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ABSTRACT 

 

OLSR IN ANDROID OPERATING SYSTEM 

 

Nasim Chowdhury 

Program of Electrical and Computer Engineering 

Ryerson University 

Master of Engineering 2013 

 

Optimized Link State Routing protocol, an ad-hoc routing protocol, has been popular in 

wireless devices running on Linux operating system for quite some time. In this project we have 

outlined the process of preparing Android devices for ad-hoc networking, a way to overcome 

limitations of the OS for continuous UDP communication, ensure all devices communicate on the 

same wireless Wi-Fi SSID, Cell-ID, subnet and finally implement the Optimized Links State 

Routing (OLSR) in Android Operating System using Google Nexus 7 devices.  Using the code 

base from ProjectSPAN, an open source project, OLSR protocol has been ported to Android Nexus 

7 devices.  The core application is divided into two major sections, MANET and OLSR.  Mobile 

Ad-hoc Network portion of the code takes care of setting up the device for ad-hoc mode 

communication, firewall and peripheral setup while OLSR portion of the code maintains the 

neighbor tables, MPRs and routing.  The project also describes the process by which a device is 

prepared to run low level custom codes in Android operating system. 

The OLSR implementation has been successfully tested with three nodes test bed, 

demonstrating the multi-hop ad-hoc networking capabilities of this wireless routing protocol.  With 

the aid of the Android’s graphical interface the application is able to exhibit the dynamic nature of 

the OLSR protocol.  As nodes and neighbors in the network moves around with respect to time 

and relative location, OLSR protocol is able to form new neighbors and elect Multipoint Relay in 

real time. 
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1 Introduction 

Wireless communication has grown in tremendous pace in the last two decades and small 

handheld devices, such as cell phones and tables, that connect people to communicate anytime, 

anywhere have become a must have extension of modern society.  Most of the communication 

medium relies on infrastructures to interconnect devices, be it traditional wireless cell phones or 

the new age smart phones. 

 Need for Ad-hoc Networking 

There are many situations where users cannot rely on data or telecom infrastructures.  The 

infrastructure may be too expensive or there is no infrastructure at all.  Challenge of our times is 

to utilize the poplar handheld devices and allow them to communicate to each other without any 

help of infrastructures. In those situations multi-hop mobile ad-hoc networks or MANET may be 

a great choice for smart devices to communicate in the absence of base stations or access points.  

Devices in these mobile networks can send data from one host to another remote host by hopping 

few hosts in between.  The characteristics of these mobile devices is that some may act as just 

hosts, few may act as routers while others can work as routers as well as host.  Some routers or 

hosts may be connected via wires as wireless gateways to join other non-wireless networks or the 

largest network in the world, Internet. 

Android based devices are best platform to develop such application.  Android is Linux 

based open source, free of charge operating system which allows code modification under General 

Public License guideline.  No other wireless operating system currently allows such versatility.  In 

this project Google Nexus 7 devices has been utilized to implement the OLSR - Open Link State 

Routing protocol – to create MANET – Mobile Ad-hoc Network.  OLSR has been implemented 

on Ethernet networks for quite sometimes [1]. 

 Challenges of Ad-hoc Networking using Android 

Staring with version 4.0, Android allows ad-hoc networking by its built in support for Wi-

Fi Direct protocol [2].  Wi-Fi Direct is a Wi-Fi standard that enables devices to connect easily with 

each other without requiring a wireless access point and to communicate at typical Wi-Fi speeds.  
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We first investigated the possibility to develop multi-hop capability based on the Wi-Fi Direct.  

An application was ported to Android that allowed direct communication between two devices for 

file transfer and other communications. However Wi-Fi Direct does not allow multi-hop 

communications as setting up nodes in the network requires a manual process for security reasons. 

We also investigated an initiative by Serval Mesh project [3].  Serval Mesh is an Android 

application that allows IP connectivity between mobile phones using Wi-Fi protocol, without 

requiring a SIM, cellular base stations or Wi-Fi access points or Internet access.  However Serval 

Mesh did not provide multi hop communication capability during the time it was evaluated.  

Currently however, it is using Mesh routing to provide multi-hop communication. 

The OLSR development group has been working on an implementation of OLSR for 

Android devices as well [4].  However code could not be ported to successfully to newer Android 

devices such as Nexus 7 with new versions of the OS due to wireless network card issue and the 

code was out of date and was not maintained. 

SPAN project code showed promising results [5].  The Smart Phone Ad-hoc Network 

initiative is a community supported newer code base.  The code required the device has to “rooted” 

and a custom kernel loaded to have the application manipulate the wireless network card.  However 

the OLSR implantation was not complete to work on Google Nexus 7 devices.  The nodes would 

load the application but could not see each other to form neighbour relationship.   

Following table lists the Android software code evaluated for ad-hoc networking: 

Android Code  Description 

Android Wi-Fi Direct Peer-to-peer networking over Wi-Fi 

protocol. 

Serval Project Ad-hoc networking on mesh network 

OLSRMeshTether Multi-hop Ad-hoc NETworking using 

Wi-Fi protocol and routing using OLSR 

MANET Manager Multi-hop Ad-hoc NETworking using 

Wi-Fi protocol and routing using OLSR 

Table 1: List of Android Ad-hoc Code Evaluated 
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 Main Contribution 

Main contributions of this project are as follows: 

 Few researchers have previously attempted to implement OLSR in Android operating 

system, however most of their endeavours were either obscure implementation, 

obsolete or still work in progress [1] [4] [3].  As mentioned above we have identified 

the best code that come close to implementing OLSR and modified it to work 

successfully under Google Nexus 7 devices with Android’s latest operating system 

(Jelly Bean or 4.2.2) for the first time. 

 Ad-hoc networking requires Wi-Fi protocol to act differently than access point based 

network.  We have identified that in Android, the Wi-Fi network card needs to be 

initialized during start-up of the OLSR application with same Cell-ID to communicate 

with different devices.  The ProjectSPAN code has been modified to take care of this 

new findings to implement OLSR. 

 We have also outlined the process of preparing Android devices by unlocking, rooting 

and installing custom kernel that is required to run the devices in ad-hoc mode that will 

facilitate and expedite setting up OLSR for future research projects. 

 The OLSR application has been done using Eclipse and Android Development Tools.  

 Chapter Overview 

Rest of this paper is organized as follows.  An introduction to mobile ad-hoc network is 

given in chapter 2. In Chapter 3, an introduction of Optimized Link State Routing protocol has 

been presented. Chapter 4 describes requirements of implementing OLSR in Android operating 

system.  This followed by the description of developing software for Android OS in Chapter 5 and 

Chapter 6 details the preparation required the devices for implementation.  Chapter 7 provides the 

outline of the code used to implement OLSR in Android and Chapter 8 provides the result of the 

experiments done for this thesis. 
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2 Communication via Ad-hoc Network 

Wireless networks revolutionized the way we communicate. Wireless networks brought 

the convenience to small handheld devices but poses many challenges in its implementation 

compared to its wired counterpart.  Wireless nodes can communicate in two different ways, 

infrastructure based or ad-hoc mode. 

 Infrastructure based Wireless Networks 

Wireless communication that utilizes 

infrastructure, such as the GSM or UMTS networks or 

wireless LANs in infrastructure mode, a dedicated base 

station or access point is setup to communicate 

between the devices in a hub network situation. All 

wireless devices in the network must register 

themselves with the base station or the access point. All 

data traffic passes through these centralized network 

infrastructure (Figure 2-1).  

 Ad-hoc Wireless Networks 

Contrary to infrastructure based 

wireless networks, the communication in 

Ad-hoc networks is organized completely 

decentralized. There is no single base station 

or access point that controls the flow of 

network traffic (Figure 2-2). Governed by 

the physical layer protocol regulations of 

802.11a/b/g/n all nodes can be at the same 

time transmit and receive wireless data as 

well as forwarding traffic for other nodes.  

Figure 2-2: Ad-hoc Wireless Network 

Figure 2-1: Infrastructure based Wireless Networks 
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These nodes can act as node and as router and create a multi-hop wireless network. 

Nodes that are within the reach of each other that is within wireless range of a nearby node, 

can exchange packets between the devices without any the help of any other entity. To transmit 

packets to nodes that are farther away, nodes that lies in between the source and destination node 

forward the packets from one to another, like traditional routers, to reach final destination.  

The main advantages of ad-hoc networks over the infrastructure based wireless networks 

are their decentralized self-organizing nature, no requirement to setup any special infrastructure 

and their flexibility as mobile networks changes with respect to time. 

For single hop network, every node is only one hop away from other nodes.  As illustrated 

in Figure 2-4, to reach any node, a device do not need any routing protocol.  All devices have to 

be in the broadcast range of each other. 

However, when all devices are not within broadcast range, to communicate between remote 

networks, the devices need a routing protocol. As depicted in Figure 2-3, for node A to 

communicate with node E, the intermediate nodes B, C and D have to know how to route packets 

and act as routers for nodes A and E.   The nodes in a Multi-hop Network are joined together using 

special routing protocols.  These protocols are designed considering the advantages and limitations 

of wireless medium, battery longevity, transceiver capabilities and ad-hoc nature of the network. 

 Ad-hoc Routing Protocols 

There are several different routing protocols developed for ad-hoc networks over the years.  

These protocols are primarily divided into two categories.  There are some protocols that combines 

the following two types and takes advantage from both categories.   

Figure 2-4: Single-hop Ad-hoc Network Figure 2-3: Multi-hop Wireless Network 
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 Proactive or Table Driven Routing Protocols - Proactive or table-driven routing 

protocols maintain several tables containing neighbour and routing information on each 

node for all the nodes in a network. Each node at predetermined interval sends a small 

packet and through which keeps record of the neighbors. When there is a network 

topology change, the nodes propagate the update messages throughout the entire 

network and to have a consistent and up-to-date topology information of the whole 

network.  Routes are calculated based on the topology. 

 Reactive or On Demand Routing Protocols: In contrast to Proactive routing protocols, 

all nodes do not keep up-to-date routes of the entire network.  The routes are created as 

packets are required to be delivered. When a source node wants to communicate with 

a destination, the routing protocol initiates the route discovery process to find the path 

to the destination. The route remains valid as new packets are generated for the 

destination and removed from the routing table if unused after certain timeout period.  

Following are some of the well-known ad-hoc routing protocols: 

Type of Protocol Name of Ad-hoc Protocols 

Proactive or Table Driven 

Routing Protocols 

Optimized Link State Routing Protocol (OLSR) 

Destination-Sequenced Distance-Vector (DSDV) 

The Wireless Routing Protocol (WRP) 

Global State Routing 

Fisheye State Routing 

Hierarchical State Routing 

Zone-based Hierarchical Link State Routing Protocol 

Clusterhead Gateway Switch Routing Protocol 

Better Approach To Mobile Adhoc Networking (BATMAN) 

Babel Routing Protocol 

Reactive or On Demand 

Routing Protocols 

Cluster based Routing Protocols 

Ad hoc On-demand Distance Vector Routing (AODV) 

Dynamic Source Routing Protocol 

Temporally Ordered Routing Algorithm (TORA) 

Associativity Based Routing (ABR) 

Signal Stability Routing (SSR) 

Admission Control enabled On demand Routing (ACOR) 

Flow State in the Dynamic Source Routing 
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Table 2: Ad-hoc Routing Protocols 

Following is a list of routing protocols that have been implemented or in development for 

Android operating system. 

Ad-hoc Protocol Implemented / In Progress 

OLSR MANET Manager 

OLSRMeshTether 

Serval Project (Proposed) 

AODV MANET Manager (Not yet implemented) 

Mesh Routing Serval Project 

Table 3: Ad-hoc Routing Protocols for Android 

We are using OLSR as the routing protocols on MANET Manager application.  Details of 

the OLSR protocol will be discussed in Chapter 4.   
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3 MANET - Usage of Mobile Ad-Hoc Network 

A Mobile Ad-hoc Network or MANET is a self-configuring network of mobile devices in 

an infrastructure-less environment.  Nodes in MANET can move arbitrarily and topology of the 

network can change dynamically with respect to time and relative position of the devices. Need to 

develop this kind of networks have been grown significantly in the last few years due various 

requirements. However many aspects of mobile ad-hoc networks are still in research stage. Some 

of the research topics on the routing protocol layer include among others, support for quality of 

service for voice and video communication, efficient multicast strategies, protocol optimizations 

and security related issues. 

There can be many application of MANET based networks.  Following are few examples 

where MANET can be very useful. 

 Disaster Situation and Disaster Relief 

Fukushima, Haiti, Katrina all underline the fact that Infrastructure based 

telecommunication is not ideal during disaster situation.  Infrastructures typically break down in a 

disaster area.  Hurricanes cut phone and power lines, base stations get destroyed by flood, 

datacenter loses communication, gets destroyed in fire.  Emergency responders can only rely on 

the infrastructures that they setup.  Planning for such disasters cannot be done and setup must be 

fast and reliable but also cost effective. 

 Military Activities 

Major driving force in ad-hoc networking is defense related activities as many of the 

research project on ad-hoc network are backed by military institute, especially in the US.  War 

zones and training in adverse environment either cannot depend on existing infrastructure or there 

is lack of any.  As weaponry and communication equipment are getting modernized, 

communication system that can be setup quickly and move as the army moves becomes an 

essential tool. 
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 Instant Infrastructure 

In areas where infrastructure is not available, unplanned meetings, spontaneous 

interpersonal communication etc. becomes tricky.  It would take too long to setup infrastructure in 

short period of time, therefore ad-hoc connectivity makes most sense in such cases.  

 Remote Areas 

For some remote areas it is sometimes too expensive to set those up in sparsely populated 

areas.  Depending on the communication pattern, ad-hoc network or satellite base infrastructure 

can provide the effective solution that is required. 

 Cost Effectiveness 

The service provided by certain infrastructure may not be cost effective for certain 

application.  For example, if there is connection oriented cellular network exist, but a battery 

operated application sends only a small status information every ten minutes, a cheaper ad-hoc 

packet oriented network would make much more sense.  Registration procedure may take too long 

and keep-alive may drain out the battery too much, communication overhead may be too high. 
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4 OLSR – Optimized Link State Routing 

As indicated before, OLSR is the chosen protocol for this application of Android Ad-hoc 

networking.  It is a proactive routing protocol for mobile ad-hoc networks. OLSR works best in 

large and dense mobile networks.  The protocol is documented in the experimental Request For 

Comment (RFC) 3626 [6].  OLSR is table-driven and pro-active and utilizes an optimization called 

Multipoint Relaying for control traffic flooding.  The larger and more dense a network, the more 

optimization can be achieved as compared to the classic link state algorithm.  OLSR uses hop-by-

hop routing, i.e., each node uses its local information to route packets.  OLSR is well suited for 

networks, where the traffic is random and sporadic between a larger set of nodes rather than being 

almost exclusively between a small specific set of nodes.  As a proactive protocol, OLSR is also 

suitable for scenarios where the communicating pairs change over time: no additional control 

traffic is generated in   this situation since routes are maintained for all known destinations at all 

times. RFC3626 modularizes OLSR into core functionality, which is always required for the 

protocol to operate, and a set of auxiliary functions. The core functionality specifies, a protocol 

that is able to provide routing in a stand-alone MANET. Each auxiliary function provides 

additional functionality, which may be applicable in specific scenarios, e.g., in case a node is 

providing connectivity between the MANET and another routing domain. 

This protocol inherits the stability of a link state algorithm and has the advantage of having 

routes immediately available when needed due to its proactive nature.  OLSR is an optimization 

over the classical link state protocol, tailored for mobile ad hoc network. 

 Node Addressing 

OLSR uses an IP address as the unique identifier of nodes in the network. As OLSR is 

designed to be able to operate on nodes using multiple communication interfaces, every node must 

choose one IP address that is set to be its main address. 

 Information Repositories 

OLSR maintains state by keeping a variety of databases of information. These information 

repositories are updated upon processing received control messages and the information stored is 
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used when generating such messages.  Here follows a brief look at the different information 

repositories used in core OLSR. 

 Multiple Interface Association Information Base - This dataset contains information 

about nodes using more than one communication interface. All interface addresses of 

such nodes are stored here. 

 Link Set - This repository is maintained to calculate the state of links to neighbors. This 

is the only database that operates on non-main-addresses as it works on specific 

interface-to-interface links. 

 Neighbor Set - All registered one-hop neighbors are recorded here. The data is 

dynamically updated based on information in the link set. Both symmetric and 

asymmetric neighbors are registered. 

 2-hop Neighbor Set - All nodes, not including the local node, that can be reached via a 

one-hop neighbor is registered here. Note that the two hop neighbor set can contain 

nodes registered in the neighbor set as well. 

 MPR Set - All MPRs selected by the local node is registered in this repository.  

 MPR Selector Set - All neighbors that have selected this node as a MPR are recorded 

in this repository. 

 Topology Information Base - This repository contains information of all link-state 

information received from nodes in the OLSR routing domain. 

 Duplicate set - This database contains information about recently processed and 

forwarded messages. 

 Timeouts 

Most information kept in these repositories are registered with a timeout. This is a value 

indicating for how long the registered information is to be considered valid. This value is set 

according to a validity time fetched from the message from which the data was last updated. The 

use of such a distributed validity time allows for individual message emission intervals for all 

nodes in the network. All database entries are removed when no longer valid according to the 

registered timeout. Such entries are said to be timed out. 
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 Control Traffic 

All OLSR control traffic is to be transmitted over UDP on port 698. This port is assigned 

to OLSR by the Internet Assigned Numbers Authority (IANA). The RFC states that this traffic is 

to be broadcasted when using IPv4, but no broadcast address is specified. When using IPv6 

broadcast addresses does not exist, so even though it is not specified in the RFC, it is implicitly 

understood that one must use a multicast address in this case. 

 OLSR Packet Format 

All OLSR control traffic is based upon OLSR packets. An OLSR packet has an OLSR 

packet header consisting of the packet length and a packet sequence number maintained 

independently by each interface of the OLSR node. The packet body consists of one or more OLSR 

messages which are preceded by a message header for each included message. The message header 

contains the message type, the validity time, the message size, the originator address, a time to live 

field, the hop count and a message sequence number. The originator address field contains the 

main address of the node that initially created the message, independent of which interface the 

message left this node. To avoid establishing routing loops and retransmission of already known 

data each packet and each message carry a sequence number. 

 

Figure 4-1: OLSR Packet Format 

 Packet Length - The length in bytes of the entire packet, including the header. 
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 Packet Sequence Number - A sequence number incremented by one each time a new 

OLSR message is transmitted by this host. A separate Packet Sequence Number is 

maintained for each interface so that packets transmitted over an interface are 

sequentially enumerated. 

An OLSR packet body consists of one or more OLSR messages. All OLSR messages must 

respect this header. The fields in the header are: 

 Message type - An integer identifying the type of this message. Message types of 0-

127 are reserved by OLSR while the 128-255 space is considered “private” and can be 

used for custom extensions of the protocol. 

 Vtime - This field indicates for how long after reception a node will consider the 

information contained in the message as valid.  

 Message Size - The size of this message, including message header, counted in bytes. 

 Originator Address - Main address of the originator of this message. 

 Time To Live - The maximum number of hops this message can be forwarded. Using 

this field one can control the radius of flooding. 

 Hop Count - The number of times the message has been forwarded. 

 Message Sequence Number - A sequence number incremented by one each time a new 

OLSR packet is transmitted by this host. 

 Message types 

 MID message - If a node has more than just one interface it announces these additional 

interfaces periodically to the other nodes by emitting MID messages. As the nodes main 

address is already included in the originator address of the message header only the 

additional interface addresses have to be announced. Based upon this information the 

Multiple Interface Association Information Base is built in the receiving node. 

 HELLO messages - To supply the necessary information for link sensing and (one- and 

two hop) neighborhood discovery a node periodically emits HELLO messages. 

Through the exchange of these messages the link set and the information in the 

Neighbor Information Base is built. These messages are generated and emitted 

independently for each interface participating in the network. For each different 
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neighbor and link type combination (link code) a list of addresses with interfaces 

belonging to this link code is advertised. 

 TC messages – OLSR is a host based flat, link state routing protocol.  A topology 

change link state broadcast describes change of links to neighbor nodes. This is done 

using Topology Control (TC) messages. The message contains a sequence number 

which is updated every time the advertised neighbor set has changed.  TC messages are 

flooded on regular intervals by using MPR optimization process. 

 Multipoint Relay 

The idea of multipoint relays is to minimize the overhead of flooding messages in the 

network by reducing redundant retransmissions in the same region.  Each node in the network 

selects a set of nodes in its symmetric 1-hop neighborhood which may retransmit its messages.  

This set of selected neighbor nodes is called the "Multipoint Relay" (MPR) set of that node.  The 

neighbors of node N which are *NOT* in its MPR set, receive and process broadcast messages 

but do not retransmit broadcast messages received from node N. 

In an N node neighborhood, MPRs are subset of nodes so that every node in that 2-hop 

neighborhood must have a symmetric 1-hop link to a MPR and MPRs are elected such that it 

comprises the minimal set in that neighborhood. 

In OLSR MPRs are elected to flood the link state of the network to all nodes.  They generate 

the link state update packets.  They only generate the updates for the links they are connected to.  

As proactive protocol, OLSR periodically sends the link state update message to its neighbors and 

proactively builds the routing table. 

 OLSR Hello Message 

Every node sends hello message to all its neighbors and it contains the list of neighbors it 

already discovered and their state.  A neighbor can be in one of the three states: 

SYM_NEIGH: A neighbor which has established a symmetric link 

MPR_NEIGH: A neighbor with symmetric link has been elected as MPR 
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NO_NEIGH: A possible neighbor, but a symmetric link has not yet been established. 

 MPR Section Procedure 

OLSR designates various nodes in a neighbor of N nodes in the following structure: 

 N set: set of symmetric 1-hop neighbors 

 N2 set: set of symmetric 2-hop neighbors, excluding the node itself and the nodes in N 

set 

 D(y): Degree of the neighbor y that is a member of N excluding the node itself and the 

nodes in N set 

OLSR then calculate MPRs based on the following algorithm: 

 Calculate Degree of the neighbor or D(y) where y is a member of N set. 

 Designate those nodes in N set as MPRs that are the only nodes to provide a reachability 

to any node in N2 set. 

From the N2 list, 

remove the nodes that 

are covered by a node 

in MPR set. 

 If there are any nodes 

in N2 that are not 

covered by any node 

in the MPR set. 

 For each node in N 

calculate the 

reachability to nodes in 

N2 that are not yet covered by a node in MPR set and that are reachable through this 

node. 

 Select a node in N that provides reachability to maximum number of nodes in N2. 

 In case of tie, use larger value of D(y) to break the tie. 

Figure 4-2 shows an example of how MPR selected in OLSR wireless network.  

Figure 4-2: MPR selection Process 



  16  

 OLSR Data Structure 

OLSR is table driven protocol.  It keeps a number of live tables to keep track of symmetric 

1-hop neighbors, 2-hop neighbours, MPRs, Topology Information Base, Duplicate Message Set, 

Multiple Interface Association Set etc. 

 

Figure 4-3: OLSR Data Flow 

As the Figure 4-3 shows, using the input information of Hello packets, Topology Control 

packets and information about its Multiple Network Interfaces, each node creates the Link Set, 

Neighbor Set, 2 Hop Neighbor Set, Multipoint Relay Set, Multipoint Relay Selector Set, Topology 

Information Base, Duplicate Set and Multiple Interface Association Set tables.  Based on these 

tables each node decides if it would forward any OLSR messages it received to its other 

neighbours. Based on topology it creates the routes. 

 Route Selection using ETX and SPF 

 Since the release of version 0.4.8, OLSR started to use ETX to measure link quality 

between two nodes.  ETX or Expected Transmission Count metric is a novel method to evaluate 

metric which finds high-throughput paths on multi-hop wireless networks [7].  ETX metric 

considers the effects of link loss ratios, asymmetric loss ratio between two directions of each link 
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and interference on the successive links of a data routing path.  On the contrary, minimum hop 

count metric only chooses the shortest path randomly among various paths with identical hops but 

does not consider data throughput differences among those paths.  ETX metric can help 

significantly improve throughput by choosing longer but best paths in a wireless mesh network. 

The ETX of a link is calculated by using the forward and reverse packet delivery ratios of 

the wireless link.  OLSR send hello messages to its neighbors to create and update neighbor 

relationships.  Within the hello message, OLSR also includes the perceived link quality of its 

neighbor.  Link quality is a simple calculation; if a node send 10 packet and receive 

acknowledgement for 7 only, link quality or LQ of that neighbor is 7/10 or 0.7.  The neighbor also 

advertises its own perceived link quality of this node as neighbour link quality of NLQ.  ETX is 

of a link to a neighbor is then calculated by the following formula 

ETX = 1 / (NLQ * LQ) 

 

The MANET Manager in ProjectSPAN utilizes Shortest Path First using a simple 

implementation of Dijkstra’s algorithm to compute the best routing path.  Using ETX and SPF, 

the code is able to achieve best throughput over minimum hop count metric. 
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5 OLSR on Android 

Android is a Linux-based operating system designed primarily for touchscreen mobile 

devices such as smartphones and tablet computers. The first Android-powered phone was sold in 

October 2008. Android is open source and Google releases the code under the Apache License. 

This open source code and permissive licensing allows the software to be freely modified and 

distributed by device manufacturers, wireless carriers and enthusiast developers. Additionally, 

Android has a large community of developers writing applications ("apps") that extend the 

functionality of devices, written primarily in a customized version of the Java programming 

language.  In February 2013, there were over 800,000 apps available for Android, and the 

estimated number of applications downloaded from Google Play, Android's primary app store, was 

25 billion.  These factors have allowed Android to become the world's most widely used 

smartphone platform. 

As Figure 5-1 shows, Android has the following layers: (a) applications (written in java, 

executing in Dalvik); (b) framework services and libraries (written mostly in java) - applications 

and most framework code 

executes in a virtual 

machine; (c) native 

libraries, daemons and 

services (written in C or 

C++); (d) the Linux kernel, 

which includes drivers for 

hardware, networking, file 

system access and inter-

process-communication.  

Due to the vast 

popularity of Android 

devices, porting OLSR to 

Android is the most logical approach to facilitate ad-hoc communication.  There is project that is 

Figure 5-1: Android Operating System Architecture 

http://elinux.org/File:Android-system-architecture.jpg
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backed by the Android developer community called ProjectSPAN or ‘Smart Phone Ad-hoc 

Networking’ that is utilizing OLSR as one of the routing protocol. It was initially funded by 

MITRE Corporation for Emergency Preparedness and Response situation. 

Implementation of MANET on smart 

devices however has its share of difficulties.  

There is a wide variety of transceivers that come 

with Android devices as their Wi-Fi modems.  

For MANET, it is an obvious choice to use the 

Wi-Fi network over Bluetooth or NFC. In 

physical layer, Wi-Fi provides the longest 

ranges amongst the communication choices and 

almost all devices are equipped with these 

modems.  Following are some of the issues when implementing MANET/OLSR on smart devices: 

 Access to Wireless Modem 

In the pre-Ice Cream Sandwich or version 4.0, Android framework does not support 

configuring the built-in wireless modem to operate in any other mode but managed mode. Starting 

from ICS Android supports Wi-Fi Direct, however the ICS implementation of the Wi-Fi Direct 

specification does not provide a complete ad-hoc network solution [8]. To implement OLSR on 

Android devices, the MANET application requires direct access to the modem, so it can scan the 

network constantly for any data traffic, as well as maintain neighbor table up to date for routing 

operation.  For security reasons and reasons described in the next point, Android operating system 

allows only limited sets of APIs to control most hardware calls and does not allow any application 

to have access to its Wi-Fi modem directly to send and receive data.   

 Wireless Extension and Cellular Service Providers 

To engage the wireless modem in ad-hoc mode the Wi-Fi chip has to be capable of handling 

an extended command set called Wireless Extension.  Wireless Extension is a set of APIs that 

allows manipulating any wireless networking device in a standard and uniform way [9].  Even 

Figure 5-2: Example of Node Distribution in MANET 
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though Android supports these wireless extension command sets, not all Wi-Fi chip has 

implemented these commands for design and cost constraint.   

Furthermore, when this wireless extension is enabled and supported, other software 

programs can take advantage of this protocol and enable a phone or device to run in tethered mode.  

In tethered mode, a phone can act as a Wi-Fi access point.  Other client devices can use that access 

point to hop onto cellular provider’s data network to reach Internet.  Cellular service providers 

usually disables their phones from allowing it to be used as an access point as they want customers 

to pay separately for that feature.  Therefore to enable a phone to run the wireless extension, you 

need to run custom code that bypasses the lock cellular providers have put on the phones. 

By default all Wi-Fi modems run in infrastructure mode where they connect to access 

points to reach other networks.  If there is a known network that the user has previously joined, it 

will connect to it as soon as it finds it available.  We need to lock the Wi-Fi chip out of this 

infrastructure or managed mode.  To run the chip in ad-hoc mode, it must not switch to 

infrastructure mode even if a previously known network is within its reach. Since Android does 

not support ad-hoc mode directly, the only way to access the ad-hoc mode is to use custom Android 

OS and have root level access to its wireless modem interface. 

 Broad Hardware Spectrum 

As Android is an open source product and free of charge, a wide variety of vendors adopted 

this OS to run their cell phones.  With diverse products out in the market also creates a challenge 

for the MANET application to take control of the Wi-Fi chip and enable ad-hoc mode on it.  As 

running a chip in ad-hoc mode is not governed by Android OS, separate code or driver has to be 

written to run each chip in this mode.  However this task is not trivial as Wi-Fi chip manufacturer 

do not always divulge their information to general public to allow modified drivers to be written. 

 Need for Rooting Android and Installing Custom Kernel 

Android ignores all UDP packets when the screen is turn off.  For OLSR to continue to 

work while the device in sleep mode, UDP packets must be processed by the device. To provide 

the above mentioned criteria, low level hardware access is required by the OLSR application.  

Android rooting is the process of allowing users of smartphones, tablets, and other devices running 
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the Android mobile operating system to attain privileged control also known as "root access", 

within Android's subsystem. On Android, rooting can also facilitate the complete removal and 

replacement of the device's operating system, usually with a custom release of the variation of the 

Android operating system.  

 Need root to modify iptables / routing tables.   

 Need root to configure wireless driver and put phone in ad-hoc mode 

 Potential security risk for non-technical users 
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6 Developing Software for Android 

Android software development environment has been improving very rapidly.  Google now 

provides a bundled software (Android Developer Tool) where it combines the Android SDK as a 

plug-in tool with the development tool called 

Eclipse.  Eclipse is an open source software 

developed under Apache software license 

agreement.  It is a multi-language software 

development platform with extensible plug-in 

system.  Once properly configured, Android plug-in 

for Eclipse can create Android Virtual Device 

where a piece of software or app can be tested 

within the virtual environment before deploying it to the devices.  Using AVD, Eclipse can emulate 

the display of various android devices of many screen resolutions to ensure the software being 

created displays on the target devices correctly without actually loading the software on the target 

devices during debugging stage. 

 

Figure 6-2: Eclipse Development Environment 

Figure 6-1: Application Development using Eclipse 
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Even though most of the software can be tested in Android Virtual Device, the OLSR 

routing protocol cannot be tested properly on virtual devices due to the requirement of 

communication via wireless modem. 

 Software developed for Android system can be loaded on the devices in three different 

ways. 

a)  Through publishing in Google Play app store where Google manages the application. 

This is the best way to distribute application as it reaches the masses of Android users. 

b)  Through sending *.apk file or by using various storage flash drives to upload the 

application to the devices.  This process is only recommended where the application is in testing 

stage and the received file is from a trusted source for installation. 

c)  By using the Eclipse software or other software which uses Android Debug Bridge or 

ADB SHELL access via USB direct connect to a computer. 

For this project the process a) is most appropriate as this process allows distribution of the 

application to millions of end users.  
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7 Preparing Android for Custom Application 

 Process of Installing Custom Kernel 

As Android does not support ad-hoc mode operation by default, the Linux kernel needs to 

be altered.  Following procedure details the process of (a) Unlocking, (b) Rooting and (c) installing 

a custom Linux kernel for Android devices.  Since this project used Nexus 7 devices, instructions 

are specific to that device. 

 Enable USB Debugging 

 Update Nexus 7 to Android 4.2.2 

 Navigate to Settings – About Table 

 Tap on “Build Number” for 7 times to enable the Developer Mode in the Android 

device. 

 Go to Settings – Developer options 

 Enable USB debugging 

 Download Android Root Tool Kit 

Nexus Root Tool Kit allows to Unlock and Root a Nexus 7 device.  Analogy of unlocking 

an Android device is like allowing a 

stranger trusting with your home key.  

Analogy of rooting an Android device is 

allowing the stranger to be your head of 

household who have full access to 

everything in your house. 

 Download Nexus Root 

Toolkit by WugFresh 

Development for Windows 

OS.  

  Figure 7-1: Android Root Tool Kit 
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 Install Driver for Android Devices 

 Install the drivers for Nexus 7 using the “Full Driver Installation Guide – Automatic + 

Manual”.  A window such as the Figure 7-2 will open.  Perform the three steps below. 

  

Figure 7-2: Installing Device Drivers and Unlocking Android Devices 

 Connect the Nexus 7 to the computer as part of pervious step. 

 On Nexus 7 a popup will ask to Allow USB Debugging that the computer is trying to 

access core Android system.  Tap on Allow. 

 As part of the test in Step 3, the system will be rebooted into Fast Boot Mode that 

allows access to boot loader and the Windows OS should be loaded with the proper 

driver for the next steps.  The utility will confirm if the driver loading was successful. 

 Unlocking Android Devices 

 Next is to “Unlock” the Android device as shown in Figure 7-1.  Unlocking is the first 

process that allows access to the device to eventually gain “root access” and load 

“custom ROM”.  This process wipes the Android device to Factory Default. 

 On the Nexus a warning will popup indicating unlocking boot loader may void 

warranty.  Go ahead and tap “Yes”. 
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 The device will reboot a few times, then follow onscreen instruction. Once it is booted 

backup, turn on USB Debugging using the steps mentioned above.  The NRT software 

will confirm that the unlocking is complete. 

 Rooting Android Devices 

Rooting gives 

necessary permission to any 

authorized programs to access 

core system resources that 

Google Android APIs by 

default do not support due to 

security concerns.  When a 

program runs in the context of 

root user, it can control any 

device components or access 

any files bypassing any 

security Android had 

implemented.  Select Root 

from Figure 7-1 and the following window will pop up.  Click OK to start the rooting process.  

Once the device is rooted, window as Figure 7-4 will ask to confirm if rooting has been successful. 

 

Figure 7-4: Verify Rooting Process 

Figure 7-3: Rooting Android Devices 
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 Install Custom ROM 

Download custom kernel/ROM from ProjectSPAN github repository using Chrome.  There 

are device specific custom ROM on the github.  For Nexus 7 choose Asus Nexus 7 kernel. The 

ROM should be downloaded to the folder /sdcard/download/. 

Download ClockworkMod ROM Manager from the Google Play.  Optionally download 

Android Terminal Emulator. 

ROM Manager allows installing custom ROM in Android.  To use ROM Manger, you first 

run the Recovery Setup and follow on screen instructions.  If an installation of a custom ROM 

does not go well, Recovery Setup allows a device to go back to its previous state. 

Once Recovery Setup is complete, install the custom kernel that was downloaded 

previously.  In ROM Manager tap Install ROM from SD Card and navigate to Download folder 

and choose the file myupdate-nexus7.zip.  Tap on “Reboot And Install”.  The device will reboot 

into ClockworkMod Recovery console and will ask to confirm the installation. Use the volume 

button to navigate through the menu and use power button to choose the option.  Choose “Go 

Back” to allow the device to reboot. 
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8 Project SPAN 

Smart Phone Ad-hoc Network or SPAN is an open source project that developed the 

MANET application for Android [5].  The application has two major parts.  MANET Manager is 

the main interface between Android and the user.  It allows user to set distinct IP addresses and 

DNS servers, change default wireless SSID and transmit power of the wireless interface etc. The 

second piece of the code Olsrd deals with OLSR in particular. 

As the main application MANET Manager is launched, the main program starts by 

invoking android-MANET-manager-master \ AndroidMANETManager \ src \ org \ span \ manager 

\ MainActivity.java.  The application then waits for the user to press the Wi-Fi icon to start the ad-

hoc service.  The application then calls MANETService via MantelServiceHelper code to change 

the device Wi-Fi mode from infrastructure to ad-hoc mode. 

In MANETServiceHelper, handleStartAdhocCommand() procedure sets up the device for 

special power management state.  In Android OS, if the screen is turned off, the device ignores all 

UDP packets.  OLSR depends on UDP packets to send and receive data, neighbor hello updates.  

As the hello packets are periodic and proactive, the Android device has to have the option to 

receive as well as send UDP packets while the screen is turned off.  This is one of the parts where 

a rooted Android device is necessary to override the default behavior of the OS.  At this point 

createRoutingProtocol() start the instance of OLSR for the MANET service. 

In \ android-MANET-manager-master \ AndroidMANETManager \ src \ org \ span \ 

service \ routing \ OlsrProtocol.java, the application now checks for the configuration file to start 

the OLSR protocol against which Wi-Fi interfaces and establishes a gateway to wired connection 

if there is any.  It allows the OLSR daemon to run in the background for continuously polling for 

neighbors and Multi-Point Relay nodes. 

Android allows importing and utilizing some existing codes into Android framework using 

a toolset called NDK.  This NDK toolset allows to implement parts of an app using native-code 

languages such as C and C++. This is helpful so one can reuse existing code libraries written in 

these languages, but most apps do not need the Android NDK. Olsrd daemon is not a native 
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Android application, rather a C++ application ported into Android framework from an open source 

project under olsr.org foundation.  Olsrd code has been separately precompiled under the app 

named “android-MANET-olsrd”.  Basic function of the olsrd daemon is to keep track of 1 and 2 

hop neighbors, MPRs and maintaining the routing table by adding or deleting routing entries as 

neighbors move, enter or leave the OLSR network.   

Following are some notable procedure that drives the MANET Manager and OLSR routing 

protocol in the application. 

 MANETServiceHelper.java 

This program calls the OlsrProtocol procedure to create a new instance of  olsr deamon in 

OlsrProtocol.java program. 

getInstance() - Creates a new new MANETServiceHelper instant 

 OlsrProtocol.java 

start(MANETConfig MANETcfg):  

 Reads template file conf/olsrd.conf.tpl 

 Opens the data file for writing based on the template file 

 Starts bin/olsrd based on the data file just created as a background service 

 Ignores neighbors in conf/routing_ignore_list.conf 

 Waits for 1000 milliseconds for changes to take effect 

stop() - Kills the “olsrd” process. 

isRunning() - Checks if bin/olsrd process is running 

HashSet<Node> getPeers() 

 Generates the list of peers 

 Uses the routing table as multi-hop peers will not be listed as links or neighbors. 

 Calls InfoThread to gather peer info and adds to the peer node table 

Class InfoThread 
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 Run() opens socket to the peer and read their info and writes to the data file.  Creates 

individual thread InfoThread() for each peer and starts to communicate on port 2006 

 getError returns error 

 getInfo returns info about the peer 

 Olsrd 

Olsrd is the collection of programs and procedure that is developed as a separate Android 

program and called from MANET Mangers OlsrProtocol.java as discuss above.   

  Following are few important functions of Olsrd: 

main.c  

 Loads OLSR configuration file 

 Sets up syslog, initializes message sequence number, various tables, identifies and 

initialized interfaces, MPR willingness, policy routing settings etc. 

 Establishes file lock to prevent multiple olsrd instances 

 Creates or opens the socket for routing traffic 

tc_set.c 

 Generates Topology Change packets and processes incoming TC messages 

 Creates, maintains and deletes entries in Topology Information Table 

 Detects edge node entries and calculates border by node IPs 

duplicate_set.c  

 Identifies duplicate messages 

 Cleans up broadcast message based on sequence number 

neighbor_table.c 

 Creates, deletes, expires and maintains 1-hop neighbor table. 

 Allows lookup neighbors from the neighbor table. 

two_hop_neighbor_table.c 
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 Creates, delete two hop neighbor table 

 Allows lookup of two hop neighbors for MPR calculations 

mpr.c 

 Finds 2 hop neighbors with 1 link 

 Finds the neighbor with most 2 hop neighbors with a given willingness. 

 Processes the chosen MPRs and updates the counters used in calculations 

 Calculates the possible MPR sets. 

 Optimizes MPR sets. 

mpr_selector_set.c 

 Calculates and maintains MPR selector sets based on the MPR selected. 

routing_table.c 

 Creates routing entries to be processed by SPF. 

 If there is multiple path exist, OLSR brakes ties by selecting the lowest etx valued path, 

then lowest hop count and lastly by IP of the originator. 

olsr.c 

 Purses OLSR messages from neighbors. 

 Evaluates if a message from neighbor should be forwarded, and if so forwards it. 

 Updates willingness values to become MPR for the neighbors. 

olsr_spf.c 

 Runs Dijkstra’s algorithm to calculate best routes to all nodes in the OLSR network 

 Updates the routes for the OS routing table entries. 

 



  32  

9 Analysis and Evaluation of Results 

In this project we implemented OLSR using three Google Nexus 7 tablets.  The devices 

where unlocked, rooted and custom ROM have been installed before the MANET application was 

loaded onto the devices. 

 iwconfig 

As the MANET Manager application starts, the application turns off the infrastructure or 

access point based Wi-Fi interface wlan0.  Using iwconfig utility, the app loads the modem specific 

driver, assigns device specific IP address and network mask. IP address must be unique and with 

common network address for a specific ad-hoc WLAN.  These settings are read from the config 

folder of the application.  It sets the wlan0 interface in ad-hoc mode, sets the ESSID to common 

SSID for the Wi-Fi network.  It then sets the Cell ID of the network to “ap any”.  The Cell ID is a 

very important concept for the communication between the devices.  Even though the SSID is 

same for all the devices in the network, if Cell IDs are not the same, they will not communicate 

with each other.  Cell ID is a 12 digit hexadecimal number of the access point radio transmitter, 

similar to MAC address.  When a device starts in ad-hoc mode, it scans the network to find other 

devices with same SSID.  If it does not find any other device broadcasting with same SSID, it 

creates its own Cell ID.  Consecutive devices that start to join the same network would look for 

and will find the same SSID on the network and will join the same Cell ID.  Having the same SSID 

and identical Cell ID allow the devices in the network to listen to and send the messages to each 

other on the wireless broadcast medium.  Next the application also sets the channel and TX power 

levels as well.   

Once the wireless modem driver and necessary parameters are loaded by the application, 

the devices should now be visible to each other.  Using ping utility, it can be verified that if all the 

devices are within reach of Wi-Fi network, they can be tested to be communicating. 

Following diagrams are screenshots from the three Nexus devices which shows SSID, Cell 

ID and Frequency are identical.  By default TX power also has been set to identical value, however 

that can be changed depending on the requirements.  
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Device 1 

IP: 192.168.1.100 

Sunet Mask: 255.255.255.0 

SSID: AndroidAdhoc 

Frequecy: 2.412 GHz 

Cell: 76:09:BF: 6D:09:2A 

Tx-Power:1496 dBm 

 
 

DEVICE 2 

IP: 192.168.1.101 

Sunet Mask: 255.255.255.0 

SSID: AndroidAdhoc 

Frequecy: 2.412 GHz 

Cell: 76:09:BF: 6D:09:2A 

Tx-Power:1496 dBm 

 

 

DEVICE 3 

IP: 192.168.1.102 

Sunet Mask: 255.255.255.0 

SSID: AndroidAdhoc 

Frequecy: 2.412 GHz 

Cell: 76:09:BF: 6D:09:2A 

Tx-Power:1496 dBm 
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 MANET Manger Routing Info 

Once the initial communication is established, MANET Manager then invokes the Olsrd 

routine.  Olsrd sends out hello packets to its neighbors, establishes two-way symmetric link.  

Following diagrams shows the devices all within 1 hop reach of each other. 

Links Table: Olsrd identifies its own node as local IP of 192.168.1.100 and recognizes the 

two other neighboring nodes 192.168. 1.100 and 192.168.1.102 are both 1 hop away as it populates 

its link table.   

Topology Table: In its 

Topology Table, it shows all 

advertised distances from its 

neighbors, which in this case all are 

1.   

Routes Table: In Routes 

Table, it registers the destination 

address, the next hop IP address, 

number of hops to the destination.  

In MANET, all nodes are in one 

network, therefore all destination 

IP will show with /32 subnet mask. 

The metric changes as the hop 

count increases to the destination 

network or node.  

Figure 9-1: MANET Manger Routing Info 
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Gateways Table: Devices with multiple interfaces can act as gateways.  If one of the 

wireless devices also has a wired interface, that interface can act a gateway to other networks.  

Gateways table lists the Status, IP, ETX, hop count, uplink and downlink speed, IPv4 and/or IPv6 

support and the prefix of the network. 

Interface Table: Interface table lists the interfaces that are participating in the OLSR 

routing protocol.  It shows the name of the interface, current status, MTU, if it is a wireless or 

wired connection, IP address, subnet mask and broadcast address of the cards. 

Neighbor Table: Neighbor table lists the IP address of its immediate neighbors, if the link 

to the neighbor is currently symmetric (SYM), if it is currently acting as multi-point relay (MPR).  

If it is not an MPR, it can be member of the MPR Selector Set (MPRS), willingness to become 

MPRs (Will) and finally the 2-hop IP address - the neighbor’s neighbor, if any.  
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 OLSR with no MPRs 

Following Figure 9-2 shows the status of three devices where all the devices are 1-hop 

neighbors of each other.  The Neighbors Table shows that the links are symmetric but there are no 

MPRs elected as all devices are able to directly communicate with the others. 

 

 

 

 

 

   

Figure 9-2: OLSR in Fully Meshed Network 
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 OLSR in Multi-hop Network 

As OLSR is a self-organizing routing protocol, as the devices are taken further apart, the 

two edge devices loose direct neighbor relationship with each other.  Following Figure 9-3 shows 

the two devices 192.168.1.101 and 191.168.1.102 are on the edge of the ad-hoc network and 

192.168.1.100 is residing in the middle.   

 

Device 101 lost neighbor relationship with Device 102.  However Device 100 is still 

neighbor to both devices.  Although Device 101 and Device 102 do not have direct relationship 

with each other, they are still able to communicate by going through Device 100.  We can observe 

Figure 9-3:  OLSR with MPR elected 
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that in the Neighbor Table of Device 101 and 102, Device 100 is listed as an MPR. In the “Routes 

Table” of 101 and 102 they show the metric to reach each other has changed from 1 to 2.  Here 

Device 100 is converted to work as a router for the two edge devices as it has been elected as MPR.  

The middle device 19.168.1.100 shows that the two neighbors on the edge have become member 

of the MPR Selector Set (MPRS). 

 OLSR Debug Information 

OLSR provides access to debug information via an http portal on port 2006 using “txtinfo” 

plugin [1].  Following commands are supported in OLSRd. 

 Config: "/config" -> send_what=SIW_CONFIG 

 Gateways: "/gateway" -> send_what=SIW_GATEWAY 

 HNA: "/hna" -> send_what=SIW_HNA 

 Interfaces: "/interface" -> send_what=SIW_INTERFACE 

 Links: "/link" -> send_what=SIW_LINK 

 MID: "/mid" -> send_what=SIW_MID 

 Neighbors: "/neigh" -> send_what=SIW_NEIGH 

 Routes: "/route" -> send_what=SIW_ROUTE 

 Topology: "/topo" -> send_what=SIW_TOPO 

 2-hop neighbors: "/2hop" -> send_what=SIW_2HOP 

 

Figure 9-4: OLSR Debugging 
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Using WGET from the command line, the following tables can be accessed and analyzed 

at any time.  As Figure 9-4 shows, various tables can be listed using the command format as below: 

wget –O – http://localhost:2006/topo 

 ETX and Delay Comparison for Multi-Hop MANET 

Using PING utility, following delay statistics have been captured.  This is not a 

comprehensive statistics as many variables will affect the delay in the network, such as, number 

of nodes, number of hops, TX power, RX sensitivity, temperature, interference etc.  Varying the 

Wi-Fi card’s transceiver power can extend the range the following table shows.  The power range 

can be set to automatic or preconfigured from 0 to 1258mW.   

These statistics in Figure 9-5 and Figure 9-6 have been gathered where the devices are 

away from any other Wi-Fi devices in open space.  Interference, contention and retransmission is 

minimal in this environment.  When similar test were done in vicinity of other Wi-Fi access points 

and clients, due to the interference, the distance reachability greatly reduced.   

 

Figure 9-5: Distance vs. ETX 

 

 

0

0.5

1

1.5

2

2.5

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

Ex
p

ec
te

d
 T

ra
n

sm
is

si
o

n
 C

o
u

n
t

Distance in Meters

OLSR 1 hop - Distance vs. ETX

ETX



  40  

 

Figure 9-6: Distance vs. Delay 

To ensure one of the device acts an MPR we next have placed the three device in an L 

shaped formation behind concrete building corner where the two furthest devices are reachable by 

any means other than using the corner device as a router.  When OLSR formed neighbor 

relationship between three devices, the middle device in the corner have been elected as MPR.  

Following figures show  

 

Figure 9-7: OLSR 2 hop - Distance vs. ETX 
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Figure 9-8: OLSR 2 hop - Distance vs. Delay 

It has been observed that in open space, the OLSR in MANET Manager is unable to detect 

high packet loss ratio between distant neighbors and would not form MPR when three devices are 

kept in equal distance in a straight line.  During the tests, packet loss reached up to 45%, however 

the OLSR would not elect the middle device as MPR.  
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10 Conclusion and Future Work 

 Conclusion 

Android Operating System has attracted an increasing number of researchers due to its 

ubiquitous nature, easy deployment and a wide range of applications.  Ad-hoc networks that can 

provide instant network in absence of infrastructure has always intrigued many.  This project 

describes the process of implementing the Optimized Links State Routing (OLSR), an ad-hoc 

routing protocol in Android Operating System using Google Nexus 7 devices.   

To get some basic understanding of OLSR and Android operating system, we provided a 

brief introduction to Multi-hop Ad-hoc Network, OLSR protocol and a development tool for 

Android OS.  We have discussed the challenges of implementing ad-hoc wireless communication 

using Android devices and some procedures to overcome the problems by using various 

techniques. 

We have modeled a test bed of three Android Nexus 7 devices to demonstrate the 

functionality of the OLSR implementation.  Using the Android graphical interface application, we 

validated dynamic nature of the OLSR protocol.   We demonstrated multi-hop wireless 

communication in ad-hoc mode.  Neighbor relationship forms and changes dynamically as the 

devices are moved around in and out of the wireless range.  Depending on link quality, we observed 

how ETX metric changes and reflects on the routing table. 

 Future Work 

As future work one can investigate the following: 

 Developing the graphical user interface to display debug information for establishing 

neighbor relationships and MPR election process. 

 Port the application to OLSRv2 or B.A.T.M.A.N. 

 Port the code to easily implement MANET in iOS, Blackberry and Windows devices. 

 Integrate security in the application with robust authentication, integrity and 

confidentiality.  
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12 Appendix 

OLSR on Android – ProjectSPAN Google Nexus 7 wireless NIC configuration file:   

 

AndroidManetManager/res/raw/adhoc_edify 

 

# This script controls actions to be taken when ad-hoc mode is started or stopped. 

# ------------------------------------------------------------------------------------ 

# It uses the "edify" language, which is also used for the android OTA update scripts.  

# See: 

# 

http://android.git.kernel.org/?p=platform/bootable/recovery.git;a=tree;f=edify;h=04720f8aaa9

a5e0079b79f8be7f11b7f74414162;hb=HEAD 

# ------------------------------------------------------------------------------------ 

# NOTE: Must do a project clean and rebuild then completely uninstall app. from device 

# and reinstall it for changes made in this file to take effect. 

 

# Actions for starting ad-hoc mode 

action() == "start" && ( 

   

  # Set "status" property 

  setprop("adhoc.status","running"); 

   

  # Remove all iptables rules 

  run_program("/data/data/org.span/bin/iptables -t filter -F"); 

  run_program("/data/data/org.span/bin/iptables -t nat -F"); 

   

  # Enable forwarding 

  log(run_program("echo 1 > /proc/sys/net/ipv4/ip_forward"), "Enabling kernel packet 

forwarding"); 

  run_program("/data/data/org.span/bin/iptables -A FORWARD -j ACCEPT"); 

 

  # Wifi mode, do some wifi things... 

  getcfg("adhoc.mode") == "wifi" && ( 

 

    # Set "status"-Property 

    setprop("adhoc.mode","wifi"); 

     

    # Google Nexus 7 

    getcfg("device.type") == "nexus7" && ( 

      

      # Load driver via load_wifi(), later unload driver via rmmod("dhd") 

      log(load_wifi(), "Loading WiFi driver"); 
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      log(run_program("/data/data/org.span/bin/ifconfig " + getcfg("wifi.interface") + " " + 

getcfg("ip.address") + " netmask " + getcfg("ip.netmask")) && 

                  run_program("/data/data/org.span/bin/ifconfig " + getcfg("wifi.interface") + " up"),  

"Activating WiFi interface"); 

                   

      log(run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " mode ad-

hoc"), "Setting ad-hoc mode"); 

       

      log(run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " essid " + 

getcfg("wifi.essid")), "Setting essid"); 

       

      log(run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " ap any"), 

"Setting cell id"); 

       

      log(run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " channel " 

+ getcfg("wifi.channel")), "Setting channel"); 

       

      log(run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " power 

all"), "Setting power management"); 

       

      getcfg("wifi.txpower") != "auto" && ( 

            log(run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " 

txpower " + getcfg("wifi.txpower")), "Setting transmit power");         

      ); 

    ); 

 # Gateway 

 getcfg("gateway.interface") != "none" && ( 

    

   # log(run_program("/data/data/org.span/bin/iptables -A FORWARD ! --dst " + 

getcfg("ip.address") + " -i " + getcfg("wifi.interface") + " -o " + getcfg("gateway.interface") + " 

-j ACCEPT") && 

    

   log(run_program("/data/data/org.span/bin/iptables -A FORWARD -i " + 

getcfg("wifi.interface") + " -o " + getcfg("gateway.interface") + " -j ACCEPT") && 

     run_program("/data/data/org.span/bin/iptables -A FORWARD -i " + 

getcfg("gateway.interface") + " -o " + getcfg("wifi.interface") + " -j ACCEPT"), 

     "Setting gateway forwarding"); 

    

   log(run_program("/data/data/org.span/bin/iptables -t nat -A POSTROUTING -o " + 

getcfg("gateway.interface") + " -j MASQUERADE"), "Enabling NAT"); 

 ); 

    # 

    # WEP-Encryption 

    # 

    getcfg("wifi.encryption.algorithm") == "wep" && ( 

      getcfg("wifi.encryption.setup") == "iwconfig" && (           
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        log(run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " key s:" 

+ getcfg("wifi.encryption.password") + "") && 

          run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " key 

restricted"), "Activating encryption (iwconfig)"); 

        run_program("/data/data/org.span/bin/iwconfig " + getcfg("wifi.interface") + " commit"); 

      ); 

      getcfg("wifi.encryption.setup") == "wpa_supplicant" && (         

        sleep("2"); 

        log(run_program("cd /data/local/tmp; mkdir /data/local/tmp/wpa_supplicant; 

wpa_supplicant -B -D" + 

          getcfg("wifi.driver") + " -i" + getcfg("wifi.interface") + 

          " -c/data/data/org.span/conf/wpa_supplicant.conf"), "Activating encryption 

(wpa_supplicant)"); 

      ); 

    ); 

 

  ); 

 

#  getcfg("adhoc.mode") == "bt" && ( 

#    # 

#    # Set "mode"-Property 

#    # 

#    setprop("adhoc.mode","bt"); 

#    sleep("3"); 

#    # 

#    # Bluetooth - start pand 

#    # 

#    run_program("/data/data/org.span/bin/pand --listen --role NAP " + 

#                "--devup /data/data/org.span/bin/blue-up.sh " + 

#                "--devdown /data/data/org.span/bin/blue-down.sh " + 

#                "--pidfile /data/data/org.span/var/pand.pid"); 

#  ); 

 

#  # 

#  # Remove old rules 

#  # 

#  run_program("/data/data/org.span/bin/iptables -N wireless-tether"); 

#  run_program("/data/data/org.span/bin/iptables -F wireless-tether");   

#  run_program("/data/data/org.span/bin/iptables -t nat -F PREROUTING"); 

#  run_program("/data/data/org.span/bin/iptables -t nat -F POSTROUTING"); 

#  run_program("/data/data/org.span/bin/iptables -t nat -F"); 

 

#  # 

#  # Bring up NAT rules 

#  # 

#  log( 
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#    run_program("/data/data/org.span/bin/iptables -A wireless-tether -m state --state 

ESTABLISHED,RELATED -j ACCEPT") && 

#    run_program("/data/data/org.span/bin/iptables -A wireless-tether -s " + getcfg("ip.network") 

+ "/24 -j ACCEPT") && 

#    run_program("/data/data/org.span/bin/iptables -A wireless-tether -p 47 -j ACCEPT") && 

##    run_program("/data/data/org.span/bin/iptables -A wireless-tether -j DROP"), 

#    run_program("/data/data/org.span/bin/iptables -A wireless-tether -j DROP") && 

#    run_program("/data/data/org.span/bin/iptables -A FORWARD -m state --state INVALID -j 

DROP") && 

#    run_program("/data/data/org.span/bin/iptables -A FORWARD -j wireless-tether") && 

#    run_program("/data/data/org.span/bin/iptables -t nat -I POSTROUTING -s " + 

#               getcfg("ip.network") + "/24 -j MASQUERADE"), 

#    "Enabling NAT rules"); 

 

#  # 

#  # IP forwarding 

#  # 

#  log(file_write("/proc/sys/net/ipv4/ip_forward", "1"), "Enabling IP forwarding"); 

 

#  # 

#  # dnsmasq for wifi tether (bluetooth has pand start it) 

#  # 

#  getcfg("adhoc.mode") == "wifi" && 

#      run_program("/data/data/org.span/bin/dnsmasq -i " + getcfg("wifi.interface") +" "+ 

#                  "--resolv-file=/data/data/org.span/conf/resolv.conf " + 

#                  "--conf-file=/data/data/org.span/conf/dnsmasq.conf"); 

 

  log("Ad-hoc mode now running"); 

); 

# Actions when stopping ad-hoc mode 

action() == "stop" && ( 

 

  # Set "status" property 

  setprop("adhoc.status","stopped"); 

   

  # Remove all iptables rules 

  run_program("/data/data/org.span/bin/iptables -t filter -F"); 

  run_program("/data/data/org.span/bin/iptables -t nat -F"); 

 

#  # 

#  # Disable forwarding and remove NAT rules. 

#  # 

#  log(file_write("/proc/sys/net/ipv4/ip_forward", "0"), "Disabling forwarding"); 

#   

#  log( 

#    run_program("/data/data/org.span/bin/iptables -D FORWARD -j wireless-tether") && 
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#    run_program("/data/data/org.span/bin/iptables -D FORWARD -m state --state INVALID -j 

DROP") && 

#    run_program("/data/data/org.span/bin/iptables -F wireless-tether") &&   

#    run_program("/data/data/org.span/bin/iptables -X wireless-tether") &&  

#    run_program("/data/data/org.span/bin/iptables -t nat -F PREROUTING") && 

#    run_program("/data/data/org.span/bin/iptables -t nat -F POSTROUTING") && 

#    run_program("/data/data/org.span/bin/iptables -t nat -F"), 

#  "Disabling NAT rules"); 

 

#  # 

#  # Bluetooth, kill pand and and dnsmasq processes 

#  # 

#  getcfg("adhoc.mode") == "bt" && ( 

#    run_program("/data/data/org.span/bin/pand -K"); 

#    sleep("1"); 

#    kill_process("pand"); 

#    file_unlink("/data/data/org.span/var/pand.pid"); 

#    kill_process("dnsmasq"); 

#    kill_pidfile("/data/data/org.span/var/fixroute.pid"); 

#    file_unlink("/data/data/org.span/var/fixroute.pid"); 

#  ); 

   

  # Wifi mode, bring interface down, kill dnsmasq/wpa_supplicant, remove module 

  getcfg("adhoc.mode") == "wifi" && ( 

    run_program("/data/data/org.span/bin/ifconfig " +  getcfg("wifi.interface") + " down");  

#    kill_process("wpa_supplicant"); 

#    kill_process("dnsmasq"); 

     

#  # place wifi back under framework control 

#  unload_wifi() && load_wifi(); 

 

#    module_loaded("bcm4329") && rmmod("bcm4329"); 

#    module_loaded("bcm4325") && rmmod("bcm4325"); 

#    module_loaded("wlan") && rmmod("wlan"); 

#    module_loaded("tiwlan_drv") && rmmod("tiwlan_drv"); 

#    module_loaded("tiap_drv") && rmmod("tiap_drv"); 

#    module_loaded("sdio") && rmmod("sdio"); 

    module_loaded("dhd") && rmmod("dhd"); 

#    module_loaded("wireless") && rmmod("wireless"); 

#    module_loaded("ar6000") && rmmod("ar6000"); 

  ); 

   

  log("Ad-hoc mode now stopped"); 

);   
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