within the NoC. Since prioritizing packets 

would create additional latency for other packets, prioritization should only be used under 

congestion conditions. There are two approaches to altering arbitration by firstly changing how 

VCs are allocated with the VC allocator and secondly how flits are allocated by the switch 

allocator. 

For our implementation of CAAR, we have chosen to use regional congestion awareness 

(RCA) as the baseline regional adaptive router since it offers significant improvement over local 

adaptive routing by employing a moderate hardware. Destination based adaptive routing methods 

such as DAR and DBAR requires more complex hardware that does not improve NoC 

throughput significantly. RCA is also better for low congestion data transfers and is more 

suitable for embedding congestion data into the header. 

 

3.2 VC Allocator 

VC allocation is an important process where a newly arrived packet arrivals are assigned a 

VCID in the downstream router. It is critical that fairness, deadlock and livelock avoidance are 

considered during this process. In the case of multiple packets requests for an output port, an 

arbitration scheme is necessary to determine the packet that would be granted the output port first. 
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Normally, an arbitration scheme that is selected should ensure fairness that guarantee to avoid 

starvation for certain packets. Traditionally, Round-Robin scheme is employed to ensure that 

these conditions are met. Round-Robin is an excellent arbitration scheme under normal traffic 

conditions.  

In the proposed method, Round-Robin is modified to ensure no packets are starved while 

improving the throughput of the NoC. Some packets will suffer higher latency. If some packets 

that suffer higher latency due to the large amount of hops from source to destination are 

prioritized, the overall average latency can be improved. 

With destination-based adaptive routing such as DAR [7] and DBAR [8], and approximate 

estimate of congestion is measured for the current source to destination. Using the congestion 

data, the modified round-robin procedure can deny any VC allocation requests if its path to the 

destination is greater than a specified threshold. If traffic congestion persists for that packet, it is 

important to avoid starvation. A register is used to track the number of cycles that the packet is 

spent waiting. When the counter reaches a maximum allowed waiting time, the packet will be 

treated as an uncongested packet and would be allocated normally by round-robin mechanaism. 

 

3.3 Switch Allocator 

Switch allocation is a process where flits are selected for crossbar transversal at every 

cycle. Under normal circumstances, Round-Robin will accept only one VC request at a time and 

then prioritize for the next VC request. Once a packet allocates a flit, it will have to wait up to a 

full loop for all the other VCs to be allocated. To reduce average latency and improve packets that 

travel through a long distance, round robin is modified to allow those packets to allow two flits to 
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be allocated in two consecutive cycles before allowing the round robin counter to increment for 

the next VC. 
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Figure 3-1- Congestion-Aware VC Allocation (CAAR-VA) Flow Chart 

Packets that have a prioritization flag will indicate to the routes that it could be prioritized. 

It is important to limit the number of packets being prioritized to prevent non-prioritized packets 

from suffering from starvation. Normally for standard mesh-based NoC routers, only packets 

travelling through a long distance (i.e. packets travelling from one corner to the other corner of 

the NoC) should be prioritized. Of course, CAAR would be extended to QoS applications where 

certain packets are given priority to ensure a lower latency. 



40 

 

Our proposed VC Allocation Procedure: Figure 3.1 illustrates its flow chart to determine if 

CAAR will prioritize any VC allocation requests. When an unassigned packet requests for an 

output VCID and is prioritized, CAAR would ignore non-prioritized requests and allocation 

between based on congestion prioritized requests only. 

Our CAAR architecture includes congestion awareness based prioritization with both the 

VC and switch arbitration. CAAR-VA prioritizes VC allocator while CAAR-SA only prioritizes 

the switch allocator. Similarly, Figure 3.2 shows the flow chart for prioritizing the flits at the 

switch allocator. 
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Figure 3-2 - Congestion-Aware Switch Allocation (CAAR-SA) Flow Chart 
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3.4 Prioritizing Packets 

 Packets can be prioritized to reduce latency of reaching from source to destination at the 

expense of higher latency for other packets. Packet prioritization could achieve a number of 

objectives. One is to improve the average latency of the overall NoC communication and the 

second is to guarantee throughput for Quality of Service (QoS) applications. Das et al. has 

presented a method of prioritizing the packets based on application awareness under heavy 

loading to improve latency within the NoC [34]. 

3.4.1 Long Distance Packets 

In a mesh topology NoC, traffic imbalance is created by the placement of routers in a 2D 

grid. Any data transmissions in the central part of the mesh will experience less congestion than 

to data transfers between corners to a 2D mesh. In a situation where the centre of the mesh has 

more activity, the packets being sent from one corner to the other corner of the NoC will suffer 

higher latency. In this situation, many packets can be transmitted between two central nodes 

while one packet transmission has yet to complete from corner to corner. To combat this 

situation and to improve the throughput and latency of these packets, they can be prioritized 

when congestion arises. These packets will have better latency and the VCs occupied can be 

reused by the other packets. 

The source router is able to calculate and identify how far a packet will travel in the NoC. 

In our CAAR router, we reserve 1 bit in the header flit. This allows the packet to be labeled as 

prioritized under congested conditions. 
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3.4.2 Quality of Service (QoS)  

Elementary QoS enabled NoCs are separate packets into two categories, best efforts (BE) 

and guarantee throughput (GT) as proposed in Æthereal, which is one of the original NoC 

architectures that supports packet prioritization for QoS [35]. Packets that need the lowest 

latency would be prioritized and labeled as GT packets. Past work had focus on separating VCs 

into two separate classes for BE and GT packets. This limits the efficiency of VC usage 

effectively. When no packets need to be prioritized, GT designated VCs are left unused leading 

to undesired utilization of buffering spaces. Attempts are made to prioritize packets by shaping 

traffic to improve bandwidth allocation [36]. Unfortunately this method also increased hardware 

usage by 200%. Wang and Bagherzadeh suggested that local adaptive routing and a uniform 

buffering space for both BE and GT packets support QoS which would improve latency and 

performance [11]. 

In our CAAR router, QoS can be enabled by allowing source cores to enable 

prioritization for the desired packets. Round Robin arbitration is modified to service prioritized 

packets first allowing prioritization under congested networks. Unlike Wang and Bagherzadeh‟s 

method [11], we propose in CAAR that congestion triggers prioritization. In case where two 

packets from two VCs from the same input port are prioritized, the packet that is heading 

towards a congested direction in the NoC would receive priority. 
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3.5 Hardware Implementation of CAAR 

3.5.1 Hardware Implementation of Requestor 

It is necessary to identify a few parameters for every input request to the allocator to 

understand if it would generate a request or not. In order to determine which request would be 

prioritized, one has to determine two factors: 

For each input port, which VCs have a prioritized request? 

Among all the VCs of all input ports, does every output direction have at least one prioritized 

requests? 

The second factor is required which there is contention between two or more requests originating 

from different input ports. 

Figure 3.3 illustrates the proposed modified requester to the allocators for the switch 

allocator. In a simple requestor, a three-input AND gate is used to determine that a request to the 

allocator exists along with a signal indicating that the input VC is assigned then the credit is 

available in the output port of the packet requesting from the input VC. The requester circuit is 

made of combinational logic that allows it to update with new congestion data before the next 

clock cycle. This allows the allocator to the service prioritized packets as congestion arises. 
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Figure 3-3 – A Congestion Aware Prioritization Switch Allocator Requester 

 

 

We have introduced a few logic gates to check if congestion exists and which input VC 

has to be prioritized. When congestion exists, the mux would select the second AND gate. This 

AND gate will be set only if this VC request needs to be prioritized. By setting all the 

multiplexors for each VC in one input port effectively, only the VC with a prioritized request 

will be granted. 
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Figure 3-4 - A Congestion Aware Prioritization VC Allocator Requester 

 

 

Similarly, Figure 3.4 presents the design requester circuit for the VC Allocator. This would allow 

the VC allocator to prioritize, which input VC will be assigned to an output VCID first. This will 

ensure that if there are a few packets waiting to be assigned an output VCID, the prioritized 

packet will be granted first. 

=
EAST (1)

output_dir_for_input_vc0

prioritize_req0

=
EAST (1)

output_dir_for_input_vc1

prioritize_req1

=
EAST (1)

output_dir_for_input_vcn

prioritize_reqn

priority_req_to_output_dir_east

 

Figure 3-5 - Circuit to Determine Prioritize Request to Output Direction 
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3.5.2 Allocator Modification for Congestion Data 

 Out router implementation will modify the standard iSLIP allocator to accept congestion 

data. The simplest modification is to reduce the number of requests to the RR allocator at a 

particular clock cycle. 

iSLIP Allocator

Request 

Signal 

Unit

Req to Allocator

Credit Av. VC Assigned

Flit Available Req.

In VC

 

Figure 3-6 – Hardware for Request to iSLIP RR allocator 

 

 Figure 3.6 shows how the request system operates with the RR allocator would normally 

work without any congestion data. The input port VC requests needs to be check if the output 

VCID is assigned and there is credits available in the downstream router before the request 

would be granted to the RR allocators. 
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Figure 3-7 – Additional Hardware for Request to iSLIP RR allocator with Congestion Prioritization 

  

By simply adding an addition circuitry to the request system, congestion data can be used 

to control which VC will gain access to be allocated first. A packet with congestion in the output 

direction can be assigned a VC faster than other VCs, which can possibly reduce overall latency. 

The same can be employed for the switch allocator. 

 

3.5.3 Hardware Implementation of VC Buffers 

NoC router flit storage buffers exist in different forms including simple FIFOs, SRAM 

buffer and dynamic buffers [14]. We have simulated and modelled a standard sized SRAM 

buffer is commonly used in many NoC research experiments. 

The buffer models of a SRAM type buffer that has two pointers (read and write) to 

indicate where the buffer‟s next read and write location. A simple subtractor will be able to 

determine when the buffer is full. Figure 3.8 shows the implementation of the standard SRAM 

buffer mode. Each flit arriving at the buffer is analyzed for its VCID and then stored in the 
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corresponding VC selected by the input mux. The buffer control unit hosts the read and write 

pointer along with the subtractor hardware to generate the request signal for any flits available to 

be processed in the VC buffer. 
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Figure 3-8 – Standard Size SRAM buffer 

 

Another type of buffer that is modeled is the dynamic sized buffer. The concept of a 

dynamic sized buffer is relativity new compared to standard sized buffers. The dynamic sized 

buffer is implemented by a large size of SRAM for all the VCs of one input port along with the 

individual read and writes pointers for each VCs. An address list of free locations is available for 

newly arrival flits to be allocated in the SRAM. Once the flit is allocated to the SRAM, another 

list tracks all the addresses of flits allocated to that specific VC as shown in Figure 3.9. There is a 

separated list of addresses for each VC. 
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Figure 3-9  - Dynamically Sized Buffer 

 

3.5.4 Look-ahead Routing Unit 

 A latency reducing method is to hide the latency of the route computation by determining 

the output direction in advance in the upstream router in parallel to the VC and switch allocation 

process and embed the output direction(s) in the header flit of the packet. Since the output port of 

the packet is already known, that router ID is also known that allow the next hop to be 

determined. Also this allows the route computation to be able to be completed in the upstream 

router. 

The purpose of the look-ahead routing unit is to complete the routing computation task in 

advance in the upstream router. This unit is very similar to the route computation unit but instead 
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of using the current router‟s router ID for route computation, it will use the downstream router‟s 

router I. 

Figure 3.10 shows the architecture of a look-ahead routing unit. The next hop ID 

composes of a few adders and subtractors that will determine the next hop router ID. This figure 

shows two directions generated (options 0 and 1) for adaptive routing. Deterministic routing 

would just have one direction. The directions would be stored in the header flit and would be 

read by the downstream router. 
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Figure 3-10 - Architecture for Look-Ahead Routing 

 

3.5.5 CAAR Congestion Information Propagation 

In CAAR, we propose to embed congestion information into the header of every packet. 

This allows reduction of links and the elimination of the sideband network which would reduce 

switching power especially under the condition when the NoC remains relatively congestion 

free. The negative effect is that the congestion conditions update will be slow. Other congestion 

awareness methods such as DAR perform well with periodic updates of three cycles [5]. A small 

component would monitor the input flits and extract any congestion information found in the 
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header. That information will be routed to the congestion awareness component which will 

analyze the information and update the congestion tables accordingly. When a packet is being 

transmitted downstream, a header modifier component will be embedding the congestion 

information for downstream routers.  

3.6 CAAR Router Microarchitecture 

Figure 3.11 illustrates the components and their interconnection required to extract and 

embedded congestion information into packet headers in our CAAR router micro-architecture. 
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Figure 3-11 – CAAR Congestion Awareness Router Microarchitecture 
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The CAAR router includes the standard input port buffers for storing the flits that will be sent to 

a downstream router. There is a multiplexor at the output of every VC buffer to determine the 

output port direction (i.e. X or Y direction). The port pre-selection will select option 0 for the X 

direction and similarly option 1 for the Y direction. The port pre-selection hardware unit uses 

data from the congestion awareness unit to determine the output port resulting in a lower latency. 

The arbiter hardware that consists of the route computation unit, the VC allocator and the switch 

allocator unit will process information for the flits in the buffer and determine their next hop 

direction and allocate them to the output port. The additional details on the NoC router pipelining 

will be provided in section 4.5. 

 

3.7 Summary 

This chapter explored the methodology and design for key components to construct 

CAAR. This chapter gives details behind the methodology for the implementation of CAAR 

along with how CAAR will utilize congestion awareness information to improve allocation to 

provide better throughput for long distance packets. This chapter also describes how CAAR can 

be extended to QoS application with packet prioritization. Finally, this hardware design behind 

the packet prioritization is illustrated. 
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Chapter 4  

CAAR Modeling and Simulation 

 

 This chapter outlines the experimental setup and process for testing and researching the 

congestion aware NoCs being investigated in this thesis. In this chapter, the development of a 

suitable simulator is discussed as well as testing methods. The chapter describes the development 

of each simulator components as well as traffic generation of each packets and hardware 

modeling of each unit. We also discuss how to generate different types of traffic pattern and 

testing features in the simulator for debugging and experimental testing.  

 

4.1 SystemC Simulation 

 SystemC is a powerful extension to C++ programming language allowing hardware to be 

modeled in software. C++ already supports object orientated programming that is necessary for 

creating multiple instants of each component [37]. In our case, it would be the NoC router. 

 A NoC network simulator is developed using systemC to model a transaction accurate 

router in an expandable mesh topology NoC. The router models a pipelined architecture with the 

hardware descriptive components including the buffers, arbiter, crossbar and any additional 
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congestion awareness hardware. The simulator is able to accept different parameters under 

different setups such as comparison including dimension order routing (DOR), locally adaptive 

routing (e.g. DyXY) and regional adaptive routing (e.g. RCA, DAR). The number of virtual 

channels (VCs) and size of the buffer for each VCs are adjustable. Moreover, the traffic 

generation is adjustable so that we can compare its performance under different traffic patterns 

related to varying NoC applications. 

 

4.2 Hardware Modeling 

 The router components are designed and modeled separately before it is added to the 

overall NoC. SystemC supports object oriented programming making it easier to create multiple 

instances of each hardware components for reusability. The NoC system simulation will track all 

the packets as they are injected into the NoC by assigning a corresponding packet ID. This would 

allow the NoC to verify that all the packets reach to their correct destinations as well as the 

packets being stuck in the NoC when a livelock or deadlock situation occurs.  

 Figure 4.1 shows the process of developing the NoC model for the simulator to test and 

investigate our CAAR based methodology. First of all, individual components such as buffers, 

arbiter and the crossbar are developed. The second step is to combine all these components to 

create the CAAR based NoC router for a mesh topology. Finally, multiple routers are combined 

together with physical channels to create the mesh topology based NoC. 
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Figure 4-1 - Building a NoC by Components 

 

4.3 Router Modeling 

The NoC router is built from three main components, the buffers, arbiter and the 

crossbar. Figure 4.2 shows a simplified architecture of a NoC router. Please note that the number 

of buffers in a NoC router is determined by the number of input ports of the router. For a mesh 

NoC, there are five directions, the four cardinal directions and one local direction for the core. In 

the simulator, each one of these components are developed separately and then combined to 

create the NoC router. Once that router is verified to work correctly, it can be used to build a 

mesh topology NoC.   
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Figure 4-2 – Baseline NoC Router Architecture 

 

4.3.1 Buffer 

 Figures 4.3 and 4.4 provide the pseudo-code for writing and reading a flit in the router 

buffer respectively. The write process would only occurred if the enable signal is set by a request 

in the input-port and a proper VC is selected by the specific VCID. Figure 4.5 shows the read 

pointer increment code, once the arbiter grants the flit for transversal through the crossbar. The 

buffer capacity is only for five flits per buffer, and three bits of data will exceed the number of 

flit slots available. Therefore, it is necessary to check and reset the pointers when necessary. 
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Buffer Write Process:  

 

 for (i=0; i<NVC; ++i) { 

 if (en[i].read()) { 

 // increment the write pointer for current vcid 

  if (wr_ptr[i].read() < FIX_BUFFER_RAM_DEPTH-1) { 

   wr_ptr[i].write(wr_ptr[i]+1);  

  } else { 

   wr_ptr[i].write(0); // if max value, reset 

  } 

 }   

} 

Figure 4-3 - Buffer Write Process 

 

Buffer Read Process:  

 

for (i=0; i<NVC; ++i) { 

 if (req_inc_vc_ptr[i].read()) { 

 // increment the read pointer for current vcid 

  if (rd_ptr[i].read() < FIX_BUFFER_RAM_DEPTH-1) { 

   rd_ptr[i].write(rd_ptr[i].read()+1);   

  } else { 

   rd_ptr[i].write(0); // if max value, reset 

  } 

 } 

} 

Figure 4-4 - Buffer Read Process 

 

4.3.2 Dynamic Sized Buffer 

 Figure 4.5 shows an example code for finding a free flit slot in the SRAM buffer. The 

process is implemented as combinational logic with logic gates and multiplexors. The SRAM 

pointer is the write pointer for the next available flit from the input port to be written to the 

buffer. 

 The read and write processes are similar to the standard SRAM buffer. The only 

difference is that the addresses are updated with pointers instead of being provided from a list.  
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Next Flit Slot Section Process: 

 

if (flit_slot_valid_table[0].read()) { 

 flit_slot_avaliable.write(true); 

 _sram_wr_ptr.write(0); 

} else if (flit_slot_valid_table[1].read()) { 

 flit_slot_avaliable.write(true); 

 _sram_wr_ptr.write(1); 

...  

Figure 4-5 - Free Flit Selection Process 

4.3.3 Arbiter Components  

 The arbiter components are the most important hardware units in the NoC router. These 

components make all the decisions in the router. The arbiter is mainly responsible for routing, 

VC allocation as well as switch allocation. Regional congestion awareness and adaptive routing 

also introduce some additional components in the arbiter to detect and quantify congestion and 

make more complicated routing decisions. 

 

4.3.4 Route Computation 

 The route computation (RC) unit has the purpose of identifying the output port direction 

for all the incoming packets. This unit is built by using combinational circuit that allows fast 

switching instead of using a sequential machine that would compute the results in a full clock 

cycle. The addition of look-ahead routing will allow route computation to simply look at the next 

hop direction stored in the embedded data in the header flit of a packet. Since adaptive routing 

can have up to two output port directions available, both directions (if both directions exist) are 
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necessary to be stored in the header flit. The congestion awareness unit will provide the optimal 

directions for each quadrant. The simulator simply reads the data in the current flit. 

4.3.5 Allocators 

 VC-router based allocators usually have two staged, one for the input VC contentions and 

the second for output port contentions. There are many different ways to implement the 

allocators such as a simple round robin (RR), a modified Round-Robin scheme known as iSLIP 

[23], or a more advanced method known as matrix allocation. In comparison to other simulators 

developed for congestion awareness research, iSLIP allocation has been employed as it is 

considered to improve the allocation throughput and easier to implement as compared to matrix 

allocators. Our simulation environment employs the modified RR allocator i.e. iSLIP for both 

VC and switch allocators. 

 The iSLIP allocator is a two stage allocator that can be divided into three parts, the 

requester, granter and accepter. The requester determines the input direction that will trigger a 

request to the output direction. If there are multiple input directions requesting for the same 

output direction, the granter will perform RR to determine, which input direction will be granted. 

The accepter will accept one of the input VCs for allocation when there are multiple VCs 

requesting for the same output direction. 

Figure 4.6 shows the architecture of an iSLIP, RR allocator used in our CAAR simulator 

for both the VC and switch allocator. The allocator is modeled by utilizing only combinational 

logic, which is fast and would allow other tasks such as assigning the VCs and storing the values 

to registers to take place after the allocation. 
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Figure 4-6 - Architecture of the iSLIP Two-Staged RR Allocator 

 

 

 Figure 4.7 shows how the simulator checks all the input VCs of an input port that is 

assigned to the output port 0 and determines if any of the VCs have a request to that output port. 

 

iSLIP Requester Process: 

 

void rr_requester::assign_request_0 () { 

 bool temp_req = false; 

 for (j=0; j<NVC; ++j) { 

  if (req_in[j].read() && output_dir[j].read() == 0)  

   temp_req=true; 

 } 

 req_to_output_dir[0].write(temp_req); 

} 

Figure 4-7 - iSLIP Requester Process 

 

  

The simulator determines which input direction will be granted the next request to be assigned a 

VC or crossbar transversal. Figure 4.8 shows how the simulator selects an input port with switch 

and if statements. 
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iSLIP Grant Process: 

switch (grant_ptr.read()) { 

 case 0:  

  if (req_in[0].read()) { 

   grant_input_dir[0].write(true); 

   grant_input_dir[1].write(false); 

   grant_input_dir[2].write(false); 

   grant_input_dir[3].write(false); 

   grant_input_dir[4].write(false); 

   granted.write(true); 

   granted_dir.write(0); 

  } else if (req_in[1].read()) { 

   grant_input_dir[0].write(false); 

   grant_input_dir[1].write(true); 

   grant_input_dir[2].write(false); 

   grant_input_dir[3].write(false); 

   grant_input_dir[4].write(false); 

   granted.write(true); 

   granted_dir.write(1); 

  }  

...... 

  

  } else { 

   grant_input_dir[0].write(false); 

   grant_input_dir[1].write(false); 

   grant_input_dir[2].write(false); 

   grant_input_dir[3].write(false); 

   grant_input_dir[4].write(false); 

   granted.write(false); 

  }  

  break; 

Figure 4-8 - iSLIP Grant Process 

 

 

 A similar process applies for the iSLIP accepter which is used to select an input port VC 

if there are contentions for an output port. 
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4.3.6 Virtual Channel Allocator 

 The virtual channel allocator is one of the arbiter components responsible for allocating 

downstream VCs for newly arriving packets. It will also release any VCs once the last flit has 

been allocated by the switch allocator. The modified RR allocator, iSLIP is used in the simulator 

to select which VC gets to be assigned an output VCID. In the case of a contention between two 

inputs VCs to be allocate to the same output direction, only one of those VCs will be assigned an 

output VCID.  

The process to assign an output VCID is given below:   

i. For all the output ports, determine if any VCs are free and select (if available) which 

VCID will be assigned next. 

ii. For all the VCs, is there a header flit of a packet that is requesting for an output VCID? 

iii. For the packets that require an output VCID of the desired output port, is a VC free and 

available to be assigned? 

iv. If an output port VC is available, RR arbitration will determine which input VC will be 

assigned an output VCID in case of any contentions. 

v. The input and output VCIDs are recorded in a table. The corresponding output port is set 

to occupied and cannot be used by another packet unit it is released by the current packet. 

4.3.7 Switch Allocator 

 The switch allocator assigns the flits to an output-port direction. If there is any 

contention, by default RR will decide which flit will occupy the output port for that cycle. The 

switch allocator is implemented with the modified RR allocator, iSLIP for maximum throughput.  
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The switch allocation process occurs as follows: 

i. For all the VCs, is the packet assigned a downstream VCID? 

ii. For each of the requesting VCs, are there any credits available in the output port? 

iii. Are there any contentions among any of the output ports? 

iv. If not, select the VCs that can be allocated. If there is any contention, RR determines 

which input-port is selected. 

v. If multiple VCs from one input-port are selected, RR determines which input VC is 

allowed to be allocated.  

 

4.4 Congestion Detection and Control Modeling 

 Congestion detection and control is enabled by the additional hardware components that 

monitor the congestion conditions in the surrounding routers. Additional links may be used to 

improve the transfer of congestion information between routers.  

The simulator would use three different congestion measuring methods to determine any 

congestion in the simulated NoC. The three methods are availability of buffer spaces in the 

downstream router, free VCs availability in the downstream router and crossbar contention. The 

first method will count the number of free buffer space available in the downstream router. 

Fortunately with a credit based flow control, the router itself knows how many free buffer spaces 

are available without the needs to receive any external congestion information from the 

neighbouring routers. 
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Figure 4.9 illustrates how the local router can calculate the amount of buffers space 

available in the downstream router by simply adding all the credits in all the VCs of an output 

port. A port pre-selection unit will determine the direction to be selected for each quadrant.  
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Figure 4-9 - Locally Adaptive Buffer Availability Computation 
 

  

Similarly the number of free VCs available or crossbar contentions can be computed using a 

similar architecture as shown in Figure 4.9. 

 

4.4.1 Locally Adaptive Routing  

 Locally adaptive routing for congestion control allows the route computation unit to 

select between the X or Y directions for any packet if the destination is diagonally located from 

the current router. A congestion awareness adaptive routing methodology, DyXY requires four 
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registers that tracks the direction to be selected for all the four quadrants that will be updated at 

each cycle. Depending on the congestion around its neighbouring routers, it will store either the 

X or Y direction. All locally adaptive routing algorithms for the mesh NoC are based on the 

process similar to DyXY. 

Figure 4.10 illustrates the additional hardware such as multiplexors employed for locally 

adaptive routing. Since the simulator uses look-ahead routing to improve latency, the two 

directions are already computed in the upstream router and appear as two options embedded in 

the header flit. A small hardware unit will check the congestion condition of all the directions 

and store the less congested direction in every clock cycle. Figure 4.10 shows that one of the two 

options is selected for each VC.  
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VC2

opt0 opt1

Selected Direction

Quadrant

Selected Direction

Flit input

VCID

 

Figure 4-10 - Locally Adaptive Hardware 

 

  

 Locally adaptive congestion awareness algorithms would read register values on the 

current router to determine which directions would be selected for each quadrant. Using a 

method given in sections 4.4 (describe in the previous page), congestion values can be obtained. 
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4.4.2 Regional Congestion Awareness (RCA) 

 Regional Congestion Awareness (RCA) developed by Gratz et al. [4] was one of the first 

NoC router microarchitecture that took regional congestion data into consideration for adaptive 

routing. Our developed SystemC simulator implements this method by utilizing additional links. 

Figure 4.11 illustrates how a sideband network co-operates with the standard mesh NoC. 
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Figure 4-11 - Regional Adaptive Routing with Congestion Information Links 

 

The congestion data links are modeled similar to the physical channels for flit 

transmission. Instead of a flit data structure link, a congestion information data structure is used 

to define the links in the SystemC based model. This allows the congestion data to be 

dynamically expandable in size allowing various types of congestion data required for testing. 
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RCA Data Propagate Process: 

 

void xvc_router::process_propagate_rca_data() {   

 rca_data_out[EAST].write((rca_data_in[WEST].read()+_rca_used_vc_in_output_dir[WEST].read())/2); 

 rca_data_out[WEST].write((rca_data_in[EAST].read()+_rca_used_vc_in_output_dir[EAST].read())/2); 

 rca_data_out[NORTH].write((rca_data_in[SOUTH].read()+_rca_used_vc_in_output_dir[SOUTH].read())/2); 

 rca_data_out[SOUTH].write((rca_data_in[NORTH].read()+_rca_used_vc_in_output_dir[NORTH].read())/2); 

} 

Figure 4-12 – RCA Data Propagate Process 

 

 Figure 4.12 provides the SystemC code used to implement the RCA based data 

propagation process. Each direction would receive data every cycle. The data is processed and 

combined with local data before it is transmitted to the next router. All the RCA processing are 

completed independently from the normal NoC router operations. 

4.4.3 Destination Based Adaptive Routing 

Destination Based Adaptive Routing (DBAR) requires a sideband network similar to 

RCA‟s sideband network shown in Figure 4.11. In DBAR, the sideband network bus size varies 

between the routers depending on its location in the mesh NoC but the total bus lines between 

the two routers are nine lines. There are also two additional buses connecting the routers to 

transmit the destination ID of any next flits being transferred. 

Figure 4.13 provides the pseudo code for the implementation of propagation data 

between two routers. First of all, it is necessary to determine the number of VCs assigned. This 

would be computed with combinational logic hardware. Please note that when some congestion 

exists, a value of 64 is added because it‟s is the weight of most significant bit of a 7-bit value. 

This indicates that congestion at the local router is the most important and the same value is 

propagated to the next router. 
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DBAR Data Propagation Process: 
 

dbss_tmp_cnt=0; 

for (j=0; j<NVC; ++j) { 

if (_input_vc_assigned[EAST][j].read()) 

  ++_dbss_tmp_cnt; 

} 

tmp_v=dbss_data_in[WEST].read(); 

tmp_v=tmp_v>>1; 

if (dbss_tmp_cnt>4) 

 tmp_v+=64; 

dbss_data_out[i].write(tmp_v); 

 

Figure 4-13– DBAR Data Propagate Process 

 

 Destination based adaptive routing means that each router calculates the best routing path 

to the destination router. This requires that each direction is to be calculated for every router. A 

comparison between congestion values on both the X and Y axis are required and the determined 

value must be stored so that it can be used by the route computation process. For simulation, a 

simple 2D array Boolean variable is employed where 0 represents X-direction and 1 means Y-

direction.  

 

4.5 Pipeline Modeling 

 A high performance NoC router employs pipelining to improve the operating clock 

frequency by separating the routing tasks into different stages. Normally, a NoC router is 

separated into three stages. The SystemC based simulator we developed is able to model all the 

stages at transaction level that is very accurately modeled as compared to hardware.  
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 The different stages for a packet to transverse the VC wormhole router include: Buffer 

Write (BW), Route Computation (RC), VC Allocation (VA), Switch allocation (SA) and 

Crossbar Transversal (XT). Link Transversal (LT) or Cross Channel is not a stage within the 

NoC router as it does not require any clock cycle to propagate the flit from one router to another. 

 The pipelining model of NoC routing is achieved by modeling each hardware component 

separately at the transaction level. Although it takes longer to simulate, the simulation process is 

comparable and similar to hardware transactions. Figure 4.14 shows a packet passing through a 

router‟s pipeline stages that is performing perfectly without any stalls. This is usually the case 

with the NoC that is relatively free.  

 

 

Figure 4-14 – Pipeline without Stalls 

 

 

 As packet injection rises, pipeline stalls will start to occur. Figure 4.15 shows two type of 

stalls that can affect the performance and latency of a packet traversing the NoC router. The first 

type of stall occurred when there are no available VCs in the downstream router. The header flit 

end up spending four cycles to transverse the NoC. All the sequential flits of the same packet 

will experience the same delay. Figure 4.15 also shows another type of stall that occurs when 

there is no buffer space available in the downstream router. 
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Figure 4-15 – Pipeline Experiencing Stalls 

 

4.6 Packet Modeling 

 A data packet is an organization of one or more flits. Our SystemC based simulator 

models a flit as the lowest level of data structure and the common data transferred between the 

routers as well as being buffered or traversing the crossbar switch in any router. A packet has a 

common source and destination ID. It also contains the header flit with all the routing 

information and body flits. The last body flit is a special type of flit known as the tail flit. In 

hardware, all these types of flit require two bits in each flit to indicate their types. The simulator 

models a flit differs than the actual hardware. First of all, flits in hardware are specifically sized 

(e.g. 32, 64 or 128 bit flits). The simulator model flits with a dynamic size as a data structure in 

software. This allows additional debugging data items such as injection time, packet ID, etc. to 

be embedded in each flit for analysis. Moreover, the standard parameter such as the VCID, 

destination ID, flit type, etc. are also embedded in this way.  

 

4.6.1 Packet Organization 

 As described above, a packet is organized into many different flits. Figure 4.16 shows 

that a header flit has much more information embedded than the body and tail flits. In this 
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example, there are eight flits. The header flit will pass through every router first and then the 

body and tail flits will follow. 

 

Figure 4-16 – An 8 flit Packet with Different Types of Flits 

 

 

 

Figure 4-17– Flit Organization Structure in Simulator 
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 Figure 4.17 illustrates the flit structure used in our SystemC simulator. This is the 

standard data structure for transferring and processing data within the NoC. The flit structure has 

a few Boolean variables to indicate what types of flit it is. The VCID is stored as well as the 

source and destination ID for routing and debugging. The two directions opt0 (option 0) and opt1 

(option 1) are used for look-ahead routing. Several integer variables such as injection_start_time, 

packet_id and flit_it are used purely for debugging and testing the router and NoC model within 

the simulator. There is no purpose to have these fields in a hardware implementation of any NoC 

flits, and a simple integer type can be chosen. Standard C++ types such as integers perform faster 

than a SystemC types such as “sc_uint<32>” which is an unsigned integer type for hardware 

modeling. 

4.7 Source Modeling 

 The source core is an important hardware unit responsible for packet generation and 

injection in the NoC. The source core model has a network interface to inject flits into the NoC 

router and a packet generator. Generated packets are separated into many flits and stored in a 

linked list. They are injected when the credits are available. With a linked list data structure, the 

simulator is able to hold unlimited flits as supported by the host computer‟s available memory. 

This allows the NoC simulator to simulate traffic with high latency without any risk of crashing 

the simulator. 

 The packet generator is required to track the packets generated in every period of 100 

cycles to simulate the desire injection rate. In our NoC simulator, when a packet is ready to be 

injected into the NoC system, the whole packet is buffered in the source core until it can be sent. 

The source core acts as a packet injection controller. The source core controls the injection rate 
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to avoid overflowing the NoC which causes the entire mesh NoC to saturate and dramatically 

increase latency for all the routers.  

 Figure 4.18 above illustrates two example packets being generated by the source core. 

The packets are generated five cycles after another. Every flit of in a packet is individually 

generated and defined as either a header, body or tail flit. Each packet is assigned a VCID as it is 

required to be assigned to a VC at the source router. For debugging purposes, the packet ID, flit 

ID and execution time is also included. 

 

 

Figure 4-18 - Packet Generation Example Waveform 

 

   Figure 4.19 illustrates how a packet with four flits is injected in a NoC router. The 

simulator is designed using the credit based flow control. The source core tracks the number of  

credits available in the local NoC router and injects the packet when there are credits available 

meaning there is buffering space available in the VC at the downstream local router. After „body 

flit 2‟, the number of credits available is zero or the downstream buffer is full, the source stops 

transmitting any more flits until it receives a credit_in signal to indicate a flit slot is freed in the 

downstream VC. This occurs when the downstream router process one of the flits in that VC. 
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The source will send any remaining flits at this point. The „tail flit‟ is sent as shown in Figure 

4.19. Since there are no more flits waiting to be sent after the tail flit, the source core will 

increase the number of credits available as it receives credit_in signals until the maximum buffer 

flit slots are available in the downstream router. 

 

 

Figure 4-19 - Example Waveform of the Source Generating a Packet (4 flits) 

  

4.8 Sink Modeling 

 The sink core will receive flits when they reach their destination. The sink core packages 

the packet together by checking their VCID. The sink core is modeled by a simple network 

interface to the router that models the physical channel. For synthetic traffic modeling, it is only 

necessary to record the arrival of all the packets and verify their VCID and packet ID. In a 

SystemC simulator, packet information such as injection time is embedded in each packet so that 

it can be used to measure latency between the source and the sink cores. 

 Figure 4.20 shows the waveform for receiving an example packet with four flits (one 

header flit, two body flits and a tail flit). The sink will read flits on the positive edge when a 

request is made to the sink. The sink will then process data and transmits an acknowledgement 
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(credit_out) to the upstream local router to release a credit. This will allow the local router to 

transmit another flit. 

 

 

Figure 4-20 – Example Waveform of the Sink Receiving a Packet (4 flits) 
 

  

4.9 Summary 

 This chapter reviewed the implementations of the different types of NoC architectures for 

testing, research and evaluation purposes. The implementation of a NoC router and each 

component are described in detail at the architectural level. Each component is described with 

their timing and transaction characteristics for hardware modeling and physical component 

design. In this chapter, we discussed the implementation of the transaction accurate NoC 

microarchitecture is as well as the development of testing components. We also discussed how 

the source and sink cores will handle packets under various traffic conditions.  
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Chapter 5  

Experimental Results 

  

This chapter will outline the experimental setup and configuration used to obtain the 

experimental results. The parameters for the experimentation along with the methods to calculate 

the performance will be described in details. Packet generation to be tested for various traffic 

patterns is described. This chapter will also illustrate the performance of our CAAR based 

adaptive NoC routing and a numbers of result graphs showing the latency for various different 

traffic patterns are presented. Moreover, this chapter also describes how packets are tracked to 

ensure correct delivery and how latency measurements are embedded in the simulation traffic 

packets. 

 

5.1 Traffic Generation 

 NoCs are tested under various traffic conditions to determine its performance. Different 

traffic conditions affect the operation and congestion within the NoC. Traffic has several 

conditions such as injection rate, injection behaviour and traffic patterns that would affect the 

NoC performance. Generally the higher the injection rate, the higher the latency of all the 

packets to transverse the NoC. Traffic behaviours also affect congestion level for a constant 
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injection rate. For example, traffic that resembles a uniform process will perform differently than 

a self-similar process [13]. The traffic pattern of the data flow within the NoC will affect the 

overall performance. For testing and evaluation purposes, a specific traffic pattern can be defined 

to observe the performance of NoCs. Otherwise, an application can define a specific 

communication pattern or even completely irregular traffic in nature. 

 The source would generate packets and flits based on what is desired for the testing 

parameters. Different traffic pattern would require a slightly different definition of the 

destination ID for each packet. A desired injection rate is selected and the flits are injected by the 

source cores. We have already explained the detail in chapter 4 about source modeling. 

 There are several types of synthetic traffic data types. Our simulation will model the 

random values in terms of uniform traffic with the rand() function to generate a random value. 

Other traffic patterns such as transpose are generated by calculating what the destination ID 

would be based on in the current router.  

 

5.2 Traffic Pattern 

 Traffic patterns within the NoC can be regular (synthetic) or irregular (e.g. some 

application related traffic). In simulation, traffic patterns are defined in the initialization phase of 

the simulation and the source cores will generate the appropriate traffic pattern by computing the 

destination ID for each packet at each router. The destination ID would then be embedded into 

each packet allowing all the routers on its path to read it and make its own routing decisions.   
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5.2.1 Synthetic Traffic Patterns 

 NoC performance estimation and evaluation can be measured by injected a testing traffic 

into the NoC with a specific traffic pattern. Some traffic patterns only allow packets to be sent to 

the nearby routers while in some other patterns, the packets are intended to travel across the 

NoC.  The size of the NoC will also limit the performance of the NoC regardless of the traffic 

pattern under evaluation. A list of some synthetic traffic pattern for a mesh topology NoC are 

listed below. We will consider (x, y) to be the coordinates of each router in the NoC and N to be 

the size of an NxN mesh topology NoC. 

 

5.2.2 List of Synthetic Traffic Patterns: 

Uniform: Packets can be sent to any destination in the NoC 

Transpose-1: Packets are sent from (x, y) to (N-y+1, N-x+1) 

Transpose-2(Bit reverse): Packets are sent from (x, y) to (y, x) 

Shuffle: Packets are sent from (x, y) to ((x+N-1) mod N, (y+N-1) mod N)) 

Tornado: Packets are sent from (x, y) to ((x+([k/2]-1) mod N), (y+([k/2]-1) mod N)) 

Regional Uniform: A uniform traffic pattern that favours sending packets to nearby 

routers 

 

Figures 5.1 illustrate how a regional uniform traffic pattern separates an 8x8 mesh NoC 

into 4 x 4 regions. This type of traffic has a higher likelihood as NoC organizations would likely 

to have cores that communicate with the closer NoC cores. Each region is organized as 4 x 4. 
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Figure 4 shows the organization of the regions. This type of traffic can be expanded to a 16 x 16 

mesh. In our experiment, 80% of the traffic is sent within the region with the remaining 20% sent 

to anywhere in the NoC. 

 

5.3 Performance Evaluation 

 One of the performance parameters used in NoCs is the average latency. By comparing 

average latencies between different traffic type and different NoC router architectures, an 

optimal architectural design can be determined. Average latency is the summation of the latency 

values of all the packets injected in the NoC divided by the number of packets injected.  

 Latency is simply calculated by 

                                   Eq. 5.1 

R0

R2

R1

R3

 

Figure 5-1 - Regional Uniform Traffic Regions 
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In our CAAR simulator, the source would embed the injection time into every flit of the 

packet. Once the packet‟s last flit reaches the sink core, its latency can be calculated and added 

to the running total.  

 Since average latency may not illustrate the worst case scenario for NoC performance, 

maximum latency can also be measured in the NoC and taken into account while predicted the 

NoC performance. To measure maximum latency, each sink core would track the highest latency 

packet received and send all the information to the simulator. The simulator would check all the 

sink values and determine the highest latency packet received. 

 

5.4 Packet Tracking 

 Packet tracking is the process of keeping track of all the flits to ensure that all the flits 

and packets follow a path from the source to the destination without backtracking. This is 

important for the simulator to track while experimenting with any micro-architectural changes to 

the NoC router. For the simulator to track all the packets, a tracking process reads all the output 

flits at all the outputs of all the routers and sources. Every source keeps a list of all the flits and 

packets injected in the NoC. When a new packet is injected from a source core, each flit creates a 

new list and saves the source ID. Whenever a packet is being transmitted from a router, it 

compares its flit ID and adds the new router ID to the list. All lists are implemented as a linked 

list data structure which is dynamically expandable allowing millions of flits to be tracked by the 

simulator. 

The process to track all the flits is illustrated below: 
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i. The source will read the current excitation time and embed the execution time value into 

the packet being injected into the NoC. 

ii. The value will not change as the packet transverses all the NoC routers. 

iii. Once the packet arrives at the sink, the sink waits until the tail flit arrives. Once the tail 

flit arrives, it will subtract the current execution time with the injection execution time to 

determine the latency. 

 

5.5 Experimental Setup 

 NoC performance of the NoC router architecture is tested by the average latency of 

packets traversing the mesh NoC. The simulator is setup to allow experimental testing of many 

different configurations such as mesh topology size, injection rates, traffic patterns, length of the 

packets, the number of VCs, etc. 

5.5.1 Mesh Topology Size 

Our CAAR modeling experiment includes various size topologies. Since the industry is 

always looking to increase the number of cores and complexity of NoCs, smaller size NoCs such 

as 4 x 4 may not be very useful as today. We evaluated 8 x 8 and 16 x 16 mesh to determine the 

usefulness of our proposed CAAR based router and NoC. 

 

5.5.2 NoC Simulation Setup 

A transaction level SystemC simulator has been developed to model the 

microarchitecture of the router described in the previous section. The pipelined NoC router 
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consists of two cycles, one for VA/SA and the second for Crossbar switch transversal. An 

additional cycle is required for Link Transversal. Different routing algorithms have been used 

including DOR, Local Adaptive and destination based regional adaptive techniques. Fully 

adaptive algorithm is based on Duato‟s methodology, which employs an escape VC to break the 

deadlock [19]. In our experimental setup, the router uses 8 VCs with 5 flits per VC for the static 

sized VC buffer and various sized dynamically managed buffer. During evaluation, the simulator 

is initialized for 10,000 cycles and capable of capturing the results for 100,000 cycles afterwards. 

We evaluate each traffic pattern by employing a burst-based traffic injection process. We 

evaluate both average latency and maximum latency. As described earlier in section 5.3.3, 

maximum latency demonstrates the worst case scenario which is important to latency sensitive 

applications. 

 

5.6 Evaluations 

The Microsoft Excel software is used to produce the graphs for our evaluation results. 

5.6.1 Small NoC (4x4) 

We start to evaluate a small 4x4 mesh NoC. Since CAAR involves a prioritization technique, 

we do not expect CAAR to perform significantly different than RCA or any other regional 

congestion awareness. The average latency results are shown left along with the maximum 

latency on the right side.  
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Figure 5-2 – 4x4 Transpose-1 Traffic 

 

 

For Transpose-1 traffic and 4x4 mesh topology results of Figure 5-2, we can observe that CAAR 

has a slightly better maximum-latency over RCA. This is due to prioritization of packets sent 

between the corners of a mesh NoC. The results from Figures 5-2 and 5-4 show that Transpose-2 

traffic has a slightly better average latency than RCA since there is less long distance packets 

being transmitted as compared to Transpose-1. 
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Figure 5-3 – Details of 4x4 Transpose-1 Average Traffic 

 

 

 

Figure 5-4 – 4x4 Transpose-2 Traffic 
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Figure 5-5-4x4 Transpose-2 Average Traffic 

 

 

As expected, there would not be any improvement for shuffle traffic as all the 

destinations are within half the maximum distance of the mesh. Surprisingly XY routing 

performance is significantly better when enough number of VCs are available. 

 

Figure 5-5 – 4x4 Mesh with Shuffle Traffic 
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Figure 5-6 – 4x4 Uniform Traffic Latency 

 
 

Under uniform traffic especially for a small 4x4 mesh, CAAR nor adaptive routing is 

expected to perform much better than XY routing. CAAR performed the same as RCA as there is 

a very low chance prioritization is required within uniform traffic. Uniform Regional traffic is 

not evaluated under the 4x4 mesh since it would have the same result as uniform traffic as the 

region size is 4x4. 

5.6.2 Medium Size NoC (8x8) 

In this section, we evaluated CAAR for an 8x8 mesh NoC with 8VCs. CAAR shows 

moderate improvement over RCA for transpose traffic as long distance packets have benefited 

from CAAR. Similar to 4x4, CAAR is able to improve throughput for transpose traffic. As 

shown in Figure 5-8, CAAR is able to gain small improvement with Transpose-1 traffic in 

contrast to 4x4 mesh NoC. Similarly CAAR has a larger performance gain with Transpose-2 

traffic pattern (see Figure 5-9). 

0

50

100

150

200

26 30 34 38 42 46 50 54

La
te

n
cy

 (
c.

c)
 

Injection rate (per 100 cycles) 

4x4 Uniform Average Latency 

XY
Local
RCA
DBAR
CAAR
GCA

0

150

300

450

26 30 34 38 42 46 50 54

L
a

te
n

cy
 (

c.
c)

 

Injection rate (per 100 cycles) 

4x4 Uniform Max Latency 

XY

local

RCA

DBAR

CAAR

GCA



87 

 

  

Figure 5-7 – 8x8 Transpose-1 Traffic 

  

Figure 5-8 - 8x8 Transpose-2 Traffic 

  

Figure 5-9 - 8x8 Shuffle Traffic 
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Similarly with shuffle traffic as shown in Figure 5-10, CAAR performed equally as good 

as RCA with XY performing significantly better. Under uniform traffic for an 8x8 mesh, average 

latency remains the same between RCA and CAAR but RCA performed slightly better than 

CAAR as shown in the results of Figure 5-11. This is due to an increased prioritization of long 

distance packets. 

 

  
 

 

Figure 5-10 - 8x8 Uniform Traffic 
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Figure 5-11 - 8x8 Regional Uniform Traffic 

 

Figures 5-13 and 5-14 shows the results for regional uniform traffic on a larger scale to 

illustrate and highlight the better performance of CAAR based routing as compared to other 

schemes. 

 

 

Figure 5-13 – Larger Scale of 8x8 Regional Uniform Traffic Average Traffic 
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Figure 5-14 - Larger Scale of 8x8 Regional Uniform Traffic Max Traffic 
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Figure 5-12 – 16x16 Transpose-1 Traffic 

 

 

Figure 5-13- 16x16 Transpose-2 Traffic 
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Figure 5-14 - 16x16 Shuffle Traffic 

 

 

Figure 5-15 - 16x16 Uniform Traffic 

 

Finally, in the case of regional uniform traffic, both RCA and CAAR performed similarly as 

most the traffic does not include any packets traveling from one corner of the NoC to an opposite 

corner. 

0

50

100

150

200

6 10 14 18 22 26

L
a

te
n

cy
 (

c.
c)

 

Injection rate (per 100 cycles) 

16x16 Shuffle Average Latency 

XY

Local

RCA

DBAR

CAAR

GCA 0

250

500

750

1000

6 10 14 18 22 26

L
a

te
n

cy
 (

c.
c)

 

Injection rate (per 100 cycles) 

16x16 Shuffle Max Latency 

XY

local

RCA

DBAR

CAAR

GCA

0

50

100

150

200

6 10 14 18 22 26

L
a

te
n

cy
 (

c.
c)

 

Injection rate (per 100 cycles) 

16x16 Uniform Average Latency 

XY

Local

RCA

DBAR

CAAR

GCA
0

250

500

750

1000

6 10 14 18 22 26

L
a

te
n

cy
 (

c.
c)

 

Injection rate (per 100 cycles) 

16x16 Uniform Max Latency 

XY

local

RCA

DBAR

CAAR

GCA



93 

 

 

 

Figure 5-16 - 16x16 Regional Uniform Traffic 
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5.7.2 Power Estimation 

 Hardware components require power to operate. Depending on the size and type of logic 

used in CAAR implementation, power usage can increase significantly. It is necessary to 

measure power usage of each router component, especially the power consumed by additional 

congestion awareness components.  

5.7.3 Evaluation 

We employed Synopsys Design Vision to analyze the area and power usage of our 

proposed CAAR router. We have used Nangate‟s Open Cell Library with a 15nm process at 1V 

[38]. The area and power usage estimates are presented in Table-1 for CAAR as compared to 

RCA and DBAR.  

Table 5-1 – Hardware Area Usage 

 Buffer Other Logic Allocator Crossbar Total 

Baseline Local 

Adaptive 

                                        

RCA                                          

DBAR                                          

CAAR                                          

GCA                                          

 

Table 5-2  – Power Usage 

 Buffer Other Logic Allocator Crossbar Total 

Baseline Local 

Adaptive 

4.04mW 1.66mW 2.31mW 2.00mW 10.01mW 

RCA 4.04mW 2.06mW 2.31mW 2.00mW 10.41mW 

DBAR 4.04mW 3.02mW 2.31mW 2.00mW 11.37mW 

CAAR 4.04mW 1.94mW 2.86mW 2.00mW 10.84mW 

GCA 4.04mW 2.18mW 2.31mW 2.00mW 10.53mW 
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For an 8VC implementation, CAAR has an additional overhead of 5.2% over RCA and 

13.3% over the baseline adaptive router. We believe this is justified as it is only a small overhead 

to improve the performance for far distance packets. Other proposed designs also have an 

overhead over RCA and the baseline adaptive router.  CAAR has a power overhead of 4.1% over 

RCA and 8.3% over the baseline locally adaptive router. Compared to DBAR, CAAR has slight 

advantage in terms of both area usage and power consumption. DBAR would have higher power 

consumption every clock cycle as it needs to update all the destination information in the entire 

table. GCA has better hardware usage but is not as effective in terms of performance 

improvement over RCA. 

Although there is a small increase of IC area and power consumption, congestion aware 

NoC routers are designed for high throughput applications where performance is the most 

important. For parallel high performance computing systems, a small increase in NoC router 

hardware is not significant as compared to the IC area size of the CPU cores.   
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5.8 Summary 

This chapter provided the evaluation methods and results related to the performance of 

CAAR in relation with locally and regional adaptive routing. In this chapter, the methods of 

evaluation are identified along with the types of synthetic traffic used to test the proposed CAAR 

router. The results are illustrated along with a short reviewed to describe the situation. 

Furthermore, hardware overhead is also evaluated to determine CAAR‟s implementation in 

actual hardware. CAAR router allocator consumes much more chip area and there is need to 

investigate an area efficient CAAR allocator. 
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Chapter 6  

Conclusions 

 

This thesis presents a novel approach that improves NoC throughput by packet 

prioritization. The objective is to increase the NoC throughput by using congestion aware 

information. Congestion awareness information has already been applied for on-chip 

communication to improve NoC routing. We have expanded adaptive routing by employing 

regional congestion data to latency for packet routing. We have described the methodology of 

expanding the regional congestion awareness data to improve packet selection for both VC and 

switch allocators. A new methodology of Congestion Aware Adaptive Routing (CAAR) is 

designed to prioritize the packet/flit allocation that suffers the most latency while travelling 

between NoC cores. Moreover, to improve on hardware usage and to avoid any additional links 

between routers, CAAR removes the sideband network to transfer congestion data and instead 

adds the congestion information into the header flit of a packet. 

Experiment and simulations have been conducted on various size mesh based NoCs 

ranging from 4x4 to 8x8 and up to 16x16. Our CAAR methodology experimental results 

demonstrate performance improvement for long distance packets, which are prioritized in 

congested NoC situations. 
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