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ABSTRACT 

 

Docker has been widely adopted as a platform solution for microservice. As the popularity of 

microservice increases, the importance of fine-tuning the efficiency of resource management in 

the Docker platform also increases. While Docker’s out-of-box resource management solution 

provides some generic management capability, more work is required to improve resource 

utilization and enforce Service Level Agreement (SLA) for critical services.  

 

In this research, an efficient Docker resource management scheme, called Adaptive SLA 

Enforcement, is designed and implemented. For the sake of comparison, we also study and 

implement three simpler schemes: 1) Fixed Number of Containers, 2) Dynamic Resource 

Management without SLA Enforcement, 3) Strict SLA Enforcement. We found that the Adaptive 

SLA Enforcement scheme can deliver efficient resource management with SLA enforcement, 

thus successfully addressing the deficiencies of the other three schemes. 
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Chapter 1. Introduction 

1.1 Overview 

The business trend of transitioning to Cloud-based server has been led by the primary motivation 

of cost cutting. The math to support businesses’ decision is evidenced clearly in their budget and 

spending. Gartner’s report on IT Budget of Healthcare Providers shows that an average of 73% 

of the total IT budget of companies are classified as an operating cost [1]. The expenses are used 

for technology and currency debt of both hardware and software in order to maintain the 

availability and reliability of the IT system’s Quality of Service (QoS). The burden of this 

significant portion invested is compounded by the fact that it is often a repeated yearly expense 

for most companies. 

 

Due to the significant spending on operating costs, the Total Cost of Ownership (TCO) of 

hardware and its software currency has been an ongoing area of concern and desired reductions 

for businesses. Adopting Opensource software and transitioning the IT infrastructure onto Cloud 

have been common options used by organizations to lower the TCO, in most cases freeing 

companies from vendor locked-in solutions. 

 

In the report from Rackspace, comparisons of TCO of Cloud service providers demonstrate that 

keeping hardware on-premises results in a much higher TCO and high on-going spending for 

technology and currency debt [2]. As illustrated through real-world examples, the Rackspace 

report provides evidence that migrating IT infrastructures to Cloud service leads to significantly 

lower operating, capital, and indirect business costs. 
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Soon after a large number of businesses moved to Infrastructure-as-a-Service (IaaS) in order to 

minimize the operational impact of their IT environment, Docker Platform as a Service (DPaaS) 

emerged on top of IaaS. While IaaS can provide virtual machines with different sizes, its use of 

resource management still remains at a coarse-grained level. In comparison, platforms such as 

DPaaS or Docker on Cloud can provide more efficient and effective use of IT infrastructure by 

sharing more resources with other containers without impacting each other’s QoS. The 

prevailing adoption of Docker opens another opportunity for efficient resource management with 

enforcement of the predefined Service Level Agreement (SLA) for each service. 

 

1.2 Problem Statement 

While Cloud became the platform of choice for businesses wishing to minimize the TCO of their 

IT infrastructure, Docker became the most popular technology as the means to realize 

microservices [1]. Because the Docker out-of-box resource management solutions such as 

Docker Swarm or Google Kubernetes are insufficient [4], there exists a gap between the level 

that out-of-box solutions can provide and the level of sophistication that businesses require. 

Although out-of-box solutions solve QoS issues on scalability, it does not have the SLA 

enforcement capability[5]. The lack of SLA enforcement can easily lead to the misallocation of 

resource—a situation which will often escalate to overall resource starvation [6].  
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Figures 1 and 2 below illustrate an example of resource starvation caused by the lack of SLA 

enforcement. In this scenario, the available resources are provided to whichever service demands 

the resources first, without the use of any constraints. If the volume of the service requests for 

Microservice1 increases, the service will demand more resources. Without SLA enforcement, the 

demand would be met as long as there are available resources [Figure 1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Consequently, Microservice1 can consume all available resources leaving none for 

Microservice2 which requests resources after all have been allocated to Microservice1 [Figure 

2]. 

Figure 1 Resource allocation to Microservice 1 

CPU resource CPU resource

Microservice1 Microservice2

Allocated
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Since the out-of-box resource management solution lacks the capability to enforce the SLA, 

unexpected and inundated traffic volume towards a particular service can deplete overall 

resource availability and may significantly affect the performance of other microservices running 

in the same Docker environment. Thus, an efficient resource management algorithm must 

include the enforcement of the SLAs. 

 

One possible method to prevent resource starvation is to use a strict SLA enforcement policy, in 

which an upper resource allocation limit is imposed on each service. This policy guarantees that 

each service can consume up to but not exceed a pre-defined amount of resources [Figure 3]. The 

Figure 2 Resource starvation for Microservice2 



5 

 

main drawback of this approach is that it does not allow services to share their resources, leading 

to inefficiency in the utilization of resources. 

 

 

Figure 3: Strict SLA Enforcement Policy 

 

 

Controlling the resource allocation is essential to meet certain levels of QoS, such as in the case 

of preventing the excessive resource consumption on exception or failure scenarios [6]. 

Accordingly, a lot of research has been conducted to address this issue. Resource optimization is 

one of the solutions often proposed to provide reliable and highly available service provisioning. 

The early detection of resource starvation is the key in avoiding service outages [7]. Resource 

starvation is a consequence of competition among services for a finite amount of available 

resources.  
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A more efficient approach to address the issue is to allow Resource Manager to redistribute 

resources among services dynamically. This thesis explores the mechanism of the approach as a 

remediation solution to alleviate the current inefficient approaches proposed by current research 

studies and solutions. 
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1.3 Technology Brief 

1.3.1 Docker 

Docker resolves many QoS issues in deploying microservices as it provides agility, portability, 

and control [19]. The Container Management Service (CMS) framework offers increased 

deployment density, scalability and resource efficiency [20].  

 

Docker is based on container technology and due to the functional similarity, Docker often is 

compared with Virtual Machine (VM). VM has a full OS with its own memory management 

installed with the associated overhead of virtual device drivers and valuable resources are 

emulated for the guest OS and hypervisor, which makes it possible to run many instances of one 

or more operating systems in parallel on a single machine (or host). Every guest OS runs as an 

individual entity from the host system [49].  On the other hand, Docker containers are executed 

with the Docker daemon rather than the hypervisor. Containers are therefore smaller than Virtual 

Machines and enable faster start up with better performance, less isolation and greater 

compatibility possible due to sharing of the host’s kernel. 

 

The Docker container platform has the following desirable features: 

a) Capturing high-level resource requirements: a representation which captures the high-

level resource requirements of containerised applications along with CPU, memory and 

network ports.  

b) Efficient containers co-location: techniques to group containers into multi-container 

(multi-task) units. This grouping serves as a unit of deployment on a container instance, 
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such that the aggregate resource requirement of a multi-container unit cannot exceed the 

total resources available to a container-instance.  

c) Optimal deployment: a scheduling algorithm which solves the optimal deployment of sets 

of multi-container units on best fit container-instances across distributed Clouds, thus 

maximizing all available resources and speeding up the completion time. 

 

1.3.2 Service Level Agreement (SLA) 

The SLA is an agreement between the resource management and the microservice that defines 

the QoS that can be supported by the resource management solution [47]. In this research, SLA 

refers to the maximum amount of resources that can be provided by Resource Manager to the 

microservice. The resources are measured by the number of CPU cores.  

 

1.4 Research Objectives and Contributions 

This thesis proposes a new scheme that addresses the existing deficiency in out-of-box resource 

management of microservices deployed in the Docker environment. The proposed scheme 

introduces SLA enforcement to individual service with dynamic resource allocation. The 

contributions of the thesis can be summarized as follows: 

• We propose a new scheme that improves resource management control in Docker 

container platform. In particular, an SLA enforcement feature is introduced which will 

limit resource consumption by an individual service. 
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• The proposed solution also aims to maximize resource utilization by reallocating 

resources dynamically among microservices. 

• We design and implement a resource management framework for the Docker Container 

platform. Within this framework, various resource management schemes are studied and 

implemented. 

 

1.5 Thesis outline 

This thesis consists of 5 chapters with this chapter, Chapter 1, serving as the overview and an 

introduction. The rest of this thesis is organized as follows:  

• Chapter 2 explores various resource management tactics and proposals found in the 

literature. The chapter ends with a summary of the proposed approach.  

• Chapter 3 describes the resource management framework that is designed and 

implemented in this thesis. It also provides details of various resource management 

schemes. In particular, we propose a resource management scheme called Adaptive SLA 

Enforcement scheme which provides efficient resource allocation with SLA enforcement. 

• Chapter 4 explores the implementation of the schemes introduced in Chapter 3. The 

performances of these schemes are then analysed and compared.  

• Chapter 5 concludes the thesis and introduces potential future works.  
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Chapter 2. Background and Literature Survey 

Many studies have previously researched guaranteed QoS for services. Although these were 

conducted in the frame of many different fields and aspects, they often fall into two general 

categories – Overall Resource Provisioning and Differentiated Resource Provisioning on runtime 

environment. We will explore these categories in-depth in the following chapters. 

 

 

2.1 Overall Resource Provisioning 

The first general category that we explore is Overall Resource Provisioning. The research goal of 

the studies in this general category is to deliver QoS in a runtime environment hosting multiple 

services. Although the subject areas have evolved over time from traditional virtual servers to 

Cloud, and again to Docker, the research goal has remained unchanged. Since the subject area of 

guaranteed QoS is runtime environment, all services in the environment are provided with the 

same level of QoS regardless of individual service’s requirements. In this chapter, we will review 

the previously conducted research which aimed to deliver the guaranteed QoS for different 

runtime environments. 
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2.1.1 Traditional Objectives of Quality of Service 

Traditionally SLA for throughput has been considered the QoS related to IT infrastructure. 

Architectural principles described by Len et al. [7] show its relevance to IT infrastructure. The 

authors highlight the importance of the software design principles, stating that it is a software 

architect’s due diligence to consider the SLA when designing software architecture. The authors 

describe a number of quality attributes such as availability, modifiability, performance, and 

security, while various methods for fault detection, fault recovery, and fault prevention are 

reviewed. In addition, performance tactics such as resource demand, resource management, and 

resource arbitration are studied. 

 

The importance of the QoS has been the primary objective in legacy environment.  Leveraging 

the J2EE clustering feature, Lodi et al. [24] suggest Middleware architecture for enabling SLA-

driven clustering of QoS-aware application servers. The authors propose three principles for the 

QoS:  

1) Guaranteeing that the QoS requirements specified in SLAs are met; 

2) Optimizing the resource utilization in addressing item 1, above; and  

3) Maximizing the portability of the software architecture across a variety of specific J2EE 

implementations based on a load balancing service and monitoring service with desired 

SLA property.  
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2.1.2 Guaranteed QoS on Cloud as Infrastructure  

The trend of delivering guaranteed QoS has been continued into the Cloud era. The way of 

linking the throughput SLA to IT infrastructure remains the same during the transition from the 

traditional computing environment to the Cloud computing environment. Stantchev [9] proposes 

a three-step approach to mapping the SLA and QoS requirements of business processes in a 

Cloud environment. The author describes the formalization of service capabilities and business 

process requirements. The author briefly explains the design-time non-functional properties 

(NFPs) and run-time NFPs. The 3 suggested steps to meet SLA are: 1) Formalization, 2) 

Negotiation, and 3) Enforcement. The primary goal of the research remains replicating technical 

services in available IT infrastructure to the Cloud environment. 

 

As suggested by Jennings and Stadler [34], many Cloud Users and End Users do not have the 

expertise to properly exploit dynamic price fluctuations. This may open the field for cloud 

brokers who accept the risk associated with reserving dynamically priced resources in return for 

charging higher but stable prices. Moreover, Cloud Users may harness the nested virtualization 

capabilities of operating systems to directly re-sell computing capacity that they lease from a 

Cloud Provider. Modelling behaviour and devising pricing strategies for such a Cloud ecosystem 

are topics that should be investigated.  

 

Giaretta et al. [10] propose the solution of increasing the scalability of services in Docker 

containers by improving Service Oriented Architecture (SOA) Orchestration using Jolie 

framework with Docker Kubernetes. Jolie framework is based on the Jolie programming 

language and is specialized for the orchestration of microservices [11]. Although the primary 
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subject of SLA is changed from Infrastructure-level QoS to Service-level QoS, the deficiency of 

the solution lies in the failure to implement the mechanism to prevent resource starvation. 

 

Yamato et al. [18] propose an automatic performance verification technique that executes 

necessary performance tests automatically on provisioned user environments according to the 

collection of parameters for the required performance objective. The implementation, called 

Server architecture recommendation and Automatic verification Functions (SAF), recommends 

appropriate server architecture and verifies it based on the user’s performance requirements. 

Based on economic factors calculated by the performance verification technique, SAF revises 

container configuration if required. 

 

Freitas et al. [25] propose an approach for efficient resource utilization of Docker containers. The 

research shows that a key challenge for service providers is to manage cloud resources efficiently 

in order to increase profit while maintaining SLAs with customers. The authors define different 

SLA types by combining response time and reliability. Response time reflects the maximum 

amount of time for executing a request while reliability reflects the probability of success for a 

request. Customers can subscribe to three levels of QoS: high, medium and low. The subscribed 

QoS levels define different level of SLA based on different trade-offs between response time and 

reliability. 

 

Another methodology of SLA enforcement is proposed by Anuradha and Sumathi [30]. This 

work presents a study of resource allocation strategies in Cloud computing. The strategies 

include resource requirements prediction algorithms and resource allocation algorithms. Part of 
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the strategies in the resource allocation algorithms involve the pre-emption of the currently low 

priority running task in order to satisfy the SLA of the higher priority tasks. 

 

2.1.3 Service Quality Provisioning using Docker (Microservice) 

As Docker container technology becomes the de facto standard for microservice, the subject of 

QoS guarantee has also been increasingly studied in the Docker environment. 

 

Higgins et al. [12] propose a solution based on the novel cluster-watcher component combined 

with Software Defined Network (SDN) to improve the scalability of the Docker container’s 

resource management. Although the solution solves the performance limitation through 

computational resources across Virtual Machines, it still lacks the resource allocation limitation 

control.  

 

Guan et al. [13] propose an Application Oriented Docker Container (AODC) based on a resource 

allocation framework to support automatic scaling. The framework creates a pallet container and 

multiple execution containers for each application. The execution containers are scaled based on 

application’s workload. This solution again does not enforce applications’ SLA. The research 

presents the communication-efficient and scalable resource allocation algorithm to minimize the 

application deployment cost constrained by capacity and the service delay bound. 

 

Barna et al. [14] propose an Autonomic Management System (AMS) which is a comprehensive 

resource management solution based on resource utilization. AMS limits the resource allocation 

based on predefined upper and lower thresholds. The system demonstrates workload distribution 
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across multiple Virtual Machines. It also demonstrates the resource limited between upper and 

lower thresholds. However, its deficiency is in its lack of consideration of SLA on resource 

management capability. 

 

As Dziurzanski and Indrusiak [38] explain that initially Docker containers were executed and 

managed on a single machine, but soon other orchestration software that manage a number of 

nodes in a cluster emerged such as Docker Swarm or Google Kubernetes. These systems perform 

best with the most typical cloud usage patterns, such as Internet services’ high availability or 

load balancing for microservices. It is assumed that Docker Swarm has no priority information 

regarding the workload or the containers’ resource requirement. Since Docker orchestration tools 

do not consider the priorities of containers, they are not capable of prioritising the container 

execution without considering the value of the results to the end users’ different levels of SLA. 

 

Abdelzaher et al. [23] demonstrate the performance control of a Web server using classical 

feedback control theory to achieve overload protection, performance guarantees, and service 

differentiation in the presence of load unpredictability. In addition to achieving performance 

isolation and QoS guarantees, each virtual server supports request prioritization. Upon overload, 

lower priority requests are degraded first. 

 

2.1.4 Increase Resource Utilization Efficiency 

Sun et al. [16] present a new approach to enable rapid, optimized deployment of software onto a 

cloud environment by substantially reducing the number of benchmarks required. Based on a 

heuristic bin-packing algorithm, it guarantees meeting the QoS requirements for all the 
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applications while minimizing the total resource cost. The goal is to minimize the redundant 

capacity and packing inefficiency with utilizing different sizes of Virtual Machines which hold 

container implementation. The authors explore an algorithm called Bin Packing Scheduling, 

which is adopted in Docker Swarm. 

 

Kaewkasi and Chuenmuneewong [21] propose the solution to improve the resource utilization 

using Ant Colony Optimization (ACO) to improve the scheduler’s optimality. The research is 

leveraging an ACO-based algorithm to distribute application containers over Docker hosts. The 

algorithm balances workload leading to a better performance of applications with higher resource 

utilization by leveraging Docker Swarm. 

 

A task selection and scheduling algorithm based on cooperative game theory is proposed by 

Kaur et al. [31]. The research is to improve the energy-efficient task selection and scheduling. 

The research describes the game theoretical models from broker to broker and container to 

container in order to minimize the overall energy utilization of servers. 

 

Leveraging bidding and allocation framework, Ma et al. [33] provide a theoretical framework for 

resource management for SaaS providers so providers can efficiently control the service levels of 

their users, and to easily scale their applications under dynamic user arrivals/departures. 

 

As proposed by Guerrero1 et al. [42], greedy algorithms based on the heuristic process is another 

approach to solve the issue of finding local optima for resource utilization. The main idea is that 

global optimum can be achieved by segmenting the optimization problem into smaller problems. 
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Also, as described in Chang et al. [43], Kubernetes provides a naive dynamic resource-

provisioning mechanism which considers only CPU utilization, thus it is not effective. The 

research aims to develop a generic platform to facilitate dynamic resource-provisioning based on 

Kubernetes. 

 

 

2.2 Differentiated Resource Provisioning 

Second general category, Differentiated Resource Provisioning takes each service’s SLA into 

consideration, while Overall Resource Provisioning provides equal level of QoS to the services 

on the runtime environment. Especially in regard to the economic factor, some services are more 

tolerant to lower level service quality in less expensive runtime environments. In this chapter, we 

will explore research whose goal is to deliver differentiated service quality for different level of 

QoS requirements. 

 

2.2.1 Differentiated Level of Service Quality 

While the target of guaranteed service quality is focused on overall service throughput, the 

economic factor cannot be ignored. Accordingly, a price-driven approach must be considered. 

The definition of importance can vary depending on the research approach. However, all 

approaches have one thing in common: deliver differentiated levels of service quality depending 

on each service’s importance.  
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Sekhar et al. [15] call attention to the limitation of performance assurance due to unpredictable 

end-to-end latency. Based on the consideration of practical issues, the research proposes two 

schemes:  performance monitoring of resources and algorithm for elastic and scalable scheduling. 

The performance statistics on each host is collected by monitors on each host and by Data 

collector on the Local Manager host. The collected data is analysed and the Docker resource 

provision will be adjusted based on cost estimation. 

 

Abdelbaky et al. [22] propose a simple 2 step solution for guaranteed service quality. 1) 

Environment Description and Resource Filtering and 2) Resource Selection and Workload 

Allocation. The scheduler is workload-aware in that it selects the most appropriate resources 

from the current slice which will optimize a given QoS objective such as minimizing budget or 

data transfer. 

 

 

2.2.2 Criticality based Resource Provisioning 

In order to deliver the guaranteed service quality, monitoring and detecting any service quality 

violations is critical. Kyriazis [40] proposes an SLA enforcement method that aims at ensuring 

the quality parameters. The method in the research has service providers exploit monitoring 

mechanisms in order to obtain both infrastructure and application monitoring data, while 

adaptable approaches focus on adjusting the monitoring time intervals or the monitoring metrics 

based on the collected information during runtime. Evaluation tools are deployed to analyse the 

monitoring data and trigger corrective actions using SLA violation detection mechanisms. 
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Narayanan et al. [37] propose a resource allocation algorithm for SaaS providers who want to 

minimize infrastructure cost and SLA violations using Mapping Strategy: mapping of customer 

QoS requirements to resources (Virtual Machine [VM] type, small, medium, and large). The 

critical service is allocated in large size VM which larger and a greater number of containers can 

be deployed, while less critical service is allocated in small or medium size VM. 

 

Also, Wu and Yang [39] propose a new CPU allocation approach called flexible deferrable 

server (FDS) scheduler to improve the performance of service. In particular, FDS first provides 

the available CPU capacity to Real Time Containers with higher criticality in order to ensure 

their timing constraints can be met. Then, the remaining CPU capacity is provided to Non Real 

Time (or lower criticality) containers dynamically at run-time so that their unpredictable on-line 

requirements can be met as much as possible. 

 

2.2.3 Priority based Resource Provision 

The wide adoption of microservices implemented as Docker containers on a Cloud computing 

environment requires a better resource management solution in order to avoid unexpected 

resource starvation. Individual services may also have different throughput SLA. Services with 

more rigid throughput SLA are expected to consume more resources than services with less rigid 

SLA. The finite resources in the Cloud computing environment may have to be shared between 

services unequally based on their SLA. In order to design a comprehensive resource management 

system, the deficiency of resource management must be resolved. 
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Implementing the allowable delay as an approach to differentiate service quality is another 

approach for priority-based resource provisioning. Young Choon Lee et al. [36] propose the 

approach with the development of a pricing model—using processor-sharing—for Cloud, the 

application of this pricing model to composite services with dependency consideration and the 

development of two sets of profit-driven scheduling algorithms. Characterization of allowable 

delay, a consumer application in this study, is associated with two types of allowable delay in its 

processing (i.e. application-wise allowable delay and service-wise allowable delay). For a given 

consumer application, there is a certain additional amount of time that the service provider can 

afford when processing the application; this application-wide allowable delay is possible due to 

the fact that the provider will gain some profit. 

 

Tafsiri and Yousefi [41] propose Market-dependent Pricing Model, users pay a fixed price for 

each period of time and after the end of this period, the paying price is re-set for the next period 

according to the real-time market conditions such as supply, demand, and revenue of users and 

providers. In this pricing mechanism, the price is determined by one of the market-based 

mechanisms such as bargaining and auction. 

 

2.2.4 Adaptive Resource Allocation 

Leveraging Docker Swarm for resource management, Tihfon et al. [17] present a resource 

allocation algorithm that is triggered by resource demand, focusing on building products via 

Dockerfiles and leveraging the scheduling algorithm of Amazon ECS. Task definition allows for 

one or more containers to be specified. ECS has another entity called a “service,” which is useful 

for long running tasks, like web applications.  
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Makridis et al. [44] present robust dynamic resource allocation mechanisms to allocate 

application resources meeting Service Level Objectives (SLOs) agreed between Cloud providers 

and customers. The controllers are self-adaptive, with process noise variances and covariances 

calculated using previous measurements within a time window. In the allocation process, a 

bounded client mean response time (mRT) is maintained. 

 

Zhang et al. [45] propose an SLA driven adaptive resource allocation for virtualized servers. 

When the available resource is insufficient for the demands, the adaptive resource allocation 

algorithm differentiates the resource allocation to guarantee resource requirements of higher 

priority applications. However, the algorithm does not force lower priority applications to release 

resources. 

 

2.2.5 Throttling Resource Allocation 

Under the SLA enforcement mechanism, each service is expected to consume resources based on 

its SLA. The SLA is interpreted as the average throughput measured in terms of Transactions per 

Second (TPS). The resource allocation may be limited based on the SLA in order to avoid 

overallocation. One of the techniques to limit the resource overallocation is ‘throttling’.  

 

Wilder [26] defines throttling in his book as “selectively enabling or disabling features or 

functionality based on environmental signals. Throttling complements instance scaling” [26, p. 

50]. Phillips [27] proposes a throttling solution from services competing for resources wherein a 

maximum number of requests from the services is imposed during the specific time period. 
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Another approach focusing on meeting the QoS of each service was proposed by Popovici and 

Wilkes [35]. The description and evaluation of a new family of profit-based scheduling and 

admission control algorithms for higher-level service providers 1) explicitly address the cost of 

renting resources; 2) handle variable-shaped jobs (ones that can be run on one or more 

processors) that scale imperfectly; and 3) explicitly address resource-availability uncertainty. 

The admission control algorithm is responsible for determining whether it will be profitable for 

the service provider to accept a job. Essentially, it attempts to determine if the net increase in 

profit is likely to be positive, at an appropriate level of risk. There are two parameters to 

consider: 1) the amount of uncertainty (how inaccurate are the resource-provider’s estimates); 

and 2) how much risk a service provider is willing to take, which is expressed as a bound on the 

expected probability that an undesirable outcome may occur. 

 

2.3 Summary of Proposed Approach 

As the traffic volume to a service varies over time, the amount of resources allocated to the 

service to serve the traffic should be made adaptable to the volume changes.  

 

The solutions examined in this section have one common deficiency: they do not provide a 

mechanism to limit resource allocation for individual service. As the computing environment is 

further moved to Cloud, the traditional way of managing throughput SLA requires a change of 

paradigm, from being associated with IT infrastructure to being associated with service 

implementation. 
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In this research, we introduce a resource management scheme with SLA enforcement. In 

addition to the SLA enforcement feature, the scheme can allocate resources dynamically 

according to the traffic volume. A resource management framework utilizing a feedback 

monitoring mechanism is also designed and implemented. The framework will provide a 

platform for further resource management research.   
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Chapter 3. Proposed Methodology and Resource Management Schemes 

In this chapter, we will first introduce the Resource Management framework to be used to 

implement and study various resource management schemes. We then describe the four resource 

management schemes studied in this thesis. But first, we will cover several salient concepts 

associated with the resource management framework. 

 

3.1 Architecture overview of Resource Management Framework 

The architecture of Resource Management framework for this thesis [Figure 3] is comprised of 

three major components: Monitoring Component (Monitoring Server and Agent), Command 

Component (Control Command and Control Agent), and Resource Manager. Referring to 

[Figure 3], machine 1 runs Docker containers for a service that processes requests from service 

consumers. Monitoring Agent of the machine collects runtime statistics from Docker containers 

and sends it to Monitoring Server running on machine 2. Runtime statistics are collected by 

Monitoring Server and provided to Resource Manager. Resource utilization and allocation is 

determined by Resource Manager and, if needed, the decision is passed to Control Command. 

Control Command executes Resource Manager’s decision by issuing a command to Control 

Agent. Figure 3 illustrates the overall process including Monitoring, Resource management, and 

Requirement management.  
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Figure 3 Conceptual solution diagram 

 

3.1.1 Monitoring 

The resource utilization of a service is determined based on the number of processed requests 

within a 60 seconds interval. Additionally, the CPU utilization percentage within a unit time is 

calculated based on the collected pile of runtime statistics of Docker containers. The information 

of processed requests and the runtime statistics of Docker containers are stored in the central 

repository through a 2-tiered process: Monitoring Agent and Monitoring Server [Figure 4]. 
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is configured to produce the information of processed requests to its log file, while the Docker 

containers’ runtime statistics are available on demand. 

 

Figure 4 Monitoring process 
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3.1.2 Control 

When the traffic volume of the service requires the change of service capacity, the change 

requests are, in turn, increasing or decreasing the number of Docker containers. The decision is 

made by Resource Manager based on various factors depending on the design of Resource 

Manager. Resource Manager triggers Controlling process [Figure 5] based on decision made 

through algorithm. Depending on the request type, Controlling Agent increases or decreases the 

number of Docker containers. The change of the number of Docker containers is applied to web 

server’s port forwarding configuration by the agent, as well. 

 

 

Figure 5 Controlling process - Increase / Decrease Docker containers 
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Figure 6 Resource Allocation / Deallocation decision based on SLA 
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3.2 Resource Manager 

3.2.1 Introduction 

Resource Manager is in charge of provisioning resources to microservices according to the 

demand. Two primary functions of Resource Manager in this thesis are:  

1) To ensure that the allocation of resource adapts to the demand; and  

2) To enforce SLAs of all the services being managed.  

The following two subsections describe these functions. 

 

3.2.2 Scalable resource management 

The main function of the scalable resource management is to adjust resource allocation 

according to the demand. In this thesis, the CPU cores are the resources being managed by the 

resource management. In addition, since we will assign one CPU core to a container, the terms 

CPU core and container will be used interchangeably. When the traffic volume to the 

microservice increases significantly, Resource Manager may respond by increasing the number 

of Docker containers to the service. Conversely, when the traffic volume drops below certain 

threshold, Resource Manager may decide to reduce the number of Docker containers allocated to 

the service [Figure 7].  The scalable resource management approach effectively scales the 

allocated resources according to the traffic volume of the service.  
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Figure 7 Transparent resource allocation / de-

allocation 
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3.2.3 Enforcement of Service Level Agreement (SLA) 

Leveraging the dynamic resource management capability, Resource Manager must ensure that 

resources are not over-allocated to a particular service. When a service requires more resources, 

the request must be subjected to a pre-set limit. Additional Docker containers are created only if 

the current allocated resources are below the upper allocation limit as defined in the SLA [Figure 

8]. If the current resource allocation reaches the upper limit, no additional resources will be 

allocated. 

 

Figure 8 Enforce throughputs Service Level Agreement (SLA) 
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thesis, the port forwarding mechanism implemented in the web server is used to distribute the 

requests. 

 

[Figure 9] illustrates port forwarding mechanism. When the request arrives at the web server at 

step 1 through its URL, http://<machine ip address>:<service port number>, the web server 

routes the request to the service directly. However, if the service is configured as port 

forwarding, the web server looks up the configuration and routes the request to one of entries in 

port forwarding configuration (at step 2 of Figure 9). Since multiple entries (containers) are 

configured in the service’s port forwarding configuration, the web server spreads the workload 

among configured ports (at step 3 of Figure 9) through container URL,  

http://<local ip address>:<container n port number>. 

 

When the traffic volume increases and an additional container is added, (at step 4 of Figure 9) 

the newly added Docker container’s port number is added to service’s port forward configuration 

in the web server (at step 5 of Figure 9). Once the configuration is effective, workload is shared 

among configured Docker containers including the newly added Docker container. When traffic 

volume decreases and the CPU utilization of the active Docker containers is below the lower 

threshold, excessive Docker containers are removed and service’s port forwarding configuration 

is updated.  
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Figure 9 Workload Management through Port 

Forwarding 
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3.4 Resource management schemes 

With the resource management platform in place, four resource management schemes will be 

studied. A basic scheme (Scheme 1) based on the native Docker Container platform is served as 

a benchmark. Three other resource management schemes with or without SLA enforcement 

(schemes 2, 3 and 4) are then proposed and studied. The four schemes studied in this thesis are 

briefly described in [Table 1]. 

 

Table 1 Different Schemes of Resource Management Control 
Scheme No Name Description 

Scheme 1 Fixed number of 
Docker containers 

Microservice is implemented in 2 Docker containers. Resource Manager 
does not provide dynamic resource management capability. 

Scheme 2 Dynamic Resource 
Management 

Number of Docker containers for the service is maintained dynamically 
depending on traffic volume change. Resource Manager allocates 
resources according to the demand as long as the resources are 
available. Services are competing with each other for the available 
resources since their SLA is not honored. 

Scheme 3 Strict SLA 
Enforcement 

Resource Manager provides resources per service’s demand up to 
predefined number of cores per SLA. Resource Manager declines the 
demand once the number of Docker containers allocated for a service 
reaches the upper limit. 

Scheme 4 Adaptive SLA 
Enforcement 

Resource management in scheme 4 is more flexible compared to 
Scheme 3. A service can have more containers than the upper limit 
specified in its SLA, as long as resources are available. When the 
resources become scarce, the excessive resources allocated to some 
services are released to be used by other services in order to meet the 
SLAs of all the services. 

 

 

  



35 

 

3.4.1 Scheme 1 Fixed number of Containers 

Each service is allocated with a fixed number of Docker containers. Resource Manager does not 

provide dynamic resource management capability; thus, the change of traffic volume of the 

service does not change the number of Docker containers allocated to the service. 

3.4.1.1 How it works 

When the service is implemented, Resource Manager creates 2 Docker containers through the 

management process [Figure 10]. Resource Manager does not take action once the initial service 

implementation is complete. 

 
Figure 10 Scheme 1 Fixed number of containers, process flow 
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In the setup, the maximum number of available cores for the machine is set to 8 cores and 2 

services are implemented. Each service has two Docker containers (Input statements of 

[Algorithm 1]). Each Docker container is allocated with a single core. Resource Manager 

enforces a fixed number of containers shown in line 5 of [Algorithm 1].

 

Algorithm 1 Scheme 1 Fixed number of containers 
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3.4.1.2 Scheme 1 Summary 

Among all the schemes studied in this thesis, Resource Manager of Scheme 1 is the most 

inflexible. Since there is no dynamic characteristic on resource management, resource planning 

can be simple. However, the design does not react to the traffic volume changes and it causes 

either resource waste when traffic volume is low or longer request time when traffic volume is 

too high. 
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3.4.2 Scheme 2 Dynamic Resource Management 

Resource Manager provides dynamic resource management capability in response to the traffic 

volume changes. When the traffic volume increases and the service demands more resources, 

Resource Manager adds a Docker container through the Controlling process if resources are 

available. Conversely, when the traffic volume decreases to the level at which the CPU of the 

Docker containers is deemed to be underutilized, Resource Manager reduces the number of 

Docker containers through Controlling process so that the over-allocated resources are released. 

In this scheme, Resource Manager does not use the service SLA to impose a limit on the 

resources being allocated to the service. 

 

3.4.2.1 How it works 

When the service is implemented, Resource Manager creates 2 Docker containers through the 

Controlling process, illustrated in the left portion of the flow in [Figure 11], which is similar to 

Scheme 1. Once the service is running, Resource Manager monitors the throughput and CPU 

utilizations for the service, depicted in the right half of the flow in [Figure 11], in a fixed 

interval. In this research, a 10 second interval was set. When Resource Manager identifies that 

CPU utilization is above the upper threshold, it requests the addition of another Docker container 

to the service through the Controlling process. Conversely, Resource Manager may request the 

Controlling process to remove a Docker container when underutilization of CPU is observed. 
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Figure 11 Scheme 2 Dynamic Resource Management process flow 

 

 

In the setup, the maximum number of cores is set to 8 in line 4 of [Algorithm 2] and two 

services, s1 and s2, are competing over the available resources. Resource Manager monitors the 
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percentage at line 10, Resource Manager calculates the number of available cores by subtracting 
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The Docker containers’ runtime statistics are collected by the Monitoring process, which is 

comprised of the Agent and Server components. The Monitoring Agent inquires Docker daemon 

for the containers’ runtime statistics at each 10 second interval. Once the request is sent to 

Docker daemon, snapshots of runtime statistics are sent back to the Monitoring Agent, which 

then sends the information to Monitoring Server. The collected run statistics are saved on a 

central repository with collected time as an attribute. 

 

The Resource Manager fetches the collected statistics for the past 60 seconds to compute the 

average. The average CPU utilization is calculated by summing up the CPU utilization of all the 

entries in the collected statistics and then dividing it by the total number of entries as given by 

[Equation 1].  

 

Equation 1 Average CPU utilization percentile 

∑ 𝜇𝑛
𝑁
𝑛=1

𝑁
 

In equation 1, 𝜇𝑛 is the CPU utilization of entry 𝑛 and 𝑁 is the total number of entries. 

 

Resource Manager determines whether the average CPU utilization is beyond the upper 

threshold1 (in line 11 of [Algorithm 2]). If the upper threshold is crossed, it will check (line 12) if 

there is a CPU core available. If there is a CPU core available, Resource Manager requests (line 

13) to add an additional Docker container to the service through the Controlling process. 

                                                 

1 The upper threshold is set to 85% in our research. 
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Resource Manager does not request any additional Docker container if there is no available core 

(line 15). 

 

Resource Manager removes a container from the service if the removal of a container does not 

push the utilization of the remaining container(s) over 50%. Let 𝑛𝑠 and 𝜇𝑠 be the number of 

containers currently allocated to the service and their utilization, respectively.   

On the assumption that the traffic offered to the service remains constant in the next 10-sec 

window, the removal of a container will cause the increase of the utilization of the remaining 

container(s) by  
𝜇𝑠

 𝑛𝑠−1
. Thus, the utilization of each remaining containers is 𝜇𝑠 +

𝜇𝑠

𝑛𝑠+1
. 

Based on this calculation, Resource Manager will remove a container from the service if the 

following condition applies. 

𝜇𝑠 +
𝜇𝑠

𝑛𝑠 − 1
< 50% 
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Algorithm 2 Scheme 2 Dynamic Resource Management algorithm 
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3.4.2.2 Scheme 2 Summary 

Resource Manager of Scheme 2 provides dynamic resource management. However, it does not 

honour the service’s SLA. The resource provisioning is on a ‘first come, first served’ basis. This 

may lead to resource starvation to some service due to unbalanced resource allocation. Because 

the SLA of services are not considered in resource provisioning, low priority services could use 

up all the available resources while critical services with higher priority do not have enough 

resources to handle their service requests. 
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3.4.3 Scheme 3 Strict SLA Enforcement 

Scheme 3 incorporates strict SLA enforcement which limits the maximum number of Docker 

containers allocated based on SLA of the service. By using SLA enforcement, we can control the 

resource allocation of individual services, thus preventing resource starvation. 

 

Resource Manager provides dynamic resource management capability in response to the traffic 

volume changes. The behaviour of resource management in response to the traffic volume 

changes is similar to Scheme 2, with the difference that the upper limit of number of cores is 

predefined based on the service’s SLA. 

 

3.4.3.1 How it works 

In the setup, when the service is implemented, Resource Manager creates 2 Docker containers 

through the Controlling process as illustrated in the left half of the flow in [Figure 12] which is 

similar to the Scheme 1 process. Once the service is running, Resource Manager monitors the 

CPU utilizations for the service, as shown in the right half [Figure 12] in 10 second intervals. 

When Resource Manager needs to increase resources due to the high utilization of the currently 

allocated containers, it will check if the current resource allocation has reached the upper limit 

according to the SLA [Figure 13]. Only if the current resource allocation is below the limit will 

Resource Manager request to create an additional Docker container to the service through the 

Controlling process. In the case where the resource is deemed to be underutilized, Resource 

Manager will request to the Controlling process to remove a Docker container [Figure 12]. 
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Figure 12 Scheme 3 Strict SLA Enforcement Resource Management process flow 
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Figure 13 SLA evaluation (scheme 3) 
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2 [Algorithm 2]. 
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Resource Manager maintains the predefined upper limit number of cores for each service (lines 5 

and 6 in [Algorithm 3]). It obtains the current number of Docker containers for the service (line 

13) for the SLA conformance check. 

 

Resource Manager compares the average CPU utilization percentage and upper threshold to 

determine if any additional resources are required (line 14) and then to the lower threshold to 

determine if excessive resource is allocated to the service (line 19). 

 

Additional SLA conformance is evaluated (lines 15 through 18) to check if the number of 

allocated cores reaches the upper limit as specified in the SLA.  
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Algorithm 3 Scheme 3 Strict SLA Enforcement Resource Management algorithm 
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3.4.3.2 Scheme 3 Summary 

While Resource Manager of Scheme 3 provides a dynamic resource management in a similar 

manner to Scheme 2, Resource Manager of Scheme 3 predefines a maximum number of 

allowable Containers that can be assigned to the service. The SLA Conformance Check can 

deliver the required QoS to the services in a controlled manner. 

The main drawback of Scheme 3 is that resources reserved to different services cannot be shared. 

For example, consider 2 services, Service 1 and Service 2, with 4 as the maximum allowable 

cores for each service. Suppose Service 1 currently experiences high traffic volume and it cannot 

handle the high volume even when maximum resources (4 cores) have been allocated to it. In 

this case, Service 1 needs additional resources. Meanwhile, Service 2 experiences low traffic 

volume, thus does not need all 4 cores. In this situation, it is desirable for Service 1 to borrow the 

unused resources of Service 2. However, the strict SLA conformance check in Scheme 3 does 

not provide this flexibility. In the next section, we introduce the last scheme of the thesis that 

allows services to share the resources efficiently. 
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3.4.4 Scheme 4 Adaptive SLA Enforcement 

In scheme 4, Resource Manager can allocate additional resources to a service beyond the 

service’s predefined SLA limit. In this scheme, a service can be in one of three states based on 

the amount of resource allocation. The service is in the under-allocated state if the resources 

allocated to the service is below its SLA limit. It is in the over-allocated state if the resource 

allocation exceeds its SLA limit. Finally, it is in the limiting state if the resource allocated is 

exactly equal to the SLA limit. 

 

A service is allowed to acquire more resources independent of its SLA if unused resources are 

available. On the other hand, if the overall resources are not sufficient to meet the demands of all 

the services, Resource Manager will actively reallocate the resources in order to first meet the 

SLAs of all the services. The redistribution involves moving resources from services in the over-

allocated state to services in the under-allocated state. 

 

3.4.4.1 How it works 

In this scheme, we assume that the overall resources meet the SLAs of all the services. 

In order to provide dynamic resource management, Resource Manager uses the collected Docker 

containers’ runtime statistics as in Schemes 2 and 3. Based on the average CPU utilization 

percentage of a service within each 10 second interval, Resource Manager takes one of the 

following three actions [Figure 14]: 

1) Requesting to decrease the number of Docker containers of that service when resources 

are underutilized;  
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2) Conducting SLA Conformance check when additional resources are required for that 

service; or 

3) Taking no action when the allocated resource is neither underutilized nor overutilized. 

 

If action 2 is selected, Resource Manager performs a conformance check to determine if extra 

resources should be allocated. The conformance check leads to three possible actions depending 

on the state of the service and the resource availability [Figure 14]: 

1) Increase the number of Docker containers if there are available resources. 

2) Do nothing if there are no available resources and the service is in either over-allocated or 

limiting states. 

3) If the service is in under-allocated state and there is no resources available, it can acquire 

the resources from the service that is in the over-allocated state. 
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Figure 14 Scheme 4 Adaptive Resource Management process flow 

 

  

Loop

Create Docker container

Set number of Docker 
containers to 2

Initial Docker 
container deployent

Required 
containers are 

deployed

No

Yes

Loop

Wait for interval

Check resource 
demandDecrease

Check increase or 
decrease

Increase

Event to 
controlling agent

Remove Docker 
container

No

No

Increase allowed

Create Docker container

Yes

Check SLA

Remove other service s 
container

Create Docker container

Adpative



53 

 

Scheme 4 allows a service to have more resources than its SLA limit given that there are 

resources available. However, Resource Manager of Scheme 4 can also redistribute the resources 

from the over-allocated service to the under-allocated service in order to meet the SLA of the 

under-allocated service [Figure 15].  

 

Figure 15 SLA Conformance Check (Scheme 4) 
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Scheme 4 leverages the same equation used by Scheme 2 [Equation 1] to calculate the resource 

utilization of all the services. When the service’s traffic volume requires less resource than it is 

entitled, the other service can utilize more than it is entitled.  
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Algorithm 4 Scheme 4 Adaptive Resource Management algorithm 
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3.5.4.2 Scheme 4 Summary 

Scheme 4 adopts the best features from Scheme 2 for dynamic resource management and from 

scheme 3 for SLA Enforcement. It manages resources in the most efficient way among all the 

schemes covered in this thesis. 
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Chapter 4. Implementation and Result Analysis 

4.1 Implementation Overview 

We implement the Resource management framework in two Machines [Figure 16]. The Monitor 

agent and Control agent are installed on the Docker container Machine, while Monitor server, 

Resource Manager, and Controller are installed on the Resource Manager Machine. Docker 

containers of the service are also installed on the Docker container Machine. 

 

Web server is installed on the Docker Container Machine to handle service consumers’ requests. 

Port forwarding is also configured to support multiple Docker containers per service. Service 

consumers are simulated using Apache Benchmark and implemented on a separate Machine. 
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Figure 16 Solution architecture diagram 
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endpoints2. In this research, multiple traffic simulator instances generate traffic volume, with 

each traffic simulator instance sending the service requests in a single thread.  

Each instance can generate sufficient traffic volume to cause a Docker container utilize 50 

percent of a CPU core. A single instance of web server receives the service requests of both 

services. The web server forwards each request to a particular service, then to one of the Docker 

containers allocated to that service. In this research, each service request and response traffic are 

considered as a transaction. It is assumed that a request is equivalent to one packet as well as a 

response. 

 

 

4.1.1.3 Relation of CPU Cores and Containers 

In this research, each Docker container is deployed with one core. The maximum utilization 

percentage of CPU for each container is 100 percent. Since each service could have multiple 

Docker containers, its combined CPU utilization can be up to 100 percent multiplied by the 

number of containers. For instance, when 4 containers are allocated to a service, its maximum 

combined CPU utilization is 400 percent. 

  

                                                 

2 Two microservices are hosted by the same webserver with the same IP address. Each service is identified by 

different port numbers. 
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4.2 Simulation Setup and Performance Results 

Two web services are simulated with the following parameters: 

1. Traffic volume is adjusted every 1-minute interval 

2. Traffic volumes of Services 1 and 2 are increased in the first 2 intervals 

3. Between the 3rd and the 15th intervals, only Service 1’s traffic volume is increased 

4. Service 2’s traffic volume is increased when Service 1’s traffic volume reaches 850 

requests per second. 

 

Figure 17 illustrates the traffic patterns of Services 1 and 2. 

 

 

Figure 17 Traffic Volume Graph with Number of Traffic Simulator Instances  
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4.2.1 Scheme 1 Fixed number of Docker containers 

Each service is implemented with two Docker containers. As seen in [Figure 18] below, Service 

1’s combined CPU utilization quickly reached its max, 200.00 percent (2 Cores times 100 

percent each), while Service 2’s combined CPU utilization percent is below the maximum due to 

the lesser amount of traffic volume. Service 2’s combined CPU utilization quickly reaches its 

maximum when its traffic volume is increased. 

 

 

Figure 18 Fixed Resource Number of Docker containers test result 
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Although incoming traffic volumes for both services are increasing over time, due to the lack of 

a dynamic resource management capability, the resource allocation of both services is limited to 

the fixed number of cores. Due to this inflexibility the 4 remaining unused cores are wasted as 

they remain in an idle state. 

 

Scheme 1 is the most inflexible resource management solution among the four schemes explored 

here. It leads to inefficiency in terms of resource utilization. 
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4.2.2 Scheme 2 Dynamic Resource Management 

In scheme 2, additional resources can be allocated to the service that demands it. As shown in 

Figure 19, with the steep increase of traffic volume Service 1 quickly uses up all available six 

cores. Later, when Service 2’s traffic volume starts to increase, there is no available core for 

Service 2 since Service 1 does not release any resource. 

 

Figure 19 Scheme 2 Dynamic Resource Management test result 
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Compared to Scheme 1, this solution shows better utilization of resources using dynamic 

resource management. As the traffic volume of Service 1 increases, additional resources are 

allocated to the service until all the available resources are exhausted. Thus, no resources remain 

idle when they are needed unlike in Scheme 1. Scheme 2, however, does not impose limitations 

on how much resource can be allocated to a service. The consequence is that resources are not 

fairly distributed among services. 
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4.2.3 Scheme 3 Strict SLA Enforcement 

In the setup for Scheme 3, the upper limit set for allocated resources in the SLA is 4 cores, or 

400 percent of combined CPU utilization. As in the previous section, the resources allocated to 

Service 1 increase as the traffic volume increases. However, since a limit of maximum resource 

allocation is imposed, Service 1 can only acquire up to 4 cores [Figure 20]. This leaves two cores 

unused so when Service 2’s traffic volume starts to increase; it can acquire the two unused cores. 

At the end, the resources allocated to both services are equal. This scheme prevents a service 

from using resources disproportionately. The main drawback of this scheme is that all resources 

of the machine cannot be fully utilized when needed. For example, 2 cores remain idle in the 

period between the time when Service 1 hits the limit and the time Service 2’s traffic volume 

starts to increase. These two idle cores could have been used by Service 1 in this period to 

improve the overall resource utilization. 
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Figure 20 Scheme 3 Strict SLA Enforcement test result 
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4.2.4 Scheme 4 Adaptive SLA Enforcement 

In the setup for Scheme 4, the maximum allocation resource limit for both services is 4 cores, 

similar to the setup in the Scheme 3 experiment. However, the difference is that each service can 

acquire resources beyond the limit as long as the resources are available. [Figure 21] shows that 

Service 1’s resource utilization increases until it uses up all available resources.  

 

 

 

Figure 21 Adaptive SLA Enforcement test result 
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When all the available resources are allocated to Service 1, the combined CPU utilization is near 

600 percent indicating that Service 1 has 6 cores allocated to it. As the traffic volume of Service 

2 starts to increase and more resources are needed, Resource Manager redistributes the resource 

from Service 1, which is in the over-allocated state, to Service 2, which is in the under-allocated 

state. The shifts of resource allocation are demonstrated by the decrease of the combined CPU 

utilization of Service 1 and increase of the combined CPU utilization of Service 2. At the end, 

both services have the same combined CPU utilization of 400 percent, indicating both have 

reached the maximum limit of their resource allocation (4 cores). 

 

Scheme 4 Resource Manager provides all the capabilities of Scheme 3, while improving the 

Scheme 3 solution with more efficient resource utilization. 
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4.3 Practical Considerations 

The schemes proposed in this thesis have been implemented and tested in the practical 

environment. The response time of the resource allocation is found to be quite reasonable. Our 

study has found that it takes less than 2 seconds to activate a new container and about 11 seconds 

to deactivate a container. The long deactivated time is due to the default grace period of 10 

seconds imposed by the Docker Container system [48]. Thus, the response time to traffic volume 

changes of Schemes 2 and 3 is quite fast. Since the monitoring window is 10 seconds long, 

consequently, we expect the response times to traffic volume changes by adding a container and 

removing a container will be within 12 and 21 seconds, respectively. 

 

In Scheme 4, adding a new container to an under-allocated service may sometimes require 

removing container from an over-allocated service first. Thus, the response times to the increase 

of traffic volume of Scheme 4 could be larger than those of Schemes 2 and 3. Our study shows 

that the longest response time is around 23 seconds, which is still reasonable.  

 

Even though our studies involve two services only, the schemes considered here should be 

scalable to the situation with a larger number of services. In particular, we expect the response 

times of these schemes should not increase significantly as we introduce more services. It is 

because parallel command execution is supported by Docker daemon, thus, the deactivating and 

activating container for different services can be executed in different threads.   Furthermore, if 

the reduction of the response time is desirable, we can achieve that by either reducing the size of 

the monitoring window or the grace period of container deactivation, or both. 
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Chapter 5. Conclusion 

The successful adoption of microservices in Docker containers introduces different challenges to 

resource utilization of the platform. Docker containers that implement microservices share the 

computing resources of the host machine. While each service may have different SLA 

requirements, there is no existing solution to enforce the service’s SLA in the Docker container 

platform. As a lack of SLA enforcement on the Docker container may cause unexpected resource 

starvation, resource planning becomes quite uncertain. In order to cope with the deficiency, we 

study and compare four resource management schemes. The results of our study show that the 

proposed Adaptive SLA Enforcement scheme (Scheme 4) has the best performance among the 

four schemes. It provides dynamic and efficient resource allocation with necessary SLA 

enforcement.  

 

In this thesis, we also designed and implemented an adaptive Resource Management framework. 

With this framework in place, we found that all the schemes studied here are readily to be 

implemented and tested. We expect this framework will be useful for further studies of other 

resource management schemes. 

 

5.1 Future works 

In this research, we designed and implement a Resource Manager framework implemented in a 

single machine runtime environment. The Docker environment in the real-world is quite 

complex with multiple machines running in the Cloud. As the next step, the Resource Manager 

framework should be explored in a more complex environment. Also, the Adaptive Resource 



71 

 

Management services should be improved to handle more than 2 services. This requires the 

algorithm to be able to select which allocated resources to release in a comprehensive manner. 
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