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Abstract  

 

Aircraft manufacturing companies have to consider multiple derivatives to satisfy various 

market requirements. They modify or extend an existing aircraft to meet the new market demands 

while keeping the development time and the cost to a minimum. Many researchers have studied 

the derivative design process, but these research considered the baseline and the derivatives 

together, while using the whole set of design variables. Therefore, an efficient process that can 

reduce the cost and the time for the aircraft derivative design is needed. In this dissertation, Aircraft 

Derivative Design Optimization process (ADDOPT) was developed which obtains the global 

changes from the local changes in the aircraft design to develop the aircraft derivatives efficiently. 

The sensitivity analysis was implemented to ignore design variables that have low impact on the 

objective function. This avoids wasting computational effort and time on low priority variables for 

design requirements and objectives. Additionally, the classification of uncertainty from its 

characteristics and sources of uncertainty involved in the aircraft design process were suggested 

to consider with design optimization. Uncertainty from the fidelity of analysis tools was applied 

in design optimization to increase the probability of optimization results. To handle uncertainty in 

low fidelity analysis tools on aircraft conceptual design optimization, Reliability Based Design 
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Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were 

performed.  

In this research, Extended Fourier Amplitude Sensitivity Test (eFAST) method was 

implemented in ADDOPT for Global Sensitivity Analysis (GSA) method and Collaborative 

Optimization (CO) based framework with RBDO and PBDO were also used. These methods were 

evaluated using numerical examples. ADDOPT was carried through on the civil jet aircraft 

derivative design. The objective of the optimization problem was to increase cruise range while 

satisfying the requirement such as the number of passengers. The proposed process reduced 

computation effort by reducing the number of design variables and achieved the target probability 

of failure when considering uncertainty from low fidelity analysis tools.  
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Chapter 1 

Introduction 

 

 

 

Engineers must consider all possible design derivatives in order to reduce the life cycle 

cost and to increase the efficiency of operation [1]. New customer demands produce needs on the 

derivative designs of engineering products to reduce the manufacturing and operational cost. 

However, user requirements can change drastically. The whole process of engineering product 

design cannot quickly respond to such a wide variety of changes. Modern engineering products – 

especially extremely complex systems such as aircraft, are strongly influenced by structural and 

aerodynamic analysis, propulsion systems and avionics, stability and control [2]. The design of a 

new commercial aircraft constitutes a massive investment over a long development period. 

Incorporating changing customer requirements necessitates the efficient and the reliable process 

for the derivative designs. 

This research proposes ADDOPT, an effective aircraft derivative design optimization 
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process to meet the requirement changes from the market demand. User requirements were 

analyzed and identified for quantifiable factors which can be implemented to generate target 

specifications. The database of baseline designs and their derivatives was implemented in the 

expert system to identify design trends for the new required demands [3]. In addition, a fuzzy logic 

function of the expert system also defines the range of design parameters [4]. The selected design 

variables and their ranges were utilized in a Global Sensitivity Analysis (GSA). The analysis result 

determined the necessary design parameters to achieve the desired specifications [5]. Although 

decreasing the number of design variables and their range generated small errors, the benefits from 

the reduced computation time far outweighed the increased error. Furthermore, Reliability Based 

Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were 

performed with Multidisciplinary Design Optimization (MDO) in order to increase the reliability 

of results by considering uncertainty [6, 7, 8, 9, 10]. To increase the reliability and the efficiency 

of derivative design, these techniques were applied in ADDOPT process.  

 

 

 

1.1  Motivation 

 

Manufacturers develop new products by modifying and extending existing products in 

order to achieve new market demands with minimum development time and manufacturing cost 

[1]. The design of complex systems such as the new commercial aircraft requires huge amount of 

investments and research during the period of the development. Therefore redesigning an existing 

aircraft for the new market demands requires large amounts of additional developmental resources 
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and time. Traditional derivative design processes considered the whole set of design variables even 

for minor design changes [11, 12, 13]. General design processes with fixed design requirements 

can easily carry out the design of engineering products. However, these baseline designs cannot 

easily adapt to changes in market demands and its performance requirements. Designing the new 

aircraft to satisfy the new market takes a substantial amount of time and money. Moreover, the 

market requirements may change again before the development of the new aircraft is completed. 

Consequently, the new procedure for redesign and analysis is required to consider the influence of 

changing design requirements on the derivative design; new design process that can reduce cost 

and time for the aircraft derivative designs is required. 

This dissertation proposed ADDOPT process to meet requirement changes from the market 

demand. User requirements were analyzed and identified for quantifiable factors that can be used 

to generate specifications. Design trends for the new requirements were identified by the expert 

system with the database of baseline designs and their derivatives, and the range of design 

parameters was also defined by fuzzy logic function of the expert system [3, 4]. These results 

increased efficiency and accuracy of GSA result to identify the necessary design parameters to 

achieve new requirements from market [5]. The decreased number of design variables and their 

ranges reduced the computation time and the cost for redesign. MDO problem for the derivative 

design was formulated using the selected design variables. Furthermore, the design optimization 

techniques for uncertainty from design variables and responses of disciplines were considered to 

increase the reliability of MDO results [7, 8, 9].  

The main contributions of this dissertation were increasing efficiency with reasonable 

accuracy by reducing number of design variables with consideration of sensitivity for the 

objectives. The uncertainty of design parameters and discipline responses were considered as well 
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to enhance the efficiency and the reliability of the MDO result. To accomplish these objectives, 

the software package was developed which integrated GSA, MDO with RBDO, and MDO with 

PBDO. The developed software package, ADDOPT process was evaluated by numerical examples 

and practical engineering problems. Each module was evaluated by well-known numerical 

examples and 18 bar truss optimization problem which were performed in many previous research 

of deterministic optimization. Moreover, the proposed design process was implemented on 

practical engineering problem as wing box design; a general structural analysis problem on 

aerospace engineering. ADDOPT process was implemented on aircraft derivative design, the 

essential work of this dissertation. Error of each analysis module was considered as uncertain 

parameter to consider uncertainty from fidelity of analysis model. In addition, database was 

constructed to compare with predicted results from developed aircraft analysis modules.  

 

 

 

1.2  Derivative design 

 

The life cycle cost can be reduced and operation efficiency can be increased by considering 

all possible derivatives in aircraft development and manufacturing stage [1]. In the aerospace field, 

the commonality of the baseline aircraft and its derivatives is beneficial for both airlines and 

manufacturers. These advantages include efficiency of maintenance procedures, flexibility in 

scheduling and reduction of spare-parts stock. Airlines operate with several derivative aircraft 

types in order to reduce the required pilot training time for transitioning from one type to another 

[12]. Figure 1.1 shows the example of derivatives of B737. Yet, in some ways, the derivative design 
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is more difficult to complete than new design, because the possible alternatives are constrained by 

the existing baseline design. This is especially complex in the area of systems integration. 

Derivative design methods have been considered by many researchers because it advantages both 

airliners and manufacturers. In this section, previous research on derivative design was surveyed 

in order to show differences and benefits of the proposed process, ADDOT.  

 

 

Figure 1.1. Derivatives of B737 [14] 

 

 

1.2.1. Market driven approach 

 

Boeing B747 family has many members developed from 1960 to satisfy requirements of 

the market. The development of an aircraft family can save the cost on design, manufacturing and 
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operation. D.L. Robinson et al. introduced the development procedure of B747 family from market 

demands [1]. The Boeing Company predicted the demands of air traffic will increase by 10 percent 

for every year between 1975~1979. From this prediction, the new airplane was needed to carry 

more passengers. The Boeing Company used the Performance Management System (PMS) and 

generated 10 models using potential application matrix to develop B747-300. These models 

considered 19 engines and 112 combinations of engines and configurations. Finally, the 

configuration which had the extended upper deck was selected and emergency exit was added to 

satisfy the regulations. Figure 1.2 shows this result for B747 family. The cost effective solution 

was proposed to increase the number of passengers. This experience with derivative design left the 

Boeing Company with a number of other useful derivatives such as the fuselage extension model 

[1].  

 

Figure 1.2. Extension of upper deck [14] 

(B747-100/200: left side, B747-300: right side) 
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Another researcher, R.H. Fulford, proposed the Airplane Criteria Process (ACP) to develop 

derivatives [15]. The ACP began with the discovery of needs and wants in airlines for future 

consideration and airplane agencies, within the scope of the airplane definition. The criteria driven 

from R.H. Fulford’s research means the product definition activity is led by criteria development. 

The criteria were classified by two categories [15]. The first was the mandatory criteria that must 

be satisfied during design. The other was prioritized criteria and these were prioritized needs that 

must be optimally satisfied. They do not have a negative impact on the mandatory and higher 

priority criteria. This classification provided a priority of which criteria should be satisfied at the 

earliest stage in the airplane design. These criteria were derived from the requirement analysis of 

market, airliner and manufacturer. In addition, the proposed process applied the top-down concept 

meaning that the elements were developed from the highest criteria first - airplane design and then 

the lowest criteria - systems and components. This process provided a continuous and iterative 

process to the direction for development of a derivative or a new airplane design. In addition, this 

process provided traceability of the original customer needs throughout the airplane development 

procedure. The simplified procedure of this process is shown in Figure 1.3.  

 

 

Figure 1.3. Airplane Criteria Process (ACP) 

 

The aircraft family design method based on the market growth ratio was developed by R.B. 

Brown et al. [16]. In this research, the growth rate of the aircraft market was predicted with the 



 

8 

 

needs of economy passenger being considered. It assumed 5% air traffic growth rate per year and 

improvement in all aspects of air travel. Increases of gate slot flow, safe lading frequency, high 

initial cruise altitude over-files, and reduction of noise level were considered. Moreover, it weighed 

the customer requirements such as low ticket price, quick load and unload, safe overhead stowage, 

minimal middle seats, etc. The research focused on the requirements of the economic passengers. 

The design result showed the family of aircraft that had 150~900 economy passengers with low 

noise level and the ability to use all regional and big city secondary airports while satisfying the 

requirements from the market prediction [16]. The summary of this research is shown in Figure 

1.4. 

 

 

Figure 1.4. Aircraft design from emerged requirements 

 

The product family design should consider the engineering knowledge and the awareness 

of impact on manufacturing and marketing. The product family design process that regarded the 

product line positioning was researched by D. Kumar et al. [17]. This research integrated the 

market considerations as the traditional product family. In addition, the novel Market-driven 

Product Family Design (MPFD) method was proposed to simultaneously model the product 



 

9 

 

platform and a product line positioning considerations. The proposed method considered the 

minimum manufacturing complexity while satisfying the market demands. The decisions from this 

method were based on engineering, manufacturing feasibility and economic model for the market 

prediction. This method examined the impact of increasing the diversity of product contributions 

throughout disparate market segments and explored the cost saving associated with commonality 

determinations. The proposed method was applied to the design for the family of universal motors 

[17].  

 

 

1.2.2. Using Multi-Objective Genetic Algorithm (MOGA)  

 

Researchers have used the multi-objective optimization method for the aircraft family 

design. T.W. Simpson et al. introduced the genetic algorithm based approach for the product family 

design and applied to the general aviation product family design problem [18]. This approach 

designed the product platform simultaneously and its family while reflecting on altering levels of 

platform commonality within the product family using MOGA. A modified genetic algorithm was 

used to allow designers to assess altering levels of commonality within a family of products and 

captured the corresponding Pareto frontier of the family. This method allowed more flexibility to 

the designer when formulating the product family optimization problem [18].  

The proposed method was applied to the general aviation aircraft family that has two, four 

and six seats for accommodation where the configuration was a fixed wing, single engine and 

single pilot for the propeller driven aircraft. Its baseline was from Beechcraft Bonanza B36TC. 

The family design of this research implemented six design variables and various parameters from 
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the baseline aircraft. Figure 1.5 shows this proposed design approach.  

 

 

Figure 1.5. Aircraft family design using MOGA 

 

Valliyappan et al. [13] researched the implementation of Genetic Algorithm (GA) in which 

allows exploration of the multiple families based on the multiple platforms. Visualization strategies 

were implemented to support the product family design optimization with GA. These strategies 

were applied to identify the best solution. It included several test problems for creating the product 

family design. The proposed method was applied to the general aviation aircraft family design 

with one, three and five passengers and one pilot. The forty design variables for configuration and 

thrust, as well as the forty platform variables per the family were considered. The configurations 

of the aircraft were compared using the visualization strategies and the configurations that had 

higher commonality within the selection of desired performance range. Figure 1.6 shows this 

procedure.  
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Figure 1.6. Visualization strategy with MOGA 

 

Khajavirad et al. [19] proposed a single stage optimization approach for family product 

design implementing an efficient decomposition solution strategy. The all-in-one MOGA method 

was performed to solve the joint product family problem with a generalized commonality 

chromosome. The researchers implemented the MOGA formulation to determine the Pareto front 

describing the trade-off between commonality and individual variant performance of the family 

[19].  

 

1.2.3. Pareto filtering method 

 

Yearsley et al. [11, 20] employed the Pareto frontier and decided the number of members 

to involve in the product family, identify the members themselves and define the product platform. 

A discrete representation of the Pareto frontier was generated from the multi-objective 

optimization. The Pareto solution was a non-dominated solution, meaning that improvement in 

any design objective can only occur at the expense of at least one other design objective. The 

Pareto frontier was the collective of all Pareto solutions and was a representation of the trade-off 

between conflicting design objectives. The candidate product family members were identified 

through the generation of the Pareto frontier.  

Yearsley et al. [11] identified the optimal set of the family members that balanced product 
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commonality, performance and distinctiveness by identifying a minimal representation of the 

Pareto frontier, including only those points that corresponding to designs of sufficiently different, 

yet optimal, product performance. The Pareto filter decreased the number of family sets where this 

method determines which design variables were best suited as platform variables and the scalable 

variables. The proposed method was applied to the pressure vessel and the universal electric motor 

in which the common platform shared in the product family. The research compared sets of 

individually optimized products to show the performance change from the implementation of the 

product family. This process is shown in Figure 1.7. 

 

 

Figure 1.7. Pareto filter for family design 

 

The interactive design method of the combined scale-based and module-based product 

family platform was researched [20]. The scale-based platform is fundamental for related products 

with differing functions, it works through scaling of non-platform design features. A module-based 

platform is the foundation for a collection of related products with differing functions, and it works 

through the addition or subtraction of modules. Combination of these two methods for product 
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family design required fewer total components in manufacture process of all product family 

members than using the scale-based or the module-based platform. In order to select the family 

numbers from multi-objective optimization results, the smart Pareto filtering was applied, which 

is briefly introduced on Figure 1.8.  

 

 

Figure 1.8. Combined platform with Pareto filter 

 

1.2.4. Proposed derivative design method  

 

The research in the previous considered entire range of the design variables for each 

derivative design. Moreover, these methods needed designer’s decision to establish a performance 

requirement for each derivative design. However, these methods did not provide the way to handle 

market changes that occurs after the completion of baseline design. These researches merely 

considered the derivatives on the conceptual design stage by assuming only expected changes in 

the product requirements. However, these assumptions may not accurately reflect the changes in 
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future market. Furthermore, these frozen requirements for the design need to be redefined for the 

derivatives with the emergence of new requirements. 

This research proposes ADDOPT, an effective derivative design process to obtain global 

changes by employing local changes in the engineering product design. By implementing the 

expert system and GSA, it defines the necessary design variables and parameters. Furthermore, 

ADDOPT implemented uncertainty base multidisciplinary design optimization to consider 

uncertainty in design process. The proposed derivative design process applies to the aircraft design 

as well as any other engineering product design. Chapter 3 describes the details of this proposed 

method, Chapter 4 and Chapter 5 show the applications of ADDOPT process.  

 

 

1.3  Multidisciplinary Design Optimization (MDO) 

 

The MDO is methodology applied in the design for systems interacting in multiple 

disciplines. This method developed from the structural design optimization in order to consider 

the subsystem interaction when the structure has an attachment to the subsystem [21 - 28]. It is 

applied in an aerospace field when interdisciplinary coupling between structures is too strong to 

be neglected. After this, the other disciplines such as aerodynamics, performance, propulsion, and 

stability are included in MDO and it has extended to the entire aircraft system. Generally, the 

optimization requires number of iterations and MDO can reduce the time required to execute the 

design process. By using MDO methods, designer may quickly and efficiently compute alternative 

design points over wide range of parameters [29 - 34].  

MDO problem consists of multiple interacting disciplines. In this dissertation, it assumed 
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each discipline was described by the following mathematical representation [35, 36]: 

 

𝑦𝑖 =  f(𝒙𝑖, 𝒚𝑖 , 𝒛),      𝑖, 𝑗 = 1, … , 𝑛      j≠i  (1.1) 

 

where n is the total number of coupled disciplines, counted by i, representing the ith discipline, xi 

is the local variable vector, the vector yi corresponds to interdisciplinary couplings, and z denotes 

the global or shared variable vector. A set of parameters p is required for each discipline, but does 

not vary over a design process. These parameters may be shared by multiple disciplines.  

Many methods for MDO have been proposed such as Multi-Disciplinary Feasible (MDF) 

[37, 38, 39, 40], Individual Disciplinary Feasible (IDF) [37, 41, 42], Collaborative Optimization 

(CO) [39, 43, 44, 45, 46, 47], Concurrent Subsystem Optimization (CSSO) [48, 49, 50, 51] and 

Bi-Level Integrated Synthesis System (BLISS) [52, 53, 54, 55]. CO method was performed in this 

dissertation to consider uncertainty on the design optimization. The general idea of CO is explained 

in following section and CO with uncertainty is described in Chapter 2 

 

 

1.3.1. Collaborative Optimization (CO) method 

 

CO method introduces a decomposed and decentralized bi-level optimization method. 

Target values for global design variables z and system responses y are provided from a system 

level optimizer. A local disciplinary level optimizer ensures that the conflicts between disciplines 

disappear by enforcing compatibility constraints. It is constructed to minimize the interdisciplinary 

inconsistency while satisfying particular local constraints. CO formulation can be stated at the 
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system level [44, 45]: 

 

minimize  f(𝑧𝑆𝐿 , 𝑦𝑆𝐿) 

subject to 𝐽𝑖 (𝑧𝑆𝐿 , 𝑧𝑖
∗, 𝑦𝑆𝐿 , 𝑦𝑖

∗(𝑥𝑖
∗, 𝑦𝑗 , 𝑧𝑖

∗))  =0,  

                        j=1, 2, ⋯,n,   j≠i 

 (1.2) 

 

where, J represents compatibility constraints, one for each discipline, and z*, y* and x* are the 

optimal disciplinary optimization level results. The subscript SL is system level. The ith disciplinary 

level optimization problem is formulated as: 

 

minimize  𝐽𝑖 = ∑(𝑧𝑆𝐿 − 𝑧𝑖)2 + ∑(𝑦𝑆𝐿 − 𝑦𝑖)
2 

subject to 𝑔𝑖 (𝑥𝑖, 𝑧𝑖, 𝑦𝑖(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑖))  ≤0 

 (1.3) 

 

where, gi is the i-th disciplinary constraint. The diagram of CO method is shown in Figure 1.9. 

 

Figure 1.9. CO architecture [44, 45] 
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1.4  Research objective  

 

The main objective of this research was to increase efficiency with reasonable accuracy of 

the optimization result by reducing the number of design variables, as well as the boundaries of 

the design space. The uncertainty of design parameters and discipline responses were considered 

to enhance efficiency and reliability of the design results. To accomplish the objective, a software 

package through ADDOPT process was developed and evaluated in this dissertation. ADDOPT 

process integrated GSA, MDO with RBDO, and MDO with PBDO. 

The expert system and GSA were implemented in order to reduce the computation time by 

select important parameters for the new requirements. The expert system employed the database 

of similar engineering products to the baseline design. The results of expert system identified the 

range of the design variables needed to be manipulated to accomplish the new requirements. GSA 

was implemented to identify necessary parameters and disciplines that affect each requirement 

based on the expert system results. MDO problem for the derivative design was formulated using 

selected design variables and disciplines to increase efficiency. Design optimization techniques for 

uncertainty of design variables and responses of disciplines were operated to increase the reliability 

of MDO results.  

 

 

 

1.5  Outline of the dissertation 

 

This thesis consists of 6 chapters. Chapter 1 descries the introduction and research 
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motivation. Chapter 2 reviews uncertainty in the aerospace system design. This chapter describes 

the uncertainty and its sources in aerospace system for better understanding of terminology and 

uncertainty based design optimization methods. Section 2.1 introduces the classification of this 

uncertainty. Section 2.2 describes uncertainty in an aircraft design process. Section 2.3 reviews 

different strategies for uncertainty modeling and uncertainty based design optimization methods. 

Chapter 3 introduces the development of ADDOPT, the proposed design process in this 

dissertation. Section 3.1 describes methodologies for the proposed enhanced derivative design 

process and Section 3.2 shows ADDOPT, the proposed derivative design process. Chapter 4 

implements ADDOPT process with the wing box conceptual design problem. The response surface 

was developed from the high fidelity analysis results of the wing box structure and uncertainty 

from the approximation method was considered. Chapter 5 describes the implementation of 

ADDOPT to aircraft derivative design with uncertainty based design optimization methods. 

Uncertainty on the low fidelity analysis tools for the aircraft conceptual design was weighed. 

Chapter 6 leads to the conclusion and the overview of future research.  
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Chapter 2 

Uncertainty in Aircraft Design  

 

 

 

In recent years, various sorts of uncertainty were introduced in mathematical models and 

simulation tools [56, 57]. Scientists, engineers and decision makers in various fields have been 

characterizing and differentiating between the different forms of uncertainty as well as their 

sources. Uncertainty characterizes as incompleteness of knowledge due to deficiencies in 

information from the engineering analysis and design. Material properties, costs, operational 

environment and human factors defines uncertainty in design. Uncertainty can cause losses and 

violate constraints in the optimized design results. Understanding and identifying uncertainty are 

crucial to the designer since the type of uncertainty applicable to a given problem plays a key role 

in the quantification of its effect. Various sources of uncertainty exist and the understanding of 

these can provide guidance on how to reduce uncertainty in the prediction [58].  

This chapter introduces the classification of uncertainty from its characteristics and the 
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sources of uncertainty involved in the aircraft design process. The first section presents the 

classification of uncertainty. The sources of uncertainty from an aerospace system designs are 

described in the subsequent section and lastly the design optimization method with uncertainty are 

discussed.  

 

 

 

2.1 Classification of uncertainty 

 
 

 

 

Figure 2.1 Taxonomy of uncertainty [59] 

 

Uncertainty is inherent in any form of the simulation-based design. The classification of 

uncertainty is important when running simulations and design optimizations because these 

methods are depended on uncertainty type. In general, the classification can be made between 
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epistemic uncertainty and aleatory uncertainty. Figure 2.1 shows the hierarchy of uncertainty [59].  

 

 

2.1.1. Epistemic uncertainty 

 

Epistemic uncertainty goes by other names such as reducible uncertainty, model form 

uncertainty, data uncertainty and state of knowledge [60]. Epistemic uncertainty is also known as 

a subjective uncertainty. It arises due to the ignorance of the physical phenomena, simplifying 

assumptions in simulation based modeling or general lack of knowledge of the system 

characteristics, and environment or range of the conditions for the system to operate [59]. It is 

associated with inappropriate models of the system and the deficient nature of unified modeling 

technique. Round off errors and tolerances can be treated as epistemic uncertainty. The higher 

fidelity analysis methods usually have lower epistemic uncertainty [60]. It can be reduced by 

enhancing the state of knowledge by using resources to acquire more sample data for uncertain 

parameters.  

From Figure 2.1, epistemic uncertainty can be classified as inconsistency, ambiguity or 

approximations. Inconsistency in knowledge ascribes to misrepresented information from the 

result of inaccuracy, conflict, contradiction or confusion. The inconsistent assignment and 

substitutions can give confusion and conflict results, whereas a level bias or error in these 

assignments and substitutions show inaccuracy results [59].  

Ambiguity comes from the possibility where processes or systems lead to multiple 

outcomes. It can be categorized in un-specificity and non-specificity. Un-specificity is 

incompletely defined results and non-specificity is improperly or incorrectly defined results.  
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Approximation process involves the use of imprecise expressions in language, approximate 

deducing and dealing with complexity by highlighting relevance. Approximation is classified as 

vagueness, coarseness or simplification. Vagueness comes from imprecise concept of interest or 

unclear definitions, whereas coarseness results from approximation that would bound the crisp set 

of interest. Simplifications are assumptions to make complex problems manageable. 

 

Examples of epistemic uncertainty include lack of data from a physical parameter, limited 

understanding of process or function and the modeling of an environmental condition. The 

Unmanned Combat Aerial Vehicle (UCAV) and the cruise missile need the path to the target. 

However, it was not able to figure out the location of all ground-to-air weapons on the path. The 

uncertainty of the path planning can be reduced with more information regarding enemy locations 

and numbers.  

 

 

2.1.2. Aleatory uncertainty 

 

Aleatory uncertainty describes the inborn variation of the physical system. This uncertainty 

can appear in the form of manufacturing tolerance and uncontrollable variations in the external 

environment such as atmospheric properties. Aleatory uncertainty has various names as: variability, 

irreducible uncertainty, inherent uncertainty, stochastic uncertainty, intrinsic uncertainty, 

underlying uncertainty, physical uncertainty and probabilistic uncertainty. They are usually 

modeled as random phenomenon characterized by the probability distributions and require large 

amounts of information [61]. The probability distributions can be generated based on actual 
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measurements, statistical estimation or expert opinion. A designer has small control of aleatory 

uncertainty in the design and development of complex systems. Most often this information is not 

obtained and the designer usually makes assumptions on the characteristics of the random 

phenomenon causing the variation [62]. From Figure 2.1, the aleatory uncertainty encapsulates the 

likelihood. The likelihood is a function of how likely it is that an event will occur and it can be 

defined in the circumstances of chance, odds and gambling [59]. The primary components of the 

likelihood are randomness and sampling. Randomness holds back from the non-predictability of 

consequences. Engineers and scientists generally use samples to typify populations. 

An example of aleatory uncertainty is the material property. An aluminum alloy piece may 

not have the uniform tensile strength and the actual strength at a particular point which may not 

coincide with the data from the structural analysis. The characteristics vary and it is impossible to 

have exact data without testing an individual piece. The distribution of the material properties can 

be developed from the sample test and can then be used for uncertainty in the design optimization.  

Depending on the given problem, the classification of uncertainty may change. For 

example, tossing a coin has a random change of 50% for each side. However, when one considers 

the initial position of a coin and the hitting force, uncertainty type can be changed since it is not 

random any more. Such information changes uncertainty surrounding this event from aleatory to 

epistemic. The definition of a problem is important to define the type of uncertain parameters in a 

given problem.  

 

 

2.2  Uncertainty in an aircraft life cycle 
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Figure 2.2. General aircraft life cycle 

 

An identification of uncertainty source is key to developing a general methodology to 

quantify uncertainty. Uncertainty occurs in different phases of the aircraft life cycle. Figure 2.2 

shows a general aircraft life cycle and source of uncertainty. This chapter describes how 

uncertainty is considered in the requirements and the design phase.  

 

 

2.2.1. Requirements  

 

Requirements are defined in the early stage of a general engineering design process. It 

gives a clear guidance to designers to consider a function and a performance level that are to be 

achieved in a product or a system. However, uncertainty in the requirement analysis phase have 

an impact on the whole design procedure and the final product itself. The sources of uncertainty 

can be found in the properties of the product itself or external to the product. The external 
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uncertainty such as the market changes and the accidents are hard to predict. Fluctuations in 

exchange rate, material price and oil price have a huge impact on manufacturing cost. Regulations 

can be changed to incorporate new environmental considerations. Moreover, uncertainty exists 

when designers cannot understand customer needs or exact performance requirements. Uncertainty 

is fatal at the preliminary design stage since they may lead to an improper design. The voice of 

customer is expressed verbally and there can be unspoken requirements which are sometimes 

vaguely defined. In the market driven design, it is difficult to translate customer preferences into 

the design specifications. Once designers are able to define the actual and perceived customer 

needs, large amount of uncertainty is reduced. This type of uncertainty is exasperated during the 

design process when design requirements change as a result of random market changes or external 

environmental changes. Staying in touch with the customer and a continual review the market 

force can help managing these issues. 

 

 

2.2.2. Design stage 

 

The conceptual design phase deals with configuration arrangement, size, weight and 

performance. In this stage, new ideas and problems emerge within the design investigation when 

increasing the details required for design. The aircraft conceptual design utilizes many types of 

low fidelity analysis method which have fast computation time, but comparably low in accuracy. 

These analysis tools have uncertainty on its model input, numerical approximation and model form. 

Uncertainty on simulation based analysis model is shown in Figure 2.3.  
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Figure 2.3. Sources of uncertainty on simulation based analysis model 

 

 Uncertainty in model input 

 

The model inputs include not only the parameters used in the model of the system but also 

the environmental data. The model input data involves geometry, essential model parameters, 

initial conditions, range of sources including experimental results, theory, computational 

simulations, and expert opinions. Figure 2.4 shows a model input for the design.   

 

 

Figure 2.4. Model inputs [59] 

 

Design variables can be taken into account as uncertainty for the following two reasons: 

incomplete information for the design stage simulation or inherent randomness. Simplification of 

the input data often ignores certain phenomena in an engineering system. Lack of information 

regards to design parameters and the system environments can cause errors in the design results 

too.  
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For example, composite materials have been used less frequently for the aircraft than 

metallic materials such as aluminum. Therefore, the pool of data dealing with the composite 

material properties is smaller than other metallic materials. One could call this uncertainty from 

incomplete information. The general status of the atmosphere can be predicted but random 

fluctuations can still be found in a smaller scale. These small changes in the nature can be treated 

as another type of uncertainty.   

 

 Uncertainty in the engineering model  

 

 

Figure 2.5. Uncertainty from engineering model [59] 
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A number of mathematical models are developed for the subsystems from the design 

experience and the knowledge of each discipline to simulate real engineering phenomena. 

Designers make various assumptions and approximations to establish this mathematical model. 

Assumption, abstraction, and mathematical formulation on developed models have errors when 

compared with the high fidelity analysis tool or the actual engineering system.  

Uncertainty in the engineering model can be classified by two main stages of modeling. 

These stages are distinguished as the development of the model, and application and 

implementation of the model. Uncertainty from each stage are shown in Figure 2.5. 

 

Development of a model 

 

a. Model inexactness  

The approximation models and the low fidelity analysis tools are used in the conceptual 

design phase to decrease computation time rather than the experiment data or the high fidelity 

analysis results. Uncertainty in numerical approximation is classified as discretization error, 

iterative convergence error, round-off error and error from missing variables [59]. These errors are 

defined as followings:  

 

Discretization error: This type of error emerges at following cases: 1) the spatial domain is 

decomposed into a limited number of nodes and elements, 2) the problem is unsteady, or 3) 

time is advanced with a finite time step. For example, the linear model can cause errors when 

the actual phenomenon has nonlinear form. 
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Iterative convergence errors: This type of error appears when the algebraic equations are 

solved approximately or when relaxation methods are performed to get a steady-state 

solution. 

 

Round-off errors: Round-off error is the difference between the predicted result from the 

approximation model and the actual value of the real phenomena. It is generated due to 

limited precision of number on significant figures.  

 

Error from missing variables: An approximation model contains only a subset of the 

variables that affect the quantity of interest. Therefore, some parameters and variables 

affecting the result can be neglected.  

 

b. Mistaken assumption 

The simulation based models are generated with many sets of assumptions. If incorrect 

assumptions are used, the model therefore cannot show accurate result. This type of uncertainty 

can be seen in the low fidelity analysis tool.  

 

c. Measure error 

The sample data from experimental measurements is utilized either to develop the 

empirical equations or the approximation models. However, the observations may not contain 

exact values because of unavoidable measurement errors due to an environment and human factors. 

If the calibrations for models and samples use inaccurate data, the results of developed models will 

also show incorrect values. The experimental data for the model validation contains aleatory 
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uncertainty and may contain epistemic uncertainty from unknown bias errors.  

 

d. Statistical uncertainty 

Approximation methods using sample cases and large number of samples can guarantee an 

accurate surrogate model. However, there are many cases of engineering experiments that cannot 

provide a sufficient sample size for approximation because of cost and time limitations. 

Uncertainty on a developed approximation model also made in this deficiency of information.  

 

Applying and implementing a model 

 

a. Volitional uncertainty 

A designer makes decisions for a design based on experiences and ideas. However, various 

engineers have different experiences and may have different point of view on design. This 

difference necessitate the use of different models, different analysis tools for the design and can 

result the derivation of different configurations.  

 

b. Human error 

This type of the uncertainty comes from humans when a designer applies a model to 

engineering problem. The incorrect boundary of design variables, unsuitable theory and analysis 

tools for the problem can give inaccurate results.  

 

 

2.2.3. Manufacturing stage 
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Tolerance of manufacturing tools causes errors to the fabricating process. A design 

optimization shows the specific numbers required for an optimal product. However, the 

manufacturing cost may increase in order to satisfy the optimization result. The new technology 

also causes uncertainty in the manufacturing stage. This technology can be implemented to reduce 

cost and time, and increase efficiency. However, the immature technology can occur errors in the 

real field and the operator (human) can easily make mistake during at installation and operation. 

The labor cost is another uncertainty in the manufacturing phase. It increases the total cost of the 

product and can exceed the total budget. The cost changes can have an effect on the total number 

of products.  

 

 

2.2.4. Operation stage 

 

Most of operational environment are uncontrollable (i.e. weather factors) and these can be 

handled as uncertainty. It also comes from how the aircraft is operated in that environment. For 

example, an aircraft can take-off in an unexpected runway condition such as sand and water on the 

runway. To consider these factors, the engineering product must be designed in a robust manner.  

The environmental circumstances and accidents change the regulations for the aircraft 

operation. The changes in regulation may affect additional devices, part changes, etc. The 

fluctuations in oil prices and labor fees will change the cost of operation as well. This affects the 

operation policy of an aircraft and its lift cycle. Reliability of each part and skill of a technician 

can also affect the aircraft life cycle.  
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2.2.5. Disposal and recycle stage 

 

An aircraft must be disposed when an accident occurs or it reaches the end of its life cycle. 

Some parts and materials that have longer life cycle can be reused and recycled. However, the 

disposal and the recycle cost changes with fluctuations in labor cost, material cost and regulations. 

Due to this matter, the disposal and the recycle cost are hard to predict in the design stage.  

 

 

 

2.3 Propagation of uncertainty 

 

2.3.1. Probability method 

 

The probability method simulates uncertainty using random variables. The probability 

information is represented by Probability Density Function (PDF). The random variable 

probability under PDF of its limits is given in Equation 2.1 [61]. 

 

𝑃(𝑥1 < 𝑋 < 𝑥2) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥2

𝑥1

 (2.1) 

 

where X is the random variable, x1 and x2 represent the lower and upper boundaries of the random 

variable respectively, and fX(x) is PDF. P(X≤x) is denoted as FX(x), Cumulative Distribution 
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Function (CDF) that the area under PDF. It needs to be integrated for all possible values of X less 

than or equal to x. It is represented as Equation 2.2 [61].  

 

𝑃(𝑋 ≤ 𝑥) = 𝐹𝑋(𝑥) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥

−∞

 (2.2) 

 

CDF quantifies the probability of a random variable limited by a certain value. The 

characteristics of uncertainty can be defined by the probability identified using CDF. This can be 

used to resolve the corresponding value of the input quantity. Both form of CDF and the parameters 

describing the distribution of the population can be resolved when a designer has sufficient number 

of samples for PDF. 

 

 

2.3.2. Possibility methods 

 

The possibility based method treats input as the fuzzy variables. This method yields more 

conservative optimum design than the probability based method if there is insufficient information 

used in the input statistical model [63, 64]. Input variables of the fuzzy analysis can be defined 

easier than the random variable inputs when it has not enough statistical data. It gives an advantage 

compared to the probability analysis method [65]. The fuzzy variables with the membership 

functions are implemented for the possibility method, instead of PDF of random variables. 

The possibility measure (Π) should comply with the following axioms [66]:  

 

1. Boundary requirement : Π(∅)=0, Π(Ω)=1, 
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2. Monotonicity : if A1⊆A2, then Π(A1)≤ Π(A2) 

3. Union measure : Π(∪i∈ I Ai) = max i∈ I{Π(Ai)}, 

 

where ∅ is the empty event and Ω is the fuzzy event of whole space. {Ai, i∈ I} is the partition of 

universal event Ω. 

 

 

2.3.3. Reliability Based Design Optimization (RBDO) 

 

 
Figure 2.6. The optimum result of RBDO [66] 

 

The basic idea behind RBDO employs the numerical optimization algorithms in order 

to gain the optimal design result with reliability [67]. When the optimization is performed without 

uncertainty consideration, certain active constraints in the deterministic optimization result may 

cause system failure. The reliable solution lies farther inside the feasible design region than the 

deterministic optimization result, while satisfying targeted reliability level. Figure 2.6 shows this 

concept. 
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In most cases, the probability theory is implemented to model uncertainty on the 

simulation based design. The statistical models are performed to derive the probability distribution 

of random input variables. The identification of uncertain variables and the failure modes are the 

first task in RBDO. The probability of failure equivalent to the failure mode can be gained and can 

be modeled as constraints in the optimization problem to acquire the reliable design results [66]. 

In general RBDO formulation uses constraints on the probability of failure related to 

each failure mode or on the system probability of failure instead of the critical failure modes of 

the deterministic design optimization. The probabilistic reliability analysis was implemented to 

calculate probability of failure. The general formulation of RBDO is defined as below [63]; 

 

𝑀𝑖𝑛.  𝐶𝑜𝑠𝑡(𝑑) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑃(𝐺𝑖(𝑋) ≤ 0) − 𝛷(−𝛽𝑡) ≤ 0, 𝑖 = 1, 2, ⋯ , 𝑛𝑝 

                               𝑑𝐿 ≤ 𝑑 ≤ 𝑑𝑈, 𝑑 ∈ 𝑅𝑛𝑑𝑣 𝑎𝑛𝑑 𝑋 ∈ 𝑅𝑛𝑟𝑣 

(2.3) 

 

where X is the random vector, d =μ(X) represents the design vector which is the mean value of X, 

dLand dU are the lower and the upper bounds of design parameter d respectively, and Φ(•) is the 

standard normal CDF. Gi(X) represents the probabilistic constraints, ndv and nrv are the number 

of design vector and number of random vector respectively, and βt is the probability distributions 

and their prescribed reliability target. 

CDF, FGi(0) characterizes the failure of the performance function Gi(X) as 

 

𝑃(𝐺𝑖(𝑋) ≤ 0) = 𝐹𝐺𝑖(0) ≤ 𝛷(−𝛽𝑡) (2.4) 

 

where CDF is described as 
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𝐹𝐺𝑖(0) = ∫ ⋯
𝐺𝑖(𝑥)≤0

 ∫ 𝑓𝑥(𝑥)𝑑𝑥 (2.5) 

 

fx(x) represents Joint Probability Density Function (JPDF) of all random parameters. 

The evaluation of the probabilistic reliability analysis needs constraints in Equation 2.4 as given 

in Equation 2.5. To furnish an effective solutions, approximate probability integration methods 

have been developed such as First-Order Reliability Method (FORM) and asymptotic Second-

Order Reliability Method (SORM). These methods have rotationally invariant measure as the 

reliability [68, 69]. FORM can provide sufficient accuracy and is widely used in RBDO 

applications. In FORM, transformation (T) from the original random parameter (X) to the 

independent and standard normal random parameter (U) is required for the reliability analysis [70]. 

The performance function G(X) in X-space can be assigned into G(T(X)) ≡ G(U) in U-space. 

The probabilistic constraint in Equation 2.4 can be also demonstrated by using two 

methods through the inverse transformation [67]. 

 

𝐺𝑝𝑖
𝑅𝐼𝐴 = 𝛽𝑠𝑖 − 𝛽𝑡 = −𝛷−1(𝐹𝐺𝑖(0)) − 𝛽𝑡 ≥ 0 

𝐺𝑝𝑖
𝑃𝑀𝐴 = 𝐹𝐺𝑖

−1(𝛷(−𝛽𝑡)) ≥ 0 

(2.6) 

(2.7) 

 

where, 𝐺𝑝𝑖
𝑅𝐼𝐴is the probabilistic constraint in Reliability Index Approach (RIA) and 𝐺𝑝𝑖

𝑃𝑀𝐴 is the 

probabilistic constraint in Performance Measure Approach (PMA). 

RIA is developed to describe the probabilistic constraint in Equation 2.3. However, RIA 

has slow converging speeds or fails to converge at all for problems with large number of inactive 

constraints or violate the limits of the constraints [67]. PMA can be used instead of the probabilistic 

constraint in Equation 2.3 with the performance measure. The details of PMA are shown in 
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following section.  

 

 

2.3.4. Possibility Based Design Optimization (PBDO) 

 

The possibility based method is introduced in order to handle uncertainty from lack of 

information. When uncertain parameters have scanty information, the possibility-based method 

shows better results since it is easier to identify the more conservative possible design than the 

more probable design [67, 71]. This yields desirable merit, since a conservative optimum design 

is preferred when accurate statistical information is not available. Figure 2.7 shows the general 

concept of PBDO method and Equation 2.8 shows the general formulation of PBDO for 

engineering applications [71]. 

 

 
Figure 2.7. The optimum result of PBDO [66] 
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𝑀𝑖𝑛.  𝐶𝑜𝑠𝑡(𝑑) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛱(𝐺𝑖(𝑑(𝑋)) > 0) ≤ 𝑎𝑡, 𝑖 = 1, 2, ⋯ , 𝑛𝑝 

𝑑𝐿 ≤ 𝑑 ≤ 𝑑𝑈 

(2.8) 

 

where X=[Xi]T ∈ Rnr represents the vector of fuzzy variables when the fuzzy variable Xi has the 

membership function ΠXi(xi), αt is the target possibility of failure, and n, nr and np are the number 

of design variables, fuzzy variables, and possibility constraints respectively  

This research assumed the fuzzy variables satisfy the unity, strong convexity and 

boundedness and be mutually non-interactive. The transformation standardizes the problem as 

below [71]  

 

𝑈𝑖 = {
𝛱𝑋𝑖,𝐿(𝑋𝑖) − 1   𝑋𝑖 ≤ 𝑑𝑖 

1 − 𝛱𝑋𝑖,𝑅(𝑋𝑖)   𝑋𝑖 ≤ 𝑑𝑖
 (2.9) 

 

where 𝛱𝑋𝑖,𝐿(𝑋𝑖)and 𝛱𝑋𝑖,𝑅(𝑋𝑖) are the left side and right side of the membership function of the 

input fuzzy variable Xi respectively, and di is the maximal grade of this membership function. After 

that, solving the following inverse possibility analysis is needed to evaluate of the possibility 

constraint, which requires Equation 2.10 [10].  

 

𝑚𝑎𝑥.  𝐺(𝑈) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑈‖∞ ≤ 1 − 𝑎𝑡 

(2.10) 
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2.3.5. Performance Measure Approach (PMA) 

 

To find Most Probable Point (MPP), RIA method is implemented. This method yields for 

singularity if the design has the zero failure probability [66]. To overcome this difficulty, PMA 

method is developed. PMA method derives the distance in normal space to MPP to satisfy the 

desired reliability level β, resulting in a shift into the feasible design space as shown in Figure 2.8. 

The reliability index is the number of the standard deviations from the mean of the probability 

distribution of the constraint function in the standard space. The first order probability performance 

measure (G) is obtained from non-linear optimization problem in U-space, shown below [10]: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒     𝐺(𝑈) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ‖𝑈‖ = 𝛽𝑡 
 (2.11) 

 

where the optimum point on the target reliability surface is identified as MPP 𝑢𝛽=𝛽𝑡

∗  with a 

prescribed reliability 𝛽𝑡 = ‖𝑢𝛽=𝛽𝑡

∗ ‖ . The only direction vector 𝑢𝛽=𝛽𝑡

∗ ‖𝑢𝛽=𝛽𝑡

∗ ‖⁄  needs to be 

determined by exploring the spherical equality constraint‖𝑈‖ = 𝛽𝑡. Karush-Kuhn-Tucker (KKT) 

necessary condition of Equation 2.11 is defined as [10] 

 

𝒖𝛽=𝛽𝑡

∗ = 𝛽𝑡𝛻𝐺(𝒖𝛽=𝛽𝑡

∗ ) ‖𝛻𝐺(𝒖𝛽=𝛽𝑡

∗ )‖⁄   (2.12) 
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Figure 2.8. PMA approach 

 

General optimization algorithms can be performed to solve the optimization problem of 

Equation 2.12. In this approach, non-linear constraints become a minimization problems. This is 

more robust and efficient for most applications than the other approach. In engineering problems, 

many non-linear constraint functions are enforced so that PMA method is more suitable approach.  

 

 

2.4 Summary  

 

Uncertainty in the simulation based design was described in this chapter. Various 

descriptions of uncertainty exist and each one of them is applied depending on available 

information. In general, the distinction can be made between aleatory and epistemic uncertainty. 

Aleatory uncertainty describes the innate variation of the physical system. This type of uncertainty 
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can arise in the form of manufacturing tolerance and uncontrollable variations in the external 

environment. Epistemic uncertainty appears due to the ignorance of the physical phenomena, the 

incomplete information and lack of the knowledge of the system characteristics. Sub-categories of 

uncertainty and its characteristics were described. In addition, uncertainty of each phase of the 

aerospace system design was also described. Sources of uncertainty from each step of aircraft life 

cycle were identified and it gave the idea to select the methodology for uncertainty consideration.  

When the amount of data is considered as sufficient for input statistical distribution, 

RBDO method is proposed for uncertainty based optimization method. On the other hand, 

sufficient information for uncertain parameter is not obtained, the probability method cannot be 

used on the reliability analysis with optimization. To overcome this situation, PBDO method is 

developed for the design optimization with insufficient information.  
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Chapter 3 

Aircraft Derivative Design Optimization 

(ADDOPT) Process 

 

 

 

Many aircraft designs have multiple types or derivatives to satisfy various market 

requirements. Aircraft manufacturers develop new aircraft as modifications or extensions of 

existing aircraft to meet new market demands while keeping development time and cost to a 

minimum. The research of derivative design was surveyed in Chapter 1. This research proposes 

ADDOPT, the enhanced derivative design process which obtains the global change from the local 

change. GSA and the expert system were applied to find the important design parameters for 

designing the derivative aircraft subject to the new design requirements. Additionally, RBDO and 
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PBDO methods were applied to handle uncertainty on the design optimization. This design process 

can be performed to reduce the time and the cost for the aircraft derivative design by reducing the 

number of design variables. Figure 3.1 shows the flow of ADDOPT process that is proposed in 

this dissertation. This chapter introduces ADDOT process and describes the implemented methods, 

Chapter 4 and Chapter 5 show the applications of ADDOPT process.  

 

 

Figure 3.1. Aircraft Derivative Design Optimization (ADDOPT) process  

 

 

 

 

3.1  Requirement analysis 

 

When a customer stipulates new requirements, designers analyze the requirements and 

define the design problem. The analysis for derivatives involves redefining the design 

requirements and identifying the disciplines to be considered from the baseline design. From the 

requirements analysis, designer can define the objectives of the derivative designs.  

The fuzzy expert system identifies the feasible list of the design variables to satisfy new 
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demands based on the requirements analysis. A database for the expert system utilizes data from 

similar engineering products to the baseline product under the study. The study of the gathered 

data is necessary for the manufacturer in order to consider the required changes and to gain in the 

market requirements. The expert system generates the rules from the database in order to identify 

the range of each design variable. The chosen range ensures accuracy and efficiency for the 

sensitivity analysis method, the next phase. Figure 3.2 shows this procedure.  

 

 

Figure 3.2. Requirement analysis and expert system 

 

 

3.1.1 Expert system 

 

Since most aircraft designs have many derivatives, study of the gathered data is necessary for 

the manufacturer to handle changes in the market requirements. The database is categorized by the 

aircraft types and arranged by the parts that are considered to fulfill each additional requirement. 

It also displays the required parameters and their changes for satisfying the additional requirements. 

The database then provides the guidance in selecting the design variables for the local design 

changes. If additional requirements are not in the database, analysis modules and design 

parameters are added from the requirement analysis results. The first phase of the design process 
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specified the design variables relevant to the new demands. The fuzzy expert system is then 

performed to establish the feasible region of design variables that comply with the new demand. 

The database of aircraft designs and their derivatives is implemented for the requirement analysis 

as well as in the inference engine of the expert system. The feasible region for each design variable 

is utilized in the sensitivity analysis for the next phase [72, 73].  

The expert system is consisted of the design variables, rules and results. The fuzzy function is 

applied to design variables for the input into the expert system and the values are normalized 

between 0 and 1 based on the information in the database. Equation 3.1 is implemented to 

normalize design variables, where 0 and 1 indicates the minimum and maximum values in the 

range respectively.  

 

Xj=1/2 - (xjmean - xj )/(xjmax - xjmin)       j=1, 2, …, k                 (3.1) 

 

where Xj is the normalized design variable value and xj is the real value of the design variable. 

 

 
 

Figure 3.3. Concept of the expert system 
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Variables are described by the fuzzy functions in the expert system, then the database rules 

are applied to yield the design result. Also, the input values that can satisfy new requirements are 

shown through the application of the expert system. The rules connect the input data to the results 

and give the guidance in selecting values for the design variables. The input values for the 

derivatives can be found for selected requirements using the expert system. This concept of the 

expert system using the fuzzy functions is shown in Figure 3.3.  

The implemented expert system is evaluated in following section. GSA employed the result 

of expert system to increase efficiency by specifying design variables and range for derivative 

design. 

 

 

 

3.2  Global sensitivity analysis 

 

GSA evaluates the effects of design factors while other factors are changing. Interactions 

between variables are described in this way and do not depend on the choice of the nominal point 

[74, 75]. The method of global sensitivity indices was first suggested by Sobol’ (1990) [76] then 

developed by Saltelli and Sobol’ (1995) [77] as well as Homma and Saltelli (1996) [78]. This 

method is an efficient GSA techniques and it is one of the variance-based methods. The variance-

based method gives the information regarding the importance of various subsets of input variables 

and their relationship to the output variance. A large number of function evaluation is generally 

needed to achieve reasonable convergence on this method. From this fact, the variance-based 
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method can be impractical for large engineering problems. The other GSA method is a sampling-

based method. This method is performed repeatedly with combinations of values from samples in 

the distribution of the input factors. When samples from various approaches are produced as simple 

input-output scatter plots. This can be implemented to generate sensitivity measures of the factors 

[74]. 

The sensitivity analysis result indicates the design variables that need to be altered to 

satisfy the new requirements. This information is utilized to reduce the scope of the derivative 

design optimization problem. Using the sensitivity analysis results, one can reduce the number of 

design variables and achieve the accuracy and the efficiency in derivative designs and MDO 

problem. In addition, the case study of sensitivity analysis result defines the screening criteria on 

the sensitivity indices. The previous work of author for the aircraft derivative design implemented 

GSA method with the expert system to enhance the GSA results [79]. The details and the numerical 

evaluation are shown in the following section. eFAST method is performed for GSA method in 

this dissertation.  

 

 

Figure 3.4. Sensitivity analysis to identify the important design variables  

 

 

3.2.1. Extended Fourier Amplitude Sensitivity Test (eFAST) 

 

eFAST method is based on the original FAST and variance decomposition method; input 

parameters are varied and these generate the variation in model output. This variation is quantified 
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using the statistical notion of variance [77]: 

𝑠2 =
∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

𝑁 − 1
 (3.2) 

 

where N is the sample size, yi is the ith model output and 𝑦̅ is the sample mean. Fourier analysis 

then determines the intensity of each parameter’s frequency in the model output. These results 

show how strongly a parameter’s frequency propagates from the input, through the model, to the 

output and performs as an index of the model’s sensitivity to the parameter [77]. 

The algorithm divides the output variance, determining what fraction of the variance 

can be described by variation in the input parameters. Partitioning of the variance in eFAST is 

performed by altering different parameters at different frequencies and then encoding the 

characteristics of parameters in the frequency of their variation. Then Fourier analysis indicates 

the strength of frequency from each parameter in the model output. [76]. 

The sampling strategy applied in eFAST establishes the sinusoidal function of particular 

frequency for each input parameter. From the distribution of desired parameter values, a sinusoidal 

function is selected. The frequency for each parameter needs to satisfy several criteria so that the 

frequencies can be differentiated within the Fourier analysis. A re-sampling scheme is applied to 

enhance the efficiency, since the sinusoidal function has symmetric properties it will reanalyze 

samples. eFAST algorithm is reiterated by the number of re-sampling (NR) times and each time a 

different search curve is designated by introducing a random phase shift into each sinusoidal 

function. The total number of model simulations (N) is given as [77]: 

N = NS×k×NR (3.3) 

 

where NS represents the total number of samples and k denotes the number of parameters analyzed 

[77]. The ability of calculating both the first-order sensitivity and the total-order sensitivity of each 
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input parameter is the principle advantage of the eFAST method. The original FAST method 

separates the variance for each parameter, whereas eFAST method separates variance into two 

classes: variance by reason of the parameter of interest i and variance in view of all other 

parameters. This method is robust and computationally efficient with low sample size [78]. 

The first-order sensitivity index (Si) of the given parameter (i) is derived as the variance at 

a specific parameter’s distinct frequency divided by the total variance. First, the Fourier 

coefficients at the frequency of interest (j) is used to derive the variance (σ2) [80]: 

 

𝑠𝑖
2 = 2(𝐴𝑗

2 + 𝐵𝑗
2)

𝑤ℎ𝑒𝑟𝑒  𝐴𝑗 =
1

𝜋
∫ 𝑓(𝑥)𝑐𝑜𝑠 (𝑗𝑥)𝑑𝑥,

𝜋

−𝜋

            𝐵𝑗 =
1

𝜋
∫ 𝑓(𝑥)𝑠𝑖𝑛 (𝑗𝑥)𝑑𝑥

𝜋

−𝜋

 
(3.4) 

 

then the first-order (Si) is calculated as a fraction of total variance (stotal): 

 

𝑆𝑖 = 𝑠𝑖
2 𝑠𝑡𝑜𝑡𝑎𝑙

2⁄  (3.5) 

 

This index indicates the fraction of the model output variance that is described by the input 

variation of a given parameter. eFAST method calculates the total sensitivity index. The ‘total’ 

represents major effects and all the interaction terms of the factor. To estimate the total-order 

sensitivity index (STi), eFAST computes the total summation of sensitivity index of the whole 

complementary set of parameters (Sci, all parameters except i). After that, STi is computed as the 

rest of variance after the offering of the complementary set is removed [77].  

 



 

50 

 

𝑆𝑇𝑖 = 1 − (𝑠𝑐𝑖
2 𝑠𝑡𝑜𝑡𝑎𝑙

2⁄ ) (3.6) 

 

This equation involves higher-order, nonlinear interactions between the parameter of 

interest and the complementary set of parameters. eFAST indices is also performed to determine 

the degree of additive of a model.  

 

 

 

3.3  Uncertainty based Multidisciplinary Design Optimization (MDO) 

 

 

Figure 3.5. Uncertainty based MDO for derivative design 

 

The selected design variables from GSA result were implemented on MDO module of 

ADDOPT process. The application of RBDO and PBDO methods with MDO technique handles 

the inherent uncertainty of the low fidelity analysis methods. The optimization method with 

uncertainty consideration prevents constraint violation via uncertainty disturbance. Many types of 

uncertainty are inherent in the simulation based design and suitable simulation methods exist for 

each type of uncertainty. The details of this aspect of uncertainty are described in Chapter 2.  
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Many researchers have studied reliability based multidisciplinary design optimization 

methods. Various MDO techniques were implemented with RBDO and PBDO method [81, 82, 83, 

84, 85, 86]. MDF and IDF methods were performed, but these approaches need large scale 

disciplinary analysis at the system level to find MPP [87, 88]. CSSO and BLISS methods were 

used with RBDO method, but the formulation of CSSO and BLISS is complicated for 

implementation. From this reason, CO method was applied to acquire the efficiency in design 

formulation with uncertainty consideration. The system level objective function remains the same 

for reliability based optimization and deterministic optimization. Whereas, constraints were 

updated depending on RBDO and PBDO results which consider uncertain parameters. Since 

compatibility between disciplines was enforced by the objective function of each local 

optimization, the auxiliary constraints do not appear in the local optimization problem statements. 

Therefore, there was no need to modify the reliability analysis with coupling variables and 

compatibility constraints.  

 

 

3.3.1. CO method with uncertainty  

 

In this dissertation, two different modules were proposed and their results were compared: 

CO with RBDO and CO with PBDO. PMA method was performed for the reliability assessment 

strategy. It is well established and accepted for RBDO and PBDO methods [10, 89]. The system 

level optimization of CO, Equation 1.2 in Chapter 1, was changed below for RBDO.  
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minimize  f(𝑧𝑆𝐿 , 𝑦𝑆𝐿 , 𝑝) 

subject to 𝐽𝑖(𝑧𝑆𝐿 , 𝑧𝑖
∗, 𝑦𝑆𝐿 , 𝑦𝑖

∗(𝑥𝑖
∗, 𝑦𝑗 , 𝑧𝑖

∗), 𝑝) =0,  

  j=1, 2, ⋯,n,   j≠i 

 (3.7) 

 

where p represents the uncertain parameters. The ith disciplinary level optimization problem was 

changed to: 

minimize  𝐽𝑖 = ∑(𝑧𝑆𝐿 − 𝑧𝑖)
2 + ∑(𝑦𝑆𝐿 − 𝑦𝑖)

2 

subject to P( 𝑔𝑖(𝑥𝑖 , 𝑧𝑖, 𝑦𝑖(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑖), 𝑝) ≤0)≥𝑃𝑡 

 (3.8) 

 

where P is the probability of feasibility for each problem constraints, and Pt represents the target 

probability of feasibility.  

CO with PBDO method formulation of the system level was changed to: 

minimize  f(𝑧𝑆𝐿 , 𝑦𝑆𝐿 , 𝑋) 

subject to 𝐽𝑖(𝑧𝑆𝐿 , 𝑧𝑖
∗, 𝑦𝑆𝐿 , 𝑦𝑖

∗(𝑥𝑖
∗, 𝑦𝑗 , 𝑧𝑖

∗), 𝑋) =0,  

  j=1, 2, ⋯,n,   j≠i 

 (3.9) 

 

where 𝑋̅ represents the fuzzy parameters. The formulation of ith disciplinary level optimization 

was changed to: 

minimize  𝐽𝑖 = ∑(𝑧𝑆𝐿 − 𝑧𝑖)2 + ∑(𝑦𝑆𝐿 − 𝑦𝑖)
2 

subject to Π( 𝑔𝑖(𝑥𝑖 , 𝑧𝑖, 𝑦𝑖(𝑥𝑖, 𝑦𝑗 , 𝑧𝑖), 𝑋) ≤0)≤ 𝛼𝑡 

 (3.10) 

 

where Π(●) is a possibility measure and αt represents target possibility of failure.  
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3.4 Validations of implemented methods 

 

3.4.1. Validation of the expert system – Regional jet aircraft 

 

In this research, 21 regional jet aircraft data were collected and the database was derived [90 

- 96]. The aircraft data is shown in Appendix B. The design variables and their fuzzy input range 

for this research are shown in Table 3.1.  

 

Table 3.1. Design variables and its range for fuzzy function 

 Very Low Low Medium High Very High 

Engine Thrust (lbf) 1500 2290 3080 3870 4660 

Wing Area (ft2) 178 264 350 436 522 

Vertical Tail Area (ft2) 46.8 47.975 49.15 50.325 51.5 

Horizontal Tail 

Area (ft2) 
50 62.5 75 87.5 100 

Cabin Length (ft) 13.875 17.552 21.229 24.906 28.583 

Wheel Base (ft) 10.167 14.5628 18.9585 23.3543 27.75 

W/S 41.01 49.4725 57.935 66.3975 74.86 

W/T  2.45 2.725 3  

Tail Span (ft) 14.333 17.229 20.125 23.021 25.917 

Range (NM) 1248 1711 2174 2637 3100 

Number of Passenger 6 7 8 9 10 
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The input of expert system in this research used the fuzzy function. The design variables and 

the rules for expert system were extracted from the database of the regional jet aircraft. When 

derivatives were considered, these design variables changed to satisfy the new requirements. The 

concept of the expert system using the fuzzy function is shown in Figure 3.6. 

 

 

Figure 3.6. Concept of expert system for light jet aircraft 

 

The responses in Figure 3.7 were derived from the expert system and these were based on 

Cessna CJ1 business aircraft which has been adopted as the baseline concept for this research. The 

responses for derivative design were proceeded from the database and the rules of the expert 

system, and it showed trend of the aircraft when design variables were changed. Figure 3.7.(a) 

shows the trend of the engine thrust for the cruise range. On this figure, the shading area means 

the design feasible region and dotted line shows the suitable range of each design variable. The 

target value of the cruise range was defined as 0.29 then the required input value of the engine 
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thrust was found as 0.32. This target value was based on the cruise range of Cessna CJ2. Similarly, 

Figure 3.7.(b)~(g) showed the trend of other design variables for the cruise range. 

 

            
(a) Engine thrust 

 

(b) Wing area 

 

            
(c) Cabin length 

 

(d) Wheel base 

 

            
(e) W/S 

 

(f) W/T 

 

 
(g) Tail span 

 

Figure 3.7. Responses from expert system 
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Table 3.2 and 3.3 show both normalized values and real values of the baseline and the 

derivative which is based on the cruise range of Cessna CJ2 respectively.  

 

Table 3.2. Design variables of baseline configuration 

Design variables Real value Normalized value 

Engine Thrust (lb) 1,900 0.13 

Wing Area (ft2) 240 0.18 

Cabin Length (ft) 15.75 0.16 

Wheel Base (ft) 15.38 0.30 

W/S (lb/ft2) 44.17 0.09 

W/T (lb/lb st) 2.79 0.62 

Tail Span (ft) 18.50 0.36 

Range (NM) 1,475 0.15 

 

Table 3.3. Target values of derivative 

Design variables Real value Normalized value 

Engine Thrust (lb) 2,500 0.32 

Wing Area (ft2) 283 0.31 

Cabin Length (ft) 18.2 0.32 

Wheel Base (ft) 12.0~20.7 0.1~0.6 

W/S (lb/ft2) 51.6 0.31 

W/T (lb/lb st) 2.77~2.97 0.58~0.95 

Tail Span (ft) 18~23.8 0.32~0.82 

Range (NM) 1,738 0.29 
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Table 3.4. Range of design variables 

Design variables 

Without Expert system With  Expert system 

Lower 

boundary 

Upper 

boundary 

Lower 

boundary 

Upper 

boundary 

Aspect ration 8 11 8.46 10.34 

Sweep angle (deg) -1 5 -1 1 

Taper ratio 0.25 0.35 0.27 0.33 

Aspect ratio of 

horizontal tail 
5 7 5.472 6.688 

Aspect ratio of 

vertical tail 
0.95 1.25 0.927 1.133 

Taper ratio of 

Vertical tail 
0.4 0.65 0.495 0.605 

Taper ratio of 

horizontal tail 
0.4 0.65 0.405 0.495 

Cruising speed (M) 0.68 0.82 0.648 0.792 

Cruising altitude (ft) 43,000 47,000 43,000 47,000 

Thrust (lbf) 1,700 2,750 1,710 2,090 

 

The target range of the derivative was 1,738 NM (the normalized value was 0.29). The result 

of the expert system defined the feasible region of each design variables. It provided more 

compromised range of design variables for GSA to enhance efficiency and accuracy. The range 

for each design variable was selected as Table 3.4 and this range was implemented for sensitivity 

analysis to reduce the design space. 
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3.4.2. Validation of global sensitivity analysis methods – 18 bar truss problem 

 

 

Figure 3.8. Initial 18 bar truss [97, 98] 

 

eFAST method is applied to the 18 bar truss example below from the deterministic problem 

proposed in Salajegheh and Vanderplaats [97, 98]. This problem evaluates accuracy and efficiency 

of the implemented eFAST module. GSA module was implemented to sort out design variables 

that hold more importance on reducing the dimensionality in optimization problem. An initial set 

of the design variables were selected to define the truss shape and the element thickness. The 

objective function minimized the weight of truss structure. The maximum tensile and the 

compressive stresses in every member must be below the ultimate stress limit and the buckling 

stress limit. The initial truss structure is shown in Figure 3.8, where the x and y axis units are in 

inches.  

The design variables included four element area variables (x1~x4) and eight variables 

(x5~x12) which defines the coordinates of the lower nodes [97, 98]. The definitions of variables are 

shown in Table 3.5, as x denotes the design variable vector, A represents the element areas and X 

and Y are the coordinates of the lower truss nodes.  

 



 

59 

 

Table 3.5. Design variables and its range [97, 98] 

Variables Definition 
Initial 

value 

Lower 

boundary 

Upper 

boundary 

x1 A1, A4, A8, A12, A16 10.00 0.1 30 

x2 A2, A6, A10, A14, A18 21.65 0.1 30 

x3 A3, A7, A11, A15 12.50 0.1 30 

x4 A5, A9, A13, A17 7.07 0.1 30 

x5 X3 1,000.00 800 1,200 

x6 Y3 0.00 0 220 

x7 X5 750.0 510 800 

x8 Y5 0.00 0 220 

x9 X7 500.00 350 510 

x10 Y7 0.00 0 220 

x11 X9 250.00 50 350 

x12 Y9 0.00 0 220 

 

The tensile stress and the buckling stress were considered to be the constraints. The ultimate 

stress (σmax) was assumed to be normally distributed (N). A normally distributed uniform force was 

applied to the nodes 1, 2, 4, 6, and 8. Table 3.6 shows these load conditions. The buckling stress 

(σb) was defined by the Euler buckling equation, given by Equation 3.11. The elastic modulus (E) 

has 1.0E+4 Kpsi. The buckling coefficient (K) was defined as 4.0 and the allowable stress was 

assumed as 20 Kpsi. The element length is denoted by L. The material density was assumed to be 

0.1 lb/in3.  

 



 

60 

 

Table 3.6. Loading condition for 18 bar truss problem [97, 98] 

Node Fx (lbs) Fy (lbs) Fz(lbs) 

1 0 -20,000 0 

2 0 -20,000 0 

4 0 -20,000 0 

6 0 -20,000 0 

8 0 -20,000 0 

 

𝜎𝑏 =
−𝐾𝑖𝐸𝑖𝐴𝑖

𝐿𝑖
2  (3.11) 

 

Table 3.7. Sensitivity indices for 18 bar truss problem 

Design 

Variables 

1st order  

Sensitivity Index 

Total  

Sensitivity Index 
Rank 

x1 0.5832 0.7174 1 

x2 0.2855 0.3512 2 

x3 0.0446 0.0549 4 

x4 0.0609 0.0749 3 

x5 0.0065 0.0075 5 

x6 0.0060 0.0073 7 

x7 0.0008 0.0009 10 

x8 0.0061 0.0074 6 

x9 0.0002 0.0003 12 

x10 0.0033 0.0041 8 

x11 0.0006 0.0008 11 

x12 0.0024 0.0029 9 
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eFAST method was performed for GSA to determine the sensitivity index of each design 

variables with respect to the objective function. The objective function was implemented on 

eFAST method to derive the sensitivity indices and Table 3.7 shows the results and its sensitivity 

rank. Nodal position points 7 and 9 (x9, x11) were less sensitive than any other nodal positions. 

 

Table 3.8. Comparison of design result 

Design 

Variables 
Initial Case 1 Case 2 Case 3 Case 4 Case 5 

x1 10.00 11.20 13.84 11.06 11.02 11.06 

x2 21.65 16.63 16.76 16.60 16.60 16.60 

x3 12.50 2.40 3.64 2.36 5.55 5.55 

x4 7.07 7.16 4.94 7.84 7.87 7.84 

x5 1000.0 831.39 750.04 878.25 835.57 - 

x6 0.0 162.67 170.35 185.69 - - 

x7 750.0 580.17 660.23 - - - 

x8 0.0 106.01 116.56 174.54 44.76 - 

x9 500.0 287.34 - - - - 

x10 0.0 18.35 101.64 100.14 - - 

x11 250.0 284.53 - - - - 

x12 0.0 17.56 35.52 - - - 

Weight (lb)  6,430.7 4,267.83 4,341.49 4,436.44 5,091.49 5,173.49 

Error - - 1.73% 3.95% 19.30% 21.22% 

Number of 

evaluation 
- 13,421 12,813 7,625 6,915 5,380 

Improvement - - 4.53% 43.19% 48.48% 59.91% 
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The number of design variables was changed through the sensitivity index by fixing the 

design variables which had the low sensitivity indices. The two design variables (x9, x11) were fixed 

in Case 2; four design variables (x7, x9, x11, x12) were fixed in Case 3; six design variables (x6, x7, 

x9, x10, x11, x12) were fixed in Case 4; only four design variables (x1, x2, x3, x4) were implemented 

as design variable in Case 5. These results showed the comparison of accuracy when it changed 

the number of design variable. Table 3.8 shows result of each case.  

Genetic Algorithm (GA) was performed for the optimization method in this dissertation [2, 99, 

100]. It had 40 population and 10 operator. These results showed Cases 2 and Cases 3 within 4% 

error of Case 1. Moreover, Case 2 and Case 3 performed with far less evaluations as Table 3.7. On 

the other hand, Case 4 and Cases 5 showed almost 20% difference of Case 1 with less number of 

evaluations. Figure 3.9 shows the configurations of optimization result for each case. Case 4 shows 

unreasonable shape and Case 5 was changed only in thickness of each member as shown in Figure 

3.9. This meant that the reduced number of design variable from GSA result is applicable to the 

conceptual design. Reducing the number of design variable using eFAST method improved the 

efficiency of computation with tolerable error.  

 

 

(a) Case 1 
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(b) Case 2 

 

(c) Case 3 

 

(d) Case 4 
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(e) Case 5 

Figure 3.9. 18 bar truss optimization results 

 

 

3.4.3. Validation of uncertainty based MDO method 

 

A multidisciplinary analytical example from Ahn et al. [82], in Equation 3.12, was 

performed to validate the accuracy of RBDO and PBDO when the number of sample cases for 

modeling uncertain parameters was varied on MDO problem. This equation consisted of three 

subsystems with two state variables. It was the simple numerical example to demonstrate results 

in the context of multidisciplinary problem. The range and mean value of uncertain variables x1 

and x2 are shown in Table 3.8 [82]. These variables were assumed to have Coefficient of Variation 

(COV) of 0.04 with mean values assigned by the optimizer. COV was defined as the ratio of the 

standard deviation (σ) to the mean value (μ) of random variable. 
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min. 𝑓 =  −( 𝑥̅1 − 6)3 + 𝑦1
2 − 𝑒𝑥𝑝 (

𝑦1

𝑦2
) 

𝑦1 = 𝑥1
2 +

𝑦2

2
 

𝑔1 = −𝑦2 + 𝑒𝑥𝑝(
𝑦1

𝑦2
⁄ + 2.2𝑥1) 

𝑦2 = 𝑥1 + 𝑥2 +
(3𝑥1𝑥2)

𝑦1
 

𝑔2 = 𝑦2 − 𝑦1 − (𝑥2 + 1)2 − (𝑥2 − 4)3 

(3.12) 

 

Table 3.9. The uncertain variables 

Uncertain 

Variable 
Lower Boundary Mean Value Upper Boundary 

x1 1 5 19 

x2 1 5.01 10 

 

. 

 

Figure 3.10. CO formulation 
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CO formulation for this problem is shown in Figure 3.10. The problem was solved for 

seven cases at the reliability level of 3σ and starting vector was x0=[1.5, 1.5] and the convergence 

tolerance was 10-5. This problem had two uncertain variables, so it required at least two million 

random numbers to estimate the probability of failure when using Monte-Carlo Simulation (MCS) 

[101]. Table 3.10 shows the results of RBDO and PBDO for each case. 

 

Table 3.10. Optimization results 

Number of 

Case 
RBDO PBDO 

10 193.288 122.052 

50 119.959 121.676 

100 119.884 121.495 

200 119.813 121.492 

500 119.976 121.497 

1000 121.048 121.491 

MCS 120.082 121.493 

 

Each case was randomly selected from the range of each uncertain variable. The 

deterministic optimization result was 115.76 and it had 0.40% of probability with a given 

distribution. RBDO result and the MCS result converged when the number of cases for RBDO 

were increased. On the other hand, PBDO cases showed similar results even when using fifty 

different values on the uncertain parameters. When ten different values from the uncertain 

parameters were used, there was a difference between RBDO result and the MCS result. However, 
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PBDO result showed similar values regardless of the number of cases. This showed that RBDO 

result was more dependent on the information of the uncertain parameters in comparison with 

PBDO result. RBDO result was improved when the number of cases was increased, while on the 

other hand this did not improve PBDO result.  

 

 

 

3.5  Summary  

 

This dissertation proposed ADDOPT, the enhanced derivative design process which can 

satisfy the requirement changes that come from the market demand with uncertainty consideration. 

The user requirements were analyzed and identified to select the target values for the quantifiable 

factors. The expert system was implemented using the database of the baseline designs and their 

derivatives in order to identify the design variable trends and to define the range of design 

parameters for the new requirements of market. The selected design variables and their ranges 

were utilized in GSA. This work increased the efficiency and the accuracy of GSA for the 

derivative design. GSA result was performed to determine the necessary design parameters to 

fulfill the customer’s needs. The decreased design variable reduced the computation time and the 

cost of redesign. In addition, uncertainty analysis with MDO method was applied as well. RBDO 

and PBDO method in conjunction with CO modules were performed. To evaluate the implemented 

expert, the regional jet design problem was performed and it decreased the range of design 

variables. The 18 bar truss problem was applied to evaluate the accuracy and the efficiency of the 

implemented GSA module as well. GSA result showed the sensitivity indices for the objective 

functions and important design variables for design was derived. The optimization result with 
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reduced design variables showed small error while it had reduced iteration number. The 

multidisciplinary numerical example evaluated accuracy of the implemented MDO modules. This 

example showed the characteristics of RBDO and PBDO. ADDOPT process was implemented to 

the wing box design in Chapter 4 and performed for the aircraft conceptual design in Chapter 5.  
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Chapter 4 

Wing Box Design 

 

 

 

ADDOPT process was performed on the design optimization of the light jet aircraft wing 

box structure. The MDO problem was constructed using two disciplines: aerodynamics and 

structures. In this study, the panel method [102] was performed for aerodynamic analysis and a 

surrogate model - developed from a sample of FE analyses - was implemented for structural 

analysis. The Response Surface Method (RSM) was applied for estimating the weight and the 

maximum stress in the wing box design optimization.  
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4.1 Response Surface Method (RSM) 

 

In recent years, the computer codes and analysis methods required for engineering design 

become quite complex. Massive engineering data exchange and multidiscipline system analysis 

are integral parts of the MDO approach, thus time and cost inefficiencies may arise without careful 

design strategy [65, 98]. In the generality of cases, the responses from the analysis of either single 

or multidiscipline - through the system approach will have numerical noise, irregularity and 

discontinuity. These issues can make it difficult to obtain gradient information and cause an 

increase of the computational load [66]. System design using the MDO requires approximation 

techniques which must be studied carefully in order to resolve these issues. The RSM is a statistical 

method which utilizes the Design of Experiment (DOE) theory [103]. It constructs a 

multidimensional surface from experimental model and previously obtained data, in order to 

predict the response of the non-experimental region. By representing the high fidelity analysis 

methods mathematically, a procedure for reducing the computational load of optimization can be 

defined. This method can approximate the global optimum through building a response surface 

which corresponds to the change of design variables. The second order polynomial function was 

implemented to represent the response surface [104]. 
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(4.1) 

 

 

where x1, x2,  , xk are the design variables which affect the response, b0 and bi (i = 1, 2,  , k) 

are the coefficients of the regression function, and ypredict is the predicted value of the regression 

function. The reliability of the response surface can be inferred using the experimental point. It 
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can be estimated by the adjusted R-square (R2
adj) value that is defined by Equation 4.2 [105]. 

 

 

 

(4.2) 

 

where, SSE and SSy represent the error sum of squares and the total sum of squares respectively. n 

represents the number of experimental points and m is the number of response function coefficients. 

Typical values for R2
adj are between 0.9 and 1.0 when observed response values are accurately 

predicted by the response surface model. The error associated with the model is represented 

probabilistically. 

 

 

 

4.2 Problem definition 

 

A parameterized finite-element model of the generic light business jet wing box was 

developed with ANSYS and is shown in Figure 4.1. The wing box model was automatically 

constructed including leading and trailing edge spars, upper and lower skins as well as stringers 

and ribs using the MATLAB function to generate the ANSYS mesh. The MATLAB function 

applied random cases of parameter values to generate meshes on ANSYS. ANSYS developed the 

meshes and analyses the von Mises stress and weight for each case of the MATLAB function. The 

area mesh implemented an eight node PLANE 82 element. All degrees of freedom at the root was 

constrained as well as the spars, spar caps, skin, and stringers. The load distribution was defined 

as an average force for each panel. In this research, 148 cases were derived using Latin Hypercube 
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method and analyzed to secure accuracy on the surrogate model, where previous research used 

200 samples cases to generate the surrogate model [106]. However, fifty-two cases that violated 

constraints were removed in this research and remaining cases were kept to generate RSM for nine 

design variables [105]. These cases are shown in Appendix A. Figure 4.2 shows the procedure for 

the RSM development from the FE analysis result.   

 

 

Figure 4.1. Wing box FEM model [106] 

 

 

 

 

Figure 4.2. Process of Response Surface Model development for wing box 
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The aircraft concept considered was similar in size and performance to light jet aircraft 

such as Cessna Mustang and Diamond Jet. The performance targets for the conceptual wing design 

were selected to match values typical to small light jet aircraft. The target gross weight was 

assumed to be 11,460 lb with a wing-stored fuel capacity of 2,650 lb. The wing weight budget was 

970 lb for the load bearing structure. The maximum von Mises stress was constrained to be below 

360 MPa, corresponding to the yield strength of aluminum 7075 with a safety margin of 1.5 as 

required by airworthiness standards. The objective of optimization was to maximize the wing L/D 

at the cruise speed of 400 kts and the altitude of 35,000 ft. The L/D from main wing was considered 

only [106].  

The multi-discipline optimization problem was formulated with two disciplines: an 

aerodynamics solver using panel method and a structures solver consisting of RSM. FE analysis 

was replaced by RSM. An error term was defined from differences between the stress calculated 

using FE analysis model and the stress estimated using the approximation model. 

RSM for weight and stress analysis were generated from a database of sampled finite-

element solutions in the design space. FE model consisted of twenty-nine member attributes 

representing the thicknesses of the primary structural members - nineteen ribs, the front and rear 

spar, six stringers as well as the upper and lower skin. The dimensionality was reduced by linking 

attributes to seven design variables as shown in Table 4.1 and Figure 4.3. Two variables were 

introduced to change the overall wing geometry including the span and wing reference area, which 

makes the total of nine design variables. The sweep angle, taper ratio and airfoil were fixed as 

constant. Considering all twenty-nine design parameters for wing shape would potentially yield a 

better design result. However, the accuracy of the surrogate models with thirty-one dimensions is 

found to be extremely low for given FEA cases. It needs large number of FEA cases to secure 
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accuracy of the surrogate model for thirty-one dimensions. 148 test cases were enough for nine 

design variables, but were not sufficient for thirty-one design variables. 

 

 

Figure 4.3. Wing box shape and design variables [106] 

 

Table 4.1. Design variables for wing box and its range [106] 

Member 
Design 

variable 
Unit 

Initial 

value 

Lower 

limit 

Upper 

limit 

Rib 1~19 x1 in 0.1379 0.0787 0.1969 

Front spar x2 in 0.7874 0.3937 1.1811 

Rear spar x3 in 0.7874 0.3937 1.1811 

Upper stringer 1~3 x4 in 0.2362 0.0787 0.3937 

Lower stringer 1~3 x5 in 0.2362 0.0787 0.3937 

Upper skin x6 in 0.8859 0.5906 1.1811 

Lower skin x7 in 0.8859 0.5906 1.1811 

Span length (b) x8 ft 31 26.0 36.0 

Reference wing area (S) x9 ft2 113.25 96.50 130.0 
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Table 4.2 shows the sensitivity indices for the weight of wing box. Using this result, seven 

design variables were selected which had more than 0.004 of total order sensitivity index and two 

design variables (x3, x4) were fixed with an initial value. MDO formulation was generated using 

seven design variables. 

 

Table 4.2. Sensitivity indices of design variables 

Design 

variables 

1st order 

Sensitivity Index 

Total  

Sensitivity Index 
Rank 

x1 0.0030 0.0059 5 

x2 0.0025 0.0049 6 

x3 0.0013 0.0025 8 

x4 0.0012 0.0023 9 

x5 0.0045 0.0089 4 

x6 0.0023 0.0045 7 

x7 0.0134 0.0266 3 

x8 0.7087 0.9151 1 

x9 0.2631 0.4569 2 

 

In this research, uncertainty from analysis tool was considered from various types of 

uncertainty as descripted in Chapter 2. RBDO and PBDO methods were applied to consider 

uncertainty in RSM. The uncertain parameters were generated from the error between FE analysis 

result and RSM results. 148 random cases were used for RSM and R2
adj value was 0.98. The error 

associated with the model was represented probabilistically. The normal distribution and 

membership function of error were implemented to RBDO and PBDO respectively. The normal 

distribution had a mean of 0.0010, variance of 0.0087 and a standard deviation of 0.0932. In 
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addition, the membership function was derived for PBDO method. The target reliability level of 

RBDO and PBDO was 3 with the probability of 99.87% while the deterministic optimization result 

had a 70.52% of probability. CO method in conjunction with RBDO and PBDO was performed 

and the results from these two modules were compared. CO architecture is shown in Figure 4.4. 

In this research, the DOT (Design Optimization Tool) version 4.0, which has relatively fast and 

effective tool was utilized for CO formulation [107]. 

 

 

Figure 4.4. CO architecture 

 

The system objective function was designed to maximize L/D. Aaero and Astruct represent 

auxiliary constraints of aerodynamics and structures discipline respectively, whereas t is the 

structure thickness value, M is the mass of wing, and Va is the approaching speed. Table 4.3 and 

Table 4.4 show the constraints and formulations of each method for the structures discipline. 
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Minimization of the weight and the stress in the structural analysis decreased the span of the wing 

geometry and reduced the aerodynamic efficiency. To consider the aerodynamic efficiency, the 

approach speed was implemented for the constraint of the aerodynamic discipline. Aircraft 

characteristics such as range and endurance need parameters from performance and thrust 

disciplines. However, these disciplines were not considered in this paper. On the other hand, an 

approach speed can be derived from the given parameters in this MDO problem and used to 

evaluate the system objective function. 

  

Table 4.3. Constraints for wing box conceptual design 

Constraints Symbol Value 

Maximum stress σ ≤ 360 MPa 

Mass M ≤ 970.034 lb 

Approach speed Va ≤ 120 kts 

 

 

Table 4.4. Formulations for structures discipline 

 
Deterministic 

optimization 
RBDO PBDO 

Objective min. Astuct(b, S, t1…7) min. Astuct(b, S, t1…7) min. Astuct(b, S, t1…7) 

Constraint 
σ ≤ σmax 

M ≤ Mgoal 

P(σ ≤ σmax) ≥ Pt 

M ≤ Mgoal 

Π(σ ≤ σmax) ≤ αt 

M ≤ Mgoal 
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4.3  Optimization results 

 

The comparison of each result is shown in Table 4.5. Case 1 shows the deterministic 

optimization result and Case 2 shows the result using selected design variables from the sensitivity 

analysis. Moreover, Case 3 and Case 4 show RBDO and PBDO results respectively, using selected 

design variables.  

 

Table 4.5. Comparison of design result 

Design 

variables 
Case 1 Case 2 Case 3 Case 4 

x1 0.0906 0.0906 0.0906 0.0906 

x2 0.7126 0.7047 0.7047 0.7047 

x3 0.5984 - - - 

x4 0.1850 - - - 

x5 0.2362 0.2362 0.2283 0.1811 

x6 0.7244 0.8858 0.7283 0.8583 

x7 0.5866 0.8858 0.6102 0.9213 

x8 33.7927 33.7927 31.6273 31.4305 

x9 114.0975 114.0975 111.9447 111.9447 

L/D 31.9 30.8 30.3 30.1 

Error - 3.45% 5.02% 5.64% 

Number of 

evaluation 
158 104 112 111 

Improvement - 33.55% 29.05% 29.65% 
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The fixed design variables were the thickness of the rear spar and the upper stringer. They 

had a minimal effect on the wing weight. These results represented that Case 2 with the reduced 

number of design variables, showed an error of 3.45% and reduced the number of iterations by 

33.55%. Case 3 and Case 4 had more number of iterations compared to Case 2 because of the 

additional reliability and possibility analysis. RBDO and PBDO results specify a smaller wing 

span and area in order to satisfy the target probability of failure when uncertainty from the 

structural analysis was considered.  

 

4.4  Summary  

 

The number of design variables can be reduced by using GSA results. It showed which 

design variables could be omitted while still accomplishing the design objective. With less design 

variables, less computation time is required in redesigning to satisfy new market demands. In 

addition, RBDO methods with CO and PBDO methods with CO were implemented to improve 

the reliability of the result by considering uncertainty introduced from the chosen approximation 

method. These methods cannot show a global optimum result, however they have small errors 

when considering uncertainty. These methods prevented constraints from being violated when 

uncertainty was considered. In this problem, the error between FEM and RSM was performed for 

uncertain parameters and was applied to the structural discipline. The result of the wing box 

conceptual design was achieved with less iterations with a reduced number of design variables. In 

addition, RBDO and PBDO methods maintained their probabilities when uncertainty from 

approximation models were considered. The sensitivity analysis result can be applied in both RSM 

and FEM analysis.  
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Additional process such as GSA can increase the total computation time. However, the 

result of sensitivity analysis can be implemented for new derivative designs when the requirements 

are changed. ADDOPT process is more helpful in reducing the computation time when high 

fidelity analysis tools are performed, since the computation time of high fidelity analysis tools are 

highly dependent on number of design variables.    
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Chapter 5 

Conceptual Design for Aircraft Derivative 

 

 

 

 

5.1  Problem description 

 

The aircraft conceptual design utilizes many types of low fidelity analysis methods of fast 

computation time but comparably low in accuracy. The low fidelity analysis tools have uncertainty 

and this can cause the optimization results to violate certain constraints. RBDO and PBDO 

algorithms were implemented of in ADDOPT process to manage the errors associated with the 

traditional low fidelity analysis implemented in the aircraft conceptual design. The error terms can 

be generated from comparing analysis results using empirical equations and a historical data base. 

These error terms can influence on each active constraint. RBDO and PBDO targeted only active 

constraints, adjusting designs away from active constraints within the optimization scheme.  
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The conceptual design in this dissertation focused on a commercial jet aircraft. The design 

requirements shown in Table 5.1 were comparable with B737-900. The baseline was B737-300 

and design variables were selected from GSA result. The comparison between B737-800 and 

different cases with different number of design variables was performed to select design variables 

for the derivative design. Figure 5.1 shows this procedure.  

 

Table 5.1. Design requirement 

Requirement Target Value 

Passengers  Npax = 189 

Payload mass Mpl = 45720 lb 

Range (200 km reserve) R ≥ 2060 NM 

Cruise Mach number Mcr = 0.785 

Cruise altitude hcr = 36,000 ft 

Empty Weight We ≤ 93,655 lb 

Approach speed Va ≤ 140 kts 

 

 
Figure 5.1. Procedure of derivative design  
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5.2  Expert system 

 

In this research, the database was developed by collecting data from forty different types 

of the civil jet aircraft [108, 14]. Appendix C shows the date sheet of forty civil jet aircraft. Figure 

5.2 shows the concept of the expert system for this research.  

 

 

Figure 5.2. Concept of expert system for civil jet aircraft 

 

Table 5.2 presents the design variables and their fuzzy input range from the database. The 

design variables were selected that show noticeable differences in each configuration. The design 

variables and the rules for the expert system were extracted from the database of civil jet aircraft. 

When derivatives were considered, these design variables were changed to satisfy the new 

requirements.  
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Table 5.2. Design variables and its range for fuzzy function 

 Very Low Low Medium High Very High 

Wing Span (ft) 85 110 135 160 185 

Wing Aspect 

Ratio 
6.8 7.5 8.1 8.7 9.3 

Wing Taper 

Ratio 
0.15 0.2 0.25 0.29 0.35 

Horizontal Tail 

Span (ft) 
32 41.3 49.8 58.3 66.8 

Vertical Tail 

Span (ft) 
14 18.4 22.8 27.2 31.6 

Length of 

Fuselage (ft) 
93.1 123.7 154.3 184.9 215.5 

Number of 

Passenger 
76 170 265 360 455 

Range (NM) 1,298 2,768 4,238 5,709 7,179 

 

The responses shown in Figure 5.3 were derived from the expert system based on B737-

300 aircraft, which has been adopted as the baseline concept for this research. Results showed 

various aircraft trends when the design variables were changed. Figure 5.3.(a) present the trend of 

the wingspan with respect to the number of passengers of B737-800 (dotted line, 0.228) and B737-

900 (solid line, 0.238) on the target cruise range as 2,000 NM. In this figure, the shading region 

represented the feasible space. The target of cruise range was defined as 0.1 of normalized value 

and the corresponding required range for the input value of aspect ratio was found to be 0.5~1.0 

of normalized value. Similarly, Figure 5.3.(b) ~ 5.2.(f) indicate the trends of other design variables 

with respect to the target cruise range and the number of passengers.  
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(a) Span of main wing                         (b) Aspect ratio of main wing 

 

 
(c) Taper ratio of main wing                    (d) Length of fuselage 

 

 
     (e) Span of horizontal tail                         (f) Span of vertical tail 

Figure 5.3. Feasible region of major design variables from expert system 

 

Table 5.3 both shows the normalized values and the real values regarding the cruise range 

related trends for B737-800 and B737-900. The feasible range of design variables was reduced 

when the values from Table 5.4 were implemented.  
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Table 5.3. Normalized value and real value of design variables  

Design variable 
B737-800 B737-900 

Normalized 

value 
Real value 

Normalized 

value 
Real value 

Wing Span (ft) 0.206 111.52 0.206 111.52 

Wing Aspect 

Ratio 
0.566 8.73 0.566 8.73 

Wing Taper 

Ratio 
0.628 0.3 0.628 0.3 

Horizontal Tail 

Span (ft) 
0.336 47.07 0.336 47.07 

Vertical Tail 

Span (ft) 
0.524 25.96 0.524 25.96 

Length of 

Fuselage (ft) 
0.207 124.71 0.264 133.40 

Number of 

Passenger 
0.228 184 0.238 189 

Range (NM) 0.10 2,000 0.10 2,000 

 

Table 5.4. Feasible range of design variables  

Design variable 

Normalized value Real value 

Lower 

boundary 

Upper 

boundary 

Lower 

boundary 

Upper 

boundary 

Wing Span (ft) 0.02 0.52 87.83 151.66 

Wing Aspect 

Ratio 
0.5 1.0 8.52 10.10 

Wing Taper 

Ratio 
0.5 1.0 0.27 0.38 

Horizontal Tail 

Span (ft) 
0.02 0.5 33.65 54.05 

Vertical Tail 

Span (ft) 
0.02 0.76 14.44 30.66 

Length of 

Fuselage (ft) 
0.0 0.52 93.10 172.54 
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5.3  Analysis methods 

 

5.3.1. Aerodynamics  

 

 
 

Figure 5.4. Aerodynamics analysis module  

 

The aerodynamics discipline provided the lift and drag characteristics of the aircraft by 

using empirical equations. Figure 5.4 presents how the aerodynamics discipline was handled. 

Twenty-six design variables and eleven parameters were implemented in this analysis module. The 

lift and the drag results derived the thrust required and were compared with the actual aircraft data. 

The thrust value depends on velocity, altitude, aerodynamic shape and the weight of the aircraft. 

In this research, eighteen cases of thrust values were compared. Results and errors are shown in 

Table 5.5. The normal distribution and the membership functions for RBDO and PBDO methods 

were derived from these cases. The normal distribution had the mean value of 1.0524, variance of 

0.0186 and standard deviation of 0.1365.  
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Table 5.5. Errors of thrust required (lb) 

Aircraft Database (A) Analysis result (B) Error (B/A) 

B737-100 3,870.00 3,273.74 0.8459 

B737-200 4,252.50 4,352.17 1.0234 

B737-300 4,907.25 4,708.88 0.9596 

B737-400 4,927.50 4,708.88 0.9556 

B737-500 4,907.25 4,708.88 0.9596 

B737-600 5,215.50 5,554.06 1.0649 

B737-700 5,485.50 5,554.06 1.0125 

B737-800 5,485.50 5,554.06 1.0125 

B737-900 5,485.50 5,554.06 1.0125 

B767-200 11,340.00 13,594.08 1.1988 

B767-300 11,722.50 13,594.08 1.1597 

B767-400 11,340.00 13,203.27 1.1643 

B777-200 15,750.00 20,573.73 1.3063 

B777-300 15,750.00 20,573.73 1.3063 

A300-600 11,340.00 9,565.07 0.8435 

A318-100 5,756.85 5,249.21 0.9118 

A319-100 5,756.85 5,815.14 1.0101 

A320-200 4,860.00 5,815.14 1.1965 

 

 

The constraints in the aerodynamic discipline required designs to generate the lift force 

greater than the gross weight. The gross weight value was delivered from the weight estimation 

discipline, as described in the next section.  
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5.3.2. Weight  

 

The statistical group weight method was implemented for the aircraft weight estimation. 

The statistical relationship of the weight and center of gravity for each major aircraft component 

allowed for an estimate of the overall empty weight of the aircraft. Many aircraft conceptual design 

publications describe this method in detail [109, 110]. In general, the statistical equations were 

functions of the geometry and performance requirements of the aircraft while considering the 

payload capacity, cruise speed and altitude. Moreover, the empty and gross weight, the center of 

gravity and the moments of inertia of the aircraft were also calculated. These equations cannot give 

the exact value for the aircraft weight, but provided reasonable estimation for the group weight. 

The weight estimation module implemented twenty-nine design variables and seven parameters. 

Figure 5.5 shows how analysis in the weight discipline was performed. 

 

 
 

Figure 5.5. Weight analysis module 
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The comparison between forty cases of the predicted weight and the database values is 

shown in Table 5.6. The empty weight error term can be approximated by the normal distribution 

with the mean of 0.9912, variance of 0.0024 and the standard deviation of 0.0487. A triangular 

distribution was developed using the error data from Table 5.6. The weight constraints coincide 

with those of B737-900. The empty weight requirement values are shown in Table 5.1. 

 

Table 5.6. Errors of empty weight of aircraft (lb) 

Aircraft Database (A) Analysis result (B) Error (B/A) 

A300-600 198,492.24 196,398.88 0.9895 

A310-200 176,628.56 175,385.11 0.9930 

A310-300 183,300.00 179,805.98 0.9809 

A320-200 93,449.60 96,251.62 1.0300 

A318 86,617.20 91,388.70 1.0551 

A319 89,923.20 93,314.84 1.0377 

A321-100 106,894.00 102,569.16 0.9595 

A321-200 106,894.00 102,569.16 0.9595 

A330-200 265,582.00 263,364.94 0.9917 

A330-300 274,398.00 266,780.56 0.9722 

A340-200 285,418.00 266,075.34 0.9322 

A340-300 286,520.00 266,075.34 0.9286 

A340-500 376,663.60 392,422.75 1.0418 

A350-900 255,002.80 237,588.11 0.9317 

B737-100 62,000.00 65,301.99 1.0532 

B737-200 66,800.00 66,435.68 0.9945 
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Table 5.6. Errors of empty weight of aircraft (lb, cont.) 

Aircraft Database (A) Analysis result (B) Error (B/A) 

B737-300 72,540.00 74,377.35 1.0253 

B737-400 74,170.00 75,910.74 1.0235 

B737-500 69,030.00 73,116.78 1.0592 

B737-600 81,777.22 77,055.26 0.9423 

B737-700 84,075.99 82,239.84 0.9782 

B737-800 90,683.58 92,739.32 1.0227 

B737-900 93,654.57 95,306.65 1.0176 

B747-400 397,788.94 383,107.13 0.9631 

B747-400ER 406,781.26 404,949.69 0.9955 

B757-200 130,410.68 127,947.10 0.9811 

B757-300 141,651.08 133,507.67 0.9425 

B767-200 187,251.84 183,679.30 0.9809 

B767-300 200,145.24 195,867.20 0.9786 

B767-400 229,000.00 217,108.53 0.9484 

B777-200 309,882.40 311,350.66 1.0047 

B777-300 348,298.12 356,588.84 1.0238 

DC-8-43 136,509.00 118,212.19 0.8660 

DC-8-55 138,266.00 118,788.11 0.8591 

DC-9-15 49,020.00 50,631.71 1.0329 

DC-10-10 240,171.00 230,668.69 0.9604 

Embraer 170 46,592.56 49,456.27 1.0615 

Embraer 175 48,069.24 51,120.36 1.0635 

Embraer 190 61,888.32 64,224.26 1.0377 

Embraer 195 63,849.88 65,878.14 1.0318 
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5.3.3. Performance  

 

The net force acting on the aircraft was calculated from drag, lift and available thrust forces 

over a numerical simulation. In this research, the Breguet range equation was used for the jet 

propelled airplanes [110]. The cruise range was selected as the performance constraint and defined 

by the performance characteristics of B737-900. The diagram of the performance analysis 

discipline is shown in Figure 5.6.  

 

 

 
 

Figure 5.6. Performance analysis module 
 

 

The forty cases of cruise range prediction results were compared with database and their 

associated errors are shown in Table 5.7. The errors were represented in the normal distribution 

and the triangular distribution. The normal distribution had the mean value of 1.0063 as well as 

the variance and standard deviation of 0.0102 and 0.1010.  
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Table 5.7. Errors of cruise range of aircraft (NM) 

Aircraft Database (A) Analysis result (B) Error (B/A) 

A300-600 3,600.00 3,536.17 0.9823 

A310-200 3,650.00 3,396.27 0.9305 

A310-300 5,200.00 5,076.90 0.9763 

A320-200 2,592.00 2,348.21 0.9059 

A318 1,462.00 1,314.48 0.8991 

A319 1,813.00 1,863.32 1.0278 

A321-100 2,138.00 2,314.10 1.0824 

A321-200 2,700.00 2,314.10 0.8571 

A330-200 6,650.00 7,386.17 1.1107 

A330-300 5,600.00 5,036.38 0.8993 

A340-200 8,000.00 6,908.41 0.8636 

A340-300 7,200.00 6,874.03 0.9547 

A340-500 8,650.00 9,035.67 1.0446 

A350-900 8,100.00 7,894.36 0.9746 

B737-100 1,720.00 1,505.48 0.8753 

B737-200 2,645.00 3,495.09 1.3214 

B737-300 2,950.00 3,109.86 1.0542 

B737-400 2,800.00 2,366.13 0.8450 

B737-500 2,950.00 3,148.43 1.0673 

B737-600 1,340.00 1,363.45 1.0175 

B737-700 1,540.00 1,552.60 1.0082 

B737-800 1,990.00 1,993.25 1.0016 

B737-900 2,060.00 2,713.32 1.3171 

B747-400 6,185.00 6,996.45 1.1312 

B747-400ER 7,325.00 7,890.04 1.0771 



 

94 

 

 

Table 5.7. Errors of cruise range of aircraft (NM, cont.) 

Aircraft Aircraft Aircraft Aircraft 

B757-200 2,570.00 2,593.54 1.0092 

B757-300 2,120.00 2,294.66 1.0824 

B767-200 5,125.00 5,243.15 1.0231 

B767-300 5,230.00 4,980.85 0.9524 

B767-400 5,230.00 4,980.85 0.9524 

B777-200 3,985.00 4,141.85 1.0394 

B777-300 3,880.00 4,118.79 1.0615 

DC-8-43 6,278.00 5,719.83 0.9111 

DC-8-55 5,077.00 5,463.90 1.0762 

DC-9-15 1,590.00 1,489.31 0.9367 

DC-10-10 3,800.00 3,641.45 0.9583 

Embraer 170 2,100.00 2,104.03 1.0019 

Embraer 175 1,298.00 1,314.48 1.0127 

Embraer 190 2,300.00 2,313.97 1.0061 

Embraer 195 1,400.00 1,406.75 1.0048 

 

 

5.3.4. Stability and control  

 

The static margin, lateral and directional stability were considered in the stability and 

control discipline. The static margin of 5% was implemented as the longitudinal stability constraint. 

The yaw static stability was enforced at a full thrust climb scenario with a failed engine. The 

stability and control discipline defined the system constraints are given in Table 5.8. However, 
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uncertain parameters were not defined in this discipline. Figure 5.7 shows how the stability and 

control discipline was handled.  

 

Table 5.8. Stability constraints 

Constraint Description Value 

kn Static margin ≥ 0.05 

λreal Motion equation eigenvalues < 0 

 

 

 
 

Figure 5.7. Stability and control analysis module 

 

 

5.4  Global sensitivity analysis for aircraft conceptual design 

 

The design variables and their ranges are shown in Table 5.9. These values and ranges were 

defined using the results of the expert system. The expert system derived feasible list of design 
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variable and its boundary for target aircraft. This work was helpful to enhance the accuracy and 

efficiency of the GSA. Using the ranges of each design variable from Table 5.9, eFAST method 

was performed for the empty weight and the cruise range.  

 

Table 5.9. Range of design variables 

Design Variable Lower boundary Upper boundary 

Wing 

geometry 

BW 87.83 151.66 

ARW 8.52 10.10 

TRW 0.27 0.38 

CRoot_W 15.0 26.0 

ΛLE_W 20.0 30.0 

SW 1085.0 1500.0 

ScsW 230.0 350.0 

Horizontal tail 

geometry 

BH 33.65 54.05 

ARH 3.8 6.0 

TRH 0.2 0.3 

CRoot_H 10.5 28.5 

ΛLE_H 30.0 40.0 

SH 300.0 380.0 

ScsH 68.0 85.0 

Vertical tail 

geometry 

BV 14.44 30.66 

ARV 1.6 2.3 

TRV 0.2 0.35 

CRoot_V 15.0 20.0 

ΛLE_V 35.0 45.0 

SV 230.0 300.0 

ScsV 53.0 70.0 

Fuselage 

geometry 

Lf 93.10 172.54 

LT 38.0 64.0 

Engine 
T 17,000.0 30,000.0 

Wf 18,000.0 45,100.0 
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Table 5.10. Global sensitivity analysis result 

Design Variable 1st order Total Rank 

Wing 

geometry 

BW 0.03500  0.06877  11 

ARW 0.01101  0.02189  17 

TRW 0.00113  0.00226  24 

CRoot_W 0.04149  0.08126  9 

ΛLE_W 0.00169  0.00338  23 

SW 0.15947  0.29351  2 

ScsW 0.00226  0.00451  22 

Horizontal tail 

geometry 

BH 0.02032  0.04023  13 

ARH 0.08863  0.16940  4 

TRH 0.00649  0.01294  19 

CRoot_H 0.03839  0.07530  10 

ΛLE_H 0.00001  0.00000  25 

SH 0.06181  0.11980  6 

ScsH 0.01016  0.02022  18 

Vertical tail 

geometry 

BV 0.16822  0.30814  1 

ARV 0.00452  0.00901  20 

TRV 0.05193 0.10117 8 

CRoot_V 0.01270  0.02524  15 

ΛLE_V 0.00226  0.00451  21 

SV 0.01242  0.02468  16 

ScsV 0.01355  0.02691  14 

Fuselage 

geometry 

Lf 0.10612  0.20099  3 

LT 0.06012  0.11662  7 

Engine 
T 0.06633  0.12826  5 

Wf 0.02399  0.04741  12 
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Table 5.10 shows the sensitivity indices and the ranking for the weighting factors of the 

objectives from each discipline. The sensitivity analysis results provided which design variables 

were important for the derivative designs to satisfy new design requirements.  

 

 

 

5.5  Uncertainty based design optimization for aircraft conceptual design 

 

The important design variables based on the sensitivity rank were selected for the derivative 

design. The different numbers of the design variables were performed and were compared the 

results with B787-300 data. The objective function for the derivative was defined as minimizing 

the performance difference between B737-300 and predicted result. 

The error distributions from the low fidelity analysis results of each discipline were 

simulated while incorporating uncertainty. CO with RBDO and CO with PBDO algorithms 

considered uncertainty in each discipline. Four disciplines, described in the previous section, were 

weighed in CO method. For RBDO and PBDO formulation, constraints satisfied normal 

distribution and used the fuzzy membership function that was defined using the error estimation. 

RBDO and PBDO methods using PMA method had the target reliability level of 3, which has 

99.87% of probability. Figure 5.8 shows the block diagram of CO formulation.  
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Figure 5.8. CO formulation 
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Table 5.11. Comparison of design results (B737-800) 

Design Variable 
B737-

800 

Case 1 

(25) 

Case 2 

(18) 

Case 3 

(13) 

Case 4 

(9) 

Wing 

geometry 

BW (ft) 111.52 112.30 111.48 111.53 - 

ARW 8.73 8.73 8.73 - - 

TRW 0.3 0.3 - - - 

CRoot_W (ft) 17.29 20.0 20.0 20.0 20.0 

ΛLE_W (deg) 25.02 25.02 - - - 

SW (ft2) 1345.5 1345.5 1345.4 1344.8 1345.5 

ScsW (ft2) 259.95 280.0 - - - 

Horizontal 

tail 

geometry 

BH (ft) 47.068 47.08 47.07 47.06 - 

ARH 5.88 5.0 5.0 5.0 5.0 

TRH 0.226 0.226 - - - 

CRoot_H (ft) 25.85 25.85 25.80 25.84 - 

ΛLE_H (deg) 34 34 - - - 

SH (ft2) 353.06 353.05 353.06 353.03 353.07 

ScsH (ft2) 80.95 80.94 80.95 - - 

Vertical 

tail 

geometry 

BV (ft) 25.49 25.43 25.46 25.44 25.44 

ARV 2.08 2.08 - - - 

TRV 0.23 0.23 0.23 0.24 0.23 

CRoot_V (ft) 18.99 19.0 18.92 - - 

ΛLE_V (deg) 40 40 - - - 

SV (ft2) 284.17 284.16 284.17 - - 

ScsV (ft2) 67.08 67.09 67.03 - - 

Fuselage 

geometry 

Lf (ft) 124.71 123.97 123.97 123.97 123.97 

LT (ft) 55.348 55.35 55.35 55.35 55.35 

Engine 
T (lbf) 27,300 27,300 27,300 27,300 27,300 

Wf (lb) 19,500 19,500 19,500 19,500 - 

Cruise 

range 
R (NM) 1,990 1,960 1,920 1,844 2,168 

Error (%) - 1.51% 3.22% 7.33% 8.96% 
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Table 5.12. Comparison of design results (B737-900) 

Design Variable 
B737-

900 
CO  RBDO PBDO 

Wing 

geometry 

BW (ft) 111.52 114.82 112.28 111.95 

ARW 8.73 8.73 8.73 8.73 

TRW 0.3 - - - 

CRoot_W (ft) 17.29 20.0 20.0 20.0 

ΛLE_W (deg) 25.02 - - - 

SW (ft2) 1345.5 1348.2 1347.0 1345.8 

ScsW (ft2) 259.95 - - - 

Horizontal 

tail 

geometry 

BH (ft) 47.068 46.87 46.87 46.87 

ARH 5.88 5.0 5.0 5.0 

TRH 0.226 - - - 

CRoot_H (ft) 25.85 25.86 25.86 25.85 

ΛLE_H (deg) 34 - - - 

SH (ft2) 353.06 353.02 353.04 353.07 

ScsH (ft2) 80.95 80.94 80.95 80.95 

Vertical 

tail 

geometry 

BV (ft) 25.49 25.46 25.47 25.47 

ARV 2.08 - - - 

TRV 0.23 0.24 0.24 0.23 

CRoot_V (ft) 18.99 18.92 18.96 18.98 

ΛLE_V (deg) 40 - - - 

SV (ft2) 284.17 284.17 284.17 284.17 

ScsV (ft2) 67.08 67.03 67.06 67.09 

Fuselage 

geometry 

Lf (ft) 133.40 134.01 134.01 134.01 

LT (ft) 60.99 58.53 58.53 58.53 

Engine 
T (lbf) 27,300 27,300 27,300 27,300 

Wf (lb) 25,700 25,700 25,700 25,700 

Cruise 

range 
R (NM) 2,060 2,130 2,108 2,084 

Error (%) - 3.40% 3.33% 1.17% 
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(a) B737-800 (b) Case 1 (c) Case 2 (d) Case 3 (e) Case 4 

Figure 5.9. Comparison of aircraft design result with B737-800 

 

         

(a) B737-900 (b) CO result (c) RBDO result (d) PBDO result 

Figure 5.10. Comparison of aircraft design result with B737-900 

 

Table 5.11 shows comparison of design results with actual B737-800 data. Case 2 shows 

the similar performance characteristics while using the reduced number of design variables. From 

these results, eighteen design variables were implemented for the aircraft derivative designs that 

were comparable with B737-900. The system objective function was designed to maximize cruise 

range while considering the objective and the constraints of the each discipline.  

Figure 5.9 and Figure 5.10 show the aircraft configuration of each case. Each case in Figure 

5.9 had different number of design variables and Case 4 had similar shape with B737-300, the 

baseline configuration of the derivative design. The aircraft configurations in Figure 5.10 had the 

same number of the design variables. In Table 5.12, the performance of B737-900 was compared 

with the results of deterministic optimization, RBDO, and PBDO with the selected design variables 
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and these results showed small errors. RBDO and PBDO results indicated smaller cruise range 

than the deterministic optimization as CO result. These results fall in the feasible region when 

constraints were adjusted to consider uncertainty while satisfying the target reliability index level. 

The accuracy of each discipline was not same since the aerodynamic discipline shows larger error 

when dealing with bigger aircraft and the information for uncertain parameter was smaller than 

other disciplines. Therefore, RBDO result cannot guarantee accuracy in the optimization result 

since its accuracy depends on the accuracy of the uncertainty distribution even though it showed 

the better cruise range than PBDO result.  

 

 

 

5.6  Results and discussion  

 

RBDO with CO and PBDO with CO methods of ADDOPT were performed on the aircraft 

derivative design problem. The comparison between the actual B737-800 characteristics and the 

derivative design based off the B737-300 was used to evaluate the ADDOPT process. Then the 

B737-900 was selected as the comparable target of the derivative design. Uncertainty considered 

in the analysis methods depended on statistical or simplified analytical equations. The comparison 

between the predicted performance and the observed performance taken from the aircraft from the 

data base was used to define the error terms.  

The deterministic result was better compared with B737-900, but the design results were 

closer to the constraint boundaries. Enforcing the target reliability indices moved the optimum 

result into the feasible region of the design space via the implementation of RBDO and PBDO. 



 

104 

 

The accuracy of uncertainty in the analysis module varied because of the lack of information. For 

this reason, the accuracy of RBDO result was not be guaranteed, the aerodynamic analysis module 

had relatively low accuracy regarding uncertain parameters. However, PBDO result can be 

guaranteed even though the analysis module had low accuracy. When the low fidelity analysis 

tools had insufficient data for uncertain parameters, PBDO method was more suitable than RBDO 

method. If the aerodynamic analysis module had more data in thrust required, the accuracy of 

RBDO result would increase. Otherwise, PBDO result will not improve even when the amount of 

information of uncertain parameter is increased. 
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Chapter 6 

Conclusion and Future Work 

 

 

 

6.1 Conclusion 

 

In this dissertation, an enhanced derivative design optimization process, ADDOPT was 

proposed. The expert system as well as sensitivity analysis method of ADDOPT process was 

applied to select the design variables for the derivative design. The expert system derived the 

feasible list of the design variable and its boundary to increase accuracy and efficiency of GSA 

since it depends on the range of design variables. GSA method identifies the necessary design 

variables for the derivative design. The example on Chapter 3 showed the selection of the design 

variables from the sensitivity indices will be applicable for the derivative design. The 18 bar truss 

optimization evaluated the accuracy of the implemented eFAST module. It showed a small error 
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when the number of design variables was reduced. ADDOPT process was helpful for decreasing 

the redesign cost for the developing derivatives of a baseline product by reducing boundary and 

number of design variables.  

Furthermore, the design optimization under uncertainty methods was considered in 

ADDOPT process to yield the conservative design. RBDO and PBDO methods were proposed to 

obtain the reliable results with uncertainty. RBDO method operated the PDF for uncertain 

parameters when it had sufficient information for it. However, it was difficult to obtain sufficient 

information to simulate uncertain parameters on analysis model in general engineering problems. 

From this reason, PBDO method was proposed. PBDO method implemented the fuzzy input for 

uncertainty and was useful to simulate uncertainty with insufficient data.  

For the wing box conceptual design case on Chapter 4, eFAST method reduced the number 

of design variables, and RBDO with CO and PBDO with CO methods improved the reliability of 

result when uncertainty of the approximation method was considered. The error between FEM and 

RSM was performed as uncertain parameter and it was applied to the structural discipline. RBDO 

and PBDO methods cannot provide the global optimum result, but these methods prevented 

violation of constraints when uncertainty was considered. The result of wing box conceptual design 

had less iteration number with the reduced number of design variables while it accomplished the 

targeted probability. 

ADDOPT process was implemented to the aircraft derivative design problem on Chapter 5 

either. It performed to compare the actual B737-800 characteristics with the derivative design 

result that implemented baseline of B737-300. The number of design variable was selected from 

this comparing result which shows small error with reduced number of design variable. Then 

B737-900 was defined as the comparable target of the derivative of B737-300. The number of 
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design variable was fixed as previous case study with B737-800. In addition, uncertainty 

considered in the analysis methods depended on the statistical or the simplified analytical 

equations. The error terms were defined as the ratio of predicted performance to that of the 

observed performance taken from the aircraft database. The deterministic result had an 

improvement compared to B737-900, but the design result laid on and near the constraint 

boundaries. Enforcing target reliability indices moved the optimum result into the feasible region 

of the design space by implementing RBDO and PBDO. The accuracy of RBDO result was not 

guaranteed from this result since the aerodynamic analysis module which had the relatively small 

amount of data on the uncertain parameter. On the other hand, PBDO result can guarantee target 

probability even though the analysis module had insufficient amount of data for uncertain 

parameter. If the aerodynamic analysis module increases the data on its uncertain parameter, the 

accuracy of RBDO result will be increased too. Otherwise, PBDO result will be not improved 

when it increases the accuracy of the disciplines.  

ADDOPT process is applicable to other types of engineering products and may save 

considerable amount of time and effort for the derivative design. The sensitivity analysis result can 

be used for not only RSM and the low fidelity analysis tools but also the high fidelity analysis 

tools such as FEM and CFD. The number of design variable has a significant effect on computation 

time of FEM and CFD. From this fact, ADDOT process is useful on the conceptual design where 

it uses high fidelity analysis tools with reduced number of design variable while fixing less 

effective variables. Moreover, RBDO and PBDO for uncertainty from the low fidelity model 

improved the probability of design optimization result. In actual engineering problems, the number 

of cases can be insufficient from the experiment or the high fidelity analysis to derive the 

approximation model. The developed method as RBDO with CO and PBDO with CO are useful 
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to consider the error of the approximation models or the low fidelity analysis tools. From such 

cases, the developed design procedure that reduces dimensionality and considered uncertainty is 

useful for the conceptual design level using the high fidelity analysis tools to increase the accuracy 

of result.  

In the future, the desirable use of tools for the each design problem should be tested and 

specified to extend the application of developed process. Moreover, flexible process should be 

established with uncertainty consideration to satisfy various customer needs. Following sections 

are showing future works of this research. 

 

 

 

 

6.2 Future work 

 

6.2.1. Uncertainty  

 

The error of low fidelity analysis tool and approximation model was considered as 

uncertain parameters in this dissertation. However, many types of uncertainty emerged during each 

design stage as described on Chapter 2. The various types of uncertain parameters can be 

considered on various types of engineering design problems. The next step will analyze and 

simulate other types of uncertainty for the derivative design. For example, an operation 

environment of engineering products and an application of new technology can be handled as 

epistemic uncertainty since it does not have enough data. In addition, a material property and a 
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manufacturing tolerance can handled as aleatory uncertainty since these parameters can have 

enough data to simulate uncertain parameter. The future work includes analyzing the 

characteristics of uncertain parameter. Attention will be also paid on uncertainty based design 

optimization methods to find suitable method for uncertain parameter. When it uses suitable 

method for uncertain factor in design problem, the proposed design process can be utilized in 

widespread field to avoid unexpected response by considering uncertainty with optimization. 

 

 

 

6.2.2. High fidelity analysis 

 

Computation time of high fidelity analysis methods such as CFD and FEM is depended on 

the number of design variables. From this fact, ADDOPT process is more useful to a problem that 

implements high fidelity analysis tools. In this dissertation, the wing box design problem utilize 

the high fidelity analysis tool for the structural analysis by using RSM method. On the other hand, 

the aircraft conceptual design problem used the low fidelity analysis tools with simple design 

variables, and the error of RSM was considered as uncertain parameter. The extended aircraft 

design problem with the high fidelity analysis methods resulted as the component weight and the 

drag prediction can give more reasonable results for the aircraft conceptual design. Not only the 

aircraft design but also an engineering product design problem is eligible application of ADDOPT 

process. A part of engineering product needs upgrade when requirements are changed or 

disadvantages of previous configuration are discovered. ADDOPT process can select necessary 

design variables for upgrade, and it reduces computation time and effort for redesign while keeping 



 

110 

 

reasonable accuracy. 

 

 

6.2.3. Certification issue 

 

The derivative design gives advantages on manufacturing by sharing parts and fabrication 

process with a baseline aircraft. However, manufacturer should consider the certification issue 

when they changes design of an aircraft. The certification issues were not considered in this 

dissertation on the derivative design. The derivative design with the minimum additional 

certification process is the additional work to enhance ADDOPT process. The certification process 

of the baseline aircraft should be weighed which criteria are important and which part can be an 

issue for the derivative design.  

Next practical application of ADDOPT process is the derivative design of Found Aircraft 

Expedition 350. Found Aircraft is a bush light aircraft manufacturer in Ontario, Canada. Found 

Aircraft Expedition 350 was developed from basic FBA-2 for practice and personal use. The 

baseline aircraft was manufactured on 1961 to endure and thrive in the tough conditions of North 

America’s undeveloped northern regions for operations on tundra tires, floats and skis. Expedition 

350 FM2C3 implemented Lycoming IO-580-B1A engine. This aircraft was FAA type certified in 

2008. Found Aircraft developed FM2C3T that used Lycoming TIO-540-AH1A, turbo charger 

engine to enhance the performance. The geometry of aircraft was not changed so a few certification 

processes on specific conditions were neglected. The stall speed at power idle stall case did not 

changed, therefore this test was neglected. In addition, power on stall test at less than 10,000 ft 

was completed by spot check since it had small power difference. Generally, the certification 
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process of the derivative aircraft is depended on the amount of change from baseline aircraft as 

well as its impact on performance and safety. From this fact, the identification of important design 

variables for new requirements is essential work for derivative design with minimum certification 

process. The derivative design for Expedition 350 can evaluate ADDOPT process by using actual 

performance data for certification as well as connection with certification expert. The objective of 

the next application is minimizing the certification process while enhancing and optimizing 

performance of derivative aircraft design.   

 

 

6.2.3. Aircraft derivative design 

 

In this dissertation, derivative design of civil jet aircraft was considered. Many types of 

derivative are considered in the aerospace industry. Military air vehicle can be modified to be used 

for civil purpose and vice versa. In addition, UAVs can be developed as a derivative of light aircraft. 

These types of derivatives are widely required in the market to save the development and 

manufacturing cost. The next application of ADDOPT process is UAV design based on 2 seat 

Light Sports Aircraft (LSA). The performance characteristics of 2 seat LSA such as endurance and 

cruise range are important features for UAV. The application of UAV will be derived based on the 

performance characteristics of 2 seat LSA. Design requirements of UAV will be also analyzed 

based on domestic and international market survey with performance and specification survey on 

competitive UAVs. Operation scenarios of UAV will be generated for the design requirements. 

Furthermore, required characteristics and certification process of 2 seat LSA and UAV will be 

compared to find differences. The design objective function and constraints will be studied to 
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define design variables and uncertainty parameters for UAV design. GSA method will be applied 

to identify important design variables for new objectives and constraints for UAV. Uncertainty 

parameters for UAV design will be studied by considering analysis tools, manufacturing and 

operating environment. ADDOPT process can reduce the whole design schedule, manufacturing 

cost and operation cost from commonality.  
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Finite Element Analysis Results  

of Wing Box 
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Table A.1. Wing box analysis case 

Case x1 x2 x3 x4 x5 x6 x7 x8 x9 
FA 

(A) 

RSM 

(B) 

Error 

(B/A

) 

1 0.0040  0.0161  0.0215  0.0038  0.0082  0.0166  0.0239  10.8710  8.1060  0.6932  0.6908  1.0035  

2 0.0034  0.0225  0.0185  0.0041  0.0051  0.0256  0.0269  7.5370  8.4530  0.1344  0.1603  0.8386  

3 0.0024  0.0209  0.0234  0.0040  0.0082  0.0208  0.0209  8.2970  6.4690  0.4105  0.3751  1.0943  

4 0.0041  0.0193  0.0179  0.0049  0.0063  0.0214  0.0258  8.9510  7.4480  0.3827  0.3746  1.0216  

5 0.0031  0.0240  0.0172  0.0043  0.0052  0.0245  0.0250  11.0200  9.9730  0.3661  0.3875  0.9447  

6 0.0036  0.0260  0.0227  0.0041  0.0080  0.0269  0.0184  9.1260  8.2810  0.3605  0.3665  0.9836  

7 0.0024  0.0255  0.0145  0.0049  0.0070  0.0188  0.0192  7.8370  7.2560  0.3255  0.3242  1.0041  

8 0.0028  0.0232  0.0151  0.0047  0.0070  0.0161  0.0265  8.5610  9.2880  0.3074  0.3133  0.9813  

9 0.0030  0.0166  0.0162  0.0042  0.0075  0.0146  0.0171  7.0460  7.1140  0.2994  0.3230  0.9268  

10 0.0029  0.0202  0.0252  0.0040  0.0058  0.0146  0.0246  12.9450  8.2070  1.2049  1.2342  0.9763  

11 0.0037  0.0231  0.0257  0.0048  0.0060  0.0151  0.0268  11.7000  8.4380  0.8635  0.8565  1.0082  

12 0.0025  0.0260  0.0218  0.0042  0.0076  0.0164  0.0159  10.5500  10.0300  0.4677  0.4928  0.9490  

13 0.0025  0.0186  0.0262  0.0036  0.0080  0.0270  0.0205  11.5160  6.1230  1.0519  1.0681  0.9848  

14 0.0039  0.0251  0.0158  0.0054  0.0058  0.0188  0.0270  12.2450  6.3900  1.3212  1.3626  0.9696  

15 0.0028  0.0165  0.0184  0.0061  0.0074  0.0189  0.0268  8.9430  9.6300  0.2908  0.2819  1.0316  

16 0.0039  0.0244  0.0234  0.0055  0.0091  0.0225  0.0174  7.8610  6.7060  0.3858  0.3820  1.0101  

17 0.0040  0.0202  0.0174  0.0035  0.0052  0.0254  0.0154  10.4530  10.5730  0.4178  0.4341  0.9626  

18 0.0041  0.0164  0.0198  0.0047  0.0050  0.0259  0.0271  8.9420  6.2960  0.5500  0.5226  1.0525  

19 0.0035  0.0243  0.0162  0.0059  0.0074  0.0215  0.0260  7.3770  6.5150  0.2776  0.2849  0.9744  

20 0.0043  0.0212  0.0260  0.0049  0.0074  0.0193  0.0184  8.1220  7.3890  0.3435  0.3218  1.0673  

21 0.0038  0.0151  0.0178  0.0039  0.0080  0.0156  0.0168  12.1140  7.9300  1.1014  1.0816  1.0183  

22 0.0031  0.0190  0.0219  0.0051  0.0068  0.0255  0.0200  9.9210  8.8490  0.3776  0.3725  1.0136  

23 0.0029  0.0257  0.0242  0.0036  0.0063  0.0182  0.0195  7.9360  9.4190  0.1909  0.2225  0.8578  

24 0.0033  0.0229  0.0249  0.0045  0.0083  0.0265  0.0233  10.6200  9.8990  0.3079  0.3009  1.0232  

25 0.0025  0.0242  0.0248  0.0038  0.0081  0.0192  0.0171  12.0120  7.9180  0.9265  0.9047  1.0241  

26 0.0027  0.0247  0.0157  0.0045  0.0052  0.0160  0.0266  7.6780  10.6070  0.2423  0.1993  1.2157  

27 0.0031  0.0232  0.0236  0.0051  0.0058  0.0252  0.0222  8.2850  8.2380  0.2148  0.2192  0.9800  

28 0.0033  0.0255  0.0190  0.0046  0.0069  0.0222  0.0153  7.6950  10.1440  0.2185  0.2302  0.9492  

29 0.0038  0.0228  0.0208  0.0055  0.0060  0.0163  0.0190  10.5540  9.7280  0.4770  0.4921  0.9693  

30 0.0025  0.0186  0.0262  0.0036  0.0080  0.0270  0.0205  11.5160  6.1230  1.0519  1.0681  0.9848  

31 0.0041  0.0173  0.0161  0.0046  0.0075  0.0187  0.0276  9.2010  9.5160  0.3017  0.3006  1.0036  

32 0.0028  0.0190  0.0243  0.0059  0.0061  0.0242  0.0268  12.5090  10.6320  0.4654  0.4794  0.9708  

33 0.0031  0.0255  0.0151  0.0037  0.0088  0.0165  0.0185  11.1030  8.7570  0.6753  0.6808  0.9919  

34 0.0039  0.0237  0.0171  0.0049  0.0089  0.0186  0.0158  7.0330  8.0650  0.2178  0.2549  0.8544  

35 0.0027  0.0193  0.0173  0.0039  0.0076  0.0254  0.0159  10.3860  6.4770  0.9005  0.9085  0.9912  

36 0.0040  0.0174  0.0219  0.0045  0.0076  0.0177  0.0198  10.0400  9.1690  0.4124  0.4183  0.9858  

37 0.0031  0.0207  0.0250  0.0033  0.0065  0.0153  0.0213  12.2180  7.9540  1.0662  1.0734  0.9933  

38 0.0033  0.0214  0.0148  0.0043  0.0056  0.0221  0.0239  7.6240  5.9500  0.3978  0.4014  0.9911  

39 0.0024  0.0187  0.0165  0.0054  0.0053  0.0178  0.0163  7.9890  7.5220  0.3395  0.3559  0.9539  

40 0.0032  0.0230  0.0201  0.0038  0.0070  0.0193  0.0249  12.0690  7.6650  0.8974  0.8315  1.0792  

41 0.0040  0.0165  0.0209  0.0059  0.0089  0.0202  0.0264  11.0010  9.3680  0.4804  0.5030  0.9551  

42 0.0038  0.0258  0.0149  0.0039  0.0079  0.0251  0.0189  9.9640  10.9810  0.2972  0.2906  1.0226  

43 0.0039  0.0173  0.0229  0.0058  0.0071  0.0205  0.0203  11.2790  9.0830  0.5827  0.5558  1.0483  

44 0.0038  0.0255  0.0229  0.0041  0.0059  0.0209  0.0267  7.7630  7.3330  0.2403  0.2508  0.9582  

45 0.0025  0.0206  0.0153  0.0048  0.0064  0.0226  0.0184  9.6380  6.7570  0.6623  0.6575  1.0073  

46 0.0030  0.0168  0.0190  0.0044  0.0064  0.0248  0.0203  9.4990  9.7090  0.2824  0.3154  0.8953  

47 0.0040  0.0220  0.0187  0.0037  0.0083  0.0191  0.0268  8.3430  9.7150  0.1992  0.2097  0.9501  

48 0.0027  0.0249  0.0256  0.0059  0.0081  0.0255  0.0191  9.2350  6.9350  0.4946  0.4767  1.0376  

49 0.0039  0.0218  0.0184  0.0039  0.0088  0.0167  0.0165  12.8470  7.3790  1.3071  1.3146  0.9943  

50 0.0033  0.0196  0.0262  0.0060  0.0068  0.0258  0.0271  12.6660  9.5020  0.5745  0.5740  1.0008  
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Table A.1. Wing box analysis case (cont.) 

 

Case x1 x2 x3 x4 x5 x6 x7 x8 x9 
FA 

(A) 

RSM 

(B) 

Error 

(B/A) 

51 0.0034  0.0258  0.0177  0.0053  0.0052  0.0242  0.0228  11.9890  10.6150  0.4537  0.4434  1.0233  

52 0.0037  0.0226  0.0214  0.0058  0.0078  0.0253  0.0160  7.0600  8.5490  0.2574  0.2187  1.1771  

53 0.0035  0.0236  0.0169  0.0054  0.0069  0.0170  0.0226  10.5870  7.6350  0.7038  0.6968  1.0100  

54 0.0027  0.0260  0.0154  0.0044  0.0084  0.0160  0.0220  7.9900  9.6220  0.2674  0.2627  1.0179  

55 0.0034  0.0175  0.0237  0.0039  0.0057  0.0149  0.0213  11.9290  6.1260  1.5024  1.6058  0.9356  

56 0.0037  0.0210  0.0170  0.0054  0.0089  0.0217  0.0182  8.8240  7.2210  0.4578  0.4248  1.0777  

57 0.0028  0.0234  0.0187  0.0060  0.0071  0.0193  0.0209  8.9450  10.0110  0.2271  0.2441  0.9302  

58 0.0026  0.0208  0.0213  0.0060  0.0083  0.0214  0.0270  7.0750  8.5630  0.1370  0.1472  0.9307  

59 0.0026  0.0163  0.0184  0.0060  0.0068  0.0221  0.0213  10.0660  8.4640  0.4670  0.4749  0.9833  

60 0.0039  0.0184  0.0234  0.0052  0.0064  0.0224  0.0189  7.0490  8.0770  0.1553  0.1860  0.8351  

61 0.0032  0.0213  0.0195  0.0057  0.0078  0.0208  0.0154  7.3440  6.7570  0.3457  0.3728  0.9272  

62 0.0026  0.0154  0.0260  0.0043  0.0060  0.0234  0.0164  8.6570  6.3260  0.5873  0.5810  1.0109  

63 0.0032  0.0244  0.0199  0.0053  0.0052  0.0217  0.0185  12.6040  5.9760  1.5660  1.5341  1.0208  

64 0.0031  0.0264  0.0156  0.0033  0.0054  0.0231  0.0176  11.8380  9.2220  0.6661  0.6665  0.9994  

65 0.0042  0.0266  0.0262  0.0053  0.0087  0.0243  0.0176  12.7750  7.5270  1.0737  1.0903  0.9848  

66 0.0030  0.0178  0.0145  0.0055  0.0066  0.0260  0.0233  7.0130  7.1680  0.2267  0.2211  1.0252  

67 0.0033  0.0196  0.0262  0.0060  0.0068  0.0258  0.0271  12.6660  9.5020  0.5745  0.5740  1.0008  

68 0.0028  0.0179  0.0249  0.0039  0.0090  0.0222  0.0214  9.1280  9.3720  0.2841  0.2818  1.0080  

69 0.0035  0.0153  0.0264  0.0038  0.0051  0.0149  0.0240  7.9020  6.1210  0.5570  0.5056  1.1017  

70 0.0042  0.0209  0.0174  0.0046  0.0067  0.0220  0.0187  12.3690  8.3120  0.8897  0.8371  1.0628  

71 0.0031  0.0234  0.0227  0.0040  0.0082  0.0174  0.0248  10.9270  8.6850  0.5666  0.5838  0.9705  

72 0.0035  0.0268  0.0153  0.0042  0.0052  0.0161  0.0161  9.2620  7.5220  0.6235  0.5781  1.0785  

73 0.0026  0.0250  0.0155  0.0036  0.0084  0.0197  0.0254  11.9060  9.1450  0.6416  0.6657  0.9637  

74 0.0032  0.0168  0.0226  0.0042  0.0071  0.0158  0.0154  9.5960  6.7230  0.7860  0.7314  1.0747  

75 0.0036  0.0172  0.0179  0.0048  0.0075  0.0154  0.0263  9.7250  6.6190  0.7874  0.7612  1.0344  

76 0.0038  0.0168  0.0235  0.0054  0.0062  0.0238  0.0267  9.0440  10.5060  0.2188  0.2293  0.9543  

77 0.0035  0.0236  0.0183  0.0055  0.0078  0.0173  0.0273  8.7560  10.8600  0.2846  0.2321  1.2260  

78 0.0032  0.0157  0.0153  0.0052  0.0051  0.0237  0.0164  11.3540  9.2670  0.6809  0.6335  1.0749  

79 0.0040  0.0247  0.0248  0.0048  0.0069  0.0229  0.0265  10.4480  10.8670  0.2759  0.2478  1.1134  

80 0.0024  0.0248  0.0173  0.0044  0.0061  0.0210  0.0174  10.4240  6.4840  0.8806  0.8613  1.0224  

81 0.0039  0.0184  0.0234  0.0052  0.0064  0.0224  0.0189  7.0490  8.0770  0.1553  0.1860  0.8351  

82 0.0033  0.0209  0.0202  0.0056  0.0049  0.0152  0.0154  12.6870  9.8660  0.8949  0.8578  1.0433  

83 0.0041  0.0239  0.0255  0.0036  0.0064  0.0260  0.0157  11.2540  9.7480  0.5736  0.5843  0.9818  

84 0.0031  0.0174  0.0246  0.0050  0.0066  0.0175  0.0216  10.4770  7.6100  0.6853  0.6441  1.0639  

85 0.0038  0.0175  0.0145  0.0038  0.0066  0.0236  0.0161  7.4720  10.6450  0.1997  0.1705  1.1714  

86 0.0035  0.0242  0.0161  0.0056  0.0057  0.0237  0.0228  11.6230  10.6100  0.4151  0.4364  0.9512  

87 0.0027  0.0153  0.0146  0.0051  0.0056  0.0194  0.0249  8.8680  6.9960  0.5269  0.5105  1.0322  

88 0.0027  0.0186  0.0209  0.0039  0.0060  0.0149  0.0234  8.4710  10.2110  0.2451  0.2775  0.8834  

89 0.0025  0.0251  0.0213  0.0033  0.0082  0.0234  0.0229  7.4740  7.6670  0.1767  0.1858  0.9513  

90 0.0034  0.0170  0.0226  0.0046  0.0091  0.0254  0.0155  11.6940  7.4270  0.9821  0.9928  0.9892  

91 0.0023  0.0172  0.0182  0.0043  0.0052  0.0169  0.0158  8.8220  7.3750  0.5069  0.4900  1.0344  

92 0.0043  0.0165  0.0180  0.0045  0.0051  0.0181  0.0155  12.2860  5.9670  1.7359  1.7619  0.9852  

93 0.0040  0.0223  0.0163  0.0041  0.0086  0.0198  0.0200  11.4880  10.8710  0.4021  0.4288  0.9377  

94 0.0028  0.0198  0.0205  0.0046  0.0070  0.0171  0.0182  8.4560  6.3050  0.5504  0.5261  1.0462  

95 0.0023  0.0268  0.0166  0.0038  0.0060  0.0198  0.0205  9.3410  8.5670  0.3567  0.3561  1.0017  

96 0.0031  0.0264  0.0156  0.0033  0.0054  0.0231  0.0176  11.8380  9.2220  0.6661  0.6665  0.9994  

97 0.0041  0.0208  0.0170  0.0042  0.0084  0.0244  0.0171  7.7780  9.5900  0.2144  0.2080  1.0306  

98 0.0027  0.0270  0.0221  0.0053  0.0083  0.0238  0.0161  8.4780  7.3580  0.4175  0.4445  0.9394  

99 0.0033  0.0196  0.0262  0.0060  0.0068  0.0258  0.0271  12.6660  9.5020  0.5745  0.5740  1.0008  

100 0.0030  0.0161  0.0188  0.0061  0.0062  0.0208  0.0248  10.8720  6.0430  1.0401  1.0626  0.9789  
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Table A.1. Wing box analysis case (cont.) 

 

 

 

Case x1 x2 x3 x4 x5 x6 x7 x8 x9 
FA 

(A) 

RSM 

(B) 

Error 

(B/A) 

101 0.0041  0.0184  0.0246  0.0041  0.0052  0.0192  0.0216  8.2420  9.5430  0.1949  0.2122  0.9186  

102 0.0035  0.0215  0.0246  0.0042  0.0071  0.0231  0.0225  9.2570  8.1160  0.3066  0.3186  0.9624  

103 0.0041  0.0202  0.0167  0.0058  0.0090  0.0222  0.0205  7.5480  6.7330  0.3239  0.2907  1.1143  

104 0.0035  0.0260  0.0213  0.0038  0.0084  0.0204  0.0220  12.8900  8.6620  0.8257  0.7716  1.0701  

105 0.0028  0.0190  0.0216  0.0041  0.0071  0.0208  0.0166  10.9320  7.1920  0.8527  0.8404  1.0146  

106 0.0037  0.0237  0.0169  0.0040  0.0081  0.0242  0.0202  10.1930  6.0020  0.8132  0.8452  0.9622  

107 0.0040  0.0239  0.0235  0.0050  0.0088  0.0210  0.0181  11.2430  8.3710  0.6442  0.6384  1.0091  

108 0.0036  0.0191  0.0202  0.0040  0.0086  0.0219  0.0232  8.4490  8.4240  0.2158  0.2630  0.8204  

109 0.0028  0.0184  0.0213  0.0048  0.0056  0.0258  0.0230  11.3790  7.1550  0.8191  0.7775  1.0535  

110 0.0031  0.0232  0.0236  0.0051  0.0058  0.0252  0.0222  8.2850  8.2380  0.2148  0.2192  0.9800  

111 0.0029  0.0210  0.0227  0.0051  0.0076  0.0198  0.0197  7.1140  10.8450  0.1098  0.1167  0.9412  

112 0.0027  0.0228  0.0159  0.0044  0.0085  0.0222  0.0233  10.7080  10.0390  0.3661  0.3906  0.9373  

113 0.0034  0.0208  0.0198  0.0047  0.0067  0.0240  0.0156  11.8410  9.2310  0.6838  0.7370  0.9279  

114 0.0035  0.0207  0.0186  0.0042  0.0084  0.0193  0.0199  10.8080  7.3390  0.7493  0.6842  1.0952  

115 0.0038  0.0235  0.0180  0.0055  0.0074  0.0174  0.0236  11.6490  10.8370  0.4531  0.4833  0.9375  

116 0.0027  0.0189  0.0266  0.0061  0.0056  0.0149  0.0204  9.7840  10.2280  0.3691  0.3961  0.9319  

117 0.0024  0.0256  0.0250  0.0053  0.0081  0.0197  0.0265  9.8030  6.7300  0.5681  0.5705  0.9959  

118 0.0027  0.0156  0.0225  0.0043  0.0066  0.0243  0.0194  8.7740  10.5190  0.2304  0.2410  0.9559  

119 0.0031  0.0264  0.0208  0.0042  0.0065  0.0166  0.0254  8.6850  9.8070  0.2688  0.2903  0.9260  

120 0.0039  0.0257  0.0244  0.0042  0.0089  0.0234  0.0179  12.0700  10.9330  0.4721  0.4977  0.9485  

121 0.0038  0.0190  0.0154  0.0053  0.0053  0.0195  0.0214  7.8780  8.8490  0.1986  0.2169  0.9156  

122 0.0038  0.0233  0.0156  0.0044  0.0061  0.0218  0.0177  10.8930  5.9470  1.1389  1.1764  0.9681  

123 0.0025  0.0156  0.0221  0.0045  0.0053  0.0169  0.0163  11.9140  5.9840  1.5618  1.6117  0.9690  

124 0.0036  0.0153  0.0222  0.0058  0.0073  0.0194  0.0205  9.5920  8.1390  0.4630  0.4860  0.9527  

125 0.0040  0.0178  0.0234  0.0046  0.0058  0.0158  0.0215  12.1360  8.1260  1.0254  0.9596  1.0686  

126 0.0036  0.0148  0.0245  0.0049  0.0086  0.0181  0.0267  12.3360  8.1950  0.9204  0.9779  0.9412  

127 0.0031  0.0193  0.0264  0.0037  0.0056  0.0231  0.0157  8.1410  10.8630  0.2402  0.2094  1.1473  

128 0.0034  0.0225  0.0150  0.0041  0.0058  0.0250  0.0177  7.5350  9.2790  0.1894  0.1998  0.9481  

129 0.0035  0.0150  0.0199  0.0046  0.0079  0.0194  0.0173  8.0270  10.0120  0.2064  0.2285  0.9035  

130 0.0032  0.0150  0.0238  0.0061  0.0082  0.0153  0.0266  12.3220  9.5420  0.8144  0.7759  1.0496  

131 0.0023  0.0214  0.0188  0.0055  0.0085  0.0147  0.0267  8.0290  7.8330  0.3951  0.3848  1.0267  

132 0.0034  0.0215  0.0189  0.0038  0.0089  0.0179  0.0249  10.6440  7.8860  0.6313  0.6175  1.0224  

133 0.0034  0.0175  0.0190  0.0034  0.0059  0.0229  0.0268  11.7370  6.6660  1.0211  1.0008  1.0202  

134 0.0038  0.0190  0.0154  0.0053  0.0053  0.0195  0.0214  7.8780  8.8490  0.1986  0.2169  0.9156  

135 0.0033  0.0215  0.0237  0.0033  0.0074  0.0255  0.0196  11.1990  8.6100  0.5508  0.5295  1.0401  

136 0.0040  0.0202  0.0174  0.0035  0.0052  0.0254  0.0154  10.4530  10.5730  0.4178  0.4341  0.9626  

137 0.0032  0.0236  0.0258  0.0051  0.0083  0.0205  0.0222  7.5490  7.9760  0.1736  0.2063  0.8414  

138 0.0034  0.0190  0.0184  0.0040  0.0078  0.0175  0.0241  7.3550  7.6210  0.2096  0.2468  0.8494  

139 0.0025  0.0188  0.0168  0.0049  0.0062  0.0196  0.0155  12.7540  9.3130  0.8867  0.9094  0.9750  

140 0.0040  0.0261  0.0174  0.0039  0.0081  0.0248  0.0202  7.2240  10.2510  0.1408  0.1325  1.0625  

141 0.0042  0.0262  0.0215  0.0041  0.0071  0.0160  0.0185  12.0440  8.6140  0.8785  0.8831  0.9948  

142 0.0038  0.0216  0.0178  0.0052  0.0089  0.0158  0.0220  9.6940  10.2540  0.3488  0.3736  0.9336  

143 0.0029  0.0236  0.0244  0.0043  0.0051  0.0236  0.0165  10.7100  7.4780  0.7718  0.7570  1.0196  

144 0.0030  0.0221  0.0268  0.0045  0.0077  0.0229  0.0270  11.2290  10.5030  0.3325  0.3295  1.0092  

145 0.0028  0.0237  0.0223  0.0054  0.0082  0.0263  0.0241  11.1060  8.9920  0.4097  0.3962  1.0341  

146 0.0032  0.0160  0.0261  0.0048  0.0053  0.0260  0.0265  9.8110  10.9640  0.2647  0.2633  1.0055  

147 0.0040  0.0166  0.0156  0.0039  0.0091  0.0179  0.0202  9.9100  10.2550  0.3535  0.3504  1.0088  

148 0.0025  0.0165  0.0227  0.0034  0.0086  0.0205  0.0207  12.8810  10.9760  0.6340  0.5997  1.0571  
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Table B.1. Light jet aircraft specifications for database  

 

  

Parameter 
CJ1 CJ2 CJ3 Bravo Encore 560 

Encore  

560XL 

Number of passenger 

(people) 
5 6 6 7 8 10 

Wing span (ft) 46.791 49 52.916 52.208 54.083 56.312 

Taper ratio 0.35 0.3 0.33    

Aspect ratio 9.1 9.4 9.5 8.4 9 8.4 

Tail span (ft) 18.5 20.791 20.75 19 21.5 21.5 

Fuselage length (ft) 42.583 47.667 52.167 47.208 48.854 51.792 

Fuselage height (ft) 13.77 13.896 15.104 15 15.188 17.375 

Wheel-base (ft) 15.354 18.333 20 18.5 13.292 21.896 

Cabin length (ft) 15.75 18.833 20.833 20.917 22.583 24.25 

Cabin max. height (ft) 4.75 4.75 4.75 4.688 4.708 5.688 

Cockpit length (ft) 11 13.75 13.833 15.583 17.25 18.667 

Wing area (ft2) 240 264 294.1 342.6 322.3 369.7 

Vertical tail area (ft2) 46.8 46.8 56.3 50.9 50.9 50.9 

Horizontal tail area (ft2) 60.7 70.7 70.68 69.8 84.8 84.8 

Operate empty weight (lb) 6670 7640 8260 8980 10120 12300 

Usable fuel weight (lb) 3220 3930 4710 4860 5440 6740 

Max take-off weight (lb) 10600 12375 13870 14800 16630 20000 

Payload weight (lb) 675 800 800    

Max. landing weight (lb) 9800 11500 12750 13500 15200 18700 

Zero fuel weight (lb)  9300 10510 11300 12600 15000 

Max. W/S  44.17 46.88 47.16 45.83 51.6 54.1 

Max. W/T  2.79 2.58 2.49 2.56 2.45 2.64 

Max Mach number 0.71 0.72 0.72 0.7 0.75 0.75 

Cruise Mach number 0.7 0.7 0.7 0.7 0.75 0.73 

Altitude (ft) 41000 45000 45000 43000 45000 45000 

Takeoff field length (ft) 3280 3420 3450  3490 3590 

Landing field length (ft) 2760 2980 3070  2770 28600 

Range (NM) 1248 1550 1771 1744 1178 1847 

Engine thrust (lb) 1900 2400 2780 2500 3400 3800 
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Table B.1. Light jet aircraft specifications for database (cont.) 

 

  

Parameter LearJet 

31A 

LearJet 

31A/ER 

LearJet 

40 

LearJet 

40XR 

LearJet 

45 

LearJet 

45XR 

Number of passenger 

(people) 
7 7 7 7 8 8 

Wing span (ft) 43.833 43.833 47.781 47.781 47.77 47.77 

Taper ratio       

Aspect ratio 7.2 7.2 7.3 7.3 7.3 7.3 

Tail span (ft) 14.708 14.708 16.87 16.87 17.2 17.2 

Fuselage length (ft) 48.667 48.667 55.56 55.56 58.417 58.417 

Fuselage height (ft) 12.25 12.25 14.13 14.13 14.083 14.083 

Wheel-base (ft)   25.792 25.792 25.813 25.813 

Cabin length (ft) 21.75 20.583 22.688 22.688 22.688 22.688 

Cabin max. height (ft) 4.25 4.25 4.9 4.9 4.917 4.917 

Cockpit length (ft) 17.083 15.917 17.6667 17.667 19.75 19.75 

Wing area (ft2) 264.5 264.5 311.6 311.6 311.6 311.6 

Vertical tail area (ft2) 38.4 38.4 52.89 52.89 49.82 49.82 

Horizontal tail area (ft2) 54 54 67.81 67.81 66.57 66.57 

Operate empty weight (lb) 10253 10253 12740 12740 12780 12939 

Usable fuel weight (lb) 2804 2826 5300 5300 6062 6062 

Max take-off weight (lb) 17000 17700 20350 20350 20500 21500 

Payload weight (lb) 1976 2400 2305 2305   

Max. landing weight (lb) 16000 16000 19200 19200 19200 19200 

Zero fuel weight (lb) 13500 13500 16000 16000 16000 16000 

Max. W/S  64.27 66.92 65.31 65.31 65.79 69 

Max. W/T  2.43 2.53 2.91 2.91 2.93 3.07 

Max Mach number 0.81 0.81 0.81 0.81 0.81 0.8 

Cruise Mach number 0.78 0.76 0.78 0.78 0.78 0.78 

Altitude (ft) 51000  51000 51000 51000 5100 

Takeoff field length (ft) 3490 3800 4285 4285 4350 5060 

Landing field length (ft) 2866 2866 2660 2660 2660 2660 

Range (NM) 1259 1488 1692 1692 2098 2098 

Engine thrust (lb) 3500 3500 3500 3500 3500 3500 
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Table B.1. Light jet aircraft specifications for database (cont.) 

 

 

 

Parameter 
BC 300 FJ-100 SJ30-2A SJ30-2B Premier Horizon 

Falcon 

50 

Number of passenger  

(people) 
8 7 6 6 6 8 9 

Wing span (ft) 63.833 36.667 42.333 42.333 44.5 61.75 61.875 

Taper ratio   0.21 0.21    

Aspect ratio  7.6 9.4 9.4 8 7.2 7.6 

Tail span (ft) 23.708 14.333 14.74 14.74 15.81 25.917 25.396 

Fuselage length (ft) 68.667 38.583 46.792 46.792 46 69.25 57.917 

Fuselage height (ft) 20.25 14.5 14.25 14.25 15.333 19.583 22.895 

Wheel-base (ft) 27.75 10.167 18.708 18.708 17.583 27.75 23.75 

Cabin length (ft) 28.583 13.875 17.583 17.583 18.667 25 23.5 

Cabin max. height (ft) 6.083 3.958 4.292 4.292 5.417 6 5.896 

Cockpit length (ft)        

Wing area (ft2) 522 178 190.7 190.7 247 531 504.1 

Vertical tail area (ft2)     51.5 25.87 105.7 

Horizontal tail area (ft2)     50 140 143.69 

Operate empty weight (lb) 22350 4200 7800 7800   21170 

Usable fuel weight (lb) 13700 2494 4950 4400 3670 14300 15520 

Max take-off weight (lb) 37500 7300 13500 12500 12500 37500 39700 

Payload weight (lb)       3770 

Max. landing weight (lb) 33750  12540 12500 11600 33500 35715 

Zero fuel weight (lb) 25350 5900 10000 10000 10000 25000 25570 

Max. W/S  71.84 41.01 70.79 65.55 50.61 70.62 78.75 

Max. W/T  2.88  2.93 2.72 2.72 2.72 3.58 

Max Mach number 0.82 0.71 0.8 0.8 0.8 0.84 0.86 

Cruise Mach number 0.82 0.7 0.78 0.78 0.8 0.82 0.8 

Altitude (ft) 45000 41000 49000 49000 41000  41000 

Takeoff field length (ft) 4950 1900 3993 3620 3795 4900 4890 

Landing field length (ft) 2600 1600 3420 2420 3170 2340 2185 

Range (NM) 3100 1550 2500 1840 1460 3400 3025 

Engine thrust (lb) 3800 1500 2300 2300 2300 6900 3700 
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Table C.1. Civil jet aircraft specifications for database  

 

  

Parameter A300-600 A310-200 A310-300 A320-200 A318 A319 

Wing Span (ft) 147.0752 143.992 143.992 111.8152 111.848 111.8152 

  AR 7.7 8.8 8.8 9.5 8.8 9.5 

  TR 0.384 0.26 0.26 0.301 0.26 0.301 

  Root chord (ft) 30.83  27.49  27.49  20.01  24.48  20.01  

  Swept back angle (deg) 30 28 28 25 25 25 

  Area (ft2) 2798.64  2357.32  2357.32  1317.51  1317.51  1317.51  

  Control surface area (ft2) 835.28  930.76  930.76  461.62  461.62  461.62  

H-tail Span (ft) 53.33  53.33  53.33  40.87  53.33  40.87  

  AR 4.31  4.31  4.31  4.58  4.74  4.58  

  TR 0.41  0.41  0.41  0.27  0.23  0.27  

  Root chord (ft) 18.15  21.09  21.09  12.41  12.41  12.41  

  Swept back angle (deg) 38 35 35 35 35 35 

  Area (ft2) 533.72  533.72  533.72  333.68  333.68  333.68  

  Control surface area (ft2) 206.67  206.67  206.67  192.68  192.68  192.68  

  H-T height (above fuse) 0.00  0.00  0.00  0.00  0.00  0.00  

V-tail Span (ft) 30.21  30.21  30.21  22.76  22.76  22.76  

  AR 1.71  1.71  1.71  1.71  1.71  1.71  

  TR 0.37  0.37  0.37  0.31  0.31  0.31  

  Root chord (ft) 26.01  26.01  26.01  17.19  17.19  17.19  

  Swept back angle (deg) 43 43 43 40 40 40 

  Area (ft2) 537.12  534.36  534.36  231.43  231.43  231.43  

  Control surface area (ft2) 146.07  146.07  146.07  75.42  75.42  75.42  

Fuselage Height (ft) 10.99  18.50  18.50  13.58  13.58  13.58  

  Width (ft) 18.50  18.50  18.50  12.92  12.92  12.92  

  Length (ft) 174.82  148.03  148.03  123.23  103.12  111.00  

  Crew (people) 3 7 7 7 5 5 

  Passenger (people)  375 280 280 180 136 156 

  
Tail length (ft,wing 1/4 
MAC~H-tail 1/4 MAC) 

80.33  67.50  67.50  53.98  54.18  65.09  

Engine Max. T @SL (lbf) 63,500  53,200  59,000  27,000  23,300  27,000  

  Ttot/Wo 0.3492  0.3400  0.3569  0.3333  0.3109  0.3245  

  Eng. W (lb) 9047 9047 9155 5250 5250 5250 

  
Nacelle position(ft, 

from cockpit) 
94.56  71.32  71.32  59.96  55.98  66.96  

  Nacelle width (ft) 8.52  9.10  9.10  7.73  7.73  7.73  

  Nacelle length (ft) 22.53  24.30  24.30  18.29  18.29  18.29  

  Duct length (ft) 1.10  1.10  1.10  1.10  1.10  1.10  

  Nacelle area (ft2) 151.93  169.21  169.21  121.00  121.00  121.00  

Mass Gross mass (lb) 363,660 312,968 330,600 161,994 149,872 166,402 

  Empty mass (lb) 198,492 176,629 183,300 93,450 86,617 89,923 

  Fuel mass (lb) 109,728 97,196 108,082 42,226 52,587 41,290 

  Wf/Wo 0.3017  0.3106  0.3269  0.2607  0.3509  0.2481  

  Max. payload (lb) 95,402 72,419 71,383 41,067 30,788 36,714 

Performance Altitude (ft) 38,000 38,000 38,000 36,998 40,016 40,016 

  Range (NM) 3600 3,650 5,200 2,592 1,462 1,813 

  Cruise speed (M) 0.78 0.80 0.80 0.78 0.78 0.78 

  Max. M 0.84 0.84 0.84 0.82 0.82 0.82 

  Stall speed (kts) 115.5 112.08 112.08 107.5 107.5 107.5 
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Table C.1. Civil jet aircraft specifications for database (cont.) 

 
 
 

Parameter A321-100 A321-200 A330-200 A330-300 

Wing Span (ft) 111.8152 111.8152 197.784 197.784 

  AR 9.5 9.5 10.1 10.1 

  TR 0.301 0.301 0.24 0.24 

  Root chord (ft) 20.01  20.01  34.77  34.77  

  Swept back angle (deg) 25 25 32 32 

  Area (ft2) 1317.51  1317.51  3892.26  3892.26  

  Control surface area (ft2) 461.62  461.62  945.22  945.22  

H-tail Span (ft) 40.87  40.87  63.50  63.50  

  AR 4.58  4.58  4.48  4.48  

  TR 0.27  0.27  0.43  0.43  

  Root chord (ft) 12.41  12.41  21.91  21.91  

  Swept back angle (deg) 35 35 34 34 

  Area (ft2) 333.68  333.68  640.71  640.71  

  Control surface area (ft2) 192.68  192.68  185.80  185.80  

  H-T height (above fuse) 0.00  0.00  0.00  0.00  

V-tail Span (ft) 22.76  22.76  31.82  31.82  

  AR 1.71  1.71  1.68  1.68  

  TR 0.31  0.31  0.40  0.40  

  Root chord (ft) 17.19  17.19  26.64  26.64  

  Swept back angle (deg) 40 40 44 44 

  Area (ft2) 231.43  231.43  604.04  604.04  

  Control surface area (ft2) 75.42  75.42  180.41  180.41  

Fuselage Height (ft) 13.58  13.58  18.50  18.50  

  Width (ft) 12.92  12.92  18.50  18.50  

  Length (ft) 145.99  145.99  193.52  208.54  

  Crew (people) 7 7 7 7 

  Passenger (people)  220 220 380 440 

  
Tail length (ft,wing 1/4 
MAC~H-tail 1/4 MAC) 

64.88  64.88  84.91  95.17  

Engine Max. T @SL (lbf) 33,000  33,000  72,000  72,000  

  Ttot/Wo 0.3365  0.3365  0.2841  0.2804  

  Eng. W (lb) 4995 4995 9000 9000 

  
Nacelle position(ft, 

from cockpit) 
90.12  90.12  114.70  134.06  

  Nacelle width (ft) 7.73  7.73  9.06  10.02  

  Nacelle length (ft) 18.29  18.29  22.64  25.47  

  Duct length (ft) 1.10  1.10  1.10  1.10  

  Nacelle area (ft2) 121.00  121.00  105.55  199.08  

Mass Gross mass (lb) 196,156 196,156 506,920 513,532 

  Empty mass (lb) 106,894 106,894 265,582 274,398 

  Fuel mass (lb) 41,788 41,788 240,645 168,741 

  Wf/Wo 0.2130  0.2130  0.4747  0.3286  

  Max. payload (lb) 50,247 55,539 104,690 106,894 

Performance Altitude (ft) 39,000 39,000 36,080 36,080 

  Range (NM) 2,138 2,700 6,650 5,600 

  Cruise speed (M) 0.78 0.78 0.82 0.82 

  Max. M 0.82 0.82 0.86 0.86 

  Stall speed (kts) 107.5 107.5 110.83 110.833 
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Table C.1. Civil jet aircraft specifications for database (cont.) 

 

 
  

Parameter A340-200 A340-300 A340-500 A350-900 

Wing Span (ft) 197.784 197.784 208.116 212.3472 

  AR 10.1 10.1 9.3 9.01826667 

  TR 0.24 0.24 0.22 0.16 

  Root chord (ft) 34.77  34.77  40.02  38.94  

  Swept back angle (deg) 32 32 32 36 

  Area (ft2) 3892.26  3892.26  4729.70  5000.00  

  Control surface area (ft2) 945.22  945.22  1232.93  1285.56  

H-tail Span (ft) 63.50  63.50  75.31  63.07  

  AR 4.48  4.48  5.26  8.70  

  TR 0.43  0.43  0.33  0.39  

  Root chord (ft) 21.91  21.91  21.00  20.54  

  Swept back angle (deg) 34 34 35 37 

  Area (ft2) 640.71  640.71  1,077.33  457.11  

  Control surface area (ft2) 185.80  185.80  306.40  110.35  

  H-T height (above fuse) 0.00  0.00  0.00  0.00  

V-tail Span (ft) 31.82  31.82  33.46  30.90  

  AR 1.68  1.68  1.56  1.88  

  TR 0.40  0.40  0.28  0.41  

  Root chord (ft) 26.64  26.64  36.06  24.49  

  Swept back angle (deg) 44 44 48 44 

  Area (ft2) 604.04  604.04  717.80  507.03  

  Control surface area (ft2) 180.41  180.41  0.00  172.87  

Fuselage Height (ft) 18.50  18.50  18.50  19.98  

  Width (ft) 18.50  18.50  18.50  19.55  

  Length (ft) 194.90  208.87  221.43  214.09  

  Crew (people)     

  Passenger (people)  375 375 375 475 

  
Tail length (ft,wing 1/4 
MAC~H-tail 1/4 MAC) 

92.02   113.90  97.07  

Engine Max. T @SL (lbf) 34,000  34,000  58,000  84,000  

  Ttot/Wo 0.2434  0.2434  0.2860  0.2844  

  Eng. W (lb) 4670 4670 10660 10660 

  
Nacelle position(ft, 

from cockpit) 
293.76  293.76  136.34  127.42  

  Nacelle width (ft) 7.52  7.52  11.92  13.11  

  Nacelle length (ft) 19.66  19.66  24.29  25.34  

  Duct length (ft) 1.10  1.10  1.10  1.10  

  Nacelle area (ft2) 133.98  133.98  196.90  244.25  

Mass Gross mass (lb) 558,714 558,714 811,072 590,672 

  Empty mass (lb) 285,418 286,520 376,664 255,003 

  Fuel mass (lb) 243,326 243,326 371,651 238,759 

  Wf/Wo 0.4355  0.4355  0.4582  0.4042  

  Max. payload (lb) 100,348 112,184 119,236 167,550 

Performance Altitude (ft) 36,080 36,080 36,080 39,983 

  Range (NM) 8,000 7,200 8,650 8,100 

  Cruise speed (M) 0.82 0.82 0.83 0.85 

  Max. M 0.86 0.86 0.86 0.89 

  Stall speed (kts) 123.33 123.33 127.5  
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Table C.1. Civil jet aircraft specifications for database (cont.) 

 
  

Parameter B737-100 B737-200 B737-300 B737-400 B737-500 

Wing Span (ft) 93 93 93 94.75 94.75 

  AR 8.83 8.83 9.16 9.16 9.16 

  TR 0.266 0.266 0.24 0.24 0.24 

  Root chord (ft) 24.02  24.02  24.02  24.02  24.02  

  Swept back angle (deg) 28 28 28 28 28 

  Area (ft2) 1097.91  1097.91  1134.52  1134.52  1134.52  

  Control surface area (ft2) 318.39  318.39  329.01  329.01  329.01  

H-tail Span (ft) 36.00  36.00  41.67  41.67  41.67  

  AR 4.15  4.15  4.04  4.04  4.04  

  TR 0.26  0.26  0.26  0.26  0.26  

  Root chord (ft) 13.42  13.42  12.86  14.22  14.22  

  Swept back angle (deg) 34 34 34 34 34 

  Area (ft2) 312.05  312.05  337.99  337.99  337.99  

  Control surface area (ft2) 70.50  70.50  70.50  70.50  70.50  

  H-T height (above fuse) 0.00  0.00  0.00  0.00  0.00  

V-tail Span (ft) 20.18  20.18  20.18  20.18  20.18  

  AR 1.64  1.64  1.81  1.81  1.81  

  TR 0.29  0.29  0.31  0.31  0.31  

  Root chord (ft) 18.99  18.99  16.73  18.35  17.96  

  Swept back angle (deg) 40 40 40 40 40 

  Area (ft2) 224.00  224.00  248.97  248.97  248.97  

  Control surface area (ft2) 56.19  56.19  56.19  56.19  56.19  

Fuselage Height (ft) 12.40  12.40  12.40  12.40  13.17  

  Width (ft) 12.40  12.40  12.40  12.40  12.40  

  Length (ft) 94.00  100.20  102.00  120.00  101.75  

  Crew (people)      

  Passenger (people)  124 136 148 189 140 

  
Tail length (ft,wing 1/4 
MAC~H-tail 1/4 MAC) 

38.82  42.19  41.25  48.56  41.61  

Engine Max. T @SL (lbf) 14,500  14,500  20,000  23,500  20,000  

  Ttot/Wo 0.2636  0.2511  0.2963  0.3133  0.2941  

  Eng. W (lb) 3200 3500 4301 4301 4276 

  
Nacelle position(ft, 

from cockpit) 
28.67  31.69  26.36  34.35  23.91  

  Nacelle width (ft) 4.92  4.92  6.56  6.56  6.56  

  Nacelle length (ft) 18.39  18.62  14.80  16.43  16.53  

  Duct length (ft)     1.10  

  Nacelle area (ft2) 169.84  164.64  124.88  152.30  150.31  

Mass Gross mass (lb) 110,000 115,500 135,000 150,000 136,000 

  Empty mass (lb) 62,000 66,800 72,540 74,170 69,030 

  Fuel mass (lb) 31,624 32,026 41,011 42,177 42,177 

  Wf/Wo 0.2875  0.2773  0.3038  0.2812  0.3101  

  Max. payload (lb) 12,701 28,200 33,960 42,830 33,701 

Performance Altitude (ft) 30,000 30,000 35,000 35,000 35,000 

  Range (NM) 1,720 2,645 2,950 2,800 2,950 

  Cruise speed (M) 0.74 0.74 0.74 0.74 0.74 

  Max. M 0.82 0.82 0.82 0.82 0.82 

  Stall speed (kts)      
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Table C.1. Civil jet aircraft specifications for database (cont.) 
 

  

Parameter B737-600 B737-700 B737-800 B737-900 

Wing Span (ft) 111.52 111.52 111.52 111.52 

  AR 8.73 8.73 8.73 8.73 

  TR 0.3 0.3 0.3 0.3 

  Root chord (ft) 17.29  17.29  17.29  17.29  

  Swept back angle (deg) 25 25.02 25.02 25.02 

  Area (ft2) 1345.50  1345.50  1345.50  1345.50  

  Control surface area (ft2) 259.95  259.95  259.95  259.95  

H-tail Span (ft) 47.07  47.07  47.07  47.07  

  AR 5.88  5.88  5.88  5.88  

  TR 0.23  0.23  0.23  0.23  

  Root chord (ft) 25.85  25.85  25.85  25.85  

  Swept back angle (deg) 34 34 34 34 

  Area (ft2) 353.06  353.06  353.06  353.06  

  Control surface area (ft2) 80.95  80.95  80.95  80.95  

  H-T height (above fuse) 0.00  0.00  0.00  0.00  

V-tail Span (ft) 25.49  25.49  25.49  25.49  

  AR 2.08  2.08  2.08  2.08  

  TR 0.23  0.23  0.23  0.23  

  Root chord (ft) 18.99  18.99  18.99  18.99  

  Swept back angle (deg) 40 40 40 40 

  Area (ft2) 284.17  284.17  284.17  284.17  

  Control surface area (ft2) 67.08  67.08  67.08  67.08  

Fuselage Height (ft) 12.96  12.96  12.96  12.96  

  Width (ft) 12.96  12.96  12.96  12.96  

  Length (ft) 102.47  105.55  124.71  133.40  

  Crew (people) 5 5 5 5 

  Passenger (people)  130 148 184 189 

  
Tail length (ft,wing 1/4 

MAC~H-tail 1/4 MAC) 
43.50  43.50  55.35  60.99  

Engine Max. T @SL (lbf) 22,700  22,700  27,300  27,300  

  Ttot/Wo 0.3662  0.3414  0.3512  0.3310  

  Eng. W (lb) 5216 5216 5216 5216 

  
Nacelle position(ft, 
from cockpit) 

45.48  54.68  71.02  71.02  

  Nacelle width (ft) 8.00  8.00  8.00  8.00  

  Nacelle length (ft) 15.73  15.73  15.73  15.73  

  Duct length (ft) 1.10  1.10  1.10  1.10  

  Nacelle area (ft2) 100.55  100.55  100.55  100.55  

Mass Gross mass (lb) 123,964 132,967 155,459 164,947 

  Empty mass (lb) 81,777 84,076 90,684 93,655 

  Fuel mass (lb) 46,063 46,063 19,500 25,700 

  Wf/Wo 0.3716  0.3464  0.1254  0.1558  

  Max. payload (lb) 33,300 37,500 44,700 45,720 

Perform

ance 
Altitude (ft) 41,000 41,000 38,294 36,785 

  Range (NM) 1,340 1,540 1,990 2,060 

  Cruise speed (M) 0.785 0.785 0.785 0.785 

  Max. M 0.82 0.82 0.82 0.82 

  Stall speed (kts) 115.00  115.00  116.67  116.67  
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Table C.1. Civil jet aircraft specifications for database (cont.) 

 

 
  

Parameter B747-400 B747-400ER B757-200 B757-300 

Wing Span (ft) 212.9376 212.9376 124.804 124.804 

  AR 7.7 7.7 7.8 7.8 

  TR 0.3 0.3 0.21 0.21 

  Root chord (ft) 47.99  47.99  26.90  26.90  

  Swept back angle (deg) 41 41 28 28 

  Area (ft2) 5825.05  5825.05  1994.03  1994.03  

  Control surface area (ft2) 678.52  678.52    

H-tail Span (ft) 72.72  72.72  49.89  49.89  

  AR 3.58  3.58  11.36  11.36  

  TR 0.29  0.29  0.41  0.41  

  Root chord (ft) 32.42  32.42  16.75  16.75  

  Swept back angle (deg) 43 43 34 34 

  Area (ft2) 1,475.58  1,475.58  219.05  219.05  

  Control surface area (ft2) 327.01  327.01  134.98  134.98  

  H-T height (above fuse) 0.00  0.00  0.00  0.00  

V-tail Span (ft) 35.92  35.92  25.49  25.49  

  AR 1.32  1.32  2.08  2.08  

  TR 0.35  0.35  0.23  0.23  

  Root chord (ft) 40.31  40.31  27.06  27.06  

  Swept back angle (deg) 49 49 43 43 

  Area (ft2) 978.21  978.21  425.32  124.97  

  Control surface area (ft2) 230.03  230.03  151.18  124.97  

Fuselage Height (ft) 21.32  21.32  12.96  12.96  

  Width (ft) 21.32  21.32  12.96  12.96  

  Length (ft) 225.11  225.11  154.00  177.38  

  Crew (people) 9 9 5 5 

  Passenger (people)  400 400 221 280 

  
Tail length (ft,wing 1/4 

MAC~H-tail 1/4 MAC) 
95.48  95.48  64.38  78.46 

Engine Max. T @SL (lbf) 56,700  56,700  43,734  43,734  

  Ttot/Wo 0.2836  0.2493  0.3977  0.3240  

  Eng. W (lb)   7100 7100 

  
Nacelle position(ft, 
from cockpit) 

120.36  120.36  97.82  97.82  

  Nacelle width (ft) 8.98  8.98  7.70  7.70  

  Nacelle length (ft) 24.09  24.09  17.21  17.21  

  Duct length (ft) 1.10  1.10  1.10  1.10  

  Nacelle area (ft2) 139.23  139.23  122.69  122.69  

Mass Gross mass (lb) 799,777 909,745 219,937 269,924 

  Empty mass (lb) 397,789 406,781 130,411 141,651 

  Fuel mass (lb) 358,326 425,052 75,529 76,959 

  Wf/Wo 0.4480  0.4672  0.3434  0.2851  

  Max. payload (lb) 148,054 148,054 55,605 68,181 

Performance Altitude (ft) 34,686 32,800 38,294 36,096 

  Range (NM) 6,185 7,325 2,570 2,120 

  Cruise speed (M) 0.85 0.85 0.8 0.8 

  Max. M     

  Stall speed (kts) 121.05  130.47  109.84  118.81  
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Table C.1. Civil jet aircraft specifications for database (cont.) 

 

 
  

Parameter B767-200 B767-300 B767-400 B777-200 B777-300 

Wing Span (ft) 149.4696 149.4696 170.5272 199.8504 199.8504 

  AR 8 8 9.3 8.7 8.7 

  TR 0.21 0.21 0.21 0.21 0.21 

  Root chord (ft) 28.11  28.11  28.11  40.54  40.54  

  Swept back angle (deg) 34 34 34 34 34 

  Area (ft2) 3049.44  3049.44  3129.09  4604.84  4604.84  

  Control surface area (ft2) 315.30  315.30  315.30  799.11  799.11  

H-tail Span (ft) 61.07  61.07  61.07  70.59  70.59  

  AR 6.61  6.61  6.61  4.66  4.66  

  TR 0.25  0.25  0.25  0.33  0.33  

  Root chord (ft) 19.09  19.09  19.09  27.47  27.47  

  Swept back angle (deg) 38 38 38 38 38 

  Area (ft2) 644.55  644.55  644.55  1,089.96  1,089.96  

  Control surface area (ft2) 191.71  191.71  191.71  274.27  274.27  

  H-T height (above fuse) 26.16  26.16  26.16  26.16  26.16  

V-tail Span (ft) 34.18  34.18  34.18  35.46  35.46  

  AR 1.82  1.82  1.82  1.93  1.93  

  TR 0.25  0.25  0.25  0.26  0.26  

  Root chord (ft) 25.67  25.67  25.67  35.58  35.58  

  Swept back angle (deg) 45 45 45 43 43 

  Area (ft2) 632.34  632.34  632.34  572.97  572.97  

  Control surface area (ft2) 171.69  171.69  171.69  195.47  195.47  

Fuselage Height (ft) 16.50  16.50  16.50  20.34  20.34  

  Width (ft) 16.50  16.50  16.50  20.34  20.34  

  Length (ft) 154.95  176.04  201.29  205.79  224.16  

  Crew (people) 9 9 9 9 9 

  Passenger (people)  225 269 409 375 451 

  
Tail length (ft,wing 1/4 
MAC~H-tail 1/4 MAC) 

64.47  75.76  83.96  88.06  107.35  

Engine Max. T @SL (lbf) 59,500  59,500  59,500  77,000  98,000  

  Ttot/Wo 0.3450  0.3132  0.2644  0.3044  0.2971  

  Eng. W (lb) 9047 9047 9047 16644 16644 

  
Nacelle position(ft, 

from cockpit) 
92.44  111.48  133.62  122.18  154.70  

  Nacelle width (ft) 9.42  9.42  9.42  13.35  13.35  

  Nacelle length (ft) 20.15  20.15  20.15  23.71  23.71  

  Duct length (ft) 1.10  1.10  1.10  1.10  1.10  

  Nacelle area (ft2) 134.40  134.40  134.40  237.59  237.59  

Mass Gross mass (lb) 344,904 379,892 450,000 505,981 659,811 

  Empty mass (lb) 187,252 200,145 229,000 309,882 348,298 

  Fuel mass (lb) 112,691 112,691 161,738 207,639 299,402 

  Wf/Wo 0.3267  0.2966  0.3594  0.4104  0.4538  

  Max. payload (lb) 71,450 91,620 101,000 121,100 141,200 

Performance Altitude (ft) 38,000 35,100 35,100 39,393 35,998 

  Range (NM) 5,125 5,230 5230 3,985 3,880 

  Cruise speed (M) 0.8 0.8 0.8 0.84 0.84 

  Max. M 0.83 0.83 0.83 0.86 0.86 

  Stall speed (kts) 114.17  120.83  120.83  113.33  124.17  
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Table C.1. Civil jet aircraft specifications for database (cont.) 

 

 
  

Parameter DC-8-43 DC-8-55 DC-9-15 DC-10-10 

Wing Span (ft) 142.4 142.4 89.38 155.3 

  AR 7.025131616 7.025131129 8.550555924 6.94400969 

  TR 0.21 0.21 0.27 0.29 

  Root chord (ft) 32.70  32.70  16.85  35.07  

  Swept back angle (deg) 35 35 28 39 

  Area (ft2) 2886.46  2886.46  934.30  3473.22  

  Control surface area (ft2) 452.83  452.83  162.23  949.56  

H-tail Span (ft) 47.50  47.50  36.80  71.15  

  AR 3.92  3.92  4.79  3.80  

  TR 0.32  0.32  0.39  0.39  

  Root chord (ft) 18.14  18.14  11.14  28.05  

  Swept back angle (deg) 40 40 35 41 

  Area (ft2) 576.27  576.27  282.57  1,331.46  

  Control surface area (ft2) 176.46  176.46  111.45  341.39  

  H-T height (above fuse) 0.00  0.00  15.64  0.00  

V-tail Span (ft) 23.10  23.10  14.00  22.71  

  AR 1.83  1.83  0.90  1.53  

  TR 0.30  0.30  0.70  0.44  

  Root chord (ft) 19.42  19.42  16.40  21.80  

  Swept back angle (deg) 40 40 47 44 

  Area (ft2) 290.97  290.97  217.74  337.82  

  Control surface area (ft2) 125.25  125.25  60.93  115.11  

Fuselage Height (ft) 13.55  13.55  11.00  19.80  

  Width (ft) 12.25  12.25  11.00  19.80  

  Length (ft) 182.90  182.90  93.10  170.50  

  Crew (people) 3 3 2 5 

  Passenger (people)  177 189 90 399 

  
Tail length (ft,wing 1/4 

MAC~H-tail 1/4 MAC) 
66.03  66.03  44.30  59.13  

Engine Max. T @SL (lbf) 16,800  21,000  14,000  40,000  

  Ttot/Wo 0.2133  0.2585  0.3087  0.2791  

  Eng. W (lb) 4960 5100 3200 9047 

  
Nacelle position(ft, 

from cockpit) 
250.76  166.90  105.32  256.14  

  Nacelle width (ft) 5.20  5.20  4.72  9.24  

  Nacelle length (ft) 18.00  18.00  17.60  24.60  

  Duct length (ft) 1.10  1.10  1.10  1.10  

  Nacelle area (ft2) 501.00  501.00  72.26  159.83  

Mass Gross mass (lb) 315,000 325,000 90,700 430,000 

  Empty mass (lb) 136,509 138,266 49,020 240,171 

  Fuel mass (lb) 153,248 153,248 24,743 142,563 

  Wf/Wo 0.4865  0.4715  0.2728  0.3315  

  Max. payload (lb) 41,691 51,734 24,838 94,829 

Performance Altitude (ft) 35,000 35,000 25,000 35,000 

  Range (NM) 6,278 5,077 1,590 3,800 

  Cruise speed (M) 0.82 0.82 0.82 0.82 

  Max. M    0.88 

  Stall speed (kts) 101.54  106.15  102 107.69  
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Table C.1. Civil jet aircraft specifications for database (cont.) 

 

 
  

Parameter Embraer 170 Embraer 175 Embraer 190 Embraer 195 

Wing Span (ft) 85.28 85.28 94.2016 94.2016 

  AR 8.6 8.6 8.1 8.1 

  TR 0.34 0.34 0.33 0.33 

  Root chord (ft) 13.86  13.86  15.93  15.93  

  Swept back angle (deg) 26 26 29 29 

  Area (ft2) 782.76  782.76  995.67  995.67  

  Control surface area (ft2) 214.15  214.15  219.02  219.02  

H-tail Span (ft) 32.80  32.80  39.62  39.62  

  AR 4.30  4.30  4.01  4.01  

  TR 0.45  0.45  0.40  0.40  

  Root chord (ft) 10.96  10.96  11.18  11.18  

  Swept back angle (deg) 33 33 37 37 

  Area (ft2) 250.26  250.26  279.86  279.86  

  Control surface area (ft2) 0.00  0.00  0.00  0.00  

  H-T height (above fuse) 0.00  0.00  0.00  0.00  

V-tail Span (ft) 19.68  19.68  19.68  19.68  

  AR 1.70  1.70  1.66  1.66  

  TR 0.28  0.28  0.22  0.22  

  Root chord (ft) 15.55  15.55  16.04  16.04  

  Swept back angle (deg) 40 40 43 43 

  Area (ft2) 174.38  174.38  174.38  174.38  

  Control surface area (ft2) 58.54  58.54  58.70  58.70  

Fuselage Height (ft) 10.99  10.99  10.99  10.99  

  Width (ft) 9.87  9.87  9.87  9.87  

  Length (ft) 98.07  103.91  118.87  126.77  

  Crew (people) 2 2 2 2 

  Passenger (people)  76 86 104 110 

  
Tail length (ft,wing 1/4 
MAC~H-tail 1/4 MAC) 

42.17  42.17  53.23  53.23  

Engine Max. T @SL (lbf) 13,800  13,800  18,500  18,500  

  Ttot/Wo 0.3479  0.3339  0.3513  0.3441  

  Eng. W (lb) 2408 2408 3700 3700 

  
Nacelle position(ft, 

from cockpit) 
50.62  50.62  64.72  64.72  

  Nacelle width (ft) 5.56  5.56  6.67  6.67  

  Nacelle length (ft) 12.32  12.32  14.89  14.89  

  Duct length (ft) 1.10  1.10  1.10  1.10  

  Nacelle area (ft2) 43.80  43.80  58.48  58.48  

Mass Gross mass (lb) 79,322 82,650 105,329 107,533 

  Empty mass (lb) 46,593 48,069 61,888 63,850 

  Fuel mass (lb) 20,779 20,779 28,652 28,872 

  Wf/Wo 0.2620  0.2514  0.2720  0.2685  

  Max. payload (lb) 20,056 22,481 28,432 30,415 

Performance Altitude (ft) 34,991 34,991 34,991 34,991 

  Range (NM) 2,100 1,298 2,300 1,400 

  Cruise speed (M) 0.8 0.8 0.8 0.8 

  Max. M 0.82 0.82 0.82 0.82 

  Stall speed (kts) 109.00  129.17  129.17  129.17  
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Appendix D 

Flow Chart of Aircraft Derivative Design 

Optimization (ADDOPT) Process 
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