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Abstract 

 

This thesis proposes a hybrid neuro-wavelet based approach for modeling the dynamic voltage-

current characteristics in electrical arc furnaces. This method uses the data obtained from an 

operational electrical arc furnace exclusively to describe the underlying process, and unlike 

conventional mathematical techniques it does not rely on presumed model structures or simplified 

assumptions. A comparison between the results that proceeded from the proposed method and the 

actual measurements has been made. The proposed method is demonstrated to be capable of 

modeling the EAF's dynamic voltage-current behaviour accurately. 
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1 Introduction 

1.1 Electric Arc Furnaces 

The importance of the steel industry to the Canadian economy and its contribution to society are 

indisputable. According to a research study [1] conducted by the University of Toronto, the steel 

industry employs directly and indirectly 130,000 men and women across Canada. It produces 

multi-purpose material that is essential to many key industries, including transportation and 

physical infrastructure. In addition, it provides $7 billion per year in exports and plays a major role 

in the energy and environmental future of Canada. As stated in [1], “if we didn't have the steel 

industry we have, we wouldn't have the industry or society that we have today." 

Electrical Arc Furnaces (EAF) take an essential role in the Canadian steel industry and account for 

about half of North American steel production [1]. Broadly, an arc furnace transfers electrical 

energy to thermal energy to melt the metal scrap by means of a high power electric arc, which is 

set up between electrodes and the molten bath containing the raw material [2] (see Fig. 1.1). The 

meltdown process is then followed by a refinement stage, which is the main purpose of EAF 

operation. 
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Fig. 1.1: Electric Arc Furnace 

 

During the meltdown process, the vertical movement of the high power electrodes is regulated in 

order to keep a stable arc in spite of random movement of the melting material. This makes the arc 

furnace draw both high and varying power from the supply system. As a result, the arc voltage and 

current waveforms deviate significantly from a perfect sinusoidal shape and no two cycles of them 

are identical. This type of load, which is highly nonlinear and dynamic in nature, has many adverse 

impacts on the power quality of the joint network. With a power with such quality, other electrical 

loads connected to the network may malfunction, fail prematurely or not operate at all. All of that 

causes the whole electrical system to not function in its intended manner [3]. In particular, voltage 

flicker and harmonic injection are the two major power quality problems raised in such electrical 

systems as a result of EAF operation [4]. Flicker phenomena refer to rapid visible changes of light 

level in lighting equipment caused by voltage fluctuations. Harmonics, on the other hand, refer to 

variations in the wave shape of the voltage and current signals, all of which are undesirable. The 
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injected harmonics may propagate into the network and affect other electrical loads adversely. For 

example, they may result in extra heating in the equipment and conductors, misbehaviour in 

variable frequency drives, and added torque pulsations in motors [5].  

1.2  Motivation 

As noted earlier, the operation of EAFs reduces the power quality of the system to which it is 

connected. However, as the operation of EAF is crucially necessary, remedial solutions should be 

adopted in order to maintain the quality of power in the interconnected network. In other words, 

the adverse effects of EAF operation should be compensated appropriately. The most common 

approach is the installation of power compensators that can dynamically compensate the power 

consumption of EAFs [6]. However, for this to become feasible, the behaviour of EAFs in their 

electrical network has to be studied and then modeled as accurately as possible. For the purpose 

of modeling this behaviour, the EAF voltage-current relationships, referred to as (v-i) 

characteristics hereafter, are usually determined.  

This model can then be used for power quality penetration studies and mitigation designs before 

any EAF installations or upgrades in the system. As a result, unexpected situations that can impose 

intolerable financial burden are avoided. 

1.3 Objective 

The purpose of this study is to investigate new intelligent data-driven modeling techniques, based 

on time-frequency domain analysis, and to build accurate and reliable model for EAF operation 

based on such techniques. This model would be capable of being used in power quality penetration 

studies such as flicker compensation or harmonic injection cancellation. The primary goal of this 
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study is to justify the application of wavelet transform in the proposed framework and, therefore, 

explicit attention has been paid to this theory. 

1.4  The Modeling Challenge 

It is important to realize that if we had an ideal electric arc furnace with linear (v-i) characteristics, 

modeling would be a less challenging task. However, in reality, because EAF load is time variant 

and highly nonlinear with complex dynamics, the (v-i) curve is anything but linear. Hence, 

producing accurate models of EAFs, based on conventional mathematical techniques and explicit 

equations that are simplified for such a problem, may not be feasible. 

An alternative solution to this problem is the use of black-box and non-parametric techniques that 

have been recently widely adopted. These techniques do not presume a structure for the system 

and instead, concentrate on models that describe the behaviour of the system in detail, entirely 

based on input and output data [4]. In this study, we are employing a variant of black-box methods, 

in which artificial intelligent and multi-scale time-frequency techniques are combined to model 

the behaviour of an electric arc furnace accurately. 

1.5  Existing Approaches 

Early EAF models were predominantly based on explicit mathematical equations, simplified or 

questionable assumptions and experimental findings, which could not accurately capture the 

dynamics of such a complicated system [4]. As an example, the conventional system identification 

techniques have been adopted in many studies such as [7] and [8]. However, they could not achieve 

accurate results as they presumed the model structure was known, and all that needed to be 

identified were the corresponding parameters based on some knowledge of the system. In a similar 
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manner, many time series analysis methods have used differential equations to describe the arc 

furnace systems. The accuracy of these methods is, however, questioned [9]. Time domain 

equivalent circuit methods that design equivalent circuits consisting of the voltage source and 

resistors have also simplified the voltage-current characteristics that affect the accuracy 

significantly [10]. The frequency domain analysis techniques suffer from quite similar defects. For 

example in [11], the harmonic voltage source method, which applied the Fourier transform to the 

arc voltage signal, determined the parameters of the equivalent circuit, using the parameters of the 

supply system. This is however done by assuming that the power transfer has been made at its 

maximum capacity. This assumption cannot reflect the arc furnace operating condition and, 

therefore, constituted the main source of error. Another method is “domain solution of nonlinear 

differential equation” presented in [12]. This model was developed from energy balance equations, 

which are nonlinear differential equations of arc radius and arc current. These equations use some 

parameters, obtained experimentally, to describe the operation of arc furnace.  

These arguments suggest that conventional techniques are in essence, not capable of addressing 

issues such as modeling complex systems. In this respect, black-box and data-driven methods, that 

fall under the broad area of artificial intelligence (AI), can act as substitutes for such techniques. 

Over the past few decades, the widespread interest has been in artificial intelligence among 

researchers, and a mass of literature is devoted to the practice and application of such techniques 

in non-linear modeling problems. These techniques provide powerful tools for finding solutions to 

a variety of practical problems that other more traditional methods often fail to solve. Artificial 

neural networks, fuzzy systems, adaptive fuzzy neural networks and genetic algorithm inspired 

algorithms are considered to be the most common of such techniques. The rest of this section is 
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designated to a brief review of major research work regarding EAF modeling in each of these 

subareas. 

Many studies such as [4] and [13] applied the notion of Artificial Neural Networks (ANN) to 

model the dynamic and highly nonlinear EAF systems, and the computational results obtained 

from these works were strictly comparable to the existing measurements. In fact, there is extensive 

evidence for justifying the artificial neural networks’ value for the general case of nonlinear 

modeling. The most important one is their universal approximation capability that allows for 

estimation of any real continuous function to any specified level of accuracy [4]. This proven 

capability is indeed a result of their adaptive learning capabilities. In addition, the superiority of 

neural networks for modeling such complex systems is their use of available data exclusively [4], 

for describing the system under study. Consequently, they do not need prior knowledge of the 

underlying process. However, since ANNs are only designed to work with numerical data, it is 

impossible to use qualitative and linguistic information from the experts. In addition, the input and 

output mapping of a trained neural network cannot be interpreted into meaningful predictions 

rules. In other words, neural networks lack the capability of knowledge representation. In fact, this 

is the underlying reason behind naming these methods as “black-box.” 

Fuzzy logic, on the other hand, has the capability to deal with linguistic knowledge, as well as 

numerical data [14]. The fuzzy logic strength especially lies in linguistic knowledge handling, 

which is burdensome to quantify, according to what traditional mathematics permits [15]. 

Therefore, they provide alternatives for a system that is too complicated to be described with 

equations, and hence, the mathematical model is either ill-defined or does not exist at all [15]; this 

is the case with EAF operation. The distinguishing characteristics of Fuzzy Logic Systems (FLS), 

namely the universal approximation ability and functional equivalence with Radial Basis 
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Functions (RFB) [15], give additional support to the effectiveness of such systems to highly 

nonlinear problems such as EAF modeling. As a final point, this rigorous mathematical discipline 

is capable of expressing nonlinear relationship between input and output, by a collection of 

qualitative if-then rules [14], which is a major advantage over ANNs. However, FLSs lack an 

effective learning capability and furthermore, the rule definition depends on intuitive experience 

of experts. Another disadvantage is that the a-priori or heuristic knowledge is needed in order to 

trim the vast number of rules in the rule base. In addition, the distribution of data in input-output 

space and the natural grouping of the data cannot be considered [15]. To compensate for these 

shortcomings, the fuzzy logic systems can be augmented with neural networks. This arrangement, 

which has been presented in [15-20], combines the precision and adaptability of neural networks 

along with the fast training and generalization ability of fuzzy logic systems in one single package 

[20]. 

Genetic Algorithms (GA) are another area in AI, which have been used to enhance models in many 

different disciplines. Although still not applied directly to the arc furnace modeling problem, 

diverse areas in power systems such as load modeling have profited from these methods [21, 22]. 

The popularity of GAs is due to their practical and robust optimization and search capability. As a 

result of their robustness in complex parameter search spaces, they are regularly used together with 

other artificial intelligence techniques such as neural networks and fuzzy logic to optimize their 

parameters. These methods have a high probability of locating the global solution optimally in the 

search space with several local minima [23]. However, they are computationally intensive, a 

property that is not desirable. 
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1.6 Wavelet Transform 

The wavelet transform is an analysis method, which differs from the well-known Fourier transform 

by employing short waves instead of long sine waves as the analysis function or basis [24]. 

Wavelet analysis can shed light to attractive aspects of data that is ignored by other analysis 

techniques [24]. Broadly, a wavelet is a small wave that oscillates in a limited time and satisfies 

certain mathematical criteria (see section 2.1). The transform that uses such wavelets, transforms 

data from the original time domain to a joint time-frequency domain, by an expansion in 

orthonormal bases, generated by dilation (or contraction) and translation of wavelets [24]. 

This transformation is a powerful mathematical tool that decomposes data into various frequency 

bands and then examines each band, with a resolution appropriate for its scale [11]. Furthermore, 

it preserves both time and frequency information in data. However, the Heisenberg uncertainty 

imposes restrictions on the simultaneous resolution of this time and frequency information. The 

bottom line is that the wavelet transform can potentially provide a useful and highly informative 

mathematical representation of any existing phenomena in the world, including EAF operation 

indeed. 

Wavelets have many attractive properties, by which many data analysis tasks including regression 

and modeling are solved effectively. The most important properties include: compact support [25], 

which guarantees a localized transform and is especially useful for signals with local irregularities 

in either domain; vanishing moments, which results in a transform that can distinguish between 

essential and nonessential information [25], leading to dimension reduction; hierarchical and 

multi-resolution structure; linear time and space complexity of transformation [26]; smoothness 

[25]; ability to act as a generator of orthonormal bases of function space 𝐿2 [25], and possession 

of  various basis functions [27]. 
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In addition, wavelets transform leads to de-correlation in coefficients, that is the wavelet 

coefficients are less correlated than original data points [25, 28]. This implies that this transform 

has the potential of reducing the complexity of a problem in the time domain and producing a 

simpler problem in the wavelet domain [25]. 

Furthermore, wavelet transform facilitates performing operations at different resolutions and also 

localizes the operation in both time and frequency domains. According to [25], manipulating the 

wavelet transformed coefficients and then constructing the results is more efficient than working 

on the original domain data points in the first place. This is only possible because of another 

important property of wavelets, namely reversibility. Being reversible in this context means that 

the representation in the original domain, usually time domain, is exactly equivalent to the 

representation in the wavelet domain (under certain circumstances), and it is possible to go back 

and forth between the two domains, without any loss of information. 

The above mentioned properties make wavelet transform a good candidate for studying and 

analysing a complex system such as EAF. As we proceed to the next chapters, the usefulness of 

each property will become clearer for the particular case of EAF data. 

1.7  The Proposed Approach 

This research builds on existing knowledge in the fields of artificial intelligence, soft computing 

and digital signal processing and in particular, proposes a method to model the complex dynamic 

behaviour of electric arc furnaces by a thoughtful integration of artificial neural networks and 

wavelet transformation. 
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Briefly, wavelet transform is firstly applied to the electric arc voltage and current signals for the 

extraction of essential features. These features are then fed into a neural network with the intention 

of learning of the underlying process. Integrating the rigorous theory of wavelets, with the 

adaptability of neural networks in learning, has many advantages, among the most important, are 

higher chances of generalization and faster convergence [25]. 

In a more detailed view, the proposed methodology for modeling the (v-i) characteristics in electric 

arc furnaces is built on the approach taken in [4] and supplemented with the suggestions in [29]. 

In [4] a functional mapping is found between the electric arc voltage and current by means of 

artificial neural networks. The rate of change of arc current in time (derivative of current with 

respect to time) is also considered in the inputs along with previous values of the electric arc 

voltage. The work in [29] is related to a multi-scale linear approach to time series prediction, based 

on some coefficients of the wavelet transform of the previous values. The transform results in a 

decomposition of the time series into frequency bands of different scales. The prediction is then 

made using few coefficients on each of these scales. 

In our work, the same functional mapping as in [4] has been found. However, with the 

incorporation of the feature extraction method explained in [29], the need for including the arc 

current derivative is eliminated. In [29], a fixed number of coefficients are selected at each 

resolution level (or scale). However, in our approach, the number of coefficients to be selected at 

each resolution level is determined based on statistical methods. These methods include “Akaike 

Information Criterion” (AIC),   “Akaike Information Criterion Corrected” (AICc) and “Bayesian 

Information Criterion” (BIC), which are suggested by the authors of [29] and also, “Partial Auto 

Correlation Function” (PACF). Besides, we used a variant of wavelet transform, namely Maximal 
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Overlap Discrete Wavelet Transform (MODWT). This algorithm has been explained in [28] in 

great detail.  

A two-layer feed-forward neural network is then used to model the electrical arc voltage in terms 

of electric arc current, based on the extracted features. The weight and biases of this network are 

determined by a variant of the recognized back-propagation learning algorithm. This neural 

network is capable of generalizing through the use of wavelet transformed coefficients, instead of 

the original data. 

To the best of our knowledge, this compound method has never been applied to model the behavior 

of electric arc furnaces, in despite the substantial benefits that wavelet transform can bring. The 

only work that employs wavelet transform in this area is [6]. However, wavelet transform is only 

used for distinguishing EAF operation stages and not for modeling purpose. 

1.8  Thesis Outline 

The remainder of this thesis is organized as follows: Chapter 2 is devoted to the establishment of 

wavelet theory and multi-resolution. It also explains the notion of wavelets and their main 

properties. Moreover, the most common wavelet transforms, namely continuous and decimated 

discrete wavelet transforms are formulated. Chapter 3 provides background information on 

previous research work, conducted in modeling EAFs. These works fall under two broad categories 

of black-box and white-box models. The incompetence and inadequacy of white-box models for 

the application of the EAF modeling is justified, and the rationale behind focusing on black-box 

models, especially those that are also multi-scaled is given. Chapter 4 elaborates on the proposed 

solution for modeling the time-varying (v-i) characteristics of EAFs. In Chapter 5, the summaries 



 

12 
 

of simulation results are presented and discussed. The conclusions and recommendations for future 

work are then given in Chapter 6. 
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2 Wavelet Transform 

 

2.1 Wavelet Transform vs. Fourier and Short time Fourier Transforms 

Most signals have characteristics that change in both time and frequency domains [30]. However, 

the well-known Fourier transform can only represent the frequency content of the signal globally 

[24], over the signal’s existence time, and it does not provide any information about the signal’s 

spectral changes during this period. In other words, the time information is lost and, therefore, it 

is not a satisfactory analysis tool for non-stationary signals. To avoid this restriction on locality in 

time, another transformation, namely Short Time Fourier Transform (STFT) is introduced. This 

transform is acquired by simply applying the Fourier transform to consecutive parts of the signal, 

by employing a sliding window of limited size [30]. 

STFT suffers from a major drawback, that is, once a particular window is selected, the time and 

frequency resolutions become invariable during the whole analysis procedure [30]. In other words, 

STFT analyzes components of a signal, which are a mixture of time and frequency information 

with a predefined frequency and time resolution that is not changeable as a result of the fixed 

window length. This implies that the analysis of low-frequency and high-frequency components 

of signals are both performed using the same windows. In view of the fact that in practice, high-

resolution low-frequency analysis is made using long windows in the time domain and short 

windows in the frequency domain (and vice-versa for high-frequency analysis) [30], this transform 

is by no means efficient. The wavelet transform, on the other hand, uses variable size analysis 

windows. In this setting, long time domain and short frequency domain windows is used for the 

analysis of low-frequency components of the signal and vice-versa for the analysis of high-

frequency components of that signal [30]. Therefore, what wavelet analysis provides, is a better 
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trade-off between time resolution and frequency resolution [30] that is imposed by Heisenberg 

uncertainty principle. According to this principle, it is not possible to examine a part of a signal 

with unlimited frequency and time resolution simultaneously. 

2.2 Wavelet 

As suggested by the name, a wavelet is a little wave. It oscillates up and down just like any other 

wave. However, it has its energy concentrated in time [27]. In other words, it rises and falls only 

within a short period, hence the name. Percival and Walden in [28] quantified the notion of a 

wavelet as a real-valued function, (.) , that is defined over the real axis, and satisfies two essential 

properties of (2.1) and (2.2): 

The integral of (.)  being zero:   

0)( 




duu                                                                                                                                                         (2.1) 

and the square of (.)  integrating to unity: 






1)(2 duu                                                                                                                                                       (2.2) 

Should (2.2) hold, then for any  , which is between zero and one (0< <1), an interval [-T, T] of 

limited size exists [28] so that: 






T

T

duu  1)(2
                                                               (2.3) 

This equation suggests that (.)  can only deviate slightly from zero outside of [-T, T], on condition 

that is very close to zero. Considering that the length of this interval is vanishingly small in 

comparison with the unlimited size of the whole real axis, the non-zero activity of (.)  should be 
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very limited and small [28]. Therefore, while (2.2) implies that (.)  has to rise above or fall below 

zero in some parts, (2.1) enforces any part that is above zero to be cancelled out by those below 

zero. Consequently, (.)  must look like a little wave [28]. 

In summary, a wavelet can be regarded as any function that integrates to zero and is square 

integrable, by a very broad definition [28]. However, it is necessary to impose conditions beyond 

(2.1) and (2.2) for practical use of wavelets. An extensive mathematical research has been done in 

order to determine what conditions are required to yield particular type of analysis with wavelets 

[28]. 

2.3  Wavelet expansion  

By expressing a function f (t), as a linear decomposition (see (2.4)), more comprehensive analysis, 

description and processing of the signal is possible [27]:  


l

ll tatf )()(                                                                                                                                                  (2.4) 

Where
la is the expansion coefficient and )(tl are a collection of real-valued functions named as 

expansion set. For a wavelet expansion, an arrangement with two parameters is made such that 

(2.4) changes to 


k j

kjkj tatf )()( ,,                                                                                                                                       (2.5) 

where the two parameters of j and k are integer and )(, tkj are the wavelet expansion sets that are 

usually orthogonal functions. This two-dimensional representation leads to localization of the 

signal in both time and frequency [27]. 
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The wavelet expansion set is by no means unique, and there are numerous wavelets that can be 

used effectively. But, they all share some general characteristics, according to [27]. To begin with, 

all wavelet bases are collection of building blocks to form or present a signal or function. More 

importantly, wavelet expansions localize the signal in both time and frequency. This suggests that 

the majority of the signal energy can be represented appropriately, by only a few coefficients in 

the expansion. Another significant trait of wavelet analysis is that it is especially appropriate for 

transient signals. This is because the localizing property of wavelets enables modeling of temporal 

event with only a few coefficients. 

Wavelet bases are all generated from a single wavelet, referred to as the mother wavelet, by simple 

scaling (contraction or dilation) and translation (or shifting) operations [27]. The two-dimensional 

parameterization is obtained from the function )(t (usually called the mother wavelet), by (2.6). 

Zkjktt jj

kj  ,)2(2)( 2/

,                                                                                                                  (2.6) 

The change of parameter k, moves the wavelet along the time axis and enables localization of the 

events in time. In contrast, the change of parameter j, changes the shape of the wavelet by either 

contraction or dilation to modify its scale and allows representation of a particular resolution [27]. 

For the multi-resolution formulation, a fundamental concept that will be explained later, two basic 

functions are required, each of which is closely related to the other. That is the wavelet functions 

are supplemented with another set of basic functions named scaling functions, )(t . Using a 

combination of both functions, a wide variety of signals can be expressed as (2.7) [27]. 

 













k k j

j

kjk ktdktctf
0

, )2()()(                 (2.7) 
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Wavelet expansions are undoubtedly very efficient and effective in analyzing a variety of signals 

and phenomena in the world. The properties that give this effectiveness are as follows according 

to [27]: Firstly, the wavelet expansion coefficients drop quickly from large to negligible amounts 

with j and k, for most of the signals. As a result of this, wavelets have successful applications in 

signal and image compression, de-noising and detection. Secondly, with the wavelet expansion, 

signal characteristics can be described locally with high precision. They can also be separated 

accurately. What’s more, a wavelet expansion coefficient is local in essence, and it is easier to be 

interpreted. As a result, the wavelet expansion is capable of separating components of a signal in 

both time and frequency that overlap with one another. Lastly, wavelets are adaptable and adjust 

themselves to conform to the signal. Therefore, they can be designed in a particular way to meet 

individual applications’ needs. It is worthwhile mentioning that some of these properties are, in 

fact, same things that are viewed from different perspectives. 

2.4 Continuous Wavelet Transform 

The Continuous Wavelet Transform (CWT) is particularly useful for transforming a function or 

signal x (·) that is defined over continuous time [31]. The calculation of the continuous wavelet 

transform is a very straightforward process. Intuitively, we calculate how closely correlated the 

scaled and translated wavelets are with different parts of the signal; the more similarity, the higher 

the value of the coefficient. In this transform, both parameters λ (scaling parameter) and t 

(translation parameter) change continuously. Note that λ and t are the same as j and k in the context 

of discrete wavelet transform that had been briefly explained in the previous section. 
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Mathematically, CWT is the integral over infinite time of the signal multiplied by scaled, shifted 

(or translated) mother wavelet. CWT generates wavelet coefficients as a function of scale and time 

[31]: 






 duuxuxC tt )()(, ,,                                                                                                                     (2.8) 

where )(, ut is a modification to the mother wavelet )(u , and is formulated as: 

)(
1

)(,





 

tu
ut


                             (2.9) 

In this equation, R and Rt are the scaling and translation parameters respectively. By 

varying λ, a picture of how the wavelet function fits the signal from one scale to another, can be 

built up. By varying t, how the nature of the signal changes over time can be seen [31]. The 

collection of coefficients },0.|,{ ,  tx t    is called the CWT of x (·). 

Interestingly, the CWT preserves all the information in the original signal, provided that the 

wavelet function (.)  satisfies the admissibility condition [28], which is fulfilled by the following 

constraint: 






 0)()0( dtt                                          (2.10) 

Where (.) denotes the Fourier transform of (.) . According to this condition, the wavelet does 

not have zero frequency components. 

 If the signal x (·) also satisfies: 






dttx )(2
                                           (2.11) 

Then, x (·) can be perfectly reconstructed from its CWT, by the following inverse transform [28]: 
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2

0

,, ],[
1

)(



 



d
dux

C
tx uu 





            (2.12) 

As a matter of fact, the signal x (·) and its CWT coefficients are different ways of representing the 

same mathematical entity. However, the CWT presents the signal in a new way, which enables 

gaining additional insight into the signal [28].  

2.5 Multi-Resolution Analysis 

Multi-Resolution Analysis (MRA) is an imperative concept in wavelet systems. By using this 

concept, it is possible to analyze various frequency components of a signal with different 

resolutions [32]. The overall idea in MRA is that by having a sequence of embedded subspaces, 

capable of approximating )(2 RL , one can focus on particular subspaces for a specific application. 

For employing multi-resolution concept, two sets of functions, namely scaling function and 

wavelet function need to be defined. 

2.5.1 Multi-Resolution Formulation 

A multi-resolution analysis is a sequence of subspaces belonging to )(2 RL , and satisfying three 

conditions [33]. The first condition is containment, which requires a nesting of the spanned spaces 

as: 

2

210120 L                 (2.13) 

or: 

Zjallforjj  1                                                                                                                             (2.14) 
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which indicates that every subspace j  is contained in the subsequent wider subspace 1j . This 

implies that the space that contains high-resolution signals accommodates lower resolution signals 

as well [27]. The next condition imposes the following to be true: 

2},0{ L                (2.15) 

which indicates that at zero resolutions, where j , only a zero finite energy signal exists. 

Whereas, at infinite resolution where j , a perfect reproduction of the signal can be obtained 

[27]. Another condition to be satisfied is scaling, which indicates that any subspace has to meet 

the reasonable scaling condition of: 

1)2()(  jj tftf              (2.16) 

This ensures any element in a space, is a scaled versions of that element in the next space [27]. 

Altogether, these aforementioned conditions define a multi-resolution scheme. 

A. The Scaling Function 

Theoretically, obtaining a function
0)( vt  , known as scaling function, whose integer translates 

is an orthonormal basis of
0  is feasible. The collection of these scaling functions, which are 

defined in terms of integer translates of ( )t , known as father wavelet, are formulated in [27] as: 

2)()( LZkkttk               (2.17) 

The subspace belonging to )(2 RL that is spanned by the generated functions in (2.17) is defined as 

(2.18), for all possible integer values of k, from minus infinity to infinity.  

0 { ( )}k
k

Span t                                                                                                                                                   (2.18) 

Equation (2.18) can be interpreted as: 
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 
k

kk tfanyfortatf 0)()()(                (2.19) 

The subspace spanned can be expanded by manipulating the scale of the primary scaling function. 

A two-dimensional class of basis functions is produced from the father wavelet or ( )t , using 

scaling and translation operations [27]: 

)2(2)( 2/

, ktt jj

kj                    (2.20) 

This set is an orthonormal basis for the subspace jv  that can span: 

)}({)}2({ , tSpantSpan kj
k

j

k
k

j  
                                                                                       

 

for all integers Zk  . In other words, if jtf )( , it can be decomposed as follows: 

 
k

j

k ktatf )2()(               (2.21) 

The set of nested subspaces requires that on condition that )(t is in
0 , it is also in 1 , the subspace 

spanned by )2( t . This suggests that it is possible to formulate )(t  in terms of a weighted sum 

of translated )2( t [27] as: 

 
n

Znntnht ),2(2)()(              (2.22) 

In this equation, h(n) is a series of real-valued numbers known as the scaling coefficients or low-

pass filter coefficients. All the scaling functions and their corresponding scaling coefficients satisfy 

this equation. The design process of any wavelet system is in fact, selection of appropriate 

coefficients h (n) [27]. 
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B. The Wavelet Function 

Wavelet functions, 
, ( )j k t , are capable of identifying and describing essential characteristics of any 

signal more accurately than scaling functions. These functions span disjoint difference of the 

subspaces spanned by the various scales of the scaling function [27]. 

The wavelet spanned subspace
0w , is defined such that 

001 wv                 (2.23) 

which can simply extend to 

1002 wwv                (2.24) 

and generalize to the following: 

 100

2 wwL               (2.25) 

where 
0v  is the subspace spanned by the integer translates of the primary scaling function )( kt 

. Fig. 2.1 illustrates the nested spaces, related to the scaling function of various scales j; and also, 

those related to the wavelets that are the disjoint differences [27]. 
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Fig. 2.1: Scaling Function and Wavelet Space 

 

The relation of the different subspaces can be seen from the expression (2.13). From (2.13), it is 

possible to start with any subspace [27], for example at j=0, so that 

2

210 ... Lvvv                                          (2.26) 

to have  

 100

2 wwL               (2.27) 

 

The scale of initial space can be selected at finer scale of, for example j=10 to have 

 111010

2 wwL               (2.28) 

or at a coarser scale such as j=-5 to have 

  455

2 wwL               (2.29) 

Or even at zero resolutions, j , where (2.29) become: 
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   21012

2 wwwwwL            (2.30) 

Therefore, another way of expressing the relation between 
0v  and wavelet subspaces is writing 

[27] 

01 vww                      (2.31) 

In general, according to Fig. 2.1, the additional information contained in the finer approximation 

space, 1j , is included in another subspace of 1j , such that 

jjj wvv 1                (2.32) 

The subspace, known as complementary or detail space of 1jv , is orthogonal to the subspace jv

.Furthermore, it is orthogonal to all the other detail subspaces at different resolutions. However, it 

is only orthogonal to the approximation subspaces of lower resolution [27]. This can be confirmed 

by looking at Fig. 2.1 

Theoretically, it is always feasible to find a function, wavelet function )(t , such that its scaled (at 

any resolution j) and integer translates form an orthonormal basis capable of spanning the jw

subspace. 

Considering that the wavelets exist in the subspace spanned by the next finer-scale scaling 

function, meaning that
10 vw  , it is possible to represent them by a weighted sum of translated  

scaling function )2( t  [27]:  

 
n

Znntnht ),2(2)()( 1              (2.33) 

Where )(1 nh  denotes wavelet filter coefficients.   
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The function constructed by (2.33) provides the prototype, or mother wavelet for the following 

basis functions [27]: 

)2(2)( 2/

, ktt jj

kj                    (2.34) 

The whole set { )(, tkj } is an orthonormal basis for 2L (see (2.30)).A set of functions )(tk  and 

)(, tkj
 
can also span all of )(2 RL . According to (2.27), any function )()( 2 RLtg   can be 

expressed as a series expansion in terms of translated scaling functions at a particular scale and 

various scaled and translated wavelets [27]: 

 













k j k

kjk tkjdtkctg
0

, )(),()()()(             (2.35) 

In (2.35), the first summation provides a low-resolution picture or a coarse approximation of g(t). 

In the second summation, for each increase in parameter j, a finer detail is added to g(t) [27]. 

A more general formulation for the expansion (2.35) can be given by: 

 





k k jj

jj

j

jj

j ktkdktkctg
0

2/02/0

0 )2(2)()2(2)()(          (2.36) 

or by: 

 





k k jj

kjjkjj tkdtkctg
0

,,00 )()()()()(            (2.37) 

The value of j0 determines the lowest resolution whose subspace is spanned by )(,0 tkj . The 

remainder of )(2 RL  is spanned by the wavelets that provide the higher resolution information of 

the signal. The expansion coefficients in (2.37) are referred to as the Discrete Wavelet Transform 

(DWT) of the signal g (t). These coefficients can be calculated by the following e equation [27]: 

 dtttgttgkc kjkjj )()()(),()( ,,             (2.38) 
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and 

 dtttgttgkd kjkjj )()()(),()( ,,             (2.39) 

2.6 The Discrete Wavelet Transform 

The continuous wavelet analysis of signals provides an immense abundance of data. This statement 

is justified by considering the two-dimensional nature of the outcome of the continuous wavelet 

analysis, and the fact that this result proceeds from only a one-dimensional signal. Therefore, it is 

self-evident that an enormous excess of data is in the CWT. As a result, in this case, only 

subsamples of CWT that retain certain key features, could be considered, instead [28]. 

Mallat’s Filter banks algorithm, which will be explained in the next section, can be used to perform 

the Discrete Wavelet Transform (DWT). In this way, DWT is formulated entirely in its own right 

without explicitly connecting it to CWT. However, DWT can also be regarded as a solution for 

retaining the essential features of the CWT and discarding the rest, in an efficient manner. Taking 

this view, the DWT is conceived, as a thoughtful subsampling of the continuous wavelet analysis 

coefficients, which exclusively examines the dyadic scales. (i.e.   is selected to take the form of

,...3,2,1,2 1   jj  and then, within a particular dyadic scale 12 j , times t that are located at 

multiples of j2  are selected [28].) 

Interestingly, the DWT of a data consisting of N values, also consists of N values called DWT 

coefficients. These coefficients can be organized into 1log 2 
N  series. N

2log  number of these series 

are called wavelet coefficients and are associated with scale one up to scale 
1log22
N

. For scale 12 j

, there are 
jj

N
N

2
  wavelet coefficients and their matching points in time are of the form
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1,...,1,0,
2

1
2)12( 1  

j

j Nnn . With appropriate normalization [28], the nth wavelet coefficient 

at scale 12 j  can be regarded as an approximation to the CWT coefficient at scale 12 j  and time

2

1
2)12( 1  jn . The remainder of coefficients are known as scaling coefficients. The scaling 

coefficients equal (if proportionally adjusted) averages of the original data over a scale of
N
2log

2 , 

whereas, the wavelet coefficients equal (if proportionally adjusted) differences of averages over 

that scale. Hence, the scaling coefficients exhibit a similar trend to that of the data. 

Similar to CWT, the perfect recovery of the data from its DWT coefficients is feasible. Sub-

sampling the CWT coefficients at just the dyadic scales might imply that a large portion of the 

information has been discarded. However, surprisingly a signal and its corresponding DWT 

coefficients are, in fact, two different expressions for the same mathematical entity [28]. Therefore, 

no information is lost by dropping down from CWT to DWT. In fact, the set of dyadic scales is 

often sufficient to concisely characterize physical processes, particularly in scientific areas [28]. 

2.6.1 DWT Calculation, from the Signal Processing View 

There is a link between wavelets and digital signal processing, which is defined by Mallat and 

Daubechies. A signal processing view makes the implementation of wavelet transform much 

simpler than what the mathematical theory suggests. In this section, we describe how wavelet-

transform of a discrete signal is calculated in Mallat’s filter bank algorithm, using a set of high-

pass and low-pass filters in combination with down-samplers. This algorithm can calculate a 

signal’s wavelet transformed coefficients at any specific finite resolution. The corresponding 

algorithm for reconstruction will also be described in the continuation. 
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A. Analysis - From High Resolution to Low Resolution 

The approximation of a function at the resolution level j+1, corresponding to its projection on the 

subspace 1jv , can alternatively be expressed as the summation of its projections on the subspaces 

jv and jw [30]. Additionally, since }{ ,kj  and }{ ,kj  are orthonormal basis of subspaces jv  and

jw  respectively, it is possible to express the projection of a function x (t) in jv  and jw  in the 

following respective forms: 
k

kjj kc ,)(  and 
k

kjj kd ,)(  . In a similar manner, as clearly 

articulated in [30]: 

“…a given approximation of the signal x (t) on the subspace jv  can be 

decomposed into a coarser approximation, which is its projection on the 

subsequent subspace 1jv  and details given by its projection on the 

complementary subspace 1jw .” 

 

Considering these facts, it is apparent that the coefficients at a lower resolution can be calculated 

from the coefficients at a higher resolution. This is done by an algorithm, whose structure 

resembles a tree, and it is called filter bank. This algorithm not only calculates the expansion 

coefficients efficiently but also relates wavelet transform to digital signal processing techniques. 

The relationship between the scaling function coefficients at a lower scale level in terms of those 

at a higher scale can be formulated as follows [27]: 

1( ) ( 2 ) ( )j j

m

c k h m k c m               (2.40) 

The equivalent relationship for the wavelet coefficients is given by 

1 1( ) ( 2 ) ( )j j

m

d k h m k c m              (2.41) 
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For better understanding of (2.40) and (2.41), it is worthwhile to make two points: Firstly, in the 

discipline of digital signal processing, the filtering of a sequence of numbers is achieved by 

convolving the sequence with another set of numbers, called the filter coefficients or impulse 

response. The filtered output sequence y (n) is calculated by (2.42), given an input sequence x (n) 

and filter coefficients h (n). 







1

0

)()()(
N

k

knxkhny                            (2.42) 

In (2.42), the total number of filter coefficients is denoted by N. The design problem is always the 

choice of the h (n), to obtain some desired effects [27]. 

Secondly, two basic operations in multi-rate filters are the down-sampler and the up-sampler. The 

down-sampler, known as decimator takes an input x (n) and produces an output of the form y (n) 

= x (2n). The down-sampling operation, obviously poses a risk of losing some valuable 

information, now that a large portion of the data is discarded, this procedure can affect the 

information in the frequency domain adversely. This phenomenon is called aliasing that is a mixing 

up of frequency components. 

Digital filtering and down-sampling are precisely what (2.40) and (2.41) do [27]. In other words, 

two digital filters that are characterized by coefficients )( nh  and )(1 nh  , filter the coefficients at 

level j. Following this, the down-sampling operation then results in the scaling function and 

wavelet coefficients at the next lower resolution. Mallat and Daubechies are the mathematicians 

who showed the relation of wavelet coefficient calculation and filter banks. The implementations 

of (2.40) and (2.41) are illustrated in Fig. 2.2, where the down pointing arrow denotes decimation 

by two and the other boxes denote filtering or a convolution by )( nh  or )(1 nh  . 
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Fig. 2.2. Two-Band Analysis Bank 

The filter implemented by )( nh  is a low-pass filter, and the one implemented by )(1 nh   is a high-

pass filter. Note that total number of data points out of this system is equal to the number of data 

points into the system. This means chances are that no information is lost and, therefore, perfect 

reconstruction of the original signal is possible [27], and this is indeed the case under certain 

circumstances. 

Repetition of the three tasks of splitting, filtering and decimation is possible on the scaling function 

coefficients to iterate the filter bank [27]. For example, the three scale structure can be seen in Fig. 

2.3. 

 

Fig. 2.3. Three stage two-band analysis tree 

The first stage in Fig. 2.3, filters )(1 kc j  with a high-pass and a low-pass filter. In other words it 

decomposes )(1 kc j  into a low-pass and high-pass band, which yields the scaling coefficients and 
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wavelet coefficients at a coarser scale: )(kc j  and )(kd j . Afterwards, the second stage 

decomposes the low-pass band from the previous stage, into another low-pass and high-pass band, 

which essentially results in a lower low-pass band and a band-pass band [27]. The first stage 

divides the whole frequency range into two equal parts, while the second stage divides the lower 

half into two more equal halves and so on.  

B. Synthesis – From Low Resolution to High Resolution 

The original fine scale (high resolution) coefficients of the signal are constructed by merging the 

scaling function and wavelet coefficients at a lower resolution, according to the following formula 

[27]: 

 

m

j

m

jj mkhmdmkhmckc )2()()2()()( 11           (2.43) 

For the synthesis in the filter bank, a series of first up-sampling or stretching and then filtering is 

needed. These operations are precisely what the synthesis equation in (2.43) does. This equation 

is evaluated by up-sampling the coefficient sequence at level j, )(kc j , then convolving it with the 

scaling coefficients, )(nh . The same process takes place for the wavelet coefficient sequence at 

level j. Finally, the summation, results in the scaling function coefficients at the next finer scale or 

at level j+1. This structure is illustrated in Fig. 2.4, where )()( nhng   and )()( 11 nhng  . This 

merging process can be continued to any level by combining the appropriate wavelet coefficients. 

The two-scale tree is shown in Fig. 2.4. 
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Fig. 2.4. Two Band Synthesis Bank 

 

This set of analysis and synthesis operations is known as Mallat’s algorithm. To sum up, in this 

algorithm, the array of analysis filters calculate the DWT coefficients by  employing digital filters 

(high-pass and band-pass) in combination with down-samplers. In contrast, the array of synthesis 

filters implement the inverse DWT transform and reconstruct the initial signal from the 

transformed coefficients. 

 

 

 

 

3 Electric Arc Furnace Modeling 

3.1 Mathematical methods for electrical arc furnace modeling 

Scientists and engineers have been using mathematical concepts and languages to describe a 

variety of systems throughout history that has led to better understanding of the phenomenon being 
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studied. Electrical Arc Furnaces (EAF) are among such systems, and there is an extensive body of 

literature on the subject of modeling them by mathematical methods. These mathematical models 

can be broadly categorized into black-box and white-box models, based on the amount of a-priori 

information that is available from the system. However, all available models are almost shades of 

grey and reside somewhere between black-boxes and white-boxes. 

3.1.1 White-Box Models 

When some necessary information from the system under study is available, white-box methods 

are particularly useful. This a-priori information can take the form of knowing the type of function 

which relates the different variables, or the subjective knowledge or intuition of an expert on the 

system, or a combination of both. In these models, the inner components and the logic of the system 

are available for inspection; therefore, they are also called glass-box. 

Several conceptual frameworks have been proposed in an effort to explain the dynamics of the 

electric arc furnace behaviour. Most of them have focused on white-box methods. These methods 

include statistical approaches, probability approaches, differential equations, fast Fourier 

transform, Markov chain and symbolic dynamics. However, they are not limited to this short list. 

Most of these methods start from assuming a model structure for the electric arc furnace (which is 

far from the reality) and then try to calculate the parameters corresponding to the model 

approximately by using the empirical data. Usually, subjective information is also incorporated 

into these mathematical models, which cannot be obtained easily in case of complex systems and 

therefore is not reliable. In this section, typical examples of such methods that are frequently cited 

in the literature are reviewed briefly. Although each of these views has some virtues, but for the 
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most part, they rely on subjective and explicit knowledge of the physical process and require 

understanding of the underlying process. 

In the work [34] of Stade et al., the electric arc was mathematically modelled for the analysis of 

DC EAF influence on the electrical network. The model was based on the statistical analysis of 

on-site measurements of instantaneous voltage and current information. These measurements were 

statistically analyzed, and it was shown through investigations that a statistical normal distribution 

was valid for these values. Consequently, the v-i characteristic was synthesized for each of the two 

different operation periods, namely the start of melting and quiet melting. It was proven through 

simulations that the DC EAF modeling was useful for power quality studies. 

D. Tewari et al. in [35] applied the concept of symbolic dynamics to model highly varied electrical 

loads in AC arc furnaces. Here, symbolization refers to the transformation of raw signal 

measurements into a series of discretized symbols that can be processed to extract information 

about the process generating the data [36]. On the whole, in this proposed method, the discretized 

signal was coded into symbols and the symbols were then treated as if they were in a natural 

language for further processing. In a more detailed view, for the purpose of predicting future values 

of the signal, a symbolic dynamic dictionary was formed using the instantaneous values in the 

signal. Then, the forecasting was done by matching the latest measurements with items in the 

dictionary. Those items with high fractional occurrence were chosen as the forecast values. The 

researchers forecasted the AC arc furnace current and compared the results with actual data using 

Common Signal Index (CSI) and Kolomogorov-Smimov (KS) similarity measures. Overall, 

symbolic dynamics appeared to be able to predict the load current, to a reasonable degree. 

However, this method has some limitations that may have adversely affected the quality of the 
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model, as many parameters such as symbol sequence length and number of partitions are selected 

empirically. 

Chen et al. in [37] presented a function space valued Markov model for EAF current and voltage. 

In this study, the state-case time series was generalised to a cycle vector- case time series in order 

to predict one or more cycles of EAF current or voltage. In order to reduce the computations, each 

cycle was then approximated by a small number of parameters using fast Fourier transform. This 

task was necessary for the application of the Markov method. The effectiveness of the obtained 

models has been demonstrated for harmonic compensation tasks. 

Petersen et al. in [38] adopted a probability approach to model arc voltage and resistance for study 

and simulation of voltage flicker. On the whole, these models could make an accurate estimate for 

chaotic values of arc resistance and voltage assuming that the arc parameters were closely 

Gaussian. More specifically, this work was carried out based on statistical studies that had shown 

the distribution of arc voltage in time is approximately Gaussian, when mechanical resonance is 

inexistent. In a similar manner, the distribution of the furnace resistance was approximately 

modelled as Gaussian. This was done in despite the fact that the distribution was fairly tight around 

the mean and, hence, different from an exact Gaussian distribution. The authors acknowledged 

that these models were able to forecast the flicker accurately. However, they could not simulate 

the arc behaviour perfectly. 

Acha et al. in [9] presented direct harmonic domain representations of dynamic nonlinear elements 

(such as arc furnace) in power systems that were traditionally restricted to only linear elements. 

Altogether, the nonlinear characteristics were represented by fitting those characteristics with a 

polynomial, for which special harmonic domain processing via convolutions has been developed, 

or by directly applying a fast Fourier transform. Subsequently, the authors derived a model for 
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electric arc in the form of a differential, equation grounded on the law of conservation of energy 

and took into account simple energy balance considerations. For example, in the power balance 

equation of the arc it was assumed that the cooling effect was a function of the arc radius only. 

While in fact, it is also a function of arc temperature. This dependence, therefore, is ignored in 

order to keep the model simple. 

To summarize, the literature of EAF modeling is heavily dominated by methods that are based on 

explicit equations, oversimplified assumptions or subjective information, the validity of which are 

rather questionable. Besides, in these methods not enough attention has been devoted to the 

stochastic nature of the data. As a result, although these models are considered to be “good,” there 

is a tendency among researchers towards more black-box methods in pursuit of “better” models, 

in which the model structure is not presumed, and the behavior of the system is described entirely 

based on the actual input and output data. 

3.1.2 Black-Box Models 

In contrast, when there is no a-priori information available, and the peculiarities of what is going 

on inside the system are entirely unknown, the black-box models come into play. Using black-box 

methods, the system is described only in terms of its input and output, without any knowledge of 

the internal workings. Black-box methods have gained enormous popularity, especially in the case 

of modeling dynamic and highly nonlinear systems such as electric arc furnaces, where more 

traditional white-box methods do not seem to be able to capture all the dynamics of such a 

complicated system. 

A. Single Scale Black-Box Methods 

 



 

37 
 

In this thesis, we refer to black-box methods, in which wavelet transform has not been utilized as 

single scale methods. These include artificial neural networks, fuzzy logic systems and neuro-

fuzzy logic systems. In this section, the application of these methods to the modeling problem of 

electric arc furnace is investigated. 

In [4] Sadeghian and Lavers applied artificial neural networks for modeling the highly non-linear 

and stochastic EAF systems. Neural networks are known to be especially effective and powerful 

for modeling these systems since all they use for describing the system under study is data. The 

characteristic of the EAF has been modelled by mapping from the EAF current to the EAF voltage 

by means of neural networks. Nevertheless, because the data proved to be insufficient and the 

neural network could not converge to an optimum solution, the arc current derivative with respect 

to time was also considered in the inputs along with past values of EAF voltage and EAF current. 

This added quantity could easily describe hysteresis and chaotic behaviors in the v-i characteristic. 

The neural network-based EAF models were successfully developed using two different neural 

network architectures: MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function). In the 

end, it has been shown that the computational results were strictly comparable to the existing 

measurements.  

Chang et al. in [39] also presented an effective method, based on artificial neural networks, for 

modeling the highly non-linear v-i characteristics in electrical arc furnaces. Multilayer perceptrons 

with back-propagation learning algorithms are considered to be the most popular neural networks 

and deliver high precision and the capacity for managing extremely nonlinear problems. However, 

they suffer from the disadvantage of slow convergence and quickly trapping into undesirable local 

minimum of the error surface [40]. Therefore, they used radial basis function neural networks 

instead. These networks have a much simpler structure and a set of compactly supported basis 
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functions that can be locally adjusted for more accurate function learning and modeling. In order 

to capture the highly nonlinear and time-varying v-i characteristics of an EAF, they made some 

modifications to the traditional radial basis function networks. The problem with traditional neural 

networks is that they can only deal with the ordinary one-to-one or multiple-to-one function 

mapping problems. However, the v-i characteristic of an EAF differs from these mapping 

definitions, typical of an ordinary function and, as the result, a conventional neural network cannot 

converge in all parts of the v-i characteristic curve. To overcome this drawback, a lookup table 

method was proposed. In this method, the associated parameters of the radial basis functions used 

in the design of neural network at each sampled time instant were stored, over the course of the 

training process for all the possible function mapping relationships between the network input and 

output. In effect, the transfer functions were no more fixed which made it a good choice for 

modeling time-varying characteristics attributable to electric arc furnace. The results indicated that 

the proposed method was efficient and reliable and generalizable to other power engineering 

studies. 

Fuzzy Logic Systems can be considered another nonlinear black-box modeling structures. Their 

key properties of universal approximation and functional equivalence with RBF, support the 

effectiveness of FLS as a solution to highly nonlinear problems [15].  

Sadeghian and Lavers in [14, 15] proposed fuzzy logic systems as means of EAF modeling. To 

this end, they established two different model structures; classic and adaptive FLS. The underlying 

idea in both techniques was establishing an input/output structure, and employing an appropriate 

algorithm for learning, ensuring that the fuzzy logic system (FLS) is capable of modeling the 

nonlinear v-i characteristics in electric arc furnace accurately.  
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In the classic FLS, the input/outputs of the system and their interval domains were firstly identified. 

Each domain interval was then divided into N regions arbitrarily based on the complexity of the 

problem. The Gaussian function, which covers the entire input space was used as the membership 

function. The input/output data pairs were used to extract the rules and the “Conflict Resolution” 

strategy was used to trim the rule-base. “Generalized Modus Ponens” and the “height 

defuzzification” methods were used as the implication and the defuzzification techniques 

respectively. 

Their result showed that the classic fuzzy method had a faster training process compared to RBF 

networks. However, the trial-and-error approach in this training, sacrificed the accuracy of the 

models. Hence, they were inferior to RBF networks in that sense. Another disadvantage was that 

in this method a-priori or heuristic knowledge was needed in order to trim the huge number of 

rules in the rule base. Lastly, this technique did not consider the distribution of data in the 

input/output space and ignored the natural grouping of the data. 

The notion of adaptive FLS was, therefore, used in order to improve fuzzy modeling. It has been 

demonstrated in Sadeghian’s work that by augmenting FLS with neural networks, adaptive FLSs 

could alleviate the main weaknesses in the classic FLSs.  

The researchers used the Adaptive Neuro-Fuzzy Inference System (ANFIS) structure to develop 

their adaptive fuzzy network. This approach uses the Gaussian membership function for fuzzy sets, 

linear membership functions for the output variables, the “subtractive cluster analysis” method for 

extracting rules and “Sugeno’s inference mechanism” for the process of inference and reasoning. 

The ANFIS  algorithm, which is a hybrid learning algorithm based on “gradient descent” as well 

as “least-squares estimate” was employed to obtain and update the parameters corresponded to the 

membership functions (i.e., mean and standard deviation) along with the coefficients of the output 
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linear functions. In effect, their adaptive FLS provided the accuracy, learning capabilities and 

adaptivity of neural networks along with the fast training and generalizability of FLSs at the same 

time [20]. 

In the following section, the black-box methods in which the advantageous properties of wavelet 

transform are also employed are reviewed. In this thesis, these methods are termed multi-scale 

methods .Although not all of these methods have been directly applied to electric arc furnace data, 

the methods can also be applied to any complex, nonlinear time series such as voltage and current 

of electric arc furnaces

B. Multi-Scale Black-Box Methods 

At this point, more satisfying approach seems to lie in the integration of black-box and multi-scale 

methods, namely wavelet transform. In the literature, several black-box methods have been 

proposed that take advantage of wavelet transform. However, almost all of these studies 

concentrated on time series prediction and not modeling task, even at a general level. It is not 

necessary to mention that in this case, studies on arc furnace modeling, utilizing wavelet transform 

are still lacking. 

To begin with, in several publications, the wavelet theory and neural networks have been combined 

into one to yield a new form of neural network, namely Wavelet Neural Network (WNN). The 

main purpose of these studies was to formulate a link between theory of wavelets and artificial 

neural networks. In a very broad sense, in these types of networks, the ordinary activation function 

such as sigmoid is replaced with a multi-scale wavelet function and the corresponding wavelet 

coefficients are assigned to the weights. Since wavelets have already shown their excellence in 

many data analysis tasks, this combination may provide faster convergence, higher ability of 
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generalization and improved prediction, and several studies confirm this. For example, Bashir et 

al. in [41] discussed the application of the wavelet neural networks to the problem of short-term 

load forecasting and compared the superior results with that of ordinary neural networks. In this 

work, the Morlet wavelet was chosen as the activation function because of its simple, explicit 

expression. A three-layer network structure was designed, and the training was done by using the 

Lavenberg-Marquardt back-propagation algorithm. Weights, biases and parameters of the wavelet 

neural network were also initialized according to the Nguyen-Widrow algorithm and were later 

adjusted during the training phase. 

In another study [42], Ying et al. adopted a novel wavelet neural network model with two input 

layers to predict the power consumption of EAFs. Input variables included the process parameters 

that affected the electricity consumption. These variables were not input in one layer, unlike the 

traditional neural networks. Instead, they were put in different layers, in compliance with their 

action sequence and thus, could reduce the network scale. In this work, one-dimensional Mexican 

hat wavelet function, which satisfies the requirements of compact support and regularity, was used 

for the activation function of the hidden layer; S-tangent function was chosen for the activation 

function in the output layer. The hidden layer was decided to have a total number of 3 and 16 

neurons. In their proposed scheme, they also incorporated genetic algorithm as the learning 

algorithm for weight optimization in the neural network and could achieve global optimization and 

fast convergence. According to the results, the largest error between predicted and actual electricity 

consumption was only 1.69%. 

Masuda et al. in [43] developed and tested the idea that wavelet transform preserves the topological 

structure and chaotic properties of the original time series in its frequency components, given as 

band-limited wavelet coefficients. Therefore, they proposed a novel method of predicting a 
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dynamic system by applying the inverse wavelet transform to predictees of each scale. In this 

work, the researchers suggested two methods based on wavelet transform and non-decimated 

wavelet transform, which are identical in nature and differ only in few details. First, the time series 

is decomposed by either wavelet transform or non-decimated wavelet transform. Then, each 

frequency component at different scales is predicted for the next certain amount of steps depending 

on the transform, using any method appropriate. Afterwards, the inverse wavelet transform is 

applied to specific coefficients, again depending on the transform, to obtain the forecast values in 

the original time series. In this study, they confirmed that the application of wavelet transform 

made long-term prediction of chaotic time series feasible, which was otherwise impossible because 

of the sensitive dependence of chaotic time series on initial conditions. They also prepared the 

ground for other researchers to develop novel prediction methods based on predictees of frequency 

components. 

In a similar manner to WNNs, the theory of wavelets and Support Vector Machines (SVM) has 

also been combined to yield the advantages of both techniques. SVM has a rigorous theoretical 

and mathematical foundation, which has a powerful generalisation capability. The basic idea of 

using SVM is to facilitate nonlinear regression problems by transforming the data into a higher 

dimensional feature space, in which conducting a linear regression is then possible. 

One of the examples of this integration is presented in [44]. Niaona et al. in this study introduced 

a multi-scale energy consumption prediction model for electrical arc furnaces based on Least 

Square Support Vector Machines (LS-SVM). In their three-step algorithm, wavelet transform was 

firstly conducted on the arc furnace power consumption sequential data. Then, the wavelet 

coefficients at t time instance were taken as the input of LS-SVM, while those at t+T time instance 

were taken as the output of SVM. Finally, the predicted value was calculated by using wavelet 
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reconstruction. The prediction error in this combined model was only 1.98% that could meet the 

requirements of engineering practice. 

Recently, several authors have proposed using wavelet decomposition in combination with neural 

networks to provide more accurate time series forecasting. However, these approaches differ from 

wavelet neural networks, on the way the wavelet transform is used. 

Soltani in [45] used this combination to provide acceptable prediction in a measured time series. 

Their objective was to predict the value of the measured time series at a later time; namely at p 

steps ahead, using all the observations. In order to build a functional relationship that could map 

the time series and the prediction value accurately, they followed several steps. They firstly applied 

wavelet filters iteratively to construct trend series and a hierarchy of detail series at different scales. 

Afterwards, a neural network was trained to model every time series. Lastly, they combined these 

values to obtain a prediction to the original time series. In this proposed method, unlike 

conventional ones, in which obtained series are treated separately, the interdependencies between 

the different series were also considered. In other words, instead of finding estimators that mapped 

each series and its equivalent prediction value, they looked for ones that could find the mapping 

between all the different series and the predicted value at a particular scale. In effect, this 

sophisticated method also included information of other series for improving the prediction 

accuracy of each time series. The results obtained through some well-known time series 

substantiated that the wavelet decomposition method profoundly reduced the empirical risk. 

In another study [46], Soltani et al. addressed the problem of predicting time series with long-term 

memories by using wavelet transform based on an Auto-Regressive (AR) model. The classical 

way to approach such time series was Auto Regressive fractionally Integrated Moving Average 

(ARfIMA) models. However, the estimation of the integration parameter in these models was not 
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an easy task. The way around this problem was to transform the time series into another domain 

such that it can be modelled with simpler model structures. In this study, the wavelet transform 

was applied to the time series with long memories to decompose it into a trend (an approximation 

to the function) and a hierarchy of detail series (each at a particular resolution) that were stationary 

and had short memories. As the trend series will contain no more useful information after few 

decomposition levels, the predicted value in the original time series can be calculated by 

aggregating the predicted values in just the detail series. These obtained detail series could then be 

modelled with less problematic ARMA models. They proceed even further by analyzing the 

statistical properties of the derived time series and found out since the moving average did not 

exist, they could simply use the straightforward AR models. In order to also consider the inter-

correlation between the time series, they exploited the multi-channel version of the AR model. 

Zhongliang et al. in [47] proposed another method to improve short-term load forecasting accuracy 

based on various RFB neural networks. The wavelet transform was firstly used to decompose the 

electrical load into different parts, corresponding to different influencing factors. Then a 

compound model with three sub-RFB neural networks was constructed, each for part of the 

decomposed electrical load. The model was then trained using historical data, and lastly prediction 

was made. According to simulation results, this multiple RBF neural network method achieved an 

excellent performance. The fact that the mean absolute percentage error decreased from 3.86 by 

ANN method to 1.7 by the proposed method, lend support to this claim. 

Another study [22], also investigates the effectiveness of this setting. In this study, an accurate 

wavelet-GA-ANN based hybrid model was developed for short-term load forecasting in power 

systems. The à trous wavelet transform was firstly applied to the load data. The output was then 

used for the training process of the RBF neural network. The novelty of this study is that they 
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optimized the structure of their auto-configuring RBF neural network by a variant of genetic 

algorithms. The results obtained from various actual load data showed that the proposed model 

was efficient and could predict the load accurately for seven steps ahead. Furthermore, the 

proposed model proved itself to be more accurate as compared to the models that were solely based 

on the RBF networks. 

The paper [48] utilized the synergies of three powerful techniques which could significantly 

enhance the power of forecasting. Bashir et al. in [48] adopted an ANN-based method to predict 

the load an hour ahead. They used the Particle Swarm Optimization (PSO) technique in the training 

phase of the neural network, instead of using a conventional back-propagation technique. As a 

preprocessing step, the historical load data was firstly wavelet transformed and then fed into a 

neural network. The obtained model could improve the accuracy by employing wavelet analysis 

to the inputs of the neural network. This is because the behavior of load is characterized by wavelet 

transforms more effectively, as confirmed by the authors. 

Although each of these studies provides invaluable insight into the problem, there is a degree of 

ambiguity in relation to which wavelet coefficients are considered more descriptive. To our 

knowledge, this issue has been scarcely investigated from the theoretical point of view. 
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4 Methodology 

 

In this chapter, the proposed modeling procedure, which is a combination of multi-scale filtering 

and nonlinear regression techniques, is presented. The proposed algorithm combines the 

algorithms presented by Sadeghian et al. [4] and Renaud et al. [29] and includes four main steps. 

These steps are:  

 

 data acquisition,  

 preprocessing,  

 feature extraction, and  

 hybrid neuro-wavelet modeller.  

 

In the proposed approach, first, the voltage and current (v-i) information are collected from an 

operational electric arc furnace. Then, the preprocessing unit transforms the measured v-i signals 

from the time domain to the joint time-frequency domain using a special form of wavelet 

decomposition analysis with the intention of obtaining a more detailed and deeper insight about 

the data. In the feature extraction phase, the relevant wavelet coefficients that are more 

representative of the signals are identified. These coefficients are then used to form the modellers’ 

input vector. In the final step, several artificial neural networks are built to find the functional 

relationships capable of mapping the arc current to voltage with the principal concern of 

minimizing error. The proposed algorithm is shown in  

Fig. 4.1. 
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Fig. 4.1. The proposed modeling algorithm 
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4.1  Data Acquisition 

Providing accurate and detailed functional mapping from the input space to the output space is at 

the heart of any modeling technique [4]. That is, the identification of the input and output 

components, in accordance with the objective, is necessary prior to any other tasks. 

In this study, the principal objective is to model the behaviour of an electric arc furnace that 

operates within electrical networks. The voltage-current (v-i) characteristic, which signifies the 

relationship between these two variables, is a common way of describing the operation of electrical 

devices and, hence, modeling their behaviours. Consequently, the principal objective can be 

considered as an accurate mapping from the EAF current to the EAF voltage. In this study, the 

voltage and current measurements from an operational EAF was used. 

4.2  Preprocessing Methods 

The preprocessing tasks employed on the arc voltage and current signals include a transformation 

to the wavelet domain together with the alignment of the resulting coefficients with the original 

measurements. The description and the rationale behind each task are given in the following 

sections. 

4.2.1  Wavelet Transform 

The arc voltage and current are both non-stationary signals. That is, their statistical properties 

change over time [49]. Moreover, these signals have characteristics that change in both time and 

frequency domains. The readers are referred to Fig. 4.2, Fig. 4.3 and to Fig. 4.4, Fig. 4.5 for a 

close-up view of these signals. It is widely accepted that the localized wavelet transform is one of 

the most effective mathematical tools for describing this type of data. In a broad sense, this 
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transformation redistributes the embedded information in the signals, among the wavelet 

coefficients in a manner that is more effective and advantageous than the original signal [30]. This 

is the primary motivation behind analyzing these signals in the wavelet domain instead of their 

original one. 

As has been mentioned earlier, the transfer to the wavelet domain has many advantages over time 

or frequency domain. To begin with, wavelets are not only time localized, but they also have the 

frequency localization property. For this reason, representation of the signals using wavelets can 

be sparse. In addition, wavelets have the capability of analyzing the signals more comprehensively 

due to their multi-resolution property. This means that each component of the signals can be 

studied with a resolution that matches its scale. In this case, higher frequency components can be 

studied with better time resolution and lower frequency ones with better frequency resolution. 

Interestingly, this is exactly how most signals, including the ones in this work need to be studied. 

That is because in practice, low frequencies often endure over the entire duration of the signal. In 

comparison, high frequencies show up as sudden bursts from time to time [24]. 

Put it another way, the voltage and current signals contain both discontinuities and smooth 

components. Analysis of such signals is highly beneficial by wavelets, as this transform offers a 

variety of basis functions that differ in scale and length. Consequently, short (local in the time 

domain and therefore, smaller compact support) and high-frequency wavelets can be used for 

discontinuities, and long (with larger support), low-frequency ones for smooth parts [50]. 

Furthermore, using wavelets, the complex multi-scale structure of the signals can be simplified. 

This transformation leads to the generation of signals of simpler structures with much shorter 

memories and less temporal dependence [51]. These signals, resulting from the transformation, are 
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indeed easier to model, and it is not uncommon to see that even models that are not sufficient in 

the time domain are accurate in the wavelet domain [25]. 

As a final point, wavelets are used for the purpose of learning all the EAF dynamics. This is 

because wavelets decompose the signals iteratively and result in a hierarchy of new signals each 

of which contain the EAF dynamics at a different scale. 

The above mentioned reasons constitute the primary motives for using wavelet transformation 

prior to applying any modeling technique. However, not all forms of wavelet transform are suitable 

for analyzing time series for the purpose of modeling. In the following section, the wavelet 

transform that is the most appropriate is introduced. 
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Fig. 4.2. The arc voltage signal 

 

 

 
Fig. 4.3: The arc current signal 
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Fig. 4.4: A close-up view of the voltage signal 

 

 
Fig. 4.5: A close-up view of the current signal 
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4.2.2  The Non-Decimated Discrete Wavelet Decomposition 

There are a large number of wavelet transforms where each may be more suitable for a particular 

application. In this section, the rationale for selecting the “non-decimated discrete wavelet 

transform” is explained in detail. 

Although the arc voltage and current are continuous variables, they are discretely sampled at a rate 

of 1920 Hz (Nyquist rate) during the data acquisition phase. Therefore, a discrete form of wavelet 

transform seems to be the most appropriate. The output of this discrete wavelet transform can be 

either decimated or non-decimated. Decimation in this context means retaining one sample out of 

every two (every other data point) in order to  maintain only those information that are sufficient 

for perfect recovery of the input data [29]. However, under these circumstances, it is difficult to 

see the correspondence between information at a particular point in time at different resolution 

levels resulting from the wavelet transform [29]. Because this capability is essential in the 

modeling schemes followed in this study, a non-decimated transform is desirable. Furthermore, 

the decimation operation can raise another problem, namely, “aliasing.” Aliasing in this context 

refers to the effect that causes different signals to be indistinguishable [52]. Aliasing is the direct 

result of sampling a signal at a rate lower than Nyquist, or sampling at a rate which is not higher 

than, or equal to twice the maximum frequency in the signal [53]. As a consequence of this, higher 

frequencies get superimposed on lower frequency components, which adversely affect the 

information in both lower and higher frequencies. In sum, aliasing can corrupt the information in 

the signal, and hence, make the reconstruction of the original signal impossible.  

Besides, a decimated discrete wavelet transform is an orthonormal transform and may not be the 

best representation for our signals. This is because each of the orthonormal bases contains equally 

important information in its corresponding coefficient [25]. Therefore, there is a possibility that 
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some useful information is removed during the feature extraction phase, in pursuit of retaining 

only the key information. The non-orthogonal bases, on the other hand, are not independent. As a 

result, it is less likely for some key features to be neglected. 

Finally, and most importantly, transform in the decimated form suffers from the lack of shift 

invariance. Shift variance implies that decimated discrete wavelet transform outputs are sensitive 

to the choice of origin of the signals [54]. In order to clarify the reasoning behind the sensitivity to 

the choice of origin, the calculation of wavelet coefficients should be inspected carefully. In [28], 

Percival and Walden state: 

“…while the wavelet coefficients for the decimated discrete wavelet 

transform can be interpreted as a difference between two weighted 

averages, the intervals over which these averages are made are rigidly 

fixed a priori and hence might not line up well with interesting features in 

a time series. A change in the starting point for a time series data can yield 

quite different results due to juxtaposition of the time series with the 

averaging intervals predefined by the decimated discrete wavelet 

transform.” 

 

Given the latter points, the decimated discrete wavelet transform is not appropriate for analyzing 

time series with no distinctive start and end. In contrast, the non-decimated discrete wavelet 

transform includes all possible placements of averaging intervals and hence, cancels the 

undesirable effects that choosing a particular starting time might have [28], and as a result, the 

property of shift invariance is acquired. All in all, the non-decimated wavelet transform is the 

alternative solution for resolving all the afore-mentioned issues.  

Using the non-decimated discrete transform, the signals are decomposed into several levels with 

different scales. Each level has the same length as the input signal. Consequently, locating relevant 

information at each level for the same point in time is now possible. 
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The only demerit of this transform is the extra storage requirement, which may not be very 

economical. This is because the non-decimated discrete wavelet transform of J levels for a time 

series of length N, is a highly redundant transform yielding J+1 new time series 

JJ VWWWW
~

,
~

,...,
~

,
~

,
~

321 each of dimension N. Here, JV
~

 refers to the vector of the thJ  level scaling 

function coefficients and JW
~

to the thJ  level wavelet coefficients of a signal. However, this extra 

storage is not too much since the value of J is a constant and also small in practice.  

 A. The MODWT Wavelet Transform 

The non-decimated discrete wavelet transform used here is described and fully formulated in [28], 

and also implemented as a MATLAB toolkit in [55]. This transform is called Maximal Overlap 

Discrete Wavelet Transform (MODWT). A MODWT wavelet filter must satisfy the following 

three basic properties in (4.1) [28] having that n is a nonzero integer: 

                                                                                            (4.1) 

In these formulas, ℎ𝑙  refers to the filter coefficients and L to the filter length. 

A MODWT wavelet filter must: (i) have a zero sum, (ii) have energy of ½, and (iii) must be 

orthogonal to its even shifts. The MODWT scaling filter satisfies the three conditions [28] of 

                                                                                          (4.2) 

where for any arbitrary sample size 𝑛, gl  refers to the filter coefficients, l to the filter index, and L 

to the filter Length. 

The 𝑗𝑡ℎ level MODWT wavelet and scaling coefficients are defined to be the 𝑁 dimensional 

vectors  and  (same as the original signal) whose elements are: 
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                             (4.3) 

 

And }1...,,2,1,0{  Nt , where and are respectively, the 𝑗𝑡ℎ level MODWT wavelet 

and scaling filter coefficients, which are formulated in terms of the 𝑗𝑡ℎ level wavelet and scaling 

filter coefficients  and  via  and . It is important to 

consider here that . 

These 𝑗𝑡ℎ level MODWT coefficients can also be obtained from the MODWT scaling coefficients 

of level j-1 via recursions: 

                     (4.4) 

where . 

The 𝑗𝑡ℎ level MODWT wavelet coefficients can also be calculated by taking the difference 

between successive scaling function coefficients: 

                              (4.5) 

Although the primary focus of this study is on modeling, the created models can also be used for 

the prediction purpose. Modeling and forecasting are perceived as similar tasks. However, a slight 

notable difference exists where in any forecasting scheme, at any time instance, future 

measurements are indeed not available. Therefore, they cannot be part of the forcasting process 

[29] whereas in modeling, this limitation does not apply. 
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Careful attention to (4.4) reveals that in the calculation of coefficients in coarser resolutions at 

time t, information of other higher resolution coefficients in times after t may need to be 

considered. This happens in cases where non-zero filter coefficients exist for negative indexes. For 

this to be the case, depend on the wavelet filter being used. Therefore, in case the model is also 

going to be used for prediction, only “Causal” wavelet filters should be used. In other words, the 

nature of any forecasting technique imposes causality on filters [45]. This constraint implies: 

               (4.6) 

“Filter causality” is the essential requirement for adopting this modeling scheme for the prediction 

purpose. Otherwise, this limitation does not apply and, therefore, any wavelet filter (perhaps more 

regular) can be used. In this way, more regular wavelets can be used to adapt to the particularity 

of the data [56]. 

The filters that were tested in this study are taken to be causal and include:  

 The Daubechies Extremal Phase filters,  

 The Daubechies Least Asymmetric filters (or the Symlets),  

 The Best-Localized filters and The Coiflets.  

The wavelet and scaling function filter coefficients, belonging to the last three groups are shown 

in Fig. 4.6, Fig. 4.7 and Fig. 4.8 respectively. 

00~~
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Fig. 4.6. The Least Asymmetric wavelet and scaling function filters 



 

59 
 

 

Fig. 4.7. The Best-Localized wavelet and scaling function filters 
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Fig. 4.8. The Coiflet wavelet and scaling function filters 
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4.2.3  Time series Alignment 

Since neither wavelet filters, nor scaling filters at any level j are zero phase filters, the resulting 

output coefficients do not align with the original time series. Although this alignment is more of 

an implementation requirement, it is still worth elaborating on since it significantly affects the 

results in the feature extraction module. The corresponding phase functions of the MODWT filters 

are formulated as [28] 

               (4.7) 

In these formulas, (.)
)(G

j refers to the phase function for MODWT scaling function filter at level 

j, and 
)(H

j to phase function for MODWT wavelet filter at level j. In addition, f denotes the 

frequency and finally, 
)(G

j and 
)(H

j signify “advance” for scaling function filter and wavelet 

filter respectively, and will be explained in continuation. 

Since the phase functions in (4.7) are approximately linear, they can be changed to zero phase 

filters by an advancing operation [28]. The number of units  and filters should be 

shifted at a specified level is defined as: 

               (4.8) 

The value of constant  depends on the wavelet basis. For example, for the least asymmetric 

wavelets, the value of  is equal to: 
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                            (4.9) 

For the Best-Localised wavelets,  is equal to: 

             (4.10) 

And for the Coiflet filters  is equal to: 

                (4.11) 

It should be noted that using a filter in which coefficients have been advanced circularly by 

units, corresponds to advancing the filter output by the same units [28]. Therefore, by doing the 

above calculations, how much each transformed time series at a specified level should be shifted 

is also known. In this study, these adjustments were made by the shifing operation, prior to 

commencing the feature extraction phase. 

4.3  Feature Extraction Method 

According to [4], for modeling the v-i characteristic of an electric arc furnace, some information 

about the past values of the voltage signal is necessary. This is because modeling the v-i 

characteristic can also be viewed as modeling the arc voltage in terms of the arc current and 

obviously when modeling any time series (the arc voltage being no exception) the past 

measurements are also required. To fulfill this requirement, recent past values of the voltage signal, 

at different resolution levels were used. The term “recent” here indicates that these transformed 
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signals were of relatively short memory. This means that the wavelet transform yielded signals of 

lower auto-correlation values.  

Following this, it was necessary to determine how many and which coefficients at each resolution 

level should be considered to allow for thorough representation of the voltage signal. Renaud et 

al.’s approach [29] to time series forecasting was incorporated into this study, where the scaling 

function and wavelet coefficients are suggested to be of the form 
)1(21,

~
 ktJ JV and

)1(21,

~
 ktj jW  . It is 

important to consider that , therefore, the values of k are all positive.  

Finally, the question under discussion was the value of jA , for each of the resolution levels. If the 

value of
 

 is determined carefully, this would be a sparse and at the same time a complete picture 

for all the information embedded in the series resulted from the wavelet transform [57]. That is to 

say, these few coefficients can be used for almost perfect recovery of the voltage signal at any 

point in time. 

On the condition that the length of the time series is a power of two, the features of the form 

)1(21,

~
 ktJ JV and

)1(21,

~
 ktj jW , that are selected using dyadically lagged coefficients of the non-

decimated transform, are, in fact, the coefficients of the decimated form of wavelet transform [28].  

As has already been mentioned, at any time t, the arc voltage not only depends on its own previous 

values, but also on the corresponding arc current. Given the latter point, modeling the arc voltage 

in terms of the arc current at time t required the following features: the past values of voltage, 

transformed in the wavelet domain, in the form of 
)1(21,

~
 ktJ JV  and 

)1(21,

~
 ktj jW  and the current at 

time t. The modeling scheme, in which this feature set (see Fig. 4.9) was used, is referred to as the 

first modeling scheme hereafter. 

jAk ..1

jA
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Fig. 4.9. Features used in modeling v-i relationship in the first scheme 

 

For a more comprehensive study, another feature set was created, by also transforming the current 

signal into the wavelet domain and extracting features based on the same formula. This can be 

justified on the grounds that the arc voltage also depends on previous values of the arc current. In 

this way, although indirectly, the present value of the current as well as its previous ones was taken 

into consideration. The modeling scheme, in which this feature set (see Fig. 4.10) was used, is 

referred to as the second modeling scheme hereafter. 
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Fig. 4.10. Features used in modeling v-i relationship in the second scheme 

  

4.4  Hybrid Neuro-Wavelet Modeling Method 

Artificial Intelligence (AI) methods especially neural networks have shown promising results in 

modeling problems. The neural networks are among supervised techniques that have long been 

used to deal with the nonlinearity in data and have produced satisfactory results throughout the 

literature. Wavelet transform, on the other hand, allows for the study of non-stationarity behaviour 

in data. Therefore, combining wavelet transform and neural networks seemed to be extremely 

appropriate in analysing the voltage and current signals in electric arc furnace, that are both 
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nonlinear and non-stationary and hence, gave us more power on modeling the complex, nonlinear 

relationships involved in arc furnace v-i characteristic. 

In [4], the use of nonparametric methods, such as neural networks and Radial Basis Functions 

(RBF), are justified to approximate any real continuous function to any particular level of accuracy. 

Considering this, along with the fact that the signal can be constructed from its wavelet 

coefficients, the foundation of our modeller used Multi-Layer Perceptron (MLP), which is the 

simplest form of neural networks. This MLP was fed with the selected coefficients in the previous 

section as inputs and the voltage at time t as the output. The complex relationships in the v-i 

characteristics of the electric arc furnace were then modeled by learning from samples in the 

training data set, which consisted of the past voltage, the past current and the present current 

behaviour of the EAF. 

For the purpose of designing such an MLP, a number of parameters were decided upon. In 

particular, the optimum number of hidden layer neurons was chosen. Although, the optimum 

number of hidden layer neurons in any neural network is highly problem dependent and a matter 

of experiment, a bottleneck structure was employed that is suggested by experience in [58]. 

According to this recommendation, there should be fewer neurons in the hidden layer than nodes 

in the input layer. 

The architecture of such an MLP is shown in Fig. 4.11 and Fig. 4.12, for the first and second 

modeling scheme respectively. As can be seen from these figures, sigmoid transfer functions were 

used for L hidden layer neurons. Whereas, for the output layer neurons the simple linear function 

was employed. 
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Fig. 4.11. The proposed neural network structure for modeling v-i relationship in the first scheme 

  

 

 
Fig. 4.12. The proposed neural network structure for modeling v-i relationship in the second scheme 
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The selection of input layer nodes was mainly dependant on the decision about which and how 

many past coefficients to use for modeling. We have followed the basic guideline of Occam’s 

Razor principle, which prefers simple models [58]. The fewer the input nodes, and, as a result, 

fewer weights in the network, the greater is the confidence that overtraining does not happen [58]. 

The general form of the relevant coefficients was formulated in the previous section. However, the 

values of  still remained unknown and had to be determined in order for the most relevant 

coefficients to be selected. On one hand, for large values of , the selected coefficients could act 

as orthogonal bases capable of representing all the past values, and in a way contained all the 

information on the decomposed series [57]. However, this was not efficient and had the drawback 

of increasing the problem dimensionality. Moreover, not all these coefficients were equally 

relevant to the output (the voltage). As a result, the possible random correlations between these 

rather irrelevant coefficients and the voltage signal could make it hard for our neural network to 

set the weights for less useful inputs to zero. Consequently, this irrelevant data could affect the 

model’s performance adversely [58]. 

On the other hand, small values for  could make the training of neural network simple, but the 

information about the past values of voltage could be insufficient to model accurately. The value 

of  was required to be optimum to result in the smallest possible number of coefficients and 

hence inputs for the neural network. 

 The preceding problem can also be looked at from another view. For the purpose of learning, the 

training samples were to be created using the sliding window technique. Thus, it was necessary to 

decide upon the size of the window for each of the series at different resolution levels. 

jA

jA

jA

jA



 

69 
 

With the intention of estimating , each of the obtained time series at different resolutions levels 

were assumed to be an Auto Regression (AR) process. This means that every single element in 

these time series depends linearly on its own previous values. The number of these previous values 

specifies the AR model order. From this point of view, the challenge shifted from finding the 

appropriate value of  at each resolution level, to determining the model order of each time series 

at different resolution levels. 

There are a number of metrics to measure the order of an auto-regression model. In this thesis, 

three well-known metrics of Akaike Information Criterion (AIC), Akaike Information Criterion, 

Corrected (AICc), and Bayesian Information Criterion (BIC) were considered. However, only the 

BIC metrics was used to estimate the value of  on each scale. These metrics are explained in 

detail in the next section. 

The next thing to be taken into consideration was the total number of required training samples. A 

rough guideline, based on theoretical consideration of the Vapnik-Chervonenkis (VC) dimension 

was followed. This guideline recommends that the total number of training samples should be ten 

times or more the total number of weights [58]. Consequently, a large enough training data set was 

created in order to have the added advantage of containing the entire system dynamics and hence, 

the ability to model the system more accurately. 

As a final point, it should be mentioned that among all the possible approaches, the Levenberg-

Marquardt back propagation algorithm was used for the learning process and obtaining the 

optimized weights in the neural network. 

jA

jA

jA
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4.4.1 Information Criteria 

In this section, a number of information criteria, namely, AIC, AICc and BIC for comparing 

statistical models are introduced. Besides, the justification for the choice of BIC in this study is 

provided. 

The first criterion is AIC, which is a measure of the relative quality of a statistical model [59], 

describing a particular data. Although, AIC provides a means to make selection decisions about 

the model, it cannot comment on the absolute quality of the model [59]. AIC is based on 

information theory as it relatively estimates the information loss when a particular model is used 

for representing the underlying data behind a system [59]. This measure is formulated as: 

             (4.12) 

where is the noise variance and is given by 

               (4.13) 

where SSE denotes the sum squared error, k is the number of parameters in the model, and n is the 

sample size. The value of k, that results in the minimum AIC specifies the best model [60]. 

Although aiming for a minimum value for  seems to be reasonable, it decreases continually as 

the model order (k) increases. In other words, even though the goodness of fit of the model 

increases by extra parameters (increasing the number of feature coefficients), so does the 

complexity of the model and also chances of over-fitting of the network to which these coefficients 

are fed. Therefore, the noise variance needs to be penalized by a term proportional to the number 

of parameters. This penalty term is by no means unique, and an extensive literature on different 

possible penalty terms is available [60]. 
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In view of the fact that the relative estimate of information loss through AIC is only valid 

asymptotically (and not for finite sample size), some correction is required when the number of 

data points is small [60]. This is the rationale behind introducing another metric, namely AICc. 

The corrected form of AIC is defined as follows: 

             (4.14) 

   

 Based on this formula, AICc imposes a greater penalty for extra parameters in comparison with 

AIC, and tries to balance model fit and parsimony properly. 

A correction term based on Bayesian arguments can also be derived, which leads to the Bayesian 

information criterion. This criterion penalizes differently from AICc for the number of parameters 

and is formulated as: 

             (4.15) 

The Bayesian information criterion also imposes heavier penalty on the number of parameters than 

does the AIC, and therefore favors more parsimonious models. With regard to our preference for 

simpler models, the BIC seemed to be a better choice in this study. Furthermore, in various 

simulation studies [60] it has been verified that BIC performs better in case of larger samples 

(which was the case with our signals), whereas AICc is superior in finding the correct order in case 

of smaller samples where the number of parameters is large in comparison. 
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5 Experimental Results 

 

The objective of our modeling procedure, as described earlier, is to find an accurate mapping,
rf , 

by means of which the arc voltage can be acquired once the corresponding arc current is known. 

In [4] this mapping has been defined as: 
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That is, the voltage at any time, not only depends on the current at that precise time, but also on its 

own previous value. In this work, keeping the last element intact, the mapping is modified to: 
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where JV
~

 refers to the vector of the thJ  level scaling function coefficients, and jW
~

to the vector of 

the thj  level wavelet coefficients of the voltage signal. Thus, this mapping uses the first feature set 

as defined in section 4.3 and depicted in Fig. 5.1. Mapping (5.1) is also modified to: 
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Fig. 5.1. The first feature set 
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where JV
~

 and jW
~

 are as defined in (5.2), and JV 


~
signifies the vector of the thJ  level scaling 

function coefficients, and jW 
~

 signifies the vector of the thj  level wavelet coefficients of the current 

signal. Therefore, this mapping uses the second feature set, which is defined in section 4.3 and 

depicted in Fig. 5.2. 
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Fig. 5.2. The second feature set 

 

The decision was made to use feed-forward neural networks as the function capable of mapping 

nonlinear relationships, mainly due to their universal approximation capability and also, their 

superiority in finding complex and nonlinear relationships among data. Consequently, in our 

proposed modeling procedure, vectors on the right-hand side of the equation (5.2) and (5.3) are 

fed into a feed-forward neural network with the intention to approximate the EAF voltage on the 

left-hand side. 
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5.1 Parameter selection 

To implement neural network based models, a number of decisions on different parameters had to 

be made. These decisions can be summarized as follows: 

 The Multi-Layered Perceptron (MLP) networks used here have two fully connected layers. 

Since the network has only one output, the output layer has one neuron that is taken to be 

linear. However, the hidden layer can have as many neurons as desired. The number of 

hidden neurons can be either found by trial and error or estimated by empirical guidelines. 

For example, it is suggested that the optimum number of neurons is estimated as [61]: 

}

,
2

)(
max{

OutputsofNumberInputsofNumber

OutputsofNumberInputsofNumber
hstart






                                               (5.4) 

 The activation function in the hidden layer neurons is taken to be sigmoid. 

 For training purpose, the minimum number of data samples was determined by the 

suggestions in [61]. These suggestions recommend the number of data samples created for 

training, which is only 70% of the total samples: 

 

)(min OutputsofNumberInputsofNumberhD start                                                  (5.5) 

 

where 
minD  and 

starth  respectively signify the minimum data samples required for training 

and the optimum number of hidden layer neurons. 

 70% of the samples were designated for training, 15% for validation and 15% for testing. 

In terms of the selection of training, validation and testing data, a random method has been 

used; which means that the training data samples were selected randomly from the 

available measurements in the dataset. 
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 The Levenberg-Marquardt backpropagation algorithm is used for the training purpose, 

which is fast and suitable for training of small and medium sized problems. This algorithm 

is a blend of steepest decent method and the Gauss-Newton algorithm and has the 

advantages of both.  

 The training process is stopped as soon as the validation error fails to decrease for more 

than six epochs as the training error keeps decreasing. This is done to avoid overtraining. 

Overtraining refers to presenting information to a neural network too many times, which 

can cause the network to memorize the data that was presented to it, instead of learning the 

relationships among inputs and outputs. If a network is over trained, it may not respond 

well to new situations. 

 The performance criteria for evaluating any neural network based model can be network 

size (in terms of number of hidden layer neurons or input size) or accuracy. In order to 

investigate the accuracy of the neuro-wavelet based models, the actual measured data is 

compared with the neural networks’ output. The error metric used for the comparison 

purpose is the Non-Dimensional Index Error (NDIE) that is obtained by calculating the 

root mean squared error of EAF modeling divided by the standard deviation of target EAF 

voltage. This error index was selected to allow for comparisons with the previous works in 

[4] and [15]. 

5.2 Results and Discussion 

In this section, to assess the validity of the proposed method, four sets of experiments are 

conducted. All the simulations in these experiments are run on a system with Windows server 2008 

operating system, 4 Intel® Xeon® CPUs of 2.50 GHz and 32 GB of RAM. 
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While it is not our primary objective, these experiments also examine the effect of changes in the 

number of decomposition levels of both voltage and current signals and the choice of wavelet basis 

on the accuracy of the models. 

5.2.1 The First Experiment 

In the first set of experiments, the simplest external phase wavelet in the Daubechies family, Haar, 

is used. This wavelet is depicted in Fig. 5.3 and its main properties are summarized in Table 5.1. 

 
Fig. 5.3. The Haar wavelet 

 

 

 

 

 

Table 5.1. Properties of the Haar wavelet 

Property Value 

Family Daubechies 

Orthogonal Yes 

Biorthogonal Yes 

Compact Support Yes 

Support Width 1 

Filter Length 2 

Regularity Haar is not continuous 

Symmetry Yes 
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Number of Vanishing 

Moments for psi (wavelet 

filter) 

1 

 

In order to estimate the optimum number of decomposition levels for accurate modeling, the 

coefficients at different resolution levels are inspected. It is observed that decomposing the voltage 

signal more than five levels does not add any further information. This is because the coefficients 

became zero after five levels. As a result, an upper bound of five decomposition levels is set for 

the voltage signal. This signal is then decomposed into 5, 4, 3, 2 and 1 level for further inspection. 

The results of these decompositions are illustrated in Fig. 5.4, Fig. 5.5, Fig. 5.6, Fig. 5.7 and Fig. 

5.8. In all of these figures, the bottom most signal is the original arc furnace voltage, and others 

are the transformed voltage signal into the wavelet domain at different scales. 

 

 

Fig. 5.4. The decomposed voltage signal into five levels of resolution 
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Fig. 5.5. The decomposed voltage signal into four levels of resolution 

 

 

Fig. 5.6. The decomposed voltage signal into three levels of resolution 
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Fig. 5.7. The decomposed voltage signal into two levels of resolution 

 

Fig. 5.8. The decomposed voltage signal into 1 level of resolution 

 

Regardless of the decomposition level choice, the methodology dictates a number of features to be 

extracted from each transformed signal (or each scale). The BIC metric is used for this matter, 



 

81 
 

which can estimate the number of salient features at each resolution level. The procedure is 

explained in detail in continuation.  

In the first place, it is important to note that the wavelet coefficients at each resolution level form 

an independent time series. To work towards the primary goal of determining the voltage at any 

time t, the wavelet coefficients at that specific time should be known. However, only coefficients 

at times before t are at our disposal. Given this scenario, it is important to determine the number 

of previous elements that affect the value of the transformed time series at any time t. In other 

words, the salient features at each resolution level are those on which the future coefficients are 

dependent. By definition, the “order” of time series specifies this number. Therefore, the order of 

each transformed time series, associated with a resolution level, should be calculated. However, 

calculation of the order of time series with an unknown nature is not a simple task and is still an 

open area of research in mathematics on its own. However, it has been mentioned before that the 

wavelet transform can simplify the structure of the original data. Therefore, it is assumed that the 

resulting time series, from the transformation, have noncomplex structures that can be defined by 

simple models or structures such as Auto Regression (AR). A standard method of determining the 

order of an AR process is utilizing the statistical metric of BIC. For this matter, a number of AR 

models are created for the data, with a presumed order. The BIC metric is then calculated for each 

of these models. The model that yields the smallest BIC is considered to be the best model and 

hence, the presumed order associated with that model is the best order for describing the underlying 

data. 

In this study, to estimate the approximate order of each transformed time series, the BIC metric 

has been calculated for each order from 1 to 100. The order corresponding to the smallest BIC, 

which is the best order, is then identified. 
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 Fig. 5.9 shows how BIC changes with different order values for the transformed voltage time 

series at the first resolution level. It can be seen that the quality of the models is improving by 

increasing the order from 1 to 25 as the BIC values are dropping. However, from that point on, 

adding extra parameters, which corresponds to increasing the model order, does not enhance the 

performance of the models. 

 

Fig. 5.9. The BIC value of the models created with different orders 

 

According to this figure, from all the models generated for the transformed voltage time series at 

the first resolution level, the one of order 25 performs the best. In other words, the smallest BIC 

value is achieved at order of 25. Therefore, the best order for describing the first resolution level 

time series is 25. This means that 25 preceding samples affect the value of any element at this 

resolution level.  

There is one more step towards determining the number of salient features, at each resolution level. 

It should be determined how many of the coefficients fall within this measured interval (the 
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windows of size 25 in the case of the first resolution level time series) according to the suggested 

form in section 4.3. In keeping with this form, the location (time wise) of the coefficients are 

formulated as 
)1(21,

~
 ktJ JV  and 

)1(21,

~
 ktj jW  for the smooth and detail series respectively. More 

specifically, at the first resolution level, every other two coefficients within the designated 

windows should be selected, starting from the rightmost elements inside the windows. At the 

second resolution level, every other four coefficient, and for the third level every other eight 

coefficients should be selected and so on. The final results, according to this procedure, suggest 

extracting 12, 11, 6, 6, 3, 1 coefficients from 4321

~
,

~
,

~
,

~
WWWW  and 5

~
W  respectively.  

After obtaining the required parameters, a number of different MLP networks were implemented. 

The results indicated that although by adding more than 5 hidden layer neurons, the training error 

decreased, the test error, which is a better indicator of the network’s performance and its 

generalizability, did not. As a result, the difference between the two errors kept increasing until 

signs of over-fitting were observed. Over-Training is characterized by low training error and high 

testing error, which reduces the ability of the neural network to generalize to new situations [62]. 

Fig. 5.10 shows the training error versus test error in one of the experiments that employed the 

first modeling scheme, and in which the voltage was decomposed into five levels. The 

corresponding model in this experiment consisted of 40 inputs in total. This Figure suggests that 

over-fitting occurred by increasing the number of hidden layer neurons to 20 or more. In fact, as 

more and more hidden layer nodes were added, the network stopped learning the interactive 

relationships between inputs and outputs, and began to memorize the training data instead. Fig. 

5.11 illustrates over-fitting during the training process of the neural network with 40 hidden layer 

neurons.  
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Fig. 5.10. Comparison of train and test errors having different number of neurons 

 

 

 

Fig. 5.11. Over-fitting occurring during the training process 
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The fact that a network with 40 inputs performed its best with only five neurons confirms the 

hypothesis that the structure of the transformed signals in the wavelet domain is simplified and is 

less non-linear. In other words, only five neurons in the hidden layer are sufficient for learning the 

training data and the underlying process behind it. This result conflicts with the suggested 

empirical guidelines in [61], which propose 20 neurons for such a network for convergence and 

generalization. 

In the subsequent experiments, the first modeling scheme was used to test the effect of 

decomposition level of the voltage signal, on the performance. Numerous models were created 

using different numbers of neurons in the hidden layer (5, 10, 15, 20, 25, 30, 35 and 40), and the 

most accurate ones were selected for comparison. The error values for each of the selected models 

are shown in Table 5.2 along with other measures such as the number of hidden layer neurons 

involved in the creation of the model, training time and the number of epochs. The results are also 

illustrated in Fig. 5.12, which demonstrate that the best decomposition level for the voltage signal 

is 1. 

 

 

 

Table 5.2. The results of Neuro-Wavelet models at different decomposition levels 

Decomposition 

Level 

Training/validation  

cases 

Number of 

Hidden  

Neurons 

Training  

Error 

% 

Testing  

Error 

% 

Time  

(s) 

Epochs 

1 2800/600 15 3.0364E-6 4.329E-6 1048 1000 

2 2800/600 5 0.0076 0.0082 244 181 

3 2800/600 5 0.017 0.02 15 18 

4 2800/600 10 0.024 0.029 38 15 

5 2800/600 5 0.042 0.048 21 15 
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Fig. 5.12. Comparison of Neuro-Wavelet models at different decomposition levels 

 

The actual measured EAF voltage versus the estimated voltage, using a model where the voltage 

is decomposed into only 1 level is depicted in Fig. 5.13. The response of this Neuro-Wavelet model 

to the test data and its error is also shown in Fig. 5.14. 

 

Fig. 5.13. The actual measured voltage vs. the estimated voltage 
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Fig. 5.14. The neuro-wavelet model response to the test data-case1: decomposition level=1 

 

The actual and estimated EAF (v-i) characteristic, corresponding to this model is also shown in 

Fig. 5.15. The great resemblance between these two figures supports the reliability and accuracy 

of this model. 
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Fig. 5.15. The actual (top) and estimated (bottom) EAF (v-i) characteristic 

 

Fig. 5.16 and Fig. 5.17 are the response of the models in which the voltage signal had been 

decomposed into 2 and five levels respectively. The difference between the error values in Fig. 

5.14, Fig. 5.16 and Fig. 5.17 is not negligible and substantiates the importance of the 

decomposition level choice in wavelet analysis. 

 

Fig. 5.16. The neuro-wavelet model response to the test data-case 2: decomposition level=2 
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Fig. 5.17. The neuro-wavelet model response to the test data-case 3: decomposition level=5 

5.2.2 The Second Experiment 

The second set of experiments is designed for the purpose of evaluating the second modeling 

scheme, in which the feature set presented in Fig. 4.10 is used. Therefore, in these experiments, 

the EAF current signal has also been transferred into the wavelet domain, in accordance with the 

second modeling scheme. Fig. 5.18, Fig. 5.19, Fig. 5.20, Fig. 5.21 and Fig. 5.22 depict wavelet 

and scaling function coefficients of the current signal at different resolutions. 
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Fig. 5.18. The decomposed current signal into five levels of resolution 

 

Fig. 5.19. The decomposed current signal into four levels of resolution 
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Fig. 5.20. The decomposed current signal into three levels of resolution 

 

 

Fig. 5.21. Decomposed current signal into two levels of resolution 

 

 



 

92 
 

 

Fig. 5.22. Decomposed current signal into 1 level of resolution 

 

The same logic underlies the sub-series of the transformed current signal. Hence, the number of 

salient features at each resolution level of the transformed current signal is also determined using 

the BIC metric, analogous to the previous experiment. This metric suggests extracting 14, 11, 6, 4 

and three coefficients from 4321

~
,

~
,

~
,

~
WWWW  and 5

~
W  respectively. 

Fig. 5.23 makes a comparison of the models in which the current signal was not decomposed (first 

scheme) and the models in which the current signal was decomposed (second scheme) into the 

same number of levels as the voltage signal. The numeric results are shown in Table 5.3. 
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Fig. 5.23. Comparison of neuro-wavelet models under the first and second schemes 

 

 

Table 5.3. The results of neuro-wavelet models under the first and second schemes 

Status of 

Current 

Level 

1 

Level 

2 

Level 

3 

Level 

4 

Level 

5 

Not Decomposed 4.329E-6 0.0082 0.020 0.029 0.048 

Decomposed 2.98E-6 0.0072 0.015 0.024 0.043 

 

These results reveal that in all cases, performance improved by up to 31%, by decomposing the 

current signal as well as the voltage signal.  

5.2.3 The Third Experiment 

With the knowledge that the optimum decomposition level for the voltage signal is 1, we conducted 

the third set of experiments. In these experiments, the performance of models with different 

decomposition levels of the current signals were evaluated, keeping the decomposition level of the 

voltage fixed at 1. A visual representation of the results is shown in Fig. 5.24, according to which 

the best performance was achieved when the current was decomposed into 3 levels. The numeric 

results are shown in Table 5.4. 
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Fig. 5.24. The effect of the current decomposition level on performance 

 

 

Table 5.4. The effect of the current decomposition levels on performance 

Decomposition Level  

Current Signal 

Error  

% 

0 4.329E-6 

1 2.98E-6 

2 7.96E-7 

3 7.68E-8 

4 1.02E-6 

5 8.96E-7 

 

It can be concluded that the second modeling scheme is superior to the first scheme in yielding 

more accurate models. This is especially the case when an optimal decomposition level is chosen 

for voltage and current signals, which is not necessarily the same for both and is dependent on the 

intrinsic characteristics of each signal. 
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5.2.4 The Fourth Experiment 

According to the Parceval’s theorem, the energy of the original signal is preserved in its 

transformed coefficients [63]. The choice of wavelet basis determines whether the decomposition 

of energy in the transformed coefficients provides interesting information about the original signal 

or not [50]. That being said, it is important to decide upon a proper wavelet basis. 

The last experiment was, therefore, designed to inspect the effect of the wavelet choice on the 

performance of models. There are an infinite number of possible wavelet bases [50]. However, the 

decision was made to select the first member of the Dabechies, Coiflet and Symlet family because 

they comply with the conditions that MODWT wavelet filters are subject to. 

The Coiflets are characterized as compactly supported wavelets and therefore highly local in the 

time domain which have the greatest number of vanishing moments for both scaling function and 

wavelet function for the support width they have. Whereas, the Symlets are compactly supported 

wavelets  that are least asymmetric and have the greatest number of vanishing moments for their 

support width, which is defined as the time interval, outside of which the wavelet is zero [64]. 

These wavelets are depicted in Fig. 5.25 and Fig. 5.26 and the more detailed properties have been 

summarized in Table 5.5 and Table 5.6 [64]. 

 

Fig. 5.25. The first member of the Coiflet family 
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Fig. 5.26. The first member of the Symlet family 

  

Table 5.5. Properties of the Coiflet wavelets 

Property Value 

Family Coiflets 

Orthogonal Yes 

Biorthogonal Yes 

Compact Support Yes 

N values 1,2,3,4,5 

Support Width 6N-1 

Filter Length 6N 

Symmetry Near 

Number of Vanishing 

Moments for psi 
2N 

Number of Vanishing 

Moments for phi 
2N-1 

 

Table 5.6. Properties of the Symlet wavelets 

Property Value 

Family Symlets 

Orthogonal Yes 

Biorthogonal Yes 

Compact Support Yes 

N values 2, 3, 4, … 

Support Width 2N-1 

Filter Length 2N 

Symmetry Near 

Number of Vanishing 

Moments for psi 

N 

 



 

97 
 

The number of features extracted from each resolution level is shown in Table 5.7 for the three 

different wavelet bases. Repeatedly, each number was determined using the same method 

explained in 5.2.1. 

 

 
Table 5.7. Number of features extracted from each resolution level, using three different wavelets 

Wavelet 

Family 

Decomposition Level 

Level  

1 

Level  

2 

Level  

3 

Level  

4 

Level  

5 

Daubechies 12 11 6 6 3 

Coiflet 17 20 12 11 5 

Symlet 30 36 18 9 4 

 

In Table 5.8, the error percentage of the best models resulting from the three different wavelets, 

namely Haar, Symlet and Coiflet, are shown. All of these models were created under the first 

scheme and by decomposing the voltage signal into different number of levels, from 1 to 5. For 

more detailed information regarding these models, see Table 5.9 and Table 5.10. 

 

 
Table 5.8. Comparison of performance of the models created by different wavelets 

Wavelet 

Family 

Level  

1 

Level  

2 

Level  

3 

Level  

4 

Level  

5 

Daubechies 3.95E-7 0.0082 0.02 0.029 0.048 

Coiflet 0.012 0.029 0.04 0.055 0.059 

Symlet 0.022 0.031 0.029 0.046 0.055 

 

Table 5.9. The results of neuro-wavelet models at different decomposition levels, based on the Coiflet wavelet 

Decomposition 

Level 

Training/validation 

cases 

Number of Hidden 

Neurons 

Train 

Error 

% 

Test 

Error 

% 

Time 

(s) 

Epochs 

1 2800/600 10 0.011 0.012 120 71 

2 2800/600 5 0.025 0.029 26 21 

3 2800/600 10 0.032 0.04 83 29 

4 2800/600 5 0.046 0.055 91 52 

5 2800/600 5 0.047 0.059 42 14 
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Table 5.10. The results of neuro-wavelet models at different decomposition levels, based on the Symlet wavelet 

Decomposition 

Level 

Training/validation 

cases 

Number of  

Hidden 

Neurons 

Train 

Error 

% 

Test 

Error 

% 

Time 

(s) 

Epochs 

1 2800/600 5 0.019 0.022 48 71 

2 2800/600 5 0.026 0.031 60 97 

3 2800/600 5 0.025 0.029 38 29 

4 2800/600 5 0.037 0.046 94 64 

5 2800/600 5 0.042 0.055 15 15 

 

The results suggest (see Fig. 5.27) that models created by both Haar and Coiflet wavelets follow 

the same pattern as the error steadily decreases by changing the decomposition level from 5 to 1. 

However, the error percentage has been much less for the models associated with the Haar wavelet 

in all the cases. On the other hand, models constructed by the Symlet wavelet indicate a different 

trend. Although, the model created by 1 level of decomposition had the lowest error, similar to 

other two wavelets, the models did not show any improvements by decreasing the number of 

decomposition levels from 3 to 2. This is in contrary to the expectation we built up according to 

the observation of models associated with other two wavelets. Additionally, it seems that the 

choice of the number of decomposition levels, when it is less than 4, did not affect the performance 

as much as the other two wavelets. 

 On the whole, the choice of wavelet is dictated by the signal characteristics and the nature of the 

application [64]; therefore, there is no straightforward way of determining which wavelet to choose 

other than trial and error. 

 However, it should be noted that picking a wavelet has the same effect as deciding on a time-

frequency resolution that will be the same for all time and scaling parameter values [30]. This 

limits the choice of wavelet in cases where specific time-frequency resolution is needed. For 

example, if for any reason high-frequency resolution is needed, wavelet bases with higher orders 

that are smoother should be chosen.   
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The choice of wavelet basis and its order, which signifies its smoothness, should be in accordance 

with the key features in the signal. As a rule of thumb, it should match the signal as closely as 

possible [50]. 

In this study, the Haar wavelet proved to be a good choice. This can be justified intuitively by the 

nature of the Haar wavelet which is asymmetric and hence, similar to our sinusoid like signals. 

Additionally, as the Haar wavelet is very compact in time (has a very compact support), it is 

capable of yielding a high-resolution analysis in time. As a result, it is very well responsive to the 

locality of the signals in the time domain (see Fig. 4.4 and Fig. 4.5). On the contrary, the Symlets 

and Coiflets are nearly symmetrical and do not show any resemblance to our signal in that sense. 

However, they are more similar to our signals in terms of smoothness, in comparison to the Haar 

wavelet. Hence, these functions are probably better candidates for analysis of the smooth 

components in the signals. 

 

 

 

 

Fig. 5.27. Comparison of performance of the models created by different wavelets 

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

1 2 3 4 5

T
es

t 
E

rr
o

r 
%

Number of Decomposition Levels

Daubechies

Coflet

Symlet



 

100 
 

These models can also be compared in terms of the size of their networks. Fig. 5.28 shows the 

network size in terms of number of inputs for the three types of wavelets at different decomposition 

levels. It was observed that the Haar wavelet resulted in models with smaller input size in 

comparison to the Coiflet and Symlet wavelets. Furthermore, according to Fig. 5.27, the error 

made by the Haar wavelet is also less than that of the Coiflet and Symlet at all the levels. Hence, 

The Haar wavelet appears to be the best choice among the three. It was also observed that the 

models created by the Symlet wavelet were more accurate than those made by the Coiflet at 3, 4 

and five levels of decomposition. However, this added accuracy was achieved at the cost of many 

more inputs in the neural networks and hence, loss of simplicity in the models. Therefore, 

concluding that either wavelet basis function is more successful in this modeling task is rather 

unfair and can be misleading. 

 

Fig. 5.28. Comparison of size of the models created by different wavelets 
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5.3 Comparisons to previous work 

While the research study in [4] created EAF models based on radial basis function networks, the 

ones in [15] and [14] took another approach based on fuzzy logic systems. The results of these 

studies can be compared with those achieved in this work, since all of them used the same data 

and evaluated their results in terms of the same error index. 

Based on the results obtained in our experiments, it can be concluded that the models in this study 

performed much better than those based on RBF in terms of accuracy. This is confirmed by the 

fact that even our least accurate wavelet neural network model performed better than the best RBF 

model (compare 0.073% to 3.25%). From another viewpoint, while the wavelet neural network 

models led to error percentages as small as 7.6787e-8%, the RFB based models delivered an error 

of 3.25% at their best. What is more, the neuro-wavelet models were much smaller in size (10 

times on average), in terms of number of neurons in the hidden layer. This is indeed, an added 

advantage for any neural network-based model. 

On the contrary, the results of fuzzy logic based models, namely Adaptive Fuzzy Logic Systems 

(AFLS) were generally very good and closely comparable to ours. To be more precise, the AFLS 

based models achieved an error percentage of approximately 0.013% to 0.016%, while the error 

associated to the wavelet neural network based models was broader, ranging from 0.077% to 

7.6787E-8%. In other words, with proper parameter selection, our neuro-wavelet method produced 

much better results and yielded errors of practically zero. 

As a final point, it is worth mentioning that the sole criteria used to evaluate the models goodness 

of fit was the non-dimensional error index. However, a comprehensive assessment of any 

mathematical model is only possible through a combination of several statistical analyses [65]. In 

addition to this, our comparisons were made only in terms of the accuracy of models and other 



 

102 
 

factors such as time and space complexity, cost of development and the level of dependency on 

the expert knowledge, which may be equally as important for some applications, were not taken 

into consideration. 
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6 Conclusions and Contributions 

6.1 Summary 

In this thesis, an accurate electrical arc furnace modeling technique was developed by 

incorporating a wavelet transformation into the design of artificial neural networks. By employing 

wavelet transform, a time-scale multi-resolution representation of the voltage and current signals 

was produced. These representations were then used to discern the most viable relationship for 

mapping the arc current to the arc voltage by means of a multi-layered perceptron. 

6.2 Conclusions 

The wavelet transform was demonstrated to be particularly helpful in non-stationary signal 

analysis and modeling, and its application in electrical arc furnace modeling was shown to be 

successful. It has been shown that the time-scale representation of the voltage and current signals 

were capable of extracting more informative features in both time and frequency domains. 

Consequently, the learning procedure in the neural network responsible for mapping the current 

signal to the voltage signal became more effective and resulted in fast convergence and negligible 

errors. 

However, it was emphasized that the type of wavelet transform should be selected with great 

caution and in compliance with the desired application and the data being analyzed. Considering 

this, the MODWT, which is a non-decimated discrete wavelet transform and has the property of 

shift invariance, was used. The specific requirements for the corresponding wavelet and scaling 

function filters were then clarified. Furthermore, it was stated that using the models for prediction 

purpose imposed an extra requirement of causality on wavelet and scaling function filters. 
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Unlike other studies, the features were extracted from the wavelet transformed coefficients of the 

voltage and current signals at different resolution levels. The number of these features, residing at 

specific points in time, was dictated by the Bayesian information criterion. 

The experimental results supported our hypothesis that neural networks could be successful in 

modeling the complex and nonlinear relationships involved in electric arc furnace (v-i) 

characteristics using the new, unconventional feature set.  It was specifically shown that a multi-

layered perceptron, which is fed with such time-scale multi-resolution features and tuned with 

proper design parameters could accurately model the underlying relationship among the arc 

furnace current and voltage data after completing the learning process. 

The experimental results showed that the number of levels each of the current and voltage signals 

is decomposed into, particularly the latter, played an important role in the quality of the resulting 

models. Similarly, the choice of wavelet basis demonstrated to have a significant effect on the 

performance. 

By comparison with similar works, it was shown that applying wavelet transform to the signals in 

a preprocessing step, could enhance the features extracted from the signals and, therefore, increase 

the performance of neural network based models fed with such features. 

The developed models have the important practical implication of being used in power-quality 

penetration, mitigation and compensation studies. The purpose of these studies is reducing the 

adverse effects of EAF operation such as flicker and harmonic distortions on the power system. 

The proposed modeling technique is envisioned to be useful in modeling any dynamic and 

nonlinear load, attributable to many electrical devices, and likewise, to maintain the power quality 

in the network to which the load is connected. 
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6.3 Contributions 

This paper is a modest contribution to the ongoing research on the investigation of purely data-

driven models for describing the behaviour of stochastic electrical loads and in particular, electric 

arc furnaces. One important contribution is the establishment of a framework, in which the 

successful integration of wavelet theory and artificial neural networks is achieved. This framework 

can be considered as a “re-contextualization” of existing time series forecasting techniques to the 

particular case of electric arc furnace modeling, in a unique setting. Another major contribution is 

the provision of experimental assessments of specific aspects of the developed framework. 

6.4 Future Work Directions 

Based on the research that was done, the following future work is recommended: 

 The experiments may be replicated using Automatic Relevance Determination (ARD) [66] 

technique instead of the BIC metric to estimate the number of relevant features at each 

resolution level. In this way, the work is no more based on the assumption that the 

transformed signals at different resolution levels are necessarily autoregression processes. 

The ARD technique, which is based on Bayesian framework, has been used in combination 

with neural networks in order to estimate the optimum size of the window that is used for 

creating training samples [58]. This technique makes no assumption about the structure of 

the signal being studied. Therefore, it may extract fewer and more relevant features and, as 

a result, develop simpler neural network models. 

 A thorough examination can be considered to identify the characteristics in a signal that 

affect the choice of wavelet basis. These characteristics should be mathematically defined. 
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It is also required to match these characteristics to that of wavelet bases for automatic basis 

selection. 

 The feasibility of a mathematical explanation for the optimum number of decomposition 

levels of the signal can be further investigated. 

 The effect of the nature of the application on the wavelet choice can be examined. 
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