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Abstract

As spectrum scarcity is becoming a serious problem, the worth of finding a general solution

for such issue has become even serious due to the rapid development of wireless commu-

nications. The main objective of this thesis is to investigate the optimal power allocation

procedure that maximizes the capacity in OFDM based Cognitive Radio Systems.

The main purpose of the search is to modify the conventional water-filling algorithm ap-

plied in general OFDM based Cognitive Radio systems due to the per subchannel power

constraints and individual peak power constraints. For Radio Resource Allocation (RRA),

one of the most typical problems is to solve power allocation using the Conventional Water-

filling. As communication system develops, the structures of the system models and the

corresponding RRA problems evolve to more advanced and more complicated ones.

In this thesis Iterative Partitioned Weighted Geometric Water-filling with Individual Peak

Power Constraints (IGPP), a simple and elegant approach is proposed to solve the weighted

radio resource allocation problem with peak power constraint and total subchannel power

constraint with channel partitions. The proposed IGPP algorithm requires less computation

than the Conventional Water-filling algorithm (CWF).

Dynamic Channel Sensing Iterative (DCSI) approach is another algorithm proposed to op-

timally allocate power for OFDM based Cognitive Radio Systems. DCSI is a innovative

concept which will allow us to solve the same problem intelligently with less complexity. It

provides straight forward power allocation analysis, solutions and insights with reduced com-

putation over other approaches under the same memory requirement and sorted parameters.
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Chapter 1

Introduction

Radio Frequency (RF) and wireless have been around for over a century with Alexander

Popov and Sir Oliver Lodge laying the groundwork for Guglielmo Marconis wireless radio

developments in the early 20th century. In December 1901, Marconi performed his most

prominent experiment, where he successfully transmitted Morse code from Cornwall, Eng-

land, to St Johns, Canada. Today, radio communications has become a highly sophisticated

field of electronics.

1.1 Spectrum Challenges

The Radio Frequency (RF) Spectrum is a limited natural resource, which is governed by

the laws of physics. Theoretically, the RF commences from approximately 9KHz and extends

up to 3000GHz. However, in practical scenario, not every part of the spectrum is suitable

for being used for all requirements.

Mobile communication is feasible up to approx. 6GHz band, with currently available tech-

nology. Even within this practically usable spectrum as per current available technologies,

cost effective equipment for a particular application may be available for use in still smaller/

limited frequency bands. This is the practical limitation on the spectrum due to propagation

and availability of suitable equipment.
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The Canadian Table of Frequency Allocations assigns the electromagnetic spectrum and

establishes the frequency allocations available for radio services in Canada. The Canadian

Table is based on the provisions of the Final Acts resulting from the various World Radiocom-

munication Conferences (WRC), which are convened by the International Telecommunication

Union (ITU). This spectrum allocation policy refers to command- and control mechanism in

which the Government may decide the following: ration spectrum, specify technologies and

services for spectrum use, put in strict mergers and acquisition (M&A) norms, and confer

non-sharable rights to spectrum holders etc. [5]. This static spectrum allocation mechanism

causes frequency bands to be insufficient in various times and locations.

Fig. 1.1 [6] illustrates the radio spectrum and the broad range of frequencies in wireless

communication context. Most of the fractions of the radio spectrum are licensed to tradi-

tional radio communications systems. Beside, practical measurements, prove that most of

the licensed bands either are unused or partially used at different geographical areas at most

of the times. According to the FCCs report the licensed spectrum band utilization range

from 15% to 85% at different times and locations [7].

While the number of wireless connections and high data rate networks increase, spec-

trum demand and spectrum congestion become critical challenges in the forthcoming all-

encompassing wireless world. In fact, throughput, high reliability, high quality of service,

mobility, and diversity of wireless services, devices based on multiple wireless standards

are more and more demanded. Hence, future wireless networks will face greater spectrum

scarcity due to the users requirement such as high multimedia data rate transmission and

diversity of communication technologies.

The under utilization of some frequency bands opens up the opportunity to identify and

exploit spectrum holes. A spectrum hole is defined as a band of frequencies assigned to a

primary user (PU), but, at a particular time and specific geographic location, the band is

not being utilized by that user [8]. If a secondary user (SU) can access a spectrum hole, the

2



Figure 1.1: Radio Spectrum. [1]

spectrum utilization is improved significantly.

1.2 Cognitive Radio

The considerations mentioned previously have motivated the search for breakthrough radio

technologies that can scale to meet future demands both in terms of spectrum efficiency and

application performance. A promising mechanism to improve the spectrum utilization by

exploiting the spectrum holes is based on the cognitive radio concept.

The definition adopted by Federal Communications Commission (FCC): Cognitive radio:

A radio or system that senses its operational electromagnetic environment and can dynam-

ically and autonomously adjust its radio operating parameters to modify system operation,

such as maximize throughput, mitigate interference, facilitate interpretability, access sec-

ondary markets [9].

Fig. 1.2 shows some of the spectrum sensing option used to improve spectrum utilization.
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Figure 1.2: Different Types of Spectrum Sensing Methodologies to improve Spectrum Utilization
in Different Domain. [2]

One of the most important components of the cognitive radio concept is the ability to mea-

sure, sense, learn, and be aware of the parameters related to the radio channel characteristics,

availability of spectrum and power, radios operating environment, user requirements and ap-

plications, available networks and nodes, local policies and other operating restrictions.

Cognitive Radio Concept Architecture: There are two major subsystems in a

cognitive radio:
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• A cognitive unit that makes decisions based on various inputs.

• A flexible SDR unit whose operating software provides a range of possible operating

modes.

A separate spectrum sensing subsystem is also often included in the architecture of cog-

nitive radio to measure the signal environment to determine the presence of other services

or users. It is important to note that these subsystems do not necessarily define a single

piece of equipment, but may instead incorporate components that are spread across an entire

network. As a result, cognitive radio is often referred to as a cognitive radio system or a

cognitive network.

Figure 1.3: Cognitive Radio Concept Architecture. [3]

The cognitive unit is further separated into two parts as shown in the Fig. 1.3. They are:
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• The first labeled the Cognitive Engine tries to find a solution or optimize a perfor-

mance goal based on the inputs received defining the radios current internal state and

operating environment.

• The second engine is the Policy Engine and is used to ensure that the solution provided

by the Cognitive Engine is in compliance with the regulatory rules and other policies

external to the radio.

Primary Users: These wireless devices are the primary license-holders of the spectrum

band of interest. In general, they have priority accessing the spectrum, and subject to certain

Quality of Service (QoS) constraints which must be guaranteed.

Secondary Users: These users may access the spectrum which is licensed to the pri-

mary users. They are thus secondary users of the wireless spectrum, and are often envisioned

to be cognitive radios.

Cognitive Radio (CR) is an adaptive, intelligent radio and network technology that can

automatically detect available spectrum and change transmission parameters enabling more

communications to run concurrently and also improve radio operating behavior.

The Importance of Cognitive Radio Networks: Cognitive networks are motivated

by the apparent lack of spectrum under the current spectrum management policies. The right

to use the wireless spectrum in the United States is controlled by the Federal Communications

Commission (FCC) [9]. Most of the frequency bands useful to wireless communication have

already been licensed by the FCC [10]. A few bands have however been designated by the

FCC to be unlicensed bands, most notably the Industrial Scientific and Medical bands (ISM

bands), over which the immensely popular WiFi devices transmit. These bands are filling

up fast, and despite their popularity, the vast majority of the wireless spectrum is in fact

licensed.

6



Currently, the primary license holders obtain from the FCC the exclusive right to transmit

over their spectral bands. As most of the bands have been licensed out, and the unlicensed

bands are also rapidly filling up, it would appear that we are approaching a spectral crisis.

This, however, is far from the case.

Recent measurements in [11] have shown that for as much as 90% of the time, large

portions of the licensed bands remain unused. As licensed bands are difficult to reclaim

and re-lease, the FCC is considering dynamic and secondary spectrum licensing [9] [10] as

an alternative to reduce the amount of unused spectrum. Bands licensed to primary users

could, under certain negotiable conditions, be shared with non-primary users without having

the primary licensee release its own license. Whether the primary users would be willing to

share their spectrum would depend on a number of factors, including the impact on their

own communication.

Cognitive radios, wireless devices with reconfigurable hardware and software (including

transmission parameters and protocols) [12], are capable of delivering what these secondary

devices would need: the ability to intelligently sense and adapt to their spectral environment.

Along with this newfound flexibility comes the challenge of understanding the limits of and

designing protocols and transmission schemes to fully exploit these cognitive capabilities.

In particular, in order to design practical and efficient protocols, the theoretical limits must

be well understood. We next describe different scenarios, assumptions and corresponding

types of cognitive behavior, for which information theoretic limits have been considered [3].

1.3 Orthogonal Frequency Division Multiplexing (OFDM)

Frequency Division Multiplexing (FDM) extends the concept of single carrier modulation

by using multiple subcarriers within the same single channel. The total data rate to be
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sent in the channel is divided between the various subcarriers. The data do not have to be

divided evenly nor do they have to originate from the same information source. Advantages

include using separate modulation/demodulation customized to a particular type of data,

or sending out banks of dissimilar data that can be best sent using multiple, and possibly

different, modulation schemes.

Figure 1.4: Orthogonal Frequency Division Multiplexing (OFDM).

Conceptually, OFDM is a specialized Frequency Division Multiplexing, the additional

constraint being: all the carrier signals are orthogonal to each other.

In OFDM, the sub-carrier frequencies are chosen so that the sub-carriers are orthogonal to

each other, meaning that cross-talk between the sub-channels is eliminated and inter-carrier

guard bands are not required. This greatly simplifies the design of both the transmitter and

the receiver; unlike conventional FDM, a separate filter for each sub-channel is not required.

Fig. 1.5 shows the comparison of OFDM networks with 2G and 3G networks. From the

diagram we can reach a conclusion that OFDM is a preferred physical layer access technology

over other methods.
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Figure 1.5: Orthogonal Frequency Division Multiplexing Spectral Efficiency [4].

OFDM Architecture: The idea behind the analog implementation of OFDM can be

extended to the digital domain by using the Discrete Fourier Transform (DFT) and its coun-

terpart, the Inverse Discrete Fourier Transform (IDFT). These mathematical operations are

widely used for transforming data between the time-domain and frequency-domain. These

transforms are interesting from the OFDM perspective because they can be viewed as map-

ping data onto orthogonal subcarriers.

For example, the IDFT is used to take in frequency-domain data and convert it to time-

domain data. In order to perform that operation, the IDFT correlates the frequency-domain

input data with its orthogonal basis functions, which are sinusoids at certain frequencies.

This correlation is equivalent to mapping the input data onto the sinusoidal basis functions

[4].

In practice, OFDM systems are implemented using a combination of Fast Fourier Trans-

form (FFT) and Inverse Fast Fourier Transform (IFFT) blocks that are mathematically

equivalent versions of the DFT and IDFT, respectively, but more efficient to implement. An

OFDM system treats the source symbols (e.g., the QPSK or QAM symbols that would be

present in a single carrier system) at the transmitter as though they are in the frequency-

9



Figure 1.6: Orthogonal Frequency Division Multiplexing (OFDM) Architecture [4].

domain [4].

These symbols are used as the inputs to an IFFT block that brings the signal into the

time domain. The IFFT takes in N symbols at a time where N is the number of subcarriers

in the system. Each of these N input symbols has a symbol period of T seconds. Recall

that the basic functions for an IFFT are N orthogonal sinusoids. These sinusoids each have

a different frequency. Each input symbol acts like a complex weight for the corresponding

sinusoidal basis function. Since the input symbols are complex, the value of the symbol

determines both the amplitude and phase of the sinusoid for that subcarrier. The IFFT

output is the summation of all N sinusoids. Thus, the IFFT block provides a simple way to

modulate data onto N orthogonal subcarriers [4].
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The block of N output samples from the IFFT make up a single OFDM symbol. The

length of the OFDM symbol is NT where T is the IFFT input symbol period mentioned

above. After some additional processing, the time-domain signal that results from the IFFT

is transmitted across the channel. At the receiver, an FFT block is used to process the

received signal and bring it into the frequency domain. Ideally, the FFT output will be

the original symbols that were sent to the IFFT at the transmitter. When plotted in the

complex plane, the FFT output samples will form a constellation, such as 16−QAM [4].

However, there is no notion of a constellation for the time-domain signal. When plotted on

the complex plane, the time-domain signal forms a scatter plot with no regular shape. Thus,

any receiver processing that uses the concept of a constellation (such as symbol slicing) must

occur in the frequency- domain [4].

OFDM Advantages: OFDM has been used in many high data rate wireless systems

because of the many advantages it provides [13].

• One of the main advantages of OFDM is that is more resistant to frequency selective

fading than single carrier systems because it divides the overall channel into multiple

narrow band signals that are affected individually as flat fading sub-channels.

• Interference appearing on a channel may be bandwidth limited and in this way will

not affect all the sub-channels. This means that not all the data is lost.

• Using close-spaced overlapping sub-carriers, a significant OFDM advantage is that it

makes efficient use of the available spectrum.

• Another advantage of OFDM is that it is very resilient to inter-symbol and inter-frame

interference. This results from the low data rate on each of the sub-channels.

• Using adequate channel coding and interleaving it is possible to recover symbols lost

due to the frequency selectivity of the channel and narrow band interference. Not all

the data is lost.
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• One of the issues with CDMA systems was the complexity of the channel equalisation

which had to be applied across the whole channel. An advantage of OFDM is that

using multiple sub-channels, the channel equalization becomes much simpler.

1.4 Thesis Motivation

As spectrum scarcity is becoming a serious problem,the worth of finding a general solution

for such issue has become even serious due to the rapid development of wireless communi-

cations.

In [14] the power allocation problem in OFDM-based cognitive radio systems is modeled

based on the convex optimization theory. the authors present and prove the sufficient and

necessary conditions that the optimal power allocation should satisfy; compared to an in-

tuitive algorithm, a more efficient algorithm, named as Iterative Partitioned Water-Filling

(IPW) is proposed and proved to be optimal.

In [15] a simple and elegant Geometric Water-Filling (GWF) approach is proposed to

solve the weighted radio resource allocation problems. Geometric Water-Filling Peak to

Peak Power Constraints (GWFPP) Algorithm is a dynamic power distribution process. The

state of this process is the difference between the individual peak power sequence and the

current power distribution sequence obtained by the Algorithm GWF [15].

In this thesis, we proposed two efficient power allocation algorithms for OFDM-based

cognitive radio networks with low computational complexity. By exploiting some properties

of the Iterative Partitioned Water-Filling and Geometric Water-Filling Peak to Peak Power

Constraints method, we proposed Iterative Partitioned Weighted Geometric Water-filling

with Individual Peak Power Constraints (IGPP) and Dynamic Channel Sensing Iterative
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Method (DCSI) to solve the target problem. Thus, the algorithm can be used to solve the

power allocation problem with high efficiency.

1.5 Research Contributions

In this paper we utilize both [14] and [15] algorithms to come up with Iterative Parti-

tioned Weighted Geometric Water-filling with Individual Peak Power Constraints (IGPP),

an unique solution which maximizes the power allocation to the SUs better than if algo-

rithm [14] and algorithm [15] were to run separately. In this thesis we have also introduced

Dynamic Channel Sensing Iterative Method (DCSI) algorithm which is a combined recursive

algorithm efficiently allocating power to the SUs.

The key contributions of this thesis to the field of Power Allocation in OFDM-based

Cognitive Radio System is as follows:

• Proposing a new hybrid algorithm which uses Iterative Partitioned Weighted Peak

Power Geometric Water-Filling Method.

• Proposing another new iterative algorithm called Dynamic Channel Sensing Iterative

Method which uses Channel Sensing Information.

• Evaluating the proposed algorithms and comparing with other algorithms and illus-

trating improved performance.

1.6 Thesis Outline

The remaining chapters of this thesis are structured as follows:
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Chapter 2: Literature Review. Introduce background information, water-filling al-

gorithm as a fundamental tool in radio resource management and review literature to present

the state of the art technologies in the area.

Chapter 3: Algorithms and Procedures. Present an overview of the related ap-

proaches to the algorithm proposed in this thesis. Describe the methods which we use for

the proposed new algorithms. Present the proposed algorithms IGPP and DCSI. Illustrate

the proposed algorithms in details.

Chapter 4: Numerical Results. Numerical results of the IGPP and DCSI are pre-

sented in this chapter. Compare the proposed algorithm results with the related work results.

Demonstrate the amount of improvement based on practical parameters.

Chapter 5: Conclusion and Future Work. Conclude the thesis, and propose future

work for improvement.
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Chapter 2

Literature Review

In this Chapter, we first discuss the different types of Water-Filling (WF) methods like:

Conventional Water-Filling, Geometric Water-Filling Method (GWF), Weighted Geometric

Water-Filling Method (WGWF), Weighted Water-Filling with Individual Peak Power Con-

straints (WFPP) and Iterative Partitioned Water-Filling Method. Then we have literature

review to report related work in the open literature.

2.1 Water-Filling Method

The well-known classical water-filling solution solves the problem of maximizing the mutual

information between the input and the output of a channel composed of several subchannels

(such as a frequency-selective channel, a time-varying channel, or a set of parallel subchannels

arising from the use of multiple antennas at both sides of the link) with a global power

constraint at the transmitter [16].

In traditional OFDM systems, given a certain power constraint, the optimal power allo-

cation maximizing the sum capacity is the well-known water-filling algorithm [17].

Many engineering problems that can be formulated as constrained optimization problems

result in solutions given by a water-filling structure. This capacity-achieving solution has
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the visual interpretation of pouring water into a tank whose bottom is given by the inverse

of the subchannel gains, hence the name water-filling or water-pouring [16].

In Fig. 2.1 , this capacity-achieving solution has the visual interpretation of pouring

water over a surface (or curve) given by the inverse of the subchannel gains, hence, the

name waterfilling or waterpouring [18], [19]. More general water-filling expressions such as

Pi = (µai − di)+, where the ai’s and di’s are arbitrary positive numbers, also have the same

visual interpretation after the change of variables P̃i = Pi/ai, hi = ai/di and with a resulting

weighted power constraint given by
∑

i P̃iwi = Pt, where wi = ai are weights that can be

visually interpreted as the width of each of the subchannels as can be observed from Fig.

2.2 [16].

Figure 2.1: Classical Water-Filling Power Allocation Pi = (µ− h−1
i )+ with

∑
i Pi = Pt
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Figure 2.2: General Water-Filling Power Allocation Pi = (µ− h−1
i )+ with

∑
i Piwi = Pt

Many different constrained optimization problems result in water-filling solutions. In order

to obtain an algorithm to evaluate a specific water-filling solution, it suffices to particularize

a general algorithm. Such an algorithm indeed gives the desired solution with a linear worst-

case complexity.

2.1.1 Conventional Water-filling Method

The conventional water-filling (CWF) problem has a sum power constraint under non-

negative individual powers. Since the solution is parameterized with a water level, the

problem reduces to obtaining the water level such that the power constraint is satisfied with

equality. This leads to a non-linear system, in one parameter, such as the water level, that

is determined by the sum power constraint and the function itself. Further, this non-linear

system consists of a non-linear equation and another inequality to find the water level.
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A class of methods to solve the non-linear system are called the conventional WF algo-

rithm. In order to find the exact value of the water level, different algorithms have been

proposed that can be classified into iterative algorithms and exact algorithms.

The conventional water-filling problem can be abstracted and generalized into the following

problem: given Pt > 0, as the total power or volume of the water; the allocated power and

the propagation path gain for the ith channel are given as Pi and hi respectively, i = 1 . . . N ;

and N is the total number of subcarriers. Let {hi}Ni=1 be a sorted sequence, which is positive

and monotonically decreasing, find that

max{Pi}Ni=1

∑N
i=1 log(1 + hiPi)

subject to: 0 ≤ Pi, ∀i;∑N
i=1 Pi = Pt

(2.1)

To find the solution to problem (2.1), we usually start from the Karush-Kuhn-Tucker

(KKT) conditions of the problem, as a group of the optimality conditions, and derive the

system (2.2) below from the KKT conditions,
Pi =

(
µ− 1

hi

)+

, for i = 1, . . . , N,∑N
i=1 Pi = Pt,

µ ≥ 0,

(2.2)

where (x)+ = max {0, x}. µ is the water level chosen to satisfy the power sum constraints

with equality (
∑N

i=1 Pi = Pt). The solution to (2.2) is referred as a solution of the CWF

problem (2.1).

It can be seen that the implied system (2.2) has been used to find the optimal solution.

The existence of its Lagrange multipliers and the implication mentioned above determine

that enumeration can be utilized to find the water level µ.
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2.1.2 Geometric Water-filling Method

In paper [15] a geometric water-filling (GWF) approach is proposed to solve the conven-

tional waterfilling problem and its weighted form. It has two advantages, they are:

1) The geometric approach can compute the exact solution to the CWF, including the

weighted case, with less computation and easier analysis without determining the water

level through solving the non-linear system.

2) Machinery of the proposed geometric approach can overcome the limitations of the

CWF algorithm to include more stringent constraints.

Figure 2.3 gives an illustration of the Gemetric Water-Filling (GWF) algorithm proposed

in [15]. Suppose there are 4 steps/stairs (N = 4) with unit width inside a water tank. For

the conventional approach, the dashed horizontal line, which is the water level µ, needs to

be determined first and then the power allocated (water volume) above is solved.

Let us use di to denote the “step depth” of the ith stair which is the height of the ith step

to the bottom of the tank, and is given as

di =
1

hi
, for i = 1, 2, . . . , N. (2.3)

Since the sequence hi is sorted as monotonically decreasing, the step depth of the stairs

indexed as [1, · · · , N ] is monotonically increasing. We further define δi,j as the “step depth

difference” of the ith and the jth stairs, expressed as,

δi,j = di − dj = 1/hi − 1/hj, as i ≥ j and 1 ≤ i, j ≤ N. (2.4)

Instead of trying to determine the water level µ, which is a real nonnegative number, the

water level step is the target to solve. The water level step is an integer number from 1 to

N , denoted by n∗, as the highest step under water. Based on the result of n∗, we can write

out the solutions for power allocation instantly.
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Figure 2.3: Illustration for the proposed Geometric Water-Filling (GWF) algorithm. (a) Illus-
tration of water level step n∗ = 3, allocated power for the third step P ∗3 , and step/stair depth
di = 1/hi. (b) Illustration of Pt(n) (shadowed area, representing the total water/power above step
n) when n = 2. (c) Illustration of Pt(n) when n = 3. (d) Illustration of the weighted case.

Figure 2.3 illustrates the concept of n∗. Since the third level is the highest level under

water, we have n∗ = 3. The shaded area denotes the allocated power for the third step by

P ∗3 .
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In the following, we explain how to find the water level step n∗ without the knowledge

of the water level µ. Let Pt(n) denote the water volume above step n or zero, whichever is

greater. The value of Pt(n) can be solved by subtracting the volume of the water under step

n from the total power Pt, as,

Pt(n) =
{
Pt −

[∑n−1
i=1

(
1
hn
− 1

hi

)]}+

=
{
Pt −

[∑n−1
i=1 δn,i

]}+
, for n = 1, . . . , N

(2.5)

Due to the definition of Pt(n) being the power (water volume) above step n, it cann’t be

a negative number. Therefore we use {·}+ in (2.5) to assign 0 to Pt(n) if the result inside

the bracket is negative. The corresponding geometric meaning is that the nth level is above

water.

The above result is the shadowed area in Fig. 2.3, which is also an expansion of the

composite form of (2.5).

Then the following proposition was proposed:

The explicit solution to (2.1) is:

Pi =

{
Pn∗ + (dn∗ − di) 1 ≤ i ≤ n∗

0, n∗ < i ≤ N,
(2.6)

where the water level step n∗ is given as

n∗ = max
{
n
∣∣∣Pt(n) > 0, 1 ≤ n ≤ N

}
(2.7)

and the power level for this step is

Pn∗ =
1

n∗
Pt(n

∗). (2.8)
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2.1.3 Weighted Geometric Water-filling Method

For the weighted case, the generalized problem can be stated as: given Pt > 0, as the total

power or volume of the water; the allocated power and the propagation path gain for the ith

antenna are given as Pi and hi respectively, i = 1, . . . , N ; and N is the total number of the

transmit antenna. Furthermore, the weighted coefficients wi > 0, i ∈ [0, N ], and {hiwi}Ni=1

being monotonically decreasing, such that

max{Pi}Ni=1

∑N
i=1wi log(1 + hiPi)

subject to: 0 ≤ Pi, ∀i;∑N
i=1 Pi = Pt

(2.9)

Using the proposed geometric approach, the geometric relation for the weighted case can

be extended as shown in Fig. (2.3) to obtain the solution.

In Fig. (2.3), the width of the ith step is denoted as wi. The value of 1/hi denotes the

volume under the ith step to the bottom of the tank. Hence, the step depth of the ith step

is given as,

di = 1/(hiwi), i = 1, · · · , N. (2.10)

Then, Pt(n), the water volume above step n, can be obtained using the similar approach

as in the previous subsection considering the step depth difference and the width of the stairs

as,

Pt(n) =
[
Pt −

∑n−1
i=1 (dn − di)wi

]+
, for

n = 1, . . . , N.
(2.11)

As an example in Fig. (2.3), the water volume above step 1 and below step 3 with the

width w1 can be found as: the step depth difference, (d3 − d1) multiplying the width of the

step, w1. Therefore, the corresponding Pt(n = 3) can be expressed as,

Pt(n = 3) = [Pt − (d3 − d1)w1 − (d3 − d2)w2]+, (2.12)
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which is an expansion of (2.11). The explicit solution to (2.9) is:

{
Pi = [Pn∗/wn∗ + (dn∗ − di)]wi, 1 ≤ i ≤ n∗

Pi = 0, n∗ ≤ i ≤ N
(2.13)

where,

n∗ = max
{
n
∣∣∣Pt(n) > 0, 1 ≤ n ≤ N

}
(2.14)

and the power level for this step is,

Pn∗ =
wn∗∑n∗

i=1wi
Pt(n

∗). (2.15)

Similar to the unweighted case, the first step is to calculate Pt(n), then find the water

level step, n∗, from (2.14), which is the maximal index making Pt(n) nonnegative. The

corresponding power level for this step, Pn∗ , can be obtained by applying (2.15). Then for

those steps with index higher than n∗, the power level is assigned with zero. For those steps

below n∗, the power level is assigned as in (2.14).

With the GWF approach, the weighted problem could be solved straightforwardly, avoid-

ing complicated derivation and calculation. When the weighting factors are set to ones, the

corresponding unweighted case is obtained.

In the following description of algorithm implementation, we only provide weighted case.

When n∗ is obtained, Pt(n
∗) is given.

Then it is memorized and only multiplied by a constant to compute Pn∗ . Thus, how to

search n∗ is a key point for the proposed GWF and the procedure is stated as follows:

1) Initialize WP = 0;PtM = P ∗t = Pt; i = 1.
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2) Compute WP <= WP + wi;P
∗
t <= P ∗t − (di+1 − di)WP . Then i <= i + 1, where the

symbol “<=” represents the assignment operation.

3) If P ∗t > 0 and i ≤ N, PtM = P ∗t , and repeat the step 2; else, output n∗ = i − 1 and

Pn∗ = wn∗
WP

PtM .

It is easy to see that Pn∗
wn∗

+dn∗ is the water level due to Pn∗
wn∗

+dn∗ = Pi

wi
+di, for 1 ≤ i ≤ n∗.

2.1.4 Weighted Geometric Water-Filling with Individual Peak Power
Constraints

The weighted WFPP problem is stated as follows. Given Pt > 0, as the total power or

volume of the water; the allocated power and the propagation path gain for the ith antenna

are given as Pi and hi respectively, i = 1, . . . , N ; and N is the total number of the transmit

antenna. Also, the weights wi > 0,∀i, and without loss of generality, {hi · wi}Ni=1 being

positive and monotonically decreasing, find that,

max{Pi}Ni=1

∑N
i=1wi log(1 + hiPi)

subject to: 0 ≤ Pi ≤ Si, ∀i;∑N
i=1 Pi ≤ Pt

(2.16)

Compare the problem (2.16) with (2.9), the constraint of 0 ≤ Pi is extended to 0 ≤ Pi ≤ Si,

i.e., additional individual peak power constraints, and
∑N

i=1 Pi = Pt to
∑N

i=1 Pi ≤ Pt.

The problem (2.16) is thus referred to as (weighted) water-filling with sum and individual

peak power constraints (WFPP). In this section, we discuss the solution to the WFPP

problem.

The following presents an algorithm which is a modification of the above discussed GWF

and it is termed as the GWFPP.
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For convenience, the expression (2.11) can be extended into the expression:

Pt(in) =
[
Pt −

∑|E|−1
t=1

(
1
din
− 1

dit

)
wit

]+

,

for n = 1, . . . , |E|,
(2.17)

where E is a subsequence of the sequence {1, 2, . . . , P}, |E| is the cardinality of the set

E, so E can be expressed as {i1, i2, . . . , i|E|}. Especially, if E is taken as the sequence

{1, 2, . . . , N}, then the extended expression is regressed into the original expression.

Algorithm GWFPP: Input: vector {di}, {wi}, {Pti} for i = 1, 2, . . . , N , the set E =

{1, 2, . . . , N}, and Pt.

1) utilize (2.14)-(2.15)compute {Pi}.

2) The set Λ is defined by the set {i|Pi > Pti , i ∈ E}. If Λ is the empty set, output

{Pi}Ni=1; else, Pi = Pti , as i ∈ Λ.

3) Update E with E \ Λ and Pt with Pt −
∑

t∈Λ Pt. Then return to 1) of the GWFPP.

Algorithm GWFPP is a dynamic power distribution process. The state of this process is

the difference between the individual peak power sequence and the current power distribution

sequence obtained by the Algorithm GWF. The control of this process is to use (2.14)-(2.15)

of the Algorithm GWF based on the state mentioned above. Thus, a new state for next time

stage appears. Therefore, an optimal dynamic power distribution process, the GWFPP, with

the state feedback is formed. Since the finite set E is getting smaller and smaller until the

set Λ is empty, Algorithm GWFPP carries out N loops to compute the optimal solution, at

most.

25



2.2 System Model

The terms Cognitive Radio and Orthogonal Frequency Division Multiplexing can be un-

derstood better, with the following definitions:

• Cognitive Radio [20] is a well known technology which provides flexible, efficient and

reliable spectrum usage. It adapts to the present radios operating characteristics to

the real-time conditions. With the help of cognitive radio technology the SUs are able

to intelligently detect and utilize the idle licensed frequency channels when the PUs

are not present. This implements the efficient reuse of licensed channels.

• Orthogonal Frequency Division Multiplexing (OFDM) [21] is a compatible method for

CR systems. OFDM enables the SUs to fill the spectral gaps left by the PUs. FFT

components at the OFDM systems receiver can also be used for the SUs to execute

the channel detection [14]. [21] proposed that the SUs’ band covers multiple PUs’

licensed spectrum, then the SUs modulate zero on the subcarriers which belongs to

the detected PUs’ licensed spectrum while utilizing other subcarriers for transmission.

One of the typical cognitive radio systems is shown in Fig. 2.4. PU system is licensed

with a certain channel. As the PUs do not utilize the channel all the time, the channel is

not utilized properly it’s full capacity.

With the help of cognitive radio technology the SUs are able to intelligently detect and

utilize the idle licensed frequency channels when the PUs are not present [22]. With the

participation of the SU , the channel efficiency can be improved. Guaranteeing the controlled

interference is a crucial problem in the implementation of cognitive radio systems [23].

If a spectrum opportunity exists, the SU has to detect that and then begin transmission.

The SU has the right to transmit as long as the PUs’ signal is absent. To reduce detection

errors and collisions, a certain amount of detection probability needs to be achieved. In Fig.

2.4 active PU1 can be detected and the interference caused by the SUs’ transmission to the
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Figure 2.4: Cognitive Radio System Model

receiver of PU1 can be circumvented. The SU is unable to detect PU2’s signal with the

required detection probability as PU2’s transmitter is far away from the SU .

In Fig. 2.4, PU2 defines a protection area whose radius is R. This also requires the inter-

ference power at the margin and at a certain value, for example η. Here, SUs’ transmission

power Ptx is tied to a power constraint, which is given by,

Ptx ≤ η(d−R)β (2.18)
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Here, d is the distance between the SU transmitter and the nearest PU transmitter beyond

the reliable sensing region. β is the value of the path attenuation factor. We only consider

the distance based on the path loss for simplicity. In reality the constraints on the SUs’

power density function is more relevant for the PU . To be precise just the power constraint

is not enough to describe the SUs’ impact on the performance of the PUs.

For the proper utilization of the spectrum, the opportunities left by the PUs, OFDM

modulation with the ability to reconfigure subcarrier structure is a good match for cognitive

radio systems as this particular system needs to be highly flexible. In OFDM-based Cognitive

radio system OFDM modulation’s FFT component has the ability to conduct spectrum

sensing. This plays a key factor to deduct the overhead on the implementation of the

cognitive radio capability.

Figure 2.5: Spectrum of Secondary User in OFDM-Based Cognitive Radio Systems

For an OFDM-based cognitive radio system, as shown in Fig. 2.5, we can see that the

spectrum belonging to M number of PUs can be potentially used by the SUs. We can see

that the total number of subcarriers is N and the jth subchannel which is licensed to the

jth PU system has Lj subcarriers.

In this system, the SU detects each subchannel before any transmission. This utilizes

the proper spectrum sensing method of OFDM modulation. According to the Channel
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State Information (CSI) of the subcarriers over the SU ’s transmission link and the spectrum

sensing results, SUs can calculate their allocated power. SU ’s transmission can also predict

different modulation types and other parameters.

The received signal of the ith subcarrier within one OFDM symbol can be formulated as:

yi = hixi + ni (2.19)

where xi and yi are the transmitted and received signals on the ith subcarrier respectively.

The channel gain is represented by hi. ni is the Normalised Additive White Gaussian Noise

(AWGN) with mean 0 and variance 1.

When a PU transmitter is detected to be absent in a subchannel, all the subcarriers in this

particular subchannel gets modulated by zero during the transmission period, i.e., the total

added power of the subcarriers in this subchannel is initially zero. Or else this subchannel

can be used by the SU but with a particular power constraint. This power constraint will be

discussed in the next section. After channel detection we assume Gj is the power constraint

on the jth subchannel , then the equation can be shown as

Gj ,

{
0 PUj is detected
ηj(dj −Rj)

βj PUj is not detected
(2.20)

From the equation, ηj is the value of the interference power constraint of PUj near the

marginal area where the radius is Rj , dj is the distance between the SUs’ transmitter and

the nearest undetectable PUjs transmitter and βj represents the path attenuation factor.

In traditional OFDM systems, optimal power allocation that maximizes the channel ca-

pacity is water-filling on the subcarriers with the total power constraint [24]. In order to

avoid unacceptable interference to the PUs that can not be detected due to the large distance

from the SU , the SU should limit it’s transmit power even when no PU is detected [25].
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OFDM-based Cognitive Radio System introduces per subchannel power constraints. Water-

Filling method is considered to be a solution to distribute power to it’s maximize capacity

to the SUs.

2.2.1 Iterative Partitioned Water-Filling Method

In [14] the authors investigated the optimal power allocation strategy that aims at maxi-

mizing the capacity of OFDM-based Cognitive Radio systems. For this paper the objective

function and the constraints are as follows:

max{Pi}Ni=1

∑N
i=1 log(1 + hiPi)

subject to: Pi ≥ 0, ∀i;∑N
i=1 Pi ≤ Pt

Fj ≤ Gj, ∀j;

(2.21)

where, N is the total number of subcarriers and j = 1 . . .M ; and M is the total number

of subchannels. Gj is the power constraint on the jth subchannel. Fj =
∑mj+1−1

i=mj
Pi is the

power allocated to the jth subchannel and mj is the index of the last subcarrier in the jth

subchannel. A power allocation vector P is the solution in equations (2.21) if and only if it

satisfies:

Pi = max(0, µj −
1

hi
) (2.22)

Here i = 1, 2, .....N and j is the index of the subchannel which the ith subcarrier belongs

to. Assume A , {j|Fj < Gj}, B , {j|Fj = Gj}. If Pt <
∑M

j=1Gj we have A 6= ∅. then µj is

the common water-level for each subchannel and is determined by:

for jεA

µj = µ̂ (2.23)
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∑
jεA

mj∑
i=mj−1+1

max(0, µ̂− 1

hi
) = Pt −

∑
jεB

Gj (2.24)

If B 6= ∅, for jεB

mj∑
i=mj−1+1

max(0, µj −
1

hi
) (2.25)

µj ≤ µ̂ (2.26)

The subcarriers with the optimal power allocation can be divided into two sets: the set

A, i.e., the subchannels whose allocated power is strictly smaller than the corresponding per

subchannel power constraint and the set B, i.e., the subchannels whose allocated power is

equal to the corresponding per subchannel power constraint.

For subchannels in A, the allocated power is the result of water-filling on all the subcarriers

that belong to these subchannels with power Pt −
∑

jεB Gj. Thus, all the subchannels in A

have a common water level ŵ.

For each subchannel in B, e.g., the jth subchannel where jεB, the allocated power is the

result of water-filling on the subcarriers that belong to the jth subchannel with power Gj.

Therefore, each subchannel in B has a unique water level µj and satisfies µj ≤ µ̂, i.e., the

water level of the subchannel which has a unique water level is less or equal to the common

water level.

Also, based on the sufficient property of the Iterative Partitioned Water-filling Method

and the strict concavity of the objective function, there is only one power allocation vector

satisfying all the conditions.
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However, as in the traditional water-filling problem, it is difficult to obtain the explicit

expression of the optimal power allocation vector. An intuitive algorithm directly obtained

from Iterative Partitioned Water-filling Method is the exhaustive search algorithm, which is

described in brief below [23]:

1) Divide all the subchannels into two sets, A and B. There are 2M kinds of partitions

in total.

2) Remove such partitions that Pt −
∑

jεB Gj ≤ 0 for each of the rest partitions, perform

traditional waterfilling on the subcarriers that belong to the jth subchannel, where

jεB, with power Gj respectively and obtain the resulting water level µj .

3) Perform traditional water-filling on all the subcarriers that belong to the subchannels

in A with power Pt −
∑

jεB Gj and obtain the common water level µ̂.

4) Verify each partition whether satisfies Fj < Gj where jεA and µj ≤ µ̂ where jεB.

There is only one available partition and the corresponding power allocation vector is

the solution.

Here the iterative partitioned water-filling algorithm is applied to power allocation in

OFDM-based cognitive radio systems. This algorithm aims at maximizing the capacity

with consideration of the per subchannel power constraints caused by the PUs’ interference

limits [23].

2.3 Literature Survey

In this section, we concisely discuss most recent algorithms reported in the open literature

to solve the target power allocation problems.
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Due to its great flexibility in dynamically allocating unused spectrum among CR users, and

the ease of analysis of the PUs’ spectral activity [26], OFDM has already been recognized

in the literature as a potential transmission technology for CR systems. Since both CR

user and PU may exist in side-by-side bands yet have different access technologies, mutual

interference is the limiting factor for performance of both networks.

Specifically, in [27] the authors have shown that using OFDM modulation causes mutual

interference between the PU and CR users due to the non-orthogonality of the transmitted

signals. The amount of interference introduced to the PUs’ band by a Cognitive Radio Users

subcarrier depends on the power allocated in that subcarrier as well as the spectral distance

between that particular subcarrier and the PUs band. In order to exploit the time-varying

nature of fading gains across the OFDM subcarriers, power loading algorithms have been

proposed in the literature [28].

In [29] the authors investigate an optimal power loading algorithm for an OFDM-based

cognitive radio (CR) system. The downlink transmission capacity of the Cognitive Radio

User is thereby maximized, while the interference introduced to the PU remains within a tol-

erable range. They propose two suboptimal loading algorithms that are less complex. They

also study the effect of a subcarrier nullifying mechanism on the performance of the different

algorithms under consideration. The performance of the optimal and suboptimal schemes

is compared with the performance of the classical power loading algorithms, e.g., water-

filling and uniform power but variable rate loading schemes that are used for conventional

OFDM-based systems [29].

The authors in [30] propose Cognitive radio (CR) systems to exploit the unbalanced spec-

trum utilization and by allowing SUs to use the idle spectrum of licensed users or PUs

to gain a higher spectrum utilization. Here, one of the challenges is to detect the available

spectrum bands of the PUs [31]. In this approach, the energy detection-based spectrum sens-

ing method is the most common spectrum-sensing technique due to its low computational
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complexities and easy implementation [32] [33].

In the Opportunistic Spectrum Access (OSA) mode, the SUs access the spectrum when

the PUs do not use it concurrently [34]. Compared to the spectrum sharing mode, in which

the PUs and SUs can share the spectrum channel simultaneously, the OSA mode causes less

interference to the PUs [35].

When using OFDM in cognitive radio networks, the power allocation schemes for the

spectrum resources will be very flexible and convenient [36]. However, it becomes very

challenging to allocate power to individual subchannels in the OFDM-based cognitive radio

networks. In traditional power allocation problems, water-filling algorithms are prevalent

[37] [38]. Because additional interference constraints must be considered in cognitive radio

networks, the water-filling algorithms are always performed iteratively to solve the power

allocation problems [29] [39].

In paper [40] the authors present a new water-filling algorithm for power allocation in

OFDM based CR systems. The conventional water-filling algorithm cannot be directly em-

ployed for power allocation in a CR system, because there are more power constraints in the

cognitive radio power allocation problem than in the classic OFDM system. In this paper,

a novel algorithm based on iterative water-filling is presented to overcome such limitations.

However, the computational complexity in iterative water-filling is very high. Thus, the au-

thors explore features of the water-filling algorithm and propose a low-complexity algorithm

using power-increment or power-decrement water-filling processes [40].

The classical water-filling approach [41], which states that the transmitter should avoid

using the subcarriers with poor channel conditions, has been considered as the optimal power

allocation scheme for OFDM systems. A number of algorithms have been proposed in the

literature for a single user case [42] [43]. These algorithms, more generally known as bit and

power loading schemes, are practical implementation of the classical water-filling scheme.
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A comprehensive survey on bit and power allocation algorithms for single user OFDM

systems was presented in [44]. In this paper the authors presents a solution to an energy-

efficient resource allocation problem which maximizes the CR (i.e., secondary) link capacity

taking into account the availability of the subcarriers (and hence the reliability of trans-

mission by CRs) and the limits on total interference generated to the PUs. They consider

an energy-aware capacity expression by taking into account another factor called subcarrier

availability. Optimizing such an expression saves valuable resources such as battery life by

selectively allocating power to under utilized subcarriers [45].

In most of the previous works, most power allocation schemes for OFDM-based CR systems

intend to improve the system throughput (or Spectrum Efficiency (SE)) [29], [46], [47]-

[48]. [46] and [29] give the optimal and suboptimal power allocation for OFDM-based CR

systems under the single interference power constraint.

The paper [47] gives the optimal power allocation for overlay and underlay OFDM-based

CR systems under multiple interference power constraints. [49] studies the joint power and

bits allocation schemes. [50] considers the power allocation for OFDM-based CR systems

with imperfect spectrum sensing. [48] Studies the joint optimization of detection threshold

and the power allocation.

In [51] the authors investigate power allocation algorithms for OFDM-based cognitive

radio systems, where the intra-system channel state information (CSI) of the SU is perfectly

known. However, due to loose cooperation between the SU and the PU , the inter-system

CSI is only partially available to the SU transmitter.

The authors in paper [51] explore the two types of PUs being considered to have different

capabilities. One is a dumb (Peak Interference-Power tolerable) system that can tolerate a

certain amount of peak interference at each subchannel. Another is a more sophisticated

(Average Interference-Power tolerable) system that can tolerate the interference from the
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SU as long as the average interference over all subchannels is within a certain threshold.

Accordingly, we introduce an interference power outage constraint, with which the outage

is maintained within a target level. The outage is here defined as the probability that peak

or average interference power to the PU is greater than a given threshold. With both this

interference-power outage constraint along with a transmit-power constraint, we propose

optimal and suboptimal algorithms to maximize the capacity of the SU .

In [52] the authors consider a spectrum underlay network, where an OFDM-based cognitive

radio (CR) system is allowed to share the subcarriers of an OFDMA-based primary system for

simultaneous transmission. Instead of using the conventional Interference Power Constraint

(IPC) to protect the PUs in the primary system, a new criterion referred to as Rate Loss

Constraint (RLC), in the form of an upper bound on the maximum rate loss of each PU due to

the CR transmission, is proposed for primary transmission protection. Assuming the channel

state information (CSI) of the PU link, the CR link, and their mutual interference links is

available to the CR, the optimal power allocation strategy to maximize the achievable rate

of the CR system is derived under RLC together with CRs transmit power constraint [52].

In paper [53], the authors propose a new class of sub-optimal subcarrier power allocation

algorithm that significantly reduces complexity of OFDMA-based CR systems. Two sub-

optimal proposals, called Pre-set Filling Range (PFR) and Maximum Filling Range (MFR)

are studied. Investigations show that this new power allocating algorithm allows CR systems

obtain high throughput while retaining low complexity.

The different types of work related to resource allocation to SUs under dynamic spectrum

sharing are particularly relevant to our context. In a dynamic spectrum access environment

with multiple primary and secondary users, the problem of determining the optimal num-

ber of SUs relative to the number of PUs, which maximizes the sum throughput (primary

and secondary), is addressed in [54]. The authors demonstrate by simulations the tradeoff

between sum throughput maximization and PU interference minimization considering im-
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perfect sensing and different levels of interference tolerance at the primary and secondary

receivers. However, the interference dynamics and effects of channel fading due to the prop-

agation environment are not considered.

In [55], the implications of two fundamental concepts in dynamic spectrum access, namely,

spectrum opportunity and interference constraints, are described in terms of communication

activities of PUs in the neighborhood of secondary transmitters and receivers. Also, for

a dynamic spectrum access environment, the parameters required to specify the interfer-

ence constraints and the parameters that affect the transmission power control of SUs are

identified.

In [56], the problem of optimal power control for secondary users under interference con-

straints for primary users is formulated as a concave minimization problem. The authors

propose a branch and bound algorithm to obtain the solution. A transmit power control

scheme for a secondary user (i.e., cognitive radio) is proposed in [57], which exploits the

location information of the primary receiver obtained indirectly through spectrum sensing,

to limit the interference caused to the primary receiver. The problem of channel and power

allocation for secondary users in a cellular cognitive radio network is addressed in [58]. In

particular, the authors propose a heuristic-based two-phase resource allocation scheme. In

this scheme, channels and power are first allocated to the cognitive radio base stations to

maximize their total coverage area while maintaining the interference constraints for PUs.

Then each base station allocates the channels among the cognitive radios within its cell such

that the total number of cognitive radios served is maximized.

In paper [59], the problem of dynamic spectrum access with QoS guarantee (in terms of

minimum required signal-to interference ratio) for SUs under an interference temperature

constraint for PUs is discussed. The problem was formulated as a convex geometric program

where the globally optimal solution could be obtained under a feasible power allocation for

the SUs. Also, a centralized tree-pruning algorithm for removing secondary links is proposed
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for the cases where a feasible power allocation among all the SUs is not possible.

In [60], a distributed power and admission control algorithm that minimizes the total

transmitted power (primary and secondary users) in a cognitive radio system is proposed.

The objective of the proposed algorithm is to satisfy the target signal-to-interference-noise

ratio (SINR) requirements of all users. With a similar spirit, in [61], algorithms for joint rate

and power allocation as well as admission control algorithms are proposed for cognitive radios

in a spectrum underlay scenario which guarantee the minimum SINR and rate constraints

for SUs and the interference constraints for PUs. Maximum transmit power constraint and

the fairness performance for the secondary users are considered.

In [62] the authors present solutions for the spectrum sharing problem in a dynamic

spectrum access environment. They consider the case where only mean channel gains from

SUs to primary receiving points averaged over short-term fading are available while either

instantaneous or mean channel gains for the links among SUs are available [62].

In [63], power, time slots and subcarriers are jointly optimized by two separate optimal

algorithms in three steps while keep fairness among users and maximization of total capacity.

However, the existence of PU has not been taken into considered.

In [64], two novel algorithms are presented for subcarrier and power allocation in OFDMA-

based CR networks, which are constant power subcarrier allocation and heuristic joint sub-

carrier and power allocation respectively. Both of them are aiming at maximizing the sum

capacity while maintaining the interference power introduced in the primary network band

below a predefined threshold.

In [29], an optimal and two suboptimal power loading algorithms for an OFDM-based

cognitive radio system are investigated while keeping the interference introduced to the

primary user within a tolerable range only.
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In [65] the authors investigate the subcarrier and power allocation problem in CR systems,

where primary and CR users co-exist in adjacent bands, while keeping the total interference

introduced to the PU band below a certain threshold and the total power allocated to the

CR users under a constraint. First, according to the different purposes of the resource

allocation, several suboptimal subcarrier allocation algorithms are investigated, which are

termed as Max-Rate, Min-Interference and Fair-Rate subcarrier allocation algorithm, re-

spectively. Further, for a given subcarrier allocation three suboptimal power allocation

algorithms which have less complexity are proposed and compared to the optimal power

allocation algorithm [65].

OFDM-based cognitive radio networks are examined in [46], where an optimal scheme,

derived via Lagrangian formulation, is proposed to maximize the downlink capacity of the

cognitive users while guaranteeing the interference introduced to the primary user being

below a specified threshold.

The work in [66] extends the results of [46] to the multiuser scenarios, where discrete sum

rate of secondary network is maximized constrained on the interference induced to the PUs’

bands and on the total transmits power. Considering networks in which multiple secondary

links coexist with multiple primary links through OFDMA-based air-interface, reference [67]

utilizes the dual framework [68] to provide centralized and distributed algorithms which aim

at maximizing the total sum rate of secondary networks subject to interference temperature

constraints specified at PUs’ receivers. All the above mentioned studies, however, only

consider unicast transmission.

On the other hand, multi-casting, which is an efficient means of transmitting the same

content to multiple receivers while minimizing the network resource usage [69], is certainly

an attractive transmission technique for secondary networks who only have a limited access

to the available spectrum.
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In [69] , the authors explains a practically optimal joint subcarrier assignment and power

allocation scheme to maximize the weighted sum rate of all SUs of an OFDM based cognitive

radio multi-cast network, while satisfying the tolerable interference level induced to the PUs.
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Chapter 3

Algorithms and Procedures

Due to the rapid developments of wireless communications, spectrum scarcity is becoming

a serious problem. Federal Communications Commission (FCC) documents indicate that

both in the time domain and the spatial domain many licensed frequency bands are severely

under utilized. This is why the spectrum management is trying to allow the licensed channels

to be reused by other users that do not cause intolerable interference to the license holders

[70]. The license holder of a channel is called Primary Users (PUs) and all the other users

re-using PU ’s channel is known as Secondary Users (SUs).

This Chapter focuses on the proposed algorithms which exhibits better performance. Im-

plementations of the related algorithms are also shown.

3.1 Problem Formulation

We use Pt to denote the OFDM block’s total power constraint and Pi is the allocated

signal power on the ith subcarrier. Hence the optimal power allocation problem can be

expressed by,
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max{Pi}Ni=1

∑N
i=1wi log(1 + |hi|2Pi)

subject to: 0 ≤ Pi ≤ Si, ∀i;∑N
i=1 Pi ≤ Pt

Fj ≤ Gj, ∀j;

(3.1)

where, N is the total number of subcarriers and j = 1 . . .M ; and M is the total number

of subchannels, Fj =
∑mj+1−1

i=mj
Pi is the power allocated to the jth subchannel and mj is

the index of the first subcarrier and mj+1 − 1 is the index of the last subcarrier in the jth

subchannel.

We can also write the last constraint as
∑mj+1−1

i=mj
Pi ≤ Gj.

3.2 Iterative Partitioned Weighted Geometric Water-

filling with Individual Peak Power Constraints (IGPP)

The target problem is to identify the optimal power allocation strategy that aims at

maximizing the capacity in OFDM based cognitive radio systems. The main purpose of this

research was to modify the conventional water-filling algorithm applied in general OFDM

based Cognitive Radio systems due to the per subchannel power constraints and individual

peak power constraints.

Objective functions with several constraints in optimizing problems have resulted re-

searchers applying the water-filling method to solve the complex problems. Many types of

algorithms have been proposed in the past regarding the Conventional Water-Filling method.

CWF has limitations of it’s own. The peak power constraints and the total subchannel power

constraints are not included in the constraints for CWF. These constraints can make the so-

lutions more complex and it can be time consuming to solve the problem. In order to obtain

an algorithm to simplify the process and decrease the computational time we have manip-
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ulated the conventional water-filling method. This has helped us to achieve our desired

solution with a less complexity.

However, the complexity of this algorithm is far too high. The decision was taken to

consider 2M kinds of partitions and thus Iterative Partitioned Water-filling (IPW) was for-

mulated [14]. This algorithm helped to solve the following constraint:

Fj ≤ Gj, ∀j
Fj =

∑mj+1−1
i=mj

Pi∑mj+1−1
i=mj

Pi ≤ Gj

(3.2)

Geometric Water-filling (GWF) approach is also proposed to solve the weighted radio

resource allocation problems.Unlike the Conventional Water-filling (CWF) algorithm, we

eliminate the step to find the water level through solving a non-linear system from the

Karush-Kuhn-Tucker conditions of the target problem by GWF.

Although here we are proposing an exhaustive search algorithm to obtain the optimal

power allocation vector, however the complexity of this algorithm is far too high. As a

result, we develop a more efficient algorithm called IGPP which combines both IPW and

GWFPP to get the optimal result.

Iterative Partitioned Weighted Geometric Water-filling with Individual Peak Power Con-

straints (IGPP) is a simple and elegant approach proposed to solve the weighted radio

resource allocation problem with peak to peak power constraint and partitioned total sub-

channel power constraint . The proposed IGPP algorithm requires less computation than the

CWF algorithm, under the same memory requirement and sorted parameters. Furthermore,

the proposed IGPP algorithm avoids complicated derivation.
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3.2.1 IGPP Algorithm

The subcarriers with the optimal power allocation can be divided into two sets: the set

A, i.e., the subchannels whose allocated power is strictly smaller than the corresponding per

subchannel power constraint and the set B, i.e., the subchannels whose allocated power is

equal to the corresponding per subchannel power constraint [14].

For subchannels in A, the actual power allocated to different subchannels are the result

of waterfilling on all the subcarriers that belong to each subchannels. The subchannels in A

have a common water level ŵ.

To use IPW For each subchannel in B, e.g., the jth subchannel where jε B, the allocated

power is the result of water-filling on the subcarriers that belong to the jth subchannel with

power Gj [14].

Therefore, each subchannel in B has a unique water level wj and satisfies wj 6 ŵ, i.e., the

water level of the subchannel which has a unique water level is less or equal to the common

water level [14]. But this does not follow the peak power constraints.

Thus IGPP is introduced. For IGPP the first step is to divide all the subchannels into

two sets, say A and B and there are 2M partitions in total. E set is a subsequence of the

sequence {1, 2, ..., N}, N is the total number of subcarriers, |E| is the cardinality of the set

E, so E can be expressed as {i1, i2, ..., i|E|}.

Here, Pt is the total power available. The next step would be to perform GWFPP for

every jth subchannel. We can calculate {Pi} using the equations through :

Pi = [Pn∗/wn∗ + (dn∗ − di)]wi 1 ≤ i ≤ n∗ (3.3)

Pi = 0 n∗ ≤ i ≤ N, (3.4)
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n∗ = max
{
n
∣∣∣Pt(n) > 0, 1 ≤ n ≤ N

}
(3.5)

Pn∗ =
wn∗∑n∗

i=1wi
Pt(n

∗) (3.6)

Since the finite set E is getting smaller and smaller until the set Λ is empty, Algorithm

GWFPP carries out at most, N loops to compute the optimal solution [15]. The next steps

are to remove partitions that are represented by set {D} which is a set of subchannels which

satisfies Fj ≤ Gj where jεA . For each of the remaining partitions in the remainder set A,

the geometric water-filling is performed on the subcarriers that belong to the jth subchannel.

Algorithm IGPP carries out the loops to compute the optimal solution until the set A is

empty. The last step would be to verify each partition whether they satisfy Fj ≤ Gj where

jεB. According to the paper [14], there is only one available partition and the corresponding

power allocation vector is the solution.

Based on the property of IGPP and the strict constraints on the objective function, there

can be only one power allocation vector which satisfies all the conditions. In CWF problem,

it is difficult to obtain the explicit expression of the optimal power allocation vector. A

derived algorithm obtained from [14] and [15] forming IGPP is one of the exhaustive search

algorithm, which is described below:
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Algorithm 1 Iterative Partitioned Weighted Geometric Water-filling with Individual Peak
Power Constraints (IGPP)

1: Initialize:
2: A = {j|j = 1, 2, ...,M}, E = {i|i = 1, 2, . . . , N};
3: B = Ø, H = Ø, Λ = Ø, P̂ = Pt;
4: C = {i|the ith subcarrier belongs to the jth subchannel, jεA};
5: Input:
6: vector {Si};
7: for jεA do
8: for iεC do
9: Compute: GWF {Pi};

10: Λ = {i|Pi > Si, i ∈ E};
11: if Λ = Ø then
12: Output: {Pi};
13: Move to line 16;
14: else Pi = Si, i ∈ Λ
15: end if
16: E = E \ Λ;
17: end for
18: Fj =

∑mj+1−1
i=mj

Pi, jεA
19: D = {j|Fj ≤ Gj, jεA};
20: K = {i|the ith subcarrier belongs to the jth subchannel, jεD}
21: A = A\D,B = B ∪D;
22: C = C\K,H = H ∪K;
23: if A = Ø then
24: Output: {Pi}
25: Move to line 28;
26: else P̂ = P̂ −

∑
iεK Pi;

27: Return to line 7;
28: end if
29: end for
30: P̂ = P̂ −

∑
iεH Pi;
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Figure 3.1: Block Diagram of IGPP

Fig. 3.1 shows the general block diagram of the pseudo code showed in the previous page.

The block diagram sums up the total procedure behind IGPP. At first GWFPP is done for

all the subcarriers and then IPW validates if the total subchannel power constraint is met.

When both of the constraints are validated the power allocated through calculation is the

Pi. This particular loop continues. As mentioned earlier Pt is the total power and after each

loop X unit worth of power is deducted from Pt. X =
∑

iεK Pi which is the sum of the

total power allocated through one loop. Once set {A} becomes empty the loop exists and

algorithm ends itself. Thus we obtained {Pi}.
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Figure 3.2: Illustration for IPW, GWFPP and the proposed Iterative Partitioned Weighted Ge-
ometric Water-filling with Individual Peak Power Constraints (IGPP).
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Fig. 3.2 illustrates the IPW, GWFPP and IGPP algorithms. Same samples of fading

were selected for the three algorithms. The figure illustrates how water levels differ from one

algorithm to another for the same samples of fading.

Fig. 3.2 (a) illustrates the water levels and power allocation for Iterative Partitioned

Water-Filling (IPW) algorithm. The main aspect of this algorithm is to partition the su-

carriers into subchannels and focus on the constraint where it dictates Fj ≤ Gj. For CWF

the water level would be the same for all the subchannels and subcarriers. In the figure µ̂

shows the water level for CWF approach. Where as for IPW the water level depends on the

subchannels. Although the water level for the subcarriers in the same subchannels are the

same but this water level might not be the same for the other subchannels. For example,

Subchannel 1 and 3 have the same water level as CWF but subchannel 2 and 4 have different

water level µ2 and µ4 respectively. This is due to the Fj ≤ Gj constraint.

Fig. 3.2 (b) illustrates the water levels and power allocation for Geometric Water-Filling

for Peak Power Constraints (GWFPP) algorithm. Unlike IPW the water levels for each

subcarriers are different and this is due to the peak power constraints. CWF can not fullfill

0 ≤ Pi ≤ Si due to the fact that the water level remains the same for all the subcarriers.

The figure shows the different water levels for different subcarriers.

Fig. 3.2 (c) illustrates the water level and power allocation for Iterative Partitioned

Weighted Geometric Water-filling with Individual Peak Power Constraints (IGPP) algo-

rithm. The graphical example of how IPW and GWFPP was used to create IGPP is shown

in this figure. It also shows how water level and power allocation varies in each of the sub-

carriers and subchannels. IGPP has the ability to fullfill both of the constraints Fj ≤ Gj and

0 ≤ Pi ≤ Si where as IPW and GWFPP can accommodate only one of the constraints. First

each subchannels go through the GWFPP algorithm to determine the individual peak water

levels and then IPW is introduced to keep the total subchannel power within the Fj ≤ Gj

constraint. Thus optimal solution for power allocation is shown in Fig. 3.2 (c) using IGPP.
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3.3 Dynamic Channel Sensing Iterative Method (DCSI)

The conventional water-filling (CWF) problem has a sum power constraint under non-

negative individual powers. It can be solved by Non-Geometric Water-filling approaches.

Since the solution is parameterized with a water level, the problem reduces to obtaining

the water level such that the power constraint is satisfied with equality. This leads to a

non-linear system, in one parameter, such as the water level, that is determined by the

sum power constraint. Further, this non-linear system consists of a non-linear equation and

another inequality to find the water level. In order to find the exact value of the water level,

different algorithms have been proposed that can be classified into iterative algorithms and

exact algorithms. The iterative algorithms are trivially implemented in practice and get

close to the exact value.

For Radio Resource Allocation (RRA), one of the most typical problems is to solve power

allocation using the CWF. When we consider different weight of the channels, the problem

can be solved using weighted WF algorithm. As communication system develops, the struc-

tures of the system models and the corresponding RRA problems evolve to more advanced

and more complicated ones like (3.1).

The CWF method cannot solve the problem stated in (3.1) of generalized problems through

determining a unified water level. Thus Dynamic Channel Sensing Iterative (DCSI) algo-

rithms is proposed to give a solution which is close to the exact value for power allocation

for OFDM based Cognitive Radio Systems.
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3.3.1 DCSI Algorithm

In DCSI we first calculate the channel fading in the subcarriers. The subcarriers’ total

fading subchannels are given priority for power allocation. For example the jth subchannel

with total fading
∑mj+1−1

i=mj
fi which is less than the j + 1th subchannel with total fading∑mj+2−1

i=mj+1
fi will be given more preference according to DCSI.

For DCSI we also consider the Gj, the total power constraint on the jth subchannel. We

run the algorithm based on descending Gj. This will prioritise the subchannels being more

suitable for utilization. The priority will be given to the subchannel with greater Gj.

In the algorithm for ascending i, a loop will be generated which will automatically calculate

temporary power for each subcarrier. They are denoted as {BMj
, ...., BMj+1−1}.

After calculating {BMj
, ...., BMj+1−1} we run two separate loops which will determine if

the temporary allocated powers abide by the actual power constraints.

We start DCSI by initializing set {A} which represents the subchannels and set {E} is the

representation of all the subcarriers. Set {Gj} is total power constraints for the M number

of subchannels. Set {Fi} is the fading for all the subcarriers and {Si} set represents the peak

power constraints for N number of subcarriers. Pt is the total given power.

The algorithmic representation of DCSI in the following page,
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Algorithm 2 Dynamic Channel Sensing Iterative Method (DCSI)

1: Initialize:
2: A = {j|j = 1, 2, ...,M}, E = {i|i = 1, 2, . . . , N};
3: Gj = {G1, G2, . . . , GM}, Fi = {F1, F2, . . . , FN};
4: Si = {S1, S2, . . . , SN}, Pt;
5: Input:
6: for sort j ↓ {Gj} do
7: for sort i ↑ {Fi} do
8: Compute: GWF {Bi};
9: end for

10: for i = Mj : 1 : Mj+1 − 1 do
11: if Bi = Si then
12: Pi = Bi;
13: end if
14: if Bi > Si then
15: Pi = Si;
16: Di = Bi − Si;
17: Y =

∑mj+1−1
i=mj

Di;
18: end if
19: end for
20: else
21: for i = 1 : 1 : Mj+1 − 1 do
22: if (Bi < Si ‖ Y ≥ Si −Bi) then
23: Pi = Si;
24: Y = Y − (Si −Bi);
25: end if
26: if (Bi < Si ‖ Y < Si −Bi) then
27: Pi = Bi;
28: end if
29: end for
30: Pt = Pt + Y ;
31: end for
32: Output: {Pi};
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Figure 3.3: Block Diagram of DCSI

Fig. 3.3 illustrates the basic block diagram of the DCSI pseudo code captured in the

previous page. Pt is the total power and available resources and Si are the peak power

constraints. At first the algorithm sorts the subchannels j according to the descending

values of Gj. This initiates the first FOR loop. Before the second FOR loop gets innitiated

the algorithm provides Gj values amount of power for the second nested FOR loop. Thus

each time power is deducted Pt ≤ Pt−Gj and the updated Pt is left for the following loops.

For a particular subchannel, the algorithm then sorts the subcarriers i according to the fading

values of the channels which is represented by Fi. This initiates a second loop within the
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first loop. The purpose of this loop is to calculate temporary power Bi for each subcarriers.

Bi is calculated through CWF. Once, Bi is calculated and it is validated through three IF

statements. If, Bi = Si then Pi = Bi, if Bi > Si then Bi = Si and the extra temporary power

allocated before is deducted and we get a power value of Di = Bi − Si and the accumulated

value of the excess power is calculated by Y . If, Bi < Si the algorithm can calculate Bi = Si

by compensating by the excess power Y . If there is any excess power, Y is left over after

completion of one loop we can accommodate this extra power for the next loops to come.

This continues until the first loop is finished or Pt becomes 0.

For understanding DCSI, we use following sample values to illustrate the algorithm steps:

i = 1 : 11, j = 1 : 3, G1 = 10, G2 = 8, G3 = 9, F1 = 1, F2 = 2, F3 = 3 and F4 = 4.

Below is a step by step process on how to obtain the solutions,

Figure 3.4: Channel Fading

In Fig. 3.4 the x-axis represents the subcarriers and y-axis represents the fading. We

first sort {Gj} in an descending order. As a result Gj = [G1 G3 G2]. This helps to run the
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sorted j loop. The subcarriers {1, 2, 3, 4} are in subchannel 1, subcarriers {5, 6, 7} are in

subchannel 2 and subcarriers {8, 9, 10} are in subchannel 3. We assume Pt = 22.

Figure 3.5: Illustration of DCSI Algorithm in Subchannel 1

In Fig. 3.5 the x-axis represents the subcarriers and y-axis represents the fading and

eventually the allocated power. From Fig. 3.5 (a) we can then sort {Fi} in an ascending

order. As a result Fi = [F1 F2 F3 F4] and run another loop for the sorted i. According to

the sorted loops for the first cycle j = 1 and i = 1 and we calculate the temporary Pt to be

Pt −Gi.
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According to Fig. 3.5 (b) We can calculate Bi by performing CWF but for visual un-

derstanding we can compute it by taking an arbitrary variable Xi which can be calcu-

lated by, X1 = (F1 + F2 +G1)/(1 + 1) = 6.5, B1 = X1 − F1 = 6.5 − 1 = 5.5, and

B2 = X1 − F2 = 6.5− 2 = 4.5.

According to the algorithm if, Bi+1 +Fi+1 > Fi+2 then we continue the similar process for

Fig. 3.5 (c). X2 = (F1 + F2 + F3 +G1)/(1 + 2) = 5.33, B1 = X1+1 − F1 = 5.33− 1 = 4.33,

B1+1 = X1+1 − F1+1 = 5.33− 2 = 3.33 and B1+2 = X1+1 − F1+2 = 5.33− 3 = 2.33.

Figure 3.6: Illustration of DCSI Algorithm in Subchannel 3

According to the algorithm if, Bi+2 + Fi+2 > Fi+3 then we continue the similar process.

According to Fig. 3.5 (d), we get X3 = (F1 + F2 + F3 + F4 +G1)/(1 + 3) = 5. We end up

calculating B1 = X1+2 − F1 = 4, B1+1 = X1+2 − F1+1 = 3, B1+2 = X1+2 − F1+2 = 2 and

B1+3 = X1+2−F1+3 = 1. To check our result if they match the power constraint we run the

results through two separate loops. For the first loop it checks if Bi = Si then Bi = Pi and

if Bi > Si then Si = Pi, Bi − Si = Di and Y =
∑mj+1−1

i=mj
Di. According to these constraints
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when we go through the algorithm we get the following result illustrated in Fig. 3.5 (e). Due

to peak power constraint S4 = 0 no power was allocated to the 4th subcarrier as a result

P4 = 0.

Figure 3.7: Illustration of DCSI Algorithm in Subchannel 2

The second loop calculates if (Bi < Si ‖ Y > Si−Bi) then Si = Pi and Y = Y − (Si−Bi).

As shown in Fig. 3.5 (f), the extra power was transferred to P1 as B1 < S1. At this point

the first cycle for the sorted i loop comes to an end.
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Figure 3.8: Illustration of DCSI Algorithm in all the Subcarriers

Before the loop resumes itself it must calculate the updated Pt by Pt+Y . After the sorted

i loop completely finishes, the procedure for sorted j loop goes through the same repetitive

cycle.

The same algorithm helps to determine Pi for the following subchannels shown in Fig. 3.6

and Fig. 3.7 where the x-axis represents the subcarriers and y-axis represents the fading

and eventually the allocated power. After the algorithm has been fully completed we are left

with set of {Pi} outputs shown in Fig. 3.8. We can then calculate max{Pi}Ni=1

∑N
i=1wi log(1+

|hi|2Pi) accordingly.

DCSI, is a simple algorithm which calculates optimized {Pi} through repetitive calculation.

The numerical results and the comparison with Conventional water-filling method and IGPP

will be given in the following chapter.
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Chapter 4

Numerical Results

In the previous chapter, the proposed Iterative Partitioned Weighted Geometric Water-

filling with Individual Peak Power Constraints (IGPP) Algorithm and Dynamic Channel

Sensing Iterative (DCSI) Algorithm have been discussed. In this chapter, we show the

numerical results, features, comparisons of the algorithms in details. The improvement of

IGPP and DCSI over other algorithms will be illustrated in this chapter.

The proposed algorithms have been implemented in MATLAB. Randomized fading have

been used to generate the outcomes of each algorithms.

4.1 Results for Iterative Partitioned Weighted Geo-

metric Water-filling with Individual Peak Power

Constraints (IGPP)

To get numerical results we generated randomised gains to illustrate the results by using

IPW, GWFPP, and IGPP. For Fig. 4.2 to Fig. 4.4 we used the same set of channel gains.

We assumed Pt = 159.

For Fig. 4.2, IPW method was applied to get the following result. IPW is based on par-

tition of subchannels. As a result we assumed Subcarriers {1, 2, 3, 4} to be in Subchannel 1,
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Subcarriers {5, 6, 7} to be in Subchannel 2, Subcarriers {8, 9, 10, 11} to be in Subchannel 3

and the last set of Subcarriers {12, 13, 14, 15} to be in Subchannel 4. For each of these chan-

nels, Gj = {69, 44, 29, 17}. Due to the total subchannel power constraint for the partitions,

the water levels are different for each subchannel.

Figure 4.1: Parameters Used For The Following Experiment

Figure 4.2: Iterative Partitioned Water-filling Method
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Figure 4.3: Geometric Water-filling Method with Peak Power Constraints

Fig. 4.3 is the result of GWFPP algorithm. Here the peak power constraints of our

algorithm is put to test. The peak power constraint {Si} was generated by the random

number function. As a result for each channel we get a different set of water level which

follows the individual peak power constraints.
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Figure 4.4: Power allocation using Iterative Partitioned Weighted Geometric Water-filling with
Individual Peak Power Constraints (IGPP) Algorithm

IGPP algorithm’s result is shown in Fig. 4.4. Due to the total subchannel power constraint

and individual peak power constraints the numerical result varies from the results of IPW

and GWFPP. For each subcarrier we get a different set of water level which follows the

individual peak power constraints but they are different from the GWFPP algorithm due to

the total subchannel power constraint.
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Figure 4.5: Optimal Power Allocation vs Subcarriers for IPW, GWFPP and IGPP

Fig. 4.5 compares the power allocation for the three discussed algorithms. Only the

{Pi} following all the constraints are shown in this figure. The IGPP graph shows that the

available power resources are utilised more efficiently, where as due to the failure to meet

all the constraints IPW and GWFPP algorithms’ graphs fall behind. They have less power

resource utilization according to the graph. Better utilisation of power resources means the

throughput for that particular channel will work better. Thus optimal power allocation is

important to achieve optimal throughput. IGPP allows the throughput to be better than

IPW and GWFPP, due to the better utilisation of the power resources.

Table 4.1 shows the calculation of {Pi} for IPW, GWFPP and IGPP. {Pi} is different for

each subcarrier. This table is a numerical representation of Fig. 4.2 to Fig. 4.4.

So far, we proved that the algorithm IGPP in Fig. 4.4 is a preferred solution for power

allocation for OFDM based Cognitive Radio Systems. Based on our IGPP algorithm, the

result of the four subchannels is illustrated in Fig. 4.4. For IGPP we can see that the water
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Table 4.1: Calculation Comparison of {Pi} using IPW, GWFPP and IGPP based on the numerical
results captured from Fig. 4.2 to Fig. 4.4

Subcarriers IPW GWFPP IGPP

1 10 8 2

2 13 10 10

3 18 22 22

4 28 35 35

5 8 6 6

6 18 35 19

7 18 28 19

8 18 22 22

9 8 5 5

10 0 0 0

11 3 3 2

12 0 0 0

13 2 7 4

14 10 18 9

15 5 4 4

level ŵ for each channel is different. From Fig. 4.5 and Table 4.1 we can see that the IGPP

gives better result for power allocation than IPW and GWFPP algorithm.

In conclusion, the proposed Iterative Partitioned Weighted Geometric Water-filling with

Individual Peak Power Constraints (IGPP) Algorithm applied to power allocation in OFDM

based cognitive radio systems aims at maximizing the capacity with consideration of the per

subchannel power constraints caused by the PUs interference limits.

4.2 Results for Dynamic Channel Sensing Iterative Method

(DCSI)

To get the numerical results we generated randomised fading to create scenarios where

IPW, GWFPP and DCSI are under test. For Fig. 4.7 to Fig. 4.9 we used the same set of
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channel fading. We assumed Pt = 210.

Figure 4.6: Parameters Used For The Following Experiment

Figure 4.7: Iterative Partitioned Water-filling Method

For Fig. 4.7, IPW method was applied to get the following result. IPW is based on

partition of subchannels, as a result we assumed Subcarriers {1, 2, 3, 4} to be in Subchannel

1, Subcarriers {5, 6, 7} to be in Subchannel 2, Subcarriers {8, 9, 10, 11} to be in Subchannel

3 and the last set of Subcarriers {12, 13, 14, 15} to be in Subchannel 4. For each of these

channels, Gj = {60, 50, 60, 40}. From Fig. 4.7, we can see that the water level for each

subchannel is different.
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Figure 4.8: Geometric Water-filling Method with Peak Power Constraints

Fig. 4.8 is the result for GWFPP algorithm. Here the peak power constraints of our

theory is put to test. The peak power constraint {Si} is generated by the random number

function. As a result for each channel we get a different set of water level which follows the

individual peak power constraints.

Fig. 4.9 is the result for DCSI algorithm. Due to the total subchannel power constraint

and individual peak power constraints the numerical result varies from the results from IPW

and GWFPP.
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Figure 4.9: Power Allocation Using Dynamic Channel Sensing Iterative Method

Figure 4.10: Optimal Power Allocation vs Subcarriers for IPW, GWFPP and DCSI

Fig. 4.10 shows the results for the three algorithms. Only the {Pi} following all the

constraints are shown in this figure. The DCSI graph shows that the available power resources
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Table 4.2: Calculation Comparison of {Pi} using IPW, GWFPP and DCSI based on the numerical
results captured from Fig. 4.7 to Fig. 4.9

Subcarriers IPW GWFPP DCSI

1 10 15 10

2 20 30 20

3 0 10 0

4 30 35 30

5 20 30 30

6 10 15 10

7 20 10 10

8 10 20 10

9 20 20 20

10 10 5 5

11 20 30 25

12 0 0 0

13 20 10 10

14 10 10 10

15 10 5 5

was utilised properly, where as due to the failure to meet all the constraints IPW and GWFPP

algorithms fall behind. They have less power resource utilization according to the graph.

Better utilisation of power resources means the throughput for that particular channel would

be better. Thus optimal power allocation is important to achieve optimal throughput. DCSI

allows the throughput to be better than IPW and GWFPP.

Table 4.2 shows the calculation of {Pi} for IPW, GWFPP and DCSI. {Pi} is different for

each subcarrier. This table is a numerical representation of Fig. 4.7 to Fig. 4.9.

Dynamic Channel Sensing Iterative Method (DCSI) meets every constraints of our given

problem. The drawback of this algorithm is that, it has a longer computational time.

The main results of Dynamic Channel Sensing Iterative (DCSI) Algorithm in this thesis

are:
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1) The Dynamic Channel Sensing Iterative (DCSI) approach can compute efficient so-

lution to the objective function and constraints stated in this thesis, including the

weighted case.

2) Machinery of the proposed DCSI approach can overcome the limitations of the CWF

algorithm to include more stringent constraints.

For optimal power allocation problems with complex constraints our proposed recursive

DCSI algorithm has been used to solve the problem. By iteratively applying DCSI the

computed {Pi} is achieved within the boundaries of the constraints. Numerical examples

from Fig. 4.7 to Fig. 4.10 are provided to illustrate the steps to obtain the optimal solutions

by DSSI.

4.3 Comparison of CWF, IGPP and DCSI

To get numerical results we generate randomised fading to create scenarios where CWF,

IPW, GWFPP, IGPP and DCSI are put to test. For Fig. 4.11 to Fig. 4.16 we use the same

set of channel fading. We assumed Pt = 290.

For CWF in Fig. 4.11, the water level is similar for every subchannel and their subcarriers.

This does not follow any of the constraints listed in this thesis.
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Figure 4.11: Conventional Water-filling Method

For Fig. 4.13, IPW method is applied to get the following result. IPW is based on

partition of subchannels, as a result we assumed Subcarriers {1, 2, 3} to be in Subchannel

1, Subcarriers {4, 5, 6} to be in Subchannel 2, Subcarriers {7, 8, 9} to be in Subchannel 3,

Subcarriers {10, 11, 12} to be in Subchannel 4 and the last set of Subcarriers {13, 14, 15} to

be in Subchannel 5. For each of these channels, Gj = {48, 74, 54, 28, 74}. We can see that

the water level for each subchannel is different.

Figure 4.12: Parameters Used For The Following Experiment

Fig. 4.14 is the result of GWFPP algorithm. Here the peak power constraints of our

theory is put to test. The peak power constraint {Si} is generated by the random number

function. As a result for each channel we get a different set of water level which follows the

individual peak power constraints.
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Figure 4.13: Iterative Partitioned Water-filling Method

Figure 4.14: Geometric Water-filling with Individual Peak Power Constraints
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Fig. 4.15 is the result for IGPP algorithm. Due to the total subchannel power constraint

and individual peak power constraints the numerical result varies from the results of IPW and

GWFPP. The IGPP graph shows that the available power resources was utilised properly

where as due to the failure to meet all the constraints IPW and GWFPP algorithms fall

behind. They have less power resource utilization according to the graph.

Figure 4.15: Power allocation using Iterative Partitioned Weighted Geometric Water-filling with
Individual Peak Power Constraints (IGPP) Algorithm

With DCSI, all of the given constraints are crucial and play a vital role in terms of {Pi}.

The performance is slower as the algorithm checks the constraints individually and starts

from the very beginning to get the accurate result. The whole process continues in a loop

until all the subcarriers in a set has proper allocated power. Fig. 4.16 is the result for

DCSI algorithm. Due to the total subchannel power constraint and individual peak power

constraints the numerical result varies from the results of IPW and GWFPP.
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Figure 4.16: Power Allocation using Dynamic Channel Sensing Iterative (DCSI) Algorithm

Figure 4.17: Comparison of Power Allocation with Different Algorithm.
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Fig. 4.17 is a Subcarrier Vs Power Allocation graph for all of the algorithm listed above.

In this graph each algorithm has a different result. As CWF algorithm fails to meet all the

constraints it has a simpler result. IGPP and DCSI are far more advanced. We used random

fading per channel to get the simulated scenario. IGPP and DCSI fits all the constraints

criteria and manages to simplify the problem.

After studying the five bar charts in Fig. 4.11 to Fig. 4.16 we can reach a feasible

conclusion before the actual compilation of the simulated algorithms.

In Fig. 4.11 the constraints for the objective function is violated. In the simulation test

for power allocation using water-filling method these subchannels are nullified due to not

meeting the objective function constraints.

Fig. 4.15 illustrates, IGPP Algorithm is used to allocate power for each subcarriers. In

this particular method all of the objective function constraints are met.

In Fig. 4.16 we can see a similar trend as Fig. 4.15, DCSI meets all the constraints.

There are two important aspect of DCSI algorithm which can be observed from Fig.

4.17. The first one is that, it can sense the channel and it’s fading and then intelligently

detects the channel with less fading and transfers extra power resources to that particular

channel. Secondly, it sorts the {Gj} in a descending order in order to allocate the first

set of resources to the subchannel with higher total subchannel constraint. These are two

important aspects which differentiate DCSI from IGPP. From numerical results of DCSI and

IGPP, both algorithms are better for power allocation.
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Chapter 5

Conclusion and Future Work

As spectrum scarcity is becoming a serious problem, the worth of finding a general solution

for such issue has become even serious due to the rapid development of wireless communica-

tions. Initially the main purpose of the search was to modify the conventional water-filling

algorithm applied in general OFDM based Cognitive Radio systems due to the per subchan-

nel power constraints and individual peak power constraints.

For Radio Resource Allocation (RRA), one of the most typical problems is to solve power

allocation using the Conventional Water-filling. As communication system develops, the

structures of the system models and the corresponding RRA problems evolve to more ad-

vanced and more complicated ones. Conventional Water-filling (CWF) is not enough to

approach these sort of problems.

In this thesis, we investigated towards identifying the optimal power allocation strategy

that aims at maximizing the capacity in OFDM based Cognitive Radio Systems. The main

purpose of the research was to modify the CWF algorithm applied in general OFDM based

Cognitive Radio systems according to the per subchannel power constraints and individual

peak power constraints.

In order to obtain an algorithm to simplify the process and decrease the computational

time, we manipulated the Conventional Water-filling (CWF) method to achieve two of our
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desired solutions with a less complexity and minimum computational time.

Iterative Partitioned Weighted Geometric Water-filling with Individual Peak Power Con-

straints (IGPP) is the first algorithm proposed in this thesis. It is a simple and elegant

approach proposed to solve the weighted radio resource allocation problem with peak to

peak power constraint and partitioned total subchannel power constraint . The proposed

IGPP algorithm requires less computation than the CWF algorithm, under the same memory

requirement and sorted parameters.

The second iterative algorithm proposed in this thesis, similar to water-filling algorithm

which abides by all the constraints is called Dynamic Channel Sensing Iterative (DCSI)

Algorithm.

The proposed approaches solved the given objective function and the constraints with less

derivation and computational time.

IGPP is an algorithm which is a combination of Geometric Water-filling method with Peak

Power Constraint [15] and Iterative Partitioned Water-filling method described in paper [14].

DCSI is an innovative approach which allows us to solve the target problem intelligently

with less complexity. It provides straightforward power allocation analysis, solutions and in-

sights with reduced computation over other approaches under the same memory requirement

and sorted parameters.

Numerical examples are provided to illustrate the effectiveness of the algorithms. Our

results show with the complicated structured problem conventional water-filling method is

limited due to the fact that the water levels are no longer unique. Thus IGPP and DCSI

algorithms are appropriate for equivalent complex scenarios.
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As the next step, we plan to continue working on the proposed algorithms to solve more

complex problems. By analyzing the accuracy and simulation time of the proposed method

to innovate a general formula, we will enhance the usability of this method. More-over, in

next upcoming parts we will expand our algorithm to accelerate other steps to achieve more

complex objective functions with more complex constraints.
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