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ABSTRACT 

A genetic algorithm (GA) was developed to improve predictions for the ultimate axial capacity of 

driven piles in Ontario soils. Challenges arise to accurately predict the ultimate capacity due to 

many influential factors, such as the ground conditions, installation method, and pile geometry. A 

total of 43 piles (H or pipe piles) were collected from the Ministry of Transportation of Ontario. 

Side and tip resistances were extracted from piles subjected to extension and compression load 

tests. The soil measurements and pile resistances were regressed with a statistical analysis and GA, 

and the developed relationships were compared to existing design methods. On average, existing 

design methods overestimated the capacity by a factor of 1.16 to 3.00. The proposed correlations 

were slightly conservative with the capacity but provided errors within ± 30 % of the measured 

side resistance. The new design methods from the GA offer substantial improvements for pile 

design. 
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1 INTRODUCTION 

1.1 INTRODUCTION 

The province of Ontario plans to invest $ 190 billion in public infrastructure by 2030 (Ontario, 

2018). Many of the effected structures, specifically bridges and buildings, are supported by deep 

foundations, but accurately predicting the capacity of a pile is a challenge due to the influences 

from the installation method, pile geometry, and soil properties. In particular, glacial tills are 

famous for their inconsistent material properties and are commonly found in Ontario (Barnett, 

1992). Since the soil conditions are rarely consistent at a site, designers experience challenges to 

characterize the ground conditions and evaluate the soil parameters. In addition, the standard 

penetration test (SPT) is commonly used in site investigations because it is a cheap, quick, and 

versatile measurement technique for gravel and cobble rich soils. However, this simple test is 

unreliable for several reasons: the test does not provide continuous data; the sampler can 

erroneously give high N-values with obstructions, such as gravels and boulders; and the accuracy 

of the results depend on the operator. For this investigation, the goal was to improve the 

predictability of the ultimate axial capacity of driven piles in Ontario. Greater accuracy and insight 

on foundation designs will deliver cost-savings and optimize infrastructure development within 

Ontario. 

1.2 CURRENT PILE DESIGN METHODS 

The axial capacity of a pile is generally composed of two mechanisms: the side resistance is the 

friction between the soil and wall of a pile, and the tip resistance is generated by the strength of 

the soil at the pile tip. Generally, the design methods are further divided into in-situ correlations, 

total stress methods, and effective stress methods. In this study, in-situ correlations directly relate 

the N-values, or blow counts, from SPT to the pile resistances. The total stress methods, such as 

the 𝛼 Method, are intended for the short-term conditions of cohesive soils. The effective stress 

methods are usually called 𝛽 Methods and are for noncohesive soils or the long-term conditions 

of cohesive soils. Numerous design methods have been developed over the years, and they include 

a range of soil properties and design situations. After developing an approach with a machine 

learning technique, several of these existing methods were evaluated for their accuracy. 

1.3 INCONSISTENCY OF GLACIAL DEPOSITS IN ONTARIO 

Since glaciers once covered most of North America, glacial deposits will be heavily encountered 

within Ontario. Glacial till is sediment that was eroded, transported, and deposited by glaciers and 

usually contains an inconsistent mixture of particle sizes, mineral types, and weathered rock types 



2 
 

(Barnett, 1992). According to Barnett (1992), tills are often compact or overconsolidated (OC) due 

to the weight of the previously overlying glaciers. In Ontario, normally consolidated (NC) or 

lightly OC tills can be found, but they would exist by areas where drainage of meltwater occurred, 

such as the shores of the Great Lakes (Barnett, 1992). The different origins and processes that 

created tills lead to a variety of soil characteristics. 

The formation of till in Ontario can help to predict the soil content. Precambrian igneous and 

metamorphic rocks composed a large portion of the Canadian Shield. If these igneous and 

metamorphic rocks eroded to form the till, the till can contain over 70 % sand and less than 5 % 

clay (Barnett, 1992). Tills likely range from non-plastic, especially from eroded Precambrian rocks 

(Barnett, 1992), to low plasticities due to the low silt content. However, tills from carbonate rocks, 

limestones, and dolostones can have a content of 40 to 50 % silt and 15 to 30 % clay (Barnett, 

1992). Well graded sediments from carbonate rocks leads to compact to very compact tills 

(Barnett, 1992). Tills located deeper into the ground are expected to be more compact, and layers 

overlying bedrock are typically thin and contain boulders and gravels (Barnett, 1992). Fine-grained 

tills were likely formed by the addition of glaciolacustrine deposits and are composed of clay to a 

maximum of approximately 55 % (Barnett, 1992). After observing these formations, tills generally 

range in cohesive and noncohesive contents. 

1.4 DATABASE OF PILE LOAD TESTS FROM MTO 

Pile load tests are costly and time-consuming, but the full-scale tests are reliable and are commonly 

applied to verify designs in local ground conditions. For example, Briaud and Tucker (1988) 

analyzed a database with 91 driven piles, and they discovered design methods can over predict by 

20 % on average and have a coefficient of variation (COV) between 40 to 45 %. A database of 

more than 100 piles was obtained over four decades by the Ministry of Transportation of Ontario 

(MTO). This database was used in this study, and it contained the results from tests with static 

axial loads. Axial loads were applied to piles by hydraulic jacks that acted against an anchored 

reaction frame, weighted box, or weighted platform. These pile load tests are invaluable to provide 

local or regional geotechnical parameters and are used in this study to develop new design methods 

for piles in Ontario. 

1.5 RESEARCH OBJECTIVES 

The main objectives of this research are the following: 

1. Apply a machine learning method to improve predictions for the ultimate axial capacity of 

piles. Specifically, a genetic algorithm (GA) needs to regress several variables at once; 

predict the capacity of piles in varying soil conditions with multiple soil measurements at 

varying depths; and provide a practical equation for design. A GA was chosen for several 

reasons. First, it does not need knowledge of the problem domain (Negnevitsky, 2005) and, 
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therefore, is an efficient optimization method at handling several variables compared to 

traditional statistics. Instead, a GA requires a fitness function (Negnevitsky, 2005). The 

fitness function allows the GA to evaluate many potential solutions on a variety of criteria 

and to find a preferred solution (Negnevitsky, 2005). Artificial neural networks (ANN) are 

also efficient at finding relationships between data; however, due to the construction of the 

neural network, it is often challenging to obtain a simple, logical, or practical mathematical 

function to describe the determined relation. Typically, the relationships from an ANN are 

hidden, and the ANN by itself is the final deliverable. For this thesis, the goal includes 

providing a practical function, which may combine several variables in a nonlinear and 

interdependent form. 

2. Evaluate the accuracy or existing design methods with pile load tests in Ontario. 

3. Propose design methods for driven piles in the soil conditions within Ontario. 

1.6 RESEARCH METHODS 

The focus of this thesis is on the behaviour of driven piles with SPT N-values for various soil types 

and the undrained shear strength for cohesive soils. Influences were evaluated by statistical 

approaches, and nonlinear relations were determined with a GA. The accuracy of the developed 

design methods was compared to current design methods. 

First, the following steps were performed to gather data on pile load tests in Ontario: 

• Obtain a database of pile load tests and site investigations from MTO; 

• Focus on pile tests and properties involving steel H piles and steel pipe piles with both 

extension and compression load tests and shear strength measurements from the soil. 

• Obtain the side resistance, tip resistance, and ultimate capacity from the test results, such 

as the load-displacement curves; and 

• Gather soil data at the testing sites. 

Second, predictions for the capacity were improved and verified: 

• Conduct a statistical analysis to correlate pile resistances and soil measurements; 

• Develop a GA to predict the side resistance of piles with SPT N-values or undrained shear 

strength measurements; and 

• Verify the regressions from the statistical analysis and GA by comparing predictions for 

the capacity to existing design methods.  

1.7 THESIS OUTLINE 

This thesis involves several aspects on the axial capacity of a driven pile. The formulas, 

relationships, and theories were explained for the methods that estimate soil parameters and pile 
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capacity. Both a statistical analysis and machine learning method were applied to develop new 

correlations. After, existing prediction methods were evaluated against correlations from the 

statistical analysis and GA. 

Chapter One introduces the background, research objectives, and methods applied in this research. 

Chapter Two contains a literature review and is composed of several parts. Design methods for the 

ultimate capacity are discussed in detail with influential factors, and the background to develop a 

GA is provided. Since different site investigation techniques can be applied, approaches to estimate 

the soil shear strength are included. 

Chapter Three presents the methodology and results of a statistical analysis with soil conditions 

and pile resistances.  

Chapter Four provides the GA that predicted the side resistance of piles. New design methods were 

proposed by the GA, and the accuracy of their predictions are compared to existing design 

methods. 

Chapter Five summarizes the final discussions and conclusions of the investigation. The best 

design methods are proposed to determine the axial capacity, and recommendations for future 

research and GA development are included. 
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2 DESIGN METHODS FOR THE AXIAL CAPACITY 

2.1 INTRODUCTION 

As a compressive load is applied to a pile, the soil will resist the loading with two components: 

the side resistance (𝑄𝑠) is the friction between in the soil and pile walls, and the tip resistance (𝑄𝑝) 

is a compressive force by the soil at the pile tip. Thus, while subtracting the weight of the pile 

(𝑊𝑝), the ultimate axial capacity (𝑄𝑢) of a pile is expressed below: 

 𝑄𝑢 = 𝑄𝑠 + 𝑄𝑝 − 𝑊𝑝        Eq. 2-1 

The side resistance is dependent on the area of the pile walls (𝐴𝑠), and this area is related to the 

pile perimeter (P) and the pile length (L). The tip resistance relies on cross-sectional area at the 

pile tip (𝐴𝑝). Equation 2-1 is then modified: 

 𝑄𝑢 = ∑ 𝑞𝑠 𝐴𝑠 + 𝑞𝑝 𝐴𝑝 − 𝑊𝑝       Eq. 2-2 

𝑄𝑢 = ∑ 𝑞𝑠 𝑃 ∆𝐿 + 𝑞𝑝 𝐴𝑝 − 𝑊𝑝      Eq. 2-3 

where 𝑞𝑠 is the unit side resistance and 𝑞𝑝 is the unit tip resistance. Over the decades, many 

methods have been proposed to estimate the unit tip and side resistance, and they include a range 

of soil properties and consider a variety of theories. The following sections explore the related 

concepts and design methods. 

2.2 DESIGN METHODS WITH STANDARD PENETRATION TEST (SPT) 

When in-situ tests, such as SPT, are applied at a site, the side resistance of a pile may be determined 

directly or indirectly with the test measurements. For SPT measurements, direct approaches rely 

on empirical correlations between the unit side resistance and average N-value (𝑁̅) along the pile 

length: 

𝑞𝑠 = 𝐴𝑁̅ + 𝐵         Eq. 2-4 

Also, the N-value at the pile base is directly related to the unit tip resistance: 

𝑞𝑝 = 𝐾 𝑁         Eq. 2-5 

As shown in Equations 2-4 and 2-5, the correlations with SPT are usually linear and apply A, B, 

and K as coefficients. Indirect approaches use SPT N-values to predict the shear strength 

parameters, and the resulting parameters calculate the side resistance with 𝛼 or 𝛽 Methods.  
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Table 2-1: Existing Design Methods for Pile Side Resistance 

Soil Type Reference Equation for 𝑞𝑠 (kPa) Remarks 

Cohesive 
Shioi & Fukui 

(1982) 
𝑞𝑠 = 9.8 𝑁̅  

Noncohesive 

Briaud et al. 

(1983) 
𝑞𝑠 = 21.45 𝑁̅0.29  

Meyerhof (1956) Large Displacement Piles:  

𝑞𝑠 = 1.9 𝑁̅ ≤ 100 

Low Displacement Piles: 

𝑞𝑠 = 1.0 𝑁̅ ≤ 100  

 

Shariatmadari et 

al. (2008) 
𝑞𝑠 = 3.65 𝑁̅ 𝑁̅ is the geometric average 

Shioi & Fukui 

(1982) 
𝑞𝑠 = 1.9 𝑁̅  

All 

Aoki & Velloso 

(1975) 
𝑞𝑠 = 𝐴𝑎𝑁̅/3.5 𝐴 ranges from 196 for clays 

to 980 for sands; 𝑎 ranges 

from 0.012 for medium 

sands to 0.04 for clays 

Brown (2001) 𝑞𝑠 = 1.8 𝑁̅ + 25 3 ≤ 𝑁 ≤ 50 

Decourt (1982) 𝑞𝑠 = 3.3 𝑁̅ + 9.8 ≤ 170 3 ≤ 𝑁 ≤ 15 

 

As a simple approach, numerous empirical methods have been developed with SPT N-values over 

the years. As shown in Table 2-1, the empirical correlations differ on the soil conditions. 

Coefficient A is generally lower for sandy soils compared to clayey soils due to the cohesion, and 

most correlations were developed for either cohesive or noncohesive soils. Some references 

proposed design methods for all soils, but they are likely limited to the soil conditions within a 

local region, such as Brown (2001) and Decourt (1982). Many of the design methods were also 

developed with databases containing various pile types. For instance, Meyerhof (1956; 1976) 

collected pile load tests from several references on concrete, timber, and steel driven piles. Aoki 

& Velloso (1975) investigated Franki, precast concrete, and steel piles from Brazil, but the pile 

material will likely influence the side friction with the soil. In addition, Shariatmadari et al. (2008) 

recommended to apply the geometric average for the N-value over the common arithmetic mean. 

Unfortunately, the average soil conditions may not accurately represent the soil behaviour. 

Table 2-2 contains the current correlations for the tip resistance. Sandy soils tend to have a higher 

coefficient with SPT N-values compared to silty or clayey soils. Since cohesive soils can vary in 

plasticity and compressibility, empirical methods are more popular with noncohesive soils. Yet, 

some sources offer a single linear regression for all soil types. 

 



7 
 

Table 2-2: Existing Design Methods for Pile Tip Resistance 

Soil Type Reference Equation for 𝑞𝑝 (kPa) Remarks 

Cohesive 

Decourt (1982) 𝑞𝑝 = 118 𝑁  

Martin et al. 

(1987) 
𝑞𝑝 = 192 𝑁  

Noncohesive 

Briaud et al. 

(1983) 
𝑞𝑝 = 1891 𝑁0.36  

Decourt (1982) 𝑞𝑝 = 392 𝑁  

Martin et al. 

(1987) 
Silt/Sandy Silt: 𝑞𝑝 = 335 𝑁 

Sand: 𝑞𝑝 = 431 𝑁 

 

Meyerhof (1976) 𝑞𝑝 = 38 (𝐿/𝐷) 𝑁 ≤ 383 𝑁   

Shariatmadari et 

al. (2008) 
𝑞𝑝 = 385 𝑁  

Thorburn & 

MacVicar (1971) 

Glacial till and silt:  

𝑞𝑝 =  250 𝑁 

 

All 

Aoki & Velloso 

(1975) 
𝑞𝑝 = 𝐾 𝑁 / 1.75  𝐾 ranges from 196 for clays 

to 980 for sands 

Brown (2001) 𝑞𝑝 =  170 𝑁 3 ≤ 𝑁 ≤ 50 

Shioi & Fukui 

(1982) 
If 𝐿/𝐷 ≥ 5, 𝑞𝑝 = 287 𝑁 

If 𝐿/𝐷 < 5 (solid piles), 

 𝑞𝑝 = (100 + 40 𝐿/𝐷)𝑁 

𝐿/𝐷 is the slenderness 

ratio, where D is the pile 

diameter or width 

 

2.3 DESIGN METHODS FOR A PILE IN COHESIVE SOILS 

For cohesive soils, design methods are generally separated into total stress methods and effective 

stress methods, especially if the soil strength is measured with lab tests. Total stress methods, or 

𝛼 Methods, are intended for the short-term conditions of cohesive soils, and the unit side resistance 

is determined with an adhesion factor, 𝛼, and the undrained shear strength, 𝐶𝑢: 

𝑞𝑠 = 𝛼𝐶𝑢         Eq. 2-6 

Effective stress methods, also called β Methods, are for noncohesive soils or the long-term 

conditions of cohesive soils: 

𝑞𝑠 = 𝛽𝜎′         Eq. 2-7 

where 𝛽 is the adhesion factor and 𝜎′ is the vertical effective stress. 
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2.3.1 𝜶 Method for Unit Side Resistance 

Tomlinson (1957) was one of the first for suggesting the 𝛼 Method, and he developed his method 

by back analyzing the capacity of 56 driven piles with the average cohesion. For steel and concrete 

piles, the proposed relationships were associated with inconsistent results, but the approach is 

simple as the side resistance solely relies on the 𝐶𝑢. Kulhawy and Jackson (1989) studied a total 

of 109 concrete bored piles and obtained a relation for the adhesion factor that was very similar to 

Tomlinson (1957): 

𝛼 = 0.21 + 0.26 (
100

𝐶𝑢
) ≤ 1       Eq. 2-8 

The approach from Kulhawy and Jackson (1989), shown in Figure 2-1, was later adopted by the 

Canadian Foundation Engineering Manual (CFEM) (Canadian Geotechnical Society (CGS), 

2006). 

 

 

Figure 2-1: Relationship of Adhesion Factor and Undrained Shear Strength (Kulhawy & 

Jackson, 1989) 

 

Many other references obtained better predictions by considering and including other factors. For 

example, Dennis and Olson (1983) applied a correction factor to the unit side resistance for the 
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pile length. Semple and Rigden (1986) went farther and included the soil strength ratio (𝐶𝑢/𝜎′) 

and slenderness ratio (L/D), where L is the pile length and D is the pile diameter. Kolk and Van 

der Velde (1996) analyzed 26 pile load tests and proposed two equations for the adhesion factor 

after manipulating several variables with a trial-and-error approach. The first equation was 

intended for the average soil parameters: 

𝛼 = 0.5 (
𝐷

𝐿
)

0.2

(
σ′

𝐶𝑢
)

0.3

≤ 1       Eq. 2-9 

If the soil profile was divided into multiple layers, the second equation was recommended: 

𝛼 = 0.9 (
𝐿−𝑧

𝐷
)

−0.2

(
σ′

𝐶𝑢 
)

0.3

≤ 1       Eq. 2-10 

In the above equation, 𝑧 is the depth below the ground surface to the centre of a soil layer. The 

method provided reliable results for piles in OC clays, but the side resistance was generally 

overestimated for slender piles in NC clays (Kolk and Van der Velde, 1996). The plasticity index 

(PI) generated scattered relationships, and Kolk and Van der Velde (1996) suggested the PI does 

not have a significant influence on the pile capacity. Karlsrud et al. (2005) re-evaluated the 

influence of the soil plasticity with open-ended and closed-ended pile piles, and they noticed the 

adhesion factor decreased with a lower PI. In Figure 2-2, the proposed design method mainly 

focuses on NC clays and indicates a sensitive relation for low plastic clays. The PI is limited to a 

minimum of 10 because this was the lowest value found in the database. Karlsrud et al. (2005) 

also included several correction factors to calculate the adhesion factor: the testing technique to 

obtain 𝐶𝑢; duration of time between installing and testing a pile; and pile tip conditions. This 

collection of methods shows that the soil-pile interface, especially for clayey soils, may rely on 

many variables. 

The unit side resistance, as proposed by Karlsrud et al. (2005), is determined by several cases. If 

𝐶𝑢/𝜎′ < 0.25, the following equations are applied: 

𝑞𝑠 = 𝛼 𝐶𝑢         Eq. 2-11 

𝛼 = 0.32 (𝑃𝐼 − 10)0.3        Eq. 2-12 

𝛼 ranges from 0.2 to 1. If 𝐶𝑢/σ’ > 1, the unit side resistance is calculated by the following: 

𝑞𝑠 = 𝛼 𝐶𝑢 𝐹𝑇𝑖𝑝        Eq. 2-13 

𝛼 = 0.5 (
𝐶𝑢

𝜎′
)

−0.3

        Eq. 2-14 

Here, 𝐹𝑇𝑖𝑝 is a modification factor that depends on the end conditions of a pipe pile. For open-

ended piles, the factor is equal to one. For a closed pile, the factor is calculated: 
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𝐹𝑇𝑖𝑝 = 0.8 + 0.2 (
𝐶𝑢

𝜎′)
0.5

       Eq. 2-15 

𝐹𝑇𝑖𝑝 ranges from 1 to 1.25. For 0.25 < 𝐶𝑢/σ’< 1, the adhesion factor is linearly interpolated between 

the other two conditions. In general, the method by Karlsrud et al. (2005) is complex as it depends 

on several variables and functions. 

 

 

Figure 2-2: Relationship of Adhesion Factor to Strength Ratio (Karlsrud et al., 2005) 

 

2.3.2 𝜷 Method for Unit Side Resistance 

As shown with Equation 2-7, 𝛽 Methods express the proportionality of the effective stress to the 

unit side resistance with a 𝛽 coefficient. The coefficient can be a function of the friction angle (∅′) 

since the approach is intended for the drained conditions of soils (Burland, 1973): 

𝑞𝑠 =  𝐾𝑠 tan (∅′) 𝜎′        Eq. 2-16 

where 𝐾𝑠 is a coefficient related to the lateral earth pressure coefficient.  

For NC cohesive soils, Burland (1973) substituted 𝐾𝑠 for the earth pressure at rest (𝐾𝑜) to be 

conservative.  
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𝐾𝑠 ≈ 𝐾𝑜 = 1 − sin(∅′)       Eq. 2-17 

Burland (1973) also suggested to predict the capacity of driven piles with the residual friction 

angle, ∅𝑟
′ , instead of the effective friction angle at critical or post-critical conditions. The following 

equation was the result of the modifications: 

𝑞𝑠 = (1 − sin (∅′
𝑟) ) tan (∅′

𝑟) 𝜎′      Eq. 2-18 

 

Unfortunately, residual strength parameters may not be commonly collected in Ontario practice. 

The approach could also be very conservative for glacial tills, and Equation 2-16 was soon adjusted 

for OC clays by Meyerhof (1976): 

𝑞𝑠 = (1 − sin(∅′)) tan(∅′) √𝑂𝐶𝑅 𝜎′      Eq. 2-19 

where OCR is the overconsolidation ratio of a clay. 

Patrizi and Burland (2001) were inspired by the soil test results and correlation between the OCR 

with the strength ratio from Jamiolkowski et al. (1985): 

(𝐶𝑢/𝜎′)𝑂𝐶 = (𝐶𝑢/𝜎′)𝑁𝐶  𝑂𝐶𝑅𝑚      Eq. 2-20 

where m is a correlated exponent that can vary on the soil type and testing method to obtain 𝐶𝑢. 

Patrizi and Burland (2001) thought collecting the preconsolidation pressure with laboratory tests 

was a time-consuming process, and they offered a new empirical approach to predict the adhesion 

factor with the OCR. From several sources of literature, they collected a database of piles, and they 

obtained the average 𝛽 coefficient and strength ratios for each pile. For practical reasons, the two 

variables were then simply correlated with a linear regression: 

𝛽 = 0.1 + 0.4 𝐶𝑢/𝜎′        Eq. 2-21 

They obtained accurate predictions with their new method with a database of pile load tests. The 

average and standard deviation for the predicted to measured capacity ratio was 0.97 and 0.29, 

respectively (Patrizi & Burland, 2001). Coincidentally, their design method can be simplified to 

resemble the 𝜆 Method. 

2.3.3 𝝀 Method for Unit Side Resistance 

Vijayvergiya and Focht (1972) proposed the “𝜆 Method,” which can be observed as a hybrid 

between total and effective stress methods.  

𝑞𝑠 =  𝜆(𝜎 ′̅ +  𝐶𝑢
̅̅ ̅)        Eq. 2-22 
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The method applies the average undrained shear strength (𝐶𝑢
̅̅ ̅) and effective stress (𝜎′̅) along a pile, 

and the dimensionless coefficient, 𝜆, depends on the pile length. Vijayvergiya and Focht (1972) 

predicted the capacity of several piles with their new method and compared to the results to 

predictions from other approaches, such as the 𝛼 Method by Tomlinson (1957). Their proposed 

method obtained a higher level of accuracy; however, it is not applicable for heterogeneous soils 

or layered profiles. 

2.3.4 Estimation of Unit Tip Resistance 

Meyerhof (1976) recommended a limit for the tip resistance (𝑞𝑙) if the pile passed a critical depth, 

and he proposed the following equation for homogeneous soils: 

𝑞𝑝 = 𝑐′𝑁𝑐 +  𝜎′ 𝑁𝑞 ≤  𝑞𝑙        Eq. 2-23 

Nc and Nq are bearing capacity factors and respectively correspond to the soil cohesion (𝑐′) and 

effective stress (𝜎′) at the pile base. For undrained clayey soils, the tip resistance would depend on 

the soil cohesion, and the deformation and sensitivity properties of an undrained clay influenced 

the values of Nc. For example, Nc can be 5 for a very sensitive, brittle, and NC clay, but an 

insensitive OC clay can have a Nc of 10 (Meyerhof, 1976). Meyerhof (1976) also expressed that 

the tip resistance would increase with greater consolidation. Yet, if the soil sensitivity is not high, 

a value of 9 can be commonly applied for the cohesive bearing factor (Meyerhof, 1976). 

Vesic (1977) offered a semi-empirical approach to obtain the bearing capacity factors. For drained 

soils, the tip resistance was suggested to be partly governed by the effective stress at the pile tip, 

and the effective stress was replaced by the mean normal ground stress, 𝜎𝑜
′ : 

𝑞𝑝 = 𝑐′𝑁𝑐 +  𝜎𝑜′ 𝑁𝜎        Eq. 2-24 

The mean normal ground stress is related to the effective stress and lateral earth pressure at rest. 

Nq was replaced by 𝑁𝜎 as the modified bearing capacity factor. For undrained soils, which may be 

assumed to have a friction angle of zero, 𝑁𝑐 is estimated by the equation below:  

𝑁𝑐 =
4

3
(ln 𝐼𝑟𝑟 + 1) +

𝜋

2
+ 1       Eq. 2-25 

𝐼𝑟𝑟 is the reduced rigidity index. For undrained or dense clays, 𝐼𝑟𝑟 is approximately equal to the 

rigidity index, 𝐼𝑟: 

𝐼𝑟 =
𝐸

2(1+𝜈)(𝑐 + 𝜎′ tan ∅′)
       Eq. 2-26 

𝐼𝑟𝑟  ≈ 𝐼𝑟 =  
𝐸

3 𝐶𝑢
         Eq. 2-27 

𝐸 is the modulus of elasticity, 𝜈 is the Poisson’s ratio, and 𝑐 is the cohesion of the soil. 
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O’Neil and Reese (1999) later suggested the following relationship to approximate 𝐼𝑟 without 𝐸: 

𝐼𝑟 = 3.62 𝐶𝑢 − 33 ≤ 300       Eq. 2-28 

2.4 DESIGN METHODS FOR A PILE IN NONCOHESIVE SOILS 

2.4.1 Estimation of Unit Side Resistance 

Although Berezantzev et al. (1961) focused on the pile tip resistance, they also suggested that 

“conventional methods,” such as the following, are practical to estimate the side resistance: 

𝑞𝑠 = 𝐾𝑠 𝜎′ tan 𝛿        Eq. 2-29 

Since frictional resistances vary between different pile materials and soils, effective stress methods 

for noncohesive soils typically reduce the friction angle. 𝛿 is commonly applied as a result and is 

called the friction angle of the soil-pile interface. The effective stress is usually the average value 

along the pile length if the soil is homogeneous or each soil layer if the soil is heterogeneous. 

Coyle and Castello (1981) collected data from full-scale load tests and proposed a new approach 

to estimate the side resistance for piles in tension and compression. Average soil parameters were 

applied in the correlations. Particularly, 𝐾𝑠 was estimated from the average friction angle, pile 

diameter, and pile length, and the interface friction angle was assumed to be equal to 80 % of the 

friction angle. Coyle and Castello (1981) concluded that the slenderness ratio (L/D), also called 

“relative depth ratio,” and friction angle were the most influential parameters. The effective stress 

and volume of displaced soil was likely related to the slenderness ratio, and friction angle is linked 

to the relative density or compressibility of the soil (Coyle and Castello, 1981). While comparing 

the predicted capacities to the slenderness ratio, Coyle and Castello (1981) had an error of ± 30 %, 

which is appropriate for the range of friction angles. Unfortunately, the slenderness ratios were 

limited to a small range with a maximum pile length of approximately 20 m. 

The method of installation affects the coefficient of horizontal soil stress, Ks. Since this coefficient 

includes the lateral earth coefficient at rest, Ko, another coefficient is added: the coefficient of 

installation, Kf. Based on test results by Meyerhof (1976), Tomlinson and Woodward (2008) 

recommends Kf  to vary from 1 to 2 for driven piles. Other installation methods for deep 

foundations have lower ranges for the coefficient. 

Tomlinson and Woodward (2008) provided approximate ranges of 𝛿 for noncohesive soils. For a 

smooth steel pile, the value of 𝛿 is between 50 to 70 % of the friction angle. For a rough steel pile, 

𝛿 was recommended to be 70 to 90 % of the friction angle. Thus, a smooth steel pile will likely 

experience friction differently than a concrete pile with the soil. 
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2.4.2 Estimation of Unit Tip Resistance 

Vesic (1967) conducted multiple tests on piles in sandy soils and offered the general concepts. 

Tests involved model cylindrical and prismatic piles of approximately 0.25 m to 2.8 m in length 

and large-scale instrumented piles in natural deposits. In both cases, piles were driven or jacked. 

Beneath the bases of the model piles, Vesic (1967) observed a dominance of punching shear failure 

at deep depths, regardless of the density of the sand. The tip resistance appeared to reach a limiting 

value after the pile reached depths of approximately 15 pile diameters, and this result showed 

evidence of the critical depth concept. The relative density and installation of the pile, overall, 

resulted to be the main factors. Vesic (1967) also called for more research with piles in silts. 

Meyerhof (1976), similar to Vesic (1967), suggested limiting the tip resistance after the critical 

depth, but Meyerhof (1976) also offered modifications to the tip resistance for a pile driven into 

layered soils with varying stiffness. In general, he offered the following expression: 

𝑞𝑝 =  𝑁𝑞 𝜎′ ≤ 50 𝑁𝑞 tan ∅′       Eq. 2-30 

 

 

Figure 2-3: Bearing Capacity Factor by Berezantzev et al. (1961) (Berezantzev et al., 1961) 

 

Numerous bearing capacity factors were proposed over the years and usually varied based on the 

properties of particular noncohesive soils. Coyle and Castello (1981) offered a relationship with 

the slenderness ratio to predict the bearing capacity coefficient. The relation from Berezantzev et 
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al. (1961) was recommended by Tomlinson and Woodward (2008). The reason may be because 

the results are usually conservative compared to other bearing capacity factors. The bearing factors 

are estimated in Figure 2-3 with the friction angle and pile slenderness ratio. 

2.5 APPLICATIONS OF GENETIC ALGORITHMS FOR PILE CAPACITY 

2.5.1 Potential Methods to Predict Pile Capacity 

Especially with a lack of fully-instrumented piles, previous design methods have commonly been 

developed empirically, by combining variables by trial and error, or by regressing the average soil 

parameters against the side resistance. Unfortunately, these processes simplify the soil conditions 

and lead to biased results. An alternative method is required to efficiently correlate data, especially 

if repetitive soil measurements and mixed soil profiles are involved.    

More advanced statistical methods are available to handle grouped data or repetitive 

measurements. In particular, multilevel modeling is based on multilinear regression and divides 

variables and expresses relationships between several levels (Luke, 2004). Individuals or repetitive 

measurements are classified as a lower level, and they belong to groups, which exist as a higher 

level (Luke, 2004). For example, students of different genders, ethnicities, or ages belong as 

individuals to a school. The procedure to conduct multilevel modeling differs between macro-

micro analyses or micro-macro analyses. For a macro-micro analysis, a dependent variable belongs 

to the individuals or the lowest level, which is level one, and the dependent variable is expressed 

by other level-one variables and higher-level variables (Croon and van Veldhoven, 2007). For a 

micro-macro analysis, the dependent variable is a higher-level variable, such as a group or level-

two variable, and is expressed by the variables from the lower levels (Croon and van Veldhoven, 

2007). Macro-micro analyses are common, but a limit amount of research has focused on the 

developments of micro-macro statistical methods (Croon and van Veldhoven, 2007; Lüdtke et al., 

2008). For this study, a micro-macro analysis is required to predict the overall pile capacity with 

several measurements for a single soil variable. Unfortunately, multilevel models are usually 

linear, and micro-macro analyses have not been developed to consider weighted observations. For 

instance, the unit side resistance would need to be multiplied, or weighted, by the side area of the 

pile to find the total side resistance as a load. As a result, the approach will be complex to 

implement or time-consuming to find nonlinear relationships.  

Machine learning methods, such as ANN, are efficient at finding relationships with several 

variables. ANN were inspired by the operations of neurons within the brain of an organism, and 

they apply a system of algorithms to find underlying patterns within data (Negnevitsky, 2005). 

Neural networks do not require knowledge about the problem domain, but they require data to 

learn by example and from experience (Negnevitsky, 2005). Many variations of neural networks 

exist, and they have grown in popularity within geotechnical research. Shahin (2014) created a 

recurrent neural network to predict the settlement of drilled shafts with cone penetration tests, 
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while Ismail and Jeng (2011) predicted the pile settlement with a higher order neural network. The 

correlations from these networks usually provide significantly lower errors compared to traditional 

methods. However, it is difficult to obtain a simple or practical equation from this machine learning 

method. Das and Basudhar (2006) translated their network into a function, but it was long, 

complex, and impractical. Most networks are effective if the data was normalized before 

performing the analysis (Negnevitsky, 2005), but this process of normalization, as shown by Das 

and Basudhar (2006), would be contained in the final equation. In general, a developed relationship 

could be difficult to translate logically with engineering judgement, and the effectiveness of the 

ANN can be reduced as the network memorizes patterns within the data by a process called 

“overfitting” (Negnevitsky, 2005). The relationships from the ANN are usually hidden 

(Negnevitsky, 2005), and the developed ANN becomes the final deliverable or product. For these 

reasons, this is probably not the best approach to offer a new mathematical function in engineering 

practice for design.  

GAs are another machine learning approach that is popular, and they are practical to apply if there 

is a lack of knowledge and if many possible solutions exist. The system relies on an objective or 

fitness function to evaluate the solutions on a particular set of criteria. Thus, for regression, a GA 

can rely on additional factors than solely the error between the measured and predicted results. 

The method can also consider nonlinear relationships between several variables and find a practical 

equation with symbolic regression. While developing a function, they choose whether or not to 

add a certain variable, and a GA can be developed to consider various mathematical operations to 

regress data. They have been customized for a variety of prediction problems, such as the 

settlement of tunnels (Gandomi & Alavi, 2012), strength parameters of soils (Levasseur et al., 

2008), and capacity of piles with cone penetration tests (Alkroosh & Nikraz, 2011). Yet, little 

research has been conducted with GAs and the capacity of piles for soil deposits in Ontario.  

2.5.2 Genetic Algorithms to Predict Pile Capacity 

A GA is an optimization approach inspired by Darwin’s theory of evolution (Banzhaf et al., 1998). 

In nature, chromosomes give an organism its attributes to survive and succeed in an environment. 

Through reproduction, organisms can adapt and evolve to their environment. A GA represents the 

problem domain as a chromosome. In this case, a GA was developed to conduct symbolic 

regression and predict the side resistance. For symbolic regression, the genes of a chromosome 

represented the components of a function: a variable, constant, or operator.  

As displayed in Figure 2-4, a simple GA is developed to search for a viable function through the 

following steps: chromosome creation, evaluation, selection, crossover, and mutation. First, 

multiple attempts for a problem are made at once in a trial, or generation, by generating a 

population of chromosomes with different attributes. The performance or fitness of a single 

chromosome is measured by an objective function. From the population of chromosomes, potential 

parents are selected for the creation of offspring. Typically, during selection, a preference is given 
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to chromosomes with a higher fitness, and the selection can be achieved by several approaches: 

tournament, rank, and roulette (Zhong et al., 2005). The population size remains constant 

throughout every generation, and the previous chromosomes, or at least a majority, are replaced 

by new offspring. The population then evolves through several generations by reproduction 

mechanisms, such as crossover and mutation. 

 

 

Figure 2-4: Process of a Simple Genetic Algorithm 

 

A GA is a stochastic method. If a regression analysis was repeated with multiple trials that had the 

same initial conditions, the GA can complete the analysis with a similar level of fitness but provide 

a different solution. The method is stochastic because it relies on random sampling or events, but 

the randomness can be controlled by considering the diversity, volatility, and influence of events 

within the GA. The number of generations, chromosome population size, search time, and 

evolvability or search capabilities of the system is also important. The analysis may also be 

conducted with several trials. A GA is also data-driven and, depending on the quality of the data 

and complexity of a problem, may not find an exact solution or global minimum. However, since 

it does not require detailed information about the problem domain, it is an efficient optimization 
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approach, especially if aspects of a problem lack knowledge. The GA searches for a solution by 

randomly creating chromosomes, which represent a function or potential solution, and the 

chromosomes compete and evolve within the defined generations. The best candidates tend to last 

through several generations, and this situation creates challenges to define reliable termination 

criteria (Negnevitsky, 2005). The performance of the GA can be evaluated by plotting the fitness 

of the functions against the generations. 

Various techniques have been proposed to encode chromosomes, but Oltean and Dumitrescu 

(2002) demonstrated that the Multi Expression Programming (MEP) technique was more efficient 

compared to other approaches, such as Gene Expression Programming (GEP). For a series of 

regression problems, MEP was able to achieve a higher fitness with fewer generations (Oltean and 

Dumitrescu, 2002). A MEP-based chromosome is simple to process, evaluate, and manipulate, 

especially for mutation and crossover (Oltean and Dumitrescu, 2002). Also, several solutions are 

contained in a chromosome, but the best solution typically represents the chromosome (Oltean and 

Dumitrescu, 2002).  

2.6 OBTAINING SOIL PARAMETERS 

Due to the natural variability of the soil, a range of soil parameters may be required to design the 

axial capacity of a pile. The parameters will usually differ on the soil content. Several tests may 

also be available to measure the same parameter, such as unconfined compression strength (UCS), 

unconsolidated undrained (UU) triaxial, and field vane shear test (FVST) for 𝐶𝑢. Errors easily 

propagate during the design of the pile since the design methods rely on the measurements. In 

order to reduce the variability, the approaches to obtain soil parameters were collected and 

evaluated on their practicality for the soil conditions in Ontario. 

2.6.1 Field Vane Shear Test (FVST) 

FVST values (𝐶𝑢𝐹𝑉𝑆𝑇) are commonly corrected to obtain 𝐶𝑢 for design: 

𝐶𝑢 =  𝐶𝑢𝐹𝑉𝑆𝑇  𝜇𝐹𝑉𝑆𝑇        Eq. 2-31 

For the equation above, CGS (2006) recommends two methods to determine the correction factor 

(𝜇𝐹𝑉𝑆𝑇): one approach is by Bjerrum (1972; 1973), and the other is by Aas et al. (1986). 

The correction by Bjerrum (1972; 1973) is likely to be popular in practice because it is simple. He 

related a correction factor to the PI of cohesive soils, as shown in Figure 2-5. The relation indicates 

that silty soils or non-plastic clays with a PI less than 20 will have a correction factor greater than 

one, but this factor is typically limited to a maximum of one to be conservative. 
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Figure 2-5: Relationship of Estimating Correction Factors for FVST from Bjerrum (1972) (CGS, 

2006) 

 

 

Figure 2-6: Relationship of Estimating Correction Factors for FVST from Aas et al. (1986) 

(CGS, 2006) 

 

a) 

b) 
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Aas et al. (1986) modified the relationship to estimate the stress history and include the aging of 

the soil, as shown in Figure 2-6a and b. The PI and effective stress (𝜎′) are used to estimate if the 

soil is NC or OC in Figure 2-6a, and the corresponding NC or OC curve then indicates the value 

of the correction factor in Figure 2-6b. OC soils receive lower correction factors. Although Aas et 

al. (1986) included more variables, the parameters are an approximation, and the approach may 

not be applicable for desiccated clays with high a 𝐶𝑢 or heavily OC soils near the ground surface. 

Several correction factors have developed over the years. Chandler (1988) observed several 

influences on soil strength measurements from the FVST: the PI; soil stress history; and vane 

insertion disturbance, dimensions, and shearing rate. Chandler (1988) also suggested that the 

correction factor from Bjerrum (1972) may be appropriate for inorganic, NC clays. Morris & 

Williams (1994) developed a correction factor for the liquid limit (LL) or PI with data from 

international references. The data included samples with a PI less than 20, and they suggested 

lower factors for these soils compared to Bjerrum (1972). 

2.6.2 Standard Penetration Test (SPT) versus Undrained Shear Strength (𝑪𝒖) 

Numerous correlations have been determined between 𝐶𝑢 and field N-values (N) or corrected N-

values (N60). The relationships are usually linear: 

𝐶𝑢 = 𝐴 𝑁 + 𝐵         Eq. 2-32 

The variables 𝐴 and 𝐵 are correlation coefficients, but 𝐵 can be ignored since it is usually equal 

to zero. 

As early as the 1950s, Sowers (1954) noticed the soil plasticity influenced the relation between 

SPT and 𝐶𝑢. He indicated that Coefficient 𝐴 generally ranges between 7.1 to 16.5, 4.7 to 9.5, and 

2.4 to 4.7 respectively for highly plastic clays, medium plastic clays, and very low plastic clays 

and plastic silts. From his results, Coefficient 𝐴 is higher with a higher PI.   

Stroud (1974) collected test data from insensitive clays and London Clay from a total of 70 

boreholes at 18 different sites. He suggested 𝐴 is higher with a lower PI. For a PI from 35 to 65, 

Stroud (1974) found 𝐴 varied from 4 to 5, and Coefficient 𝐴 was greater than 6 for a PI less than 

20. However, some of the investigated soils likely had a different mineral content or greater silt 

content than Sowers (1954). For a PI less than 15, Stroud (1974) also experienced difficulties to 

obtain PI. 

Hara et al. (1974) developed his correlation with soil samples in Japan. 𝐶𝑢 was measured by 

unconfined compression tests (UCS), and N-values ranged from 1 to 100 because values less than 

1 were rejected. The nonlinear relationship achieved a high fitness with a coefficient of correlation 

of 0.93. 

𝐶𝑢 = 29.7 𝑁0.72        Eq. 2-33 
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The cohesive soil was mainly compressible as the PI and LL ranged between 25 to 60 and 50 to 

100, respectively. The OCR was also measured and varied from 1 to 3.  

As shown in Figure 2-7, Kulhawy and Mayne (1990) provided a series of linear correlations. The 

relations were developed in various locations around the world and with a range of soil conditions. 

While investigating a particular soil, the importance of applying the appropriate relationship can 

be observed. 

 

 

Figure 2-7: Relationships between N-Values and 𝐶𝑢 (Kulhawy & Mayne, 1990) 

 

Sivrikaya and Toğrol (2006) considered different correlations for fine-grained soils with various 

PI. Table 2-3 displays the proposed ranges of 𝐴. Samples were collected by Shelby tubes, and 

UCS, unconsolidated undrained (UU) traxial tests, and FVST were conducted to gain 𝐶𝑢 at several 

regions across Turkey. Since the resulting 𝐶𝑢 differs from each testing method, it was logical to 

correlate the lab and in-situ tests individually to the N-values. Sivrikaya and Toğrol (2006) applied 

the correction factor by Aas et al. (1986) to shear strengths from FVST. For the different soil types, 

a relationship was attempted include N-values, 𝐶𝑢, and PI together; however, a weak correlation 

resulted. 
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Table 2-3: Suggested A Coefficients for Various Soil Types (Sivrikaya and Toğrol, 2006) 

Soil Type Range of A Coefficient Average A Coefficient 

Fine-Grained Soil 2 to 17.5 6.09 

CH 2.25 to 17.5 7.52 

Clay 2.12 to 17.5 6.38 

CL 2.12 to 13 4.98 

ML 2.68 to 6.67 4.22 

MH 2 to 6.88 3.8 

 

Sivrikaya and Toğrol (2006) had similar conclusions to Sowers (1954): Coefficient 𝐴 increased 

with a higher PI, and the coefficient was low for silts and non-plastic clays. However, Sivrikaya 

and Toğrol (2006) recommended to not apply in practice the correlations for highly plastic clays 

by Sowers (1954). 

Nassaji and Kalantari (2011) offered multi-linear relationships with N-values, 𝐶𝑢, and Atterberg 

properties. SPT was conducted and soil samples were taken from 19 borehole logs, which were 

located at four regions around Terhan, Iran. From the collected soil conditions, the values of PI, 

𝐶𝑢, and 𝑁 ranged from 5 to 28.5, 18 to 108 kPa, and 4 to 46, respectively. Four relationships were 

proposed for corrected and field N-values: 

𝐶𝑢 =  1.6 𝑁 + 15.4        Eq. 2-34 

𝐶𝑢 =  2.1 𝑁60 + 17.6        Eq. 2-35 

𝐶𝑢 =  1.5 𝑁 − 0.1 𝑤𝑐 − 0.9 𝐿𝐿 + 2.4 𝑃𝐼 + 21.1    Eq. 2-36 

𝐶𝑢 =  2 𝑁60 − 0.4 𝑤𝑐 − 1.1 𝐿𝐿 + 2.4 𝑃𝐼 + 33.3    Eq. 2-37 

Although a large database was not used, the technique to correlate the data was suggested to offer 

a better approach to estimate 𝐶𝑢. Nassaji and Kalantari (2011) compared their proposed approaches 

to relations from two other references. The additional parameters included in Equations 2-36 and 

2-37 were able to reduce the standard deviation and improve the correlation coefficient. For the 

multi-linear regressions, the variables are assumed to be independent, and the significance of the 

variables from a t-test were not provided. In the end, Nassaji and Kalantari (2011) recommended 

to apply the relationships to the intended areas. Soil conditions and in-situ testing may differ for 

other regions. 
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2.6.3 Friction Angle for Noncohesive Soils 

A few relationships common relationships were collected to estimate the friction angle from SPT 

N-values. While predicting the capacity of pipe piles and H piles in sand, Wolff (1989) 

approximated the graphical relationship by Peck et al. (1974), which is shown in Figure 2-8, with 

the following expression: 

∅′ = 27.1 + 0.3 𝑁60 − 0.00054 𝑁60
2      Eq. 2-38 

Although it is not indicated, Peck et al. (1974) probably directly correlated field N-values to 

friction angles. The application of corrected 𝑁60 values may offer conservative results and provide 

unified or consistent results with varying SPT procedures. Wolff (1989) did correct the N-values 

for overburden pressures according to Liao and Whitman (1986) during the calculations of the pile 

capacities. 

 

 

Figure 2-8: Relation of N-Values and Friction Angles by Peck et al. (1974) (Kulhawy & Mayne, 

1990) 

 

Kulhawy and Mayne (1990) presented a series of correlations to estimate soil parameters. 

Considering that the N-values are influenced by different overburden pressures, the suggested 

relationship modifies the friction angle with the effective stress: 
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∅′ = arctan (
(𝑁60)1

12.2+20.3 (
𝜎′

100
)
)

0.34

      Eq. 2-39 

In the equation, (𝑁60)1 is the N-value corrected for both the hammer energy and overburden 

pressure in the noncohesive soil. Kulhawy and Mayne (1990) advised to not apply the method for 

depths less than 1 to 2 m and mentioned the relationship may offer conservative results. 

Hatanaka and Uchida (1996) developed and compared correlations to other references, such as the 

Japan Road Association. A method was proposed after obtaining in-situ frozen samples of sandy 

soil and determining the friction angle with drained triaxial tests. The samples had friction angles 

from approximately 28 to 45 degrees, and the correlated N-values were corrected for the 

overburden pressure by the equation suggested by Liao and Whitman (1986). Hatanaka and Uchida 

(1996) in the end suggested an equation with the best fit for the investigated soil: 

∅′ =  √20 (𝑁60)1 + 20       Eq. 2-40 

It was also concluded that the particle shape may affect the relationship. 

2.7 OTHER INFLUENTIAL FACTORS ON PILE CAPACITY 

The design of a single pile is a very complex problem due to the interaction between the soil and 

pile. In addition to the soil conditions, there are many influential factors, including the pile 

geometry, pile material, and duration of time between installing and testing a pile. Since the design 

process can involve many variables, technical literature was reviewed for potential solutions. 

2.7.1 Pile Geometry and Installation 

Through this literature review, different references have investigated a range of pile types and 

materials. Many references tested or observed databases with pipe piles or solid piles. If H piles 

were studied, they were usually found in small numbers. Karlsrud et al. (2005) experienced a small 

difference between closed- and open-ended pipe piles. The difference was accounted by the 𝐹𝑇𝑖𝑝 

coefficient, which modified the determined adhesion factor up to 25 %. Karlsrud (2012) later 

removed this factor in the predictions of the adhesion coefficient. 

While comparing two piles with same length in the same soil of a site, Stermac et al. (1969) noticed 

a steel pile with an oversized based plate had a reduced axial capacity after a year. Yet, the 

differences in capacities were negligible for the short-term experiments (Stermac et al., 1969). 

The idea that the pile length or slenderness ratio are factors on the axial capacity has been 

commonly investigated. The pile length was linked to “whipping” effects, which is the lateral 

movement of a pile or soil during the driving process (Karlsrud, 2012; Semple & Rigden, 1986). 

Whipping may reduce the capacity as the soil is pushed away from the pile walls. Especially in a 
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cohesive OC soil, the soil will take a long time to flow and apply a pressure on the walls of the 

pile, or a permanent gap may even develop at the pile-soil interface (Semple & Rigden, 1986). 

This probably explains the reduction in capacity by Stermac et al. (1969) with oversized base 

plates. Tomlinson (1957) suspected inconsistencies for his design method were due to the 

development of gaps between the soil and upper section of the pile. In general, the whipping effects 

are expected to be the greatest towards the ground surface, where there is less lateral resistance by 

the soil (Karlsrud, 2012). Other considerations may include the flexibility of a pile and the 

dissipation of loads within a pile at greater depths. Many references, such as with Kolk and Van 

der Velde (1996), have incorporated adjustments for the slenderness or length in their proposed 

methods. On the other hand, Karlsrud (2012) did not observe a significant impact.  

Another idea involving the pile length is the critical depth concept. Particularly in noncohesive 

soil, Vesic (1967) noticed the side resistance remained constant along a pile after a certain depth. 

This depth of maximum resistance is the critical depth, and Meyerhof (1976) suggested the critical 

depth was located at a distance of 15 to 20 diameters from the ground surface. Based on this 

concept, Meyerhof (1976) developed equations to estimate the tip and side resistance.  

From a literature review by Poulos et al. (2001), the critical depth concept was explained. Other 

than testing errors, the reduction in the side resistance with a cohesive soil could be due to the 

change in OCR; an OC soil typically has higher in-situ lateral stresses near the ground surface, 

which affects the side resistance (Poulos et al., 2001). The rate of increase by the side resistance 

will then follow the decreasing and eventually stabilized OCR with depth (Poulos et al., 2001). 

Mainly in a noncohesive soils, Poulos et al. (2001) suggested that the confinement of the effective 

stress will likely gradually dissipate with greater depths, and limiting the side resistance will likely 

offer conservative estimates of the capacity.  

2.7.2 Time Dependency and Setup Time 

Particularly for cohesive soils, Stermac et al. (1969) showed that time can have a significant impact 

on the axial capacity of a pile in Toronto, Ontario. However, the setup time will not be considered 

in the scope of this investigation since most of the piles in this study had a setup time of 10 to 30 

days. In addition, correction factors typically require advanced testing, such as the soil sensitivity, 

OCR, and coefficient of consolidation (Abu-Farakh et al., 2016; Karlsrud et al., 2005; Karlsrud, 

2012). Kolk and Van der Velde (1996) found the influence of time to be difficult to isolate with 

empirical approaches to estimate the horizontal coefficient of consolidation. 

2.8 SUMMARY 

α Methods, such as the one by Kulhawy and Jackson (1989), may only rely on 𝐶𝑢, but many 

references have received improvements by including other variables. Kolk and Van der Velde 

(1996) had less inconsistent predictions by including the effect of the pile length to predict 𝛼, and 
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Karlsrud et al. (2005) noticed soils with a low PI had a significantly lower 𝛼 compared to CGS 

(2006). Thus, while considering the availability of the data, the 𝐶𝑢, 𝐿/𝐷, 𝜎′, and PI will be 

considered as potential variables for a new design method for cohesive soils. 

The side and tip resistances for noncohesive soils are usually expressed as a function of the friction 

angle (∅′) (Berezantzev et al., 1961), but some references experienced varying impacts with the 

pile length (Meyerhof, 1976; Vesic, 1977, Poulos et al., 2001). Meyerhof (1976) recommends 

limiting the side and tip resistance once a particular depth is reached. Poulos et al. (2001) stated 

the confinement likely dissipates gradually for longer piles. In this study, the side resistance will 

not be limited by the critical depth concept, but judgement is needed to handle the parameters, 

especially from in-situ measurements. 

For SPT correlations, N-values are simply regressed to the pile resistances, and the results will 

vary by the soil type. In this study, heterogeneous soils were considered by the soil type. Other 

factors included in this analysis are the 𝐿/𝐷 and 𝜎′, which may be related to the pile installation 

effects and soil confinement. 

Part of the problem of predicting the pile capacity involves the consistency of the soil profile, and 

in reality, the application of average parameters is not always appropriate. Many sources used 

statistical, semi-empirical, or trial-and-error approaches to develop their design methods, and they 

applied the average soil parameters from fairly homogenous soils. This situation is very common 

for SPT correlations, but it simplifies the soil conditions as extremes from the measurements are 

not considered. For heterogeneous soils, biased correlations will likely develop. Very few 

references, such as Kolk and Van der Velde (1996), proposed a method intended for layered soil 

conditions. A machine learning method, specifically a GA, was applied in this study because it is 

efficient at handling several variables and developing nonlinear relationships. 

Artificial neural networks may be efficient at processing data and finding relationships, but the 

method can also create challenges to extract a practical function for design. A GA can evaluate a 

solution on several qualities, such as the accuracy and complexity of a function, and it was selected 

to perform symbolic regression. The focus was to correlate the side resistance of piles in 

heterogeneous soils to multiple measurements of SPT blowcounts or 𝐶𝑢. Oltean and Dumitrescu 

(2002) demonstrated that the MEP encoding technique was more efficient compared to GEP, and 

MEP was applied for this GA. 

Input parameters and their interdependency are important as the uncertainties will propagate to the 

final result. The correction factor by Bjerrum (1972) was applied in this study due to its simplicity, 

and it was recommended by CGS (2006). However, the OCR and disturbance of a cohesive soil 

likely has a large influence on the measured values. 

For the correlations between N-values and 𝐶𝑢, the typical trend is that a lower PI will result in a 

lower Coefficient A (Sowers, 1954; and Sivrikaya & Toğrol, 2006). Due to the silt content in tills, 

which usually results in low PI values, the relationships by Sowers (1954), Sivrikaya and Toğrol 
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(2006), and Nassaji and Kalantari (2011) are probably the most applicable. While observing the 

results from Sivrikaya and Toğrol (2006), many methods presented by Kulhawy and Mayne (1990) 

(Figure 2-7) will overestimate the value of 𝐶𝑢. Hara et al. (1974) will also likely overestimate 

because it was intended for compressible soils. The many correlations suggest analyzing the 

conditions of a local soil and determining customized correlations for soils within Ontario.  

In noncohesive soils, three methods were presented in the literature review. The correlation by 

Wolff (1989) was suggested to offer conservative values (Kulhawy and Mayne, 1990), but all of 

the methods are applicable in this study for indirect design methods.  

In summary, many uncertainties exist to predict the ultimate capacity of piles. In addition to the 

soil strength and contents, predictions can be influenced by the soil measurement technique, 

installation method, and pile material and geometry. This study will focus on driven piles in 

Ontario soils and obtain an improved design method with a GA. 
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3 STATISTICAL ANALYSIS AND METHODOLOGY 

3.1 OVERVIEW OF METHODOLOGY 

For driven piles in heterogeneous soils, the goal was to improve the predictability of the ultimate 

capacity. New correlations for design were developed by following 3 steps. (1) Results were 

gathered from pile load tests and site investigations from a database by MTO. (2) For every pile, 

the side resistance, tip resistance, or ultimate capacity was extracted from load-displacement 

curves. The side resistance was approximated from the yielding load of extension load tests, and 

the tip resistance was assumed to be the difference in failure loads from the compression and 

extension tests. (3) A statistical analysis was performed to determine trends with soil strength 

measurements and pile resistances.  

3.2 SELECTED SITES AND PILE LOAD TESTS 

For this investigation, a database was compiled with the site conditions and pile test data from 

MTO (1993). The focus was on driven H piles and concrete-filled steel pipe piles that were 

subjected to static-axial-load tests. The tests followed standards similar to D1143-07 from the 

American Society for Testing and Materials (ASTM) (2007). H piles varied by designation, but 

the pipe piles had consistent diameter of 0.324 m. From the database, a total of 43 piles were 

selected for this study. Among them, 30 piles (15 pipe piles and 15 H piles) were tested with both 

tensile and compressive loads and were selected for this investigation. The side (𝑄𝑠) and tip 

resistance (𝑄𝑝) was approximated with results from both load tests. Typically, the compressive 

load test was performed first, and the duration between installing and testing a pile was 

approximately 10 to 30 days. Piles embedded in mainly noncohesive soils had a short setup time 

of about 10 days, while piles installed in cohesive soils usually had a longer setup time. Another 

13 piles were also used to investigate the accuracy of existing design methods in Chapter 4. These 

piles were in cohesive or noncohesive soils and experienced compressive load tests. The ultimate 

capacity (𝑄𝑢) was extracted from these test results, and the ultimate failure loads and pile 

properties are in Table 3-1.  The embedment lengths ranged from 3 to 45 m, but most of the piles 

were founded to depths of 12 to 25 m. Additional information on the pile load tests is provided in 

Appendix A. 

As shown in Figure 3-1, pile load tests were located in various regions of Ontario, but most of 

these test sites were located in Southern Ontario. Soils were mainly inorganic, silty, and compact 

or stiff. Glacial deposits were often found with sites that contained cohesive soils, and they usually 

surrounded the lower portion or base of the piles, especially if they overlaid bedrock. From the test 

sites, some loose sands and slightly organic clays were also found. Particularly for the statistical 

analysis with the soil measurement techniques, data on slightly sensitive clays was collected from 

two additional sites near Ottawa.  
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Table 3-1: Details on the Studied Piles 

Site 

No. 

Pile 

No. 
Pile Type1 Length2 (m) Embedded Soil Type3 𝑄𝑢 (kN) 𝑄𝑠 (kN) 𝑄𝑝 (kN) Notes 

11 1 HP 310x79 26.82 Sand to Silt 523    

13 19 324 OD Pipe 19.74 Silty Sand to Sandy Silt 1286   343 mm ∅ shoe 

14 2 324 OD Pipe 18.29 Silty Clay 298   343 mm ∅ shoe 

21 4 HP 370 x 108 21.50 Silty Clay 1661    

22 3 324 OD Pipe 15.30 Clayey Silt 192 118 74 343 mm ∅ shoe 

22 4 324 OD Pipe 30.15 Clayey Silt 996 340 665 343 mm ∅ shoe 

22 5 324 OD Pipe 15.28 Clayey Silt 233 133 99 324 mm ∅ shoe 

23 2 324 OD Pipe 3.02 Silty Clay 449 209 239 343 mm ∅ shoe 

23 3 HP 310x110 3.05 Silty Clay 429 236 193  

24 2 324 OD Pipe 15.39 Sand 638 372 265 343 mm ∅ shoe 

24 3 324 OD Pipe 22.40 Sand 709 401 308 343 mm ∅ shoe 

24 4 HP 310x79 22.40 Sand 1389 403 986  

24 5 HP 310x79 15.39 Sand 715 263 451  

25 1 324 OD Pipe 5.64 Silty Clay 343 241 102 343 mm ∅ shoe 

25 4 HP 310x79 18.44 Silty Clay 873 507 366  

25 5 324 OD Pipe 18.35 Silty Clay 667 383 284 343 mm ∅ shoe 

25 6 324 OD Pipe 9.27 Silty Clay 472 320 151 343 mm ∅ shoe 

25 9 HP 310x79 9.39 Silty Clay 489 323 166  

28 1 HP 310x79 6.10 Clayey Silt 499    

28 2 HP 310x79 18.29 Clayey Silt 486 316 169  

28 3 HP 310x79 12.19 Clayey Silt 563    

28 7 324 OD Pipe 6.10 Clayey Silt 671 557 113 343 mm ∅ shoe 

28 8 324 OD Pipe 18.29 Clayey Silt 695 406 289 343 mm ∅ shoe 

28 9 324 OD Pipe 12.04 Clayey Silt 591 571 20 343 mm ∅ shoe 

34 19 324 OD Pipe 18.59 Sandy Silt 433   343 mm ∅ shoe 

34 23 324 OD Pipe 18.59 Sandy Silt 442   343 mm ∅ shoe 

34 25 324 OD Pipe 18.59 Sandy Silt 473   343 mm ∅ shoe 

34 27 324 OD Pipe 18.59 Sandy Silt 464   343 mm ∅ shoe 

35 1 HP 310x110 14.69 
Layered Clayey Silt and 

Silty Sand 
1609 506 1102  

35 4 324 OD Pipe 14.69 
Layered Clayey Silt and 

Silty Sand 
1537 730 807 343 mm ∅ shoe 

35 5 HP 310x110 27.58 
Layered Clayey Silt and 

Silty Sand 
2744 1493 1251  

37 3 HP 310x79 14.48 Sand to Silty Sand 1054 333 721  

37 4 HP 310x79 38.94 Sand to Silty Sand  1394   

37 5 HP 310x79 31.24 Sand to Sandy Silt 1633 420 1214  

37 6 HP 310x110 14.48 Sand to Silty Sand 798 383 414  

37 7 HP 310x110 45.29 Sand to Silty Sand 1943 1524 419  

37 8 HP 310x110 30.92 Sand to Silty Sand 1525 699 826  

39 2 HP 310x110 25.50 
Silty Sand; Layered Clay 

and Silt 
1307 614 693  

39 3 324 OD Pipe 25.40 
Silty Sand; Layered Clay 

and Silt 
1170 470 700 343 mm ∅ shoe 

40 2 HP 310x110 24.50 Layered Sand and Silty Clay 1232 598 634  

40 3 324 OD Pipe 17.20 Sandy Silt to Sand 1167 505 661 343 mm ∅ shoe 

41 2 HP 310x110 19.50 Sand  1052   

41 3 324 OD Pipe 16.00 Sand  664  343 mm ∅ shoe 

Notes: 1 Steel H pile designations are size (mm) by weight (kg/m). Steel pipe piles were filled with concrete before 

testing, and OD is the outside diameter (mm); 2 Embedment Length; 3 The dominating soil type, and classifications 

are according to MTO standards. 
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Figure 3-1: Location of Studied Sites 

 

Soil conditions were provided by borehole logs, but every site varied in the extent and diversity of 

the field and lab tests. An example is shown in Figure 3-2 for Site 22, which dominated with 

cohesive soils. The figure was compiled with results from several borehole logs. Although the soil 

profiles were similar among the borings, the soil profile in the figure is based on the borehole that 

was closest to the piles. In general, measurements from the database included Atterberg limits, 

natural moisture contents, unit weights, and the composition of gravel, sand, silt, and clay 

according to the grain-size distribution. Soil classifications and SPT N-values were commonly 

recorded at different depths. Depending on the dominating soil type, N-values from the field were 

corrected according to CGS (2006) for 60% hammer efficiency (𝑁60) and the overburden pressure 

((𝑁1)60 ). The 𝐶𝑢 was measured with unconfined compression strength (UCS), unconsolidated 

undrained (UU) triaxial, and field vane shear (FVST) tests. 𝐶𝑢 commonly reached values greater 

than 100 kPa with UCS and UU. A variety of soil measurements were collected from the sites, but 

a majority of the results were from SPT and Atterberg limits.  

 

Sensitive Clays 
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Figure 3-2: Soil Measurements at Site 22 

 

3.3 RESISTANCES INTERPRETED FROM PILE LOAD TESTS 

During the load tests, dial gauges measured the load-displacement response at the top of the piles. 

Figure 3-3 provides the load test data for Pile 4 from Site 22. In this figure, “Test No. 1” was the 

compression test on the pile, and “Test No. E1” was the extension test. Figure 3-4 has the extracted 

plots of the load-displacement curves, and they are commonly evaluated with graphical methods 

to determine the failure load. Although the Davisson Offset Method is popular, it is an empirical 

method and may inaccurately estimate the yielding point. The failure loads for this investigation 

were evaluated with the criteria by De Beer (Fellenius, 1980), which relies on the characteristics 

of the plot. De Beer suggested to plot both axes of the load-displacement curve on a log-scale, and 

the failure load is indicated in Figure 3-5 by the point on the curve with the greatest change in 

slope (Fellenius, 1980). 

 

Silty Clay 

Silt 

Silty Sand 

Silty Clay 

Pile 4 

Piles 3 & 5 
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Figure 3-3: Load, Displacement, and Time Measurements from Pile 4 at Site 22 
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Figure 3-4: Example of Load-Displacement Curves for Pile 4 at Site 22 

 

 

Figure 3-5: Example of the De Beer Method for Pile 4 at Site 22 
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3.4 STATISTICAL ANALYSIS WITH PILE RESISTANCES AND SOIL PARAMETERS 

After collecting the pile resistances, a statistical analysis was conducted to find trends with the soil 

conditions. H piles were assumed to be fully plugged during this stage. Correlations were also 

obtained between various soil strength measurements because strength parameters may be 

predicted with SPT or FVST results.  

3.4.1 Evaluating Soil Strength Measurements 

Particularly for cohesive soils, a variety of tests can determine the soil strength, but each approach 

shears the soil differently. From every site, the soil measurements at similar depths were collected 

and compared. Figure 3-6 shows that results by UCS and UU triaxial were usually over 100 kPa, 

especially for silty clays and desiccated clays. Values over 100 kPa may not be reliable in design 

according to CGS (2006); yet, the two testing methods were consistent and similar. FVST 

measurements were not often collected in very stiff soils, but Figure 3-7 shows they were 

approximately 35 % higher on average than UU triaxial. Correction factors, such as the one by 

Bjerrum (1972), are usually applied. Unfortunately, as shown in Figure 3-8, a lot of variability was 

found with Ontario soils, and the PI may not sufficiently correct FVST results on its own.  

 

 

Figure 3-6: Comparison of UU Triaxial to UCS 
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Figure 3-7: Comparison of UU Triaxial to FVST 

 

 

Figure 3-8: Influence of PI on FVST Correction Factor 
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Estimates for the undrained strengths by SPT can be improved with the PI, as shown in Figure 3-

9, or water content. Ratios of 𝐶𝑢 to corrected N-values can be selected between 4 to 7 based on 

Kulhawy and Mayne (1990), and silty soils will likely use the upper portion of the range. 

 

 

Figure 3-9: Influence of PI on Relation of 𝐶𝑢 by UU Triaxial and Corrected SPT N-Value 
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Figure 3-10: Distribution of the Contribution from the Side Resistance to the Pile Capacity by 

Soil Type 

 

The side resistance is likely influenced by the horizontal confinement or lateral earth pressure of 

the soil; however, it is challenging to estimate relationships with this variable without sufficient 

lab testing or in-situ measurements. In Figures 3-11 and 3-12, the unit side resistance is compared 

to the mean effective stress and pile length. The figures demonstrate a general negative trend with 

the mean side resistance, but there are a lot of inconsistencies since other factors are involved. In 

addition, the average soil parameters simplify the soil conditions. As a note, the figures show that 

the piles in cohesive soils are generally installed at shallower depths compared to the piles in 

noncohesive soils. 

In Figure 3-13, correlations with corrected SPT N-values and the side resistances were also 

separated by the soil conditions. A consistent trend was found with clayey soils. Shioi and Fukui 

(1982) likely had softer soils and provided a higher rate for the trend line. The methods for low 

and large displacement piles by Meyerhof (1976) will generally overestimate the side resistance. 

Since the piles in this database are fairly slender, they may be classified as low displacement piles 

if the method by Meyerhof (1976) is used; nonetheless, this existing design method will still 

overestimate, especially for very dense sands. Meyerhof (1976) developed his method with 

concrete and timber piles, which will likely have different frictional resistances than steel piles.   
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Figure 3-11: Relationship between Unit Side Resistance and Mean Effective Stress 

 

 

Figure 3-12: Relationship between Unit Side Resistance and Pile Embedment Length 
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For cohesive soils, Cu can sufficiently predict the side resistance. The relationship with Cu is 

similar between H piles and pipe piles, as shown in Figure 3-14, but H piles tend to have less 

variability. For pipe piles, the linear equation is below (𝑅2 = 0.91): 

𝑞𝑠 = 0.19 𝐶𝑢         Eq. 3-1 

H piles have the following relation (𝑅2 = 0.98): 

𝑞𝑠 = 0.17 𝐶𝑢         Eq. 3-2 

For the selected sample, the 𝛼 Method recommended by CGS (2006) overestimates the side 

resistance. These results may change with a larger sample size. 

 

 

Figure 3-13: Relationship between Unit Side Resistance and Mean Corrected N-Value 
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Figure 3-14: Relationship between Unit Side Resistance and Mean 𝐶𝑢 by UCS 

 

 

Figure 3-15: Relationship between Unit Side Resistance and Mean Liquidity Index 
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3.4.3 Correlations with Tip Resistance 

The boxplot in Figure 3-16 displays the distributions of the unit tip resistances from the collected 

piles, and the statistical representations of the plot are the same as Figure 3-10. Clayey soils 

typically generated lower tip resistances than piles in sandy soils. Also, H piles tend to have a 

higher unit tip resistance for the same soil type, but the unit tip resistance highly depends on other 

soil properties, such as the strength and compressibility. 

As shown in Figures 3-17 and 3-18, any influence by the effective stress or pile length appears to 

be weak or almost insignificant. Possibly due to installation effects or the soil strength, the pile 

length may have a positive trend with the unit tip resistance, especially with silty and sandy soils, 

but it the relationship is very weak.  

The unit tip resistance was heavily influenced by the soil content, and this relationship was best 

displayed with the clay fraction in Figure 3-19. At the pile tip, all the soils had a high silt fraction 

of at least 33 %, and the silt fraction is indicated by the numbers in the figure. Sandy soils had 

much higher tip resistances than clays, but the soils likely became more well-graded or cohesive 

as the clay fraction increased. As a result, the soil strength and tip resistance was higher than soils 

with mainly silt and sand. 

 

 

Figure 3-16: Distribution of the Unit Tip Resistance by Soil Type 
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Figure 3-17: Influence of Effective Stress on Unit Tip Resistance 

 

 

Figure 3-18: Influence of Pile Length on Unit Tip Resistance 
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Figure 3-19: Influence of Soil Content on Unit Tip Resistance 
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Figure 3-20: Relationship between Unit Tip Resistance and Uncorrected N-Value 

 

 

Figure 3-21: Relationship between Unit Tip Resistance and Corrected N-Value 
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Figure 3-22: Relationship between Unit Tip Resistance and 𝐶𝑢 by UU Triaxial 
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4 PREDICTIONS BY A GENETIC ALGORITHM 

4.1 INTRODUCTION 

As displayed in Figure 4-1, the GA evolved the chromosomes with the following steps: creation, 

evaluation, selection, crossover, mutation, and constant refinement. A GA can be created with 

various programming languages, but the GA in this study was programmed with Matlab 

(Mathworks, 2017) because the software can easily manipulate matrices. The source code for this 

thesis is provided in Appendix B. Since many of the features were customized, toolboxes from 

Matlab were not used, but the GA was modified from C++ code from Oltean (2016). The GA 

encoded and evaluated the chromosomes with the Multi Expression Programming (MEP) 

technique. MEP was inspired by the activation of programs or programming code with integers 

and can efficiently encode or decode functions for symbolic regression compared to other 

techniques (Oltean & Dumitrescu, 2002). The settings of the GA are shown in Table 4-1.  

 

 

Figure 4-1: Process of the Developed Genetic Algorithm 
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Table 4-1: Settings for the Genetic Algorithm 

Parameter Parameter Setting 

Number of generations 100 

Population Size 2000 

Function Set +, −,×,÷, power, exponential, natural logarithmic, hyperbolic 

tangent 

Chromosome length 20 

Fitness function Root Mean Squared Error (RMSE) 

Mutation rate (%) 10 

Crossover rate (%) 90 

Crossover type Uniform with brood recombination 

Population size for brood 

crossover 

8 

Brood crossover rate (%) 50 

Population size for brood 

constant refinement 

50 

Tournament selection size 2 

Initial operator likelihood (%) 40 

Initial variable likelihood (%) 30 

Initial constant likelihood (%) 30 

 

 

Table 4-2: Variables Included in the GA Analysis 

Analysis Variables1 Remarks 

Unit side resistance and 

corrected SPT N-values 
𝑁𝑐𝑜𝑟𝑟, 𝑆𝑇 , 𝜎′, (𝐿 − 𝑧)/𝐷 Dataset was divided by pile type; 

piles were embedded in various 

soil types 

Unit side resistance and 𝐶𝑢 𝐶𝑢, 𝐿𝐼, 𝑃𝐼, (𝐿 − 𝑧)/𝐷, 𝜎′ All pile types were analyzed 

together; piles were mainly 

embedded in cohesive soils 

Notes: 1 𝑁𝑐𝑜𝑟𝑟 is the corrected SPT N-value: 𝑁60 for cohesive soils and (𝑁1)60 for noncohesive 

soils. 𝑆𝑇 is the soil type, where 1 is for noncohesive soils and 2 is for cohesive soils. (𝐿 − 𝑧)/𝐷 

is the modified slenderness ratio that is composed of the pile embedment length (𝐿), depth to 

the centre of a pile segment (𝑧), and maximum pile width or diameter (𝐷). 

 

The GA was intended to improve predictions for side resistance, and the side resistances were 

extracted from the piles subjected to extension load tests. Table 4-2 summaries the variables 
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included in the regressions, and regressions were made with two types of soil strength 

measurements: corrected SPT N-values and 𝐶𝑢. As a result, the GA analyzed two datasets with 

different soil types. Similar to Brown (2001), H piles were assumed to be fully plugged in both 

cases, but the analysis could as easily be conducted assuming unplugged conditions. 

4.1.1 Creation of Chromosomes 

For symbolic regression with the MEP technique, chromosomes were linear entities, or arrays, and 

represented a function for the unit side resistance of a pile. An example to decode a MEP 

chromosome is shown in Figure 4-2. Chromosomes are generally composed of genes. In this case, 

for the MEP technique, genes are a single component of a function or a row within the arrays, and 

these genes are divided into two components: activators and links.  

In the figure, activators are entered into the first column of the chromosome and specify which 

variable, constant, or operator is applied for a function. Links are stored into the last two columns 

(columns 2 and 3) of the chromosome and indicate which row within the chromosome should be 

combined by the operators. The activators in the chromosome represent operators with negative 

integers, such as “-1” for addition and “-2” for multiplication. Positive integers designate the 

activation of variables and constants. In general, “1” and “2” respectively represent 𝑎 and 𝑏, which 

can be either a constant or variable. The first activator in the chromosome must be a constant or 

variable to prevent illogical errors during evaluation (Oltean & Dumitrescu, 2002). Next to each 

activator are the corresponding links, and the links indicate which results should be combined by 

the operator. The values of the links, which are in parentheses, are the locations, or row numbers 

of the chromosome, for the operators to be performed. During the evaluation stage, the result of 

every gene is stored, and the operators are applied to the results from the previous portions of the 

chromosome. The corresponding links of variables and constants are then ignored because these 

function entities are numerical values. 

For this investigation, the GA was capable of power, natural logarithmic, exponential, and 

hyperbolic tangent operators in addition to simple arithmetic. These operators allow the GA to 

consider many common nonlinear relationships. More can be added, but if too many operators are 

included, the number of possible combinations for a GA to search can increase exponentially 

(Banzhaf et al., 1998). Other operators would also likely apply redundant relationships and may 

not offer additional benefits. 

As the first stage of the GA, a population of chromosomes was created with a maximum length of 

20 genes. In other words, the matrix representing the chromosome had a width of 20 rows. A 

probability was assigned for the likelihood of occurrence for the operators, constants, and 

variables. These probabilities generate a roulette wheel and allow the genes to be populated with 

a slight bias towards a particular functional component. In Table 4-1, the probabilities were fairly 

even since a small number of variables were analyzed. Among the possible operators and variables, 

the probability for selection was equal. 
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Figure 4-2: Example of Decoding the Chromosome with MEP 

 

4.1.2 Evaluation of Chromosomes 

The goal of the GA in this study was to find a function with the best fitness to represent the unit 

side resistance of a pile. During evaluation, the changing shear strength from the soil conditions 

was considered by dividing the piles into several segments. The GA predicted the unit side 

resistance for each layer, and the total side resistance of a pile was the summation of the side 

resistances from all the pile segments. During a load test, load-displacement responses were 

measured at the top of the piles. Thus, the fitness function compared the predicted total side 

resistance (𝑄𝑠𝑝𝑟𝑒𝑑) to the measured side resistance (𝑄𝑠) with the root mean squared error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑄𝑠𝑝𝑟𝑒𝑑 − 𝑄𝑠)

2
      Eq. 4-1 
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where n is the number of analyzed piles. A lower RMSE indicates a better fit between the measured 

and predicted values. Other fitness functions exist, such as the absolute error, but the RMSE is 

fairly simple and common for regression. 

Illogical errors must be prevented during evaluation. Examples include dividing by zero or 

applying the logarithm to a negative value. Division operators may be simply protected by 

returning the numerator if a near-zero denominator is found (Banzhaf et al., 1998), but Oltean and 

Dumitrescu (2002) suggested to mutate division into a variable or constant. Operators were 

protected as suggested by Brameier and Banzhaf (2007) and mutated as shown in Table 4-3. 

 

Table 4-3: Protection Instructions for Operators (Modified from Brameier & Banzhaf, 2007) 

Operation Protected Definition  

Division: 𝑟𝑖 =  𝑟𝑗/𝑟𝑘 If |𝑟𝑘| ≥ 10−6 : 𝑟𝑖 =  𝑟𝑗/𝑟𝑘 Else 𝑟𝑖 = variable 

Power: 𝑟𝑖 =  𝑟𝑗
𝑟𝑘 If |𝑟𝑘| ≤ 20 : 𝑟𝑖 =  |𝑟𝑗|

𝑟𝑘
 Else 𝑟𝑖 = tanh(𝑟𝑗) 

Exponent: 𝑟𝑖 = exp (𝑟𝑗) If |𝑟𝑗| ≤ 32 : 𝑟𝑖 = exp (𝑟𝑗) Else 𝑟𝑖 = 𝑟𝑗 + 𝑟𝑘 

Natural Logarithm: 𝑟𝑖 = ln (𝑟𝑗) If |𝑟𝑗| ≥ 10−6 : 𝑟𝑖 = ln (|𝑟𝑗|) Else 𝑟𝑖 = constant 

 

4.1.3 Selection of Parents 

Two parents were selected for mating using tournament selection. The process is simple and 

requires less computational effort compared to other selection methods (Zhong et al., 2005). For 

each parent, a tournament size, or group, of chromosomes were randomly sampled from the 

population. The chromosome from this group with the best fitness became a parent, and the 

selection process was repeated until a new population was created with the same size as the original 

population. As part of process for tournament selection, the offspring replace the chromosomes 

with the worst fitness in the original population. 

4.1.4 Crossover and Mutation 

Crossover was assigned a 90 % chance of occurrence. If crossover does not occur, the parents were 

copied and sent for mutation. Otherwise, uniform crossover was applied with brood recombination. 

Uniform crossover randomly distributes the genes of the parents to the offspring, as demonstrated 

in Figure 4-3. Brood recombination was inspired by organisms that have a litter of offspring 

(Tackett, 1994), and the process attempts to obtain the best attributes from the parents. As shown 

in Figure 4-4, crossover was repeated several times, and a subpopulation (𝑁𝑠𝑢𝑏) of offspring were 

created by the same two parents. The two offspring with the best fitness were selected and 

continued for mutation. If every pair of parents performed brood recombination, the computational 
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effort would increase significantly because the total number of created offspring would be 𝑁𝑠𝑢𝑏 

multiplied by the chromosome population size (Banzhaf et al., 1998). Thus, brood recombination 

was assigned a probability of occurrence. 

 

 

Figure 4-3: Example of Uniform Crossover 

 

 

Figure 4-4: Example of Uniform Crossover with Brood Recombination 

 

During mutation, a selected gene would be transformed randomly into a different component type. 

For example, a multiplication operator could become a constant, or a variable could become 

another variable. The selection is random, and the process is not completely constructive, like a 
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genetic disease. The chance of mutation was set to a low 10 %, but the process is necessary to add 

diversity and prevent cloning.  

4.1.5 Constant Refinement 

Constants in symbolic regression are either non-evolutional or evolutional (Banzhaf et al., 1998). 

Non-evolutional constants are kept the same throughout a generation, but their influence and 

values may be manipulated by operations from the GA. For evolutionary constants, the values are 

modified by optimization techniques, such as the Levenberg-Marquardt algorithm (Marquardt, 

1963) or Nelder-Mead simplex method (Nelder & Mead, 1965). These methods are usually 

mathematically complex and iterative. They may also take numerous trials to terminate on a 

potential solution, especially with highly nonlinear relationships and multiple variables. Since the 

population of chromosomes may be large, the computational effort should be reasonably 

minimized. Brood recombination was applied by this GA as a simple approach to refine the 

constants. Values of the constants for every chromosome were randomly changed with 50 

attempts, and the values that provided the best fitness were kept as the new constants. 

4.2 CORRELATIONS BETWEEN SIDE RESISTANCE AND SPT N-VALUES 

For this analysis, 23 piles (9 pipe piles and 14 H piles) with high-quality soil and test results were 

selected. Each pile was divided into 50 segments to consider the varying shear resistance along 

their length. The number of segments was determined by several conditions: N-values were 

frequently measured along the piles; piles were usually 15 to 25 m in length, but one reached 45 

m long; and the length of each segment was considered by the corresponding side area (𝐴𝑠) during 

calculations. Mainly for short piles with less data, the soil parameters were linearly interpolated. 

Wolff (1989) applied a similar approach while predicting the capacity. The variables in the dataset 

included the corrected SPT N-value (𝑁𝑐𝑜𝑟𝑟), soil type (𝑆𝑇), effective stress (𝜎′), and pile 

slenderness ratio ((𝐿 − 𝑧)/𝐷). 𝑁𝑐𝑜𝑟𝑟 is 𝑁60 for cohesive soils and (𝑁1)60 for noncohesive soils. 

Due to obstructions in the ground, such as gravels and boulders, N-values occasionally reached 

magnitudes greater than 100, but they were limited to a maximum of 60 for the GA analyses. Due 

to the unreliability of high N-values, Brown (2001) recommended a similar limit for his design 

methods. The soil type was a binary variable equal to 1 for noncohesive soils and 2 for cohesive 

soils. Since a developed function would be intended for heterogeneous soil profiles, the 

slenderness ratio was modified as suggested by Kolk and Van der Velde (1996), and it was 

composed of the embedment length (𝐿), depth to the centre of a pile segment (𝑧), and maximum 

pile width or diameter (𝐷). For SPT measurements, the dataset was divided for H piles and pipe 

piles, and the GA performed 5 trials with each pile type (a total of 10 runs) to regress the variables 

and test results. Since genetic programming is a stochastic method, especially with brood 

recombination, several trials were performed to independently create 2000 functions over the 

generations. 
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While correlating the side resistance with SPT N-values, the GA analyzed both pipe piles and H 

piles separately. The plots in Figures 4-5 and 4-6 show the average and lowest RMSE within the 

population of chromosomes for pipe and H piles. For the 5 trials, the stochastic nature of the GA 

can be observed, and the final fitness depends on the sampling of the population and occurrence 

of events throughout the generations. In Figure 4-5, the population of chromosomes developed 

similar characteristics in Trial 1 and had a higher RMSE than other trials. For Trial 4, the functions 

began to increase in size, or bloat, and the GA terminated with a low RMSE. The remaining trials 

maintained a balance in diversity and function length, and these trials terminated with a very 

similar fitness. In Figure 4-6, the fitness among the trials was consistent after 40 generations. Trial 

5 quickly developed a low RMSE for the best function after the first generation, and the small 

differences in the average and best fitness after 35 generations may indicate cloning between 

functions. After 60 generations, better links or constants were probably found, and the functions 

began to diversify. In general, the analysis usually terminated with a similar RMSE for both pile 

types. As better constants were found and links were made, the brood recombination resulted in 

sudden drops in the best fitness throughout the generations.  

 

 

Figure 4-5: Fitness Performance with Pipe Piles 

 

 

50

100

150

200

250

300

0 20 40 60 80 100

F
it
n

e
s
s
 (

R
M

S
E

)

Generation

Trial 1 Average
Trial 1 Best
Trial 2 Average
Trial 2 Best
Trial 3 Average
Trial 3 Best
Trial 4 Average
Trial 4 Best
Trial 5 Average
Trial 5 Best



54 
 

 

Figure 4-6: Fitness Performance with H Piles 

 

From the final generation of the 5 trials, the chromosomes were pooled together to create a 

population of 10000 functions. Table 4-4 shows percentage of total functions that contained each 

variable at least once. The slenderness ratio was commonly found in 98.3 % and 100 % of the 

functions for pipe piles and H piles, respectively. Especially for H piles, the effective stress or 

installation effects provided the best correlations, and the corrected SPT N-value was less 

frequently found. It was used in 63.3 % and 42.6 % of the functions for pipe and H piles, 

respectively. The reduced frequency of the N-values for H piles could be related to the assumed 

plugging conditions. 

 

Table 4-4: Percentage of Total Functions that Apply Each Variable 

Variable Functions for Pipe Piles (%) Functions for H Piles (%) 

Corrected SPT N-Value, 𝑁𝑐𝑜𝑟𝑟 63.3 42.6 

Soil Type, 𝑆𝑇 56.1 1.6 

Effective Stress, 𝜎′ 0.1 61.8 

Slenderness Ratio, (𝐿 − 𝑧)/𝐷 98.3 100.0 
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Figure 4-7: Comparison of the Measured and Predicted Side Resistance by the GA for Pipe Piles 

 

It is logical for the SPT N-values to be included into any recommended function. Thus, among the 

functions that applied the N-value as a variable, the one with the best fitness was collected for each 

pile type. The RMSE by itself may be misleading as H piles had on average a higher unit side 

resistance than pipe piles, but H piles received slightly better correlations. Figures 4-7 and 4-8 

show the best-fit (BF) functions for both pile types had a reasonably good 𝑅2. For pipe piles, the 

𝑅2 was 0.75 for the BF function: 

𝑞𝑠 = 4.8 [𝑁𝑐𝑜𝑟𝑟 + (𝐿 − 𝑧)/𝐷]/{𝑆𝑇 [(𝐿 − 𝑧)/𝐷]0.85}   Eq. 4-2 

The 𝑅2 was 0.88 for plugged H piles: 

𝑞𝑠 = 0.12 [𝜎′ + 5 ∙ 𝑁𝑐𝑜𝑟𝑟 ∙ 𝐷/(𝐿 − 𝑧) + 8.5]    Eq. 4-3 

In these functions, 𝑁𝑐𝑜𝑟𝑟 is the corrected SPT N-value; 𝐿 is the embedment length of a pile; 𝐷 is 

the diameter or width of a pile; 𝑧 is the depth to the centre of a pile segment or soil layer; 𝑆𝑇 is the 

soil type that is equal to 1 for noncohesive soils and 2 for cohesive soils; and 𝜎′ is the effective 

stress. The BF function for pipe piles had consistent results with an average predicted to measured 

ratio (𝑄𝑠𝑝𝑟𝑒𝑑/𝑄𝑠) and coefficient of variance (COV) of 1.04 and 30.0 %, respectively. An average 

ratio of 0.99 and COV of 29.8 % was provided by the BF function for H piles. Piles with cohesive 
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soils provided most of the inconsistencies, and the GA rarely considered the soil type since the 

sites dominated in noncohesive soils.  

 

 

Figure 4-8: Comparison of the Measured and Predicted Side Resistance by the GA for H Piles 

 

The BF functions may not always be practical, beneficial, or appropriate; as a response, another 

function was selected for each pile type by Pareto optimization (PO). From the final generation, 

functions were analyzed if they contained the SPT N-value as a variable, and these functions were 

graphically evaluated by their fitness and complexity. The complexity is the number of 

components within a function, and the Pareto front was created in Figures 4-9 and 4-10 by finding 

the best fitness for each complexity. In general, a lower complexity, or shorter function, likely 

results in a poorer fitness compared to a longer function, which can manipulate data with more 

operations. The orange square markers indicate points along the Pareto front, and the blue circle 

markers are the remaining results. Any point on the Pareto front can be a potential solution; thus, 

the preferred solution mainly relies on the tolerable error and judgement from the investigator 

(Smits and Kotanchek, 2005). 

For pipe piles, the RMSE does not improve by much for a complexity between 9 and 13, but a 

shorter function results in a significantly higher RMSE. The function with 9 components was 
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Figure 4-9: Pareto Front from GA Results for Pipe Piles 

 

 

Figure 4-10: Pareto Front from GA Results for H Piles 
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𝑞𝑠 = [2.8 ∙ 𝑁𝑐𝑜𝑟𝑟 ∙ 𝐷/(𝐿 − 𝑧) + 4.5]/𝑆𝑇     Eq. 4-4 

Since small percentage of the 10000 functions applied the SPT N-value, the Pareto front for H 

piles was short. The front was also linear with small improvements between complexities. The 

shortest function with a complexity of 7 was chosen, and the correlation was fairly strong with an 

𝑅2 of 0.81: 

𝑞𝑠 = 𝜎′/[(1.9/𝑁𝑐𝑜𝑟𝑟) + (𝐿 − 𝑧)/𝐷]      Eq. 4-5 

The fitness of Equations 4-4 and 4-5 is displayed in Figures 4-7 and 4-8. The functions from the 

Pareto front have a small difference in the 𝑅2 compared to the BF functions. The PO function for 

pipe piles tend to underestimate long piles or piles with high capacities, but the 𝑄𝑠𝑝𝑟𝑒𝑑/𝑄𝑠 is 1.02 

on average. The COV is 32.0 %. For H piles, the PO function trends to overestimate shorter piles 

and has a higher average 𝑄𝑠𝑝𝑟𝑒𝑑/𝑄𝑠 of 1.14 compared to the BF function. The spread of 

predictions also increases with a COV of 39.9 %. Overall, the PO and BF functions offer good 

predictions. 

4.3 CORRELATIONS BETWEEN SIDE RESISTANCE AND UNDRAINED SHEAR 

STRENGTH 

Nine piles were analyzed with 𝐶𝑢 measurements, and the piles were divided into 25 segments. The 

number of segments was chosen with the following conditions: 𝐶𝑢 measurements were less 

frequently measured compared to SPT N-values; and piles were fairly short with lengths usually 

between 10 m to 18 m. The soil parameters were linearly interpolated for piles with limited data. 

For this analysis, the variables included 𝐶𝑢, 𝐿𝐼, 𝑃𝐼, the slenderness ratio, and 𝜎′. The 𝜎′ was 

considered because many design methods apply the strength ratio (𝐶𝑢/𝜎′). Since some sites only 

had UCS measurements, the values were converted to UU results by applying a factor shown in 

Figure 3-6. The number of piles with 𝐶𝑢 measurements was small; thus, the pile types were 

analyzed together. The correlation analysis by the GA was conducted with 5 trials. 

For the 5 trials, the lowest RMSE terminated within small range of approximately 32 to 38, as 

shown in Figure 4-11. The 10000 functions from the final generation were collected and analyzed. 

The slenderness ratio was frequently found in 99.1 % of the functions, but the effective stress was 

the least common variable and was found in 12.5 % of functions. This may indicate a strong 

influence due to the installation effects, but the strength ratio, which can be empirically related to 

the OCR, may have a weak effect. Table 4-5 displays the usage of the variables within the 

functions. 

Preference was given to the 65.9 % of functions that applied 𝐶𝑢, and the function with the best 

fitness was selected from this group: 

𝑞𝑠 =  |0.17(𝐿 − 𝑧)/𝐷 − 𝐶𝑢 ∙ 𝐷/[0.17(𝐿 − 𝑧)] + 5.3|tanh[0.17(𝐿−𝑧)/𝐷] Eq. 4-6 



59 
 

 

Figure 4-11: Fitness Performance with Piles in Cohesive Soils 

 

Table 4-5: Percentage of Total Functions that Apply Each Variable 

Variable Functions for Cohesive Soils (%) 

Undrained Shear Strength, 𝐶𝑢 65.9 

Plasticity Index, PI 55.3 

Liquidity Index, LI 24.5 

Effective Stress, 𝜎′ 12.5 

Slenderness Ratio, (𝐿 − 𝑧)/𝐷 99.1 

 

where 𝐿 is the embedment length of a pile; 𝐷 is the diameter or width of a pile; 𝑧 is the depth to 

the centre of a pile segment or soil layer; and 𝐶𝑢 is the undrained shear strength from UU triaxial 

tests. This complex function with 16 components had a 𝑅2 of 0.91, as shown in Figure 4-12. The 

fitness is very similar in Figure 4-13 for the various function complexities along the Pareto front, 

and the Pareto front is linear as a result. The shortest PO equation with a complexity of 7 had an 

𝑅2 of 0.92, which is the same as the BF function: 

𝑞𝑠 = 𝐶𝑢
(𝐿𝐼+0.90)

∙ 𝐷/(𝐿 − 𝑧)       Eq. 4-7 

where 𝐿𝐼 is the liquidity index of the cohesive soil. 
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Figure 4-12: Comparison of the Measured and Predicted Side Resistance by the GA for Piles in 

Cohesive Soils 

 

 

Figure 4-13: Pareto Front from GA Results for Piles in Cohesive Soils 
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4.4 PERFORMANCE OF EXISTING DESIGN METHODS 

4.4.1 Direct Methods with SPT 

The side resistance of the piles was calculated with design methods that were intended for both 

cohesive and noncohesive soils: Shioi and Fukui (1982), Decourt (1982), and Brown (2001). Shioi 

and Fukui (1982) provided separate design methods for cohesive and noncohesive soils, but Brown 

(2001) provided a general equation for all soil types. For the calculations, N-values were corrected 

and limited as suggested by the references, and H piles were assumed to be fully plugged as 

suggested by Brown (2001). The results of the predictions are provided in Figures 4-14 to 4-16.  

The three design methods greatly overestimated the side resistance and gave erratic results. While 

comparing the predicted and measured values for pipe piles, a decent fitness could not be 

established with a logical linear relationship. The approach by Brown (2001) had the worst 

performance with an average 𝑄𝑠𝑝𝑟𝑒𝑑/𝑄𝑠 of 2.51 and 2.97 for pipe and H piles, respectively. The 

method by Decout (1982) gave the best results among the existing design methods, but predictions 

were 2.34 to 2.36 times higher on average than the measured values. Piles in clays or very stiff 

soils had the greatest over predictions. These design methods were developed with weaker soils, 

and they are not applicable or were intended for Ontario since stiff, silty, desiccated, or OC soils 

are commonly found.  

 

 

Figure 4-14: Comparison of Measured and Predicted Side Resistances by Shioi and Fukui (1982) 
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Figure 4-15: Comparison of Measured and Predicted Side Resistances by Decourt (1982) 

 

 

Figure 4-16: Comparison of Measured and Predicted Side Resistances by Brown (2001) 
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the results from the GA with the best-fit functions (Equations 4.2 and 4.3) and Pareto optimal 

functions (Equations 4.4 and 4.5). The predictions from the GA have a low bias as the mean 

𝑄𝑠𝑝𝑟𝑒𝑑/𝑄𝑠 ranges from 0.99 to 1.10, and the standard deviation for the ratio is also much lower 

than the existing design methods with values ranging from 0.29 to 0.46. From existing methods, 

the inconsistent predictions demonstrate a need for locally developed design methods for steel 

piles in Ontario soils and heterogeneous soil profiles. 

 

Table 4-6: Descriptive Statistics of the Predicted to Measured Side Resistance Ratio for SPT 

Design Methods 

Design Method Pile Type Mean 𝜎𝑆𝐷 COV (%) n 

Shioi & Fukui (1982) 

H Piles 2.19 1.12 51.2 14 

Pipe Piles 2.91 3.50 120 9 

All 2.47 2.38 96.3 23 

Decourt (1982) 

H Piles 2.34 1.28 54.5 14 

Pipe Piles 2.36 1.88 79.4 9 

All 2.35 1.54 65.5 23 

Brown (2001) 

H Piles 2.97 1.56 52.7 14 

Pipe Piles 2.51 1.75 69.6 9 

All 2.79 1.65 59.3 23 

GA: Best-Fit Function  

(Proposed) 

H Piles 0.99 0.29 29.8 14 

Pipe Piles 1.04 0.31 30.0 9 

All 1.01 0.30 30.0 23 

GA: Pareto Optimal Function  

(Proposed) 

H Piles 1.14 0.46 39.9 14 

Pipe Piles 1.02 0.33 32.0 9 

All 1.10 0.42 37.8 23 

 

4.4.2 Direct and Indirect Methods for Cohesive Soils 

For this study, piles were selected if at least 80 % of the length was covered by cohesive soils. The 

predicted ultimate capacity, 𝑄𝑢𝑝, was calculated for piles subjected to compression and tension. 

For compression load tests, the various design methods were combined for the side and tip 

resistance. Prediction methods were chosen that applied different concepts and parameters. At the 

same time, consideration was made for methods that are commonly used in practice and may not 

rely on many parameters. The side resistance was calculated by the 𝛼 and 𝛽 Methods summarized 

in Table 4-7. The α Methods included those suggested by CGS (2006), Kolk and Van der Velde 

(1996), and Karlsrud et al. (2005). One β Method was applied in the analysis: Patrizi and Burland 
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(2001). The multiple and changing soil measurements were considered by dividing the soil profiles 

into smaller layers along a pile, and the analysis included the weight of the piles. In general, 𝑄𝑢𝑝 

was calculated by Equation 2-1 if the pile was subjected to a compression load test; otherwise, the 

capacity of an extension load test was calculated by the design methods for the side resistance.  

 

Table 4-7: Studied Design Methods for Side Resistance in Cohesive Soils 

Method 

Type 

Reference Condition Equation for 𝛼 or 𝛽 

𝛼 Method 

CGS (2006)  𝛼 = 0.21 + (26/𝐶𝑢 ) ≤ 1 

Karlsrud et al. 

(2005)1 
Case 1 (𝐶𝑢/𝜎’ < 

0.25): 

𝛼 =  0.32 (𝑃𝐼 − 10)0.3 ≤ 1 

Case 2 (𝐶𝑢/𝜎’ > 1)2: 𝛼 = 0.5 (𝐶𝑢/𝜎′ )−0.3𝐹𝑇𝑖𝑝 

Case 3: Linear interpolate between Case 1 and 2 

Kolk and Van der 

Velde (1996)3 

 𝛼 = 0.9[(𝐿 − 𝑧)/𝐷]−0.2(σ′/𝐶𝑢 )0.3 ≤ 1 

𝛽 Method 
Patrizi and 

Burland (2001) 

 𝛽 = 0.1 + 0.4 (𝐶𝑢/𝜎′) 

Notes: 1 The effect of increased soil strength with time was not included; 2 𝐹𝑇𝑖𝑝 is a factor for the 

pile tip geometry; 3 𝑧 is the depth that corresponds to the midpoint of a soil layer along a pile. 

 

The tip resistance was predicted throughout the analysis by the common approach from Meyerhof 

(1976): 

𝑞𝑝 = 9 𝐶𝑢         Eq. 4-8 

Usually, the soil parameters had to be estimated with empirical correlations, especially if SPT N-

values were obtained. The correlations for 𝐶𝑢 in cohesive soils are typically linear relationships 

with SPT N-values, as shown in Table 4-8. Nassaji and Kalantari (2011) suggested a multilinear 

relationship would give better estimates with several additional variables, such as the water content 

(𝑤𝑐) and liquid limit (𝐿𝐿).  

 

Table 4-8: Studied Empirical Methods for Cohesive Soils 

Reference Equation 

Sowers (1954) 𝐶𝑢 = 3.75 𝑁60 

Sivrikaya and Toğrol (2006) 𝐶𝑢 = 4.22 𝑁60 

Nassaji and Kalantari (2011) 𝐶𝑢 =  1.5 𝑁60 − 0.1 𝑤𝑐 − 0.9 𝐿𝐿 + 2.4 𝑃𝐼 + 21.1 
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In addition to the several design methods to calculate the side resistance, the capacity was also 

found by the various combinations to estimate the soil parameters. For example, the 𝛼 Method 

recommended by CGS (2006) determines the side resistance and relies on 𝐶𝑢. However, 𝐶𝑢 can be 

measured by three methods: UCS, triaxial, and FVST. Plus, the three SPT correlations were 

applied. In all, the capacity can be calculated in six different ways for the one method to predict 

the side resistance. 

Particularly for H piles, the lowest capacity was selected between fully plugged and unplugged 

conditions. The plugged condition governed for all the prediction methods, but in Figure 4-17, 

many inconsistencies were observed among the pile types with the existing design methods. Most 

of the variability was due to empirical SPT correlations and measurements by FVST. Design 

methods tend to overestimate the side resistance, especially for short piles. The 𝛼 Method 

suggested by CGS (2006) solely relies on the 𝐶𝑢 and has the greatest scatter among the design 

methods. For UCS and UU measurements, the COV of the predicted to measured capacity 

(𝑄𝑢𝑝/𝑄𝑢) ratio was 56 % and 58 %, respectively. The other methods included more variables in 

the calculations and provided lower COVs that generally range from 42 % to 48 % for lab tests. 

The approach from Patrizi and Burland (2001) has the lowest COVs among the design methods, 

but it provides the greatest overestimations on average, which may be expected from a 𝛽 Method. 

The average 𝑄𝑢𝑝/𝑄𝑢 ratio was 2.07 for UCS and 2.04 for UU measurements. The method by 

Karlsrud et al. (2005) considers the PI in its calculations, and it over predicts the least with an 

average 𝑄𝑢𝑝/𝑄𝑢 ratio of 1.55 and 1.57 for UCS and UU triaxial, respectively. Most design 

methods were intended for soils with higher plasticities; thus, the performance of 𝛼 Method from 

Karlsrud et al. (2005) may indicate the importance of the soil content.  

For the existing design methods, Tables 4-9 to 4-12 provide details on the descriptive statistics for 

the 𝑄𝑢𝑝/𝑄𝑢 ratio. Piles subjected to tension loads had large 𝑄𝑠𝑝/𝑄𝑢 ratios compared to 𝑄𝑢𝑝/𝑄𝑢 

ratios for piles under compression. For example, the mean 𝑄𝑠𝑝/𝑄𝑢 was 2.35 for the method 

recommended by CGS (2006) with UCS tests, but the mean 𝑄𝑢𝑝/𝑄𝑢 for compression tests was 

1.49 for UCS tests. This demonstrates that most design methods will overpredict the side 

resistance. Since the design method from Meyerhof (1976) conservatively predicts the tip 

resistance, overestimations for compression loads will be lower than tension loads for the same 

pile. Also, lower estimates were given for piles with higher capacities. These piles are usually long 

and are end-bearing on stiff soils. 

The current methods were compared to predictions by Equation 3-2 from the statistical analysis 

and Equation 4-7 from the GA. The proposed equations were limited to the unit side resistance of 

80 kPa, and the results are in Figure 4-18 and Table 4-13. The proposed methods were 

conservative, which is mainly due to predictions for the tip resistance. For UU measurements, the 

average 𝑄𝑢𝑝/𝑄𝑢 ratio was 0.76 for both methods. Equation 3-2 from the statistical analysis was a 

conservative selection as the proposed equation was only developed with H piles. A higher slope 

for pipe piles was found. The equation from the GA underestimates because it provides a greater 
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significance towards the base of a pile due to the relationship with the slenderness ratio, and the 

unit side resistance was limited to a maximum amount. Yet, the proposed methods were very 

consistent. The statistical correlation had a COV of 29 % with UCS and UU values. From the GA, 

the COVs were 33 % and 29 % respectively for UCS and UU values. In the end, the proposed 

methods offer improvements compared to existing approaches. 

 

 

 

Figure 4-17: Comparison of Measured and Predicted Capacities by a) CGS (2006); b) Karlsrud et 

al. (2005); c) Kolk and Van der Velde (1996); and d) Patrizi and Burland (2001) 
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Figure 4-18: Comparison of Measured and Predicted Capacities by the Proposed Method from 

the a) Statistical Analysis and b) GA 

 

Table 4-9: Descriptive Statistics of the Predicted to Measured Capacity Ratios by CGS (2006) 

Condition 
Method to 

Obtain 𝐶𝑢 
Mean 𝜎𝑆𝐷 COV (%) n 

Tension Loads  

(𝑄𝑠𝑝/𝑄𝑢) 

Sowers 1.89 1.45 76.8 9 

Nassaji et al. 2.12 1.61 76.1 9 

Sivrikaya et al. 2.12 1.60 75.7 9 

UCS 2.35 1.14 48.6 14 

Triaxial 2.42 1.18 48.9 12 

FVST 3.05 1.96 64.3 7 

Compression 

Loads  

(𝑄𝑢𝑝/𝑄𝑢) 

Sowers 1.20 0.89 73.6 13 

Nassaji et al. 1.39 1.04 75.1 13 

Sivrikaya et al. 1.39 1.01 72.2 13 

UCS 1.49 0.78 52.5 16 

Triaxial 1.53 0.86 56.4 14 

FVST 1.92 1.41 73.6 11 

 

 

1:1 

-25% 

+25% 1:1 

-25% 

+25% 

a) b) 



68 
 

Table 4-9: Descriptive Statistics of the Predicted to Measured Capacity Ratios by CGS (2006) 

Condition 
Method to 

Obtain 𝐶𝑢 
Mean 𝜎𝑆𝐷 COV (%) n 

All (Capacity)  

(𝑄𝑢𝑝/𝑄𝑢) 

Sowers 1.50 1.21 80.9 22 

Nassaji et al. 1.70 1.37 80.4 22 

Sivrikaya et al. 1.70 1.35 78.9 22 

UCS 1.89 1.06 55.9 30 

Triaxial 1.94 1.12 57.6 26 

FVST 2.38 1.75 73.4 18 

 

 

Table 4-10: Descriptive Statistics of the Predicted to Measured Capacity Ratios by Karlsrud et 

al. (2005) 

Condition 
Method to 

Obtain 𝐶𝑢 
Mean 𝜎𝑆𝐷 COV (%) n 

Tension Loads  

(𝑄𝑠𝑝/𝑄𝑢) 

Sowers 1.03 0.72 70.2 9 

Nassaji et al. 1.21 0.84 69.5 9 

Sivrikaya et al. 1.42 1.07 75.2 9 

UCS 1.88 0.75 39.8 14 

Triaxial 1.92 0.72 37.4 12 

FVST 2.74 1.63 59.4 7 

Compression 

Loads  

(𝑄𝑢𝑝/𝑄𝑢) 

Sowers 0.68 0.42 61.9 13 

Nassaji et al. 0.81 0.52 64.6 13 

Sivrikaya et al. 0.93 0.62 67.2 13 

UCS 1.26 0.49 39.0 16 

Triaxial 1.27 0.50 39.7 14 

FVST 1.67 1.18 70.6 11 

All (Capacity)  

(𝑄𝑢𝑝/𝑄𝑢) 

Sowers 0.82 0.59 71.8 22 

Nassaji et al. 0.97 0.70 71.9 22 

Sivrikaya et al. 1.13 0.87 76.9 22 

UCS 1.55 0.70 45.0 30 

Triaxial 1.57 0.69 44.2 26 

FVST 2.09 1.47 70.3 18 
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Table 4-11: Descriptive Statistics of the Predicted to Measured Capacity Ratios by Kolk and Van 

Der Velde (1996) 

Condition 
Method to 

Obtain 𝐶𝑢 
Mean 𝜎𝑆𝐷 COV (%) n 

Tension Loads  

(𝑄𝑠𝑝/𝑄𝑢) 

Sowers 1.65 1.33 80.1 9 

Nassaji et al. 1.80 1.35 74.7 9 

Sivrikaya et al. 2.02 1.61 79.8 9 

UCS 2.25 0.91 40.5 14 

Triaxial 2.27 0.93 41.1 12 

FVST 3.25 1.84 56.8 7 

Compression 

Loads  

(𝑄𝑢𝑝/𝑄𝑢) 

Sowers 0.98 0.72 73.5 13 

Nassaji et al. 1.11 0.78 70.3 13 

Sivrikaya et al. 1.22 0.90 73.2 13 

UCS 1.49 0.60 39.8 16 

Triaxial 1.51 0.67 44.2 14 

FVST 1.92 1.28 66.6 11 

All (Capacity)  

(𝑄𝑢𝑝/𝑄𝑢) 

Sowers 1.26 1.07 84.8 22 

Nassaji et al. 1.39 1.10 79.2 22 

Sivrikaya et al. 1.55 1.30 84.0 22 

UCS 1.85 0.85 45.9 30 

Triaxial 1.86 0.89 47.7 26 

FVST 2.44 1.66 67.9 18 

 

 

Table 4-12: Descriptive Statistics of the Predicted to Measured Capacity Ratios by Patrizi and 

Burland (2001) 

Condition 
Method to 

Obtain 𝐶𝑢 
Mean 𝜎𝑆𝐷 COV (%) n 

Tension Loads  

(𝑄𝑠𝑝/𝑄𝑢) 

Sowers 1.65 1.33 80.1 9 

Nassaji et al. 1.80 1.35 74.7 9 

Sivrikaya et al. 2.02 1.61 79.8 9 

UCS 2.25 0.91 40.5 14 

Triaxial 2.27 0.93 41.1 12 

FVST 3.25 1.84 56.8 7 
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Table 4-12: Descriptive Statistics of the Predicted to Measured Capacity Ratios by Patrizi and 

Burland (2001) 

Condition 
Method to 

Obtain 𝐶𝑢 
Mean 𝜎𝑆𝐷 COV (%) n 

Compression 

Loads  

(𝑄𝑢𝑝/𝑄𝑢) 

Sowers 0.98 0.72 73.5 13 

Nassaji et al. 1.11 0.78 70.3 13 

Sivrikaya et al. 1.22 0.90 73.2 13 

UCS 1.49 0.60 39.8 16 

Triaxial 1.51 0.67 44.2 14 

FVST 1.92 1.28 66.6 11 

All (Capacity)  

(𝑄𝑢𝑝/𝑄𝑢) 

Sowers 1.26 1.07 84.8 22 

Nassaji et al. 1.39 1.10 79.2 22 

Sivrikaya et al. 1.55 1.30 84.0 22 

UCS 1.85 0.85 45.9 30 

Triaxial 1.86 0.89 47.7 26 

FVST 2.44 1.66 67.9 18 

 

 

Table 4-13: Descriptive Statistics of the Predicted to Measured Capacity Ratios by Proposed 

Design Methods for Piles in Cohesive Soils 

Condition 
Method to 

Obtain 𝐶𝑢 

Proposed from Statistics Proposed from GA 

Mean 𝜎𝑆𝐷 
COV 

(%) 
n Mean 𝜎𝑆𝐷 

COV 

(%) 
n 

Tension 

Loads  

(𝑄𝑠𝑝/𝑄𝑢) 

UCS 0.89 0.25 27.9 14 0.90 0.31 34.5 14 

Triaxial 0.85 0.25 29.1 12 0.81 0.20 24.4 12 

FVST 1.07 0.68 63.6 7 1.44 0.72 50.1 7 

Compression 

Loads  

(𝑄𝑢𝑝/𝑄𝑢) 

UCS 0.69 0.15 22.2 16 0.73 0.19 25.3 16 

Triaxial 0.68 0.16 23.8 14 0.71 0.22 31.5 14 

FVST 0.73 0.47 64.3 11 1.01 0.46 45.7 11 

All 

(Capacity) 

(𝑄𝑢𝑝/𝑄𝑢) 

UCS 0.79 0.23 29.0 30 0.81 0.26 32.7 30 

Triaxial 0.76 0.22 29.4 26 0.76 0.22 28.8 26 

FVST 0.86 0.59 67.7 18 1.17 0.61 52.2 18 
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4.4.3 Indirect Methods for Noncohesive Soils 

Piles were selected if 80 % of the embedment length was in a noncohesive soil, and the capacities 

were predicted for a combination of 23 tension and compression load tests. The design method 

suggested by Berezantzev et al. (1961) was examined for both the tip and side resistance. The 

bearing capacity factor (𝑁𝑞) for the unit tip resistance has a relationship with ∅′ and the pile 

slenderness ratio (𝐿/𝐷). The unit tip resistance was then calculated with the effective stress (𝜎′) 

at the pile tip (Berezantzev et al., 1961): 

𝑞𝑝 = 𝑁𝑞 𝜎′ ≤ 6000 kPa       Eq. 4-9 

The unit tip resistance was limited as suggested by Poulos et al. (2001) and Bowles (1996). The 

unit side resistance was determined as below (Tomlinson and Woodward, 2008): 

𝑞𝑠 = 𝐾𝑓𝐾𝑜 𝜎′ 𝑡𝑎𝑛 𝛿        Eq. 4-10 

where 𝐾𝑓 is the installation coefficient, 𝐾𝑜 is the lateral earth coefficient at rest, 𝜎′ is the effective 

stress, and 𝛿 is the friction angle of the soil-pile interface. As recommended by Tomlinson and 

Woodward (2008), 𝛿 was 60 % of ∅′, and 𝐾𝑓 was 1.5 for solid pipe piles and 1.0 for H piles. 

Both the side and tip resistance are dependent on ∅′. Since ∅′ was not measured, it was estimated 

with three empirical approaches in Table 4-14. For each pile, the ultimate capacity was calculated 

with each of the empirical methods. N-values were limited to 60 during the calculations due to the 

unreliability of extremely high N-values. Since stiff soils were encountered, judgement was 

applied to prevent unrealistically high friction angles from the correlations. 

The capacity was calculated with both plugged and unplugged conditions, and the governing case 

was chosen as the predicted capacity. From the predictions, the fully plugged condition governed 

for piles subjected to tension loads, but the unplugged condition gave lower capacities for 

compression loads. 

 

Table 4-14: Studied Empirical Methods for Noncohesive Soils 

Reference Equation 

Hatanaka & Uchida (1996) ∅′ =  √20 (𝑁60)1 + 20 

Kulhawy & Mayne (1990) ∅′ = arctan{(𝑁60)1/[12.2 + 20.3 (𝜎′/100) ]}0.34 

Wolff (1989) ∅′ = 27.1 + 0.3 𝑁60 − 0.00054 𝑁60
2 

 

In Figure 4-19, the three empirical approaches offered similar predictions for the ∅′ and pile 

capacity. The COV of the 𝑄𝑢𝑝/𝑄𝑢 ranged from 47 % to 49 %, but Wolff (1989) tends to provide 
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lower estimates. The average 𝑄𝑢𝑝/𝑄𝑢 ratio was 1.16, 1.20, and 1.20 for Wolff (1989), Hatanaka 

and Uchida (1996), and Kulhawy and Mayne (1990), respectively. These indirect methods offered 

reasonably accurate predictions for noncohesive soils. 

The results from the indirect approaches, which applied the method by Berezantzev et al. (1961), 

were compared to the proposed direct approaches from the GA. The unit side resistance was 

calculated with Equations 4-4 or 4-5 and was limited to 100 kPa. Since some piles were subjected 

to compressive loads, the tip resistance was calculated with Equation 3-3 from the statistical 

analysis. H piles were assumed to be fully plugged for these proposed equations.  

 

 

Figure 4-19: Comparison of Measured and Predicted Capacities by the Berezantzev et al. (1961) 

Method 

 

In Figure 4-19, the method by Berezantzev et al. (1961) tended to over predict piles with higher 

capacities, but Figure 4-20 shows the proposed correlations had unbiased predictions for the same 

piles. For the proposed functions, the average 𝑄𝑢𝑝/𝑄𝑢 ratio was 1.16. This result was similar to 

the existing methods, and overestimations mostly occurred with short H piles. However, the COV 

of the 𝑄𝑢𝑝/𝑄𝑢 ratio was significantly reduced to 28 % from 47 % or 49 %. Details on the resulting 

𝑄𝑢𝑝/𝑄𝑢 ratios from the existing design methods are summarized in Table 4-15. 
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Figure 4-20: Comparison of Measured and Predicted Capacities by the Proposed SPT 

Correlations from the GA 

 

Table 4-15: Descriptive Statistics of the Predicted to Measured Capacity Ratios by Berezantzev 

et al. (1961) 

Condition 

Estimation 

Method for 

Friction Angle 

Mean 𝜎𝑆𝐷 COV (%) n 

Tension Loads  

(𝑄𝑠𝑝/𝑄𝑢) 

Wolff 1.19 0.76 63.3 8 

Hatanaka et al. 1.16 0.74 63.6 8 

Kulhawy et al. 1.17 0.75 64.0 8 

Compression 

Loads  

(𝑄𝑢𝑝/𝑄𝑢) 

Wolff 1.14 0.40 34.9 15 

Hatanaka et al. 1.22 0.49 40.0 15 

Kulhawy et al. 1.21 0.48 39.5 15 

All (Capacity)  

(𝑄𝑢𝑝/𝑄𝑢) 

Wolff 1.16 0.55 47.4 23 

Hatanaka et al. 1.20 0.59 48.9 23 

Kulhawy et al. 1.20 0.59 49.0 23 
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4.5 SUMMARY AND DISCUSSIONS 

A correlation study compared the results from soil testing techniques in cohesive soils. For the 𝐶𝑢, 

UCS measurements were 10 % higher than UU triaxial results. The PI by itself cannot provide 

decent relation between UU triaxial and FVST results. Unfortunately, FVST were rarely paired 

with other soil tests, and a reasonable correction factor was not established for FVST values. The 

suggested relation from Morris and William (1994) may be preferred over the one from Bjerrum 

(1972) since it is more conservative, but the correction factors were not intended for highly OC or 

silty soils.  

The 𝐶𝑢/𝑁60 ratios likely have a saddle relationship with the plasticity. The ratios are sometimes 

high for very silty soils, but it decreases to a range of 2 to 5 for a PI between 20 to 30. Stroud 

(1974) obtained a similar trend. From this investigation, the highest PI was approximately 30, but 

other references, such as Sowers (1954), had some soils with a greater plasticity and indicated the 

ratios increase with a higher PI. However, other factors that were not investigated will influence 

of the 𝐶𝑢/𝑁60 ratios, such as the soil OCR or compressibility and testing errors. Especially for 

silty soils, the 𝐶𝑢/𝑁60 ratio may be inconsistent as a weak relation was found with PI. 

The GA provided better results compared to existing design methods with SPT N-values. The 

existing design methods had erratic predictions, and they overestimated because they were mainly 

intended for soft or weak soils. In general, SPT measurements usually provided poor correlations 

for the side resistance, but the GA was efficient at obtaining correlations for the side resistance of 

piles with other variables. Since most of sites dominated in noncohesive soils, predictions for 

cohesive soils by the GA were usually inconsistent, and the GA rarely applied the soil type. 

Equation 4-4 assumes cohesive soils have lower side resistance, but other references, such as such 

as Shioi and Fukui (1982), received the opposite result. Due to the influence of the effective stress 

and soil type in Equations 4-4 and 4-5, these functions may be more appropriate for noncohesive 

soils or clays subjected to drained conditions. SPT N-values were not very influential according to 

the GA. For Equation 4-5, the magnitude of N-values mainly affects the side resistance towards 

the base of the pile, and a low percentage of functions at 42.6 % applied the N-values for H piles. 

Yet, almost all the functions by the GA contained the slenderness ratio. Since an inverse 

relationship was found with the variable, Equations 4-5 and 4-5 can indicate that the installation 

effects likely have a large impact on pile capacity. A higher side resistance towards the pile base 

could occur during pull-out because every pile had an over-sized base plate or reinforcement plate, 

but the over-sized based plate would contribute to the tip resistance during a compression test. 

Since most sites dominated in noncohesive soils, the frequency of the slenderness ratio could be 

related to the lateral earth pressure and confinement of the effective stress. In the end, it is difficult 

to specify the exact influence as additional soil testing and fully instrumented piles are required, 

but the GA attempts to extract the best correlation with the available data. 
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Design methods for cohesive soils considered a variety of variables but were developed 

empirically, semi-empirically, or by trial-and-error. All the design methods overestimated and had 

a lot of inconsistencies, especially with FVST measurements. The 𝛼 Method by Karlsrud et al. 

(2005) over predicted with the lowest 𝑄𝑢𝑝𝑟𝑒𝑑/𝑄𝑢 ratio on average, but the 𝛽 Method by Patrizi 

and Burland (2001) had the lowest COV for the ratio. The GA offered better predictions for the 

side resistance and had the lowest COVs for the 𝑄𝑢𝑝𝑟𝑒𝑑/𝑄𝑢 ratio. 99.1 % of the functions from 

the GA contained the slenderness ratio, like Kolk and Van der Velde (1996). Both proposed 

methods from the statistical analysis and GA offer conservative estimates for the capacity, and this 

result is likely because the method by Meyerhof (1976) is conservative for the tip resistance. 

Karlsrud et al. (2005) indicated the PI impacts the side resistance, but the LI may have a stronger 

relationship, as shown in Figure 3-15. Although the Atterberg indices are obtained from remoulded 

soils, the LI may indicate the drainage conditions of the soil. For practical reasons, the side 

resistance can be sufficiently predicted with the 𝐶𝑢 alone, but the results may change with more 

pile load tests and varying soil conditions.  
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5 CONCLUSIONS AND FUTURE RESEARCH 

5.1 SUMMARY 

After conducting a statistical analysis with soil measurements and pile resistances, this 

investigation demonstrated the capability of a simple GA to improve predictions for the capacity 

of 43 piles. For heterogeneous soil conditions, the GA was tailored to find a function for the unit 

side resistance with SPT N-values or the undrained shear strength (𝐶𝑢). Even though the sample 

size was small, the GA was given greater details on the soil measurements by dividing the piles 

into segments. The correlated functions were also refined with Pareto optimization, and their 

results were compared to several existing design methods. In all, predictions for the ultimate 

capacity were improved with the GA as existing methods generally over predicted and provided 

inconsistent results.  

5.2 CONCLUSIONS AND RECOMMENDATIONS 

Functions from the GA were selected from two different criteria: the best fitness and Pareto 

optimal. For practical reasons, the Pareto optimal functions are recommended for predicting the 

side resistance with corrected SPT measurements. Thus, the following function is proposed for 

capped pipe piles (𝑅2 =  0.70): 

𝑞𝑠 = [2.8 ∙ 𝑁𝑐𝑜𝑟𝑟 ∙ 𝐷/(𝐿 − 𝑧) + 4.5]/𝑆𝑇  ≤ 100 kPa    Eq. 4-4 

The function below is recommended for fully plugged H piles (𝑅2 =  0.81): 

𝑞𝑠 = 𝜎′/[(1.9/𝑁𝑐𝑜𝑟𝑟) + (𝐿 − 𝑧)/𝐷]  ≤ 100 kPa    Eq. 4-5 

In these functions, 𝑁𝑐𝑜𝑟𝑟 is the corrected SPT N-value; 𝐿 is the embedment length of a pile; 𝐷 is 

the diameter or width of a pile; 𝑧 is the depth to the centre of a pile segment or soil layer; 𝑆𝑇 is the 

soil type that is equal to 1 for noncohesive soils and 2 for cohesive soils; and 𝜎′ is the effective 

stress. It is suggested, like Meyerhof (1976), to limit the unit side resistance to 100 kPa. From the 

studied piles, the measured unit side resistance did not surpass this value, and the corrected N-

values were limited to 60 due to the unreliability of extremely high values.  

Several variables influence the pile capacity. Equation 4-4 is directly proportionate to the SPT N-

value and indicates a higher unit side resistance with stiffer soils. Equation 4-5 is not heavily 

influenced by the SPT N-value, which may be due to the plugging conditions or installation effects. 

The side resistance increases towards the pile base as both equations are inversely related to the 

slenderness ratio. Several reasons can explain the common appearance of this variable. For 

instance, the horizontal confinement of the soil, which was not experimentally measured, likely 

has a high influence on the side resistance, but it is difficult to specify without results from fully 
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instrumented piles or further soil measurements. Since noncohesive soils were commonly found, 

Equations 4-4 and 4-5 may be more appropriate for noncohesive soils or clays under drained 

conditions. 

All the design methods tend to overestimate the capacity and side resistance of the piles in cohesive 

soils within Ontario. Thus, the correlation from the statistical analysis is recommended for the side 

resistance (𝑅2 = 0.98): 

𝑞𝑠 = 0.17 𝐶𝑢 ≤ 80 kPa        Eq. 3-2  

In the equation, 𝐶𝑢 is measured by UU triaxial, and the studied piles did not have a side resistance 

greater than 80 kPa. The equation is simple and received a similar fitness to the functions from the 

GA. Yet, for cohesive soils, the side resistance is likely influenced by the installation effects, lateral 

earth pressure, and soil content, which can be related and indicated by the slenderness ratio and 

soil plasticity. 

If the soil strength is measured with SPT N-values, the pile and soil type had a small influence on 

the tip resistance. For cohesive and noncohesive soils, a single relationship can predict the unit tip 

resistance for both pipe piles and plugged H piles (𝑅2 = 0.47):  

𝑞𝑝 = 304 𝑁𝑐𝑜𝑟𝑟 ≤ 13000 kPa      Eq. 3-3 

Piles in clayey and sandy soils did not have a unit tip resistance greater than 4000 kPa or 13000 

kPa, respectively. The corrected N-values were less than 20 and 40 respectively for cohesive and 

noncohesive soils. The soil content indicates the strength of the soil structure and highly influences 

the tip resistance. For silty soils, the relation can be approximated with the plasticity index for 

cohesive soils. Yet, from the studied piles, the 𝐶𝑢 cannot reliably predict the tip resistance by itself, 

and the design method by Meyerhof (1976) will likely offer conservative estimates.  

While comparing testing methods for the soil strength, SPT and UU triaxial measurements were 

proportionate for cohesive soils, and they are influenced by the water content and plasticity index. 

𝐶𝑢/𝑁60 ratios can range from 3 to 7, but these ratios will likely have a lot of variation for silty 

soils. 

An attempt was made to find a FVST correction factor, but several other variables likely influence 

the measurements, such as the silt content, soil stress history, sample disturbance, and shearing 

rate and dimensions of the field vane. The correction factor by Morris and William (1994) may be 

preferred over Bjerrum (1972). Due to the variability, applying a simple reduction factor of 0.6 to 

FVST results may be appropriate, but the inconsistency indicates a need for a new correction 

factor. 
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5.3 LIMITATIONS AND FUTURE WORK 

The studied pile load tests offer valuable data that can be further investigated. The number of 

studied piles can be increased by adding results from piles subject to only compression load tests. 

For the test results, the GA would be modified to correlate with both extension and compression 

load tests. Since the GA feasibly predicted the ultimate capacity, it could be implemented to 

improve predictions for the service limit state. Also, a reliability analysis can provide the accuracy 

and variability of the proposed and existing design methods. 

Genetic programming is a customizable approach to develop correlations, and a simple GA can be 

improved in multiple ways. A GA does not indicate the significance of a variable compared to a 

statistical hypothesis test, and categorical variables, such as the soil type, should be handled 

differently. For example, instead of applying a variable in a function, the GA can search for 

different constants for each category. Especially since the soil conditions change along a pile, the 

manipulation of repetitive observations needs to be controlled to prevent the creation of 

asymptotes. Interval awareness (Dick, 2017) can ensure the development of logical functions as it 

follows the numerical domain of the genes. The GA could also benefit from prior knowledge on 

the influence of variables. For example, if the effective stress increases the confinement of drained 

soils at greater depths, the GA should not assume a low effective stress results in a high side 

resistance. The current approach for constant refinement can be changed to reduce the 

computational effort. Optimization methods, such as the Nelder-Mead simplex method (Nelder & 

Mead, 1965), may be practical to refine constants while regressing for particular target variables, 

such as the tip resistance. However, the method may be inefficient with numerous variables and 

requires modification for repetitive measurements. The MEP technique with Pareto optimization 

is effective at finding practical expressions, but a function is typically mixed with unused genes in 

the chromosome. The efficiency of data processing and function searching can be increased with 

a hybrid system. For instance, an artificial neural network can learn to adjust the settings of the 

MEP-based GA and maintain diversity in the search space. Altogether, Banzhaf et al. (1998) 

suggested to improve a GA by focusing on 3 aspects: computational speed, evolvability, and search 

power.  

The GA provided practical and accurate functions since it was not limited to the average 

conditions. Although the findings greatly rely on the extent of the site investigations and number 

of pile load tests, the performance of existing design methods demonstrated a need for locally-

developed design methods in Ontario. The purpose of the GA was to obtain the most information 

from the available soil conditions, and it was more efficient at handling several variables compared 

to traditional regression. The GA outperformed the existing design methods in the end, and it likely 

could offer more accurate results with advanced soil testing, such as the cone penetration test, or 

results from fully instrumented piles. The Canadian government plans to make large investments 

in its future infrastructure, and machine learning techniques can help address uncertainty in 

geotechnical engineering and contribute towards efficient designs within Ontario.  
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APPENDIX 
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APPENDIX A: SUMMARY OF PILE LOAD TESTS 
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Table A-1: Descriptive Statistics of Variables Related to the Sides of the Piles 

Pile Type 
Dominating Soil Type Around 

Side 

Ultimate 

Capacity (kN) 

Percent Pile 

Length in 

Sand (%) 

Percent Pile 

Length in Silt 

(%) 

Percent Pile 

Length in Clay 

(%) 

Pipe Piles 

Cohesive 

n 12 12 12 12 

Mean 564.500 5.121 48.334 46.543 

Std. Deviation 298.3910 8.1441 47.2076 49.6045 

Mixed 

n 2 2 2 2 

Mean 1353.500 45.801 38.465 15.734 

Std. Deviation 259.5082 15.9986 .3896 15.6091 

Noncohesive 

n 7 8 8 8 

Mean 635.000 92.683 7.317 .000 

Std. Deviation 306.2744 11.9779 11.9779 .0000 

Total 

n 21 22 22 22 

Mean 663.143 40.660 32.521 26.817 

Std. Deviation 366.4064 43.0121 40.0428 42.5264 

H Piles 

Cohesive 

n 8 8 8 8 

Mean 779.000 5.884 39.100 55.016 

Std. Deviation 448.7242 11.9352 49.8322 47.4328 

Mixed 

n 3 3 3 3 

Mean 1886.667 45.024 43.687 11.289 

Std. Deviation 757.6717 12.2541 10.0118 13.3630 

Noncohesive 

n 8 10 10 10 

Mean 1197.500 87.641 12.359 .000 

Std. Deviation 501.0429 17.8178 17.8178 .0000 

Total 

n 19 21 21 21 

Mean 1130.105 50.408 27.021 22.571 

Std. Deviation 626.0372 41.2092 35.0648 38.7324 

Total 

Cohesive 

n 20 20 20 20 

Mean 650.300 5.426 44.640 49.932 

Std. Deviation 370.6134 9.5409 47.1872 47.6613 

Mixed 

n 5 5 5 5 

Mean 1673.400 45.335 41.598 13.067 

Std. Deviation 623.8183 11.8005 7.6380 12.4950 

Noncohesive 

n 15 18 18 18 

Mean 935.000 89.882 10.118 .000 

Std. Deviation 500.0987 15.2904 15.2904 .0000 

Total 

n 40 43 43 43 

Mean 884.950 45.420 29.835 24.744 

Std. Deviation 552.7267 41.9284 37.3490 40.2895 
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Table A-2: Descriptive Statistics of Variables Related to the Sides of the Piles 

Pile Type 
Dominating Soil Type Around 

Side 

Length 

(m) 

Setup Time 

(Days) 

Mean 

Corrected 

SPT 

Mean Wc 

(%) 

Mean 

Effective 

Stress (kPa) 

Pipe Piles 

Cohesive 

n 12 12 9 12 12 

Mean 14.078 17.75 11.975 21.778 100.684 

Std. Deviation 7.4414 4.634 2.9940 5.9654 46.3669 

Mixed 

n 2 2 2 2 2 

Mean 20.045 26.50 8.583 22.693 118.848 

Std. Deviation 7.5731 13.435 1.6067 6.3518 4.4905 

Noncohesive 

n 8 8 8  8 

Mean 17.736 36.13 9.057  90.495 

Std. Deviation 2.2664 21.970 4.9003  36.2283 

Total 

n 22 22 19 14 22 

Mean 15.950 25.23 10.389 21.909 98.630 

Std. Deviation 6.1859 16.065 3.9842 5.7728 40.3874 

H Piles 

Cohesive 

n 8 8 6 8 8 

Mean 14.180 25.75 13.898 22.007 103.268 

Std. Deviation 7.6661 12.349 5.7923 5.9514 50.1190 

Mixed 

n 3 3 3 3 3 

Mean 22.590 20.33 10.476 21.344 142.318 

Std. Deviation 6.9202 12.858 3.4706 5.0595 40.7764 

Noncohesive 

n 10 10 10 6 10 

Mean 25.796 11.50 28.307 16.557 140.215 

Std. Deviation 10.6691 5.874 12.5679 2.3077 46.7386 

Total 

n 21 21 19 17 21 

Mean 20.913 18.19 20.942 19.967 126.440 

Std. Deviation 10.3469 11.461 12.4324 5.2111 48.7436 

Total 

Cohesive 

n 20 20 15 20 20 

Mean 14.119 20.95 12.744 21.870 101.718 

Std. Deviation 7.3290 9.208 4.2492 5.8022 46.6026 

Mixed 

n 5 5 5 5 5 

Mean 21.572 22.80 9.719 21.884 132.930 

Std. Deviation 6.3424 11.798 2.7826 4.8407 31.6490 

Noncohesive 

n 18 18 18 6 18 

Mean 22.214 22.44 19.752 16.557 118.117 

Std. Deviation 8.9084 19.379 13.7982 2.3077 48.4070 

Total 

n 43 43 38 31 43 

Mean 18.374 21.79 15.665 20.844 112.212 

Std. Deviation 8.7414 14.292 10.5597 5.4671 46.3122 
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Table A-3: Descriptive Statistics of Variables Related to the Pile Tips 

Pile Type Soil Type at Tip 

Ultimate 

Capacity 

(kN) 

Length (m) 
Setup Time 

(Days) 

Corrected 

SPT at Tip 

Effective 

Stress at Tip 

(kPa) 

Pipe Piles 

Clay 

n 6 6 6 3 6 

Mean 487.333 12.143 16.50 10.000 184.415 

Std. Deviation 163.5783 7.0409 4.037 6.9687 128.3335 

Silt 

n 8 8 8 8 8 

Mean 722.125 17.425 20.38 16.060 214.418 

Std. Deviation 403.6821 7.5725 8.017 6.4015 62.8364 

Sand 

n 7 8 8 8 8 

Mean 746.429 17.331 36.63 20.807 169.176 

Std. Deviation 437.5553 2.2262 21.394 5.7089 65.4340 

Total 

n 21 22 22 19 22 

Mean 663.143 15.950 25.23 17.102 189.784 

Std. Deviation 366.4064 6.1859 16.065 6.9998 84.0586 

H Piles 

Clay 

n 6 6 6 4 6 

Mean 861.667 15.858 23.17 30.750 193.860 

Std. Deviation 498.6813 8.0652 13.467 30.2923 91.2241 

Silt 

n 5 5 5 5 5 

Mean 721.400 16.900 23.00 11.437 208.230 

Std. Deviation 337.9657 8.4552 15.083 1.3436 47.8062 

Sand 

n 8 10 10 10 10 

Mean 1586.875 25.952 12.80 27.873 284.314 

Std. Deviation 587.6883 10.7612 5.329 15.4880 85.6684 

Total 

n 19 21 21 19 21 

Mean 1130.105 20.913 18.19 24.153 240.355 

Std. Deviation 626.0372 10.3469 11.461 18.3182 87.8230 

Total 

Clay 

n 12 12 12 7 12 

Mean 674.500 14.001 19.83 21.857 189.138 

Std. Deviation 404.2480 7.4743 10.098 24.4544 106.2690 

Silt 

n 13 13 13 13 13 

Mean 721.846 17.223 21.38 14.282 212.038 

Std. Deviation 364.8744 7.5730 10.728 5.4760 55.4515 

Sand 

n 15 18 18 18 18 

Mean 1194.667 22.121 23.39 24.733 233.142 

Std. Deviation 665.6582 9.0982 18.759 12.3882 95.4686 

Total 

n 40 43 43 38 43 

Mean 884.950 18.374 21.79 20.628 214.481 

Std. Deviation 552.7267 8.7414 14.292 14.1367 88.6564 
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APPENDIX B: GENETIC ALGORITHM SOURCE CODE 
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function [resfit, rescon, reschrom, resadd1, resadd2, 

resgen]=startga(Data,PL,Goal) 

  

% Genetic algorithm with MEP encoding 

% Coded in Matlab by 

% Markus Jesswein (markus.jesswein[at]ryerson.ca) 

  

%% Start of program %% 

% Use the above function and required inputs to run the GA  

  

% Input: 

% "Data" is a 3D array (i,j,k), where "i" is for each pile test, "j" 

is for 

% each pile segment, and "k" is each variable to be regressed 

% "PL" (i x j) is the side area for each pile test 

% "Goal" (i x 1) is the target variable (measured side resistance) 

  

  

%Output: 

% "Resfit" contains the fitness results of the chromosomes from the 

last 

% generation [Best fitness (RMSE), index (location of best fitness in 

the  

% chromosome), MAE, R2] 

% "Rescon" has constants used by the chromosomes 

% "Reschrom" contains the activators of the chromosomes 

% (operator/constant/variable) 

% "Resadd1" and "resadd2" contains the links of the chromosomes 

% "Resgen" summarizes the fitness results for every generation 

[generation 

% No., best fitness, index of best fitness, highest fitness, mean 

fitness] 

  

% Settings: 

  

saveopt = 1; % 1 = Print and save; 2 = Save only (do not print) 

  

set.popsize = 200; %Chromosome population size: must be an even number 

set.codelength = 20; %Length of chromosomes 

set.numgen = 10; %Number of generations 

set.mutprob = 0.1; %Mutation probability 

set.crossprob = 0.9; %Crossover probability 

set.broodact = 1; % Brood: On = 1 / Off = 0 

set.broodprob = 0.5; %Brood probability during crossover 

set.broodpop = 4; %Number of additional trials for brood (should be 

even an even number -- offspring are coupled) 

  

set.varprob = 0.3; %Probability of variable 

set.operprob = 0.4; %Probability of operation 

set.consprob = 1 - set.varprob - set.operprob; %Probability of 

constant (remaining probability) 
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set.conint = 2; %How many constant sets (1-3)? 

set.numcons = 4; %How many constants to use for each set? 

set.conbrood = 10; %How many trials to find best constant for 

chromosome? 

set.consmin = -1; %Minimum value for constants (set 1) 

set.consmax = 1; %Maximum value for constants (set 1) 

set.consmin2 = 1; %Minimum value for constants (set 2) 

set.consmax2 = 10; %Maximum value for constants (set 2) 

set.consmin3 = 0; %Minimum value for constants (set 3) 

set.consmax3 = 10; %Maximum value for constants (set 3) 

  

set.toursize = 2; %Tournament size (minimum of 2) 

set.numop = 8; %Range of operators to apply (4 = up to '/'; 5 = P; 6 = 

E; 7 = Ln; 8= Tanh)  

  

set.numrep = size(Data,2); %Number of repetitive variables (ex number 

of pile segments) 

set.numvar = size(Data,3); %Number of variables 

        

[resfit, rescon, reschrom, resadd1, resadd2, 

resgen]=gengares(set,saveopt,Data,PL,Goal);   

  

end 
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function [resfit, rescon, reschrom, resadd1, resadd2, 

genres]=gengares(set,save,Data,PL,Goal) 

  

%Prints out all the chromosomes from the final generation 

  

  

  

numrep = set.numrep; 

numvar = set.numvar;  

numsamp = size(Data,1); 

  

% One population of chromosomes 

% Newly created individuals will replace poorly performing individuals 

  

% Begin creatation of chromosomes 

% -1='+';-2='-';-3='*';-4='/';-5='Power';-6='Exp';-7='Ln';-8='Tanh' 

% 1 to n = Var1 to VarN 

% n+1 to n+n = Const1 to ConstN 

  

codelen=set.codelength; 

add1=zeros(set.popsize,codelen); % Link 1 

add2=zeros(set.popsize,codelen); % Link 2 

chrom=zeros(set.popsize,codelen); % Activators 

  

const=zeros(set.popsize,set.numcons*set.conint); 

fitres=zeros(set.popsize,4); 

evalm=zeros(numsamp,codelen); 

  

genres=zeros(set.numgen,5); 

  

  

for i = 1:1:set.popsize %for every chrom 

  

%Randomly create constants 

%Set 1 

const(i,1:set.numcons)= set.consmin+(set.consmax - 

set.consmin).*rand(1,set.numcons); 

if set.conint>=2 %Set 2 

const(i,(set.numcons+1):2*set.numcons)= set.consmin2+(set.consmax2 - 

set.consmin2).*rand(1,set.numcons); 

end 

if set.conint>=3 %Set 3 

const(i,(2*set.numcons+1):3*set.numcons)= set.consmin3+(set.consmax3 - 

set.consmin3).*rand(1,set.numcons); 

end 

  

%First position in chromosome should be a variable or constant 

sum1=set.varprob+set.consprob; 

P=sum1.*rand(); 

  

if P<=set.varprob 

   chrom(i,1)= randi([1 numvar]); 



88 
 

else 

   chrom(i,1)= randi([numvar+1 numvar+set.numcons*set.conint]); 

end 

  

add1(i,1)=1; 

add2(i,1)=1; 

  

%For rest of chromosome 

for j=2:1:codelen 

  

    P=rand(); 

    if P>sum1 

        chrom(i,j)= (-1).*randi([1 set.numop]); %operator  

    elseif P<=set.varprob 

        chrom(i,j)= randi([1 numvar]); %variable 

    else 

        chrom(i,j)= randi([numvar+1 numvar+set.numcons*set.conint]); 

%constant 

    end 

     

    add1(i,j)=randi([1, j-1]);  

    add2(i,j)=randi([1, j-1]);  

end 

          

end 

  

  

for i=1:1:set.popsize 

  

%Evaluate Fitness--One chromosome at a time 

  

[fitres(i,:),evalm,chrom(i,:)]=fitness(chrom(i,:),add1(i,:),add2(i,:), 

const(i,:), codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal); 

  

%Refine Constants 

[const(i,:),fitres(i,:),chrom(i,:)]=refconst(chrom(i,:),add1(i,:),add2

(i,:),const(i,:),set,numvar,fitres(i,:),evalm,Data,PL,Goal); 

  

end 

  

%Sort by ascending fitness 

[fitres,chrom,add1,add2,const]=sortfit(fitres,chrom,add1,add2,const,co

delen); 

  

genres(1,:)=[1 fitres(1,1) fitres(1,2) max(fitres(:,1)) 

mean(fitres(:,1))]; 

  

fprintf('Generation %d: best fitness = %f at index = %d. Max fitness = 

%f\n',1,fitres(1,1),fitres(1,2),genres(1,4)); 

  

  

for g=2:1:set.numgen %For every generation 
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    for k=1:2:set.popsize %Two chromosomes at a time in the population 

         

    %Choose parents -- Binary tournament 

     

    r1=tournamentsel(chrom,fitres,set.popsize,set.toursize); 

    r2=tournamentsel(chrom,fitres,set.popsize,set.toursize); 

     

    %Crossover 

     

    P=rand(); 

    if P<=set.crossprob 

        

        P=rand(); 

        if P<=set.broodprob 

         

            for i=1:1:(set.broodpop/2) 

             

                if i==1 

                     

                    

[offsp1,offsp2,offcon1,offcon2,offadd1A,offadd1B,offadd2A,offadd2B]=ra

nuniform_cross(chrom(r1,:),chrom(r2,:),const(r1,:),const(r2,:),add1(r1

,:),add2(r1,:),add1(r2,:),add2(r2,:),codelen); 

     

                    

[off_fit1,evalm,offsp1]=fitness(offsp1,offadd1A,offadd1B, offcon1, 

codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal); 

                    

[off_fit2,evalm,offsp2]=fitness(offsp2,offadd2A,offadd2B, offcon2, 

codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal); 

                     

                else 

                

                    

[offspt1,offspt2,offcont1,offcont2,offaddt1A,offaddt1B,offaddt2A,offad

dt2B]=ranuniform_cross(chrom(r1,:),chrom(r2,:),const(r1,:),const(r2,:)

,add1(r1,:),add2(r1,:),add1(r2,:),add2(r2,:),codelen); 

     

                    

[off_fitp1,evalm,offspt1]=fitness(offspt1,offaddt1A,offaddt1B, 

offcont1, codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal); 

                    

[off_fitp2,evalm,offspt2]=fitness(offspt2,offaddt2A,offaddt2B, 

offcont2, codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal); 

                     

                    if off_fitp1(1,1)<off_fit1(1,1) 

                         

                        off_fit1=off_fitp1; 

                        offsp1=offspt1; 

                        offcon1=offcont1; 

                        offadd1A=offaddt1A; 
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                        offadd1B=offaddt1B; 

                         

                    end 

                    if off_fitp2(1,1)<off_fit2(1,1) 

                         

                        off_fit2=off_fitp2; 

                        offsp2=offspt2; 

                        offcon2=offcont2; 

                        offadd2A=offaddt2A; 

                        offadd2B=offaddt2B; 

                         

                    end 

                     

                end 

                 

            end 

             

        else 

        

[offsp1,offsp2,offcon1,offcon2,offadd1A,offadd1B,offadd2A,offadd2B]=ra

nuniform_cross(chrom(r1,:),chrom(r2,:),const(r1,:),const(r2,:),add1(r1

,:),add2(r1,:),add1(r2,:),add2(r2,:),codelen); 

     

        end 

         

    else 

         

        

[offsp1,offcon1,off_fit1,offadd1A,offadd1B]=copyindivid(set,chrom(r1,:

),const(r1,:),fitres(r1,:),add1(r1,:),add2(r1,:));  

        

[offsp2,offcon2,off_fit2,offadd2A,offadd2B]=copyindivid(set,chrom(r2,:

),const(r2,:),fitres(r2,:),add1(r2,:),add2(r2,:));  

         

    end 

     

    %Mutation -- Mutate and calculate fitness 

     

    

[offsp1,offadd1A,offadd1B,offcon1]=mutation(offsp1,offadd1A,offadd1B,o

ffcon1,set,numvar); 

    [off_fit1,evalm1,offsp1]=fitness(offsp1,offadd1A,offadd1B, 

offcon1, codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal); 

     

    

[offsp2,offadd2A,offadd2B,offcon2]=mutation(offsp2,offadd2A,offadd2B,o

ffcon2,set,numvar); 

    [off_fit2,evalm2,offsp2]=fitness(offsp2,offadd2A,offadd2B, 

offcon2, codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal); 

     

    %Refine Constants 
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[offcon1,off_fit1,offsp1]=refconst(offsp1,offadd1A,offadd1B,offcon1,se

t,numvar,off_fit1,evalm1,Data,PL,Goal); 

    

[offcon2,off_fit2,offsp2]=refconst(offsp2,offadd2A,offadd2B,offcon2,se

t,numvar,off_fit2,evalm2,Data,PL,Goal); 

     

    %Replace worst chromosome 

    if off_fit1(1,1)<fitres(set.popsize,1) 

     

        

[chrom(set.popsize,:),const(set.popsize,:),fitres(set.popsize,:),add1(

set.popsize,:),add2(set.popsize,:)]=copyindivid(set,offsp1,offcon1,off

_fit1,offadd1A,offadd1B); 

  

        

[fitres,chrom,add1,add2,const]=sortfit(fitres,chrom,add1,add2,const,co

delen); 

         

    end 

     

    if off_fit2(1,1)<fitres(set.popsize,1) 

         

        

[chrom(set.popsize,:),const(set.popsize,:),fitres(set.popsize,:),add1(

set.popsize,:),add2(set.popsize,:)]=copyindivid(set,offsp2,offcon2,off

_fit2,offadd2A,offadd2B); 

  

        

[fitres,chrom,add1,add2,const]=sortfit(fitres,chrom,add1,add2,const,co

delen); 

         

    end 

     

    end 

     

    genres(g,:)=[g fitres(1,1) fitres(1,2) max(fitres(:,1)) 

mean(fitres(:,1))]; 

     

    fprintf('Generation %d: best fitness = %f at index = %d. Max 

fitness = %f\n',g,fitres(1,1),fitres(1,2),genres(g,4)); 

     

     

end 

  

%Print results from final generation 

  

[resfit,rescon,reschrom,resadd1,resadd2]=printres(fitres,chrom,const,a

dd1,add2,set,numvar,save);  

  

  

end  
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function [fitresl,evalmt,chrom]=fitness(chrom,add1,add2, const, 

codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal) 

  

  

%%% Using RMSE for fitness 

%Includes R2 and MAE 

  

evalmt=zeros(numsamp,codelen); 

  

n=1; 

while n<(numrep+1) %evaulate for every pile segment 

  

if n==1     

[evalm,chrom,c]=comp_evalm(n,chrom,add1,add2,const,codelen,numvar,nums

amp,evalm,Data); 

  

evalmt=evalmt+evalm.*PL(:,n); 

  

n=n+1; 

else 

    

    

[evalm,chrom,c]=comp_evalm(n,chrom,add1,add2,const,codelen,numvar,nums

amp,evalm,Data); 

     

    if c==0 

         

    evalmt=evalmt+evalm.*PL(:,n); 

    n=n+1; 

    else 

    evalmt=zeros(numsamp,codelen);     

    n=1; 

    end 

end 

  

end 

  

  

for i=1:1:codelen %read chrom from beginning (left to right) 

%evaluate every part of the chromosome 

     

   sumerr=0; %overall error for a chromosome 

   tempm=0; 

   sump=0; 

   summ=0; 

   sumpm=0; 

   sump2=0; 

   summ2=0; 

  

    

   for j=1:1:numsamp %for every sample in dataset 
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       sumerr=sumerr+abs(evalmt(j,i)-Goal(j,1)); %absolute difference 

between predicted and actual 

        

       tempm=tempm+((evalmt(j,i)-Goal(j,1))^2); 

        

       sump=sump+evalmt(j,i); 

       sump2=sump2+((evalmt(j,i))^2); 

       summ=summ+Goal(j,1); 

       summ2=summ2+((Goal(j,1))^2); 

       sumpm=sumpm+(evalmt(j,i)*Goal(j,1)); 

  

        

   end 

    

   mse = sqrt((tempm/numsamp)); %root mean square error 

    

    

    

   if i==1 

       

  

      fitness=mse; 

  

      index=1;  

      mae = sumerr/numsamp; %mean absolute error  

  

      R2 = ((numsamp*(sumpm)-(sump)*(summ))/(((numsamp*sump2-

sump^2)*(numsamp*summ2-summ^2))^(0.5)))^2; %R2 

       

      if R2>1||R2<=0 

       

         R2=0;  

      end 

   end 

    

   if fitness>mse 

    

       fitness=mse; 

         

       index=i; %position in chromosome that gives best result (do not 

need full chromosome) 

       mae = sumerr/numsamp; %mean absolute error  

  

       R2 = ((numsamp*(sumpm)-(sump)*(summ))/(((numsamp*sump2-

sump^2)*(numsamp*summ2-summ^2))^(0.5)))^2; %R2 

    

       if R2>1||R2<=0 

       

         R2=0;  

       end     

   end 
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end 

  

fitresl=[fitness,index,mae,R2]; 

  

end 
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function 

[evalm,chrom,c]=comp_evalm(n,chrom,add1,add2,const,codelen,numvar,nums

amp,evalm,Data) 

  

  

%Keep intermediate results in case of errors 

%In case of error (ex. dividing by Zero), the chromosome is mutated 

evalm=zeros(numsamp,codelen); 

numconst = size(const,2); 

  

c=0; %track if change is needed (0 for No/1 for Yes) 

  

for i=1:1:codelen %Read chromosome from beginning 

  

switch chrom(1,i) 

  

    case -1 %'+' 

         

        for k=1:1:numsamp 

            

            evalm(k,i)=evalm(k,add1(1,i)) + evalm(k,add2(1,i));  

             

        end 

     

    case -2 %'-' 

         

        for k=1:1:numsamp 

             

            evalm(k,i)=evalm(k,add1(1,i)) - evalm(k,add2(1,i)); %%%% 

             

        end 

         

    case -3 %'*' 

         

        for k=1:1:numsamp 

             

            evalm(k,i)=evalm(k,add1(1,i)) .* evalm(k,add2(1,i)); %%%% 

             

        end 

         

    case -4 %'/'     

         

        for k=1:1:numsamp 

             

            if abs(evalm(k,add2(1,i)))< 1.0e-06  %A small value 

(prevent division by 0) 

             

                chrom(1,i)= randi([1 numvar]); %change to division to 

variable 

                c=1; %track if change is needed 

                for k=1:1:numsamp 
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                    evalm(k,i)= Data(k,n,chrom(1,i)); 

  

                end 

                break 

                 

            else %normal operation 

                 

                for k=1:1:numsamp 

             

                    evalm(k,i)=evalm(k,add1(1,i)) ./ 

evalm(k,add2(1,i)); %%%% 

             

                end 

             

                 

            end 

             

        end 

         

    case -5 %Power (^) (abs() of base) 

         

        for k=1:1:numsamp 

             

            if abs(evalm(k,add2(1,i)))> 20  %A power greater than 20 

             

                chrom(1,i)= -8; %change to tanh() 

  

                c=1; 

                for k=1:1:numsamp 

                    

                    evalm(k,i)=tanh(evalm(k,add1(1,i))); 

  

                     

                end 

                break 

                 

            else %normal operation 

                 

                for k=1:1:numsamp 

             

                    evalm(k,i)= abs(evalm(k,add1(1,i))) .^ 

evalm(k,add2(1,i)); %%%% 

             

                end 

             

                 

            end 

             

        end 

         

    case -6 %Exponent (e) 
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        for k=1:1:numsamp 

             

            if abs(evalm(k,add1(1,i)))> 32  %An exp() greater than 32 

             

                chrom(1,i)= -1; %change to exp() to addition 

                c=1; 

                for k=1:1:numsamp 

                    

                    evalm(k,i)=evalm(k,add1(1,i)) + 

evalm(k,add2(1,i)); 

                     

                end 

                break 

                 

            else %normal operation 

                 

                for k=1:1:numsamp 

             

                    evalm(k,i)=exp(evalm(k,add1(1,i))); %%%% 

             

                end 

             

                 

            end 

             

        end 

         

    case -7 %Ln(abs()) 

         

        for k=1:1:numsamp 

             

            if abs(evalm(k,add1(1,i)))< 1.0e-06  %A small value 

(prevent log of 0) 

             

                chrom(1,i)= randi([numvar+1 numvar+numconst]); %change 

to Ln to constant 

                c=1; %track if change is needed 

                for k=1:1:numsamp 

                    

                    evalm(k,i)= const(1,chrom(1,i)-numvar); 

  

                end 

                break 

                 

            else %normal operation 

                 

                for k=1:1:numsamp 

             

                    evalm(k,i)=log(abs(evalm(k,add1(1,i)))); %%%% 

             

                end 
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            end 

             

             

        end 

         

    case -8 %tanh 

         

        for k=1:1:numsamp 

            

            evalm(k,i)=tanh(evalm(k,add1(1,i))); 

             

        end 

         

    otherwise 

     

        for k=1:1:numsamp 

             

            if chrom(1,i)<= numvar 

                 

                evalm(k,i)= Data(k,n,chrom(1,i)); 

                 

            else 

                

                evalm(k,i)= const(1,chrom(1,i)-numvar); 

                 

            end 

             

        end 

         

  

end 

  

end 

  

end 
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function 

[con1,fitfin,ofsp]=refconst(chrom,add1,add2,const,set,numvar,fitres,ev

alm,Data,PL,Goal) 

  

numrep=set.numrep; 

numsamp=size(Data,1); 

codelen = size(chrom,2); 

count=0; 

actconst=zeros(1,set.numcons*set.conint); 

fit=zeros(set.conbrood-1,4); 

  

    for i=1:1:codelen %Count number of constants used 

        if chrom(1,i)>numvar 

         

        count=count+1; 

        if actconst(1,chrom(1,i)-numvar)==0 

           actconst(1,chrom(1,i)-numvar)=1;  

        end 

         

        end 

  

    end 

  

if count<1 

   con1=const; 

   fitfin=fitres; 

   ofsp=chrom; 

     

else     

  

%create random constants 

tempconst=zeros(set.conbrood-1,set.numcons*set.conint); 

  

for i=1:1:(set.numcons*set.conint) 

    

    if actconst(1,i)==1 

         

        if set.conint>1 

           if i<=set.numcons 

               tempconst(:,i)=(set.consmin+(set.consmax - 

set.consmin).*rand(set.conbrood-1,1)); 

           elseif i>set.numcons&&(i<=2*set.numcons) 

               tempconst(:,i)=(set.consmin2+(set.consmax2 - 

set.consmin2).*rand(set.conbrood-1,1)); 

           else 

               tempconst(:,i)=(set.consmin3+(set.consmax3 - 

set.consmin3).*rand(set.conbrood-1,1)); 

           end 

             

           else 

                tempconst(:,i)=(set.consmin+(set.consmax - 

set.consmin).*rand(set.conbrood-1,1)); 
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        end     

         

    else 

        tempconst(:,i)=const(1,i); 

    end 

     

end 

  

fitfin=fitres; 

con1=const; 

ofsp=chrom; 

  

for i=1:1:(set.conbrood-1) 

     

    [fit(i,:),evalm,chrom]=fitness(chrom,add1,add2, tempconst(i,:), 

codelen, numvar, numsamp,numrep,evalm,Data,PL,Goal);  

  

    if fit(i,1)<fitfin(1,1) 

    fitfin = fit(i,:); 

    con1=tempconst(i,:); 

    ofsp=chrom; 

     

    end 

     

end 

  

end 

  

  

end 
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function 

[fit,chrom,a1,a2,ct]=sortfit(fitres,chrom,add1,add2,const,codelen) 

  

max1=size(fitres,2); 

max2=size(const,2); 

  

temp=[fitres chrom add1 add2 const]; 

  

temp=sortrows(temp,1); 

  

fit=temp(:,1:max1); 

chrom=temp(:,(max1+1):(max1+codelen)); 

a1=temp(:,(max1+1+codelen):(max1+2*codelen)); 

a2=temp(:,(max1+1+2*codelen):(max1+3*codelen)); 

ct=temp(:,(max1+1+3*codelen):(max1+3*codelen+max2)); 

  

end 
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function [offsp1,offcon1,offit,offadd1,offadd2]=copyindivid(set, par1, 

parcon1, fitres,add1,add2) 

  

offsp1=par1; 

offcon1=parcon1; 

offit=fitres; 

offadd1=add1; 

offadd2=add2; 

  

end 
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function p=tournamentsel(chrom,fitres,popsize,toursize) 

  

p=randi([1 popsize],1,1); 

for i=2:1:toursize 

     

    t=randi([1 popsize],1,1); 

     

    if fitres(p,1)<fitres(t,1) 

        p=p; 

    else 

        p=t; 

    end 

     

end 

  

  

end 
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function 

[offsp1,offsp2,offcon1,offcon2,offadd1A,offadd1B,offadd2A,offadd2B]=ra

nuniform_cross(par1,par2,const1,const2,paradd1A,paradd1B,paradd2A,para

dd2B,codelen) 

  

csize=size(const1); 

offcon1=zeros(1,csize(2)); 

offcon2=zeros(1,csize(2)); 

offsp1=zeros(1,codelen); 

offsp2=zeros(1,codelen); 

offadd1A=zeros(1,codelen); 

offadd1B=zeros(1,codelen); 

offadd2A=zeros(1,codelen); 

offadd2B=zeros(1,codelen); 

  

P1=0.5; 

  

for i=1:1:codelen 

P=rand(); 

if P<=P1  

     

    offsp1(1,i)=par1(1,i); 

    offsp2(1,i)=par2(1,i); 

    offadd1A(1,i)=paradd1A(1,i); 

    offadd1B(1,i)=paradd1B(1,i); 

    offadd2A(1,i)=paradd2A(1,i); 

    offadd2B(1,i)=paradd2B(1,i); 

     

else 

    offsp1(1,i)=par2(1,i); 

    offsp2(1,i)=par1(1,i); 

    offadd1A(1,i)=paradd1B(1,i); 

    offadd1B(1,i)=paradd1A(1,i); 

    offadd2A(1,i)=paradd2B(1,i); 

    offadd2B(1,i)=paradd2A(1,i); 

     

end 

end 

  

%for constants 

  

if csize(2)>0 

    

    for i=1:1:csize(2) 

    P=rand(); 

    if P<=P1 

     

        offcon1(1,i)=const1(1,i); 

        offcon2(1,i)=const2(1,i); 

         

    else  
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        offcon1(1,i)=const2(1,i); 

        offcon2(1,i)=const1(1,i); 

         

    end 

    end 

     

end 

  

  

end 
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function 

[offsp1,add1,add2,const]=mutation(offsp1,add1,add2,const,set,numvar) 

  

codelen=set.codelength; 

%mutate based on probability for every chromosome entry 

%start with first entry, which is either a constant or variable 

  

P = rand(); 

if P<=set.mutprob 

    sum = set.consprob+set.varprob; 

    P=sum*rand(); 

     

    if P<=set.varprob 

    offsp1(1,1)= randi([1 numvar]); 

    else 

    offsp1(1,1)= randi([numvar+1 numvar+set.numcons*set.conint]); 

         

    end 

     

end 

%check other genes 

  

for j=2:1:codelen 

  

    P=rand(); 

    if P<=set.mutprob %mutate, but select what to mutate 

     

    P=rand(); 

         

    if P<=set.operprob 

        offsp1(1,j)= (-1).*randi([1 set.numop]); %operator 

    elseif P<=set.operprob+set.varprob 

        offsp1(1,j)= randi([1 numvar]); %variable 

    else 

        offsp1(1,j)= randi([numvar+1 numvar+set.numcons*set.conint]); 

%constant 

    end 

     

    P=rand(); 

    if P<=set.mutprob 

    add1(1,j)=randi([1, j-1]); %location 1 

    end 

    P=rand(); 

    if P<=set.mutprob 

    add2(1,j)=randi([1, j-1]); %location 2 

    end 

     

     

    end 

  

end 
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%constants 

csize=size(const); 

for i=1:1:csize(2) 

     

    P=rand(); 

    if P<=set.mutprob 

        

        if set.conint>1 

           if i<=set.numcons 

               const(1,i)=set.consmin+(set.consmax - 

set.consmin).*rand(1,1); 

           elseif i>set.numcons&&(i<=2*set.numcons) 

               const(1,i)=set.consmin2+(set.consmax2 - 

set.consmin2).*rand(1,1); 

           else 

               const(1,i)=set.consmin3+(set.consmax3 - 

set.consmin3).*rand(1,1); 

           end 

             

        else 

           const(1,i)=set.consmin+(set.consmax - 

set.consmin).*rand(1,1); 

        end 

         

    end 

     

end 

  

  

end 
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function 

[resfit,rescon,reschrom,resadd1,resadd2]=printres(fitres,chrom,const,a

dd1,add2,set,numvar,save) 

  

%save and print results 

  

codelen=set.codelength; 

operstr='+-*/PELT'; %operations 

P=Power,E=Exponent,L=Ln(abs()),T=Tanh() 

  

if save==1 

  

fprintf('The chromosome is: \n'); 

  

for i=1:1:(set.numcons*set.conint) 

     

    fprintf('constant[%d] = %f\n', i, const(1,i)); 

     

end 

for i=1:1:codelen 

  

    if chrom(1,i)<0 

        

        if abs(chrom(1,i))<=5 

        fprintf('%d: %c %d %d\n', i, operstr(1,abs(chrom(1,i))), 

add1(1,i),add2(1,i));  

        else % expon, etc 

        fprintf('%d: %c %d\n', i, operstr(1,abs(chrom(1,i))), 

add1(1,i)); 

         

        end 

    else 

         

        if chrom(1,i)<=numvar 

             

            fprintf('%d: input[%d]\n', i, chrom(1,i)); 

             

        else 

             

            fprintf('%d: constant[%d]\n', i, chrom(1,i)-numvar); 

             

        end 

     

    end 

     

end 

  

fprintf('Best index = %d\n',fitres(1,2)); 

fprintf('Fitness = %f\n', fitres(1,1)); 

  

end 
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    resfit = fitres; 

    rescon = const; 

    reschrom = chrom; 

    resadd1=add1; 

    resadd2=add2; 

  

  

end 
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