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Abstract

While decision theoretic planning (DTP) offers ajr@otential benefits to elicit
purposeful behavior of the agent operating in ua@erenvironments, state-based
approaches to DTP are known to be computationathactable in large-scale domains.
DTGolog is a decision-theoretic extension of a degased high level programming
language Golog that completes a given partial Gplaggram using a form of directed
value iteration. DTGolog has been proposed to @tevsome of the computational
difficulties associated with DTP. The main advaetagf DTGolog are that a DTP
problem can be formulated using a logical repredent to avoid explicit state
enumeration, and the programmer can encode dorpatifie knowledge in terms of
high-level procedural templates to partially spgti€havior of an agent. These templates
constrain the search space to manageable sizeit®#sgse clear advantages, there are
few studies that investigate the applicability of @olog to very large-scale practical
domains. In this thesis, we conduct two studiesstFwe apply DTGolog to the well-
known case-study of the London Ambulance Servicaldmonstrate advantages and
potentials of DTGolog as a quantitative evaluatioal for designing decision making
agents. Second, we develop a software interfadealleavs to control the well-known
Sony's AIBO robotics platform using DTGolog. We shthat DTGolog can be used on
this platform with a minimal amount of software tamization. We run experiments to
test functionality of our interface. The main cdmtition of this thesis is demonstration of
applicability of DTGolog to two different large deadomains that are both practical and

interesting.
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1 Introduction

Decision theoretic planning offers great potenti@nefits in the fields of Al and
Robotics. Given the complete and accurate moddhefworld’s dynamics, decision
theoretic planning provides a decision making agetnly with the ability to figure out

a way to accomplish its goals but also with thditghio accomplish these goals in an
optimal way. In the ideal situation where decistbhaoretic planning can be used, many
difficult control and programming problems can leeluced to the task of representing
these problems in a fully observable Markov Decigkyocess (MDP) model, because a
decision theoretic DT planner would figure out afimaining details on its own.
Unfortunately, decision theoretic planning has gisvabeen a computationally
challenging task. Real-world and complex domairtsroinvolve hundreds of different
state features and hundreds, possibly thousandstiohs. Because the number of states
growth exponentially with the number of state feesu (Bellman’s *“curse of
dimensionality”), traditional state-based approacte planning, which require explicit
enumeration of states, are known to be intractslenost if not all these cases.

To cope with this problem, some advanced decidieoretic planning frameworks have
been proposed. Decision Theoretic Golog (DTGoleg)ne of such frameworks. With an
origin in the field of Knowledge Representation, ®3log avoids the computational
problems associated with traditional state-baseurogeh by representing the decision
theoretic planning problem using a logical représgon and avoiding explicit

enumeration of states. Also, it embraces the idgmuial programming by allowing the



agent programmer to encode domain-specific knoveeiigo expressive high-level
procedural templates that partially specify the awsdr of the agent and constrain its
search space to a manageable size. Given as irfpghdevel procedural template that
might contain non-deterministic choices betweeipast the DTGolog interpreter builds
and searches a fixed-depth look-ahead decisiorthiegas rooted at the current state and
contains all the possible actions specified by ithgut template, to produce a fully
specified program that is optimal with respectsht® set of possible programs specified
by the input template. Taking this approach (whltalled directed value iteration in
MDP literature) to decision theoretic planning, DAl& has a computational advantage
because computation is focused to just the staigsaetions that are reachable from the
current state. Also, because of the expressiveoiésied by the framework, DTGolog
programmers have a fine-grain control over the ele@f planning vs. programming that
can remain in a template because they have thigyabildecide what amount of available
domain-specific knowledge can be used. As a coresexp) optimality and tractability

can be finely traded for each other in this framewo

Given the above mentioned theoretical advantagepatentials offered by the DTGolog
framework, the degree of popularity that it hasngdi especially from outside of the
logic-based communities, is still limited. Thisdse, partially, to the fact that there have
been a limited number of real-world applicationswhich this framework has been
applied, and the fact that there are still a vemyjited number of real and interesting
robotics platforms on which DTGolog can be usechvatminimal amount of software
customization. Previously, DTGolog has been applieda realistic office delivery
problem with a mobile robot and also to a factorggessing domain [24]. It has also
been applied to control mobile robots playing rabgbccer [10;11], and to personalize
Web services [12]. To advocate the usefulness aradttipality of the DTGolog

! Because it is based on the language of first-dage, DTGolog has the expressiveness of thatuagg.



framework, this thesis aims to further this listbf Golog’s successful applications, and

has two main objectives:

(1)

(@)

To apply DTGolog to a very large scale domain tondestrate its advantages
and potentials. More specifically, we want to apilg framework of DTGolog
to the domain of the London Ambulance Service tmaestrate its advantages
and potentials as a quantitative tool for evalgatand comparing different
designs of decision making agents, one of the resséntial tasks in software
engineering. The London Ambulance Service (LAS)bpem comes from an
investigation into a failed attempt to computerthe LAS and has become a
well-know case-study in the field of software argbuirement engineering.
Because of its complexity and challenging chargsties, this case study has
become almost a benchmark domain for requiremegihearing methodologies,
and several researchers have used this case studgernonstrate their
frameworks. Most of the proposed frameworks, howevely on qualitative
methods and lack the capability to provide a quainte evaluation for different
designs. The objective of this work is to demonstaTGolog’'s advantages and

capabilities as a quantitative designs evaluatioh t

To create a complete DTGolog-based high-level dognrobotics platform that
can be used for both research and education pwnsdeveloping a software
interface that would allow DTGolog to be used ar@ and interesting robotics
platform. More specifically, we want to developdtware interface that would
bridges DTGolog with the Tekkotsu framework, a weite development
framework developed and maintained at CarnegiedvielUniversity for the
commercially available Sony’s Aibo robot, that wadubllows (DT)Golog
programs to control the Sony ERS7 robot. Intenaefleé used as a high-level
agent programming language, DTGolog provides thenagrogrammer with
everything he needs to (partially) specify the agenigh-level behavior. Most
robot control tasks however, require the programtoespecify not only the



high-level behavior but also the lower-level bebasi such as perception,
kinematics, etc... These low-level control taskes asually very time consuming
and, for researchers who just want to focus ondiasion making aspect of
robotics, can be a big, sometime prohibitive, bard€éo foster the use of
DTGolog as a high-level robot programming tool, saeéburdens need to be
minimized. The objective of this work is to createcomplete DTGolog-based
platform that can be used by researchers who watetst their ideas about high-
level decision making on a real robotics platformhaut the usual overhead of

manually integrating or programming all the lowev4! building blocks.

The primary research methodology used in this shissexperimental methods, and the

verification method is repeated test runs of prowgra

The thesis is organized as follows. Chapter 2 veviall the background materials that
are needed for the discussions that follow in #terlparts of the thesis. In this chapter,
the framework of Markov Decision Process is firdstaduced as the theoretical basis for
probabilistic optimal decision making and decisitimeoretic planning. Then, the
language of Situation Calculus and high-level paogming languages, Golog and
DTGolog, are introduced as logic-based planning @edsion theoretic planning tools.
Chapter 3 reports the work we did to demonstrateGaldg's practicality and
applicability on large-scale domains. In this cleapthe London Ambulance Service’s
dispatching problem is first described and motigatEhen, a detail formulation of the
problem is given, followed by a complete descriptiof the domain’s logical
axiomatization. Subsequently, we discuss altereadigpatching strategies and provide
simulation results. Chapter 4 describes the soéwaerface that we developed, together
with a small but real and illustrative robotics hpgtion that demonstrates how the
interface can be used, as well as a new and cavemway of doing hierarchical
reasoning in the online version of DTGolog. In tlisapter, the Sony AIBO robot,
together with its related well-known research prtge are first introduced. Some
motivations for a software interface between DT@oland AIBO’s Tekkotsu



development framework is also given. Then, the itecture, operation, and API of the
interface are described. Finally, a complete dpson and axiomatization of the

demonstration problem is given. Chapter 5 discusse® future research directions.



2 Background

2.1 Markov Decision Process

Markov Decision Process (MDP) is a mathematicameevork that can be used for
modeling decision-making in situations where outesnare partly random and partly

under the control of the decision maker.

In this framework, the decision making agent, @t jagent from now on, is assumed to
interact with its environment by repeatedly 1) obsg the state of its environment, 2)
deciding, based on this observation and its knogdeaf the environment, what action is
most likely to help it to achieve its objective {ie defined later), and 3) performing that

action. Figure 1 shows this interaction. The squarein the figure represents a decision
making agent, say a robot, that repeatedly takespas the current stateof the world
and generates as output an actigrwhich will cause the world to 1) change its state

according to some known transition probability fise and 2) generate a “reward”

signal that can be observed by the robot.

~— Agent —

Figure 1 Agent-Environment I nteraction



More formallly, letting S = {s;} denotes the discrete and finite state space ef th
environment,A={a,} denotes the discreet and finite set of all théomstthat are

available to the agenB: SxA xS +— [0,1] denotes the transition probability functiohy,

SxAxS +— R denotes the reward function, anddenotes the immediate reward the

agent receives at timg¢ H denotes the MDP’s horizon, or the maximum number o

actions the agent is allowed to perform, we have:

A policy is a function that maps each state-action pair a) to a real number

representing the probability of selectingin s: 7: SxA + [0,1]. In the case of a

deterministic policy, where this probability is @egywhere except for one action, a

policy can be though of as a mapping from statacton:7: S = A. In the discussion

that follows, it will be clear from the context wther « is denoting a deterministic or a

stochastic policy.

The discounted return that the agent can expect to receive, over itsiteflifetime, is:

o0
Ry =11 + g + 7m0+ =) 9
k=0

where~ is a constant between 0 and 1, calleddfseount factor, andr,,,, r,,, 7,5, ... IS

the sequence of immediate returns that the ageeived after time step

Corresponding to each policy, there is an associated/ue function VTS >R

which assigns to each staten S a real number representing the expected valubeof t



discounted total reward®, that the robot will receive, if it starts fromand followsn

(that is, always selects the actiofs) in every state € S) thereafter:

VT(s) = E[R, | 5, = ]
= Zw(s, a)z Pii[Rggr + V7 (s")]

where P, is a shorthand foP(s, a, s’) and R is a shorthand foR (s, a, s’). Similarly,
there is an associatedtion-value function Q"5 xA — R, which assigns to each

state-action paiys, a) a real number representing the expected valubeotliscounted
total rewardR, that the robot would receive, if it starts frasnperforms actiors, and

then followsr thereafter:

Q" (s,a) = E[R, | 8y = s, a; = a]
= Y Pu[RL + ) w(s'a") Q7(s',a)]

A policy that maximizes the value function is cdll@n optimal policy, and its

corresponding value function is called the optineadle function, which is unique and is
shared by all the optimal policies, if more thare axists. The following equations,
called theBellman optimality equations, characterize the optimal value of a state (or

state-action pair) in terms of the optimal valué#t®possible successor states (or state-

action pair)



V() = mgwizfi‘é'[%v ¥ W*(S')]}

Q' (s,a) = D PulRy + ymaz{Q (s',a")}]

and can be used to determine the optimal valudifumc

One of the most well-known and fundamental method finding the optimal value
function, as well as an associated optimal polisya dynamic programming algorithm
called Policy Iteration. This algorithm alternabegtween two phases: a Policy Evaluation
phase, in which it updates the value function aased with the current policy, and a
Policy Improvement phase, in which it derives a rewl better policy from the current
value function. During the policy evaluation phaBelicy Iteration algorithm sweeps
through the state space and uses Bellman’s equédiampdate each state’s current

estimate base on the old estimates of its success®ais:

Vi(s) < Zw(s, Q)ZP;SL'[RSS' + Wiz1(s")]

a

where V,(s) is the new estimated value of fgrandV,_,(s’) is the old estimated value for

the successos’ of s. The sweeping process is repeated until the cuesiimates of all

states converge to a predefined acceptable erwging@the policy improvement phase,

the algorithm uses the current value function tdaie the policy:
7 (s) = argmax{ZPsg.[Rgs. + YV (s ')]}
a g!

One important special case of the Policy Iteratagorithm is another dynamic
programming algorithm called Value Iteration. Iresteof doing policy evaluation until
the estimated values of all states converge, Viration performs only one sweep per



policy evaluation phase. Bellman has shown in Bis71book that if all states are updated
infinitely often, this sequence of estimated staikies for all states will converge to the

real optimal value function.

In the case of finite horizons, the two Bellman i@wiity Equations above can be

rewritten as:

Vi(s) = max{ZRﬁv[Rﬁs' N Wi_l(s')]}

Qu(s.0) = Y PU[Ri + ymaz{Q,-1(s',a")}]

Using these equations, one can compute in sequkeaagtimal state value functions up

to the horizonH of interest. To compute this, Value Iteration aitjon would takeH
iterations. At each iteration, it doed||computations of |S|S| matrix times |S|-vector.

Thus, in total it requires O(M|A|x|Sf) operations. Because the number of states grows

exponentially with the number of features usedefresent the states, and because value
iteration works on the set of all policies, whia@mdoe very large, value iteration becomes

impractical once the number of features becomeelar

To address this problem, several techniques anchefrerks that use compact
representations [3;4;19] have been proposed. DeciSiheoretic Golog (DTGolog),
described in the next few sections, is one of sadnamework. In contrast to value
iteration, DTGolog avoids explicit enumeration tdtes and focuses on a much smaller

subset of policies: those policies that satisfysti@ints imposed by a Golog program.
2.2 Situation Calculus

The language of the situation calculus (SC) iseeqad-order) logical language that was
first introduced by John McCarthy [15] as a vehiéte axiomatizing dynamically

10



changing worlds, and has been considerably exteimdie: 1990s to allow the modeling

of, and reasoning about, concurrency, continuaus,tnon-determinism, etc.

There are three fundamental concepts in the SQuégey[18]:actions situations and
fluents each plays a different role. This section revid¢iese concepts and the different
classes of SC axioms that are used in specifyinmahyc worlds. Emphasis in this

section is placed on the decision theoretic extensf the situation calculus.
2.2.1 Actions
Actions are represented in the framework of SCeloy$ (function symbols or constants).

In the temporal SC considered here, all action selnawve at least one argument and this

argument (it is always the last argument) is threetivhen action occurs.

As an example, consider a world in which a robat faze fair coins that it can toss, one
by one. Once all the coins have been tossed, thet an pick them up, and the trial

ends. To represent these actions, one would use:

toss(c, t). Toss the coirr at timet
pickup(t): Pickup all the coins at time

It can be noted that these two actions are differennature. Tossing a coin is a
stochastic, or nondeterministic, action becaudeag two possible different outcomes,
either heads or tails. Picking the coins up, ondtieer hand, is a deterministic action,

because it has only one outcome, all coins picked u

To specify an action as deterministic, we use tieelipate

deterministic(a, s)

wherea is the actiong is a situation, to be described later, in whicis performed. For

example, to express the fact thatkup () is a deterministic agent action, we would write:

11



deterministic(pickup(t), s)

To specify an action as stochastic, that is, it m@se than one possible outcome, the

following axiom is used:
nondetAction(a, outcomes, s)
wherea is the actionputcomes is the list of possible outcomes, which are thawghas

nature’s actions (as opposed to agent action),sasdhe situation in which is to be

performed. For example, the stochastic natureof() can be expressed as:

notdetActions(toss(c, t), [tossHead(c, t), tossTail(c,t)], s)

which states that if the agent actiesss() is performed in the situatios the outcome

will be one oftossHead() and tossTail(), which are considered to be nature’s actions

that happen beyond the control of the agent.

To specify the probability associated with eachconte, or nature action, the following

axiom is used:

prob(n, p, s)

wheren is the nature actiom is the probability that nature actienhappens in situation
s. For example, assumming that all the coins are dains, the probabilities of the

outcomes ofoss() can be expressed as follows:

prob(tossHead(c, t), 0.5, s)

12



prob(tossTail(c, t), 0.5, s)

which state that the chance of coming up headilost@.5 in all situtations.
2.2.2 Situation

A situation represents a possible history of theldy@and is a first order term constructed

from a finite sequence of actions, either an agedgterministic actions or nature’s

actions, using a special function symbel-,-). For example, the situation

do(tossHead(3, 5), do(tossTail(1, 4), do(tossTail(2, 1), S,)))

where S, is a special constant symbol used to represeninitial situation (when the

world is thought to begin), is a situation denotthg history resulting after the agent has
tried to toss the second, first, and third cointhat order, and it happened that the third

coin turned up head, while the other two turnedailp
2.2.3 Fluents

Relations and functions in a dynamic world typigathange their values from one
situation to the next. Such relations and functiares called fluents, and are represented
by relation and function symbols that take a situaterm as their last argument. For

example, in the coin example above, one would hawe relational fluents called

head(c, s) andtail(c, s) to denote whether the coinis turning its head or tail up in the
situation s, and a relational fluent calletssed(c, s) to denote whether the agent has

previously tossed the coinin the situatiors.

13



2.2.4 Action Theory

Once all the agent actions, and their outcomesdture’s actions) have been specified,

the following set of axioms will be needed in ortledo logical reasoning

2.2.4.1 Precondition Axioms

For each deterministic agent action and each riatastion, one precondition axiom is
needed. A precondition axiom of an action is adabstatement of the form

Poss(a(z), s) = (s)

where Poss is a special predicate symbol denoting whethés possible for the action
a(z ) to be executed in the situatien(a(z ) is either an agent’'s deterministic action or
nature’s actions), and is a SC uniform formula (that is, a formula thaed not contain

the predicate constanf2nss and the termio, mentions only one situation variablend

it does not include quantifiers over this situatiariable). For example, to express the

fact that it is always possible for a coin to tupmhead, one would write

Poss(tossHead(c, t), s) = True

Or, to express that it is possible to pick up ladl toins if and only if the robot has tossed

all of them:
Poss(pickup(t), s) = tossed(1, s)\tossed (2, s)/ ... Ntossed(D,s)
2.2.4.2 Successor State Axioms and Initial Situation

For each fluent defined in the domain, one succestsbe axiom is needed. A successor

state axiom of a fluent completely specifies how talue of that fluent would change

when an actiom is performed, and has the following form

14



F(z, do(a,s)) = I (%, a,s) V[F(z,s) N N2, a,s)]

where F' is the fluent symbol/7, is a uniform formula representing the positiveseff
condition for F (what makes it true) an@, is a uniform formula representing the
negative effect condition fof' (what makes it false). For example, to specify Hboe

fluentshead(c, s) and tossed, s) would change, one would write:

head(c, do(a,s)) = a = tossHead(c, t) V = a = tossTail(c, t) N head(c, s)

toss(c, do(a,s)) = a = tossHead(c, t) V = a = putDown(z) A holding(x, s)

2.2.4.3 Unique Naming Axioms

In addition to the precondition and successor séxiems described above, an action
theory also includes a set of sentences that $dlyeahctions are pair wise unequal (and
all constants mentioned in the theory are not etpahake sure that they have distinct
interpretations).

2.2.5 Optimization Theory

A decision-theoretic optimization theory contaixsoas that specify the reward function
and the actual outcome (of stochastic agent aqtiaisch can be sensed. Axioms
specifying probabilities of outcomes correspondiagransition probabilities in MDP,
are usually also included in the optimization tlyeor

2.25.1 Axiomsfor Reward Function
Reward function is specified by an axiom of thenfor

def
reward(r, do(a,s)) = ¢,(s) N r=r, V... Vé.(s) N r=r,
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which states that if the agents gets from the 8dna into the situationio(a, s), it will

receive a reward equals to one of the, depending on what was truedn

2.2.5.2 Outcome probabilities axioms

For each possible outcome (i.e., nature actiord stbchastic agent’s action, there is one

axiom of the form
def
prob(n, p, s) = ¢,(s) N p=p, V ... V@,(s) N p=p,

which states that the probabilipyof nature actiom happening irs is equals to one of the

p,, depending on what was truedn

2.2.5.3 Outcome sensing axioms

In order to be able to determine which nature actims actually occurred after
performing a stochastic action, the agent neetle farovided with an axiom of the form:

def
senseCond(n, ¢) = ¢=p, N n=n, V... V op=¢, N n=n,

which states that nature action) has actually occurred i®, (which is a situation

suppressed logical expressions) evaluates to tgaénst the situation resulted from

performing a stochastic action.
2.3 Golog and DTGolog

Planning in Computer Science has always been vesiable but difficult to achieve. In
agent programming in particular, decision theoretald provide agents with the ability
to figure out, given the complete and accurate rhadethe world’s dynamics, the

optimal behavior, i.e., the best sequence of astibimfortunately, complex domains are
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often characterized by hundreds of different statdures (or fluents in the context of

SC), and may involve hundreds, or possibly thousaricgactions, and planning is known

to be computationally intractable in most if ndtthbse cases.

Golog, and its decision theoretic extension, DT@plin particular, are situation

calculus-based planning, or decision theoreticrutanin the case of DTGolog, tools that

were designed to be used as high-level agent progiag languages in which optimality

is given up for tractability.

2.3.1 Control Structures

The standard control structures that can be fonr@dlog and DTGolog are summarized

below.

Table 1 Golog and DTGolog control structures

Syntax Meaning
Program expressiort; must be executed before progrs
6,56,
expressiord,
7 Test the truth value of logical expressignin the current
situation
5,16 Either program expressidn or 6,, which ever is better, shou
1 2

be executed

d
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Program expressiofi, of which z is an argument, should |

m(x:7)6(x) executed with the best argument from the finiters&tibstituted
for z
(r 2)8(z) Program expressiord should be executed with any va

argument.

if ¢ then 0, else b,

Program expressiofy, should be executed i is true in the

current situation, otherwisé;

e

id

while ¢ do

Program expressionshould be done as long @ss true

proc(p, 6)

Program expressiancan be executed by calling procedpre

local(6,);6

First, compute the optimal policy, corresponding to the su
programé,, then compute the optimal polieycorresponding tc

the programr ;6

<

limit(5,);:6

Without looking into 4, compute the optimal policyr,
corresponding to the subprograin execute it to completior

and then compute and execute the pati@prresponding té.
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2.3.2 Evaluation Semantics

This section describes the semantics of the DTGobrgstructs (i.e., program operators)

listed above. Everywhere in this section we havaiimd only finite horizon MDPS.

First, a policy in the context of Golog is a detemstic (i.e., doesn’t contain any non-

deterministic choice operator) program that cossistly of agent actionsenseEffect()

procedures, and conditionals.

The evaluation semantics of DTGolog programs isneef by macro-expansion, using a

special relationBestDo. BestDo(6, s, h, m, v, p) iS an abbreviation for a situation
calculus formula whose intuitive meaning is thatf Dne starts from the situation then

w is the best (optimal) deterministicsteps policy among the possiblesteps policy
specified by the “program templaté; which is a composition of the constructs listed
above, 2y is the associated value function for the policgnd 3)p is the probability of

a successful execution ef

To determine this policy from 6, one proves, using the situation calculus axicrasitn

of the background domaiR, the following entailment

2D F Jr,u,p. BestDo(6, Sy, h, w, v, p) (*)

where BestDo() is defined in [24] inductively on the structureitsf first arguments, as

follows?:

2 All axioms below are taken verbatim from [24] tedp our presentation self-contained.
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Zero horizon

def

BestDo(6, s, 0, w, v, p) = m =nil A v = reward(s) N p = 1

Give up on the program if the horizon reaches 0. Note that we define shecess

probability of the policyr = nil as 1. In other words, we do not care what happéesh
reaches 0: as far as decision making is concethed;omputation of an optimal policy

was successfully completed.

Null program

def

BestDo(nil, s, h, 7, v, p) = ®™ =nil A v =reward(s) N\ p =1

nil takes the agent into an absorbing state wheragéet receives zero reward and
remains idle until horizon decreases to 0

First program action isdeter ministic
def
BestDo(a;6, s, h, w, v, p) = h > 0 A
—Poss(a, s) N m=stop N v=reward(s) N p=0 V
Poss(a, s) A In’,v’,p’ BestDo(6, do(a,s), h—1, 7’, v’, p’) A

7w = (a;7’) N v=reward(s)+v’ A p=p’

A program that begins with a deterministic agetibad(if it is possible in situation)

has its optimal policy defined asollowed by the optimal policior the remainder of the
program in situatiorlo(a,s). Its value is given by the expected value of duistinuation
plus the reward i (action cost fow can be included without difficulty), while its
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success probability is given by the success prdibabf its continuation. Ifa is not
possible at, the policy is simply thatopaction, the success probability is zero, and the
value is simply the reward associated with situatio

First program action is stochastic

Let a be a stochastic action for which nature selects afnthe actions irhoice(a) =
{n, n, ..., n}, then

def

BestDo(a;6, s, h, m, v, p) = h > 0 A
Ir’v’,p’ BestDoAuzx(choice(a), a, 6, s, h-1, 7, v’, p’) A
m = (a;senseEffect(a)) N v=reward(s)+v’ N p=p’

where:

def

BestDoAux({n,}, a, 6, s, h, m, v, p) =
= Poss(n,, s) N senseCond(ny, ¢,) N = (¢,)%;stop N v=0 A p=0V
Poss(n,, s) N senseCond(n,, ¢;) /N
Ir’v’, p’ BestDo(6, do(n,, s), h, ©’, v’, p’) A

m = (¢,) %1’ N v=v"prob(n,, a, s) N p=p’-prob(n,, a, s)

def
BestDoAux({n,, n, ..., .}, a, 6, s, h, m, v, p) =

= Poss(n, s) N BestDoAux({n,, ..., n,}, a, 6, s, h, w, v, p) V

Poss(n,, s) N senseCond(n,, ¢,) /
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Ir’v’, p’ BestDo(6, do(n,, s), h, ©’, v’, p’) A

1 1 1 I I I
I p" ({ny, ..., i}, a, 6, 8, h, 7', 0", p") A

m = if ¢, then 7' else 7' /

v=v’-prob(n,, a, s) N p=p’prob(n,, a, s)+p"

Intuitively, the policyr computed byBestDo() says that the robot should first perform
action a, at which point nature will select one of theabove to execute, then the robot
should sense the outcome of action using the domain specific procedure
senseEffect(a), which includes one or a sequence of sense adti@svhen performed
will tell the robot whichn, nature actually did perform, then it should exedhte policy

delivered byBestDoAux(), which has the form of a conditional

if ¢, then m, else if ¢, then w, --- else if ¢, then w, else Stop

whereoy is the sense condition for nature’s actign meaning that evaluating that is

true is necessary and sufficient for the robotdoatude that nature actually performed

actionn,, among the choices available to her by virtuehefrbbot having done stochastic
actiona, and, is the optimal policy corresponding to the subpaogs if it starts from
the situationdo(n,, s).

First program action isatest

def

BestDo((¢)?;6, s, h, m, v, p) = h > 0 A
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o[s] A BestDo(6, s, h, w, v, p) V

=¢[s] A m=Stop N p=0 N v=reward(s)

The optimal policy of a program that begins wittest action,¢)¢;6, is defined to be the
optimal policy of the sub-program after the testicaxg 6, if the test expressio
evaluates to true in the current situatioi®therwise, it is defined to be the special action
Stop.

First program action isthe nondeter ministic choice of two programs

def

BestDo(6,|6,;6, s, h, 7, v, p) = h > 0A

Ir’w’, p’ BestDo(6,;6, s, h, w’, v’, p’) N

Ir’ ", p”’ BestDo (6,6, s, h, ", v, p”’) A

((p777,0”)—<(p77v7) /\ 71-:7-‘-771):1}77 p:p7 \/

(p7,'l)7)_<(p”,'l)”) /\ 7.‘_:7.‘_77;,1):,0777 p:pn)

Given the choice between two subprogramandd,, the optimal policy is determined by

that subprogram with optimal execution. Note thlaeré is some subtlety in the
interpretation of a DTGolog program: on the onechame wish the interpreter to choose
a course of action with maximal expected valueth@nother, it should follow the advice

provided by the program. Because certain choicesleza to abnormal termination - the

stop action corresponding to an incomplete executiorthef program — with varying

probabilities, the success probability associatétl & policy can be loosely viewed as
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the degree to which the interpreter adhered toptbgram. The predicat€ compares
pairs of the form(v, p), wherep is a success probability ands an expected value, as
follows:
def
(v,0,) < (U, p3) = v, S VA (P #FONDP,F OV P, =0Ap,=10)V
p,=0Ap,#0
Nondeter ministic finite choice of action arguments

If the program begins witlir (z : 7)5) ; ~, the finite nondeterministic choice followed
sequentially by a sub-program the finite set- = {¢,, ¢,, ... ,¢,}, and the choice binds
all free occurrences afin 6 to one of these elements, then:

def

BestDo((m(x : 1) 61) ; 7, s, hy m, v, p) = h >0 A

BestDo(([ | 8L ... 8L )7, s b, 7, v, p).

As can be seen, the constru¢t(z : 7)5) serves as an abbreviation for the
nondeterministic programd(; |9, ...0[; ), where d|; means substitution of for all
free occurrences af in §. Intuitively, this construct says that the prograrpressiorb,

of which z is an argument, should be executed with the argumec 7 that would yield

the highest value. To do this, the DTGolog intetgmreompares the values of different

argumentsc, by building and searching a decision tree thatosted at the current

situation s, and has one branch for each Please refer to section 2.3.3 for a more

detailed description of the procedural interpretanf Golog programs.
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Nondeter ministic choice of arguments

def

BestDo((m z)6(x);y, h, m, v, p) = h > 0 A
Fx BestDo(6(x);y, s, h, m, v, p)

This is a non-decision-theoretic version of nondeteistic choice: pick an argument and
compute an optimal policy given this argument. Véedhthis operator because it will be
convenient to choose values of variables that fgatiertain conditions, to choose
moments of time and values returned from sensarte that in Golog, this operator is an
operator for choosing one of the alternatives, iutDTGolog it is used only for

programming purposes, and not for decision making.

Conditional
def
BestDo(if ¢ then 6, else 6,; 6, s, h, w, v, p) = h > 0 A
¢[s] N BestDo(6,, s, h, w, v, p) V

=¢[s] A BestDo(b,, s, h, w, v, p)
Let the program start with a condition&l ¢ then 6, else 6, If the test expression

evaluates to true i, then the optimal policy must be computed usihgn-branch,

otherwise, the optimal policy must be computedoielhg else-branch.

First action isa while-loop or isa procedure

The specifications of these constructs requirers@coder logic. Please refers to [24] for

more details.
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2.3.2.1 Incremental DTGolog | nterpreter

For the purpose of introducing an online interpretenich provides the agent with the
ability to execute actions in the real world, désed in section 2.3.4 below, an

incremental version [23] of the DTGolog interpretdescribed above has been

introduced. This interpreter is based on the speelation IncrBestDo(6, s, h, ~y, m, v,
p), and provides the same functionality as the imetgy based onBestDo(). It
computes, as before, an optimal polcyor the Golog program starting from situation
s and horizom, but in addition also computes from the progi@its sub-programy that

remains to be executed after actually performirgfitst action from the policy.

In this interpreter, two additional programming stracts are defined:

First action isthelocal() search control construct

def

IncrBestDo(local($,);6, s, h, v, m, v, p) = h > 0 A

(3717 USTIR YT pz) IncheStDO((Sz;Nil; s, h, 7y, ™, vy, pz) 4

IncrBestDo(m,;0, s, h, v, 7, v, p)

Instead of doing a full look-ahead to the end &# fhrogram, the interpreter begins

computing an optimal policy, corresponding to a smaller local sub-space of the s

space. Then, this policy can be expanded to a rigogetion of the state space by

computing a policyr optimal with respect to the whole program.

First action isthe limit() search control construct
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def

IncrBestDo(limit(6,);6, s, h, v, m, v, p) = h > 0 A
(3v’) IncrBestDo(6,;Nil, s, h, v’, w, v, p) /N

(v’ # Nil A~y = (limit(7); 6) Vv = Nil Ay =6)

Without looking intoé, the incremental interpreter simply computes tbkcp 7 that is
optimal with respect to the subprografi and sets the remaining prograim to

(limit(~’);6), where~’ is the sub-program that remain after the firsioacin « is
executed. This construct allows the programmer xpress his domain-specific
procedural knowledge to save computational effdts.can writelimit(6,);6 whenever
he knows that looking inté has no, or very little, effects on the determioratof the

initial part of the optimal policy.
2.3.3 Procedural Interpretation

It is instructive to note that procedurally, DTGglmterpreter does decision theoretic
planning by building and searching a fixed-deptbklahead tree that is rooted at the

current situation. Figure 2 below shows an exangblsuch tree. The root of the tree

represents the current situatianThe dark nodes below it represent the agentrectioat

are prescribed by the Golog program fpand the large nodes below that represent the

possible next situations, and so on.

27



Figure 2 A fixed depth look-ahead tree

More specifically, the DTGolog interpreter computhe values of all the action nodes
below the root node, by backing up the value osaillation nodes below the action node
in that look-ahead tree. Once the computation leesldone it will simply select the
action that has the highest value. Note that ttdg of computing is known as directed
value iteration in the MDP world, because, insteAdomputing the value of each and
every state of the state space, computation isséxtto just the states and actions that are
reachable from the current state. Also, it sho@ahbted that the look-ahead computation
performed by the Golog interpreters above resembiesome ways that of the

deliberation process of the Real-time Dynamic Paogning algorithm discussed in [2].
2.3.4 On-line DTGolog Interpreter

The DTGolog interpreter described above, which wid wvefer to as the off-line

interpreter from now on, finds, by proving the dént@nt (*) on page 19, a policy that

is optimal among set of possible policies specibigdhe Golog program supplied by the

agent programmer. To give the agent an abilityXecate the computed policy, an
online version of DTGolog interpreter [23] was oduced. This interpreteopline(d, s,

h, w, v), 1) calls the off-line interpretefncrBestDo(), to compute the optimal policy
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off-line, 2) commits (i.e., executes) the firstiantin «, and 3) repeats the process with

the remaining parts of the program.

By giving the agent the ability to execute actiomsd sense the actual next situation, the

online interpreter, in combination with thénit() search control construct, offers an
important computational advantage: Whenever it entas (limit(6,);6), instead of
having to search the large decision tree corregpgnid the whole program,;s, the
interpreter can: (1) search the much smaller togeesponding to the subprogramonly
(which is the sub-tree rooted at the same situa®the tree corresponding g, but
extends only to the scope of theémit() operator), to find a partial policyr,
corresponding t@,, (2) execute that partial policy and observe #multing situatiors’,
and then (3) search the tree rootedsathat corresponds t6 to find the remaining
optimal policy=. In other words, the use @#fnit() in the online DTGolog interpreter

helps cut down the search significantly, especiallyen the programd is highly

nondeterministic.
2.4 Alternatives to DTGolog

The idea of using domain specific knowledge to teralty abstracting the action space
allowed by Golog and DTGolog, using their proceduteas also been explored in the
Options approach, described in [28]. In this apphogrimitive agent actions can be
sequentially composed to create new temporallyratistd actions, calledptions or
macro actions. This technique allows the agentaaekcision making in a smaller and
more compact (abstracted) action space. In congramgth Golog and DTGolog, the

Options approach is less expressive because, thireisequential composition, it doesn’t
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allow complex action compositions such as cond#ipfoop, recursive calls and non-

deterministic choices.

The idea of allowing the agent designer (or progn&m) to encode domain-specific
knowledge into a partial program that can be ueduitit the set of policies the agent has
to consider has also been explored in the framewbHierarchies of Abstract Machines
(HAMs), Programmable Hierarchic Abstract Machin®s+HAMs) [16], and the ALISP

programming language [1].

In the HAMs and PHAMs framework, a partial policyspecified using a hierarchy of
abstract finite state machines, which takes astitipustate of the MDP and outputs the
action to be performed by the agents, and can itostame special nondeterministic
choice states. The choice states non-determinligtisalect a next machine state from
predefined finite sets of available choices, ardvalthe agent to switch between the
policies prescribed by the partial program. In cangon to DTGolog, the HAM

approach is less convenient in terms of specifyivg partial policy. In DTGolog, this

partial policy is specified using standard highdeprogramming constructs, while in
HAM this partial policy is specified by designingsdract finite state machines, which

can be a non-trivial task sometimes.

In the ALISP framework, the standard Lisp languageaugmented with some new
nondeterministic programming constructs to createwa language that allows the agent
designer to write partial programs, which, like Gpbrograms and HAMs, limit the set
of policies that the agent needs to consider. Imparison to DTGolog, the ALISP
framework has two major differences. The first elifince is that in ALISP, the agent
designer is expected to manually abstract the saaee. That is, he has to manually
decide how states can be grouped together intopgrgar abstract states) without
changing the original MDP. Golog, on the other haadased on situations and fluents
instead of states, and the need for state absmaectitually does not exists. The second
difference is that domain specific characterissigsh as action’s preconditions have to be
directly encoded into the partial programs, whioh task-dependent by nature. In Golog,
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environment characteristics are represented incavladge base that is independent of
any control procedure, and partial programs neederioode only the procedural
knowledge associated with the tasks. Finally, ALI$P a convenient tool for
Reinforcement Learning (it is based on Tom Dietteés approach to hierarchical
reinforcement learning[9]), and cannot take advgataf an MDP model if it is provided
explicitly. However, DTGolog cannot function if alfy observable MDP is not given in
advance, but ALISP can learn from interaction vitie environment. Consequently, it
would be interesting to consider a framework tla&es advantages of both ALISP and
DTGolog.

31



3 A DTGolog-based
Resource Allocator for
the London Ambulance

Service

3.1 Introduction and Motivation

Although there has been a significant amount ofkwawne in Al related to planning
under uncertainty, especially for problems in whelcertain high level goal must be
satisfied with some given probability, there ai# stany practical domains in which the
task of designing a decision making agent that ngustrantee goal satisfaction with a
sufficiently high probability is extremely difficyldue to the large number of the state
features and actions with uncertain effects. Ong wwaase the computational burden of
designing such an agent is to carefully refine ghen high level goal into subgoals,
along with the associated subtasks that would sthigse subgoals, and finally find the
primitive actions that must be executed to solaeséhsubtasks. The reason is that this
gradual process will help the agent designer imtiiegng where the search between
alternatives must concentrate. That is, by goimgubh this process, the designer will be
able to identify useful sequences, loops, conditi@m recursive structures of actions that
together provide important constraints on the $qiaticies that need to be considered.

Once the focus point(s) of the search has beentifiéeln and expressed as a
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nondeterministic choice between alternatives, thigiral decision making problem

reduces to the task of evaluating different desafren agent.

In this chapter, we demonstrate the applicabilitthe DTGolog framework to real large-
scale problems by applying it to a well-known, rearld case study: The London
Ambulance Service’'s Computer Aided Dispatch sys{emS-CAD) [7;13]. This case

study comes from an investigation into a failedwafe development project and, while
largely unknown to the Al community, has receivedignificant attention in software
engineering literature. It is an excellent exampiea problem with probabilistic goals,
and we suggest this case study as a grand chalfengesearch on planning under

uncertainty.

The main contributions of this chapter are theokwlhg. We developed an extensive
logical formalization of a non-trivial domain, armémonstrated that DTGolog is well

suited to the task of evaluation of alternativeigies of a decision making agent.
3.2 The London Ambulance Service (LAS)

As described in [7], the main function of the LASto provide emergency respond to
“999” emergency calls for the city of London. legilities include a Central Ambulance
Control (CAC) office, where all 999 calls are rews, and several ambulance stations,
located in three (administratively divided) LAS i@gs: North West (NW), North East
(NE) and South (S). Generally speaking, the opmmatif LAS can be summarized as
follows. When an 999 emergency phone call requgstim ambulance service arrives at
the CAC, it will be answered by a Call Taker (CThe CT will write down all necessary
details about the request on a paper form and ipassto the Incident Reviewer (IR),
whose job is to review all the forms passed to bynall the CTs for any duplicated
request. After reviewing a form, depending on theation of the request, the IR will
forward it to one of the three Resource Allocati@®#), whose job is to decide which of
the available ambulances in his LAS region showddsént to the requested locations.
Once the RA has made his decision, he will notiy Dispatcher (DSP), who will then
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contact the appropriate ambulance crew and giwee fhobilization instruction. Once
mobilized, the ambulance will travel as quicklymsssible to the incident. Upon arrival,
the ambulance’s crew would notify the DSP (e.g.,pogssing buttons on the mobile
terminal inside the ambulance). It then performssib@ diagnosis on the patient and
decides whether or not the patient needs to bantikéhe hospital. In some cases, this is
not necessary and the ambulance will simply go liacks base, after reporting to the
DSP that it has became available for a new assighrm@herwise, it will quickly carry
the patient to a hospital and, after handing thiepaover to the hospital’s staff, the crew
will report its availability, and start to go batikits base. The following diagram shows

the possible scenarios of a service trip.

- Arrive at Perform on-site
Mobilized 2 N i
Incident Diagnosis

Take Patient to
Hospital

Arrive at base
station and Report
Ready again at the

base

Report Ready
and
start going back
to base station

Figure 3 Possible scenarios of an emergency service trip

One of the most important objectives of LAS is teatergency requests are to be served
within 14 minutes from the time the call is recelvélore specifically, call taking and
mobilization decision making should take less tBaminutes, and the travel time to the
incident should be, for 95% of the time, less thdnminutes and, for 50% of the time,

less than 8 minutes.

Designing an automated system, or an automatednRaaiticular, that can achieve this
objective, one can imagine, is a complex task. @ ¢his, the designer would have to face

several important questions such as: what kindnofidance selection criteria is to be
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used; the fact that ambulances tend to travel ralorely outside their home regions, or
the fact that ambulance crews who are working onseoutive assignments without
proper resting work more slowly and less effectisapuld be considered; how the
communication errors that could lead to failed nipaitions, or inaccurate ambulance
location and status should be handled. For thisoreaseveral researchers in Software
Engineering have used LAS as a case study in therks. Most notable are the
following two proposals. First, in [31], the authapplied the Goal-Oriented Requirement
Language (GRL) and i* modeling framework to modat aanalyze the feasibility of
LAS, and concluded that the framework was capablshowing that both the totally
manual system and the fully automated system hdfreutties in accomplishing LAS’s
objectives. Second, in [14], LAS is used as a caisdy through which new partial goal
specification and evaluation techniques, in whiblective functions are specified using

probabilistic extensions of temporal logic, arasitrated.

In this work, we use LAS as a case study to shawttie framework of DTGolog is not
only expressive enough to model all the above roeatl aspects but also versatile
enough to provide a quantitative evaluation of #fernative designs of a decision

making agent.
3.3 Domain Representation

We model the three LAS regions using three rectangiOx 10 grid worlds, shown in
Figure 4 below. Each square in the grid worldsesents a city block, and is denoted by
a termloc(x, y) wherex andy are the block’s coordinates. All locations in tiy will be
referred to by the corresponding square in whidy treside, and the distance between

any two locations is defined as the Manhattan degdetween the two:

d(loc(x,y1), I0c(%,y2)) = [X2 - x| + [y2 - wl.

We assume that each region has one base stat®hpspital, and 10 ambulances.
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+ Hospitals

Figure4 The three LAS regions as represented by 3 rectanguld worlds

It is important to understand that the size of stete space is well beyorgp*®. 23

states: there are 30 ambulances in the model,azache in any one of the 300 locations.
Also, each location might or might not have a refueending and there are 300
locations. Consequently, the exact solution of preblem of optimal ambulance

allocation using standard MDP techniques is contpurtally intractable.

As described in the previous section, there areyndifierent players in the real LAS
system. Focusing on just the resource allocatind) soineduling aspect of the system,
however, only three players are of significance& BA who sits at the center of the
system (we assume there is only one RA in the aatiensystem); the IR who represents
the front-end of the system; and the DSP who reptetie back-end of the system.

The RA’s job is to make mobilization decisions uthk a way that ambulances will arrive
at the incidents within the specified time limitl(ininutes) with a high probability. We
formulate the RA’s actions below. Note that forwitg we will use the word “cars” to

abbreviate “ambulances”.

36



* mobilize(c, I, t): Send the ambulanaeto locationl at timet. This is a
stochastic action with two possible outcomesobilizeS(c, [, t) and
mobilizeF(c, 1, t). The first outcome corresponds to a successful

mobilization, and the second outcomebilizeF' corresponds to failed

mobilization (e.g., due to communication problems).

» askPosition(c, I, t)A sensing agent action that, if performed at timaill
tell the RA the locatiod of car c. Because communication with the
ambulance can fail, this action can return the oni&/nclearinstead of a

genuine location term.

» askStatus(car, status,: t)Another agent sensing action that determines
whethercar is Busy Ready or Unknown(which means thaskStatusas

failed due to communication errors).

* wait(t) A no-cost deterministic agent action that can pgegformed
whenever the RA has nothing to do. Doing this actall put the RA to

“sleep” until the next occurence of an exogenowenev

The IR’s job is to review emergency requests args plaem to the RA. We formulate the

IR’'s actions below:

* request(l, t) Forward a reviewed emergency request to the RFis
exogenous action means an emergency request has rbage from

locationl at timet.

The DSP’s job is to handle all communications betw¢he RA and the ambulance

crews. We formulate the DSP’s actions below:
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* reportArrival(car, |, ty Foward the arrival report of ambulancar to the

RA. This action will tell the RA thatar has arrived at locatidnat timet.

* reportReady(car, |, t)Forward the ready report of ambularoae to the
RA. This action will tell the RA thatar has become ready at locatioak

timet.

In this work, since we use a version of DTGolog thialy accounts for a single decision
maker, we treat the RA as an DTGolog agent and vlevIR and DSP as external
agents. That is, we model (and compute) the RAlabier using a DTGolog program,
and simulate the IR and DSP’s behaviors using ar@ggram, as shown in Figure 5
below.

Note that in taking this approach, all the extemamgnts’ (i.e., IR and DSP) actions must
be treated as exogenous actions: they can happetinam and are outside of the direct

control of the Golog program that represents the RA

GMNU Scientific
Library Interface
{gsl.c, gslh)

Resource
Allocator
{las-cas.ecl)

|

DTGolog
Interpreter
{online.ecl)

|

Simulator
Interface
[envsim.ecl)

l

k.

GNU
Scientific Library

. Simulator
Vo (sim.c, sim.h)

ECLIPSE PROLOG'S EXTERNAL PREDICATE INTERFACE

Figure 5 Overall organization of the project

As described in the figure, the environment sinarlabodule, which represents the DSP

and IR, are implemented in C. This module reliesrenGNU scientific library (GSL) to
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generate Gaussian and Poisson random numbersntendcts with the Golog program
(representing the RA) and the DTGolog interpretenough the simulator interface
module. The Golog program also calls on the GStquph the GSL interface, for the
calculation of the cumulative distribution functioequired for the reward function

described below.
3.3.1 Simple Domain Characteristics

To represent the simple characteristics of the domee use the following set of logical

statements:
avgTimePerBlockEmergHome(100),
avgTimePerBlockEmergForeign(150),
avgTimePerBlockNormHome(200),

avgTimePerBlockNormForeign(250)

These statements specify the average travelingdsp@e seconds per block) of the
ambulances in different modes and regions. Notewaassume that the speeds (both
emergency and normal) are slower if the ambulascmitside of its home region, since

its driver is less familiar with “foreign” regions.

diagTime(240)
unloadTime(120)

The average amounts of time it takes to perfornsite-diagnosis and to hand over the

patient at the hospital.

tirednessLagTime(100)
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Ambulance crews that are working on consecutiveggasgents without having any rest

in between are tired and less efficient. If thishis case, diagnosis time, unloading time,
as well as traveling times will be longer. Thistetaent specify the amount of extra time
it will take if the crew is tired.

requestRate(150)
commFailRate(0.15)
hospitalizeRate(0.8)

These statements specify the rate at which emeygemmuests arrive (in
seconds/request), the percentage at which a pagexd to be taken to a hospital, and the
rate at which communication between the DSP andmalpulance traveling on the road

would fail.

validPeriod(60)

If a car is on the move, its location changes #merefore, becomes unknown. However,
we assume that within certain grace period spetiby this statement, its location has
not changed significantly and, therefore, its lamats considered known.

3.3.2 More Complex Domain Characteristics
More complex domain’s characteristics are captimethe following set of axioms.

3.3.2.1 Precondition Axioms

The following axioms state that it is always pobksilior the RA to eitherwait,
askPositionor askStatusand any value can be returned by sensing acti@ssensing
results are not constrained by these axioms). Aiss,possible for a car to be mobilized

if it is ready and its location is known.

Poss(wait(t), s)
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Poss(askPosition(car, I, t), s)

Poss(askStatus(car, status, t),

w
N—

Poss(mobilizeS(car, loc, t), s) = ready(car, s) N carLocKnown(car, t, s)
Poss(mobilizeF (car, loc, t), s) = ready(car, s) N carLocKnown(car, t, s)

3.3.2.2 Successor state axioms & Initial Situation

A car is ready if it reported ready by itself, bitirespondedReadywhen the RA asked
for its status, or the car was ready in the previsituations and the last action was
neither a successful mobilization nor a sensingadhat indicates the car is busy or its

status is unknown.

ready(car, S0)

ready(car, do(a, s)) = 3t (a = reportReady(car, 1, t)) V
Tt (a = askStatus(car, Ready, t)) V
=3t (a = mobilizeS(car, I, t)) N
=Jt (a = askStatus(car, Busy, t)) /N

=3t (a=askStatus(car, Unknown, t)) N ready(car, s)

Communication between ambulance crews and the R8E hence the RA) can fail. We
model this by allowing skPositionand askStatusto return the constartinclear and
Unknowninstead of a genuine location and statuMore specifically, communication

with a given car is said to be lost if: the RA ¢ri® ask for its location or status and the

% By doing this, we have introduced additional statehich allow us to represent the lack of inforimrain a fully observable MDP.
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reply wasUnclear or Unknown or the previous mobilization failed, or commuation
has been lost in the previous situatsoend the car has not reported itself to the RAesinc
then.

commULost(car, do(a, s)) =3t (a = askPosition(car, Unclear, t)) V
Tt (a = askStatus(car, Unknown, t)) vV
FLt (a = mobilizeF(car, I, t)) V
=31t (a = reportReady(car, I, t)) N
=31t (a=reportArrival(car, I, t)) A commLost(car, s)

When a car is stationary (e.g., parking at the hbase), its location is known. When the
car is on the move, its location changes, and therebecomes unknown. However,
recall that we assume that within the period spetibyvalidPeriod(p) the car's location
can be considered unchanged (since it did not nmemefar from its last known location)
and therefore its location is known. In additionthie car location is known is at time
time and it was not mobilized successfully more tipaseconds ago, then its location

remains known:

carLocKnown(c, time, S,) = isACar(c) A start(S,, t) N time >=t.
carLocKnown(c, time, do(a, s)) =
Flt((a=reportReady(c, I, t) V a=askposition(c, I, t)) N
isBaseLoc(l) N time>t) V

FLt,p ((a=reportReady(c, I, t) V a=askposition(c, I, t)) N
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validPeriod(p) N time<t+p A time>t) V

=3lt,p (a = mobilizeS(c, I, t) N validPeriod(p) N time > t + p) A

carLocKnown(c, time, s)

Similar to the previous axiom, the location of & isaassumed to remain the same as its

last known location within the period pfseconds.

carLocation(c, 1, time, S,) =

isACar(c) N start(S,, t) N time>t A 3b(homeBase(c, b) /N locOf(b, 1))

carLocation(c, I, time, do(a, s)) =

Tt ((a=reportReady(c, I, t) V a=askPosition(c, I, t)) N

isBaseLoc(l) A time>1t) V

Ft,p ((a=reportReady(c, I, t) V a=askPosition(c, I, t)) N

validPeriod(p) N time<t+p A time>t) V

Ft,p,loc(a=mobilizeS(c, loc, t) N validPeriod(p) N time > t + p A

| = Unknown) V

=Floc,t,p (a=mobilizeS(c, loc, t) N validPeriod(p) N time > t + p)A

carLocation(c, 1, time, s)
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An emergency request is pending at the locatiomdo(a,s)if a request was recently
made froml, or there was a pending requestlan previous situatiors, and no

ambulance has been successfully mobilized toldhbation.

requestPending(l, do(a, s)) = Jt (a = request(l, t) V
=3¢, t (a=mobilizeS(c, I, t)) N requestPending(l, s))

The ambulancear is at its home base, if its last known locatioithex reported or
queried, is the same as its home base’s locatioii,itbwas at the base in the previous

situations and has not been successfully mobilized.

atBase(c, S,) = isACar(c)

atBase(c, do(a, s)) =

Flt,b ((a=reportReady(c, I, t) V a=askPosition(c, 1, t))A

homeBase(c, b)AlocOf(b, 1)) V

=31t (a=mobilizeS(car, 1, t)) N atBase(car, s)

3.3.2.3 Optimization Axioms

We also need the following axioms to specify trensition probabilities of our MDP.
Essentially, if a car is parking at its home bates probability of a successful
mobilization is 1. If the car is not parking at ask, this probability is specified by

commpFailRatewhich we described in section 3.1 above.

prob(mobilizeS(car, loc, t), pr, s) = Fl (carLocation(car, I, t, s) N

(isBaseLoc(l)/\ pr=1 V —isBaseLoc(l)A\commFailRate(r)\pr=1-r))

44



prob(mobilizeF (car, loc, t), pr, s) = Fl (carLocation(car, I, t, s)/
(isBaseLoc(l)Apr=0 V —isBaseLoc(l)\ commFailRate(r)N pr=r))

Finally, our theory of the domain includes axionpedfying: (1) what sensing actions

has to be done to distinguish one outcome of thehsistic agent actiomobilize(c, 1, t)

from another outcome (we require that the sensitioraaskStatus(c, status, t) should

be performed); and (2) axioms specifying situatsuppressed logical conditions that

need to be evaluated after doing a sensing action:
def
senseCond(n, ¢) = (dc, I, t)(
n=mobilizeS(c, I, t)\ p=(isACar(c)\ —ready(c)\ =commLost(c)) V

n=mobilizeF(c, I, t)\ ¢=(isACar(c)/ (ready(c) V commLost(c)))

3.4 Resource Allocator Design

With the domain completely axiomatized, we can m@ivto the design of the RA. In this
work, we considered 5 different designs, each sgms a different resource allocation

strategy.
3.4.1 The Manual Design

The manual design resembles the resource allocstiategy used by the human RA in
the manual LAS system, and is represented by ag3mlocedure that does not involve
any decision theoretic constructs. A much simglifiersion of the procedure is shown in

listing 1 below.
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proc allocResManual(stoptime)
w(t) [(now(t))?;
if t < stoptime
then
limit (
if Jl,c (requestPending(l)/ mobilizableCar(c)A inSameRegion(l, c))
then
w(l, ¢, ¢y d;, d,)]
(requestPending(l))? ;
(nearestLocalMobilizableCar(l, c,))? ;
(distance(l, c,, d,))? ;
(nearestLocalBase(l, base))? ;
(distance(l, base, d,))? ;
if (d,-d, < 2)A Jc, (localMobilizableCar(l, ¢,) N atBase(c,))
then
mobilize(c,, I, t)
else
mobilize(c,, I, t)
endif |
else
wait(t)
endif
); allocResManual(stoptime)
else
noOp(t)
endif |

endproc

Listing 1 A Golog procedure resembling the human RA. To owuprreadability, we used fluent names that areadlgtu
a conjunction of two or more of the fluents desedtearlier. For examplenobilizableCar(car)is the conjuntion of
ready(car) and carLocKnown(car) localMobilizableCar(loc, car)is the conjunction ofmobilizableCar(car)and

46



inSameRegion(loc, carpgnd nearestLocalMobilizableCar(l, ds the conjunction ofocalMobilizableCar(l, car)and
nearestCar(l, c)

Essentially, this Golog program, for a periodstiiptimeseconds, continuously checks to
see if some region is having both a pending reqaedta mobilizable car. If not, it will
simply perform the no cost actiomait and then call itself recursively. Otherwise, the
program will locate the nearest mobilizable cgrin the same region, and calculate its
distanced; to the request. If this distance is not much,(Recity blocks) greater than the
distance from the request to a mobilizable @ahat is currently parking at the base, the
program will mobilize the car at the base)( Otherwise, it mobilizes the nearest
mobilizable car ;). This behavior reflects the preference that thndin RA has for the
ambulances that are parking at the base over thasare current traveling on the road.
He understands that because the crews of the andeaglat the base have had proper
rest, they are more effective. So, given a chamewill always select the ambulance
from a base unless it is much farther away from régiest than is the car currently

traveling on the road.

Another important characteristic of the manual eysis that, since the RAs will never
receive a request from a location outside of themgion, they will never send an
ambulance across the regions’ borders. For thsoreadriver’s familiarity with a region

was not considered in this Golog program, as isdu# have any effect in this system.

Notice the use of théimit() search control construct in the program. This ajoer

prevents the off-line interpreter from searchingdse the recursive call. In the context

of this particular procedure, the uselofit() causes the agent to look ahead just enough

to make a single move. Given the complexity of deenain, and the way decisions are

made in the manual system, looking much furtheadhgould be both computationally

expensive and unnecessary. (Also, technically, aitlimit(), it would not be possible
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to look ahead with DTGolog because it would requiceng infinite horizon decision

theoretic planning.)
3.4.2 The Automated Design

The automated design resembles the resource alncgttategy used by the automated
RA described in [7], which does not take into actobhuman factors such as crew
tiredness and driver's unfamiliarity with foreigagions. Unlike the manual system, the
automated system allows ambulances to be mobiéizeaks the borders. We cast the task
of automated resource allocation as a decisionr¢ieotask, and represent its design

using a decision theoretic Golog program, showiasting 2 below.

proc allocResAuto(stoptime)
m (1) [(now(t))?;
if t < stoptime
then
limit (
if Jl,c (requestPending(l) N mobilizableCar(c))
then
m(range)[ 7 (1)[
(listOfAllCars(range))? ;
(requestPending(1))? ;
m(c : range) mobilize(c, 1, t)
/I
else
wait(t)
endif
); allocResAuto(stoptime)

else
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noOp(t)
endif |

endproc

Listing 2 A Golog procedure resembling the automated RA

The behavior of this Golog program can be descrasefbllows. For a period atoptime
seconds, it continuously checks to see if a reqagsnding and if a car, anywhere in the
city, is mobilizable. If not, it will simply perfan the no cost actiowait and then call
itself recursively. Otherwise, the program willesgll the “best” ambulance (i.e., one that
it believes to have the highest chance of getonidpé incident on time) and mobilize it to

the incident. This is accomplished using the DT@@aonstructr (c:range) that picks
the optimal car from the finite setrange of all available cars. Note that in contrast to
7 (c:range), the program constructs(range) and 7 (1) are not involved in decision

making. They serve simply to ground variablesge and/ to values specified by the

subsequent test expressions.

In order for the program to select and mobilizescdhe program needs access to a
reward function that could serve as a measure am ¢p@od or bad a mobilization
decision is. Since the automated RA doesn’t tai@ascount crew tiredness and driver’s
region familiarity, the reward function we providéat this design depends only on the
traveling distance. That is, we define the rewatidat the program can expect to receive
for mobilizing a given ambulance to a given locatim be a number that is directly
proportional to the probability that the travel &ns less than or equal to 11 minutes (or
660 seconds).= c * Pr{0 < T <660},where c is a constant (e.g. 100), dnd a random
variable representing the travel time). By assuntimgt travel time has a Gaussian

distribution, it can be shown thatis a random variable of meahv and variance,
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whered is the traveling distance (in blocks) ands the (inverse) traveling speed (in

seconds/block). Consequently, we have:

<) e ) e

r:Pr{NS

where N is the unit Gausian distribution (that is impleri@ehin GSL using a library

function).

The reward function provided in the model, showtowe captures this equation and
serves as a measure of how likely a given canalbilized, will make it to the incident

on time.

reward(0, s0)
reward(0, do(a, s))= -3 car,l,t (a=mobilizeS(car, I, t))
reward(r, do(mobilizeS(car, I, t), s)) =
31,,d,v,c (carLocation(car, l,, t, s)A
distance(l,, I, d)n rOntime(c)A
avgTimePerBlockEmergHome (v) A
r=c - [cdf((660 - d-v)/d) - cdf(-v)]

It should be noted that although this reward fuorctdoes reflect the system goal that
requests are to be served quickly, it neglects mapb domain features such as the
crews’ desire to have some rest between assignmants ambulance drivers’

unfamiliarity with foreign regions.

Note thatallocResAuto() implements a reactive behavior: it does horizoplanning

only inside the scope dimit(). As a consequence, this procedure is myopic. Tié ne

procedure does more far-sighted decision making.
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3.4.3 The Optimized Design

This design represents a hypothetical system irchvhll available domain features are
taken into account to produce a better behaviotlferRA. We use a Golog procedure
that performs two-step look-ahead, shown in Listthdelow, and a modified reward

function that takes into account crew tirednessragen familiarity.

proc allocResOpt(stoptime)

7(t) [(now(t)) %

if t < stoptime

then

limiit (
x (range)] 7 (1,)[ (1)
(listOfAllCars(range))? ;
(requestPending(l,) N requestPending(l,) N 1, #1,)? ;
(e, : range)[ w(c, : range)/
mobilize(c,, 1,, t); mobilize(c,, l,, t)]]

I/
m(range)[ (1)
(listOfAllCars(range))? ;
(requestPending(1))? ;
m(c : range)[mobilize(c, 1, t)]
I
wait(t)
); allocResOpt(stoptime)
else
noOp(t)
endif |
endproc

Listing 3 A Golog procedure resembling the hypotheticalroed RA
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This Golog procedure contains a nondeterministioicgh between three different
branches of actions. The first branch is possililervever there are two or more pending
requests, together with two or more mobilizablescd8he second branch is possible

whenever there is one or more pending requesttheg&ith one or more mobilizable

car. The third branch, which consists of just tleeozreward actionvait(), is always

possible. When the first branch is possible, il i to pick, by doing a horizon 2 look-
ahead, and mobilize a pair of cars ttogfetherhave the highest chance of gettindgtth
incidents on time. Since this branch can satisfy tequests at a time, its associated value
(utility) is higher, and therefore will always belacted whenever possible (i.e., when
there are two pending requests together with twbilzable car). If the first branch is
not possible (because there are less than two pgmeguests) and the second branch is
possible, it will try to pick and mobilize a carathhas the highest probability of reaching
the incident on time. Since this branch can satsfgquest, it will be preferred over the
third branch whenever possible (i.e., wheneveretieone pending request together with

one mobilizable car). Consequently, the behavidhisf procedure can be summarized as
follows. For a period obtoptime seconds, the procedure will continuously checkee

if there are two or more pending requests, togetligr two or more mobilizable cars. If
yes, it will pick and mobilize a pair of cars thiagether have the best chance of getting to
both incidents on time. Otherwise, it will check dee if there is one pending request,

together with a mobilizable car. If yes, it willytto pick and mobilize the car that has the

highest chance of getting to the incident on ti@#erwise, it will simply wait.

To take into account crew tiredness and region lfarty, we modify the reward
function wused in the automated design above by acapmy the line

“avgTimePerBlockEmergHome(wyith the following expression:

inHomeRegion(car, [)A inHomeRegion(car,l,)A

avgTimePerBlockEmergHome(v) v
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- (inHomeRegion(car, |) A inHomeRegion(car,l,)) N
avgTimePerBlockEmergForeign(v)

which means that if both the source and the ddsimaf the trip are within the home
region of the given ambulance, the traveling sp&#idbe that of the home region (i.e.,

faster). Otherwise, the traveling speed will be tifdoreign regions (i.e., slower).

We also replacer*= ¢ * [cdf((660 - d*v)/d) - cdf(-v)]” with the conjunction:

consecTripCount(car, n, s)A crewTirednessLagTime(lag)

AT = c- [cdf((660 - n-lag - d-v)/d) - cdf(-v)]

which means that if an ambulance crew has consetyerved requests, without any
rest in between, then the rewarthe program can expect to receive for mobilizingt th
ambulance to a location will be equal to the pragtihat the ambulance will arrive at
the incident on or befor@®60 - nlag) seconds, which is a very small probabilityl#fg is
sufficiently large compares to This, in effect, will discourage the RA from miiding

tired crews.
3.4.4 Other designs

As can be seen with the previous three RA desigrnie context of DTGolog, a design

is represented by a pairP, R >, whereP is a control procedure, such @cResOpt(),
and R is a reward function. For comparison purposesaise consider two additional
RA designs that are represented-byllocResAuto(), R,> and <allocResOpt(), R,>,

where R, is the reward function used in the automated desiqd R, is the reward

function used in the optimized design.
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3.5 Simulation Results

We do quantitative comparison of the 5 RA desigescdbed above using our simulator,
which simulates the behaviors of the IR and the DO8P generating appropriate
exogenous action at specific time and in additiollects statistics about the services
trips. To simulate the behaviors of the IR, thelwdator pre-calculates, at the start of each
service trip, all of its relevant time points. Fexample, the trip’s arrival time is pre-
calculated by adding the time it takes to travehfrthe base to the incident with the
starting time. Then, when these pre-calculated tpoents are reached, appropriate
exogenous actions will be generated accordingly.ifstance, aeportArrival() will be
generated when an arrival time is reached. Randssnine introduced through the

calculation of travel times. That is, to calculéibe travel times, say frorh to I, the
simulator uses the formuté,, I,) = ZLN(@;,I) , Wheret(ly, I,) is the travel timed is the
distance betweeh andl,, v; is the average travel time for the current bloaki¢h

depends on whether the block is in the home origoreegion),N(v,1) is a positive

random number drawn from the Gaussian distributidh meanv; and variancd.

We performed simulation runs of the five design$ alifferent request rates, each rate
for 5 times, and each time for approximately 30Quests. On two AMD 1800 MHz
machines, each with 1GB of memory running Linuxnlet2.6.8, the whole process takes

approximately 12.5 hours, which means that it takesninute to simulate about

(5%x5x300) / (12.560) = 10 requests on average. Averaged simulagsalts, along

with their standard deviations, are plotted andwshon the tables below. Original

simulation data are also provided in Appendix D.
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Table 2 Percentage of arrivals after 8 minutes.

Rate Manual Automated Optimized Otherl Other2
60 84(25+5+54) 72(19+1+52) 69(25+7+37 71(20+0+51) 89(24+1+64)
75 74(47+3+24) 79(43+1+35) 56(45+2+9) 58(53+0+5 (5921+41)
90 63(56+1+6) 67(67+0+0) 44(43+0+1) 44(44+0+0 665+1)
120 55(54+0+1) 61(61+0+0) 39(39+0+0) 40(40+0+0 6@40+0)
150 54(54+0+0) 58(58+0+0) 40(40+0+0) 38(38+0+0 6630+0)
Table 3 Percentage of arrivals after 11 minutes
Rate Manual Automated Optimized Otherl Other2
60 70(15+8+47) 63(12+1+50) 49(11+13+25 61(11+2+48) 80(17+3+60)
75 54(30+4+20) 63(29+1+33) 25(16+3+6) 30(20+0+5 (3782+39)
90 40(34+1+5) 42(42+0+0) 11(10+0+1) 11(11+0+0 B4@H1)
120 33(32+0+1) 36(36+0+0) 7(7+0+0) 9(9+0+0) 40(4660
150 30(30+0+0) 35(35+0+0) 6(6+0+0) 7(7+0+0) 33(383)
Table 4 Standard deviations of simulation data shown inl@4ab
Rate Manual Automated Optimized Otherl Other2
60 2.92 4.04 2.14 2.02 2.93
75 7.16 3.62 6.00 9.46 4.16
90 3.51 1.22 3.89 4.62 4.00
120 1.55 5.05 2.39 2.00 1.52
150 2.74 2.93 2.66 5.25 2.49
Table5 Standard deviations of simulation data shown inldab
Rate Manual Automated Optimized Otherl Other2
60 4.43 3.08 3.30 1.76 2.79
75 8.56 5.34 8.97 10.94 6.74
90 3.75 1.92 2.24 1.64 6.03
120 2.74 4.87 0.45 1.48 0.32
150 3.96 2.70 1.38 0.77 1.67
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Percentage of arrivals after 8 minutes
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Figure 6 Percentage of arrivals after 8 minutes graph.
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Figure 7 Percentage of arrivals after 11 minutes graph.
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Standard Deviation for data in Table 1
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Standard Deviation for data in Table 2
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Figure 9 Standard deviations for the 11 minutes simulatiatad
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In the charts and tables abovegte denotes the average number of seconds between
requests,Manual, Automated and Optimized denote the respective desigr@ther!
denotes the design represented byllocResAuto(), R,>, and Other2 denotes the
design represented byallocResOpt(), R,>. Also, the entries in tables 1 and 2, which
are of the formd (B+C+D), mean that in the given design at the given reigae (i.e.,

the given average number of seconds between rejuéspercents of the time, it took

more than 8 (or 11) minutes for the ambulance &ohats incident's location. Out of this

A percentsB percents are caused by long travel time (i.e.c#tesimply spent more than
8 or 11 minutes in traffic)(’ percents are caused by mobilization delay (ilecaas were
busy at the time the incident occurred), dhgercents are the result of both mobilization

delay and long travel time.

As expected, the performances of different strategre in the right order. Designs that
take into account crew tiredness and driver’s feamil with regions (i.e., th&ptimized
and Other1 design) have the highest performances. Betweeseth®o designs, the

Optimized design is significantly better because it perfolragzon-2 decision theoretic

planning as opposed to horizon one planning in(eer! design. The Manual design,

which follows some simple heuristics (i.e., nevend a car outside its home regions and

give preference to cars that are at the bases) itomme the negative effects of

mobilizing tired crew, also performs better thae thutomated design, which ignores

these two factors. Lastly, th@ther2 design, which does horizon-2 decision theoretic

planning with an inaccurate reward function, shakes worst performance. One way to

explain this is to relate to what is callledk-ahead pathologfl7], which says that given
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the wrong value function (that represents incorneicirmation about the world), looking

further ahead tends to produce worse results.

Table 1 and its corresponding graph, shown in Eigjrcontain some minor irregularities
in terms of performance of a given design overeddht request rates. In particular, as the
request rate increases (system becteagbusy), the percentage of late arrivals for the
Automated and Other2 designs first increase befoeg actually decrease as expected.
One explanation for this is that although we cdédcstatistics for the 8 minutes late
criteria, the optimality criteria we used in oumsilation did not account for this. That is,
all the reward functions we used were designeddasevhether the ambulance will get
to the incident before or after 11 minutes, not Biutes. Should the 8 minutes late
criteria become an important concern, we can easibgify the reward functions to
reflex this change. Another explanation is thattaide 3 and 4 show, the standard
deviations of the collected data is still high, andre simulation runs, perhaps 100 runs
for each rate, are required to obtain more accuaarages. We were not able to
complete this because simulation would take seweegks on the computer available to
us. We have completed, however, 10 addition sinaratuns for each request rate, and

the collected data are available at the web addyigss below.

As stated in chapter 1, the primary objective @& #xperiment is to apply DTGolog to
the domain of the LAS to demonstrate its advantagelspotentials as a quantitative tool
for evaluating and comparing different designs etision making agents. We believe
that we have successfully achieved this objectreeause we have demonstrated several

important points:

1. We were able to reason (i.e., perform decision réten planning) in this
extremely large scale domain. As explained in eac8.3, LAS has more than
30°%.2%% states, and to the best of our knowledge, mosndif all) current

decision theoretic frameworks are not able to hapdbblems of this scale.
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2. We were able to quickly consider as many designseasled without having to
modify the background domain axiomatization. As lakped in section 3.4.4,
each design in DTGolog is represented by a corgrotedure and a reward
function. As a result, new designs can be easilysiciered, by writing a new
control procedure and a reward function, withouargfing the background

domain axiomatization.

3. Unlike most of the current requirement engineefragneworks, we were able to

guantitatively, instead of qualitatively, evaluated compare different designs.

The content of this chapter is a significantly sed and extended version of our papers
[25;26].

All relevant software (in source code) mentionedthms chapter, together with all
collected simulation data (mentioned in this Chgpigs well as additional data, can be

downloaded from:

http://ww. scs. ryerson. ca/ ~nes/ publ i cati ons/ LAS/
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4 Controlling
the Sony AIBO robot

This chapter describes a software interface betwreerGolog family of languages and
the Tekkotsu framework (http://www.tekkotsu.org)general application development
framework for the Sony Aibo robots developed atnégre-Mellon University. It also
describes in detail a small but illustrative robstapplication that serves as both a test
case for the interface, and as an illustrationaf ierarchical reasoning can be done in

the online version of DTGolog.
4.1 Introduction

4.1.1 The Sony AIBO Robot

Originally introduced by Sony as a household eatement robot, the AIBO robot
(figure 1) has been quickly picked up by the rof®tommunity around the world as a
low-cost yet feature-full robotics research platiprdue to the high quality of its

hardware and software designs, together with i&ively cheap price.
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Figure 10 The Sony Aibo as an entertainment robot

From the robotics point of view, the robot is equagd with a wide range of perception
devices such as a color CCD camera mounted onethe, la pair of stereo microphones,
3 infrared distance sensors, 3 body accelerometepsw button sensors, a number of
other touch sensors, and a set of sensors thattigeseurrent position of all the 18

angular joints on the robot. As for actuators, tbleot has 12 angular joints in its four
legs, 3 angular joints in its neck, and 3 moretpifor its tail and mouth. It also has a
built-in speaker and an array of color LEDs. Comagiohally, AIBO has an on-board

CPU running at 576 MHz, 32 MB of RAM and 16 MB a¢étic storage (in the form of a

“memory stick”). Also, the built-in wireless Ethemninterface allows the possibilities of
off-board computing as well as robot to PC commaitons.
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4.1.2 Some well-known AIBO-based research projects

Three of the most well-known research and developrpmjects that use AIBO as one
of the primary platforms are the Tekkotsu projetdyeloped and maintained at CMU
with funding from Sony Corp and the two RoboSocperjects at Carnegie-Mellon

University (CMU), headed by Manuela Veloso, and thaversity of Texas at Austin

(UTA), headed by Peter Stone.

In the UTA’s RoboSoccer project (http://www.cs.wexdu/~AustinVilla/), machine
learning techniques are applied to teach the AlB@ous soccer playing skills such as
walking (i.e., running) [5;6], acquiring ball, pleg keep-away [27], performing robust
localization [20] and illumination-invariant colégarning [21], etc. This project has been
very successful. Among the major achievements o phmoject is the record-setting
walking speed attained by the AIBO, and the varipuges in yearly RoboSoccer

competitions.

The CMU RoboSoccer project (http://www.cs.cmu.edoibesoccer/main/) has also been
very successful. Besides winning several top praefkoboSoccer competitions, the
work done [29;30] in this project has served asbihwgs for a well-known robotics course
(http://www.cs.cmu.edu/~robosoccer/cmrobobits/) bewffered at CMU. Results from

this project have also been used as important coems of the Tekkotsu project, which

is described in the next paragraph.

Tekkotsu, which means “iron bone” in Japanese, [@ra@ect that aims to create an
“infrastructure for general-purpose application @epment on the AIBO”. It introduces
an additional abstraction layer on top of OPEN-Bny8s default programming interface
for the robot. Using Tekkotsu, AIBO programmers énaccess to an intuitive set of
primitives that are frequently encountered in robontrol tasks such as perception,
manipulation, and control. This project has beesuecess, and research groups around
the world have adopted it into their works, mo$tgcause it provides the AIBO robot, a

cheap yet feature-full and reliable piece of rof®thardware, with an integrated
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framework in which not only the essential composesfta typical robotics application,
such as vision and kinematics, have been integrab¢dalso some relatively complex
predefined motions, such as walking, have beenatgyb as library functions. The first
feature allows Tekkotsu programmer to test thegagd on a real robotics platform
without the usual overhead of manually integratailg essential robotics application
components. The second feature allows them to yuakcomplish their task by using

the supplied library actions of various levels ofmplexity.

The Aibo robot was also used as an experiment#fiopta by many other researchers in
machine learning. Most related to this projecthe tvork reported in [22], in which a
hierarchical reinforcement learning technique chlleintrinsically Motivated
Reinforcement Learning (IMRL) was applied to allowsbo to learn a two-level
hierarchy of skills: It first learns the basic $kibf approaching the pink ball, capturing
and walking it, etc. and then use those basissskillaccomplish the higher level task of

locating and bringing the pink ball to its owneremrequested.
4.1.3 Some potential benefits of interfacing Golog to Tekkotsu

Many robotics applications can be seen as an irdgbom channel with sensory input
signals coming in at one end and actuators commenufsng out at the other end. In
between the two ends, input signals usually gouthinca series of transformations before
they become suitable to be used for decision ma&ing certain level. Then, once the
decision has been made, it will also go through esdransformation process to be

eventually converted into low level actuator comohaignals.

The following diagram, from [8], describes the difnt abstraction layers through which

sensory information and command signals in anligéit robot might go through.
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SIMPLE ABSTRACT
SIGNAL INFO ATTRIBUTE MODEL MODEL LIFETIME
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INPUT Sensor Binary Detection Maps Logic Modeling
Y Y Y Y Y Y
OUTPUT Motor Kinematics Actio.n Path Tasl_( Goa_l
Selection Planning Planning Selection

Figure 11 Abstraction Layers of Robotics applications

Starting from the top left corner, sensory inputsthe form of hardware signals, the
Signal layer, can cross (going to the right) migtiayers of abstractions before it can be
used for decision making. Then, once the decisasmbeen made, high level actions will
go through the level of abstraction, in the revelisection to be converted back into low

level hardware commands.

Taking this view, the Tekkotsu framework can bensas being in the Attribute layer,
which is one level higher than the Information lageovided by OPEN-R, Sony’s default
software development interface for AIBO, which ¢enthought of as being in the second

layer, the Information Layer.

OPEN-R assembles sensory signals, from the Sigwmel, lwhich is the hardware level, to
the form that is suitable for OPEN-R programs tterpret, and converts OPEN-R
primitive commands into hardware signals that aedun the Signal layer to control the

robot’s joints.

Tekkotsu provides an additional layer of abstracten top of OPEN-R, and can be
thought of as residing in the Attribute layer, hexa it assembles, through the use of

some library modules, OPEN-R sensory informatida information that are suitable for
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detection tasks, such as pink ball detection, amnerts actions commands back into

OPEN-R primitive commands.

One disadvantage of using Tekkotsu for intelligeriotics applications is that you have
to start from the Attribute layer, which is whereKKkotsu is. For many interesting
applications, this is perfectly fine. For appliceis that require doing reasoning in a
higher level of abstraction, however, sticking tekKkotsu could mean that a lot of work
have to be done to process the information into furen suitable for higher level
reasoning. For researchers who would like to fothesr attention only on decision

making aspect of robotics, this can become a higdsusometimes.

As we have described in the background chaptemd@;@nd DTGolog in particular, is a
logical tool that has been designed to do highllesasoning, and can be seen as a tool
that resides in the Simple Model and Abstract Mddgkrs. Bridging this tool with
Tekkotsu and Aibo would be a very useful and imteithing to do, as it would create a
complete robotics research platform that would valleesearchers to do high-level

reasoning on a real and powerful robot.

4.2 A Golog-Tekkotsu Interface

This section describes our implementation of a Gdlekkotsu interface, a software
interface that allows Golog programs running inifis@ Prolog to control the Sony's
ERS-7 Aibo Robot.

4.2.1 Software Architecture

This interface follows the client/server approaahd is consists of two main parts. On
the client side, there is an external predicateutethat can be loaded as a library by the
Eclipse Prolog interpreter running on a Unix-basedhputer. This module, once loaded,
will provide the Golog interpreter with a predefihset of actions that can be performed
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to interact with the robot. We will refer to thisan of the interface as the AiboPred
module, or just the client, from now on. On theveerside, there is a Tekkotsu program
(or a behavior in Tekkotsu terminology) that rumstbe AIBO and continuously listen
for TCP command from the client. From now on, wé gall this part of the interface the
Golog-Tekkotsu Interface (GTI) Server, or simple teerver. The following diagram

describes the overall architecture of the interface

UNIX HOST AIBO

GOLOG PROGRAM TEKKOTSU FRAMEWORK
[ GOLOG INTERPRETER )
T
[ ECLIPSE PROLOG ) L1
TCP/IP
AiboPred '
Library Module

Wireless
Network

Tekkotsu Behaviors

Figure 12 Software Ar chitecture of the interface

4.2.2 Operations

Whenever the Golog interpreter needs to executklBO®-related action (eg. walk, turn,
etc.), it will invoke the AiboPred module, whichshbeen loaded into Eclipse Prolog as
an external predicate library at initialization. eTliboPred module will interpret the
given action, and depending on the particular actiareceived, it will send, over the
wireless network, an appropriate command to the &3drver. When the GTI server
receives a command over the network, it invokesgpropriate Tekkotsu primitive to
carry the command out. Upon completion, dependmghe type of the command that it
just carried out, the GTI server can send backeeighcompletion signal or some results

to the client, and the Golog program will resume.
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4.2.3 Exported API

The list of all possible AIBO-related actions thedn be executed by the Golog
interpreter, and their descriptions, is presenteflgpendix A.

4.3 A test case

4.3.1 A Navigation Task

To demonstrate how this interface can be used,omsider a navigation task in which
the robot is to follow the shortest possible patlgét from any room of the grid world,

see Figure 13 below, to the goal room that costtie pink ball.

Figure 13 A navigation problem
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4.3.2 Possible approaches

4.3.2.1 Closed-loop Control Approach

This approach is probably the approach that a Tiskkprogrammer would follow. Using
this approach, the programmer would first come ith ®ome domain-specific heuristics
and then utilize them to design an explicit progriduat will help AIBO to complete the
task. Given the set of tasks that have been acaesimepl for AIBO using this approach in
Tekkotsu, it can be said with high confidence tihas possible to solve the navigation
task above using this closed-loop control appro#ias.very unlikely however, that this
approach would incorporate any model of the enwvitent, or would involve some
probabilistic planning. For this reason, and despite fact that it is still a research
guestion at this time as for whether model-basednodel-free approach would be a
better choice in the longer run, we will not comsithe closed-loop approach any further

here.

4.3.2.2 MDP-based Approach

Due to the probabilistic nature of the problem{ikathe uncertain outcome of many of

the possible robot actions, Markov Decision Prodessalism would also sound very

appealing. One way to model the given task usirggapproach is to consider an MDP

= <S5, A, P, R>in which:

. A, the set of all possible robot actions, would eanthe following:
o Walk(z, y, t): Walk to the locatiorr andy, relative to the current position
of the robot, at time.

0 Turn(ang, t): Turn the whole body an angieg at timet.

0 Pan(ang, t): Pan the head an angleg at timet.
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o0 Tilt(ang, t): Tilt the head an angleng at timet.
0 Nod(ang, t): Nod the head an angieg at timet.

0 QuerySensors(pan, tilt, nod, t): Query the three head sensors at ttme

This action will tell the robot the values of itarp tilt and nod sensors at

time ¢.

0 QueryBall(color, visible, zcoord, ycoord, area, t). Query the robot’s

vision system regarding the ball with the givenocollhis action will tell

the robot whether the ball with coleblor is visible within the camera

image at timet or not. If yes, then what is theandy coordinates of its

center, and the area of this ball within the image.

0 SearchBall(color, found, t). Scan for the ball of the giveevlor. This

action causes the robot to scan (i.e., move iesetlhead joints) the space

in front of it to see if a ball with the givetvlor can be found. If yes,

found will be set to 1, and the head will be pointingedtly to the ball.

Otherwise, found will be set to 0.

0 PlaySound(sound, t): Play the wave file sound at time
0 Wait(dur, t): Simply go to sleep fodur seconds at time

0 NoOp(t): Do nothing at time.

. S, the set of all possible states, is representethé\6-tuples<X, Y, 0, P, T,

N>, whereX and Y represent the current absolute coordinates ofabet,  represents
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the angle the robot currently makes with the alisohorth direction, and®, 7, N

represents the current position of the robot’s péirgnd nod joints.

. P, the transition probabilities matrix, is a matimat specifies, for each actiane
A, a current state € S, and a next state’ € S, a real probabilityp that represent the

probability of getting from stateto s’ by doinga.

. R, the reward function, is a function that gives, éach actiomm € A, a current

states € S, and a next state’ € S, a reward value that represents how desirable this

transition is.

Because the state space S above is continuous wWdhde a very large one if
discreetized), one would expect to encounter tHewng two difficulties if this

approach is to be used:

1) Computational problems with the computatioranfoptimal policy: Because
the state space is large (continuous), both cormveltand advanced MDP techniques
would have great difficulties in computing an opirpolicy for this MDP.

2) High demand on perception in physical contelen if one assumes that a
policy can be computed for the MDP above, carrnongthat policy physically requires
the robot’s ability to sense the actual currentes(ao that it can look up the action to be
performed from the computed policy) which, in tumould require some advanced
sensing capabilities, such as a GPS-like devigmore advanced vision facilities, which

are clearly beyond the capacity offered by the rshmuilt-in perception devices.
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4.3.2.3 DTGolog Approach

A third approach, which is the approach we toolehes to use DTGolog in such a way

that allows an intuitively clear combination of d@on making and closed-loop control.

In this approach, we take advantage of the prolddr€rarchical structure to divide the
problem into two separate parts. At the top letledre is the problem of deciding the
optimal sequence of rooms the robot should visdroter to get from its current room to
the goal room as quickly as possible. (In otherdspwe have a path planning problem at
the top level). At the level below that, therehis problem of getting the robot to go from
one room to the next room, in the sequence compaitdee top level above, as quickly as
possible. We solve the top-level problem by perfagrdeterministic planning (or, more
precisely, probabilistic planning where all traimsit probabilities equal to one) in
DTGolog, and we solve the second level problem @anumally writing deterministic

Golog procedures.

This way of balancing between planning and closeghlcontrol has been a generally
accepted practice in the robotics community. Acocwydo this practice, it is desirable
that hand-coded sub-controllers be used for sutstidat can be efficiently and explicitly
solved, and hence programmed, by the robot progexmmhile other tasks can be left to
the robot to figure out via some deliberation pesas. In the approach we took here, the
Golog procedures to get the robot from one roorarntother can be seen as hand-coded
sub-controllers, while the path planning problernthis deliberation process that the robot

has to go through when trying to accomplish thk tesa whole.
The remaining parts of this chapter will be usedédscribe this approach.
4.3.3 Doing hierarchical reasoning in Online DTGolog

We propose a new way of using DTGolog that alloerdwichical reasoning as described

above to be carried out seamlessly.
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First, to reason at the top level, we introduceaddition to the actions listed in the

section 4.3.2.2 above, four macro (or abstractiomstNorth(t), East(t), South(t),

West(t). These macro actions are actually Golog procedhegsstart at time and have

the effect of bringing the robot to the room thatto the north, east, south or west
direction, respectively, of the room where it isrreatly in. Unlike the usual Golog
procedures, which are expanded by the interpratgngl the planning stage, we would
like to have these procedures treated as atomitpaque”, actions by the interpreter,
and should only be expanded at execution time.d thts we mark these procedures as

macro action using the predicate
macroAction(Action, Body).
For example, the actiomorth(t) is represented as follows:
agentAction(north(t)).
deterministic(north(t), s).
macroAction(north(t),
limit(approachDot(pink)); playSound("woof.wav", t);

?(wait(3, t)); walk(500, t)

whereapproachDot(pink) is a (regular) Golog procedure that cause thetrabfind the

pink dot, which represents the north door, on tladl @nd position itself within 50 mm

from the dot (this procedure has the effect of mgkhe robot ready to cross the door to
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go to the north room.), andalk(500, t) is a shorthand fowalk(500, 0, t), which cause

the robot to walk 500 mm in the forward direction.

The purpose of treating macro actions as atomio fsave the interpreter to produce, at
the end of the planning phase, a plan that contt#iese macro actions in their
unexpanded form. This plan constitutes a “macrohigh-level, plan that tells the robot,
in high-level terms, what to do to accomplish &sk. For example, a top-level plan that
gets the robot from the bottom left room to the taght room in our navigation task

might look something like:

north(t1) : east(t2) : north(t3) : east(t}) : il

which can be seen as a set of high-level instrostiof how to get from one place to

another.

Of course, macro actions are not real actionsheénsense that they cannot be physically
performed by the robot. They just give the rob@dran of high-level guidance. The robot

needs to be able to expand these macro actiomseatition time, into the set of more

concrete instructions. We do this using the spgmiatlicatedoReally(), which is called

by the online DTGolog interpretemnline() every time it needs to execute a given action,

as follows:

doReally(maction) ES macroAction(maction, proc) N

online(proc : nil, s0, inf, pol, val).
For instance, thé/orth(t) macro action would be executed as follows:

doReally(north(T)) E macroAction(north(T), Proc) A
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online(Proc : nil, s0, inf, Pol, V).

where the call to the online DTGolog interpretefine() carries out the Golog procedure

associated with th&orth(t) action.

4.3.4 Domain Representation
We provide a separate set of axioms for each l&vabstraction.

4.3.4.1 Top-level Domain Representation

At the top level, we model the world using a3grid world, shown below. Each square

in the grid world represents a room, and is dendwgdh pairz and y, which are the

square’s coordinates. We use some simple logieérsents to capture the geometrical

properties of the grid world:

roomSize(3, 3).

roomWithBall(1, 3).

goalRoom(z, y) E roomWithBall(x, y).

bottomRow(y) = Jw, h (roomSize(w, h) A mod(y, h, 1)).
topRow(y) « FJw, h (roomSize(w, h), mod(y, h, 0).
leftCol(x) ES Fh, w (roomSize(w, h), mod(zx, w, 1).

rightCol(x) ES Fh, w (roomSize(w, h), mod(z, w, 0).
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wheremod(z, y, z) means that if we divide by y, thenz will be the remainder.

A

Figure 14 A 3x3 Grid world representing the maze

The agent can perform any of the four determinatitonsNorth(t), East(t), South(t)

and West(t), which will deterministically take the robot frothe current room to the

room in the respective direction. We specify thiéoas as follows:

agentAction(north(t)). agentAction(west(t)).
deterministic(north(t), s). deterministic(west(t), s).
agentAction(east(t)). agentAction(south(t)).
deterministic(east(t), s). deterministic(south(t), s).
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The preconditions and effects of the four actiobsva are captured by the precondition

axioms and successor state axioms as follows:

Poss(north(t), s) T Iry (roboLoc(z, y, s) A = topRow(y)).
Poss(east(t), s) = Iry (roboLoc(z, y, s) N = rightCol(y)).
Poss(south(t), s) ES Fz, y (roboLoc(x, y, s) A = bottomRow(y)).
Poss(west(t), s) ES Fz, y (roboLoc(z, y, s) N = leftCol(y)).
roboLoc(x, y, do(a, s)) E
Tz, y, ( roboLoc(x,, y,, s) /
(a = north(t) N z=x, N y=y,+1 V
a = south(t) N z=x, N\ y=y,—1 V
a=east(t) N z=z,+1 Ny=y, V
a =west(t) N z=x, — 1 N y=y, V
a # north(t) A a # south(t) N a # east(t) N a # west(t) N
r=x,Ay=y))

which state that the pre-condition for an actiothat it will not take the robot out of the
grid, and that the new location of the robot afferforming an action is the room in the
corresponding direction with respect to the roonmerghthe robot was before the action

was performed.
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4.3.4.2 Lower-level Domain Representation

At the lower level, we define the set of availablgions to be the set of 11 (primitive)

actions listed above in section 4.3.2.2, and ddfiegollowing 5 fluents:
. ballWithinSight (color, do(a,s))

Whether the ball of colafolor is currently visible in the robot camera image.
. lookingStraight(do(a,s))

Whether the robot is looking straight ahead indhweent situation.

. panJointPos(pos, do(a, s)),
nodJointPos(pos, do(a, s))

tiltJointPos(pos, do(a, s))

The position of the three head joints in the quirsttuation.

We specify the actions using the following statetadall of them are deterministic):

agentAction(queryball(ball, visible, xcoord, ycoord, area, time)).
senseAction(queryball(ball, visible, xcoord, ycoord, area, time)).
agentAction(searchball(ball, found, time)).
agentAction(queryheadjoints(pan, nod, tilt, time)).
senseAction(queryheadjoints(pan, nod, tilt, time)).
agentAction(queryneardistance(dist, time)).

senseAction(queryneardistance(dist, time)).
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agentAction(pan(angle, t)).
agentAction(nod(angle, t)).
agentAction(tilt(angle, t)).
agentAction(turn(angle, t)).
agentaction(walk(distance, t)).
agentaction(getready(t)).
agentaction(noop(t)).
agentaction(wait(dur, t)).

We specify the preconditions for all the elevenas using the precondition axioms of

the form:

Poss(a, s) = true.

which means that any action can be performed insaogtion.

We capture the action’s effects using the followsedj of successor state axioms:

ballWithinSight(color, do(a,s)) =

F(z, y, area, t) [a = queryBall(color, 1, x, y, area, t)] V

V(z, y, area, t, angle) [ a # queryBall(color, 0, z, y, area, t) N

a # pan(angle, t) N a # nod(angle, t) A a # tilt(angle, t) N
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a # turn(angle, t) N a # walk(distance, t)] N

ballWithinSight(color, s).

which states that the ball of coleslor is currently within the camera image of the robot

if and only if it has just queried the ball, an@ tfesult was positive, or it has neither pan,

tilt, nod, walk or turn, and the ball was withimglst in the previous situation.

lookingStraight(do(a,s)) =
F(pan, nod, tilt, t) [a = queryHeadJoints(pan, nod, tilt, t) N
abs(pan) < 5 A abs(15 — nod) < 10 A abs(tilt) < 5] V
V(angle, t) [ a # pan(angle, t) N a # nod(angle, t) N
a # tilt(angle, t)] A lookingStraight(s).

which states that the robot is looking straightaahé it has just queried its head joints,
and the values returned are within an acceptaldeatace of the straigh-ahead position,
or that it has neither pan, nod, or tilt, and itswaoking straight ahead in the previous

situation (note that the pan, nod and tilt valuees loe either positive and negative).

pandointPos(pos, do(a, s)) =
F(nod, tilt, t) [a = queryHeadJoints(pos, nod, tilt, t)] V
F(ang, t, posl) [a = pan(ang, t) N panJointPos(posl, s) /N
pos = posl + ang] V

V(ang, t) [a # pan(ang, t)] A pandointPos(pos, s).
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which states that the robot’s pan joint is curneatl positionpos if and only if it has just
gueried that joint, and the value returned is etiabs, or it has panned its head to the
position pos from the previous postioposi, or, it has not panned its head, and the pan

position waspos in the previous situation.

Similar successor state axioms are provided forrhé/ointPos(pos, do(a, s)) and

tiltJointPos(pos, do(a, s)) fluents.

4.3.5 Control Procedures

Similar to the domain axiom, we provide two sepaats of control procedures, one for

each level of abstraction.

4.3.5.1 Top-level control procedure

Control at the top level is very simple. The foliagy procedure helps to plan the best

sequence of high-level moves to get from the ctinreom to the goal room. It takes as

input the numbern of moves allowed and produces ansteps plan by non-
deterministically choosing between the four actionsth(t), east(t), south(t) and

west ().

proc(pathPlanning(n),

7T(t; W(nu
?(now(t)) :
if n < 1 then

noOp(t),
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else
(north(t) # east(t) # south(t) # west(t) ) :
?(n, is n — 1) : pathPlanning(n,)

endif

)

4.3.5.2 Lower-level control procedures

Once a high-level plan has been produced and pdssié execution unit, the macro
actions that appear in that plan will be expanageddescribed in section 4.3.3, into a
lower level procedure, which will then be passedatoecursive call of the DTGolog

interpreter. The four macro actions will be expahuto the following procedures:

macroAction(north(t),
limit (approachDot(pink)) : playSound("woof.wav", t) :

?(wait(3, t)) : walk(500, t)
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macroAction(east(t),
limit (approachDot(yellow)) : playSound("woof.wav", t) :

?(wait(3, t)) : walk(500, t)

).

macroAction(south(t),
limit (approachDot(blue)) : playSound("woof.wav", t) :
?(wait(3, t)) : walk(500, t)

).

macroAction(west(t),
limit (approachDot(orange)) : playSound("woof.wav", t) :
?(wait(3, t)) : walk(500, t)

).

where walk (500, t) is the shorthand fowalk (500, 0, t) and approachDot(color) is a

deterministic procedure that brings the robot clpgéhin 55 mm) to the dot of specified
color. Because each door has a unique color dagreskto it, getting close to the door
has the effect of making the robot ready to crbssugh the door, and get to the room in
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the specified direction. Once the robot is closeh® desired door, and ready to go

through, it will make a barking soundof.wav) to request the removal of the door and
wait for 3 seconds. After 3 seconds, the door le&s lemoved, and the robot will simply
walk straight ahead for 500 mm to enter the desioedh. Thelimit() operators are used
to prevent DTGolog to search beyond typroachDot() procedure: Intuitively, not

until it has successfully approached the color ttet,robot should not only worry about

barking or walking head.

The definition of theapproachDot(color) procedure is given below. (We write this

procedure in Golog because we want to demonst@te®olog sub-controllers can be
used in the online version of DTGolog, and how Agronitive actions can be performed

using the GTI interface).

proc approachDot(color)
m(t)[ (now(t))?;
7 (pval, nval, tval, vis, zcoord, ycoord, area, dist)[
limit( queryHeadJoints(pval, nval, tval, t);
queryBall(color, vis, zcoord, ycoord, area, t);
queryNearDistance(dist, t) );
if (lookingStraight A ballWithinSight(color) A dist < 55) then
noOp(t)
else
7 (found, pvall, nvall, tvall, distl, pvallabs, pvallless, p, n)/
limit( searchBall(color, found, t) :
queryHeadJoints(pvall, nvall, tvall, t) :
queryNearDistance(dist1, t) );
limit( ?(abs(pvall, pvallabs)) :
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?(pvallless is pvall * 2 / 3) :

if (pvallabs > 10) then
turn(pvallless, t)

else if (dist1 > 200) then
walk(150, t),

else if (distl > 55) then
walk(50, t),

else
noOp(t)

endif ;

(p = —pvall)? ; (n =15 — nvall)? ;

pan(p, t) : nod(n, t) );

approachDot(color)

endif
/I

endproc

Briefly, this procedure continuously checks to ffethe robot is close to the specified

color dot, by testing the fluentsokingStraight(), ballWithinSight() and measure the

distance to the wall. If yes, the procedure ex@therwise, it scans its head around
looking for the dot. Depending on the angles thiendakes with its head (which the robot
senses by reading its pan joint), and dependingherdistance to the wall (which the
robot senses by reading its distance sensor),abet mwill try to either turn or walk

forward in order to approach the dot. This approagprocess is repeated until the robot

is close enough to the dot, at which point the pdoce exits.
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4.3.6 Results

We performed several trials of the experimentsheee from a random starting room, a
random robot orientation and placement, and a randgoal room. The following table

shows some experimental data for 8 random trials.

Table 6 Maze traversing trials

) Avg Time
. Number of door Total Time
Trial Start End . Per door
crossing (second)
(second)
1 (1,2) (3,3) 4 321 80.25
2 (1,1) (3,3) 4 384 96
3 (1,2) (3,2) 3 295 98.33
4 (1,1) (2,3) 3 306 102
5 (1,2) (2,2) 2 198 99
6 (1,1) (1,3) 2 183 915
7 (1,2) 1,2) 1 103 103
8 (1,2) (2,1) 1 96 96
Average Second per Dopr  95.76

MPEG movies of selected trials and source codetier complete software package

(including the GTlI interface and this robotics exden are available at:
http://www.scs.ryerson.ca/~mes/gti/

and is freely distributed for research and teacpungoses.
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5 Conclusion

This chapter provides a brief summary of the resulfported in this thesis. It also
discusses the contributions made by this thesis sorde possible future research

directions.
5.1 Summary

Probabilistic or decision theoretic planning iseaydesirable tool in the fields of Al and
Robotics. Given the complete and accurate moddhefworld’s dynamics, decision
theoretic planning provides a decision making agetnly with the ability to figure out
the way to accomplish its goals but also with thiitg to accomplish these goals in the
optimal way. Despite the fact that a lot of reshagtforts have been contributed to this
field, current techniques still have difficulties itv real-world and large-scale
applications. DTGolog is a promising logic-basedisien theoretic planning framework
that has the potential of handling real-world aggtibns because it allows domain-
specific knowledge to be utilized as “advices” tlwnstrain the search space into
practical size. This thesis advocates the pradiyjcahd usefulness of DTGolog by (1)
applying it to a real-world and complex domain bé tLondon Ambulance Service, to
demonstrate its expressiveness and applicability,byy (2) bridging it to the popular and
powerful robotics platform of the Sony’s Aibo Ropeta the Tekkotsu framework, to

create a complete cognitive robotics research@itatin which DTGolog can be used.
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5.2 Contributions

The contribution of the research work reported laeeas follows:

1) We have revised the DTGolog interpreter tovalloto make use of the new
linear constraints solver with a different API thatavailable in Eclipse Prolog, a well-
known Prolog interpreter developed at IC-PARC @eaech and development company
at Imperial College, London, UK)version 5.7 and above, instead of the solveitahla
in Eclipse Prolog version 3.5.2 and below. Thidsiewm allows DTGolog to be used with
more recent versions of Eclipse Prolog and solegteal constraints in Golog programs
more efficiently using the well-known commerciahde linear constraint solver by

ILOG, a well-known mathematical optimization softeaompany:

2) We have demonstrated the expressiveness anidadqigy of the DTGolog
framework on large-scale problems by building amélying an extensive logical
formalization [25;26], plus an environment simutatimd a simulator interface, for a
well-known case study, the London Ambulance Setsic@omputer Aided Dispatch

System.

3) We have implemented and demonstrated a softwdesface that brings
DTGolog’s high-level reasoning and decision thaorptanning capabilities to the Sony
AIBO robot’s powerful, reliable yet inexpensive atizs platform to create a complete
research robotics platform that provides Al and &3 researchers with the ability to
conveniently do high-level reasoning on a real paderful robot. This platform can be
used as a platform for doing research in cognitdletics, and can serve as a basis for a

future graduate course on the same topic.

4 http://eclipse.crosscoreop.com/eclipse/index.html

® http://www.ilog.com/
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5.3 Future Works

Two of the most important directions for futuregasch with DTGolog are the scalability

of the DTGolog framework and the incorporationesdrhing into the framework.

Scalability can be improved by using sampling téghes to deal with large branching
factor (in the version of directed value iteratibrat provides semantics for a DTGolog
interpreter DTGolog) and by using progression tal @gth growing situation terms. Our
research goal is a more advanced framework thah@adle models that are large enough
to be of use in software design applications swltha current LAS-CAD system. In
2004, the real LAS-CAD system has about 30 regiabsut 400 vehicles and was the

largest public ambulance system in the world.

Learning would also be a nice feature to have ilGbIbg. As of current, the interpreter

can only do planning, and expects both the rewaddteansition probabilities functions

to be completely specified (by theward() and prob() predicates). If learning can be

incorporated into DTGolog, DTGolog-based agents male the ability to figure out the
optimal behavior by interacting with their enviroents, and will not require the

knowledge of a complete transition probabilitiesdtion.
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Appendix A

Golog-Tekkotsu Interface:

Application Programming Interface

The following predicates represent the actions &h&olog interpreter can execute on
AIBO:

querySensors(sensors, values, t)

This action unifievalues with a list that contains the values, obtainetimé t, from all

the sensors whose names are mentioned in treerslrs, which can contain any number
of sensors, up to the total number of availablessenon the robot. Please refer to
Appendix B for the list of sensor and joint nanmést example:

guerySensor([neckTiltl, neckPan, neckTilt2], V, 0)

will unify the variableV with a list of 3 double numbers corresponding®talue of the

robot’s Tilt, Pan and Nod joints, respectively.

This is a blocking action. That is, the call tostpredicate will not return until it has been
completed by the robot.

queryBall(color, visible, xcoord, ycoord, area, t)

This action checks to see if the ball of catotor , where color can be one of the terms

{pink, orange, yellow, green}, is visible within the robot camera image at timé# yes,

it unifiesvisible with the number 1xcoord andycoord with the coordinate of the ball's
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center within the image, aralea with the area of the ball within the image. Othisay it

unifiesvisible with the number 0. For example:
queryBall(pink, Vis, X, Y, Area, 0)

will tell whether the pink ball is visible in thelot's camera at time 0, as well as its area

and center’s location.

This is a blocking call.

searchBall(color, found, t)

This action causes the robot’s head to scan aratading from time, searching for the
ball of colorcolor. If it finds the ball, the action will leave thelrot’'s head pointing
directly toward the ball’s center, and uniffesnd with the numbef. Otherwise, it

leaves the robot head at an arbitrary positionuanfies found with the numbe®.

This is a blocking call.

moveJoints(jointCmdList, t)

This action moves, starting from tinheall the joints whose names are mentioned in the
joint commands that are in th@ntCmdList, which can contain any number of joint
commands (up to the number of available jointshenrbbots). For example:

moveJoints([[IflJoint1, 10], [rflJoint1, 10]], 0)

contains two joint commands (two sub-lists inside big list), and will concurrently
move both the left and right front rotators 10 cegr.

This is a non blocking call.
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motion(motionFile, t)

This action starts the motion definedntionFile at timet, wheremotionFile is a

standard Tekkotsu motion sequence descriptordde {Tekkotsu tutorial for more details

about motion sequences). For example:
motion(“getrdy.mot”, 0)

will cause the robot to perform the motion defimgcthe file “getrdy.mot” at time 0. The
file “getrdy.mot” is made available by the intergalsy default. To create more motion

sequences, please refer to the Tekkotsu’s Begifuterial for a detailed instruction.

This is a non-blocking call.

walk(zx, y, t)

This action causes the robot to walk, at timemm forward (backward if negative) and

y mm to the left (right if negative). For example:

walk(500, 100, 0)

will causes the robot to walk, starting from times00 mm in the forward direction and
100 mm in the side direction. Note that this acsonply “translates” (i.e., it preserves
the robot’s body orientation) along the (500, 1@&3tor instead of causing it to turn and

walk toward the direction of that vector. Likewislee action
walk(0, 500, 0)

will cause the robot to do side-walking 500 mmkte keft. To make the robot to turn its

body, use theurn() action described below.
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Because this action is implemented using Tekkotsalk engine, it is possible to change
the robot walking gait. Please refer to Tekkotdifalk Calibration tutorial for instruction

on how to do this.

This is a non-blocking call.

startWalk(z, y, t)

This action causes the robot to start walking, fimitely, in the direction given by the

vectors = (X, Y).

This is a non-blocking call.

endWalk(t)

This action causes the robot to stop walking agtiif it is walking at that time),

regardless of whether it was starteduayk() or start Walk().

This is a non-blocking call.

turn(a, t)

This action causes the robot to turn an amgkround the z-axis (vertical axis), at titne

For example:
turn(50, 0)

will cause the robot to turn, by jogging in plaitdgody 50 degrees to the left starting at

time O.

This is a non-blocking call.
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startTurn(a, t)

Similar to startWalk().

end Turn(t)

Similar to endWalk().
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Appendix B

Primitive Names and Descriptions

= Please refer to SonyERS-7 Model Information document for more details on sensor
information such as their:

- Location on the robot
- Zero position

- Type

- Value ranges

NAME MOVABLE DESCRIPTION
bAccel N Accelerometer front-back (positive = baekd)
|Accel N Accelerometer left-right (positive = left)
dAccel N Accelerometer up-down (positive = down)
chestIRDist N Chest distance
nearlRDist N Head near distance
farIRDist N Head far distance
wirelessSwitch N Wireless lan switch
fBack N Back sensor (front)
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NAME MOVABLE DESCRIPTION
mBack N Back sensor (middle)
rBack N Back sensor (rear)
head N Head sensor
chin N Chin switch
[fPaw N Left front paw button
rfPaw N Right front paw button
IrPaw N Left rear paw button
rrPaw N Right rear paw button
neckTiltl Y The neck-shoulder joint
neckPan Y Head pan
neckTilt2 Y The neck-head joint
mouth Y Mouth
rflJointl Y Right front leg jointl (Shoulder Rota}o
rflJoint2 Y Right front leg joint2 (Shoulder Lift)
rflJoint3 Y Right front leg joint3 (Knee)

B.2




NAME MOVABLE DESCRIPTION
IflJointl Y Left front leg jointl (Shoulder Rotador
IflJoint2 Y Left front leg joint2 (Shoulder Lift)
IflJoint3 Y Left front leg joint3 (Knee)
rrlJointl Y Right rear leg jointl (Hip Rotator)
rrlJoint2 Y Right rear leg joint2 (Hip Lift)
rrlJoint3 Y Right rear leg joint3 (Knee)
IrlJointl Y Left rear leg jointl (Hip Rotator)
IrlJoint2 Y Left rear leg joint2 (Hip Lift)
IrlJoint3 Y Left rear leg joint3 (Knee)
tailPan Y Tail pan
tailTilt Y Tall tilt
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Appendix C

Important Data Structures and

Software Design Notes

C.1 Introduction

This interface follows the client/server approaahd has two main components. The
client runs on a Unix-based machine as an Eclipséo@s external predicate module
and provides the Golog interpreter with a predefiset of predicates representing the
robot actions. Please refer to appendix A for aieson of these actions. The server
runs on the AIBO as a Tekkotsu program (also cadlebdehavior) and continuously

listens to the wireless network for commands fromdlient.

We will sometime refer to the client as the AibalPreodule, and the server as the GTI
server (Golog-Tekkotsu Interface server). We wabaefer to the predicates provided by
the client as action predicates. For brevity, wi refer to the Eclipse Prolog interpreter
as Eclipse Prolog, or sometime, just Eclipse. (Nbt it is not related to the Eclipse
environment developed by IBM).

The following diagram describes the overall ardiiiee of the interface.

UNIX HOST AIBO

GOLOG PROGRAM
it

GOLOG INTERPRETER
T
ECLIPSE PROLOG
iboPre

TEKKOTSU FRAMEWORK

Tekkotsu Behaviors

TCP/IP
Wireless
Network

Figure C1 Software Architecture of the interface
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C.2 The client

The client is implemented in the fiéa bopr ed. c. Its operations can be summarized by
noting that each robot action is represented byreesponding action predicate, and each
action predicate is implemented by a correspondirfgnction in the AiboPred module.
To execute a robot action, the Golog interpretdss aSclipse Prolog to evaluate its
corresponding action predicate. To evaluate ammgiredicate, Eclipse Prolog executes

a corresponding C function in the AiboPred module.

When an AiboPred function is called, it parsegtad action’s arguments and assembles
them into an appropriate data structure, which werefer to as a TCP Command, and
send it over the wireless network to the GTI serierbe carried out. Then, upon
receiving a reply from the server, the client wékurn to Eclipse with any applicable

results.

For more information about external predicates idlipgSe Prolog, please refer to
Eclipse’sinterfacing and Embedding Manual.

C.3 Client-Server Communication

All data structures that are used in client-sew@nmunications are defined in the file
TCPComm h.

As mentioned above, when an AiboPred function Iedait sends a TCP command to
the server to be carried out. This command is stgf two parts: a header, which is
defined using the same data structure for all contsaand a body, which is defined by

different data structures for different commandety/p

Command headers are defined by the following dat&tsire:

struct CndHdr {
int type;

int |en;
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wheret ype is an enumerated value representing the diffe@mdtractions, antlen is
the length (in bytes) of the command body, whicldiféerent for different command

types as well as different command arguments.

When it sends a TCP command to the server, thatdliees it in two separate stages.
First, it sends the command header, which tells#reer the type and the amount of data
it should expect to receive. Then, it sends the mand body, which contains all

necessary information about the command.

The following table shows the names of the datactires that are used to represent the

command body and the server’s reply for the difierebot actions.

Data Structure representing
Action
Command Body Server’'s Reply
querySensors() | Struct Sensor Crd doubl e array
queryBall() i nt (enumerated ball colors) | struct Bal |
searchBall() i nt (enumerated ball colors) | i nt
motion() string (name of motion N A
sequence descriptor file)

walk() struct \Wal kParam N A
turn() struct \Wal kParam N A
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C.4 The server

This section describes the GTI server's design @etations. Readers who are new to
Tekkotsu should refer to the Tekkotsu's Beginner'3utorial (TBT),

http://www.cs.cmu.edu/~dst/Tekkotsu/Tutorial/, whidascribes the basics components
of a Tekkotsu behavior as well as all the main epis used in Tekkotsu. To point the
reader to the background needed to understandpim@tmon of the GTI sever, relevant

sections in the tutorial will be cited throughohistdiscussion.

The GTI server consists of three different compdésiea Tekkotsu behavior called the
GTI Behavior, which handles all network communicat with the clients, and two
motion commands called the GtiMC and GtiHeadMC,olhinteracts with Tekkotsu on
behalf of the GTI Behavior to controls the roboinjs. (Please refer to the TBT for
information about the role and design of Tekkotshdyviors and motion commands.) The
following diagram shows how the three componentthefGTI server, along with other

library-provided motion commands, fit together:

Gti Behavior
(GtiBehavior.cc,
GtiBehavior.h)

GtiMe GtiHeadMC i g
(GEMC.h) (GtiHeadMC.h) L B
TEKKOTSU VISION FACILITY TEKKOTSU INFRASTRUCTURES

Figure C2 Overal organization of the GTI server
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C.4.1 The Motion Commands

The WalkMC and MotSegMC are library-provided moticommands that can be used
by Tekkotsu behaviors to make the robot walk andop@ motion sequence. (Please
refer to the sections about Walking and Motion ®e&ges for information about how

these MCs can be used).

GtiMC is a custom motion command that interactshwiekkotsu on behalf of the Gti
Behavior to move the robot joints. Whenever the Bhavior needs to move a set of
joints to satisfy a client’s request, it passesrappate parameters to the GtiMC, which in
turn converts the parameters into appropriate umitel then follows the necessary
procedures to fill out the joint control frame ke to make the joints move. Please refer
to the section about Motion Command in the TBTifdormation about the procedure of

filling in the joint control frame buffers.

GtiHeadMC is similar to GtiMC, but it only dealstithe three head joints instead of all
the joints available on the robot. This MC is cadlley the Gti Behavior whenever it needs

to scan the robot head around to satiske@chBall() request. The reason of having a

separate MC for the three head joints is that Sogrthe head around requires back-and-

forth motions, as opposed to unidirectional motionthe case of regulanoveJoints()

requests, and hence an algorithm with differentharetic for filling in joint control

frame buffers.

GtiMC and GtiHeadMC are implemented in GtiMC.h datiHeadMc.h. Their operation

and design are completely straight-forward andaedard to all motion commands.
C.4.2 The GTI Behavior

The GTI Behavior is a standard Tekkotsu behaviod aontains all the methods
(functions) that can be expected to be found imdsied Tekkotsu behaviors such as
DoStart(), DoStop(), ProcessEvent(), etc. The djmraof the GTI Behavior can be
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described by its methods (i.e., functions):

» DosStart() This method is called when the behavior is firsided by Tekkotsu. It
first initializes some data structures, and thegisters with Tekkotsu that it wants
to listen to a TCP/IP port (port 12345, defined@PComm.h), and that it wants
to receive event notification messages regardiigdetections and regarding the

GtiHeadMC, which generates an event every timmiglies scanning the head.

* DoStop() This method is called to do the necessary cleanwipsnever the

behavior is about to be unloaded by Tekkotsu.

* ProcessNetwork() This method is called by Tekkotsu every time nelkwdata
arrives at the TCP/IP port. Its operations can éscdbed using the following

finite state machine:

RecievingCmdHdr ¢

RecievingJointList RecievingSensorList RecievingWalkParam RecievingTurnParam

RecievingMotSeq RecievingBallQuery RecievingBallSearch

Figure C3 A finite state machine representing the GTI Server

The initial starting state is the ReceivingCmdHt#tes, in which the server waits
for a TCP command header from the client. Dependimghe type of the header

it received, the method switches to one of the camdrbody receiving states, in

C.6



which it waits for the command body of a certaipeyto arrive from the client.
Upon receiving the command body, the server apfatgby carries out the
command, replies to the client if necessary, areh tBwitches back to the
RecieingCmdHdr state.

Each type of command is carried out differentlyr Egample,querySensors()
commands are carried out by simply returning theslaset of sensor values,
which are made globally available in the form ofamay by Tekkotsu (see the

section about WorldState in the Tekkotsu's Begitsn&utorial); moveJoints()

commands are carried out by passing the joint camigiaarguments to the

GtiMC Motion Command;queryBall() commands are carried out by simply

returning the latest info about the ball, whichiveas viapr ocessEvent (),

described below;walk() commands are carried out by passing appropriate

parameters to Tekkotsu’'s WalkMC motion command nedsee the section

about WalkMC in TBT);motion() commands are carried out by passing the

motion sequence descriptor filename to the TekketdotSeqgMC Motion

Command module (See the section about MotionSeguantBT).

processEvent()This method is called by Tekkotsu every time améwé interest
occurs (See the section about Events in TBT foormétion regarding events
generation and processing in Tekkotsu). In the chthe GTI Server, since we
have registered, iDoSt art () method, to receive all events generated by the
system’s ball detection engine and by the GtiHeadMW({S method is called every
time a ball of some predefined color (pink, orangellow, green) is detected
within the robot’s camera image, or every time G&VIC generates an event
signaling it has completed the scanning of the hiathe case of a ball detection
event, the method save all the relevant data atbeuball (i.e., whether it is still

visible or has been lost, its center's coordinates,area) into a global data

structure so that subsequentryBall() requests can be quickly served.
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The GTI Behavior is implemented in the file&i Behavior.h and

G i Behavi or . cc.

The interface source code contains about 2500 bhesde, and an Aibo-ready memory
stick image for this interface, which include Tetdwand Open-R’s runtimes modules, is

about 7 MB in size.
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Appendix D

Simulation Data

Simulation Parameters:

- CommFailRate
- HospitalizeRate
- DiagnosisTime
- UnloadingTime

- TirednessMarkupTime
- CrewRecoveryTime

- SPB Emerg Home

- SPB Normal Home

- SPB Emerg Foreign

- SPB Normal Foreign

Requests Arrivals

MANUAL - 60

298
300
301
300
301
AVG 300
VAR 1.2

AUTOL1 - 60

297
300
302
303
301
AVG 300.6
VAR 4.24

AUTO2 - 60

299
302
301
300
302
AVG 300.8
VAR 1.36

OPTIMALL - 60

284
283
285
289
284
285

4.4

274
280
287
287
284
282.4
24.24

283
283
282
281
281
282

0.8

0.2
0.8
240
120
120
200
80
160
120
240

Late 8

224
237
247
245
247
240
77.6

209
214
193
202
192
202
74.8

210
202
192
197
196
199.4
38.24

Long Delay
81 13
57 11
78 12
74 11
70 18
72 iz
70 6.8
47 1
55 4
60 1
54 3
52 2

53.6 2.2

17.84 1.36
72 1
46 2
59 2
52 0
51 1
56 1.2

81.2 0.56

Both

130
169
157
160
159
155
173.2

161
155
132
145
138
146.2
113.36

137
154
131
145
144
142.2
60.56

Late 8 %

78.87
83.75
86.67
84.78
86.97
84.208
8.544256

76.28
76.43
67.25
70.38
67.61
71.59
16.31236

74.2
71.38
68.09
70.11
69.75

70.706

Long %

28.52
20.14
27.37
25.61
24.65
25.258
8.357736

17.15
19.64
20.91
18.82
18.31
18.966
1.596584

25.44
16.25
20.92
18.51
18.15
19.854

Delay %

4.58
3.89
4.21
3.81
6.34
4.566
0.860504

0.36
1.43
0.35
1.05

0.7
0.778
0.172616

0.35
0.71
0.71
0
0.36
0.426

4.154984 10.007704 0.070584

D.1

Both %

45.77
59.72
55.09
55.36
55.99
54.386
21.340824

58.76
55.36
45.99
50.52
48.59
51.844
21.360824

48.41
54.42
46.45
51.6
51.25
50.426
7.576424

Late 11

175
205
206
194
208
197.6
151.44

183
188
174
178
170
178.6
40.64

168
177
167
179
173
172.8
22.56

Long Delay
48 19

32 23

45 21

34 19

48 30
414 224
48.64 16.64
24 6

35 4

43 0

34 4

33 4
33.8 3.6
36.56 3.84
36 4

23 7

36 3

35 6

32 5
324 5
24.24 2

Both

108
150
140
141
130
133.8
206.56

153
149
131
140
133
141.2
74.56

128
147
128
138
136
135.4
50.24

Late 11 %

61.62
72.44
72.28
67.13
73.24
69.342
19.589216

66.79
67.14
60.63
62.02
59.86
63.288
9.505176

59.36
62.54
59.22
63.7
61.57
61.278
3.091616

Long %

16.9
11.31
15.79
11.76

16.9

14.532
6.172536

8.76
12.5
14.98
11.85
11.62
11.942
3.955616

12.72
8.13
12.77
12.46
11.39
11.494
3.078344

Delay %

6.69
8.13
7.37
6.57
10.56
7.864
2.127184

2.19
1.43

0

1.39

1.41
1.284
0.503584

1.41
2.47
1.06
2.14
1.78
1.772
0.252136

Both %

38.03

53

49.12
48.79
45.77
46.942
25.131096

55.84
53.21
45.64
48.78
46.83
50.06
14.98772

45.23
51.94
45.39
49.11
48.4
48.014
6.279944



301 287 245 60 4 181 85.37 20.91 1.39 63.07 225 45 8 172 78.4 15.68 2.79 59.93
303 289 268 69 5 194 92.73 23.88 1.73 67.13 242 51 10 181 83.74 17.65 3.46 62.63
299 285 246 71 1 174 86.32 2491 0.35 61.05 216 45 5 166 75.79 15.79 1.75 58.25
298 283 256 61 4 191 90.46 21.55 1.41 67.49 232 43 4 185 81.98 15.19 1.41 65.37
302 278 255 81 7 167 91.73 29.14 2.52 60.07 225 58 14 153 80.94 20.86 5.04 55.04
AVG 300.6 284.4 254 68.4 4.2 181.4 89.322 24.078 1.48 63.762 228 48.4 8.2 171.4 80.17 17.034 2.89 60.244
VAR 3.44 14.24 69.2 5824 376 102.64 8.667656 8.556456 0.4868 9.341216 748 30.24 1296 129.04 7.78624 4.359784 1.68948 12.625024
OPTIMAL2 - 60
303 292 201 87 20 94 68.84 29.79 6.85 32.19 141 43 30 68 48.29 14.73 10.27 23.29
300 288 195 70 27 98 67.71 24.31 9.38 34.03 139 29 41 69 48.26 10.07 14.24 23.96
296 278 192 71 16 105 69.06 25.54 5.76 37.77 141 30 38 73 50.72 10.79 13.67 26.26
299 288 190 70 20 100 65.97 24.31 6.94 34.72 127 28 31 68 441 9.72 10.76 23.61
297 288 209 60 19 130 72.57 20.83 6.6 45.14 156 26 49 81 54.17 9.03 17.01 28.12
AVG 299 286.8 197.4 716 204 105.4 68.83 24.956 7.106 36.77 140.8 312 378 71.8 49.108 10.868 13.19 25.048
VAR 6 21.76 47.44 75.44 13.04 163.84 4.69492 8.313424 1.466384 20.74868 84.96 36.56 48.56 2456 10.938136 4.050816 6.07132 3.449656
MANUAL - 75
301 290 214 122 6 86 73.79 42.07 2.07 29.66 160 75 10 75 55.17 25.86 3.45 25.86
300 293 186 165 4 17 63.48 56.31 1.37 5.8 123 108 6 9 41.98 36.86 2.05 3.07
300 286 237 124 14 99 82.87 43.36 4.9 34.62 183 80 23 80 63.99 27.97 8.04 27.97
303 294 201 148 9 44 68.37 50.34 3.06 14.97 137 92 15 30 46.6 31.29 5.1 10.2
298 285 228 117 7 104 80 41.05 2.46 36.49 177 75 10 92 62.11 26.32 3.51 32.28
AVG 300.4 289.6 2132 135.2 8 70 73.702 46.626 2.772 24.308 156 86 12.8 57.2 53.97 29.66 4.43 19.876
VAR 2.64 13.04 334.96 336.56 11.6 1147.6 51.328856 34.017864 1.433416 142.625336 527.2 159.6 34.16 1022.16 73.2354 16.58972 4.19044 126.249384
AUTO1 - 75
299 280 219 79 3 137 78.21 28.21 1.07 48.93 191 53 4 134 68.21 18.93 1.43 47.86
301 281 222 163 3 56 79 58.01 1.07 19.93 173 116 3 54 61.57 41.28 1.07 19.22
298 283 223 132 3 88 78.8 46.64 1.06 311 173 86 2 85 61.13 30.39 0.71 30.04
300 282 240 95 5 140 85.11 33.69 1.77 49.65 202 61 5 136 71.63 21.63 1.77 48.23
301 282 208 142 1 65 73.76 50.35 0.35 23.05 160 96 3 61 56.74 34.04 1.06 21.63
AVG 299.8 281.6 2224 1222 3 97.2 78.976 43.38 1.064 34.532 179.8 82.4 3.4 94 63.856 29.254 1.208 33.396
VAR 1.36 1.04 105.84 951.76 1.6 1246.96 13.090184 119.45408 0.201664 158.537936 220.56 529.84 1.04 1226.8 28.537344 66.706264 0.130816 155.983064
AUTO2 - 75
305 296 160 160 0 0 54.05 54.05 0 0 76 76 0 0 25.68 25.68 0 0
295 289 134 134 0 0 46.37 46.37 0 0 47 47 0 0 16.26 16.26 0 0
300 276 200 164 1 35 72.46 59.42 0.36 12.68 129 93 3 33 46.74 33.7 1.09 11.96
299 288 150 150 0 0 52.08 52.08 0 0 69 69 0 0 23.96 23.96 0 0
300 282 184 153 1 30 65.25 54.26 0.35 10.64 109 79 0 30 38.65 28.01 0 10.64
AVG 299.8 286.2 165.6 152.2 0.4 13 58.042 53.236 0.142 4.664 86 72.8 0.6 12.6 30.258 25.522 0.218 4.52
VAR 10.16 45.76 559.04 107.36 0.24 256 89.510216 17.686264 0.030256 33.045504 857.6 227.36 1.44 239.04 119.729776 32.263856 0.190096 30.81984
OPTIMALL - 75
300 283 260 142 1 117 91.87 50.18 0.35 41.34 231 114 2 115 81.63 40.28 0.71 40.64
303 289 266 114 4 148 92.04 39.45 1.38 51.21 225 79 7 139 77.85 27.34 2.42 48.1
301 282 276 158 2 116 97.87 56.03 0.71 41.13 238 123 6 109 84.4 43.62 2.13 38.65
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300 286 243 177 2 64 84.97 61.89 0.7 22.38 186 122 1 63 65.03 42.66 0.35 22.03

299 282 264 121 0 143 93.62 42.91 0 50.71 226 84 5 137 80.14 29.79 1.77 48.58
AVG 300.6 284.4 261.8 1424 1.8 117.6 92.074 50.092 0.628 41.354 221.2 104.4 4.2 112.6 77.81 36.738 1.476 39.6
VAR 1.84 7.44 116.16 541.04 1.76 889.04 17.298664 67.858736 0.209816 108.947704 330.96 361.84 5.36 754.24 45.35588 46.314976 0.651984 92.71588
OPTIMAL2 - 75
299 290 143 136 2 5 49.31 46.9 0.69 1.72 40 36 3 1 13.79 12.41 1.03 0.34
300 290 184 110 13 61 63.45 37.93 4.48 21.03 117 53 22 42 40.34 18.28 7.59 14.48
301 291 164 132 4 28 56.36 45.36 1.37 9.62 66 41 9 16 22.68 14.09 3.09 55
298 290 179 142 11 26 61.72 48.97 3.79 8.97 78 49 11 18 26.9 16.9 3.79 6.21
299 291 143 130 3 10 49.14 44.67 1.03 3.44 56 47 4 5 19.24 16.15 1.37 1.72
AVG 299.4 290.4 162.6 130 6.6 26 55.996 44.766 2.272 8.956 71.4 45.2 9.8 16.4 24.59 15.566 3.374 5.65
VAR 1.04 0.24 299.44 116.8 20.24 385.2 36.033224 13.864104 2.407696 45.801704 675.04 36.16 46.16 205.04 80.46184 4.325064 5.507744 24.3892
MANUAL - 90
296 290 188 167 6 15 64.83 57.59 2.07 5.17 113 97 4 12 38.97 33.45 1.38 4.14
299 293 188 151 3 34 64.16 51.54 1.02 11.6 125 91 5 29 42.66 31.06 1.71 9.9
304 297 172 169 0 3 57.91 56.9 0 1.01 102 99 1 2 34.34 33.33 0.34 0.67
299 293 179 172 2 5 61.09 58.7 0.68 1.71 114 110 0 4 38.91 37.54 0 1.37
302 293 200 160 8 32 68.26 54.61 2.73 10.92 133 98 11 24 45.39 33.45 3.75 8.19
AVG 300 293.2 185.4 163.8 3.8 17.8 63.25 55.868 13 6.082 117.4 99 4.2 14.2 40.054 33.766 1.436 4.854
VAR 7.6 4.96 89.44 56.56 8.16 170.96 12.32116 6.472936 0.95812 19.905176 113.84 38 14.96 114.56 14.079544 4.391064 1.739224 13.348984
AUTO1 - 90
300 294 193 193 0 0 65.65 65.65 0 0 115 115 0 0 39.12 39.12 0 0
301 295 201 201 0 0 68.14 68.14 0 0 129 129 0 0 43.73 43.73 0 0
300 290 190 190 0 0 65.52 65.52 0 0 116 116 0 0 40 40 0 0
299 290 190 190 0 0 65.52 65.52 0 0 123 123 0 0 42.41 42.41 0 0
304 297 202 202 0 0 68.01 68.01 0 0 130 130 0 0 43.77 43.77 0 0
AVG 300.8 293.2 195.2 195.2 0 0 66.568 66.568 0 0 122.6 122.6 0 0 41.806 41.806 0 0
VAR 2.96 7.76 2776  27.76 0 0 1517976 1.517976 0 0 39.44 39.44 0 0 3.680024 3.680024 0 0
AUTO2 - 90
299 297 126 126 0 0 42.42 42.42 0 0 36 36 0 0 12.12 12.12 0 0
298 294 137 137 0 0 46.6 46.6 0 0 37 37 0 0 12.59 12.59 0 0
299 295 118 118 0 0 40 40 0 0 27 27 0 0 9.15 9.15 0 0
301 299 156 156 0 0 52.17 52.17 0 0 40 40 0 0 13.38 13.38 0 0
298 294 118 118 0 0 40.14 40.14 0 0 29 29 0 0 9.86 9.86 0 0
AVG 299 295.8 131 131 0 0 44.266 44.266 0 0 33.8 33.8 0 0 11.42 11.42 0 0
VAR 1.2 3.76 204.8 204.8 0 0 21.310224 21.310224 0 0 2456 24.56 0 0 2.6574 2.6574 0 0
OPTIMAL1 - 90
298 291 173 169 0 4 59.45 58.08 0 1.37 108 104 0 4 37.11 35.74 0 1.37
298 292 210 204 0 6 71.92 69.86 0 2.05 148 143 1 4 50.68 48.97 0.34 1.37
300 291 193 193 0 0 66.32 66.32 0 0 130 130 0 0 44.67 44.67 0 0
302 295 196 194 1 1 66.44 65.76 0.34 0.34 147 146 0 1 49.83 49.49 0 0.34
303 293 189 189 0 0 64.51 64.51 0 0 107 107 0 0 36.52 36.52 0 0
AVG 300.2 292.4 192.2 189.8 0.2 2.2 65.728 64.906 0.068 0.752 128 126 0.2 1.8 43.762 43.078 0.068 0.616
VAR 4.16 2.24 142.16 132.56 0.16 5.76 16.019016 14.804384 0.018496 0.673496 321.2 310 0.16 3.36 36.439896 35.043496 0.018496 0.394424
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OPTIMAL2 - 90

299
302
300
299
301
AVG 300.2
VAR 1.36

MANUAL - 120

300
300
302
300
302
AVG 300.8
VAR 0.96

AUTOL1 - 120

300
298
298
300
299
AVG 299
VAR 0.8

AUTO2 - 120

301
302
299
299
302
AVG 300.6
VAR 1.84

OPTIMALL - 120

302
300
301
301
298
AVG 300.4
VAR 1.84

OPTIMAL2 - 120

298

290
295
297
295
296
294.6
5.84

296
296
300
295
301
297.6
5.84

293
292
295
295
296
294.2
2.16

298
296
295
297
299
297

294
293
294
297
294
294.4
1.84

295

111
126
149
135
132
130.6
153.04

160
164
160
170
162
163.2
13.76

200
176
159
170
191
179.2
214.96

125
123
118
108
117
118.2
34.96

195
184
193
186
189
189.4
17.04

113

109
125
141
126
132
126.6
109.84

160
160
160
164
162
161.2
2.56

200
176
159
170
191
179.2
214.96

125
123
118
108
117
118.2
34.96

195
184
192
186
189
189.2
15.76

110

= Wwoo

o

1.36

NOOoOo

o

0.64

[eleNolNolNoNoNe]

[eleNoNolNoNoNo]

2 38.28
1 42.71
5 50.17
8 45.76
0 44.59
3.2 44.302

8.56 15.088216

0 54.05
4 55.41
0 53.33
4 57.63
0 53.82
1.6 54.848

3.84 2.410656

0 68.26
0 60.27
0 53.9
0 57.63
0 64.53
0 60.918
0 25.486936

0 41.95
0 41.55
0 40
0 36.36
0 39.13
0 39.798
0 4.001496

0 66.33

0 62.8

1 65.65

0 62.63

0 64.29
0.2 64.34
0.16 2.19488

0 38.31

37.59
42.37
47.47
42.71
44.59
42.946
10.448704

54.05
54.05
53.33
55.59
53.82
54.168
0.574656

68.26
60.27

53.9

57.63
64.53
60.918
25.486936

41.95
41.55

40

36.36
39.13
39.798
4.001496

66.33
62.8
65.31
62.63
64.29
64.272
2.035216

37.29

0

0

1.01
0.34

0

0.27
0.15424

o oo

0.68

0

0.136
0.073984

OO0 oo0ooo0oo

[eleNoNolNoNoNo]

1.02
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0.69
0.34
1.68
271

0

1.084
0.976584

0

1.35

0

1.36

0

0.542
0.440656

OO0 ooooo

0.068
0.018496

29

33

30

45

26
32.6
43.44

88
108
94
106
94
98
59.2

121
119

90

88

104
104.4
193.04

32

29

20

24

22
254
19.84

119
119
121
109
122
118
216

18

27

32

23

38

26
29.2
27.76

88
104
94
101
94
96.2
32.16

121
119

90

88

104
104.4
193.04

32

29

20

24

22
254
19.84

119
119
120
109
122
117.8
20.56

16

[l N eNe)

o

3.76

wooo

o

1.44

[eleNolNoNoNoNe]

[eleNolNolNoNoNo]

DON RN

4.16

NO MO

o

2.56

OO0 oo0oooo

OO0 oo0ooo0oo

oOkFr oo

o

0.16

10

11.19
10.1
15.25
8.78
11.064
4.963304

29.73
36.49
31.33
35.93
31.23
32.942
7.472576

41.3
40.75
30.51
29.83
35.14

35.506
23.676184

10.74
9.8

6.78
8.08
7.36
8.552
2.225696

40.48
40.61
41.16
36.7
415
40.09
3.00952

6.1

9.31
10.85
7.74
12.88
8.78
9.912
3.210056

29.73
35.14
31.33
34.24
31.23
32.334
4.102824

41.3
40.75
30.51
29.83
35.14

35.506
23.676184

10.74
9.8

6.78
8.08
7.36
8.552
2.225696

40.48
40.61
40.82
36.7
415
40.022
2.882496

0

0

1.68

0.34

0

0.404
0.424384

o oo

1.02

0

0.204
0.166464

[eleNoNolNoNoNe]

[eleNoNolNoNoNe]

0.69
0.34
0.67
2.03

0

0.746
0.475784

0

1.35

0

0.68

0

0.406
0.292144

[eleNolNelNoNoNe]

[eleNoNoNoNoNe]

0

0

0.34

0

0

0.068
0.018496



302
305
302
301
AVG 301.6
VAR 5.04

MANUAL - 150

302
301
302
302
299
AVG 301.2
VAR 1.36

AUTOL1 - 150

303
303
298
300
302
AVG 301.2
VAR 3.76

AUTO2 - 150

300
299
300
303
301
AVG 300.6
VAR 1.84

OPTIMALL1 - 150

300
300
297
298
298
AVG 298.6
VAR 1.44

OPTIMAL2 - 150

302
301
302
300
301

298
302
300
299
298.8
5.36

296
299
295
300
297
297.4
3.44

298
299
294
298
298
297.4
3.04

297
296
298
303
298
298.4
5.84

295
296
293
296
293
294.6
1.84

300
299
300
298
298

122
106
121
124
117.2
45.36

160
154
175
158
157
160.8
54.16

182
158
173
178
167
171.6
71.44

120
138
108
117

91
114.8
236.56

173
180
169
181
190
178.6
52.24

121
117
111
134
116

120
106
121
124
116.2
48.16

160
153
175
158
157
160.6
57.04

182
158
173
178
167
171.6
71.44

120
138
108
117

91
114.8
236.56

173
180
169
181
190
178.6
52.24

121
117
111
134
116

o oo

o

1.44

[eleNolNoNoNoNe] OO0 oooo0oo [eleNoNelNoNoNo]

oo ooo

o onN

o

0.64

oo kr o

0.2
0.16

oo ooo

40.94

35.1
40.33
41.47
39.23
5.411

54.05
51.51
59.32
52.67
52.86
54.082
7.507976

61.07
52.84
58.84
59.73
56.04
57.704
8.630504

40.4

46.62
36.24
38.61
30.54
38.482
27.604816

58.64
60.81
57.68
61.15
64.85
60.626
6.154744

40.33
39.13

37
44.97
38.93

40.27
35.1
40.33
41.47
38.892
5.511696

54.05
51.17
59.32
52.67
52.86
54.014
7.876264

61.07
52.84
58.84
59.73
56.04
57.704
8.630504

40.4

46.62
36.24
38.61
30.54
38.482
27.604816

58.64
60.81
57.68
61.15
64.85
60.626
6.154744

40.33
39.13

37
44.97
38.93

oo oo

0.204
0.166464
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OO0 oo0ooo0oo OO0 oo0ooo0oo [eleNolNolNoNoNo]

[eNeNoNoNe]

0.67

0

0

0

0.134
0.071824

0.066
0.017424

OO0 oooo0oo [eleNolNolNoNoNo] [eleNolNeNoNoNo]

[eNeNoNoNe]

21
21
21
19

1.6

91

78

110

88

80
89.4
129.44

116
95
102
108
95
103.2
64.56

24
20
19
18
18
19.8
4.96

99
99
87
102
98
97
26.8

23
29
33
29
22

19
21
21
19
19.2
3.36

91

7

110

88

80
89.2
134.16

116
95
102
108
95
103.2
64.56

24
20
19
18
18
19.8
4.96

99
99
87
102
98
97
26.8

23
29
33
29
22

o onN

o
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[eleNolNoNoNoNe] OO0 oo0ooo0oo [eleNolNolNoNoNo]

[eNeNoNoNe]

oo kr o

0.2
0.16

[eNeNoNoNe]

7.05
6.95

6.35
6.69
0.1514

30.74
26.09
37.29
29.33
26.94
30.078
15.752376

38.93
31.77
34.69
36.24
31.88
34.702
7.360376

8.08
6.76
6.38
5.94
6.04
6.64
0.60112

33.56
33.45
29.69
34.46
33.45
32.922
2.755176

7.67
9.7
11
9.73
7.38

6.38
6.95

7

6.35
6.42
0.32476

30.74
25.75
37.29
29.33
26.94
30.01
16.31324

38.93
31.77
34.69
36.24
31.88
34.702
7.360376

8.08
6.76
6.38
5.94
6.04
6.64
0.60112

33.56
33.45
29.69
34.46
33.45
32.922
2.755176

7.67

11
9.73
7.38

[eleNolNelNoNoNo] OO0 oo0oooo OO0 oo0ooo0oo

[eNeNoNoNe]

OO0 oooo

0.066
0.017424

[eleNolNolNoNoNo] [eleNoNelNoNoNe] [eleNolNeNoNoNo]

[eNeNoNoNe]



VAR 0.56 0.8 60.56 60.56 0 0 7.137136 7.137136 0 0 16.96 16.96 0 0 1.874024 1.874024

D.6



References

[1]

[2]

[3]

[4]

[S]

[6]

[7]

[8]

[9]

[10]

D. Andre, "Programmabl e reinforcement learning agents.” PhD Thesis. Computer
Science Division, University of California, Berkeley. Available at
http://205.201.13.117/davidandre/diss.html 2003.

A. Barto, S. Bradtke, and S. Singh, "Learning to Act using Real-Time Dynamic
Programming,” In Artificial Intelligence vol. 72, pp. 81-138, 1995.

C. Boutilier, T. Dean, and S. Hanks, "Decision-Theoretic Planning: Structural
Assumptions and Computational Leverage,” Journal of Artificial Intelligence
Researchval. 11, pp. 1-94, 1999.

C. Boutilier, R. Reiter, and B. Price, "Symbolic Dynamic Programming for First-
order MDPs," Proceedings of the Seventeenth International Joortference on
Artificial Intelligence 2001.

N. Cole and P. Stone, "Machine Learning for Fast Quadrupedal Locomotion,”
Proceedings of the Nineteenth National ConferemcAntificial Intelligence
AAAI-04 2004.

N. Cole and P. Stone, "Policy Gradient Reinforcement Learning for Fast
Quadrupedal Locomotion,” 2004.

CommbDirectorate, "Report of the Inquiry Into The London Ambulancevise
(South West Thames Regional Health Authorlty)ie 8th International
Workshop on Software Specification and Design Case Study. Electronic Version
prepared by Anthony Finkelstein. Available at
http://www.cs.ucl.ac.uk/staff/A.Finkel stein/las.html", 1993.

Crabbe Frederick, "Unifying Undergraduate Artificial Intelligence Robotics:
Layers of Abstraction Over Two Channels," Artificial Intelligence Magazingpp.
23-38, 2006.

T. Dietterich, "Hierarchical Reinforcement Learning with the MAXQ Vaue
Function Decomposition,” Journal of Artificial Intelligence Researchol. 13, pp.
227-303, 2000.

A. Ferrein, Fritz C, and G. Lakemeyer, "Using Golog for Deliberation and Team
Coordination in Robotic Soccer," Kl Kunstliche Intelligenzvol. 1 2005.

90



[11] C. Fritz, "Integrating decision-theoretic planning and programming for robot
control in highly dynamic domains.” Masters Thesis. RWTH-Aachen, Germany.
Available at http://www.cs.toronto.edu/~fritz/ 2003.

[12] C. Fritzand S. Mcllraith, "Decision-Theoretic GOLOG with Qualitative
Preferences,” Proceedings of the 10th International Conferencédnciples of
Knowledge Representation and Reasoning, Lake BistvK, 2006.

[13] J. Kramer and A. Wolf, "Succeedings of the 8th International Workshop on
Software Specification and Design,” ACM SIGSOFT Software Engineering Notes
vol. 21, no. 5, pp. 21-35, 1996.

[14] E. Letier and A. Lamsweerde, "Reasoning about partial goal satisfaction for
requirements and design engineering,” Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Softviargineering pp. 53-62,
2004.

[15] J. McCarthy and P. Hayes, "Some philosophical problems from the standpoint of
artificia intelligence,” Machine Intelligencepp. 463-502, 1969.

[16] R. Parr, "Hierarchical control and learning for markov decision processes.” PhD
Thesis. Computer Science Division, University of California, Berkeley. Available
at http://www.cs.duke.edu/~parr/#papers 1998.

[17] L. Peret and F. Garcia, "On-Line Search for Solving Markov Decision Processes
viaHeuristic Sampling,” Proceedings of the 16th Eureopean Conference on
Atrtificial Intelligence, ECAI2004pp. 530-534, 2004.

[18] R. Reiter, Knowledge in Action: Logical Foundations for Spgicif and
Implementing Dynamical Systeis$T Press, 2001.

[19] S. Sanner and C. Boutilier, "Practical linear value-approximation techniques for
first-order MDPs," In Proceedings of the 22nd Conference on Uncegam#l
(UAI-06), 2006.

[20] M. Shriharan, G. Kuhlmann, and P. Stone, "Practical Vision-Based Monte Carlo
Localization on a Legged Robot,” Proceedings of the IEEE International
Conference on Robotics and Automati2005.

[21] M. Shriharan and P. Stone, "Real-Time Vision on a Mobile Robot Platform,”
Proceedings of the IEEE International Conferencdraalligent Robots and
Systems2005.

[22] V. Soni and S. Singh, "Reinforcement Learning of Hierarchical Skills on the Sony
Aibo robot,” AAAI Technical Report Serie005.

91



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

M. Soutchanski, "An On-line Decision-Theoretic Golog Interpreter,” in
Proceedings of the Seventeenth International Cenfar on Atrtificial Intelligence
(IJCAI-01) 2001, pp. 19-26.

M. Soutchanski, "High-level robot programming in dynamic and incompletely
known environments." PhD Thesis. Department of Computer Science, University
of Toronto. Available at http://www.scs.ryerson.ca/~mes/publications/ 2003.

M. Soutchanski, H. Pham, and J. Mylopoulos, "Decision making in large-scale
domains: a case study,” A Members Poster in the American Association for
Artificial Intelligence Confereng&006.

M. Soutchanski, H. Pham, and J. Mylopoulos, "Decision Making in Uncertain
Rea-World Domains Using DT-Golog," The European Conference on Al (ECAI-
06), 2006.

P. Stone, R. S. Sutton, and G. Krulmann, "Reinforcement Learning for RoboCup-
Soccer Keepaway," Adaptive Behavigwvol. 13, no. 3, pp. 165-188, 2005.

R. Sutton, D. Precup, and S. Singh, "Between MDPs and Semi-MDPs. A
Framework for Tempora Abstraction in Reinforcement Learning,” Artif. Intell.,
vol. 112, pp. 181-211, 1999.

M. Veloso, W. Uther, M. Fujita, M. Asada, and H. Kitano, "Playing soccer with
legged robots,” In Proceedings of the Intelligent Robots and Syst€onference
1998.

M. Veloso, E. Winner, S. Lenser, J. Bruce, and T. Balch, "Vision-Servoed
Localization and Behavior-Based Planning for an Autonomous Quadruped
Legged Robot," Proceedings of the International Conference onfisrél

Intelligence Planning Systenr)00.

J. You, "Applying the GRL Framework to the LAS-CAD Case Study," Technical
Report. University of Toronto.,2004.

92



	Ryerson University
	Digital Commons @ Ryerson
	1-1-2006

	Applying DTGolog to Large-scale Domains
	Huy N. Pham
	Recommended Citation



