MASSIVELY MULTI-USER ONLINE PLAT
LARGE-SCALE APPLICATIONS

by

Allen Yen-Cheng Yu
Bachelor of Applied Science
University of Toronto, June 2004

A thesis
presented to Ryerson University
in partial fulfillment of the
requirements for the degree of
Master of Applied Science
in the Program of
Electrical and Computer Engineering

Toronto, Ontario, Canada 2007
©Allen Yen-Cheng Yu 2007

FORM FOR

PROPERTY OF

RYERSON UNIVERSITY LIBRARY

UMI Number: EC53583

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53583
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, M| 48106-1346

Author’s Declaration

I hereby declare that I am the sole author of this thesis or dissertation. I authorize Ryerson
University to lend this thesis or dissertation to other institutions or individuals for the
purpose of scholarly research.

v

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopy-
ing or by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

il

Massively Multi-User Online Platform for Large-Scale Applications
by

Allen Yen-Cheng Yu
Master of Applied Science
Department of Electrical and Computer Engineering
Ryerson University, 2007

Abstract

Many large-scale online applications enable thousands of users to access their services si-
multaneously. However, the overall service quality of an online application usually degrades
when the number of users increases because, traditionally, centralized server architecture
does not scale well. In order to provide better Quality of Service (QoS), service architecture
such as Grid computing can be used. This type of architecture offers service scalability by
utilizing heterogeneous hardware resources. In this thesis, a novel design of Grid computing
middleware, Massively Multi-user Online Platform (MMOP), which integrates the Peer-to-
Peer (P2P) structured overlays, is proposed. The objectives of this proposed design are to
offer scalability and system design flexibility, simplify development processes of distributed
applications, and improve QoS by following specified policy rules. A Massively Multiplayer
Online Game (MMOG) has been created to validate the functionality and performance of
MMOP. The simulation results have demonstrated that MMOP is a high performance and

scalable servicing and computing middleware.

iii

Acknowledgments

I would like to express sincere appreciation to my supervisor, Professor Eddie Law, for the
support, assistance, guidance, and encouragement he has shown me during my stay here
at the Ryerson University. Working with him has been an educational, challenging and

thoroughly enjoyable experience.

I would also like to thank my friends in the Ubiquitous Communications and Security (UCS)
Laboratory for all the good times and memories. You really made my life more enjoyable

there.

Special thanks to my girlfriend Ming, and my friends Chester Chen, Felica Hsu, Alan Kok,
Peter Lee, Tony Lee, and Felica’s boyfriend Lawrence, who reviewed and proofread the
thesis despite having no interest in the subject. Without your encouragement and editing

assistance, I would not have finished this thesis. So thank you.

iv

Dedication

I would like to dedicate all my work to my parents, my girlfriend and my brother. It could

not have been possible without their love and support.

Contents

Acknowledgments

Dedication

List of Figures

List of Tables

1

Introduction
1.1 Computing Architectures e e e e e e e e e
1.2 Peer-to-Peer (P2P) Networks
1.3 Application-Level Quality of Service (QoS)
1.4 Middleware e e e
1.5 The Need of Massively Multi-user Online Platform (MMOP)
1.6 My Contributions e
1.6.1 Design of MMOP Architecture.
1.6.2 Protocol and Operation Designs of MMOP
1.6.3 Design of Distributed 2D Shooting Game on MMOP
1.7 Thesis Organization o e

Technology Background

2.1 Grid Computing Fundamentals

2.2 Peer-to-Peer (P2P) Structured Overlay

2.3 Quality of Service (QoS) Background

2.4 Large-Scale Online Application: MMOG
24.1 The Butterfly Grido o
2.4.2 BigWorld Technology oL,

2.5 SUMIMNAIY o o e e e e e e e e e e e e e e e e e

Massively Multi-user Online Platform (MMOP) Architecture

3.1 Virtual Organizations (VOs) Construction Service
3.1.1 Bit Torrent (BT) Protocol

vi

xii

000 O OO Ut Wi — =

Contents

3.2 Distributed Data Access Service e e .
3.21 Paxos
322 Etna e e
3.23 RAMBOand RAMBOII
324 Sigma,
3.2.5 Distributed Semaphore (DISEM) Service

3.3 Application Deployment Service

3.4 QoS Management Service
3.4.1 QoS Monitoring Service
3.4.2 QoS Provisioning Service

3.5 Distributed Timing Service

3.6 Summary

Massively Multi-user Online Platform (MMOP) prototype implementation
4.1 Development Testbed

4.1.1 Development Testbed Hardware
4.1.2 Development Testbed - Software e e e e e
4.2 Network Layer Implementation
4.2.1 Java Remote Method Invocation (RMI).
422 TCPSocket e
423 JavaNew IO (NIO).
4.3 Virtual Organization Construction Service
4.3.1 Overlay Modules
4.3.2 Virtual Organization Construction Algorithm
4.4 Distributed Semaphore (DISEM) Implementation
4.4.1 Data Refreshing Service
4.4.2 Variable Declaration
4.4.3 Access Variable
444 Write Variable.
4.5 Application Deployment Service,
4.6 QoS Management Service Implementation
4.6.1 QoS Monitoring Service Implementation
4.6.2 QoS Provisioning Service Implementation.
4.7 Distributed Timing Service Implementation
4.8 SUmMmAaryot i e e e e e e e

vii

Contents

5 Distributed 2D Shooting Game Design 64

5.1 Game Features and Objectives, 64

5.1.1 Detailed Game Entity Design 65

5.2 Client Design e 66

5.2.1 Graphical User Interface (GUI) Layout 67

5.2.2 Artificial Intelligence (AI) Design 70

5.2.3 Client Side Latency Compensation 72

53 Server Design P 75

5.3.1 Bandwidth Conservation Strategies 77

54 SUIMMATY o e e e e e e e e e e e e e 80

6 Performance Evaluation 81

6.1 Testbed Setup and Evaluation Framework 81

6.1.1 Testbed - Hardware 82

6.1.2 Testbed - Software L L. 82

6.1.3 Self-similar Traffic Generator 83

6.2 Overlay Protocol Results 85

6.3 Distributed Semaphore (DISEM) Results 86

6.3.1 DISEM: Latency versus Data Size 87

6.3.2 DISEM: Throughput 89

6.3.3 DISEM: Request Rejection Rate 90

6.3.4 DISEM: Number of replicas 91

6.4 Distributed 2D Space Shooting Game Results, 93

6.4.1 MMOP: Packet DropRate 94

6.4.2 MMOP: Updates per Second 95

6.4.3 MMOP: Latency o v ittt 97

6.4.4 MMOP: Total simulation time 97

6.5 Summary e e e e e e e e e e 100

7 Conclusion 101

7.1 Futurework e 102
Appendices

A Massively Multi-user Online Platform (MMOP) Deployment Script 105

B Setting up Hierarchical VO 107

C Script for Space Shooter Simulation on Testbed 110

viii

Contents

References 113

List of Acronyms 117

ix

List of Figures

1.1
1.2
1.3

2.1
2.2

3.1
3.2

4.1
4.2

4.3
4.4
4.5

5.1
5.2
9.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3

6.4
6.5

Possible server cluster model
Simplified P2P network
Network middleware model

P2P key distribution in structured overlay
An in game screen shot of popular MMOG - World of Warcraft

VO hierarchy and encapsulation
Basic Bit Torrent network structure

MMOP middleware structure
Superimposed One Hop Lookups structure used for membership change noti-
fication e
VO and SubVO construction algorithm
DISEM write request algorithm
A stream-based time synchronization

GUI for SPACE SHOOTER o v v ittt ittt et e et e e
Title for SPACE SHOOTER g
Menu for SPACE SHOOTER o v v v ittt ittt e et e e e
Main gaming area for SPACE SHOOTER
Radar and statistics for SPACE SHOOTER
Al design for player simulation.
Timeline for entity interpolation
Quadrant division for SPACE SHOOTER game server
Direct collision detection versus XY entity sorting

The testbed network setup
Single VO setup for evaluating performance of One Hop Lookups and Chord
Latency of three replicas DISEM on One Hop Lookups and Chord versus
number of nodes in theoverlay
Single VO setup for evaluating performance of DISEM

‘Latency of different number of replicas versus data size

List of Figures

6.6 Semaphores granted per second versus incoming request rate 89
6.7 Request rejection rate with variable data size versus incoming request rate . 91
6.8 Latency with different number of replicas versus incoming request rate . .. 92
6.9 Application VO setup for MMOP simulations 93
6.10 Packet drop rate with different VO setups versus number of simulated players 95
6.11 Update per second versus number of simulated players 96
6.12 Average latency versus number of simulated players 98
6.13 Total simulation time with different VO setup versus number of simulated
players e e e 99

B.1 VO hierarchy setupdemo, 107

xi

List of Tables

3.1
3.2
3.3

4.1
4.2

5.1
5.2

Simplified DISEM API for MMOP 31
Deployment policy parameters 33
Application resource parameters 33
Example finger table of a Chord node 47
DISEM API for MMOP 51
Attributes of basic entity in SPACE SHOOTER 65
Attributes of aircraft in SPACE SHOOTER 66

xii

Chapter 1

Introduction

Supported by the Internet boom in the mid to late 1990s, online services have grown rapidly,
both in the types of services and the numbers of users. Aided with widely available broadband
technologies of late, users are generally demanding higher level of Quality of Services (QoSs)
from the applications. As a result, designs of server architectures are challenged with higher
than expected volumes. Commonly used client-server architecture does not scale well with
increasing number of users, nor does it provide any flexibility when user demand changes.
Furthermore, it is subject to bottlenecks due to its centralized infrastructure. To solve these
problems, a fully distributed Peer-to-Peer (P2P) Grid computing middleware for large-scale
applications called Massively Multi-user Online Platform (MMOP) is proposed.

1.1 Computing Architectures

The client-server model of network topology is very common in online applications. Typically,
there is a group of client machines that want to access the services provided by a server
machine. Each client connects directly to the server and is serviced individually. This kind

of topology is commonly used in small-scale online applications such as online forums.

A single server works well for small-scale applications, and the numbers of active users do
not exceed several hundreds. However, when dealing with thousands or more users simulta-
neously, this model falls short. Typically, for a larger-scale online application, the service is
hosted by a set of machines with dedicated responsibilities as shown in Figure 1.1. This setup

Chapter 1 Introduction

Specialized Application Servers .. >

iy DatabaseServer Managemt Server
Application Server Applican Server ;

File Server Communication Server

Application Server Application Server /
e

I I I
& o 1

Client

Client Client

Figure 1.1: Possible server cluster model

is called cluster computing, and is usually deployed to improve performance and/or availabil-
ity over traditional single server setup. Grid computing is targeted to serve even larger-scale
applications whose requirements cannot be met by the cluster computing topology. The Grid
computing architecture extends cluster computing and allows the interconnection of hetero-
geneous clusters. Consequently, resources are shared (‘lynamically, and consistency among

clusters can be maintained by the Grid architecture.

1.2 Peer-to-Peer (P2P) Networks

The Internet have evolved much further than just rudimentary communications nowadays.
Large amount of computing resources can be gathered through means of Peer-to-Peer (P2P)
networks. Figure 1.2 illustrates a basic organization of P2P or overlay network. Each
machine in the network is identified as a node. Unlike the client-server model that distinct
responsibilities are assigned for clients and servers, all nodes in the overlay may be treated
equally and have exactly identical functionality. Although this illustration is overly simplified
for modern P2P networks, each node should be capable of carrying out same functions
as any other. Modern P2P networks are able to organize themselves into more efficient

N

Chapter 1 Introduction

structures through means of different overlay algorithms. These algorithms will be discussed
in Section 2.2.

Node Node

Figure 1.2: Simplified P2P network

P2P networks offer advantages over traditional client-server models with lower cost and
higher flexibility. This is our intention in this thesis to take the advantages of P2P networks
into a Grid computing architecture. Applications can then be serviced in various locations
in a P2P Grid architecture. The bottleneck problem described previously in client-server
model is alleviated. Immediate benefits such as better bandwidth utilization and reduced

network latency can be expected when switching to the Grid architecture.

1.3 Application-Level Quality of Service (QoS)

As users’ demands increase for large-scale online services, maintaining an adequate level of
QoS becomes a pressing issue. Moreover, as networks evolve into larger and more complex
arrangements, it is extremely difficult to configure and enforce QoS on a per device basis.

Chapter 1 Introduction

To make situation worse, the adaptation of P2P overlay poses challenges on the efficient uti-
lization of heterogeneous hardware equipment. Therefor, it raises the need of an automated

QoS management service with the following considerations:

Application Predictability: Computing resources need to be carefully organized when spe-
cial application requirement is present. For example, computational resources such as
CPU cycle and memory must be allocated when executing complex scientific applica-
tions. Bandwidth should be managed to meet the needs of real-time voice, video, or
multimedia applications. Furthermore, a large amount of traffic on networks may be
non-critical. It is important to be able to differentiate such traffic. Therefore, the abil-
ity to predict and provision the QoS of an application can improve the overall system

performance.

Hardware Utilization: Various computing resources can be connected by P2P overlay in an
uniform Grid computing architecture. Without a set of clear guidelines, resources can-
not be allocated efficiently. Hardware resources such as CPU cycle, memory utilization

and persistent storage spaces should be closely managed when QoS is considered.

Bandwidth Utilization: In general, bandwidth is an expensive resource in today’s Internet.
With growing demand, -networks without managed QoS may face service disruption

when traffic congestion or network failure occurs.

Several approaches have been used in the past to manage network QoS. In the traditional
approach to network management, an administrator maintains QoS configuration with de-
tailed information about the capabilities of each device in network. In addition, network
status is monitored by administrator to manage each device individually. This approach
works reasonably well in small networks; however, it is infeasible for large and more com-
plex networking systems. Therefore, policy-based QoS management is preferred on the P2P
Grid architecture. Applications can be managed through automated policy reinforcement
with a set of predefined policy rules. This type of automated service is ideal for P2P Grid

architecture to efficiently utilize its heterogeneous resources.

Chapter 1 Introduction

1.4 Middleware

Companies have been developing large-scale online applications such as online trading sys-
tems. The main issues faced by these types of applications are the constraints of networking
and computational resources requirements. The common approach is to provide a special-
ized tool or framework to support such development. These tools or frameworks are designed
solely with the specific requirements of original applications in mind. Therefore, very few of
these frameworks can be reused for different products. The lack of generality prevents the

framework to be reused by other developments.

NS

.. Heterogeneous networked- - " -,
hardware resources o

Figure 1.3: Network middleware model

Researchers have devoted much effort to build generalized frameworks to support general
distributed application development. A middleware shown in Figure 1.3 can help developers
to manage the complexity and heterogeneity of underlying computing environments. Fur-
thermore, a properly designed middleware can improve service quality and shorten the time
to market. As a result, companies that use this development approach benefit from the

Chapter 1 Introduction

middleware to produce low-cost, robust, and scalable online applications.

1.5 The Need of Massi\)ely Multi-user Online Platform (MMOP)

Currently there are several Grid computing middlewares that try to provide an uniform
development environment for large-scale online applications. However, there has yet to
exist a middleware to support all possible obstacles faced by large-scale online application
developments. Particularly, a complex set of services is usually provided for distributed
computing experts, while the majority of online application developers have little or no
experience in this type of development. Moreover, some middleware solutions focus on
providing scalability but do not efficiently utilize available network resources. This presents
a need for a lightweight middleware that solves protocol limitations, scalability, resource

utilization, and reliability issues of the Grid architecture.

The proposed Massively Multi-user Online Platform (MMOP) is a lightweight middleware
solution based on the P2P structured overlay network designed for large-scale online applica-
tions. The MMOP provides a set of simple to use Application Programming Interfaces (APIs)
for manage and access networked resources. It inherits the flexibility and robustness of P2P
network to provide a scalable Grid computing architecture. Moreover, the MMOP focuses
on providing application-level QoS through the means of active monitoring and QoS pro-
visioning in a P2P environment. The design and prototype implementation of MMOP in
this thesis clearly indicate that MMOP is a right platform for developing large-scale online

applications.

1.6 My Contributions

1.6.1 Design of MMOP Architecture

A new framework for providing large-scale distributed application known as Massively Multi-
user Online Platform (MMOP) is presented in this thesis. It provides an extensible, easily

Chapter 1 Introduction

configurable, manageable, highly flexible and scalable middleware for distributed application
development. It is designed to alleviate some of the problems imposed by the current dis-
tributed systems. Novel mechanisms and features are proposed to support the MMOP, for
example, the hierarchical Virtual Organization (VO) resource organization, QoS monitoring,

atomic data access, and time synchronization mechanisms.

1.6.2 Protocol and Operation Designs of MMOP

In order to implement a working prototype of MMOP, a multitude of components have been

generated to support the proposed functionalities in NINOP. They are:

Virtual Organization (VO) Construction Service supports modularized P2P overlay al-
gorithms, e.g., One Hop Lookups and Chord, for hierarchical organizing and utilizing

heterogeneous computing resources.

Distributed Semaphore (DISEM) Service is a high-performance, scalable and config-

urable atomic data access design for distributed applications.

Application Deployment Service provides on-the-fly module loading and offers application-

based QoS policy designs.

QoS Management Services are network monitoring modules which provide simple

application-level QoS provisioning.

Distributed Timing Service supplies an accurate and synchronized distributed clock for

distributed applications.

Each service is modularized and includes a simple-to-use Application Programming Interface
(API) that can be extended easily. Some other minor components are also included to

support simulation of the prototype implementation.

Chapter 1 Introduction

1.6.3 Design of Distributed 2D Shooting Game on MMOP

To verify the functionality promised by the MMOP design, a distributed 2D shooting game
has been developed. The name of the game is coined SPACE SHOOTER. The game includes
a Graphical User Interface (GUI) client, Artificial Intelligence (AI) client and distributed
server design utilizing the MMOP services modules. In order to develop a fully functional
game, special considerations are put into GUI, Al, client-side latency compensation and

server bandwidth conservation design.

Simulations are conducted with the implementation of the 2D game to demonstrate the

functionality and performance of the proposed MMOP design.

1.7 Thesis Organization

Chapter 1 is an introduction to current architecture for large-scale online services and the
need of MMOP. Background information such as QoS management and functionality of Grid
computing has been briefly discussed. This chapter concludes with a summary of motivations

and contributions of my work.

Chapter 2 contains background material on QoS, Grid computing, P2P structured overlay,
and Massively Multiplayer Online Game (MMOG), and provides a motivation behind the
proposed research. Some contemporary utilization of Grid computing in online gaming is

briefly mentioned.

In Chapter 3, the architectural details of MMOP, i.e., its layout, organization, and main
components, are presented. Various system-level features of MMOP, and functional features

of different components are discussed in detail.

Chapter 4 presents the implemented prototype and outlines the work undertaken. Imple-
mentation details of the various components and features are discussed. In particular, details
of communication protocol and related implementation issues are provided. The limitations

of the implementation are also examined.

Chapter 1 Introduction

In Chapter 5, the distributed 2D shooting game, SPACE SHOOTER, has been developed using
the prototype implemented in Chapter 4. Special consideration of latency compensation and
bandwidth conservation are designed and the design choices are discussed.

Chapter 6 evaluates the novelty proposed Distributed Semaphore (DISEM) protocol and
verifies the overall system performance and functionality through simulations with the dis-

tributed 2D shooting game.

Chapter 7 summarizes the research presented in this thesis and provides some future research

directions in this area.

Chapter 2
Technology Background

In this chapter, technologies mentioned in the previous chapter are discussed in more detail
to provide a clearer understanding of the motivation behind this research. In particular,
the Grid computing architecture, Peer-to-Peer (P2P) structured overlay, and application-
level Quality of Service (QoS) are covered in detail. We also discuss the application of the
Massively Multi-user Online Platform (MMOP) for large-scale online applications such as the
Massively Multiplayer Online Game (MMOG). Some current MMOG middleware are also
introduced. Later in this thesis, a simple MMOG called SPACE SHOOTER is designed using
the services provided by MMOP. The game will be used to demonstrate the functionality
and performance of the MMOP. The preliminarily simulation results of the game can be

found in Section 6.4.

2.1 Grid Computing Fundamentals

As the availability of the Internet and bandwidth outgrows server computational power and
storage capacity, the next logical step is to provide a virtualization of a single powerful com-
puter to coordinate these distributed resources. Such technology is referred to as “Grid”
computing architecture, in which the computing resources are contributed by distinct indi-
viduals or organizations but now under control of a new administration called the Virtual
Organization (VO). Such organization reinforces both policies defined by the original con-
tributor as well as the virtual organization administration when utilizing the computing

resources.

10

Chapter 2 Technology Background

Grid computing paradigm differs from the traditional client-server model in that it offers
efficient and inexpensive utilization of computing resources throughout the Internet. The
Grid computing architecture is developed with the following considerations:

- large-scale online applications require large amounts of computing resources, which are

not easily supported by current clustered server architectures.

- modern Personal Computers (PCs) offers high performance at low cost when compared

to server machines.

- many of these PCs are connected to the Internet, and are underutilized most of the

time.

Therefore, by developing a software that manages the interconnection of these computing
resources, a virtual computing environment can be constructed. The software that unites all
these resources is called the Grid computing middleware. Such middleware provides online

applications with access to various resources within a Grid computing environment.

One well known project that utilizes the Grid computing architecture is the Search for
Extraterrestrial Intelligence (SETI) [1] project, where narrow-bandwidth radio signals from
space are gathered by radio telescopes and processed to detect intelligent lifeforms outside the
Earth. Users contribute to the project by allowing the application to process a subset of the
gathered data, usually when the computer is idling. By exploiting the parallel processing
power of Grid computing architecture, large amounts of gathered data can be processed

simultaneously.

The initial platform for SETI is now referred to as “SETI@QHome Classic”, which was de-
signed specifically for the SETI project. The platform was replaced by the Berkeley Open
Infrastructure for Network Computing (BOINC) middleware, and the new project is referred
to as “SETIQHome”. The middleware enables multiple scientific projects to share the same
set of computing resources. It also provides better user control by allowing the users to

adjust the time period and computing resources they want to share.

Another popular Grid computing middleware is the Globus Toolkit 4 (GT4) [2], which
provides a set of service implementations for the general Grid applications. Its Grid Resource

11

Chapter 2 Technology Background

Allocation and Management (GRAM) service provides full fledge data management and
scheduling control, while the security of the middleware is ensured by incorporating high-
level standard based security components with X.509 credentials [3] on the transport-level as
default. Moreover, GT4 makes extensive use of document-oriented protocols such as XML
for describing, discovering, and invoking network services for flexibility and extensibility.
GT4 uses web services to provide loosely coupled interactions that are preferable in robust
distributed systems. However, one of the main concerns that has not been addressed by
GT4 is the issue of service latency. Particularly, it lacks the ability of handling real-time

applications due to the large overhead introduced by using document-oriented protocol.

2.2 Peer-to-Peer (P2P) Structured Overlay

The Peer-to-Peer (P2P) network has gained lots of recognition recently, primarily because
it provides a solution to replace the traditional client-server model of file sharing. The users
(peers) trade files by direct connection between each other instead of downloading from a
particular file server. In the traditional client-server model, the limited server bandwidth
is usually the bottleneck when there are many clients requesting files simultaneously. The
advantage of a P2P network type file sharing architecture is that files are shared without a
dedicated file server. Generally, when more peers access the same file, the available band-
width for that particular file increases. For all peers accessing the file, they upload the
missing pieces to each other, effectively sharing their bandwidth with each other. With
such setup, the problem of bandwidth bottleneck in the client-server model is mitigated.
However, since the file sharing is based on the goodwill of peers, an insufficient number of
peers participating in the file sharing process would result in a lower overall bandwidth and

ultimately prevents the file from being downloaded if no peer is sharing it.

To form a P2P network, structured overlay algorithms such as One Hop Lookups [4] and
Chord [5, 6] algorithms can be used. In both One Hop Lookups and Chord, hash keys are
used heavily for overlay indexing and construction. The algorithms provide a mean of looking
up any given key quickly in the structured overlay. The key is also used by the algorithms

to determine a node’s position in the structured overlay by assigning an identifier string for

12

Chapter 2 Technology Background

each node. Upon carrying out consistent hashing on the identifier string, a unique hash key
can be generated to identify the node in a structured overlay. A common hash function used
in the structured overlay algorithm is the US Secure Hash Algorithm 1 (SHA1) [7]. A special
property of hashing operation is to provide balanced load on the structured overlay, because

the hashing function guarantees that each peer receives roughly the same number of keys
[8].

In this thesis, hash keys are used extensively to provide high data availability. A distributed
redundancy environment can be constructed by associating an identifier string to a data
object. Using the hash key of the string, the data object can be virtually mapped onto a
node in the overlay. Such mapping is the fundamental element of providing efficient data
replications on the structured overlay [9]. The replication is achieved by adding prefixes or
suffixes to the identifier string. For example, it is possible to generate multiple hash keys
associated with a single data object with an identifier string of test. The replica strings
can be created by appending suffix to the original string, resulting in test-1, test-2, and
etc., The same data object is then assigned to different nodes according to the replica strings
for backup and load balancing purposes. As a result, the availability of the data object is
increased. The Distributed Semaphore (DISEM) protocol presented in Section 3.2.5 employs

the same technique to increase data availability in a structured overlay.

In an actual P2P structured overlay, nodes are free to join or leave the overlay randomly.
Therefore, it is crucial for the P2P algorithm to maintain the key mappings on each node
between these changes. When a node joins the overlay, the overlay algorithm determines
a set of keys which are under the responsibility of this node. When this node leaves the
overlay, the algorithm redistributes its keys onto other nodes. Since the hash keys are evenly
distributed on the overlay [10], only a minimum number of key movements is needed when
changes occur. The hash key mappings are treated as positive integers in the structured
overlay. All the hash keys are then ordered in their numeric order and wrapped around in a
circle as illustrated in Figure 2.1. For example, KEY 1 is assigned to node 1 on the structured
overlay since they have the same hash number. KEY 2 is assigned to its successor node 3,
and KEY 6 is assigned to node 0 because the keys are wrapped around into a circle.

With this cyclic overlay structure, the structured overlay is able to accommodate a maximum

13

Chapter 2 Technology Background

successor(l) =1

successor(6) =0 H

Figure 2.1: P2P key distribution in structured overlay

of N keys. This maximum possible value of N is dependent on the hashing algorithm used.
For example, for the SHA1 (160 bits) hash function, the maximum number is N = 2160 — 1.
Furthermore, this restriction also applies to the total number of nodes, since it cannot exceed

the maximum number of keys, V.

The P2P structured overlay is the backbone of the MMOP design. In this thesis, it is
used to construct Virtual Organizations (VOs), where each VO is an independent structured
overlay with possibly different overlay and hashing algorithms. With different algorithms, the
resulting VO exhibits different performance and size attributes. The P2P structured overlay

algorithms implemented in the MMOP will be discussed and illustrated in Section 4.3.

2.3 Quality of Service (QoS) Background

The basic concept of Quality of Service (QoS) is to ensure an unfair treatment for services.
For companies, service charges can be based on the level (quality) of service provided. For
customers, they can choose from a pool of available service levels and pay only for the services

they desired. An example of QoS being enforced is the Internet Service Providers (ISPs)

14

Chapter 2 Technology Background

providing different levels of Internet services (different bandwidths) for customers. Even
though the hardware setup for all the services are identical, the service bandwidth available

to the customer is different, hence there are different values for each service level.

When the Internet was deployed many years ago, service was provided as “best effort” service
due to the lack of computing power to differentiate the network traffic. Nowadays, it becomes
possible to perform traffic characterization with advanced networking equipment without
affecting traffic flows in networks. Traffic characterization makes sense since different kinds
of traffic have different QoS sensitivities and requirements. For example, real-time video
and audio traffic requires low traffic latency, while FTP file transfer does not require any

real-time constraints on the network.

The need for enforcing network QoS becomes more apparent with the introduction of the
P2P file sharing protocol. In particular, clients using P2P file sharing usually consume an
exceptional level of bandwidth when compared to other users who do not use such service.
Since the total bandwidth of an ISP is limited, the unbalanced bandwidth usage have pushed
some ISPs to introduce special QoS policy rules. There rules are designed specifically to limit
P2P file sharing traffic to ensure that bandwidth is shared fairly among all its customers.

In the following, a few fundamental parameters that are used for describing network QoS

are presented. They are:

Packet Loss is the number of packets lost or corrupted during transmission. It generally

happens when a network malfunctions or when it is overloaded.

Latency is caused by physical delay of the network link such as packet queuing and propa-

gation.

Jitter is the variation in the latency, which can seriously affect streaming type traffic, such

as real-time video or audio.

Throughput can also be identified as the available bandwidth, which is independent from

other traffic on the same network link.

Traditionally, network QoS is enforced by identifying the service type and providing provi-
sioned network resources to the service. The provisioning process can be done manually by

15

Chapter 2 Technology Background

a network administrator or dynamically through traffic classification, where each packet is
marked according to the type of service requested. Although the TOS (type of service) byte
in IP header can be used for traffic differentiation in packet level, it has never really been
supported by applications and network routers. The Differentiated Services (DiffServ) [11]
has been recommended by IETF, and DiffServ Code Point (DSCP) is introduced to replace
the TOS byte. The first six bits of the DSCP field classifies the traffic into different service
types with different forwarding features and dropping probabilities.

Associating network QoS services to applications running on Grid computing framework
will be an extensive research topic: As aforementioned, Grid computing units are a large
set of computing resources spread all over the world. These resources include more than
just networking resources. CPU cycle, hard disk space, and memory utilizations are also
considered as valuable resources in the Grid computing architecture. Moreover, the QoS of
such architecture can be affected by several factors such as user demands, service behaviors,
and resource changes. If neglected, these factors may lead to inefficient resource allocation
and ultimately unsatisfactory QoS. Unlike the networking QoS reinforcement on a per packet
basis in the client-server model, Grid computing requires a more complicated application-
level QoS that provides reservation of computing and networking resources at the same

time. .

In this thesis, an application-level QoS architecture is designed where resources in the P2P
Grid architecture are actively monitored. The collected statistics are used to provision the
application resources according to a set of predefined application policies. By provisioning
the computing hardware and networking resources required by each application, MMOP is
able to efficiently utilize the available resources within the P2P Grid architecture.

2.4 Large-Scale Online Application: MMOG

Massively Multiplayer Online Games (MMOGs) are large-scale online applications that allow
hundreds, sometimes thousands of users to interact in a virtual world, as shown in Figure 2.2.
Currently the most popular MMOGs according to the number of active subscriptions are

16 -

Chapter 2 Technology Background

Blizzard’s World of Warcraft [12], NCSoft’s Lineage [13] and NCSoft’s Lineage II [14]. [15]
MMOGs are particularly popular in the Asia/Pacific region, which has the largest worldwide
MMOG market. Furthermore, the MMOG industry generates the majority of revenue of
online gaming business. According to [16], the market has grown over the past several years,

and will almost triple its existing market size by 2010.

Figure 2.2: An in game screen shot of popular MMOG - World of Warcraft
[Courtesy of Blizzard Entertainment, Inc.]

The effort of creating a successful MMOG title involves several years of careful planning
and beta testing prior to actual release. Even with such care, projects may be stopped or
dimmed unsuccessful after release. Furthermore, continual support and update of the game
is expected by the customer, unlike other online services. In [17], the author clearly outlines
the need of a general middleware for MMOG. By concealing the networking details from
the MMOG developers, the middleware can provide higher quality games since it allows
the developers to concentrate on developing the game content. A proper middleware that
provides the organization of the network infrastructure would greatly reduce the time to

market and even reduce the maintenance cost of a MMOG.

Currently, many MMOGs continue to use the cluster computing paradigm as their underlying
network infrastructure. That is, game companies are hosting the games on dedicated servers
with high-speed network connectivity. A bottleneck can be easily identified in this setup

17

Chapter 2 Technology Background

when higher than expected number of players are trying to access the game service. A lot of
effort has been devoted towards increasing the QoS of the MMOG, and popular mechanisms
implemented by many MMOG companies are:

- utilizing player login queue so the total active players in the game can be controlled
- dividing game world into separate zones that are hosted on different servers

- providing several completely independent game server sets so the users are divided

among the servers

However, these methods do not solve the QoS problems completely. With login queue, the
player might be spending a long time in the queue since no player is leaving the game.
The other two methods introduce additional requirements on server hardware, which can
incur a large amount of operation costs. We believe that with P2P Grid computing, it
is possible to provide a more flexible, robust, and scalable infrastructure. The bottleneck
problem described previously no longer exists in the architecture since the traffic can be
spread among the networked peers. In addition, the P2P computing presents a low-cost

alternative to its cluster computing counterparts by utilizing less expensive hardware.

The following MMOG Grid middleware solution demonstrates the feasibility of implementing
a general, flexible Grid middleware for large-scale online applications such as MMOG.

2.4.1 The Butterfly Grid

The Butterfly Grid [18] was one of the few earliest Grid computing middleware designed
specifically for MMOG. It was designed to shift processes to available resources and over-
come limitation of cluster computing paradigm with its self-managed and fully meshed net-
work. The Butterfly Grid included two clusters of roughly 50 IBM eServer xSeries servers,
which were used to host database and application services. The Globus Toolkit was used
to integrate these services together into a computational Grid. Unfortunately, the company
that developed Butterfly Grid has moved away from providing open-standard Grid services
to developing a proprietary solution called Emergent Platform.

18

Chapter 2 Technology Background
2.4.2 BigWorld Technology

Similar to Butterfly Grid, the BigWorld Technology [19] is a middleware specifically designed
for MMOG. Its founding company, Microforte spent several years and invested millions of
dollars to develop a general MMOG middleware. The company claims that it is one of the
most complete MMOG development packages, which includes tools from client 3D to server
back-end development. Tools such as content creation, client engine, server configuration and
management are included, to reduce complexity and shorten development period of MMOG
design. Furthermore, the BigWorld server provides a highly available and dynamically load-
balanced server infrastructure. There are several games being actively developed utilizing

this platform.

2.5 Summary

In this chapter, a background of various technologies employed in MMOP are discussed.
The necessity and benefits of the Grid computing architecture, P2P structured overlay,
and application-level QoS provisioning are reviewed. They form the basis and provide an
understanding behind the motivation of the research. Furthermore, a popular large-scale

online application would be benefit greatly from the proposed Grid computing middleware.

With these technologies incorporated into the MMOP middleware, a simple MMOG called
SPACE SHOOTER is designed in this thesis. The purposes of the MMOG are to (1) verify
the functionality and performance of MMOP, and (2) demonstrate the ease of MMOG devel-
opment with a properly designed middleware. The design and implementation of the game

are covered in Chapter 5, and the evaluation of the game and the MMOP are discussed in

Section 6.4.

19

Chapter 3

Massively Multi-user Online Platform (MMOP)

Architecture

In this paper, we introduce the Massively Multi-user Online Platform (MMOP) for large-scale
applications which is based on the Peer-to-Peer (P2P) structured overlay algorithms. Its goal
is to provide an environment where application developers can easily develop distributed
applications. Developers will be able to fully utilize the computing resources through a
set of Application Programming Interfaces (APIs). The networking and servicing details
are encapsulated within the MMOP, so developers can define computational requirements
through means of policies. Several distributed services that are aimed for this purpose are

designed in the following sections.

3.1 Virtual Organizations (VOs) Construction Service

In order to construct a Grid computing environment using the P2P overlays, nodes are
grouped into Virtual Organizations (VOs). However, the definition of VO in our design is
slightly different from the one used by general Grid computing. In general Grid computing
setup, a VO refers to a virtual administrative domain that controls a shared resource space
contributed by different administrative entities. For MMOP, we simplify the definition of
VO to be nodes that are connected within a single overlay. A single node can join multiple
VOs at the same time, but the VOs should not be aware of the existence of other VOs.
Consequently, it is crucial to be able to distinguish different API calls from one VO to

20

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

another. All MMOP API service calls require two additional identifiers on top of regular
parameters, namely the VO ID and overlay key.

Broker VO

Client VO
(Secondary)

Figure 3.1: VO hierarchy and encapsulation

The VO ID is a universal ID assigned to each VO to identify which VO to relay the API call to.
For scalability reasons, a hierarchical ID space is used. There is one primary VO and several
secondary VOs as illustrated in Figure 3.1. The primary VO is the BROKER VO, which
stores all the secondary VOs’ contact information using the Distributed Semaphore (DISEM)
protocol described in Section 3.2.5. Each VO also stores its first degree subsidiary VOs’
(SubVOs) information using DISEM. The VO ID is a multi-level string that has the following

format:
Primary/Secondary : 13t : 2™ : || : N

. For example, a Broker machine which resides in the subsidiary VO of the name FirstLevel

will have the VO ID of
’ BROKER : FirstLevel

21

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

and so on.

Since there is no restriction on how many levels of SubVOs are allowed, a VO search might
require several queries between different VOs. Therefore, each search request should be
cached locally on the requester for future requests to the same VO. Aside from the first degree
subsidiary VOs, each VO also stores the information of the primary BROIER VO. These
records are used to provide a starting ground for all the look up services. Therefore, any
given number of VOs can be employed using this hierarchical VO structure. The following

are functional descriptions of each VO:

Broker VO (Primary): It is the backbone of the system, relays requests between clients and
servers so that the service execution can be masked from the clients. All communication
is relayed by the BROKER VO, this provides protection as well as scalability to the
MMOP platform. The clients are not aware of how their service is provided and the
servers do not communicate with the clients directly. The BROK ER VO tries to cache
the VO lookup results with DISEM so that future requests can be served in a timely

manner.

Client VO (Secondary): Includes all the clients. The main purpose of this VO is to share
non-critical data between clients. Some client to client communication, for example di-
rect chat between clients, file sharing between clients etc., can also be provided through
this VO when no specific service within the MMOP need to be involved. Furthermore,
the Bit Torrent (BT) concept described in Section 3.1.1 can be incorporated to effi-

ciently utilize the available bandwidth.

Application VO (Secondary): This VO is the execution environment of the MMOP, in
which, the application will be deployed and executed. It provides computational ser-
vices and reserves necessary resources as defined by the applications QoS policy. The
developer can further define specific application VOs for specific tasks. For example,
a VO can be defined as a database VO by creating a specific VO ID as:

APPLICATION : ApplicationName : Database

and redirecting the data access to that VO instead of using the current VO.

22

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

Free Server VO (Secondary): A free Server VO manages servers that have free compu-
tational resources remaining. These servers are ready to be moved into one of the
application VOs. Each assignment would assign computing resources according to the
QoS policy assigned by the application developer. The machine should remain in this

VO while it has extra resources available.

Module VO (Secondary): This particular VO provides storage service for application ex-
ecutables. The storage mechanism is inspired by the popular BT concept discussed
in Section 3.1.1, where all the data stored are broken into smaller blocks so that the
loads are distributed between the data storage servers. The effect of larger block sizes
would have higher bandwidth requirements on the server, while smaller block size, on
the other hand, would require more coordination overhead in storing and retrieving
the data. Further optimization can be calculated based on the available bandwidth of

overall storage servers.

While forming MMOP, a BROKFER VO is first constructed with bootstrapping service.
The function of a bootstrapping service is to provide newly arrived peers with ways of
joining or creating a VO. At the beginning of BROKER VO formation, a single machine
is set as the bootstrap master.” This machine provides bootstrap service for the first few
BROKER machines. When there are more than one node within the BROKER VO, the
newly arriving nodes are not limited to use only the bootstrap master. Any other machine
within the BROKER VO can be used to start the bootstrapping service.

The bootstrapping service ensures that when a new VO is being created, a corresponding
reference is created for future VO queries. When a new VO is created, the virtual orga-
nization construction service creates a total of k references to the new VO and stores the
references using DISEM on the parent VO. The parent VO is defined as one level above
the current VO, for example: APPLICATION : Levell : Level2 has a parent VO of
APPLICATION : Levell. As mentioned before, the BROKER VO is the parent VO of
BROKER : 1 as well as parent VO for all the secondary VOs.

Furthermore, the number of & can be adjusted as the size of referencing VO increases.
Each reference is a mapping of the overlay key onto the referencing VO, hence it must be

23

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

maintained regularly by the parent VO.

3.1.1 Bit Torrent (BT) Protocol

In the design of Virtual Organizations (VOs) construction services, the Bit Torrent (BT)
concept is mentioned to provide data storage on the P2P structured overlay. In BT [20, 21]
architecture, when a user wants to publish a file, an associated .torrent file needs to be
constructed. Such file contains the information of the file to be published, which includes file
length, file name, file checksum and location of the trackers. The trackers are peer servers
that refer users to one another. It is the heart of the BT protocol, without it, peers will not

be able to lookup each other nor share files.

The .torrent is usually obtained from the Internet by traditional means such as website or
File Transfer Protocol (FTP). Users interested in obtaining the published file need to obtain
the .torrent file first and connects to the trackers. When a user contacts the tracker,
information about the requested file and connection information are sent to the tracker.
The tracker then responds with connection information of currently connected users that
are downloading the same file. The default number of users included in the returned list is
limited to fifty. Therefore, a returned list does not coritain all the users that are currently
downloading the file. If more than fifty users are connected, random graph algorithm is used
to return only the partial list. The algorithm ensures that if there is a sufficient number of
nodes in the list that is passed to the user, then there will be a high probability that all
users can form a complete network [22]. This partial list of users is then used to establish

connections between users. A basic BT network setup is illustrated in Figure 3.2.

To make the file available, the BT protocol requires a user with the complete file to be
connected to the tracker, this user is known as a seeder of that particular file. In order to
redistribute the bandwidth cost among all downloading peers, the BT protocol breaks the
file into smaller file blocks. Each block of files is then associated with a popularity tag which
indicates how often the block has been accessed. When a peer is connected to a seeder, it
attempts to request the least popular pieces first. It then exchanges the retrieved blocks with
other peers who are downloading the same file. By doing this, all peers downloading the file

24

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

:// Bit Torrent Servers ‘\\
f 1
Web Server Tracker Server

(Hosts .torrent files) (Hosts all peer information)
. /

Internet

: % Seeder/Peer %
i Peer

Peer |

Bit Torrent Clients J/

Figure 3.2: Basic Bit Torrent network structure

share the load of a single file server in the traditional client-server model. This approach
results in the most efficient bandwidth utilization and allows multiple peers to download
the same file at the same time [20]. Furthermore, this redistribution of bandwidth costs

makes downloading from a BT network to have the potential of serving unlimited number

Special caution should be taken into account for the original seeders. The protocol requires
that the original seeder of the file sends out at least one complete copy of the file. If the
seeder leaves the network without seeding a complete file then any peer downloading the file
will not be able to obtain a complete file. This is different from a client-server model where
the file received by each client is independent. However, the BT network has the advantage

over the traditional client-server model of allowing a downloading peer to become a seeder.

25

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

This occurs when a peer has completely reconstructed all the received file blocks for that file.
Once the peer has a complete file, it can start the seeding procedure as a seeder. Therefore,

as long as there is a seeder in the network then the file can be downloaded correctly.

Due to the need of a file server for storing the .torrent file and a tracker to refer clients
to one another, BT is not suitable to be directly implemented in the MMOP. Furthermore,
since the data used in the MMOP simulation test cases are relatively small, DISEM is used
to provide general data storage in place of BT protocol. However, since DISEM does not
perform well under large data size, a modified version of BT without file server and tracker

should be implemented in the future to provide large file sharing in MMOP.

3.2 Distributed Data Access Service

Redundancy is a simple way of providing high data availability on a structured overlay.
However, due to the random nature of Peer-to-Peer (P2P) network, node arrival, departure
and failures need to be compensated by the replication algorithm. Moreover, replication
introduces the challenges of maintaining consistency among all replicas. For providing con-
sistent distributed data, an algorithm should manage dynamic participation as the collection
of network locations storing replicas change over time. There are two basic approaches to

handle these changes within the structured overlay network [23]:

Optimistic In this approach, the primary objective is to optimize the data access time. The
data are not protected when new data are being written. It is usually sufficient when
the probability for updating the same variable with different data at the same time is
low. Since no synchronization is required, this type of protocol is usually simpler to
implement. The read-one/write-all-available (ROWAA) protocol is one of the simplest

optimistic protocols.

Pessimistic The main goal of the pessimistic approach is to provide data consistency. Pes-
simistic approaches are based on locks and lock management. As aforementioned,

26

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

network and node failures are unavoidable events on a distributed network. To en-
sure data consistency and availability, pessimistic protocols provide distributed lock

management and data recovery.

Quorum-based replica protocols are examples of pessimistic protocols that have been devel-
oped to improve distributed data accessing performance. Some quorum-based replica proto-
cols, such as Etna [24] and Reconfigurable Atomic Memory for Basic Objects (RAMBO and
RAMBO II) [25, 26] achieve data consistency through forming read/write quorums. The
quorum formation is a result of requesting configuration from the total-ordering algorithm,
Paxos [27]. Sigma protocol [28], on the other hand, uses logical clock and ROWAA ap-
proach to achieve data consistency. In the next few sections, the Paxos algorithm, the two
quorum-based replica algorithms, the Sigma protocol and lastly, design of the Distributed
Semaphore (DISEM) service are discussed. .

3.2.1 Paxos

Paxos [27] is a distributed consensus algorithm that has three types of agents: proposers,
acceptors, and learners. A single process may act as more than one type of agent. The

consensus algorithm proposed by Paxos has two parts:
1) choosing a value, and
2) learning the chosen value.

The first part of the algorithm also consists of two distinct phases. The first phase requires a
proposer to selects a proposal number, p, and sends prepare request messages to a majority
of acceptors. If the message with a number p received by an acceptor is larger than any of
the previously responded prepare requests, the acceptor then replies to this request with a
promise not to accept other proposals with numbers smaller than p. On the other hand, if

the proposed number p is smaller, the acceptor returns the highest-numbered proposal that

it has accepted.

The second phase starts when the proposer receives responses to its prepare messages, from
a majority of acceptors. The proposer then sends an accept(p, v) request message to each of

27

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

those acceptors, where v is the value of the highest-numbered proposal among the responses,
or any value if the responses reported no proposals. Upon receiving the accept(p,v), the
acceptor accepts the proposal unless it has already responded to another prepare request

with a proposal number larger than p.

The second part of the algorithm is to distribute the accepted value to the learner agents.
In general, the acceptors can respond with their acceptances to some set of distinguished
learners, each of which can then inform all other learners when a value has been chosen. With
a larger set of distinguished learners, greater reliability at the cost of greater communication

complexity can be provided. The Paxos algorithm guarantees the following:
- Only a value that has been proposed may be chosen.
- Only a single value is chosen.
- A process never learns that a value has been chosen unless it actually has been.

Given that the underlying network should eventually be stabilized, Paxos achieves atomic
data access by allowing only one value being proposed at any given time. However, as an
extra requirement for the algorithm, an acceptor must remember two numbers: the highest-
numbered proposal that it has ever accepted and the number of the highest-numbered prepare
request to which it has responded. This criteria, if not met in case of node failure, would

lead to network partitioning and result in more than one value being accepted.

3.2.2 Etna

In Etna [24], the Paxos algorithm is used to produce quorum configurations. Each configu-
ration is produced by a single instance of the Paxos protocol. Etna maintains one consistent
configuration per variable. Hence, different variables are replicated on different sets of nodes.
With each configuration, Etna makes use of the agreement protocol to verify the consistency
of its proposed variable and the variable stored on the primary (leader) location. If discrep-
ancy is discdvered, Etna uses Paxos to get a consensus on a new configuration in which they

are the same.

28

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

Each Etna node can create proposed configurations and pass them to Paxos to be accepted
or rejected. When consensus is reached, Paxos calls the Etna to see if it will accept the
proposed value. At this point, Etna notifies the new configuration of its decision, and the
configuration’s primary location proceeds to locate the latest version of the variable and

serve client requests.

3.2.3 RAMBO and RAMBOII

RAMBO ([25] replicates variables at several network locations to achieve fault tolerance and
provide availability. To maintain consistency in the presence of small and transient changes,
the RAMBO algorithm uses configurations to determine the scope of the update. Such
configuration contains a set of members plus sets of read/write quorums. RAMBO’s quorum
intersection property requires that every read-quorum intersects with e\'/ery write-quorum for

the same variable so that the result of a write can be observed by the readers.

To accommodate larger and more permanent changes, the algorithm reconstructs the ex-
isting set of members and the sets of quorums using the Paxos algorithm as reconfigura-
tion service. The reconfiguration service produces a sequence of configurations based on
the reconfiguration requests from the environment. This service also informs read/write
service about newly-determined configurations, and disseminates information about newly-
determined configurations to the members of the configurations. Any configuration may be
installed at any time, while obsolete configurations can be removed from the system without

interfering with the active configurations.

In RAMBO II [26], it takes a step forward and allows the reconfiguration protocol to upgrade
any configuration, even when the configurations with smaller indices are out-of-date. The
algorithm allows all configurations with smaller indices to be removed when a configuration
is selected. This allows a single configuration upgrade operation in RAMBO II to have the
effect of many garbage collection operations in RAMBO.

However, since RAMBO algorithms allows multiple active configurations of replicas at any
time, reads and writes can be costly as a result of frequent quorum assembly with every
active configuration. According to [29], although quorum algorithms provide performance

29

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

improvements in some extreme cases of distributed computing (e.g., write intensive environ-
ments), this type of environment does not appear in our everyday application. It is more
probable for an application to have workloads such as 70% read and 30% write, or even
80% read and 20% write operations. Under such circumstances, faster read response time
would greatly improve the overall performance. The paper [29] suggested that the optimistic
ROWAA approach is the best choice for a large range of applications requiring data repli-
cation. The Sigma protocol is one of the protocols that was designed with this approach in

mind and will be discussed next.

3.2.4 Sigma

The Sigma protocol [28], uses different approaches from the previous two algorithms. As
opposed to trying to achieve general consensus with Paxos, it uses a combination of replica
queues and Lamport’s logical clock [30] to provide a first-come-first-serve service. The proto-
col treats all failures in a uniform manner and provides fault tolerance by lease and informed
back off.

A queue is installed at each replica to identify the order of client requests into a consistent
view among all replicas. Replica grants permission to first client in the queue with renewable

lease. When the lease expires, replica will grant permission to the next client, if any. If '
general consensus cannot be achieved during the time of a lease grant, client sends out
a YIELD message to each of the acquired replicas. This message has the same effect as
releasing the replica and requesting it again. Therefore, the order of the queue is reshuffled

and progress is ensured. Typically, this stabilization process can quickly settle.

In the case of replica failures, Sigma requires a replica queue to be rebuilt. Informed back
off is a strategy where each replica predicts the expected waiting time, T, and advises its
requesters to wait before retry. The T, can be calculated by T,, = TCS x (P + 1/2), where
P is the client’s position in the queue and T'C'S is the average interval between any two
consecutive release operations. The 1 /2 in the formula is to take current owner of the replica
into consideration. Upon replica failure, the queue may start empty. The T, is small so the

30

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

failed replica can rebuild its own queue relatively fast while the healthy nodes maintain its
stabilized queue.

3.2.5 Distributed Semaphore (DISEM) Service

Similar to the Sigma protocol, the DISEM protocol uses the ROWAA approach. This allows
Distributed Semaphore (DISEM) to provide MMOP with real-time data access as well as
data consistency when required. Unlike the Sigma protocol, the use of logical clock is not
required in the DISEM. The replicas collectively maintain progress and consistency of the
protocol by notifying the replica status to the requesters.

In DISEM, the variable is replicated n times on the VO. The number n is a constant that
can be tuned according to the availability requirement of each particular VO. If there are
multiple copies of a variable on the VO, it is crucial to maintain the consistency among all
copies. Defective, outdated, or missing replicas are re-created within refreshment rounds.
As recommended in [31], a common data access API should contain at least the first three
basic methods shown in Table 3.1. In our proposed design, the write operation is further

partitioned into two separate stages of operations: lock and unlock.

Table 3.1: Simplified DISEM API for MMOP

API Interface | Interface description

publish publishes a variable.

read retrieves the variable.

write writes a new value into the variable.

lock locks the given variable.

unlock unlocks the variable and update its value.

To access a created variable on DISEM, the API, read is used. By exploiting the properties
of structured overlay and variable replication, several read operations can be defined. Each
operation satisfies certain specific real-time policy requirements of the application policy.
Choosing which read to use depends on the operating nature of the target application. In
the following, the read opérations in increasing order of data accuracy are defined.

31

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

Real-time read: the read operation returns immediately if any error is encountered during

the data retrieval.
Normal read: retrieves any existing replicas.

Consensus read: this read method compares the version tag of all replicas to achieve a

general consensus.

Most updated read: variable replica with latest version tag is selected.

Special care should be taken with the DISEM write operations. In order to provide dis-
tributed lock management, the write is constituted of lock and unlock phases. In the lock
phase, the Write Requester (WR) first randomly generates a key and finds the corresponding
Synchronization Agent (SA) on the structured overlay. The SA then provides lock manage-
ment for this specific request. The SA then gathers replicas information and notifies the
WR of the acceptance or rejection of its request. Upon receiving acceptance, the WR then
proceeds with its update and releases the variable with unlock. Through the use of the
lock, unlock phases, atomic data access and critical section protection can be achieved. The

detailed implementation of DISEM is described in Section 4.4.

3.3 Application Deployment Service

This service provides a simple way of deploying application on to the specific VO for the
application developer. The application is identified by the application name and the version
number. The name of application should be unique within each VO while the version number
is used to identify the version of the application. Combining the version and service name,

the application deployment service then generates a unique key for this specific application.

Along with each application, the application developer is required to specify the policy
requirement of the application, which will be used when deploying the service and trying
to find the most suitable server for such policy. The available parameters are listed in
Table 3.2.

32

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

Table 3.2: Deployment policy parameters

Policy parameter

Description of the parameter

Real time

indicates the real time or non-real time nature of
the process.

Priority level

the priority of this process should be executed,
where 1 being highest priority and 10 being the
lowest. '

Execution time

indicates the expected execution time of this pro-
cess, a value of —1 indicates immediate execution.

Feedback indicates if feedback is expected when the service
finishes executing.
Resources specifies the resources required when this applica-

tion is deployed.

In Table 3.2, the resource field can be further broken down into several resource parameters
as in Table 3.3. These parameters are monitored by the QoS monitoring service described

in Section 3.4.1.

Table 3.3: Application resource parameters

Resource parameter | Description of the parameter

Processor utilization

expected processor utilization.

Memory utilization

memory required for executing the process.

Spare storage

free disk space requirement.

QoS of network

bandwidth, latency, packet error rate etc.,

Spawn threshold

it can be any combination of above parame-
ters (CPU, memory utilization, storage and
QoS network etc).

With these parameters defined, the application deployment service then queries the QoS
provisioning service to determine which free server to deploy the service. The server will
then join the specified VO in the APPLICATION VO with the new available resources.
If there are no more resources available on the application deployed server then it will be

33

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

removed from the FREE_SERV ER VO. Furthermore, if an application sets the spawn
threshold parameter, the QoS provisioning service would monitor the executing environment
and try to spawn a new process when the threshold is reached. This enables load balancing

at runtime, which increases the scalability of the MMOP.

3.4 QoS Management Service

To ensure the quality of the application execution, all the services monitoring and manage-
ment are done at the application level. The networking QoS is also monitored but it should
be reinforced by the network layer instead. This service can be broken down into two spe-
cific sub services, namely the QoS monitoring service and the QoS provisioning services. As
stated in Section 3.3, each application deployment is allowed to have different service policy
requirements. Therefore, the QoS monitoring service is required to gather statistics on the
application execution environment on the VOs. With these statistics, the QoS provisioning
services can be used to ensure that the application’s execution requirements are met. In the

next sections we described the design criteria of both services.

3.4.1 QoS Monitoring Service

Network and resource monitoring is an important function required by the Grid system.
In the context of load balancing, it is crucial to monitor the performance of the service
providing nodes in order to achieve optimal performance. The monitoring utilities provided
by the MMOP consist of generic components and supports periodic and event driven updates.
Such updates are collected and aggregated by the monitoring services and relayed to the
requester. These collected data are processed by the application deployment service and
QoS provision service in order to meet the service allocation requirements specified by the

application policies.

To gain an accurate picture of the servicing machine’s status, the following metrics are

monitored in an interval of 300 ms:

34

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

Average CPU Load: the CPU Monitoring utility takes the 300 ms average of the user usage
over the total system load. It is a fair indicator of the current CPU utilization of the
machine.

Average Memory Load: is the ratio of available physical memory versus swap file in use.
Memory is an important system metric. A system with more available memory will,
in general perform better than one with less. The swap file in use is a fairly accurate
measure of memory loading. Specifically in the testbed machines running Linux, the
swap file does not come into play unless the free physical memory is exhausted. As
a result, an increase in swap file size has a negative impact on system performance.
Similar to the average CPU loading, 300 ms average is taken to smooth out the memory

utilization spikes.

Network Statistics: can be further broken down into several sub-metrics. The data stored
is processed in the same interval (300 ms) as other monitors. All statistics gathered
are per network interface controller (NIC) and have two components each, received

and sent:

Throughput: the received throughput in conjunction with sent throughput metrics
are a good measure of the available bandwidth utilization.

Packet Error Rate: is an indicator of the integrity of the packets. -

Packet Drop Rate: is an indicator of missing packets. A high packet drop rate usually
indicates that the Network Interface Card (NIC)’s buffer is full and cannot process

any more data.

Number of Connections: is a good measure of the server loadings. As the number of con-
nections increases, the system loads increases and overall performance decreases. Fur-
thermore, some Linux system would only allow 1024 simultaneous connections to be
opened per process before exceptions will be thrown. Therefore special precaution
should be taken for this metric.

Available Storage Size: indicates the total available physical storage space (primarily hard
disk space) to MMOP.

35

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

Latency: this monitoring utility is the only one that requires special parameters, a target
client needs to be specified upon request. The calculated result will be stored locally

for future reference.

The above monitoring services should be modularized so that the developer can select their
own monitoring services. Furthermore, these basic monitoring services are enabled by de-
fault on all machines that are managed by the MMOP. This enables the QoS provisioning
service to actively monitor the changes and manage the QoS requirenmients. The design of
QoS provisioning service in the next section will try to take full advantage of these active

monitoring services.

3.4.2 QoS Provisioning Service

The basis of QoS provisioning service is to ensure that the target server has sufficient re-
sources according to the application QoS policy defined in Table 3.3. One of the VOs that
QoS provisioning service actively monitors is the FREE_SERV ER VO. The service gath-
ers and aggregates the monitored statistics periodically in the VO. When a new application
deployment is requested, the gathered data can be chécked against the application defined
policy to find the most suitable candidate. A server satisfying the requirement would be
returned to the application deploymént service where deployment can be made. If no such
server can be found, the QoS provisioning service will notify the deployment service of such
issue. It is then up to the deployment service to retry at a later time if the specified appli-

cation should be deployed.

An extra step has to be taken by the QoS provisioning service to ensure the QoS requirements
are met. The service continuously monitors all active applications deployed on the machine
if a particular application has its spawn threshold set in the policy requirement. This fea-
ture allows the QoS provisioning service to notify the applicétion deployment service about
machine overload and schedule a new application instance deployment. If the predefined
threshold is not met at deployment, this monitoring feature will be disabled but otherwise
enabled by default. Upon receiving application threshold overload noticc.e, the application

36

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

deployment service would then query the QoS provisioning service for another suitable server

to deploy the application.

3.5 Distributed Timing Service

To provide a distributed game development environment as well as regular distributed ap-
plications, MMOP provides a distributed tifning service to fulfill the time synchronization
needs for applications. This service is particularly useful in the distributed 2D shooting game
design described in Chapter 5. Next we will describe the distributed timing service provided
in MMOP.

For gaming purposes, traditional distributed multi-player games use dead reckoning tech-
nique to estimate an entity’s movement in order to avoid synchronization. The data trans-
mitted from the game server contains the current position and the velocity of each entity.
When a participating client receives such data, it puts each entity at the given position
specified by the positioning data. It then estimates a path for each entity from their cur-
rent position while considering the local clock. However, this projection is inaccurate with
the network latency between the server and client. As the network latency increases, the
inaccuracy increases substantially and renders the game unplayable in the worst case.

In order to minimize the effect of network delays on the player, a distributed synchronized
timing service is required to enable the client to render the’entities accurately. Experiments
conducted in [32] show significant quantitative improvement in accuracy even for minimum
delay between the sender-receiver pairs and appreciable qualitative improvement in game
playing experience. Currently there are a few timing synchronization services available but
they are either too complex (NTP) or too-inaccurate (SNTP) for our purpose. We would like
to have a fairly accurate distributed timing service that have relative small clock difference

between applications running the service.

The algorithm which is described in [33] is a simple clock approximation of sending packets
back and forth between client and server to measure the round trip time (RTT). In order to
rule out the effect of bursty network delays, if the measured RTT is one standard deviation

37

Chapter 3 Massively Multi-user Online Platform (MMOP) Architecture

above the median, then it is discarded. By removing these samples we can provide a simple
distributed time synchronization service that is accurate in the order of 150 ms or better. A
client of the service can easily turn into a server by providing its client with a synchronized
clock instead of its own local clock. In this way, a distributed timing service can be achieved
where all sub-servers/clients are synchronized to the main server’s clock. More than one
server can be established to provide a separate time synchronization for a different set of

applications.

3.6 Summary

In this chapter, we have introduced the design of Massively Multi-user Online Platform
(MMOP) for large-scale applications. The design is based on the Peer-to-Peer (P2P) struc-
tured overlay algorithms for its scalability and reliability. The MMOP provides an envi-
ronment in which distributed application can be developed with ease. Computing resources
are exposed to the developers through a set of Application Programming Interfaces (APIs).
With all the networking and servicing details encapsulated within the MMOP, the developers
simply define a set of application policies to control the behavior of the application. Sev-
eral distributed services that are aimed for this purpose are designed and described in this
chapter. In the next chapter, the actual implementation, issues encountered, workaround

strategy of MMOP are discussed.

38

Chapter 4

Massively Multi-user Online Platform (MMOP) prototype

implementation

A prototype Massively Multi-user Online Platform (MMOP) based on the middleware design
discussed in the previous chapter has been developed. The aim is to develop a functional
middleware which provides simple Application Programming Interfaces (APIs) for accessing
its services. In this chapter, the development environment of the MMOP is described and
some hardware constraints for the overall MMOP design is discussed. Figure 4.1 shows
the structure of implemented MMOP middleware, which is composed of the network layer,
P2P structured overlay, virtual organization construction service, Distributed Semaphore
(DISEM) service, application deployment service, QoS management service, and distributed

timing service.

For the benefit of future developers, some of the problems and issues faced during prototype

development have also been mentioned.

4.1 Development Testbed

The MMOP implementation effort was supported by Professor Eddie Law. The prototype
was developed at the Ubiquitous Communications and Security (UCS) Laboratory at Ryer-
son University. The UCS testbed consists of a total of ten machines that act as both routers

and end hosts.

39

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

21emMIPPIL dOWW

Figure 4.1: MMOP middleware structure

4.1.1 Development Testbed Hardware

The testbed machines consist of ten AMD Sempron 2600+ Personal Computer (PC). These
machines each have 1 GB shared Random Access Memory (RAM) with onboard video, and
a four port PCI NIC manufactured by Soekris Engineering [34]. Therefore, each machine
has total of five independent network interfaces with one onboard network interface. With
these components, each machine in the testbed acts as routers and hosts for the MMOP
middleware and applications. For consistency purposes, all machines will have a uniform

software configuration as illustrated in next section.

4.1.2 Development Testbed - Software

The prototype for MMOP is a middleware based implementation. Several software compo-
nents used to develop the middleware are outlined in this section. The deployment script
for the MMOP prototype is included in Appendix A.

40

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

Operation System

All ten testbed machines have Ubuntu 6.0.6 [35] kernel version 2.6.15.6 as their primary
operating system. The earlier development and testing of the components were done on
Windows XP SP2 [36]. Later in the development cycle, it was moved onto a Ubuntu 6.1.0
machine. The Ubuntu machine has the Linux kernel version 2.6.17 — 11 and is chosen for

developing the QoS related services.

Coding

The Java language from Sun Microsystems, Inc. is selected for developing the MMOP
middleware since Java provides great portability between the operating systems used in the
testbed. During the development machine transition, no changes were required for porting
the code developed in Windows to Linux. The Java version used for code development
of MMOP is the Java 2 Platform Standard Edition 5.0 update 10 [37]. The codes are
developed and managed in an Integrated Development Environment (IDE) called Eclipse [38].
Furthermore, Eclipse supports Concurrent Versions System (CVS) for backup, modification
tracking and bug fixes throughout the development. The CVS also provides the file format

conversion required between different operating systems.

4.2 Network Layer Implementation

For the implementation of MMOP, a simple to use network API will simplify the development
time and also reduce the debug time of service using such API. There are several ways to
implement the network layer in Java and each has its pros and cons. In this thesis, the
network layer is first implemented with the Remote Method Invocation (RMI), which is
migréted to TCP sockets for performance reasons and finally implemented in the new I/0O
(NIO) APIs for manageability. In the following sections, the advantages and disadvantages

of each implementation are discussed.

41

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

4.2.1 Java Remote Method Invocation (RMI)

Java Remote Method Invocation (Java RMI) network layer was the easiest one to develop
among all three network layer implementations. It has a well defined structure which can
remotely invoke methods from other Java objects that are located on different machines.
The parameters for the remote methods are passed through automatic object serialization,
which simplifies the service design since Java objects can be used directly.

To use the RMI service, a rmiregistry service must be running and accessible. The server
connects to the rmiregistry service, registers the implemented service (method) with it, and
waits for clients to request its service. When a client wants to access the service, it first
connects to the same rmiregistry and locates the service and server information. Upon
obtaining the information, the client can access the service by passing objects as method

parameters. After the method completes its executing, the result is returned to the client.

An advantage of the RMI is that it is easy to program, the syntax is simple and Java JDK
provides all the necessary tools to construct the RMI service. However, there is a severe
problem with this setup; the rmiregistry service is a single point of failure in the system.
When the rmiregistry fails, the entire distributed system fails. Furthermore, the performance
is greatly limited by the excessive object serialization overhead. Due to these two constraints,

we have migrated the network layer to use TCP sockets.

4.2.2 TCP Socket

The TCP sockets network layer implementation resolves the issues with the RMI implemen-
tation. Firstly, since this implementation does not require a centralized server, there is no
single point of failure. Secondly, there is no restriction on what is transmitted through the

TCP socket, hence overhead can be minimized when object serialization is not required.

In order to communicate between two machines using the TCP sockets, a connection must
first be established between a pair of sockets. This pair of sockets consists of one listening
socket on the server and a connection requesting socket on the client. The connection

42

- Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

is established by connecting these two sockets and data can then be transmitted in both
directions once the connection has been established.

The disadvantage to this approach is that as total number of connections increases, it be-
comes harder to manage the connections since each connection may serve independent ser-
vices in an application. Furthermore, the Java Socket API prevents the socket channel
from being used in a non-blocking mode, which means that multiple services on a server
are required to use different connections to communicate with a single client. With these
restrictions, a new network layer called Java New I0 (NIO) is investigated.

4.2.3 Java New 10 (NIO)

Java New IO (NIO) is a multiplexing environment where a selector is used to manage a large
number of NIO sockets. Each NIO socket is configured in non-blocking mode and serviced
as the data becomes available on that socket. The non-blocking mode enables connection
reuse where existing client connections can be shared by multiple services on the same server.
Furthermore, this setup increases the manageability of the network layer since connections
are controlled by a centralized selector thread.

While migrating the network layer to use NIO, a serious problem was encountered when the
selector thread takes 100% CPU usage. After some investigation, profiling and research, the
problem was identified as incorrectly enabling write ready flag on sockets. The high CPU
usage is caused by the selector goingk through sockets that are ready for data writing, even
though there are no data to be written. To correct this problem, a write ready on socket is
only enabled when there is data ready to be written.

With the NIO selector structure, the network layer is redesigned to provide several features
that simplifies the design of other MMOP services. First, an abstract protocol interface is
provided for the service that wants to send and receive data through the NIO network layer.
A unique hash is computed for each abstract protocol implementation for multiplexing data
between multiple protocols. Multiple protocols can be added to one communication channel
by using the attachAbstractProtocol method, which provides multiple services on one single

channel.

43

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

The abstract protocol interface also provides high performance communication by separat-
ing raw data from the object automatically. For applications requiring high performance,
raw data can be sent and received directly to eliminate unnecessary serialization overhead.
Furthermore, similar to the RMI, the object serialization is automatically done by the net-
work layer so that objects can be sent directly through the SendMessage method of the

interface.

A distinct feature of the NIO network layer is its ability to provide thread independent block-
ing communication on the non-blocking channels. That is, a single communication channel
can be used by multiple threads that are required to send and receive data synchronously.
This feature greatly simplifies the design of many MMOP services since synchronization
communication is taken care of by the network layer. Furthermore, such service allows the
TCP channels to be reused efficiently by sharing a single channel with several services. This
effectively reduces the total number of active connections on each server from one per service

to one per client (multiple services).

4.3 Virtual Organization Construction Service

The Virtual Organizations (VOs) in MMOP are constructed by P2P structured overlay
algorithm. The algorithm is implemented as overlay modules in the middleware; therefore,
as new overlay algorithms are developed, they can be added to the middleware. In this
prototype design, two overlay algorithms are implemented with the virtual organization
construction service. Based on these overlay algorithms the construction of the hierarchical
VO in MMOP is illustrated in Section 4.3.2.

4.3.1 Overlay Modules
Two different structured overlay algorithms are implemented in the virtual organization

construction service. They are One Hop Lookups [4] and Chord [5, 6]. Although these two
algorithms both construct a circular overlay with hash keys, different algorithms are used in

44

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

each to maintain the overlay and lookup a given key in the overlay. In the next section, the

implementation of both algorithms is discussed in detail.

Bootstrap Operations

In order to make the two overlay algorithms compatible with each other in the middleware,
a generalized bootstrap operation is developed. The function of a bootstrapping service is
to provide newly arrived nodes with a way of joining an existing overlay. At the beginning
of the formation of an overlay, a single node is set as the bootstrap master node. This node
provides bootstrap service for a specific overlay. When there are many nodes in an overlay,
the newly arriving nodes are not limited to use just the bootstrap master node. Any other

nodes within the structured overlay can be used to start the bootstrapping service.

When a node on an overlay receives a request for the bootstrapping service, it returns
the information about the requesting client’s successor. The requesting client should then
contact its successor to obtain the latest overlay topology, and receives data objects that
it is supposed to host based on the currently deployed overlay algorithm. If, in case, the
given nodal information is invalid, the client should request the bootstrap service again from

another node until it is able to join the overlay.

One Hop Lookups Algorithm

In One Hop Lookups [4], each node has a complete view of a structured overlay. Virtually, it
seems that all networked nodes can be accessed with one single hop. Also, there is a hierar-
chical network structure which is superimposed on top of the overlay for propagating changes
among all nodes quickly. An example of the superimposed One Hop Lookups propagating

structure is shown in Figure 4.2.

The key space of One Hop Lookups is being divided into several slices, while each slice is
further divided into multiple units [39]. For example, the configuration in Figure 4.2 contains
four slices and each slice has two units. Slices are denoted by S1, S2, S3, and S4, and the
units are denoted by Ul and U2. The size of the units and slices are predetermined and

45

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

S//'ce

wre?
e

U”/’t 1

. JJ Ordinary Node
Py ' " “01,97"-\6 @ Slice Leader
it 4 Unit Leader

Figure 4.2: Superimposed One Hop Lookups structure used for membership change notifica-
tion

must be able to divide the key space completely. Each node in the middle of a slice or a unit

will become the leader. They are indicated as a circle or a star respectively in the figure.

These nodes have the responsibility of notifying other nodes within its slice or unit regarding

the membership changes of the overlay. Inter-slice messages are aggregated and exchanged

between slice leaders periodically.

Using the bootstrap algorithm discussed in Section 4.3.1, an arriving node receives a list of
existing peers currently on the overlay from its successor. The successor notifies the slice
leader about the newly joined node and the notification is propagated to the other nodes, as
shown in Figure 4.2. When a node fails or leaves the overlay, a similar notification strategy
is deployed. This structure ensures timely response to each node but also requires higher
bandwidth consumption of the leader nodes. However, since the changes are aggregated
within each slice and unit periodically, the bandwidth consumption is minimal.

46

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

Chord Algorithm

" The Chord [5, 6] algorithm provides each node with a finger (index) table, as showed in
Table 4.1. In Table 4.1, k is the current node’s key, and MaxKeyBits — 1 depends on the
current hashing function used. The node recorded in the finger table does not necessarily
pinpoint the exact location of the key. It is a rough mapping of a node that is closer to the
key than the current node. The query of a key can be executed sequentially or recursively.
In our implementation, a sequential key lookup is implemented in order to minimize the

resource consumed by lookup queries.

Table 4.1: Example finger table of a Chord node

Index Node

k+ 20 A node succeeds k + 2°

k+ 2! A node succeeds k + 21

k4 2° A node succeeds k + 22

A+ 2MazkeyBits-—l A .node succeeds k + 2Ma:cKeszt3—1

Similar to One Hop Lookups, the same bootstrap operations detailed in Section 4.3.1 is used.
A newly joined node retrieves the finger table from its successor as its own finger table with
updated index. Unlike One Hop Lookups, a membership change within the network is only
noticeable by the two nodes that are directly neighboring the node that caused it. All other
nodes need to learn of changes by periodically refreshing their own finger table entries.

When looking up a specific key, a node first goes through its finger table and finds the closest
successor for the key. It then contacts that node to determine if such a key is located on
it. If the key is not found, the node contacted returns a closer successor from its own finger
table. The originating node then restarts the query with the returned nodal location until it
reaches the node that contains the key. As a result of using the finger tables, this algorithm
is able to locate any key within O(log, N) time [5, 6].

47

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

4.3.2 Virtual Organization Construction Algorithm

In this section, a VO construction algorithm is developed and implemented to create a
hierarchical VO structure as described in Section 3.1. The hierarchy is created by parent
VO storing subsidiary VO (SubVO) contacts. Such record is stored by DISEM with the
SubVQ’s ID as the variable’s name. In the implementation, four contact records are stored
for each SubVO. These four contacts refer to the successor of 0, N/4, N/2, and 3N/4
respectively. These records are updated every minute by looking up their corresponding

successor mappings, which ensure correct references are maintained.

With these records,‘a VO can be easily looked up by contacting any node in the BROKER
VO to trigger the VO lookup service. The service refers the client to the parent VOs of the
requested VO sequentially as shown in Figure 4.3. The VO construction service also makes

use of the VO lookup service to determine if a new VO should be created or not.

With the above described hierarchical VO construction, unlimited layer of VO can be cre-
ated. For example, a two level FREE_SERVER : L1 : L2 VO can be created by creating
FREE_SERVER VO, FREESERVER : L1 VO and FREE_SERVER : L1 : L2 VO
in order. We should note that FREE_SERV ER is a SubVO of BROKER VO so that its
references can be looked up by contacting the nodes in the BROKER VO. The steps to
create layered VO hierarchy are included in Appendix B.

To traverse the complete VO hierarchy, all the lookups and VO creation require contacting
a node in the BROK ER VO. Therefore, each node stores four recently accessed BROKER
nodes as references. At least one BROKER contact should be supplied when starting a
MMOP node in order for that node to join an existing VO hierarchy. Without such contact,
the node would assume that a new VO hierarchy should be formed and creates a new
BROKER VO. Even though the newly created BROKER VO possesses the same VO ID
as the intended BROKER VO, these are two independent VOs and nodes in each will not
be aware of the existence of the other VO.

From the above example, we demonstrated that it is possible to create infinite levels of VO
by creating SubVOs one by one. However, since each level of VO requires a separate query

48

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

Yes (VO found) server in parent VO <
. o
£ . —»
N' :
o e
o - g F
Add the client in the Y ,| | Find a contact of the
current VO €s parent VO L
No (No such VO)
A d
A single level
: } . . Create a reference to
Overlay bootstrapping difference between Yes » | the requested VO with
' . the requested VO the client as contact
and current VQ

No

A4

Join rejected
~ (Parent VO does not
exist)

Figure 4.3: VO and SubVO construction algorithm

to its parent VO, it is not advisable to create higﬁ level count VOs. A flatter VO hierarchy
with minimal levels would provide faster VO lookup time since only queries to a limited
number of VOs is needed. It is more than sufficient to create at most one single SubVO level
to represent all the VOs since the VO ID is constructed by concatenating ID strings.

4.4 Distributed Semaphore (DISEM) Implementation

Following the design in Section 3.2.5, the main focus of Distributed Semaphore (DISEM) is
to provide real-time data access and data consistency with a single set of API. Before the
actual API is defined, the structure of the variable should be considered since a properly

49

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

designed variable structure allows a much cleaner API design. The data structure of a

DISEM variable is defined in Listing 4.1.

Listing 4.1: VO Variable structure
class VOVariable {

String variableName;
Object value;
long version;

Key updating;

Each variable has an unique name, variableName, for identifying the variable. A value
portion for saving the content is associated with the variable. The updating field is to be
used to identify the current Synchronization Agent (SA) of the given variable. The SA is
a node in the overlay that handles the synchronization request for the client. The SA is -
constructed dynamically by the requesting client. When client wants to access a variable,
it locates the SA by generating a random hash key. The successor node of the key will
then be assigned to be the SA of this particular variable access. The version field is used
to determine the latest version of the variable and prevents old data from writing to the

variable.

Expanding the API design in Table 3.1, the DISEM API for MMOP has these basic methods

and parameters shown in Table 4.2.

Using this set of APIs, we can access the networked data objects on the structured
overlay as local variables. The CreateVariable is equivalent to the declaration of the
variable, and ReadVariable is for accessing the data content of a variable. The tuple
GetVariableForUpdate and WriteUpdatedV ariable operations act as the distributed
semaphore to protect the critical code section. Moreover, they can also be used for writing
content to the variable. In the next section, we will describe the function of the data
refreshing system service and then outline the operations of each DISEM APIs using the
VOVariable structure and DISEM API designed.

50

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

Table 4.2: DISEM API for MMOP

API Interface Interface description
CreateVariable publishes a variable according to
(VOKey,VOVariable) - | the given VariableName.

ReadV ariable returns the variable associated

(VOKey,VariableName, ReadType) | with the VariableName us-
ing read method identified by

ReadType.
GetVariableForUpdate locks the given variable.
(VOKey, VariableName)
WriteUpdatedV ariable unlocks the variable and update
(VOKey,VOVariable) its value.

4.4.1 Data Refreshing Service

To ensure the integrity of the data, an important data refreshing service (DRS) that operates
periodically for data maintenance is required. During each refreshment round, a node iterates
over all locally stored variables, and checks for missing replicas. If it detects a discrepancy
between replica copies, it tries to recreate them by making a copy of local variable. Since
there are no centralized records of created variables, we require every node to run DRS
independently. Referring back to the data structure aforementioned, the DRS also checks
for outdated data by comparing the version flags. The missing data will eventually be

re-established if there exists at least one working replica of that variable.

4.4.2 Variable Declaration

The CreateVariable API is used to declare a variable on the overlay. The VOKey and
the variableName pair uniquely identifies the existence of a value under such name in the
specified VO. The second parameter, variableName, is used with the total replica number
n to generate a key that will be used to store such mapping on the structured overlay node.
Keys for the given variable replicas are generated by the variableName : r pair, where r

o1

PROPERTY OF ~
RYERSON UNIVERSITY LIBRARY

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

indicates a replication number and an integer of the value 0 < r < n. The generated keys
and variable pairs are sent to the desired location according to the overlay algorithm used.
The value of n can be tuned to achieve certain level of data availability. Simulations have
been conducted to determine the best value of n under different networking scenarios, and

they will be discussed in Section 6.3.4.

4.4.3 Access Variable

To access an existing variable, the API ReadV ariable is used. Such API requires a ReadT'ype
parameter, which is used to indicate which type of read will be used. Several types of read
operations are discussed in Section 3.2.5 and the operation of each read operation will be
discussed in detail next. The number in brackets is the ReadType number to use when a

particular operation is desired.

Real time read (0): If the total number of replicas is known, a key can easily be generated
for ReadV ariable access. In order to meet the real time requirement, ReadV ariable
operation returns immediately if any error is encountered during the data retrieval.
A NoSuchV0OVariableException is raised and the variable retrieval terminated. This
allows the application to quickly query a variable without any consistency guarantee.
However, this method would provide inaccurate result when the node failure rate is

high or when the network is not stable.

Normal read (1): This method tries to provide an extra level of security to the real time
read while having short access latency. As opposed to the fail-fast behavior of the
real time read, the data retrieval should be repeated on all possible replicas. This
ReadV ariable operation simultaneously requests the variables retrieval and returns
the first received data. This operation and its two following ReadV ariable operations
guarantee that as long as one of the replica exists, the content of a variable can always

be received.

Consensus read (2): Similar to the normal read operation, the consensus operation simul-
taneously requests the variable retrieval. Unlike the normal read operation, it waits

52

v ey
MR

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

until all responses are received. It then compares the version tags of all received data
to achieve a general consensus. Such variable would represent a consistent view of all
the existing replicas.

Most updated read (3): Parallel requests are also used for this ReadVariable method. Al-
though achieving consensus would provide the most consistent data across all replicas,
this read method provides the most updated replica instead. As its name suggests, the

replica with latest version tag is selected and relayed to the requester.

By providing four different types of read operations, the application designer can select the
best read operation to fulfill the special need of each read operation. If not specified, the
most updated read (ReadType = 3) would be used since it works best with DISEM write

algorithm.

4.4.4 Write Variable

The most important aspect of the DISEM algorithm is the write algorithm. It is used
to ensure data consistency and provides distributed semaphore in the MMOP. In order to
provide distributed lock management, the write operation of DISEM is constituted of two
phases, GetVariable ForUpdate and WriteUpdatedV ariable. In the GetVariableForUpdate
phase, the Write Requester (WR) first randomly éenerate a key and finds a Synchronization
Agent (SA) on the overlay. The SA provides lock management for this specific write access by
sending its address and storing it in the replica’s updatingKey. This key uniquely identifies
this specific lock request and is used to resolve discrimination when consensus cannot be
established among replicas. A request is broadcasted to all replicas simultaneously from the

SA as shown in Figure 4.4.
There are three possible results for the nodes receiving a lock request:

- general failures (which include connection failure, node failure or the variable does not

exist)

- the variable is being updated by another node

53

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

RN
N\

S S /;
T WI J Write Requester (WR)

AT

E Synchronization Agent (SA)

. Replica holding node

* Normal node

Figure 4.4: DISEM write request algorithm

- and the variable is available for update

A replica only accepts a SA’s request when it is not curr'ently being updated by another SA.
The request is accepted on a first-come-first-serve basis, where the first node that requested
a lock should be granted and the rest should be ignored unless overwritten. The nodes will
record the SAs’ requests between updates and notify them when it finishes updating. In
this way, the SAs will be able to collect a consistent and up-to-date view of all replicas.

Accumulating the responses from all the replicas, the SA maintains the following:

total number of failed requests (| Ryqited|)

the set of all successful requests (Rsyccessfut)

the set of successful requests by current SA (s C Rsyccessfut)

and the set of all successful requests by other SAs (0 C Rsyccessfut), Where o; represents

all the replica secured by SA;.

54

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

Moreover, m(n) = | 3] + 1 is defined for the given overlay where n is the total number of
replicas on the overlay and m(n) is the majority of the replicas. By using these defined
values, a single SA can be selected to provide atomic writing. Furthermore, m(n) can be
adjusted for each VO according to different values of n.

Case I |Ryaited| = n
This particular case indicates that there is no such variable or all replica retrievals have

failed. Therefore, a lock for the variable cannot be granted.

Case II: m(n) < |Ryaited| < n
This case signifies that the lock cannot be obtained because majority of the requests
have failed due to node or network error. Since the lost replicas will eventually be
recovered by DRS, the WR will be notified to retry later.

Case III: |s| > m(n)
The SA is able to secure the majority of replicas for this write request and relay data
to WR for writing.

Case IV: In this case, multiple SAs are created simultaneously for writing a single variable.
Being an atomic data access algorithm, only a single SA should be allowed to obtain
the lock at any given time. Therefore, in order to achieve |s| > m(n), some SAs need
to give up their lock requests so that one single SA obtains the lock. The following
two cases are considered to determine which SA should quit gracefully and which SA

should try again to obtain the majority of locks:

Case A: |s| > max{u}
where max{u} is the maximum number of secured nodes being held by any other

SAs, this case indicates that the current SA has the highest probability to achieve
1s| = m(n).

Case B: |s| = max{u}
in this case, we have more than one SA that have the maximum number of secured
nodes. Therefore, we need to resort to the key of the SAs to determine the proper
candidate. The keys are compared among the SAs, the SA that has the highest

%)

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

key will be identified. A single SA is then selected to proceed to overwrite other
SAs’ locks.

With only one SA satisfying one of the above two conditions, atomicity can be achieved.
SAs that do not satisfy the requirements simply notify the WR about the unavailability

of the variable.

Upon securely obtaining the variable lock, the data is relayed to WR for writing. WR can
manipulate or update the given data multiple times. The version number is updated every
time a new update is being made to keep track of the changes. When WR finishes the update
sequence, the variable lock is released by entering the WriteUpdatedV ariable phase. WR
sends the updated variable to the SA identified by the updatingKey of the variable. If any
step fails before a variable update is completely relayed to the SA, the SA is responsible for
releasing all the replica locks. If the SA fails during the update, the replicas will be able
to detect it since TCP connections are established between SA and replica servers and the-

variable lock will be released.

With the updated variable completely received by the SA, the SA then writes the updated
variable onto each locked replica on behalf of the WR. However, the replica only accepts a
variable version number that is larger than the current version number to ensure the delayed
data updates will not be written on top of new data. When every replica is updated, the SA

unlocks all replicas for the next write request.

4.5 Application Deployment Service

A simple application deployment service is provided for deploying a Java application class
file to any APPLICATION VO. The basic interface of the service is as follows:

public interface MMOPService {
final String name;
final String version;
final ApplicationPolicy policy;
final Object[] initParameters;

56

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

public void run(Object[] runParameters);

To deploy a MMOP service that implements such interface, the application deployment
service requires two additional parameters: the target APPLICATION VO, which the
application will be deployed in, and target FREE_SERV ER VO, where the available re-
sources will be taken from. In addition, these VOs should already exist prior to the service

deployment.

The application deployment service relies on the QoS provisioning service to locate a free
server that satisfies the requirement of the application policy. When such server is found,
an independent thread with the specified priority is created on the server. The loaded
application is first initialized with the initParameters and then the run method will be
executed with runParameters in the thread created. After an application is successfully
deployed, the resource requirement of the application will be subtracted from the original
available resources. If there are no resources left on the machine, the machine will be removed
from the ResourceList and the FREE_SERV ER VO.

As mentioned in Section 3.3, the name and version of the service are used to generate
a unique key for this application. A DISEM variable name : version is created on the
APPLICATION VO to store the total number of service replica number (Totalepiica)-
This enables the MMOP to balance the load of a particular service by randomly selecting
between service replicas. Each replica service’s identifier string is generated as name :
version : replica##, where replica# is the integer replica number of that service. The first

service is always deployed as name : version : 0.

If the application has a set spawn threshold, the application service will register the ap-
plication with the QoS provisioning service to actively monitor the set threshold. If such
threshold has been exceeded, the deployment service creates a replica of original service,
where the identifier string of the new service replica will be name : version : Total eplica
and the name : version DISEM variable will be increased by one after a successful service
deployment. However, if no server is available for service deployment, the deployment service
will disable the spawn threshold after five attempts.

57

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

4.6 QoS Management Service Implementation

There are two main services for the QoS management service as described in Section 3.4,
QoS monitoring service and QoS provisioning service. The implementation of each service

will be discussed in this section in detail.

4.6.1 QoS Monitoring Service Implementation

Several monitoring modules are implemented in this service, particularly the CPU, memory,
network and latency monitoring modules. Two modules are excluded in this set of modules.
The active connection monitoring is excluded because several simulated clients will be active
on the same machine and contribute to a constant high connection count, which renders
the monitored results futile. The storage size monitor is also not implemented because the

storage size parameter is not used for our particular MMOP implementation.

The earlier versions of Java (before 5.0) do not support direct monitoring of system statistics
because the Java code is executed on top of Java Virtual Machine and has no direct access
to that information. Fortunately, the Linux machine has /proc a file system that records
such information. The file system contains statistics of computing resource utilization and
is a common feature on all Linux systems. Therefore, the QoS monitoring services are

implemented by reading different files in the Linux /proc file system.

Detailed CPU and memory usage status of each service can be gathered by exploring the
/proc/ [number] /stat directory where [number] is the service (process) ID. In MMOP, we
are more interested in gathering system- wide statistics as it indicates the overall system
performance of such machine. Therefore, the monitoring modules will focus on gathering

these data by reading the corresponding file every 300 ms.

CPU Monitor Module

This module is used to monitor the overall CPU usage of the host system, the file /proc/stat
is read periodically to extract this information. The data stored in the file looks like the

58

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

following:

cpu 70318 17200 16003 215775100 12748 523 1044 0
cpu0 70318 17200 16003 215775100 12748 523 1044 0
intr 542283892 539681460 [... lots more numbers ...]
ctxt 30096832

btime 1172090912

processes 62517

procs_running 1

procs_blocked 0

The data that is important to the CPU monitoring module comes from the first line, where
the first four values are common to all Linux systems. The module only makes use of these
values so it can be used on any machine running Linux. The four values following “cpu” in
the first line indicate user, low priority user (nice), system and idle CPU usage respectively.

With these values the current CPU usage is calculated as

user + nice
user + nice + system + idle

Memory Monitor Module

The overall memory usage is monitored by reading the /proc/meminfo file. The content of

the file looks like the following:

MemTotal: 1002168 kB
MemFree: 472476 kB
[... more data ...]
SwapTotal: 2939852 kB
SwapFree: 2939852 kB
[... more data ...]

In the above listing, only the relevant data to the module is shown. Particularly the values
indicating Random Access Memory (RAM) usage, the MemTotal and MemFree are used to cal-

99

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

culate the current memory utilization. The utilization can be identified as . emﬁ‘;ﬁ;’,ﬁl}%ft’m ree.

From the listing we can also observe that SwapTotal is equal to SwapFree, which means that
no swap memory is used. In most Linux systems, the swap memory will only be used once
the MemFree goes to zero because the swap memory is usually on a much slower memory

storage, such as a hard disk.

Network Monitor Module

This particular module provides network usage and both inbound and outbound traffic infor-
mation are made available to the MMOP. The monitored values include throughput, packet
error rate, and packet drop rate. On each testbed machine, there are a total of five network
interfaces available. They are identified as ethN in the /proc/net/dev file, where N is the
interface number. The interface lo is the loop back interface for network traffic directed from
this machine to itself.

Inter-] Receive | Transmit
face |bytes packets errs drop fifo frame compressed multicastjbytes packets errs drop fifo colls carrier compressed
lo: 3481712 681 L]] 8] 8 8 3331712 631
eth6:20541222 245279 € 26979832 249115
eth7:20122134 241552
eth8:19991112 242157
€th9:20134888 241707
eth5:45162072 263593

o

] 8 21964652 243873
] 0 28798814 2435693
[} 0 21531466 254675
] 17298 54618785 '172782

cooQO
NN~ NN
[N~ NN~
DDDDD
TOPOD®
ODODVDD
CODDDD
DO DD
oDV DOD
DD DD

To query the statistics on a particular interface, an IP associated with that interface can be
used. The module then finds the corresponding network usage information by mapping the
IP address to an interface in the /proc/net/dev file.

Latency Monitor Module

The latency monitor module consists of two parts: the latency monitor server and the
latency monitor client. A UDP probing packet is exchanged between the client and server
to measure the latency between them. The client sends out a probing packet to the server,
while noting the packet send time T.,q. The received server then stamps the packet with
its own time Ty.rer and sends it back to the client. The client then records the receive
time Treceived UpON receiving the server’s reply. The round trip time (RTT) is calculated as

60

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

RTT = Treceived — Toend- The one way latency in MMOP is defined as RTT/2 since static
routes are setup in the testbed and the paths for packet to travel to and from the server is
symmetric. When dealing with an asymmetric network, the client to server latency can be
calculated by Tserver — Tsend, While the server to client latency is Treceived — Tserver- HOWever,
the latency calculation is only valid when the clocks on both machines are synchronized.

4.6.2 QoS Provisioning Service Implementation

The QoS provisioning service is primarily used by the application deployment service for ser-
vice deployment purposes. In order to efficiently utilize computing resources, all the servers
joining the FREE_SERV ER VO will also put its service information (particularly their
IP and port number) into the ResourceList DISEM variable. The application deployment
service can request a server lookup by giving the application’s policy requirement to the
provisioning service. The provisioning service takes a snapshot of current ResourceList and
contacts these resources in several batches. Each resource lookup batch includes total of K
entries, the value K can be adjusted to obtain faster server lookup at the expenses of higher

network and CPU usage. In the current implementation / =5 is used.

The policy requirement is sent to each of the contacted machines so that it can be checked
against the available resources. The machines that satisfy the policy will respond to the
provisioning service with an available indication, while the others respond with an unavailable
indication. The provisioning service then randomly picks one available machine from the
batch request, which will be used by the application deployment service for installing the
service. If there are no machines satisfying the policy requirement after going through the
whole ResourceList, the application deployment service will be advised to retry at a later

time.

Upon application deployment, the policy requirement of the application will be passed to
the provisioning service for continual service monitoring. More specifically, the provision-
ing service will be actively monitored each second for the applications that have specified
the Spawn Threshold parameter. When such threshold is reached, the provisioning service
will notify the application deployment service. The application deployment service, upon

61

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

receiving such notice, will try to acquire a new server to balance the load of the overloaded

application.

4.7 Distributed Timing Service Implementation

The distributed timing algorithm presented in [33] is implemented to fulfill the synchroniza-
tion timing needs of distributed applications. The algorithm implemented is illustrated in

the following:

Begin
X
Sends a packet with
current client time e

to the server
(Tstat)

-5 second delay -

A 4
Server replies with a
packet contains
current server time
(Teerver)

This is the first
Ouock Calculated?

- Sort s from lowest
--No- » eyl O highest and pick
(51 ctock $0 85ciock) #3 as median
(Eciock)

h 4
_ Client calculates

clock difference |- H
(Beiock) Yes Discard any that is
v above one standard-
deviation, calculated

Client use 8coxto | e o o with Ecoc
update its clock g

Y.

Takiné the average
of remaining 8s to
adjust the clock -

Figure 4.5: A stream-based time synchronization

In Figure 4.5, 8coet is calculated by ok = RTT/2 — (Tserver — Tsend), where RTT =
Treceived — Tsend aNd Treceivea 1 the time that the server’s reply packet is being received on
the client. In the second last step of the algorithm, the d,cks above one standard-deviation

62

Chapter 4 Massively Multi-user Online Platform (MMOP) prototype implementation

are discarded to eliminate extra latency introduced by packet retransmission. By removing
these anomalies from the rest, the algorithm is able to determine an accurate clock difference

between the client and server.

In MMOP, the implemented service allows any client to become a secondary time server.
With this option, the service can construct several levels of secondary time servers. A
distributed timing system that synchronizes to one central clock can be formed using these
secondary time servers, which allows direct use of the received time stamps for other MMOP

services.

4.8 Summary

In this chapter, we elaborate the MMOP design shown in Chapter 3 and implemented a
prototype Massively Multi-user Online Platform (MMOP) middleware. The network layer
of the middleware is constructed by Java NIO, the network layer provides a simple set of
methods for the other MMOP services to use. Prototype MMOP services developed are:
the virtual organization construction, Distributed Semaphore (DISEM) service, application
deployment service, QoS management service, and distributed timing service. In the next
chapter, a simple MMOG called SPACE SHOOTER is designed using the prototype MMOP
middleware. The prototype MMOP verification and evaluation can be found in Section 6.4.

63

Chapter 5

Distributed 2D Shooting Game Design

In this chapter, we will discuss design and implementation of a simple game called SPACE
SHOOTER, it is a distributed 2D shooting game that uses services provided by the Massively
Multi-user Online Platform (MMOP) middleware will be discussed. Features and objectives
of the game will be introduced in the first section, followed by discussions on the technical
design of the game and the game server, as well as the clients that utilize services provided
by MMOP. The game functionalities, such as Graphical User Interface (GUI), Artificial
Intelligence (AI), latency compensation, and server bandwidth saving techniques, are will be

discussed and implemented as well.

5.1 Game Features and Objectives

SPACE SHOOTER is based on the Space Invaders 101 source code and graphics provided
by [40] with extensive modifications. The designed game is played on a two-dimensional
space. Each player controls an aircraft that can move freely in this space. The objective of
this game is to obtain the highest score by using missiles to shoot down as many of their
opponents’ aircraft as possible. Each missile hit will deduct an opponent’s number of shields
by one and increase a shooter’s score. When the number of shields an aircraft has reaches

zero, the player will be removed from the game and the score is reset to zero.

A list of top scoring players is shown in the game in order to create a sense of competition.
In addition, the names of all the opponents whose aircrafts are approaching a player will
appear on the screen. Furthermore, a player can create additional simulated players from

64

Chapter 5 Distributed 2D Shooting Game Design

the user interface directly to make the game more interesting. In order to support these

in-game features, detailed designs of the in-game entity and controls are presented next.

5.1.1 Detailed Game Entity Design

There are two basic entities in the game: one is the missile and the other is the aircraft.
Both of these entities require the basic property of position and the ability to move. In order
to identify such entities on a players screen, the server sends updated messages containing
information on position and movement of the entities. Furthermore, a unique identifier of
the entity is included in the message in order to match an update message to the entity
replica on the client. Therefore, a universally unique identifier (UUID) is required. The
UUID should be generated randomly for a missile entity or from the name string of a player
entity. The UUID will generate the same identifier if the same string is used. A 128 bits
long identifier defined in [41] is used in the game, which guarantees uniqueness across space
and time. With the UUID, the server can send out update messages targeted for each entity.

Basic setup of an in-game entity is illustrated in Table 5.1.

Table 5.1: Attributes of basic entity in SPACE SHOOTER

Parameters Parameter description ‘
UUID a unique identifier that is used to identify objects
throughout the game.

Position (X,Y) | location of an entity in 2D space; consists of X and Y

coordinates.
Angle (R) the direction which an entity faces.
Velocity speed of an entity, which is used to calculate the position

of an entity as the game progresses.

The missile entity is a simple extension of a basic entity with a constant speed of 450 pixels
per second. The aircraft entity, controlled by a player, is a more complex extension of the
basic entity and has a maximum speed of 250 pixels per second. More attributes of an

aircraft are listed in Table 5.2.

65

Chapter 5 Distributed 2D Shooting Game Design

Table 5.2: Attributes of aircraft in SPACE SHOOTER

Parameters | Parameter description

Player Name | the name of player who controls the aircraft.

Shield number of shields an aircraft has; in the beginning, each
aircraft starts with five shields. Each missile hit reduces
the shield value by one. When the shield value reaches
zero, the player is removed from the current game.
Score score obtained by the player. When the player launches
‘ a missile that hits other aircrafts, the players score is
increased by 100. The score is reset to zero if the player
leaves the game, is removed from the game, or is discon-
nected from the game.

The player controls the aircraft by issuing commands through the directional keys on the
keyboard to move it either forward or make it rotate to the left or right. When the forward
key is not pressed, the aircraft will come slowly to a halt. The player can fire missiles using
the space key. The player’s movement is aggregated and sent to the server every 100 ms.
This time frame is defined as one action interval. While' the player must pfess and hold the
“Forward” key for the aircraft to continue flying forward, the client only sends an update
message to the server once a change in command occurs to reduce network congestion. This
is achieved by having the server assume that the same keys are pressed as long as the client
does not send any update message. Unlike the movement updates, the missiles can only be
fired every second. This is to avoid excessive missiles being fired when a player holds down
the space key. In the next section, technical details about the client and server designs are

discussed.

5.2 Client Design

There are three main components of the client design which will be discussed in details
in the next few sections. First, a graphic user interface (GUI) is developed on the client
side for visualizing and experimenting the actual game play. The game GUI is shown in

66

Chapter 5 Distributed 2D Shooting Game Design

Figure 5.1 and the explanation of each component is given in Section 5.2.1. Second, the
artificial intelligence (AI) design provides ability to simulate the game without the need of
actual players to play the game. Its design is discussed in this section. Third, in order to
provide a smooth gaming experience, client side interpolation and dead reckoning techniques

are used to reduce visible network jitters and delays.

|
|
|
|

|
|
|
t
|
|
|
!
|

Scora: 0 Shield. 4 ¥ 3255 Y: 3399 Angle $12

Figure 5.1: GUI for SPACE SHOOTER

5.2.1 Graphical User Interface (GUI) Layout

The basic layout of the GUI is shown in Figure 5.1. Each component of the GUI will be
discussed in details in this section as they appear in a top-bottom and left-to-right order.
The first component is the title area of the GUL. As shown in Figure 5.2, this component

displays several useful statistics about the game. They are:

67

Chapter 5 Distributed 2D Shooting Game Design

Title the name of the game is displayed here.

FPS indicates the number of frames displayed per second. Each frame is a snapshot of the

entities within a player’s visible range, which is limited by the main game window.

MPS is the number of received update messages per second. A larger number of updates
received per second indicates a higher accuracy of entities’ rendered position on the

screen.

Latency is the average of latencies for the update messages received over one second period.

A lower latency indicates a faster response rate for player’s control.

T spaceShooter (30 FPS) (10 MPS) (23.0ms)

Figure 5.2: Title for SPACE SHOOTER

In a fast paced action.game like this one, players must be able to visually observe their
surroundings and react quickly. Through trial-and-error, frame rates between 25 to 30 FPS
are determined to provide a pleasant gaming experience. The game will try to generate as
many as 30 frames each second. However, as there are other processes being executed on

the same machine, the FPS value may reduce.
Gamzs‘ Oq_l!o!ls _Heln .

Figure 5.3: Menu for SPACE SHOOTER

To provide game features that are accessible and user-friendly, Figure 5.3 shows three main

game menus: Games, Options, and Help.

Games is the main gaming option, there are three sub-menus accessible through this option.

They are:

New Game upon selecting this option, player is required to provide a unique name to
join the game. If another player is currently using the name provided, then the

join request will be denied.

68

Chapter 5 Distributed 2D Shooting Game Design

Simulation this option allows player to specify a number larger than zero in order to
create simulated clients. Player should note that the simulated clients are created
locally and would greatly reduce the performance of the game if many clients are

created.
Exit closes the GUI and disconnects the player from the server.
Options this menu has two selections:
Toggle Name Display toggles the visibility of other players’ name plates.

Highest Scores contacts the server and retrieves the top ten scores along with the

name and the ranking of the record owner.

Help displays a simple help menu for game control.

Figure 5.4: Main gaming area for SPACE SHOOTER

In the main gaming window shown in Figure 5.4, the aircraft controlled by the current player
will always be on the center of the display window. The display area is 800 x 600 pixels®with

69

Chapter 5 Distributed 2D Shooting Game Design

dotted lines spaced at 200 pixels. The dotted lines will move as the aircraft moves through
the space. This is used to create a sense of movement since the player controlled aircraft

appears stationary and centered on the display window.

" Sheld. 4 X 3255 1 3299 Angie: 512

Figure 5.5: Radar and statistics for SPACE SHOOTER

At the bottom of the GUI, a radar is included along with basic statistics of the aircraft.
Other statistics displayed include the score, shield, current location and angle of the aircraft.
The radar is a useful reference when players are looking for opponents or avoiding missiles.
The radar has a radius of Radius,.q. = 64 in pixels and a scale factor of Scale = 20, and is
updated every 100 ms. The actual visible radar radius can be identified as Radius,ciyq and
is calculated by Radiusyqdar X Scale = RadiuSqeryal- It covers an actual area of w Radius?
pixels?, which is significantly larger than the main display area of 800 x 600 pixels2. In order
to properly distinguish the distance and the type of efltities on the radar, the entities are

represented as colored dots on the radar:

Blue indicates the aircraft controlled by the player, which is always located in the middle

of the radar.
Yellow indicates opponents’ aircrafts that are within the range of Actual Radius.
Red represents all the missiles within the range of Actual Radius.

Green is used to represent opponents’ aircrafts that are outside the range of -Actual Radius.

5.2.2 Artificial Intelligence (Al) Design

To simulate a player’s action, a simple Al has been designed. At each action interval, the
AT controlled client follows the decision logic flow shown in the Figure 5.6.

70

Chapter 5 Distributed 2D Shooting Game Design

Finds the nearest air
False -» ‘craftand setitas
current target.

Have a current target
and it is still active?

True
Y
Calculate the angle S
and distance tothe |« - False— Curren;:lartg??l 1s stil
current target. Pty
True
Y L
Sends the simulated . Randomly pick the -
movement to server. next movement

Figure 5.6: Al design for player simulation

The distances between the Al controlled aircraft and other aircrafts are calculated using
(Dif fX)*+(Dif fY)? = Distance, where Dif fX is the difference in x-coordinates and can
be represented as Dif fX = X — Other.X. Dif fY is similar to Dif fX but represents the

difference in y-coordinates instead.

In order to move the Al controlled aircraft closer to the target, the aircraft needs to turn first
towards the target. The turning angle is calculated by converting Dif fX and Dif fY into
polar coordinates. To properly align the aircraft towards the target, the AI computes the
© component of the resulting polar coordinates. Then the © component is converted into

degrees and subtracted from the current aircraft’s angle to determine if the aircraft should

rotate left or right.

The Distance between the current aircraft and the target is also used to determine if forward

71

Chapter 5 Distributed 2D Shooting Game Design

movement and fire missile command should be issued. If the Distance value is ou.tside the
range of [900,90000] then the forward command should be issued to move the aircraft closer
to the target. When the simulated aircraft is inside the range, it should slow down and
adjust its aim towards the target. On the other hand, if Distance < 1000000, then the

missile fire routine is called and a missile fired if one second has passed.

5.2.3 Client Side Latency Compensation

In this game design, two types of delay compensating techniques are used to make latency
issues less visible on the client side. They are client side interpolation and dead reckoning
techniques. Each technique’s effect on the game play and the game mechanics are dis-

cussed.

Interpolation

When interpolation is not used, the entities can only be rendered at the position received
from the server’s update message. However, since there+is no position information available
between each updates, the movement of entities would appear choppy. Moreover, the moving
entities and animation would appear jittery, since the network latency between the server
and client is not always constant. Noticeable glitches would also result as burst background

network traffic is introduced.

The basic idea of client side interpolation technique is to always render past game state
instead of the most current game state. By rendering past position, the GUI can create
continuous animated position snapshots between two most recently received server updates.
With ten snapshots per second, a new update from server arrives about every 100 ms. If the
client render time is shifted back by 100 ms as well, then entities can always be interpolated
between the last received update and the update before that. Since TCP is used for our
game design, a tighter bound can be selected since no server updates will be dropped. For
games utilizing the UDP protocol, a higher degree of interpolation is required to compensate
the possibility of updates being dropped. For example, taking twice as much interpolation

72

Chapter 5 Distributed 2D Shooting Game Design

time (200 ms) would ensure that there are at least two valid updates to interpolate between.
Following figure shows the interpolation timeline with ten incoming updates per second as
used in the game:

- T e o TN
Client Rendering\‘ " Client Actual

«_ Time =>330ms A0ms=<__ Time

Update Interval (100ms) " Interpolation

SR [T - (100ms)
' - -
el . R SR A
Server Updates 100ms 200ms 300ms 400ms

Figure 5.7: Timeline for entity interpolation

From Figure 5.7, we can see that the last update received on the client was at 400 ms. The
actual time on the client continues to advance and when a frame is being rendered, the
current rendering time is the actual time minus the view interpolation delay of 100 ms. This
would be at 330 ms in Figure 5.7 and all entities’ positions are interpolated between 300 ms
and 400 ms updates. By doing this, the player is effectively seeing a constant delay of 100

ms.

In order to calculate the accurate interpolated positions, each update message is stamped
with the server clock. However, if the the clocks on server and client are not synchronized,
the interpolated position would be meaningless as the client time may not produce a valid
interpolation render time that falls between the updates. For example, if the server clock is
one second behind the client’s clock, the client rendering time would be interpolated to be
at 1330 ms using the example above. Such time does not fall between any of the server up-
dates and therefore cannot be correctly displayed. Therefore, the distributed timing service
described in Section 3.5 is used to ensure that the server and client clocks are synchronized.

By comparing the gaming quality before and after implementing client side interpolation,
the animation jitters are reduced significantly. Furthermore, the selected value of 100 ms

view interpolation delay is not noticeable when playing the game.

73

Chapter 5 Distributed 2D Shooting Game Design

Dead Reckoning

The dead reckoning technique used in the game design is a stripped down version of the ones
used in the Distributed Interactive Simulation (DIS) protocol [42]. This technique has been
widely implemented and was once a popular form of navigation used to determine the position
of a ship or airplane back in the old days. A new position can be estimated by advancing
a previously known position to a new one based on the direction of a vehicle’s motion
and velocity. Although this method of navigation has been largely replaced by electronic

navigation systems nowadays, it is still often used as a backup in case of equipment failure.

In the game, missiles are generated by the dead reckoning technique. When a server receives
the fire command from a client, it creates a missile entity and sends its position to all players
within range. Since the speed of the missile and its heading are constant, the client can
calculate given the missile’s position at any rendering time by using the following formula:

Positioncyrrent = P OSitionbeginning + Speedmissite X TiMmecurrent

. To utilize the dead reckoning technique, the server only needs to send out two update
messages to each client for each missile. The first message is used for notifying the creation
of the missile and the second for notifyihg the removal of the missile. To further reduce the
bandwidth requirement, all missiles have a constant maximum flying time (T Flyingma;) of
five seconds. When the T Flying,n., is reached, the missile will be automatically removed
and hence, no update message is required for such a removal to take place. The only time a
removal message is required is when a missile collides with an aircraft.

In comparison with the ten position updates per second for each missile, the dead reckoning
technique effectively reduces the total number of updates from 10 x TFlyingq, to merely
one or two. Significant improvements on gaming quality have been observed when employing
the dead reckoning technique. Without dead reckoning, playing a game with as few as then
clients on a single server can become quite an insurmountable task. However, a single server
can easily handle more than one hundred clients if the dead reckoning technique is made

available.

74

Chapter 5 Distributed 2D Shooting Game Design

5.3 Server Design

Many popular Massively Multiplayer Online Games (MMOGs) provide competitive environ-
ments for players to interact with each other. In these games, player states are persistent
and cheating would have long term effects on the balance of the game. In most MMOGs,
clients are only authorized to perform tasks that do not result in cheating such as movement
prediction. Current MMOGs rely on the server architecture to manage most of the game
state computations, resulting in higher computational resource requirements. Hence a high

performance server architecture is needed to provide services to a large number of clients.

The SPACE SHOOTER game design utilizes the most common client-server architecture for
MMOG design. All of the aircraft movements, missile movements, and collision detections
are done on the server side. The client only receives the location and status update messages
from the server. Although simple, this basic structure ensures a consistent view of the
game world to all the players. The downside is that when many players are connected to a
single server, the server becomes overloaded and results in a poor gaming experience for the

players.

However, many MMOGs suffer from the same server overload problem. One approach to
solve the server overload problem is to divide the gaming space into several disjointed areas
(zones), with each of them hosted on a different server. These servers are usually called the
zone servers. Each client is connected to a specific zone server that is in charge of maintaining
the game state of that particular client. The update information is aggregated by the zone
server and then relayed to the client. In the distributed 2D shooting game, the idea of
zone-based approaches is adapted to create the quadrant servers as shown in Figure 5.8.
Similar to the zone server, each quadrant server controls all the entities within its service
area. In Figure 5.8, the red and green colored numbers indicate four and sixteen quadrants
VO setup respectively. By creating sub quadrants from a larger quadrant, the load on a

larger quadrant can be reduced by distributing the load on four servers with smaller service

area.

In contrast to the traditional client-server design, the Broker VO in the MMOP acts as

bridges between the clients and servers. The virtual organization construction service cre-

75

seamlessly.

Chapter 5 Distributed 2D Shooting Game Design

Avy
(0, Maxy)
#11 #10 #7 #6
Quadrant #3 Quadrant #2
(MaxX/2, MaxY/2)

#12 #9 #8 : #5

X

-«) i (0, 0) (MaxX, 0)>

#15 #14 Quadrant #3 Quadrant #2

i

Quadrant #4

© (-MaxX/2, -MaxY/2)

#16 #13

Quadrant #1

—— — + I S

Quadrant #4 Quadrant #1

1

\

Figure 5.8: Quadrant division for SPACE SHOOTER game server

ates the VO structure as requested by the deployment script. Aside from the zone server
construction, the game uses DISEM described in Section 4.4 to store persistent player data,
which is listed in Table 5.2 every second. The highest score player will also be recorded
using DISEM on the APPLICATION : SpaceShooter VO. There is a total of ten slots in
the highest score record. The player data between quadrant servers are not shared using
the DISEM protocol. This is to avoid extra communication overhead of storage through
the DISEM protocol. The quadrant servers exchange the entity replica directly between
each other. As a result, the player’s aircraft is able to travel between quadrant servers

76

Chapter 5 Distributed 2D Shooting Game Design

Moreover, each server application is assigned a policy profile to monitor the QoS of the
server. A simple threshold of 80% of CPU usage is set for each server. When a server is
overloaded, the QoS management service will be trigger and a new server will be located for
load balancing purposes. However, since the actual available machines in the testbed are
limited, no new server will be allocated. This is because all the machines are usually at their
maximum load while simulation is being done. In other words, either the machine is loaded

with simulated clients or the server application is already running on it.

With the help of MMOP services, we are able to construct the 2D space shooter game fairly
easily. However, the result is not always satisfactory at first due to the amount of traffic
generated from the large number of active simulated clients. With the server bandwidth
identified as the main bottleneck of our prototype design, several strategies will be discussed

in the next section in an attempt to resolve this issue.

5.3.1 Bandwidth Conservation Strategies

There are three main strategies commonly used in online games to reduce the bandwidth
requirements of a MMOG. These strategies consist of interest filtering, message aggrega-
tion and data compression. Only the first two strategies are implemented in the design of
the SPACE SHOOTER game given the fact that they significantly reduce the bandwidth re-
quirement for the server. The compression technique is not implemented primarily because
it requires more computational resources compared to the other two strategies. However,

compression can be easily added as an extra module to the game protocol encoder and

decoder.

Areas of Interest Management (AOIM) Filtering

The interest filtering strategy used on the server is called the Areas of Interest Management
(AOIM) filtering [43]. It uses different strategies to decide which host is interested in which
particular portion of the game state. This effectively eliminates the update messages that

will not be noticed immediately by the client.

7

Chapter 5 Distributed 2D Shooting Game Design

For example, in the SPACE SHOOTER, the most important information to the players are
the entities within their visible range. These are entities that will be displayed on the GUI
main window as shown in Figure 5.4. Therefore, as far as the player is concerned, any entity
movements outside of this area are not relevant. However, since the GUI also provides a
radar as in Figure 5.5, entities updates are also necessary within the radar range. With these
considerations, two tiers of areas of interest filtering are setup for each player. The first tier
filtering includes the entities within the radar range of Radiusctuar- The updates satisfying
this criteria are issued ten times per second. The second tier filtering includes all the entities
outside of the Radius,qual, and hence requires less frequent updates. The entities within the
second tier filtering range are updated every second.

There are two approaches to implement the actual filtering. First, a strategy similar to
collision detection is used in the SPACE SHOOTER game server. This approach involves
checking all the other entities when constructing update message for a particular client. In
our experiments, this strategy works fairly well when there are less than a thousand active

players online.

Second, a more advanced filtering strategy is to sort the entities by their X and Y coor-
dinates. The entity information needs to be included in the update so it can be quickly
identified by looking up the range for each client on the sorted list. This strategy can also be
applied for collision detection. However, since the entities are moving rapidly, the list needs

to be sorted every time an update is required.

Simulation result in Figure 5.9 is conducted with increasing number of total players. In the
simulation, 10 x #players = #missiles are produced, hence each player needs to be checked
against at most #missiles in the direct collision detection case. We can observe that when
there is less than a thousand players on a single server. Direct collision detection provides
better performance than XY entity sorting. This is mainly due to the excessive data sorting
and object creation overhead required for XY entity sorting strategy.

78

Chapter 5 Distributed 2D Shooting Game Design

100000 ¢ e pmee T
[XY Entity Sorting —+—
10000 E :Direct Collision Detect:ion -

m |
£ 1000
g i
£ 100 £
= i
° 10 F
l_ 3
o b ; :

1 10 100 1000 10000 10000(
Total number of players (players)

Figure 5.9: Direct collision detection versus XY entity sorting
Data Aggregation

The notion of data aggregation is to combine all the update messages using aggregation
strategies to reduce the total number of messages to send. This strategy works well when
there are many small entity updates. For example, a typical entity position update consists of
UUID, position and angle. The size of such update is UUID+X +Y + R = 128464 x3 = 320
bits (or 40 bytes), where UUID is 128 bits long value and X, Y, R are 64 bits double value

respectively.

Each typical TCP packet contains a header of at least 20 bytes. It is possible to have 40 bytes
extra as options. Therefore, a maximum of 60 bytes of TCP header is possible. Without
data aggregation, each update message is sent independently and hence, requires a separate
TCP header for each update. The bandwidth efficiency of the update can be calculated
by:

Sizedata/(Siz€data + Siz€peader) X 100%

Using this formula, the efficiency for single message can be calculated as 40/(20+40) x100% =
66.67% at best or 40/(60 + 40) x 100% = 40% at worst. On the other hand, with data
aggregation of ten update messages, the efficiency would be (40X 10)/(20+40x 10) x 100% =
95.24% at best or 40 x 10/(60 + 40 x 10) x 100% = 86.96% at worst.

79

Chapter 5 Distributed 2D Shooting Game Design

Based on the above calculations, we can clearly see that by aggregating many small update
messages, a higher bandwidth efficiency can be achieved. This is due to the fact that a

predefined header size is required when sending a message to the network using TCP.

5.4 Summary

In this chapter, a simple distributed 2D space shooting game named SPACE SHOOTER is
designed and implemented on the MMOP platform. It covers the basic objectives and
detailed design of the game. In particular, client GUI, Al, latency compensation, server
utilizing MMOP services and bandwidth saving techniques are implemented. Several issues
and problems faced during the development and implementation phase, and related design
choices are also discussed. In the next chapter, empirical results of game simulation will be

reviewed.

80

Chapter 6

Performance Evaluation

A prototype based on the Massively Multi-user Online Platform (MMOP) middleware design
has been developed. This chapter evaluates the performance of the MMOP’s innovative
Distributed Semaphore (DISEM) services, and the SPACE SHOOTER game implemented in
Chapter 5. The aim is to demonstrate the capabilities of MMOP, in an actual networking
environment. Furthermore, a traffic generator is implemented in order to generate self-
similar background network traffic. The implementation follows the Pareto distribution is
incorporated in Section 6.1.3. To better understand the simulation results, the hardware

and software used to produce the simulation results are mentioned briefly.

6.1 Testbed Setup and Evaluation Framework

Although all ten machines available in the testbed have identical hardware and software
setup, one particular machine is very unstable at high system load. In some cases it shuts
down randomly and affects the overall performance result. Therefore, that machine (EPHO06)
is not included in the actual simulation testbed. A topology of nine machines is formed with
the remaining stable machines. During the following performance evaluations, each machine
functions as clients, servers as well as routers since the computing resources are limited.

81

Chapter 6 Performance Evaluation
6.1.1 Testbed - Hardware

Each of the testbed machine is equipped with AMD Sempron 2600+, 1 GB RAM and four
port 100 Mbps PCI Network Interface Card (NIC) along with one port 1 Gbps onboard
network controller. The 1 Gbps link is not included in the simulation to ensure that all
simulated traffics are treated equally. Furthermore, to simnulate actual Internet environment,
the machines are used as routers and each is connected with up to three other machines.

Figure 6.1 shows the network setup of these machines.

< Ts R S ——
EPHO2 ¥~yg5168210/24 * EPHOL ‘' ygriggior024 EPHIO
\ N

~ — - - —

A \ I S AT
\ g -

: \ [e
192.168:32.0/24 - 145 168.31.024 T 102168107024 192.168.109.0/24
. : . S I

[! P < Ty
EPHO3 192.168.42.0/24 EPHO7 < 192.168.97.0/24 > EPHO09
- 7 | B AT
\ ,’ AN
T gk T o 192.168.98.0/24
192.168.53.0/24™ "~~~ 192.168.87.0/24 —-2%
, B -
r >) F: ~ Py < o 2

EPHO4 47 ygp1e8540/24 EPHOS 4 ygyieggs0/24 ® EPHO8

L}

Figure 6.1: The testbed network setup

6.1.2 Testbed - Software

Ubuntu 6.0.6 (Kernel 2.6.15.6) with Java 2 Platform Standard Edition 5.0 update 10 [37]
was used on each of the testbed machines; they are the primary software components of our
simulation environment. Since our hardware resources are limited, we need to be able to
execute multiple processes on a single machine. However, Linux limits the number of file
descriptors that any one process may open to 1024 per process. To make the situation worse,
both log files and TCP connections are counted towards this value. In order to properly
simulate the implementations, the default max number of open files (nofile) is increased
to 205454 to prevent undesired execution problems. Additionally, Internet Protocol version
6 (IPv6) has been disabled on all machines to restrict only Internet Protocol version 4 (IPv4)

82

Chapter 6 Performance Evaluation

addressing. This reduces conversion overhead between IPv6 and IPv4 since IPvG6 is enabled
in Ubuntu by default.

In Figure 6.1 there are nine Linux machines used as routers. This is achieved by enabling
[Pv4 forwarding and routing on all machines. Originally, the RIP [44] protocol was used, but
it failed to generate the correct routing table. Therefore, the OSPFv2 [45] routing protocol
is used as a replacement which gives the correct routing table. Both protocols are part of
the Quagga [46] routing software suite. All links are preconfigured and have a subnet mask
of 24 bits as shown in Figure 6.1. A link between any two machines is in the subnet of
192.168.HL.0/24, where HL indicates a specific link between a machine with higher number
(H) and a machine with a lower number (L). The interface of a lower numbered machine will
take the address of 192.168.HL.1, whereas a higher numbered machine will take the address
of 192.168.HL.2. For example, a link between machine EPH07 (L) and EPH08 (H) has an
HL value of 87 and the connected port on EPHO7 will have the IP address of 192.168.87.1.

All the prototype components developed for the MMOP framework were installed on all
machines, so that they could perform any functionality required. It is important to note
that all components are debug builds, and have logging enabled. Although this may degrade

performance, it is necessary for evaluation purposes.

6.1.3 Self-similar Traffic Generator

In order to simulate real network traffic a network traffic generator following the Pareto
distribution is developed. The traffic generator has basically two parts, client and server.
The traffic is directed from client to server so every machine requires both a client and a

server. The traffic following the Pareto distribution is calculated as follows:

ak®
ko
E(:E) = a—_—f, a>1 (62)

83

Chapter 6 Performance Evaluation

F(z)={) w2k (63)

_ o
~ (a—1)2(a-2)

Var(zx) , > 2 (6.4)

where « is the shape factor, k is the scale factor, and z is a random number generated

between 0 and 1.

Each instance of Pareto distribution uses start time as their seed to ensure the traffic gener-
ated does not have repeated pattern. In the traffic generator, Pareto distribution is used for
both the file size and thinking time of the traffic generating client. The following equation
is derived from the mean values of file size and wait time so the desired traffic loading can

be achieved.

o B) oo D 60

k_LDmeinkaxawx(af——l) (6.6)
= an(Ozw—l) '

The parameters for waiting time are o, = 1.5, k,, = 0.5, and for the file size we have oy = 1.2
to represent the normal file downloading and web browsing usages [47]. The user can specify
the desired loading Lp, and the minimum link bandwidth B,,;, of the traffic in order to
calculate the file size using Eqn. (6.5).

kf = 025LD X Bmin (67)

Substituting the variables with predefined values, we can then generate the traffic that
provides desired traffic loading on a specific link.

84

Chapter 6 Performance Evaluation

6.2 Overlay Protocol Results

The first simulation concentrates on exploring the impact of the overlay protocols on the
implemented design. The Distributed Semaphore (DISEM) algorithm is selected since it
requires large amount of lookup requests, which puts extra strain on the underlying overlay
protocol. More specifically, the DISEM protocol with three replicas is compared on the
One Hop Lookups and Chord in this experiment. Figure 6.2 shows the layout of a single

application VO configuration with no other secondary VOs.

Figure 6.2: Single VO setup for evaluating performance of One Hop Lookups and Chord

This experiment takes a look at the overhead introduced by the overlay network after the
overlay is stabilized. In the case of One Hop Lookups, since the total number of simulated
nodes is known, the stabilization means that the total node entry size on each node equals to
the total number of simulated nodes. On the other hand, Chord’s stabilization process takes
approaches of periodically refreshing each index within the finger table until no updates need

to be made. These criteria are also used for the rest of simulations.

In this particular experiment, the single Broker node requests to update a variable from the
DISEM application VO one thousand times every 500 ms. The average latency value is then

recorded in Figure 6.3.

85

Chapter 6 Performance Evaluation

Onell-lop Loc'>kups —
) Chord - : P B]

Latency (ms)

Number of nodes in the overlay (nodes)

Figure 6.3: Latency of three replicas DISEM on One Hop Lookups and Chord versus number
of nodes in the overlay

From the graph, we can observe that One Hop Lookups clearly has an advantage over Chord.
This is due to the fact that Chord uses fingers to index the storage nodes, where in the worst
case, it may take log, N requests to access the data content. In the case of One Hop Lookups,

all the indices are stored locally so actual indexing has shorter latency.

However, One Hop Lookups usually takes longer to st'abilize the indices. In some cases it
might take up to several minutes for all the updates to be received by every node within the
network. On the other hand, Chord overlay only requires around one minute maximum to
be able to correctly index a given key. Furthermore, One Hop Lookups has larger memory
footprint that increases linearly with the total number of nodes, whereas Chord has a con-
stant memory footprint. Therefore, selecting one over the other is depends on the situation.
In the following simulations, One Hop Lookups is selected since we are focusing on achieving

the best performance of the implementation.

6.3 Distributed Semaphore (DISEM) Results

First, the Distributed Semaphore (DISEM) protocol has been fully implemented and de-
ployed in a networking testbed described in the previous section. Similar to the single VO

86

Chapter 6 Performance Evaluation

configuration, a single application VO setup is used with no other secondary VOs. Fig-
ure 6.4 illustrates the layout. However, unlike previous simulations that only Broker node
requests for variable update, all servers within the application VO can request for the vari-
able update. By allowing simultaneous requests, we are able to verify the integrity of the
proposed DISEM protocol. More specifically, we verify that the GetVariable ForU pdate. and
WriteUpdatedV ariable provide atomic access for MMOP by allowing only one variable write

at any given time.

0
A/ 74
"

Broker VO

Figure 6.4: Single VO setup for evaluating performance of DISEM

The experiments of the DISEM design are tested under different sizes of the One Hop
Lookups overlay algorithm. To focus on the performance aspects of the protocol, the Write
Requester (WR) updates the obtained variable, and then exits the critical section immedi-
ately.. The measured results will be reported in the next section with overlays containing 100

and 900 nodes respectively.

6.3.1 DISEM: Latency versus Data Size

In the first set of experiments, the latency of data retrievals are recorded with the number of
total replicas while the data size vary. To see how well the DISEM performs under multiple
requests, all nodes within the application VO requests to update the variable at 500 ms

87

Chapter 6 Performance Evaluation

intervals. The latency is calculated by noting the start time and finish time of the update.
If the request is rejected, the timer is restarted. Each node performs 100 successful requests
and the average latency is recorded in Figure 6.5.

1600 T " T T
1400 [51eRiCas ol
1200 4repligas I : e -
1000 e
800
600
400
200

Latency (ms)

e S A R R
0 10 20 30 40 50 60 70 80 90 100
Data Size (KBytes)

(a) 100 nodes

1600 éreplic':as " :
1400 3 replicas ---x---
1200 | 4replicas ---x---
1000 SR S—
800
600
400

200

Latency (ms)

0O 10 20 30 40 50 60 70 80 90 100
Data Size (KBytes)

(b) 900 nodes

Figure 6.5: Latency of different number of replicas versus data size

We can observe from Figure 6.5(a) that with small data sizes, the number of replicas does
not have a strong impact on the latency. However, as the data size increases, the effect
is more observable. This result is also verified in Figure 6.5(b). Moreover, the similarity
in both graphs suggest that the overhead added by the number of nodes is constant and
does not affect the trend of increasing latency. In conclusion, to provide the highest level
of availability for DISEM, the data sizes of variables and the number of replicas should be

minimized and maximized, respectively.

88

Chapter 6 Performance Evaluation

6.3.2 DISEM: Throughput

In this section the maximum throughput of the DISEM protocol with three replicas is mea-
sured. The throughput is calculated by measuring the average number of semaphores granted
per second. Each node requests the same variable at 500 ms intervals 100 times, and again,
only the successful requests are recorded. The number of successful requests per second per
client is calculated and accumulated to compute the total number of semaphores granted per
second shown in Figure 6.6. For comparison purpose, the results from the Sigma protocol
[28] are included. It is measured with a total of 32 replicas (24 as majority), where the
latency is uniformly distributed between (0,200) ms. However, the data size of the variable

was not specified in the paper.

he)
[<3
8 14} ' 1KByles (~61.88)Ms —t— ¢~
3 10KBytes §~103.45 ms ---X---
5 12r 40KBytes (~281.26)ms ---x]
2 4ot Reference - Sigma (0, 200)ms -
° : : :
2 6 SO
I : :
g ¢ . ;
g 2 »* *- * " *- *
qE) 0 i 1 1 1
@ 0 2 4 6 8 10
Requests per second
(a) 100 nodes
.g T T T T
S 14 1KBytes (~78.43)ms —+— i~ .
3 10KBytes §~123‘38 ms ---X :
s 12r 40KBytes (~307.66)ms ---%
2 4o}t Reference - Sigma (0, 200)ms -~
3 : : :
g °f -
5 ¢ A "
% 3 O ol J— ™ s » - -
qE) 0 i 1 1 1
@ 0 2 4 6 8 10

Requests per second

(b) 900 nodes

Figure 6.6: Semaphores granted per second versus incoming request rate

89

Chapter 6 Performance Evaluation

We can verify the observation from the previous section that the variable size has significant
impact on the DISEM protocol’s performance using Figure 6.6. The overall semaphore
granted per second increases linearly with the request rate until it reaches a saturation level.

Given a fixed size of the variable, the saturation rate rg,(s) can be approximated as

1
sa S e IR Y 6.8
rsat(8) X TR o (s) (68)
where [qr(s) is the mean latency to retrieve the variable, and s is the size of the variable.
The Eqn. (6.8) is valid for all the performed simulations with variable sizes between 1 KBytes

and 100 KBytes.

From Figure 6.6(a), the effect of overlay query overhead on lowering the semaphore granting
rate is clearly visible if the data size is 1 KBytes. However, as the size of a data object
increased to 40 KBytes, the query overhead can be neglected. Moreover, comparing Fig-
ure 6.6(b) with Figure 6.6(a) suggests that DISEM protocol’s performance depends on the
size of the VO. Since the lookup latency of One Hop Lookups protocol increases as the size
of the VO increases, it is more efficient to have a smaller VO to obtain a faster response

time. '

6.3.3 DISEM: Request Rejection Rate

In this set of simulations, the request rejection rate of three replicas DISEM is evaluated. The
Broker machine requests for the same variable at a given rate of request per second (MSG/s)
and records the Ryejected/Trequests Tatio, where Rrejecteq is number of rejected requests and
Trequests 18 the total number of requests. In the following experiment, Trequests = 1000 is used

and the rejection rate is plotted in the Figure 6.7.

From Figure 6.7, we can observe that larger data sizes result in higher request rejection
rates. This result is expected due to the longer data transmission times for larger variable
data. This also implies that the semaphore requires a longer data updating period before
it is released. Comparing the figures for 100 nodes and 900 nodes reveals that the request
rejection ratios among different data sizes have similar impact on both settings. Therefore

90

Chapter 6 Performance Evaluation

T U]] U
140 | 10KBytes (~103.45)ms ——— it
120 |- 40KBytes (~281.26)ms ---x---
80KBytes (~705.22)ms ---%---
100 | 100KBytes (~1078.38)ms

80 |
60 -
40 i _ RPN SO ST S i
20 |y : : ; : :

Request rejection rate (%)

0 2 4 6 8 10 12 14 16
Requests per second (MSG/s)

(a) 100 nodes

140 ' 10KBytes (~123.38)ms —+ -
40KBytes (~307.66)ms ---x---
120 - 80KBytes (~714.65)ms --- 7

100 |} 100KBy1es (~1099.64)ms

Request rejection rate (%)

0 2 4 6 8 10 12 14 16
Requests per second (MSG/s)

(b) 900 nodes

Figure 6.7: Request rejection rate with variable data size versus incoming request rate

we can conclude that the size of the VO does not have strong impact on the rejection rate of
the requests. From the above observations, we recommend to use only small variable data

sizes in actual practice to minimize the variable accessing time.

6.3.4 DISEM: Number of replicas

In the next set of experiments, the number of replicas are adjusted from 1 to 10 in steps
of two. This demonstrates how the number of replicas affects the variable retrieval latency
- of DISEM protocol. A constant data size 10 KBytes is used for this particular simulation.
Each machine in the overlay generates the required number of requests per second using the
Poisson distribution. A total of 1000 successful requests per node were conducted to obtain

91

Chapter 6 Performance Evaluation

the average variable retrieval latency as shown in Figure 6.8.

Latency (ms)

Latency (ms)

Figure 6.8: Latency with different number of replicas versus incoming request rate

From the results plotted in Figure 6.8, we notice that the cost of adding extra replicas does
not have noticeable impact on the access latency. This is mainly due to the fact that DISEM
utilizes parallel requests to minimize delays. This simulation also demonstrates DISEM’s
ability to increase variable availability by increasing the total number of replicas. Additional
replicas can be introduced to reduce the effect of VO membership changes as well as hardware
failures. In the worst case, if the majority of replicas are missing, then no one should be
allowed to obtain the variable lock. The data refreshing service needs to repair enough
replicas before the next semaphore can be granted. Study has shown that nodes with a .
P2P network are usually online for about 2.7 hours [48]. Therefore, rapid membership can
be ignored for the time being although carefully selecting the servers should improve the

160 1 T T T T .
1 replica —+— :
150 [3replicas ---x--- i _
5 replicas ---%---
140 - ;rep:icas »»»»»» e -
replicas ---m-—
180 - 10 replicas ---o-- i
120 | :
110 %
100 H H H t T
90 1 L L L ! 1 1 1
1 2 3 4 5 6 7 8 9 10
Requests per second (MSG/s)
(a) 100 nodes
180 T T T T y ! :
1 replica —+— : J !
170 |- 3 replicas ---x :
5 replicas ---%--- i
160 |- 7 rep:icas e B
9 replicas ---m--
150 10 replicas ---o---
140 : % :
130
120 5 T ‘
110 N S T T A T N

1 2 3 4 5 6 7 8 9 10
Requests per second (M$G/s)

(b) 900 nodes

92

Chapter 6 Performance Evaluation

availability of the data.

6.4 Distributed 2D Space Shooting Game Results

In this section, the correctness of the implemented Massively Multi-user Online Platform
(MMOP) service is verified with the implementation of the distributed 2D shooting game
designed in Chapter 5. The developed game GUI is used to monitor the progress of each
simulated game. In the following simulations, three types of VO configurations are evaluated.
Two of the three VO configurations are illustrated in the following figures:

(a) Single VO Setup (b) Four VO Setup

Figure 6.9: Application VO setup for MMOP simulations

The first VO setup places all four game quadrant servers within a single application VO.
This setup is close to the cluster computing setup, where all the servers are located within
a single administrative domain as in Figure 6.9(a). The second VO setup requires two tiers
of application VOs to be created and places quadrant servers on four different subsidiary
application VOs as shown in Figure 6.9(b). Similar to the second VO setup, the third VO
configuration further divides each of the four quadrant VOs into four smaller VOs, resulting

in a sixteen VO configuration.

93

Chapter 6 Performance Evaluation

Due to the lack of an automatic application scheduler, the server applications are deployed
directly using a script file which is included in Appendix C. The script also assigns a total
of nine Broker machines on each of the testbed machines. The traffic between simulated
clients and game servers are then be distributed between these Broker machines. The total
number of simulated clients varies from 100 to 900 and the results are compared for the three

different VO setups described above.

The traffic generator is also used and deployed along with the MMOP, where a traffic gen-
erator server and a client is installed on each machine. For evaluating the performance
under different traffic loadings, two traffic loadings are measured. We have selected 10%
traffic loading as our lightly loaded network model and 60% traffic loading as heavily loaded
network model. The reason that no more than than 60% bandwidth utilization is used is
because the network interfaces on the testbed machines stop working randomly. A restart of
the machine is usually required when this happens. The cause of this is yet to be determined
since the packet drop rate, packet error rate, total number of connections and memory usage

all appear to be normal.

6.4.1 MMOP: Packet Drop Rate

In the first set of simulations, the packet drop rate of clients is measured. A single machine
in the testbed hosts several simulated clients, Broker nodes as well as application servers.
The packet drop rate, calculated as Packet gropped/ Packetiorar x 100% represents how well the
MMOP utilizes the available bandwidth. Since each machine has three interfaces that are
connected to other machines, the data is gathered at the end of each simulation session, and
then the average drop rate is calculated. Simulation results for different VO setups versus

the total number of simulated players are plotted in Figure 6.10.

From Figure 6.10 we can observe a general trend of increasing packet drop rate as more sim-
ulated players are created. Throughout the simulations, the packet drop rate is in the order
of 10 for both traffic loadings. This indicates an acceptable level of bandwidth utilization
for the current MMOP and SPACE SHOOTER game implementation. In Figure 6.10(b), we
can see a more irregular packet drop pattern throughout the simulation; this irregularity is

94

Chapter 6 Performance Evaluation

0.0008 T T " sinal II Vo —
ingle application —_—
5 0.0007 | Muliple appiication Vos (4VOs; mxees]
% 0.0006 ~ Muttiple application VOs (16VOs) ---%---
€ 00005 oo b
g 0.0004
S 00003 -
§ 00002 -
& 0.0001 [
0 X Z 1 1 I 1
100 200 300 400 500 600 700 800 900
Number of simulated players (players)
(a) 10% traffic loading
0.0008 T T T p T '_, 0 T 5 T
ingle application —_—

@ 0.0007 Multiple apFlication Os (4VOs; ===X=-= T
9; 0.0006 | E Muitiple application VO§(16V95 oK |
£ 0.0005 |- [OOSR SO -
§ 0.0004 :
S 00003
§ 0.0002
& 0.0001

0
100 200 300 400 500 600 700 800 900
Number of simulated players (players)

(b) 60% traffic loading

Figure 6.10: Packet drop rate with different VO setups versus number of simulated players

not observed in Figure 6.10(a). Further investigations reveal that this irregularity is a result
of higher level of traffic loading. Since 10% traffic loading is a much lower setting compared
to 60%, the bursty traffic generated by the traffic generator has a more prominent effect on
the packet drop rate. However, no significant visual differences from the simulations can be

observed even though these two sets of simulation have different packet drop rate patterns.

6.4.2 MMOP: Updates per Second
In this section, the number of updates per second for each client is recorded. In general,

a higher number of updates per second results in a higher accuracy in entity rendering.
However, a higher number of updates would also require more computational resources.

95

Chapter 6 Performance Evaluation

Therefore, with our restricted resources, we limit the server update message generation time
to be 100 ms, which results in at most 10 updates per second. The reason that less than 10
updates are expected is because it takes some time to generate the update messages on the
server. The average updates per second received by clients versus the number of simulated
players is plotted in Figure 6.11.

1 T
Smgle appllcatlon VO —+—
105 - Multnrle application VOs (4VOs) ---x--- "7 T

o

g

2 10 F : Mult:p appllcanon VOs(16VOs) e 4
° : i

§ 9.5 £

& 9 E

g 85

C B H : : H

-g- 7'5 b s ‘ freeeneenn .

S :

7
100 200 300 400 500 600 700 800 900
Number of simulated players (players)

(a) 10% traffic loading

1
' ' Smgle appllcatlon VO —

105 Multiple apl.)llcatlon VOs (4VOs) ---x---
10 F Multlple app ation VOs (16VOs) ---%---
s s e
9 : v : H H

85X
8
75

Updates per second (MSG/s)

7
100 200 300 400 500 600 700 800 900
Number of simulated players (players)

(b) 60% traffic loading

Figure 6.11: Update per second versus number of simulated players

As the total number of simulated clients increases, less computational resources are available
to the quadrant server. Figure 6.11(a) shows the reduction in the number of update messages
received per second as expected. However, in Figure 6.11(b), we can see the background
traffic becoming the dominating factor in the simulation results. A visible difference in the
graph indicates that the received updates per second are lower when the traffic loading is
higher. Furthermore, due to the bursty nature of the produced traffic, the plotted graph in

96

Chapter 6 Performance Evaluation

Figure 6.11(b) indicates a more random set of received updates per second when compared
to Figure 6.11(a).

Similar to the previous simulation, no visible glitch was noticed when monitoring the game
using the game GUI. A steady 30 FPS was observed; hence we conclude that the variance

between measured values does not effect the gaming experience.

6.4.3 MMOP: Latency

Latency is a measure used in most online games to indicate the gaming quality. Higher
latency indicates that it takes longer for the server updates to travel to the client, which
means that the game appears less responsive to player’s commands. In this section we
measure the effect of VO configurations and total number of players on the latency of the
game. Since the client times are synchronized by the MMOP distributed timing service,
the latency can be calculated by subtracting the current client time from the server’s time
stamp included in each update message. In Figure 6.12, the average latency for the clients

are plotted.

Figure 6.12(a) indicates that the latency increases as the number of simulated players in-
creases. This is expected as more computational resources are required for each game cycle.
However, it represents a very slow increasing trend compared to the total number of play-
ers. This signifies the ability for MMOP to handle a large number of simulated players
even though the simulation resources are limited. Moreover, the latency is masked by the
interpolation technique implemented. The interpolation time of 100 ms ensures there are no
visual differences between each simulation scenario, even when the latency is around 70 ms

in the worst case as shown in Figure 6.12(b).

6.4.4 MMOP: Total simulation time

Last, the total simulation time of the game is measured. This simulation is used to determine
if the design of the game AI functions correctly. Furthermore, the simulation challenges the
prototype MMOP design to see if it is able to sustain a large number of membership changes

97

Latency (ms)

Latency (ms)

Figure 6.12

(simulated clients joining/leaving the client VO). The timer starts when the quadrant servers
are setup and ready for simulation. When the simulation begins, the simulated players start
joining the client VO and compete with each other in the game. If the simulated aircraft is

destroyed, the client will disconnect from the server hence leaving the client VO. The timer

Chapter 6 Performance Evaluation

' 'Single :;pplicati'on VO P
L Multiple application VOs (4VOs; e ot
~ Multiple application VOs (16VOs) ---%---

800

200 300 400 500 600 700
Number of simulated players (players)

(a) 10% traffic loading

900

90 T T, T — 1 T T
Single application VO —+—
80 F Multiple application VOs (4VOs; B s .
_ Multiple application VOs (16VOs) ---*:---
70 H H a
40 Frrnag .
L SETRN RIS X
30 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800

Number of simulated players (players)

(b) 60% traffic loading

: Average latency versus number of simulated players

stops when one or no more players remain in the game.

The result indicates that all simulations complete normally without errors. Therefore, it is
safe to say that the AI designed is more or less correct. However, when observing from the
game GUI, we found that the simulated players appear to turn left and right excessively
instead of aiming directly at the target. This might be due to a combination of several
factors, such as predefined angle, latency, and value rounding etc., Unfortunately, Al design
is not really part of our research focus. However, further investigation into this area will

98

900

Chapter 6 Performance Evaluation

. 3000 | " Single application VO —+—
2 Multiple application VOs (4VOsg B
] 2500 - ~ Multiple application VOs (16VOs) ---x:--
;: i . : : ; i
8
=
3
£ N
2
s
L
100 200 300 400 500 600 700 800 900
Number of simulated players (players)
(a) 10% traffic loading

T | T T T 1| |
. 3000 - Single application VO —+— = .
@ Multiple application VOs (4VOs) ---x---
2 2500 | . Muttiple application VOs (16VOs) ------ . =
S 2000 RPN WSS SN, .
9o : : . /. g ;
é 1500
‘@ 1000
s
o 500

0
100 200 300 400 500 600 700 800 900
Number of simulated players (players)

(b) 60% traffic loading

Figure 6.13: Total simulation time with different VO setup versus number of simulated play-
ers :

greatly improve the gaming experience for the players.

As we can observe from Figure 6.13(a), the difference between total execution time of each
VO setup as well as traffic loading is minimal. This is an indication that the network traffic
and VO configuration do not have a huge impact in terms of actual game performance.
Although, there are minor differences at 700 players for Figure 6.13(b), it still follows the

general trend of the graph.

Chapter 6 Performance Evaluation

6.5 Summary :

The Massively Multi-user Online Platform (MMOP) framework’s prototype has been re-
viewed and evaluated. In particular, the integrity of Distributed Semaphore (DISEM) ser-
vices is verified to provide atomic data access through the means of parallel data access.
We also observed that in DISEM, data variable with smaller sizes can offer better perfor-
mance. The protocol has significant performance improvement when comparing to the Sigma
protocol even though the data size of Sigma protocol is not defined. Furthermore, we demon-
strated that increasing the number of replicas does not have major impact on the variable
retrieval latency with DISEM protocol. As a result, the overall data access availability for
the DISEM protocol is increased.

Moreover, the SPACE SHOOTER game described in Chapter 5 is used to demonstrate the ca-
pabilities of MMOP. In order to simulate real world traffic, a traffic generator is implemented
following the Pareto distribution. Traffic loads are varied during the game simulation to dis-
cover the effect of high background network traffic. The simulations show promising results
such as flexible VO configuration and low latency variance when a large number of clients
are considered. These results also demonstrate that the MMOP is suitable for developing

large-scale distributed applications such as MMOGs.

100 .

Chapter 7
Conclusion

A lightweight middleware based on the Peer-to-Peer (P2P) structured overlay network de-
signed for large-scale online application, the Massively Multi-user Online Platform (MMOP),
has been proposed and implemented in this thesis. The Grid architecture of the MMOP
maintains the heterogeneous resources dynamically through the use of P2P overlay al-
gorithms, which inherently provides flexibility and robustness to the middleware. More-
over, application-level QoS policy is enforced through means of QoS management services.
A simple set of Application Programming Interfaces (APIs) are designed for managing
and utilizing these resources. Main features supported by MMOP are hierarchical Virtual
Organization (VO) resource organization, atomic data access, QoS monitoring, and dis-
tributed time synchronization. These features have been designed in the thesis and several
components were implemented to produce a funtional MMOP prototype. Implementation

work carried out includes:

1) the design and implementation of the virtual organization (VO) construction service
which includes two fully modularized overlay algorithms has been presented. A highly
scalable hierarchical VO structure can be constructed with a simple API. Moreover, the
Broker VO provides communication relay between the Client VO and other Secondary

VOs.

2) highly scalable and configurable Distributed Semaphore (DISEM) atomic data access
service has been developed and fully implemented. The service provides critical code
section protection as well as several read operations for satisfying different real-time

requirements when developing distributed applications.

101

Chapter 7 Conclusion

3) the application deployment service allows the modules to be deployed on-the-fly with-
out service interruptions. A simple API has been developed to allow direct service
deployment. Application based policy has also been designed and partially imple-

mented.

4) network monitoring modules and application level QoS provisioning are provided by
the design of QoS management service. Such a service provides monitoring of data
aggregation and provisioning. It works in conjunction with the application deployment

services to ensure the QoS requirements of the application are met.

5) an accurate and synchronized distributed timing service has been implemented.

A simple distributed 2D shooting game called SPACE SHOOTER is designed and implemented
using the prototype MMOP services. The game client includes a Graphical User Interface
(GUI) front-end, which is optimized with several client side latency compensation techniques
such as interpolation and dead reckoning. The client also comes with an Artificial Intelligence
(AI) component which is used for simulation purpose. The game server utilizes every aspect
of the prototype MMOP, as well as bandwidth conservation techniques, such as areas of
interest management (AOIM) filtering and data aggregation.

The MMOP prototype has been subjected to performance evaluation tests, and the results for
the DISEM and the distributed 2D shooting game verify the performance and functionality
of the MMOP. This clearly illustrates the potential of using MMOP to develop large-scale

online applications.

7.1 Future work

The current prototype implementation of MMOP provides the basic functionality such as re-
source organization and application deployment for large-scale online applications. However,
when developing commercial grade products, there remains many areas in need of improve-
ment. Here we list a few directions that can be explored to improve the functionality of
MMOP.

102

Chapter 7 Conclusion

Dynamic Application Scheduler Currently, only a simple command based deployment
script is provided with MMOP. It works fine when the application only needs to be
deployed once. However, many complex scientific applications require unattended
application deployment and even redeployments for different sets of data. Therefore,
an application scheduler can alleviate this problem by automatically scheduling tasks
based on the available resources. Furthermore, optimization can also be implemented
to provide better resource utilization. A scheduler similar to the Grid Resource Man-
agement service (GRAM) from Globus Toolkit 4 should be implemented to improve
the usability of MMOP.

Security Security is a critical issue for P2P Grid computing because large-scale online ap-
plications are just as vulnerable to hackers as any other Internet services. Commu-
nications between machines must be able to support the highest standard encryption
for commercial products. For an online revenue generating service such as a trading
system, this is necessary for protecting.both client and the company through a set of
authentication rules. Furthermore, security in terms of service access must be rein-
forced to prevent illegal service access. For example, it must be impossible for an user
to access a service if they do not have the correct permission. Security measures such
as X.509 credentials can be incorporated into the middleware to natively support the

public key infrastructure.

NAT Traversal Due to availability of broadband connections, routers have become very
popular because of their ability to share one single Internet connection with several
machines within a house. Clients connected to the Internet through routers require
Network Address Translation (NAT) service which enables multiple hosts on a private
network to access the Internet using a single public IP address. However, NAT service
also prevents connection to be initiated from outside of the private network, or causing
disruption in stateless protocols such as UDP. To resolve this problem, the router has
to be manually configured to allow outside traffic to pass through. However, it is time
consuming and difficult for an inexperienced user to perform such task. To increase
the usability of MMOP, automatic NAT configuration should be included. Universal
Plug and Play (UPnP) comes with a solution for network address translation traversal

103

Chapter 7 Conclusion

which can be implemented to resolve this problem.

Multi-Language Support The MMOP middleware is written in Java since it offers advan-
tages in terms of defect count and development time. In particular, the automatic
garbage collection eliminates the memory management errors in C/C++ development.
Moreover, Java can be ported easily from one platform to another with no additional
modification, given that the target platform has a compatible Java Runtime Environ-
ment. Java also provides a Java Native Interface (JNI) framework to interact with
native applications and libraries that are written in other languages, which should be

explored when multi-language support is considered.

Dynamic QoS Support Current MMOP’s application deployment service only provides
simple application QoS provisioning. To provide consistent QoS for each service, we
should support real-time QoS policy modifications to meet rapidly changing real-time
traffic and process execution conditions. Furthermore, new metrics should be added
to QoS policies to meet the needs of dynamic load-balancing. Notable metrics that
could potentially improve QoS includes the geographic location of the machine and

available time frame for each resources.

104

© 00O O WN -

Appendix A

Massively Multi-user Online Platform (MMOP)
Deployment Script

A sample script (deploymmop) for deploying MMOP middleware is included below. The
script checks out the latest MMOP implementation from the CVS and compiles the class file
specified by the CLASS variable. The sample below compiles the VOManagerImpl. java file
and distributed the compiled codes to all the machines specified in the host file.

Listing A.1: Sample deploymmop script

#!/bin/sh
clear
FOLDER="/workspace/
SOURCE=MMOP
CLASS=ca/ryerson/mmop/services/vomanaging/VOManagerImpl. java
CLASSPATH=mmop
if [-z $1]; then
echo "Please provide a host file"
elif [! -e $1]; then
echo "$1 file does not exist"

else
#set echo off
cd $FOLDER
rm -rf $SOURCE
cvs -Q checkout $SOURCE
cd $SOURCE
javac $CLASSPATH $ $CLASS
echo "... Updating $SOURCE on all machines "
declare -a arrayl
arrayl=(‘cat ~/$1°)
for EPHS in ${arrayi[e]l}
do
ssh $EPHS “"rm -rf $FOLDER/$SOURCE;exit;"
' scp -q -r $FOLDER/$SOURCE $EPHS:$FOLDER/.
eche "... Updated $SOURCE on S$EPHS ..."
done
echo "... Done L
#set echo on
fi

105

The script requires a single parameter, a file name which contains a list of machines that
the compiled code will be deployed, a sample host file used for the simulation is included in
Listing A.2.

Listing A.2: Content of the sample host file

192.168.21.1
192.168.32.1
192.168.32.2
192.168.54.1
192.168.85.1
192.168.97.1
192.168.98.2
192.168.109.2

The execution result of the deploymmop script with the above host file is listed below.

Listing A.3: Execution result of the installmmop script

allenQEPH08:~$./deploymmop hosts

Note: Some input files use unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

... Updating MMOP on all machines ...

... Updated MMOP on 192.168.21.

... Updated MMOP on 192.168.32.
.. Updated MMOP on 192.168.32.

... Updated MMOP on 192.168.54.

... Updated MMOP on 192.168.85.

... Updated MMOP on 192.168.97.

... Updated MMOP on 192.168.98.
. Updated MMOP on 192.168.109.2 ... '
. Done ...

N = o= = N =

The deploymmop script can also be modified to deploy other application(s) with the MMOP
middleware. This is done by adding check out and compile commands for the application(s)
at Line 16 and Line 19 of the deploymmop script respectively. By adding these commands, a
complete simulation package can be deployed on each machine specified by the host file.

106

Appendix B
Setting up Hierarchical VO

To better demonstrate the construction of a hierarchical VO, a simple program is written
to accept commands from keyboard and invoke the VO construction service. Such program
takes two commands, connect and list. The connect command calls the JoinVO com-
mand from MMOP API to construct the corresponding VO. It requires two parameters, a
VO ID string and a number, separated by a space. The number is used to indicate the type
of VO algorithm used for constructing the VO, valid values are 1 and 2 which refer to One
Hop Lookups and Chord respectively. The 1ist command is used to view the constructed
VOs in current system. In the following, a VO hierarchy as illustrated in Figure B.1 is
constructed on three machines running the program. These machines are referred to as S1,
S2, and S3 respectively in the demo.

— BROKER

S _ (192.168.32.2:8888) (S1) <> Primary VO
_ , / \,_.,,,,,,, e e
. I
T T TT— T —
o FREE_SERVER APPLICATION ~ 4
.. (192.168.98.2:8888) (s3)<> . (192.168.85.1:8388) (52) Secondary VOs
e o . o ,;\:A- -
[N T
REE_SERVER:L1 \>/ FREE_ SERVER:LI-1 ~ ,~ APPLICATION:LL)

. (192.168.98.2:8888) (S3) . _(192.168.32.2:6888) (S1) -~ - _(192.168.32.2:8888) (S1) SubvOs

" FREE_SERVER:L1:2 SubvOs
. _(192.168.85.1:8888) (52)_

Figure B.1: VO hierarchy setup demo

The commands used on each machine to create the VO hierarchy are executed in order in
Listing B.1.

Listing B.1: Commands executed on each machine to create VO hierarchy
S1: connect BROKER 1

107

S2: connect APPLICATION 1

S3: connect FREE_SERVER 2

S1: connect APPLICATION:L1 1
connect FREE_SERVER:L1-1 2

S3: connect FREE_SERVER:L1 2

S2: connect FREE_SERVER:L1:L2 2

After the connect commands are executed successfully on each machine, the 1ist command
is issued and the result on each machine are recorded. To reduce the size of the 1ist outputs,
the finger table output of the Chord algorithm is omitted.

Listing B.2: list command on 192.168.32.2:8888 (S1)

20 Local Address: 192.168.32.2:8888

20 VO: BROKER

20 Predecessor: 192.168.32.2:8888 Successor: 192.168.32.2:8888

20 SliceLeader: 192.168.32.2:8888 UnitLeader: 192.168.32.2:8888

20 KEY: 263506763791833733892261788314496443998 Client @ 192.168.32.2:8888

20 VO: APPLICATION:L1

20 Predecessor: 192.168.32.2:8888 Successor: 192.168.32.2:8888

20 SlicelLeader: 192.168.32.2:8888 UnitLeader: 192.168.32.2:8888

20 KEY: 263506763791833733892261788314496443998 Client @ 192.168.32.2:8888

20 V0O: FREE_SERVER:L1-1

20 Predecessor: 192.168.32.2:8888 Successor: 192.168.32.2:8888

[.... 160 finger table entries] .

20 KEY: 263506763791833733892261788314496443998 Client @ 192.168.32.2:8888

20 SubVO0 Mappings:

20 KEY: APPLICATION Contacts: 192.168.85.1:8888 192.168.85.1:8888 \\
192.168.85.1:8888 192.168.85.1:8888

20 KEY: FREE_SERVER Contacts: 192.168.98.2:8888 192.168.98.2:8888 \\
192.168.98.2:8888 192.168.98.2:8888

Listing B.3: list command on 192.168.85.1:8888 (S2)

18 Local Address: 192.168.85.1:8888

18 VO: APPLICATION

18 Predecessor: 192.168.85.1:8888 Successor: 192.168.85.1:8888

18 SlicelLeader: 192.168.85.1:8888 UnitLeader: 192.168.85.1:8888

18 KEY: 140506169650137150276475491608065180404 Client @ 192.168.85.1:8888

18 VO: FREE_SERVER:L1:L2

18 Predecessor: 192.168.85.1:8888 Successor: 192.168.85.1:8888

[.... 160 finger table entries]

18 KEY: 140506169650137150276475491608065180404 Client @ 192.168.85.1:8888

18 SubV0 Mappings:

18 KEY: APPLICATION:L1 Contacts: 192.168.32.2:8888 192.168.32.2:8888 \\
192.168.32.2:8888 192.168.32.2:8888

Listing B.4: list command on 192.168.98.2:8888 (S3)

24 Local Address: 192.168.98.2:8888
24 V0: FREE_SERVER
24 Predecessor: 192.168.98.2:8888 Successor: 192.168.98.2:8888

108

[.... 160 finger table entries]

24 KEY: 103844790955283766714130393609180068046 Client @ 192.168.98.2:8888

24 VO: FREE_SERVER:L1

24 Predecessor: 192.168.98.2:8888 Successor: 192.168.98.2:8888

[.... 160 finger table entries]

24 KEY: 103844790955283766714130393609180068046 Client @ 192.168.98.2:8888

24 SubV0 Mappings:

24 KEY: FREE_SERVER:L1 Contacts: 192.168.98.2:8888 192.168.98.2:8888 \\
192.168.98.2:8888 192.168.98.2:8888

24 KEY: FREE_SERVER:L1-1 Contacts: 192.168.32.2:8888 192.168.32.2:8888 \\
192.168.32.2:8888 192.168.32.2:8888

24 KEY: FREE_SERVER:L1:L2 Contacts: 192.168.85.1:8888 192.168.85.1:8888 \\
192.168.85.1:8888 192.168.85.1:8888

109

NeRie 0N B> NS B URE SR

Appendix C

Script for Space Shooter Simulation on Testbed

To perform game simulation on the testbed, the deploymmop script needs to be modified to
include the check out and compilation of the game simulation code. When the simulation
codes are in place, the following script is used to start the simulation servers. Two host files
are required for this particular script: The first host file is the brokerhosts, it contains the
machines that should be in the BROKER VO. The second host file is the serverhosts, it
contains the machines that should be in the FREE_SERV ER VO, where the simulation

server can be deployed.

Listing C.1: Simulation server script

#1/bin/sh

FOLDER="/workspace/MMOP
VONAME="APPLICATION:Quadrant #"
SERVER="192.168.85.2"
CLASSPATH=../mmop:../spaceshooterV2

if [[-z $1 || -z $2 1]; then
echo "Please provide two host files"
elif [[! -e $1 || ! -e $2 1]; then

echo "$1 or $2 file does not exist"
alse

#set echo off

echo "... Starting BROKER servers

APP="ca.ryerson.mmop.spaceshooter.v2.server.Broker"
java -classpath $CLASSPATH $APP $SERVER
echo "... BROXKER Server started on $SERVER ..."

arrayl=(‘cat ~/$1°¢)
for EPHS in ${arrayi[e]}
do
ssh -n ’cd $FOLDER; java StartApp java -classpath \\
$CLASSPATH $APP $SERVER $EPHS;exit;’
echo "... BRDKER Server started on $EPHS ..."
done
eche "... Deploying Application N
APP="ca.ryerson.ummop.spaceshooter.v2.server.Server"
VONumber=1
DEFAULT="APPLICATION:SpaceShooter™
VoS="$ ((${#arrayt1{@]} + 1))"

110

echo "... Server in $DEFAULT V0O started on $SERVER el
java -classpath $CLASSPATH $APP $SERVER $DEFAULT $V0S

declare -a arrayl
arrayl=(‘cat ~/$2°)
for EPHS in ${arrayi(el}

do
ssh -n ’cd $FOLDER; java StartApp java -classpath \\
$CLASSPATH $APP $SERVER $EPHS "$VOKAME$VONumber™ $V0S;exit;?
echo "... Server on $VONAMESVONumber started on $EPHS ..."
VONumber=‘expr $VONumber + 1°¢

done

echo “... Done ..."

#set echo on
fi

Two critical problems were encountered while developing the simulation script. First, the
SSH connection terminates all processes associated with it when the connection terminates.
Therefore, it is impossible to start several processes on different machines using a single
script since only one active SSH session can be managed by the script. To resolve this issue,
a simple program is written to start the target process on behalf of the SSH connection. Since
the process is started by the program, it will not be terminated when the SSH connection
is closed. In Listing C.1, the StartApp in Line 39 provides such process invocation of the
actual simulation process.

The second problem encountered involves a bug in SSH such that it sometimes wait for the
channel terminating signal even when an exit command is included. Which renders the
script useless since user input is required after each exit command. Adding the -n switch
prevents SSH from waiting for the standard input and terminates quietly after each exit
command so several service can be started one after another with one script.

Using the script in Listing C.1, a APPLICATION : SpaceShooter VO is always started
before all the other subsidiary VOs. This VO may or may not be used for actual simulation,
depending on the number of the subsidiary VO created. For example, if a serverhosts file |
such as the one in Listing C.1 is used, then four VOs will be created and APPLICATION :
SpaceShooter will not be used for simulation.

Listing C.2: Content of the serverhosts file

192.168.21.1
192.168.32.2
192.168.85.1
192.168.98.2

With the servers started, the following script is used to start the clients. Similar to the other
scripts, a host file is required to specify which machine will be used in the simulation. To
adjust the total number of simulated players in the game, the PARAM value can be adjusted

111

accordingly. The total number of simulated clients on the MMOP can be calculated by
TotalHosts x PARAM, where Total Hosts is the total number of machines in the host
file.

Listing C.3: Simulation client script

#1/bin/sh
FOLDER="/workspace/MMOP/testing
APP="ca.ryerson.mmop.spaceshooter.v2.simclient.ClientSinulator *
PARAM=100
CLASSPATH=../mmop:../spaceshooterV2
if [-z $1]1; then
echo "Please provide a host file"
elif [! -e $1]; then
echo "$1 file does not exist”
else
#set echo off
echo "... Starting clients with $PARAM ..."
declare -a arrayl
arrayl=(‘cat “/$1°)
for EPHS in ${arrayi([e]l}
do
ssh -n ’cd $FOLDER; java StartApp java -classpath \\
$CLASSPATH $APP S$EPHS $PARAM;exit;’
echo "... Client started on $EPHS ..."
done
echo "... Done
#set echo on

"

fi

112

References

[1] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
Seti@home: an experiment in public-resource computing. Communications of the ACM,
45(11):56-61, November 2002.

[2] Ian T. Foster. Globus toolkit version 4: Software for service-oriented systems. In NPC,
volume 3779 of Lecture Notes in Computer Science, pages 2-13. Springer, 2005.

[3] W. Polk D. Solo R. Housley, W. Ford. Us secure hash algorithm 1 (shal). RFC 2459,
IETF, January 1999.

[4] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. One hop lookups for peer-to-
peer overlays. In Ninth Workshop on Hot Topics in Operating Systems (HotOS-1X),
pages 7-12, Lihue, Hawaii, May 2003.

[6] Emma Brunskill. Building peer-to-peer systems with chbrd, a distributed lookup ser-
vice. In HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems, page 81, Washington, DC, USA, 2001. IEEE Computer Society.

[6] Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In ACM SIGCOMM
2001, San Diego, CA, September 2001.

[7] 3rd D. Eastlake and P. Jones. Us secure hash algorithm 1 (shal). RFC 3174, IETF,
September 2001.

[8] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and Rina
Panigrahy. Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In ACM Symposium on Theory of Computing,
pages 654-663, May 1997.

[9] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In Proceedings of
the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), February 2003.

113

[10] Miguel Castro, Peter Druschel, Anne-Marie Kermarree, Animesh Nandi, Antony Row-
stron, and Atul Singh. Splitstream: High-bandwidth content distribution in a coopera-
tive environment. In IPTPS’03, February 2003.

[11] M. Carlson E. Davies Z. Wang W. Weiss S. Blake, D. Black. An architecture for
differentiated services. RFC 2475, IETF, December 1998.

(12] Inc. Blizzard Entertainment. World of warcraft. worldofwarcraft.com.
[13] NCosft Corporation. Lineage. http://www.ncsoft.com.
[14] NCosft Corporation. Lineage ii. http://www.ncsoft.com.

[15] Bruce Sterling Woodcock. An analysis of mmog subscription growth - version 21.0.
http://www.mmogchart.com.

[16] IDC. Asia/pacific online gaming report. http://www.idc.com, 2006.
[17] Michi Henning. Massively multiplayer middleware. Queue, 1(10):38-45, 2004.

(18] Butterfly.net Inc. The butterfly grid: Powering next-generation gaming with on-demand
computing, 2003.

[19] BigWorld Pty Ltd. Bigworld technology.

[20] Bram Cohen. Incentives build robustness in bittorrent, 2003. [Online; accessed 10-Dec-
2006].

[21] Bram Cohen. Bit torrent. http://www.bittorrent.com.

[22] Alberto-Laszlo Barabasi. Linked: The New Science of Networks. Perseus Books Group,
2002.

[23] Tamer M. Ozsu and Patrick Valduriez. Principles of Distributed Database Systems (2nd
Edition). Prentice Hall, January 1999.

[24] Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthony LaMarca, Scott
Shenker, and Joseph Hellerstein. A case study in building layered dht applications.
In SIGCOMM ’05: Proceedings of the 2005 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 97-108, New York,
NY, USA, 2005. ACM Press.

[25] N. Lynch and A. Shvartsman. Rambo: A reconfigurable atomic memory service for
dynamic networks. In Proceedings of the 16th International Symposium on Distributed
Computing, pages 173-190, 2002.

114

[26] Seth Gilbert, Nancy Lynch, and Alex Shvartsman. Rambo ii: Rapidly reconfigurable
atomic memory for dynamic networks. dsn, 00:259, 2003.

[27] Leslie Lamport. Paxos made simple, fast, and byzantine. In OPODIS, pages 7-9, 2002.

[28] Shi-Ding Lin, Qiao Lian, Ming Chen, and Zheng Zhang. A practical distributed mutual
exclusion protocol in dynamic peer-to-peer systems. In IPTPS, pages 11-21, 2004.

[29] Ricardo Jiménez-Peris, Marta Patifio-Martinez, Gustavo Alonso, and Bettina Kemme.
Are quorums an alternative for data replication? ACM Trans. Database Syst.,
28(3):257-294, 2003.

[30] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558-565, 1978.

[31] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. Towards a
common api for structured peer-to-peer overlays. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS03), Berkeley, CA, February 2003.

[32] Sudhir Aggarwal, Hemant Banavar, Amit Khandelwal, Sarit Mukherjee, and Sampath
Rangarajan. Accuracy in dead-reckoning based distributed multi-player games. In
NetGames '04: Proceedings of 3rd ACM SIGCOMM workshop on Network and system
support for games, pages 161-165, New York, NY, USA, 2004. ACM Press.

[33] Zachary Booth Simpson. A stream-based time synchronization technique for networked
computer games, 2000. [Online; accessed 22-Dec-2006].

.[34] Soekris Engineering. Four port 10/100 mbit pci ethernet - board.
http://www.soekris.com/lan16x1.htm.

[35] Canonical Ltd. Ubuntu 6.0.6. http://www.ubuntu.com.
[36] Microsoft Corporation. Windowsxp sp2. http://www.microsoft.com.

[37] Inc. Sun Microsystems. Java platform, standard edition (java se) 5.0 update 10 jdk.
http://java.sun.com/j2se/1.5.0/index.jsp.

[38] The Eclipse Foundation. Eclipse sdk 3.2.1. http://www.eclipse.org.

[39] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Efficient broadcast
in structured p2p networks. In IPTPS, pages 304-314, 2003.

[40] Kevin Glass and Ari Feldman. Space invaders - 2d rendering in java.
http://www.cokeandcode.com/tutorials.

115

[41] R. Salz P. Leach, M. Mealling. A universally unique identifier (uuid) urn namespace.
RFC 4122, IETF, July 2005.

[42] Wentong Cai, Francis B. S. Lee, and L. Chen. An auto-adaptive dead reckoning algo-
rithm for distributed interactive simulation. In PADS ’99: Proceedings of the thirteenth
workshop on Parallel and distributed simulation, pages 82-89, Washington, DC, USA,
1999. IEEE Computer Society.

[43] Katherine L. Morse. Interest management in large-scale distributed simulations. Tech-
nical Report ICS-TR-96-27, University of California, Irvine, 1996.

[44] G. Malkin. Rip version 2. RFC 2453, IETF, November 1998.
[45] J. Moy. Ospf version 2. RFC 2328, IETF, April 1998.
[46] Quagga routing software suite. http://www.quagga.net.

[47] Anja Feldmann, Anna C. Gilbert, Polly Huang, and Walter Willinger. Dynamics of
ip traffic: A study of the role of variability and the impact of control. In SIGCOMM,
pages 301-313, 1999.

[48] Stefan Saroiu, P. Krishna Gummadi, and Steven Gribble. A measurement study of
peer-to-peer file sharing systems. In SPIE Multimedia Computing and Networking
(MMCN2002), 2002.

116

List of Acronyms

Al Artificial Intelligence

API Application Programming Interface

BT Bit Torrent

DISEM Distributed Semaphore

FTP File Transfer Protocol

GUI Graphical User Interface

IDE Integrated Development Environment
IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

MMOG Massively Multiplayer Online Game
MMOP Massively Multi-user Online Platform
NIC Network Interface Card

P2P Peer-to-Peer

PC Personal Computer

QoS Quality of Service

RAM Random Access Memory

RMI Remote Method Invocation

VO Virtual Organization

117

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130

