
 

 

 

 

 

 
DYNAMIC FINITE ELEMENT MODELLING AND FREE VIBRATION 

ANALYSIS OF TWO DIMENSIONAL ELEMENTS 

 

 
 

 

 
By: 

Mohammad Moeid Elahikahooker 
Bachelor of Engineering, Institute of Space Technology, Islamabad, Pakistan (2014) 

 

 
 
 

A thesis 
presented to Ryerson University 

 
in partial fulfillment of the 

 
requirements for the degree of 

 

Master of Applied Science 

 
in the program of 

 
Aerospace Engineering 

 
 

 
 
 

 
 
 

 
 

 
Toronto, Ontario, Canada, 2017 

©Mohammad Moeid Elahikahooker 



 
 

ii 
 

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including 

any required final revisions, as accepted by my examiners.  

 

I authorize Ryerson University to lend this thesis to other institutions or individuals for the 

purpose of scholarly research. 

 

I further authorize Ryerson University to reproduce this thesis by photocopying or by other 

means, in total or in part, at the request of other institutions or individuals for the purpose of 

scholarly research. 

 

I understand that my thesis may be made electronically available to the public. 

 

 

  



 
 

iii 
 

ABSTRACT 
Dynamic Finite Element Modelling and Free Vibration 

Analysis of Two Dimensional Elements 
 

Mohammad Moeid Elahikahooker 
Master of Applied Science, Aerospace Engineering, Ryerson University, Toronto (2017) 

 

DFE is proven to be a powerful tool for analysis of structural problems involving vibration of 

beams, by introducing frequency dependence in element matrices. This method is extended here 

to thin plate vibration cases. Lack of previous systematic approach and great performance of 

beam DFEs were particular drives of the present work. Kirchhoff’s plate bending theory is 

derived and used as the reference equation describing element behaviour. DFE is implemented in 

MATLAB® software and evaluated for different conditions. FEM plates are developed for 

similar geometry using MATLAB® as well and their performance is compared against DFE 

formulation.  Convergence studies are performed and comparisons between FEM and DFE 

elements are shown. Moreover, critical review of previous works on plate vibrational modelling 

is made which highlighted the difficulty involved in solving the partial differential equation of 

plates. Finally comments about the current element and the potential direction of future research 

are given.  
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NOMENCLATURE 
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𝐿 Length of differential segment 
𝑟 Radius of curvature 
𝜌 Density 
𝜃 Deformation angle from curvature center 
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𝑣 Displacement in 𝑦 direction 
𝜎 Axial stress 
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[𝑋] Basis function vector 
[𝑎] Constants vector 
[𝑃] Basis function/derivative matrix  
[𝑁] Shape function vector 
𝛿 Virtual operator 
𝜔 Harmonic vibrational frequency 
𝑛 Normal vector 
𝑑𝑠 Differential length segment 
[𝐾] Stiffness matrix 
𝛾𝑥𝑦 Normalized vibrational frequency 
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1. INTRODUCTION 
 

1.1. OVERVIEW 
 

Plates are structural elements, commonly used in various industries including civil, automotive 

and aerospace to name a few. The widespread use of plates is in part due to their ability to resist 

loads in various directions while having a low weight.  

In aerospace industry in particular, plates are used as skin for aircraft and spacecraft fuselage, 

wings and engine nacelles, to provide a reduced drag envelope for the flying machine. As such, 

these elements are under tension, compression, bending and twisting of various magnitudes 

during each flight cycle. Also, presence of rotary gas turbine engine and air turbulence induces 

fluctuating loads on these components, leading to vibrational response. 

Based on loading, plates are analyzed from two different aspects in mechanics. Plates that face 

in-plane tension/compression are classified as membrane, while the term “plate” is used more 

specifically, for out-of-plane bending/twisting loads. These two conditions can be modelled 

independently. However, in general, plates see both loadings simultaneously, and should be 

analyzed by superimposing membrane and plate formulations. Such superposition generates shell 

elements which can be curved to include more geometric configurations. 

In this research, the focus is directed towards vibrational analysis of plates under 

bending/twisting condition. Thus, the use of term plate will refer to such loadings, and does not 

include membrane behaviour. 

Vibration is characterized by rapidly changing internal stress directions and magnitudes. 

Vibrational response is due to the tendency of objects to return to an equilibrium position. This 
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tendency is caused by the stiffness property. Vibration can occur because of disturbance from the 

equilibrium position, or application of varying external loads.  

Vibrations create fatigue in the structural components, reducing their load handling capacity well 

below yielding point. Also, plate vibration is a major source of cabin noise in both automobiles 

and aircrafts, causing passenger discomfort. Therefore, it is crucial to have a good understanding 

and model of study, for the vibrational behaviour of plates, to improve both component life and 

flight experience.  

Mathematical models of plate vibration provide equations that describe the amplitude and phase 

of vibration, at any given moment in time, on any location within the plate boundaries. These 

partial differential equations are tedious to solve in full form, and complete analytical solutions 

are available for only specific geometries and boundary conditions.  

To expand the application of these models to various geometries, several solution techniques 

have been proposed. Generally, these techniques reduce the full solution of the partial 

differential equation to a simpler form, which results in reduced accuracy.  

 

1.2. LITERATURE SURVEY 
 

Due to their versatile use, plates have received research attention for decades. Investigators have 

tried to develop loading response models that match empirical data and experimental results, in 

order to better predict failure, and to provide designers with tools to optimise geometries, and 

material properties in initial stages of development. In this section, a brief review of plate 

vibrations, governing theories and models, and solution methods available in literature is 

presented, and their advantages and disadvantages are highlighted.  
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The first mathematical models for flexural plate behaviour were developed by ignoring thickness 

dependent effects, such as rotary inertia and out of plane shear. Such assumptions are accurate 

for plates of small thickness. Kirchhoff and Love introduced the governing equation for such 

plates. For thin plates, therefore, they assumed that the plate thickness will always remain 

perpendicular to midplane, regardless of the deformation state. Hence, in thin plates, the slope of 

any line along thickness is equal to the slope of the midplane after deformation. As such, this 

hypothesis makes thin plates comparable to thin beams, modeled by Euler-Bernoulli model. The 

governing differential equation of such plates is aptly named, thin plate or Kirchhoff plate model. 

Much like beams, for plates of considerable thickness, the rotary inertia and shear effects across 

plate thickness become large, and invalidate the assumption of thickness perpendicularity, 

proposed by thin plate model. To account for these effects, the thick plate model was proposed 

by Reissner [1]- [2] and Mindlin [3]. This model couples the rotation along the thickness with 

midplane slope, without forcing equality, thereby correcting the thickness assumption of the thin 

plate model.  

These two theories provide governing equations, which describe the transverse behaviour of 

plates under flexural loading. These governing equations are in form of two-dimensional partial 

differential equations in planar coordinates. To find the solution of these equations, various 

methods have been developed with advantages and disadvantages of their own. 

Analytical methods strive to determine the closed form solution of these governing partial 

differential equations, when applied to a plate of known domain. Since plate equations are partial 

differential equations, their analytical solution involves infinite number of functions. Therefore, 

these complete analytical solutions are very complex and have been developed for specific 

problems only. This complexity reduces their attraction as a tool for analysis. 
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Navier method is a well-known technique for solving such differential equations. It formulates 

the solution as a double Fourier series with unknown constants. These constants are found 

parametrically such that, the solution satisfies plate’s kinematics, dynamic and boundary 

conditions. By application of this method to thin plates, Leissa [4]- [9] evaluated vibrational 

analysis of various boundary and loading conditions. The Navier method has also been used to 

analyze vibration and buckling of isotropic and composite plates [10]- [15].  

In contrast, the Levy method utilizes a single Fourier series [16] to solve plate equations. Due to 

the lack of Fourier expansion along one direction, Levy method is applicable to plates with 

special boundary conditions. 

The difficulties imposed by analytical solutions have led to development of approximate solution 

methods. These methods do not focus on the exact solution of the governing differential 

equation, rather they propose an approximate solution, whose error can be minimized over the 

problem domain.  

Approximate solutions are obtained by variational formulation, where a weighting function is 

assigned to the error of the weak form of the governing differential equation. Minimization of the 

error functional is performed through weighted residual integration. Rayleight [17] and Ritz [18] 

assume a set of trials for the weighting function while Galerkin’s method takes identical 

weighting and solution functions. These two methods have been used extensively to solve variety 

of problems for thick and thin plates [19]- [25]. 

Similar to analytical techniques, approximate methods solve the governing differential equation 

of plates as a single equation, over the problem domain. This approach requires reformulation for 



 
 

5 
 

every boundary and loading conditions. Also, development of appropriate weighting and basis 

functions for various element domains can be difficult. 

A simpler approach to these problem is use of numerical techniques. In such methods, the 

problem domain is discretized to a number of smaller geometries, called elements. These 

elements combine in a mesh structure to generate original domain of the plate.  

Arguably, finite element method (FEM) is most widely used numerical technique for static and 

dynamic analysis of structural components. In FEM analyses, the problem domain is divided into 

smaller sections called elements. The element is assumed to be characterised by a collection of 

nodes. Degrees of freedom (DoFs) are representation of the displacements/deformation of the 

plate on an element location at these nodes.  

The development of finite element method is done by application of variational formulations, 

such as Galerkin or Rayleigh-Ritz technique. However, because the problem domain is 

subdivided in smaller elements, the weak form solution is applied to a small section of the 

domain, and error is reduced by making the sections smaller. Hence, the assumed solution and 

weighting functions, do not need to be solutions of the governing differential equation. For 

example, many FEM formulations have used polynomials of various degrees as their solution 

and weight functions. Using polynomials leads to further ease in numerical evaluation.  

Simplicity in development and applicability has led to widespread use of finite element 

formulation. A rich body of literature is available on FEM analysis of plates, and their 

boundedness and convergence properties are well understood. The FEM elements are easily 

extended to plates of arbitrary geometries, such as quadrilaterals and curved edge elements with 

good convergence [26]. FEM has been used for variety of difficult loadings and configurations, 
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such as plates having cut-outs, laminated composite plates, thick composite plates and large 

amplitude bending [27]- [37]. 

The simplicity and good convergence of the FEM formulation is also exploited by many 

engineering analysis software. The main reason for this trend is that the FEM vibrational analysis 

results in linear Eigenvalue problems. These linear Eigenvalue problems are relatively straight 

forward to solve and numerous mathematical and computer algorithms have been developed for 

fast and precise evaluation. Ansys Inc. and MSC software Inc. are example of such software.  

The desire to develop elements with wide applicability of FEM and accuracy of exact models has 

given rise to hybrid techniques. Dynamic Stiffness Matrix (DSM) and Dynamic Finite Element 

(DFE) are among the well-stablished hybrid methods. Both methods are developed for beam 

problems and recent extension to plates are being researched. A summary of these hybrid 

solution techniques is outlined here. 

DSM involves a complete solution of the beam equation for simple harmonic oscillation cases. 

By using D’Alembert’s principle, researchers include the dynamic mass term, as part of the 

governing differential equation. The resulting ordinary differential equation is solved, generating 

frequency dependent hyperbolic and trigonometric solutions.  

These solutions are organized in a displacement matrix. This displacement matrix is then related 

to a force matrix, using a differential operator matrix. The operator matrix is derived based on 

load-stress and stress-deformation relationships of thick/thin models. Application of the 

boundary and loading condition, shapes the final dynamic stiffness matrix for the entire problem 

domain.  
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This frequency dependent matrix is then analyzed for non-linear Eigenvalue problem, which 

yields a transcendental frequency dependent equation. With the help of William-Wittrick 

algorithm [38], the determinant equation can be swept across frequency domain to find a 

frequency value of interest. DSM technique has been mainly applied to beam vibration problems 

[39]- [44].  .  where displacement, force and operator matrix dimensions are finite. In a recent 

study [45], this method was extended to thin plates.  

DFE is another successful alternative to FEM for beam analysis. DFE also organizes the 

frequency dependent solutions of the governing differential equation in a displacement matrix. 

However, the stiffness matrix in DFE is not derived for each problem condition. 

DFE development procedure is similar to FEM, in that, it follows Galerkin’s scheme of 

development and starts as a weak solution. However, the basis functions used are exact solutions 

of the governing differential equation. Use of exact solution allows manipulation of Galerkin’s 

method to further simplify the formulation. By applying integration by parts, integrals are 

reduced and only evaluation of DFE matrices at element boundaries is required.  

Another similarity between DFE and FEM, is that it is performed over an element domain. 

Therefore, the DFE matrices are associated with elements, rather than the entire physical space 

of the problem. Hence, complex domains can be analyzed by discretizing the problem into 

regions of similar geometry, material property and loading conditions using a meshing scheme. 

DFE has been used for analysis of beams with bending-torsion coupling [46], beams with 

extension-torsion coupling [47], sandwich beams [48], and axially loaded bending-torsion 

coupled [49] with great success.  
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The difference between DFE and FEM is that, DFE produces one frequency dependent stiffness 

matrix per element while FEM creates frequency independent mass and stiffness matrices. 

Similar to DSM, the vibrational analysis performed by DFE, consequently involves solving a 

nonlinear Eigenvalue problem. Because of presence of complete solution of the governing 

differential equation inside the basis functions, DFE beams show very fast convergence to the 

analytical solution, making them a viable alternate to conventional FEM. 

As a result, much coarser DFE mesh can produce similar results for a problem analyzed with 

FEM. This coarser mesh can reduce the time required to solve a vibration problem by reducing 

the time required to mesh the problem domain and reducing the order of the Eigenvalue problem 

under investigation. 

 

1.3. RESEARCH MOTIVATION AND KEY OBJECTIVES 
 

As mentioned in the previous section, hybrid techniques are recent development in vibrational 

analysis, that have shown good performance and wide applicability for beam problems. These 

methods can be considered as an intermediate between analytical and numerical solutions. While 

DSM has been used for plate vibration problems recently, such an expansion has not yet been 

performed for DFE formulation. The excellent performance of DFE elements in vibrational 

analysis of beams and a lack of extension of this technique for two dimensional plates served as 

motivation for this study. 

Therefore, the main purpose of the present study is to systematically extend the DFE method to 

thin Kirchhoff plates. The goal of development of two dimensional DFE here, is to be applicable 

to plates of arbitrary shapes so that various geometries can be analyzed. The research in DFE 
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will ultimately yield a new library of elements with improved dynamic analysis performance 

which can be used as an alternative to FEM vibrational analysis. 

Just like beams, plate DFE requires obtaining the solution of the governing differential equation 

as the first step. However, because contrary to beam elements, the governing partial differential 

equation of plates produces an infinite dimensional Hilbert space as its complete solution set, 

such extension is not as straight forward.  

The key objectives of this research are summarized as: 

1. Review of plate vibrational analysis models and solution schemes 

2. Development of a DFE formulation for plate flexural vibrations 

3. Solving governing differential equation for DFE development 

4. Evaluation of plate DFE formulation using extracted solutions 

5. FEM plate development and comparison with DFE plate 

6. Extension of DFE method to arbitrary geometries 

 

1.4. THESIS ORGANIZATION 
 

In the following chapters, first a detailed derivation of Kirchhoff plate governing differential 

equation will be presented to underscore the key assumptions of the thin plate theory and 

establish relationships between loadings and deformations. 

In chapter 3 a review of FEM formulation for plate bending is presented to pave the road for the 

development of the DFE formulation. FEM formulation for plates have been developed for 

various number of nodes and DoFs but in this study a four node, 12 DoF FEM plate is developed 

for direct comparison with DFE plate. The FEM model is based on cubic Hermite functions and 
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the use of Galerkin’s method of weighted residuals, and yields constant element mass and 

stiffness matrices. 

In chapter 4, DFE plate governing differential equation is solved. The chapter begins with 

extraction of 3 different solution subsets of interest from the plate equation that satisfy a 

symmetry and continuity condition. To the author’s best knowledge, this study is one of the first 

attempts on developing 12 DoF DFE formulation for plates based on such solution subsets of the 

governing differential equation. 

Next, in chapter 5, a detailed mathematical derivation of DFE stiffness matrix formulation for 

plates is presented. The development is based on generation of dynamic matrix integrals from 

Galerkin’s weak from integral of plate equation. The frequency dependent dynamic shape 

functions are evaluated for use in the DFE integrals and yield the final frequency dependent DFE 

stiffness matrix.  

In chapter 6, The shape functions are placed in the DFE and FEM integrals and 12 DoF plate 

elements are developed for both methods. The performance of the two technique is compared in 

this chapter. 

In the last chapter concluding remarks about the performance and convergence of DFE plates are 

given, and finally comments regarding the future research direction and expandability of the 

formulation are made. 
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2. GOVERNING DIFFERENTIAL EQUATION DERIVATION 
 

In this chapter, the mathematical formulation of thin plate model is briefly reviewed. A more 

complete discussion of thin plate theory can be found in structural analysis reference books such 

as [50]. 

A thin plate is defined as a geometry, which has two dimensions significantly (at least 10 times) 

larger than a third dimension, usually called thickness. Thin plate models are used to analyze 

bending, twisting and out of plane shear loads, while retaining thickness perpendicularity; in 

other words, the lines along thickness remain parallel to each other and perpendicular to the 

middle surface of the plate. In this regard, thin plates are two dimensional analogues of Euler-

Bernoulli beams.  

The desired goal here, is to relate the deformation of the middle surface of the plate, in flexural 

direction, to the loading condition it bears. This middle surface deformation will be considered as 

representative deformation of the entire plate. To start, the internal stresses and strains must be 

defined in terms of the middle surface displacement 𝑤.  

 

 
(a) (b) 

 

Figure 1 General plate element (a) and differential segment for analysis (b) 
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Consider a layer of a plate at thickness level 𝑧 below the midplane, which is under application of 

moments and shear forces. The layer has side lengths 𝐿𝑥 and 𝐿𝑥
′  along 𝑥 direction, before and 

after deformation respectively. The axial strain along 𝑥 axis of this layer 𝜀𝑥 , is defined as: 

𝜀𝑥 =
𝑑𝑢

𝑑𝑥
=

𝐿′
𝑥 − 𝐿𝑥

𝐿𝑥
=

(𝑟𝑥 + 𝑧)𝛿𝜃 − 𝑟𝑥𝛿𝜃

𝑟𝑥𝛿𝜃
=

𝑧

𝑟𝑥
 Equation 1 

 

Here, 𝜀𝑥  is the axial strain and 𝑢 denotes axial displacements of the layer in 𝑥 direction. The term 

𝛿𝜃 represents bending angle about 𝑦 axis and 𝑟𝑥  is the radius of curvature of deformed plate in 

that direction. For thin plates, applying thickness perpendicularity assumption, geometrically 

relates this radius to flexural displacement 𝑤 as: 

1

𝑟𝑥
= −

𝜕2𝑤

𝜕𝑥2
 Equation 2 

 
 

The negative sign is present because the positive direction of radius of curvature is in negative 𝑧 

direction. 

Similarly: 

𝜀𝑦 =
𝑑𝜈

𝑑𝑥
=

𝑧

𝑟𝑦
 

 

Equation 3 

 

1

𝑟𝑦
= −

𝜕2𝑤

𝜕𝑥2
 

Equation 4 

 

where, 𝜀𝑦  and 𝜈 are axial strain and displacement of deformed plate along 𝑦 direction 

respectively. 𝑟𝑦  shows radius of curvature about 𝑥 axis. 
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Axial displacements 𝑢 and 𝜈 can now be defined from the above relations in terms of lateral 

displacement of the middle plane: 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
+ 𝑐 Equation 5 

  
 

𝜈 = −𝑧
𝜕𝑤

𝜕𝑦
+ 𝑐′ Equation 6 

 

The constants 𝑐 and 𝑐′ account for rigid body displacements. In-plane shear strain is defined as: 

𝛾 =
𝜕𝑢

𝜕𝑦
+

𝜕𝜈

𝜕𝑥
= −2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
 Equation 7 

 

For a thin plate the stresses are planar and therefore, using the constitutive law for planar stress 

condition, axial stresses can be related to axial strains as: 

𝜎𝑥 =
𝐸

1 − 𝜐2 (𝜀𝑥 + 𝜐𝜀𝑦) =
𝐸𝑧

1 − 𝜐2
(

1

𝑟𝑥
+

𝜐

𝑟𝑦
) Equation 8 

 

𝜎𝑦 =
𝐸

1 − 𝜐2 (𝜀𝑦 + 𝜐𝜀𝑥) =
𝐸

1 − 𝜐2
(

1

𝑟𝑦
+

𝜐

𝑟𝑥
) Equation 9 

 

where 𝜎𝑥  and 𝜎𝑦  are axial stresses along 𝑥 and 𝑦 directions respectively. The term 𝜐 is Poisson’s 

ratio which relates the effect of axial strain along one axis to axial strain along another axis. 𝐸 is 

the elastic modulus of the plate material and is a measure of its stiffness. Both 𝜐 and 𝐸 are 

intrinsic properties of the material.  

Stresses can now be related to the flexural displacement 𝑤 using strain definitions as: 
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𝜎𝑥 =
−𝐸𝑧

1 − 𝜐2
(
𝜕2𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝑤

𝜕𝑦2
) Equation 10 

  
 

𝜎𝑦 =
−𝐸𝑧

1 − 𝜐2
(
𝜕2𝑤

𝜕𝑦2
+ 𝜐

𝜕2𝑤

𝜕𝑥2
) Equation 11 

  
 

𝜏𝑥𝑦 = 𝐺𝛾 = −2𝐺𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦
 Equation 12 

 

To arrive at the governing differential equation of a thin plate, the relationship between the 

internal and external loads should be defined under equilibrium. Kirchhoff plates can face 

moments and forces applied normal to their plane, and in plane loadings are not included in this 

model. The external loads and internal stresses included in thin plate model, are shown in Figure 

2 in their positive directions, for an infinitesimal plate segment of length 𝛿𝑥 and width 𝛿𝑦 and 

thickness ℎ. 

 

 

Figure 2 Distribution of external loads (Left) and corresponding internal stress (right) over a infinitesimal plate segment 

 

Starting from moments at boundaries, two bending moments about 𝑥 and 𝑦 axis and a twisting 

moment can be applied to a plate. 𝑀𝑦, 𝑀𝑥 and 𝑀𝑥𝑦 represent these moments respectively 
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normalized per unit length. 𝑀𝑥 associated moment is balanced by the internal moment created by 

axial stress 𝜎𝑥 : 

𝑀𝑥𝛿𝑦 = ∫ 𝜎𝑥𝑧𝛿𝑦𝑑𝑧

ℎ
2

−
ℎ
2

= ∫ (
−𝐸𝑧2

1 − 𝜐2
(
𝜕2𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝑤

𝜕𝑦2
))𝛿𝑦𝑑𝑧

ℎ
2

−
ℎ
2

 Equation 13 

  
 

𝑀𝑥 =
−𝐸ℎ3

12(1 − 𝜐2)
(
𝜕2𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝑤

𝜕𝑦2
) Equation 14 

 

Similarly, 𝑀𝑦 is counteracted by internal moment created by axial stress 𝜎𝑦: 

𝑀𝑦 =
−𝐸ℎ3

12(1 − 𝜐2)
(
𝜕2𝑤

𝜕𝑦2
+ 𝜐

𝜕2𝑤

𝜕𝑥2
) Equation 15 

  
 

And the twisting moment of 𝑀𝑥𝑦 is balanced by internal shear stress 𝜏𝑥𝑦: 

𝑀𝑥𝑦𝛿𝑦 = ∫ 𝜏𝑥𝑦𝑧𝛿𝑦𝑑𝑧

ℎ
2

−
ℎ
2

= − ∫ 2𝐺𝑧2
𝜕2𝑤

𝜕𝑥𝜕𝑦
𝛿𝑦𝑑𝑧

ℎ
2

−
ℎ
2

= −
𝐺ℎ3

6

𝜕2𝑤

𝜕𝑥𝜕𝑦
𝛿𝑦 

 

Equation 16 

where 𝐺 is shear modulus, used in defining the twisting moment. For linearly elastic material the 

shear modulus is a measure of torsional stiffness, and is related to the elastic modulus by the 

relation 𝐺 =
𝐸

2(1+𝜐)
=

𝐸

2(1−𝜐2)
(1 − 𝜐). Therefore Equation 16 can be rewritten as: 

𝑀𝑥𝑦 = −
𝐸ℎ3

12(1 − 𝜐2)
(1 − 𝜐)

𝜕2𝑤

𝜕𝑥𝜕𝑦
 Equation 17 

 

Moving to the 𝑧 direction forces next, a plate can face shear loads along its sides. The terms 𝑄𝑥 

and 𝑄𝑦 are called shear flows, and are defined as shear force per unit length, applied to a surface 
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perpendicular to 𝑥 and 𝑦 axis respectively. Application of shear force to plates produces internal 

shear stresses 𝜏𝑥𝑧 and 𝜏𝑦𝑧  in surfaces normal to 𝑥 and 𝑦 axis. Therefore, these shear flow and 

shear stress terms can be related as: 

𝑄𝑥 = ∫ 𝜏𝑥𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 Equation 18 

  
 

𝑄𝑦 = ∫ 𝜏𝑦𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 Equation 19 

 

Having related the internal stress to external loads, the balance of the external loads can lead to 

the governing differential equation of the plate in terms of the internal stresses. To do so, first, 

external forces and moments are balanced under equilibrium, over the infinitesimal plate 

segment of Figure 2, to achieve the relationship between external loads. The internal stresses can 

then replace the external loads in this relationship, using the equations previously derived.  

Force equilibrium equation in 𝑧-direction can be written as: 

∑ 𝐹𝑧 = 𝑚𝑎𝑧 Equation 20 

 

where 𝐹𝑧  represents any force applied to plate segment in vertical 𝑧 direction, 𝑚 is the mass of 

the infinitesimal segment and 𝑎𝑧  is the vertical acceleration. By substituting the components of 

loads contributing to this force summation, following relation is obtained: 

(𝑄𝑦 +
𝜕𝑄𝑦

𝜕𝑦
𝛿𝑦)𝛿𝑥 − 𝑄𝑦𝛿𝑥 + (𝑄𝑥 +

𝜕𝑄𝑥

𝜕𝑥
𝛿𝑥)𝛿𝑦 − 𝑄𝑥𝛿𝑦 + 𝑞𝛿𝑥𝛿𝑦 

= 𝜌ℎ𝛿𝑥𝛿𝑦
𝜕2𝑤

𝜕𝑡2
 Equation 21 
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where 𝜌 is the volumetric density of the plate material and 𝑞 is external pressure applied to the 

plate. Upon simplification Equation 21can be written as: 

𝜕𝑄𝑦

𝜕𝑦
+

𝜕𝑄𝑥

𝜕𝑥
+ 𝑞 = 𝜌ℎ

𝜕2𝑤

𝜕𝑡2
 Equation 22 

 

Similarly, taking equilibrium of moment about positive 𝑥  axis and performing the balance at 

center of the plate segment gives: 

− (𝑀𝑥𝑦 +
𝜕𝑀𝑥𝑦

𝜕𝑥
𝛿𝑥)𝛿𝑦 + 𝑀𝑥𝑦𝛿𝑦 + (𝑄𝑦𝛿𝑥)

𝛿𝑦

2
 

+ (𝑄𝑦𝛿𝑥 +
𝜕𝑄𝑦

𝜕𝑦
𝛿𝑦𝛿𝑥) 

𝛿𝑦

2
+ 𝑀𝑦𝛿𝑥 − (𝑀𝑦 +

𝜕𝑀𝑦

𝜕𝑦
𝛿𝑦)𝛿𝑥 = 0 

Equation 23 

 
 

By balancing moments about 𝑦 axis next, and considering that for thin plates, the twisting 

moment is identical in both direction (𝑀𝑥𝑦 = 𝑀𝑦𝑥) following relations are obtained after 

simplification: 

−
𝜕𝑀𝑥𝑦

𝜕𝑥
−

𝜕𝑀𝑦

𝜕𝑦
+ 𝑄𝑦 = 0  

 

Equation 24 

−
𝜕𝑀𝑥𝑦

𝜕𝑦
−

𝜕𝑀𝑥

𝜕𝑥
+ 𝑄𝑥 = 0  Equation 25 

 

Substituting these two equations in force balance relation (Equation 22) results in: 

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦

𝜕𝑦2
+ 𝑞 = 𝜌ℎ

𝜕2𝑤

𝜕𝑡2
 Equation 26 

 

Now, by replacing the external moment terms with their corresponding internal stress relations, 

the final form of our governing differential equation is reached: 
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− (
𝐸𝑡3

12(1 − 𝜐2)
)(

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) + 𝑞 = 𝜌ℎ

𝜕2𝑤

𝜕𝑡2
 Equation 27 

 

For a free vibration analysis, the external applied forces are zero the term 𝑞 can be eliminated: 

(
𝐸𝑡3

12(1 − 𝜐2)
)(

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) + 𝜌ℎ

𝜕2𝑤

𝜕𝑡2
= 0 Equation 28 

 

For a harmonic vibration, one can assume: 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤̅(𝑥, 𝑦)𝑒𝑖𝜔𝑡 Equation 29 

 

where 𝑤̅(𝑥, 𝑦) represents the amplitude of vibration at any plate location (𝑥, 𝑦). This results in: 

𝐷 (
𝜕4𝑤̅

𝜕𝑥4
+ 2

𝜕4𝑤̅

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤̅

𝜕𝑦4
) − 𝜔2𝜌ℎ𝑤̅ = 0 Equation 30 

 

Here, 𝐷 = (
𝐸ℎ3

12(1−𝜐2)
) is the flexural stiffness of the plate.  

Equation 30 is a homogenous linear partial differential equation which governs the behaviour of 

a thin plate’s lateral displacement, 𝑤, under harmonic vibrations with no external loadings 

applied. This model of analysis of plate is known as Kirchhoff plate formulation [50]. For the 

sake of simplicity, the bar sign on 𝑤̅ will be dropped in further development and 𝑤 will represent 

𝑤̅ as vibration amplitude. 
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3. FINITE ELEMENT DEVELOPMENT 
 

As mentioned previously in the INTRODUCTION chapter, one of the most famous numerical 

methods used for solving Kirchhoff plate problem is the Finite Element Method (FEM). In FEM 

analyses, the problem domain is divided into smaller elements. A number of elements are used to 

cover the entire geometry of the original problem, creating a mesh. Element are assumed to be 

characterised by a collection of nodes. The element Degrees of Freedom (DoFs) represent the 

displacements/deformation of the plate at element nodes.  

Finite element plates developed for vibrational analysis are an extension to FEM plates used for 

static problems. For static elements, the governing differential equation developed in last chapter 

is written as: 

𝐷 (
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) = 𝑞 Equation 31 

 

While this equation is a partial differential equation in both plane coordinates 𝑥 and 𝑦, and 

generally has infinite number of solutions, FEM formulations use polynomials of finite degrees 

as their assumed solution functions. This approach provides simplicity in numerical evaluation. 

The polynomials used by FEM for defining the displacement function satisfy the governing 

differential equations in static form, and are a subset of complete solution of Equation 31.  

Since the displacement polynomial does not include the complete solution, element results are 

not exact for the plate problems. However, because the problem domain is subdivided in 

elements, the error is bound to a small section of the domain. By refining the mesh and making 

the elements smaller, the total error is reduced and the FEM results converge to the analytical 

solution.  
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Adini and Clough [51] used a 12-degree polynomial for development of a four-node plate 

element with 12 DoFs. This plate element is briefly discussed here for direct comparison with the 

12 DoF dynamic finite element developed and presented later in this thesis. 

Consider the displacement field to be defined by the 12-term polynomial below: 

𝑤(𝑥, 𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥
2 + 𝑎4𝑥𝑦 + 𝑎5𝑦

2 + 𝑎6𝑥
3 + 𝑎7𝑥

2𝑦 

+𝑎8𝑥𝑦2 + 𝑎9𝑦
3 + 𝑎10𝑥

3𝑦 + 𝑎11𝑦
3𝑥 = [𝑋][𝑎] 

 

Equation 32 

Row vector [𝑋] contains the 𝑋𝑖  polynomial terms and column vector [𝑎] contains 𝑎𝑖  constants. 

These polynomials are called basis functions. 

The perpendicularity condition of thin Kirchhoff model, equates the slopes of plates to direct 

differentials of the displacement fields 𝑤, in 𝑥 and 𝑦 directions. Therefore, by evaluating basis 

function vector, [𝑋], and its derivative on the element nodal coordinates, a unique relationship 

can be obtained that relates constant matrix [𝑎] to the element nodal displacements and slopes. 

Thus, for the12 DoFs plate element, one can write: 

[𝑤12] = [𝑃12𝑥12][𝑎] Equation 33 

 

where [w12] is the column containing values of displacements and slopes 𝑤, 
𝜕𝑤

𝜕𝑠
 and 

𝜕𝑤

𝜕𝑡
 at all four 

element nodes, establishing the 12 DoFs of the element. The matrix [𝑃12𝑥12] is obtained by 

evaluating the polynomial terms in Equation 32 and their appropriate derivatives, at 

corresponding nodal coordinates. For the square element of length 2 shown in Figure 3 this 

evaluation yields: 
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Figure 3 Plate element used for development of finite element 

 

[𝑃12𝑥12] = 

[
 
 
 
 
 
 
 
 
 
 
 
𝑋1(−1, −1) 𝑋2(−1,−1) 𝑋3(−1, −1)

𝜕𝑋1(−1,−1)

𝜕𝑥

𝜕𝑋2(−1, −1)

𝜕𝑥

𝜕𝑋3(−1,−1)

𝜕𝑥
𝜕𝑋1(−1,−1)

𝜕𝑦

𝜕𝑋2(−1, −1)

𝜕𝑦

𝜕𝑋3(−1,−1)

𝜕𝑦

⋯

⋮ ⋱
𝑋1(−1,1) 𝑋2(−1,1) 𝑋3(−1,1)

𝜕𝑋1(−1,1)

𝜕𝑥

𝜕𝑋2(−1,1)

𝜕𝑥

𝜕𝑋3(−1,1)

𝜕𝑥
𝜕𝑋1(−1,1)

𝜕𝑦

𝜕𝑋2(−1,1)

𝜕𝑦

𝜕𝑋3(−1,1)

𝜕𝑦

⋯

 

𝑋10(−1,−1) 𝑋11(−1,−1) 𝑋12(−1,−1)

𝜕𝑋10(−1, −1)

𝜕𝑥

𝜕𝑋11(−1, −1)

𝜕𝑥

𝜕𝑋12(−1, −1)

𝜕𝑥
𝜕𝑋10(−1, −1)

𝜕𝑦

𝜕𝑋11(−1, −1)

𝜕𝑦

𝜕𝑋12(−1, −1)

𝜕𝑦
⋮

𝑋10(−1,1) 𝑋11(−1,1) 𝑋12(−1,1)

𝜕𝑋10(−1,1)

𝜕𝑥

𝜕𝑋11(−1,1)

𝜕𝑥

𝜕𝑋12(−1,1)

𝜕𝑥
𝜕𝑋10(−1,1)

𝜕𝑦

𝜕𝑋11(−1,1)

𝜕𝑦

𝜕𝑋12(−1,1)

𝜕𝑦 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Equation 34 

Therefore, the vector [a] can be found as: 

[𝑎] = [𝑃12𝑥12]
−1[𝑤12] Equation 35 
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Considering this relation, Equation 32 can be rewritten as: 

𝑤(𝑥, 𝑦) = [𝑋][𝑃12𝑥12]
−1[𝑤12] = [𝑁(𝑥, 𝑦)][𝑤12] Equation 36 

 

Vector [𝑁(𝑥, 𝑦)] contains the element shape functions which relate displacement function to 

nodal slopes and displacements. Use of polynomial basis functions for displacement field 

generates Hermite type shape functions. These shape functions are compared with their DFE 

counterparts in APPENDIX A. 

Using the Hermitian shape functions for flexural displacement, 𝑤, to derive load-displacement 

relationship over the element, generates stiffness matrix for static structural problems. This 

symmetric matrix distributes the stiffness property of the element over its nodal degrees of 

freedom.  

For vibrational analysis, the mass of the element must also be distributed over its DoFs. In 

consistent mass matrix approach, the distribution of mass is assumed to takes the same form as 

that of the static stiffness, generating the consistent mass matrix. The mass matrix is a measure of 

inertia distribution over element DoFs. Vibrational analysis is performed by solving a linear 

Eigenvalue problem obtained from mass and stiffness matrices.  

Development of finite element stiffness matrices can be done in two ways: either by deriving the 

relationship between assumed displacement function and force vectors using constitutive law, or 

by application of variational formulations. Both approach yield the same final stiffness matrix.  

Galerkin’s method is used for finite element development in this chapter, because the 

methodology stablished here, will serve as a baseline for dynamic finite plate element developed 
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in Chapter 5. Development of stiffness plate stiffness matrix using constitutive law can be found 

in finite element references such as [52]. 

∯(𝐷 (
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) − 𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 = 0 

Equation 37 

 

Here, 𝛿𝑤 is weighting function in residual minimization scheme. Since Galerkin’s method 

considers weighting function as identical to the solution function, 𝛿𝑤 can also be interpreted as 

the virtual displacement consistent with element boundary conditions. 

Equation 37 cannot symmetrically describe stiffness for FEM plates, and cannot be used directly. 

Therefore, further modification of this equation is required. 

To do so, two-dimensional Green’s theorem for area integrals is applied. This theorem acts in a 

similar fashion to integration by parts for line integrals [53] by swapping the order of derivation 

between integrands. Green’s theorem is reviewed here for the sake of convenience as it will be 

used extensively in both FEM and DFE formulations: 

For any function 𝑇(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑖 + 𝐵(𝑥, 𝑦)𝑗 integrated normal to and over a closed boundary 

the following relations hold true [54]: 

∮(𝑇.𝑛)𝑑𝑠 = ∯(𝛻. 𝑇)𝑑𝐴 Equation 38 

 

∮((𝐴𝑖 + 𝐵𝑗). 𝑛)𝑑𝑠 = ∮(𝐴𝑛𝑦 − 𝐵𝑛𝑥)𝑑𝑠 = ∮𝐴𝑑𝑦 − 𝐵𝑑𝑥 

= ∯(𝛻. (𝐴𝑖 + 𝐵𝑗))𝑑𝐴 = ∯(
𝜕𝐴

𝜕𝑥
+

𝜕𝐵

𝜕𝑦
)𝑑𝐴 

Equation 39 
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where 𝑛 is the unit normal vector to the boundary and 𝑑𝑠 is the differential length along the 

boundary. The line integrals are performed in counter clockwise positive sense in this theorem.  

Introducing Equation 26 as an alternative form of plate governing differential equation, in the 

weak solution integral of Equation 37, will allow the use of compatibility conditions in 

manipulating the Galerkin’s residual integral by Green’s theorem. 

∯(
𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦

𝜕𝑦2
+ 𝜔2𝜌ℎ𝑤) 𝛿𝑤𝑑𝐴 

= ∯((
𝜕2𝑀𝑥

𝜕𝑥2
+

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
) + (

𝜕2𝑀𝑦

𝜕𝑦2
+

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
) + 𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 = 0 

Equation 40 

 

Using Green’s theorem on right hand terms of Equation 40 gives: 

∮(
𝜕𝑀𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
)𝛿𝑤𝑛𝑦  𝑑𝑠 

= ∯(
𝜕2𝑀𝑥

𝜕𝑥2
+

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
)𝛿𝑤𝑑𝐴 + ∯(

𝜕𝑀𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
)

𝜕𝛿𝑤

𝜕𝑥
𝑑𝐴 

Equation 41 

 

− ∮(
𝜕𝑀𝑦

𝜕𝑦
+

𝜕𝑀𝑥𝑦

𝜕𝑥
)𝛿𝑤𝑛𝑥𝑑𝑠 

= ∯(
𝜕2𝑀𝑦

𝜕𝑦2
+

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
)𝛿𝑤𝑑𝐴 + ∯(

𝜕𝑀𝑦

𝜕𝑦
+

𝜕𝑀𝑥𝑦

𝜕𝑥
)

𝜕𝛿𝑤

𝜕𝑦
𝑑𝐴 

Equation 42 

 

Substituting similar terms from Equation 41and Equation 42 in Equation 40 results in: 
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∯(
𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦

𝜕𝑦2
+ 𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 

= ∮(
𝜕𝑀𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
)𝛿𝑤𝑛𝑦  𝑑𝑠 − ∯(

𝜕𝑀𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
)

𝜕𝛿𝑤

𝜕𝑥
𝑑𝐴 

−∮(
𝜕𝑀𝑦

𝜕𝑦
+

𝜕𝑀𝑥𝑦

𝜕𝑥
)𝛿𝑤𝑛𝑥  𝑑𝑠 − ∯(

𝜕𝑀𝑦

𝜕𝑦
+

𝜕𝑀𝑥𝑦

𝜕𝑥
)

𝜕𝛿𝑤

𝜕𝑦
𝑑𝐴 

+∯(𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 
Equation 43 

 

Comparing Equation 43 with shear flow definitions developed previously for thin plates 

(Equation 24 and Equation 25) gives: 

∯(
𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦

𝜕𝑦2
+ 𝜔2𝜌ℎ𝑤) 𝛿𝑤𝑑𝐴 

= ∮𝑄𝑥𝛿𝑤𝑛𝑦  𝑑𝑠 − ∮𝑄𝑦𝛿𝑤𝑛𝑥  𝑑𝑠 − ∯(
𝜕𝑀𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
)

𝜕𝛿𝑤

𝜕𝑥
𝑑𝐴 

− ∯(
𝜕𝑀𝑦

𝜕𝑦
+

𝜕𝑀𝑥𝑦

𝜕𝑥
)

𝜕𝛿𝑤

𝜕𝑦
𝑑𝐴 + ∯(𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 

Equation 44 

 

The terms ∫𝑄𝑥𝛿𝑤𝑛𝑦  𝑑𝑠 and ∫𝑄𝑦𝛿𝑤𝑛𝑥  𝑑𝑠, represent virtual work done by shear forces 

corresponding to shear flows 𝑄𝑥 and 𝑄𝑦, through virtual displacement 𝛿𝑤, along the exterior 

edges of the plate boundaries. For a free vibrating plate, the boundaries are either clamped, 

pinned or fixed. In all of these conditions, a plate has either no shear force or, in order to be 

compliant with boundary conditions, the virtual displacement 𝛿𝑤 must be zero. Hence these 

terms will vanish from the equation. 

−∯(
𝜕𝑀𝑥

𝜕𝑥
)
𝜕𝛿𝑤

𝜕𝑥
𝑑𝐴 − ∯(

𝜕𝑀𝑥𝑦

𝜕𝑦
)
𝜕𝛿𝑤

𝜕𝑥
𝑑𝐴 − ∯(

𝜕𝑀𝑦

𝜕𝑦
)

𝜕𝛿𝑤

𝜕𝑦
𝑑𝐴 

−∯(
𝜕𝑀𝑥𝑦

𝜕𝑥
)

𝜕𝛿𝑤

𝜕𝑦
𝑑𝐴 + ∯(𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 = 0 

Equation 45 
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Now again invoking Green’s theorem, results: 

−∮(𝑀𝑥)
𝜕𝛿𝑤

𝜕𝑥
𝑛𝑦  𝑑𝑠 = − ∯(

𝜕𝑀𝑥

𝜕𝑥
)
𝜕𝛿𝑤

𝜕𝑥
𝑑𝐴 − ∯(𝑀𝑥)

𝜕2𝛿𝑤

𝜕𝑥2
𝑑𝐴 Equation 46 

 

∮(𝑀𝑦)
𝜕𝛿𝑤

𝜕𝑥
𝑛𝑥  𝑑𝑠 = −∯(

𝜕𝑀𝑦

𝜕𝑦
)

𝜕𝛿𝑤

𝜕𝑦
𝑑𝐴 − ∯(𝑀𝑦)

𝜕2𝛿𝑤

𝜕𝑦2
𝑑𝐴 Equation 47 

 

∮(𝑀𝑥𝑦)
𝜕𝛿𝑤

𝜕𝑥
𝑛𝑥  𝑑𝑠 = − ∯(

𝜕𝑀𝑥𝑦

𝜕𝑦
)

𝜕𝛿𝑤

𝜕𝑥
𝑑𝐴 − ∯(𝑀𝑥𝑦)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 Equation 48 

 

− ∮(𝑀𝑥𝑦)
𝜕𝛿𝑤

𝜕𝑦
𝑛𝑦  𝑑𝑠 = −∯(

𝜕𝑀𝑥𝑦

𝜕𝑥
)

𝜕𝛿𝑤

𝜕𝑦
𝑑𝐴 

− ∯(𝑀𝑥𝑦)
𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 

Equation 49 

 

Applying Equation 46 through 49 to Equation 45 results in: 

∯(𝑀𝑥)
𝜕2𝛿𝑤

𝜕𝑥2
𝑑𝐴 − ∮(𝑀𝑥)

𝜕𝛿𝑤

𝜕𝑥
𝑛𝑦  𝑑𝑠 + ∮(𝑀𝑥𝑦)

𝜕𝛿𝑤

𝜕𝑥
𝑛𝑥  𝑑𝑠 

+ ∯(𝑀𝑥𝑦)
𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 + ∮(𝑀𝑦)

𝜕𝛿𝑤

𝜕𝑥
𝑛𝑥  𝑑𝑠 + ∯(𝑀𝑦)

𝜕2𝛿𝑤

𝜕𝑦2
𝑑𝐴 

− ∮(𝑀𝑥𝑦)
𝜕𝛿𝑤

𝜕𝑦
𝑛𝑦  𝑑𝑠 + ∯(𝑀𝑥𝑦)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 + ∯(𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 = 0 

Equation 50 

 

Here the terms ∮(Mx)
𝜕𝛿𝑤

𝜕𝑥
𝑛𝑦  𝑑𝑠, ∮(Mxy)

𝜕𝛿𝑤

𝜕𝑥
𝑛𝑥  𝑑𝑠, ∮(My)

𝜕𝛿𝑤

𝜕𝑥
𝑛𝑥  𝑑𝑠 and ∮(Mxy)

𝜕𝛿𝑤

𝜕𝑦
𝑛𝑦  𝑑𝑠 

show the virtual work done by moments corresponding to 𝑀𝑥, 𝑀𝑦 and 𝑀𝑥𝑦 through virtual 

slopes 
𝜕 𝛿𝑤

𝜕𝑥
 and 

𝜕 𝛿𝑤

𝜕𝑦
 at the plate boundaries. Once again, for a freely vibrating thin plate, at any 

boundary condition, either the moments or the virtual slopes are zero, and hence their product 

yield zero virtual work: 
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   ∯((𝑀𝑥)
𝜕2𝛿𝑤

𝜕𝑥2
+ 2(𝑀𝑥𝑦)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
+ (𝑀𝑦)

𝜕2𝛿𝑤

𝜕𝑦2
)𝑑𝐴 

+ ∯(𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴     = 0 
Equation 51 

 

Substituting definitions of 𝑀𝑥, 𝑀𝑦 and 𝑀𝑥𝑦 from chapter 2 yields:  

𝐷 ∯(
𝜕2𝑤

𝜕𝑥2
)

𝜕2𝛿𝑤

𝜕𝑥2
+ (𝜐

𝜕2𝑤

𝜕𝑦2
)

𝜕2𝛿𝑤

𝜕𝑥2
+ (

𝜕2𝑤

𝜕𝑦2
)

𝜕2𝛿𝑤

𝜕𝑦2
 

+(𝜐
𝜕2𝑤

𝜕𝑥2
)

𝜕2𝛿𝑤

𝜕𝑦2
+2((1 − 𝜐)

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
)𝑑𝐴 

−∯(𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 = 0 
Equation 52 

 

By using Hermitian distribution of Equation 36 for the displacement function 𝑤 and the virtual 

displacement 𝛿𝑤, the finite element formulation for 12 DoF square plate of Figure 3 is obtained. 

∫ ∫ 𝐷 ((
𝜕2[𝑁𝑇]

𝜕𝑥2
)

𝜕2[𝑁]

𝜕𝑥2
+ (𝜐

𝜕2[𝑁𝑇]

𝜕𝑦2
)

𝜕2[𝑁]

𝜕𝑥2
+ (

𝜕2[𝑁𝑇]

𝜕𝑦2
)

𝜕2[𝑁]

𝜕𝑦2

1

−1

1

−1

 

+ (𝜐
𝜕2[𝑁𝑇]

𝜕𝑥2
)

𝜕2[𝑁]

𝜕𝑦2
+2((1 − 𝜐)

𝜕2[𝑁𝑇]

𝜕𝑥𝜕𝑦
)

𝜕2[𝑁]

𝜕𝑥𝜕𝑦
) 𝑑𝑥𝑑𝑦 

−𝜔2 ∫ ∫ (𝜌ℎ[𝑁𝑇])[𝑁]𝑑𝑥𝑑𝑦
1

−1

1

−1

= 0 
Equation 53 

 

The first area integral results in the formation of the stiffness matrix [𝐾] and the second area 

integral generates mass matrix [𝑚]. The terms 𝑁 and 𝑁𝑇 shows the shape function matrix of 12-

DoF FEM plate and its transpose. Notice that the stiffness matrix thus obtained is by definition 

symmetric. By confining the stiffness and mass matrix on DoFs restricted by boundary 

conditions, different vibrational problems can be solved with application of Eigenvalue analysis. 
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4. THIN PLATE DYNAMIC SOLUTION   
 

The DSM plate developed by Casimira et al. [45], involved dynamic solution of the plate 

problem. Since the researchers incorporated complete solution in their formulation, the plate 

element required solving series mathematics. Although their method generated accurate solution, 

the results were case specific.  

While similar development of the DFE matrices, incorporating infinite series solutions, can 

generate very accurate results, it restricts the applicability of the formulation to specific 

geometries and will be computationally expensive. Instead, in this study, subsets of the solution 

space have been investigated to produce a dynamic finite plate element comparable to finite 

element plates.  

The aim here is to study the performance of dynamic finite elements having finite size, 

developed from plate vibration solution subspace. As the complete solution space is not 

incorporated in element formulation, the DFE is expected not to have exact solution, and to 

rather converge to analytical results. 

The finite element formulation developed in the last chapter incorporates polynomial basis 

functions assumption in the modeling the lateral displacement field 𝑤. In this chapter, instead of 

the classic FEM polynomials, dynamic solutions are proposed for modelling flexural 

displacement 𝑤. These solutions will satisfy the Kirchhoff plate model for harmonic oscillation 

case (Equation 31) including the dynamic force term. Therefore, these functions in addition to 

dependency on plate coordinates, will also depend on vibration frequency 𝜔. 
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Using the property of infinite dimensionality of the Hilbert space generated by solution of the 

partial differential equations, one can generate multiple solutions that satisfy the governing 

differential equation of the plate. However, to develop a 12 DoF vibrational plate element for 

comparison with the FEM plate developed in last chapter, 12 linearly independent vectors of the 

solution space are required.  

Although by using Fourier series solutions available for partial differential equations such 

solutions can be obtained, in this study, separation of variables along with ordinary differential 

equation solution methods were applied instead. The reason for this approach was to obtain 

general solution sets based on specific physical requirements, such as appropriate distribution of 

dynamic force  over element curvatures and dynamic definitions of internal moments and loads 

that could not be achieved by FEM formulation. 

 Besides physical restrictions, only solution sets that satisfy following two conditions are 

considered for plate DFE developed in this research: 

1. Are symmetric with respect to 𝑥 and 𝑦 

2. Are 𝐶∞ continuous  

 

To obtain such solutions, invoking separation of variable assumes: 

𝑤 = 𝒢(𝑥)𝛨(𝑦) Equation 54 

 

Substituting Equation 54 in Equation 31 yields: 

(𝛨(𝑦)
𝜕4𝒢(𝑥)

𝜕𝑥4
+ 2

𝜕2𝒢(𝑥)𝜕2𝛨(𝑦)

𝜕𝑥2𝜕𝑦2
+ 𝒢(𝑥)

𝜕4𝛨(𝑦)

𝜕𝑦4
) =

𝜌ℎ𝜔2

𝐷
𝒢(𝑥)𝛨(𝑦) 

 Equation 55 
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In following subsections, three possible solution sets are presented, and their physical 

interpretation and applicability to the development of dynamic finite element formulation as 

basis functions is discussed. 

 

4.1. SOLUTION SET 1  
 

A possible solution set can be obtained by distributing the term 
𝜌ℎ𝜔2

𝐷
 evenly between each term 

on the left side of Equation 55 which leads to formation ordinary differential equations. Please 

note that these terms represent the partial derivatives 
𝜕2𝑀𝑥

𝜕𝑥2 , 
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
 and 

𝜕2𝑀𝑦

𝜕𝑦2  (see Equation 26 

through 30). Since the term 
𝜌ℎ𝜔2

𝐷
 can be interpreted as dynamic force using D’Alembert 

principle, this distribution assumes equal share of the dynamic load over bending movement 𝑀𝑥, 

𝑀𝑦 and twisting moment 𝑀𝑥𝑦 derivatives. 

𝛨(𝑦)
𝜕4𝒢(𝑥)

𝜕𝑥4
=

𝜕2𝒢(𝑥)𝜕2𝛨(𝑦)

𝜕𝑥2𝜕𝑦2
= 𝒢(𝑥)

𝜕4𝛨(𝑦)

𝜕𝑦4
=

𝜌ℎ𝜔2

𝐷 𝒢(𝑥)𝛨(𝑦)

4
 

Equation 56 

 

The equalities 𝛨(𝑦)
𝜕4𝒢(𝑥)

𝜕𝑥4 =
𝜌ℎ𝜔2

𝐷
𝒢(𝑥)𝛨(𝑦)

4
 and 𝒢(𝑥)

𝜕4𝛨(𝑦)

𝜕𝑦4 =
𝜌ℎ𝜔2

𝐷
𝒢(𝑥)𝛨(𝑦)

4
, from the above 

equation, can be solved as ordinary differential equations in 𝑥 and 𝑦 resulting in Equation 57 and 

Equation 58. 

𝜕4𝒢(𝑥)

𝜕𝑥4
=

𝜌ℎ𝜔2

𝐷 𝒢(𝑥)

4
 

Equation 57 
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𝜕4𝛨(𝑦)

𝜕𝑦4
=

𝜌ℎ𝜔2

𝐷 𝛨(𝑦)

4
 

Equation 58 

 

The solutions to these equations are of the form: 

𝛨(𝑦) = 𝑒
±(

𝜌ℎ𝜔2

𝐷
4

)

1
4

𝑦

, and 𝑒
±𝑖(

𝜌ℎ𝜔2

𝐷
4

)

1
4

𝑦

 

Equation 59 

 

𝒢(𝑥) = 𝑒

±(

𝜌ℎ𝜔2

𝐷
4

)

1
4

𝑥

, and 𝑒

±𝑖(

𝜌ℎ𝜔2

𝐷
4

)

1
4

𝑥

 

Equation 60 

 

Equation 59 and Equation 60 can be combined to produce 16 different solution functions for 𝑤. 

However, the equality 
𝜕2𝒢(𝑥)𝜕2𝛨(𝑦)

𝜕𝑥2𝜕𝑦2 =
𝜌ℎ𝜔2

𝐷
𝒢(𝑥)𝛨(𝑦)

4
, in Equation 56 restricts which combinations 

can be used as solutions for the plate equation. This term is satisfied when solutions with only 

real or imaginary exponent of 𝒢(𝑥) and 𝛨(𝑦) are combined. Combinations such as 𝑤(𝑥, 𝑦) =

(

 
 

𝑒
±(

𝜌ℎ𝜔2

𝐷
4

)

1
4

𝑥

)

 
 

(

 
 

𝑒
±𝑖(

𝜌ℎ𝜔2

𝐷
4

)

1
4

𝑦

)

 
 

 where real and imaginary exponents of 𝒢(𝑥) and 𝛨(𝑦) are used, 

do not satisfy this term and therefore do not satisfy the plate equation. As a result, this method 

generates only 8 solutions which are not sufficient for modelling of a plate element. 
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4.2. SOLUTION SET 2  
 

Another set of solutions to Equation 56 can be found when the partial differential equation is 

directly reduced to one variable ordinary differential equation. For instance, consider the 

following reduction: 

𝜕4𝛨(𝑦)

𝜕𝑦4
=

𝜌ℎ𝜔2

𝐷
𝛨(𝑦) Equation 61 

 

The generic solution to such equation is of the form 𝛨(𝑦) = 𝑒𝑚𝑦  and can be found with ease. 

The viable 𝒢(𝑥) functions can be determined through the restrictions that made the reduction of 

Equation 56 to Equation 61 possible in the first place: 

𝛨(𝑦)
𝜕4𝒢(𝑥)

𝜕𝑥4
+ 2

𝜕2𝒢(𝑥)𝜕2𝛨(𝑦)

𝜕𝑥2𝜕𝑦2
= 0 Equation 62 

 

Equation 62 can be satisfied directly if each of the terms involved becomes zero for all values of 

𝑥. Hence: 

𝜕4𝒢(𝑥)

𝜕𝑥4
=

𝜕2𝒢(𝑥)

𝜕𝑥2
= 0 Equation 63 

 

Equation 63 is an ordinary differential equation in variable 𝑥 and is satisfied by linear functions 

of 𝑥. Therefore, the displacement function can be written as: 

𝑤(𝑥, 𝑦) = (𝑎 + 𝑏𝑥)(𝑒
±(

𝜌ℎ𝜔2

𝐷
)

1
4
𝑦
), and (𝑎 + 𝑏𝑥)(𝑒

±𝑖(
𝜌ℎ𝜔2

𝐷
)

1
4
𝑦
) Equation 64 
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In the development of Equation 64, the dynamic force was devoted to only 𝑦 direction derivative 

and therefore to radius of curvature 𝑟𝑦 . The linear function 𝒢(𝑥) is nullified in differentiation of 

order two and higher. Therefore, the curvature 𝑟𝑥   (Equation 2) receives no share of the dynamic 

load for these solutions and cannot be captured. Hence this solution set reduces the plate 

behaviour to a one dimension beam like model. 

The same approach can be applied to generate a counterpart for Equation 64 that is mirrored 

around the line 𝑦 = 𝑥. 

𝑤(𝑥, 𝑦) = (𝑐 + 𝑑𝑦) (𝑒
±(

𝜌ℎ𝜔2

𝐷
)

1
4
𝑥
), and (𝑐 + 𝑑𝑦)(𝑒

±𝑖(
𝜌ℎ𝜔2

𝐷
)

1
4
𝑥
) Equation 65 

 

Similar to Equation 64, here the curvature 𝑟𝑦   cannot be captured. The pair of these two solution 

sets is both 𝐶∞ continuous and symmetric with respect to 𝑥 and 𝑦. 

Equation 64 and Equation 65 generate 16 sets of independent solutions for the governing 

differential equation (Equation 30) :  

(𝑒
(
𝜌ℎ𝜔2

𝐷
)
±

1
4
𝑦
) , (𝑒

(
𝜌ℎ𝜔2

𝐷
)
±𝑖

1
4
𝑦
) , (𝑥)(𝑒

(
𝜌ℎ𝜔2

𝐷
)
±

1
4
𝑦
) , (𝑥) (𝑒

(
𝜌ℎ𝜔2

𝐷
)
±𝑖

1
4
𝑦
) , 

(𝑒
(
𝜌ℎ𝜔2

𝐷
)

1
±4

𝑥
) , (𝑒

(
𝜌ℎ𝜔2

𝐷
)
±𝑖

1
4
𝑥
) , (𝑦)(𝑒

(
𝜌ℎ𝜔2

𝐷
)
±

1
4
𝑥
) , (𝑦)(𝑒

(
𝜌ℎ𝜔2

𝐷
)
±𝑖

1
4
𝑥
) 

Equation 66 

 

The solutions obtained here is similar to basis functions used for development of the beam 

dynamic finite element formulation and are not able to fully model plate specific behaviour 
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related to coupling of 𝑥 and 𝑦 directions. These governing differential equationsolutions can be 

written as: 

𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) , 𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) , 𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) , 𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) , 𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥) , 𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦) , 

𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥) , 𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦) , 𝑦 𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) , 𝑥 𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) , 𝑦 𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) , 

𝑥 𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) , 𝑦 𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥) , 𝑥 𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦) , 𝑦 𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥) , 𝑥 𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦) 

 

 

 

Equation 67 

 

where 𝛾𝑥𝑦 = (
𝜌ℎ𝜔2

𝐷
)

1

4
. 

 

4.3. SOLUTION SET 3 
 

Another way of satisfying Equation 62 is by finding solutions that make the summation of the 

terms equal to zero. Assuming  𝒢(𝑥) = 𝑒𝑛𝑥  gives: 

𝑛4 + 2𝑛2𝑚2 = 0 Equation 68 

 

Therefore, for non-trivial solution, one gets 𝑛2 = −2𝑚2. By performing similar approach 

mirrored about 𝑥 and 𝑦, 16 basis functions obtained from this solution set are: 

(𝑒
√2(

𝜌ℎ𝜔2

𝐷
)
±𝑖

1
4
𝑥
)(𝑒

(
𝜌ℎ𝜔2

𝐷
)
±

1
4
𝑦
) , (𝑒

√2(
𝜌ℎ𝜔2

𝐷
)
±

1
4
𝑥
)(𝑒

(
𝜌ℎ𝜔2

𝐷
)
±𝑖

1
4
𝑦
) , 

(𝑒
(
𝜌ℎ𝜔2

𝐷
)
±

1
4
𝑥
)(𝑒

√2(
𝜌ℎ𝜔2

𝐷
)
±𝑖

1
4
𝑦
) , (𝑒

√2(
𝜌ℎ𝜔2

𝐷
)
±

1
4
𝑦
)(𝑒

(
𝜌ℎ𝜔2

𝐷
)
±𝑖

1
4
𝑥
) 

Equation 69 
 

Because similar to the solution set 2, these solutions also satisfy Equation 61, the dynamic force 

is still fully distributed over 
𝜕2𝑀𝑦

𝜕𝑦2  derivative. Equation 68 implies that for these solutions 
𝜕2𝑀𝑥

𝜕𝑥2 =
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−2
𝜕2𝑀𝑦

𝜕𝑦2 , which in turn assigns a pseudo counter dynamic force to 
𝜕2𝑀𝑥

𝜕𝑥2  that is twice the actual 

vibration induced dynamic force and makes this loading very large. This loading is counteracted 

by twisting loading 
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
 which also receives large pseudo contribution of the dynamic force.  
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5. DYNAMIC FINITE PLATE ELEMENT DEVELOPMENT 
 

By using the basis functions developed in the previous chapter, the development of the dynamic 

finite element matrices can be carried out. Because these functions depend on vibrational 

frequency, the resulting element matrices are also frequency dependent. This is unlike the classic 

finite element formulation were both stiffness and mass matrices are constants. 

Hence, similar to FEM, first step is to find the element shape functions in order to relate the 

lateral displacement 𝑤 to nodal DoF values. For the plate element in Figure 4, this can be done 

by evaluating matrix [𝑃] (see chapter 3, Equation 34) over element nodal coordinates using the 

dynamic basis functions: 

 

Figure 4 Plate element used for development of DFE 
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[𝑃𝜔12𝑥12] = 

[
 
 
 
 
 
 
 
 
 
 
 
𝑋1,𝜔(−1,−1) 𝑋2,𝜔(−1,−1) 𝑋3,𝜔(−1,−1)

𝜕𝑋1,𝜔(−1,−1)

𝜕𝑥

𝜕𝑋2,𝜔(−1,−1)

𝜕𝑥

𝜕𝑋3,𝜔(−1,−1)

𝜕𝑥
𝜕𝑋1,𝜔(−1,−1)

𝜕𝑦

𝜕𝑋2,𝜔(−1,−1)

𝜕𝑦

𝜕𝑋3,𝜔(−1,−1)

𝜕𝑦

⋯

⋮ ⋱
𝑋1,𝜔(−1,1) 𝑋2,𝜔(−1,1) 𝑋3,𝜔(−1,1)

𝜕𝑋1,𝜔(−1,1)

𝜕𝑥

𝜕𝑋2,𝜔(−1,1)

𝜕𝑥

𝜕𝑋3,𝜔(−1,1)

𝜕𝑥
𝜕𝑋1,𝜔(−1,1)

𝜕𝑦

𝜕𝑋2,𝜔(−1,1)

𝜕𝑦

𝜕𝑋3,𝜔(−1,1)

𝜕𝑦

⋯

 

𝑋10,𝜔(−1,−1) 𝑋11,𝜔(−1,−1) 𝑋12,𝜔(−1,−1)

𝜕𝑋10,𝜔(−1,−1)

𝜕𝑥

𝜕𝑋11,𝜔(−1, −1)

𝜕𝑥

𝜕𝑋12,𝜔(−1,−1)

𝜕𝑥
𝜕𝑋10,𝜔(−1,−1)

𝜕𝑦

𝜕𝑋11,𝜔(−1, −1)

𝜕𝑦

𝜕𝑋12,𝜔(−1,−1)

𝜕𝑦
⋮

𝑋10,𝜔(−1,1) 𝑋11,𝜔(−1,1) 𝑋12,𝜔(−1,1)

𝜕𝑋10,𝜔(−1,1)

𝜕𝑥

𝜕𝑋11,𝜔(−1,1)

𝜕𝑥

𝜕𝑋12,𝜔(−1,1)

𝜕𝑥
𝜕𝑋10,𝜔(−1,1)

𝜕𝑦

𝜕𝑋11,𝜔(−1,1)

𝜕𝑦

𝜕𝑋12,𝜔(−1,1)

𝜕𝑦 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Equation 70 

 

The simplest plate vibrational elements are three node triangles with three DoFs per node, which 

require nine linearly independent basis functions for the lateral displacement field, 𝑤 [55]. 

Therefore, because for development of any plate element at least nine linearly independent basis 

functions are required, from the solution sets presented in chapter 4, solution set 1 cannot be used 

for plate DFE development.  

While solution set 3 does generate enough basis functions, the DFE developed from this set 

generated poor results. This solution set has thus been discarded from further investigation and 

the element development is not reported here. 
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Solution set 2 generates 16 different basis functions as well. Although these functions are 

linearly independent in a continuous space, when numerically evaluated in Equation 70 to obtain 

[𝑃𝜔] for an element domain such as that of Figure 4, the numerical columns were found to show 

linear dependency. 

To better demonstrate the linear dependency problem, consider the four dynamic basis functions, 

cos (𝛾𝑥𝑦𝑥), cos (𝛾𝑥𝑦𝑦), cosh (𝛾𝑥𝑦𝑥) and cosh (𝛾𝑥𝑦𝑦) to represent 𝑋1,𝜔 , 𝑋2,𝜔, 𝑋3,𝜔 , and 𝑋4,𝜔  

respectively, generating the left four columns of matrix [𝑃𝜔].  It can be shown that when matrix 

[𝑃𝜔] is calculated over nodal points of the plate element of Figure 4, for these basis functions the 

following relation holds true: 

[𝑐4] = [𝑐3] + (
𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) 

𝑠𝑖𝑛(𝛾𝑥𝑦)
) [𝑐1] − (

𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) 

𝑠𝑖𝑛(𝛾𝑥𝑦)
) [𝑐2] 

 

Equation 71 

where [𝑐𝑖] is the 𝑖th column vector of matrix [𝑃𝜔]. Linear independency of the column vectors of 

matrix [𝑃𝜔] is necessary to allow shape function definition. Without such independency, this 

matrix will not be invertible and a unique relation between flexural displacement 𝑤 and nodal 

degrees of freedom cannot be achieved. 

To eliminate this dependency, the 16 basis functions of solution set 3 are combined to generate a 

set of 12 new mixed basis functions. These basis functions are generated such that in the limiting 

case, where vibrational frequency approaches zero, the resulting shape functions will approach 

the 12 DoF polynomial shape functions. 
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𝑋𝜔1 = 𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) + 𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) 

𝑋𝜔2 = 𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) 

𝑋𝜔3 = 𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) 

𝑋𝜔4 =
𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥) − 𝑐𝑜𝑠(𝛾𝑥𝑦𝑥)

𝛾𝑥𝑦
2

 

𝑋𝜔5 =
𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) + 𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥)

𝛾𝑥𝑦
 

𝑋𝜔6 =
𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦) − 𝑐𝑜𝑠(𝛾𝑥𝑦𝑦)

𝛾𝑥𝑦
2

 

𝑋𝜔7 =
𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥) − 𝑠𝑖𝑛(𝛾𝑥𝑦𝑥)

𝛾𝑥𝑦
3

 

𝑋𝜔8 =
(𝑦)𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥) − (𝑦)𝑐𝑜𝑠(𝛾𝑥𝑦𝑥)

𝛾𝑥𝑦
2

 

𝑋𝜔9 =
(𝑥)𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦) − (𝑥)𝑐𝑜𝑠(𝛾𝑥𝑦𝑦)

𝛾𝑥𝑦
2

 

𝑋𝜔10 =
𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦) − 𝑠𝑖𝑛(𝛾𝑥𝑦𝑦)

𝛾𝑥𝑦
3

 

𝑋𝜔11 =
(𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥) − (𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦𝑥)

𝛾𝑥𝑦
3  

𝑋𝜔12 =
(𝑥)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦) − (𝑥)𝑠𝑖𝑛(𝛾𝑥𝑦𝑦)

𝛾𝑥𝑦
3  

Equation 72 

  

 

Here, the basis function 𝑋𝑖  depends on the vibrational frequency 𝜔 through the relation 𝛾𝑥𝑦 =

(
𝜌ℎ𝜔2

𝐷
)

1

4
  and the vector  

[𝑋𝜔] = [𝑋𝜔1, 𝑋𝜔2,𝑋𝜔3,𝑋𝜔4, 𝑋𝜔5,𝑋𝜔6,𝑋𝜔7, 𝑋𝜔8,𝑋𝜔9,𝑋𝜔10, 𝑋𝜔11,𝑋𝜔12] reduces to 

[2, 𝑥, 𝑦, 𝑥2 , 2𝑥𝑦, 𝑦2,
𝑥3

3
, 𝑥2𝑦, 𝑥𝑦2 ,

𝑦3

3
,
𝑥3𝑦

3
,
𝑥𝑦3

3
] when lim

𝜔→0
([𝑋𝜔]) is applied. 

Since the basis functions used in this process are solutions of the governing differential equation 

of the plate, the resulting dynamic finite element formulation will be an intermediate, between 

the analytical solution and finite element technique.  
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Because DFE involves trigonometric and hyperbolic basis functions, performing area integrals 

for arbitrary shapes would be very difficult. Further difficulty arises when mapping these integral 

to a reference coordinate system, which requires introduction of absolute value of mapping 

Jacobian matrix determinant. Numerical integration techniques such as Gauss quadrature 

formula have been used in such situation for FEM plates with Hermitian polynomial shape 

functions, but use of such methods for DFE formulations will result in lost accuracy and extra 

computational overhead. 

Use of plate equation solutions in development of DFE, allows further simplification of 

Galerkin’s residual minimization method to line integrals, over the boundaries of the element. 

Line integrals produced from reduction of Galerkin’s methods can be readily transformed to 

natural coordinate system for plate of any shape using variable substitution and the integrals can 

be performed analytically without loss in accuracy. 

Simplification of Galerkin’s residual minimization method in development of plate DFE relies 

on the use of Green’s theorem. This reduction is similar to use of integration by parts in beam 

DFE development, and is essential for extension of DFE plates to arbitrary geometries.  

Green’s theorem is applied two times to the terms of Equation 52, with respect to the variable by 

which 𝑤 is differentiated. For the first term in Equation 52 the following relation is produced: 

∯(
𝜕2𝑤

𝜕𝑥2
)

𝜕2𝛿𝑤

𝜕𝑥2
𝑑𝐴 = ∮(

𝜕𝑤

𝜕𝑥
)
𝜕2𝛿𝑤

𝜕𝑥2
𝑛𝑦𝑑𝑠 − ∯(

𝜕𝑤

𝜕𝑥
)
𝜕3𝛿𝑤

𝜕𝑥3
𝑑𝐴 Equation 73 

 

∯(
𝜕2𝑤

𝜕𝑥2
)

𝜕2𝛿𝑤

𝜕𝑥2
𝑑𝐴 = ∮(

𝜕𝑤

𝜕𝑥
)
𝜕2𝛿𝑤

𝜕𝑥2
𝑛𝑦𝑑𝑠 − ∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑥3
𝑛𝑦𝑑𝑠 

+ ∯(𝑤)
𝜕4𝛿𝑤

𝜕𝑥4
𝑑𝐴 

Equation 74 

 



 
 

41 
 

Applying the same procedure to the second, third and fourth term generates: 

∯(
𝜕2𝑤

𝜕𝑦2
)

𝜕2𝛿𝑤

𝜕𝑥2
𝑑𝐴 = − ∮(

𝜕𝑤

𝜕𝑦
)
𝜕2𝛿𝑤

𝜕𝑥2
𝑛𝑥𝑑𝑠 + ∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑦𝜕𝑥2
𝑛𝑥𝑑𝑠 

+ ∯(𝑤)
𝜕4𝛿𝑤

𝜕𝑦2𝜕𝑥2
𝑑𝐴 

Equation 75 

 

∯(
𝜕2𝑤

𝜕𝑦2
)

𝜕2𝛿𝑤

𝜕𝑦2
𝑑𝐴 = − ∮(

𝜕𝑤

𝜕𝑦
)
𝜕2𝛿𝑤

𝜕𝑦2
𝑛𝑥𝑑𝑠 + ∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑦3
𝑛𝑥𝑑𝑠 

+ ∯(𝑤)
𝜕4𝛿𝑤

𝜕𝑦4
𝑑𝐴 

Equation 76 

 

∯(
𝜕2𝑤

𝜕𝑥2
)

𝜕2𝛿𝑤

𝜕𝑦2
𝑑𝐴 = ∮(

𝜕𝑤

𝜕𝑥
)
𝜕2𝛿𝑤

𝜕𝑦2
𝑛𝑦𝑑𝑠 − ∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑥𝜕𝑦2
𝑛𝑦𝑑𝑠 

+ ∯(𝑤)
𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2
𝑑𝐴 

Equation 77 

 

Therefore, Equation 52 is rewritten as: 

𝐷[∮(
𝜕𝑤

𝜕𝑥
)
𝜕2𝛿𝑤

𝜕𝑥2
𝑛𝑦𝑑𝑠 − ∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑥3
𝑛𝑦𝑑𝑠 + ∯(𝑤)

𝜕4𝛿𝑤

𝜕𝑥4
𝑑𝐴 

−𝜐∮(
𝜕𝑤

𝜕𝑦
)
𝜕2𝛿𝑤

𝜕𝑥2
𝑛𝑥𝑑𝑠 + 𝜐∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑦𝜕𝑥2
𝑛𝑥𝑑𝑠 

+𝜐∯(𝑤)
𝜕4𝛿𝑤

𝜕𝑦2𝜕𝑥2
𝑑𝐴 − ∮(

𝜕𝑤

𝜕𝑦
)
𝜕2𝛿𝑤

𝜕𝑦2
𝑛𝑥𝑑𝑠 

+ ∮(𝑤)
𝜕3𝛿𝑤

𝜕𝑦3
𝑛𝑥𝑑𝑠 + ∯(𝑤)

𝜕4𝛿𝑤

𝜕𝑦4
𝑑𝐴 

+𝜐∮ (
𝜕𝑤

𝜕𝑥
)

𝜕2𝛿𝑤

𝜕𝑦2 𝑛𝑦𝑑𝑠 − 𝜐∮(𝑤)
𝜕3𝛿𝑤

𝜕𝑥𝜕𝑦2 𝑛𝑦𝑑𝑠 + 𝜐∯(𝑤)
𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2 𝑑𝐴  

+ ∯((1 − 𝜐)
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 + ∯((1 − 𝜐)

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴] 

− ∯(𝜔2𝜌ℎ𝑤)𝛿𝑤𝑑𝐴 = 0  Equation 78 

 

The next step is taking the second and third last terms in Equation 78 and applying Green’s 

theorem twice on each of these terms. However, for the first term application of the theorem 
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must be done first with respect to 𝑥 and then 𝑦. The opposite sequence will be done for the 

second term. Thus for the first term, this process yields: 

∯((1 − 𝜐)
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 

= ∮((1 − 𝜐)
𝜕𝑤

𝜕𝑦
)
𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑛𝑦𝑑𝑠 − ∯((1 − 𝜐)

𝜕𝑤

𝜕𝑦
)

𝜕3𝛿𝑤

𝜕𝑥2𝜕𝑦
𝑑𝐴 

Equation 79 

 

∯((1 − 𝜐)
𝜕𝑤

𝜕𝑦
)

𝜕3𝛿𝑤

𝜕𝑥2𝜕𝑦
𝑑𝐴 

= − ∮((1 − 𝜐)𝑤)
𝜕3𝛿𝑤

𝜕𝑦𝜕𝑥2
𝑛𝑥𝑑𝑠 − ∯((1 − 𝜐)𝑤)

𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2
𝑑𝐴 

Equation 80 

 

∯((1 − 𝜐)
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 = ∮((1 − 𝜐)

𝜕𝑤

𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑛𝑦𝑑𝑠 

+∮((1 − 𝜐)𝑤)
𝜕3𝛿𝑤

𝜕𝑦𝜕𝑥2
𝑛𝑥𝑑𝑠 + ∯((1 − 𝜐)𝑤)

𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2
𝑑𝐴 

Equation 81 

Similarly, for the second term: 

∯((1 − 𝜐)
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 

= − ∮((1 − 𝜐)
𝜕𝑤

𝜕𝑥
)
𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑛𝑥𝑑𝑠 − ∯((1 − 𝜐)

𝜕𝑤

𝜕𝑥
)

𝜕3𝛿𝑤

𝜕𝑦2𝜕𝑥
𝑑𝐴 

Equation 82 

 

∯((1 − 𝜐)
𝜕𝑤

𝜕𝑥
)

𝜕3𝛿𝑤

𝜕𝑥𝜕𝑦2
𝑑𝐴 

= ∮((1 − 𝜐)𝑤)
𝜕3𝛿𝑤

𝜕𝑥𝜕𝑦2
𝑛𝑦𝑑𝑠 − ∯((1 − 𝜐)𝑤)

𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2
𝑑𝐴 

Equation 83 
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∯((1 − 𝜐)
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑑𝐴 = −∮((1 − 𝜐)

𝜕𝑤

𝜕𝑥
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑛𝑥𝑑𝑠 

− ∮((1 − 𝜐)𝑤)
𝜕3𝛿𝑤

𝜕𝑥𝜕𝑦2
𝑛𝑦𝑑𝑠 + ∯((1 − 𝜐)𝑤)

𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2
𝑑𝐴 

Equation 84 

 

Subsequently, Equation 78 takes the form: 

∮(
𝜕𝑤

𝜕𝑥
)
𝜕2𝛿𝑤

𝜕𝑥2
𝑛𝑦𝑑𝑠 − ∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑥3
𝑛𝑦𝑑𝑠 + ∯(𝑤)

𝜕4𝛿𝑤

𝜕𝑥4
𝑑𝐴 

−𝜐∮(
𝜕𝑤

𝜕𝑦
)
𝜕2𝛿𝑤

𝜕𝑥2
𝑛𝑥𝑑𝑠 + 𝜐∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑦𝜕𝑥2
𝑛𝑥𝑑𝑠 + 𝜐∯(𝑤)

𝜕4𝛿𝑤

𝜕𝑦2𝜕𝑥2
𝑑𝐴 

− ∮(
𝜕𝑤

𝜕𝑦
)
𝜕2𝛿𝑤

𝜕𝑦2
𝑛𝑥𝑑𝑠 + ∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑦3
𝑛𝑥𝑑𝑠 + ∯(𝑤)

𝜕4𝛿𝑤

𝜕𝑦4
𝑑𝐴 

+𝜐∮(
𝜕𝑤

𝜕𝑥
)
𝜕2𝛿𝑤

𝜕𝑦2
𝑛𝑦𝑑𝑠 − 𝜐 ∮(𝑤)

𝜕3𝛿𝑤

𝜕𝑥𝜕𝑦2
𝑛𝑦𝑑𝑠 + 𝜐∯(𝑤)

𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2
𝑑𝐴 

+ ∮((1 − 𝜐)
𝜕𝑤

𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑛𝑦𝑑𝑠 + ∮((1 − 𝜐)𝑤)

𝜕3𝛿𝑤

𝜕𝑦𝜕𝑥2
𝑛𝑥𝑑𝑠 

+ ∯((1 − 𝜐)𝑤)
𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2
𝑑𝐴 − ∮((1 − 𝜐)

𝜕𝑤

𝜕𝑥
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑛𝑥𝑑 

− ∮((1 − 𝜐)𝑤)
𝜕3𝛿𝑤

𝜕𝑥𝜕𝑦2
𝑛𝑦𝑑𝑠 + ∯((1 − 𝜐)𝑤)

𝜕4𝛿𝑤

𝜕𝑥2𝜕𝑦2
𝑑𝐴 

− ∯(
𝜔2𝜌ℎ𝑤

𝐷
)𝛿𝑤𝑑𝐴 = 0 

Equation 85 

 

Simplifying this equation gives: 

∮(
𝜕𝑤

𝜕𝑥
) (

𝜕2𝛿𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝛿𝑤

𝜕𝑦2
)𝑛𝑦𝑑𝑠 − ∮(

𝜕𝑤

𝜕𝑦
) (

𝜕2𝛿𝑤

𝜕𝑦2
+ 𝜐

𝜕2𝛿𝑤

𝜕𝑥2
)𝑛𝑥𝑑𝑠 

+∮((1 − 𝜐)
𝜕𝑤

𝜕𝑦
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑛𝑦𝑑𝑠 − ∮((1 − 𝜐)

𝜕𝑤

𝜕𝑥
)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
𝑛𝑥𝑑𝑠 

−∮(𝑤)(
𝜕3𝛿𝑤

𝜕𝑥3
+

𝜕3𝛿𝑤

𝜕𝑥𝜕𝑦2
) 𝑛𝑦𝑑𝑠 + ∮(𝑤)(

𝜕3𝛿𝑤

𝜕𝑦3
+

𝜕3𝛿𝑤

𝜕𝑦𝜕𝑥2
) 𝑛𝑥𝑑𝑠 

+∯(𝑤)
𝜕4𝛿𝑤

𝜕𝑥4
𝑑𝐴 + 2∯(𝑤)

𝜕4𝛿𝑤

𝜕𝑦2𝜕𝑥2
𝑑𝐴 + ∯(𝑤)

𝜕4𝛿𝑤

𝜕𝑦4
𝑑𝐴 

−∯(
𝜔2𝜌ℎ𝑤

𝐷
)𝛿𝑤𝑑𝐴 = 0 

Equation 86 
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It is noteworthy that the first two integrals in Equation 86, respectively, are representation of 

virtual bending moments 𝛿𝑀𝑥 and 𝛿𝑀𝑦, written in terms of the virtual displacement 𝛿𝑤. 

Similarly, the next two integrals represent virtual twisting moment 𝛿𝑀𝑥𝑦. Integrals five and six 

are representation of virtual shear forces 𝛿𝑄𝑥 and 𝛿𝑄𝑦, respectively. Hence, one can rewrite 

Equation 86 as: 

− ∮(
𝜕𝑤

𝜕𝑥
) (𝛿𝑀𝑥)𝑛𝑦𝑑𝑠 + ∮(

𝜕𝑤

𝜕𝑦
) (𝛿𝑀𝑦)𝑛𝑥𝑑𝑠 

− ∮(
𝜕𝑤

𝜕𝑦
(𝛿𝑀𝑥𝑦))𝑛𝑦𝑑𝑠 + ∮(

𝜕𝑤

𝜕𝑥
(𝛿𝑀𝑥𝑦))𝑛𝑥𝑑𝑠 

+ ∮(𝑤)(𝛿𝑄𝑦)𝑛𝑦𝑑𝑠 − ∮(𝑤)(𝛿𝑄𝑥)𝑛𝑥𝑑𝑠 

+ ∯(𝑤)(
𝜕4𝛿𝑤

𝜕𝑥4
+ 2

𝜕4𝛿𝑤

𝜕𝑦2𝜕𝑥2
+

𝜕4𝛿𝑤

𝜕𝑦4
− 𝜔2𝜌ℎ𝛿𝑤)𝑑𝐴 = 0 

Equation 87 

 

Unlike the reduction done for FEM development where work of virtual boundary integrals were 

equal to zero, virtual boundary integrals do not yield zero in this equation. This is becaue virtual 

loads can assume finite small values under any boundary condition of a free vibrating plate. 

The area integral in this equation represents the governing equation of the plate vibration in 

terms of the weighting function 𝛿𝑤. Because the basis functions used for development of the 

dynamic finite plate element are solutions of the governing differential equation and the same 

functions are used for virtual displacement in Galerkin method, the area integrals will vanish 

from Equation 86 and Equation 87 and DFE will involve only line integrals. 

Equation 86 is the fundamental equation used for deriving the dynamic finite element 

formulation. Similar procedure to Equation 32 through Equation 36 (see chapter 3) are followed 
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using basis functions of Equation 72 to generate frequency dependent shape function vector 

[𝑁𝜔(𝑥, 𝑦)].  

Although as shown in Figure 5, these functions are dependent on vibrational frequency 𝜔 

through 𝛾𝑥𝑦 = (
𝜌ℎ𝜔2

𝐷
)

1

4
  , they follow the general properties of the regular shape functions such 

that their value is one at their corresponding nodes while all other nodal values are zero over 

every frequency. These shape functions are reported and discussed further in APPENDIX A. 

 

 

       (a)                                             (b)                                  (c) 

Figure 5 Graph of DFE shape function 𝑵𝟏,  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and first Hermite shape 

function (c) over the plate element of Figure 4   

 

By substituting the shape function vector [𝑁𝜔(𝑥, 𝑦)] in Equation 86, the resulting dynamic finite 

element matrix, [𝐾𝜔], is generated as a summation of six frequency dependent submatrices. The 

positive sense of integration must be considered counter clockwise around the element boundary 

in accordance with Green’s theorem.  
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[𝐾𝜔] = 𝐷 [∫ (
𝜕[𝑁𝜔

𝑇]

𝜕𝑥
)(

𝜕2[𝛿𝑁𝜔]

𝜕𝑥2
+ 𝜐

𝜕2[𝛿𝑁𝜔]

𝜕𝑦2
)|

𝑥=−1

𝑥=1

𝑑𝑦
1

−1

 

−∫ (
𝜕[𝑁𝜔

𝑇]

𝜕𝑦
)(

𝜕2[𝛿𝑁𝜔]

𝜕𝑦2
+ 𝜐

𝜕2[𝛿𝑁𝜔]

𝜕𝑥2
)⌋

𝑦=1

𝑦=−1

𝑑𝑥
1

−1

 

+∫ ((1 − 𝜐)
𝜕[𝑁𝜔

𝑇]

𝜕𝑦
)

𝜕2[𝛿𝑁𝜔]

𝜕𝑥𝜕𝑦
⌋

𝑥=−1

𝑥=1

𝑑𝑦
1

−1

 

−∫ ((1 − 𝜐)
𝜕[𝑁𝜔

𝑇]

𝜕𝑥
)

𝜕2[𝛿𝑁𝜔]

𝜕𝑥𝜕𝑦
⌋

𝑦=1

𝑦=−1

𝑑𝑥
1

−1

 

−∫ ([𝑁𝜔
𝑇]) (

𝜕3[𝛿𝑁𝜔]

𝜕𝑥3
+

𝜕3[𝛿𝑁𝜔]

𝜕𝑥𝜕𝑦2
)⌋

𝑥=−1

𝑥=1

𝑑𝑦
1

−1

 

+∫ ([𝑁𝜔
𝑇]) (

𝜕3[𝛿𝑁𝜔]

𝜕𝑦3
+

𝜕3[𝛿𝑁𝜔]

𝜕𝑦𝜕𝑥2
)⌋

𝑦=1

𝑦=−1

𝑑𝑥
1

−1

] = 0 
Equation 88 

 

Therefore, the dynamic stiffness matrix outlined in Equation 88 will also depends on vibrational 

frequency. Although unlike Galekin method’s form used for FEM in Equation 53 (see chapter 3), 

DFE integrals do not include symmetry exclusively, the use of solutions of the governing 

differential equation guarantees symmetry of the final DFE matrix obtained implicitly. 

Much like the finite element analysis, by constraining the appropriate nodal degrees of freedom 

and finding the system’s Eigenvalues one can find the natural frequencies corresponding to a set 

of boundary condition. Note that, however, the Eigenproblem generated through dynamic finite 

element is non-linear in 𝜔 and results a transcendental equation with multiple possible solutions 

for natural frequency even using one element.  

This is a major advantage of using dynamic finite element over finite element analysis. The 

Eigenproblem resulting from the finite element analysis is linear in nature and produces a 

polynomial in variable 𝜔. Because a polynomial can generate maximum number of roots equal 
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to its degree, FEM vibrational analysis leads to finite number of answers, and finding higher 

natural frequency generally requires mesh refinement. 
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6. NUMERICAL EVALUATION 
 

In this chapter, the 12-DoF dynamic finite element derived and presented in chapter 5 is used to 

model free vibrational behaviour of a square plate under four boundary conditions for which 

analytical results are available in open literature. The performance of DFE is compared with the 

12-DoF Hermitian plate elements developed in chapter 3, as well as analytical frequency data 

reported by Leissa [4]. 

As mentioned in the previous chapter, the dynamic finite element produces a nonlinear 

Eigenvalue problem of the following form: 

[Kω][𝑤] = 0 Equation 89 

 

creating a transcendental equation in variable ω with multiple roots. However, the conventional 

finite element analysis requires solving the linear Eigenvalue problem of the system, written as: 

([K] − 𝜔2[𝑚])[𝑤] = 0 Equation 90 

 

which produces a polynomial with finite number of roots.  

Consider a two-unit by two-unit square plate element as shown in Figure 6, to be simply 

supported on 3 edges and free on one edge (SS-SS-SS-F boundary condition) with Poisson ratio 

of 0.3. In order to eliminate material dependency, vibrational analysis is done by normalizing the 

results in terms of  √𝜌ℎ/𝐷.  
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Figure 6 Square plate with two unit side length under SS-SS-SS-F boundary condition 

 

The free vibrational analysis of this system subject to SS-SS-SS-F boundary conditions is carried 

out, where the end conditions are enforced by eliminating rows and columns of the stiffness 

matrices corresponding to the restricted degrees of freedom, and results in a 2 by 2 Eigenvalue 

problem. The DFE Eigenproblem has infinite number of solutions, which can be detected by 

visual inspection of the graph representing the determinant of the system's dynamic stiffness 

matrix, [Kω], as shown in Figure 7, or through the application of Wittrick-Williams (W-W) 

algorithm [38]. The system's first five natural frequencies obtained through the DFE vibrational 

analysis for this set of boundary conditions are compared with analytical solutions reported by 

Leissa [4], obtained using double Fourier series, as well as those obtained from the conventional 

FEM (see  Table 1).  
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Figure 7 Plot of transcendental DFE determinant function for SS-SS-SS-F boundary condition against 𝜸𝒙𝒚 = (
𝝆𝒉𝝎𝟐

𝑫
)

𝟏

𝟒
  

 

Table 1 Comparison of 1 element DFE formulation and analytical solution for Values of √𝝆𝒉/𝑫 

Mode 
Number 

Analytical 

Result [4] 

12 DoF DFE 
1 element mesh 

12 DoF FEM 
1 element mesh 

1.00 2.92 2.91 3.18 

2.00 6.94 6.23 12.98 
3.00 10.30 12.51 - 

4.00 14.77 16.52 - 
5.00 15.47 22.90 - 

 

As can be seen from Table 1, DFE results obtained using a single-DFE model are in good 

agreement with the analytical solutions. This is especially notable for the fundamental natural 

frequency, where a single DFE produces near analytical result, i.e., 0.3% difference. As 

expected, as the mode number increases, the difference between the DFE and analytical data 

increases, to 10%, 21%, 11%, and 48%, for the 2nd through 5th frequencies, respectively. On the 

other hand, the single-element conventional FEM model can only capture the first two 

frequencies, with over 9% and 109% differences with the analytical data for the 1st and 2nd 

modes, respectively.  
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Additionally, DFE matrices and shape functions contain a common denominator. The zeros of 

this denominator are called poles, which cause the determinant matrix to approach infinity and 

correspond to all edges fixed boundary condition. For a single FEM element, fixing all edges to 

zero results in removal of all rows and columns of stiffness and mass matrices, and therefore, 

capturing the modes of this boundary condition is not possible. However, the DFE element has 

the potential to detect vibration modes of this boundary condition using its poles. 

The same analysis was performed for fundamental natural frequencies of three other sets of 

boundary conditions and a comparison with the FEM plate is reported in Table 2. 

 

Table 2 Comparison of fundamental natural frequency obtained from DFE and FEM element for Values of √𝝆𝒉/𝑫 

Boundary 
Condition 

Analytical 

Result [4] 

12 DoF DFE 12 DoF FEM 

C-F-SS-F 3.79 3.81 5.13 
C-C-F-F 1.74 1.82 1.92 

SS-F-SS-F 2.40 2.42 2.74 

 

It is evident that due to inclusion of dynamic effects, i.e., frequency-dependency, in element 

formulation, a single DFE plate has significantly improved performance over its FEM 

counterpart, as the element can capture natural frequencies with higher accuracy and is able to 

detect significantly higher number of modes. 

 

6.1. CONVERGENCE STUDIES 
 

To further evaluate the proposed dynamic finite element performance, a convergence study for 

the modes two through five, over a two by two plate, under three edges simply supported and 
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one edge fixed boundary condition (SS-SS-SS-F), and Poisson’s ratio of 0.3 was performed. A 

comparative evaluation of these modes using 12-DoF Hermitian FEM was also carried out. Mesh 

size was increased from a two by two grid (four elements) to a grid of five by five size (25 

elements) and Eigenvalues were recorded for both formulations.  

The results are reported in terms of √𝜌ℎ/𝐷 so that material dependency is not present. The 

errors of both analyses are calculated with respect to results from Leissa [4] and the convergence 

graphs, representing the error vs. the number of elements are presented in the following Figures 

and Tables. 

As shown, both formulations have comparable performance on convergence to the analytical 

solutions and reach less than five percent error using a 25-element mesh. This comparable 

performance is achieved by faster convergence of a formulation with higher initial error. For 

example, for the second mode of vibration while FEM formulation has larger error over the two 

by two mesh compared to DFE formulation, it has faster convergence towards the analytical 

solution, yielding comparable performance. The opposite is observed for the fifth mode of 

vibration.  

It is worth mentioning that both DFE and FEM plates in this research are 12 DoF elements and 

apply similar degradation to plate problem. For example, both elements cannot capture the 

curvature 
𝜕4𝑤

𝜕2𝑥𝜕2𝑦
 and cannot enforce the inter-element shear stress continuity. These two factors 

are possible reasons for similar convergence characteristics of the two formulations.  
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Table 3 Second mode convergence analysis of DFE and FEM elements for √𝝆𝒉/𝑫  on a SS-SS-SS-F plate 

Result %Error Result %Error Result %Error Result %Error Mode 2 

2x2 DFE 2x2 DFE 3x3 DFE 3x3 DFE 4x4 DFE 4x4 DFE 5x5 DFE 5x5 DFE Analytical 

6.54 -5.76 6.65 -4.18 6.75 -2.74 6.81 -1.87 

6.94 2x2 FEM 2x2 FEM 3x3 FEM 3x3 FEM 4x4 FEM 4x4 FEM 5x5 FEM 5x5 FEM 

6.47 -6.77 6.65 -4.18 6.75 -2.74 6.81 -1.87 

 

 

 

Figure 8 Comparison of convergence of √𝝆𝒉/𝑫 values between FEM and DFE models for second mode of vibration of a plate under 

SS-SS-SS-F boundary condition 

 

Table 4 Third mode convergence analysis of DFE and FEM elements for √𝝆𝒉/𝑫  on a SS-SS-SS-F plate 

Result %Error Result %Error Result %Error Result %Error Mode 3 

2x2 DFE 2x2 DFE 3x3 DFE 3x3 DFE 4x4 DFE 4x4 DFE 5x5 DFE 5x5 DFE Analytical 

10.07 -2.23 10.23 -0.68 10.32 0.19 10.32 0.19 

10.3 2x2 FEM 2x2 FEM 3x3 FEM 3x3 FEM 4x4 FEM 4x4 FEM 5x5 FEM 5x5 FEM 

11.36 10.29 10.38 0.78 10.36 0.58 10.35 0.49 
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Figure 9 Comparison of convergence of √𝝆𝒉/𝑫 values between FEM and DFE models for third mode of vibration of a plate under SS-

SS-SS-F boundary condition 

 

Table 5 Fourth mode convergence analysis of DFE and FEM elements for √𝝆𝒉/𝑫  on a SS-SS-SS-F plate 

Result %Error Result %Error Result %Error Result %Error Mode 4 

2x2 DFE 2x2 DFE 3x3 DFE 3x3 DFE 4x4 DFE 4x4 DFE 5x5 DFE 5x5 DFE Analytical 

15.24 3.18 13.83 -6.36 14.08 -4.67 14.28 -3.32 

14.77 2x2 FEM 2x2 FEM 3x3 FEM 3x3 FEM 4x4 FEM 4x4 FEM 5x5 FEM 5x5 FEM 

15.20 2.91 13.83 -6.36 14.10 -4.54 14.30 -3.18 

 

 

 

Figure 10 Comparison of convergence of √𝝆𝒉/𝑫 values between FEM and DFE models for fourth mode of vibration of a plate under 

SS-SS-SS-F boundary condition 
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Table 6 Fifth mode convergence analysis of DFE and FEM elements for √𝝆𝒉/𝑫  on a SS-SS-SS-F plate 

Result %Error Result %Error Result %Error Result %Error Mode 5 

2x2 DFE 2x2 DFE 3x3 DFE 3x3 DFE 4x4 DFE 4x4 DFE 5x5 DFE 5x5 DFE Analytical 

16.42 6.14 14.61 -5.56 14.86 -3.94 15.04 -2.78 

15.47 2x2 FEM 2x2 FEM 3x3 FEM 3x3 FEM 4x4 FEM 4x4 FEM 5x5 FEM 5x5 FEM 

16.07 3.88 14.69 -5.04 14.93 -3.49 15.07 -2.59 

 

 

Figure 11 Comparison of convergence of √𝝆𝒉/𝑫 values between FEM and DFE models for fifth mode of vibration of a plate under SS-

SS-SS-F boundary condition 
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7. CONCLUDING REMARKS 
 

In this research, a 12-DoF frequency-dependent formulation for two-dimensional elements, 

based on dynamic finite element method is presented. The DFE method relies on using 

frequency dependent shape functions in contrast to polynomials used by FEM method. 

Literature survey on DFE has shown this technique to be very powerful method in case of 

beams, producing exact results with one element in case of uncoupled beams, and having very 

fast convergence rate for beams with couplings. This served as a motivation for the present work, 

and the method is researched here for its applicability to two-dimensional thin plate elements. 

The governing differential equation of thin plates is a two-dimensional partial differential 

equation, which requires an infinite dimensional solution set such as those produced by double 

Fourier series. This property is contrary to beam DFE elements, which are defined by an 

ordinary differential equation, with finite number of solutions that can be fully incorporated in a 

finite element matrix.  

Although previous formulations, with complete infinite dimensional solution space have been 

used, the applicability of such developments is limited to specific geometric, loadings and 

boundary condition.  

The DFE element developed here utilized a finite subset of the complete solution space of the 

plate problem. Three different solution sets are developed and analyzed for the plate based on 

distribution of dynamic force over element partial curvatures. One solution set did not produce 

minimum number of the required independent basis function and the second set proved to be 

divergent.  
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The third set reduces the plate equation to two independent beams. These beam-like solutions to 

the governing differential equation of the Kirchhoff plate, are then rearranged as basis functions 

of the approximation space, to produce a linearly independent set of shape functions, for a 4-

node plate with 12 DoFs. This arrangement was done such that the element formulation will 

converge to Hermitian FEM, for limiting case of zero vibrational frequency and depart for the 

non-zero values. 

The DFE plate showed good agreement with analytical solutions for one element, and is capable 

of producing multiple natural frequencies using a single element, specially for lower frequency 

modes. The convergence studies performed showed comparable performance between DFE and 

FEM elements.  

Despite comparable convergence performance and complexity of the Eigenvalue problem, DFE 

formulations are still considered superior to their FEM counterparts, particularly for the ability to 

capture infinite number of vibrational modes with comparable mesh size. Also, the DFE methods 

developed can be readily extended to quadrilateral and other geometries (see APPENDIX B) 

without loss of accuracy, through exact line integrations, which eliminates the need of using 

Jacobian determinants and numerical evaluation.  

The amount of research done on dynamic formulation of plate elements shows a clear room for 

improvement. For future, the author recommends considering other solution sets of the 

governing differential equation.  

These solutions should be analyzed in terms of the distribution of the dynamic force over 

element strains, and grouped to produce independent shape functions. Also, combining various 

solution sets with appropriate coefficients can be done to reduce the number of basis functions to 
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that applicable to a plate element. These solution enrichments can provide higher order DFE 

such as 16-DoF plate elements. Also, multiple element types can be obtained with same order, 

each tailored for a specific problem, based on specific restriction of the governing differential 

equation. 

Future researchers may also consider extending the DFE formulation to thick plates, laminated 

plates, composite plates, plates with varying mass, plates with cut-outs and plates with in-plane 

loading.  
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APPENDIX A 
 

In this appendix, a report of shape functions obtained from DFE formulation, mentioned in 

chapter 5, for a 2x2 plate element depicted in chapter 3-Figure 3, and their graphs evaluated over 

the plate domain is presented. A comparison is made between the DFE shape functions (shape 

functions with subscript 𝜔), and Hermitian shape functions of chapter 3 FEM plate, obtained 

from polynomial distribution of the displacement function [56].  

While the DFE shape functions are dependent on the vibrational frequency, through the 

variable 𝛾𝑥𝑦 = (
𝜌ℎ𝜔2

𝐷
)

1

4
 over the plate domain, it is noted that even by having complex equations, 

these shape functions and their derivatives converge to their Hermitian counterparts, for small 

values of vibrational frequency, and thus allow the DFE to be used successfully as an FEM 

equivalent analysis tool, for static structural problems as well. 

It is also evident that much like the Hermite shape functions, DFE shape functions 

maintain the symmetry and rotation properties of the nodes. This property is also held true for 

shape function derivatives, and is observed for all values of vibrational frequency. 

Although the DFE shape functions are dependent on the vibrational frequency, they have a 

value of one at their respective nodes, and are equal to zero at the remaining element nodes 

regardless of the vibrational frequency, which is a critical criterion for error minimization in 

Galerkin’s residual scheme. For the shape functions 𝑁1,𝜔 , 𝑁4,𝜔 ,𝑁7,𝜔  and 𝑁10,𝜔 this requirement 

is met by the shape functions themselves. For 𝑁2,𝜔 , 𝑁5,𝜔 , 𝑁8,𝜔  and 𝑁11,𝜔  their partial derivative 

with respect to 𝑥 holds this property as these shape functions are related to the nodal slope 
𝜕𝑤

𝜕𝑥
. 

Similarly, for 𝑁3,𝜔 , 𝑁6,𝜔 , 𝑁9,𝜔 and 𝑁12,𝜔  partial derivatives with respect to the variable  𝑦 satisfy 

this property.  
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𝑁1,𝜔 =
(𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))

8(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

−
𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)

4(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

−
𝑦(𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

−
𝛾𝑥𝑦𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(2𝛾𝑥𝑦) −  2𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝛾𝑥𝑦𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝛾𝑥𝑦𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝛾𝑥𝑦𝑥𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 1 
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𝑁1 = −
(𝑥 −  1)(𝑦 −  1)(𝑥2 +  𝑥 +  𝑦2 +  𝑦 −  2)

8
 

A- 2 

 

 

 

 

 

  (a)                                                                   (b)                                                                   (c) 

Figure 12 Graph of DFE shape function 𝑵𝟏,  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and first Hermite shape function (c) over the plate element of Figure 3   
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𝑁2,𝜔

=
(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) (𝑠𝑖𝑛(𝛾𝑥𝑦)

2
−  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)

2
)

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

+
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) +  2𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑠𝑖𝑛(𝛾𝑥𝑦)

2
+ 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  2𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
𝑥𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
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A- 4 

 

 

 

 

 

    (a)                                                                   (b)                                                                   (c) 

Figure 13 Graph of DFE shape function derivative 
𝝏𝑵𝟐, 

𝝏𝒙
  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and second Hermite shape function derivative with respect to 𝒙 (c) over 

the plate element of Figure 3     
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𝑁3,𝜔

=
(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)

4(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦)

−
(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑥𝑐𝑜𝑠(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑠𝑖𝑛(𝛾𝑥𝑦)

2
−  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)

2
)

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

+
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) +  2𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑠𝑖𝑛(𝛾𝑥𝑦)

2
+ 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  2𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
𝑦𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 5 
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𝑁3 = −
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A- 6 

 

 

 

 

  

    (a)                                                                   (b)                                                                   (c) 

Figure 14 Graph of DFE shape function derivative 
𝝏𝑵𝟑, 

𝝏𝒚
  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and third Hermite shape function derivative with respect to 𝒙 (c) over 

the plate element of Figure 3     
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𝑁4,𝜔 =
𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)

4(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)

4(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))

8(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

+
(𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

−
(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

+
𝑦(𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
+

𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

−
𝛾𝑥𝑦𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))(𝑠𝑖𝑛(2𝛾𝑥𝑦) −  2𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝛾𝑥𝑦𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝛾𝑥𝑦𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝛾𝑥𝑦𝑥𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 7 
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𝑁4 =
(𝑥 +  1)(𝑦 −  1)(𝑥2 −  𝑥 + 𝑦2 +  𝑦 −  2)

8
 

A- 8 

 

 

 

 

(a)                                                                   (b)                                                                   (c) 

Figure 15 Graph of DFE shape function 𝑵𝟒,  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and fourth Hermite shape function (c) over the plate element of Figure 3   
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𝑁5,𝜔

=
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))

4𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  4𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦)
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

+
(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
+

(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) (𝑠𝑖𝑛(𝛾𝑥𝑦)

2
−  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)

2
)

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) +  2𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑠𝑖𝑛(𝛾𝑥𝑦)

2
+ 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  2𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
𝑥𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 9 
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𝑁5 = −
(𝑥 −  1)(𝑥 +  1)2(𝑦 −  1)

8
 

A- 10 

 

 

 

  

(a)                                                                   (b)                                                                   (c) 

Figure 16 Graph of DFE shape function derivative 
𝝏𝑵𝟓, 

𝝏𝒙
  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and fifth Hermite shape function derivative with respect to 𝒙 (c) over the 

plate element of Figure 3     
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𝑁6,𝜔

=
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))

4𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  4𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦)
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑠𝑖𝑛(𝛾𝑥𝑦)

2
−  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)

2
)

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

+
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) +  2𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑠𝑖𝑛(𝛾𝑥𝑦)

2
+ 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  2𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
𝑦𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 11 
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𝑁6 =
(𝑥 +  1)(𝑦 −  1)2(𝑦 +  1)

8
 

A- 12 

 

 

 

 

(a)                                                                   (b)                                                                   (c) 

Figure 17 Graph of DFE shape function derivative 
𝝏𝑵𝟔, 

𝝏𝒚
  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and sixth Hermite shape function derivative with respect to 𝒚 (c) over 

the plate element of Figure 3     

 

 

 

 

 

 



 
 

72 
 

𝑁7,𝜔 =
𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)

4(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
+

𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)

4(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))

8(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

+
(𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

+
(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

−
𝑦(𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

+
𝛾𝑥𝑦𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))(𝑠𝑖𝑛(2𝛾𝑥𝑦) −  2𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝛾𝑥𝑦𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝛾𝑥𝑦𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝛾𝑥𝑦𝑥𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 13 
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𝑁7 =
(𝑥 +  1)(𝑦 +  1)(− 𝑥2 +  𝑥 −  𝑦2 +  𝑦 +  2)

8
 

A- 14 

 

 

 

 

(a)                                                                   (b)                                                                   (c) 

Figure 18 Graph of DFE shape function 𝑵𝟕,  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and seventh Hermite shape function (c) over the plate element of Figure 3   
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𝑁8,𝜔

=
(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
−

𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) (𝑠𝑖𝑛(𝛾𝑥𝑦)

2
−  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)

2
)

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) +  2𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑠𝑖𝑛(𝛾𝑥𝑦)

2
+ 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  2𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
𝑥𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 15 
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𝑁8 =
(𝑥 −  1)(𝑥 +  1)2(𝑦 +  1)

8
 

A- 16 

 

 

  

(a)                                                                   (b)                                                                   (c) 

Figure 19 Graph of DFE shape function derivative 
𝝏𝑵𝟖, 

𝝏𝒙
  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and eighth Hermite shape function derivative with respect to 𝒙 (c) over 

the plate element of Figure 3     
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𝑁9,𝜔

=
(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
−

𝑥𝑐𝑜𝑠(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑠𝑖𝑛(𝛾𝑥𝑦)

2
−  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)

2
)

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) +  2𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑠𝑖𝑛(𝛾𝑥𝑦)

2
+ 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  2𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
𝑦𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 17 
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𝑁9 =
(𝑥 +  1)(𝑦 −  1)(𝑦 +  1)2

8
 

A- 18 

 

 

 

  

(a)                                                                   (b)                                                                   (c) 

Figure 20 Graph of DFE shape function derivative 
𝝏𝑵𝟗, 

𝝏𝒚
  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and ninth Hermite shape function derivative with respect to 𝒚 (c) over 

the plate element of Figure 3     
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𝑁10,𝜔 =
𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

+
(𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) ∗ (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

−
(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

+
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
+

𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
 

+
𝛾𝑥𝑦𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(2𝛾𝑥𝑦) −  2𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝛾𝑥𝑦𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦) ∗ 𝑠𝑖𝑛(𝛾𝑥𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝛾𝑥𝑦𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝛾𝑥𝑦𝑥𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 19 
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A- 20 

 

 

 

  

(a)                                                                   (b)                                                                   (c) 

Figure 21 Graph of DFE shape function 𝑵𝟏𝟎,  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and tenth Hermite shape function (c) over the plate element of Figure 3   
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𝑁11,𝜔

=
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))

4𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  4𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦)
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
−

(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) (𝑠𝑖𝑛(𝛾𝑥𝑦)

2
−  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)

2
)

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

+
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) +  2𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑠𝑖𝑛(𝛾𝑥𝑦)

2
+ 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  2𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
𝑥𝑠𝑖𝑛(𝛾𝑥𝑦)(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

+
𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 21 
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A- 22 

 

 

 

  

(a)                                                                   (b)                                                                   (c) 

Figure 22 Graph of DFE shape function derivative 
𝝏𝑵𝟏𝟏, 

𝝏𝒙
  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and eleventh Hermite shape function derivative with respect to 𝒙 (c) 

over the plate element of Figure 3     
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𝑁12,𝜔

=
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦))

4𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  4𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦)
−

𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)

4 (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

+
(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑥𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) +  𝑦𝑠𝑖𝑛(𝛾𝑥𝑦𝑥))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))
+

(𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) +  𝑐𝑜𝑠(𝛾𝑥𝑦𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
𝑥𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) ∗ (𝑐𝑜𝑠(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

4𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑦𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) (𝑠𝑖𝑛(𝛾𝑥𝑦)

2
−  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦)

2
)

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

−
(𝑐𝑜𝑠(𝛾𝑥𝑦𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑦)) (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) +  2𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦) +  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

+
𝑥 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑠𝑖𝑛(𝛾𝑥𝑦)

2
+ 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  2𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) − 𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) + 𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))

−
𝑦𝑠𝑖𝑛(𝛾𝑥𝑦) (𝑐𝑜𝑠(𝛾𝑥𝑦𝑥) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))

4 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) +  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

−
𝑦 (𝑠𝑖𝑛(𝛾𝑥𝑦𝑥) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦𝑥)) (𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦))

8𝛾𝑥𝑦 (𝑐𝑜𝑠(𝛾𝑥𝑦)𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝑐𝑜𝑠ℎ(𝛾𝑥𝑦)𝑠𝑖𝑛(𝛾𝑥𝑦))(𝑠𝑖𝑛(𝛾𝑥𝑦) −  𝑠𝑖𝑛ℎ(𝛾𝑥𝑦) −  𝛾𝑥𝑦𝑐𝑜𝑠(𝛾𝑥𝑦) +  𝛾𝑥𝑦𝑐𝑜𝑠ℎ(𝛾𝑥𝑦))
 

A- 23 
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𝑁12 = −
(𝑥 −  1)(𝑦 −  1)(𝑦 +  1)2

8
 

A- 24 

 

 

 

  

(a)                                                                   (b)                                                                   (c) 

Figure 23 Graph of DFE shape function derivative 
𝝏𝑵𝟏𝟐, 

𝝏𝒚
  for value of  𝜸𝒙𝒚 = 𝟏𝟎𝒆 − 𝟔 (a) and for value of  𝜸𝒙𝒚 = 𝟐 (b) and eleventh Hermite shape function derivative with respect to 𝒚 (c) 

over the plate element of Figure 3     
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APPENDIX B 
 

In this appendix, the DFE matrix developed is extended to plates of arbitrary shapes. The 

absence of area integrals in final form of the DFE equation is particularly important in this 

extension, as the cumbersome and inaccurate conversion of area integrals through Jacobian 

matrices is not required. The derivation in this appendix are not implemented over an element, 

and serve as a guideline for future DFE development with more enriched shape functions. 

To perform the extension, quadrilateral case shown in Figure 24b is considered as development 

framework. To arrive at a general method that can be applied to any quadrilateral, a mapping is 

used to convert the element variables to a reference square, called the natural coordinate system. 

By doing so, the final element evaluation will be performed in a universal reference frame, 

shown in Figure 24a regardless of element’s specific shape, and therefore can be used to develop 

a general algorithm for various geometries. Similar procedure can be followed for any geometry, 

as the quadrilateral relations do not influence the derivation process, and are used as an example. 

  

              (a)                          (b) 

Figure 24 Natural coordinate system (a) is used to map arbitrary shapes from element coordinate system (b) on a 2 by 2 square. 

 

For the quadrilateral shown above, the variables 𝑥 and 𝑦 from element coordinate system, can be 

related to the variables 𝜉 and η from natural coordinate system, using bi-linear relations: 

𝑥 = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜂 + 𝑎3𝜉𝜂         B- 1 

𝑦 = 𝑏0 + 𝑏1𝜉 + 𝑏2𝜂 + 𝑏3𝜉𝜂         B- 2       

where the coefficients 𝑎𝑖  and 𝑏𝑖 can be obtained by evaluating these relations for the nodes of the 

element. For 𝑎𝑖s for example: 
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[

𝑥1

𝑥2
𝑥3

𝑥4

] = [

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 1 −1

] [

𝑎0

𝑎1
𝑎2

𝑎3

]        B- 3        

The DFE stiffness matrix obtained in Equation 86, was developed for any arbitrary closed area in 

element domain. Using relationships between element and natural coordinate systems developed 

above, differentials of DFE matrix can be replaced with appropriate natural coordinate 

equivalent terms.  

The first integral, for example in Equation 86 is repeated here for explanation of the derivation: 

∮ (
𝜕𝑤

𝜕𝑥
) (

𝜕2𝛿𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝛿𝑤

𝜕𝑦2
)𝑛𝑦𝑑𝑠        B- 4 

In this integral, the term 𝑛𝑦𝑑𝑠 will translate to differential 𝑑𝑦, which is evaluated around the 

element boundaries in a counter clockwise positive sense. Using the chain rules this differential 

can be transformed from the element coordinate system to the natural coordinate system: 

𝑑𝑦 =
𝜕𝑦

𝜕𝜉
𝑑𝜉 +

𝜕𝑦

𝜕𝜂
𝑑𝜂 = (𝑏1 + 𝑏3𝜂)𝑑𝜉 + (𝑏2 + 𝑏3𝜉)𝑑𝜂    B- 5 

When evaluating the closed loop integrals, the bottom edge in natural coordinate system will 

have a positive sense for differential 𝑑𝜉, while for the top edge, the positive direction of 𝜉 will 

correspond to a clockwise rotation, and therefore should be considered with a negative sign. 

Thus, the top and bottom edge will contribute to the closed loop integral as: 

∫ [(
𝜕[𝑤]𝑇

𝜕𝑥
) (

𝜕2[𝑤]

𝜕𝑥2

1

−1
+𝜐

𝜕2[𝑤]

𝜕𝑦2
) (𝑏1 + 𝑏3𝜂)]

𝜂=1

𝜂=−1

𝑑𝜉     B- 6 

For the side edges, the positive sense of rotation will be mapped on the right edge of the mapping 

element, in natural coordinate system, and vice versa. Thus, the remaining edges are converted to 

the natural coordinate system as: 

∫ [(
𝜕[𝑤]𝑇

𝜕𝑥
) (

𝜕2[𝑤]

𝜕𝑥2

1

−1
+𝜐

𝜕2[𝑤]

𝜕𝑦2
) (𝑏2 + 𝑏3𝜉)]

𝜉=−1

𝜉=1

𝑑𝜂     B- 7 

Therefore, the first closed line integral of Equation 86 can be written as summation of two line 

integrals along opposite edges. If the displacement function can be defined such that the dynamic 

shape functions are solutions of the Kirchhoff’s plate equation in element coordinate system, this 

integral can be written as follows:  

∫ [(
𝜕[𝑁𝜔]𝑇

𝜕𝑥
)(

𝜕2[𝑁𝜔]

𝜕𝑥2

1

−1

+𝜐
𝜕2[𝑁𝜔]

𝜕𝑦2
) (𝑏1 + 𝑏3η)]

η=1

η=−1

𝑑𝜉 

+∫ [(
𝜕[𝑁𝜔]𝑇

𝜕𝑥
) (

𝜕2[𝑁𝜔]

𝜕𝑥2

1

−1
+𝜐

𝜕2[𝑁𝜔]

𝜕𝑦2
) (𝑏2 + 𝑏3𝜉)]

𝜉=−1

𝜉=1

𝑑𝜂     B- 8 
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In the above integrations, the shape function vector, [𝑁𝜔], and its element coordinate system 

derivatives, must be converted to the natural coordinate system as well, before the integration is 

performed. This can be done by evaluating the derivatives in the element coordinate system, and 

then replacing the variables 𝑥 and 𝑦 with the respective definitions in natural coordinate system.  

Following this approach for converting the remaining integrals, the six line integrals in  Equation 

86 can be written in natural coordinate system as 12 integrations: 

[𝐾𝜔]

𝐷
= ∫ [(

𝜕[𝑁𝜔]𝑇

𝜕𝑥
)(

𝜕2[𝑁𝜔]

𝜕𝑥2

1

−1

+𝜐
𝜕2[𝑁𝜔]

𝜕𝑦2
) (𝑏1 + 𝑏3𝜂)]

𝜂=1

𝜂=−1

𝑑𝜉 

+ ∫ [(
𝜕[𝑁𝜔]𝑇

𝜕𝑥
)(

𝜕2[𝑁𝜔]

𝜕𝑥2

1

−1

+𝜐
𝜕2[𝑁𝜔]

𝜕𝑦2
)(𝑏2 + 𝑏3𝜉)]

𝜉=−1

𝜉=1

𝑑𝜂 

− ∫ [((
𝜕[𝑁𝜔

𝑇]

𝜕𝑦
)(

𝜕2[𝛿𝑁𝜔]

𝜕𝑦2
+ 𝜐

𝜕2[𝛿𝑁𝜔]

𝜕𝑥2
))

1

−1

(𝑎1 + 𝑎3𝜂)]𝜂=1
𝜂=−1

𝑑𝜉 

− ∫ [((
𝜕[𝑁𝜔

𝑇]

𝜕𝑦
)(

𝜕2[𝛿𝑁𝜔]

𝜕𝑦2
+ 𝜐

𝜕2[𝛿𝑁𝜔]

𝜕𝑥2
))

1

−1

(𝑎2 + 𝑎3𝜉)]𝜉=−1
𝜉=1

𝑑𝜂 

+ ∫ [((1 − 𝜐)
𝜕[𝑁𝜔]𝑇

𝜕𝑦
)

1

−1

𝜕2𝛿[𝑁𝜔]

𝜕𝑥𝜕𝑦
) (𝑏1 + 𝑏3𝜂)]

𝜂=1

𝜂=−1

𝑑𝜉 

+ ∫ [((1 − 𝜐)
𝜕[𝑁𝜔]𝑇

𝜕𝑦
)

1

−1

𝜕2𝛿[𝑁𝜔]

𝜕𝑥𝜕𝑦
) (𝑏2 + 𝑏3𝜉)]

𝜉=−1

𝜉=1

𝑑𝜂 

− ∫ [(((1 − 𝜐)
𝜕[𝑁𝜔

𝑇]

𝜕𝑥
)

𝜕2[𝛿𝑁𝜔]

𝜕𝑥𝜕𝑦
)

1

−1

(𝑎1 + 𝑎3𝜂)]𝜂=1
𝜂=−1

𝑑𝜉 

− ∫ [(((1 − 𝜐)
𝜕[𝑁𝜔

𝑇]

𝜕𝑥
)

𝜕2[𝛿𝑁𝜔]

𝜕𝑥𝜕𝑦
)

1

−1

(𝑎2 + 𝑎3𝜉)]𝜉=−1
𝜉=1

𝑑𝜂 

− ∫ [([𝑁𝜔
𝑇])(

𝜕3[𝛿𝑁𝜔]

𝜕𝑥3
+

𝜕3[𝛿𝑁𝜔]

𝜕𝑥𝜕𝑦2
))(𝑏1 + 𝑏3𝜂)]

𝜂=1

𝜂=−1
1

−1

𝑑𝜉 

− ∫ [([𝑁𝜔
𝑇])(

𝜕3[𝛿𝑁𝜔]

𝜕𝑥3
+

𝜕3[𝛿𝑁𝜔]

𝜕𝑥𝜕𝑦2
) (𝑏2 + 𝑏3𝜉)]

𝜉=−1

𝜉=11

−1

𝑑𝜂 

+ ∫ [(([𝑁𝜔
𝑇]) (

𝜕3[𝛿𝑁𝜔]

𝜕𝑦3
+

𝜕3[𝛿𝑁𝜔]

𝜕𝑦𝜕𝑥2
)) (𝑎1 + 𝑎3𝜂)]

𝜂=1

𝜂=−1
1

−1

𝑑𝜉 
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+∫ [(([𝑁𝜔
𝑇]) (

𝜕3[𝛿𝑁𝜔]

𝜕𝑦3
+

𝜕3[𝛿𝑁𝜔]

𝜕𝑦𝜕𝑥2
)) (𝑎2 + 𝑎3𝜉)]

𝜉=−1

𝜉=1
1

−1
𝑑𝜂    B- 9 

 

It is important to note that the relationship between the natural and element coordinate system 

does not need to be bi-linear, and neither the geometry is restricted to quadrilaterals. The same 

procedure is applicable to any geometry and any relationship, as long as a mapping to the square 

reference geometry in natural coordinate system is obtainable. For example, a four-node element 

with curved edges can be mapped to natural coordinate system using quadrilateral or cubic 

relationships. 

The area integrals in Equation 86 were equated to zero in development of plate DFE. This 

reduction was possible for shape functions that were obtained from solutions of the governing 

differential equation of the plate. As such, for plates of arbitrary shapes, the shape functions must 

be defined in element coordinate system and then transformed to the natural coordinate system 

using variable substitution.  

Since Equation 86 was a mathematical manipulation of Galerkin’s symmetric FEM formulation 

in Equation 53, it will be symmetric as well and area integrals can be eliminated. On the other 

hand, if the shape functions used are not solution of plate equation, such eliminations will not be 

possible, and mapping will involve area integral transformations of Equation 53 to natural 

coordinate system, using Jacobian matrix. Since DFE shape functions are generally 

transcendental functions of natural frequency of vibration, the new mapped integrals are 

analytically difficult to evaluate and numerically error prone to calculate. 
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APPENDIX C 
  

Shape 

function 

calculation 

Basis 

function 

 

Shape 

function 

(Appendix B) 

K1matrix.m 

Mesh size (a) 

Poisson’s ratio (v) 

 

FEM12.m 

Element 

submatrices 

calculation 

Element 

matrix 

DFE12.m 

Mesh 

assembly 

Mesh 

matrix 

K1matrix 

Final_assmebler.m 

mesh4e.m 

Legend: 

---:FEM 

---:DFE 
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Shape function deriving file DFE12.m 
clc 
syms x 
syms y 
syms s 
syms t 
syms a_x 
syms b_y 
syms g_xy 
syms e_xy 
 

 
% % Mesh size 
a=1; 

 
%defining the interpolation functions 
X_1=cos(g_xy*x)+cos(g_xy*y); 
X_2=x*cos(g_xy*y); 
X_3=y*cos(g_xy*x); 
X_4=(cosh(g_xy*x)-cos(g_xy*x))/(g_xy^2); 
X_5=(x*sin(g_xy*y)+y*sin(g_xy*x))/(g_xy); 
X_6=(cosh(g_xy*y)-cos(g_xy*y))/(g_xy^2); 
X_7=(sinh(g_xy*x)-sin(g_xy*x))/(g_xy^3); 
X_8=((y)*cosh(g_xy*x)-(y)*cos(g_xy*x))/(g_xy^2); 
X_9=((x)*cosh(g_xy*y)-(x)*cos(g_xy*y))/(g_xy^2); 
X_10=(sinh(g_xy*y)-sin(g_xy*y))/(g_xy^3); 
X_11=((y)*sinh(g_xy*x)-(y)*sin(g_xy*x))/(g_xy^3); 
X_12=((x)*sinh(g_xy*y)-(x)*sin(g_xy*y))/(g_xy^3); 

  
% % interpolation function derivatives along x direction 
dsX_1=diff(X_1,x); 
dsX_2=diff(X_2,x); 
dsX_3=diff(X_3,x); 
dsX_4=diff(X_4,x); 
dsX_5=diff(X_5,x); 
dsX_6=diff(X_6,x); 
dsX_7=diff(X_7,x); 
dsX_8=diff(X_8,x); 
dsX_9=diff(X_9,x); 
dsX_10=diff(X_10,x); 
dsX_11=diff(X_11,x); 
dsX_12=diff(X_12,x); 
 

% % interpolation function derivatives along y direction 
dtX_1=diff(X_1,y); 
dtX_2=diff(X_2,y); 
dtX_3=diff(X_3,y); 
dtX_4=diff(X_4,y); 
dtX_5=diff(X_5,y); 
dtX_6=diff(X_6,y); 
dtX_7=diff(X_7,y); 
dtX_8=diff(X_8,y); 
dtX_9=diff(X_9,y); 
dtX_10=diff(X_10,y); 
dtX_11=diff(X_11,y); 
dtX_12=diff(X_12,y); 
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% % interpolation function mixed partial derivatives along x-y 
dstX_1=diff(dsX_1,y); 
dstX_2=diff(dsX_2,y); 
dstX_3=diff(dsX_3,y); 
dstX_4=diff(dsX_4,y); 
dstX_5=diff(dsX_5,y); 
dstX_6=diff(dsX_6,y); 
dstX_7=diff(dsX_7,y); 
dstX_8=diff(dsX_8,y); 
dstX_9=diff(dsX_9,y); 
dstX_10=diff(dsX_10,y); 
dstX_11=diff(dsX_11,y); 
dstX_12=diff(dsX_12,y); 
 

% % evaluating interpolation function and its derivatives at nodes 
% % bottom left corner 
x=sym(-1/a); 
y=sym(-1/a); 
N1_1=subs(X_1); 
N1_2=subs(X_2); 
N1_3=subs(X_3); 
N1_4=subs(X_4); 
N1_5=subs(X_5); 
N1_6=subs(X_6); 
N1_7=subs(X_7); 
N1_8=subs(X_8); 
N1_9=subs(X_9); 
N1_10=subs(X_10); 
N1_11=subs(X_11); 
N1_12=subs(X_12); 
N2_1=subs(dsX_1); 
N2_2=subs(dsX_2); 
N2_3=subs(dsX_3); 
N2_4=subs(dsX_4); 
N2_5=subs(dsX_5); 
N2_6=subs(dsX_6); 
N2_7=subs(dsX_7); 
N2_8=subs(dsX_8); 
N2_9=subs(dsX_9); 
N2_10=subs(dsX_10); 
N2_11=subs(dsX_11); 
N2_12=subs(dsX_12); 
N3_1=subs(dtX_1); 
N3_2=subs(dtX_2); 
N3_3=subs(dtX_3); 
N3_4=subs(dtX_4); 
N3_5=subs(dtX_5); 
N3_6=subs(dtX_6); 
N3_7=subs(dtX_7); 
N3_8=subs(dtX_8); 
N3_9=subs(dtX_9); 
N3_10=subs(dtX_10); 
N3_11=subs(dtX_11); 
N3_12=subs(dtX_12); 

 
% % bottom right corner 



 
 

91 
 

x=sym(1/a); 
y=sym(-1/a); 
N5_1=subs(X_1); 
N5_2=subs(X_2); 
N5_3=subs(X_3); 
N5_4=subs(X_4); 
N5_5=subs(X_5); 
N5_6=subs(X_6); 
N5_7=subs(X_7); 
N5_8=subs(X_8); 
N5_9=subs(X_9); 
N5_10=subs(X_10); 
N5_11=subs(X_11); 
N5_12=subs(X_12); 
N6_1=subs(dsX_1); 
N6_2=subs(dsX_2); 
N6_3=subs(dsX_3); 
N6_4=subs(dsX_4); 
N6_5=subs(dsX_5); 
N6_6=subs(dsX_6); 
N6_7=subs(dsX_7); 
N6_8=subs(dsX_8); 
N6_9=subs(dsX_9); 
N6_10=subs(dsX_10); 
N6_11=subs(dsX_11); 
N6_12=subs(dsX_12); 
N7_1=subs(dtX_1); 
N7_2=subs(dtX_2); 
N7_3=subs(dtX_3); 
N7_4=subs(dtX_4); 
N7_5=subs(dtX_5); 
N7_6=subs(dtX_6); 
N7_7=subs(dtX_7); 
N7_8=subs(dtX_8); 
N7_9=subs(dtX_9); 
N7_10=subs(dtX_10); 
N7_11=subs(dtX_11); 
N7_12=subs(dtX_12); 
 

% % top right corner 
x=sym(1/a); 
y=sym(1/a); 
N9_1=subs(X_1); 
N9_2=subs(X_2); 
N9_3=subs(X_3); 
N9_4=subs(X_4); 
N9_5=subs(X_5); 
N9_6=subs(X_6); 
N9_7=subs(X_7); 
N9_8=subs(X_8); 
N9_9=subs(X_9); 
N9_10=subs(X_10); 
N9_11=subs(X_11); 
N9_12=subs(X_12); 
N10_1=subs(dsX_1); 
N10_2=subs(dsX_2); 
N10_3=subs(dsX_3); 
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N10_4=subs(dsX_4); 
N10_5=subs(dsX_5); 
N10_6=subs(dsX_6); 
N10_7=subs(dsX_7); 
N10_8=subs(dsX_8); 
N10_9=subs(dsX_9); 
N10_10=subs(dsX_10); 
N10_11=subs(dsX_11); 
N10_12=subs(dsX_12); 
N11_1=subs(dtX_1); 
N11_2=subs(dtX_2); 
N11_3=subs(dtX_3); 
N11_4=subs(dtX_4); 
N11_5=subs(dtX_5); 
N11_6=subs(dtX_6); 
N11_7=subs(dtX_7); 
N11_8=subs(dtX_8); 
N11_9=subs(dtX_9); 
N11_10=subs(dtX_10); 
N11_11=subs(dtX_11); 
N11_12=subs(dtX_12); 

 
% % top left corner 
x=sym(-1/a); 
y=sym(1/a); 
N13_1=subs(X_1); 
N13_2=subs(X_2); 
N13_3=subs(X_3); 
N13_4=subs(X_4); 
N13_5=subs(X_5); 
N13_6=subs(X_6); 
N13_7=subs(X_7); 
N13_8=subs(X_8); 
N13_9=subs(X_9); 
N13_10=subs(X_10); 
N13_11=subs(X_11); 
N13_12=subs(X_12); 
N14_1=subs(dsX_1); 
N14_2=subs(dsX_2); 
N14_3=subs(dsX_3); 
N14_4=subs(dsX_4); 
N14_5=subs(dsX_5); 
N14_6=subs(dsX_6); 
N14_7=subs(dsX_7); 
N14_8=subs(dsX_8); 
N14_9=subs(dsX_9); 
N14_10=subs(dsX_10); 
N14_11=subs(dsX_11); 
N14_12=subs(dsX_12); 
N15_1=subs(dtX_1); 
N15_2=subs(dtX_2); 
N15_3=subs(dtX_3); 
N15_4=subs(dtX_4); 
N15_5=subs(dtX_5); 
N15_6=subs(dtX_6); 
N15_7=subs(dtX_7); 
N15_8=subs(dtX_8); 



 
 

93 
 

N15_9=subs(dtX_9); 
N15_10=subs(dtX_10); 
N15_11=subs(dtX_11); 
N15_12=subs(dtX_12); 
 

%combining all nodes results in a matrix 
N=[N1_1 N1_2 N1_3 N1_4 N1_5 N1_6 N1_7 N1_8 N1_9 N1_10 N1_11 N1_12;...  
   N2_1 N2_2 N2_3 N2_4 N2_5 N2_6 N2_7 N2_8 N2_9 N2_10 N2_11 N2_12;... 
   N3_1 N3_2 N3_3 N3_4 N3_5 N3_6 N3_7 N3_8 N3_9 N3_10 N3_11 N3_12; ... 

  
   N5_1 N5_2 N5_3 N5_4 N5_5 N5_6 N5_7 N5_8 N5_9 N5_10 N5_11 N5_12;... 
   N6_1 N6_2 N6_3 N6_4 N6_5 N6_6 N6_7 N6_8 N6_9 N6_10 N6_11 N6_12;... 
   N7_1 N7_2 N7_3 N7_4 N7_5 N7_6 N7_7 N7_8 N7_9 N7_10 N7_11 N7_12;... 

    
   N9_1 N9_2 N9_3 N9_4 N9_5 N9_6 N9_7 N9_8 N9_9 N9_10 N9_11 N9_12;... 
   N10_1 N10_2 N10_3 N10_4 N10_5 N10_6 N10_7 N10_8 N10_9 N10_10 N10_11 

N10_12;...  
   N11_1 N11_2 N11_3 N11_4 N11_5 N11_6 N11_7 N11_8 N11_9 N11_10 N11_11 

N11_12;... 

  
   N13_1 N13_2 N13_3 N13_4 N13_5 N13_6 N13_7 N13_8 N13_9 N13_10 N13_11 

N13_12;... 
   N14_1 N14_2 N14_3 N14_4 N14_5 N14_6 N14_7 N14_8 N14_9 N14_10 N14_11 

N14_12;...  
   N15_1 N15_2 N15_3 N15_4 N15_5 N15_6 N15_7 N15_8 N15_9 N15_10 N15_11 

N15_12]; 

  
% % generating augmented matrix 
r=[N eye(size(N))]; 
% % reduced row echelon applied to augmented matrix 
p=rref(r); 
% % extracting inverse matrix from the reduced row echelon resulting matrix 
 for i=1:12 
for j=1:12 
Ninv(i,j)=p(i,12+j); 
end 
 end 
% % simplifying inverse matrix 
  Q=simplify(Ninv); 
 

% % interpolation function trignometric components arranged in a matrix 
X=[X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_10 X_11 X_12]; 
% % shape function matrix 
shape=simplify(X*Ninv); 

  
save shapefunctionop shape X Q 
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First DFE submatrix file deriving file K1matrix.m (Similar files 

are developed for 9 other DFE integrations but are omitted here 

for brevity) 
clear  
clc 

  
 

syms x 
syms y 
syms g_xy 

 

  
% % Mesh size 
a=1; 

 
% % loading the shape function 
load shapefunctionop 
 

% % applying variable constraints for easier evaluation and reduced 

compitation time  
assume(x,'real') 
assume(y,'real') 
assume(g_xy,'real') 
assume(g_xy>0) 
 

% % generating derivatives vectors  
Diff1=simplify(diff(X,x)); 
Diff2=simplify(diff(X,y)); 
Diff3=simplify(diff(X,x,2)); 
Diff4=simplify(diff(diff(X,x),y)); 
Diff5=simplify(diff(X,y,2)); 
Diff6=simplify(diff(X,x,3)); 
Diff7=simplify(diff(diff(X,x,2),y)); 
Diff8=simplify(diff(diff(X,x),y,2)); 
Diff9=simplify(diff(X,y,3)); 
Diff_total=[Diff1;Diff2;Diff3;Diff4;Diff5;Diff6;Diff7;Diff8;Diff9]; 

 
% % calculating the first DFE matrix 
k1=transpose(Diff1)*Diff3; 
k1s=(subs(k1,x,sym(1/a))-subs(k1,x,sym(-1/a))); 
k11=int(k1s,y); 
K1=subs(k11,y,sym(1/a))-subs(k11,y,sym(-1/a)); 
 

% % simplifying the final form of first DFE matrix  
K1_f=simplify(K1,'IgnoreAnalyticConstraints',true); 

   
save K1matrix_f K1_f 
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DFE submatrices combiner to generate DFE stiffness matrix file 

Final_assembler.m 

clear  
clc 

  
 

syms x 
syms y 
syms g_xy 
 

v=0.3  

load shapefunctionop 

  
load K1matrix_f 
load K2matrix_f 
load K3matrix_f 
load K4matrix_f 
load K5matrix_f 
load K6matrix_f 
load K7matrix_f 
load K8matrix_f 
load K9matrix_f 
load K10matrix_f 

  
KnoV=K1_f+K4_f+K5_f+K6_f-K7_f-K8_f-K9_f-K10_f; 
KV=v*(K2_f+K3_f-K5_f-K6_f); 
kf=KnoV+KV; 
assume(x,'real') 
assume(y,'real') 
assume(g_xy,'real') 
assume(g_xy>0) 

  
% % calculating element DFE matrices  
KNOV=transpose(Q)*KnoV*Q; 
KV_interim=transpose(Q)*KV*Q; 
KF=transpose(Q)*kf*Q; 
 

% % simplifying element DFE matrices  
KNOV_f=sym(zeros(12)); 
KV_f=sym(zeros(12)); 
K_f=sym(zeros(12)); 

 

KNOV_f=simplify(KNOV); 

KV_f= simplify(KV_interim); 

K_f= simplify(KF); 

 
save KNOV_f 
save KV_f 
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4 element DFE mesh assembly file mesh4e.m (Similar files for 

other emsh sizes are developed but are not presented here for 

brevity. See FEM12 for reference) 
 

K_4e=sym(zeros(27)); 

  

  
% bottom left element 

  
K_4e([7 8 9 4 5 6 13 14 15 16 17 18],[7 8 9 4 5 6 13 14 15 16 17 18])=... 
    K_4e([7 8 9 4 5 6 13 14 15 16 17 18],[7 8 9 4 5 6 13 14 15 16 17 

18])+K_f; 

  
% bottom right element 

  
K_4e([4 5 6 1 2 3 10 11 12 13 14 15],[4 5 6 1 2 3 10 11 12 13 14 15])=... 
    K_4e([4 5 6 1 2 3 10 11 12 13 14 15],[4 5 6 1 2 3 10 11 12 13 14 

15])+K_f; 

  
% top right element 

  
K_4e([13 14 15 10 11 12 19 20 21 22 23 24],[13 14 15 10 11 12 19 20 21 22 23 

24])=... 
    K_4e([13 14 15 10 11 12 19 20 21 22 23 24],[13 14 15 10 11 12 19 20 21 22 

23 24])+K_f; 

  

  
% top left element 

  
K_4e([16 17 18 13 14 15 22 23 24 25 26 27],[16 17 18 13 14 15 22 23 24 25 26 

27])=... 
    K_4e([16 17 18 13 14 15 22 23 24 25 26 27],[16 17 18 13 14 15 22 23 24 25 

26 27])+K_f; 
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FEM analysis file FEM12.m 

 

clc 
syms x 
syms y 
syms s 
syms t 
syms g_xy 
syms g_xy4 

 

 

 

a=1; 

v=0.3; 

 

%defining the interpolation functions 
X_1=1; 
X_2=x; 
X_3=y; 
X_4=x^2; 
X_5=x*y; 
X_6=y^2; 
X_7=x^3; 
X_8=x^2*y; 
X_9=x*y^2; 
X_10=y^3; 
X_11=x^3*y; 
X_12=x*y^3; 

   
% % interpolation function derivatives along x direction 
dsX_1=diff(X_1,x); 
dsX_2=diff(X_2,x); 
dsX_3=diff(X_3,x); 
dsX_4=diff(X_4,x); 
dsX_5=diff(X_5,x); 
dsX_6=diff(X_6,x); 
dsX_7=diff(X_7,x); 
dsX_8=diff(X_8,x); 
dsX_9=diff(X_9,x); 
dsX_10=diff(X_10,x); 
dsX_11=diff(X_11,x); 
dsX_12=diff(X_12,x); 
 

% % interpolation function derivatives along y direction 
dtX_1=diff(X_1,y); 
dtX_2=diff(X_2,y); 
dtX_3=diff(X_3,y); 
dtX_4=diff(X_4,y); 
dtX_5=diff(X_5,y); 
dtX_6=diff(X_6,y); 
dtX_7=diff(X_7,y); 
dtX_8=diff(X_8,y); 
dtX_9=diff(X_9,y); 
dtX_10=diff(X_10,y); 
dtX_11=diff(X_11,y); 
dtX_12=diff(X_12,y); 
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% % interpolation function mixed partial derivatives along x-y 
dstX_1=diff(dsX_1,y); 
dstX_2=diff(dsX_2,y); 
dstX_3=diff(dsX_3,y); 
dstX_4=diff(dsX_4,y); 
dstX_5=diff(dsX_5,y); 
dstX_6=diff(dsX_6,y); 
dstX_7=diff(dsX_7,y); 
dstX_8=diff(dsX_8,y); 
dstX_9=diff(dsX_9,y); 
dstX_10=diff(dsX_10,y); 
dstX_11=diff(dsX_11,y); 
dstX_12=diff(dsX_12,y); 
 

% % evaluating interpolation function and its derivatives at nodes 

 
% % bottom left corner 
x=-(1/a); 
y=-(1/a); 
N1_1=subs(X_1); 
N1_2=subs(X_2); 
N1_3=subs(X_3); 
N1_4=subs(X_4); 
N1_5=subs(X_5); 
N1_6=subs(X_6); 
N1_7=subs(X_7); 
N1_8=subs(X_8); 
N1_9=subs(X_9); 
N1_10=subs(X_10); 
N1_11=subs(X_11); 
N1_12=subs(X_12); 
N2_1=subs(dsX_1); 
N2_2=subs(dsX_2); 
N2_3=subs(dsX_3); 
N2_4=subs(dsX_4); 
N2_5=subs(dsX_5); 
N2_6=subs(dsX_6); 
N2_7=subs(dsX_7); 
N2_8=subs(dsX_8); 
N2_9=subs(dsX_9); 
N2_10=subs(dsX_10); 
N2_11=subs(dsX_11); 
N2_12=subs(dsX_12); 
N3_1=subs(dtX_1); 
N3_2=subs(dtX_2); 
N3_3=subs(dtX_3); 
N3_4=subs(dtX_4); 
N3_5=subs(dtX_5); 
N3_6=subs(dtX_6); 
N3_7=subs(dtX_7); 
N3_8=subs(dtX_8); 
N3_9=subs(dtX_9); 
N3_10=subs(dtX_10); 
N3_11=subs(dtX_11); 
N3_12=subs(dtX_12); 
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% % bottom right corner 
x=(1/a); 
y=-(1/a); 
N5_1=subs(X_1); 
N5_2=subs(X_2); 
N5_3=subs(X_3); 
N5_4=subs(X_4); 
N5_5=subs(X_5); 
N5_6=subs(X_6); 
N5_7=subs(X_7); 
N5_8=subs(X_8); 
N5_9=subs(X_9); 
N5_10=subs(X_10); 
N5_11=subs(X_11); 
N5_12=subs(X_12); 
N6_1=subs(dsX_1); 
N6_2=subs(dsX_2); 
N6_3=subs(dsX_3); 
N6_4=subs(dsX_4); 
N6_5=subs(dsX_5); 
N6_6=subs(dsX_6); 
N6_7=subs(dsX_7); 
N6_8=subs(dsX_8); 
N6_9=subs(dsX_9); 
N6_10=subs(dsX_10); 
N6_11=subs(dsX_11); 
N6_12=subs(dsX_12); 
N7_1=subs(dtX_1); 
N7_2=subs(dtX_2); 
N7_3=subs(dtX_3); 
N7_4=subs(dtX_4); 
N7_5=subs(dtX_5); 
N7_6=subs(dtX_6); 
N7_7=subs(dtX_7); 
N7_8=subs(dtX_8); 
N7_9=subs(dtX_9); 
N7_10=subs(dtX_10); 
N7_11=subs(dtX_11); 
N7_12=subs(dtX_12); 

 
% % top right corner 
x=(1/a); 
y=(1/a); 
N9_1=subs(X_1); 
N9_2=subs(X_2); 
N9_3=subs(X_3); 
N9_4=subs(X_4); 
N9_5=subs(X_5); 
N9_6=subs(X_6); 
N9_7=subs(X_7); 
N9_8=subs(X_8); 
N9_9=subs(X_9); 
N9_10=subs(X_10); 
N9_11=subs(X_11); 
N9_12=subs(X_12); 
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N10_1=subs(dsX_1); 
N10_2=subs(dsX_2); 
N10_3=subs(dsX_3); 
N10_4=subs(dsX_4); 
N10_5=subs(dsX_5); 
N10_6=subs(dsX_6); 
N10_7=subs(dsX_7); 
N10_8=subs(dsX_8); 
N10_9=subs(dsX_9); 
N10_10=subs(dsX_10); 
N10_11=subs(dsX_11); 
N10_12=subs(dsX_12); 
N11_1=subs(dtX_1); 
N11_2=subs(dtX_2); 
N11_3=subs(dtX_3); 
N11_4=subs(dtX_4); 
N11_5=subs(dtX_5); 
N11_6=subs(dtX_6); 
N11_7=subs(dtX_7); 
N11_8=subs(dtX_8); 
N11_9=subs(dtX_9); 
N11_10=subs(dtX_10); 
N11_11=subs(dtX_11); 
N11_12=subs(dtX_12); 

 

% % top left corner 
x=-(1/a); 
y=(1/a); 
N13_1=subs(X_1); 
N13_2=subs(X_2); 
N13_3=subs(X_3); 
N13_4=subs(X_4); 
N13_5=subs(X_5); 
N13_6=subs(X_6); 
N13_7=subs(X_7); 
N13_8=subs(X_8); 
N13_9=subs(X_9); 
N13_10=subs(X_10); 
N13_11=subs(X_11); 
N13_12=subs(X_12); 
N14_1=subs(dsX_1); 
N14_2=subs(dsX_2); 
N14_3=subs(dsX_3); 
N14_4=subs(dsX_4); 
N14_5=subs(dsX_5); 
N14_6=subs(dsX_6); 
N14_7=subs(dsX_7); 
N14_8=subs(dsX_8); 
N14_9=subs(dsX_9); 
N14_10=subs(dsX_10); 
N14_11=subs(dsX_11); 
N14_12=subs(dsX_12); 
N15_1=subs(dtX_1); 
N15_2=subs(dtX_2); 
N15_3=subs(dtX_3); 
N15_4=subs(dtX_4); 
N15_5=subs(dtX_5); 
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N15_6=subs(dtX_6); 
N15_7=subs(dtX_7); 
N15_8=subs(dtX_8); 
N15_9=subs(dtX_9); 
N15_10=subs(dtX_10); 
N15_11=subs(dtX_11); 
N15_12=subs(dtX_12); 
 

%combining all nodes results in a matrix 
N=[N1_1 N1_2 N1_3 N1_4 N1_5 N1_6 N1_7 N1_8 N1_9 N1_10 N1_11 N1_12;...  
   N2_1 N2_2 N2_3 N2_4 N2_5 N2_6 N2_7 N2_8 N2_9 N2_10 N2_11 N2_12;... 
   N3_1 N3_2 N3_3 N3_4 N3_5 N3_6 N3_7 N3_8 N3_9 N3_10 N3_11 N3_12; ... 

  
   N5_1 N5_2 N5_3 N5_4 N5_5 N5_6 N5_7 N5_8 N5_9 N5_10 N5_11 N5_12;... 
   N6_1 N6_2 N6_3 N6_4 N6_5 N6_6 N6_7 N6_8 N6_9 N6_10 N6_11 N6_12;... 
   N7_1 N7_2 N7_3 N7_4 N7_5 N7_6 N7_7 N7_8 N7_9 N7_10 N7_11 N7_12;... 

    
   N9_1 N9_2 N9_3 N9_4 N9_5 N9_6 N9_7 N9_8 N9_9 N9_10 N9_11 N9_12;... 
   N10_1 N10_2 N10_3 N10_4 N10_5 N10_6 N10_7 N10_8 N10_9 N10_10 N10_11 

N10_12;...  
   N11_1 N11_2 N11_3 N11_4 N11_5 N11_6 N11_7 N11_8 N11_9 N11_10 N11_11 

N11_12;... 

  
   N13_1 N13_2 N13_3 N13_4 N13_5 N13_6 N13_7 N13_8 N13_9 N13_10 N13_11 

N13_12;... 
   N14_1 N14_2 N14_3 N14_4 N14_5 N14_6 N14_7 N14_8 N14_9 N14_10 N14_11 

N14_12;...  
   N15_1 N15_2 N15_3 N15_4 N15_5 N15_6 N15_7 N15_8 N15_9 N15_10 N15_11 

N15_12]; 

  
%generating augmented matrix 
r=[N eye(size(N))]; 
%reduced row echelon applied to augmented matrix 
p=rref(r); 
%extracting inverse matrix from the reduced row echelon resulting matrix 
 for i=1:12 
for j=1:12 
Ninv(i,j)=p(i,12+j); 
end 
 end 
 

% %  %interpolation function arranged in a matrix 
X=[X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_10 X_11 X_12]; 
 

%shape function matrix 
shape=simplify(X*Ninv); 

  

syms x 
syms y 
 

% % FEM shape function derivative matrices evaluation 

Diff1=simplify(diff(shape,x)); 
Diff2=simplify(diff(shape,y)); 
Diff3=simplify(diff(shape,x,2)); 
Diff4=simplify(diff(diff(shape,x),y)); 
Diff5=simplify(diff(shape,y,2)); 
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Diff6=simplify(diff(shape,x,3)); 
Diff7=simplify(diff(diff(shape,x,2),y)); 
Diff8=simplify(diff(diff(shape,x),y,2)); 
Diff9=simplify(diff(shape,y,3)); 
Diff_total=[Diff1;Diff2;Diff3;Diff4;Diff5;Diff6;Diff7;Diff8;Diff9]; 

  

 
% % FEM shape function derivative matrices evaluation 

k1=transpose(Diff3)*Diff3; 
k1y=int(k1,y); 
K1y=subs(k1y,y,sym(1/a))-subs(k1y,y,sym(-1/a)); 
k1x=int(K1y,x); 
K1x=subs(k1x,x,sym(1/a))-subs(k1x,x,sym(-1/a)); 
k1_f=simplify(K1x); 

  
k2=transpose(Diff5)*Diff3; 
k2y=int(k2,y); 
K2y=subs(k2y,y,sym(1/a))-subs(k2y,y,sym(-1/a)); 
k2x=int(K2y,x); 
K2x=subs(k2x,x,sym(1/a))-subs(k2x,x,sym(-1/a)); 
k2_f=simplify(K2x); 

  
k3=transpose(Diff4)*Diff4; 
k3y=int(k3,y); 
K3y=subs(k3y,y,sym(1/a))-subs(k3y,y,sym(-1/a)); 
k3x=int(K3y,x); 
K3x=subs(k3x,x,sym(1/a))-subs(k3x,x,sym(-1/a)); 
k3_f=simplify(K3x); 

  
k4_f=transpose(k2_f); 

  
k5=transpose(Diff5)*Diff5; 
k5y=int(k5,y); 
K5y=subs(k5y,y,sym(1/a))-subs(k5y,y,sym(-1/a)); 
k5x=int(K5y,x); 
K5x=subs(k5x,x,sym(1/a))-subs(k5x,x,sym(-1/a)); 
k5_f=simplify(K5x); 

  
k6=transpose(shape)*shape; 
k6y=int(k6,y); 
K6y=subs(k6y,y,sym(1/a))-subs(k6y,y,sym(-1/a)); 
k6x=int(K6y,x); 
K6x=subs(k6x,x,sym(1/a))-subs(k6x,x,sym(-1/a)); 
k6_f=simplify(K6x); 

  
k_f=k1_f+v*k2_f+2*(1-v)*k3_f+v*k4_f+k5_f; 
k_m=k6_f; 

  

  
% % % % % % % % % % % 4 element mesh 
if a=2 

  

K_4fe=sym(zeros(27)); 
K_4me=sym(zeros(27)); 
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% bottom left element 

  
K_4fe([7 8 9 4 5 6 13 14 15 16 17 18],[7 8 9 4 5 6 13 14 15 16 17 18])=... 
    K_4fe([7 8 9 4 5 6 13 14 15 16 17 18],[7 8 9 4 5 6 13 14 15 16 17 

18])+k_f; 

  
K_4me([7 8 9 4 5 6 13 14 15 16 17 18],[7 8 9 4 5 6 13 14 15 16 17 18])=... 
    K_4me([7 8 9 4 5 6 13 14 15 16 17 18],[7 8 9 4 5 6 13 14 15 16 17 

18])+k_m; 
% bottom right element 

  
K_4fe([4 5 6 1 2 3 10 11 12 13 14 15],[4 5 6 1 2 3 10 11 12 13 14 15])=... 
    K_4fe([4 5 6 1 2 3 10 11 12 13 14 15],[4 5 6 1 2 3 10 11 12 13 14 

15])+k_f; 

  
K_4me([4 5 6 1 2 3 10 11 12 13 14 15],[4 5 6 1 2 3 10 11 12 13 14 15])=... 
    K_4me([4 5 6 1 2 3 10 11 12 13 14 15],[4 5 6 1 2 3 10 11 12 13 14 

15])+k_m; 

  
% top right element 

  
K_4fe([13 14 15 10 11 12 19 20 21 22 23 24],[13 14 15 10 11 12 19 20 21 22 23 

24])=... 
    K_4fe([13 14 15 10 11 12 19 20 21 22 23 24],[13 14 15 10 11 12 19 20 21 

22 23 24])+k_f; 

  
K_4me([13 14 15 10 11 12 19 20 21 22 23 24],[13 14 15 10 11 12 19 20 21 22 23 

24])=... 
    K_4me([13 14 15 10 11 12 19 20 21 22 23 24],[13 14 15 10 11 12 19 20 21 

22 23 24])+k_m; 

  
% top left element 

  
K_4fe([16 17 18 13 14 15 22 23 24 25 26 27],[16 17 18 13 14 15 22 23 24 25 26 

27])=... 
    K_4fe([16 17 18 13 14 15 22 23 24 25 26 27],[16 17 18 13 14 15 22 23 24 

25 26 27])+k_f; 

  
K_4me([16 17 18 13 14 15 22 23 24 25 26 27],[16 17 18 13 14 15 22 23 24 25 26 

27])=... 
    K_4me([16 17 18 13 14 15 22 23 24 25 26 27],[16 17 18 13 14 15 22 23 24 

25 26 27])+k_m; 

  
% % % % % % % % % % % % % % % %  
end 

 

  
if a=3 
% % % % % % % % 9 element mesh 

  
K_9fe=sym(zeros(48)); 
K_9me=sym(zeros(48)); 

  



 
 

104 
 

% % bottom left element 

  
K_9fe([10 11 12 7 8 9 19 20 21 22 23 24],[10 11 12 7 8 9 19 20 21 22 23 

24])=... 
    K_9fe([10 11 12 7 8 9 19 20 21 22 23 24],[10 11 12 7 8 9 19 20 21 22 23 

24])+k_f; 

  
K_9me([10 11 12 7 8 9 19 20 21 22 23 24],[10 11 12 7 8 9 19 20 21 22 23 

24])=... 
    K_9me([10 11 12 7 8 9 19 20 21 22 23 24],[10 11 12 7 8 9 19 20 21 22 23 

24])+k_m; 
% % bottom middle element 

  

K_9fe([7 8 9 4 5 6 16 17 18 19 20 21],[7 8 9 4 5 6 16 17 18 19 20 21])=... 
    K_9fe([7 8 9 4 5 6 16 17 18 19 20 21],[7 8 9 4 5 6 16 17 18 19 20 

21])+k_f; 

  
K_9me([7 8 9 4 5 6 16 17 18 19 20 21],[7 8 9 4 5 6 16 17 18 19 20 21])=... 
    K_9me([7 8 9 4 5 6 16 17 18 19 20 21],[7 8 9 4 5 6 16 17 18 19 20 

21])+k_m; 
% % bottom right element 

  
K_9fe([4 5 6 1 2 3 13 14 15 16 17 18],[4 5 6 1 2 3 13 14 15 16 17 18])=... 
    K_9fe([4 5 6 1 2 3 13 14 15 16 17 18],[4 5 6 1 2 3 13 14 15 16 17 

18])+k_f; 

  
K_9me([4 5 6 1 2 3 13 14 15 16 17 18],[4 5 6 1 2 3 13 14 15 16 17 18])=... 
    K_9me([4 5 6 1 2 3 13 14 15 16 17 18],[4 5 6 1 2 3 13 14 15 16 17 

18])+k_m; 
% % middle left element 

  
K_9fe([22 23 24 19 20 21 31 32 33 34 35 36],[22 23 24 19 20 21 31 32 33 34 35 

36])=... 
    K_9fe([22 23 24 19 20 21 31 32 33 34 35 36],[22 23 24 19 20 21 31 32 33 

34 35 36])+k_f; 

  
K_9me([22 23 24 19 20 21 31 32 33 34 35 36],[22 23 24 19 20 21 31 32 33 34 35 

36])=... 
    K_9me([22 23 24 19 20 21 31 32 33 34 35 36],[22 23 24 19 20 21 31 32 33 

34 35 36])+k_m; 
% % middle middle element 

  
K_9fe([19 20 21 16 17 18 28 29 30 31 32 33],[19 20 21 16 17 18 28 29 30 31 32 

33])=... 
    K_9fe([19 20 21 16 17 18 28 29 30 31 32 33],[19 20 21 16 17 18 28 29 30 

31 32 33])+k_f; 

  
K_9me([19 20 21 16 17 18 28 29 30 31 32 33],[19 20 21 16 17 18 28 29 30 31 32 

33])=... 
    K_9me([19 20 21 16 17 18 28 29 30 31 32 33],[19 20 21 16 17 18 28 29 30 

31 32 33])+k_m; 
% % middle right element 

  
K_9fe([16 17 18 13 14 15 25 26 27 28 29 30],[16 17 18 13 14 15 25 26 27 28 29 

30])=... 
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    K_9fe([16 17 18 13 14 15 25 26 27 28 29 30],[16 17 18 13 14 15 25 26 27 

28 29 30])+k_f; 

  
K_9me([16 17 18 13 14 15 25 26 27 28 29 30],[16 17 18 13 14 15 25 26 27 28 29 

30])=... 
    K_9me([16 17 18 13 14 15 25 26 27 28 29 30],[16 17 18 13 14 15 25 26 27 

28 29 30])+k_m; 

  
% % top right element 

  
K_9fe([28 29 30 25 26 27 37 38 39 40 41 42],[28 29 30 25 26 27 37 38 39 40 41 

42])=... 
    K_9fe([28 29 30 25 26 27 37 38 39 40 41 42],[28 29 30 25 26 27 37 38 39 

40 41 42])+k_f; 

  
K_9me([28 29 30 25 26 27 37 38 39 40 41 42],[28 29 30 25 26 27 37 38 39 40 41 

42])=... 
    K_9me([28 29 30 25 26 27 37 38 39 40 41 42],[28 29 30 25 26 27 37 38 39 

40 41 42])+k_m; 
% % top middle element 

  
K_9fe([31 32 33 28 29 30 40 41 42 43 44 45],[31 32 33 28 29 30 40 41 42 43 44 

45])=... 
    K_9fe([31 32 33 28 29 30 40 41 42 43 44 45],[31 32 33 28 29 30 40 41 42 

43 44 45])+k_f; 

  
K_9me([31 32 33 28 29 30 40 41 42 43 44 45],[31 32 33 28 29 30 40 41 42 43 44 

45])=... 
    K_9me([31 32 33 28 29 30 40 41 42 43 44 45],[31 32 33 28 29 30 40 41 42 

43 44 45])+k_m; 

  
% top left element 

  
K_9fe([34 35 36 31 32 33 43 44 45 46 47 48],[34 35 36 31 32 33 43 44 45 46 47 

48])=... 
    K_9fe([34 35 36 31 32 33 43 44 45 46 47 48],[34 35 36 31 32 33 43 44 45 

46 47 48])+k_f; 

  
K_9me([34 35 36 31 32 33 43 44 45 46 47 48],[34 35 36 31 32 33 43 44 45 46 47 

48])=... 
    K_9me([34 35 36 31 32 33 43 44 45 46 47 48],[34 35 36 31 32 33 43 44 45 

46 47 48])+k_m; 

  
% % % % % % % % % % % % % % % % %  
 

end 

 

  

  
if a=4 
% % % % % % % % % % % % % % % % % % % 16 element mesh  
K_16fe=sym(zeros(75)); 
K_16me=sym(zeros(75)); 

  



 
 

106 
 

% % element 1 

  
K_16fe([4 5 6 1 2 3 16 17 18 19 20 21],[4 5 6 1 2 3 16 17 18 19 20 21])=... 
    K_16fe([4 5 6 1 2 3 16 17 18 19 20 21],[4 5 6 1 2 3 16 17 18 19 20 

21])+k_f; 

  
K_16me([4 5 6 1 2 3 16 17 18 19 20 21],[4 5 6 1 2 3 16 17 18 19 20 21])=... 
    K_16me([4 5 6 1 2 3 16 17 18 19 20 21],[4 5 6 1 2 3 16 17 18 19 20 

21])+k_m; 

  
% % element 2 

  
K_16fe([7 8 9 4 5 6 19 20 21 22 23 24],[7 8 9 4 5 6 19 20 21 22 23 24])=... 
    K_16fe([7 8 9 4 5 6 19 20 21 22 23 24],[7 8 9 4 5 6 19 20 21 22 23 

24])+k_f; 

  
K_16me([7 8 9 4 5 6 19 20 21 22 23 24],[7 8 9 4 5 6 19 20 21 22 23 24])=... 
    K_16me([7 8 9 4 5 6 19 20 21 22 23 24],[7 8 9 4 5 6 19 20 21 22 23 

24])+k_m; 

  
% % element 3 

  
K_16fe([10 11 12 7 8 9 22 23 24 25 26 27],[10 11 12 7 8 9 22 23 24 25 26 

27])=... 
    K_16fe([10 11 12 7 8 9 22 23 24 25 26 27],[10 11 12 7 8 9 22 23 24 25 26 

27])+k_f; 

  
K_16me([10 11 12 7 8 9 22 23 24 25 26 27],[10 11 12 7 8 9 22 23 24 25 26 

27])=... 
    K_16me([10 11 12 7 8 9 22 23 24 25 26 27],[10 11 12 7 8 9 22 23 24 25 26 

27])+k_m; 

  
% % element 4 

  
K_16fe([13 14 15 10 11 12 25 26 27 28 29 30],[13 14 15 10 11 12 25 26 27 28 

29 30])=... 
    K_16fe([13 14 15 10 11 12 25 26 27 28 29 30],[13 14 15 10 11 12 25 26 27 

28 29 30])+k_f; 

  
K_16me([13 14 15 10 11 12 25 26 27 28 29 30],[13 14 15 10 11 12 25 26 27 28 

29 30])=... 
    K_16me([13 14 15 10 11 12 25 26 27 28 29 30],[13 14 15 10 11 12 25 26 27 

28 29 30])+k_m; 

  
% % element 5 

  
K_16fe([19 20 21 16 17 18 31 32 33 34 35 36],[19 20 21 16 17 18 31 32 33 34 

35 36])=... 
    K_16fe([19 20 21 16 17 18 31 32 33 34 35 36],[19 20 21 16 17 18 31 32 33 

34 35 36])+k_f; 

  

K_16me([19 20 21 16 17 18 31 32 33 34 35 36],[19 20 21 16 17 18 31 32 33 34 

35 36])=... 
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    K_16me([19 20 21 16 17 18 31 32 33 34 35 36],[19 20 21 16 17 18 31 32 33 

34 35 36])+k_m; 

  
% % element 6 

  
K_16fe([22 23 24 19 20 21 34 35 36 37 38 39],[22 23 24 19 20 21 34 35 36 37 

38 39])=... 
    K_16fe([22 23 24 19 20 21 34 35 36 37 38 39],[22 23 24 19 20 21 34 35 36 

37 38 39])+k_f; 

  
K_16me([22 23 24 19 20 21 34 35 36 37 38 39],[22 23 24 19 20 21 34 35 36 37 

38 39])=... 
    K_16me([22 23 24 19 20 21 34 35 36 37 38 39],[22 23 24 19 20 21 34 35 36 

37 38 39])+k_m; 

  
% % element 7 

  
K_16fe([25 26 27 22 23 24 37 38 39 40 41 42],[25 26 27 22 23 24 37 38 39 40 

41 42])=... 
    K_16fe([25 26 27 22 23 24 37 38 39 40 41 42],[25 26 27 22 23 24 37 38 39 

40 41 42])+k_f; 

  
K_16me([25 26 27 22 23 24 37 38 39 40 41 42],[25 26 27 22 23 24 37 38 39 40 

41 42])=... 
    K_16me([25 26 27 22 23 24 37 38 39 40 41 42],[25 26 27 22 23 24 37 38 39 

40 41 42])+k_m; 

  
% % element 8 

  
K_16fe([28 29 30 25 26 27 40 41 42 43 44 45],[28 29 30 25 26 27 40 41 42 43 

44 45])=... 
    K_16fe([28 29 30 25 26 27 40 41 42 43 44 45],[28 29 30 25 26 27 40 41 42 

43 44 45])+k_f; 

  
K_16me([28 29 30 25 26 27 40 41 42 43 44 45],[28 29 30 25 26 27 40 41 42 43 

44 45])=... 
    K_16me([28 29 30 25 26 27 40 41 42 43 44 45],[28 29 30 25 26 27 40 41 42 

43 44 45])+k_m; 

  
% % element 9 

  
K_16fe([34 35 36 31 32 33 46 47 48 49 50 51],[34 35 36 31 32 33 46 47 48 49 

50 51])=... 
    K_16fe([34 35 36 31 32 33 46 47 48 49 50 51],[34 35 36 31 32 33 46 47 48 

49 50 51])+k_f; 

  

K_16me([34 35 36 31 32 33 46 47 48 49 50 51],[34 35 36 31 32 33 46 47 48 49 

50 51])=... 
    K_16me([34 35 36 31 32 33 46 47 48 49 50 51],[34 35 36 31 32 33 46 47 48 

49 50 51])+k_m; 

  
% % element 10 
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K_16fe([37 38 39 34 35 36 49 50 51 52 53 54],[37 38 39 34 35 36 49 50 51 52 

53 54])=... 
    K_16fe([37 38 39 34 35 36 49 50 51 52 53 54],[37 38 39 34 35 36 49 50 51 

52 53 54])+k_f; 

  
K_16me([37 38 39 34 35 36 49 50 51 52 53 54],[37 38 39 34 35 36 49 50 51 52 

53 54])=... 
    K_16me([37 38 39 34 35 36 49 50 51 52 53 54],[37 38 39 34 35 36 49 50 51 

52 53 54])+k_m; 

  
% % element 11 

  
K_16fe([40 41 42 37 38 39 52 53 54 55 56 57],[40 41 42 37 38 39 52 53 54 55 

56 57])=... 
    K_16fe([40 41 42 37 38 39 52 53 54 55 56 57],[40 41 42 37 38 39 52 53 54 

55 56 57])+k_f; 

  
K_16me([40 41 42 37 38 39 52 53 54 55 56 57],[40 41 42 37 38 39 52 53 54 55 

56 57])=... 
    K_16me([40 41 42 37 38 39 52 53 54 55 56 57],[40 41 42 37 38 39 52 53 54 

55 56 57])+k_m; 

  
% % element 12 

  

K_16fe([43 44 45 40 41 42 55 56 57 58 59 60],[43 44 45 40 41 42 55 56 57 58 

59 60])=... 
    K_16fe([43 44 45 40 41 42 55 56 57 58 59 60],[43 44 45 40 41 42 55 56 57 

58 59 60])+k_f; 

  
K_16me([43 44 45 40 41 42 55 56 57 58 59 60],[43 44 45 40 41 42 55 56 57 58 

59 60])=... 
    K_16me([43 44 45 40 41 42 55 56 57 58 59 60],[43 44 45 40 41 42 55 56 57 

58 59 60])+k_m; 

  
% % element 13 

  
K_16fe([49 50 51 46 47 48 61 62 63 64 65 66],[49 50 51 46 47 48 61 62 63 64 

65 66])=... 
    K_16fe([49 50 51 46 47 48 61 62 63 64 65 66],[49 50 51 46 47 48 61 62 63 

64 65 66])+k_f; 

  
K_16me([49 50 51 46 47 48 61 62 63 64 65 66],[49 50 51 46 47 48 61 62 63 64 

65 66])=... 
    K_16me([49 50 51 46 47 48 61 62 63 64 65 66],[49 50 51 46 47 48 61 62 63 

64 65 66])+k_m; 

  
% % element 14 

  
K_16fe([52 53 54 49 50 51 64 65 66 67 68 69],[52 53 54 49 50 51 64 65 66 67 

68 69])=... 
    K_16fe([52 53 54 49 50 51 64 65 66 67 68 69],[52 53 54 49 50 51 64 65 66 

67 68 69])+k_f; 
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K_16me([52 53 54 49 50 51 64 65 66 67 68 69],[52 53 54 49 50 51 64 65 66 67 

68 69])=... 
    K_16me([52 53 54 49 50 51 64 65 66 67 68 69],[52 53 54 49 50 51 64 65 66 

67 68 69])+k_m; 

  
% % element 15 

  
K_16fe([55 56 57 52 53 54 67 68 69 70 71 72],[55 56 57 52 53 54 67 68 69 70 

71 72])=... 
    K_16fe([55 56 57 52 53 54 67 68 69 70 71 72],[55 56 57 52 53 54 67 68 69 

70 71 72])+k_f; 

  
K_16me([55 56 57 52 53 54 67 68 69 70 71 72],[55 56 57 52 53 54 67 68 69 70 

71 72])=... 
    K_16me([55 56 57 52 53 54 67 68 69 70 71 72],[55 56 57 52 53 54 67 68 69 

70 71 72])+k_m; 

  
% % element 16 

  
K_16fe([58 59 60 55 56 57 70 71 72 73 74 75],[58 59 60 55 56 57 70 71 72 73 

74 75])=... 
    K_16fe([58 59 60 55 56 57 70 71 72 73 74 75],[58 59 60 55 56 57 70 71 72 

73 74 75])+k_f; 

  

K_16me([58 59 60 55 56 57 70 71 72 73 74 75],[58 59 60 55 56 57 70 71 72 73 

74 75])=... 
    K_16me([58 59 60 55 56 57 70 71 72 73 74 75],[58 59 60 55 56 57 70 71 72 

73 74 75])+k_m; 

  
% % % % % % % % % % % % %  
end 

  
if a=5 
% % % % % % % % % % % % % % % % % % % 25 element mesh  
K_25fe=sym(zeros(108)); 
K_25me=sym(zeros(108)); 

  
% % % element 1 
 K_25fe([4 5 6 1 2 3 19 20 21 22 23 24],[4 5 6 1 2 3 19 20 21 22 23 24])=... 
    K_25fe([4 5 6 1 2 3 19 20 21 22 23 24],[4 5 6 1 2 3 19 20 21 22 23 

24])+k_f; 

  
K_25me([4 5 6 1 2 3 19 20 21 22 23 24],[4 5 6 1 2 3 19 20 21 22 23 24])=... 
    K_25me([4 5 6 1 2 3 19 20 21 22 23 24],[4 5 6 1 2 3 19 20 21 22 23 

24])+k_m; 

  
% % % element 2 
 K_25fe([7 8 9 4 5 6 22 23 24 25 26 27],[7 8 9 4 5 6 22 23 24 25 26 27])=... 
    K_25fe([7 8 9 4 5 6 22 23 24 25 26 27],[7 8 9 4 5 6 22 23 24 25 26 

27])+k_f; 

  
K_25me([7 8 9 4 5 6 22 23 24 25 26 27],[7 8 9 4 5 6 22 23 24 25 26 27])=... 
    K_25me([7 8 9 4 5 6 22 23 24 25 26 27],[7 8 9 4 5 6 22 23 24 25 26 

27])+k_m; 
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% % % element 3 
 K_25fe([10 11 12 7 8 9 25 26 27 28 29 30],[10 11 12 7 8 9 25 26 27 28 29 

30])=... 
    K_25fe([10 11 12 7 8 9 25 26 27 28 29 30],[10 11 12 7 8 9 25 26 27 28 29 

30])+k_f; 

  
K_25me([10 11 12 7 8 9 25 26 27 28 29 30],[10 11 12 7 8 9 25 26 27 28 29 

30])=... 
    K_25me([10 11 12 7 8 9 25 26 27 28 29 30],[10 11 12 7 8 9 25 26 27 28 29 

30])+k_m; 

  
% % % element 4 
 K_25fe([13 14 15 10 11 12 28 29 30 31 32 33],[13 14 15 10 11 12 28 29 30 31 

32 33])=... 
    K_25fe([13 14 15 10 11 12 28 29 30 31 32 33],[13 14 15 10 11 12 28 29 30 

31 32 33])+k_f; 

  
K_25me([13 14 15 10 11 12 28 29 30 31 32 33],[13 14 15 10 11 12 28 29 30 31 

32 33])=... 
    K_25me([13 14 15 10 11 12 28 29 30 31 32 33],[13 14 15 10 11 12 28 29 30 

31 32 33])+k_m; 

  
% % % element 5 
 K_25fe([16 17 18 13 14 15 31 32 33 34 35 36],[16 17 18 13 14 15 31 32 33 34 

35 36])=... 
    K_25fe([16 17 18 13 14 15 31 32 33 34 35 36],[16 17 18 13 14 15 31 32 33 

34 35 36])+k_f; 

  
K_25me([16 17 18 13 14 15 31 32 33 34 35 36],[16 17 18 13 14 15 31 32 33 34 

35 36])=... 
    K_25me([16 17 18 13 14 15 31 32 33 34 35 36],[16 17 18 13 14 15 31 32 33 

34 35 36])+k_m; 

  
% % % element 6 
 K_25fe([22 23 24 19 20 21 37 38 39 40 41 42],[22 23 24 19 20 21 37 38 39 40 

41 42])=... 
    K_25fe([22 23 24 19 20 21 37 38 39 40 41 42],[22 23 24 19 20 21 37 38 39 

40 41 42])+k_f; 

  
K_25me([22 23 24 19 20 21 37 38 39 40 41 42],[22 23 24 19 20 21 37 38 39 40 

41 42])=... 
    K_25me([22 23 24 19 20 21 37 38 39 40 41 42],[22 23 24 19 20 21 37 38 39 

40 41 42])+k_m; 

  
% % % element 7 
 K_25fe([25 26 27 22 23 24 40 41 42 43 44 45],[25 26 27 22 23 24 40 41 42 43 

44 45])=... 
    K_25fe([25 26 27 22 23 24 40 41 42 43 44 45],[25 26 27 22 23 24 40 41 42 

43 44 45])+k_f; 

  
K_25me([25 26 27 22 23 24 40 41 42 43 44 45],[25 26 27 22 23 24 40 41 42 43 

44 45])=... 
    K_25me([25 26 27 22 23 24 40 41 42 43 44 45],[25 26 27 22 23 24 40 41 42 

43 44 45])+k_m; 
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% % % element 8 
 K_25fe([28 29 30 25 26 27 43 44 45 46 47 48],[28 29 30 25 26 27 43 44 45 46 

47 48])=... 
    K_25fe([28 29 30 25 26 27 43 44 45 46 47 48],[28 29 30 25 26 27 43 44 45 

46 47 48])+k_f; 

  
K_25me([28 29 30 25 26 27 43 44 45 46 47 48],[28 29 30 25 26 27 43 44 45 46 

47 48])=... 
    K_25me([28 29 30 25 26 27 43 44 45 46 47 48],[28 29 30 25 26 27 43 44 45 

46 47 48])+k_m; 

  
% % % element 9 
 K_25fe([31 32 33 28 29 30 46 47 48 49 50 51],[31 32 33 28 29 30 46 47 48 49 

50 51])=... 
    K_25fe([31 32 33 28 29 30 46 47 48 49 50 51],[31 32 33 28 29 30 46 47 48 

49 50 51])+k_f; 

  
K_25me([31 32 33 28 29 30 46 47 48 49 50 51],[31 32 33 28 29 30 46 47 48 49 

50 51])=... 
    K_25me([31 32 33 28 29 30 46 47 48 49 50 51],[31 32 33 28 29 30 46 47 48 

49 50 51])+k_m; 

  
% % % element 10 
 K_25fe([34 35 36 31 32 33 49 50 51 52 53 54],[34 35 36 31 32 33 49 50 51 52 

53 54])=... 
    K_25fe([34 35 36 31 32 33 49 50 51 52 53 54],[34 35 36 31 32 33 49 50 51 

52 53 54])+k_f; 

  
K_25me([34 35 36 31 32 33 49 50 51 52 53 54],[34 35 36 31 32 33 49 50 51 52 

53 54])=... 
    K_25me([34 35 36 31 32 33 49 50 51 52 53 54],[34 35 36 31 32 33 49 50 51 

52 53 54])+k_m; 

  
% % % element 11 
 K_25fe([40 41 42 37 38 39 55 56 57 58 59 60],[40 41 42 37 38 39 55 56 57 58 

59 60])=... 
    K_25fe([40 41 42 37 38 39 55 56 57 58 59 60],[40 41 42 37 38 39 55 56 57 

58 59 60])+k_f; 

  
K_25me([40 41 42 37 38 39 55 56 57 58 59 60],[40 41 42 37 38 39 55 56 57 58 

59 60])=... 
    K_25me([40 41 42 37 38 39 55 56 57 58 59 60],[40 41 42 37 38 39 55 56 57 

58 59 60])+k_m; 

  
% % % element 12 
 K_25fe([43 44 45 40 41 42 58 59 60 61 62 63],[43 44 45 40 41 42 58 59 60 61 

62 63])=... 
    K_25fe([43 44 45 40 41 42 58 59 60 61 62 63],[43 44 45 40 41 42 58 59 60 

61 62 63])+k_f; 

  
K_25me([43 44 45 40 41 42 58 59 60 61 62 63],[43 44 45 40 41 42 58 59 60 61 

62 63])=... 
    K_25me([43 44 45 40 41 42 58 59 60 61 62 63],[43 44 45 40 41 42 58 59 60 

61 62 63])+k_m; 
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% % % element 13 
 K_25fe([46 47 48 43 44 45 61 62 63 64 65 66],[46 47 48 43 44 45 61 62 63 64 

65 66])=... 
    K_25fe([46 47 48 43 44 45 61 62 63 64 65 66],[46 47 48 43 44 45 61 62 63 

64 65 66])+k_f; 

  
K_25me([46 47 48 43 44 45 61 62 63 64 65 66],[46 47 48 43 44 45 61 62 63 64 

65 66])=... 
    K_25me([46 47 48 43 44 45 61 62 63 64 65 66],[46 47 48 43 44 45 61 62 63 

64 65 66])+k_m; 

  
% % % element 14 
 K_25fe([49 50 51 46 47 48 64 65 66 67 68 69],[49 50 51 46 47 48 64 65 66 67 

68 69])=... 
    K_25fe([49 50 51 46 47 48 64 65 66 67 68 69],[49 50 51 46 47 48 64 65 66 

67 68 69])+k_f; 

  
K_25me([49 50 51 46 47 48 64 65 66 67 68 69],[49 50 51 46 47 48 64 65 66 67 

68 69])=... 
    K_25me([49 50 51 46 47 48 64 65 66 67 68 69],[49 50 51 46 47 48 64 65 66 

67 68 69])+k_m; 

  
% % % element 15 
 K_25fe([52 53 54 49 50 51 67 68 69 70 71 72],[52 53 54 49 50 51 67 68 69 70 

71 72])=... 
    K_25fe([52 53 54 49 50 51 67 68 69 70 71 72],[52 53 54 49 50 51 67 68 69 

70 71 72])+k_f; 

  
K_25me([52 53 54 49 50 51 67 68 69 70 71 72],[52 53 54 49 50 51 67 68 69 70 

71 72])=... 
    K_25me([52 53 54 49 50 51 67 68 69 70 71 72],[52 53 54 49 50 51 67 68 69 

70 71 72])+k_m; 

  
% % % element 16 
 K_25fe([58 59 60 55 56 57 73 74 75 76 77 78],[58 59 60 55 56 57 73 74 75 76 

77 78])=... 
    K_25fe([58 59 60 55 56 57 73 74 75 76 77 78],[58 59 60 55 56 57 73 74 75 

76 77 78])+k_f; 

  
K_25me([58 59 60 55 56 57 73 74 75 76 77 78],[58 59 60 55 56 57 73 74 75 76 

77 78])=... 
    K_25me([58 59 60 55 56 57 73 74 75 76 77 78],[58 59 60 55 56 57 73 74 75 

76 77 78])+k_m; 

  
% % % element 17 
 K_25fe([61 62 63 58 59 60 76 77 78 79 80 81],[61 62 63 58 59 60 76 77 78 79 

80 81])=... 
    K_25fe([61 62 63 58 59 60 76 77 78 79 80 81],[61 62 63 58 59 60 76 77 78 

79 80 81])+k_f; 

  
K_25me([61 62 63 58 59 60 76 77 78 79 80 81],[61 62 63 58 59 60 76 77 78 79 

80 81])=... 
    K_25me([61 62 63 58 59 60 76 77 78 79 80 81],[61 62 63 58 59 60 76 77 78 

79 80 81])+k_m; 
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% % % element 18 
 K_25fe([64 65 66 61 62 63 79 80 81 82 83 84],[64 65 66 61 62 63 79 80 81 82 

83 84])=... 
    K_25fe([64 65 66 61 62 63 79 80 81 82 83 84],[64 65 66 61 62 63 79 80 81 

82 83 84])+k_f; 

  
K_25me([64 65 66 61 62 63 79 80 81 82 83 84],[64 65 66 61 62 63 79 80 81 82 

83 84])=... 
    K_25me([64 65 66 61 62 63 79 80 81 82 83 84],[64 65 66 61 62 63 79 80 81 

82 83 84])+k_m; 

  
% % % element 19 
 K_25fe([67 68 69 64 65 66 82 83 84 85 86 87],[67 68 69 64 65 66 82 83 84 85 

86 87])=... 
    K_25fe([67 68 69 64 65 66 82 83 84 85 86 87],[67 68 69 64 65 66 82 83 84 

85 86 87])+k_f; 

  
K_25me([67 68 69 64 65 66 82 83 84 85 86 87],[67 68 69 64 65 66 82 83 84 85 

86 87])=... 
    K_25me([67 68 69 64 65 66 82 83 84 85 86 87],[67 68 69 64 65 66 82 83 84 

85 86 87])+k_m; 

  
% % % element 20 
 K_25fe([70 71 72 67 68 69 85 86 87 88 89 90],[70 71 72 67 68 69 85 86 87 88 

89 90])=... 
    K_25fe([70 71 72 67 68 69 85 86 87 88 89 90],[70 71 72 67 68 69 85 86 87 

88 89 90])+k_f; 

  
K_25me([70 71 72 67 68 69 85 86 87 88 89 90],[70 71 72 67 68 69 85 86 87 88 

89 90])=... 
    K_25me([70 71 72 67 68 69 85 86 87 88 89 90],[70 71 72 67 68 69 85 86 87 

88 89 90])+k_m; 

  
% % % element 21 
 K_25fe([76 77 78 73 74 75 91 92 93 94 95 96],[76 77 78 73 74 75 91 92 93 94 

95 96])=... 
    K_25fe([76 77 78 73 74 75 91 92 93 94 95 96],[76 77 78 73 74 75 91 92 93 

94 95 96])+k_f; 

  
K_25me([76 77 78 73 74 75 91 92 93 94 95 96],[76 77 78 73 74 75 91 92 93 94 

95 96])=... 
    K_25me([76 77 78 73 74 75 91 92 93 94 95 96],[76 77 78 73 74 75 91 92 93 

94 95 96])+k_m; 

  
% % % element 22 
 K_25fe([79 80 81 76 77 78 94 95 96 97 98 99],[79 80 81 76 77 78 94 95 96 97 

98 99])=... 
    K_25fe([79 80 81 76 77 78 94 95 96 97 98 99],[79 80 81 76 77 78 94 95 96 

97 98 99])+k_f; 

  
K_25me([79 80 81 76 77 78 94 95 96 97 98 99],[79 80 81 76 77 78 94 95 96 97 

98 99])=... 
    K_25me([79 80 81 76 77 78 94 95 96 97 98 99],[79 80 81 76 77 78 94 95 96 

97 98 99])+k_m; 
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% % % element 23 
 K_25fe([82 83 84 79 80 81 97 98 99 100 101 102],[82 83 84 79 80 81 97 98 99 

100 101 102])=... 
    K_25fe([82 83 84 79 80 81 97 98 99 100 101 102],[82 83 84 79 80 81 97 98 

99 100 101 102])+k_f; 

  
K_25me([82 83 84 79 80 81 97 98 99 100 101 102],[82 83 84 79 80 81 97 98 99 

100 101 102])=... 
    K_25me([82 83 84 79 80 81 97 98 99 100 101 102],[82 83 84 79 80 81 97 98 

99 100 101 102])+k_m; 

  
% % % element 24 
 K_25fe([85 86 87 82 83 84 100 101 102 103 104 105],[85 86 87 82 83 84 100 

101 102 103 104 105])=... 
    K_25fe([85 86 87 82 83 84 100 101 102 103 104 105],[85 86 87 82 83 84 100 

101 102 103 104 105])+k_f; 

  
K_25me([85 86 87 82 83 84 100 101 102 103 104 105],[85 86 87 82 83 84 100 101 

102 103 104 105])=... 
    K_25me([85 86 87 82 83 84 100 101 102 103 104 105],[85 86 87 82 83 84 100 

101 102 103 104 105])+k_m; 

  
% % % element 25 
 K_25fe([88 89 90 85 86 87 103 104 105 106 107 108],[88 89 90 85 86 87 103 

104 105 106 107 108])=... 
    K_25fe([88 89 90 85 86 87 103 104 105 106 107 108],[88 89 90 85 86 87 103 

104 105 106 107 108])+k_f; 

  
K_25me([88 89 90 85 86 87 103 104 105 106 107 108],[88 89 90 85 86 87 103 104 

105 106 107 108])=... 
    K_25me([88 89 90 85 86 87 103 104 105 106 107 108],[88 89 90 85 86 87 103 

104 105 106 107 108])+k_m; 
 % % % % % % % % %  

  
end 
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