

DATA MIGRATION:

RELATIONAL RDBMS TO NON-RELATIONAL NOSQL

by

Feroz Alam

Bachelor of Science

in Computer Science

Ryerson University, 2010

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2015

© Feroz Alam 2015

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

DATA MIGRATION:

RELATIONAL RDBMS TO NON-RELATIONAL NOSQL

Feroz Alam

M. Sc. in Computer Science, 2015

Ryerson University, Toronto, Canada

Abstract

As a part of achieving specific targets, business decision making involves processing and

analyzing large volumes of data that leads to growing enterprise databases day by day.

Considering the size and complexity of the databases used in today’s enterprises, it is a major

challenge for enterprises to re-engineering their applications that can handle large amounts of

data. Compared to traditional relational databases, non-relational NoSQL databases are better

suited for dynamic provisioning, horizontal scaling, significant performance, distributed

architecture and developer agility benefits. Based on the concept of Object Relational Mapping

(ORM) and traditional ETL data migration technique this thesis proposes a methodology for

migrating data from RDBMS to NoSQL. The performance of the proposed solution is evaluated

through a comparative analysis of RDBMS and NoSQL implementations based on query

performance evaluation, query structure and developmental agility.

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Vojislav B. Misic for his

valuable support and guidance in helping me to go through all the difficulties in my work. His

suggestions have greatly enhanced my knowledge and skills in research and have significantly

contributed to the completion of this thesis.

In addition, I would like to thank who have reviewed my thesis and have given me valuable

comments to improve my thesis. Also, I would like to acknowledge the support of the Computer

Science Department of Ryerson University.

Finally, I would like to express my deep appreciations to my family, relatives, and

friends who have motivated and supported me during these years of study.

v

Table of Contents

1. INTRODUCTION .. 1

1.1 MOTIVATION .. 1

1.2 PROBLEM STATEMENT ... 4

1.3 CONTRIBUTIONS OF THIS THESIS ... 5

1.4 ORGANIZATION OF THIS THESIS ... 6

2. BACKGROUND AND LITERATURE REVIEW .. 7

2.1 BACKGROUND .. 7

2.1.1 Overview of Relational Database ... 8

2.1.1.1 Keys Concept ... 10

2.1.1.2 Database Normalization ... 11

2.1.1.3 Database ACID Properties ... 14

2.1.1.4 Data Query Language .. 15

2.1.2 Overview of NoSQL Databases .. 16

2.1.2.1 Data Models of NoSQL Databases .. 18

2.1.2.2 Map Reduce Framework .. 23

2.1.2.3 The CAP Theorem ... 24

2.1.2.4 Evaluation of NoSQL Databases ... 25

2.1.3 OLAP .. 27

2.1.4 Comparative Analysis on RDBMS vs NoSQL ... 27

2.2 RELATED WORKS: LITERATURE REVIEW ... 29

3. DATA MIGRATION: PROBLEMS AND SOLUTIONS ... 32

3.1 CHOOSING DATABASES .. 32

3.1.1 Choosing NoSQL Database .. 32

3.1.1.1 Why MongoDB? .. 33

3.1.2 Choosing Relational Database .. 34

3.1.3 MySQL vs MongoDB: Syntax Comparison .. 34

3.2 CHOOSING TECHNOLOGY ... 35

3.3 DATA MIGRATION PROCESS ... 36

3.3.1 Data Migration from Customer Order System: A Sample Case 38

4. EVALUATION ... 47

4.1 VERIFICATION OF DATA MIGRATION ... 47

4.2 PERFORMANCE ASSESSMENT ... 51

4.2.1 Data Storage Related Performance ... 51

4.2.2 Data Loading Related Performance .. 54

4.3 DEVELOPMENT AGILITY ... 68

4.4 SIMPLICITY OF THE QUERY .. 74

4.5 FINDINGS .. 77

5. CONCLUSIONS AND FUTURE WORKS ... 79

BIBLIOGRAPHY ... 82

vi

List of Tables

2.1 Different Forms of SQL used by Various RDBMSs…………………………… 16

2.2 Evaluation of Several NoSQL Data Stores from Four Major Categories………. 26

2.3 Security services in Relational and NoSQL Databases…………………………. 29

3.1 Basic Syntaxes used by MySQL and MongoDB……………………………….. 35

4.1 Observations from Performance Comparison on INSERT, UPDATE and DELETE

 operations………………………………………………………………………. 52

4.2 Observations from Simple Data Loading Test Run…………………………….. 56

4.3 Standard Deviation and Coefficient of Variation Derived from Table 4.2

 Data Sets………………………………………………………………………… 57

4.4 Observations from Ordered Way Data Loading Test Run ……………………… 60

4.5 Observations from Data Loading Test Run applying WHERE Clause…………. 62

4.6 Standard Deviation and Coefficient of Variation Derived from Table 4.5

 Data Sets………………………………………………………………………… 64

4.7 Observations from Data Aggregation …………………………………………... 67

vii

List of Figures

1.1 Possible Criterion for Reliable Database Formation …………………………… 3

2.1 Exponential growth of data leads to evolve large volume data termed as Big

 Data ………………………………………………………………………………. 8

2.2 Entity Relationship (ER) Diagram of a Car Dealer………………………………. 9

2.3 Relationship using Primary Key and Foreign Key……………………………….. 11

2.4 Order table normalized to First Normal Form (1NF)…………………………….. 12

2.5 Order table normalized to Second Normal Form (2NF)…………………………. 13

2.6 Order table normalized to Third Normal Form (3NF)…………………………… 14

2.7 Data Storing Ways for RDBMS and Column-oriented Data Store……………… 18

2.8 Example for the structure of Column-Family Data Store………………………... 19

2.9 Example for the structure of Document Data Store……………………………… 20

2.10 Records from Relational Model Documented in Document Data Model………… 21

2.11 Data Stored against a Key in Key Value Store…………………………………… 22

2.12 Graphical Representation of Graph Database……………………………………. 23

2.13 MapReduce Process using Two-Step Function…………………………………... 24

2.14 Execution of time with varying number of nodes, and datasets and nodes……… 31

3.1 Popularity Comparison among different NoSQL Databases based on Google

 Search Trends……………………………………………………………………. 33

3.2 Basic Scenario for Data to be Migrated from RDBMS to NoSQL……………… 36

3.3 Proposed Conceptual Flow Diagram for Data Migration ………………………... 37

3.4 Database Schema for Customer Order System…………………………………... 39

3.5 Composition Model for Storing Data through Relationship……………………… 40

3.6 Structure of the Table Join to Extract Data as Complete Order Information…….. 41

3.7 Proposed Implicit Schema for Migrated MongoDB Data Structure……………… 42

3.8 Proposed Class Diagram for Data Migration…………………………………….. 43

4.1 Initial Data Verification by Comparing the Total Number of Records………….. 48

4.2 Verification of a Specific Order Details (Order No. # 5)………………………… 49

4.3 Example of Two Different Update Operations with MongoDB Data…………… 50

4.4 Example of Delete Operation in MongoDB Database…………………………… 51

4.5 Performance Comparison for INSERT Operation.……………………………… 53

4.6 Performance Comparison for UPDATE Operation……………………………… 53

4.7 Performance Comparison for DELETE Operation.……………………………… 54

4.8 Performance Comparison for Simple Data Loading…………………………….. 56

4.9 Comparison by Standard Deviations for Simple Data Loading…………………. 58

4.10 Comparison by Coefficient of Variations for Simple Data Loading……………. 58

viii

4.11 Performance Comparison for Ordered Way Data Loading…………………….. 61

4.12 Performance Comparison for Data Loading with WHERE Clause…………….. 63

4.13 Comparison by Standard Deviations for WHERE Clause………………………. 64

4.14 Comparison by Coefficient of Variations for WHERE Clause…………………. 65

4.15 Performance Comparison for Data Aggregation………………………………… 68

4.16 Modified schema for defining customer type and province wise sales tax

 Calculation……………………………………………………………………….. 70

4.17 Changed Schema for one-two-many product-supplier relationship……………… 72

ix

List of Abbreviations

ACID Atomicity, Consistency, Isolation and Durability

ANSI American National Standards Institute

API Application Programming Interface

BASE Basically Available, Soft state and Eventual consistency

BI Business Intelligence

CAP Consistency, Availability and Partition tolerance

DML Data Manipulation Language

FK Foreign Key

IaaS Infrastructure as a Service

NoSQL Not Only SQL

OLAP Online Analytical Processing

ORM Object Relational Mapping

PaaS Platform as a Service

PK Primary Key

RDBMS Relational Database Management System)

SaaS Software as a Service

SQL Structured Query Language

1

Chapter 1

1. Introduction

1.1 Motivation

Large businesses have non-trivial requirements esp. with respect to data analysis

solutions. In particular, businesses with large numbers of customers and massive amounts of

transactional data are sure to experience the Big Data Performance Problem [41]. When

businesses need to run analysis queries to respond quickly to a successful marketing campaign,

their systems tend to slow down tremendously.

Databases are among the most important pieces of enterprise applications. Meaningful

information is required for business decision making. As a part of achieving specific targets,

business decision making involves processing and analyzing large volumes of data, which leads

to growth of enterprise databases day by day [2]. Nowadays, big companies and social network

organizations need to handle huge amounts of data in their every-day operations. As for

examples, CERN (European Organization for Nuclear Research) needs to produce 15 petabytes

of data annually [7] and Walmart needs to handle more than 1 million customer transactions

hourly that requires more than 2.5 petabytes of data [2].

Large businesses like Amazon, eBay, Target, Sears have been wrestling with this issue

and coming up with their own approaches. The recently emerged paradigm of Cloud Computing

[6, 10, 11] can provide a flexible cost-efficient platform for business owners to host data.

According to [6] a new concept is being introduced which is termed as Database as a Service or

Storage as a Service, in addition to other popular paradigms of cloud computing like

Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform as a Service (PaaS).

2

According to the trend of recent years, cloud computing provides novel business

potentials to business providers and their users by offering cost saving features which are the

significant part of requirements for setting up a cloud based enterprise solution [10]. An

important part of such solutions is an advanced database management system which, in order to

meet the increased requirements of large group of users in terms of reliability and availability

[8], requires horizontal scalability with the technology which is highly capable of managing and

handling massive amounts of data distributed over many servers [2].

If we examine these approaches more carefully we notice that NoSQL (often interpreted

as Not Only SQL) is often used for storing Big Data. This is a new type of database which is

becoming more and more popular among large companies today. NoSQL provides simple

scalability and improved performance relative to traditional relational databases. NoSQL

solutions take advantage of ‘Cloud Computing’ meaning that database servers are delivered as a

service, typically over the Internet [41]. NoSQL databases support dynamic provisioning,

horizontal scaling, significant database performance, distributed architecture and developer

agility benefits [3, 8]. This approach excels at storing data structures which are changing rapidly

as the business needs of the company change, unlike traditional SQL database management

systems which require a rigid, carefully designed data structure which does not change over time,

and when it does, most (if not all) applications accessing it need to be redone. Moreover, NoSQL

systems allow data to be easily partitioned to hundreds of servers and the queries can be

automatically broken down to multiple parallel processes running on multiple servers. Whenever

possible, data is held ‘in-memory’ to make access to it faster [41].

NoSQL can be the ideal solution to meet the users’ demands [5]. According to [2] the

significant challenges for making up a reliable database may include scalability, high availability

3

and fault tolerance, heterogeneous environment, data consistency and integrity, simplified query

interface, database security and privacy, data portability and interoperability (as shown in

Fig.1.1). As the infrastructure of cloud and NoSQL databases are integrally elastic [9] it would

be a great fit for the demand. NoSQL databases mainly emphasize OLAP (Online Analytical

Processing) [4, 9] that include data mining, analytics, decision making which are the parts of

business intelligence. OLAP allows getting more access to the extensive possible views of

information by consolidation, drill-down, and the slicing and dicing of data.

Fig.1.1: Possible Criteria for Cloud Database Formation [3]

Internet based businesses need to change their requirements continuously [25] and the

most important challenge with a RDBMS (Relational Database Management System) based

system may include development agility in terms of responding rapid users’ change request.

NoSQL databases offer simple data access features that ultimately provide development agility

by reducing the development time [5].

4

However, most of the existing mission critical databases are, or at least have been,

implemented using traditional relational database technology, often collectively referred to as

RDMBS-based databases. The problem is, then, how to migrate the data from an RDBMS-based

database to the next-generation NoSQL database. This problem is the focus of this thesis.

1.2 Problem Statement

In order to make data accessible, available and reliable to the large number of users with

higher performance, the data storage requirements must include data partitioned over various

servers [8] also known as Database Sharding, horizontal scalability and non-relational distributed

data stores [9]. So that on the fly, a complex query can be broken down to smaller queries

running on multiple server and the results can be consolidated into one result in order to respond

users’ request quickly. However, these features conflict with the main characteristics of

RDBMS.

In addition, one of the requirements for quick access to unstructured or semi structured

data is a loosely defined schema, which traditional RDBMSs do not support, especially in terms

of handling huge volumes of unstructured data. Furthermore, RDBMS would be very costly to

accommodate this type of requirements.

NoSQL data model that supports the requirements for above mentioned features, are

different from relational model according to their structures and the way they store the

information. Compared with NoSQL databases, relational databases do not support loosely

defined schema or implicit schema as a part of processing unstructured or semi-structured data.

Therefore the migration process of existing enterprise application data to the NoSQL database is

5

not a simple and easy task. The main challenge for business is to have a framework and

methodology for the migration of existing traditional relational databases to NoSQL databases.

1.3 Contributions of This Thesis

This thesis has the following key contributions:

 A methodology has been proposed for the data migration process from relational

databases to non-relational NoSQL databases. The methodology describes the details of

the data migration steps where the Object Relational Mapping (ORM) concept is used for

mapping relational data to different objects associated with the specific NoSQL data

store. The approach taken in the methodology is different from existing data migration

approaches as it uses a class diagram to depict a scenario of how relational data defined

in the database schema to be mapped to the related objects according to the implicit

schema of NoSQL data store.

 This thesis implements the proposed methodology using a C# Console Application. The

implementation includes .NET as the framework, C# language, MySQL as the source

relational database and MongoDB as the target database from NoSQL document database

group. The proposed methodology and subsequent implementation can be served as a

guideline to implement a generalized relational to NoSQL data migration tool.

6

1.4 Organization of This Thesis

The thesis is organized as follows:

 As a part of data migration process from traditional RDBMS to NoSQL data store,

Chapter 2 provides a detailed conceptual idea about RDBMS basics along with basic details of

NoSQL data store followed by their comparative analysis. This chapter also consists of a

literature review that includes the existing related works.

 Chapter 3 provides a detailed overview of the proposed solution for the data migration

process. The data migration process includes choosing source and target databases (RDBMS and

NoSQL), technology for implementation, selection and overview of a test case, proposed

methodology for the test case, and finally implementation of the test case.

 Chapter 4 provides a detailed overview on the evaluation of the migration process based

on some different measures. These measures include verification of migrated NoSQL MongoDB

data with original relational MySQL data, comparison of data loading performance, comparative

analysis on development agility in response to change request and comparison of the complexity

vs simplicity of the structure of data query technique.

 Chapter 5 is the concluding section that summarizes this thesis works followed by a

brief guideline for the future scope of works in this area.

7

Chapter 2

2. Background and Literature Review

2.1 Background

The prime parts of the IT Enterprises are the databases that support the back end of their

applications and over the last 40 years RDBMSs have played a leading role to dominate the IT

enterprises [3] with their relational modeling, data integrity and powerful query techniques.

Fig.2.1 shows the exponential growth of data in response to various types of transactions, user

interactions and observations required for different ranges of IT solutions from ERP to Big Data

applications. Nowadays enterprises require managing and handling of huge amounts of data for

their business analysis in order to compete with the rapidly growing business market and meet

the increasing users’ requirements. Generated from various types of users’ interactions, the large

amounts of data are mostly unstructured as they include large varieties of data. This new

generation of data is termed ‘Big Data’. Big Data can be described as the massive amounts of

data which is collected over time and unable to perform business analysis using common

database management tools within the tolerable time because of the size [2]. It requires de-

normalization of data set and loosely defined schema for processing unstructured big volumes of

data which is opposed to the characteristics of RDBMS. RDBMS is restricted to a well-defined

schema in order to store data following normalized model that can be joined to perform complex

query.

Non-relational databases nowadays named NoSQL databases are being considered as the

alternative to RDBMSs for cloud scale solution as they are capable of handling large amounts of

data with high operational availability, scalability [12], consistent performance and rapid

application development [13]. This chapter provides conceptual ideas about the basic details of

8

Relational Databases and Non-relational Databases with their comparative analysis followed by

a literature review that includes the existing related works.

Fig.2.1: Exponential growth of data leads to evolve large volume data termed as Big Data.

Source: http://hortonworks.com/blog/7-key-drivers-for-the-big-data-market/

2.1.1 Overview of Relational Database

 Database management system is a methodology used by different organizations for

managing and handling their data in efficient way with the help of different data model [5].

Among different data models including hierarchical model, network mode, object-oriented

model, relational model and associative model, relational is highly efficient, most successful and

9

adoptable by professionals [5]. The idea of the relational model was introduced and presented by

E.F. Codd in 1970 [22].

 In a relational model data is stored in different tables through relationships which can be

then accessible using these relationships. This relationship is called ‘Entity Relationship’ [23]

which can be logically in the form of one-to-one, one-to-many or many-to-many. Fig.2.2 shows

the sales and service activities among different entities by an Entity-Relationship diagram.

Fig.2.2: Entity Relationship (ER) Diagram of a Car Dealer

Source: http://www.texample.net/tikz/examples/entity-relationship-diagram/

The data structure in the relational model is defined by some of the components which

are known as entity or table, row or tuple, column or domain, attribute or field and relation. E.F.

Codd also defined relational view of data by some of the following properties [22, 29]:

10

1. Each row in a table represents a record or tuple.

2. All the values of attributes recorded in a table are atomic

3. All rows are unique.

4. The ordering of rows is not significant.

5. The ordering of columns is not significant.

Following are some of the concepts which are specified for RDBMSs:

2.1.1.1 Keys Concept

 In RDBMS keys concept are very important as they are used to identify records and make

relationship between tables. One of the important properties of relational model is uniqueness of

rows or records which are also stablished using the concept of ‘Key’. There are mainly three

types of keys. They are as follows:

 Candidate Key - A candidate key [28] is a key which can be used to uniquely identify

any record in a table without referring to any other data. A candidate key can represent a

single column or a combination of multiple columns. A table can have more than one

candidate key. As for example in a supplier table, one candidate key can represent only

the 'SupplierID' column and another candidate key can be the combination of 'SupplierID'

and 'SupplierName'.

 Primary Key - A primary key [22, 28] is a key by which any record can uniquely be

identified from a table. A table can have multiple candidate keys. But only one from

those keys can be considered or chosen as a primary key. Primary keys ensure the

uniqueness of record in a table and reduce data redundancy. It can be defined as a single

column or a combination of multiple columns. Fig.2.3 shows ‘order_id’ and ‘cust_id’ as

the primary keys of the ‘orders’ table and ‘cutomer’ table respectively.

11

Fig.2.3: Relationship using Primary Key and Foreign Key

 Foreign Key - A foreign key represents a column or set of columns in a table which

refers to the primary key of another table in order to uniquely identify a record of that

table. In Fig.2.3, ‘order_cust_id’ in the ‘orders’ table represents the foreign key that

refers to the primary key ‘cust_id’ which is defined in the ‘customer’ table. Using this

foreign key, customer details for any order can be retrieved from the ‘customer’ table.

2.1.1.2 Database Normalization

 Normalization is a set of rules by which tables or entities in the relational model are

designed to be connected through relationships using Primary Keys and Foreign Keys in order to

overcome the problem of complex domains described by E.F. Codd [22]. Normalization refers

to the process of dividing tables into sub tables as a part of making database management

operations easy and simple. The benefits of normalization are as follows:

12

 Avoid anomalies from updating.

 Optimize .queries.

 Provide data integrity.

 Increase speed and flexibility of queries, sorts and summaries.

E.F. Codd introduced three types of normalization process [29] which are termed as

First Normal Form (1NF), Second Normal Form (2NF) and Third Normal Form (3NF). From

more extended research [30, 31] on normalization process, two other normal forms are specified

which are known as Fourth Normal Form (4NF) and Fifth Normal Form (5NF). The first three

form of normalization are described as:

 First Normal Form (1NF) - In the First Norma Form there should not be any repeating

groups. If different columns of a table contain same types of information like Item1,

Item2, Item3 then it is not in 1NF. Data must be broken up into smallest possible unit.

According to E.F. Codd a table is 1NF if and only if each of the values is atomic. Fig.2.4

shows that the Order table is normalized to the First Normal Form.

Order Table

OrderID OrderDate Item1 Item2 Item3 …

1 1970-01-01 Xxx Yyy Zzz ….

…. ……. ……. …… ….. …..

…. ……. ……. …… ….. …..

Order Table in 1NF

OrderID OrderDate Item

1 1970-01-01 Xxx

1 1970-01-01 Yyy

1 1970-01-01 Zzz

…. ……. …….

Fig 2.4: Order table normalized to First Normal Form (1NF)

13

 Second Normal Form (2NF) - Again according to E.F. Codd a table is 2NF if and only

if it first fulfills all of the requirements of 1NF. Then in the Second Normal Form all non-

key columns must entirely be functionally dependent on the primary key. Fig.2.5 shows

the Second Normal Form of Order table.

Order Table

OrderID OrderDate ItemID Item

1 1970-01-01 1001 Xxx

1 1970-01-01 1002 Yyy

1 1970-01-01 1003 Zzz

…. ……. ……. …….

Order Table in 2NF

OrderID OrderDate ItemID

1 1970-01-01 1001

1 1970-01-01 1002

1 1970-01-01 1003

…. ……. …….

Product Table

ItemID Item

1001 Xxx

1002 Yyy

1003 Zzz

…. …….

Fig.2.5: Order table normalized to Second Normal Form (2NF)

 Third Normal Form (3NF) - According to E.F. Codd a table is 3NF if it fulfills all the

requirements of 2NF. In the third normal form non-primary key fields should be

dependent on the primary key rather than non-key field. Fig.2.6 represents the Third

Normal Form of Order table.

14

Order Table

OrderID CustomerID CustomerName ItemID

1 101 XYZ 1001

1 101 XYZ 1002

2 101 XYZ 1001

…. ……. …….

Order Table in 3NF

OrderID CustomerID ItemID

1 101 1001

1 101 1002

2 101 1001

…. ……. …….

Customer Table

CustomerID CustomerName

101 XYZ

…. …….

Fig.2.6: Order table normalized to Third Normal Form (3NF)

2.1.1.3 Database ACID Properties

 An important concept for database that ensures safe and reliable transaction process is

known as ACID properties [28]. A single logical unit of work which is performed through a

sequence of operations refers to as a transaction. In order to qualify a safe, reliable and consistent

transaction, the logical unit of work must follows four properties – Atomicity, Consistency,

Isolation and Durability (ACID). ACID properties are defined as follows:

15

 Atomicity - “Transactions are atomic (all or nothing)” [28]. In a transaction either all of

its operations must be accomplished or nothing will be changed.

 Consistency - After the completion of a transaction all data must be in consistent state

which means database will be updated only with valid data. This property ensures that

any transaction will transform the database from one consistent state to another consistent

state following the databases consistency rules.

 Isolation - “Transactions are isolated from one another” [28]. The intermediate state of a

transaction cannot be accessed or seen by any other transactions. Isolation is required to

maintain consistency between transactions. Modifications done by concurrent

transactions must be isolated from one another.

 Durability - After the completion of a successful transaction the modified works or final

state must permanently be saved in the system even in the case of system failure.

2.1.1.4 Data Query Language

 Relational databases use a well-structured language to get access to the database and

subsequently retrieve the information which is popularly known as Structured Query Language

(SQL). During the 1970s Donald D. Chamberlin and Raymond F. Boyce developed a data

manipulation language called Structured English Query Language (SEQL) for getting access to

integrated relational databases [32]. Later SEQL was changed to SQL as it was already patented

by another company.

 SQL gained popularity within a very short period of time and major RDBMS vendors

integrated SQL with their systems. The prime reason behind the increased popularity was

16

development facility. SQL reduces developers’ involvement for their coding as they do not need

to write additional code for data query which ultimately reduces the development cost.

Considering the popularity and wide spread implementation of SQL, the American National

Standards Institute (ANSI) developed a standard for SQL which is known as ANSI SQL. Based

on the industry standard ANSI SQL there are different forms of SQL used by different relational

database vendors. Table 2.1 shows different forms of SQL used by different relational databases.

RDBMS Forms of SQL

IBM DB2, INFORMIX SQL

Oracle Procedural Language/Structured Query Language (PL/SQL)

Microsoft SQL Server Transact SQL

MySQL SQL

Paradox SQL

PostgreSQL SQL

Table 2.1: Different Forms of SQL used by Various RDBMSs

2.1.2 Overview of NoSQL Databases

 Designed for distributed data store NoSQL is termed as ‘Not Only SQL’. NoSQL

databases have been formed in response to limitations of RDBMSs in storing and processing

cloud big data particularly for large scale and high concurrency applications [14]. NoSQL

databases are mainly designed to comply with the requirements of Web 2.0 applications where

they need large data storage with flexible schema for storing different kinds of attributes like

picture, videos, text, comments and other information [17]. They are apt with cloud scale

17

solutions where distributed data stores can meet the requirements of large user base in terms of

reliability and availability. According to [15], key features of NoSQL databases include:

1. Ability to scale horizontally.

2. Ability to partition or distribute over many servers.

3. Comparably weaker concurrency than ACID.

4. Compared to SQL binding, simple call level protocol.

5. Ability to add new attributes to data records dynamically.

6. Capable use of RAM and distributed indexes for data storage.

 Horizontal scaling, replication and distribution of data over various servers make data

reading and writing operations more quickly. But at the same time NoSQL does not support

ACID properties which are required for data consistency from concurrent transactions. The web

based applications mainly run on the distributed environment where the main requirement is

system scalability. And for a distributed system it is not possible to ensure simultaneous

Consistency, Availability and Partition tolerance at the same which is stated as the CAP theorem

that articulates two of them can be achieved [18]. A weaker model BASE

(Basically Available, Soft state, Eventual consistency) replaces ACID in order to keep NoSQL

data consistent and reliable. Invented by Eric Brewer and according to [18] BASE properties are

described as:

 Basic availability: Any request will be responded with successful or failed execution.

 Soft state: The state of the system is ‘soft’ which may change over time. So due to

eventual consistency changes even may be going on without any input.

 Eventual consistency: Eventually the database will be consistent even though it could be

inconsistent momentarily.

18

The data structures of NoSQL databases are in different form compared to Relational

data model. The following section classifies the different types of data models for NoSQL

databases.

2.1.2.1 Data Models of NoSQL Databases

 In this section we will categorize the different types of NoSQL data models. According to

their data storing techniques, NoSQL databases are classified into following major data models:

 Column-oriented Data Store -Though data organization for both relational databases

and column-oriented data stores are done based on rows and columns concept, but it is

not necessary for column data stores to define their columns [19]. In contrast with the

RDBMS where data sets are stored as rows in a table, column-oriented data store

provides provisions for storing data sets as columns. Following Fig.2.7 represents an

example of data sets and subsequent storing comparison between RDBMS and Column-

oriented Data Store which has been taken from an online book [18]:

Data To Be Stored in

RDBMS Column-Oriented Data Store

SM1,Anuj,Sharma,45,10000000

MM2,Anand,,34,5000000

T3,Vikas,Gupta,39,7500000

E4,Dinesh,Verma,32,2000000

SM1,MM2,T3,E4

Anuj,Anand,Vikas,Dinesh

Sharma,,Gupta,Verma,

45,34,39,32

10000000,5000000,7500000,2000000

Fig.2.7: Data Storing Way of RDBMS and Column-oriented Data Store

19

Fig.2.7 shows that each of the rows in RDBMS provides a complete data set that

includes information about employee ID, first name, last name, age and salary. Whereas

same data sets are organized in different columns of the column-oriented data store.

 As shown in Fig.2.8, multiple attributes can be grouped in a single column in a

Column-Oriented data structure which is also referred Column Family or Wide Column

store [16] in order to facilitate with more complex query. According to [16] the primary

uses of Column-Oriented data store include:

 Distributed data storage.

 Batch oriented large scale data processing that includes sorting, parsing, conversion

etc.

 Investigative and prognostic analytics for programmers and statisticians.

Fig.2.8: Example for the structure of Column-Family Data Store [19].

Many popular NoSQL databases like Apache Cassandra (Facebook, Twitter,

Digg), HBase, Bigtable (Google Datastore), Hypertable SimpleDB (Amazon),

DynamoDB are implemented by Column-Oriented data store.

http://www.ingenioussql.com/wp-content/uploads/2013/02/ColumnDataStore.gif

20

 Document Data Store - Document-oriented data store is designed for managing and

storing data in the form of documents that includes inserting, retrieving and manipulating

of semi-structured data [18]. In order to make it convenient for the developer’s work, the

several different documents accommodated in the document data store are independent

and free from a defined schema. The following example taken from [18] shows two

different documents stored in a document data store to get a picture about the document

data store:

Document 1 Document 2

{

 "EmployeeID": "SM1",

 "FirstName" : "Islam",

 "LastName" : "Shamima",

 "Age" : 40,

 "Salary" : 10000000

}

{

 "EmployeeID": "MM2",

 "FirstName" : "Amar",

 “LastName" : "Prem",

 "Age" : 34,

 "Salary" : 5000000,

 "Address" : {

 "Street" : "123, Park Street",

 "City" : "Toronto",

 "Province" : "Ontario"

 },

 "Projects" : [

 "nosql-migration",

 "top-secret-007"

]

}

Fig.2.9: Example for the structure of Document Data Store

In Document data store XML, JSON, BSON (Binary JSON) [16] formats are used

to store data in each and every document. Fig.2.9 shows two JSON-format documents

where ‘Document 1’ is a simple structured document and ‘Document 2’ is nested with

another sub document ‘Address’. ‘Document 2’ also contains a collection shown as

‘Projects’. But none of them represents document ID which is required with the URL in

order to get access to the document databases. In Document-Oriented data store a system

21

generated or developer defined identifier is used which is uniquely allocated for each of

the documents to identify them [21]. Fig.2.10 shows how four records from a Relational

data model are stored as four separate documents in a Document-Oriented data store.

Fig.2.10: Records from Relational Model Documented in Document Data Model [43].

According to [16] document data model is mainly useful for web based

applications as a part of managing and processing large scale data distributed in a

network including text documents, email messages and XML documents. MongoDB,

CouchDB, Jackrabbit, Lotus Notes, Apache Cassandra, Terrastore, BaseX are the popular

examples of Document Oriented data store [18].

 Key Value Data Store - Key Value data store provides provisioning for storing data in a

standalone schema free table which is also referred as a typical Hash Table against an

identifier. The identifiers or keys are alphanumeric which can be system generated or

developer defined [21] like document ID of Document data model. Fig.2.11 shows data

22

that represent Cars’ attributes are stored against respective numeric keys in a Key Value

store model.

Car

Key Attributes

1

Make: Nissan

Model: Pathfinder

Color: Green

Year: 2010

2

Make: Honda

Model: Odyssey

Color: Grey

Year: 2012

Fig.2.11: Data Stored against a Key in Key Value Store [16]

Key Value data stores are primarily useful for in-memory distributed cache [18]

to facilitate retrieving data quickly. As “Key-value stores are optimized for querying

against keys” [18], they are used for retrieving data from user profiles, look-up

information for shopping cart system etc. Examples of Most popular Key Value data

stores include Memcached (in-memory), MemcacheDB (built on Memcached), Redis

(in-memory, with dump or command-log persistence), Berkley DB, Voldemort

(LinkedIn, open source implementation of Amazon Dynamo), Riak [16, 18].

 Graph Databases - The graph databases store and represent data using graphical

structures that include nodes, edges and properties as shown in Fig.2.12. Nodes represent

conceptual objects those are connected by lines called edges. Edges are also used to make

connections among nodes and properties. Like relational model graph databases handle

relationships by traversing through edges. Using a graph algorithm Graph Databases store

23

data scalable over several servers with nodes and edges. Nodes and relationships are the

basic parts of the graph databases where nodes are organized by properties associated

with relationships and related data is stored in the nodes those also have properties.

The graph databases are primarily useful where relationships to data are more

important [16]. Social networking web sites like Facebook and Twitter can be referred as

the best example in this scenario as they need to store graph data as a part of making

relationships among their users. FlockDB (used by Twitter), AllegroGraph,

InfiniteGraph, Sones GraphDB are the examples of some of the Graph databases.

Fig.2.12: Graphical Representation of Graph Database [18].

2.1.2.2 Map Reduce Framework

 In 2004 Google introduced a software framework known as MapReduce in order to

process huge amounts of data distributed in a clustered environment [2]. As a programming

model, MapReduce uses two functions Map and Reduce to facilitate parallel implementation that

processes terabytes or petabytes of data distributed across several servers [33] within the desired

24

amount of time. Map function generates intermediate key-value pair data by processing key-

value pair input data and then finally all intermediate value are combined against respective

intermediate key using Reduce function. For getting a clear conception the MapReduce process

has been represented in the Fig.2.13 where two-step functions ‘Map’ and ‘Reduce’ is used.

In the ‘Map’ step, input data is distributed over different worker nodes (nod1, nod2,

node3) from the master node where it is divided into smaller sub-problems. The worker nodes

work on the sub problem and get back with the answers to the master node. After collecting all

of the answers from different worker nodes, master node then merges all of the sub-problems

answers in order to form output in ‘Reduce’ step using reduce function.

Fig.2.13: MapReduce Process using Two-Step Function [2].

2.1.2.3 The CAP Theorem

 The CAP Theorem was introduced by Eric Brewer in 2000. The idea of the CAP stated as

“there is a fundamental trade-off between consistency, availability, and partition tolerance” [35].

It is most necessary for every system to achieve all of the three components of the CAP Theorem

25

but it is impossible to achieve Consistency, Availability and Partitioning Tolerance at the same

[7, 34, 35]. The three components of the CAP Theorem can be explained as:

 Consistency: A consistent systems guarantees same data is available to all of the servers

in a clustered environment even at the event of any concurrent modification.

 Availability: Some version of data in a cluster must be accessible to all database clients

even at the event of shutdown of a node in the cluster.

 Partition Tolerance: Even at the event of network and machine failure the system must

keep working fine.

Data consistency is easily achievable in relational database systems as it supports ACID

properties. At the same time horizontal scalability is a great challenge for RDBMS system. On

the other hand though it is easier for NoSQL data store to achieve horizontal scalability but it can

ensure lesser data consistency level due to its weaker BASE properties compare to ACID. Web

based application require horizontal scalability as it deals with data distributed in many servers.

It is not easy to achieve all of the three properties of the CAP Theorem. The distributed web

based applications mainly ensures higher availability and partition tolerance at the cost of data

consistency eventually.

2.1.2.4 Evaluation of NoSQL Databases

 According to [16] a list of characteristics of NoSQL databases from four major groups

with their evaluation is presented in this section. Table 2.2 shows the evaluation of several

NoSQL data stores based on their Design and Features, Data Integrity, Indexing, Distribution

and System.

26

A
tt

r
ib

u
te

s

 NoSQL Databases

Database

Model

Document Store Wide Column Store Key Value Store Graph

Features MongoDB CouchDB DynamoDB HBase Cassandra Accumulo Redis Riak Neo4j

D
es

ig
n
 a

n
d
 F

ea
tu

re
s

Data Storage Volatile

Memory File

System

Volatile

Memory

File System

SSD HDFS Hadoop Volatile

Memory

File

System

Bitcask

LevelDB

Volatile

Memory

File

System

Volatile

Memory

Query

Language

Volatile

Memory File

System

JavaScript

Memcached-

protocol

API Calls API Calls,

REST, XML,

Thrift

API Calls,

CQL,

Thrift

 API Calls HTTP,

JavaScript,

REST,

Erlang

API Calls,

REST,

SparQL,

Cypher,

Tinkerpop,

Gremlin

Protocol Custom,

Binary

(BSON)

HTTP,

REST

 HTTP/REST,

Thrift

Thrift &

Custom

Binary

CQL3

Thrift Telnet-like HTTP,

REST

HTTP/

REST

Embedded

in Java

Conditional

Entry Updates

Yes Yes Yes Yes No Yes No No

MapReduce Yes Yes Yes Yes Yes Yes No Yes No

Unicode Yes Yes Yes Yes Yes Yes Yes Yes Yes

TTL for

Entries

Yes Yes No Yes Yes Yes Yes Yes

Compression Yes Yes - Yes Yes Yes Yes Yes

In
te

g
ri

ty

Integrity

Model

BASE MVCC ACID Log

Replication

BASE MVCC - BASE ACID

Atomicity Conditional Yes Yes Yes Yes Conditional Yes No Yes

Consistency Yes Yes Yes Yes Yes Yes Yes No Yes

Isolation No Yes Yes No No - Yes No Yes

Durability Yes Yes Yes Yes Yes Yes Yes - Yes

Transactions No No No Yes No Yes Yes No Yes

Referential

Integrity

No No No No No No Yes No Yes

Revision

Control

No Yes Yes Yes No Yes No Yes No

In
d

ex
in

g

Secondary

Indexes

Yes Yes No Yes Yes Yes - Yes -

Composite

Keys

Yes Yes Yes Yes Yes Yes - Yes -

Full Text

Search

No No No No No Yes No Yes Yes

Geospatial

Indexes

Yes No No No No Yes - - Yes

Graph

Support

No No No No No Yes No Yes Yes

D
is

tr
ib

u
ti

o
n

Horizontal

Scalable

Yes Yes Yes Yes Yes Yes Yes No

Replication Yes Yes Yes Yes Yes Yes Yes Yes

Replication

Mode

Master-Slave

Replica

Replication

Master-

Slave

Replication

- Master-Slave

Replication

Master-

Slave

Replication

- Master-

Slave

Replication

Master-

Slave

Replication

-

Sharding Yes Yes Yes Yes Yes Yes No Yes Yes

Shared

Nothing

Architecture

Yes Yes Yes Yes Yes - - Yes -

S
y
st

em

Value Size

Max.

16MB 20MB 64KB 2TB 2GB 2GB 1EB - 64MB

Operating

System

Cross-

Platform

Ubuntu,

Red Hat,

Windows,

Mac OS X

Cross-

Platform

Cross-

Platform

Cross-

Platform

NIX 32

Entries

Operating

System

Linux,

*NIX,

Windows,

Mac OS X

Cross-

Platform

Cross-

Platform

Programming

language

C++ Erlang, C++,

C, Python

Java Java Java Java C, C++ Erlang Java

Table 2.2: Evaluation of Several NoSQL Data Stores from Four Major Categories [16].

.

27

2.1.3 OLAP

Online Analytical Processing (OLAP) is a category of data analysis that facilitates rapid

response to the multi-dimensional queries [42]. As a part of wider group of Business Intelligence

(BI), this approach is used for business reporting including the area of sales, marketing, and

especially in business decision making that includes budgeting and forecasting. OLAP allows

performing analytical operations that include consolidation, drill-down, and slicing and dicing.

Consolidation refers to the roll-up the information as a part of aggregating data in order to

analyze it in multi-dimensional way [42]. Then by drilling down, the extensive possible views of

aggregated data can be accessed according to the consolidation paths. And finally users can get

their specific set of data with the help of slicing and dicing features of OLAP.

2.1.4 Comparative Analysis on RDBMS vs NoSQL

 Following points have been summarized from [12] as a part of providing a comparative

analysis on Relational databases and NoSQL data bases:

 Transaction reliability: RDBMS support ACID properties to provide transaction

reliability whereas NoSQL databases are not reliable like RDBMSs because of its

weaker BASE properties compared to ACID.

 Data Model: Relational Databases are based on relational model where tables that

contain set of rows represent the relation. On the other hand NoSQL databases take

many modelling techniques like key value stores, document data store, column data store

and graph data model (refer to the section 2.2.1).

28

 Scalability: The internet based web applications require horizontal scalability as it

spread over several servers in a distributed environment. NoSQL data store support

horizontal scalability whereas it is a great challenge for the relational model.

 Cloud: The relational databases cannot handle schema less unstructured data as it can

work only with well-defined schema. But it is one of the requirements for handling

cloud databases. However NoSQL databases are fit for the cloud scale solution as it

fulfills all of the characteristics which are desirable for cloud databases.

 Big data handling: Because of their issues with scalability and data distribution in a

clustered environment, it is not an easy task for relational database to handle big data. On

the other hand NoSQL databases designed to handle the big data distributed in the

clustered environment.

 Complexity: Day by day complexity in relational databases rises because of the

continuous rapidly changed requirements. If the data for the changed requirements does

not fit in the existing RDBMS schema, then it would make a complex situation in terms

of changing schema and related programming code. On the other hand there is no

significant effect on NoSQL databases as they can store unstructured, semi-structured or

structured data.

 Crash Recovery: Recovery manager ensures crash recovery for RDBMS data. On the

other hand crash recovery depends on data replication for NoSQL databases. MongoDB

uses Journal file as recovery mechanism.

29

 Security: Very secure mechanisms are adopted by RDBMSs to secure their data.

NoSQL databases are designed for storing and handling big data, and subsequently

providing higher performance at the cost of security. Security of information is a big

concern of the newly evolving cloud environment which is being considered as the next

generation architecture for enterprises [1]. Based on security services another

comparison is shown in Table 2.3 which has been taken from [12].

Category Relational Databases NoSQL Databases

Authentication
Come with authentication

mechanism.

Does not for many NoSQL

databases. But options

available for external method.

Data Integrity
Ensure data integrity using

ACID properties.

Not achieved or weaker

integrity using BASE

properties

Confidentiality
Often achieved using

encryption technique
Not achieved

Auditing Provide auditing mechanism

Does not provide. Some of the

NoSQL databases store user

name and password in the log

file as a part of auditing

Table 2.3: Security services in Relational and NoSQL Databases [2]

2.2 Related Works: Literature Review

 Most of the literatures available talked about different types of NoSQL databases, their

structures, their data storage techniques and their performances. Though quite a few of them

provided some approaches related to data migration including comparative performance analysis

based on the evaluation result set derived from their approached models. But they did not present

30

any steps that can help to get a clue for migrating data from relational model to cloud databases.

And their model was also not evaluated for distributed environment.

 Based on the analysis of the data structures of Relational databases and NoSQL

databases, the thesis paper [21] implemented a GUI (Graphical User Interface) tool facilitating

data migration Relational model to NoSQL data store. This paper presented a data migration

scenario from MySQL relation database to CouchDB NoSQL document database. The work

included some performance comparisons between MySQL and CouchDB based on different

database operations. As the comparative analysis was accomplished with small amount of data

set CouchDB got the negative impression compared with the MySQL performance. But at the

same time it was indicating that CouchDB getting better performance with the increase of data

volume which implies that NoSQL databases are fit for Big Data solution.

An optimal solution has been proposed in [2] for managing and handling large volume of

data distributed over thousands of servers using Apache Hadoop Cluster with Hadoop

Distributed File System (HDFS) as data storage. The solution also included the approach of Map

Reduce programming framework for processing and analyzing large distributed data sets across

cluster of computers. Their experiment showed (as shown in Fig.2.14) how the processing time

can be reduced by increasing the number of nodes of the clusters. This approach can be

combined with [21] to provide a methodology for migrating data from RDBMS to NoSQL data

store for distributed environment in order to mitigate the limitations stated in the paper [21].

31

Fig.2.14: Execution time with varying number of nodes and datasets [6].

In [23], the authors presented some informative use cases based on the performance

evaluation of NoSQL database Cassandra used with the Hadoop MapReduce engine that can

meet the cloud application developers’ decision making requirements in terms of performance

issues.

A simulation platform was developed and evaluated in the paper [4] to support a case

study regarding the migration of a telecom application to NoSQL environment. From Relational

model PostgreSQL and Cassandra from NoSQL family were chosen for this case study. In order

to support concurrent transaction with the NoSQL data model some sort of isolation design

approach was used for shared transactions. But the case study could not overcome the limitation

of non-supporting transactional operation. The approach was not implemented for distributed

environment and also did not present any data migration steps.

32

Chapter 3

3. Data Migration: Problems and Solutions

Enterprise applications use relational data model that does not support improved

performance relative to NoSQL in terms of analyzing large volumes of data. Data migration is

required as a part of performing enterprises’ statistical data analysis. With the reference of

section 2 where a comparative analysis is discussed between RDBMSs and NoSQL databases,

we can conclude that NoSQL data model are different from Relational model according to their

structure and the way they store the information. Compared with the NoSQL databases the

structure of the relational databases is more complex in terms of their concept of normalization.

According to the rules of normalization they split their information into different tables with join

relationship. On the other hand NoSQL databases store their information de-normalized way

which is unstructured or semi structured. Therefor the successful migration with data accuracy

and liability from Relational to NoSQL would not be an easy trip. This chapter proposes a

methodology for the solution of data migration process followed by an implementation.

3.1 Choosing Databases

3.1.1 Choosing NoSQL Database

 According to the Google Trends as shown in Fig.3.1, the search-term MongoDB has been

entered more often than some other NoSQL databases like CouchDB, Cassandra, Redis and

HBase. This search trends reflects how MogoDB is getting more popularity day by day.

Considering the characteristics that include simplicity, agility and developer-friendly features

available with the MongoDB, it would be good selection for meeting the purposes of the thesis.

33

Fig.3.1: Popularity Comparison among different NoSQL Databases based on Google Search

 Trends.

3.1.1.1 Why MongoDB?

 Written in C++ which is doing things fast and the open source JSON based document

database MongoDB is popular NoSQL database among the NoSQL options. Available in many

platforms it leverages standards which supports most of the popular languages like C#, Python,

Ruby or Java either on Windows, Mac or Linux. The features of MongoDB include JSON based

documents for storing data, flexibility, replication that leads to high availability, support

indexing, auto sharding for horizontal scalability, data query and MapReduce.

The way MongoDB implemented is using memory mapped file where it uses as much

memory as possible to put its indexes and collections in the RAM as a part of optimizing its

performance. MongoDB supports distribution of data over multiple machines which is called

‘Sharding’ and which is also the part of scaling out data. Each of the machines where data is

distributed can be replicated in order to avoid losing data. Query processing done by MongoDB

34

is very simple way that include choosing indexes, finding documents and finally sending output

as BSON (Binary JSON) document to the socket.

The attractive features that include easy data model and data query with high

performance make it more popular to the developer [37]. The way it implements it uses memory

mapped files. It uses as much memory as possible to optimize the performance. MongoDB

supports distribution of data over multiple machines which is called ‘Sharding’ which is also the

part of scaling out data. And each of the machines where data is distributed can be replicated in

order to avoid losing data.

3.1.2 Choosing Relational Database

 From the group of relational model MySQL is chosen as the source database. MySQL

is an open source database which has all the features of relational data models. According to the

Oracle Corporation “MySQL is the world’s most popular open source database, enabling the

cost-effective delivery of reliable, high-performance and scalable web-based and embedded

database applications” [38]. MySQL is very popular to the developer as it is freely available

from Oracle Corporation as an open source database.

3.1.3 MySQL vs MongoDB: Syntax Comparison

 For data manipulation MySQL database uses SQL language that provides

functionalities like INSERT, UPDATE, DELETE and SELECT statement. On the other hand

MongoDB uses functions available in JavaScript APIs (Application Programming Interfaces) for

its data manipulation. This section represents some syntax differences between MySQL and

35

MongoDB databases for the same operation. Table 3.1 includes some of query commands used

by MySQL and MongoDB for same operation.

Operations MySQL Syntax MongoDB Syntax

Creating

table/collection

CREATE TABLE `customer` (

 `cust_id` int(11) NOT NULL,

 `first_name` varchar(45) DEFAULT

NULL,

 `last_name` varchar(45) DEFAULT

NULL);

Collection is created at the event

of first insertion.

Dropping

table/collection
DROP TABLE customer; db.customer.drop();

Inserting

New record

INSERT INTO customer(cust_id,

first_name,last_name) values(1, ‘John’,

‘Andrew’);

db.customer.save({‘cust_id’: 1,

‘first_name’: ‘John’, ‘last_name’:

‘Andrew’});

Updating

Record

UPDATE customer SET first_name =

‘Saint’ where last_name=’Andrew’;

db.customer.update({‘last_name’:

‘Andrew’},{‘$set’: {‘first_name’:

‘Saint’}});

Deleting

 Record

DELETE from customer where cust_id >

50;

db.customer.remove({‘cust_id’:

{‘$gt’: 50}});

Selecting

Record

Select * from customer where first_name

= ‘Saint’;

db.customer.find({‘first_name’:

‘Saint’});

Order by/sort

Selection
Select * from customer order by cust_id;

db.customer.find().sort({‘cust_id’:

1});

Table 3.1: Basic Syntaxes used by MySQL and MongoDB

3.2 Choosing Technology

 C# has very good driver for MongoDB. Instead of explicit schema MongoDB can

maintain implicit schema according to the application needs and respective classes can be

defined using C# language according to that implicit schema. Officially .NET provides

completely asynchronous driver for MongoDB to interact with MongoDB [39] using C#

language. The driver is powered by Core library and BSON library. Alternative or high level of

APIs can be built using Core library. BSON library facilitates handling BOSN documents stored

as MongoDB data. Considering the availability of .NET driver for MongoDB and at the same

36

time .NET data provider for MySQL, the Data Migration Process for this thesis picks .NET

platform and C# language with MySQL and MongoDB databases that makes a very good

combination.

3.3 Data Migration Process

 Considering the data structure and storage technique, NoSQL databases are different

from RDBMSs. Relational models are highly structured and their data are normalized into

different tables according to their relations whereas NoSQL data stores are semi structured or

unstructured and store the data in de-normalized way. Therefore the data migration process

would not be an easy trip. The Fig.3.2 illustrates how data to be migrated from relational SQL

database to NoSQL document database. This figure shows data in the SQL model are normalized

into different tables through relationship and same data set to be stored into JSON-style

document nested with different other related documents through a migration process.

Doc 3

Doc 1.1

Doc 1.2

Doc 1.3

NoSQL Document Data Store
(JSON-Style Document)

………………
………………

………………
………………

………………
………………

………………
………………

Doc 2

Doc 1.1

Doc 1.2

Doc 1.3

………………
………………

………………
………………

………………
………………

………………
………………

Doc 1

Doc 1.1

Doc 1.2

Doc 1.3

………………
………………

………………
………………

………………
………………

………………
………………

RDBMS

Data
Migration

Process

Fig.3.2: Basic Scenario for Data to be Migrated from RDBMS to NoSQL

37

For the migration process as shown in the above Fig.3.2, this thesis proposes an approach

mainly based on traditional data migration procedure which is called ETL (Extraction,

Transformation and Loading). Here extraction process includes retrieval of data from MySQL

tables, then convert these data into objects using object relational mapping (ORM) and finally

load them to JSON-style MongoDB documents. Fig.3.3 represents proposed conceptual flow

diagram that shows the steps for data migration.

Doc 3

Doc 1.1

Doc 1.2

Doc 1.3

NoSQL Document Data Store
(JSON-Style Document)

………………
………………

………………
………………

………………
………………

………………
………………

Doc 2

Doc 1.1

Doc 1.2

Doc 1.3

………………
………………

………………
………………

………………
………………

………………
………………

Doc 1

Doc 1.1

Doc 1.2

Doc 1.3

………………
………………

………………
………………

………………
………………

………………
………………

RDBMS

Extract Data
by joining

Tables

Extracted Data Set
that forms
Complete

Information

Object 1

Object 1.1

Object 1.2

Object 1.3
Create
Objects

Save Collection
of Objects into

JSON Document

.NET Framework

Fig.3.3: Proposed Conceptual Flow Diagram for Data Migration

38

Based on the data migration flow diagram shown in the Fig.3.3, following are the steps are

considered for migration processes:

Step1: Analyze data with detail relationship defined in the database schema, and

subsequently design and develop join criterion according to the relationship in order

to get complete information.

Step 2: Design and develop an implicit schema for MongoDB data storing.

Step 3: Design and develop class diagrams based on the data analysis and implicit schema.

Step 4: Writing codes for classes defined in the class diagrams (refer to Step 1).

Step 5: Writing code for Data Migration.

3.3.1 Data Migration from Customer Order System: A Sample Case

This thesis considers Customer Order System as the test case for justifying and validating

the data migration from relational data model to NoSQL data store. The Customer Order System

tracks all of the orders status placed by different customers from different places by registering

themselves with the system. The backend of the system is MySQL relational database. This

thesis also uses MongoDB document database as the NoSQL data store which is to be considered

performing all of the functionalities same as the existing MySQL database available in the

Customer Order System. Fig.3.4 is the database schema that shows the relationships among

different tables exist in the MySQL database of the Customer Order System.

39

Fig.3.4: Database Schema for Customer Order System

Based on the above source database schema (Fig.3.4) following steps are designed and

developed as a part of migration process.

Step 1: Analyze Source Data and Define Join Criterion

 In the customer order system, tables are defined in a schema (Fig.3.4) using primary key

(PK) and foreign key (FK) concept in order to make relationships among them. Each and every

order is placed by customer and a customer can have several orders. Therefore customer has one-

to-many relationship with order. Again an order can consists of one or more than one products

which is/are stored in the ‘Order Details’ table by one-to-many relationship between order and

order details. And every ordered product has a valid customer which relationship is stablished by

introducing a ‘SupplierID’ field as a foreign key in the order details table refer to the primary

key in the supplier table. The way data is recorded using relationship is shown in Fig.3.5.

40

Customer

Order

Order Details

Product

Supplier

Fig.3.5: Composition Model for Storing Data through Relationship

 In order to form complete information about an order, tables should be connected using

different joining criterion (left join/right join/inner join/outer join). Based on the relationship of

different tables shown in the schema (Fig.3.4) and the observation of data storing technique in

different tables as shown in the Fig.3.5, following join structure is proposed to retrieve complete

order information using data query (Fig.3.6):

41

OrderCustomer

Inner Join
by Customer ID

Order
Details

Order
with

Customer

Inner Join
By Order ID

Order with
Customer Info

Order
Details

with
Customer

Product

Inner Join
By Product ID

Order Details
with

Customer Info

Order
Details

with
Customer
& Product

Inner Join
By Supplier ID

Supplier

Order Details
with

Customer and
Product Info

Complete
Order
Details

Fig.3.6: Structure of the Table Join to Extract Data as Complete Order Information

Step 2: Implicit Schema for MongoDB

 As data stored in MongoDB is represented by a collection of JSON document, respective

order objects will be created based on complete order information which will be saved with the

collection of MongoDB as a JSON document. Every order object consists of subsets of object

representing individual JSON document nested into order document that includes customer,

42

products and their suppliers. Based on the MySQL Database Schema for Customer Order System

(Fig.3.4) and observation of data storing technique represented in the Step 1, a proposed Implicit

Schema for storing MongoDB data is presented which is shown in Fig.3.7.

Fig.3.7: Proposed Implicit Schema for Migrated MongoDB Data Structure

Step 3: Design and Develop Class Diagram

 According to Step 1, the source MySQL order data are stored in different tables with

relationships. The relationships show that a customer can have an order where customers and

orders have an association relationship. An order has one to many relationships with ordered

43

items as the customer can place an order with more than one item and it is required to have

multiple records to complete a customer order. But in the NoSQL MongoDB database a

complete order will be stored as a single JSON document nested with some other JSON

documents associated with that order. With the consideration of this fact this thesis paper

proposes a class diagram (Fig.3.8) as a part of data migration process which includes a class

named as ‘Orders’ that instantiates an order object. The order object then includes its customer

object, collection of product objects and their related supplier object.

Fig.3.8: Proposed Class Diagram for Data Migration

Fig.3.8 illustrates the proposed class diagram. As the data structure of MongoDB is

different from MySQL, the data migration class diagram may not be designed directly following

MySQL database schema. The class diagram has been designed and developed based on the

44

Implicit Schema as shown in Fig.3.7. It is a composition model where the main ‘Orders’ class

has other objects like ‘Customers’, ‘Products’ and its ‘Suppliers’ object. So the ‘Orders’ class is

the aggregation of these objects. Based on the database schema and implicit schema, the class

diagram includes ‘Products’ class by combining ‘order_details’ and ‘product’ tables. Another

class ‘ShippingDetails’ is also derived from ‘order_detials’ table. The ‘Address’ class which is

associated with both ‘Customer’ and ‘Supplier’ classes, is mainly derived from ‘customer’ and

‘supplier’ tables.

Step 4: Coding for Defining Classes

 Based on the class diagram, this step represents how different classes are defined in the

.NET platform using C# language. As a JSON document requires an Object ID, all of the classes

include an Object ID that serves as the Document ID of that respective JSON document.

Code samples for some of the classes are given below:

// Defining Order Class
public class Orders
{
 public ObjectId Id { get; set;}
 public int Order_No { get; set;}
 public List<Customers> Customer {
get; set;}
 public List<Products> Product { get;
set;}

}

// Defining Customer Class
public class Customers
{
 public ObjectId Id { get; set;}
 public int Customer_ID {get;set;}
 public string First_Name {get;set;}
 public string Last_Name {get; set;}
 public List<Addresses> Address {
get; set;}
}

// Defining Supplier Class
public class Suppliers
{
 public ObjectId Id { get; set;}
 public int Supplier_ID { get; set; }
 public string First_Name {get; set;}
 public string Last_Name {get; set;}
 public List<Addresses> Address {
get; set; }
}

// Defining Product Class
public class Products
{
 public ObjectId Id { get; set;}
 public int Product_ID { get; set;}
 public string Name { get; set;}

 public List<Suppliers> Supplier {
get; set;}
 public List<ShippingDetails>
Shipping { get; set; }
}

45

Step 5: Codes for Data Migration

This step represents some coding samples that include getting or creating MongoDB data

collection, extracting data from different SQL tables in order to form complete order information

using join criterion identified in Step 1, mapping the extracted data to the BSON objects

instantiated from classes (refer to Step 4) and subsequently uploading these collection of objects

to the MongoDB collections as BSON document. Coding samples are given as follows:

................

................
MongoClient client = new MongoClient();
var server = client.GetServer();
//Get the MongoDB database.
//If it doesn't exist MongoDB will create it for the first use
var db = server.GetDatabase("mydata");
//Get the Orders collection where the name of the class
//is used as the collection name.
//If it doesn't exist, MongoDB will create it for the first time use.
var collection = db.GetCollection<Orders>("CustomerOrders1");
try
{
 MySqlConnection conn = new MySql.Data.MySqlClient.MySqlConnection();
 conn.ConnectionString = myConnectionString;
 conn.Open();

//Define SQL string following join criterion
sqlstr = "SELECT orders.order_ID, orders.order_date, orders.order_cust_ID,
........... FROM customer INNER JOIN (((order_details INNER JOIN product ON
order_details.order_prod_ID = product.prod_id) INNER JOIN supplier ON
product.prod_splr_id = supplier.splr_id) INNER JOIN Orders ON
order_Details.order_ID = orders.order_ID) ON customer.cust_id =
orders.order_cust_ID;

 MySqlCommand cmd = new MySqlCommand(sqlstr, conn);
 MySqlDataReader myReader = cmd.ExecuteReader();
 //Instantiating Orders object
 Orders order = new Orders();
 //Define variable for contacting list of product objects for an order
 var prodList = new List<Products>();
 while (myReader.Read())
 {
 var orderID = myReader.GetInt16(0);
 // Checking for end of an order
 if (mprvordrNo != orderID) {
 if (mchk>0) // for skipping the first instance
 {
 // include all of the product objects with the order
 order.Product = prodList;
 collection.Save(order); // Save an order to the MongoDB Collection
 order = new Orders();
 prodList = new List<Products>();
 mchk = 0;
 }
 mchk++;
 mprvordrNo = orderID;
 order.Order_No = myReader.GetInt16(0);
 order.Order_Date = myReader.GetDateTime(1);
 Customers customer = new Customers(); // Instantiating Customer Object
 customer.Customer_ID = myReader.GetInt16(2);

46

 The above implementation is done only for a specific system. It is not generalized. A

generalized data migration tool can be developed by following the methodology proposed in this

thesis and the subsequent implementation.

 order = new Orders();
 prodList = new List<Products>();
 mchk = 0;
 }
 mchk++;

 order.Order_No = myReader.GetInt16(0);
 Customers customer = new Customers(); // Instantiating Customer Object
 customer.Customer_ID = myReader.GetInt16(2);

 var custList = new List<Customers>();
 custList.Add(customer);
 order.Customer = custList; // Include the customer object with an order

 }
 Products product = new Products(); // Instantiating product object
 product.Product_ID = myReader.GetInt16(5);

 var splrList = new List<Suppliers>();
 var addrs = new List<Addresses>();
 Suppliers splr = new Suppliers(); // Instantiating supplier object
 splr.Supplier_ID = myReader.GetInt16(13);

 splrList.Add(splr);

 //Include supplier object with the respective product
 product.Supplier = splrList;
 prodList.Add(product);

 }
 order.Product = prodList; //Include list of product object with an order
 collection.Save(order); //Save order details with the MongoDB collection

47

Chapter 4

4. Evaluation

This chapter consists of the evaluation of the migration process based on the comparison of

migrated NoSQL MongoDB data and original source RDBMS MySQL data with different

measures. The evaluation process includes verification of data migration process with

performance comparison based on identical operations between MySQL and MongoDB

database. It also covers comparative analysis on some issues with developers’ facilities for their

related database application development works. The following measures will be considered as

the evaluation goals:

 Verification of Data Migration

 Performance

 Development Agility

 Simplicity of Query

4.1 Verification of Data Migration

In order to verify whether data migration process is performed successfully or not, this

section includes representation of source data and respective migrated data. This section also

includes representation of some basic operations of MongoDB database which are identical with

MySQL database like INSERT, UPDATE, DELETE and SELECT. For MySQL data

representation, MySQL Workbench is used. A shell-centric MongoDB data management tool

Robomongo is used for representing MongoDB data.

48

(a) Data Retrieved from MySQL using SELECT Statement

(b) Migrated Data, Retrieved from MongoDB using ‘find’ Syntax

Fig.4.1: Initial Data Verification by Comparing the Total Number of Records.

 Fig.4.1 shows 10 MongoDB objects listed on the Robomongo interface. These objects are

created from 10 related MySQL data which is listed on the MySQL Workbench interface. The

objects are created using MongoDB ‘save’ query function which is identical to MySQL

‘INSERT’ statement. Data retrieval in MongoDB is done using ‘find’ query function which is

identical to ‘SELECT’ statement. The following example represents retrieval and subsequent

comparison details of a specific record.

49

(a) Details of a Specific Order (Order No. # 5) Retrieved from MySQL

Basic Order Info
with Customer Details

Product Details with
Suppliers and Shipments

(b) Details of a Specific Order (Order No. # 5) Retrieved from Migrated MongoDB Data

Fig.4.2: Verification of a Specific Order Details (Order No. # 5)

 As a part of data verification, Fig.4.2 shows the details of a particular order (Order No. #

5) that includes basic order information, customer details and product details with respective

50

suppliers and shipment information. Parameter ‘Order_No: 5’ is used with ‘find’ function to

retrieve the details of the order number 5 from migrated MongoDB data. Here the parameter

serves as the ‘WHERE’ clause of MySQL database.

 Following is an example for representing update operations in MongoDB database. In

order to update or modify any information in MongoDB database, ‘update’ function is used

which is similar to the ‘UPDATE’ statement of relational model. MongoDB ‘update’ function is

also used to delete or remove any nested document from the main document.

(a) Before Updating Information (b) After Updating Information

(c) Before Updating/Deleting a Product (d) After Updating/Deleting a Product

Fig.4.3: Example of Two Different Update Operations with MongoDB Data

Fig.4.3 presents two different update operations which are described by four different

scenarios (a), (b), (c) and (d). Scenarios (a) and (b) describe the update operation that updates

order completion status and date for a particular order. Scenarios (c) and (d) show the deletion of

a product which is stored as a nested document with a particular order document (Order No. # 5).

51

 Like a record in the relational model, any collection can be deleted or removed from the

MongoDB database using ‘remove’ function. In Fig.4.4, (a) shows that MongoDB has ten

collections where the 4
th

 collection represents the Order No. 4. But (b) shows that it has total

nine collections where the 4
th

 collection represents the Order No. 5 instead of Order No. 4. This

means the collection with Order No. 4 has been deleted.

 (a) Before Removing Order No. 4 (b) After removing Order No. 4

Fig.4.4: Example of Delete Operation in MongoDB Database

4.2 Performance Assessment

 MongoDB is a general purpose open source database which mainly focuses on high

performance [37]. The performance analysis mainly done based on time comparison between

MySQL and MongoDB required for basic database operations. Based on the type of operations,

this section includes following two sub sections.

4.2.1 Data Storage Related Performance

 This section includes performance comparison based on data storage operations. The

performance analysis compares time required for both MySQL and MongoDB in order to

52

execute INSERT, UPDATE and DELETE operations. For each of the operations, 10

observations are recoded as shown in Table 4.1. The performance operations are done with

different number of records ranging from 10 to 100 records. Fig.4.5, Fig.4.6 and Fig.4.7 show

the graphical representation of the performance analysis performed by INSERT, UPDATE and

DELETE operations respectively. From these observations we can see that MongoDB exhibits

better and significant performances for data storage operation that include INSERT, UPDATE

and DELETE.

 Number

of Records

INSERT

(Time in Milliseconds)

Update

(Time in Milliseconds)

DELETE

(Time in Milliseconds)

MySQL MongoDB MySQL MongoDB MySQL MongoDB

10 626 82 361 68 648 94

20 1219 121 705 105 1490 121

30 1780 147 1162 134 2135 143

40 2250 174 1532 165 2793 167

50 2718 204 1851 195 3581 196

60 3279 228 2207 227 4159 222

70 3914 250 2541 260 4768 246

80 4373 283 2882 289 5248 270

90 4816 313 3213 318 5795 294

100 5383 343 3549 346 6258 324

Table 4.1: Observations from Performance Comparison on INSERT, UPDATE and DELETE

 operations.

53

Fig.4.5: Performance Comparison for INSERT Operation

Fig.4.6: Performance Comparison for UPDATE Operation

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Performance on INSERT Operation

MySQL

Mongo

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Performance on UPDATE Operation

MySQL

Mongo

54

Fig.4.7: Performance Comparison for DELETE Operation

4.2.2 Data Loading Related Performance

This section includes performance analysis based on different data loading or data

selection operations applied to MongoDB and MySQL which is in general popularly known as

‘SELECT’ SQL Data Manipulation Language (DML) statement for relational databases. For

each of the operations here we observe and analyze that how the both databases take time to

perform the same result for the same type of operations. Following four cases exhibit the

performance results derived from different data selection criterion according to the data analysis

requirements. For all of the four cases the operations are done with different number of data sets

ranging from 1000 to 10000. Time taken by each and every test run is recorded in millisecond

where each test run time is recorded as the average of ten different test runs for both MySQL and

MongoDB databases. Initially the time for test run was recorded from ten consecutive test run

using a loop. But it was observed that MongoDB only took time for the first test run where

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Performance on DELETE Operation

MySQL

Mongo

55

remaining nine was showing as zero. Therefore in order to make the fair comparison, every test

run result was derived from different individual execution.

Case 1: Simple Data Loading

In this case performance is observed based on simple selection criterion without applying

any condition or features. The performance is measured by time taken to load or select all data

with complete order information from MySQL different relational tables and MongoDB JSON

document without applying any clause. Ten different observations are shown in the Table 4.2

and comparative performances are represented in the Fig.4.8. Following two queries are used for

loading data from MySQL and MongoDB respectively:

MySQL Query:

SELECT orders.order_ID, orders.order_date, orders.order_cust_ID,

orders.order_chk_completed, orders.order_completion_date, order_details.order_prod_id,

product.prod_name, order_details.order_prod_qty, order_details.order_prod_price,

order_details.order_chk_shipped, order_details.order_ship_date,

order_details.order_chk_delivered, order_details.order_delivery_date, supplier.splr_id,

supplier.splr_fname, supplier.splr_lname, supplier.splr_addrs_street,

supplier.splr_addrs_city, supplier.splr_addrs_postcode, supplier.splr_addrs_country,

supplier.splr_addrs_phone, supplier.splr_email, customer.cust_fname,

customer.cust_lname, customer.cust_addrs_street, customer.cust_addrs_city,

customer.cust_addrs_postcode, customer.cust_addrs_country,

customer.cust_addrs_phone, customer.cust_email

FROM customer INNER JOIN (((order_details INNER JOIN product ON

order_details.order_prod_ID = product.prod_id) INNER JOIN supplier ON

product.prod_splr_id = supplier.splr_id) INNER JOIN Orders ON

order_Details.order_ID = orders.order_ID) ON customer.cust_id = orders.order_cust_ID;

MongoDB Query:

For MongoDB Shell

 db.CustomerOrders.Find();

For C# Driver:
 Collection.FindAll();

where Collection = db.GetCollection<BsonDocument>("CustomerOrders");

56

Performance Test Results:

Number of

Records

Data Loading Time

(in Milliseconds)

MySQL MongoDB

1000 3 28

2000 3 28

3000 3 30

4000 3 25

5000 3 27

6000 3 26

7000 3 28

8000 3 26

9000 3 28

10000 3 28

Table 4.2: Observations from Simple Data Loading Test Run

Fig.4.8: Performance Comparison for Simple Data Loading

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000 12000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Data Loading Performance
with No Condition

MySQL

Mongo

57

The graph shown in Fig.4.8 has been plotted from the test results which are represented

in Table 4.2. Fig.4.8 shows that MySQL performance is better compared to MongoDB. For

every test run, MySQL database exhibits significant performance over MongoDB database

which is steady and does not vary with increase of number of records. On the other hand, though

MongoDB takes more time for simple data loading, but its performances get steady with the

increase of number of records.

 Number

of Records

Standard Deviation

(in Milliseconds)
Coefficient of Variation

MySQL MongoDB MySQL MongoDB

1000 0.70 4.01 0.23 0.14

2000 0.74 7.50 0.25 0.27

3000 0.57 7.25 0.19 0.24

4000 0.57 8.00 0.19 0.32

5000 0.74 9.11 0.25 0.34

6000 0.32 7.69 0.11 0.30

7000 0.32 6.43 0.11 0.23

8000 0.32 6.35 0.11 0.24

9000 0.70 7.76 0.23 0.28

10000 0.32 6.76 0.11 0.24

Table 4.3: Standard Deviation and Coefficient of Variation Derived from Table 4.2 Data Sets

Fig.4.8 also shows that MongoDB performances fluctuate for different number of records

compared to MySQL that exhibits steady performances. In order to investigate varying

performances, more comparisons are done using standard deviation and coefficient of variation.

Table 4.3 represents the respective standard deviations and coefficient of variations derived from

the performance test results recorded in Table 4.2. Based on data sets in Table 4.3, comparison

graphs for standard deviations and coefficient of variations are represented in Fig.4.9 and

58

Fig.4.10 respectively. These two figures show that both MySQL and MongoDB performances’

fluctuate for different number of records. Fig.4.10 shows that variation trends are almost same.

Fig.4.9: Comparison by Standard Deviations for Simple Data Loading

Fig.4.10: Comparison by Coefficient of Variations for Simple Data Loading

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Comparing Standard Deviations

MySQL

MongoDB

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2000 4000 6000 8000 10000 12000

C
o

e
ff

ic
ie

n
t

o
f

V
ar

ia
ti

o
n

Number of Records

Comparing Coefficient of Variations

MySQL

MongoDB

59

Case 2: Data Loading with ORDER BY Clause

This case exhibits comparably how much time is required for MySQL and MongoDB to

load data with MySQL ORDER BY clause and respective MongoDB syntax. The performance is

measured by time taken to load or select all data with complete order information from MySQL

different relational tables and MongoDB JSON document by applying ORDER BY clause and

identical syntax. The extracted data is organized according to the order of ‘Order No’. The test

run data recorded from observations, are represented in Table 4.4. Fig.4.11 is the respective

graphical representation for the comparative analysis obtained from the observation data

available on Table 4.4. Following two queries are used for loading data from MySQL and

MongoDB respectively applying ‘order by’ clause:

MySQL Query:

SELECT orders.order_ID, orders.order_date, orders.order_cust_ID,

orders.order_chk_completed, orders.order_completion_date, order_details.order_prod_id,

product.prod_name, order_details.order_prod_qty, order_details.order_prod_price,

order_details.order_chk_shipped, order_details.order_ship_date,

order_details.order_chk_delivered, order_details.order_delivery_date, supplier.splr_id,

supplier.splr_fname, supplier.splr_lname, supplier.splr_addrs_street,

supplier.splr_addrs_city, supplier.splr_addrs_postcode, supplier.splr_addrs_country,

supplier.splr_addrs_phone, supplier.splr_email, customer.cust_fname,

customer.cust_lname, customer.cust_addrs_street, customer.cust_addrs_city,

customer.cust_addrs_postcode, customer.cust_addrs_country,

customer.cust_addrs_phone, customer.cust_email

FROM customer INNER JOIN (((order_details INNER JOIN product ON

order_details.order_prod_ID = product.prod_id) INNER JOIN supplier ON

product.prod_splr_id = supplier.splr_id) INNER JOIN Orders ON

order_Details.order_ID = orders.order_ID) ON customer.cust_id = orders.order_cust_ID

ORDER BY orders.order_ID;

MongoDB Query:

For MongoDB Shell

 db.CustomerOrders.Find().sort({Order_No: 1});

60

For C# Driver:
Collection.FindAll().SetSortOrder(SortBy<Orders>.Ascending(o => o.Order_No));

where Collection = db.GetCollection<BsonDocument>("CustomerOrders").

Performance Test Results:

Number of

Records

Data Loading Time

(in Milliseconds)

MySQL MongoDB

1000 3 89

2000 4 91

3000 3 94

4000 3 86

5000 84 87

6000 107 91

7000 121 91

8000 127 90

9000 140 89

10000 293 93

Table 4.4: Observations from Ordered Way Data Loading Test Run

As shown in Fig.4.11, the comparative analysis derived from the test run using ORDER

BY clause, is reflecting a significant performance of MongoDB database over MySQL database.

According to the above graphical representation the time required for performing data extraction

is almost unchanged and steady with the increase of data volume for NoSQL MongoDB

database. On the other hand MySQL performance is better and steady up to 4000 records. But

after 4000 records, MySQL suddenly starts taking more time and its performance gradually

decreases with the increase of data volume.

61

Fig.4.11: Performance Comparison for Ordered Way Data Loading

Case 3: Data Loading with WHERE Clause

The WHERE clause is a part of the DML of SQL which is used to retrieve records only

that meet some specific criterion. Here in the Case 3, WHERE clause for relational MySQL and

the similar query feature available in the NoSQL MongoDB has been used to retrieve complete

order information with certain criterion and subsequently measure the respective query execution

time. Data obtained from the observation of ten different test run is recorded and shown in Table

4.5. The comparative analysis based on this observation data is graphically represented in

Fig.4.12. The identical relevant queries for MySQL and MongoDB used for this case are as

follows:

MySQL Query:

SELECT orders.order_ID, orders.order_date, orders.order_cust_ID,

orders.order_chk_completed, orders.order_completion_date, order_details.order_prod_id,

product.prod_name, order_details.order_prod_qty, order_details.order_prod_price,

order_details.order_chk_shipped, order_details.order_ship_date,

order_details.order_chk_delivered, order_details.order_delivery_date, supplier.splr_id,

-50

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Data Loading Performance
with ORDER BY Clause

MySQL

Mongo

62

supplier.splr_fname, supplier.splr_lname, supplier.splr_addrs_street,

supplier.splr_addrs_city, supplier.splr_addrs_postcode, supplier.splr_addrs_country,

supplier.splr_addrs_phone, supplier.splr_email, customer.cust_fname,

customer.cust_lname, customer.cust_addrs_street, customer.cust_addrs_city,

customer.cust_addrs_postcode, customer.cust_addrs_country,

customer.cust_addrs_phone, customer.cust_email

FROM customer INNER JOIN (((order_details INNER JOIN product ON

order_details.order_prod_ID = product.prod_id) INNER JOIN supplier ON

product.prod_splr_id = supplier.splr_id) INNER JOIN Orders ON

order_Details.order_ID = orders.order_ID) ON customer.cust_id = orders.order_cust_ID

WHERE orders.order_ID > 100;

MongoDB Query:

For MongoDB Shell

 db.CustomerOrders.Find({Order_No: {$gt: 100}});

For C# Driver:

Collection.Find(searchQuery);

where searchQuery = Query.GT("Order_No", 100);

Performance Test Result:

Number of

Records

Data Loading Time

(in Milliseconds)

MySQL MongoDB

1000 3 24

2000 3 24

3000 3 22

4000 3 20

5000 3 22

6000 3 21

7000 4 23

8000 3 23

9000 3 25

10000 3 24

Table 4.5: Observations from Data Loading Test Run applying WHERE Clause

63

Fig.4.12: Performance Comparison for Data Loading with WHERE Clause

 According to the performance comparison as represented in Fig.4.12, the performance

trend is almost same as normal data loading. It is shown that MySQL database exhibits

significant performance over MongoDB database which is steady and almost unchanged. On the

other hand MongoDB takes more time compared to MySQL with unsteady performance which

varies from 20 to 25 milliseconds. As MongoDB performances significantly more fluctuate than

MySQL, standard deviations and coefficient of variations are used for more comparisons.

Table 4.6 represents the respective standard deviations and coefficient of variations

derived from the performance test results recorded in Table 4.5. Based on data sets in Table 4.6,

comparison graphs for standard deviations and coefficient of variations are plotted which are

shown in Fig.4.13 and Fig.4.14 respectively. These two figures show that both MySQL and

MongoDB performances’ fluctuate for different number of records. According to Fig.4.14,

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Data Loading Performance with WHERE Clause

MySQL

Mongo

64

MongoDB exhibits smaller range of coefficient of variations compared to MySQL. MongoDB

also has less fluctuation.

Number of

Records

Standard Deviation

(in Milliseconds)
Coefficient of Variation

MySQL MongoDB MySQL MongoDB

1000 0.84 4.46 0.28 0.19

2000 0.42 5.72 0.14 0.24

3000 0.63 5.23 0.21 0.24

4000 0.67 5.02 0.22 0.25

5000 0.32 4.18 0.11 0.19

6000 0.32 4.20 0.11 0.20

7000 0.85 4.12 0.21 0.18

8000 0.42 5.32 0.14 0.23

9000 0.47 4.13 0.16 0.17

10000 0.42 5.25 0.14 0.22

Table 4.6: Standard Deviation and Coefficient of Variation Derived from Table 4.5 Data Sets

Fig.4.13: Comparison by Standard Deviations for WHERE Clause.

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000 12000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Comparing Standard Deviations

MySQL

Mongo

65

Fig.4.14: Comparison by Coefficient of Variations for WHERE Clause

Case 4: Data Loading Performance for Data Aggregation

 Data aggregation is defined as “any process in which information is gathered and

expressed in a summary form, for purposes such as statistical analysis” [36]. Data aggregation is

one of the most important features for data mining as a part of getting desired compiled

information from database. According to [40], as a part of Business Intelligence (BI) data mining

plays an important role for expanding future business opportunities. Case 4 includes a

comparative performance analysis based on data aggregation operations performed by both

MySQL and MongoDB databases applying relevant AGGREGATE queries. In this case

customer wise total sales are summed up from order details using GROUP BY clause for

MySQL and MongoDB ‘Aggregate’ function which is available in JavaScript APIs. Observation

data derived from ten different test runs for respective number of data sets ranging from 1000 to

10000 is recorded in the Table 4.7 and respective performance is plotted on a graph which is

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000 12000

C
o

e
ff

ic
ie

n
t

o
f

V
ar

ia
ti

o
n

Number of Records

Comparing Coefficient of Variations

MySQL

Mongo

66

shown in Fig.4.15. For MongoDB any complete order information is stored in a document with

some other nested subdocuments. Therefore an additional unwind operation is done before main

data aggregation. Following are the relevant data aggregation queries applicable for MySQL and

MongoDB databases:

MySQL Query:

SELECT orders.order_cust_ID,customer.cust_fname,customer.cust_lname,

SUM(order_details.order_prod_qty*order_details.order_prod_price)

FROM customer INNER JOIN (order_details INNER JOIN Orders ON order_Details.order_ID

= orders.order_ID) ON customer.cust_id = orders.order_cust_ID

GROUP By orders.order_cust_ID,customer.cust_fname,customer.cust_lname

MongoDB Query:

For MongoDB Shell:

db.CustomerOrders1.aggregate(

 [{$unwind : "$Product"},

 {

 $group:

 {

 _id: {"Customer_ID": "$Customer.Customer_ID", "First_Name":

"$Customer.First_Name", "Last_Name": "$Customer.Last_Name"},

 totalAmount: { $sum: { $multiply: ["$Product.Price", "$Product.Quantity"] } }

 }

 }

]

)

For C# Driver:
 collection2.Aggregate(group);

 where,

AggregateArgs group = new AggregateArgs()

{

 Pipeline = new[]

 { new BsonDocument{{"$unwind","$Product"}}, new BsonDocument

 ("$group", new BsonDocument

 {

 {"_id", new BsonDocument

 {

{"First_Name","$Customer.First_Name"},{"Last_Name","$Customer.Last_

Name"},

 }

67

 },

 { "Total_Amount", new BsonDocument

 {

 {"$sum", new BsonDocument

 {

 {"$multiply", new BsonArray {"$Product.Quantity",

"$Product.Price"}}

 }

 }

 }

 }

 })

 }

};

Performance Test Result:

Number of

Records

Data Loading Time

(in Milliseconds)

MySQL MongoDB

1000 7 2

2000 11 2

3000 13 2

4000 16 2

5000 37 2

6000 45 2

7000 52 2

8000 55 2

9000 62 2

10000 70 2

Table 4.7: Observations from Data Aggregation

Fig.4.15 exhibits a significant performance done by MongoDB database over MySQL

database. According to the graph derived from data aggregation test run, the time required for

retrieving data is almost unchanged and steady with the increase of data volume for NoSQL

68

MongoDB database whereas MySQL performance is gradually decreasing with the increase of

data volume.

Fig.4.15: Performance Comparison for Data Aggregation

4.3 Development Agility

The development agility means how fast the development processes can response to meet

the users’ changed requirements. One of the twelve characteristics of agile methodologies’

continuous integration is to integrate the new code including respective changes of the business

requirements with the existing code after the completion of the changes [24]. The ultimate

success of the software development process is to satisfy the end user with quality software and

meet their changed requirements within the time constraint. In the area of Internet based

businesses, the users need to change their requirements continuously and the adaptive methods of

agile methodologies allow it to response and subsequently adapt quickly to those changing

realities [25]. MongoDB provides development features that make developers’ data modeling

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000 12000

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Number of Records

Performance for Aggregating Data
(Group By)

MySQL

Mongo

69

and data querying jobs easy and handy [37]. This section includes some scenario based analysis

that will provide some informative ideas about development performance in terms of complexity

of development stages for fulfilling users’ requirements.

Scenario 1: Customer Type and Sales Tax based on Province

 There are mainly two kinds of sales can be performed like Personal Sales and Business to

Business (B2B) sales based on which sales taxes are calculated. Basically sales tax is not

primarily applicable for B2B sales. But exception also should be applicable when the B2B

customer buys the product for their own consumption instead of trading. Therefore according to

sales category there can be two types of customers – personal type customer and business type

customer. Another type of customer should also be considered that may include religious or

charitable organizations. Tax exemption will be applicable for this third type of customer.

At the same time sales tax rate differs from province to province. But the existing system

does not have any provision for defining customer type or for keeping any information related to

province wise tax rate. Here the database schema level will mainly be affected for incorporating

these options with the existing system. Also new business rules should be introduced with the

existing system to define customer type, customer type wise taxing rules and other relevant

details according to the changed requirements. The Fig.4.16 shows the modified database

scheme for incorporating the change request.

70

Fig.4.16 Modified schema for defining customer type and province wise sales tax calculation

From the above Fig.4.16, it is shown that a new table ‘province’ is introduced for keeping

information about province wise GST, HST or PST rate. Two extra fields are added with

Customer table where one of them is for defining customer type and the other one is for making

relationship with new ‘province’ table. Order_Details table also include one extra field for

checking whether a product is taxable or not. By default it will be ‘Yes’ for personal customers

and ‘No’ for business and tax-exempt customers. Sometimes business customer can buy a

product for their own consumption. In that case it will not be considered as B2B sales and they

will change the default value to ‘Yes’ for that particular transaction. And then sales tax will be

calculated based on value of this field and applicable provincial tax rate for a particular

customer.

71

 After getting this change request, the involvement of the possible tasks include

identifying potential change with the system, analyzing and evaluating the change request to

measure the workloads in different levels of system development, planning to distribute the task

details in order to carry out the change request, and finally implementing, reviewing and closing

the change request.

For relational model MySQL based system, this change request will effect on the

following area:

 Schema Level Change – Database Administrator (DBA) need to be involved for changing

existing schema. They need to go through some analysis in order to examine how it will

impact on the databases.

 Application Development and Query Defining Level – New business rules should be

introduced based on which design and development phase, and relevant query definition

task specially related to table join criterion for the changes will need to be done.

 Reporting Level - Sales related new reports will be added with the system. Existing sales

report will also need to be modified due to these changes.

On the other hand for its schema-less design approach MongoDB does not need extensive

level of DBA involvement and it does not require any changes in the schema level for the above

change request. Required changes can only be adjusted in the development level instead of

database level. Therefor it requires less time to meet the change requirements compare with the

relational MySQL based system.

72

Scenario 2: A product can have multiple suppliers

 The current system allows having one-to-one relationship between product and supplier.

But if the system needs to be changed like one product can have multiple suppliers, it would be

massive involvement with MySQL based system. The changed requirement will mainly affect

database schema. According to the existing schema the product and supplier have one-to-one

relation. In order to incorporate the requirement the schema requires to include one more extra

table that will allow product table to make one-to-many relationship with supplier table. On the

other hand as MongoDB is schema less this change will not affect the MongoDB based system in

terms of changing in schema. Fig.4.17 shows the changed effect on MySQL schema.

Fig.4.17 : Changed Schema for one-two-many product-supplier relationship.

73

The involvement for This change request also include all of the stages like identifying,

analyzing, evaluating, planning and implanting the changes as described in the scenario 1

section.

According to the above scenario the impact of the request will affect in changing on

query level and application development level. As the database schema needs to be changed, join

conditions for the related queries must be changed. Therefore all of the queries associated with

product and supplier needs to be redesigned and redeveloped. The effect of the application

development level will mainly impact its inventory module as they need to maintain their

product inventory by supplier. In this case the new product-supplier relational table will requires

an additional field for their inventory module in order to maintain supplier wise product

threshold quantity or re-order level. Therefore the system will require some new coding for

incorporating these relationships and also require modifying existing code associated with

updating supplier and product information. All of the reports associated with supplier and

product also need to be modified and some additional reports may be introduced to accommodate

these changes.

On the other hand as MongoDB collections do not have database schema like MySQL

and this change will not affect that much on the MongoDB based system in terms of changing

the schema. But at the same time MongoDB maintain implicit schema and migration code needs

some changes in order to migrate persisted data according to the changed schema.

74

4.4 Simplicity of the Query

 As a flexible database MongoDB offers rich features for data modeling and data query.

Its developer oriented query features make the developers’ life easy to write elegant queries.

MongoDB query is performed using functions available from JavaScript APIs where queries are

sent to MongoDB database as JSON objects. Usually the queries are sent to MongoDB by the

database driver using ‘find’ method. This section includes comparative analysis on query

structure of MySQL and MongoDB databases. Analysis will be done based on the following

queries:

Case 1: Find out all order details for a particular customer:

MySQL Query:

The following query will return all of the order details for a particular customer from MySQL

database:

SELECT orders.order_ID, orders.order_date, orders.order_cust_ID, customer.cust_fname,

customer.cust_lname, customer.cust_addrs_street, customer.cust_addrs_city,

customer.cust_addrs_postcode, customer.cust_addrs_country,

customer.cust_addrs_phone, customer.cust_email, orders.order_chk_completed,

orders.order_completion_date, order_details.order_prod_id, product.prod_name,

order_details.order_prod_qty, order_details.order_prod_price,

order_details.order_chk_shipped, order_details.order_ship_date,

order_details.order_chk_delivered, order_details.order_delivery_date, supplier.splr_id,

supplier.splr_fname, supplier.splr_lname, supplier.splr_addrs_street,

supplier.splr_addrs_city, supplier.splr_addrs_postcode, supplier.splr_addrs_country,

supplier.splr_addrs_phone, supplier.splr_email

FROM customer INNER JOIN (((order_details INNER JOIN product ON

order_details.order_prod_ID = product.prod_id) INNER JOIN supplier ON

product.prod_splr_id = supplier.splr_id) INNER JOIN Orders ON

order_Details.order_ID = orders.order_ID) ON customer.cust_id = orders.order_cust_ID

where customer.cust_fname=”Wanda” and customer.cust_lname=”Peterson”;

75

MongoDB Query:

The following MongoDB query will retrieve all of the documents with order details for a

particular customer from MongoDB database:

db.CustomerOrders.find(

{

$and: [{"Customer.First_Name":"Wanda"},{"Customer.Last_Name":"Peterson"}]

})

Case 2: Order Details within a Date Range

The following MySQL and MongoDB query will return all of the order details for a particular

date range:

MySQL Query:

SELECT orders.order_ID, orders.order_date, orders.order_cust_ID, customer.cust_fname,

customer.cust_lname, customer.cust_addrs_street, customer.cust_addrs_city,

customer.cust_addrs_postcode, customer.cust_addrs_country,

customer.cust_addrs_phone, customer.cust_email, orders.order_chk_completed,

orders.order_completion_date, order_details.order_prod_id, product.prod_name,

order_details.order_prod_qty, order_details.order_prod_price,

order_details.order_chk_shipped, order_details.order_ship_date,

order_details.order_chk_delivered, order_details.order_delivery_date, supplier.splr_id,

supplier.splr_fname, supplier.splr_lname, supplier.splr_addrs_street,

supplier.splr_addrs_city, supplier.splr_addrs_postcode, supplier.splr_addrs_country,

supplier.splr_addrs_phone, supplier.splr_email

FROM customer INNER JOIN (((order_details INNER JOIN product ON

order_details.order_prod_ID = product.prod_id) INNER JOIN supplier ON

product.prod_splr_id = supplier.splr_id) INNER JOIN Orders ON

order_Details.order_ID = orders.order_ID) ON customer.cust_id = orders.order_cust_ID

where orders.order_date between '2014-06-01' and '2014-06-30'

MongoDB Query:

db.CustomerOrders100.find(

{"Order_Date": {$gte: ISODate("2014-06-01"),$lt: ISODate("2014-07-01")}

})

76

Case 3: Order by Query

The following MySQL and MongoDB queries will sort the query result according to the

customers:

MySQL Query:

SELECT orders.order_ID, orders.order_date, orders.order_cust_ID, customer.cust_fname,

customer.cust_lname, customer.cust_addrs_street, customer.cust_addrs_city,

customer.cust_addrs_postcode, customer.cust_addrs_country,

customer.cust_addrs_phone, customer.cust_email, orders.order_chk_completed,

orders.order_completion_date, order_details.order_prod_id, product.prod_name,

order_details.order_prod_qty, order_details.order_prod_price,

order_details.order_chk_shipped, order_details.order_ship_date,

order_details.order_chk_delivered, order_details.order_delivery_date, supplier.splr_id,

supplier.splr_fname, supplier.splr_lname, supplier.splr_addrs_street,

supplier.splr_addrs_city, supplier.splr_addrs_postcode, supplier.splr_addrs_country,

supplier.splr_addrs_phone, supplier.splr_email

FROM customer INNER JOIN (((order_details INNER JOIN product ON

order_details.order_prod_ID = product.prod_id) INNER JOIN supplier ON

product.prod_splr_id = supplier.splr_id) INNER JOIN Orders ON

order_Details.order_ID = orders.order_ID) ON customer.cust_id = orders.order_cust_ID

ORDER BY orders.order_cust_ID;

MongoDB Query:

db.CustomerOrders.find().sort({"Customer.Customer_ID":1})

Case 4: Aggregate Query

MySQL Query:

SELECT orders.order_cust_ID,customer.cust_fname,customer.cust_lname,

SUM(order_details.order_prod_qty*order_details.order_prod_price)

FROM customer INNER JOIN (order_details INNER JOIN Orders ON order_Details.order_ID

= orders.order_ID) ON customer.cust_id = orders.order_cust_ID

GROUP By orders.order_cust_ID,customer.cust_fname,customer.cust_lname

MongoDB Query:

For MongoDB Shell:

db.CustomerOrders1.aggregate(

 [{$unwind : "$Product"},

 {

77

 $group:

 {

 _id: {"Customer_ID": "$Customer.Customer_ID", "First_Name":

"$Customer.First_Name", "Last_Name": "$Customer.Last_Name"},

 totalAmount: { $sum: { $multiply: ["$Product.Price", "$Product.Quantity"] } }

 }

 }

]

)

Through its BSON data structure and powerful query features MongoDB supports most

of the query functions available in the relational model by provisioning high-speed data access to

mass data [14]. From the above four cases we can see MySQL query is somewhat complex in

compared to the structure of MongoDB query as MySQL query needs to join different relational

tables according to their relationship to get the complete total information. On the other hand

MongoDB query is straightforward as there is no relational schema. MySQL query requires too

many lines to express the total query that make it somewhat complex for developmental

purposes.

4.5 Findings

 Based on the above measures for evaluating the thesis objective, a summary of the

findings are as follows:

 The data verification shows that data migration process from MySQL relational database

to NoSQL MongoDB database was performed successfully by applying the proposed

methodology. MongoDB also performs all of the basic operations like INSERT,

UPDATE, DELETE and SELECT, which are identical to MySQL.

78

 MongoDB performs significantly better than MySQL for data storage related operations

that include INSERT, UPDATE and DELETE.

 MongoDB exhibits an outstanding performance for data aggregation and data sorting

which indicates incredible opportunities with MongoDB in the area of statistical analysis

which is a part of Business Intelligence (BI) aspect for analytical data management.

Enterprises will be interested for their future business growth based on their business

analysis gearing with the MongoDB performance.

 Based on some selective scenarios, it is shown that MongoDB provides development

agility in terms of meeting the continuous change requirements.

 Using JavaScript APIs, MongoDB provides simple and straightforward query structures

that facilitate development work for the developers.

79

Chapter 5

5. Conclusions and Future Works

 The demand for NoSQL databases is increasing because of their diversified

characteristics that offer rapid smooth scalability, great availability, distributed architecture,

significant performance and rapid development agility. The main result of this thesis was to

provide a methodology for migrating rapidly growing enterprise data from back end relational

model to NoSQL data store. Specifically data migration facilitates enterprises’ Online Analytical

Processing (OLAP) which is the part of broader category of BI. The ways relational model and

NoSQL databases store their data are totally different from relational databases. RDBMSs follow

strictly a predefined schema and store their data in different tables through relationship according

to the structure of the schema, whereas schema-less NoSQL have a different way for storing and

retrieving their flexible, unstructured or semi-structured data available in the different format of

databases that include document, key-value, columnar and graph data store group.

 The structural differences between RDBMS and NoSQL databases makes the data

migration process challenging. From different choices of databases this thesis selected open-

source MySQL from relational databases group and MongoDB from the NoSQL document

databases group as the test case. As the document database MongoDB is formed with collection

of JSON objects and .NET C# provides completely asynchronous driver to interact with

MongoDB, the object oriented approach was taken for migrating data utilizing the underlying

technological advantages from C# language available in the .NET platform. This thesis

accomplished a successful implementation of data migration process following the steps of

traditional ETL process that includes data Extraction, Transformation and finally Loading where

80

data extraction was done using SQL query, then extracted data was transformed into different

objects using ORM and finally loaded or saved it to MongoDB JSON-style document.

 Some measures including Verification of Data Migration, Performance, Development

Agility and Query Simplicity, were deliberated as a part of evaluating this thesis works. Based

on these measures the major findings of this thesis represented that data migration using the

proposed methodology was achieved successfully. The findings also indicated that MongoDB

exhibited an outstanding performance on data aggregation and data sorting that can attract the

enterprises for their BI reporting which is based on analytical data management. BI refers to

OLAP – a simple type of data aggregation that facilitates enterprises for generating their

particular group based reports [36] and MongoDB may have a great opportunity for OLAP. But

this thesis did not contribute exploring any opportunities on the area of Online Transaction

Processing (OLTP) that ensures data integrity for transaction-oriented application and can be

considered as the future scope of works. As an expansion of this thesis works, some of the future

scope of works is given below:

 Combinational Idea: OLTP has ACID properties in order to maintain data integrity.

NoSQL does not support ACID properties for transactional database management

system. According to the literature reviews done in this thesis no solution is still available

to overcome this constraint though some of the papers discussed about a substitute BASE

as a part of supporting their transactional requirements which is comparatively weaker

than ACID. This thesis also did not explore anything on this area. Future scope of works

can include finding out a true alternative for this issue. Considering the popularity and

stability of RDBMS for years after years, a combinational approach is argued which is

called ‘SomeSQL’ where NoSQL will be integrated with RDBMS as an additional tools

81

for providing large-data oriented applications [27]. The open-source Object-Relational

Database Management System PostgreSQL introduces two fascinating NoSQL features

within its relational environment those include HStore – a key-value store and JSONB – a

binary version of JSON storage which is like BSON that MongoDB uses for its storage

[20]. Future scope of works may include PostgreSQL for the combinational idea - a

hybrid of the two which is to keep the transactional system tied to the relational

environment, and make the data analysis and data mining activities tied to NoSQL

database.

 Generalized Data Migration Tool: The future scope of work may include developing a

generalized data migration tool. The current implementation is not generalized. In order

to make it as a generalized data migration tool, an interface can be introduced where the

interface will allow entering the query string for data extraction. Based on this data

extraction a list of data fields will be generated which will be mapped into different

objects and their subsets of objects (if required) by selecting and defining with the help of

interface. The generalized implementation may needs to include a dynamic class which

will create all of the respective objects. Then finally the data migration process can

follow the proposed data migration flow diagram.

82

Bibliography

[1] Subashini, S., Kavitha, V. (2012), “A Metadata Based Storage Model for Securing Data in

Cloud Environment”, American Journal of Applied Sciences 9 (9): 1407-1414, 2012,

[2] Patel, A. B., Birla M., Nair, U. (2012), “Addressing Big Data Problem Using Hadoop and

Map Reduce”, Engineering (NUiCONE), 2012 Nirma University International Conference

on Engineering, pp. 1-5.

[3] Arora, I., Gupta, A. (2012) “Cloud Databases: A Paradigm Shift in Databases”, IJCSI

International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012

[4] Cruz, F., Gomes, P., Oliveira, R., Pereira, J. (2011), “Assessing NoSQL Databases for

Telecom Applications”, IEEE 13
th

 Conference on Commerce and Enterprise Computing,

pp. 267-270.

[5] Ganiee, N., Bhargava R., "NOSQL for Interactive Applications", International Journal of

Allied Practice, Research and Review, Website: www.ijaprr.com (ISSN 2350-1294),

retrieved on 2015.

[6] Agrawal, D., Das, S. Abbadi, A. E. (2011), "Big Data and Cloud Computing: Current State

and Future Opportunities", Proceedings of the 14th International Conference on Extending

Database Technology, pp. 530-533.

[7] Burtica, R., Mocanu,E. M., Andreica, M. I., Ţăpuş, N. (2012) "Practical application and

evaluation of no-SQL databases in Cloud Computing", Systems Conference (SysCon),

2012 IEEE International, pp. 1-6.

83

[8] Han, J., Song, M., Song, J. (2011), "A Novel Solution of Distributed Memory NoSQL

Database for Cloud Computing", 2011 10th IEEE/ACIS International Conference on

Computer and Information Science, pp. 351-355.

[9] Konstantinou, I., Angelou E., Boumpouka, C., Tsoumakos, D., Koziris, N. (2011), "On the

Elasticity of NoSQL Databases over Cloud Management Platforms", Proceedings of the

20th ACM international conference on Information and knowledge management, pp. 2385-

2388 .

[10] Bhadauria, R., Sanyal, S. (2012), "Survey on Security Issues in Cloud Computing and

Associated Mitigation Techniques", International Journal of Computer Applications,

Volume 47- Number 18, June 2012, pp. 47-66.

[11] Zhang, Q., Cheng, L., Boutaba, R. (2010), “Cloud computing: state-of-the-art and research

challenges”, Journal of Internet Service Application, 1 (1) (2010), pp. 7–18.

[12] Mohamed A. M., Altrafi G. O., Ismail O. M. (2014), "Relational vs. NoSQL Databases: A

Survey", International Journal of Computer and Information Technology (ISSN: 2279–

0764) Volume 03 – Issue 03, May 2014.

[13] Avram, A. (2012), "Transitioning from RDBMS to NoSQL. Interview with Couchbase’s

Dipti Borkar", Online Article. retrieved from http://www.infoq.com/articles/Transition-

RDBMS-NoSQL, posted on September 2012.

[14] Han, J,, Haihong, E., Le G., Du, J. (2011), "Survey on NoSQL Database", Pervasive

Computing and Applications (ICPCA), 2011 6th International Conference, PP. 363 - 366.

[15] Cattell, R. (2010), "Scalable SQL and NoSQL Data Stores", Newsletter - ACM SIGMOD

Record archive Volume 39 Issue 4, December 2010, PP. 12-27.

84

[16] Moniruzzaman, A B M, Hossain, s. A. (2013), "NoSQL Database: New Era of Databases

for Big data Analytics - Classification, Characteristics and Comparison", International

Journal of Database Theory and Application Vol. 6, No. 4. 2013.

[17] Hecht, R., Jablonski, S. (2011), "NoSQL Evaluation A Use Case Oriented Survey", Cloud

and Service Computing (CSC), 2011 International Conference on Cloud and Service

Computing, pp. 336-341.

[18] Vaish, G. (2013), "Getting Started with NoSQL", Retrieved through Ryerson Library

Catalogue from http://proquest.safaribooksonline.com/book/databases/9781849694988.

[19] "Rules of Engagement – NoSQL Column Data Stores", Online article retrieved from

http://www.ingenioussql.com/2013/02/, posted on February 2013.

[20] Lerner, R. (2015), "PostgreSQL, the NoSQL Database", Online article retrieved from

http://www.linuxjournal.com/content/postgresql-nosql-database, posted on January 2015.

[21] Mughees, M. (2013), "Data Migration FROM Standard SQL TO NoSQL", A thesis paper

retrieved from http://ecommons.usask.ca/handle/10388/ETD-2013-11-1342.

[22] Codd, E. F. (1970), "A relational model of data for large shared data banks",

Communications of the ACM, v.13 n.6, p.377-387, June 1970

[doi>10.1145/362384.362685].

[23] Dede, E., Sendir, B., Kuzlu, P., Hartog, J., Govindaraju, M. (2013), "An Evaluation of

Cassandra for Hadoop", Cloud Computing (CLOUD), 2013 IEEE Sixth International

Conference, pp. 494-501.

[24] Ferreira, C., Cohen, J. (2008), "Agile Systems Development and Stakeholder Satisfaction:

A South African Empirical Study", Proceedings of the 2008 annual research conference of

85

the South African Institute of Computer Scientists and Information Technologists on IT

research in developing countries: riding the wave of technology, pp. 48-55.

[25] Livermore, J.A. (2007), "Factors that Impact Implementing an Agile Software

Development Methodology", SoutheastCon, 2007. Proceedings. IEEE DOI:

10.1109/SECON.2007.342860.

[26] Tudorica, B.G., Bucur, C. (2011) "A comparison between several NoSQL databases with

comments and notes", Roedunet International Conference (RoEduNet), 2011 10th DOI:

10.1109/RoEduNet.2011.5993686, pp. 1-5.

[27] Lerner, R. M. (2010), "At the Forge NoSQL? I'd Prefer SomeSQL”, Online article

retrieved from http://www.linuxjournal.com/article/10720, posted on April 2010.

[28] Date, C.J. (2003), "An Introduction to Database Systems“(8th Edition), United States of

America, Pearson Education, Inc.

[29] Codd, E. F., "Extending the database relational model to capture more meaning", ACM

Transactions on Database Systems (TODS), v.4 n.4, p.397-434, Dec. 1979

[doi>10.1145/320107.320109].

[30] Fagin R. (1977) , “Multivalued Dependencies and a New Normal Form for Relational

Databases”, ACM Transactions on Database Systems (TODS), v.2 n.3, p.262-278, Sept.

1977 [doi>10.1145/320557.320571].

[31] Kent W. (1983), "A Simple Guide to Five Normal Forms in Relational Database Theory",

Communications of the ACM, v.26 n.2, p.120-125, Feb. 1983

[doi>10.1145/358024.358054].

86

[32] Chamberlin, D. D., Boyce, R. F. (1974), "SEQUEL: A Structured English Query

Language", Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data

description, access and control, p.249-264, May 01-03, 1974, Ann Arbor, Michigan

[doi>10.1145/800296.811515].

[33] Yang., H, Dasdan., A., Hsiao, R., Parker, D. S. (2007), "Map-Reduce-Merge: Simplified

Relational Data Processing on Large clusters", Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, June 11-14, 2007, Beijing, China

[doi>10.1145/1247480.1247602].

[34] Tharakan, R. (2010), "Brewers CAP Theorem on distributed systems", Online article

retrieved from http://www.royans.net/wp/2010/02/14/brewers-cap-theorem-on-distributed-

systems/, posted on February 14 2010.

[35] Gilbert, S., Lynch, N. A. (2012), “Perspectives on the CAP Theorem”, IEEE Computer,

vol. 45, no. 2, DOI: 10.1109/MC.2011.389, pp. 30-36.

[36] Rouse, M., "Data Aggregation", Online article retrieved from

http://searchsqlserver.techtarget.com/definition/data-aggregation.

[37] Tauro, C. J. M., Patil, B. R., Prashanth, K.R. (2013), "A Comparative Analysis of Different

NoSQL Databases on Data Model, Query Model and Replication Model", In Proceedings

of International Conference on ”Emerging Research in Computing, Information,

Communication and Applications” ERCICA. Elsevier, 2013.

[38] "MySQL The World's Most Popular Open Source Database", ORACLE online article

retrieved from http://www.oracle.com/us/products/mysql/overview/index.html, February

2015.

87

[39] "MongoDB .NET DriverThe next generation .NET driver for MongoDB", Online

MongoDB resources retrived from http://mongodb.github.io/mongo-csharp-

driver/?jmp=docs, February 2015.

[40] "Think Before You Dig: Privacy Implications of Data Mining & Aggregation", NASCIO

Research Brief, September 2004, retrieved from

http://www.nascio.org/publications/documents/nascio-datamining.pdf.

[41] Feinleib, D. (2012), “Big Data and NoSQL: Five Key Insights”, Forbes online article

retrieved from http://www.forbes.com/sites/davefeinleib/2012/10/08/big-data-and-nosql-

five-key-insights, May 2015.

[42] Codd, E.F., Codd, S.B., Salley, C.T., “Providing OLAP to User-Analysts: An IT Mandate”,

Retrieved from http://www.minet.uni-jena.de/dbis/lehre/ss2005/sem_dwh/lit/Cod93.pdf,

May 2015.

[43] Couchbase (2013), “Making the Shift from Relational to NoSQL”, Retrieved from

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/Couchbase_Whitepa

per_Transitioning_Relational_to_NoSQL.pdf, May 2015.

