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ABSTRACT 
 

Ryerson University does not have a means to gauge electricity consumption for half of their 

campus buildings. The installation of utility meters is outside of the University’s budget, a 

situation that may be similar across other academic institutions. A multiple linear regression 

approach to estimating consumption for academic buildings is an ideal tool that balances 

performance and utility. Using 80 buildings from Ryerson University and the University of 

Toronto, significant building characteristics were identified (from a selection of 18 variables) 

that show a strong linear relationship with electricity consumption. Four equations were 

created to represent the diversity in size of academic buildings. Tested using cross-validation, 

the coefficient of variation of the RMSE for all models was 33%, with a range of error between 

20% and 43%. The models were highly successful at modeling electricity consumption at 

Ryerson University with an average error of 14.8% for five building clusters. Using metered data 

from each cluster, raw estimates for individual buildings were adjusted to improve accuracy.   
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I. INTRODUCTION 
 
Between 1990 and 2010, overall electricity consumption for commercial and institutional 

buildings has increased by 32.5%. While this demand is understandable with an increasing 

population and a shift to a more service-oriented economy, the greenhouse gas intensity (the 

amount of GHGs release per unit of energy produced) has only decreased by 5.8% over that 

same time period [1]. The reductions in air pollutants are thus a result of cleaner fuel sources 

and not a decrease in energy demand – something that needs to be addressed when striving 

to create sustainable long-term communities. Commercial buildings account for 37% of the 

Greater Toronto Area’s (GTA) total electricity consumption, and one third of the greenhouse 

gases (GHGs) emitted [2, 3]. Therefore, focusing on the energy consumption in buildings is 

crucial when trying to reduce overall energy demand. In particular, attention should be given to 

existing buildings because they comprise 98% of Canada’s (commercial) building stock – 78% 

of which have been built before 1989 [4, 5]. The level of impact buildings have on resource 

consumption is often difficult to quickly assess; the true scale of cities is often overlooked, but 

with a change of perspective (via aerial/satellite imagery), it is easier to accept how a city such 

as Toronto required just under 30 tWh in electricity alone in 2006 to power its buildings and 

homes [6]. While newly constructed buildings receive constant attention from the public for 

their sustainable and resource efficient designs, adjacent existing buildings are neglected, 

receiving little to no support for crucial retrofits throughout their lifetime. In Canada, only half 

of all commercial and institutional buildings have undergone any form of retrofitting in their 

lifespan [5]. A look at the Canadian Green Building Council’s registered and certified LEED 

projects [7] will show the stark contrast between the number and area of the projects that 

pursue certification under New Construction (2,669) and those under Existing Buildings (353). 

The Toronto Green Standards, the City’s guideline on sustainable building practices, fails to 

address the performance of existing buildings completely, opting to focus exclusively on the 

small fraction of buildings that are added each year to the roughly 3,000 non-residential 

buildings (nearly 2 million, including private households) already built within the city 

boundaries [8, 9].  
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Another reason to focus efforts on the existing building stock is because of their immense 

potential for reducing carbon emissions. Current efforts to reduce emissions are costly such as 

harvesting renewable energy and carbon sequestration. Not only are these exercised options 

expensive, but greater impacts can be made with reducing energy consumption [10]. The 

majority of the building sector’s ability to mitigate emissions in 2030 has been estimated to 

come at little to no cost to owners, on a dollar per ton of CO2 equivalent basis [11]. Figure 1 

shows an underestimated value (omitting the effects from non-technological options, such as 

demand-side management, on further reduction in emissions) of the mitigation potential for 

buildings compared to other sectors. A large share of the mitigation potential from the 

building sector is categorized as a net-negative cost because of the relatively short payback 

period of many of the explored options (e.g. efficient lighting and appliance upgrades). As 

illustrated by Ürge-Vorsatz and Novikova [11], allowing existing buildings to merely exist 

without continuous renewal and upkeep is one of the largest opportunities missed for greater 

environmental stewardship and return on investment.   

 

 
Figure 1 Mitigation potential for various sectors and their costs. [11]  

 
Today, buildings in Ontario are constructed with smart meters in place, measuring and 

reporting consumption data that still needs to be manually read in many existing buildings. 
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This evolution of metering technology has substantially increased the data available, and 

subsequently, the understanding of usage patterns for electricity and other utilities within 

buildings – short and long term benefits of which are explored by the Energy Efficiency Office 

[6] and Briones et al. [12]. While Ontario has successfully installed smart meters for measuring 

electricity usage in most of its residential homes, other parts of the world are struggling with 

their widespread adoption [13]. Figure 2 shows the current penetration rates of smart meters 

around the world and their projected growth by 2016 [14]. While there are multiple ways to 

measure utility consumption for buildings, smart meters provide a reliable and easily 

assessable means to access current and historic consumption.  

 

 
Figure 2 Penetration of smart meter technology in international markets. [14]  

 
Reducing the consumption of electricity in buildings can be accomplished by various means. 

Control can be implemented through cost-demand management strategies where uniform or 

variable increases in utility costs throughout the day result in their reduced usage by customers. 

Alternatively, a mandate or legislature can be introduced to incorporate elements of LEED, 

Toronto Green Standard, or other local or international green standards into enforced 

provincial building codes – the Passive House standard is currently being used in building 

regulations in Spain, Belgium, and most commonly, in Germany [15]. These are only two of 
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many options that are available to reduce electricity consumption. However, even with these 

readily available solutions, many buildings across Canada are constructed and operated 

without implementing such standards. In 2010, 55.2% of all commercial buildings surveyed 

across Canada had not implemented any energy efficiency features [5]. This proportion slightly 

decreased around the Great Lakes region (Quebec-Windsor corridor) to 48%. In addition, only 

23% of surveyed buildings had an energy awareness program in place for building occupants. 

Both the perceived level of incentive by building owners and the lack of motivation from 

building occupants due to inadequate knowledge about energy issues reinforce existing 

operations and impedes change. Benchmarking buildings, another tool to assess electricity 

consumption within the city, can tackle both these critical issues. The benefits of benchmarking 

are twofold: (1) buildings of a certain type within a city can be compared to one another to 

determine which of them are performing poorly, and (2) buildings of a certain type and/or the 

whole stock of existing buildings can be compared to other cities to assess the potential for 

savings - particularly useful when establishing case studies. Benchmarking buildings is an 

important if not mandatory first step to addressing electricity consumption in the existing 

building stock.   

 
Progress for compiling a comprehensive benchmark for North American cities is in its infancy 

stages. The United States has been working on benchmarking their existing building stock and 

publishing these results to further public awareness. At the national level, Energy Star, a joint 

program between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of 

Energy (DOE), has been running a tool for several years called the “Portfolio Manager”. It 

allows building operators and owners to monitor and assess their utility usages (electricity and 

water), create baselines for tracking facility improvements, gain recognition from the EPA and 

qualify for an Energy Star rating, and most importantly, it allows the (voluntary) sharing of data 

with other participants. To date, there are more than 40,000 participants with over 250,000 

registered buildings in the United States [16]. The success of the platform has led to its 

adoption in Canada. Natural Resources Canada has been working closely with the EPA since 

2011 to adapt its Portfolio Manager for Canadian use. The tool, which was initially released in 
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August 2013, offered benchmarking for office buildings and K-12 schools – it has since added 

hospital type buildings that can be benchmarked with the tool [17]. The Portfolio Manager is 

not without its faults; there is omission of university and college-type buildings in the current 

system. A separate program, the Sustainability Tracking, Assessment and Rating System 

(STARS), which is run by the Association for the Advancement of Sustainability in Higher 

Education, focuses on benchmarking university and college buildings in North America. 

Schools may choose to participate in a lengthier review and rating process under the STARS 

program or they may opt to report their utility data through the Campus Sustainability Data 

Collector. Both paths will result in the collection of utility data however only STARS participants 

will have access to the database. As of September 2014, 358 institutions have participated in 

the stars program with 35 of them being Canadian. A pilot has been started for 8 international 

schools to participate in STARS [18].   

 
Tools and rating systems aside, laws and mandates have been enacted in recent years across 

North America requiring the mandatory disclosure of energy use, making city-wide benchmarks 

possible. The first two cities in the United States to introduce a disclosure law were Washington, 

DC and Austin in 2008; between 2009 and 2013, seven other cities joined the ranks of cities 

mandating energy disclosure. While the practice has yet to be standardized, the scope of 

buildings benchmarked often include commercial and multi-unit residential buildings that are 

greater than 1,000 m2, at a minimum, and 23,000 m2 at a maximum – depending on the city 

and building type [19]. In Canada, and specifically in Ontario, all public bodies have been 

required to report energy consumption for city-owned buildings since 2011 – during that year, 

just under 500 buildings were benchmarked in Toronto, none of which were academic 

buildings [20].  

 
A brief profile of Toronto and Ryerson University is provided below which will give context to 

this thesis. Future researchers and users should find this helpful when applying the methods 

used here to other urban environments and climatic conditions.  
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A. Toronto 
 
Over 80% of Canadians live in cities – cities that now consume more than 50% of all energy in 

Canada [6]. Toronto, Canada’s most populous city, has 2.6 million inhabitants and a density of 

945.4 people/km2 in 2011 [9]. First established in the late 18th century, Toronto is a relatively 

young city located in the heavily industrialized Golden Horseshoe region of Southern Ontario. 

Due to its proximity to Lake Ontario, Toronto’s climate is moderated with average daily 

temperatures peaking in July (22.2˚C), dipping in January (-4.2 ˚C) and averaging 9.2 ˚C for the 

entire year; annual precipitation is averaged at 834 mm for the region [21]. Climate normals 

(1971-2000) for the city can be seen in Appendix A1. Under the Köppen climate classification, 

the city is categorized as having a warm summer, humid continental climate, and is grouped 

with other cities such as Warsaw, Stockholm, Vienna, and Moscow [22]. However, unlike those 

cities mentioned, Toronto has one of the highest per capita electricity consumption of the 

developed world (Figure 3) at 10,000 kWh/capita in 2011 [23]. The City spent over $4.45 billion 

dollars on energy alone in 2005 – 60.4% of which was allocated to electricity costs [6]. The air 

emissions associated with generating electricity for commercial and industrial buildings in 2004 

can be seen in Table I [24]. These emissions have contributed towards the increased 

occurrence of smog in the City from under 5 days in 1993 to more than 35 in 2007 [25]. The 

environmental effects of operating buildings are diverse and can often play a significant role in 

determining the quality of life in the urban areas they reside. However, because Toronto’s 

building stock is one of the largest in Canada, it also has the greatest potential for energy 

savings in Canada if measures are implemented correctly.  

 

Table I Air pollutants released in Toronto in 2004 from the generation of 
electricity 

Air Pollutant Tonnes released in 2004 
Nitrogen Oxides (NOX) 7,010 
Volatile Organic Compounds (VOCs) 99 
Total Particulate Matter (TPM) 1,267 
Carbon Monoxide (CO) 2,056 
Sulfur Oxides (SOX) 16,709 
Greenhouse Gases (GHGs) 4,913,000 
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Figure 3 Total electricity use per capital in selected cities [23] 

 
1) Ryerson University: Ryerson University is a publicly funded university located at the core of 

downtown Toronto. First established in 1948 as the Ryerson Institute of Technology, the 

relatively large Canadian university currently houses 38,000 undergraduate students, 2,300 

graduate students, 1,700 administrative staff, and 780 faculty members [26]. Its single urban 

campus covers 8.5 ha and has a total of 30 buildings, providing an enclosed area of 269,384 

m2 (building specifications and details can be seen in Appendix A2). As of 2010, the average 

age of buildings on campus is 38.5, two years below the provincial average for university 

buildings [27]. In 2013, the university reported 52,383,677 kWh of electricity consumption for 

the year and emitted 12,847,605 Kg of GHG emissions relating to energy usage [28].  

 
B. Statement of Problem 
 
The emergence of building performance benchmarking tools is critical to the understanding 

and eventual reduction of electricity consumption in our communities. Unfortunately, before 

academic institutions such as Ryerson University can participate in such programs, an accurate 

measure for campus building utilities must exist for individual buildings. This missing link is not 

unique to academic institutions or even to properties in Ontario (Figure 4). The U.S. Energy 
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Information Administration has reported that approximately half of the sampled building 

respondents (3,600 individual buildings in 2003) could not provide the required energy usage 

data for the completion of the Commercial Buildings Energy Consumption Survey (CBECS) [29]. 

During a personal interview with Ryerson’s Director of Campus Facilities and Sustainability, 

Tonga Pham, she explained that the installation of new utility meters and energy management 

systems place a heavy financial burden on building owners; with limited financial resources, 

many properties forgo this necessary service. 

 

 
Figure 4 Area (m2) of known utility consumption by activity at the University of 
Bordeaux. [30] 

 
 
 
 
 



 9 

  

 
Figure 5 Historic electricity consumption for individually-metered, cluster-metered, and all buildings at 
Ryerson University.  

 

Ryerson University currently does not have insight into the electricity consumption of its 

buildings on an individual basis. With increasing energy consumption (Figure 5) and associated 

costs for these utilities across Canada, greater focus on energy efficiency on campus is needed. 

When considering the effects of the addition and removal of buildings on campus since 1990, 

the trends differ to those shown in Figure 5; individual buildings use the same amount of 

electricity per unit area while buildings metering in a cluster and all Ryerson buildings see an 

increase of 17% and 8% respectively. Of the 32 buildings or spaces on campus, 14 share a 

meter with two or more buildings or spaces (i.e. energy consumption for these buildings is  
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Figure 6 Ryerson University campus map. Highlighted buildings are those 
sharing an electricity meter with one or more buildings. Adapted from [31] 

 

unknown on an individual level) which are highlighted on a campus map in Figure 6. According 

to Shiv Tangri, supervisor of Utility Management at Ryerson, where a more detailed level of 

reporting is required, a weak, unscientifically based estimation is made using an undisclosed 

method by Ryerson University. At the University of Massachusetts Amherst, a similar scenario is 

present where the number of utility meters is less than the number of buildings on campus. 

However, McCusker [32] was able to benchmark 84% of the total built area using available data 

in order to gauge energy performance for the university. In contrast, Ryerson’s access to 

individual meters on campus represents 50% of the total built area – responsible for 41% of all 

electricity consumed on campus in 2012 (Figure 7). In order to provide the University with 

detailed and accurate data on the energy performance of its buildings, few options exist. The 

installation of energy meters for Ryerson buildings carry high upfront costs (i.e. 2 million 

dollars) and is outside the budget of the University at present, as communicated by Tonga 

Pham. A budget for installing meters campus-wide compiled by staff at the university can be 

seen in Appendix A3. Another option, building traditional energy models, is time consuming 
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and costly for complex buildings which again, may not be an optimal solution for the University. 

A form of energy estimation based off of characteristic building variables is a viable option to 

gauge energy performance for Ryerson’s campus buildings and should be fully explored.  
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Figure 7 Internal area and electricity consumption in 2012 that is individually and cluster-metered, by 
building. Buildings with a small relative proportion are listed to the side.  
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C. Objectives 
 
This thesis aims to establish a methodology for creating a series of equations used to estimate 

electricity consumption in academic buildings, based on variables relating to space usage and 

built form. The reason why electricity is the focus of this thesis is because it comprises the 

largest share of total energy consumption at the university (58% in 2012), and because it is the 

only sub-metered utility on campus that can provide the data necessary for the proposed 

methodology. These equations will address two prohibitive characteristics of other existing 

options: high costs and detailed knowledge of building science theory. The costs associated 

with implementing energy saving building features have long been a major hurdle to overcome 

in the construction industry. Those who do not wish to undertake such an expensive project 

often consider tools such as building energy models to assess their current and possible future 

consumption patterns in order to establish a case for action. However, when financial resources 

are limited, and future return on investment is obscure, the risks may be too great for building 

owners/managers of existing buildings to take. Closely related to costs is the issue of lack of 

knowledge. Energy modeling programs and building science knowledge is specific and takes 

years of experience to be able to make confident, informed decisions. This can intimidate 

decision makers, forcing them to back away from energy-saving retrofits. For owners who have 

access to larger budgets, this issue is remedied by hiring skilled professionals, however many 

cannot afford this luxury. While the use of an equation to gauge electricity consumption has 

the potential to minimize costs and be easy to understand, it must also be reliable and 

accurate. A delicate balance must be achieved between accessibility and accuracy to maximize 

the benefits to the user.  

 
1) Research Questions: Using a database comprising of campus buildings from the University of 

Toronto and Ryerson University, annual electricity consumption will be correlated with selected 

variables to form a multiple linear regression that will accurately model consumption in large, 

multiuse buildings. In doing so, this work intends to address the following primary research 

question:  
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1. To what degree of accuracy, can the use of predictor variables be in estimating 

electricity consumption for academic buildings?  

In doing this, the following secondary research questions will also be answered: 

1. Does this approach offer a realistic alternative to installing meters for individual 

buildings for Ryerson University; what are the tradeoffs in cost and accuracy between 

the proposed method and existing alternatives?  

2. Are there certain building typologies that work better or worse with this method? Do 

they pose real limitations when implemented? 

 
D. Long-Term Goal & Vision 
 
The full scope of this research program is large and is intended to be completed over several 

years. First and foremost, the end goal of this project will be to provide a tool for Ryerson 

Campus Facilities and Sustainability that will allow them to assess their current electricity 

consumption based on the variables required by the equation. Upfront cost savings aside, the 

results of this research will greatly increase the effectiveness of efforts made by Campus 

Facilities and Sustainability to reduce electricity consumption on campus. With greater insight 

into the specific electricity consumption for individual buildings, a benchmark can be created 

among campus spaces that can help identify underperforming buildings. Resources can then 

be diverted to those specific spaces/buildings in order to maximize the return on investment 

for campus sustainability initiatives as well as ensure all buildings meet the minimum 

performance levels. From there, a comprehensive energy sustainability plan can be created for 

the university, creating a strategic framework that will guide short and long-term development 

plans on campus, considering budgetary constraints and high priority issues.  

 
E. Thesis Structure 
 
The sections following the Introduction of this thesis include the Literature Review, 

Methodology, Model Development, Results, Discussion, and Conclusion. The Literature Review 

will introduce research relating to energy consumption in higher education institutions as well 

as outline existing work on methods of energy estimation. The section will conclude with a 
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summary of commonly cited variables used when estimating electricity consumption and a 

critical analysis of existing literature. The Methodology will summarize the steps taken to 

establish working models while the Model Development section will discuss the chosen 

variables for analysis at length including reasons for their selection, sources and quality of data, 

and preparation of data for regression analysis. In addition to revealing the final building 

sample and their collected variables, the tools used to carry out the analysis and create 

equations will also be outlined. The Results section will focus on the top candidate models and 

their performance as tools to estimate electricity consumption. The effects of variations in the 

methodology are also shown and the process of arriving at the final models for application is 

explained. Lastly, the estimated electricity consumption for Ryerson’s cluster-metered buildings 

is presented with a comparison to their metered cluster values. The discussion will explore 

model performance in greater detail with a comparison to Rahman’s [33] simulated results for 

Ryerson buildings. A closer examination of the model variables as well as buildings excluded 

from the study will also be included. The Discussion will end with a focus on challenges, both 

ones experienced throughout the study and those that will face future researchers adopting 

similar methods. The thesis will be concluded by revisiting the goals and research questions of 

this project, and the performance of the detailed method. The direction of future work will also 

be touched upon in the closing sections.    

 
Before proceeding any further, it is important to note that the terms “energy” and “electricity” 

are used interchangeably throughout this thesis. As this work is dealing exclusively with 

electricity, it should be assumed that references made to energy are synonymous to electricity 

– unless otherwise stated. This treatment of terms also extends to ratios where energy and 

electricity use intensities are used to refer to the same metric – the amount of normalized 

electricity consumed.  
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  II. LITERATURE REVIEW 
 
Research involving academic buildings, particularly post-secondary institutions, and their utility 

consumption patterns is limited throughout existing literature because they comprise a smaller 

proportion (compared to commercial and residential) of newly constructed and existing 

buildings. In addition, their complexity in space usage, occupant density, and plug loads from 

one building to another, make generalizing consumption into standard energy use intensity 

units difficult. Caeiro et al. [34] outlines various other factors that are unique to academic 

buildings which make estimation difficult. There are limited resources available specifically for 

university and college buildings; knowledge is often extracted from works on other building 

types (e.g. analyzing multi-use residential buildings to make deductions about dormitories). 

Potentially due to a lack of experience and knowledge in sustainability on campuses, many 

academic institutions have come together through a number of regional and national initiatives 

targeting issues of sustainability, including energy use and efficiency. Examples of such 

initiatives are the Higher Education Environmental Performance Improvement (HEEPI) and 

EcoCampus in the United Kingdom, the Canadian Alliance of College and University 

Sustainability Professionals (CUSP) in Canada, and the Association for the Advancement of 

Sustainability in Higher Education (AASHE) in North America. Innovative projects and data 

collection from university and college buildings has risen as a result of groups such as these, 

however peer-reviewed research articles on the subject is still limited. 

 
Existing literature on energy consumption in buildings (including academic) can be grouped 

into one of three levels of research: assessment, benchmarking, and change. Ideally, each level 

should be built on top of one another, meaning for instance, that benchmarking should not 

occur for a building before assessment takes place (Figure 8). Researchers often either focus on 

one level of research (e.g. compiling a comprehensive national benchmarking system for 

grocery stores [35]), or they tackle more than one level in a project (e.g. measuring and 

benchmarking energy consumption in a grocery store and installing a more efficient HVAC 

system to lower the consumption below the national average [36]). Literature falling within the 

first two levels will be presented here because it relates most closely to the scope of this thesis.  
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Figure 8 Suggested hierarchal nature 
of research in building energy 
consumption. 

 
A. Electricity Consumption within Academic Buildings 
 
This section will discuss electricity consumption in buildings that are found on university and 

college campuses. Much of the literature available and presented in this section focuses 

specifically on electricity, however, because energy consumption in all its forms is often studied 

cooperatively, research on other sources of fuel is also included. In addition, the works 

highlighted here focus mainly on studies completed on campus buildings – as opposed to 

inferring results from more commonly studied building typologies such as offices and multi-unit 

residential buildings. This will show the actual level of knowledge (or lack thereof) on energy 

consumption for higher education buildings without being distorted by works on space types 

that are similar to those found in universities and colleges. This distinction is important because 

existing literature has yet to prove whether this type of inference is accurate.    

 
1) Normalization (Electricity Use Intensities): When measuring and benchmarking electricity 

consumption between buildings, the units that are most insightful are those that are attached 

to a key determinant of energy use. When overall consumption in kilowatt-hours is compared 

between two buildings, very little information is gained about the performance of the building 

– even when comparisons are made between similarly classified buildings (e.g. single detached 

houses, libraries, etc.). Instead, by linking consumption to a variable such as conditioned floor 

area, consumption can be normalized and compared on equal footing [29]. The most common 

Change 

Benchmarking 

Assessment 
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EUI metric that is used for buildings in general is floor area due to its simplicity and 

effectiveness in allowing comparisons to be made [37]. This is especially true when considering 

other forms of fuel, such as natural gas, due to its positive correlation with conditioned area; 

some studies have taken this further and have incorporated interior volume as the reporting 

metric [38]. Aside from variations on floor area, other metrics have been used consistently in 

existing literature; a common theme is focusing on the particular services offered by the 

building or space. For instance, occupants, such as students or staff, have been related to 

energy consumption in academic buildings, and the number of dishes prepared, used for 

kitchen spaces [30]. Ward et al. [39] studied 103 universities and 91 colleges to determine 

correlations with total energy consumption and certain indices (e.g. number of full time 

students, net internal area, age of buildings, etc.). It was found that the factors with the 

strongest correlations with energy consumption were gross interior floor area (r2=0.86), net 

interior floor area (r2=0.83), and number of full time research students (r2=0.83). Climate is also 

an important metric used to normalize energy consumption as it defines the exterior conditions 

that a building’s active systems must respond to. Normalizing to climate is especially important 

when comparisons are made between buildings in different climate zones. Because the models 

pursued in this thesis are customized for the Toronto-market, this type of normalization is 

insignificant (ie. the models will be created and tested on buildings within the city of Toronto). 

Instead, the quasi-standard electricity consumption unit, kwh/m2/annum, will be used 

throughout this section so that comparisons between published results can be made.   

 
Table II represents a summary of literature on EUIs for education-related spaces. Each entry 

specifies when the data was collected (or when the study was published), the location of the 

sampled buildings, the space classification that is linked to the measurement, and the size of 

the sample. Studies that measured total energy consumption and/or source/primary energy 

were omitted from Table II in order to promote uniformity and ease of assessment. Breaking 

down the table by geographic scope, buildings in North America use more electricity per unit 

area than those in Europe. A quick non-weighted average of the EUIs for academic-related 

spaces is approximately 210 kWh/m2/annum for North America and 120 kWh/m2/annum for 
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Europe. Adding office buildings (due to a lack of data for academic buildings) located in Asia, 

Figure 9 shows the ratios typical for each continent. The stark differences can be heavily 

attributed to the prevalence of air conditioning in buildings; in Europe, natural ventilation and 

high ceilings are common in older campus buildings while in Asia, hot and humid conditions 

require active cooling for occupant comfort. Baker and Steemers [40] points out that air 

conditioning can potentially account for 44% of energy demand in office buildings in the UK. 

The EUI reported for Asian countries may be inflated due to the sample comprising of multi-

tenant office buildings in Lam et al.’s [41] study which are normally conditioned within a 

narrower margin than academic buildings. Geographic scope aside, Table II shows the 

variability that exists in the measurements for electricity use in academic buildings. Studies on 

buildings within the same continent vary considerably as well as within similar space 

classifications. Consequently, transferability of small sampled results is difficult between 

institutions.  

 

 
Figure 9 Average energy use intensity in higher education institutions in Europe and North America compared 
to the intensities of office spaces in Asia.  
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Table II List of studies and their reported EUIs for various university and college spaces around the world.  

Year of 
Study 

Location Type of Space 
EUI 

(kWh/m2/ 
annum) 

Sample Size Reference 
 Campuses Buildings Area (m2) 

2003  USA 

Classrooms 204 
 

88 
 

[29] 

Dormitories  95 
 

37 
 

Libraries 213 
 

36 
 

Recreation 106 
 

92 
 

Office 186 
 

976 
 

1999  Bordeaux 

Administration 33 
  

 39,000  

[42] 

Research and 
Development 
Labs 

118 
  

 80,000  

Lecture Halls 37 
  

 230,000  

Restaurants 88 
  

 17,000  

Dormitories 39 
  

 96,000  

Sports 
Facilities 

36 
  

 20,000  

Libraries 25 
  

 18,000  

2001  Cergy 
Student 
Residence and 
Eatery 

48 
 

n/a 
 

[43] 

1999  Krakow 
Student 
Residence and 
Eatery 

115 
 

n/a 
 

[43] 

2000  Bucharest 
Student 
Residence and 
Eatery 

65 
 

n/a 
 

[44] 

2000 
Northern 
Ireland 

University (Non 
Residential 

39 
 

39 
 

[45] 

University 
(Residential) 

60 
 

19 
 

Libraries 45 
 

40 
 

Cafeterias  42 
 

44 
 

Offices 
(Naturally 
Ventilated) 

82 
 

70 
 

2000 

Canada 

Education 

111 
40 

(Colleges) 
156 

 

[46] 
British 
Columbia 

119 
 

n/a 
 

Prairies 108 
  

Ontario 106 
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Quebec 122 
  

Atlantic 117 
  

2001  Anchorage 

Elementary 
School 

150 
  

 3,472  

[47] 

111 
  

 5,723  

89 
  

 5,723  

107 
  

 5,723  

121 
  

 6,166  

111 
  

 5,767  

102 
  

 5,631  

102 
  

 3,017  

Secondary 
School 

131 
  

 4,265  

146 
  

 2,534  

High School 134 
  

 31,661  

2003  New Jersey n/a 182 
 

16 
(estimated)  

[48] 

2000  Marseilles n/a 67 
  

 120,000  [43] 

2000  Rouen n/a 30-750 
 

32 
 

[43] 

1995  Denmark n/a 79 
 

n/a 
 

[44] 

2000 Cergy n/a 32 
 

4  30,000  [43] 

1997  Finland n/a 111 
 

500 
 

[49] 

1998  Poland n/a 204 
 

3  12,549  [49] 

2011  
United 
Kingdom 

n/a 290 
  

 26,700,000  [50] 

2003  

Ontario 

University 

167 37 
  

[51] 

Atlantic 131 23 
  

Quebec 200 22 
  

Prairies 203 30 
  

British 
Columbia/ 
Territories 

158 11 
  

Canada 176 123 
  

Ontario 

College 

163 43 
  

Atlantic 106 38 
  

Quebec 152 78 
  

Prairies 154 33 
  

British 
Columbia/ 
Territories 

151 36 
  

 Canada  152 228    
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2011 

Northern 
Ireland 

Higher 
Education 
Institutions 

95 
 

328  621,858  

[52]a Scotland 127 
 

1775  3,206,141  

Wales 102 
 

1108  1,494,439  

England 123 
 

> 12577  20,919,394  

2003 
United 
Kingdom 

Admin/ 
Support 

90 
 

22 
 

[53] 

Sports Center 199 
 

8 
 

Libraries 186 
 

3 
 

Residences 57 
 

37 
 

Teaching 118 
 

36 
 

Medical Lab 325 
 

15 
 

Engineering 
Lab 

130 
 

24 
 

Chemistry Lab 264 
 

7 
 

Computing 106 
 

11 
 

2012 
Massachus
etts 

Dining Hall 827 
 

100 in total 
 833,919 in 

total  
[32] 

Residential 249 
 

Library 218 
 

Recreation 
Centers 

233 
 

Academic 
(General) 

249 
 

Laboratories 615 
 

Administrative 
(General) 

357 
 

Administrative 
(Health) 

262 
 

2002-
2012 

USA 

Chemistry 
Laboratory 

415 
 

28 
 

[54] 

2001-
2012 

Physical 
Laboratory 

460 
 

24 
 

2002-
2012 

Biology 
Laboratory 

477 
 

27 
 

2003-
2012 

Other 
Laboratory 

424 
 

64 
 

1993-
2012 

Chemical and 
Biological 
Laboratory 

478 
 

48 
 

1996   Fast Food 208 
 

n/a 
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Benchmarking energy consumption for buildings is a powerful tool that not only gives an 

indication of current performance, but also informs researchers of historic and future trends in 

the sector. Databases allow for the assimilation and organization of potentially very large data 

sets, which is necessary when creating a reliable benchmark. Due to the resources required to 

track the number of buildings that exist, many of these databases are created and maintained 

by the government. These databases were first created for high impact building types such as 

industrial or residential buildings; these type of buildings have a proportionately large energy 

footprint in the building sector either due to their sheer numbers, in the case of residential, or 

their energy requirements for operation, in the case of industrial [57, 58]. Currently, the Energy 

United 
Kingdom 

Restaurant 144 
  

Value for 
money 

initiative, 
no direct 
source 

Science Labs 165 
  

Science Other 121 
  

Arts 71 
  

Residence 
Halls 

93 
  

Flats 49 
  

Library (AC) 347 
  

Library 
(Natural Vent.) 

56 
  

Students 
Union 

165 
  

Admin (AC) 144 
  

Admin (Natural 
Vent) 

47 
  

Sports (Wet) 208 
  

Sports (Dry) 83 
  

2006-
2008 

Colorado High School 79 2 52210 
 

[55] 

Prior 
1997  

United 
Kingdom 

Office 36 
 

n/a 

 

[56] 

Library 50 
  

Catering 650 
  

Sports 150 
  

Lecture Halls 108 
  

Laboratory 105 
  

Teaching 22 
  

a: full details on each institution shown in Appendix B1 
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Use Data Handbook [1] is updated annually by the Government of Canada and provides 

consumption information on major energy consuming sectors in Canada. While these types of 

reports give insight on overall trends in terms of supply and demand of energy across the 

country, they lack the detail provided by [5, 29], documenting building characteristics and 

usage patterns alongside their energy demands. These programs are active but are less 

frequently updated and survey a sample of the entire building stock of that country. An 

example of such a program is the Commercial Buildings Energy Consumption Survey (CBECS), 

which covers buildings in the United States. CBECS was first conducted in 1979 and has 

historically been updated every three years; the most recent survey published was from data 

collected in 2003 and work is underway for its ninth iteration using 2013 survey data. To 

summarize, the Survey of Commercial and Institutional Energy Use [5] and CBECS [29] yields 

more insightful data on buildings and energy consumption but lacks the geographic breadth 

and inclusiveness of [1]. Both types of report provide valuable information on energy 

consumption within buildings, and their level of impact on a provincial and/or national scale. 

Certain pilot projects offer the benefits of both types of studies such as the Benchmarking 

Guide for School Facility Managers [59] however they are rare and are often not updated after 

the original publication. The benchmarking of schools in [59] is insightful and encompasses 

buildings across Canada however the focus of the study is on primary and secondary schools. 

Nevertheless, federal reports such as these are instrumental in conducting research in this field 

by supplying quality datasets to use and/or to improve upon.  

 
There are a few papers that are especially relevant to understanding and estimating electricity 

consumption in academic spaces. While some of their findings are summarized in Table II, the 

remainder of this section will be dedicated to detailing the context, methodology and findings 

of such selected works. The objectives of Bonnet et al. [30] are very similar to those of this 

thesis in which they: (1) attempted to establish a methodology for auditing energy 

consumption in university buildings, (2) tested the methodology on real buildings at the 

University of Bordeaux, (3) gathered data about energy consumption to compile a database 

specifically tuned to university buildings, and (4) increased their understanding of the patterns 
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and fluctuations in university buildings. Electricity use intensities for area and occupancy were 

calculated for campus buildings and were categorized by primary activity such as research, 

catering, and lecturing spaces. They found that libraries showed the smallest EUI of all spaces 

(25 kWh/m2/annum), while (high tech) laboratories showed the greatest (123 kWh/m2/annum). 

Subcategories were created for catering and research areas due to large variations in 

consumption making generalization difficult. Within catering, spaces were differentiated by the 

proportion of cooking space required to serve the area. Restaurants, for instance, required a 

larger kitchen area than cafeterias and as such, use more electricity overall per unit area. 

Furthermore, electricity was better correlated with the number of meals served in the space, 

however, the authors acknowledged the difficulties in accounting for this unit. Laboratory 

spaces were divided between high and low technology spaces based on their reliance on 

powered equipment. Unfortunately, even with the subgroups created, large variations 

persisted in labs and correlation with area was weak; the reported mean EUI of 117 

kWh/m2/annum for research areas was not statistically significant. The EUIs for all activity types 

were aggregated for all buildings and applied to the space usage breakdown for the University 

to determine what types of areas consumed the most and least electricity. The breakdown by 

area and total energy consumption of university spaces studied in their paper can be seen in 

Figure 10. The change in proportion between area and end-use is significant for catering, 

lecturing, and research and development spaces. Particular attention should be put on these 

spaces as they may be a key determinant for estimating electricity consumption for Ryerson 

buildings.  
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Figure 10 Space usage at the University of Bordeaux (right) and the estimated electricity end-use (left) 
calculated with aggregate EUIs. [30] 

 
Another example of linking electricity consumption with a particular space type is outlined in 

[56] where estimation is based on average electricity benchmarks from United Kingdom higher 

education institutions. The breakdown of space types for the higher education sector can be 

seen in Figure 11 and is comparable to those found at the University of Bordeaux. The guide 

covers the assessment of electricity consumption as the first of a three-step process to 

benchmark and meet specific energy targets. Therefore, there are no published results within 

the guide nor are there any performance metrics for the assessment. Nevertheless, the 

concepts behind this method of relating consumption with specific activity spaces are very 

similar to the ones employed in this thesis and other published work. 
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Figure 11 Space usage for the higher education sector in 
the United Kingdom. [56] 

 
The challenges of generalizing electricity consumption for academic buildings is made evident 

with Elliott and Guggemos’ [55] work on auditing energy use in high school buildings. The 

study attempted to identify the cause of variation in consumption between two seemingly 

similar high school buildings. One building held a LEED-Silver/Energy Star designation while 

the other did not – both had similar occupant sizes and overall construction. Through their 

audit and analysis, it was revealed that a combination of different plug loads and space usages 

was the root cause of the consumption difference. Specifically, the LEED-rated school had a 

higher density of computers in their comparatively smaller computer lab which offset the 

energy savings from using low wattage lighting throughout their building. Significant 

differences in EUI that were found between spaces in both schools included: computer labs 

(2.1x), trades classrooms (2.1x) gymnasiums (1.7x), kitchens (1.6x), and common areas (1.5x). 

While this variability is not unexpected with these space types, they remain a significant usage 

type in academic buildings, particularly in colleges and universities. Figure 12 shows the 

proportion of space usage and electricity consumption for the combined high schools. Similar 

to the University of Bordeaux, spaces which rely heavily on electrical equipment (e.g. kitchens, 

administrative, etc.) see an increase in share from area to electricity use. Interestingly however, 

computer labs in the high schools only see a modest increase in footprint from area to overall 

energy consumption. Elliott and Guggemos conclude by stating the weaknesses of whole 

Teaching 
19% 

Research 
15% 

Lecture Hall 
4% 

Office 
22% 

Library 
7% 

Catering 
2% 

Recreational 
6% 

Residential 
25% 



 28 

building EUIs for multiuse buildings and recommends instead workspace and component EUIs 

for benchmarking and highlighting inefficiencies. While relating space usage types with certain 

energy profiles is one of the simplest approaches to generalizing electricity consumption, this 

study shows the effects of ignoring plug loads. However, [55] only compares and contrasts the 

energy profile between two buildings – it is expected that with a greater sample size, the 

differences will be diminished.  

 

  
Figure 12 Space usage and electricity consumption for two high schools. [55] 

 

B. Methods of Estimating Electricity Consumption in Buildings 
 
As mentioned in the Problem Statement of the Introduction, the only solution available for 

quantifying the electricity consumption at Ryerson University, and potentially other institutions, 

is some form of model-based estimation. Aside from creating energy models for all cluster-

metered buildings, there are many tools that can assist in forming a reliable estimate. Chung 

[37] details and compares several different mathematical models used to quantify building 

energy use. Zhao and Magoulès [60] covers a broader scope and includes several frontier 

prediction methods such as artificial neural networks and support vector machines. This Section 

will outline common methodologies used to estimate electricity or total energy consumption 

for all types of buildings.  
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Common to all methods, estimating energy consumption for a building relies on interpreting a 

series of variables. The complexity of the model is related to how many of these variables are 

considered, whether the correlation between energy consumption and the variables are linear 

or non-linear, and the inclusion or exclusion of interaction effects between variables. On one 

end of the spectrum, energy models are all-inclusive, allowing an entry to be made for all 

building variables that affect energy consumption; on the other end, simple normalization only 

accounts for one key determinant, such as area, to predict energy use. In-between the two, 

there are a host of alternatives that vary in the amount of variables considered, when forming 

an estimate. Successes have been found across the board making performance-based rankings 

difficult, but their approach and ease of use can be clearly defined [61].  

 
Simulating energy use through computer models has been used extensively in the 

design/planning, maintenance/operation, and optimization/retrofit stages of the building 

lifecycle. This is due to its ability to predict detailed energy use from a flexible number of 

inputs for a particular building – a simple task for trained individuals. However, the main 

drawbacks to building and using energy models for prediction purposes is that the quality of 

inputs into the model are directly related to the outputs. If accurate physical measurements are 

not entered for the building, detailed characteristics are not attributed to building spaces, and 

materials and envelope assemblies are left unspecified, there is a high probability that the 

model will not be representative of the building. This is particularly troublesome for beginners 

as the use of default values is often detrimental to the model’s accuracy. There are nearly 150 

programs specific to energy modeling that are listed in the Building Energy Software Tools 

Directory compiled by the U.S. Department of Energy [62]. This level of diversity increases the 

difficulty for untrained professionals to seek and learn the proper tools they require; this partly 

explains why sourcing this work is often expensive and time consuming, especially for multiuse 

buildings [63]. While detailed models have a dedicated market, work on simplified models 

requiring much fewer user inputs has been published. These models, which focus on energy 

use stemming from the HVAC system rely on fewer and less complex inputs (i.e. weather and 

climate-related variables), and is detailed in Al-Homoud’s [64] paper. Energy models have also 
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been used in conjunction with statistical methods to narrow down variables of interest. 

Modeling programs provide a simple way of conducting sensitivity analysis on building 

variables by changing values between defined extremes to gauge the effects on energy 

consumption, which was employed in [65-68]. Depending on the perceived or known 

relationship between the independent variable and energy consumption, two values are 

simulated for a linear relationship and three or more values are simulated for nonlinear 

relationships. Once significant variables have been identified for a particular building or 

typology, they are analyzed and used in statistical models. This feature, however, is not 

exclusive to simulation programs as demonstrated by Hong et al. [38] where a sensitivity 

analysis for variables affecting electricity consumption and heat loss took place using artificial 

neural networks – the results of which can be seen in Figure 13. Energy modeling can also 

create large virtual sample sizes for training and/or testing other estimation methods that 

would not be possible with the current level of building surveys available. While there are 

certain inherent risks with using a virtual dataset to train/test a model, this option is invaluable 

for establishing early performance benchmarks.  

 

 

Figure 13 Sensitivity analysis (via artificial neural networks) carried out by [69] on variables affecting electricity 
consumption in primary and secondary schools in the United Kingdom.  
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Methodologies for estimating energy consumption have more recently stemmed from 

disciplines outside of statistics including pattern recognition (decision tree), and machine 

learning (artificial neural networks). In recent years, these methods have been tasked with 

estimating energy consumption for a variety of buildings. Decision trees are a way of 

categorizing data into groups in a visual manner. The method behind building or growing a 

decision tree is to find features or variables that can group individuals together to form subsets 

of the original sample. The node at the top of the tree, the root, represents the entire sample 

size; in a series of splitting actions (working down the tree), individuals are separated and 

categorized based on defining characteristics until all observations contained within a node are 

within an acceptable range of values, thus becoming a leaf of the tree [70]. Figure 14 is a 

general schematic of how decision trees are visually represented. Red lines represent buildings 

that don’t meet the criteria and green lines represent the subset that do. Numbers contained 

within the brackets indicate buildings classified in each node and are used to calculate the 

average EUI for that leaf node. Depending on the application, decision trees can predict 

discrete (classification tree) or continuous (regression tree) values [71]. Within the context of 

buildings and energy consumption, EUIs would be classified based on significant variables such 

as glazing ratio and number of occupants. Important to note is that variables selected as 

significant are those that differentiate observations from one another and not on their 

correlation with energy consumption. For instance, if the entire building sample has a glazing 

ratio of 50%, it would not be a node on the tree because of its inability to split the sample 

despite its proven relationship with energy use. The greatest strengths with using decision 

trees are their ability to accurately categorize data without understanding the underlying 

relationships between dependent and independent variables. Also, their ability to provide a 

visual aid and/or logic statements that govern a particular sample increase their capabilities in 

communicating potentially complex relationships to the general public [72]. The effectiveness 

of using decision trees to estimate energy consumption is demonstrated in Yu et al. [72] who 

looked at predicting the EUI of residential buildings using ten inputs. The model was 

developed using a sample of 55 buildings and tested on 12 randomly selected buildings. The 

decision tree was able to correctly classify all but one of the buildings into their appropriate 
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categories. However, the error rate between the reference and actual EUI for the buildings was 

apparent (average error = 25.6%). This means that despite the 91.7% accuracy of the decision 

tree in categorizing buildings, the variations in electricity consumption within each leaf node 

was considerable, taking away from the overall reliability of the method. A larger sample size 

would potentially address this shortcoming but further research is needed to consider this 

observation a major drawback. Decision trees also suffer when non-linear relationships exist 

between variables and when the tree is over fitted to the data it was built upon – a common 

issue with this method [73]. Despite these drawbacks, decision trees offer a realistic solution for 

estimating energy consumption for people with a lack of building knowledge [61].  

 

 
Figure 14 A hypothetical decision tree schematic using two predictor variables.  

 

From a transparency standpoint, artificial neural networks (ANNs) operate in complete contrast 

to decision trees. They were originally modeled after the biological structure and properties of 

the central nervous system (i.e. brain) found in animals – hence being classified under machine 

learning. Today, they can be found in the backend processes powering speech and facial 

recognition in modern day electronics, among other things [61, 74]. ANNs are composed of a 

series of interconnected nodes (neurons) that are arranged in a series of layers. In its most basic 

form, ANNs have an input, hidden, and output layer (Figure 15). The input layer represents the 

body’s five senses and is responsible for feeding all available data (simultaneously) to the brain, 

the hidden layer. The hidden layer contains a series of nodes with adaptive weights. During the 
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learning phase, these connections and weights are adjusted to provide some defined optimal 

solution. In addition, the number of hidden layers can be increased to account for greater 

complexity among variables. The output of the ANN, an action or thought in animals, would be 

some measurement of energy consumption for research in this field. ANNs’ strengths come 

from their ability to model complex, non-linear relationships between variables – an issue 

facing competing methods [61]. However, this strength comes at a costly price. Within a 

controlled environment, it is much easier to predict how a person will react to stimuli than it is 

to understand the motives behind their actions. They themselves may not be acutely aware of 

why they are doing something (e.g. natural instinct). This analogy explains why ANNs (along 

with support vector machines) belong to a group aptly named by the engineering community 

as “black box methods”, for their inherent obscurity in variable weights [61, 75]. While this 

makes model building difficult to comprehend for beginners, users enjoy the benefits of being 

able to model complex and nonlinear relationships with simple inputs and outputs. The most 

commonly used model is a multilayer perception, a type of supervised network. This means 

that the model learns only when data on the expected outcome is available. Training occurs 

through a technique known as backpropogation in which the inputs are repeatedly entered 

into the model and the error (the difference between the output computed and the expected 

output) is then used to adjust the weights within the hidden layer to improve the accuracy. This 

is repeated until the model or network achieves an acceptable level of accuracy [74]. 

Performance-wise, ANNs are highly competitive when applied to buildings and energy 

consumption. Aside from comparative studies by Tso and Yau [61] and Hawkins et al. [76], the 

effectiveness of ANNs can be seen in Yalcintas and Ozturk’s [77] work where a network was 

developed to model buildings using the 1999 CBECS database. Using eight input variables, 

the model outperformed multiple linear regressions created and tested using the same sample. 

In addition, the authors commented on the flexibility of the network, which could be applied to 

different climate zones after a period of training with the regional data – a feature not shared 

by the more structured multiple linear regression approach. Among primary and secondary 

schools Hawkins et al. [76] and Hong et al. [78] created neural networks that could predict 

electricity consumption within a 34% and 20.6% margin of error, respectively. ANNs have and 
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will continue to play a role in quantifying energy consumption in a wide variety of buildings. 

Their ability to model complex relationships between variables continues to attract researchers 

in this field.  

 
 

Figure 15 Visual representation of a general artificial neural network. [38] 

 
1) Multiple Regression Analysis: Statistical regression models rely on identifying one or more 

variables that correlate well with energy consumption and are responsible for a significant 

portion of the overall building consumption. These variables are best identified by using 

historic data from buildings; alternatively, they can be identified by running sensitivity analysis 

via energy models (computer-based or other), as previously discussed. Regression models are 

similar to computer-based energy models in terms of how they process inputs and calculate 

energy consumption however there are no interactions between multiple equations as may be 

the case when running simulations. Statistical models exist to explain variations of a dependent 

variable with as few explanatory factors as possible. Regression models are capable of 

representing linear or non-linear relationships between variables, however, with building 

energy consumption, existing literature has heavily favored linear regression models for their 

simplicity and acceptable performance levels. Lam et al. [67] looked at correlating 28 

parameters with energy consumption from 387 simulated buildings and found that eight of 

them fit better with a quadratic regression than a linear one; six of those parameters were 

related to the HVAC system of the building.  
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One of the earliest attempts at using multiple regression, a model comprising of more than 

one independent variable, to estimate energy consumption in buildings was Boonyatikarn [79] 

in 1982. His doctorate thesis explored the prediction of energy consumption in 50 institutional 

buildings in Michigan using building-related variables. His final model, which was successful in 

accounting for 93% of the variation observed in energy consumption, included the following 

ten variables: exhaust air rate, hours of HVAC operation, opaque wall area, type of refrigeration, 

percent of floor area air conditioned and cooling degree day, type of air handling unit, type of 

fuel used, volumetric flow rate divided by the power of the supply fan, shading in winter, and 

shading in summer. Over 30 years later, using statistical models has become one of the most 

commonly used methods of estimating energy consumption. Of the 23 papers surveyed by 

Chung [37], 12 papers used the ordinal least square (i.e. linear regression) method to estimate 

consumption, and four papers used other statistics-based methods; the remaining seven 

papers used various computer simulated models. Other early works employing multiple 

regression analysis include models on energy use on a military base [80], restaurant [81], 

recreation center [82], and residential buildings. Works by these authors are summarized in [63] 

which captures the level of knowledge and available tools for researchers tackling similar 

research problems as this thesis, more than two decades ago.   

 
Developing a regression model is an iterative process that requires a thorough understanding 

of statistics. Fortunately, there are tools available to simplify the process by creating 

preliminary models that can be further developed. The most popular statistics software (SPSS, 

MATLAB, SAS, R, etc.) are all capable of running multiple regression analysis which is available 

through an add-on, if not offered as a core feature. These programs have the ability to 

automate the model and feature selection based on a variety of user-defined options. Relying 

heavily on an automated process to develop working models is often criticized as a thoughtless 

approach [83]. Thus it is important to use a priori knowledge of the relationships between 

dependent and independent variables to inform decisions on which correlations are 

meaningful [84]. Selected parameters can potentially require very specific and technical 
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building information such as thermal performance of assemblies and shading coefficients, 

however, it is not a prerequisite for a well performing model, as is further discussed below. 

Examples of more recent studies using regression models to estimate energy consumption can 

be referenced in Table III (with further details shown in Appendix B2) as the majority of sourced 

studies are based on regression analysis. Further detail on this technique is discussed in the 

Model Development section including how collinearity among predictor variables, one of the 

main weaknesses of regressions analysis, is addressed.    

 
C. Predictor Variables for Energy Consumption 
 
Variables used to estimate electricity consumption in buildings are highly diverse, even among 

similar methods. Table III shows past literature on modeling electricity consumption in various 

types of buildings using one of the methods previously detailed (i.e. ANNs, decision tree, 

multiple linear regression). The Table includes the total number of variables, which averages 

seven for the included studies, and the number of variables in their models falling under the 

defined categories. Much more detail about the studies and their methods including their error 

rate, sample size, and target buildings can be seen in Appendix B2. Also referenced in the 

Appendix are the specific variables that defined each category such as outdoor air temperature 

and hours of rain for the site-specific/location category. There is a wide spread of variables 

selected for modeling especially when there are no preceding studies to build upon. Sensitivity 

analysis on model variables such as those in Figure 13 provides useful insight into their 

effectiveness as predictors but few studies take this extra step. Table III should be used to 

demonstrate this diversity with less emphasis placed on the frequency of certain categories 

being chosen. This is because Table III represents a small snapshot of reality and includes 

certain biases such as including multiple works from the same author(s) – leading to some 

variables being overrepresented. Given that there are no obvious trends or guidelines evident 

through the review of existing literature, variable selection will rest solely on the original 

guidelines previously established: that variables to be considered should have a proven impact 

on electricity consumption (i.e. high sensitivity) and that they require minimal effort to gather 

the necessary data for model creation and application.  
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Table III Summary of significant variables used to model electricity consumption in buildings with decision 
trees, linear regressions, and artificial neural networks.  

Source Total 
Number 

Of 
Variables 

Site-
Specific/ 
Location 

Lighting Space 
Usage 

Building & 
Equipment 
Ownership 

and 
Occupants  

Physical 
Building 

Traits 

HVAC 
Equipment 

[85] 2 or 3    3 3 1 
[86] 2 or 3    4 1 1 
[67] 12  1  2 2 6 
[66] 17 1 1  3 6 1 
[72] 10 1   2 5  
[61]  6    2   

3    3   
4    2   
6    3   
5    2   
6    3   

[35] 2 1 1     
[87] 9  1  2 1 2 
[79] 10 1   2 2 4 
[88] 4 2   1   
[89] 8  1 1 2 3  
[90] 5   2  1 2 
[68] 11  1  1 5 2 
[91] 9  1  3  2 
[65] 9  1  1 5  

Total  6 8 3 41 34 19 

 
 
D. Critical Assessment of Current State of Research 
 
Research papers presented and summarized in this section have shown varying levels of 

successes at quantifying and benchmarking energy consumption in buildings. However, these 

studies are often isolated from one another and lack a collaborative approach at tackling the 

main research questions. In addition, questionable practices, such as those listed below, should 

be corrected or addressed with urgency to promote cohesion and confidence among 

researchers and interested parties. This section will conclude with an assessment of weaknesses 

found in existing work and the foreseeable challenges facing future progress.     

 
1) Weaknesses of Existing Literature: Sensitivity Analysis Based on Uncalibrated Building 

Models: A large proportion of work in understanding the sensitivity of certain variables on 
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electricity consumption depends on constructing and executing energy simulations. The issue 

with relying on simulations is that their outputs may not be validated. Unlike cases where 

energy models are built using real buildings, calibrated using their utility bills, and applied to 

predict future consumption, the behavior of a base case model, used to test different variables, 

remains unchanged from one model to another. This would be akin to relying on outputs from 

an uncalibrated energy model. Similar to the process of calibrating an energy model, a base 

case model used for sensitivity analysis needs to be calibrated using actual building data to 

justify the outputs from using this method. Until such practices have taken place, results from 

exploring the effects of building variables using energy models cannot be entirely relied upon 

– their direction of effect (positive or negative) and their relative proportions to other variables 

may hold true, but their absolute effect on electricity use intensity may be inaccurate. 

 
Shortage of Quantitative Studies on Energy Consumption and Building Variables: A focus on 

qualitative effects of building variables on energy use is abundant in literature but ones 

quantifying them are limited. This may be due to several reasons, all of which relate to the 

complexity and technicality of quantifying the relationship between specific building variables 

and electricity use. Without a discrete relationship, it is difficult to justify the need to prioritize 

certain variables over others.  

 
Lack of Standardization: Energy use intensity, or more specifically “energy”, can represent 

multiple measures and has yet to be standardized in current literature. EUI can refer to total 

building energy consumption, which includes all forms of energy supplied to the building (i.e. 

electricity, natural gas, and steam), or it can represent a singular form. Another dimension to 

consider is whether the consumption values represent site energy or primary energy – which 

takes into account energy lost during the generation and transmission of energy to the building. 

Electricity is particularly susceptible to transmission losses resulting in a larger difference 

between the measured site and primary energy value [92]. Most authors are aware that energy 

is a loose and generic term which needs defining however not all authors are clear in their 

attempts to distinguish the differences in the prefaces of their own work.  
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Compared to other indices (e.g. floor area, occupants, etc.), normalizing EUIs based on space 

types is very unstructured. While there seems to be a large variety of spaces that are linked 

with electricity consumption, a lack of effort in defining and differentiating these spaces is 

causing issues. Specifically, problems of knowledge transfer may mislead other researchers into 

benchmarking and comparing their data with incompatible studies. Olofsson et al. [93] 

mentioned inconsistencies in defining key terms in international research which led to 

complications when comparing works. Fortunately, disclaimers are more common in recent 

literature outlining the dangers of applying reported EUIs across the board.  

 
Scoping Research Around the Limitations of Building Simulation Programs: Sensitivity analysis 

has traditionally involved using an energy model to simulate the effects of certain parameters 

on electricity consumption. There is a potential that following such a method limits the scope 

of analysis for researchers because their tested parameters are limited by the level of detail 

supported by the energy modeling program or model. In theory, the effects of using the 

existing method of sensitivity analysis are most likely negligible on the resultant model because 

the designers of such programs incorporate most, if not all, major variables that affect 

electricity consumption. However, it is unknown what effects using this methodology will have 

on how the problem is approached by researchers.  

  
2) Challenges Facing Future Research: Complexity of the task: Variability in the form and use of 

buildings ultimately translates to a wide range of energy consumption values – even between 

similarly defined buildings (e.g. commercial, residential, etc.) As a result, it is difficult to isolate 

specific variables that are indicators of electricity consumption for one type of building. This in 

turn hinders further research into specific variables because published works do not collectively 

support the same variable for building types. This is a simplification of this issue as there are 

many other factors that are considered when selecting a model’s predictor variables such as 

the availability of data and the scope of analysis.   

 
Transferability: Attempts to create a large database of buildings where EUIs can be calculated 

with confidence requires a large amount of resources. Because of this, many researchers opt 
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for smaller sample sizes to test relationships. This jeopardizes the ability for the EUIs calculated 

to be applied to a broader scope of buildings. As a result, the majority of current work that is 

available represents local snapshots of the consumption patterns for university buildings and 

not a robust universal benchmarking tool. 

 
Motivation: A general lack of incentive to improve existing operations exists in the community. 

Quite simply, the cost of electricity in the United States has been close to an all time low in the 

past 50 years (Figures 16 & 17). Canada also benefits from some of the lowest costs of 

electricity due to their existing infrastructure in hydroelectric generation [94]. As a result, the 

motivations to reduce consumption are primarily environmentally based which are highly 

susceptible to changes in personal opinion and public opinion. This creates an inhospitable 

environment for researchers in the field due to fluctuations in support and resources provided 

by the government and other stakeholders [95].  

 

 
Figure 16 The historic and future electricity price for residential users in the United States, adjusted for 
inflation[96]  
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Figure 17 The historic and future electricity price for commercial users in the United States, adjusted for 
inflation [96] 

 
Lack of Quality Data: There is a lack of data available to researchers, limiting their ability to 

explore potential relationships between building characteristics and electricity consumption. 

For instance, CBECS is used for the majority of papers originating from the United States and is 

referenced by international researchers as well. This is partly due to the comprehensiveness of 

the survey, but it is also an indication of the lack of sources for national data available to 

researchers. Most countries are not fortunate enough to have established such an extensive 

survey of existing buildings, Canada included [97]. In these instances, smaller samples must be 

manually surveyed by researchers which limits the applicability of the findings and ultimately 

the significance; what is true at a local scale may not me expressed at a national level and what 

variables may seem important in a few buildings may be much less so when sampling from a 

much larger population. The availability of such comprehensive surveys is necessary for the 

growth of research in this field. Without data, researchers must spend more time and resources 

to gather their own data, potentially deterring research altogether.  
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III. METHODOLOGY 
 
Below is a basic summary of the approach used to disaggregate electricity consumption for 

Ryerson’s cluster-metered buildings.  

 

Gathering 
Building Sample
 Ryerson University provided electricity consumption data for 23 utility meters on 

campus. 17 buildings were individually-metered. 

The University of Toronto supplied consumption data for 120 individually-
metered buildings  

Preparing the 
Building Sample
 28 buildings were removed from the original sample from U of T and Ryerson on 

the basis of size, archetype, and electricity consumption.  

Subsets of the entire sample were created to reduce variability in consumption 
allowing for greater performance from models. Three, four, and five subsets 
were experimented with.  

Collecting Data 
for Predictor 
Variables


Participating universities provided data on the number of above and below 
ground floors, space usage (defined by COU categories) and electricity 
consumption on a per building basis. The data for footprint shape, and shared 
external walls was gathered through a survey of satellite imagery and maps 

COU space categories were amalgamated into 13 variables. This re-
categorization was based off of percieved energy use intensities for the original 
defined spaces. 

Model Building
 Multiple regressions were created for each subset. All possible combination of 
predictor variables were experimented with to determine the best models for 
predicting electricity consumption.  

The top five models from each subset with the lowest AICc score were averaged 
to form the final model coefficients. A weighted average was taken using the 
Akaike weights for each of the five candidate models.  

Model Testing
 Cross validation (leave-one-out) was used to test the candidate models before 
multimodel inference (averaging). The mean square error was calculated for 
each model and compared to the average electricity consumption to determine 
the predictive error or root mean square error.  

Model Application
 The final averaged models were applied to Ryerson's cluster-metered buildings. 
Depending on their size, one of four models was used to estimate electricity 
consumption.  

The raw estimates from the models were adjusted after a comparison with the 
metered usage. Buildings belonging to the same cluster were compared and 
adjusted proportionately, regardless of the model used for estimation.  
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IV. MODEL DEVELOPMENT 
 
As shown in the literature review, there are many variables that have a proven relationship with 

electricity consumption in buildings. Therefore, estimating electricity consumption from 

variables can be flexible depending on a particular project’s limitation. For Ryerson University, 

and potentially other academic institutions, a financial limitation exists which narrow down the 

number of variables that can be considered when trying to estimate electricity consumption. By 

favoring variables that are measured and collected on a regular basis – for purposes other than 

to estimate consumption – the time and costs associated with this method are minimized. The 

variables selected to relate with electricity consumption have been cited in exiting literature as 

being effective predictors but are simple to measure and report for untrained staff. This way of 

estimation is not to compete with existing methods, rather it is to compliment and provide a 

low-cost option for gauging consumption in a transparent way.    

 
The variables studied in this thesis were narrowed down from an exhaustive list created during 

preliminary work. Table IV represents an early attempt to prioritize certain building 

characteristics according to their level of impact on electricity consumption. The Table was 

annotated with published data ([29, 65, 98]) to help make informed decisions on variable 

selection. Since this is an exhaustive list of variables, all components were considered 

regardless of the availability of data. Beside each indicator is a check signifying whether it 

affects a key load component in education buildings. Given the resources available, it was 

determined that the variables outlined in Figure 18 would provide a fair opportunity to test the 

performance of the methodology. Space usage and area-related variables form the majority of 

the model elements because of the detailed data available and also because of the great 

potential for space usage to indirectly affect electricity consumption; many indicators in Table 

IV are influenced to varying degrees by the primary activity for the space. The remaining 

variables include the number of above and below ground levels, a ratio for the unexposed 

building envelope, and a categorical variable representing six common footprint shapes. 

Greater details on these variables are disclosed in the following sections.   
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Table IV Exhaustive list of building variable categories that affect electricity consumption.  

Measurable Indicators Key Electrical Load Components 

 Ventilation 
(22%) 

Cooling 
(21%) 

Lighting 
(31%) 

Plug Loads 
(9%) 

Sources of Heat     

− Occupants [#/m2] ü  ü 12  ü  

− Equipment [# of Computers/Servers, Boilers, 
etc.] 

 ü 22  ü  

Equipment Efficiency [COP, %, etc.] ü  ü  ü  ü  
Heat Loss Through Envelope     

− Building Height     

− Above-Grade Floors [#]  ü    

− Below-Grade Floors [#]  ü    

− Building Shape [Square, Rectangle, etc.]  ü    

− Thermal Resistance Properties     

− Walls [RSI]  ü 7   

− Roof [RSI]  ü 5   

− Windows, conduction [U-Value]  ü 7   

− Air Leakage [ACH]  ü 5   

− Entryways [#]  ü    

− Window-Wall Ratio [%]  ü  ü   
Heat Gain Through Envelope     

− SHGC [#]  ü 23   

− Building Orientation [N, S, E, W] 
− Thermal Mass 
− Surface Albedo 

  ü   

Conditioned Space (m2) ü  ü  ü   

Temperature Set-point (°C)  ü    

Space Usage    ü  
− Ventilation Rate (L/s) ü  ü    

− Lighting Density [W/m2]  ü 19 ü   
Elevators [hydraulic vs. mechanical. #]    ü  
Time of Use [# of hours/day, # of days/week] ü  ü  ü  ü  
Notes: 
• Numbers in Cooling column represent relative heat gain contributions during summer months in office buildings [98] 
• Bold Entries are variables deemed significant; grey, insignificant, in Signor et al. [65] 
• Electrical load components are from the US EIA for educational facilities [29]  
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Figure 18 Number and type of variables analyzed for model creation  

 

The form of the multiple linear regression is expressed in (1). In total, a maximum of 18 

variables can be included in the regression. No climate-related variable is included in the 

regression because it is envisioned that coefficients will be updated annually, even if the model 

terms are the same from one year to the next. The following section will focus on gathering 

and priming data for the 18 variables, and the steps taken to create the resultant models which 

will eventually be used to estimate consumption for Ryerson buildings.  

 
𝑌 = 𝑏! + 𝑏!𝑥!!"

!!!          (1) 
 
where 
 
 𝑌  is the annual electricity consumption;  

 𝑏!  is the coefficient of the variable; 

 𝑥!  is the value for the predictor variable;  

 𝑏! is the error term or constant 

 
A. Data Collection 
 
1) Electricity Consumption Data: Measuring and verifying electricity consumption data for the 

buildings used in this thesis were outside of the scope of research. All consumption data for 
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buildings used was provided by university staff from Ryerson University and the University of 

Toronto (U of T). Data in the form of monthly/annual kW and kWh for 23 meters on campus was 

provided by Ryerson’s Campus Facilities and Sustainability [99]. The electricity meters 

represent 17 individual buildings and 14 buildings in five clusters – more information can be 

found in the Statement of Problem subsection and Figure 7. The supplied files contained user-

entered summary sheets for the various meters on campus measuring electricity consumption. 

They were distinguished by utility meter and covered the academic fiscal years (May to April) 

between 1990 and 2009. An example of the consumption data provided can be found in 

Appendix C1.  

  
A sample size of 17 buildings provides very little flexibility for statistical analysis. The sample 

set would be further reduced when preparing the training set due to the removal of unsuitable 

buildings/space types such as parking garages and non-traditional academic buildings. As a 

result, in order to increase the dataset to allow for more variations in built form and 

consumption patterns typical of university buildings, and to increase the chances of creating a 

reliable model, a request was sent to the University of Toronto to provide the necessary data in 

order for their buildings to be added to the Ryerson sample. U of T’s 2013/2014 operating 

budget of $1.9 billion greatly exceeds Ryerson University’s $500 million and is an indication of 

the size of the institution [100, 101]. Since weather and climate conditions are not being 

considered as a variable in the model (i.e. all buildings within Ryerson’s campus will be 

exposed to very similar conditions due to its compactness), using U of T’s buildings to 

supplement the sample size is ideal because the centers of each campus are roughly only 1.45 

km apart [102], thereby reducing the climatic effects on energy consumption.   

 
The University of Toronto supplied electricity consumption data for 120 buildings for the 2012 

fiscal year. This number varies from year to year depending on new construction, demolition, 

and renovation activities taken place during that year. The consumption data supplied covers 

the years between 2005 and 2012, and is reported on an annual basis. In addition to providing 

the metered usage of a particular building, U of T has documented their estimates on the 
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amount of energy gained or lost by receiving or providing chilled water to/from other buildings. 

At Ryerson University, two central chillers are responsible for supplying chilled water to service 

77% of the total floor area on campus. Another 9% of the total floor area is serviced by 

Toronto’s existing Deep Lake Water Cooling System, with the remaining area serviced by self 

cooling systems (i.e. non-centralized) [33]. The implications of this mixed system is that 

approximately 2/3 of all Ryerson buildings’ electricity meters do not account for the energy 

spent on active cooling - these are accounted for in two buildings specifically, which result in 

inflated electricity readings. Between 1990 and 2012, the Library building cluster, which 

provides cooling for 10 other buildings, had an electricity intensity of 291 kWh/m2/annum, a 

53% increase over buildings relying on self cooling systems. To address this apparent issue, U 

of T has allocated a portion of energy consumption from buildings with central chillers to 

buildings being served chilled water. For the purposes of this thesis, the estimates for the 

consumption values with the chilled water allocation applied are used for U of T buildings.  

 
To match the more recent years of data supplied by the University of Toronto, Ryerson 

supplied updated data for the months between 2010 and 2012. It was noted that there were 

differences in consumption for overlapping months in 2010 with the original dataset; in these 

cases, the more recent data replaced those months. It was determined that models would be 

created using the most recent data available instead of using the historic averages due to 

unique consumption patterns for campus buildings that were difficult to generalize (i.e. not a 

uniform increase or decrease of electricity consumption over time). Models for 2010 and 2011 

academic years will also be pursued to determine the significance and sensitivity of parameters 

over time. However, only models created with 2012 data will be used for estimating 

consumption for Ryerson University buildings.  

 
The sample of buildings from Ryerson University and the University of Toronto were refined by 

eliminating observations that were either suspect or did not adhere to certain characteristics 

typical of large academic institutions. First, outliers were identified for Ryerson’s sample using 

the interquartile range calculated using historic data. Entries outside of 1.5 standard deviations 
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from the upper and lower quartiles were flagged and omitted from further analysis, including 

the calculation of averages. Detailed historic data for utilities was not provided by U of T 

making it difficult for this type of outlier identification to be made with their buildings. Instead, 

outliers were rejected based on the coefficient of variance. This coefficient was first calculated 

for Ryerson buildings to determine the variance within the sample after outliers were removed. 

The maximum variance, 0.135, was found for consumption between 2010 and 2012. This 

variance was used as a guide to set an appropriate limit (0.15) for the coefficient of variance for 

U of T buildings. Buildings that exceeded the prescribed threshold were flagged for scrutiny; in 

some cases, the variance exhibited between 2010 and 2012 were spread across all three years 

while at other times, a clear distinction between one year and the other two existed. 

Depending on the situation, either the year with the suspect data was eliminated from the set 

or the entire building was removed. Second, the samples were scanned for suspect data 

entries potentially stemming from human error. This included entries that were repeated for 

several months but also included larger interruptions in reliable data including renovation work. 

For instance, Ryerson’s bookstore was closed for almost 10 years for renovation and 

surrounding construction work leading to a significant drop in electricity consumption during 

those years. To preserve the accuracy of energy usage at the bookstore building, those entries 

were omitted because it was assumed that the building was closed to the public. In some cases, 

the months leading up to or after the closing or opening of a building is distorted which may 

be due to adjustments and optimization of building systems to meet the changes in the 

number of occupants. Often, these months are also identified during outlier identification, such 

as the opening of Ryerson’s George Vasi Engieering and Computer Center, where three 

months were withheld from the final dataset. An example of outlier identification for Ryerson’s 

individually metered buildings can be seen in Appendix C2. Third, select campus buildings 

have a very small footprint which are not typical for academic buildings. They often serve as 

sporadic administrative offices to be further developed when the need arises. In addition, 

smaller buildings are most susceptible to variations in energy use intensities. They are often 

difficult to model, regardless of the method of estimation, and therefore have been removed 

from the sample. For the purposes of this thesis, small buildings have been defined as ones 
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with internal floor areas less than 1000 m2. Related to this criterion are academic buildings in 

the form of houses. With the removal of smaller buildings, many houses have been removed 

from the sample, however larger houses can still persist. Since core academic buildings are 

typically not contained within houses, these were also removed. Parking garages, while not 

traditionally associated with academic buildings, exist in the sample because they are often not 

separately metered when constructed below a building. Because of this, freestanding garages 

were also left in the sample in hopes that the model will be able to associate car parks with low 

energy consumption. Figure 19 shows the proportion of eliminated buildings from the 

combined Ryerson and U of T building sample; the buildings eliminated under “Outliers” refers 

to a procedure yet to be detailed (refer to section C. Creating Subsets). 

 

 
Figure 19 Number of buildings removed from the original sample for 
the 2012 model. 

 
2) Council of Ontario University Survey Data: The Council of Ontario University (COU) 

represents 21 publicly funded institutions in the province of Ontario. As a member institution, 

the universities are required to measure and submit various operation and usage statistics on a 

regular basis. Included in these submissions are detailed area measurements for defined 

spaces in campus buildings. Examples of these space categories include central administrative 

office and related spaces and health service facilities which are both defined, along with the 

other 18 categories (a total of 47 subcategories) in [103].  

 

84 

6 

23 

4 

Working Sample 

Outliers 

Small Buildings 

House Archetype 



 50 

The council of Ontario Universities first pursued a space formula and inventory classification 

system in 1967. Four years later, they established four task forces to examine questions relating 

to capital funding and the utilization of physical facilities within Ontario universities. One task 

force was dedicated to developing and testing a space utilization guide, two examined the 

space needs of education and health sciences, and the final task force studied the various 

aspects of building costs. In total, five reports (Building Block Series) were published from their 

collective findings which covered two major elements of the capital formula: space and cost. 

The eventual testing and subsequent revisions of the formulas were tested on five Ontario 

universities. In 1972, a subcommittee was appointed to continue the work on the Building 

Block Series and to receive comments and recommendations from Ontario universities. The 

space standards were reviewed and revised to reflect current teaching and research conditions 

in 1984 and in 1992, the first edition of the COU Building Blocks was published; periodic 

revisions of the standard have since taken place [103]. A comprehensive timeline of the 

development of the COU Space Standards can be seen in Appendix C3.  

 
The original motives for developing a capital formula were to promote equity and objectivity, 

consistent standards, an opportunity for the provincial government to influence their financial 

obligations, and to provide an incentive for institutions to properly manage and allocate their 

resources. In order to accomplish these tasks a survey of physical facilities takes place on a 

triennial basis. Information on space inventory, student enrolment, full-time faculty and staff 

positions, lab contact hours, and library collection volumes is gathered between the months of 

January and April, sometimes with the help of students. This information is used to monitor 

changes in space needs, as well as to calculate capital funding requirements for the university 

system as a whole for the government. Outside the COU, the data is used by the Canadian 

University Reciprocal Insurance Exchange to determine the value of university facilities for 

insurance purposes. The Ontario Ministry of Training, Colleges, and Universities also uses the 

data to make informed decisions on allocating funds to each institution through the Facilities 

Renewal Program. Lastly, institutions themselves use the gathered data for a variety of reports 

including proposals and internal planning [103]. While the COU data is unique and extremely 
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useful, it is not without faults. Specific to the inventory of space, the age of facilities is not 

considered despite it being recognized as having potentially significant impacts on efficiency 

and usability of spaces. Secondly, while the definitions of COU space categories are specific, 

there is room for interpretation between one administrator and another. Nevertheless, the 

opportunity to harness the gathered COU data to correlate with electricity consumption exists.   

 

 
Figure 20 The proportion of spaces under COU space categories for architecture buildings at the University of 
Toronto and Ryerson University. 

 
2012 data for COU space categories was gathered from Ryerson University [104] and U of T 

[105] from their respectful facilities and planning offices on interior areas defined within each 

category for every building on campus. At U of T, an official audit of spaces is taken every three 

years by upper level administrative staff for the department while at Ryerson, a less formalized 

approach is taken with ongoing updates to the VisonFM database throughout the year by a 

Facility Analyst. Figure 20 illustrates the space usage at architecture buildings from both 
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universities. Typical non-specific education facilities at Ryerson University tend to dedicate 

roughly a third of their spaces each to offices, laboratories, and “other” spaces. More 

specialized or smaller buildings, and those housing centralized heating/cooling equipment, are 

excluded from this generalization. Spaces categorized under “other” include circulations 

spaces, washrooms, elevator shafts, and stairwells, among other things. Aggregating the COU 

categories based on perceived end-uses results in a simplified and easier to interpret diagram 

(Figure 21).  

 

 
Figure 21 Areas attributed to primary end-uses based off of 
COU categories for Ryerson University’s Architecture Building. 
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Table V COU space categories with a proportion of total area greater or equal to 3% 
across both Universities. 
COU Space Category Area (m2) Proportion of 

Total Area 
Cumulative 
Proportion 

Other Non-Assignable Area 389421.05 33% 33% 

Research Lab Space 80970.08 7% 40% 

Academic Offices 58624.81 5% 45% 

Residence Living Space 56056.83 5% 50% 

Scheduled Class Lab 49057.67 4% 54% 

Office Support Space 39989.56 3% 57% 

Parking Structures 36499.98 3% 60% 

Library Collection Space 36418.98 3% 63% 

Non-Tiered Classrooms 35497.32 3% 66% 

Departmental Support Staff Office 32404.96 3% 69% 

 

Of the 53 space categories that define Ryerson University and the University of Toronto’s space 

usage, four have a proportion of total area of 5% or more, (Table V, a full list can be seen in 

Appendix C4). If the raw space categories were used to develop a model, many buildings 

would be excluded from the sample because they lack those specialized spaces that may be 

required to estimate consumption. The robustness of the model would suffer with the inclusion 

of highly specific space usage variables. For this reason, an attempt was made to group COU 

space categories together based on estimated energy use intensities (Figure 22 & Figure 23). 

For instance, daycare facilities and lounge spaces serve distinct functions however their energy 

demand is expected to be similar due to how the occupants are behaving. Another example of 

grouping similar categories is athletic activity and seating spaces; many of these spaces refer to 

arenas and courts where the seating and activity area are conditioned as one space. After a 

quick visual assessment of how university spaces at Ryerson were categorized, the COU data 

was simplified based on the following criteria: occupant density, hours of use, conditioning 

requirements, plug loads, and lighting intensity. This re-categorization of spaces is a necessary 

critical step that will undoubtedly affect the performance of the model. The risks assumed here 

are less than those of alternative pathways: either selecting a sample of space usage categories 

based on their perceived effects on electricity consumption or simply basing selection on a 

space's popularity on campus. The first option, creating models with a select few categories, 

requires an amount of justification that doesn’t exist. A lack of precedent studies and 
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knowledge for linking categories with their effects on electricity consumption makes it difficult 

to establish confidence when prioritizing certain categories over others. Further, how many 

categories should be selected from the set, and what balance of space categories with high 

and low energy demand should be considered? These unanswered questions further deterred 

progress down this path. The second option, using only the most common space usage 

categories, is illogical. If significant categories were arbitrarily defined as those with a 

proportion of 3% or more, that would result in 69% of all areas accounted for. Not only are 

there spaces that share similar EUIs within the selected set (Table V), but also, almost one third 

of spaces are not considered. Since it has been previously established that academic spaces 

suffer from highly variable EUIs, many of the eliminated spaces may have a very high impact on 

energy consumption in a few number of buildings. A self-directed reorganization of the COU 

data was superior to the other two options discussed for another crucial reason. Since there are 

numerous individuals interpreting the space definitions, there may be cases where staff 

members categorize similar areas differently – especially where multiple subcategories exist. 

For example, the definition for Category 4.2 Research Office/Project Space is very similar to 

Category 2.2 Unscheduled Class Laboratory Space despite the fact that they belong to 

different categories. By grouping categories based on expected EUI, the bias introduced by 

many human actors interpreting the COU space definitions is replaced solely by the author’s 

own accountable and disclosed bias. The grouping of COU categories is one of many possible 

ways to extract information on electricity consumption tied to certain space types. It is evident 

that further work in this area of how best to utilize COU space usage data is needed to make 

better-informed decisions for future studies. 

 



 55 

 
Figure 22 Process of combining COU space categories into 13 groups based on energy profile 
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Figure 23 Proportion of area after amalgamation 
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problem is to split the two floor count variables into three: one for accounting for the number 

of floors the university occupies in a building and the other two for documenting the highest 

and lowest floor of the building, regardless of the tenant. Applied to the example above, the 

variables for floor count would be two, for the number of university occupied floors, and 20, for 

the maximum floor count above ground. Whether or not this will have a measurable impact on 

model performance (given the infrequency of this issue) should be a focus in future work. 

 

 
Figure 24 Screenshot of Apple’s Maps program which was used to survey building geometry 
on both campuses. 

 
Building footprint shape and the number of shared walls was measured by analyzing various 

cartographic data supplied by the universities [31, 106], Google [102] and Apple [107]. 3D 

satellite imagery and Google’s Street View feature allowed the survey of building geometry 

and their surroundings to be completed efficiently (Figure 24). With respect to building shape, 

six footprint shapes were selected, for the purposes of this thesis, to categorize the academic 

buildings found within the working sample (Figure 25). In general, categorizing footprint 

shapes was a simple task with only a few buildings causing any conflict. Those buildings tended 

to have podiums where the tower portion of the building had a different floor shape than the 

base. Also some buildings consisted of multiple buildings which differed in shape. For these 

instances, a null value was used when no prevailing shape could be determined. This was done 

on a case-by-case basis as each instance presented a unique set of characteristics to consider. 
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A value ranging from one to six represented the footprint shapes; with this being the only 

categorical variable considered in the equation, the value is of no importance. 

 

 
Figure 25 Six footprint shapes used to categorize academic buildings  

 
The variable “shared walls” represents the number of surfaces (walls and roof) the building 

envelope comes into contact with, from neighboring buildings. It is a simple measure to 

account for the amount of exposed surface area, a factor that has been associated with energy 

calculations [65]. For the greater majority of buildings (89%), no shared walls were found. Those 

with shared surfaces were specifically for walls, with the exception of one Ryerson building – a 

bookstore whose roof was under an above-ground parking garage. A shielded roof affects heat 

loss and energy consumption for a building to a greater extent, when compared to a wall. 

Despite this, no differentiation was made in this variable between surface types because of the 

limited instances of a covered roof in the studied sample. Partial shared walls were accounted 

for by using fractions. A drawback for how this variable is measured is that it does not consider 

the relative area that is covered and uncovered. Potentially, this means that two buildings 

sharing the same number of shared walls may perform differently due to their surface area to 

volume ratio. Nevertheless, this tradeoff is made to promote simplicity in the methodology. An 

attempt was made to reduce the potential for an inflated shared wall variable by only counting 

surfaces where a significant surface area relative to the total was shared with another building. 

This added step may be difficult to instruct future users on.  

 
B. R Programming 
 
The statistical software used to create and test multiple linear regressions is R [108]. R is both 

the language and the environment for statistical computing and graphics. The term 

"environment" is intended to characterize it as a fully planned and coherent system, rather 
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than an incremental accretion of very specific and inflexible tools, as is typically the case with 

other data analysis software [109]. It is popular among statisticians and data miners due to its 

flexibility and extensibility. It was first developed in 1993 by Ross Ihaka and Robert Gentleman 

and has grown substantially in recent years, both in popularity and in advancement. A more 

detailed history of R and its contributors can be seen in Ihaka [110].    

 
Without a native graphical interface, R relies on a command line interface to interpret the 

language R, which is similar to MATLAB. The primary functions used to obtain the regression 

models will be detailed below which include: multi-model inference, cross-validation for 

generalized linear models, and stepwise variance inflation factor selection. Each function’s 

script can be seen in Appendix C5. 

  
1) Stepwise Variance Inflation Factor Selection: In order to build statistical models with 

significant predictor variables, collinearity among variables needs to be addressed. This is 

especially true for this thesis because data dredging was used and also because of the 

similarities in predictor variables (i.e. 14 of them dealing with floor area). By reducing 

collinearity, independent variables are distanced from one another resulting in stronger and 

truer relationships in the resultant models. Collinearity is represented by variance inflation 

factors (VIF) where a higher number equates to stronger collinearity among variables. VIF is 

calculated by taking the inverse of the coefficient of determination (r2) for the regression 

between one predictor variable, j, against all others (2).  

 

𝑉𝐼𝐹! =
!

!!!!
!  (2) 

 
The VIFs are then used to screen out variables with high collinearity. The custom script from 

Beck [111] allows for the stepwise selection of variables based on VIF (i.e. VIF is calculated each 

time a variable is removed from the set). Since the VIFs change significantly with each iteration, 

this ensures that all remaining predictor variables are under the defined threshold.  
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2) Multi-Model Inference (Dredge): As eluded to previously, data dredging was the method 

used to create candidate models. In R, the dredge function creates all possible combinations of 

explanatory variables and ranks them by a defined information criterion – in this thesis, Akaike 

Information Criterion is used (AIC). The number of models evaluated in Dredge is exponentially 

related to the number of predictor variables; with the removal of collinear variables, the 

number of models fitted in each subset (refer to section C. Creating Subsets) did not exceed 

262,144. AICc denotes AIC adjusted for smaller sample sizes – a greater penalty is assigned for 

extra model parameters compared to AIC. Both measures are interpreted the same however 

due to the small sample size in this thesis, AICc is used. AIC is a metric used to evaluate 

competing models by considering the goodness of fit as well as the complexity. As opposed to 

r2 or adjusted r2, a measure of explained variance in the response variable by predictor 

variables, AIC seeks to identify parsimonious models [73, 112]. AIC is a relative value and 

cannot be compared to models from other subsets or other studies. The difference in AIC 

between models dictates the amount of information gained or lost; a delta between the lowest 

AIC and a competing model’s is substantial if under two. Information can still be gained from 

models with a delta of 10 but with much less support [73]. When there are several models that 

have a delta of less than two, it is possible to average the models, a process known as multi-

model inference [113]. A drawback of relying on dredge results to formulate a model is that its 

coefficients will be specific to the sample used for training. Using AIC will guarantee the best 

fitting model, not the most universal model. This is acceptable for our applications, but for 

research towards a model applicable to a wider scope of academic institutions, dredge may 

not be appropriate.  

 
3) Cross-Validation for Generalized Linear Models: In order to validate the models identified 

through Dredge, they need to be tested on a new set of data that was not used to construct 

the model. Because the sample size was limited in each subset, the group was not further 

divided into a training and test set which is what is commonly done when data is not scarce. 

Instead, Leave-one-out Cross-validation [114, 115], where one observation from the subset is 

omitted during model building and used to validate the subsequent model, was used to gauge 
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performance – comparing the predicted and actual electricity consumption for that building. 

Examples of studies dealing with energy consumption in buildings using cross-validation can 

be seen in [116] and [117]. The removed observation was then reintegrated into the subset and 

used in the next iteration of model building and testing – with a new building being used for 

validation. This was repeated until all buildings in the subset had been “left out” once (i.e. 

used to test), and an associated error rate had been calculated. In total, a subset containing 20 

buildings had 20 unique errors that were then averaged for each model in the form of a mean 

square error (MSE). A general schematic of this method can be seen in Figure 26. 

 

 
Figure 26 Example of leave-one-out cross validation with 10 samples. [118] 

 
C. Creating Subsets 
 
Breaking down the sample into subsets was required in order for a variety of building types 

and sizes to be considered. Even after eliminating buildings with an interior area below 1000 

m2, removing houses from the sample, and omitting outlier data, there was a great deal of 

variation in area, electricity consumption, and energy use intensity, as shown in Table VI. 

Creating a static model to represent this level of diversity would likely result in poor and 

unreliable performance. In order to address this, subsets of the sample set were created so that 
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multiple static models could be created to represent each group. There were many options 

available on how to divide the sample such as by archetype, or construction date however 

those would require additional resources for future users to collect. Instead, the total interior 

floor area was used as the boundary condition to separate the buildings. Since many of the 

variables in the model are derived from floor area, it is important to divide buildings in such a 

way that their EUIs are distinct from one group to another. Figure 27 shows the relationship 

between two possible indicators and EUI: interior floor area and whole building electricity 

consumption. Selecting a factor that yields a strong correlation with EUI is ideal but since both 

factors show a weak relationship (r2 = 0.36 for electricity consumption and 0.19 for floor area), 

the criteria shifts to one that spreads EUI values the most. Floor area is superior in this aspect 

which is partially why it was chosen to define subsets. The other reason behind its selection was 

the difficulty for buildings with unknown consumption levels to be placed in one subset; 

determining which model is most applicable to estimating consumption is a critical step in this 

methodology. The boundaries were created by using interquartile ranges of the building 

interior floor areas. This ensured that the number of individuals in each subset are similar, if not 

equal. University campuses tend to have a few exceedingly large buildings that offset the rest 

of the buildings (Figure 28) – if equal ranges in area are used to divide the sample, the number 

of individuals in each group would be highly skewed. The number of subsets created was 

arbitrarily set at four however performance with three and five sets were created for 

performance tests.    

 
Table VI Descriptive statistics of the building sample from Ryerson and University of Toronto after the 
elimination of small buildings, houses, and outliers.  

 Electricity 
Consumption 
(kWh/Annum) 

Area (m2) EUI (kWh/m2/annum) 

Min 109,400 1029 26 
Max 21,459,710 82,688 564 

Range 21,350,310 81,659 538 
Mean 2,561,098 10,772 238 

Median 1,106,517 6,951 204 
Standard Deviation 4,266,670 12,507 105 

 



 63 

 

 
Figure 27 Correlation between EUI and floor area, and EUI and electricity consumption for sample buildings.  

 

 
Figure 28 Ryerson and University of Toronto buildings sorted by area. 
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Within each subset, an additional test for outliers was done to ensure that variance within each 

subset was acceptable. Using the standard deviation method, as outlined in the Electricity 

Consumption Data subsection, buildings with a consumption value outside of 2 standard 

deviations away from the mean of the subset were withheld. This resulted in four buildings 

being removed from the 2012 and 2010 years, and three from 2011. The areas used to define 

each subset are shown in Figure 29; Table VII displays descriptive statistics for each of these 

defined subsets.  

 

 
Figure 29 Minimum and maximum areas defining each of the four subsets.  
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D. Building Subset Details 
 
Data for each of the defined subsets used to create and test the models is displayed in Tables 

VIII – XI. As discussed in the previous Section, subsets were created to reduce the variance 

observed with electricity consumption in academic buildings and to allow for more accurate 

models to be created. The subsets are defined by interior floor area which will also determine 

which of the four equations are used to estimate consumption for a particular building. All 

area-related variables (c1-c12 & Interior Floor Area) are measured in square meters and “2012 

Electricity Consumption”, in kWh.   

 

Table VII Descriptive statistics for Ryerson and University of Toronto buildings in four subsets (n=80) 

Subset  1 2 

 Electricity 
Consumption 
(kWh/annum) 

Area 
(m2) 

Average 
EUI 
(kWh/m2/ 
annum) 

Electricity 
Consumption 
(kWh/annum) 

Area 
(m2) 

Average 
EUI 
(kWh/m2/
annum) 

Min 109400 1029  141602 2961  

Max 681737 2880  1522560 6683  

Range 572337 1851  1380958 3722  

Mean 352335 1875 188 839897 4809 175 

Median 319650 1832  839171 4998  

Standard 
Deviation 

148204.5 599  430184.9 1192  

Subset 3 4 

Min 241920 7219  2584200 14950  

Max 3240728 14577  21459710 82688  

Range 2998808 7358  18875510 67738  

Mean 1634703 10133 161 7417457 26269 282 

Median 1555273 9860  5865227 21414  

Standard 
Deviation 

881249.4 2240  4488290 14971  
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Table VIII Subset 1 predictor variables and electricity consumption 

 
 
Table IX Subset 2 predictor variables and electricity consumption 
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Table X Subset 3 predictor variables and electricity consumption 

 
 
Table XI Subset 4 predictor variables and electricity consumption 

 
 
 
A great deal of variation can be seen in the re-categorized COU categories (Figure 22) which is 

to be expected. Specialized space variables such as c12 (living spaces), and c4 (athletic spaces) 

are almost nonexistent in smaller buildings. c9, mainly representing circulation spaces, is 

closely related to the total interior floor area of the building and can be found in all buildings. 

The majority of buildings across all subsets do not share a surface with one or more buildings 

and have at least one below ground level.     



 68 

IV. RESULTS 
 
A. Candidate Models 
 
The results from Dredge provided an exhaustive list of models for each subset. The list of 

models with an AICc delta of 7 or less can be seen for each subset in Appendix D1 [73]. The 

models used for further analysis were the top five models ranked by AICc for each subset 

(Table XII). The number of variables chosen for the models ranged from one to five with the 

larger buildings generally utilizing more variables. One reason for this may be that larger 

buildings have a value for more space categories than smaller ones. Another interesting 

observation is that space categories 5, 6, 7, and 11 consistently have negative coefficients 

while categories 2, 3, and 9 have positive ones. Aside from the obvious linkages that can be 

made to the energy demands of each unique space (which cannot completely explain the 

observations), the negative and positive coefficients can be attributed to the expected hours of 

occupation for those spaces. Using the results from Davis and Nutter [119], who assigned 

occupancy factors for common university spaces, a common factor among space categories 

assigned a negative coefficient were their scheduled usage. For instance, classroom, their 

support spaces, and student eateries all handle occupants at regular intervals during the week. 

This is in contrast to the spaces with positive coefficients such as research laboratories and 

plant/maintenance areas which may handle the same number of occupants but dispersed over 

many hours of the week. This deduction is only a possibility of the true mechanisms at work; 

further analysis is required to make any further conclusions.  

 
The weights of space-related variables are much less than above and below ground floors and 

the number of shared walls – this is only an indication of the sensitivity of these variables rather 

than their importance over one another. Variables with distinct units cannot be compared with 

one another in any meaningful way. Below ground floors seem to be more significant in 

modeling electricity usage for buildings smaller than 6,683 m2, while buildings larger than that 

rely on above ground floors. The number of surfaces shared with another building is found to 

be significant in determining the electricity consumed but it is not commonly relied upon.  
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Surprisingly, no models utilized the data on building footprint to estimate consumption. The 

only conclusion that can be drawn from this is that its effects on electricity use are relatively low 

compared to the other studied variables. Lastly, models for subset 4, containing buildings 

greater than 14,950 m2, all have intercepts below zero. It is difficult to infer too much 

information about the predictor variables and electricity consumption because causality has not 

been established in this body of work, nor inferred from existing literature. These models 

merely represent correlations between select predictor variables and electricity consumption.   

 

 
Figure 30 Performance of top models for all subsets using consumption data from 2010 to 2012. The larger 
the error, the less accurately the model has predicted consumption for buildings in that subset.  

 
Figure 30 shows the coefficient of variation of the root-mean-square-error, CV(RMSE), for the 

top models for each subset across three years of data, calculated through cross-validation. 

Focusing on 2012 data, performance is similar between subsets 1 and 3; the second subset 

had the worst performing models and the fourth, the best. A general decrease in accuracy can 

be seen for earlier years which is an interesting trend because predictor variables were not 

updated for 2010 and 2011 models (due to a lack of data). This implies that using data that 

does not correspond to a particular year’s consumption data potentially hinders the 

performance of top models. As Figure 30 represents average errors, it is difficult to conclude 

that using a particular model will result in a specific error for all buildings within the subset. 
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Additionally, models with a lower average reported error have the possibility of being less 

accurate than other models when used on certain buildings. Instead, average errors show 

which models perform better (more accurate) when considering all buildings within each subset. 

Because of this fact, it is sometimes beneficial for models within a similar error range to be 

combined and averaged in hopes that performance gains from multiple models can be 

incorporated into the final model – a practice which is further explained in subsection C. 

Application of Models on Ryerson’s Individually-Metered Buildings.  

 

  
Figure 31 Model performance created using three and five subsets. Models resulting in an error rate above 
100% are omitted.  

 

As mentioned in Model Development, the use of four subsets was initially set arbitrarily. The 

process of creating and testing models was repeated for buildings divided into three and five 

subsets to see their effects on performance (Figure 31). With five subsets, the models created 

in the first set perform better than the original case with four subsets. Also, performance from 

the third subset onwards does not seem to improve as they do with the original case. 

Performance from three subsets mirrors the trend found with four subsets: an error rate around 

40% for smaller buildings, which increases in the second subset, before finally settling around 

20% for large buildings. Figure 31 indicates that performance from models seems to improve 

when a finer scale is used for smaller buildings. In addition, little impact on performance is 

made with the inclusion of more buildings at the larger end of the floor area spectrum. 
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Potentially, this means that the methods used here would benefit most from using smaller area 

intervals to define subset boundaries for small buildings, and larger area intervals for large 

buildings.  

 
B. Application of Models on Ryerson’s Individually-Metered Buildings 
 
In order to reduce model selection bias in situations where there is a small sample size relative 

to the number of variables, multi-model inference or model averaging is used which promotes 

confidence in the results [83]. Top candidate models presented in Table XII are averaged 

based on their Akaike weights, which represents the relative likelihood of that model being 

true over all others. Coefficients for the top five models in each subset are averaged and shown 

in the first row after each header in Table XIII. Below the model coefficients are the values for 

the variables called upon. For instance, Oakham house (OAK) has one below ground floor, 

1,686 m2 of floor space categorized as c6, and 1,120 m2 in c9. The sum of the intercept with 

the products of all terms results in the initial 2012 electricity consumption for that building.  
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Table XIII Final averaged models applied to each cluster-metered building at Ryerson. Displayed below the 
model’s coefficients are the values for the building variables. Different clusters are identified by colour. 

 
 
 
The adjusted estimate for each building is determined by comparing the estimated electricity 

consumption for each cluster with the meter readings in 2012. Depending on the difference 

between the two values, a constant multiplier is applied to all buildings in that cluster in order 

to increase the chances of accurate results. Important to note is that buildings from each 

cluster may be modeled using different equations. Figure 32 shows the raw estimates for 

cluster-metered Ryerson buildings and their 2012 electricity meter readings. Accuracy of the 



 74 

estimates ranged from an underestimate of 29% (JOR.LIB.POD.RAC) to an overestimate of 

20% (EPH.SHE) with an average error rate across all five clusters at 14.8%. Electricity estimates 

for the JOR.LIB.POD.RAC cluster were adjusted the most (increase of 42%); on average 

however, the clusters were corrected by 16.8%. The relatively large difference observed 

between estimated and actual electricity consumption for the JOR.LIB.POD.RAC cluster may 

be attributed to the location of a large centralized cooling system that provides cooling for 10 

other campus buildings, which was previously discussed in the Model Development section. 

EPH.SHE’s consumption may have been overestimated due to the fact that they are considered 

by the model to be two separate buildings (with significant shared surfaces) when in fact SHE is 

more of an extension of EPH. Lastly, the differences seen in the SCC.OAK.HEI cluster is 

questionable due to a lack of updated data for the meter; the value shown in Figure 32 

represents electricity consumption that has been lowered by 11% (average decrease of all 

buildings from 2008 and 2012 – 12% for all cluster-metered buildings) from its last reported 

consumption in 2008.  
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Figure 32 Raw electric consumption estimates (kWh) for Ryerson’s clusters and their actual metered values in 
2012 

 
The results shown in this section positively reflect the strength of multiple linear regression in 

estimating electricity consumption in large and complex buildings. The next section will 

provide a more critical analysis on the strengths and weaknesses of the prescribed method and 

the future applicability of the models. 
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V. DISCUSSION 
 
A. Model Performance 
 
Figure 32 previously summarizes the accuracy of the estimated electricity consumption for each 

of Ryerson’s building clusters. While this provides some insight into the accuracy of the 

developed models, their level of performance can be misleading. The reported errors can be 

cancelled from multiple buildings resulting in a false sense of accuracy for individual buildings 

within the cluster. In order to combat this, a comparison of results between this project is made 

with Rahman’s [33] work, which was completed in 2010. Rahman studied the feasibility of using 

a Heat Recovery Ventilation system and expanding Toronto’s Deep Lake Water Cooling system 

to cover Ryerson’s buildings. In order to quantify the benefits of reduced energy consumption 

and GHG emissions in these scenarios, an energy audit was completed for 16 buildings (86% of 

Ryerson’s total floor area), followed by energy simulations based on 2006 data using Carrier 

HAP (Hourly Analysis Program). The results from simulations for buildings that were covered by 

this thesis and Rahman’s are shown in Figure 33.  
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Figure 33 Comparison of estimated electricity consumption from this study with the simulated results from 
[33].   

 
In most instances, the adjustments made to the original estimates for individual buildings 

further distances the results from Rahman’s. Only four of eleven buildings see a decrease in the 

difference between the simulated and model-estimated values. The reason why Rahman’s 

results can be relied upon as a benchmark is due to its reported accuracy. Comparing the 

performance on two individual buildings (whose consumption is known), his results for the 

Engineering Building (ENG) and the School of Interior Design (SID) yielded an error of 1.2% 

and 2.3%, respectively. Using the averaged models created in this thesis, the error for those 

same buildings were 36% (ENG) and 34% (SID). While the models may be more accurate, their 

year of estimation was six years previous to those of this study making direct comparisons 

difficult. Figure 34 displays the short-term trend seen for each building cluster. As mentioned 

previously, the SCC.OAK.HEI cluster’s last fully metered year of consumption was in 2008 – it is 
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therefore excluded in making generalizations about consumption during 2006 and 2012. In 

total, electricity consumption for the remaining four clusters saw a decrease of 7% between 

2008 and 2012 (complete data was not available for 2006 due to missing or outlier data). On a 

cluster-basis however, EPH.SHE and JOR.LIB.POD.RAC both experienced a decline during this 

period of 15% and 7% while VIC.IMA.CED saw an increase of 11%. A marginal 1% increase in 

consumption was found at the PIT.RCC cluster. From this we can tentatively conclude that that 

Rahman’s results in Figure 34 is expected to vary from those of this thesis by a factor of 11% to 

-15% from usage patterns alone. Again, it is difficult to ascertain the fluctuations found within 

individual clusters meaning that the differences in estimated consumption from this study and 

Rahman [33] may be due to an actual increase or decrease in electricity consumption between 

2006 and 2012, or may originate from low precision between both methods.     

 

 
Figure 34 Electricity consumption trends for meters representing multiple buildings over the analysis 
period 

 

2006 2007 2008 2009 2010 2011 2012 

EPH.SHE 4057549 3928862 3994928 3,943,569  3,709,375  3,445,588  

JOR.LIB.POD.RAC 18276049 20399666 19697876 18,248,639  17,831,577  17,088,085  

SCC.OAK.HEI 2,042,267  1,675,334  1,603,913  1,427,483  

PIT.RCC 5397903 5607650 5321522 5293557 5,722,330  5,581,427  5,426,155  

VIC.IMA.CED 3599652 3359113 2456452 2,228,852  3,234,204  4,010,987  
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Comparisons can be made with measured consumption data on a cluster-basis (Figure 35). As 

expected, energy simulations run by Rahman [33] yielded more accurate results than the 

multiple regressions created in this thesis. Of the five clusters, one of them (PIT.RCC) is more 

accurately estimated using regression analysis. Comparing the average error between the two 

methods, the Carrier HAP models were roughly 3 times as accurate than the models used here 

(4.4% vs 14.8%). As mentioned in the Results section, the error associated with EPH.SHE and 

JOR.LIB.POD.RAC clusters may be inflated due to unique circumstances not found elsewhere 

in the building sample. This comparison highlights the performance gains from using energy 

simulations over statistical models. However, as earlier mentioned, the methods introduced in 

this thesis are not to compete with existing methods, such as energy simulation. Instead, it is to 

offer another solution for scenarios where the need for information gain is to be maximized 

with as few resources available. Consideration has yet to be given to the methods behind each 

approach. Arguably, the methods in [33] are more work intensive and undoubtedly more 

technical in nature when compared to this thesis. The detailed inputs required for energy 

simulations are extensive and may or may not be transferrable to other buildings; each 

building’s performance is predicted with a unique model whereas using statistical models, only 

four equations are required to model the majority of academic buildings. Ultimately, it is left for 

the user to decide whether the difference in accuracy between the two methods is significant. 

For most planning applications, the accuracy of the regression approach may be suitable for 

prioritizing certain buildings over others. In cases where a detail breakdown of energy end uses 

is needed, such as when selecting which energy efficiency measure will be most effective, 

simulations may be the best choice. These conclusions can only be made confidently with more 

comparisons of different methods on the same building sample – an area with much needed 

growth. With numerous modeling programs to choose from, the error results may vary 

considerable with other programs. Carrier HAP is not a common choice among academics but 

its modeling abilities are comparable to current standards (DOE 2.1, eQUEST) [120].  
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Figure 35 Estimates for Ryerson clusters from this study and [33] compared to actual metered readings 

 
B. Significance of Model Variables 
 
Of the 18 variables selected for analysis, only 11 of those were deemed significant when 

estimating electricity consumption in academic buildings. A summary of the finalized linear 

models is shown in Table XIV. This section will focus on the 11 variables and determine 

whether or not the variations in their weightings can be explained with building science 

principles.  

 
 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

VIC.IMA.CED PIT.RCC SCC.OAK.HEI JOR.LIB.POD.RAC EPH.SHE 

M
ill

io
ns

 o
f k

W
h 

pe
r Y

ea
r 

Cluster Simulated, Rahman (2010) Cluster Metered (2006) Cluster Estimate Cluster Metered (2012) 



 81 

Ta
bl

e 
XI

V 
M

od
el

 v
ar

ia
bl

es
 fo

r e
ac

h 
su

bs
et

 

 



 82 

In order to better understand the model coefficients, a closer look at the properties of the 

buildings within each subset is needed. Since there were only 20 buildings in each subset, the 

observations should not be extended to the entire building population or even to all academic 

buildings. They should instead be treated as nuances, unique to the building sample used (U of 

T and Ryerson University buildings). Figures 36 – 38 compare the values for each variable 

across all subsets. Focusing on floor levels, it is evident that larger buildings tend to have an 

extended upper range of floor levels compared to smaller buildings; subsets 1 and 2 peak at 

three or four above ground floors. These trends are much more subdued for below ground 

floors with only the largest buildings having three or more levels (most likely due to large 

underground parking structures). The equations for the first two subsets use below ground 

floors while the last two subsets use above ground. This indicates that the electricity 

consumption for buildings under 6,683 m2 is influenced more by the existence of a basement 

than multiple above ground floors; small building mostly either have zero or one below ground 

level while they range from two to seven for above ground. For the most part, the selection of 

this variable for smaller building makes sense however the weightings assigned to each model 

are questionable. A small or negative coefficient in model 1 is expected because small 

buildings tend to use their basement levels as storage/service spaces. In model 2 however, the 

coefficient is much larger – this may be to offset the large negative coefficients for other 

variables in the model, namely c7, and the relatively low intercept. For subsets 3 and 4, the 

large variance in above ground floors seems to impact electricity consumption more than 

basement levels. While it may appear that the weighting of the variable is consistent across 

both models, the difference in the intercept signifies that model 3 relies on above ground 

floors significantly more than model 4.  

 
The relatively large coefficients assigned to above and below ground variables may cause 

problems when estimating consumption for smaller buildings. There are instances with 

model/subset two where the total building consumption is less than the coefficient assigned to 

below ground floors. In total, 25% of the subset suffers from this, which may explain why its 

performance is the weakest among the four models (Figure 30). Despite this fact, the remaining 
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space usage coefficients are almost all negative and quite large which may offset the model’s 

sensitivity to below ground floors.   

 
All in all, the variations observed with the number of floor levels seem to be governed more by 

the other variables of the models than any building science principle. However, the potential 

lack of impact the number of floors of a building has on its electricity use intensity was brought 

up in the Model Development section when discussing the collection of data. Nevertheless, 

building floor levels are statistically significant variables in the presented models. 

 
 

 
Figure 36 Number of above ground floors for buildings in each subset 
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Figure 37 Number of below ground floors for buildings in each subset 
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Figure 38 Comparison of space category ratios for buildings in each subset. Categories not included in the 
final models are semi-transparent. 

 
Theoretically, as the number of shared surfaces increases for a building, its energy 

consumption should decrease because heat gain/loss through that surface is reduced. Because 

it is electricity consumption that is being predicted, the effect of shared surfaces may be 

minimized since no buildings in the sample rely on electric heating. Looking at Table XIV, 

models 3 and 4 rely on this variable to predict electricity consumption in academic buildings. 

However, the data for this variable is highly sporadic with only 5% of buildings showing any 

shared surfaces in subsets 1 and 3, 15% in subset 2, and 20% in subset 4. It can be argued that 

larger buildings tend to have one or more shared surfaces as oppose to their smaller 
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counterpoints; despite the building property leading to reduced heat loss, it may be an 

indication of an oversized building which may consume more energy. The uncommon nature of 

this building property, combined with the positive coefficients assigned to this variable 

suggests that it functions as a minor correctional term rather than one that is heavily relied on 

to estimate energy consumption.  

 
This critical analysis of model terms should not be used to detract from the performance of the 

presented models. While many of the predictor variables and their coefficients are not 

supported by common building science theory, their ability to predict electricity consumption 

in academic buildings is proven. In other words, the selected variables are statistically 

significant with energy consumption but their assigned weights cannot be used as a basis for 

building science theory without further analysis. 

 
C. Commonalities Between Omitted Academic Buildings 
 
Eliminating buildings with an area smaller than 1000 m2 was unavoidable due to extreme 

variations in electricity consumption in published studies as well as those found in the building 

sample. Stemming from the same logic, a blanket approach to removing houses from the 

sample is also used. Electricity consumption in houses is assumed to be noticeably different 

and is not included in the definition of a typical multi-use academic facility. A less blunt 

approach could be taken, considering other building properties that may lead to high variation 

in electricity consumption, but that level of research is outside the scope of this project.   

 
Outliers were identified in two stages. Buildings were first identified as outliers when their 

2010-2012 electricity consumption exceeded their historic usage. This could have been caused 

by a number of reasons as discussed in Model Development. The buildings were eliminated 

from the sample because of their flux in consumption which a static model would struggle with. 

The second stage of outlier identification occurred after establishing the subsets for model 

building. Here, buildings were eliminated if their consumption was significantly higher (>2x) 

than the average within the subset. It is these buildings that are of interest in this section to 
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determine if there are identifiable trends that will indicate whether a building will be able to be 

modeled using the regressions created in this thesis.  

 
Table XV Buildings that consumed significantly more electricity than other buildings in the subset 

Building 
Name 

Institution Year of 
Construction 

Subset  

Fields 
Institute 

Toronto 1995 1 

 
Aerospace 
Building 

Toronto 1959 2 

 
Leslie L. 
Dan 
Pharmacy 
Building 

Toronto 2004 3 
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Medical 
Science 
Building 

Toronto 1969 4 

 
 

Table XV lists details about the four buildings that were eliminated at the second stage of 

outlier identification for the 2012 model year. All buildings removed from the sample are 

buildings from the University of Toronto. They share very few commonalities in construction 

type and year of construction but they manage to consume significantly more electricity than 

other buildings. A closer look at the study variables reveals major differences in space usage 

(Figures 39 – 42). Across all buildings, significant offsets from the subset average can be seen 

in c2, c3, c8, and c12. When factoring in the direction of the offset, only c12 (residential spaces) 

is consistently below the subset average while the other differences are varied. It is important 

to note that buildings within the first two subsets measured zero for many of the space 

categories (8 and 7 for subsets 1 and 2). The significant differences (<33% or >300%) in the two 

smaller buildings were almost always smaller than the average; the differences in the larger two 

buildings were more balanced. Aside from space usage, not many differences were found 

between outliers and their respectful subsets. Other than the first subset, the outliers were not 

the largest buildings, nor did they contain major differences in the number of shared walls and 

below ground levels. Greater variability was observed with above ground floors but nothing set 

these buildings apart from the majority. Looking at a building characteristic that wasn’t directly 

modeled in this thesis, there is a definite possibility that plug loads for specialty equipment 

(specifically linked to laboratory/research spaces) are the cause of the increased energy 

consumption in these outlier buildings. If equipment that draws large amounts of energy is 

installed in lab spaces, an increase in electricity use intensity for these spaces will occur. A large 

increase in intensity will offset the relatively low amounts of lab-dedicated spaces in some of 
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these outlier buildings leading to a greater amount of energy consumed. By definition, lab 

spaces, regardless of equipment type, are categorized as one in this thesis; in future iterations 

it will be beneficial to adopt an approach similar to Bonnet et al. [30] (i.e. incorporating plug 

loads to help distinguish lab spaces).  

 
 

 
 Figure 39 Area for defined space categories for the Fields Institute (U of T) 

 
Figure 40 Area for defined space categories for the Aerospace Buildings (U of T, Off-campus) 
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Figure 41 Area for defined space categories for Leslie L. Dan Pharmacy Building (U of T) 

 
Figure 42 Area for defined space categories for the Medical Science Building (U of T) 

 
Drawing conclusions from these differences in building characteristics is very difficult due to the 

pre-existing variability found in academic buildings – a reason why they are seldom studied. 

For instance Figure 43 shows the data for the c3 category (athletic service space/plant 

maintenance) for buildings in the fourth subset. C3 was graphed because it exhibited the most 

variability when comparing the outlier buildings to the averages. However, when looking at the 

sample, a great deal of variation still exists. On the other end of the spectrum, c9 (Circulation 

spaces) offsets were not deemed significant when comparing outliers to their subset averages. 

Figure 44 shows the data for the c9 category for the fourth offset. Indeed the variance is 

minimized in this case but the existence of a building with a greater offset from the average 

means that this type of analysis will not be effective in identifying buildings with high EUIs and 

thus difficult to model with a linear regression.   
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Building 2225 2118 33 0 877 2604 251 3 5972 0 23 0 0 

Average 1443 595 181 29 877 1344 237 21 3062 9 1030 1139 165 
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Figure 43 The natural variations found with athletic service/plant maintenance spaces for buildings in the 
fourth subset. The value for the outlier building is shown in red. 

 
Figure 44 The natural variations found with circulation spaces for buildings in the fourth subset. The value for 
the outlier building is shown in red.  

 
Identifying certain building characteristics that cause high electricity usage intensities for the 

four omitted buildings can possibly be done on a case-by-case basis. Justifications can be 

made for these anomalies by overanalyzing specific details. However, formulating general rules 

to apply towards other sample sizes cannot be made because of the few instances of outlier 

buildings that exist. Even with greater application of the models to other institutions, trends 

can only be identified if the same variables are collected and used to formulate the models. 

Instead, focus should be placed on attempting to model the highly diverse electricity 

consumption found in buildings with areas less than 1000 m2. These buildings represent nearly 
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20% of U of T and Ryerson’s building sample, much more than the four omitted buildings due 

to very building-specific properties.    

 
D. Challenges to Implementing Regression Models in Other Settings 
  
The performance of the multiple linear regression models created and used on Ryerson’s 

cluster-metered buildings shows the strength of statistics when coupled with basic building 

science and occupancy principles. However, there are some obstacles that need to be 

overcome before the successes seen in this thesis can be repeated for academic institutions in 

Ontario and around the world.  

 
Starting with the variables of the model, quality COU space data is required to maximize 

performance. As seen when using space usage data that was a year or two behind that of the 

measured consumption year, the models’ accuracy suffered. Not only is it important to have 

updated data, the accuracy of the data is critical. Differences in data collection between 

Ryerson and U of T were detailed in the Model Development section along with issues of 

interpreting space definitions. These issues will continue to exist and influence model behavior 

as long as no formal collection method is cemented among participating universities. The 

Council of Ontario Universities space standards are common within the province of Ontario but 

receive much less attention nationally and internationally. Other provincial organizations linking 

universities exist within Canada including the Research Universities’ Council of British Columbia, 

the Association of Atlantic Universities and the Bureau de Coopération Interuniversitaire. 

Among these groups, there are instances of adapting the COU space classifications [121] to 

accomplish similar goals however evidence of progress towards a uniform space standard 

across is limited. What this means is that equations used in this thesis will only be compatible 

with universities that tabulate their space usages based on the COU building blocks. Academic 

institutions using other definitions will benefit from the methods detailed in this thesis but will 

need to generate customized regressions to make use of the variables available. Climate and 

architecture play a critical role in determining the applicability of the algorithms developed in 

this thesis to other international markets. As displayed in Figure 9 in the Literature Review, the 
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electricity use intensity varies greatly from place to place due to a host of reasons including: 

perception of comfort, societal norms, climate, and architecture. The equations used in this 

thesis won’t apply to these markets but, as mentioned above, the methodology prescribed will 

be applicable to develop customized models. Variables analyzed for model building may be 

similar to the ones studies in this thesis but they should be arrived at only after considering the 

built forms found within the academic institution(s). In other words, narrowing down model 

parameters should be done with a keen sense of context.  

 
The next challenge to building reliable linear models to predict electricity consumption 

involves building diversity. As buildings become more unique from one another – both in their 

design and function – their energy profile is expected to change. While this issue has not been 

prominent in this thesis project, it has the potential to develop in future iterations as 

universities invest more into the aesthetics of their facilities to attract academics and students 

[122]. Also, historically preserved buildings with new additions will become more 

commonplace as space constraints in urban campuses become a greater issue. The building 

sample used in this thesis contained such unique buildings mentioned above with no issue so it 

is difficult to gauge how effective the methods used here will be in the future. With that being 

said, no regression model will be future-proof for all academic buildings – significant predictor 

variables will change with time. This is because electricity consumption within buildings is 

highly dependent on variables that are in a state of flux. How these variables change in 

comparison to the others and how electricity consumption responds for that given year can 

result in completely different models being created. Gallachóir [97] analyzed the relationship 

between electricity consumption at University College Cork and its student population. It was 

found that historic trends dating back to the early 1980s were similar across both metrics. From 

1994 and onwards, electricity consumption outpaced the growth seen in the student 

population. This was later attributed to the influx of personal computers on campus, increasing 

the plug loads. In addition, it was noticed that the energy trends for different space types were 

heavily influenced by the space’s reliance on technology and equipment. For instance, research 
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spaces and laboratories experienced a higher rate of change in energy intensity compared to 

dormitories, offices, and libraries.  

    
From a practical standpoint, as buildings adopt new technologies or components that affect 

how energy is consumed within them, it is important to consider these changes by re-

evaluating model variables to improve accuracy. For example, if a substantial share of buildings 

within a sample utilizes high performance windows, it may be worthwhile to collect the 

necessary data to include that variable in the analysis process. The frequency for model re-

evaluation is dependent on the pace at which universities introduce new buildings into their 

existing building stock either through new construction or renovation, relative to the size of the 

sample used for model creation. In addition, it may be prompted with poor performance 

results from existing models. Ultimately, the institutions that this thesis is targeting is a niche 

population that is expected to decrease in number with time. It is hoped that the costs 

associated with metering utility usage on an individual building basis the methods prescribed 

in this thesis are used as a last resort for new academic buildings as metering and sub-metering 

becomes the new standard for construction.  

 
Gathering a large enough sample of buildings to construct and validate the models is a hurdle 

not unique to multiple linear regressions. This issue is compounded by the lack of published 

material on minimal or optimal sample sizes for various modeling techniques – it is generally 

recommended to include as large a sample as possible to reflect reality. An aspect of this 

challenge that relates to the methods used in this thesis is the prevalence of small buildings 

(under 1000 m2) in samples. If the target and/or sample buildings are within the range of areas 

that experience high variability in electricity consumption, it may be increasingly difficult to find 

accuracy in multiple linear regression models. The definition of what constitutes a “small 

building” may change from one study to the next but it is expected that this handicap will 

persist while dealing with the studied variables in this thesis.  
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E. Suggested Areas for Future Research 
 
1) Model Variables: The variables considered for analysis in this thesis were selected for their 

balance in their relationship with electricity consumption and ease of use to measure. While 

they have been proven to predict consumption in academic buildings, there is a great deal of 

refinement that can occur that may improve performance in future iterations of the models. 

One of the greatest areas of contention in the methods of this thesis is the reclassification of 

COU space categories. The results of this thesis are due to the way the space usages are 

categorized, however there are a multitude of alternatives to explore. Minor changes in 

groupings or elimination of certain categories may potentially have profound effects on model 

performance. Work should be dedicated specifically on how best to harness the existing COU 

area database to represent energy consumption in university buildings. As discussed in the 

Model Development section, the variables accounting for above and below ground floors and 

shared building surfaces are flawed. In this thesis, the flawed approach was embraced for 

simplicity purposes. Future work should focus on how best to represent these building 

variables in models. Ultimately, the choice for how to represent floor height and exposed 

surface area should be left for the users of the model as their priorities shift.  

 
2) Defining Subsets: Subsets were defined by floor area because it was a simple guideline to 

follow with no room for interpretation. However, creating subsets on the basis of many other 

factors should be explored in future work. For instance, subsets can be created with any of the 

existing variables analyzed in this thesis, such as COU categories, or they can be created from 

a new variable, such as construction type. Expanding work in this area will definitely increase 

the time and effort needed to create subsets for future models, especially if they are created 

on new variables requiring additional measurement. Another area worth revisiting was 

previously eluded to in the Model Development section. Reworking subset boundaries so that 

more models are created for smaller buildings should be pursued. Because of the difficulty in 

modeling smaller buildings, models should cover narrower area-intervals in hopes of capturing 

the unique characteristics of those buildings. This adjustment can be flipped for larger 

buildings, with less models dedicated to them. It is hoped that by addressing these 
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characteristics in the sample, overall prediction error for all buildings can be reduced in future 

iterations.   

 
3) Multimodel Inference: Selecting the “best” model for application is another area that is 

highly contentious, however, unlike reclassifying COU space categories, the reasons behind 

this are due to external conditions. There are mixed signals from the statistical community as to 

how best to carry out model inference. The procedure used in this thesis was pieced together 

from multiple sources with several of them recommending model averaging. With that being 

said, there are multiple ways of selecting and/or averaging candidate models, some of which 

may result in a superior model than the one presented in this thesis. Again, future work should 

examine if there is an ideal method of model inference from dredge outputs.   

 

4) Stepwise Versus Hierarchical Regression: An alternative model to pursue in future work is 

hierarchical regression [123] which differs from the stepwise regressions used in this thesis. 

While both approaches strive to identify the “best” set of predictor variables, they differ in key 

ways which will affect the resultant model. The main difference between both model types is 

that stepwise relies more on an automated approach, where the computer program tests the 

model’s performance in an iterative fashion and through a series of algorithms, determines 

whether to keep or discard the predictor variable.  Hierarchical regressions on the other hand 

are more reliant on the researcher’s theory on relationships than the computer program’s 

algorithm. This type of regression is best suited when groups of variables exist which exhibit 

some level of collinearity. These groups are introduced into the model and the variance 

calculated is used to determine their significance. This approach is best suited for researchers 

who have a sense of the key determinants of electricity consumption in their buildings and are 

pursuing a more universal model that applies to buildings outside of their sample.  
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VI. CONCLUSION 
 
There is a niche group of properties where buildings are metered in a cluster – due to cost 

saving initiatives or pre-existing metering configurations – and owners/managers are unable to 

invest the required amount to upgrade the infrastructure (i.e. individual utility 

meters/submeters for each building). As a result, plans to measure and implement 

sustainability measures for buildings can be impeded by a lack of information. This thesis 

looked at a potential solution for Ryerson University to gain reliable electricity consumption 

data for all its cluster-metered buildings. This method is not targeted towards replacing the 

installation of individual meters (which provides real, up-to-date, data), rather it is a low-cost, 

temporary option for the realization of consumption patterns for building whose usage is 

concealed when measured as a group – a necessary first step before planning, implementing, 

and measuring sustainability goals can take place. 

 
The method behind creating the four regression models was identical, save for the different 

training and testing samples used. As predicted, the MSE decreased for models created and 

tested on the last two subsets (containing larger campus buildings) versus the first two. In 

addition, it was found that model performance would likely increase with greater segregation 

of buildings in the first subsets, and that performance would not be affected with the 

amalgamation of larger buildings from the last two subsets. 

 
Multimodel inference or model averaging of the top candidate models ranked by AICc was 

used to obtain the final models for each subset to be applied on Ryerson’s buildings. The 

estimates from the four models were within a reasonable range (i.e. CV(RMSE) = 14.8%) from 

the measured consumption for cluster-metered buildings. These estimates, for each building, 

were proportionately adjusted based on the differenced observed between the estimated and 

measured value for each cluster. It is uncertain whether the adjusted values prove to be more 

accurate since the comparison with Rahman’s [33] simulated 2006 results for the same 

buildings are mixed. Despite being roughly three times less accurate than Rahman’s energy 
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models, the time and resources invested building and validating models seem to favour 

multiple linear regression, especially when estimating consumption for numerous buildings.    

 
For the most part, the coefficients assigned to the variables used by the linear regressions are 

not supported by building science principles. It may be suggested that feature and model 

selection is based off of performance metrics, rather than significant relationships, however 

more work is needed to make this conclusion. Academic buildings were removed from the 

sample for a number of reasons (archetype, size, outlier, etc.) however only those whose 

consumption significantly differed from the subset averages were analyzed for similarities. Not 

only were there no measured similarities between the outlier buildings, but their properties 

were not always at the extreme end of the spectrum. This either suggests that another factor, 

not accounted for in this thesis (e.g. lab energy intensity, as suggested in the Discussion), is 

responsible for their above-average electricity consumption, or that buildings simply cannot be 

pre-screened for compatibility with this method.  In either case, more data on outlier buildings 

(i.e. repeat applications on other building samples) will help identify if the model suffers from 

limitations yet to be identified.  

 
This thesis detailed a method of estimation for academic buildings based on multiple linear 

regression. It is a reliable tool for Ryerson University to use for estimating electricity 

consumption in their cluster-metered buildings that have yet to be upgraded. Ryerson 

University aside, this thesis is useful for other universities or colleges where consumption data 

is lacking for whatever reason. It is expected that similar successes with this method will be had 

with modeling other building types, based on past literature. Ultimately, this method should 

offer another option for trained or untrained individuals working towards the measurement and 

publication of energy consumption for all buildings.  
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APPENDIX A1 – TORONTO CLIMATE NORMALS 
 
TEMP. JAN F M A M J J A S O N D YEAR 

DAILY AVG -4.2 -3.2 1.3 7.6 14.2 19.2 22.2 21.3 17 10.6 4.8 -0.9 9.2 

SD 2.7 2.5 2 1.5 1.9 1.4 1.2 1.2 1.1 1.5 1.4 2.5 0.8 

DAILY 
MAX 

-1.1 -0.2 4.6 11.3 18.5 23.5 26.4 25.3 20.7 13.8 7.4 1.8 12.7 

DAILY MIN -7.3 -6.3 -2 3.8 9.9 14.8 17.9 17.3 13.2 7.3 2.2 -3.7 5.6 

PRECIP.              

RAIN (MM) 29.1 26.2 42 63.2 73.3 71.5 67.5 79.6 83.4 64.7 67.3 41.9 709.8 

SNOW 
(CM) 

38.2 26.6 22 6 0 0 0 0 0 0.1 8.1 32.2 133.1 

DAYS 
WITH >= 5 
MM  

4 3.2 4.3 4.7 4.7 4.5 4.1 4.4 4.7 4.2 5 4.5 52.3 

DEGREE 
DAYS, 
ABOVE 18 

0 0 0.1 1.4 16.8 62.6 132.3 109 35.4 1 0 0 358.7 

TOTAL 
HOURS OF 
BRIGHT 
SUNSHINE 

88.3 110.3 156.3 185.4 229.1 256.2 276.2 241.3 188 148.4 83.6 74.7 2037.6 

GLOBAL 
INCIDENT 
RADIATIO
N (MJ/M2) 

153.7 227.2 378.8 478.2 599.5 652 677 578 418.1 283.5 146.7 120.6 4713.5 
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APPENDIX A2 – RYERSON BUILDING SPECIFICATIONS & DETAILS 
 
Each building profile contains notes detailing the address, the year of original construction, the 
major academic departments housed, the average EUI, and the data integrity, which represents 
the number of measurement points that were used to measure the EUI. 
 
Energy trends for each building show the annual consumption and average monthly 
consumption plotted with Toronto’s HDD and CDD, and the months of September to May 
highlighted (typical academic year). Years representing unreliable data are transparent. 
 
Sources of data: 

• Ryerson University 

• Various Periodicals 

• Urbandb 

• Architecture/designer websites 

• Wikipedia 

• City of Toronto construction date map 
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Architecture Building  

• 325 Church Street 

• Built in 1981 

• Department of Architectural Science 

• 240/240 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 136.06 | 142.46 

Energy Trends 

Space Usage 
Usage Area 
Labs 3,031 
Other 1,222 
Offices 769 
Utility 495 
Classrooms 493 
Assembly/Exhibition 321 
Library 224 
Commons 106 
Food 22 
Total 6,683 
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Bookstore  

• 17 Gould Street 

• Built in 1988 

• No elevator 

• 120/120 Data Integrity  

• EUI [kWh/m2/year] (avg|2009) = 203.55 | 1.02 

Energy Trends 

 
Space Usage 
Usage Area 
Bookstore 1,052 
Other 250 

Total 1,302 
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Cooperative Education  

• 101 Gerrard Street East 

• Built in 1950 (unverified) 

• Originally housed Ryerson Theater School, now 

Office of Co-operative Education and Internship 

• No elevator 

• 208/216 Data Integrity  

• EUI [kWh/m2/year] (avg|2009) = 187.33 | 144.59 

Energy Trends 

 Space Usage 
Usage Area 
Lab 265 
Offices 195 
Other 178 
Total 638 

 
 
 
 
 

Lab 
42% 

Offices 
30% 

Other 
28% 

0 

5,000 

10,000 

15,000 

0 
200 
400 
600 
800 

M
ay

 
Ju

ly
 

Se
pt

 
N

ov
 

Ja
n 

M
ar

ch
 

M
on

th
ly

 E
ne

rg
y 

C
on

su
m

pt
io

n 
(k

W
h)

 

H
D

D
/C

D
D

 
Energy Consumption & Climate  

0 
50,000 

100,000 
150,000 
200,000 

19
90

 

19
92

 

19
94

 

19
96

 

19
98

 

20
00

 

20
02

 

20
04

 

20
06

 

20
08

 

20
10

 

Annual Energy Consumption (kWh) 



 113 

Campus Planning & 
Facilities  

• 111 Bond Street 

• Built in 1960 (unverified)  

• Administrative offices for campus planning and facilities 

• No elevator 

• 128/132 Data Integrity  

• EUI [kWh/m2/year] (avg|2009) = 212.90 | 238.71 

Energy Trends 

Space Usage 
Usage Area 
Offices 470 
Other 166 
Lounge 26 
Total 662 
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George Vari 
Engineering & 
Computing Center  

• 245 Church Street 

• Built in 2004 

• Houses departments of Electrical Engineering, Computer Engineering, Computer 

Science and Aerospace Engineering, and four major Civil Engineering labs 

• 60/60 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 219.54 | 214.97 

Energy Trends 

Space Usage 
Usage Area 
Labs 5,969 
Other 5,305 
Offices 2,939 
Classrooms 2,345 
Utility/Plant 1,758 
Study  577 
Assembly 419 
Central Computing 99 
Food 17 
Total 19,428 
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Research & Graduate 
Studies  

• 111 Gerrard Street East 

• Built in early 1950’s; acquired by Ryerson in 2001 

• No elevators 

• 81/84 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 62.81 | 65.07 

Energy Trends  

 Space Usage 
 
 
 

Usage Area 
Offices 1,002 
Other 609 
Labs 269 
Inactive 248 
Study 230 
Bookstore 111 
Exhibition 89 
Central Computing 4 
Utility 3 
Total 2,565 
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International Living 
Learning Center  

• 133 Mutual Street 

• Built in 1987 

• Former Ibis Hotel; purchased by ryerson in 1993 

• 252-room residence 

• 146/156 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 183.19 | 181.05 

Energy Trends 

Space Usage   

Usage Area 
Living Space 5,877 
Parking 2,607 
Other 1,629 
Office 723 
Food 430 
Plant 149 
Classrooms 139 
Lounge 105 
Central Computing 16 
Total 11,675 
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Kerr Hall 

• (N) 43 Gerrard Street 

East, (E) 340 Church 

Street, (S) 50 Gould 

Street, (W) 379 Victoria 

Street 

• North building houses 

Ryerson Theater 

• Built from 1960-1969; 

opened in 1963 

• 238/240 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 155.63 | 168.99 

Energy Trends 
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Space Usage 
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Usage KHN KHE KHS KHW Total 
Lab 2,935 4,096 2,469 3,304 12,804 
Other 2,003 2,865 2,815 4,125 11,809 
Classroom 0 2,213 693 255 3,162 
Utility/Plant 1,024 298 1,158 392 2,872 
Assembly/Exhibition 1,454 0 103 188 1,745 
Study 0 39 0 843 882 
Lounge 343 100 93 287 824 
Demonstration School 0 0 97 497 594 
Central Computing 0 240 17 256 513 
Health Service 0 0 0 133 133 
Food 0 27 0 0 27 
Inactive 0 9 0 0 9 
Total 7,759 9,887 7,445 10,280 35,374 
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Civil Engineering 
Building 

• 341 Church Street 

• Constructed in 1929 

• Houses the Department of Civil Engineering 

• 189/192 Data Integrity  

• EUI [kWh/m2/year] (avg|2009) = 221.01 | 223.83 

Energy Trends 

Space Usage   

Usage Area 
Lab 678 
Other 637 
Offices 556 
Utility 67 
Lounge 20 
Central Computing 5 
Total 1963 
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O'Keefe House  

• 137 Bond Street 

• Built in 1880; renovated in 1889 and 2004 

• 33-room student residence 

• No elevator 

• 36/36 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 70.46| 67.11 

Energy Trends 

Space Usage 

Usage Area 
Living 541 
Other 122 
Plant 22 
Total 685 
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Oakham House  

• 63 Gould Street 

• Built in 1848, acquired by Ryerson in 1958 

• Used for non-academic, cultural and recreation 

activity 

• 164/168 Data Integrity 

• EUI [kWh/m2/year] (avg|2003) = 315.31 | 328.22 

Energy Trends  

Space Usage 
Usage Area 
Athletic Activity 597 
Offices 577 
Other 367 
Exhibition/Assembly 82 
Utility/Plant 81 
Food 9 
Total 1713 
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Parking Garage 

• 300 Victoria Street 

• Built in 1988 

• No elevator 

• 230/240 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 35.31 | 40.71 

Energy Trends 

Space Usage 
Usage Area 
Parking 10,747 
Other 254 
Non-Institutional  157 
Plant 21 
Total 11,179 
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Projects Office  

• 112 Bond Street 

• Built in 1860 (unverified) or 1901-1930 

(construction date map); acquired by Ryerson in 

1966 

• No elevators 

• 93/96 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 464.28 | 433.43 

Energy Trends 

Space Usage 

Usage Area 
Office 192 
Other 64 
Total 256 
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South Bond Building  

• 105 Bond Street 

• Built between 1976 and 2003; Acquired by Ryerson 

in 1966 

• No elevators 

• 36/36 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 127.99 | 138.77 

Energy Trends 

Space Usage 

Usage Area 
Office 1,910 
Lab 1,607 
Other 1,244 
Bookstore 479 
Lounge 112 
Study 65 
Central Computing 27 
Plant 8 
Total 5,452 
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School of Interior 
Design 

• 302 Church Street 

• Built in the 1800s; acquired by Ryerson in the mid 1970s 

• 28/235 (12%) data omitted 

• 204/204 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 141.32 | 148.59 

Energy Trends 

Space Usage 
Usage Area 
Labs 1,844 
Other 672 
Office 386 
Lounge 77 
Plant 54 
Exhibition 27 
Total 3,060 
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Theater School  

• 46 Gerrard Street East 

• Built in 1885 

• Houses faculty offices 

• No elevators 

• 108/108 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 104.40 | 96.75 

Energy Trends 

Space Usage 
Usage Area 
Labs 1,216 
Other 506 
Office 432 
Plant 78 
Lounge 40 
Total 2,272 
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Ted Rogers School of 
Management  

• 575 Bay Street 

• Built in 2006 

• 108/108 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 232.29 | 227.05 

Energy Trends 

 Space Usage 

Usage Area 
Other 5,915 
Classrooms 4,632 
Office 3,929 
Labs 1,229 
Study 1,040 
Lounge 352 
Computing 165 
Food 74 
Plant 9 
Total 17,345 
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(1)Eric Palin Hall & (2)Sally 
Horsfall Eaton Centre for 
Studies in Community Health 

• (1) 87 Gerrard Street East; (2) 99 Gerrard Street East 

• (2) 2002 addition to EPH  

• 215/216 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 168 | 225 

 

Energy Trends 

  

Space Usage 
Usage Area 
 EPH SHE Total 
Other 33,689 21,801 55,490 
Labs 42,915 3,437 46,352 
Offices 25,968 13,599 39,566 
Classrooms 16,442 8,247 24,689 
Non-Institutional 0 14,289 14,289 
Utility/Plant 3,000 1,298 4,299 
Study 1,318 2,327 3,645 
Lounge 1,477 613 2,089 
Central 
Computing 

460 0 460 

Inactive 395 0 395 
Food 185 0 185 
Total 125,849 65,611 191,459 
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(1)Library Building, 
(2)Jorgenson Hall, (3)Podium, 
& (4)Recreation and Athletics 
Center 

• (1) 350 Victoria Street; (2) 380 Victoria Street; (3) 350 

Victoria Street; (4) 40 Gould Street 

• Built in (1) 1974; (2) 1971; (4) 1987 (2) home to the 

Faculty of Arts and administrative offices; (3) serves as 

an above walkway linking the Library Building and 

Jorgenson Hall. Includes a large cafeteria, and 

administrative offices for student services; (4) Facilities 

include: cardio room, fitness center, 6 gyms, 4 squash 

courts, 2 studios, a 2 yard six-lane pool, and change 

rooms with sauna. Walls are cast-in-place reinforced 

concrete 

• Number of storeys: (1) 11; (2) 12; (3) 3; (4) 2 (underground) 

• 214/216 Data Integrity 

• EUI [kWh/m2/year] (avg|2008) = 278 | 389 

Energy Trends 
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Space Usage 
Usage Area 
 JOR LIB POD RAC Total 
Offices 

60,208 41,736 65,133 2,285 
169,36

2 
Other 

29,778 59,415 58,978 9,333 
157,50

4 
Utility/Plant 3,925 23,993 15,769 2,637 46,323 
Study 228 37,667 2,000 0 39,895 
Library Stacks 0 34,680 0 0 34,680 
Athletic Activity 0 0 74 30,403 30,477 
Food 2,400 0 27,329 0 29,729 
Lab 413 5,177 7,340 0 12,930 
Classroom 0 3,458 8,313 0 11,771 
Lounge 335 696 6,876 149 8,056 
Central Computing 261 1,736 168 0 2,165 
Parking 0 1,082 0 0 1,082 
Ex-University 
Merchandising 

0 0 952 0 952 

Inactive 0 240 133 0 373 
Total 

97,548 
209,88

0 
193,06

5 
44,807 

545,29
9 
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(1)Student Campus Center, 
(2)Oakham House, & 
(3)Heidelberg Centre-School of 
Graphics Communications 
Management  

• Located at (1) 55 Gould Street; (2) 63 Gould Street; (3) 

125 Bond Street 

• Built in (1) 2005; (2) Built in 1848, acquired by Ryerson 

in 1958 (3) 2002 

• (1) 3 storeys and houses meeting rooms for student 

organizations, a café and restaurant; (2) Used for non-

academic, cultural and recreation activity; (3) 4 storeys 

containing computer and printing labs, lecture rooms, 

offices, and lounges 

• 59/60 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 222 | 215 

Energy Trends 
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Space Usage 
Usage Area 
 HEI OAK SCC Total 
Other 9,122 3,953 12,060 25,135 
Offices 5,021 6,215 11,231 22,468 
Lab 8,172 0 0 8,172 
Lounge 0 0 6,922 6,922 
Athletic Activity 0 6,430 0 6,430 
Classroom 2,186 0 0 2,186 
Utility/Plant 0 871 670 1,540 
Study 1,393 0 0 1,393 
Central Computing 190 0 225 415 
Exhibition/Assembly 558 883 3,552 0 
Food 0 92 42 0 
Ex-University 
Merchandising 

0 578 0 0 

Total 26,642 19,022 34,702 74,661 
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(1)Pitman Hall & (2)Rogers 
Communications Center  

• Located at (1) 160 Mutual Street; (2) 80 Gould Street 

• (1) Built in 1991; (2) first used in 1992 

• (1) largest residence on campus with 14 floors and 565 

rooms. The building contains a cafeteria, offices and 

study spaces in the lower floors; (2) 4 tv studios, 4 

radio production suites 

• 216/216 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 171 | 169 

Energy Trends 

Space Usage 
Usage Area 
 PIT RCC Total 
Living 110,890 0 110,890 
Other 35,431 35,941 71,372 
Parking 51,881 0 51,881 
Labs 0 39,550 39,550 
Offices 3,170 22,014 25,184 
Lounge 9,864 4,953 14,817 
Utility/Plant 0 7,201 7,201 
Food 7,111 0 7,111 
Classrooms 0 5,595 5,595 
Study 0 1,694 1,694 
Computing 0 1,577 1,577 
Inactive 0 112 112 
Total 218,347 118,637 336,984 
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(1)Ryerson Image Center, 
(2)Victoria Building, & 
(3)Heaslip House  

• Located at (1) 122 Bond Street; (2) 285 Victoria Street; 

(3) 297 Victoria Street 

• (1) built in the 1960s, renovations from 2008 to 2012; 

(3) opened in 2005 incorporating historic façade of 

O’Keefe House and class and copper sheet panels 

• (1) 3 floors; (2) 8 floors; (3) 7 floors 

• 227/228 Data Integrity 

• EUI [kWh/m2/year] (avg|2009) = 127 | 111 

Energy Trends 

Space Usage 

Usage Area 
 CED IMA VIC Total 
Other 11,866 32,214 35,738 79,818 
Offices 20,717 12,713 8,450 41,880 
Lab 0 24,011 15,706 39,717 
Classroom 0 5,467 30,276 35,744 
In-active 0 12,810 9,064 21,874 
Utility/Plant 751 0 7,701 8,453 
Lounge 0 0 6,725 6,725 
Study 491 2,270 0 2,761 
Central Computing 406 0 236 642 
Exhibition/Assembly 0 418 0 418 
Non-institutional Agency 0 0 331 331 
Food 0 0 191 191 
Total 34,231 89,903 114,418 238,554 
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APPENDIX A3 – BUDGET FOR SOURCING AND INSTALLING METERING EQUIPMENT FOR 
RYERSON BUILDINGS 
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APPENDIX B1 – 2010/2011 ESTATES MANAGEMENT RECORDS FOR UK HIGHER 
EDUCATION INSTITUTIONS 

 
INSTITUTION GROSS 

INTERNAL 
AREA  
TOTAL HEI 
(M2) 

TOTAL HEI - 
ELECTRICITY  
(KWH) 

EUI AVERAGE EUI 

ENGLAND     

ANGLIA RUSKIN UNIVERSITY 108851 11821783.93 108.6051936  

ASTON UNIVERSITY 108748 16874212 155.1680215  

BATH SPA UNIVERSITY 40023 3581771 89.49281663  

THE UNIVERSITY OF BATH 216297 27384265 126.6049229  

UNIVERSITY OF BEDFORDSHIRE 90267 10988525 121.7335793  

BIRKBECK COLLEGE(#3) 42411 8062380.2 190.1011577  

BIRMINGHAM CITY UNIVERSITY 164221 16639748 101.325336  

THE UNIVERSITY OF BIRMINGHAM 483090 66667503 138.0022418  

UNIVERSITY COLLEGE 
BIRMINGHAM 

59795 6514335.6 108.944487  

BISHOP GROSSETESTE 
UNIVERSITY COLLEGE LINCOLN 

18549.5 1210751.3 65.2713712  

THE UNIVERSITY OF BOLTON(#6) 46096.745 ..   

THE ARTS UNIVERSITY COLLEGE 
AT BOURNEMOUTH 

21452 2127817 99.18967928  

BOURNEMOUTH UNIVERSITY 100646 12419816.06 123.4009902  

THE UNIVERSITY OF BRADFORD 127332.26 14763659 115.9459433  

THE UNIVERSITY OF BRIGHTON 179478 12975436 72.29541225  

THE UNIVERSITY OF BRISTOL 429527 61390512 142.925851  

BRUNEL UNIVERSITY 231973.19 24389286 105.1383826  

BUCKINGHAMSHIRE NEW 
UNIVERSITY 

54571.58 6694687 122.6771701  

THE UNIVERSITY OF CAMBRIDGE 632394 116137222 183.6469385  

THE INSTITUTE OF CANCER 
RESEARCH(#3) 

29095 13516778 464.573913  

CANTERBURY CHRIST CHURCH 
UNIVERSITY 

124140 11638679 93.7544627  

THE UNIVERSITY OF CENTRAL 
LANCASHIRE 

172791.09 21132026 122.2981231  

CENTRAL SCHOOL OF SPEECH 
AND DRAMA(#3) 

8792.4 857470 97.523998  

UNIVERSITY OF CHESTER 115065 9106327 79.14072046  

THE UNIVERSITY OF CHICHESTER 51374 3885624 75.63405614  

THE CITY UNIVERSITY 118990 13203791 110.9655517  

CONSERVATOIRE FOR DANCE 
AND DRAMA 

32199 2968725 92.1992919  

COURTAULD INSTITUTE OF 
ART(#3) 

9370 1356343 144.7537887  

COVENTRY UNIVERSITY 154229 16855303 109.2875075  

CRANFIELD UNIVERSITY 192676 17930867 93.06227553  
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UNIVERSITY FOR THE CREATIVE 
ARTS 

74090 7064329 95.34794169  

UNIVERSITY OF CUMBRIA 102653.5 8059858.95 78.51518896  

DE MONTFORT UNIVERSITY 157713 13764452 87.27531656  

UNIVERSITY OF DERBY 126472 13129265 103.8116342  

UNIVERSITY OF DURHAM 343416 39304324 114.4510564  

THE UNIVERSITY OF EAST 
ANGLIA(#5) 

230327 34543620 149.9764248  

THE UNIVERSITY OF EAST 
LONDON 

106863 6453468 60.39010696  

EDGE HILL UNIVERSITY 87541 6980377 79.73837402  

THE UNIVERSITY OF ESSEX(#5) 220056 21436860 97.41547606  

THE UNIVERSITY OF EXETER 229563 31060937 135.304631  

UNIVERSITY COLLEGE FALMOUTH 52727 4788769 90.8219508  

UNIVERSITY OF 
GLOUCESTERSHIRE 

79584 4815344 60.50643345  

GOLDSMITHS COLLEGE(#3) 90288 6347814 70.30628655  

THE UNIVERSITY OF GREENWICH 127272.2 15023843 118.0449698  

GUILDHALL SCHOOL OF MUSIC 
AND DRAMA 

22613.63 2256919 99.80348135  

HARPER ADAMS UNIVERSITY 
COLLEGE 

43749.93 3331064.41 76.13873691  

UNIVERSITY OF HERTFORDSHIRE 219625 32986205 150.1933068  

HEYTHROP COLLEGE(#3) 5517 682439 123.6974805  

THE UNIVERSITY OF 
HUDDERSFIELD 

112979 11788377 104.3413112  

THE UNIVERSITY OF HULL 228297 22144562 96.99891808  

IMPERIAL COLLEGE OF SCIENCE, 
TECHNOLOGY AND MEDICINE 

470186 111703001 237.5719417  

INSTITUTE OF EDUCATION(#3) 397658 5281914 13.28255436  

THE UNIVERSITY OF KEELE 160895.12 12404090 77.09425867  

THE UNIVERSITY OF KENT 230443.04 19850435 86.14031042  

KING'S COLLEGE LONDON(#3) 381515 66989062 175.5869677  

KINGSTON UNIVERSITY 161944 19042970 117.5898459  

THE UNIVERSITY OF LANCASTER 212841 27690653 130.1001828  

LEEDS COLLEGE OF MUSIC 8530 876054 102.7026964  

LEEDS METROPOLITAN 
UNIVERSITY 

210310.07 23795799 113.1462654  

THE UNIVERSITY OF LEEDS 598301 83741761 139.9659385  

LEEDS TRINITY UNIVERSITY 
COLLEGE 

36456 2455308 67.34990125  

THE UNIVERSITY OF LEICESTER 288776.32 41191118 142.6402206  

THE UNIVERSITY OF LINCOLN 101804.08 11040542 108.4489148  

LIVERPOOL HOPE UNIVERSITY 78019 5914469 75.80805958  

LIVERPOOL JOHN MOORES 
UNIVERSITY 

164553.16 15512831 94.27245882  

THE LIVERPOOL INSTITUTE FOR 
PERFORMING ARTS 

11027 1319646 119.6740727  

THE UNIVERSITY OF LIVERPOOL 437254 58270764 133.2652509  
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UNIVERSITY OF THE ARTS, 
LONDON 

234987 12769609 54.34176784  

LONDON BUSINESS SCHOOL(#3) 31530 5833213 185.0051697  

UNIVERSITY OF LONDON 
(INSTITUTES AND 
ACTIVITIES)(#3)(#7) 

165715 30802636 185.8771747  

LONDON METROPOLITAN 
UNIVERSITY 

151169 16861441 111.5403357  

LONDON SOUTH BANK 
UNIVERSITY 

125453 15329000 122.1891864  

LONDON SCHOOL OF 
ECONOMICS AND POLITICAL 
SCIENCE(#3) 

195344 20736531 106.1539182  

LONDON SCHOOL OF HYGIENE 
AND TROPICAL MEDICINE(#3) 

24042.9 6728040 279.8347953  

LOUGHBOROUGH UNIVERSITY 282919.06 27884101 98.55858068  

THE MANCHESTER 
METROPOLITAN UNIVERSITY 

264371 25104365 94.95884571  

THE UNIVERSITY OF MANCHESTER 822246.07 107121755 130.2794369  

MIDDLESEX UNIVERSITY 91287.72 11353213 124.3673629  

THE UNIVERSITY OF NEWCASTLE-
UPON-TYNE 

460671 56624346 122.9171057  

NEWMAN UNIVERSITY COLLEGE 17292 1316064 76.10825815  

THE UNIVERSITY OF 
NORTHAMPTON 

108457 9124451 84.12966429  

THE UNIVERSITY OF 
NORTHUMBRIA AT NEWCASTLE 

216364.57 25753582 119.0286469  

NORWICH UNIVERSITY COLLEGE 
OF THE ARTS 

15345 934144 60.876116  

THE UNIVERSITY OF 
NOTTINGHAM 

584256 78258000 133.9447092  

THE NOTTINGHAM TRENT 
UNIVERSITY 

199458 26366684.39 132.1916613  

THE OPEN UNIVERSITY(#7) 152742 21961566 143.7821032  

OXFORD BROOKES UNIVERSITY 195483 16221316 82.98069909  

THE UNIVERSITY OF OXFORD 576913 113710120 197.100984  

UNIVERSITY COLLEGE PLYMOUTH 
ST MARK AND ST JOHN 

34036.6 3452783 101.4432405  

THE UNIVERSITY OF PLYMOUTH 117374.46 15094407 128.6004383  

THE UNIVERSITY OF 
PORTSMOUTH 

208651.08 23049682 110.4699865  

QUEEN MARY AND WESTFIELD 
COLLEGE(#3) 

215500 36805304 170.7902738  

RAVENSBOURNE 13926 2882453 206.9835559  

THE UNIVERSITY OF READING 309421.14 30567293 98.78863804  

ROEHAMPTON UNIVERSITY 95619.44 8489850 88.78790756  

ROSE BRUFORD COLLEGE 8389 833088 99.30718798  

ROYAL ACADEMY OF MUSIC(#3) 12665.99 1798768 142.0155866  

ROYAL AGRICULTURAL COLLEGE 23681.8 2055648 86.80286127  

ROYAL COLLEGE OF ART 24380 2535270 103.9897457  
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ROYAL COLLEGE OF MUSIC 17792 1541957.5 86.66577675  

ROYAL HOLLOWAY AND 
BEDFORD NEW COLLEGE(#3) 

153099.41 15993719 104.4662354  

ROYAL NORTHERN COLLEGE OF 
MUSIC 

17834.26 2365710 132.6497427  

THE ROYAL VETERINARY 
COLLEGE(#3) 

59859 9789008 163.5344393  

ST GEORGE'S HOSPITAL MEDICAL 
SCHOOL(#3) 

70944.9 13800619 194.5258785  

ST MARY'S UNIVERSITY COLLEGE, 
TWICKENHAM 

48556 3272093 67.3880262  

THE UNIVERSITY OF SALFORD 207182.48 21036698.28 101.5370522  

THE SCHOOL OF ORIENTAL AND 
AFRICAN STUDIES(#3) 

30491.78 3948422 129.491358  

THE SCHOOL OF PHARMACY(#3) 14763 2822604.14 191.1944822  

SHEFFIELD HALLAM UNIVERSITY 162270.41 19942663 122.8977175  

THE UNIVERSITY OF SHEFFIELD 457658.22 57594043 125.8450968  

SOUTHAMPTON SOLENT 
UNIVERSITY 

121748 11294652 92.77073956  

THE UNIVERSITY OF 
SOUTHAMPTON 

413140 34545824 83.61771796  

STAFFORDSHIRE UNIVERSITY 137387 17219028 125.3322949  

UNIVERSITY CAMPUS SUFFOLK(#5) 33456 2717189 81.2167922  

THE UNIVERSITY OF SUNDERLAND 135387.73 13115330 96.87236798  

THE UNIVERSITY OF SURREY 259718.89 26860991 103.4233243  

THE UNIVERSITY OF SUSSEX 206820 26691994 129.0590562  

TEESSIDE UNIVERSITY(#2) 133108.5 13660210 102.6246258  

TRINITY LABAN CONSERVATOIRE 
OF MUSIC AND DANCE 

20640.6 2437773 118.1057237  

UNIVERSITY COLLEGE 
LONDON(#3) 

454936 98738999 217.0393176  

THE UNIVERSITY OF WARWICK 456060.297 64138604.3 140.6362376  

UNIVERSITY OF THE WEST OF 
ENGLAND, BRISTOL 

228400 20258303 88.69659807  

THE UNIVERSITY OF WEST 
LONDON(#2) 

64254 3899440 60.68789492  

THE UNIVERSITY OF 
WESTMINSTER 

163472 18022491.7 110.2481875  

THE UNIVERSITY OF WINCHESTER 58499 3797723 64.91945161  

THE UNIVERSITY OF 
WOLVERHAMPTON 

169095 15567511 92.06369792  

THE UNIVERSITY OF WORCESTER 70781 5231233 73.90730563  

WRITTLE COLLEGE 40604 2349063 57.85299478  

YORK ST JOHN UNIVERSITY 69158.45 6575036 95.07205555  

THE UNIVERSITY OF YORK 313902 35700647 113.7318239 116.5395504 

     

WALES     

ABERYSTWYTH UNIVERSITY 190242 18704151 98.31767433  

BANGOR UNIVERSITY 193572 15641339 80.80372678  
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CARDIFF UNIVERSITY 417550 49971187 119.6771333  

CARDIFF METROPOLITAN 
UNIVERSITY(#2) 

91982 7729787 84.03586571  

UNIVERSITY OF GLAMORGAN 133154 13735369 103.1540096  

GLYNDŴR UNIVERSITY 57463 6039023 105.0941127  

THE UNIVERSITY OF WALES, 
NEWPORT 

55683.69 5473936 98.30411742  

SWANSEA METROPOLITAN 
UNIVERSITY 

52958 3137686 59.24857434  

SWANSEA UNIVERSITY 199420.77 21116733.36 105.8903411  

UNIVERSITY OF WALES TRINITY 
SAINT DAVID(#1)(#2) 

65255 3945634 60.46485327 91.49904086 

     

SCOTLAND     

THE UNIVERSITY OF ABERDEEN 247287.263 22460027.63 90.82565498  

UNIVERSITY OF ABERTAY DUNDEE 52841.5 4772945 90.32569098  

THE UNIVERSITY OF DUNDEE 218563.3 29457938 134.7798921  

EDINBURGH COLLEGE OF ART 31496.294 2066886 65.62314919  

EDINBURGH NAPIER UNIVERSITY 101267 10932186 107.9540818  

THE UNIVERSITY OF EDINBURGH 726368 106256073 146.2840778  

GLASGOW CALEDONIAN 
UNIVERSITY 

116319.6 12567478 108.0426515  

GLASGOW SCHOOL OF ART 40574 2270647 55.96310445  

THE UNIVERSITY OF GLASGOW 375149.01 64614906 172.2379755  

HERIOT-WATT UNIVERSITY 173681.56 20067796 115.543619  

QUEEN MARGARET UNIVERSITY, 
EDINBURGH 

45729 4606175 100.7276564  

THE ROBERT GORDON 
UNIVERSITY 

98618.5 10663982.5 108.133692  

THE UNIVERSITY OF ST ANDREWS 249857.08 28592961 114.4372655  

SCOTTISH AGRICULTURAL 
COLLEGE 

87387.1 5856288 67.01547482  

THE UNIVERSITY OF STIRLING 147018.27 18787289 127.7888048  

THE UNIVERSITY OF 
STRATHCLYDE 

337884 39070525 115.6329539  

THE UNIVERSITY OF THE WEST OF 
SCOTLAND 

128550 9847154 76.60174251 105.7598522 

     

NORTHERN IRELAND      

THE QUEEN'S UNIVERSITY OF 
BELFAST 

320006 37069897 115.8412561  

ST MARY'S UNIVERSITY COLLEGE 14585 811397 55.63229345  

STRANMILLIS UNIVERSITY 
COLLEGE 

35415.02 1346441 38.0189253  

UNIVERSITY OF ULSTER 243929.53 21811675 89.41793558 74.72760261 

ALL OF UK    112.783877 
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APPENDIX B2 – EXPANDED DETAILS ON STUDIES FROM TABLE III 
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APPENDIX C1 – EXAMPLE OF UTILITY DATA PROVIDED BY RYERSON UNIVERSITY 
 
KW 

 
kWh 
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APPENDIX C2 – EXAMPLE OF OUTLIER IDENTIFICATION IDENTIFIED WITHIN UTILITY DATA 
 
Example of data rejection for campus buildings based on renovation work/space closures and 
outlier months (1.5xSD). Red cells indicate omitted data points and orange, missing data due 
to inactivity. 
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APPENDIX C3 – DEVELOPMENT TIMELINE OF COU SPACE STANDARDS 
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APPENDIX C4 – COMPLETE LIST OF AREAS DEFINED UNDER COU SPACE CATEGORIES 
FROM BOTH UNIVERSITIES 

 
COU SPACE CATEGORY AREA (M2) RELATIVE SHARE OF TOTAL 
OTHER NON-ASSIGNABLE AREA 389421.05 33% 

RESEARCH LAB SPACE 80970.08 7% 
ACADEMIC OFFICES 58624.81 5% 

RESIDENCE LIVING SPACE 56056.83 5% 
SCHEDULED CLASS LAB 49057.67 4% 

OFFICE SUPPORT SPACE 39989.56 3% 
PARKING STRUCTURES 36499.98 3% 

LIBRARY COLLECTION SPACE 36418.98 3% 
NON-TIERED CLASSROOMS 35497.32 3% 

DEPARTMENTAL SUPPORT STAFF OFFICE 32404.96 3% 
TIERED CLASSROOMS 28468.89 2% 

RESEARCH LAB SUPPORT SPACE 27984.92 2% 
STUDY SPACE UNDER LIBRARY 
JURISDICTION 

26093.75 2% 

CENTRAL ADMINISTRATIVE OFFICES 24174.09 2% 
GRADUATE STUDENT OFFICE 23944.9 2% 

ATHLETIC ACTIVITY AREAS 21841.33 2% 
INACTIVE - ASSIGNABLE 15623.87 1% 

GENERAL LOUNGE SPACE 14222.31 1% 
UNDERGRADUATE LAB SUPPORT SPACE 13228.39 1% 

CENTRAL ADMIN OFFICE SUPPORT 13142.37 1% 
UNSCHEDULED CLASS LAB 12258.49 1% 

RESIDENCE SERVICE SPACE 10902.7 1% 
STUDY SPACE NOT UNDER LIBRARY 
JURISDICTION 

10759.86 1% 

RESEARCH OFFICE/PROJECT SPACE 10747 1% 

CENTRAL UTILITY PLANT 10619.93 1% 
PLANT MAINTENANCE 9332.36 1% 

LIBRARY SUPPORT SPACE 9293.38 1% 
ASSEMBLY FACILITIES 8744.2 1% 

STUDENT OFFICE AND SUPPORT SPACE 8465.62 1% 
LIBRARY OFFICE SPACE 8105.4 1% 

ATHLETIC SERVICE SPACE 7921.72 1% 
FOOD FACILITIES 7081.38 1% 

NON-INST AGENCY OCCU UNIV SPACE 6762.55 1% 
DEMONSTRATION SCHOOLS/OTH INSTR INS 6689.45 1% 

CLASSROOM SERVICE SPACE 6016.25 1% 
FOOD FACILITIES SERVICES 5528.3 0% 
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BOOKSTORE/MERCHANDISING 4837.88 0% 

INACTIVE - UNASSIGNABLE 4654.59 0% 
SPECIALIZED CENTRAL AREAS 3797.08 0% 

NON-INSTITUTIONAL  AGENCIES 3520.73 0% 
RECREATIONAL FACILITIES AND SERVICE 3401.45 0% 

CENTRAL COMPUTING FACILITIES 3254.57 0% 
OTHER CENTRAL SERVICE 2581.46 0% 

EXHIBITION FACILITIES 2409.67 0% 
ATHLETIC SEATING AREAS 2064.32 0% 

HEALTH SERVICE FACILITIES 1701.61 0% 
DAY-CARE FACILITIES 1222.09 0% 

INACTIVE ASSIGNABLE 649.82 0% 
DEMONSTRATION SCHOOLS 594.37 0% 

NON-UNIVERSITY MERCHANDISING 271.02 0% 
EX-UNIV. MERCHANDISING FACILITY 142.16 0% 

RESEARCH OFFICE 132.06 0% 
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APPENDIX C5 – R SCRIPTS 
 
This function is a wrapper for the VIF function in the fmsb package 
 
vif_func<-function(in_frame,thresh=10,trace=T){ 
  
  require(fmsb) 
   
  if(class(in_frame) != 'data.frame') in_frame<-data.frame(in_frame) 
   
  vif_init<-NULL 
  for(val in names(in_frame)){ 
      form_in<-formula(paste(val,' ~ .')) 
      vif_init<-rbind(vif_init,c(val,VIF(lm(form_in,data=in_frame)))) 
      } 
  vif_max<-max(as.numeric(vif_init[,2])) 
  
  if(vif_max < thresh){ 
    if(trace==T){  
        prmatrix(vif_init,collab=c('var','vif'),rowlab=rep('',nrow(vif_init)),quote=F) 
        cat('\n') 
        cat(paste('All variables have VIF < ', thresh,', max VIF ',round(vif_max,2), sep=''),'\n\n') 
        } 
    return(names(in_frame)) 
    } 
  else{ 
  
    in_dat<-in_frame 
    
    while(vif_max >= thresh){ 
       
      vif_vals<-NULL 
  
      for(val in names(in_dat)){ 
        form_in<-formula(paste(val,' ~ .')) 
        vif_add<-VIF(lm(form_in,data=in_dat)) 
        vif_vals<-rbind(vif_vals,c(val,vif_add)) 
        } 
      max_row<-which(vif_vals[,2] == max(as.numeric(vif_vals[,2])))[1] 
  
      vif_max<-as.numeric(vif_vals[max_row,2]) 
  
      if(vif_max<thresh) break 
       
      if(trace==T){  
        prmatrix(vif_vals,collab=c('var','vif'),rowlab=rep('',nrow(vif_vals)),quote=F) 
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        cat('\n') 
        cat('removed: ',vif_vals[max_row,1],vif_max,'\n\n') 
        flush.console() 
        } 
  
      in_dat<-in_dat[,!names(in_dat) %in% vif_vals[max_row,1]] 
  
      } 
  
    return(names(in_dat)) 
     
    } 
   
  } 
 
lm.dat <- read.csv("2012I.csv", header=T, sep=",") 
 
form.in<-paste('ec2012 ~',paste(names(lm.dat)[-15],collapse='+')) 
mod1<-lm(form.in,data=lm.dat) 
summary(mod1) 
  
keep.dat<-vif_func(in_frame=as.matrix(lm.dat[-15]),thresh=5,trace=T)  
form.in<-paste('ec2012 ~',paste(keep.dat,collapse='+')) 
mod2<-lm(form.in,data=lm.dat) 
summary(mod2) 

The Dredge script below shows the global model after collinear variables have been removed.  
 

fit2 <- glm(ec2012 ~ c2 + c3 + c5 + c6 + c9 + c11 + c12 + factor(Footprint.Shape) + 
Above.Ground.Floors + Below.Ground.Floors + Shared.Wall) 
options(na.action = "na.fail") 
dredge(fit2, extra = c("adjR^2")) 

Below is an example of the script used to carry out Leave-one-out Cross-validation. Notice that 

the global model is a more refined (i.e. less predictor variables) version of the one used in the 

Dredge script.  

 
bestfit2c <- glm(ec2012 ~ c6 + c9 + Below.Ground.Floors) 
cv.glm(dfspace2, bestfit2c)$delta 
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APPENDIX D1 – 2012 CANDIDATE MODELS WITH AN AICC OF SEVEN OR LESS (DREDGE 
OUTPUT) 
Subset 1 
 
Intercept Above 

Ground 
Floors 

Below 
Ground 
Floors 

c11 c12 c2 c3 c5 c6 c9 Shared 
Wall 

df logLik AICc delta weight 

192118 NA NA NA NA NA NA NA -301 472 NA 4 -260.998 532.664 0.000 0.119 

172489 NA NA NA NA NA NA -209 -381 605 NA 5 -259.547 533.379 0.715 0.083 

217164 NA -81289 NA NA NA NA NA -253 486 NA 5 -259.913 534.112 1.448 0.058 

218262 NA -109137 NA NA NA NA NA NA 343 NA 4 -261.806 534.278 1.614 0.053 

182611 NA NA NA NA NA NA NA NA 284 NA 3 -263.484 534.469 1.805 0.048 

202421 NA NA NA NA NA -175 NA -324 482 NA 5 -260.659 535.604 2.940 0.027 

185079 NA NA NA NA NA -279 -250 -433 648 NA 6 -258.578 535.617 2.954 0.027 

215560 NA NA NA NA NA NA NA -324 456 -32762 5 -260.688 535.663 2.999 0.027 

188819 NA NA -258 NA NA NA NA -272 467 NA 5 -260.828 535.941 3.278 0.023 

177235 NA NA -585 NA NA NA NA NA 314 NA 4 -262.670 536.006 3.342 0.022 

221737 -13953 NA NA NA NA NA NA -282 488 NA 5 -260.885 536.057 3.393 0.022 

195080 NA -63549 NA NA NA NA -177 -332 596 NA 6 -258.832 536.125 3.461 0.021 

182495 NA NA NA NA 40 NA NA -308 482 NA 5 -260.926 536.137 3.473 0.021 

184692 NA NA NA 510 NA NA NA -298 479 NA 5 -260.947 536.181 3.517 0.021 

237024 -32341 NA NA NA NA NA -252 -355 670 NA 6 -258.896 536.254 3.591 0.020 

199276 NA NA NA NA NA NA -218 -412 593 -38705 6 -259.045 536.551 3.888 0.017 

253080 -32546 NA NA NA NA NA NA NA 349 NA 4 -262.947 536.561 3.897 0.017 

352335 NA NA NA NA NA NA NA NA NA NA 2 -265.993 536.691 4.028 0.016 

198288 NA -124551 NA 174
2 

NA NA NA NA 383 NA 5 -261.277 536.839 4.176 0.015 

210489 NA -97805 -443 NA NA NA NA NA 360 NA 5 -261.281 536.847 4.184 0.015 

167146 NA NA -341 NA NA NA -219 -347 605 NA 6 -259.204 536.869 4.205 0.015 

234853 NA -92934 NA NA NA -239 NA -277 503 NA 6 -259.216 536.893 4.230 0.014 

254283 NA -93752 NA NA NA NA NA -279 466 -46509 6 -259.232 536.925 4.261 0.014 

269612 -24798 -101965 NA NA NA NA NA NA 389 NA 5 -261.448 537.181 4.518 0.012 

174034 NA NA NA NA NA NA -81 NA 317 NA 4 -263.302 537.270 4.606 0.012 

230460 NA -118941 NA NA NA -164 NA NA 345 NA 5 -261.533 537.351 4.687 0.011 

242731 NA -119188 NA NA NA NA NA NA 321 -30567 5 -261.559 537.404 4.741 0.011 

170964 NA NA NA 811 NA NA NA NA 299 NA 4 -263.383 537.432 4.769 0.011 

167500 NA NA NA 354 NA NA -207 -378 609 NA 6 -259.518 537.498 4.834 0.011 

170510 NA NA NA NA 9 NA -207 -382 606 NA 6 -259.542 537.546 4.883 0.010 

185938 NA NA NA NA NA -61 NA NA 283 NA 4 -263.452 537.570 4.906 0.010 

188740 NA NA NA NA NA NA NA NA 276 -8842 4 -263.466 537.599 4.935 0.010 

202603 NA -94318 NA 127
6 

NA NA NA -237 506 NA 6 -259.582 537.626 4.962 0.010 

182173 NA NA NA NA 2 NA NA NA 285 NA 4 -263.484 537.635 4.972 0.010 

211481 NA -106287 NA NA NA NA -55 NA 364 NA 5 -261.707 537.699 5.035 0.010 

229521 NA -113294 NA NA -40 NA NA NA 340 NA 5 -261.739 537.763 5.100 0.009 
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213906 NA -78611 -191 NA NA NA NA -233 482 NA 6 -259.811 538.084 5.420 0.008 

239364 -10693 -79666 NA NA NA NA NA -240 498 NA 6 -259.840 538.141 5.477 0.008 

216226 NA -80848 NA NA 3 NA NA -254 487 NA 6 -259.913 538.287 5.623 0.007 

213442 NA -74895 NA NA NA -317 -218 -382 643 NA 7 -257.484 538.300 5.637 0.007 

392838 NA -62313 NA NA NA NA NA NA NA NA 3 -265.560 538.620 5.957 0.006 

222007 NA NA NA NA NA -327 -269 -483 640 -50196 7 -257.661 538.655 5.992 0.006 

163051 NA NA -683 NA NA NA -125 NA 369 NA 5 -262.212 538.710 6.046 0.006 

358711 NA NA NA NA NA NA NA NA NA -42511 3 -265.616 538.731 6.067 0.006 

256604 -35423 NA NA NA NA -298 -300 -408 722 NA 7 -257.714 538.762 6.098 0.006 

232266 NA NA NA NA NA -206 NA -356 466 -39122 6 -260.210 538.881 6.217 0.005 

267605 -46970 NA NA NA NA NA -157 NA 440 NA 5 -262.310 538.906 6.242 0.005 

359720 NA NA -347 NA NA NA NA NA NA NA 3 -265.767 539.034 6.370 0.005 

227031 -22573 NA -485 NA NA NA NA NA 354 NA 5 -262.418 539.123 6.459 0.005 

233358 NA -76056 NA NA NA NA -182 -361 579 -48884 7 -257.987 539.308 6.644 0.004 

345337 NA NA NA NA NA NA 53 NA NA NA 3 -265.920 539.340 6.676 0.004 

355895 NA NA NA NA NA -83 NA NA NA NA 3 -265.945 539.389 6.726 0.004 

358389 NA NA NA NA -38 NA NA NA NA NA 3 -265.951 539.401 6.738 0.004 

363733 NA NA NA NA NA NA NA -28 NA NA 3 -265.969 539.438 6.775 0.004 

166569 NA NA -579 746 NA NA NA NA 327 NA 5 -262.576 539.438 6.775 0.004 

332067 6050 NA NA NA NA NA NA NA NA NA 3 -265.975 539.450 6.786 0.004 

353552 NA NA NA -324 NA NA NA NA NA NA 3 -265.979 539.459 6.795 0.004 

253626 -16955 NA NA NA NA NA NA -304 475 -35659 6 -260.518 539.498 6.834 0.004 

285819 NA -111470 NA NA NA -299 NA -316 482 -58328 7 -258.089 539.511 6.847 0.004 

231477 -13715 NA NA NA NA -174 NA -305 498 NA 6 -260.546 539.553 6.890 0.004 

211366 NA NA -233 NA NA NA NA -297 453 -31055 6 -260.546 539.554 6.891 0.004 

198860 NA NA -205 NA NA -159 NA -298 477 NA 6 -260.551 539.564 6.901 0.004 

183919 NA NA -586 NA NA NA NA NA 305 -9662 5 -262.646 539.577 6.914 0.004 

279814 -37630 NA NA NA NA NA -271 -388 666 -46578 7 -258.129 539.592 6.929 0.004 

179502 NA NA -579 NA NA -40 NA NA 313 NA 5 -262.654 539.593 6.930 0.004 

176973 NA NA -585 NA 1 NA NA NA 314 NA 5 -262.670 539.625 6.961 0.004 
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Subset 2 
 
Intercept Below Ground Floors c11 c13 c2 c4 c5 c6 c7 c9 Shared Wall df logLik AICc delta weight 

61000 335355 -804 NA NA NA NA NA -2023 506 NA 6 -275.574 569.609 0.000 0.497 

47560 360826 -866 -591 NA NA NA NA -2146 531 NA 7 -274.773 572.879 3.270 0.097 

-1385 350205 -780 NA NA NA NA NA -1995 525 143835 7 -275.250 573.834 4.225 0.060 

160613 NA -697 NA NA NA NA NA -1884 596 NA 5 -279.876 574.038 4.429 0.054 

-1751 324610 -789 NA 50 NA NA NA -1977 533 NA 7 -275.429 574.191 4.582 0.050 

42823 313762 -818 NA NA -44 NA NA -2059 537 NA 7 -275.440 574.214 4.605 0.050 

28487 331976 -793 NA NA NA NA 35 -1985 504 NA 7 -275.442 574.218 4.609 0.050 

49473 350521 -803 NA NA NA 85 NA -1978 490 NA 7 -275.492 574.317 4.708 0.047 

-143854 429855 -863 -1214 NA NA NA NA -2195 614 408675 8 -272.717 574.524 4.915 0.043 

706227 403475 -693 NA NA NA NA NA -1603 NA NA 5 -280.368 575.022 5.413 0.033 

84623 NA -761 NA NA -137 NA NA -2025 674 NA 6 -278.864 576.190 6.581 0.019 
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Subset 3 
 
Intercept Above 

Ground 
Floors 

Below 
Ground 
Floors 

c11 c13 c2 c3 c4 c7 c8 Shared 
Wall 

Total 
Area 

df logLik AICc delta weight 

312421 156541 NA NA 501 571 NA NA NA NA NA NA 5 -289.020 592.326 0.000 0.206 

465415 150550 NA -78 447 522 NA NA NA NA NA NA 6 -287.339 593.140 0.814 0.137 

669342 136998 NA -96 NA 465 NA NA NA NA NA NA 5 -290.358 595.002 2.676 0.054 

506712 142533 NA NA NA 518 NA NA NA NA NA NA 4 -292.264 595.195 2.868 0.049 

215987 165161 NA NA 528 597 NA NA NA NA 538483 NA 6 -288.409 595.280 2.954 0.047 

-171165 143081 NA NA 494 580 NA NA NA NA NA 55 6 -288.448 595.357 3.031 0.045 

323556 169979 NA NA 486 535 NA NA -274 NA NA NA 6 -288.459 595.380 3.054 0.045 

260850 160897 NA NA 516 578 NA 662 NA NA NA NA 6 -288.689 595.839 3.513 0.036 

488869 165931 NA -84 427 477 NA NA -322 NA NA NA 7 -286.416 596.165 3.839 0.030 

296466 153926 NA NA 511 578 136 NA NA NA NA NA 6 -288.888 596.237 3.911 0.029 

301724 161633 NA NA 497 570 NA NA NA -821 NA NA 6 -288.891 596.243 3.917 0.029 

-53140 135799 NA -81 439 530 NA NA NA NA NA 59 7 -286.539 596.412 4.086 0.027 

291124 155424 33484 NA 511 561 NA NA NA NA NA NA 6 -288.998 596.458 4.132 0.026 

685751 155827 NA -101 NA 415 NA NA -378 NA NA NA 6 -289.404 597.270 4.944 0.017 

382973 157273 NA -72 472 545 NA NA NA NA 388552 NA 7 -286.981 597.295 4.969 0.017 

513231 159134 NA NA NA 478 NA NA -328 NA NA NA 5 -291.677 597.640 5.314 0.014 

422565 153842 NA -75 461 529 NA 457 NA NA NA NA 7 -287.158 597.649 5.323 0.014 

102896 121279 NA -98 NA 475 NA NA NA NA NA 64 6 -289.665 597.792 5.466 0.013 

-20510 128121 NA NA NA 529 NA NA NA NA NA 60 5 -291.779 597.843 5.517 0.013 

451250 148768 NA -77 456 528 98 NA NA NA NA NA 7 -287.259 597.851 5.525 0.013 

456605 153327 NA -77 447 522 NA NA NA -427 NA NA 7 -287.299 597.931 5.605 0.013 

487099 151375 -28739 -80 437 529 NA NA NA NA NA NA 7 -287.321 597.975 5.649 0.012 

753079 142613 -141751 -103 NA 507 NA NA NA NA NA NA 6 -289.988 598.437 6.111 0.010 

452138 147527 NA NA NA 533 NA NA NA NA 342312 NA 5 -292.086 598.457 6.131 0.010 

492272 148764 NA NA NA 517 NA NA NA -986 NA NA 5 -292.129 598.543 6.217 0.009 

-348492 150952 NA NA 524 611 NA NA NA NA 610089 63 7 -287.620 598.574 6.248 0.009 

549593 146070 -83672 NA NA 545 NA NA NA NA NA NA 5 -292.156 598.597 6.271 0.009 

478344 144976 NA NA NA 522 NA 413 NA NA NA NA 5 -292.171 598.627 6.301 0.009 

502416 141467 NA NA NA 520 50 NA NA NA NA NA 5 -292.251 598.788 6.462 0.008 

637392 139678 NA -94 NA 474 NA NA NA NA 173773 NA 6 -290.304 599.070 6.744 0.007 

659084 140149 NA -94 NA 465 NA NA NA -481 NA NA 6 -290.320 599.102 6.776 0.007 

654338 138177 NA -95 NA 467 NA 187 NA NA NA NA 6 -290.336 599.133 6.807 0.007 

233491 176834 NA NA 512 562 NA NA -251 NA 497771 NA 7 -287.913 599.159 6.833 0.007 

144085 171287 NA NA 549 609 NA 786 NA NA 597938 NA 7 -287.916 599.165 6.839 0.007 

667886 136706 NA -96 NA 466 14 NA NA NA NA NA 6 -290.357 599.175 6.849 0.007 

-133376 156504 NA NA 481 546 NA NA -258 NA NA 52 7 -287.923 599.180 6.854 0.007 
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Subset 4  
 

Intercept Above 
Ground 
Floors 

Below 
Ground 
Floors 

c10 c11 c12 c2 c3 c5 c8 c9 Shared 
Wall 

df logLik AICc delta weight 

-780896 187814 NA NA NA NA 575 NA -398 NA 641 NA 6 -304.776 628.013 0.000 0.117 

-629345 NA NA NA NA NA 619 NA NA NA 692 NA 4 -309.307 629.281 1.268 0.062 

-1232911 149613 NA NA NA NA 607 NA NA NA 642 NA 5 -307.599 629.483 1.471 0.056 

-1141608 201956 NA NA NA NA 585 NA -365 NA 641 1189720 7 -303.304 629.941 1.929 0.044 

-1704834 165017 NA NA NA NA 641 628 NA NA 641 NA 6 -305.835 630.131 2.119 0.040 

-163416 NA NA NA NA NA 598 NA -306 NA 701 NA 5 -307.931 630.147 2.135 0.040 

-1613806 170024 NA NA NA NA 615 NA NA NA 641 1402331 6 -306.024 630.509 2.497 0.033 

-1193503 193094 NA NA NA NA 605 456 -336 NA 641 NA 7 -303.663 630.659 2.646 0.031 

-986171 NA NA NA NA NA 651 547 NA NA 695 NA 5 -308.202 630.689 2.677 0.031 

-119961 NA -415440 NA NA NA 607 NA NA NA 714 NA 5 -308.238 630.761 2.748 0.030 

-1306112 168420 NA -999 NA NA 623 NA NA NA 648 NA 6 -306.330 631.121 3.108 0.025 

-870105 NA NA NA NA NA 628 NA NA NA 697 1130876 5 -308.454 631.193 3.181 0.024 

-762835 199444 NA NA -135 NA 573 NA -392 NA 647 NA 7 -303.946 631.226 3.213 0.023 

-883201 197163 NA -720 NA NA 590 NA -354 NA 646 NA 7 -303.963 631.260 3.247 0.023 

-423470 177791 -293738 NA NA NA 569 NA -369 NA 659 NA 7 -303.969 631.271 3.258 0.023 

-627252 NA NA -784 NA NA 633 NA NA NA 702 NA 5 -308.653 631.591 3.579 0.019 

-737100 140321 -373797 NA NA NA 596 NA NA NA 665 NA 6 -306.582 631.626 3.613 0.019 

-571605 NA NA NA -106 NA 618 NA NA NA 699 NA 5 -308.981 632.248 4.236 0.014 

-1207278 162444 NA NA -142 NA 604 NA NA NA 647 NA 6 -306.906 632.274 4.261 0.014 

-1021425 202949 NA NA NA NA 604 NA -395 799 635 NA 7 -304.495 632.322 4.310 0.014 

-593094 198770 NA NA NA -72 549 NA -439 NA 634 NA 7 -304.551 632.436 4.423 0.013 

238446 NA -363796 NA NA NA 589 NA -277 NA 719 NA 6 -307.011 632.483 4.470 0.012 

-1735920 180763 NA -897 NA NA 653 582 NA NA 647 NA 7 -304.631 632.595 4.582 0.012 

-778897 NA NA NA NA 64 639 NA NA NA 696 NA 5 -309.176 632.638 4.626 0.012 

-1106333 160949 -392020 NA NA NA 604 NA NA NA 665 1448386 7 -304.697 632.727 4.714 0.011 

-1173107 218469 NA NA -167 NA 584 NA -353 NA 647 1367377 8 -301.821 632.732 4.719 0.011 

-350350 NA -435579 NA NA NA 615 NA NA NA 720 1198148 6 -307.163 632.787 4.775 0.011 

-1631285 188796 NA NA -179 NA 613 NA NA NA 648 1585174 7 -304.739 632.811 4.798 0.011 

-653777 NA NA NA NA NA 623 NA NA 111 691 NA 5 -309.303 632.892 4.880 0.010 

-409709 NA NA NA NA NA 607 NA -274 NA 704 932538 6 -307.288 633.037 5.025 0.009 

-518535 NA NA NA NA NA 625 410 -248 NA 702 NA 6 -307.289 633.039 5.027 0.009 

-498857 NA -360015 NA NA NA 636 477 NA NA 714 NA 6 -307.334 633.129 5.117 0.009 

-1486701 165987 NA NA NA NA 637 NA NA 852 635 NA 6 -307.358 633.178 5.166 0.009 

-1630515 183552 NA -848 NA NA 628 NA NA NA 647 1235116 7 -304.992 633.317 5.304 0.008 

-1285798 187987 NA -1169 -182 NA 622 NA NA NA 656 NA 7 -305.052 633.438 5.425 0.008 

-1254281 155907 -303544 NA NA NA 629 564 NA NA 660 NA 7 -305.065 633.464 5.452 0.008 

-772372 191791 -317407 NA NA NA 579 NA -333 NA 660 1245763 8 -302.200 633.491 5.478 0.008 

-1296545 146453 NA NA NA 33 617 NA NA NA 645 NA 6 -307.559 633.580 5.568 0.007 

-217410 NA NA -543 NA NA 610 NA -269 NA 707 NA 6 -307.598 633.657 5.644 0.007 
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-124071 NA NA NA -94 NA 597 NA -298 NA 707 NA 6 -307.638 633.737 5.725 0.007 

-148905 NA -390301 -704 NA NA 620 NA NA NA 721 NA 6 -307.656 633.774 5.761 0.007 

-957714 NA NA -681 NA NA 660 506 NA NA 704 NA 6 -307.660 633.782 5.770 0.007 

-1324879 NA NA NA NA 119 693 640 NA NA 704 NA 6 -307.722 633.906 5.894 0.006 

-1649555 174006 NA NA -112 NA 636 581 NA NA 645 NA 7 -305.335 634.004 5.992 0.006 

-2062050 198404 NA NA NA NA 664 NA NA 1339 630 1584202 7 -305.343 634.019 6.006 0.006 

-1781260 172262 NA NA NA NA 635 428 NA NA 641 834878 7 -305.405 634.144 6.132 0.005 

-855038 158554 -335601 -919 NA NA 612 NA NA NA 668 NA 7 -305.413 634.159 6.147 0.005 

-1561422 227144 NA NA NA NA 630 NA -356 1222 631 1360529 8 -302.558 634.207 6.194 0.005 

-823055 NA NA NA -130 NA 627 NA NA NA 706 1242162 6 -307.925 634.311 6.299 0.005 

-149523 NA NA NA NA NA 596 NA -306 -58 701 NA 6 -307.930 634.321 6.308 0.005 

-158391 NA NA NA NA -2 597 NA -307 NA 701 NA 6 -307.931 634.323 6.310 0.005 

-1930150 157954 NA NA NA 90 674 695 NA NA 649 NA 7 -305.495 634.323 6.311 0.005 

-884870 213642 NA -888 -166 NA 591 NA -337 NA 653 NA 8 -302.618 634.327 6.314 0.005 

-1981468 182701 NA NA NA NA 674 635 NA 911 633 NA 7 -305.505 634.344 6.331 0.005 

-1197418 208628 NA -605 NA NA 597 NA -331 NA 645 1090313 8 -302.656 634.404 6.391 0.005 

-837692 NA NA -647 NA NA 638 NA NA NA 704 986750 6 -307.987 634.435 6.423 0.005 

-920996 NA NA NA -78 NA 648 512 NA NA 701 NA 6 -308.014 634.489 6.477 0.005 

-1018138 NA NA NA NA NA 647 402 NA NA 697 594740 6 -308.030 634.521 6.509 0.005 

-265153 NA -412896 NA NA 61 626 NA NA NA 717 NA 6 -308.106 634.674 6.662 0.004 

-1138333 NA NA NA NA 101 660 NA NA NA 704 1277972 6 -308.108 634.677 6.665 0.004 

-555313 NA NA -888 -132 NA 633 NA NA NA 712 NA 6 -308.124 634.710 6.698 0.004 

-1277639 201848 NA -687 NA NA 619 441 -297 NA 645 NA 8 -302.835 634.762 6.749 0.004 

-37172 NA -509431 NA 60 NA 605 NA NA NA 715 NA 6 -308.183 634.827 6.814 0.004 

-1007598 NA NA NA NA NA 654 547 NA 98 695 NA 6 -308.199 634.859 6.846 0.004 

-127108 NA -415135 NA NA NA 608 NA NA 31 714 NA 6 -308.237 634.936 6.924 0.004 

-1781534 164401 NA NA NA 73 639 NA NA NA 648 1498825 7 -305.802 634.936 6.924 0.004 
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 GLOSSARY  
 
Akaike Information 
Criterion 
 
 
 

− AICc 
 
 

− Akaike 
Weight 

 

A metric used to guide model selection. In theory, the chosen model 
is often one that minimizes the Kullback-Leibler distance between the 
model and the “truth”. In practice, the criterion looks for models with 
a good fit with minimal number of parameters.  
 
A modified version of AIC applicable to small samples. An increased 
penalty for additional parameters is used. [73, 124] 
 
The relative likelihood of the model, given the data. Normalized to 
sum to 1 among candidate models. [73] 
 
 

Causation  A cause and effect relationship between variables. Separate from 
correlation, causation among variables can only be inferred from a 
well design randomized controlled experiment.  [125] 
 
 

Coefficient of 
determination (R2)  
 
 

− Adjusted R2 
 

A metric used to convey the goodness of fit for a model. For a 
regression, the values range from 0 to 1 and measure how close the 
data is to the fitted line. [126]  
 
A modified version of R2 that takes into account the number of 
predictor variables in the model. The value increases only when the 
additional variable(s) improves the model more than would be 
expected by chance. The adjusted R2 is always lower or equal to the 
R2 for that model. [127] 
 
 

Coefficient of 
Variation 
 

A measure of dispersion calculated by normalizing the standard 
deviation of a sample with its mean. [128] 
 
 

Collinearity 
 

An undesirable property among predictor variables where excessive 
correlation exists. This correlation has no negative impacts on the 
performance of the regression model but is problematic when the 
effects of individual predictor variables are of interest. [129] 
 
 

Correlation 
 
 

A function of the relationship between variables. [130] 
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− Coefficient of 
Correlation 

A measure of correlation that indicates the strength and direction of 
the relationship between variables. Values range from 1 (positive 
relationship) to -1 (negative relationship) with weaker relationships 
having a coefficient closer to 0. [130] 
 
 

Cross Validation 
 
 

− K-Fold 
 
 
 
 

− Leave-One-
Out 

A process that allows for model validation by splitting the data into a 
training set and testing set. [131] 
 
Data is randomly divided into k equal sized subsets. Cross validation is 
then run k number of rounds. During each round, 1 subset will be 
used for validations and the remaining ones, for training. Error is 
averaged over all rounds. [131] 
 
The process of calculating error is the same as k-fold. However, in this 
method, k = n (the number of data points in the entire sample). [132] 
 
 

Degrees of Freedom 
(Residual) 
 

A measure of certainty that the sample population is representative of 
the entire population. Degrees of freedom are a function of sample 
size and the number of independent variables. Each addition 
parameter included in the model reduces the degrees of freedom by 
1. Generally, the more degrees of freedom a model has, the more 
accurately sampled the population is. [133, 134]  
 
 

Freedman 
Paradox/model 
selection bias 
 

Bias is introduced into the model when variables with a weak 
relationship to the response variable are selected as significant. Their 
selection is often a result of small effects being magnified within a 
particular dataset. A bias will always exists when selecting the “best” 
model from a large selection of models employing many predictor 
variables. The Freedman Paradox is the extreme case of this bias 
where predictor variables having no relationship to the response are 
included in the model thus spuriously inflating the R2. [83, 135] 
 
 

Interquartile Range A descriptive statistic that measures statistical dispersion in a dataset. 
Quartiles each represent 25% of the data; the range is the distance 
between the first and third quartile. [136] 
 
 

Log Likelihood  
 

A statistic used to measure how likely a particular population is to 
produce an observed sample. When used to compare models, the 
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value can be used to validate the plausibility of one model to that of 
another. [137] 
 
 

Nominal Cost of 
Electricity 
 
 

The value of the good or service at the time it was produced.   

Principle of 
Parsimony  

The ideal that a model should neither be under- nor over-fitted. The 
model should be as simple as possible with respect to the parameters, 
model structure, and number of variables. In practice, parsimony 
demands a tradeoff between bias/variance and the number of 
estimated variables in the model. [73] 
 
 

Real Cost of 
Electricity 
 
 

The nominal value adjusted for inflation. A positive inflation over time 
will result in a decrease in the real value if the nominal price remains 
the same.  

Root Mean Square 
Error 
 
 
 

− Coefficient of 
Variation of 
the Root 
Mean Square 
Error  

A measure of the difference between predicted values from a model 
and actual observed values (residuals). Calculated by taking the 
square root of the mean of the squares of the deviation, the RMSE is a 
good measure of accuracy. [138]   
 
A normalized RMSE to the mean of the observed value – often 
reported as a percentage. 
 
 
 
 

Standard Deviation A statistic measuring how far each value in the dataset is from the 
mean. The measure is expressed in the same units as the mean. [139, 
140] 
 
 

Variance A statistic measuring how far each value in the dataset is from the 
mean. The measure is expressed in square units. [139, 140] 

  
 
 


