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ABSTRACT 

Railroads move freight traffic on their network based on an overall operations plan that includes 

blocking, train formation, and train scheduling plans. The optimization of these operations over 

the entire network is integral to maximizing efficiency and minimizing costs. This thesis 

develops a simulation model for analyzing various operation plans of a railroad network along 

with guidelines for establishing a comprehensive operations plan. The objective is to move all 

freight on the network with minimal cost. With the model simulation and comparison of several 

operation plans can be performed to determine the ‘best case’ plan. The model implements a 

discrete state, deterministic simulation approach.  The user-friendly software for implementation 

of the model was programmed in VBA and Excel. Application of the model is demonstrated 

using a hypothetical railroad network. The results show that the model is an effective tool in 

evaluating various scenarios and helping in determining the best plan. 
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1.  INTRODUCTION  

Railroads move freight from location to location using fixed tracks and long trains to maximize 

economies of scale and efficiency. As can be expected, the overall costs of the infrastructure are 

quite high, whereas, comparatively, the operational costs are relatively low. Though this is the 

case, there is still always room for improvement in the efficiency and cost effectiveness of 

railroad operations since this may reduce costly infrastructure investments. 

Railroads operate with four (4) major operating plans in place. These include the blocking plan, 

the train formation plan, the train schedule and the empty car distribution plan. This thesis is 

focused on three (3) of the major operating plans, which include the blocking plan, the train 

formation plan, and the train schedule.  The blocking plan regulates the contents and the number 

of blocks (set of cars) whereas the train formation plan regulates which blocks make up each 

train and how, consequently, the traffic flows over the network.  The train schedules and empty 

car distribution plans are typically created after the fact and often do not affect blocking or 

formation plans (Martinelli, 1996). 

This thesis is focused on railroad operations and maximizing their efficiency by modeling and 

analyzing railroad operations including blocking, train formation and scheduling. Ultimately, the 

goal is to move all the freight on the network with the minimal costs averaged over the entire 

operation. 

1.1. Background 

The cost efficient and reliable movement of goods has always been a challenge in the freight 

industry. In terms of freight transportation there are a few major modes available for business in 
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the current market. In the United States of America, the American Association of State Highway 

and Transportation Officials (AASHTO) has standing committees for five of the following 

freight transportation modes: Standing Committee on Rail, Standing Committee on Water, 

Standing Committee on Aviation, Subcommittee on Highway Transport, and Special Committee 

on Intermodal Transportation and Economic Expansion. Additionally there is also the mode of 

pipeline freight transportation, but that has a very limited application.  

Rail transportation competes primarily with highway transportation (short haul and long haul 

trucking) and marine transportation. The advantages of highway transportation which rail 

transportation does not often have, include door to door service, high reliability, and more 

economic short haul service (i.e. within a city).  

Rail transportation is the movement of goods or people from point A to point B in trains which 

travel along a set path on a railway track. A train consists of a locomotive, individual cargo or 

passenger cars, and a caboose coupled together. The coupling process usually happens in rail 

yards. When it comes to freight trains, these rail yards are called Classification Yards (discussed 

in detail in Section 2.3). 

A railroad network consists of railway tracks and various classification and intermodal yards. 

Each train travelling along a section of track is travelling from yard to yard in order to reach its 

final destination. Because a railway track is a fixed asset and trains may only travel in one of two 

directions along the track and there is no way to magically route trains to specific addresses or 

venues like one can with land based vehicles, it is very important for freight shippers (rail 

companies) to transport merchandise as close as possible to where it must be picked up (origin) 
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and dropped off (destination). This is often completed via the customer dropping their cargo off 

and picking it up at predetermined locations such as rail yards. 

These yards are the hubs where railcars are directed or redirected after each leg of their journey 

in order for a specific piece of freight to get from its origin to its destination. In this operation the 

individual rail cars are often transferred from train to train in order to reach its final destination. 

This is analogous to how passengers travel from airport to airport often having to switch planes 

and depart on connecting flights to reach their final destinations (Liu, Ahuja, & Sahin, 2008). 

Similar to how aircraft passengers must obtain their own transportation to and from the airport, 

rail freight must also be transported to and from classification yards (or to specific pick up 

points).  

It is common knowledge that railcars spend the majority of their time during trips at intermediate 

(between origin and destination) classification yards. This is because classification yards can 

only handle a certain number of cars for any given period of time and rely heavily on the skills 

and experience of their yardmasters (Innovative Scheduling, 2005). As such, it is important not 

only to limit the number of yards a railcar travels through, but it is even more important to make 

that rail yard more efficient and capable to handling higher loads.  

A railway system consists of three essential elements (Pachl, 2002): 

1. Infrastructure (tracks, signalling equipment, stations, and yards/terminals); 

2. Rolling Stock (locomotives and cars); and 

3. Operating rules and procedures. 

 
The combination and the interaction of these three elements is what we know today as a railway 

system. The study of one or all of these elements with a goal to improve the efficiency of the 
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system will bring us closer to realizing the most efficient use of rail systems. This thesis will 

focus on operating rules and procedures. 

A railway track is a structure which consists of parallel lines of rail which are held together by 

railway ties (sleepers) resting on a crushed stone ballast which helps to diffuse the weight of the 

above trains onto the subgrade below. The rails are often prefabricated in sections and tied 

together with either bolted or welded rail joints or butt welds between the rails. The main 

function of a rail is to provide a rigid surface and direction to the trains passing on the track 

above. Due to the immense weight and the lengths of the trains the tracks must provide very 

gradual horizontal and vertical adjustments throughout the length of the track. The rails also 

provide a medium through which electric currents travel for signalling purposes (Mundrey, 

2005).  

Railway tracks and their respective right of ways are generally owned by railroads such as 

Canadian Pacific Railway or Canadian National Railway. Since individual railroads own, operate 

and maintain their own sets of track there is typically no direct government agency involvement 

as there is in the maintenance of roads and highways. Passenger rail companies such as Via Rail 

Canada and Amtrak often use the existing infrastructure provided by the freight shippers and 

many times freight shippers use each other’s infrastructure in order to meet customer needs. This 

is done through trackage rights agreements between the various corporations. 

Rolling stock, as with tracks, are owned and operated by individual railroads and even individual 

shippers. More rolling stock means more flexibility but more operating costs in labour, 

maintenance, and storage. Operating rules and procedures vary between railroad corporations, 
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countries and continents all have various different rules and regulations which determine how 

they will operate a railroad.  

There are three principal factors that contribute to railroad freight transportation efficiency 

(Dirnberger J. , 2006) and (Armstrong, 1990):  

1. The low coefficient of friction between the steel wheel and rail means low rolling 

resistance which allows locomotives to power not only themselves but also additional 

loads in the form of cars; 

2. A fixed guide-way for the movement of trains by a single operating crew such that the 

restriction of moving freight in single vehicles was removed; and 

3. Infrastructure strong enough to support heavy loads over vast geographic areas in order to 

permit economies of scale. 

 
The combination of these three factors allows railroads to spread throughout the country and 

create a cost effective means to transport large amounts of freight over the surface. Using trains, 

as opposed to single vehicles, to move goods along a fixed track is also very important in that it 

minimizes the need for large right of ways which waste enormous amounts of real estate 

(Armstrong, 1990). 

1.2. Problem Statement 

In order to be competitive in the freight transportation market, railroads need to maximize their 

economies of scale in a way that will allow them to pass on savings to their customers. In 

addition to cost, there are additional issues of reliability and flexibility which must also be 

addressed by railroads. These issues must be addressed by railroads in their operating plans. 
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Operating plans are used to guide railroad business at any given time by giving railroad workers 

a framework and a guideline for performing tasks. This means that train schedules, train contents 

and train movements must all be controlled by such a plan. In order to create a plan that is 

effective, efficient and reliable, a railroad has to look at many factors such as delivery time, 

service time for trains and cars, crew availability, business trends, etc. Once a plan has been 

created, it is not enough to say that it works, but each railroad must do what it can to optimize its 

operations such that “best case” plan is implemented and maximum economies of scale are 

achieved. Guidelines for the assessment of multiple, integrated operations plans in a common 

way are required in order to determine which plan is the best. 

Existing railroads currently rely heavily on the skills and experience of veteran employees, who 

make decisions about train schedules, product development (blocking plans) and how they split 

up cars into the bowl (classification tracks). Additionally, current practices of railroad companies 

prevent priority traffic from getting special treatment and all traffic is treated in the same 

manner. Each train / car is served on a FIFO (first in-first out) basis at every yard it reaches.  

When running simulations, railroads supply their software with various data which includes 

static blocking plans, train schedules, traffic files (OD data, car types, etc.) as well as network 

topology and geography. A shortest path algorithm is applied in order to route each individual 

car to its destination. The software will then assign each car to a specific predetermined block or 

set of blocks which are destined to travel from node to node. The blocks are, then, assigned to 

individual trains which carry them to their destinations.  

For this system to work, different sections and groups within the railroad come up with the 

different strategies which make up the various operations plans. This means that the blocking 
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plan is created separately from the train schedule and the block to train assignment. With the 

model developed in this thesis, the back and forth of two separate groups working on individual 

plans is taken away. Instead, one analyst can develop, test and analyze an integrated operations 

plan with only traffic, network, and yard data, thus, taking away the lengthy back and forth 

required between multiple departments. This thesis addresses these issues with the model and 

guidelines developed. 

1.3. Objectives 

There are three main objectives for this thesis:  

1. To create a model to assist in testing and analysing the operation plan(s); 

2. To create guidelines for building integral portions of the operations plan; and  

3. To create a user friendly software application to implement the model. 

 
The first objective, to create a model to assist in the testing and analysis of operation plans, is 

accomplished by creating a simulation model which takes into account the various factors 

associated with railroads on a network level. The many inputs and outputs are focused on what a 

railroad analyst will actually use/need in order to make sound decisions with respect to the 

quality of an operating plan.  

The second objective of this thesis is to create a set of guidelines for preparing data to be entered 

into the model. It is not enough just to have traffic and network data because train schedules, 

block to train assignments and blocking within each yard play major roles in the transportation of 

goods. This thesis will prepare step by step guidelines and/or provide examples of the 

aforementioned operations. 
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The third objective is to create a user friendly software application by which the model can be 

applied. This will be accomplished using Microsoft Excel and VBA as a programming platform. 

The software will make it simple to enter the various data requirements in an organized fashion 

and will provide the results of the model in a simple and easy to read manner. This will make 

analysis of an operations plan quite simple for the user. 

1.4. Thesis Outline 

Figure 1.1 provides a general overview for the thesis structure and research activities. This thesis 

is divided into six (6) main chapters as follows: 

• Chapter 1 - Introduction: This chapter provides a brief introduction to freight rail and 

movement of goods. It also serves to represent the scope of research in this thesis.  

• Chapter 2 - Literature Review: This chapter provides a comprehensive literature review 

of various railroad network systems and various types of models. The research conducted 

prior to selection of the proposed model type and the proposed model development is also 

represented here. 

• Chapter 3 –Railroad Network Systems: This chapter provides a comprehensive review 

of specific railroad characteristics and various model objectives in existing research. It 

also provides an overview of model types used in railroad operations planning and 

provides a brief overview of existing model applications used in industry. 

• Chapter 4 – Model Development: This chapter outlines the proposed model including 

inputs, outputs, and most importantly methodology. It also creates guidelines for how to 

use the proposed model. Model capabilities and limitations are presented here. 
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• Chapter 5 – Software Application: This chapter provides an overview of the software 

application which allows the user to easily apply the model. The model is validated using 

hypothetical data and then an example application of the model using hypothetical data is 

presented.  

• Chapter 6 – Summary, Conclusions and Recommendations: This chapter provides a 

summary, conclusions and recommendations based on the research in this thesis. The 

recommendations proposed future study in this field applies to possible extensions of the 

model. 
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Figure 1.1  Overview of Thesis Structure 
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2. LITERATURE REVIEW 

A literature review was conducted on the existing research in freight rail networks and 

classification yards. Peer reviewed journal papers, magazine articles, text books, government 

reports, and project reports were reviewed for this purpose. These sources have been grouped 

into several main categories and are summarized in this section.  

2.1. General Freight Rail Information 

This section discusses general freight rail characteristics and data with respect to Freight Rail 

Transportation, Reliability and Flexibility, and finally Train Dispatching. Freight Rail 

Transportation is discussed in terms of benefits, operational statistics and future potential 

investments. Reliability and Flexibility are defined and discussed in terms of railcar movements 

on class 1 railroads. Finally, Train Dispatching methods are discussed.  

2.1.1. Freight Rail Transportation  

There are significant benefits to Freight rail, not only to consumers but also the general public. 

These benefits include Transportation System Capacity and Highway Cost Savings, Economic 

Development and Productivity, International Trade Competitiveness, Environmental Health and 

Safety, and Emergency Response Capabilities (AASHTO, 2009). According to AASHTO and 

their 2009 Freight Rail report, there are currently only seven class 1 railroads in operation today 

(BNSF Railway, CSX Railroad, Grand Trunk Corporation, Kansas City Southern Railway, 

Norfolk Southern Railroad and Subsidiaries, Canadian Pacific Railroad, and Canadian National 
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Railroad). This is due to various consolidations and mergers which have occurred since 1980 

when the railroads in America were deregulated.  

AASHTO has also shown statistics regarding the operations of class 1 railroads (all data reflects 

the year of 2000). AASHTO points out (since deregulation) rail networks have been downsized 

significantly to only the “core” network but productivity has improved dramatically. Having said 

that, the costs to consumers has gone down and is lower than all other general freight 

transportation services such as marine or trucking. This is a significant improvement over the 

1980’s when the costs for freight rail were higher than all other surface/marine based operations. 

Even with all of these productivity gains lower consumer costs, the railroad freight transportation 

services are not able to rebuild their market share (lost to long haul trucking and short haul 

trucking). 

According to the Railway Association of Canada in their 2009 publication of Railway Trends, 

over the past 10 years freight revenues per tonne have been steadily increasing. Although there 

has been a slight decline in carloads originated since 2005, the freight rail industry is still farther 

ahead of where it was in 1991 (The Railway Association of Canada, 2001). Though the freight 

industry is continuing to gain higher revenues per tonne, they are losing the overall fight against 

trucking in the freight transportation business. In having said that, it is also important to note that 

should issues such as service reliability and speed of delivery be addressed, rail may seem like a 

more fruitful mode of freight transportation to its customers.  

AASHTO has also conducted a study of what the future of freight rail will be if there is no 

growth (limited investment), moderate growth (constrained investment), paced growth (moderate 

investment) and aggressive growth (significant investment). This is a study of what 20 years 
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(between 2000 and 2020) of investment into rail services would cost and what the impacts on 

shippers, highway users and highway costs would be, please refer to Table 2.1 to see the 

consolidated effects as provided in the AASHTO report. Because the onus to provide the bulk of 

the funding would be on railway corporations it is increasingly more important to find ways to 

raise capital for any future growth. This can be done in a few ways such as by borrowing money 

from banks, selling additional stocks, selling assets, optimizing the infrastructure in order to reap 

the additional benefits, or any combination of the list. 

Many papers have discussed the analysis and the optimization of class 1 railroads by either 

improving the existing infrastructure, optimizing network flows, optimizing intermodal or 

regional yards or even by significant capital infrastructure growth.  

2.1.2. Freight Reliability and Flexibility 

Reliability in freight transportation is an extremely important concept as it is in any freight 

transportation network. This is the idea where freight is delivered to the appropriate delivery  

Table 2.1  Cost and Effect of Freight Rail Capital Investments (AASHTO, 2009) 

Scenario 

Costs (In Billions of Dollars – 
$USD) 

Impacts (In Billions of Dollars – $USD) 

Total 
Private 
Share 

Public 
Share 

Shippers 
Highway 

Users 
Highway 

Needs 
Total 

No 
Growth 

105-156 82-102 23 326 492 21 839 

Moderate 
Growth 

145-165 122-142 23 162 238 10 410 

Paced 
Growth 

175-195 122-142 53 0 0 0 0 

Aggressive 
Growth 

205-225 122-142 83 -239 -397 -17 -653 

 



14 
 

point at the appropriate time (both agreed to upon signing the delivery contract between the 

shipper and the railroad company). It has been readily identified that reliability in rail is a very 

important issue by Kwon et al (1995) and Kraft (2002a) just to name a couple. This is even more 

important because of the high standards (98% reliability – as reported in Kraft (2002a)) set by 

the trucking industry. 

Reliability of a freight rail in North America was studied by Kwon et al (1995) using class 1 

railroad data collected from the Association of American Railroads (AAR’s) Car Cycle Analysis 

System (CCAS). In this study the authors selected a sample of Rail Origin-Rail Destination (O-

D) pairs within three major rail freight groups and typical car types: general merchandise train 

service (general boxcars), unit train service (covered hopper cars), and intermodal train service 

(double stack cars). The car cycle as described by the paper consisted of the time the first car is 

loaded until the time the empty car is returned to the original loader. This includes the 

aggregated total time where the car is being loaded, moved (loaded) on the mainline, sitting 

(loaded) in terminals, emptied by the receiver (consignee), moved (empty) on the mainline, 

sitting (empty) in terminals, and finally arrives empty at the shippers. Table 2.2 shows the results 

of the car cycle time for the three different types of cars/services – all time is measured in days. 

 

Table 2.2  Car Cycle Times From Kwon et al (1995) 

Note: (all data measured in days) Boxcar Covered Hopper Double Stack 
Loading Time 2.15 1.92 0.73 
Loaded Time 8.77 5.33 3.21 

Unloading Time 1.48 1.27 0.22 
Empty Time 14.48 6.76 1.99 

Total Cycle Time 26.88 15.27 6.15 
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In order to show trip time and reliability Kwon et al showed the mean trip time, standard 

deviation, and two other measures known as the n-day-percent and the maximum n-day percent. 

The n-day-percent is the measure of the probability that a car will arrive within a time window of 

n/2 days of the mean trip time. Because there is a skew in the trim time distributions, the 

maximum n-day-percent is the measure of the maximum probability that the car will arrive based 

on n days but not focused in the mean (i.e. the window of n days can move along the distribution 

in order to find the max). The results of the reliability study are presented in Table 2.3. It should 

be noted that since the lowest reliability is that of the general merchandise box car and coupled 

with the fact that unit trains do not typically spend much time in classification terminals, we can 

deduce an important link between terminal efficiency and rail car reliability. As reported in 

Kwon et al (1995), majority of trip time either empty or loaded is spent in terminals and that 

terminal and train delays account for more than 40% of all shipment delays. This is important 

because unreliable train service can be mitigated by improving the reliability and the efficiency 

of these operations. 

 

Table 2.3  Trip Time and Reliability Performance of Different Trains (Kwon et al. 1995) 

Elements Box Car Hopper Car Double Stack 
Number of O-D Pairs 477 102 20 
Number of Railroads 2.11 1.47 n/a 

Distance (miles) 788.1 831.0 n/a 
Mean Trip Time(days) 7.16 5.25 2.53 

Std Dev of Trip Time (days) 2.62 2.04 0.50 
Maximum 1-day-% 32.42 41.90 89.2 
Maximum 2-day-% 48.56 60.95 n/a 
Maximum 3-day-% 61.07 73.21 n/a 

 



16 
 

Another very important function of a transportation network which affects reliability is known as 

flexibility. Flexibility is defined as: 

The ability of a system to adapt to external changes, while maintaining satisfactory 

system performance. System performance is characterized by parameters such as level of 

service, maintainability, and profitability. (Morlok & and Chang, 2004, p. 406).  

External, uncontrollable, factors or variability could be as simple as poor weather conditions or 

something as complicated and devastating as a massive earthquake.  Other factors could include 

traffic volume surges (based on economic factors), traffic flows (based on shifts in directional 

flows), mainline outages based on motor vehicle accidents, car damages, etc. (Morlok & and 

Chang, 2004) and (Dirnberger J. , 2006). Internal factors or variability should also be considered 

in this definition and these can include poor management of resources such as mismanaging crew 

allocation, misroutes and incorrect sorting at yards, rework, processing times at terminal 

operations, worker experience variations, etc. (Dirnberger J. , 2006). These factors all affect 

reliability and thus managing these factors appropriately by adapting to them while maintaining 

satisfactory system performance (the definition of maintaining flexibility) will help to maintain 

reliability for the network.  

In addition to the above factors, there are also cost implications to having or not having certain 

flexibilities in a railroad operation. The following excerpt emphasizes this importance. 

Few railroads have fully embraced the concept of scheduled operations. While they 

recognise the value of adhering to the plan, they still wish to retain some of flexibility in 

their operations … Scheduling everything can lead to an increase in train starts and crew 

expense. (Kraft, 2002e, p. 19). 
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The above quote makes mention of the concept by which railroads have the flexibility built into 

their systems to be able to cancel or consolidate trains in an effort to save money. This is very 

important because exploiting this kind of flexibility is one way a railroad can offer better service 

to its investors, who also have a vested interest in not only the reliability but the overall economy 

of their railroads.  

2.1.3. Train Dispatching 

Freight trains are dispatched either on a tonnage-based system or a scheduled system. The 

tonnage based approach is an age old classic in which railroads hold all trains until they have 

enough freight to fill the train to capacity. In this format, railroads maximize their train 

utilization. Often times, using this approach many trains are either delayed or even cancelled and 

thus minimizes the total number of trains operated. Serious drawbacks for the tonnage-based 

approach include (Ireland P. e., 2004): 

1. The yards cannot fine-tune their operations based on a repetitive schedule, and they 

require more railcars and greater storage capacity to cope with the traffic variability; 

2. Demands for crew and locomotive resources may increase along with the costs for 

repositioning crews and equipment; and 

3. Most importantly, customers suffer from unreliable service because the railroad gives 

train-operation economics priority over customer needs.  

 
A very different approach, the scheduled option, requires a disciplined corporate structure and 

high levels of pre-planning. Serious drawbacks for the scheduled-based approach include 

(Ireland P. e., 2004): 
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1. They require operating trains with low tonnage when customer demand is below 

expectations; 

2. They depend on railways' systematically forecasting traffic levels by the day of the week, 

and quickly adjusting the plan; 

3. They require a granular, actionable understanding of each customer's requirements in 

each corridor; and 

4. The needed schedule-based models require sophisticated operations research software to 

conduct comprehensive and timely analyses of different alternatives. 

 
In selecting which operating style a railroad will use, the above drawback factors for either the 

tonnage-based or scheduled-based approach must be taken into account.  

2.2. Capacity of Railroad Networks 

The capacity of rail networks can be determined by design of said networks and the operation 

practices on them. The following is a review of some of the previous research in modeling, 

planning and operations of a railway network.  

2.2.1. Rail Network Operations and Modeling 

Looking at the metro line capacity (number of passengers) in Athens, Greece, Ballis et al (2004) 

used a simulation model which worked in four separate phases. Phase one involved the 

assumptions about train characteristics (power, shape, number of cars, car capacity, etc.). Phase 

two involved description and assumptions of the stations and track geometry; this allowed the 

model to trace train movements in reference to a zero point (a start point). Phase three involved 

calculations of the train driving diagrams which used kinetic equations and the coasting method, 
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whereby a train accelerates and once at a specific velocity the train continues to move, coasting, 

until required to stop. The kinetic equations take into account the general velocity equations 

which include concessions for weight and also include concessions for the track geometry 

(horizontal and vertical curves). Phase four involved the actual simulation and graphical 

representation of the model in hopes of creating a timetable for trains through various blocks 

(sets of tracks between sets of stations). It was in phase four where boarding and alighting times 

for passengers and turnaround times for trains were also incorporated into the model and the 

model was created to allow user intervention and adjustment to things such as interruptions, slow 

down and speed up trains or even immobilize or reactivate lines to see the effect of such 

behaviour on the capacity of the lines. 

Although this model cannot specifically be applied to freight railways, it does show a very 

simple framework which can be applied to specific rail lines in order to determine the maximum 

capacity of a line. This could be based on number of cars (shipments), number of locomotives, 

number of yards/hubs and track geometry in order to determine how many freight trains can be 

accommodated. This is a far more difficult task than with a metro line, where number of 

passengers can be somewhat accurately determined, while freight varies not only in how much is 

being shipped regularly but also how much can be processed in any given yard. There are 

already specific analysis models (discussed later in this section) which show how many cars a 

yard can accommodate based on various inputs and yard types.  

Another railroad capacity model by Ramsey et al (1986) used computer software to draw space-

time diagrams in a simulation which would plot the diagrams in front of the user. The simulation 

could be stopped at any time by the user in order to backtrack and readjust the decisions made by 

the computer model to determine different results. Though this model is very simplistic, it uses 
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three modules: a data entry module, a train performance calculator, and a straight rail capacity 

model which helps to provide a fairly accurate and timely simulation of rail line capacity. This 

model was comparable to existing, more complex models at the time. 

A recent mathematical programming model by Higgins et al (1995) was created to identify train 

schedules on single lines using a branch and bound procedure. This model took into account train 

velocities, train priorities, line segment lengths with overtaking points (such as double track 

sections and siding locations), and times of scheduled stops as required. The objective function 

of this model was to minimize the delay of trains arriving at a destination as well as the operating 

costs of each train (i.e. costs for fuel, crew, power etc.). Since single line rail schedule modeling 

has been fairly extensively studied in the past, this paper primarily works to improve the solution 

time of a single line train scheduling problem.  

Another way to look at the capacity of railroads is not to focus on the number of trains and cars 

that pass through a single line or a terminal, but to look at the amount of freight which can be 

carried, in terms of overall system capacity. This means that instead of analyzing at specific 

segments of rail links or terminals/yards, a model which addresses the operational measure of 

system capacity as a whole had to be created. This was done by Morlok and Riddle (1999) where 

they used a linear mathematical programming model to determine an estimate of the overall 

system capacity based on origin-destination. This model included the limitations of capacity at 

facilities, limited resources in the vehicle fleet, labour, and fuel, as well as environmental 

regulations and even management structure. This model, called MAXCAP, makes it possible to 

estimate overall system capacity based on tonnes per year or similar units. A variation of this 

model, called ADDCAP, can also determine where capacity can be added in the various 

components of the model, such as fleet size or terminal capacities. The authors also suggest that 
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this model could be used to assess the effects of regional trade agreements where origin-

destination pairs for various trips vary, the effect of technological changes in transportation, and 

even the effect of natural disasters or other catastrophes.  

Morlok and Chang (2004) expanded on the capabilities of MAXCAP by assessing both reserve 

capacity and by assessing the sensitivity of a transportation system to changes in traffic patterns 

using a new model deemed ADDVOL. The former was a conservative method of reserve 

capacity estimation, whereas the latter allowed the authors to more accurately determine the 

flexibility of demand variations on transportation systems. Flexibility is discussed later in this 

text. The MAXCAP model is used to determine reserve capacity of a system, but the application 

is limited to the use of only base traffic patterns (fixed traffic patterns). The ADDVOL model 

uses adjusted traffic patterns which allow for a more flexible system that gives a more robust 

estimate. Flexibility is a very important concept and is required in order to recover after any 

given event and more importantly, flexibility is more important than speed in terms of overall 

reliability (Judge, 2002). 

In their 2006 study titled Estimating Freight Transportation System Capacity, Flexibility, and 

Degraded-Condition Performance, Sun et al expanded on Morlok’s original model (MAXCAP) 

by applying general characteristics of existing transportation network models to MAXCAP. The 

authors pursued an idea that the absolute physical capacity of a network may not be reached 

because the practical limits of the network due to the degradation of service quality (for example 

level of service) becomes unacceptable. The authors complete their objective by adding three 

main functions to the model:  

1. Reflecting uncertainty in traffic patterns by use of Dirichlet distribution; 
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2. Incorporating volume-delay functions and service quality constraints; and 

3. Assigning flows to paths using stochastic equilibrium models thus replacing the 

predefined paths as set in MAXCAP originally. 

This enhanced model becomes a nonlinear programming problem which must be solved using a 

heuristic step-sized search method as developed by the authors. This is different from the simple 

linear model originally proposed by Morlok, but it does prove to increase the overall levels of 

confidence of the models results. 

2.2.2. Rail Network Planning 

The most important part of the paper by Higgins et al (1995) was finding a solution to the 

optimal siding location problem while considering variable train velocities and non-uniform 

departure times. The idea is not to change existing sidings or specific fixed sidings (fixed due to 

various operational or regulation reasons), but to determine where best to place sidings in order 

to resolve potential train conflicts (such as crossings or overtaking). This model takes into 

account the cost parameters of delayed trains, operating costs, and upper speed limits at fixed 

intervals on the track. The model assumes a weekly cyclical train schedule in which scheduled 

stops are only permitted on fixed sidings. It is necessary for the model to solve for three sets of 

variables which include track segment lengths, arrival and departure times and binary conflict 

resolution. The model is solved by decomposing the original problem into two sub-problems 

(one which solves the track segment lengths and arrival and departure time variables, and the 

other which solves the binary conflict resolution variable) which are then solved using an 

iterative process until there is no more improvement for either. The paper also shows an example 
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of how using optimal siding locations can help to minimize train delays due to conflicts on single 

lines.  

Mathematical programming was used by Liu, Ahuja & Sahin (2008) in figuring out a very top 

level scientific approach to optimal network configuration (i.e. yard locations, line directions 

etc.). This paper is of importance because it addresses what the newly formed and consolidated 

class 1 railroads may be able to do in the future to optimize and expand their lines based on a 

mathematical optimization using the greedy approach. In this study Liu et al looked at which 

yards could be shut down with minimal impacts, if and where new hubs should be opened, and 

where specific line or hub capacity expansions should be created. This study also looked at the 

costs associated with the theorized improvements. 

The study looked at the yard and the capacity problems separately creating optimization 

problems for both and solving them using real data from an existing class 1 railway. In the yard 

optimization model they included drop, add, and a pair-exchange algorithms which allowed for 

the specific what-if analysis of existing facilities. The capacity expansion problem included three 

separate items, the blocking capacity, the car handling capacity and the line capacity. If certain 

yards would be added or removed or certain capacity was to be increased then overall costs could 

go down according to the study, and as such, the optimization of a network is increased. This is a 

very capital intensive program however, so the reality of such implementation is quite scarce, but 

this top level scientific assessment is a great tool for railway companies to review when deciding 

on how to conduct their operations in the future. 
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2.3. Classification Yards 

The objective of a freight rail classification yard is to sort or classify cars from an inbound train 

into blocks (single length of cars which all have similar characteristics such as destination, type 

of cars, or even type of consist) which are then assembled into various outbound trains. This is 

an important and necessary step because trains typically contain various cars moving from 

different start points to different endpoints. It is rare to see a train which starts and ends at a 

given location without the need to be split apart or added to in order to maximize train capacity 

(with the exception of unit trains which are typically able to bypass the classification process 

entirely).  

There are two general types of classification yard: flat yards and hump yards. They both provide 

the same function of classifying cars from inbound trains into new outbound trains but how they 

get from inbound to outbound are two entirely different processes. 

2.3.1. Flat Yards 

A flat yard is a very easy to design and construct because it can be done on a level grade and 

only requires an inbound line, an outbound line, and a classification area with a set of 

classification tracks. This makes a flat yard very inexpensive to construct and operate. In the case 

of a flat yard, switching locomotives take cars from the receiving track and then push and/or pull 

them to their various classification tracks. The process is explained with the assistance of Figure 

2.1 (A, B, and C):  

2.1.A. A brakeman typically rides the leading car to ensure there are no obstacles to line 

 switches as the movement proceeds; 
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2.1.B. The brakeman steps down near the point where cars are about to be uncoupled. 

 When the cars have been placed and the train stops, the brakeman uncouples the 

 cars; and 

2.1.C. The Switch engine reverses, leaving the car(s) on the desired classification track. 

 

The actual process is conducted by a method called Drilling. A switch engine begins by 

accelerating quickly pushing a cut of cars. The engine then hits the brakes quickly, thereby 

“kicking,” the car(s) toward their respective classification tracks where the car(s) either stop due 

to friction or by hitting the existing cars already standing on the track. The process for kicking 

cars is described using Figure 2.2 (A, B, and C). 

 

 

Figure 2.1  Flat Switching Diagram (Dirnberger J., 2006) 
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2.2.A. First the air brakes are released from all cars. The locomotive pushes the cars 

 towards the classification tracks while the brakeman lifts the uncoupling lever and 

 signals the engineer to “kick” the cars; 

2.2.B. The engine accelerates rapidly while the brakeman runs beside cars holding the 

 uncoupling lever until the desired speed is reached. Once this occurs, the 

 brakeman signals the engineer to apply the locomotive brakes leaving the 

 uncoupled cars to continue rolling forwards toward the class tracks. A second 

 brakeman lines the switches to route cars onto the desired class tracks. 

2.2.C. This process continues until the locomotive and attached cars have run out of 

 space on the lead track at which time the locomotive must pull the cars back to 

 have enough room to continue “kicking” cars. 

 

 

Figure 2.2  Kicking Cars Diagram (Dirnberger J., 2006) 
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Due to the large amount of manual labour involved, if a flat yard was classifying single cars all 

the time, it would be a very cumbersome, inefficient and labour intensive process. Therefore flat 

yards are best used when switching or classifying cuts of cars or blocks of cars from trains which 

stay together throughout the switching process. It should also be noted that cars are subject to 

additional handling in flat yards, especially if they are closer to the engine because the engine 

periodically has to back up and build up track space between it and the classification tracks such 

that the kicking process may proceed (Dirnberger J. , 2006). The process is also very damaging 

to the cars and the cargo because of all the impacts which occur due to the kicking and 

consequently the smashing into each other.  

2.3.2. Hump Yards 

Hump yards differ from flat yards because they use gravity, instead of drilling in order to help 

classify individual cars. Hump yards are typically used by class 1 railroads for their major 

classification hubs; such is the case for Canadian Pacific Railroads (CPR) Toronto Yard in the 

Agincourt Borough of Toronto, Ontario. This is because hump yards are largely more efficient 

than typical flat yards at classifying large amounts of individual cars. This efficiency is 

extremely important when there are a large number of incoming and outbound trains with 

multidiscipline cars with varying destinations. In a hump yard a hump locomotive will push a set 

of cars over a hump, releasing each car individually at the crest of the hump and allowing gravity 

to let the car slide down to the bowl. The cars are slowed down by mechanical retarders (brakes) 

that prevent the cars from smashing into standing cars on the classification tracks at high speeds, 

thus minimizing damage to couplers, cars and cargo. This is vastly more efficient than flat yards 

not only in terms of energy use but also staffing since no additional personnel are required for 

braking and uncoupling cars individually while they go over the hump. 
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2.3.3. Typical Rail Yard Operations 

In a process similar to both types of yards, once all of the cars are in their respective tracks, they 

are ready to be released for outbound trains. This is where (in both types of yards) trim engines 

conduct the pull-down process where they take all blocks for an outbound train and string them 

together to create said outbound train. There are four major operations at any given classification 

yard. These operations happen sequentially and the next operation depends on the prior 

operation. Typical operations at a classification yard can be grouped into the following (also see 

Figure 2.3): 

 
1. Train Receiving and Inbound Inspection; 

2. Classification or Sorting of Cars onto Classification Tracks; 

3. Train Marshalling or Assembly; and  

4. Outbound Inspection and Train Departure. 

 

 

Figure 2.3  Typical Operations’ at a Classification Yard 
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In addition to the above noted tasks, there are many tangentially relevant facilities within a 

typical rail yard which do not directly affect classification (although they can indirectly) such as 

intermodal facilities, shop facilities, short term storage facilities, etc. (Innovative Scheduling, 

2005).  

During the receiving the inbound inspection is comprised of checking the rail cars for structural 

integrity, safety, as well as the consist of each car.  During this time period in a hump yard the 

yard crews will turn off the air brakes so that cars become free rolling (this way they can be 

pushed or pulled as required) and the cars will then be put into queue so that they can be 

classified. In a flat yard, the inbound cars will be uncoupled and split up only at the cut limits 

and the air brakes will only be bled if individual cars are being classified.  

The cars are then sorted onto various classification tracks which act as temporary storage for use 

while building a new train or a portion of a new train. This sorting, or classification, is conducted 

in one of two ways: by use gravity such as in hump yards or by use of switching locomotives in 

flat yards as described above.  

Once the cars have been sorted onto the classification tracks into their new yard assignments and 

the cut off time for the departing train has come (time at which the train must be built for 

departure) the cars are built into an outbound train at the trim end of the yard, inspected as they 

were during receiving, and released to their next destination after a brake test. During this step, 

the trim locomotives also perform a process where they pull all of the cars (those which are not 

going to leave on the outbound train) on the classification track to the very end of the 

classification tracks thus leaving room behind them for additional classification of new cars.  
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2.3.4. Modelling Classification Yards 

Because a railcar in a yard goes through four major operations, one after the other, they are 

naturally thought of as cars in a queue. Thus significant works in the past by authors such as 

Petersen (1977), Turnquist and Daskin (1982), Martland (1982), and Kraft (1990’s – 2000’s) 

have been completed in order to understand the delays in yards. 

In 1977, Petersen used queuing theory to create an analytic model of the operations inside a 

classification yard. The model was described in two papers Railyard Modeling: Part I - 

Prediction of Put-Through Time and Railyard Modeling: Part II - The effect of Yard Facilities on 

Congestion. The model determines the probability distribution of the time which any given rail 

car will spend inside a yard. This model found difficulty in determining service time 

distributions for the classification and the assembly operations of the yard but found that 

exponential ones worked. The model further simplified the operations within the yard by 

assuming the inter-departure times (the time between scheduled departing trains) for each train, 

constant. According to the results of this simplified model, the major delays inside a yard are 

caused by the classification and assembly processes. This makes sense due to the setup of most 

yards where there are far fewer inbound/outbound tracks than there are classification tracks. The 

inbound trains wait to be classified and the outbound trains wait to be assembled, while these 

trains wait, the classification and assembly processes typically continue (either one after the 

other or in parallel). Though this model did not work to optimize the work being completed in 

the yard, it was one of the first to help understand the delays and the processes in a yard. 

Turnquist and Daskin (1982) analyse yard operations from the rail cars point of view instead of a 

train’s point of view. They build directly on the Petersen models and in this research they found 
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that possible causes for delays in yards are often conflicting thus a balance of different train 

dispatching strategies must be taken into account to create a best case scenario. Through study of 

this model Turnquist and Daskin determined that variance in train length causes significant 

classification delays thus implying that constant train lengths may be required to minimize 

classification delays. However, their connection delay model postulates that running trains on 

anything but a strict schedule would cause variable delays because trains would just sit there and 

wait until they were full prior to leaving. These provide conflicting views, because dispatching 

trains only when they reach a specific number of cars will greatly change the scheduled train 

departures or vice versa, departing trains at only the scheduled times will mean that a train may 

have a random number of cars on it at the time of departure. It was through the study of this 

model that Turnquist and Daskin determined that the solution to optimizing the yard delay 

problem lay somewhere in between steady scheduled trains and constant trains lengths. The 

major benefit of this model was that this information could be found without the need to tiresome 

simulation work as was conducted in the past. Again, because the models were simplified 

significantly in order to make them work efficiently, the authors urge that results of the models 

be used only during preliminary analysis and as a guidance tool. 

The PMAKE model (Martland, 1982) was created over a 10 year period by MIT in conjunction 

with the Federal Railroad Administration. After a review of both simulation and queuing models 

the author claimed that the PMAKE model is cheaper and easier to use than simulation or 

queuing models because it is faster and more realistic. In addition, after a review of both the 

Petersen and Turnquist models (above) Martland states:  

Queuing models have not yet been used to any great extent by railroads. Part of the 

reason for this ... may be that the basic assumptions of the queuing approach do not apply 
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in rail yard operations. Arrivals at a yard are not random, but exhibit daily, weekly, and 

seasonal cycles that are well known to railroad operating officials. The service time 

distribution is not constant, but varies as a railroad changes the number of switch crews 

working at each part of the yard, adjusts maintenance activities, adjusts the shifts 

operated, and changes the relative priorities of switching activities. The system, therefore, 

is not in a steady state as required for the use of steady state queuing models. The number 

of servers and the service rate are both adjusted continuously to reflect the build up of 

queues at various parts of the yard. At most, the system is in a steady state only to the 

extent that the expected queue length, arrival distribution, and service rate follow a 

weekly cycle: the expected situation a week from now is the same as the expected 

situation N weeks from now at the same time of day. (Martland, 1982). 

In order to move away from the steady state assumptions made by the queuing models and the 

cumbersome approach of simulation models, PMAKE aimed to determine the probability of cars 

making their connections in the time available. This is done so by taking cut-off times (inbound, 

outbound, or both) for trains into account. PMAKE is able to predict the impact of schedule 

changes on yard performance in terms of yard times and potential delays. PMAKE can also take 

other variables into account such as connection times, traffic priority, yard traffic volume, pattern 

of car flows in a yard, the pattern or reliability of train arrivals in a day, and power availability. 

PMAKE functions as developed by MIT are relatively easy to calibrate (can be done so using 

various approaches) and use for analysis of yard performance. Thus, PMAKE is a system which 

has been more commonly used than other models such as queuing or simulation in operations 

and service planning by railroads (Martland, 1982).  
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In his 2002 Trains magazine article (Kraft 2002c, 2002d), Kraft describes how well a yard 

operates is dependant primarily on a railroads operating strategy. He also notes that there are 

three major descriptive formulas and plotted graphs which help to describe how well a yard 

processes cars, what affects the dwell time in a yard and what affects the efficiency of a yard.  

For yard processing capacity, the number of trains a yard may originate and the length of such 

trains are the key factors. He states “As train lengths increases, train departures will decrease 

drastically unless the yards processing capacity increases at a faster rate. Train departure 

frequency in turn determines how long cars sit in yards.” Refer to Figure 2.4 for the graph and 

the Equation 2.1 which corresponds to the graph. 

 

 

Figure 2.4  Yard Processing Capacity VS Train Length (Kraft, 2002d) 
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Figure 2.5  Dwell Time VS Block Departures (Kraft, 2002d) 

 

 

Figure 2.6  Dwell time VS Processing Capacity (Kraft, 2002d) 
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NUMTrains = CAPYard / LTrain        (2.1) 

where,  

NUMTrains = (Train departures per day) (# of Trains) 

CAPYard = Daily yard processing capacity (# of Cars) 

LTrain = Average train length (# of Cars) 

For dwell time in yards, the processing times and the frequency of departures per day are the 

most important factors. Kraft states “Once block departure frequency increases much past 1.5 

times per day, its effect on car dwell time approaches zero.” Thus, only a faster yard processing 

time (which includes inbound inspection, classification, and assembly of outbound trains) could 

have a hope in lowering dwell time. The graph presented in Figure 2.5 takes a best case scenario 

where no additional delays (such as limited yard resources, overall yard capacity, directional 

processing, etc.) are taken into consideration. Equation 2.2 represents the graph. 

TDwell = (TProcess + 12) / BLOCKDepartures       (2.2) 

where, 

TDwell = Yard Dwell Time (hours) 

TProcess = Minimum processing time per car (hours) 

BLOCKDepartures = # of times each block departs per day (#) 

Another problem proposed by Kraft is that dwell time is farther aggravated by destroying its own 

processing efficiency. This means that with more cars dwelling in the yards inventory the more 

congestion there is, thus creating a slowdown for the processing of inbound trains. This is a 
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viscous cycle which eventually could lead to the shutting down of the classification process until 

all cars are removed from the bowl and dispatched on outbound trains. This phenomenon is 

represented in Figure 2.6 where longer dwell times drastically decrease the yard capacity and by 

Equation 2.3 below. 

TDwell= NUMCars / PROCCars         (2.3) 

where,  

NUMCars = Yard inventory (# of cars) 

PROCCars = Cars processed per day (# of cars). 

2.4. Classification Methods  

As Kraft explains (The Yard: Railroading's Hiddent Half (Part 1), 2002c), there are two extremes 

of blocking practices in railroading, Extreme Deferment and Extreme Anticipation. Extreme 

Deferment is a “bump-along” system where no classification of a car occurs until the car is 

nearest its final destination. Extreme Anticipation is the opposite, where cars are classified at the 

first possible yard in order to create and arrange blocks in the order of where they are going. 

There are also varying possibilities for yard classification practices in between the two extremes. 

Using hump yards and flat yards together, railroads are now able to conduct what is called 

support blocking. This is a scenario where pre-sorting and pre-blocking of individual cars can be 

completed using a hump yard such that when the blocks reach a flat yard, there is no individual 

car to classify, only blocks. This practice allows railroads to realize cost savings by utilizing each 

type of yard to its most efficient manner.  
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2.4.1. First In First Out Method 

Various strategies exist for classifying rail cars within a yard. There is the common first in, first 

out (FIFO) method which allows the cars on the first inbound train to be classified into their new 

respective blocks and shipped out on the first outbound train. This is an example of an extreme 

anticipation style method which classifies the cars as soon as they enter each yard. A few other 

methods have been proposed, such as the priority based classification method and the dynamic 

classification system. Both are great improvements over FIFO because they take train length and 

capacity or shippers schedules and delivery times into account prior to sorting cars. 

Currently, rail yards build car trip plans in two steps. The first step involves assigning a “yard 

block” or classification code to each car based typically on its ultimate destination and other 

various car characteristics. This is done by a computer which uses lookup tables to determine 

which yard the car must go to next in order to reach its final destination (Kraft, 2000b). Step two 

would involve determining which trains can carry the classified cars to their next destination. 

Though car scheduling systems can accomplish this task, it is often disregarded due to schedule 

fluctuations in the trains and thus cars are usually shipped out on the first available outbound 

train in the order the cars were classified in. This is a flawed system in that it does not consider 

car delivery times or specific train capacity and train schedules.  If there are cars which have a 

significant amount of slack time in their delivery deadline, this is not an issue. However, if there 

are cars which have very sensitive delivery times, or their delivery times are time critical, they 

must be “cherry picked” in order to be put on the next outbound train. This means that a crew 

must manually extract the car from the bowl after classification by backing the switching engine 

into the classification yards, uncoupling the cars ahead of it and removing the priority car onto a 

different siding. Then they must return the unwanted cars back on to the tracks and continue with 
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their outbound train assembly. This whole process is very costly in both time and resources, but 

should this method not be utilized, there are potential delivery delay losses which can also occur 

hurting both the freight shipper and the rail corporation.  

2.4.2. Priority Based Method 

An excellent strategy to help mitigate the need to cherry pick high priority cars is called priority–

based classification as discussed in Kraft’s 2002 paper Priority-Based Classification for 

Improving Connection Reliability in Railroad Yards- Part I: Integration with Car Scheduling. It 

is very important, from a business standpoint, for carriers to provide reliable, on time services to 

their clients. In this front, the rail companies have failed and thus have lost a great deal of their 

market share in freight shipping to short haul and long haul trucking. Kraft mentions that when 

trains are run on a scheduled system, they help in producing an environment where terminal 

efficiency can be improved (because the inbound and outbound trains, theoretically, will be 

scheduled to arrive or depart from the terminal in a way that mitigates overcrowding), but this 

cannot change the terminal operations by itself. As has been described already, most car 

scheduling systems create what is known as a “yard block,” which shows where each car will 

end up along its journey. This does not take into account which train the cars will go on, and if 

that were taken into account along with the yard information, this would be known as a “train 

block.”  The idea behind the priority based switching is that cars, instead of being cherry picked, 

should be scheduled onto specific trains as well as yards based on priority. The cars can be then 

classified onto different tracks based on: 1) Car Delivery Priority; 2) Train block; and 3) Yard 

block. This would mitigate any need to cherry pick at the trim end of the yard and thus be a more 

economical solution to creating reliable delivery service. In order to complete this task, low 
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priority cars would have to be rescheduled onto later trains thus maintaining minimum capacity 

for the higher priority cars on the next outbound train.  

In his 2000 paper, Kraft wrote about the Terminal Priority Movement Planner. This was a hybrid 

model which combined the following: 

1. Maximize the number of cars making scheduled connections; and 

2. Minimize outbound train delay waiting for connections. 

 
This model is a non-linear mathematical programming problem, when solved was able to show 

management when there were any late connections, thus allowing humans, not computers to 

make decisions on which trains to delay or which connections to disregard. In addition, this 

problem is solved using a breadth-first branch and bound search algorithm which uses the FIFO 

sequence of classification to set its upper bound (since FIFO is often not the optimized solution). 

In his paper, Kraft outlines the process by which the mathematical formulation works and is as 

follows: 

1. Calculate the earliest time each outbound train can be “set” (the time when all the cars 

scheduled to said train have been sorted onto the classification tracks); 

2. Subtract the projected “set” time from the target “set” time (the time at which the train 

should be “set” in order to meet its scheduled train departure) in order to define the 

difference in hours; 

3. Use the exponential function, ex to assign a solution “cost” for each train (higher the 

difference time in step 2, the higher the function “cost”); 

4. Sum the scores of each train to determine an aggregate score; and  

5. Propose the hump sequence which results in the minimum score. 
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This algorithm was programmed in C and tests showed after 100 iterations there were few 

improvements. Having said that, the program was cut off after 100 iterations and took between 

15-20 seconds to solve realistic one day problems (according to the author). In his 2002 paper, 

Kraft expanded on the original hump-sequencing model by adding a few steps: 

1. Automatically reschedule cars which cannot be processed in time (onto later trains); 

2. Advance any cars which are expected to be processed in time for earlier connections 

(provided there is room on the train – this also helps to maximise train capacity 

utilization as well as keeping the terminal from becoming over congested with extra 

cars); and  

3. If any outbound trains have more cars scheduled than it can handle, determine which cars 

to bump to the next train. 

 
It is important to note that all car scheduling occurs always and up to 36 hours prior to the actual 

hump procedure. This pre-determining of where cars will go allow a yard to prioritize their hump 

sequence of cars and place all priority cars onto specific classification tracks in their specific 

train blocks. This is very important because it allows yards to start a separate block, or 

classification track for those cars which are not of high priority and will not be taken on the first 

out train due to capacity restrictions. Though this process requires an additional track, it is 

important to note that once the initial train block is humped and classified, another train block 

may start behind it, filling up the remainder of the classification track length. Another way to 

mitigate (especially in smaller yards) yard congestion due to use of additional classification 

tracks for low priority cars is by the use of a rehump track, where lower priority cars would be 

sent in order to be rehumped later, after the priority train departs. This method is simple enough 
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to be completed manually (as noted by the Kraft, 2002). These two strategies, with similar 

outcomes, would certainly help to create a more reliable service, where the higher yard costs are 

mitigated by the overall service improvements and lowered requirements to run additional trains 

due to a large number of missed connections.  

Another part of the priority–based classification system, after the hump sequencing and train 

block determination, is the block to track assignment sequence. This is an iterative process, 

based on a set of heuristic rules which is not a mathematically optimization based solution due to 

the complexity of the system, although Kraft poses that a better solution can be achieved through 

mathematical programming. The rules for iterations and the process are presented (Kraft, 2002b). 

In making the block to track assignments, the iterative process has to manage rehump cars by 

making sure that no priority cars go to the rehump track unless there is time for them to make 

their connection after the next rehump clearance. The typical rehump track in the Kraft paper 

was quoted to be complete every 8 hours or so. The system then determines the number of active 

blocks and determines whether or not they will fit in the tracks. This is done through the next set 

of steps which include coercing previously assigned blocks (making sure that once a block to 

track assignment has started then it remains in place unless the block is closed or the track is 

full), assigning and splitting very large blocks to multiple tracks (this reduces the numbers of 

blocks which can be actively assigned), and greedily assigning track space to small blocks (into 

the spaces behind larger, closed out blocks). Due to the different lengths of rail cars, when 

assigning blocks to the tracks a margin of safety in terms of block length was incorporated into 

the system. Afterwards, the system looks to see whether all of the train blocks have been 

assigned, if not then the system runs a loop lowering the number of active blocks by one in 

attempts to see if the next iteration will fit.  
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2.4.3.  Terminal Operations Optimization  

A very different way of looking at optimizing terminal is an approach which looks at the 

classification yard as a production system (Dirnberger J. a., 2007). This method looks at using 

factory physics, lean, Theory of Constraints, and Statistical Process Control in order to improve 

terminal operations. This research identified the pull-down process (actually the train assembly 

process) as the bottleneck in a rail terminal. In order to improve operations at the pull-down area 

this research proposes various improvement options including adding additional switching 

engines and using the hump engine to help switch cars. More importantly, the research created 

what is known as the Bowl Condition Manager (BCM) which helps managers determine the 

quality of sorting after the hump process. This is important because sorting the cars properly the 

first time allows the yard to focus on the pull-down process without being distracted by cherry 

picking out of place cars or conducting what Dirnberger calls rework at the trim end of the yard.  

2.5. Integration of Yard Operations and Main Line Operations 

A combined solution, known as a dynamic car scheduling system, is one which integrates both 

yard blocking and train dispatching models in a way to maximize train capacity and reliability 

using a mathematical optimization. In his 2000 paper, Implementation Strategies for Railroad 

Dynamic Freight Car Scheduling, Kraft notes that current difficulties with scheduling systems 

can be “overcome by adopting an optimization based scheduling algorithm, which would couple 

this decision making process by taking train capacities into account, and would allow for 

dynamic routing of shipments based on delivery commitments and train capacity.” Dynamic 

scheduling allows for changes to the current lookup table system, which statically assigns a 

single path to each car based on its destination without taking other system factors into account. 
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These changes to the current system include identifying and utilizing all the paths available to a 

car instead of only the original one, thus, creating a flexible car routing option. This “multi-

pathing” system, as Kraft calls it, is more reliable, mathematically, than a single-pathing system 

in making the best use of all available train capacity and schedule slack time. This again is a 

concept of flexibility, which as discussed earlier, is a major factor in reliability for railroads. This 

concept can be theoretically established using simple probability calculations as shown by Kraft, 

the single-pathing scenario of three links in a series which has a combined reliability of 51.2% 

(0.8 x 0.8 x 0.8), whereas the multi-pathing scenario of three links in parallel which as a 

combined reliability of 99.2% (1 - (0.2 x 0.2 x 0.2)).  Refer to Figure 2.7 and Figure 2.8 

respectively. These links and nodes can be thought of as mainlines and yards respectively. 

Kraft looks at various options to assign cars to outbound trains based on the Dynamic Car 

Scheduling process (DCS) but with respect to current railroad practices. The original DCS as 

proposed by Kraft would require an overhaul of current practices in that very high data integrity 

and accuracy would be required as well as a strictly adhered to schedule that to switch from the 

full FIFO style of classification into a more priority based one. Kraft concluded in his paper a 

decoupled, two step process for classification and train assembly:  

1. At the yard: classify cars by yard block only, following the recommendation from the trip 

plan but ignore the train information; and 

2. At train assembly: count the number of cars assigned to each train and pull them from the 

classification track irrespective of their priority, and if additional capacity remains on the 

train, fill it with additional cars on the classification track. 
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Figure 2.7  Three Links in Series (Kraft, 1998) 

 

 

Figure 2.8  Three Links in Parallel (Kraft, 1998) 

From the notes above, this is a good way to implement a dynamic car scheduling system without 

overhauling data collection and terminal processes while still being able to maximize train 

capacity utilization so that all trains run at maximum capacity, even if car trip plans do not 

necessarily require them to.  

2.6. Summary 

This chapter represents a broad, comprehensive literature review of existing research in freight 

rail operations, classification yard operations and general railroad information. From the research 

conducted, details of how a railroad network is set up, how it functions and how it can be 

optimized can be determined. It is important to note that much of the existing literature has been 

focused on mathematical optimization modeling and this leads to a lot of focus on single 

elements of a larger network resulting in slightly unrealistic results. 
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3. RAILROAD NETWORK SYSTEMS  

This chapter reviews the major components of the physical railroad network as well as the 

operating rules and regulations by which railroads function. Additionally, this chapter discusses 

various model components as reviewed in multiple existing models. The elements discussed here 

are very general in nature. 

A railroad network consists of a set of stations (or yards) connected by rails upon which trains of 

rail cars powered by locomotives travel. This travel is the movement of goods from the origin 

(the starting) yard to the destination (the finishing) yard. The operations of a railroad can 

typically be split into two separate categories: yard operations and linehaul operations. Yard 

operations include classification, inspection and maintenance of the individual rail cars whereas 

linehaul operations involve the actual movement of the cars from one location to another. 

It is important to note that railroads operate with four (4) major operating plans in place. These 

include the blocking plan, the train formation plan, the train schedule and the empty car 

distribution plan. The blocking plan regulates the contents and the number of blocks whereas the 

train formation plan regulates which blocks make up each train and how the traffic will flow over 

the network.  The train schedules and empty car distribution plans are typically created after and 

often do not affect blocking or formation plans (Martinelli, 1996). This thesis is focused on three 

(3) of the major components of the operations plan including the blocking plan, the train 

formation plan, and the train schedule.  
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3.1. Railroad Network Models 

Rail network routing models can typically be classified into two types: optimization models and 

simulation models. This section discusses these two types of models. These models sometimes 

combine and integrate yard operations with mainline operations in order to provide a 

simultaneous routing of traffic and workload output at yards. 

3.1.1. Mathematical Optimization Models 

Mathematical optimization is simply the minimization or maximization of a single objective 

function given a set of constraints by which the system is governed. In doing this, analysts often 

only get “optimal” results with respect to one aspect of the railroad network such as number of 

car switches or overall distance of travel for cars. No literature reviewed in the course of this 

study utilised multi-objective function optimization to determine an optimized solution. 

Mathematical optimization can run specific algorithms and determine various things 

individually, such as shortest path, lowest cost or minimum time in the network. Though this 

may be an effective way to solve for a minimum in that one specific category this is not realistic 

in that railroads have many criteria which must be satisfied simultaneously.  

Since a rail network is so complicated and has so many different individual systems involved, it 

is easy to see that single function mathematical programming solutions would never be globally 

optimized. For example, minimizing the number of switches for individual cars can lead to long 

waits in order to create specific unit trains which carry only one type of O-D traffic. Though this 

will certainly make sure that the individual car is only switched at its Origin yard and then at its 
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Destination yard, it will create havoc for the railroad and the consumer in terms of delay, wasted 

storage space and lost revenues. 

3.1.2. Simulation Models 

Simulation is the imitation of something real (a process, a system, etc.) and can be represented as 

a physical model or as a mathematical model. Simulation models are defined as “abstractions of 

a real system which retain the essential aspects of a system” (Papacostas & Prevedouros, 2001). 

In saying that, it is important to note that since simulation models are abstractions of reality, they 

are not exactly the same as real life. This means that some simplifications are necessary, but the 

major system components are always included. 

Simulation is often most typically used when a system is so large and so complex that an 

analytical model would be inefficient and costly.  Such an example of a large, complicated 

system is a railroad network. The railroad system is one with many individual components which 

work together in order to move traffic from origin to destination. Though there are physical 

models of railroads (model train sets) these are different from the large scale mathematical 

railroad network models used today in industry. The reason large scale mathematical models are 

used is because the cost of implementing various train strategies in a test scenario in real life 

would be very costly, time consuming, and aggravating to customers.  

Mathematical Simulation models can be either deterministic or probabilistic in nature; however, 

railroad network models are typically deterministic in nature. This is because railroads are, on a 

whole, typically steady state systems with relatively low fluctuations in traffic patterns on a day 

to day basis (Interview with Ray Dai of CPR, 2010). 
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3.1.3. Comparison of Models 

Often optimization results are very general and they are not easy to implement in real life and, 

thus, a simulation model can prove to be more effective in creating a more real world scenario. 

Simulation can provide many individual details (outputs) at the same time given the same inputs 

as an optimization model, but not require running multiple individual models independently of 

one another. In addition, simulation is more realistic, existing conditions can be easily modeled 

whereas an optimization model is more general and may not consider day to day events such as 

track closures or routine maintenance operations without excessive programming. With 

simulation, a mathematically optimized solution is not typically found. Instead, results are 

provided for review and through completing multiple iterations of the analysis with varying data 

or criteria, using human intelligence, a “best case” integrated solution can be determined. 

For the reasons stated above, this research will focus on a simulation model to accomplish its 

goals. The mathematical simulation model developed is a discrete-state, and deterministic 

simulation model.   

3.2. Classification Yards and Yard Operations  

Yards are the hubs for all originating and terminating traffic. In a railroad network, yards are 

where cars go to get “classified” (sorted) into their respective “blocks” (groups of cars with 

similar properties such as destination or car type) after which they get built into trains to be 

dispatched. These cars can be originating traffic stemming from the yard or they could be cars 

which have been transported from other yards and have to be reclassified.  
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There are four major operations at any given classification yard. Although for any one car, these 

operations happen sequentially and the next operation depends on the prior operation. Large 

yards typically continue to run 24 hours a day and all tasks happen simultaneously. Typical 

operations at a classification yard can be grouped into the following (also refer to Figure 2.3): 

1. Train Receiving and Inbound Inspection; 

2. Classification or Sorting of Cars onto Classification Tracks; 

3. Train Marshalling or Assembly; and  

4. Outbound Inspection and Train Departure. 

 
During the receiving, the inbound inspection is comprised of checking the rail cars for structural 

integrity, safety, as well as the consist of each car.  During this time period in a hump yard, the 

yard crews will turn off the air brakes so that cars become free rolling (this way they can be 

pushed or pulled as required) and the cars will then be put into queue so that they can be 

classified. In a flat yard, the inbound cars will be uncoupled and split up only at the cut limits 

and the air brakes will only be bled if individual cars are being classified.  

The cars are then sorted onto various classification tracks which act as temporary storage for use 

while building a new train or a portion of a new train. This sorting, or classification, is conducted 

in one of two ways: by using gravity such as in hump yards or by using switching locomotives in 

flat yards as described above. Once the cars have been sorted onto the classification tracks into 

their new yard assignments and the cut off time for the departing train has come (time at which 

the train must be built for departure) the cars are built into an outbound train at the trim end of 

the yard, inspected as they were during receiving, and released to their next destination after a 

brake test.  
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3.2.1. Individual Yard Capacity 

Yards can typically be assigned average capacities as is done in various papers such as Martinelli 

and Teng (1996), Assad (1980) and as per the case study in Troup et al (1977). In these 

situations, the yard is looked at as a black box where cars go in and cars go out (there needs to be 

a conservation of flow here) but the specific yard operations are not typically modeled in train 

routing/makeup models. In essence the yard can be looked at as a black box where incoming 

trains arrive and are processed, and outgoing trains depart. In spite of this, yard resources affect 

how many cars can be classified (the capacity) and how quickly. Factors affecting yard capacity 

can include sorting techniques and strategies, system loads, and yard management. 

3.2.2. System Effects on Yard Capacity  

There are various system factors which influence how individual yards perform on a daily basis. 

The following is a list of the major factors which affect individual yards adopted from Troup et 

al (1977) pp176. 

a. Composition and delivery times of cars from other yards (system, interchange or even 

industrial); 

b. Time allowances for delivery of cars to their destinations (i.e. contracts – this can often 

be precluded when modeling routing of trains or blocks and agreements can be readjusted 

between the industry and the railroad with notice based on schedule changes from the 

railroad); 

c. Constraints on sizes of trains (based on yard sizes, main line track infrastructure 

strengths, and motive power allocation); 
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d. Availability and reliability of advanced information (train formation, consist information, 

etc.) of incoming train traffic; 

e. Rules and regulations for crews (unionized members); 

f. Blocking and formation strategies followed in other system yards (i.e. yards working 

together). 

These above factors are just the broad spectrum of what can affect a yard outside of the yards 

own management and resources. These are all things which are not within the control of 

individual yards and, therefore, must be looked at and treated on a macro-network system level 

in order to reap the benefits of synergy in the network. Making the entire system work together 

in order to optimize the flow of traffic can lead to far greater benefits than the optimization of 

individual yards. 

3.3. Mainline (Linehaul) Operations 

Track segments between yards can be single lines or multiple parallel lines which move between 

yards in the network. Trains can typically move in opposite directions on the lines so long as 

there are prebuilt sidings (short train length segments of track) where one train can wait while 

another one passes. These sidings not only allow trains to pass each other in the opposite 

direction but also in the same direction such that trains with higher priority and speed can 

overtake slower or lower priority trains. The geometry of the main lines can affect how fast 

trains can move on the lines and how heavy the trains can be. The important part of linehaul 

operations involve decisions about which trains move which blocks over a given set of tracks in 

order to get from one yard (origin) to another (destination). 
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3.3.1. Origin-Destination Travel Demands 

Origin-Destination (O-D) demands are represented by the number of rail cars destined to arrive 

at a given yard from an origin yard. This is similar to other forms of transportation such as 

automobile. O-D demands on any given network are based very much on the economy and 

industries located along rail routes. Though this is the case, railroads can still accurately predict 

the travel demands on their network on, at the very least, a seasonal basis with some room for 

fluctuations, and design an operating plan to justify running various trains in order to serve the 

travel demand.  

3.3.2. Train Composition (Pull lists) 

Trains themselves are a composite of locomotive power (1 or more engines) and sets of blocks of 

cars traveling in the same direction. A train can carry any car or set of cars (blocks) as required 

by the railroad. The makeup of the train, the pull list (list of which blocks to take on its journey – 

also known as block assignment), is a very contentious issue because if done correctly it can help 

to prevent delays and minimize costs, but if predicted incorrectly the effects can be devastating 

and crippling to a railroad. These lists are developed in an attempt to create minimal impacts on 

the overall system. 

Depending on the train route, different blocks of cars traveling to various destinations (either 

final or intermediate) can be pulled. This means that trains do not have to pull blocks going to 

the same destination as the train. They can pull additional traffic (preferably moving in the same 

direction overall) in order to bring the traffic closer to its final destination yard. This can help in 

keeping traffic moving and prevent traffic jams at yards. 
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3.3.3. Train Routing 

The physical infrastructure, e.g. the tracks and yards, are typically set and not often the subject of 

tactical planning studies. The actual use of existing physical systems is what is often being 

planned, and this is done through creating itineraries based on physical routes and transportation 

demands. Figure 3.1 shows an example of a simple network of 6 yards (the black dots) connected 

by 10 sets of railroad tracks (lines). If for example there is a travel demand for traffic to travel 

from yard 1 to yard 6, there are four different physical routes possible: (1, 2, 4, 6), (1, 2, 5, 6), (1, 

3, 4, 6), and (1, 3, 5, 6). Along physical route (1, 2, 4, 6), there are four specific itineraries 

possible and this is shown in Figure 3.2. The itineraries show how a block of cars which are to 

travel from yard 1 can travel to yard 6 based on the (1, 2, 4, 6) physical route. The itineraries 

(denoted by I#) show where a given train will travel from yard 1 to yard X on the way to its final 

destination, each straight line between the arrows shows a different train. The most direct route is 

one where a train travels from yard 1 to yard 6 without stopping at yards 2 or 4 but this can be 

expensive and the demand may not justify running a straight train in this manner, therefore, 

itineraries for each block of cars is required. The decision of which route to take can be affected 

by the various factors suggested in prior sections but can also be adjusted based on travel 

demands (Origin-Destination). 

3.4. Network Element Interactions 

This section presents how various elements of a railroad network interact with each other. The 

types of elements which can affect a network can be categorized into two specific sections: 

system elements and external elements.  
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Figure 3.1  Example Network Railroad – Martinelli and Teng (1995) 

 

 

 
 

Figure 3.2  Train Itineraries for Physical Route (1, 2, 4, 6) – Martinelli and Teng (1995) 
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3.4.1. System Elements 

System yards collect railcars from local industries (origin) and dispatch railcars to other yards 

(destinations) in order to move traffic from one place to another. The network of yards is a 

system where cars from one origin to another destination must travel in order to get as close as 

possible to their final destination. The cars at system yards do not typically generate and 

terminate exactly at those yards, but somewhere else local to those system yards.   

For the purposes of modeling however, cars generated at local yards can often be considered as 

being generated at system yards. Cars at the originating system yard must be sorted into blocks 

which are moved on road trains from yard to yard until reaching its final yard destination, being 

resorted or classified along the way at intermediate yards as required. In order to allow the 

system to run smoothly and efficiently the car, block and train loads must be balanced in such a 

way that it takes into account the traffic demands, yard capabilities, and main line capabilities. 

This must be done in order to maximise profits and reliability while minimizing delays and 

operating costs in order to satisfy the systems needs. 

3.4.2. External Elements 

Within the system there are other factors such as crew resources and unions which can affect 

what, how and when work takes place, and there are government and regulatory restrictions 

which can affect the performance of trains. Often these elements are not modelled. Crew 

management can be excluded because it is a separate topic and it is typically considered that the 

crews will be available for the operations that are being modelled. Regulatory elements such as 

car inspections and safety do not need to be included because they are typically incorporated into 

the train speeds or yard processes and are, therefore, often not modelled in a network sense. 
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Other elements such as regular maintenance and fuelling of locomotives, car repairs, are all 

typically built into the schedules while yard work is being completed (e.g. while cars are being 

classified, others are being fixed, engines are being maintained, etc.). This way they are not the 

controlling operation and, therefore, become secondary focuses which are not often modelled in 

existing routing models which have been reviewed as a part of this study.  

3.5. Typical Model Components 

A model is comprised of multiple segments which, together, create the whole picture. These 

components include model objectives (objective functions), model constraints (model 

formulations and calculations), model input data, and model output data. These are explained 

below with examples of typical elements provided. 

3.5.1. Model Constraints  

There are various constraints and factors which must be considered when building a computer 

simulation model for a railroad network. These constraints are what make the model realistic and 

provide some resistance to the actual routing of cars throughout the network. 

The following is a list of constraints upon which various previous models have been based: 

a. Physical Constraints in the Network (such as yard and link data); 

b. Individual Yard Capacities; 

c. Yard Dwell Times; 

d. Maximum and Minimum Train Lengths; 

e. Maximum and Minimum Block Sizes; 
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f. Flow Conservation in intermediate yards (what goes in must come out); 

g. All Cars must be Routed from Originating Yards to Specific Destination Yards 

irrespective of how many intermediate yards they go through; 

h. Cost constraints on specific movements (i.e. resistance on certain routes); 

i. Time constraints based on delivery commitments (i.e. an exponential cost function in 

order to mitigate delays or rerouting). 

 
Though not each of the above noted constraints are considered in every individual model, the 

above list goes to prove that many factors must be considered in the preparation of any model. 

These constraints are what make the model fit into a system and define the characteristics of said 

system. They also provide insight as to how the system works and how each element interacts 

with one another within the system in reality. For example, if a constraint is put on the maximum 

speed of a train on the network, the train will only be able to move that fast throughout the 

course of its journey. An example of such a constraint is presented in Equation 3.1. 

St ≤ Smax          (3.1) 

where,  

 St = the speed of the train (km/h); and 

 Smax = is the maximum allowable speed of travel on the entire network (km/h). 

3.5.2. Model Objective Function(s) 

When looking at optimization models, each model has a specific objective function. This is the 

one individual item that a model is trying to optimize (either minimize or maximize) in order to 
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determine the “optimum” configuration of a given set of parameters in a specific network. This 

objective function takes into consideration the various constraints considered in the model and 

prints a specific output. The following list shows some general objective functions which have 

been studied in past literature of mathematical optimization models: 

a. Minimize car dwell time in yards (blocking optimization); 

b. Minimize car costs (based on time spent on the network); 

c. Minimize time spent on the network (while attached to a road train – e.g. transit time); 

d. Minimize total number of car handlings/classifications (blocking optimization); 

e. Minimize operating and delay costs (blocking or transit time optimization); and 

f. Maximize number of cars which can run through a network. 

 
The downfall of this method is that it looks only at one specific objective function and does not 

consider all of the intricate realities of the entire network. Even with many constraints built into 

the system there are often other considerations which are missed. Adding too many additional 

constraints to the model can possibly render it computationally impossible to solve. An example 

of this type of objective function is presented by Martinelli and Teng in Equation 3.2. This 

equation represents a minimization problem which focuses on the overall operating time for a 

given train/cars on a train over the course of travel time over a specific route and arrival 

operations at the destination yard. This focus on minimizing the time does not particularly 

consider the number of cars per yard or the total number of car handlings in a network. 

Minimize Z= (∑j=1 tj * Xj) + (∑j=1(δ * Xj * cj + vj *Xj))    (3.2) 

where, 
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 tj = average travel time for train j (hours) 

Xj = number of cars on train j (# of Cars) 

 δ is a 0-1 function which determines whether the constant cost is applied or not 

 cj = constant operating time at the destination station (hours) 

 vj = variable operating time at the destination station (hours) 

The small scope of optimization functions is not a problem in simulation models as a simulation 

can provide various results on any or all of the factors mentioned above. Though the system may 

not be mathematically optimized for any individual function, the model can present various 

outputs simultaneously. These outputs can be analyzed individually or together, providing a 

more complete system overview as opposed to a narrow individual function. Optimizing 

individual criteria may lead to losses in other sectors of the system, and a whole network synergy 

may not be realized. The downfall of a simulation however involves running multiple analyses 

and manually reviewing results in order to find a best solution as opposed to a mathematically 

optimized solution. With simulation there is no “optimized” solution and thus an analyst may 

revise and re-run simulations may be present in order to get a “best case” plan. This can prove be 

quite time consuming should the analyst be unfamiliar with a specific model, however, the 

overall result of a best solution can prove to be a more globally refined operations plan. 

3.5.3. Model Input Data 

In any given model there must be inputs which are entered by the user in order to feed 

information to the model. Within railroad networks there are quite a few sets of data which are 
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required prior to even beginning a simulation or optimization in order for the model to run 

realistically. The following is a list of typical input data used in existing models (based on 

literature review). The list also includes whether the inputs are fixed (always the same when the 

model is used) or variable (can vary between model uses):  

a. Physical constraints of the network (number of yards, yard locations, lengths of tracks, 

train running speeds) – these are typically fixed, however speed can be adjustable; 

b. Motive power (number of locomotives) – this could be variable, fixed or assumed to be 

infinite if not explicitly included in the model (i.e. railroads can acquire more power as 

needed); 

c. Crew requirements – this could be variable, fixed or assumed to be infinite if not 

explicitly included in the model (i.e. railroads can acquire more crews as needed); 

d. Travel demands (O-D) – variable (though they vary over time, these values are known or 

estimated from past data); 

e. Physical or variable costs for car movements of delays – variable (though they vary over 

time, these values are known or estimated from past data); 

f. Possible physical routes for trains – fixed (though the model can either determine routes 

or they can be manually supplied); 

g. Possible itineraries for all physical routes – fixed (though the model can either determine 

itineraries or they can be manually entered); 

h. Operating times for routes and itineraries – variable (known or estimated based on 

congestion, speed restrictions, noise laws, etc.); 

i. Typical Yard capacities (if the yards are looked at as a black box as suggested in Troup et 

al (1977)) – these are typically fixed (estimated from past); and 
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j. Individual Yard operating times (if the yards are looked at as a black box as suggested in 

Troup et al (1977)) – these are typically fixed (estimated from past). 

 
The data inputs will all be entered into the model prior to or during the course of running the 

model and will be used to determine the individual or various outputs which the model produces. 

3.5.4. Model Output Data  

The output(s) of a model are what the analyst requires in order to help make decisions about the 

system and how to optimise performance. Optimization models often only provide a single 

optimized output with some various outputs on “how” to get there, such as train configurations 

or blocking movements. Simulation models on the other hand can often provide multiple and 

various outputs which can be analyzed all at once, though not mathematically optimized, they 

can be iteratively optimized by the user and running multiple simulations. The simulation 

approach allows a more comprehensive and integrated system optimization rather than a single 

function optimization.  

The following is a list of various output(s) of existing models:  

a. Physical routes and itineraries for given car(s)/block(s)/train(s); 

b. If it is a train formation model – number and sizes of trains to be created (given a 

blocking plan); 

c. If it is a blocking model – number and sizes of blocks to be created; 

d. Number of times each car is handled/switched; 

e. Flow through each yard;  

f. Number of cars in each train or in each block; 
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g. Number of trains required on a timely basis (and in turn crew requirements, overall costs, 

etc.); and  

h. Various or Overall costs (based on cost functions in the model). 

 
The results of the above outputs will not only help to satisfy the objective function(s), but also 

show what a railroad should do to accomplish the goals set out by the model and a means of 

measuring the changes. These outputs must be analyzed by the user to determine whether they 

are realistic and employable as well as if they actually make the system perform better than in its 

current state. 

3.5.5. Existing Routing Methods 

The process of routing cars, blocks and trains, is an iterative and complicated process. Various 

operating plans (the blocking plan, the train formation plan, the train schedule and the empty car 

distribution plan) must be combined by the railroad to create a final operating plan which is not 

only functional but also “optimal” / “best case.” It is important to note that in general, railroad 

traffic is fairly steady state. There are some seasonal variances and some economic factors which 

can affect railroad traffic but in general it is assumed that traffic at least on a monthly or seasonal 

level is steady state. For this reason railroads are able to create general train schedules and static 

blocking plans with reasonable confidence. 

When running simulations of their networks, railroads supply their current software with various 

data which includes static blocking plans, train schedules, traffic files (OD data, car types, etc.) 

as well as network topology and geography. They, then, use the shortest path algorithm such as 

Dijkstra’s algorithm in order to determine the shortest path for each individual car moving from 
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one node to another. They often combine a shortest path algorithm with one which takes 

resistance factors into account, thus, preventing cars from being assigned undesirable paths. 

After this, the software will assign each car to a specific predetermined block or set of blocks 

which are destined to travel from node to node. The blocks are, then, assigned to individual 

trains which carry them to their destinations. The existing models also provide various system 

and network statistical data by which users can review overall system performance (Oliver 

Wyman Group, 2010). 

With this system, different sections and groups within the railroad come up with the different 

strategies which make up an integral operations plan. This means that if there is a train schedule 

is causing the blocking plan to be less efficient because trains are not scheduled at the time 

blocks are ready, the blocking coordinator would have to go to the scheduling coordinator and 

the two would have to go back and forth, running a long and time consuming simulation each 

time. With the model developed here, the back and forth of two separate groups working on 

individual plans is taken away. Instead, with the model and guidelines proposed, one analyst can 

develop, test and analyze an integrated operations plan with only traffic, network, and yard data. 

3.6. Summary 

This chapter has reviewed the optimization and simulation models in order to determine which 

one is the most suitable method for this thesis. This chapter also reviewed the major components 

of the physical railroad network as well as the operating rules and regulations by which railroads 

function. It has provided the basis for setting up and creating a model which will assist in 

optimizing railroad networks on a whole. From the discussion in this chapter, selective criteria 
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are carried forward into the model development which address the major areas of concern with 

respect to performance enhancement and cost minimization.  
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4. MODEL DEVELOPMENT 

This chapter outlines the development of the simulation model and the methodology. This 

chapter also discusses inputs and outputs to the model, as well as the guidelines which assist in 

developing operation plans. Finally, model capabilities and limitations are discussed. 

4.1. Model and Guidelines Overview 

Railroads move freight traffic on their network based on an overall operations plan that includes 

blocking, train formation, and train scheduling plans. The optimization of these operations over 

the entire network is integral to maximizing efficiency and minimizing costs. The model 

developed here uses a discrete state, deterministic simulation approach for analyzing various 

operation plans of a railroad network. Along with the model, various guidelines for establishing a 

comprehensive operations plan are developed. The objective of the operations plan is to move all 

the freight on the railroad network reliably and with a minimal cost. In order to maintain reliable 

service with a minimal cost, various factors must be reviewed such that they can be compared 

amongst several alternative options. By analyzing and comparing several options using a 

straightforward and consistent criteria will help in providing a ‘best case’ operations plan with 

the aforementioned goals in mind. These factors for comparing multiple operation plans are 

described, in detail, further in this chapter. 

The general overview of the model is shown in Figure 4.1. The major components include 

general network data entry, operation plan formation (various route restrictions, train schedules, 

and blocking strategies) and data entry, block to train assignments, train and O-D pair routing, as  
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Figure 4.1  Model Overview Flowchart 

 
well as analysis of operation plan and model results. To accomplish the data requirements of the 

model, the analyst must enter some general network data including number of yards (variable), 

number of trains (variable), and number of routes (variable), as well as minimum and maximum 

train sizes. The data entered here affects what data will be required for each yard, various routes, 

O-D pairs and train schedules. Typically, the yard, route and O-D data are fairly standard, or 

given, for a particular network. The train schedules should be prepared using the methodology 

and guidelines developed in this thesis, which are both straight forward and easy to use. 

Once this data entry is complete, the model tentatively assigns blocks to trains using the 3-step 

process developed here and allows the analyst to review the assignments for inconsistencies. 
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Since the analyst can review the block to train assignments, Braess Paradox may be avoided. 

This paradox occurs because the model selects the shortest possible route for each train, without 

consideration for the entire networks’ movements. Once the block assignment is complete, the 

model then prioritizes trains based on build times and special handling requests. This allows the 

model to build a queue list for each yard and provide the analyst with details of when each train 

is using yard resources. The model, then, initiates the train routing algorithm simulating the 

operation of each individual train and transporting each individual car in its O-D pair.  

The model can output various individual train statistics, route statistics, and yard statistics 

including when each yard is being used (for building or receiving trains). In these results, the 

analyst can retrieve much needed data required to make a decision on which operations plan is 

the ‘best.’ Though it is not always clear which plan is best, using the guidelines developed in this 

thesis, a used can determining the “best case” plan based on various economic, reliability and 

environmental factors. The model can also be used to test various train plans, blocking plans, and 

yard plans (including resizing/closing yards). Alternatively, the model can also be used to 

determine what effects traffic pattern changes would have on the network. More details about the 

model components are presented in the following sections of this chapter. 

4.2. Model Data Inputs 

Various data requirements are present for the model to be effective in providing a realistic 

simulation. Data input into the model are broken down into several distinct sections: 

1. Network Data; 

2. Yard Data; 
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3. Route Data; 

4. Origin-Destination Traffic Data; and 

5. Blocking Plan Data. 

 
These inputs and their functions are described in the following subsections. 

4.2.1. Example Network 

Figure 4.2 shows an example of a large and comprehensive railroad network in Canada and the 

northern United States owned by the Canadian Pacific Railroad (CPR) Company. The tracks 

shown are the major lines connecting all of CPR’s major nodes of operation and City Centers. 

Each of these Cities has a large yard on the CPR Network. Although additional yards of various 

sizes exist on the network, this map only covers the major City Centers. 

For the purposes of this thesis and providing a detailed explanation with examples of the model 

inputs, a small hypothetical subset of a large network, similar to that of CPR’s, has been 

provided as shown in Figure 4.3. The examples in all of Sections 4.2.X were created in reference 

with this network diagram. 

4.2.2. Network Data 

Network inputs include the number of yards, number of trains, maximum and minimum train 

sizes, and number of routes. An example of the network data as it is input into the model is 

provided in Table 4.1. The number of yards represents how many yards are in the network being 

analyzed and is typically a static number. The number of trains is typically a variable number 

which varies over the course of the analysis and can be changed as often as the analyst chooses 

to do so. The minimum and maximum size for each train is measured by number of cars.  
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Figure 4.2  Example Railroad Network Map (http://www.cpr.ca) 

 

 

Figure 4.3  Example Network 
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Table 4.1  Example of Network Inputs  

Total Number of Yards 
5 

Max Train Size 
999 

Min Train Size 
0 

# of Trains 
15 

# of Routes 
25 

 

This is variable and can depend on, but is not limited to, the following: how the network is setup 

and the available locomotive power or size of sidings on mainline tracks. The number of routes 

is dependent on how many yards exist in the network, their configuration, and the links between 

them. The number of yards and number of routes can also change based on the analysis being 

completed. For example, if a sensitivity study on the closure of one yard was being conducted, 

removing a single yard from the network would have effects on the number of routes (as all 

routes going through that said yard would be negated).  

Though there is no limit to how many yards the model and software application can work with, 

the software needs to be reconfigured manually when the number of yards changes. As with the 

yards, there is no actual limit to the number of routes or trains that the model can handle, but 

some software manipulation may be required if the number exceeds 50 and 35 respectively. It is 

important to note that additional yards, additional routes, and additional trains cause slower 

simulations. There are no software limits on the number of cars a train can carry. As the analyst 

adds data into the model, the number of yards, trains, and routes can change during the 
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assessment of a network. Though it is quite easy to change the number of trains and routes, up to 

35 and 50 respectively, as one would just need to add or subtract routes and trains, it is slightly 

more difficult with yards. The yard data, discussed below, is simple to adjust, but the Origin-

Destination tables discussed below, require some more adjustments because removing or adding 

a yard can dramatically change the O-D’s and the changes must be reflected within the model.  

4.2.3. Yard Data 

Yard data consists of yard identification (ID), the type of yard, yard input time and yard output 

time. The Yard ID is a sequential numbering system starting at 1. This is a simplistic measure for 

the model to identify each yard. For example if there were 5 yards in the network, each yard 

would be given an ID number from 1 to 5. The daily blocking capability of a yard is limited to 

the maximum number of yards in the network. This is due to a software limitation which does 

not take into account more than one type of O-D traffic pairs. If other classification 

characteristics for O-D traffic were to be incorporated then additional blocks would need to be 

formed.  

The Average Yard Input (Incoming Train) Time includes Train Receiving, Inbound Inspection 

and preparation for the Classification of cars. The switching time per car is the amount of time it 

takes, on average, for one car to be classified. This average time is how long it takes a car to 

move from the control of the switching engine to its respective classification track. The Average 

Yard Output (Yard Service) Time includes Train Assembly, Outbound Inspection and Train 

Departure. An example of the yard data as it is entered into the model is shown in Table 4.2. The 

Type of Yard can be a Hump Yard or a Flat Yard. The Type of Yard and the Minimum Pure 

Block Size are for information purposes only.  
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Table 4.2  Example of Yard Data Inputs 

Yard 
Number 

Type 
of 

Yard 

Daily 
Blocking 

Capacities 

Minimum 
Pure Block 

Size 

Incoming 
Train Prep 

Time 
(Minutes) 

Switching 
Time Per 

car 
(Minutes) 

Yard Service 
Time (Per 

Train - 
Minutes) 

1 Hump 4 10 00:15:00 00:00:30 00:30:00 
2 Flat 4 10 00:25:00 00:00:45 00:30:00 
3 Hump 4 10 00:20:00 00:00:30 00:25:00 

  

 

4.2.4. Route Data 

Route inputs involve the user manually entering the various routes between each yard (so long as 

they are connected). This is dependant also on whether the user decides to allow a specific route 

to be used between two yards. If a route is not entered into the model, the model assumes that it 

does not exist. An example of the route inputs into the model is provided in Table 4.3. The user 

must enter the origin yard, the destination yard, path between the yards (i.e. which yards the train 

would pass as it travels) and the overall distance between the two yards along that specific path. 

The model determines which of the various routes/paths is the shortest and, then, assigns that 

specific route/path to each specific train accounting for any connections present.  

In the example, Route #4 and Route #5 both originate and terminate at yards 2 and 3, 

respectively. If the model were presented a choice between the two routes, it would choose 

Route #5 because the total route length is less than that of Route #4. If the user for some reason 

did not want Route #5 to be used by the model, it should be left out of the Route Inputs. 
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4.2.5. Origin-Destination Traffic Data 

Origin-Destination Traffic data are entered into the model in a tabular format which specifies 

how many cars are generated at each origin yard destined for each destination yard. The model 

can be setup to interpret the O-D data such that it is split up into 4 hour segments for a total 

duration of a single day or duration of seven individual weekdays. Each of these segments is 

considered to be a specific timeslot and this is used by the model when building trains. The time 

period adjustment requires some programming modifications, but the methodology of the model 

and formulations stay the same. Any O-D traffic data in the tables can be set to “Special Handle” 

or Priority processing by formatting the text in the O-D table to be bold. This means that the bold 

O-D traffic will always be handled (classified or assembled) first, prior to other similar traffic on 

the train. Examples of O-D table can be seen in Table 4.4 and Table 4.5. An example of non-

priority and priority cars can be seen in Table 4.4 with O-D 1-5 at 08:00hrs and 12:00hrs 

respectively. Other O-D’s can be interpreted similarly. 

4.2.6. Blocking Plan Data 

The blocking plan is set up by the user and determines which O-D pairs will be transported on 

which blocks. The model determines whether the block is mixed or pure by realizing whether 

there are multiple O-D pairs assigned to the same block or not. The number of blocks at any 

given yard is limited to a maximum of the number of yards in a network less one. This is because 

the model realizes only one type of car. There is no consideration for multiple classification 

characteristics of O-D traffic. Pure blocks are denoted by a 1 and mixed blocks are denoted by a 

0. This is determined by the model and is important because with train assignments, the mixed 
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blocks will be picked up by the first available train. This is discussed in more detail in Section 

4.4.1. 

Table 4.3  Example of Route Inputs 

Route 
# 

Origin 
Yard 

Destination 
Yard 

Route Path (Yard to 
Yard) 

Route Length 
(km) 

1 1 2 12 55 
2 1 3 13 45 
3 1 4 14 130 
4 2 3 243 205 
5 2 3 213 100 

 

Table 4.4  Example O-D Table for Daily Operations 

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

1 1 1 2 2 0 1 0 0 6 
1 2 3 3 16 9 27 0 0 58 
1 3 1 2 11 5 6 0 0 25 
1 4 0 0 0 0 0 0 0 0 
1 5 2 5 34 21 40 0 0 102 
Total 7 12 63 35 74 0 0 191 

 

Table 4.5  Example O-D Table for Weekly Operations 

From To Mon Tues Weds Thurs Fri  Sat Sun Total 

1 1 41 46 41 48 0 0 0 176 

1 2 0 3 0 16 0 0 0 19 

1 3 0 0 0 0 0 0 0 0 

1 4 0 0 0 0 0 0 0 0 

1 5 0 8 0 24 0 0 0 32 

Total 41 57 41 88 0 0 0 227 
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Table 4.6 shows an example of a blocking plan at Yard 1 where only three (3) blocks are being 

utilized. The Block number associated with each O-D pair is given and the model determines 

whether the block is pure or mixed. Each O-D pair where the O is equal to the D is automatically 

given a Block # of 0 because this traffic is deemed unnecessary to move from the yard. The 

remainder are numbered from 1 to n-1 (where n is the number of yards) in any order determined 

by the user. The example also shows the blocking plan at Yard 2 where each O-D pair has its 

own traffic block. 

4.3. Guidelines for Train Scheduling  

This section describes the process by which a user can create or adjust a proposed train schedule 

in order to clear the O-D tables (move each O-D pair from its Origin Yard to its Destination 

Yard) for the analysis period. A train schedule should be based on historical traffic data from 

Table 4.6  Example of Blocking Plan 

Yard 1 
Destination Yard Block # Pure or Mixed 

1 0 1 
2 1 1 
3 2 1 
4 3 1 
5 3 0 

Yard 2 
Destination Yard Destination Yard Destination Yard 

1 1 1 
2 0 1 
3 2 1 
4 3 1 
5 4 1 



76 
 

railroads. Traffic is typically steady state over the whole of the railroad network. This means that 

once a train schedule is set, it is often in place for a long period of time. Figure 4.4 shows the 

general steps with respect to creating a preliminary train schedule. This should be created in 

conjunction with the blocking plan to ensure the optimal coordination.  

 

Figure 4.4  Process for Train Scheduling 
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`The process should be repeated for each yard at least once, in order to assure that there is one 

train leaving each yard. If there is no originating train at a single yard, at a minimum, a 

connecting train should be provided, otherwise, all traffic will get stuck at the yard with no way 

out. Additional trains at each yard should be created on an as needed basis. The process can be 

repeated bearing in mind the largest O-D demand should be substituted by the remaining largest 

in a yard, if trains have already been created originating from that yard. 

The following provides some insight for the analyst when selecting yards and creating trains. 

The train plan should start by determining which yard the most O-D traffic originates from and 

which yard it is destined to. It must be determined whether there are enough cars during the 

analysis period to fill an entire train or if additional cars may be required. It is important that at 

least one train terminate at each yard and on at least one train pick-up cars at each yard by 

originating or by connection at that yard. This will ensure that all cars will be given an 

opportunity to get transported. 

Scheduled times for each train must be determined by the user. This should be done in a way that 

when a train is built, the cars are readily available in the yard. For example, if 30 cars are 

available at 1200hrs and an additional 45 cars are not available until 1600hrs then it would be 

best to build the train at or after 1600hrs. There is a balance of how many cars are available at 

any given time and how long cars must wait inside a yard at any given time for a train to be built. 

The sooner traffic is moved from the yard it originates from, the faster it can reach its 

destination. At the same time, if a train moves with a less than full load of cars then the 

economies of scale on crew and locomotive costs may not be realized. If there are enough cars 

for one single O-D pair to fill an entire train, the absolute earliest time for train departure must be 

assessed in order to limit car waiting time at yards. 
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Once all of the direct O-D trains (if any) have been established then the remainder of the trains 

can be established. These remaining trains will carry multiple O-D pairs from one yard to 

another. These are not necessarily the same yards as the O-D demand, but the progress of each 

car should be towards its final destination. This is done by looking at the yards which have the 

majority of the traffic and determining where the traffic is required to go. For example, one can 

look at Yard 1 which may have O-D pairs of traffic going from Yard 1 to Yard 2 (1-2) and from 

Yard 1 to Yard 3 (1-3). Assuming that the 1-2 pair has the majority of the cars, but not enough to 

warrant a 1-2 only train and that the 1-3 pair has some cars but not enough to warrant a 1-3 train, 

one can build a train which moves the 1-2 and 1-3 O-D pairs from Yard 1 to Yard 2. This way if 

there are pairs of 2-3 traffic which must be transported from Yard 2 to Yard 3, the 1-3 traffic pair 

will be combined with the 2-3 pair once it arrives at Yard 2. Yard 2 can now process and forward 

the 2-3 pair (which is combined with the 1-3 pair that arrived from Yard 1) to Yard 3, its final 

destination. Additionally, trains which are assigned connecting yards can be very helpful in 

filling excess train capacity so that it does not go to waste. For example if there O-D pairs for 

yards 1-3 and yards 2-3 exist with a combined traffic load sufficient to justify a single train, then 

it makes sense to originate a train at Yard 1, connecting in Yard 2 and terminating at yard 3. On 

its route it can pick up traffic from Yard 1 (originating) and Yard 2 (connecting). 

4.3.1. Train Schedules in the Model 

The Train Schedule is entered by the user with the six following characteristics: train number, 

build time, origin yard, connecting yard, destination yard, and average train speed. The train 

number is a sequentially numbered system by which the model identifies each train. The number 

of trains here must match the number of trains identified by the user in the network inputs stage 

(though this is something which can be revised by the user quite easily). The build time is the 
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time of day based on a 24-hour clock (or 168-hour clock for a seven day model) and for each 

train it does not need to be in any specific order. The model determines when each train is built 

automatically and, then, runs them in order based on a linear progression of time (not train ID 

number). The origin yard, connecting yard, and destination yard are the yards which a train will 

travel from, pick up additional cars from, and arrive at respectively. This is assuming that there 

are routes which connect the origin yard to the destination yard. 

If no routes are present, the model informs the user and stops the simulation for that specific 

train. The final input is the (average) train speed by which the model calculates travel and arrival 

times for each individual train. For each train the user is also required to enter whether special 

handling (or priority) is required (this is a 0-1 variable). If the special handling variable is 

triggered it directs the software to give priority (in any queue conflict situation) at yards, for 

example, during the time of building a train or at the arrival and classification of cars. 

An example of the input data for a train can be found in Table 4.7. In this example there are two 

trains which run at 0800hrs and 1200hrs respectively. The first of the two trains starts in Yard 1 

and ends in Yard 3. The speed is averaged to be 60 km/h and there is no special priority or 

handling for this train required so the priority section is left as 0. Alternatively train 2 leaves 

Yard 2, connects in Yard 4, and arrives at Yard 3 travelling at a speed of 70 km/h. Since this 

train has priority for a reason determined by the user, the priority section is changed to 1. In this 

manner, the entire train schedule can be entered into the model. 

Table 4.7  Example of Train Schedule Input 

Train # Scheduled Build Time OYard CYard DYard Speed Priority  

1 08:00 1 - 3 60 0 
2 12:00 2 1 3 70 1 
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4.4. Proposed Block Assignment Method 

With respect to this thesis and the model it presents, the following routing methodology is 

proposed. Users will be required to enter train schedule, static blocking, traffic O-D tables and 

network geography data for the model. The model will suggest block to train assignments 

(provide multiple options in some cases) for blocks from each yard to trains that are scheduled to 

depart from each yard. The model also takes into account trains which pass through a yard and 

conduct pick-up operations for specific blocks at a predetermined yard by assigning pick-up 

blocks at connection yards. This operation, then, allows the user to intervene in the model 

operation and adjust the block assignments as desired (one of multiple ways to conduct a 

sensitivity analysis of the network).  

A block can be assigned to one or more trains leaving from the same origin yard. This is 

important because various trains will travel at various times of the day or week. This means that 

multiple pickups for a block throughout the day can help to alleviate yard congestion and train 

capacity overruns by moving freight more frequently. The following flow charts (Figure 4.4, 

Figure 4.5, and Figure 4.6) show an overview and the step-by-step procedure of the routing 

algorithm used in this model. 

4.4.1. Block to Train Assignment in the Model 

Block to Train Assignments are the backbone of the overall train movement simulation. Once a 

train is scheduled, it needs a pull-list of which cars it is to take on its route. The block to train 

assignment is the list of which blocks will be attached to each train. The model determines each 

direct block assignment and each indirect assignment using the methodology presented here. 
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Although the Block to Train Assignments are recommended by the model, they still need to be 

manually inspected and adjusted by the user as required. The user may adjust these 

recommendations in order to represent a more realistic routing pattern or just to test additional 

routing patterns as desired. 

 

Figure 4.5  Step 1 - Assignment of Direct and Pure Blocks 



82 
 

 

Figure 4.6  Step 2 - Assignment of Direct and Impure Blocks 
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Figure 4.7  Step 3 - Assignment of Unassigned Blocks 
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Table 4.8  Example of Block to Train Assignments 

Train # OYard CYard DYard Block Assignment 

1 1 - 3 2 - 
2 2 1 3 2 2 

 

The example in Table 4.8 shows the block to track assignment as it is applied to Train #1 and 

Train #2 scheduled as per Table 4.7 and using the Blocking Plan from Table 4.6. As per the 

methodology developed in this thesis, it can be seen that Block #2 (assigned to O-D 1-3) is 

assigned to Train #1. This is what is known as a direct, pure blocking assignment since the block 

is not mixed and the train on which it is assigned is moving directly to the O-D pairs intended 

Destination. For each connecting yard the block assignment is highlighted in the input cell. 

4.5. Proposed Train Routing Method 

The model takes the existing route data provided by the user and applies it to the train schedule 

in order to determine train routes. This is done by determining the shortest direct path between 

two nodes (bypassing all other yards in between if necessary) and only connecting to one yard if 

specified by the user. This bypass method in the model allows trains to skip certain yards along a 

route and thus skip additional classification procedures for cars which do not need it. Building 

trains which bypass certain yards is a technique railroads have used in order to minimize 

unnecessary classifications in the past, though it is often only applied to what are called unit 

trains.  

Once routes have been selected, the model calculates the desired arrival times for each train 

based on length of route and average train speed. The desired build times and arrival times may 
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have conflicts (i.e. arrival of more than one train at the same time) at each individual yard and, 

thus, the model calculates where these conflicts occur. If there are conflicts and the trains have 

the same priority, the later train will get deferred until the earlier train has been processed. If one 

train has priority over the other, it will be the first one processed irrespective of which train 

arrived first (with respect to the time it takes to process each individual train at each individual 

yard). This means the model can anticipate whether it should hold a low priority train in the 

sidings while a higher priority train is on route. Using this methodology, adjusted arrival and 

build times are calculated for each train (refer to Section 4.6.2).  

At this point the model starts to process the trains in chronological order by build time 

(irrespective of train ID number). Each block of traffic assigned to the train from the routing 

process is attached to the train in order of the timeslot of when it is available in the O-D table. 

This means that cars in the 08:00 hrs timeslot will be attached to the train prior to the cars in the 

12:00 hrs timeslot. The only exception to this is if an O-D pair is bolded and deemed priority. 

When there is a priority O-D pair, it is attached to a train prior to any others. When there are 

multiple priority O-D pairs, they are attached to the train in chronological order. This is done 

until the train reaches maximum capacity. Only cars which are ready prior to or at the build time 

are attached to the train. This process is repeated for each train. If for any train the prescribed 

minimum number of cars is not reached, the model does not run that train and alerts the user.  

Once each train simulation is complete, the cars are added to the post simulation O-D table into 

their respective timeslot. The model assumes that cars from a train are available in the 

destination yard based on the actual arrival time plus the switching time (see Section 4.6.2 for 

more discussion on this). The model moves the cars on the trains and updates the O-D tables, 

printing the results on the screen in real time (as the individual trains are run). Once the overall 
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network simulation is complete, the user can determine if all the O-D demands have been 

achieved or if the user must return to the planning stages and tweak the routing and/or the train 

schedules to facilitate the full movements of the train. For guidelines on creating and tweaking 

the train schedule, refer to Section 4.3. An illustrated example of this process is described below. 

The following example of train routing helps to illustrate how the model conducts its routing 

algorithm. From Table 4.9 it can be seen that Train 1 is scheduled to build at Yard 1 at 1200 hrs 

and depart for Yard 2 whereas Train 2 is scheduled to be built at 1700hrs at Yard 2. The trains 

will be assigned the shortest routes between the two yards (only two yards since there are no 

connecting yards) of 55 km (determined from Figure 4.3). Assuming that Train 1 will take only 

1-2 O-D traffic, it can be seen that all traffic from 1-2-1 (21 cars), 1-2-2 (33 cars), and 1-2-3 (11 

cars) for a total of 65 cars will be taken. Similarly, Train 2 will take a total of 72 cars from 2-1-1, 

2-1-2, 2-1-3, and 2-1-4, similarly. Since cars can only be taken from timeslots which are ready at 

or before the build time of a train, cars from the 2-1-5 timeslot (2000hrs) will not be attached to 

Train 2. O-D demand 2-1-3 is shown in bold meaning that it is of special priority. This means 

that it will be handled first when it comes time to build the train. After this O-D is attached, the 

remainder will be attached to the train and then the train will be ready to depart the station.  

Since at least one O-D pair attached to Train  2 is of high priority, the arriving traffic from Train 

2 will also be of high priority and is shown as bold text in the O-D tables below. Because each 

train is travelling a short distance at a reasonable speed, it will reach its destination within the 

time alloted to the next available timeslot. The cars from Train 1 are slotted to Yard 2 at 1600hrs 

and the cars from Train 2 are sloted to Yard 1 at 2000hrs. Table 4.10 shows the original O-D 

data whereas Table 4.11 shows the final results after the trains have been simulated. 
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Table 4.9  Example of Train Schedule Input 

Train # Scheduled Build Time OYard CYard DYard Speed Priority  

1 12:00 1 - 2 60 0 
2 17:00 2 - 1 70 0 

 

 

Table 4.10  Example Preliminary O-D Table 

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

1 1 3 2 22 1 0 0 0 28 
1 2 21 33 11 42 0 0 0 107 
Total 24 35 33 43 0 0 0 136 
2 1 12 21 25 14 32 12 0 126 
2 2 6 3 8 8 3 0 0 28 
Total 18 24 33 22 35 12 0 154 

 

 

Table 4.11  Example Final O-D Table 

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

1 1 3 2 22 1 72 0 0 100 
1 2 0 0 0 42 0 0 0 42 
Total 3 2 22 43 72 0 0 142 
2 1 0 0 0 0 32 12 0 44 
2 2 6 3 8 73 3 0 0 93 
Total 6 3 8 72 35 12 0 147 
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4.6. Model Outputs 

The model outputs various O-D tables, individual train statistics, route use statistics, and 

individual yard statistics. This section provides an overview and examples of said outputs. 

4.6.1. O-D Tables 

The most important output of the model is the post simulation O-D table which provides 

valuable information to the overall function of the simulated operating plan. The tables are 

represented in place of the original tables as entered by the user. The new tables provide a post 

simulation view on where cars are located within the network. The end sum of all the cars in the 

network will be the same as the beginning sum (when the user entered the data) due to 

conservation of flow.  

The operational plan can be judged on whether all of the cars have moved from their origin yards 

to their destination yards. If there are O-D pairs which have been left behind, then, the Operating 

Plan has failed to some degree and some additional refinement may be necessary prior to 

operational implementation. An example of a post simulation O-D table is provided in Table 

4.12. In this example the table shows all the traffic to be received at Yard 1 totalling 117 cars 

through the day. The yard 1 results are desirable, however, the table also shows 27 cars left over 

in the 1-2 (20:00hrs) O-D. The 27 cars presented here have not been moved to their intended 

destination and this is not a desirable result. As such, the user would review the operation plan 

and determine the appropriate adjustment to the plan to fulfill the movement requirements. This 

can be done by adjusting the train schedule/speed, blocking plan or even the original O-D tables. 
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Table 4.12  Example Post Simulation O-D Table 

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

1 1 1 2 2 0 1 111 0 117 
1 2 0 0 0 0 27 0 0 27 
1 3 0 0 0 0 0 0 0 0 
1 4 0 0 0 0 0 0 0 0 
1 5 0 0 0 0 0 0 0 0 
Total 1 2 2 0 28 111 0 144 

 

4.6.2. Train Statistics 

Train statistics provide the following: Specific Route; Time for Route; Number of Cars 

Transported; Amount of Time Required for Switching Cars; and Actual Build, Connection and 

Arrival Times.  

Specific Route 

This is the route of travel for the specific train selected by the model based on the shortest route 

of all the available routes entered by the user. If there is a connecting yard, the model selects two 

separate routes, one for each leg of the journey between the Origin and Connection yards and the 

Connection and Destination yards. This can be quite important if, for example, there are 

residential communities along the given route and noise restrictions are in place. The analyst 

then would have to readjust the routing plan, or train schedules in order to mitigate any noise 

restrictions or by-laws in the area. 

Time for Route 

The model also shows the amount of time it will take a train to traverse a specific route as 
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selected by the model. This time is calculated using the following equation: 

Ttrain(n) = Strain / Lroute(n)        (4.1) 
 

where,  

Ttrain(n) = Time required for a specific train to travel the length of the route – for each leg 

of the route (hours) 

Strain = Speed of the specific train (km/h) 

Lroute(n) = Length of a specific leg of the route (km)  

In the formula above, n represents the leg of the route being assessed. Leg 1 (e.g. if n = 1) 

represents the origin yard and/or the route between the origin yard and the next yard (could be 

connection yard if there is one, or the destination yard otherwise). Leg 2 (e.g. if n = 2) represents 

the connection yard and/or the route between the connection yard and the destination yard. 

Number of Cars Transported 

This is the total number of cars transported on the specific train after the simulation has been 

completed. This is calculated by the following equation: 

NUMcars = ‘NUM cars + O-Dcars(i,j,k)       (4.2) 
 

where,  

NUMcars = the number of cars attached to a specific train in the current iteration/total  

‘NUMcars = the number of cars attached to a specific train in the previous iteration 

O-Dcars(i,j,k) = number of cars in an O-D pair (# of Cars) 
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i – Origin Yard (yard where the train is being built) (Yard #) 

j – Destination Yard (yard where the cars are destined to go – not necessarily the same as 

the train destination) (Yard #) 

k – Timeslot for when the group of cars is being picked up (corresponds to the O-D-time 

table as described in Section 4.2.5) (Timeslot #) 

This is an iterative process by which the overall number of cars is calculated by running the 

calculation multiple times until all of the required blocks have been attached to the train. 

Amount of Time Required for Switching Cars 

This is the time required for classification of all cars on a train once they arrive at the train 

destination yard. This is calculated by: 

Ttotalswitch = TPrep+ NUMCars* TSwitch       (4.3) 
 

where, 

TTotalswitch = Total time required for switching an individual train at a yard (hours) 

TPrep = Preparation time for switching each train (hours) 

NUMCars = Number of cars on a specific train (# of Cars) 

TSwitch = Time for switching each individual car as input (hours) 

Actual Build, Connection and Arrival Times 



92 
 

The actual build time is calculated based on the desired build time entered by the user and the 

various queues at the respective Origin Yard for each train. If there are no other trains being built 

at the same time, the actual build time should equal the desired build time. Alternatively, the 

actual build time for the current train will be delayed based on the length of time required to 

build for another train which has already begun. The model calculates the actual build time based 

on a table of trains being built at that given time at that same yard. Similarly, this is done at 

connections and at arrivals for each yard individually. 

The actual connection time is calculated using the following equation: 

Tconnection = Tbuild + Tservice(1) + Ttrain(1)       (4.4) 
 

where,  

Tconnection = Actual arrival time of train into connection yard (hours) 

Tbuild = Actual train build time (hours) 

Tservice(n) = Amount of time to build train as per user input for the respective yard (hours) 

The actual arrival time of a train at a specific yard is calculated using the following equation: 

Tarrival = Tbuild + Tservice(1) + Tservice(2) / 2 + Ttrain(1) + Ttrain(2)    (4.5) 
 

where,  

Tarrival = Actual arrival time of train into destination yard (hours) 

Tbuild = Actual train build time (hours) 

Tservice = Amount of time to build train as per user input (hours) 
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The Tservice(2)  is divided by 2 to cut the time down in half. This is because this model assumes 

that the time required at a connection yard to attach cars to a train is not the same as the build 

time required at the origin yard, since all of the inspection work required with the locomotive 

and power required is shortened. This model also assumes that the cars are ready prior to the 

train arriving at the connection yard, thus speeding up the connection process. 

The time at which cars arrive in the actual class bowl and are attached to a specific timeslot in 

the O-D table is calculated using the following equation: 

Tarrivalfinal = Tbuild + Tservice+ Ttrain(1) + Ttrain(2) + Ttotalswitch    (4.6) 
 

 
where,  

Tarrivalfinal = Actual arrival time of cars into the classification bowl of destination yard 

such that they are ready to be incorporated into the next train (hours) 

The timeslot where the cars are added to at the destination yard for each train is the next closest 

(Tarrivalfinal rounded up to the nearest timeslot interval) timeslot corresponding to Tarrivalfinal in the 

O-D table at that yard. More information on how the queues are calculated in the model are 

provided in Section 4.6.3. 

An example of the output as it is displayed by the model is provided in Table 4.13. Here, the 

model displays only the final results, not the processes whereby it gets to the final numbers.  

4.6.3. Yard Queue Determination 

The model assumes a day has 2880 timeslots available to it over a 24 hour period (each timeslot 

represents a 30 second period of time). With this, the model can assign a specific timeslot(s) to a  
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Table 4.13  Example of Train Statistics 

Train  Route1 Time Route2 Time 
# of 
Cars 

Switching 
Time 

Calculated Time  

OYard CYard DYard 

1 13 00:45 -  -  87 01:03:30 08:00  - 08:45 
2 21 00:47 13  00:39 56 00:48:00 12:00  12:47 14:01 

 

train based on how long it needs each yard’s resources. Each timeslot is initially assigned a 0 

which is replaced by a specific train number as the model progresses. Each yard has its own 2880 

timeslots and each train is assigned to those slots as it uses the specific yards.  

The model begins by placing priority trains into their respective timeslots first, followed by 

regular trains. This process involves assigning one train at a time to the timeslots provided. For 

each recurring train after the very first one, the model starts to determine whether there are any 

conflicts with that train at that specific yard. If the starting time for the new train is in conflict 

with another train (e.g. the timeslot is already full), the model determines the next available slot 

and fills it with the new train. The model also ensures that the entire time required for the train at 

the yard is in one single slot (e.g. the timeslots are all sequential) so that there are no stop and 

starts for any given train. The model processes each train in order of entry (e.g. train 1 is slotted 

prior to train 2) with exception to priority trains.  

This process is completed for each train being built at the origin yard first, then the connecting 

yard and then finally the destination yard. Since the assigned timeslots determine when the trains 

will actually be built at the origin yard, new connection and arrival times must be generated for 

each train. The model recalculates the new times for each train individually using the same 

methodology as in calculating the desired times. The model, then, continues by calculating the 
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connecting yard timeslots for building trains and determines the new times based on the results. 

After this, the model calculates the arrival timeslots for each yard. Since the switching time is 

dependent upon the number of cars on a train (see Equation 4-6), during the first iteration of the 

queue determination, the model assumes each train carries 75 cars.  

This is done so that a relatively more accurate picture of how many cars will be on each train can 

be gathered. Since the model runs each train individually, in chronological order, the arrival 

times of cars into their respective yards’ class tracks can affect later trains’ lengths. This is the 

reason the queue determination is run twice, once to determine semi-accurate train times and 

again to determine more accurate times with train lengths taken into consideration. The second 

iteration of the queue determination model follows the same processes (with the addition of a 

determination of how many cars will be on each train). 

4.6.4. Yard Statistics 

At any given yard, the model provides information of how many cars were initially at the yard at 

the beginning of the analysis period and how many additional cars are brought in and have been 

classified in the yard at the end of the analysis period. This number includes cars which are 

destined to end their trip at the yard and cars which are just connecting through. Additionally the 

amount of time the classification engines (either hump or flat) are in use is also recorded as a 

sum of all the individual trains throughout the day. This gives an overall amount of time when 

the switching was being completed throughout the day. 

The number of trains which have originated, connected through, or arrived at each yard is also 

provided for the analyst. The train numbers can be very useful to an analyst when looking at 
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staffing levels at a yard and maintaining levels for the number of trains being processed. An 

example of this set of outputs can be seen in Table 4.14. 

Alhough the yard statistics output table shows the amount of time that classification occurred in 

a day, it does not show the exact times when it occurred. There is another set of outputs, related 

to yards specifically, which show yard usage at 30 second intervals throughout the day. This is 

with respect to the schedules of each train and queuing at each yard. The model presents data on 

the time when each specific train is using any given yard resource (building or switching). This 

is important because with the information of when the yard is in use and how much traffic a yard 

must process the analyst can recommend staffing requirements at each yard. This table is also the 

backbone of how the model develops actual train movement times as opposed to the desired 

times provided by the user which can often conflict. An example of the yard queuing output is 

provided in Table 4.15. 

Table 4.14  Example of Yard Statistics 

Yard 1 2 
Cars (Initial) 191 140 

Cars (Additional) 212 71 
Classification Time Used 04:00 01:00 

# of Train Origins 3 1 
# of Train Connections 0 1 
# of Train Destinations 4 2 

Table 4.15  Example of Queuing at Yards 

Yard Time 
Train - Origin  

Building Process 
Train - Destination 

Classification Process 
1 22:33:30 6 11 
1 22:34:00 6 11 
1 22:34:30 6 11 



97 
 

4.7. Analysis of Model Results 

In order to create a straightforward and consistent form of analyzing the results provided by the 

model, several factors must be considered simultaneously. The major factors, in order of most to 

least importance, to be reviewed by the user, should include the following: 

a. Total number of individual trains per operations plan: This is highly connected with 

railroad costs due to high start up prices for each individual train. 

b. Total number of switches for all yards in the entire network: This is highly correlated 

with railroad service times and reliability, more switching inadvertently means more 

intermediate yards and more time spent waiting for trains as opposed to actual movement 

of goods; and 

c. Total car-distance travelled on entire network: This is highly correlated to the 

environmental impacts trains have in that minimizing the distances traveled will also 

minimize fuel consumption and emissions created by locomotives. 

 
The total number of individual trains can be retrieved from the train schedule as created using the 

methodology developed in this thesis. The number of trains should be translated into a per day 

basis. This means that if a train runs every two days, it is equivalent to one half a train running in 

one day. The translation is important because each operating plan may have different schedules 

and they have to be compared at the same level for the analysis to be effective. The total number 

of switches in the network is the sum of all the additional cars in each yard as provided by the 

yard statistics output (reference Equation 4.7). The total car-distance travelled on the network is 

calculated using Equation 4.8. This provides the amount of overall travel in car-km for the entire 
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network. Minimizing these three individual main criteria will result in an overall minimized cost 

and minimized impacts for the entire railroad network.  

 Numswitches = ∑ CarsAddn        (4.7) 

where,  

Numswitches = total number of switches on the entire network. 

CarsAddn = number of additional cars at yard n; and 

DCAR = ∑ [ ( R1x + R2x ) * NumCarsx ]      (4.8) 

where,  

 DCAR = the total distance of travel for all cars involved (car-km); 

(R1 + R2) = the distance of each specific route for any given train; 

 NumCars = the number of cars on any given train; and 

x = a given the train involved with the operations plan. 

This analysis is best completed using a tabular format. Table 4.16 shows an example of how to 

best implement this. While assessing the three criteria individually amongst each of the operating 

plans, the user can insert the actual number value for each criterion in the analysis table. After 

each operating plan has been entered into the table, the user may assign each plan and criterion 

with a rating from 1 to n, where 1 is the best and n is the worst (n being the number of operations 

plans under review). In tallying up all of the ratings for each of the plans, the user will be left 

with an overall score by which each plan can systematically be assessed based on the core  
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Table 4.16  Analysis Table 

Criteria Weight  
Plan 1 Plan 2 Plan 3 

Value Rating Value Rating Value Rating 
Number of Trains 3 10 3 8 1 9 2 

Number of Switches 2 275 3 268 2 268 2 
Total Car-Distance 1 1980 3 1895 2 1830 1 

Non-Weighted Totals 9 5 5 
 

criteria aforementioned. It is important to note that some users may find it beneficial to add a 

weighting to each of the three criteria since the implications associated with each are quite 

different. A suggested weighting for the criteria as listed above (a, b, and c) is 3, 2, and 1 

respectively. This weighting reflects the costs for the most expensive to least expensive criteria. 

This ensures that the final analysis will be conducted such that all operational costs are 

minimized. 

To review an example of this assessment system, refer to Table 4.16. In this example, three 

hypothetical plans have been created and compared against each other. Plan 1 has the most 

points followed by Plans 2 and 3 which both have an equal amount of points when considering 

the non-weighted assessment criteria. The lower number of points indicates a better operations 

plan in terms of optimization, therefore, Plans 2 and 3 would tie for the best plan. However, 

when the weighting is applied it is clearly seen that Plan 2 has (3*1 + 2*2 + 1*2 = 9) points and 

Plan 3 has (3*2 + 2*2 + 1*1 = 11) points. With this hypothetical scenario, since Plan 2 has the 

lowest number of points overall, it is easy to see that it is the most economical option and should 

be regarded as the ‘best alternative’ solution. Other plans can be analyzed similarly. In addition, 

other factors can be developed in order to help assess the best alternatives but are beyond the 

scope of this thesis. 
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4.8. Model Capabilities 

The model capabilities are relevant to the creation and optimization of operations plans for a 

given network. This is a versatile model which has many capabilities including the following: 

1. The primary function of this model is to assist the user in creating, testing and analyzing 

various operating plans on a railroad network. The model can be used to create a 

preliminary operations plan including blocking, block to train assignments and train 

schedules as well as train routing. This feature allows the user to create and update plans 

as information is brought together from outside sources. This means that a user can look 

at the operations of an existing network or of a brand new network without changing 

models or software; 

2. The model can analyze what-if scenarios with different train schedules and blocking 

plans by adjusting or recreating new plans to simulate. Doing this, the user can review the 

various outputs and analyze each one independently or together as one. This will allow 

the analyst to determine which plan is the ‘best option’ considering not only train traffic, 

but also yard and route impacts; 

3. In terms of routing, the model automatically chooses the shortest path available to it. This 

means that all shipments will travel the shortest possible distance as entered into the 

model. Sometimes there are scenarios where the user may not want the shortest path to be 

used; this is simply overcome by manually adjusting data in the model. 

4. The model can be used to determine what effects traffic pattern changes would have on 

the network; and 
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5. The model can assist the analyst determine what impact the closing of a yard or certain 

routes would have on specific train traffic. This is especially important when testing 

what-if scenarios with respect to natural disasters such as flooding (like what happened in 

New Orleans during the aftermath of Hurricane Katrina). 

4.9. Model Limitations 

This section discusses some of the model’s limitations as it is applied in a real work application. 

Though these limitations are apparent in the model, they can be overcome with some further 

development of the model and its accompanying software application. 

1. Each yard is setup such that it only has one set of hump/classification tracks inbound and 

only one set of outbound tracks. This means that yards that have multiple leads into their 

classification tracks or multiple departure tracks are not accurately modelled. In this 

scenario, the best an analyst can do is to determine a combined average for the car 

switching and train setup times as entered into the model and to conduct a sensitivity 

analysis. With varying train setup and car switch times, the user can determine how the 

whole network will likely respond to an operations plan. 

2. Each car is assumed to be similar in that various weights or lengths are not incorporated 

into the model. In reality, there are many different types of cars which can factor how a 

yard and a railroad will block their traffic. In reality, blocking is not based solely on final 

destination of cars but also on what they carry and what style of car they are (such as box 

car, hopper car, etc.). 
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More discussion with respect to limitations is provided in the conclusions and 

recommendations of this thesis. 

4.10. Summary 

This chapter has reviewed the guidelines used in the creation of railroad operations plan and the 

model created for the purpose of simulating operation plans. The overall model as well as 

specific inputs and outputs were discussed, with examples. Most importantly, a guide for 

assessing various operations plans in a common way was presented. Finally, this chapter has 

discussed some of the various capabilities and limitations of the model. 

From the literature review, it was determined that reliable and cost effective deliveries of goods 

are the most important characteristics railroads and customers are looking for. Effective 

operation plans, priority traffic management plans, and management of emergency situations 

(rerouting traffic, for example) are essential to reaching the aforementioned goals. The main 

objectives of this thesis were to develop a model and guidelines which would assist in the 

development, testing, and analysis of operation plans. In turn, the various, integrated, operation 

plans can be compared against one and other resulting in a “best case” or “optimized” solution 

which would satisfy reliability and cost effectiveness as mentioned above. Guidelines for this 

type of analysis along with operation plan development developed in this thesis are easy to 

comprehend and implement in real life situations.   

Existing railroads currently rely heavily on the skills and experience of veteran employees, who 

make decisions about train schedules, product development (blocking plans) and how they split 

up cars into the bowl (classification tracks). Since there was not a large amount of literature with 
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respect to guidelines on how to develop a train schedule, how to develop block to train 

assignments and how to analyzing multiple operation plans by comparing  simulation results , 

this thesis focused on developing these guidelines. Guidelines with respect to the development of 

train schedules are logical and intuitive. The easy to comprehend flowchart provides a 

framework for creating the most logical and economical train schedule. The model is able to 

simulate railroad networks in hours, days, or weeks and thus is very versatile when it comes to 

developing train schedules. Guidelines with respect to the assignment of blocks to trains were 

provided using a three-step system which uses human intelligence to maximise the efficiency of 

car movements using scheduled trains. This system can be tested by the model and various 

blocking plans can be created, tested and analysed to determine the best case blocking plan and 

the block to train assignments. The final guidelines involved the assessment of multiple, 

integrated operations plans in a common way. This assessment uses a quantitative and qualitative 

comparison chart and can be customized to the analysts / railroads needs and goals. 

Additionally, current practices of railroad companies prevent priority traffic from getting special 

treatment and all traffic is treated in the same manner. With the exception of unit trains which 

bypass yards completely, each train / car is served on a FIFO basis at every yard it reaches. In 

terms of reliability for high paying customers and high priority traffic, this is a great hindrance. 

This model addresses this issue by allowing for simulation of priority traffic, for both cars and 

trains, being handled ahead of regular traffic.  
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5. MODEL VERIFICATION AND APPLICATION 

A user friendly software application was created in order to assist in the use of the model 

developed in this thesis. The data entry, network simulation, train routing and outputs follow the 

process as described in Chapter 4. This chapter presents a worked example of the model using 

hypothetical data in order to exhibit the solution process and analysis techniques. This chapter 

also helps to highlight some of the capabilities of the model which are, then, discussed in detail. 

5.1. Model Software Verification 

The following section shows the verification of the model software comparing the results of the 

software analysis versus the manually completed analysis. For the verification of the model and 

the software, a small and simple network of three yards was used. Each yard was connected to 

the other in a triangular formation and had traffic destined for each of the other yards. 

Comparing the model results and outputs to what is expected of the model will help to verify that 

the model software works correctly. 

5.1.1. Data Inputs 

The following image (Figure 5.1) shows the yard network setup and distances between yards. 

For this hypothetical network data were entered into the software. The same data were used for 

the manual calculations which were used to validate the application. The following tables show 

the various inputs as required by the model. Descriptions and requirements for the Data are 

discussed in Section 4.2. Table 5.1 shows the specifics of each yard and Table 5.2 shows the 

various possible routes as entered into the model.  
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Figure 5.1  Network Configuration for Verification of Model 

 

Table 5.1  Yard Inputs Settings (Model Verification) 

Yard 
Number 

Type of 
Yard 

Switching Time (Per Train - 
Minutes) 

Building Time (Per Train - 
Minutes) 

1 Flat 00:30 00:30 

2 Hump 00:30 00:30 

3 Hump 00:30 00:30 

 

Table 5.2  Available Routes (Model Verification) 

Route 
# 

Origin  
Yard 

Destination 
Yard 

Route Path (Yard to 
Yard) 

Route Length 
(km) 

1 1 2 12 73 

2 1 3 123 104 

3 1 3 13 85 

4 2 1 21 73 

5 2 3 23 31 

6 3 1 321 104 

7 3 1 31 85 

8 3 2 32 31 
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Table 5.3 shows the original O-D tables for the network. The goal will be to move all of the O-D 

demands from their origins to their destinations, regardless of whether the situation is optimal or 

not. This is just for verification purposes. Using the methodology created in Section 4.3, the train 

schedule was created (as shown in Table 5.4). After all the data, including the blocking data (as 

shown in Section 5.1.2), was entered into the model, the model was run and the outputs were 

reviewed for consistency with manual calculations. 

 

Table 5.3  Original O-D Tables (Model Verification) 

From To 04:00 08:00 12:00 16:00 20:00 24:00 Next Day Total 
1 1 0 10 0 0 0 0 0 30 
1 2 0 10 0 0 0 0 0 0 
1 3 0 10 0 0 0 0 0 0 
Total 0 10 0 0 20 0 0 30 
2 1 0 0 10 0 0 0 0 0 
2 2 0 0 10 0 0 0 30 
2 3 0 0 10 0 0 0 0 0 
Total 0 0 20 0 10 0 0 30 
3 1 0 0 0 10 0 0 0 0 
3 2 0 0 0 10 0 0 0 0 
3 3 0 0 0 10 0 0 0 30 
Total 0 0 0 30 0 0 0 30 

 

Table 5.4  Train Schedule (Model Verification) 

Train # Scheduled Build Time OYard CYard DYard Speed Priority  

1 08:00 1 - 2 50 0 
2 12:00 2 - 3 50 0 
3 16:00 3 2 1 50 0 
4 16:30 3 - 2 50 0 
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5.1.2. Outputs 

The model outputs, as described in Section 4.6, were reported by the software application as 

predicted. The four trains moved all of the cars to each of their respective destination yards. The 

model assigned blocks to each train as per the blocking plan (shown in Table 5.5) using the 

methodology provided in chapter 4 earlier. After the trains were simulated, the yard statistics as 

well the train statistics were calculated and provided in the software interface. As per the train 

schedule, a total of two (2) trains used facilities at Yard 1, four (4) trains at Yard 2 and three (3) 

Trains at Yard 3. Each of the trains carried 20 cars except for Train 4, which carried only 10 cars. 

Table 5.6 presents the final O-D tables of the three yards used for the model verification, Table 

5.7 provides the yard specific model outputs for the verification, and Table 5.8 shows the train 

specific outputs including train arrival times at destination yards. 

5.1.3. Model Verification Summary 

In order to determine the block assignment algorithm one can review how the model assigned O-

D’s 1-2 (Block 1) and 1-3 (Block 2).  Since there was only one train originating from yard 1, it 

makes sense that all the outgoing blocks be assigned to train 1. This was in fact the case. If one 

were to look at Yard 3, where there were two trains originating from the same yard, train 3 was 

traveling to yard 1 and train 4 was traveling to Yard 2, logically all O-D traffic corresponding to 

those yards should be on trains 3 and 4 respectively. This was the case when the model was run, 

the model assigned Block 1 (O-D: 3 -1) and Block 2 (O-D: 3 -2) to trains 3 and 4 respectively. 

The O-D demands were met by using only 4 trains which simulated the movement of all cars to 

their respective yards. There were no carry over cars which remained in either of the yards 

overnight and no trains which travelled overnight. Because this was a model verification, no 
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minimums on train size were declared and the maximum was set to 999 in order for the model to 

assume train capacities negligent. 

 

Table 5.5  Static Blocks Input (Model Verification) 

Yard   Pure or Train 
O D Block Mixed Assignment 
1 1 0 1   
1 2 1 1 1 
1 3 2 1 1 
2 1 1 1 3 
2 2 0 1   
2 3 2 1 2 
3 1 1 1 3 
3 2 2 1 4 
3 3 0 1   

 

 

Table 5.6  Final O-D Tables (Model Verification) 

From To 04:00 08:00 12:00 16:00 20:00 24:00 Next Day Total 
1 1 0 10 0 0 20 0 0 30 
1 2 0 0 0 0 0 0 0 0 
1 3 0 0 0 0 0 0 0 0 
Total 0 10 0 0 20 0 0 30 
2 1 0 0 0 0 0 0 0 0 
2 2 0 0 20 0 10 0 0 30 
2 3 0 0 0 0 0 0 0 0 
Total 0 0 20 0 10 0 0 30 
3 1 0 0 0 0 0 0 0 0 
3 2 0 0 0 0 0 0 0 0 
3 3 0 0 0 30 0 0 0 30 
Total 0 0 0 30 0 0 0 30 
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Table 5.7  Yard Specific Outputs (Model Verification) 

Yard 1 2 3 
Cars (Initial) 30 30 30 

Cars (Additional) 20 30 20 
Classification Time Used 00:30:00 01:00:00 00:30:00 

# of Train Origins 1 1 2 
# of Train Connections  - 1  - 
# of Train Destinations 1 2 1 

 

Table 5.8  Train Specific Outputs (Model Verification) 

Train 
# 

Route1 Time Route2 Time 
# of 
Cars 

Calculated 
Time 

(OYard) 

Calculated 
Time 

(CYard) 

Calculated 
Time 

(DYard) 
1 12 01:27  - -  20 08:00  - 09:57 
2 23 00:37  - -  20 12:00  - 13:07 
3 32 00:37 21 01:27 20 16:00 17:07 19:04 
4 32 00:37  -  - 10 16:30  - 17:37 

 

5.2. Model Application: Single Plan 

The following section represents an example of model use, and analysis of the results. The 

network topology as well as traffic data are provided and the analyst’s actions are mimicked in 

order to present the various capabilities of the software. The objective of this specific model will 

be to create a train schedule and block assignment plan which will clear the O-D tables (move all 

pairs to their final destination) within the analysis timeframe. Any lagging O-D pairs which have 

not made their final destination will be addressed also. Since the model is a simulation, multiple 

iterations must be performed and results compared against one another in order to determine 

whether the plan is the “best case” scenario. 
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5.2.1. Initial Process and Model Setup 

This section provides a step-by-step process for operating the train model in the software 

application. This general process will guide the user through the major steps in implementing the 

model for a given operations plan. The application itself is described through the discussion in 

the following sections of this chapter. 

1. Enter General Data (Network, Yard and Route Data); 

2. Click ‘Next’ Button to Continue; 

3. Enter O-D Data; 

4. Click ‘Create OD Array’ Button to Continue; 

5. Formulate and Enter Train Schedule; 

6. Click ‘Block Setup’ Button to Continue; 

7. Click ‘Assign Blocks’ Button to Continue; 

8. Review Block Assignments and Adjust as Required; 

9. Click ‘Time Calculations’ Button to Continue; 

10. Click ‘Run Trains’ Button to Continue; 

11. Review and Analyze Train/Yard Results; 

12. Make Adjustments to Various Model Data as Required; and 

13. Repeat Steps 1 through 12 as Necessary – and re-run the Model. 

 
Application Data 

The data used for the model is hypothetical in nature. This data reflects a network with yards in 

relatively close proximity of each other (as the time horizon for this study is only one day). Since 



111 
 

the model in this thesis has been developed for a local/regional sized application and analysis, 

this hypothetical network suits the model well. The network consists of eight (8) yards connected 

together as shown in Figure 5.2. Each circle represents a yard and each inscribed number 

represents the yard ID. The distance between yards is listed along each connecting route. The 

yard data are presented in Table 5.9. For this network, 72 routes were entered manually in the 

software (see Appendix 2 for List of Routes) based on the network configuration as shown in 

Figure 5.2. Using the routes list input by the user, the model calculated the shortest distance 

between each yard (see Table 5.10). The time separated original daily O-D Data can be found in 

Appendix 2.  

Initial Train Schedule Setup 

Using the daily O-D data, the train schedule was set up. Using the methodology in Section 4.3, 

the train schedule was created as shown in Table 5.11. This table also presents the assumed 

speed of the train and whether the train needs any special handling (or prioritization). For the 

purpose of this study, it was assumed that the trains would have various speeds depending on 

which yards they started at. Though this is not necessarily how train speeds are determined in 

reality (various factors play a role) it will suffice for the purpose of presenting this application. 

For the minimum and maximum number of cars per train, 0 and 999 were assumed. This allows 

the model to run trains no matter what their size is and allows the user to analyze the train 

schedule based on actual simulated car numbers. This way a user can decide that a train may not 

be able to run every day, rather it may be possible to run a full train every two or more days 

instead. If the limits had been set in place the trains that did not meet the minimum or maximum 

requirements would not have run in the model. 
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Figure 5.2  Network Topology and Yard Location 

Table 5.9  Yard Data for Application 

Yard 
Number 

Type of 
Yard 

Switching Prep Time 
(Per Train - Minutes) 

Switching Time 
Per car (Minutes) 

Building Time (Per 
Train - Minutes) 

1 Hump 00:15:00 00:00:30 00:30:00 
2 Hump 00:15:00 00:00:30 00:30:00 
3 Flat 00:20:00 00:00:45 00:30:00 
4 Flat 00:20:00 00:00:45 00:30:00 
5 Flat 00:20:00 00:00:45 00:30:00 
6 Hump 00:15:00 00:00:30 00:30:00 
7 Flat 00:20:00 00:00:45 00:30:00 
8 Hump 00:15:00 00:00:30 00:30:00 

 

Table 5.10  Shortest Path Matrix 

Yard 1 2 3 4 5 6 7 8 
1 0 300 400 450 500 675 475 575 
2 300 0 100 150 200 400 300 400 
3 400 100 0 50 100 300 200 300 
4 450 150 50 0 50 250 150 250 
5 500 200 100 50 0 200 200 300 
6 675 400 300 250 200 0 200 100 
7 475 300 200 150 200 200 0 100 
8 575 400 300 250 300 100 100 0 
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This would mean that all traffic assigned to non-simulated trains (due to minimum car 

requirements not being met) would be deferred to the next day for movement at the same 

originating yard thus creating more congestion and longer wait times at each yard. The model 

determined the most logical route for each train (based on shortest distance) and calculated the 

actual times based on the desired build time, routes and speed. The model determined data can be 

found in Appendix 3. 

Priority Traffic 

Prioritization (special handle) of a train or O-D pair determines whether a train will be built or 

loaded prior to any others which may have the same desired build time. This provides the analyst 

an opportunity to assure that time sensitive traffic can be moved without delay. Since the 

movement of train traffic is often based on large scale contracts (such as with major car 

manufacturing companies), it is in the best interest of railroads to meet delivery times. 

Block Assignment and Movement of Cars 

The blocks were split up in the model as per O-D pairs at each yard meaning that there are a total 

of seven (7) blocks at each yard. The model automatically assigns the block assignments to each 

train as discussed in Section 4.4. Once this has been completed, the model is ready to run the 

trains. The model generated block assignments can be found in Appendix 3.  

The model, then, runs the trains to determine the movement of cars based on the O-D tables, 

train schedule, and block assignments. When the model is run for the first time, there may be 

areas which are flagged to the user, such as cars which have not reached their final destination or 
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trains which have abnormally high or abnormally low usage of capacity. The results of the initial 

iteration (O-D tables, yard statistics and train statistics) can be found in Appendix 3.  

 

Table 5.11  Train Schedule (Model Application) 

Train ID #  
Build 
Time 

Origin 
Yard 

Connection 
Yard 

Destination 
Yard 

Speed 
(km/h) 

Special 
Handle 

1 20:00 1 - 2 50 1 
2 20:00 1 - 5 50 0 
3 20:00 1 - 6 50 0 
4 20:00 1 - 7 50 0 
5 20:00 1 7 8 50 0 
6 20:00 1 - 3 50 0 
7 20:00 2 4 6 70 0 
8 20:00 3 - 1 50 0 
9 16:00 3 5 6 50 0 
10 23:59 4 - 2 70 0 
11 12:00 5 - 1 50 0 
12 20:00 5 - 1 50 1 
13 20:00 5 - 8 50 0 
14 12:00 6 - 1 70 0 
15 20:00 6 - 1 70 0 
16 20:00 6 - 4 70 0 
17 20:00 6 - 5 70 0 
18 20:00 6 - 8 70 0 
19 20:00 7 2 1 50 0 
20 08:00 8 - 1 60 0 
21 16:00 8 - 1 60 0 
22 08:00 8 7 6 60 1 
23 16:00 8 7 6 60 0 
24 16:00 8 - 7 60 0 
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5.2.2. User Intervention and Subsequent Iterations 

After the initial results of the model are determined, it is important to revisit the initial train 

schedule, blocking assignments and routing of cars, especially if areas are flagged. This must be 

done after some analysis of the O-D tables, yard statistics and train statistics has been completed. 

Any areas which are flagged by the model, or by the user, can be addressed at this stage. The 

typical areas of concern are improper utilization of train capacity, unmoved or inadequately 

moved O-D combinations, extended delays for rail cars, and improper utilization of yard 

capacity. They can be addressed by the user in a variety of ways which involve adjusting original 

operational plan characteristics and data in the model. 

The user can, then, adjust the train schedules such that it includes additional or fewer trains than 

when they leave. The time at which a train leaves makes a difference in how many cars it can 

carry and the arrival time at the destined yard because these can affect trains which are being 

built at the destination yard. Additionally, the user can route non-pertinent traffic away from 

heavily used yards or toward yards with unused capacity as required. Similarly, adjustments can 

be made with the block assignments, to address areas of concern with train capacity utilization. 

5.2.3. Results and Analysis 

This section will provide a summary of the model results and compare the final iteration results 

with the first iteration results. Table 5.12, Table 5.13 and Table 5.14 show a summary of the 

original, overall O-D table, the overall table after the first iteration and the overall table after the 

final iteration; the numbers in bold represent the traffic which was not moved from its original 

location to its final destination. It can be seen that both the first and the final iterations route the 

majority of the freight traffic to their final destinations, but not all of it. The differences between 
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how the traffic moves between the first and final iteration may seem small and inconsequential, 

but do make quite a significant difference. This is because the routing can affect which yards are 

in use and at what times, as well as which trains are filled or not filled.  

An example of one difference is seen with the 6-2 O-D pair. Since there is no direct train to yard 

2 from yard 6, the 6-2 pair must be moved through an intermediate yard. The first iteration which 

moved the traffic using only the model suggested block assignments would have the 6-2 pair 

move from yard 6 to yard 1 and then back to yard 2 on a separate train. This means an additional 

600 km of movement for 38 cars. When some adjustments are applied to the blocking plan, the 

6-2 block can be put on a train going from yard 6 to yard 4. In this manner the cars travel a lesser 

distance overall, and can be picked up by the next available 4-2 train. This is very beneficial to 

the 4-2 train, as it helps to maximize its capacity usage in the future since train 4-2 only has 13 

cars on it after 24 hours. For a more detailed, time separated, O-D table, refer to Appendix 2, 

Appendix 3, and Appendix 4 for the original, first iteration, and the final iteration data 

respectively.  

Table 5.15 shows the train specific results (block assignment and # of cars on the train at the end 

of the analysis period). The block assignments which are highlighted correspond only to the 

connecting yard. The table also has notes in the right most column regarding how frequently 

each train should operate. It is assumed that the minimum amount of cars to justify running a 

single train is a hard 60 with a desirable minimum amount of cars being a soft 80. The assumed 

hard maximum number of cars is 150. This means that any trains with less than the absolute 

minimum amount of cars should have some special instructions such as running on different 

intervals (not daily). If a train is deemed unnecessary, then alternative solutions for moving the 
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O-D pairs associated with that train should be made and the blocking strategy and block 

assignments should be adjusted appropriately. 

Table 5.12  Original O-D Table 

Yard 1 2 3 4 5 6 7 8 
1 6 58 25 0 102 140 47 63 
2 30 0 0 0 28 82 0 0 
3 65 0 0 0 0 21 0 25 
4 0 13 0 18 0 13 0 0 
5 171 0 0 0 0 60 0 140 
6 182 38 0 103 23 0 0 121 
7 72 0 0 0 0 18 0 45 
8 176 19 0 0 32 117 22 33 

Table 5.13  O-D Table – No User Intervention 

Yard  1 2 3 4 5 6 7 8 
1 702 57 0 0 24 0 0 25 
2 0 71 0 0 0 0 0 0 
3 0 0 25 0 0 0 0 0 
4 0 0 0 121 0 0 0 0 
5 0 0 0 0 133 0 0 0 
6 0 0 0 0 28 451 0 0 
7 0 0 0 0 0 0 69 0 
8 0 0 0 0 0 0 0 402 

Table 5.14  O-D Table – Post User Intervention 

Yards 1 2 3 4 5 6 7 8 
1 702 16 0 0 0 0 0 0 
2 0 71 0 0 0 0 0 0 
3 0 0 25 0 0 0 0 0 
4 0 38 0 121 0 0 0 0 
5 0 0 0 0 157 0 0 0 
6 0 0 0 0 28 451 0 25 
7 0 0 0 0 0 0 69 0 
8 0 0 0 0 0 0 0 402 
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Table 5.15  Train Specific Results 

Train ID#  Block Assignment 
# of 
Cars 

Analyst Notes 

1 1             61 

Run daily (initially allow a one day lag for 

accumulation of additional cars from other yards – 

additional 19 cars per day). 

2 4 3           102 Run Daily 

3 5             140 Run Daily 

4 6 6           47 
Run Train every 2 days to allow for internal 

accumulation of additional cars. 

5 7 7           108 Run Daily 

6 2             25 
Run Train every 3~4 days to allow for internal 

accumulation of additional cars. 

7 5 5 2 3 4 6 7 123 Run Daily 

8 1 2 3 4 6     65 Run Daily  

9 5 5 7         106 Run Daily 

10 2 1 3 4 6 7   13 

Run every 2 days to allow accumulation of 

additional cars both internally (13 cars per day) and 

cars from other yards (38 cars per day). 

11 1 2 3 4 6     85 Run Daily 

12 1 2 3 4 6     86 Run Daily 

13 7             140 Run Daily 

14 1             88 Run Daily 

15 1             94 Run Daily 

16 4 3 2         141 Run Daily 

17 5             55 Run Daily 

18 7             121 Run Daily 

19 1 1 2 3 4 5   102 Run Daily 

20 1 2 3 4       131 Run Daily 

21 1 2 3 4       64 Run Daily 

22 6 6 5         74 Run Daily 

23 6 6 5         93 Run Daily 

24 7             22 
Run Train every 3~4 days to allow for internal 

accumulation of additional cars. 
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Table 5.16  Yard Statistics 

Yard 1 2 3 4 5 6 7 8 
Cars (Initial) 441 140 111 44 371 467 135 399 

Cars (Additional) 715 74 25 141 157 536 69 369 
Classification Time Used 07:58 01:07 00:39 02:06 02:38 05:43 01:32 03:50 

# of Train Origins 6 1 2 1 3 5 1 5 
# of Train Connections   1   1 1 1 3   
# of Train Destinations 8 2 1 1 2 5 2 3 

 

Table 5.16 shows the yard statistics after the final iteration. From this data one can determine 

that the largest and most utilised yards are Yard 1, Yard 6, and Yard 8. This is important because 

the railroad analyst can determine how best to allocate yard resources such as crews or engines. 

Additionally, if this was a study where the user wanted to determine the relevancy of necessity of 

a given yard, they could look more closely at Yards 3, 4 and 5. The yards are spaced closely 

together and there is a very limited amount of traffic travelling to or through the yard. If one 

were to combine the traffic in those yards, consolidation of trains and resources could potentially 

be realized. The user would have to re-simulate a new network with adjusted O-D data and train 

schedules in order to see the differences between the existing condition and the proposed.  

The model, as applied to the hypothetical data, has provided an operating plan which uses 24 

trains to move the traffic in the network. 19 trains operate daily while the other 5 operate 

intermittently during the week. The blocking plan has been established and can be followed 

easily at each yard. The queuing data for each yard can also be retrieved from the software as 

well as other yard statistics which can then be downloaded to each yardmaster that can in turn 

use that information for staffing and coordinating yard operations.  
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5.3. Model Application: Multiple Plans 

When assessing two or more plans in attempts to determine the best plan, it is important to note 

that the plans have to be for the same overall network and traffic data. The plan timeline should 

also be the same so as to compare each plan on the same level. This example of assessment is 

completed in accordance with the guidelines presented in Section 4.7. 

This example is created using the network and traffic data from Section 5.2. Two plans are being 

taken into consideration. Though both plans are solved by the model, they have one key 

difference in that the route between Yard 1 and Yard 7 is not available to Plan 1 but is available 

in Plan 2. This means that the cars and trains may have to travel farther in order to reach their 

destinations for Plan 1. For the number of trains running per day, the calculation is made as 

follows. For each daily train, the number of trains per day is increased by one. For each train 

running in intervals of more than one day, the number is increased by the one day equivalent. For 

example, if a train was running every three days, the daily number of trains would increase by a 

factor of 1/3. The number of switches is calculated by the model and is the sum of additional cars 

at all of the yards. The results of the plans and the analysis can be found in Table 5.17.  

 

Table 5.17  Multiple Plan Assessment 

Criteria Weight  
Plan 1 Plan 2 

Value Rating Value Rating 
Number of Trains 1 21.00 1 21.50 2 

Number of Switches 1 2059 1 2086 2 
Total Car-Distance 1 982, 400 2 920, 298 1 

Totals 4 5 
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As predicted, Plan 1 has a higher total Car-Distance, however it has fewer train starts and fewer 

number of switches. Therefore, overall, Plan 1 seems to be superior to Plan 2 in this assessment. 

If weighted factors were applied in accordance with section 4.7, Plan 1 would still be the optimal 

plan as per this analysis. 

5.4. Summary 

This chapter has provided verification for the model software as well as a detailed example of its 

use and analysis of an individual, hypothetical, operations plan. This hypothetical application 

showed one example of creating an operations plan, using the least amount of trains to move the 

majority of the traffic. Additional examples of creating operation plans considering minimum 

number of switches, reutilization of yards and other resources, adjustments of routes and 

blocking criteria can be created similarly and assessed using the criteria set forth in Section 4.7. 

Hypothetical data were used in this thesis because real world data (as provided by CPR) was 

overly detailed. The data were not able to be separated into O-D pairs as per the simplistic 

characteristics used in this model. The O-D traffic data provided split its’ pairs up using car type, 

car length, car consist, etc. The origins were always the original start point for each car, for 

example, a warehouse or a small distribution center and the destinations were similar. Though 

extracting a small subset of yards from a real network would have been possible, the traffic data 

would have been incomplete at best. The data were more complicated that the model in this 

thesis is able to handle, thus hypothetical data, similar to that in Troup et al (1977) was used. 
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1. Summary 

Railroads move freight traffic on their network based on an overall operations plan that includes 

blocking, train formation, and train scheduling plans. The optimization of these operations over 

the entire network is integral to maximizing efficiency and minimizing costs. This thesis 

developed and illustrates a simulation model for analyzing various operation plans of a railroad 

network along with guidelines for establishing a comprehensive operations plan. This model 

focuses on traffic routing and simulation of traffic flows. The three main objectives for this thesis 

were:  

1. To create a model to assist in testing and analyzing the operation plan(s); 

2. To create guidelines for building integral portions of the operations plan; and  

3. To create a user friendly software application to implement the model. 

 
Details pertaining to the above objectives have been discussed and can be reviewed in Section 

1.3.  Through a broad literature review of various railroad and yard operations as well as general 

railroad information, a comprehensive and realistic model for use on a small to medium sized 

network has been created. A comprehensive example for the use of the model, the software 

application and guidelines was also presented. The model and guidelines developed enable a 

single analyst to create a fully integrated operations plan with only traffic, network, and yard 

data at their fingertips. Inefficient train schedules, blocking plans, and block to train assignments 

can be adjusted and revamped in a few simple steps. The model is intuitive and easy to use 

making this a user friendly  
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The software application was created using Microsoft Excel and VBA as a programming 

platform. The computer based simulation model is created in order to assist in designing a block 

routing plan which is effective and efficient in terms of overall railroad costs and delivery times. 

The simulations allow the user to determine results of various operating plans and various 

scenarios within a virtual railroad network. This allows a user to review and analyze data from 

various network elements and determine a globally acceptable “best case” solution taking many 

factors into account. With the software, a user can also model and analyze the flexibility and 

reliability of the system and determine the effects of various planned and unplanned changes in 

the network. The software is easy to use and examples are provided in Chapter 5. 

6.2. Conclusions 

From the research conducted, the following conclusions may be drawn: 

1. Railroad operations are quite complicated and major operation plans each play an 

important role. The overall success of an operations plan on a railroad network can only 

be achieved when all operating plans within the network are integrated. This includes the 

integration of plans over the entire network by using excess yard and train capacity to 

augment areas of a network which are overflowing with traffic.  

2. With an optimized operations plan in place, railroads can greatly benefit from the 

economies of scale which made them a force in the freight industry in the first place. The 

optimized operations plans will not only save the railroad companies money, but also 

increase the reliability and flexibility of their shipments. These are the most important 

factors shippers look for in railroads.  
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3. This model will allow users to review different elements of the railroad network and the 

impacts of simple or complex changes to each element of the network based on an overall 

system point of view. Using this model, a user can simulate various elements of a railroad 

network system as a whole and determine a global optimum solution to an operations 

plan. This is different from many mathematical optimization models which often focus 

on one objective and not a whole system wide analysis.  

4. Railroads often have some form of priority traffic, whether it is for a high paying 

customer or a military effort, there are always trains which will need special handling and 

treatment in order for them to get to their destinations on time. This is addressed by this 

model which has the ability to give special handling to either O-D pairs or trains 

individually. This means that an analyst has flexibility in providing special handling to 

cars prior to train formation and classification of cars, without the cumbersome act of 

cherry picking at the end of a classification operation. This is one aspect of the model 

which can save both time and money for railroads in the future, as succeeding in 

providing special service can often give one railroad a competitive edge over another 

which does not offer priority shipping. 

6.3. Recommendations 

The recommendations and proposed areas of further study/additions to the model are as follows: 

1. Incorporating additional rail car characteristics such as height, width, length, weight, and 

car type to the O-D traffic tables could help to really narrow down specific and realistic 

constraints when creating blocks and trains. The length and weight are of great 



125 
 

importance in building trains as they will determine a more accurate maximum train size 

and impact the number of locomotives required for each train. 

2. Shortest route and least resistance algorithms can be added to the model, which do not 

require the user to enter the route data manually. This can potentially save a significant 

amount of time in data entry and network setup within the model itself. The use of 

resistance methods in the routing algorithm can allow the model to determine appropriate 

paths in a network, allowing the model to take into account the Braess paradox, thereby 

alleviating the work from the user. 

3. This model can also be augmented by combining additional train movement models 

which take into account train specific information. This could include dynamic train 

scheduling algorithms which use optimization techniques to maximize average train size. 

This is based on time of departure and train movement models which show how trains 

will actually move along a corridor. The latter of the two is also important when two 

trains traveling either in the same or opposing directions meet on the same track and have 

to overtake or pass each other (as this will delay train running time). 

4. Full development of the software for the model which incorporates all of the guidelines 

and assists in automating the analysis should be considered for the future. 
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Appendix 1 – List of Definitions and Abbreviations 

 

Block – is a group of cars that are moved together by one or more trains from a common origin 

or assembly point to a common destination or disassembly point. For an individual car, the 

common origin and destination may be either the same as the ultimate origin or destination of the 

car, or may be intermediate points in the car’s route where the car is to be marshalled.  (Van 

Dyke, 1999) 

Bowl – a configuration of tracks branching off from a common main track suitable for 

classifying cars for similar destinations or making blocks (also known as a set of classification 

tracks) (Miller, 1985) 

“Class 1” Railroad – is a railroad which has over $250 million (CAD) in profits. 

Classification – the process of grouping or classifying railroad cars for common handling or 

destination (Miller, 1985). 

CPR – Canadian Pacific Railway 

Cut – any set of cars that share a common destination track and, by chance or design, are 

sequenced together in an arriving train (Dirnberger J. , 2006).  

Hump – a set of tracks situated on a raised mound located at the entrance to a bowl. By pushing 

railroad cars over the hump, the cars roll by force of gravity into the bowl for classification. 

Hence the terms hump yard and gravity classification yard are somewhat synonymous. The term 

humping therefore implies the processes described above (Miller, 1985). 
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Power – a term used to indicate one or more locomotives (Miller, 1985). 

Receiving/ Departure Tracks – used to receive an inbound train into a yard and/or make up and 

depart outbound trains from a yard (Miller, 1985). 

Rehump – process of humping cars more than once to achieve the desired classifications 

(Miller, 1985). 

Road Train – train operated between major yards for the purpose of hauling cars between yards 

in different terminal areas (Miller, 1985). 

Run-through – a train operated through a gateway or terminal area without being broken apart. 

Such trains may be inspected and have locomotives serviced and crews changed in a yard 

(Miller, 1985). 

Sluff Tracks –overflow tracks designated to be used when classification tracks are not available 

or when the anticipated volume of traffic is too small to warrant a separate classification track 

(Miller, 1985). 

Switch – the operation that separates two adjacent sets of cars, and sends the sets to their 

assigned classification tracks. Although every car must be sorted, not all require switches 

(Dirnberger J. , 2006). 

Terminal – is an assemblage of facilities which are provided for the purposes of assembling, 

assorting, classifying and relaying trains (Pachl, 2002). A terminal can consist of the minimum 

of a receiving yard, a classification yard and a departure yard. Additionally terminals can have 
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additional yards such as transload facilities, mechanical yards, roundhouses, etc (Armstrong, 

1990).  

Through Blocking – process of grouping or classifying cars into blocks which can be moved 

through a second classification complex without being separated and reclassified (Miller, 1985). 

Through Train  – run-through train (Miller, 1985). 

Trim Operation  – the process of pulling blocks of cars from a bowl and setting the blocks onto 

a departure track in order to assemble an outbound train (Miller, 1985). 

Unit Train – is a train which has only one O-D combination and thus travels directly from one 

yard to another bypassing (see run-through train) all yards on its way. This type of train is 

typically reserved for large shipments of coal or grain originating at one single distribution 

center.  

Yard  – is an arrangement of sidings (or set of tracks) which run parallel to each other used for 

making up trains, sorting cars and trains, and similar purposes. (Pachl, 2002) 
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Appendix 2 – Data Inputs for Example Model Application 

List of Routes 
Route 

# 
Origin 
Yard 

Destination 
Yard 

Route Path (Yard to 
Yard) 

Route Length 
(km) 

1 1 2 12 300 
2 1 3 123 400 
3 1 4 1234 450 
4 1 5 12345 500 
5 1 6 123456 700 
6 1 8 1234568 800 
7 1 7 12347 600 
8 1 8 123478 700 
9 2 1 21 300 
10 2 3 23 100 
11 2 4 234 150 
12 2 5 2345 200 
13 2 6 23456 400 
14 2 8 234568 500 
15 2 7 2347 300 
16 2 8 23478 400 
17 3 1 321 400 
18 3 2 32 100 
19 3 4 34 50 
20 3 5 345 100 
21 3 6 3456 300 
22 3 8 34568 400 
23 3 7 347 200 
24 3 8 3478 300 
25 4 1 4321 450 
26 4 2 432 150 
27 4 3 43 50 
28 4 5 45 50 
29 4 6 456 250 
30 4 8 4568 350 
31 4 7 47 150 
32 4 8 478 250 
33 5 1 54321 500 
34 5 2 5432 200 
35 5 3 543 100 
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Route 
# 

Origin 
Yard 

Destination 
Yard 

Route Path (Yard to 
Yard) 

Route Length 
(km) 

36 5 4 54 50 
37 5 6 56 200 
38 5 8 568 300 
39 5 7 547 200 
40 5 8 5478 300 
41 6 1 654321 700 
42 6 2 65432 400 
43 6 3 6543 300 
44 6 4 654 250 
45 6 5 65 200 
46 6 8 68 100 
47 6 7 687 200 
48 6 8 65478 500 

49 7 1 74321 600 

50 7 2 7432 300 

51 7 3 743 200 

52 7 4 74 150 

53 7 5 745 200 
54 7 6 7456 400 
55 7 8 78 100 
56 7 6 786 200 
57 8 1 874321 700 
58 8 2 87432 400 
59 8 3 8743 300 
60 8 4 874 250 
61 8 5 8745 300 
62 8 6 86 100 
63 8 7 87 100 
64 8 5 87456 500 
65 1 7 17 475 

66 1 8 178 575 

67 7 8 78 100 

68 8 7 87 100 

69 7 1 71 475 

70 8 1 871 575 

71 1 6 1786 675 

72 6 1 6871 675 
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Original Daily O-D Table (Broken Down into 4 Hour Section) 

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

1 1 1 2 2 0 1 0 0 6 
1 2 3 3 16 9 27 0 0 58 
1 3 1 2 11 5 6 0 0 25 
1 4 0 0 0 0 0 0 0 0 
1 5 2 5 34 21 40 0 0 102 
1 6 17 16 25 34 48 0 0 140 
1 7 2 4 30 7 4 0 0 47 
1 8 4 2 14 27 16 0 0 63 
Total 30 34 132 103 142 0 0 441 
2 1 0 5 10 5 10 0 0 30 
2 2 0 0 0 0 0 0 0 0 
2 3 0 0 0 0 0 0 0 0 
2 4 0 0 0 0 0 0 0 0 
2 5 27 0 0 0 1 0 0 28 
2 6 10 22 14 22 14 0 0 82 
2 7 0 0 0 0 0 0 0 0 
2 8 0 0 0 0 0 0 0 0 
Total 37 27 24 27 25 0 0 140 
3 1 11 11 30 13 0 0 0 65 
3 2 0 0 0 0 0 0 0 0 
3 3 0 0 0 0 0 0 0 0 
3 4 0 0 0 0 0 0 0 0 
3 5 0 0 0 0 0 0 0 0 
3 6 4 4 13 0 0 0 0 21 
3 7 0 0 0 0 0 0 0 0 
3 8 5 5 15 0 0 0 0 25 
Total 20 20 58 13 0 0 0 111 
4 1 0 0 0 0 0 0 0 0 
4 2 7 0 0 6 0 0 0 13 
4 3 0 0 0 0 0 0 0 0 
4 4 11 0 0 7 0 0 0 18 
4 5 0 0 0 0 0 0 0 0 
4 6 8 0 0 5 0 0 0 13 
4 7 0 0 0 0 0 0 0 0 
4 8 0 0 0 0 0 0 0 0 
Total 26 0 0 18 0 0 0 44 
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From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

5 1 17 51 17 52 34 0 0 171 
5 2 0 0 0 0 0 0 0 0 
5 3 0 0 0 0 0 0 0 0 
5 4 0 0 0 0 0 0 0 0 
5 5 0 0 0 0 0 0 0 0 
5 6 6 18 6 18 12 0 0 60 
5 7 0 0 0 0 0 0 0 0 
5 8 14 42 14 42 28 0 0 140 
Total 37 111 37 112 74 0 0 371 
6 1 70 18 0 56 38 0 0 182 
6 2 7 15 0 13 3 0 0 38 
6 3 0 0 0 0 0 0 0 0 
6 4 8 88 0 6 1 0 0 103 
6 5 2 13 0 2 6 0 0 23 
6 6 0 0 0 0 0 0 0 0 
6 7 0 0 0 0 0 0 0 0 
6 8 56 9 0 35 21 0 0 121 
Total 143 143 0 112 69 0 0 467 
7 1 24 24 0 24 0 0 0 72 
7 2 0 0 0 0 0 0 0 0 
7 3 0 0 0 0 0 0 0 0 
7 4 0 0 0 0 0 0 0 0 
7 5 0 0 0 0 0 0 0 0 
7 6 6 6 0 6 0 0 0 18 
7 7 0 0 0 0 0 0 0 0 
7 8 15 15 0 15 0 0 0 45 
Total 45 45 0 45 0 0 0 135 
8 1 41 46 41 48 0 0 0 176 
8 2 0 3 0 16 0 0 0 19 
8 3 0 0 0 0 0 0 0 0 
8 4 0 0 0 0 0 0 0 0 
8 5 0 8 0 24 0 0 0 32 
8 6 35 19 14 49 0 0 0 117 
8 7 0 9 0 13 0 0 0 22 
8 8 8 9 8 8 0 0 0 33 
Total 84 94 63 158 0 0 0 399 
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Appendix 3 – Model Application Results – First Iteration 

After First Iteration Daily O-D Table (Broken Down into 4 Hour Section) 

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

1 1 1 2 2 0 1 213 483 702 
1 2 0 0 0 0 0 3 54 57 
1 3 0 0 0 0 0 0 0 0 
1 4 0 0 0 0 0 0 0 0 
1 5 0 0 0 0 0 0 24 24 
1 6 0 0 0 0 0 0 0 0 
1 7 0 0 0 0 0 0 0 0 
1 8 0 0 0 0 0 0 25 25 

Total 1 2 2 0 1 216 586 808 
2 1 0 0 0 0 0 0 0 0 
2 2 0 0 0 0 0 0 71 71 
2 3 0 0 0 0 0 0 0 0 
2 4 0 0 0 0 0 0 0 0 
2 5 0 0 0 0 0 0 0 0 
2 6 0 0 0 0 0 0 0 0 

2 7 0 0 0 0 0 0 0 0 
2 8 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 71 71 
3 1 0 0 0 0 0 0 0 0 
3 2 0 0 0 0 0 0 0 0 
3 3 0 0 0 0 0 0 25 25 
3 4 0 0 0 0 0 0 0 0 
3 5 0 0 0 0 0 0 0 0 
3 6 0 0 0 0 0 0 0 0 
3 7 0 0 0 0 0 0 0 0 
3 8 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 25 25 
4 1 0 0 0 0 0 0 0 0 
4 2 0 0 0 0 0 0 0 0 
4 3 0 0 0 0 0 0 0 0 
4 4 11 0 0 7 0 0 103 121 
4 5 0 0 0 0 0 0 0 0 
4 6 0 0 0 0 0 0 0 0 
4 7 0 0 0 0 0 0 0 0 
4 8 0 0 0 0 0 0 0 0 
Total 11 0 0 7 0 0 103 121 



A3 - 139 

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

5 1 0 0 0 0 0 0 0 0 
5 2 0 0 0 0 0 0 0 0 
5 3 0 0 0 0 0 0 0 0 
5 4 0 0 0 0 0 0 0 0 
5 5 0 0 0 0 0 0 133 133 
5 6 0 0 0 0 0 0 0 0 
5 7 0 0 0 0 0 0 0 0 
5 8 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 133 133 
6 1 0 0 0 0 0 0 0 0 
6 2 0 0 0 0 0 0 0 0 
6 3 0 0 0 0 0 0 0 0 
6 4 0 0 0 0 0 0 0 0 
6 5 0 0 0 0 0 0 28 28 
6 6 0 0 0 66 0 81 304 451 
6 7 0 0 0 0 0 0 0 0 
6 8 0 0 0 0 0 0 0 0 

Total 0 0 0 66 0 81 332 479 
7 1 0 0 0 0 0 0 0 0 
7 2 0 0 0 0 0 0 0 0 
7 3 0 0 0 0 0 0 0 0 
7 4 0 0 0 0 0 0 0 0 
7 5 0 0 0 0 0 0 0 0 
7 6 0 0 0 0 0 0 0 0 
7 7 0 0 0 0 0 22 47 69 
7 8 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 22 47 69 
8 1 0 0 0 0 0 0 0 0 
8 2 0 0 0 0 0 0 0 0 
8 3 0 0 0 0 0 0 0 0 
8 4 0 0 0 0 0 0 0 0 
8 5 0 0 0 0 0 0 0 0 
8 6 0 0 0 0 0 0 0 0 
8 7 0 0 0 0 0 0 0 0 
8 8 8 9 8 8 0 0 369 402 

Total 8 9 8 8 0 0 369 402 
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First Iteration – Block to Train Assignments (1) 
 

O Yard D Yard Block Train Assignment 
1 1 0   
1 2 1 1 
1 3 2 6 
1 4 3 2 
1 5 4 2 
1 6 5 3 
1 7 6 4 
1 8 7 5 
2 1 1 19 
2 2 0   
2 3 2 7 
2 4 3 7 
2 5 4 7 

2 6 5 7 
2 7 6 7 
2 8 7 7 
3 1 1 8 
3 2 2 8 
3 3 0   
3 4 3 8 
3 5 4 8 
3 6 5 9 
3 7 6 8 
3 8 7 8 
4 1 1 10 
4 2 2 10 
4 3 3 10 
4 4 0   
4 5 4 10 
4 6 5 7 
4 7 6 10 
4 8 7 10 
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First Iteration – Block to Train Assignments (2) 
 

O Yard D Yard Block Train Assignment 
5 1 1 11, 12 
5 2 2 11, 12 
5 3 3 11, 12 
5 4 4 11, 12 
5 5 0   
5 6 5 9 
5 7 6 11, 12 
5 8 7 13 
6 1 1 14, 15 
6 2 2 14, 15 
6 3 3 16 
6 4 4 16 
6 5 5 17 
6 6 0   
6 7 6 14, 15 
6 8 7 18 
7 1 1 19 
7 2 2 19 
7 3 3 19 
7 4 4 19 
7 5 5 19 
7 6 6 22, 23 
7 7 0   
7 8 7 5 
8 1 1 20, 21 
8 2 2 20, 21 
8 3 3 20, 21 
8 4 4 20, 21 
8 5 5 20, 21 
8 6 6 22, 23 
8 7 7 24 
8 8 0   
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List of Model Assigned Block Assignments and Train Data (first iteration)  
 

Train ID# Proposed Build Time OYard CYard DYard Block Assignment SP Hand # of Cars 

1 20:00 1   2 1             1 58 
2 20:00 1   5 4 3             110 
3 20:00 1   6 5               140 
4 20:00 1   7 6               47 
5 20:00 1 7 8 7 7             108 
6 20:00 1   3 2               25 
7 20:00 2 4 6 5 5 2 3 4 6 7   123 
8 20:00 3   1 1 2 3 4 6 7     90 
9 16:00 3 5 6 5 5             81 
10 23:59 4   2 2 1 3 4 6 7     13 
11 12:00 5   1 1 2 3 4 6       85 
12 20:00 5   1 1 2 3 4 6     1 86 
13 20:00 5   8 7               140 
14 12:00 6   1 1 2 6           110 
15 20:00 6   1 1 2 6           110 
16 20:00 6   4 4 3             103 
17 20:00 6   5 5               23 
18 20:00 6   8 7               121 
19 20:00 7 2 1 1 1 2 3 4 5     102 
20 08:00 8   1 1 2 3 4 5       139 
21 16:00 8   1 1 2 3 4 5       88 
22 08:00 8 7 6 6 6           1 66 
23 16:00 8 7 6 6 6             69 
24 16:00 8   7 7               22 
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List of Calculated Train Routes and Timings (first iteration) 
 

Train # 
Proposed 

Build 
Time 

OYard CYard DYard Speed 
Route 

1 Time  
Route 

2 Time  
Calculated 

Time 
(OYard) 

Calculated 
Time 

(CYard) 

Calculated 
Time 

(DYard) 
1 20:00 1   2 50 12 06:00     20:00   26:30 
2 20:00 1   5 50 12345 10:00     20:30   31:00 
3 20:00 1   6 50 123456 14:00     21:01   35:31 
4 20:00 1   7 50 12347 12:00     21:31   34:01 
5 20:00 1 7 8 50 12347 12:00 78 02:00 22:02 34:32 37:02 
6 20:00 1   3 50 123 08:00     22:32   31:02 
7 20:00 2 4 6 50 234 03:00 456 05:00 20:00 23:30 29:00 
8 20:00 3   1 50 321 08:00     20:00   28:30 
9 16:00 3 5 6 50 345 02:00 56 04:00 16:00 18:30 23:00 
10 23:59 4   2 50 432 03:00     23:59   27:29 
11 12:00 5   1 50 54321 10:00     12:00   22:30 
12 20:00 5   1 50 54321 10:00     20:00   30:30 
13 20:00 5   8 50 568 06:00     20:30   27:00 
14 12:00 6   1 50 654321 14:00     12:00   26:30 
15 20:00 6   1 50 654321 14:00     20:00   34:30 
16 20:00 6   4 50 654 05:00     20:30   26:00 
17 20:00 6   5 50 65 04:00     21:01   25:31 

18 20:00 6   8 50 68 02:00     21:31   24:01 
19 20:00 7 2 1 50 7432 06:00 21 06:00 20:00 26:30 33:00 
20 08:00 8   1 50 874321 14:00     08:30   23:00 
21 16:00 8   1 50 874321 14:00     16:00   31:00 
22 08:00 8 7 6 50 87 02:00 786 04:00 08:00 10:30 15:00 
23 16:00 8 7 6 50 87 02:00 786 04:00 16:30 19:00 23:30 
24 16:00 8   7 50 87 02:00     17:01   19:31 
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Appendix 4 – Model Application Results – Final Iteration 

After Final Iteration Daily O-D Table (Broken Down into 4 Hour Section) 

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

1 1 1 2 2 0 1 213 483 702 
1 2 0 0 0 0 0 3 16 19 
1 3 0 0 0 0 0 0 0 0 
1 4 0 0 0 0 0 0 0 0 
1 5 0 0 0 0 0 0 0 0 
1 6 0 0 0 0 0 0 0 0 
1 7 0 0 0 0 0 0 0 0 
1 8 0 0 0 0 0 0 0 0 

Total 1 2 2 0 1 216 499 721 
2 1 0 0 0 0 0 0 0 0 
2 2 0 0 0 0 0 0 71 71 
2 3 0 0 0 0 0 0 0 0 
2 4 0 0 0 0 0 0 0 0 
2 5 0 0 0 0 0 0 0 0 
2 6 0 0 0 0 0 0 0 0 

2 7 0 0 0 0 0 0 0 0 
2 8 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 71 71 
3 1 0 0 0 0 0 0 0 0 
3 2 0 0 0 0 0 0 0 0 
3 3 0 0 0 0 0 0 25 25 
3 4 0 0 0 0 0 0 0 0 
3 5 0 0 0 0 0 0 0 0 
3 6 0 0 0 0 0 0 0 0 
3 7 0 0 0 0 0 0 0 0 
3 8 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 25 25 
4 1 0 0 0 0 0 0 0 0 
4 2 0 0 0 0 0 0 38 38 
4 3 0 0 0 0 0 0 0 0 
4 4 11 0 0 7 0 0 103 121 
4 5 0 0 0 0 0 0 0 0 
4 6 0 0 0 0 0 0 0 0 
4 7 0 0 0 0 0 0 0 0 
4 8 0 0 0 0 0 0 0 0 
Total 11 0 0 7 0 0 141 159 
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From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total 

5 1 0 0 0 0 0 0 0 0 
5 2 0 0 0 0 0 0 0 0 
5 3 0 0 0 0 0 0 0 0 
5 4 0 0 0 0 0 0 0 0 
5 5 0 0 0 0 0 0 133 133 
5 6 0 0 0 0 0 0 0 0 
5 7 0 0 0 0 0 0 0 0 
5 8 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 133 133 
6 1 0 0 0 0 0 0 0 0 
6 2 0 0 0 0 0 0 0 0 
6 3 0 0 0 0 0 0 0 0 
6 4 0 0 0 0 0 0 0 0 
6 5 0 0 0 0 0 0 52 52 
6 6 0 0 0 66 0 81 304 451 
6 7 0 0 0 0 0 0 0 0 
6 8 0 0 0 0 0 0 0 0 

Total 0 0 0 66 0 81 356 503 
7 1 0 0 0 0 0 0 0 0 
7 2 0 0 0 0 0 0 0 0 
7 3 0 0 0 0 0 0 0 0 
7 4 0 0 0 0 0 0 0 0 
7 5 0 0 0 0 0 0 0 0 
7 6 0 0 0 0 0 0 0 0 
7 7 0 0 0 0 0 22 47 69 
7 8 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 22 47 69 
8 1 0 0 0 0 0 0 0 0 
8 2 0 0 0 0 0 0 0 0 
8 3 0 0 0 0 0 0 0 0 
8 4 0 0 0 0 0 0 0 0 
8 5 0 0 0 0 0 0 0 0 
8 6 0 0 0 0 0 0 0 0 
8 7 0 0 0 0 0 0 0 0 
8 8 8 9 8 8 0 0 394 427 

Total 8 9 8 8 0 0 394 427 
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After Final Iteration – Block to Train Assignments (1) 

 

O Yard D Yard Block Train Assignment 
1 1 0   
1 2 1 1 
1 3 2 6 
1 4 3 2 
1 5 4 2 
1 6 5 3 
1 7 6 4 
1 8 7 5 
2 1 1 19 
2 2 0   
2 3 2 7 
2 4 3 7 
2 5 4 7 

2 6 5 7 
2 7 6 7 
2 8 7 7 
3 1 1 8 
3 2 2 8 
3 3 0   
3 4 3 8 
3 5 4 8 
3 6 5 9 
3 7 6 8 
3 8 7 9 
4 1 1 10 
4 2 2 10 
4 3 3 10 
4 4 0   
4 5 4 10 
4 6 5 7 
4 7 6 10 
4 8 7 10 

 

  



A4 - 147 

After Final Iteration – Block to Train Assignments (2) 
 

O Yard D Yard Block Train Assignment 
5 1 1 11, 12 
5 2 2 11, 12 
5 3 3 11, 12 
5 4 4 11, 12 
5 5 0   
5 6 5 9 
5 7 6 11, 12 
5 8 7 13 
6 1 1 14, 15 
6 2 2 16 
6 3 3 16 
6 4 4 16 
6 5 5 17 
6 6 0   
6 7 6 4 
6 8 7 18 
7 1 1 19 
7 2 2 19 
7 3 3 19 
7 4 4 19 
7 5 5 19 
7 6 6 22, 23 
7 7 0   
7 8 7 5 
8 1 1 20, 21 
8 2 2 20, 21 
8 3 3 20, 21 
8 4 4 20, 21 
8 5 5 22, 23 
8 6 6 22, 23 
8 7 7 24 
8 8 0   
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Appendix 5 – Software Code 

Module 1 
Option Explicit 
 
' Explicitly create all variables in program  
 
    Public NumYards As Long ' number of yards in the network 
    Public MaxSize As Long ' max train size (number of cars) 
    Public MinSize As Long ' min train size (number of cars) 
    Public NumTrains As Long ' the number of trains which can run in the network 
     
    Public T1() As Date, TC() As Date, T2() As Date  ' collection start times for trains and arrival time for train to 
next yard 
    Public TX1() As Integer, TXC1() As Integer, TX2() As Integer ' conversion of collection times to integer times 
(out of 1-7) 
     
    Public OYard As Long, CYard As Long, DYard As Long ' Origin and Destination Yards for indivudual Trains 
     
    Public i As Integer, j As Integer, k As Integer, l As Integer, m As Integer, n As Integer, x As Integer, y As Integer 
' various counter variables for loops 
     
    Public NumBlocks() As Long ' Maximum number of blocks which can be created at each yard 
    Public MinBlockSize() As Long ' Minimum size of pure blocks at each yard (respectively) 
     
    Public Blocks() As Long ' Blocks list 
    Public Blocks_Pure_Mixed() As Long ' Blocks list 
 
    Public ODArrayP1() As Long ' Daily OD data table for Priority 1 (in array format) 
    Public ODArrayP2() As Long ' Daily OD data table for priority 2(in array format) 
     
    Public SwitchArray() As Long ' Switchting data table (in arrray format) 
    Public NumSwitches() As Long ' Number of cars switched per yard 
    Public SwitchingPrepTime() As Date ' Switching prep time per train at a given yard 
    Public SwitchingTime() As Date ' Switching time per yard 
    Public ServiceTime() As Date ' Service time for each train at a given yard 
         
    Public TrainNumber As Long ' the train which is being moved at the specific time 
    Public Trains() As Long ' Storage value for number of cars on a train at a given time 
    Public TrainSwitchTime() As Date ' Storage value for amount of time it takes to switch cars on train X 
     
    Public TrainTime1() As Date ' the amount of time it takes the specific train to move along a  route 
    Public TrainTime2() As Date ' the amount of time it takes the specific train to move along a  route 
    Public TrainSpeed() As Long ' the speed associated to the specific train routes 
 
     
    Public PossibleTrainRoutes1() As String ' the various train routes available for each specific train 
    Public PossibleTrainRoutes2() As String ' the various train routes available for each specific train 
    Public TrainRoute1() As String ' the various train route for each specific train (based on speed and distance) Leg 1 
    Public TrainRoute2() As String ' the various train route for each specific train (based on speed and distance) Leg 2 
     
    Public Fulltrain As Integer ' a 0/1 variable which determines whether the train is full or not 
    Public Smalltrain As Integer ' a 0/1 variable which determines whether the train is large enough to run or not 
     
    Public NumRoutes As Integer ' total number of routes in the network 
    Public NetworkRoute() As String ' the various train routes available in the network 
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    Public RouteDist() As Long ' the various distances wrt the various train routes 
'        Public RouteTime() As Date ' the various movement times wrt the various train routes 
 
Sub ReDimAll() 
Application.ScreenUpdating = False 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Get Original Value for n (# of yards) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("Initial Input").Select 
    Range("Number_Yards").Select 
    NumYards = ActiveCell.Value 
    Range("Max_Train_Size").Select 
    MaxSize = ActiveCell.Value 
    Range("Min_Train_Size").Select 
    MinSize = ActiveCell.Value 
    Range("Number_Of_Trains").Select 
    NumTrains = ActiveCell.Value 
    Range("Number_Of_Routes").Select 
    NumRoutes = ActiveCell.Value 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Hide Unused Cells 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("Yard Data").Select 
    Rows("1:100").EntireRow.Hidden = False 
    Rows(3 + NumYards & ":17").EntireRow.Hidden = True 
    Range("B2").Select 
                
        Sheets("Routes").Select 
    Rows("1:100").EntireRow.Hidden = False 
    Rows(3 + NumRoutes & ":75").EntireRow.Hidden = True 
    Range("B2").Select 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Redim all Variable Arrays 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ReDim ODArrayP1(1 To NumYards, 1 To NumYards, 1 To 7) 
    ReDim ODArrayP2(1 To NumYards, 1 To NumYards, 1 To 7) 
     
    ReDim SwitchArray(1 To NumYards, 1 To NumYards, 1 To 7) 
     
    ReDim NumSwitches(1 To NumYards) 
     
    ReDim NumBlocks(1 To NumYards) 
    ReDim MinBlockSize(1 To NumYards) 
     
    ReDim SwitchingPrepTime(1 To NumYards) 
    ReDim SwitchingTime(1 To NumYards) 
    ReDim ServiceTime(1 To NumYards) 
     
    ReDim Trains(1 To NumTrains) 
    ReDim TrainSpeed(1 To NumTrains) 
    ReDim TrainSwitchTime(1 To NumTrains) 
     
    ReDim T1(1 To NumTrains) 
    ReDim TC(1 To NumTrains) 
    ReDim T2(1 To NumTrains) 
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    ReDim TX1(1 To NumTrains) 
    ReDim TXC1(1 To NumTrains) 
    ReDim TX2(1 To NumTrains) 
                     
    ReDim TrainTime1(1 To NumTrains) 
    ReDim TrainTime2(1 To NumTrains) 
     
    ReDim PossibleTrainRoutes1(1 To NumTrains, 1 To NumRoutes) 
    ReDim PossibleTrainRoutes2(1 To NumTrains, 1 To NumRoutes) 
    ReDim TrainRoute1(1 To NumTrains) 
    ReDim TrainRoute2(1 To NumTrains) 
     
    ReDim NetworkRoute(1 To NumRoutes) 
    ReDim RouteDist(1 To NumRoutes) 
         
    ReDim Blocks(1 To NumYards, 1 To NumYards) 
    ReDim Blocks_Pure_Mixed(1 To NumYards, 1 To NumYards) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Move user to yard Data Sheet 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("Yard Data").Select 
         
    Application.ScreenUpdating = True 
End Sub 
 
Sub CreateODArray() 
Application.ScreenUpdating = False 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Get Values for number of blocks and block sizes for each corresponding yard 
        Sheets("Yard Data").Select 
        Range("D3").Select 
    For i = 1 To NumYards 
        NumBlocks(i) = ActiveCell.Value 
        ActiveCell.Offset(1, 0).Select 
    Next i 
 
        Range("E3").Select 
    For i = 1 To NumYards 
        MinBlockSize(i) = ActiveCell.Value 
        ActiveCell.Offset(1, 0).Select 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Get switching time values for each corresponding yard 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Range("F3").Select 
    For i = 1 To NumYards 
        SwitchingPrepTime(i) = ActiveCell.Value 
        ActiveCell.Offset(1, 0).Select 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Get switching time values for each corresponding yard 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Range("G3").Select 
    For i = 1 To NumYards 
        SwitchingTime(i) = ActiveCell.Value 
        ActiveCell.Offset(1, 0).Select 
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    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Get Service time values for each corresponding yard 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Range("H3").Select 
    For i = 1 To NumYards 
        ServiceTime(i) = ActiveCell.Value 
        ActiveCell.Offset(1, 0).Select 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Get Values for Train Route and Train Route Time information 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("Routes").Select 
        Range("Route_Path1").Select 
    For i = 1 To NumRoutes 
        NetworkRoute(i) = ActiveCell.Value 
        ActiveCell.Offset(0, 1).Select 
        RouteDist(i) = ActiveCell.Value 
        ActiveCell.Offset(1, -1).Select 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Get Values for OD Array 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("O-D Matrices").Select 
        Range("J3").Select 
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To 7 
            If ActiveCell.Font.Bold = True Then 
                ODArrayP1(i, j, k) = ActiveCell.Value 
            Else 
                ODArrayP1(i, j, k) = 0 
            End If 
                ActiveCell.Offset(0, 1).Select 
            Next k 
                ActiveCell.Offset(1, -7).Select 
        Next j 
                ActiveCell.Offset(3, 0).Select 
    Next i 
 
        Sheets("O-D Matrices").Select 
        Range("J3").Select 
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To 7 
            If ActiveCell.Font.Bold = False Then 
                ODArrayP2(i, j, k) = ActiveCell.Value 
            Else 
                ODArrayP2(i, j, k) = 0 
            End If 
                ActiveCell.Offset(0, 1).Select 
            Next k 
                ActiveCell.Offset(1, -7).Select 
        Next j 
                ActiveCell.Offset(3, 0).Select 
    Next i 
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'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Create initial values for number of cars in a yard / day and time to switch those cars / day 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("O-D Matrices").Select 
        Range("Cars_Initial").Select 
        ActiveCell.Offset(0, 1).Select 
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To 7 
                ActiveCell = ActiveCell.Value + ODArrayP1(i, j, k) + ODArrayP2(i, j, k) 
            Next k 
        Next j 
            ActiveCell.Offset(0, 1).Select 
    Next i 
 
        Sheets("O-D Matrices").Select 
    Range("A1").Select 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub Blocks_Setup() 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Create setup of blocks 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Sheets("O-D Matrices").Select 
        For j = 1 To NumYards 
            For k = 1 To NumYards 
                If Cells(k + 3, 3).Value <= NumBlocks(j) Then 
                        Blocks(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 3).Value 
                        Blocks_Pure_Mixed(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 4).Value 
                End If 
            Next k 
        Next j 
End Sub 
 
Sub ReCreateODArray() 
Application.ScreenUpdating = False 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Get Values for OD Array 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("O-D Matrices").Select 
        Range("J3").Select 
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To 7 
            If ActiveCell.Font.Bold = True Then 
                ODArrayP1(i, j, k) = ActiveCell.Value 
            Else 
                ODArrayP1(i, j, k) = 0 
            End If 
                ActiveCell.Offset(0, 1).Select 
            Next k 
                ActiveCell.Offset(1, -7).Select 
        Next j 
                ActiveCell.Offset(3, 0).Select 
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    Next i 
 
        Sheets("O-D Matrices").Select 
        Range("J3").Select 
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To 7 
            If ActiveCell.Font.Bold = False Then 
                ODArrayP2(i, j, k) = ActiveCell.Value 
            Else 
                ODArrayP2(i, j, k) = 0 
            End If 
                ActiveCell.Offset(0, 1).Select 
                'Debug.Print ODArrayP2(i, j, k) 
            Next k 
                ActiveCell.Offset(1, -7).Select 
        Next j 
                ActiveCell.Offset(3, 0).Select 
    Next i 
             
Application.ScreenUpdating = True 
End Sub 
 
Sub Train_Call_Run(TrainNumber) 
Application.ScreenUpdating = False 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get OYard 
    If Cells(TrainNumber + 2, 26 + 5).Value = "" Then 
        MsgBox "You have not chosen an origin yard" 
        Exit Sub 
    Else 
        OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get CYard 
    If Cells(TrainNumber + 2, 26 + 6).Value = "" Then 
        CYard = 0 
    Else 
        CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get DYard 
    If Cells(TrainNumber + 2, 26 + 7).Value = "" Then 
        MsgBox "You have not chosen a destination yard" 
        Exit Sub 
    Else 
        DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination) 
    End If 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''  
    T1(TrainNumber) = Cells(TrainNumber + 2, 26 + 25).Value 
    TC(TrainNumber) = Cells(TrainNumber + 2, 26 + 26).Value 
    T2(TrainNumber) = Cells(TrainNumber + 2, 26 + 27).Value 
 
    Call TrainTimes(TrainNumber, OYard, CYard, DYard, T1(TrainNumber), TC(TrainNumber), T2(TrainNumber)) 
    Call TrainMovement(TrainNumber, OYard, CYard, DYard, T1(TrainNumber), TC(TrainNumber), 
T2(TrainNumber)) 
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Application.ScreenUpdating = True 
End Sub 
 
Sub TrainTimes(TrainNumber, OYard, CYard, DYard, TSub1, TSubC, TSub2) 
Application.ScreenUpdating = False 
     
    T1(TrainNumber) = TSub1 
    TC(TrainNumber) = TSubC 
    T2(TrainNumber) = TSub2 
 
    Call ReCreateODArray 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Check Minimum Train Size 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber) 
     
    If T1(TrainNumber) > #11:59:00 PM# Then TX1(TrainNumber) = 6 ' assumed that only cars from today can be 
carried on any given train 
    If T1(TrainNumber) <= #11:59:00 PM# Then TX1(TrainNumber) = 6 
    If T1(TrainNumber) <= #8:00:00 PM# Then TX1(TrainNumber) = 5 
    If T1(TrainNumber) <= #4:00:00 PM# Then TX1(TrainNumber) = 4 
    If T1(TrainNumber) <= #12:00:00 PM# Then TX1(TrainNumber) = 3 
    If T1(TrainNumber) <= #8:00:00 AM# Then TX1(TrainNumber) = 2 
    If T1(TrainNumber) <= #4:00:00 AM# Then TX1(TrainNumber) = 1 
         
    Cells(TrainNumber + 2, 26 + 13).Select 
        For i = 1 To NumYards 
            If Selection.Font.ColorIndex = xlAutomatic Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
            If x > 0 And x <= NumYards Then 
                    For j = 1 To NumYards 
                If x = Blocks(OYard, j) Then 
                    For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from 
                        Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(OYard, j, k) 
                    Next k 
                End If 
                    Next j 
            End If 
            ActiveCell.Offset(0, 1).Select 
        Next i 
 
    Cells(TrainNumber + 2, 26 + 13).Select 
        For i = 1 To NumYards 
            If Selection.Font.ColorIndex = xlAutomatic Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
            If x > 0 And x <= NumYards Then 
                    For j = 1 To NumYards 
                If x = Blocks(OYard, j) Then 
                    For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from 
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                        Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(OYard, j, k) 
                    Next k 
                End If 
                    Next j 
            End If 
            ActiveCell.Offset(0, 1).Select 
        Next i 
 
    If CYard = 0 Then 
 
        CYard = 0 
         
    Else 
 
' because the train gets to CYard after some time, therefore additional cars may be picked up 
     
        If TC(TrainNumber) > #11:59:00 PM# Then TXC1(TrainNumber) = 6 ' because cars on any train can only be 
picked up from the day of the OD Demand (Assumed) 
        If TC(TrainNumber) <= #11:59:00 PM# Then TXC1(TrainNumber) = 6 
        If TC(TrainNumber) <= #8:00:00 PM# Then TXC1(TrainNumber) = 5 
        If TC(TrainNumber) <= #4:00:00 PM# Then TXC1(TrainNumber) = 4 
        If TC(TrainNumber) <= #12:00:00 PM# Then TXC1(TrainNumber) = 3 
        If TC(TrainNumber) <= #8:00:00 AM# Then TXC1(TrainNumber) = 2 
        If TC(TrainNumber) <= #4:00:00 AM# Then TXC1(TrainNumber) = 1 
         
        Cells(TrainNumber + 2, 26 + 13).Select 
            For i = 1 To NumYards 
            If Selection.Interior.Color = 65535 Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
                If x > 0 And x <= NumYards Then 
                        For j = 1 To NumYards 
                    If x = Blocks(CYard, j) Then 
                        For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from 
                            Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(CYard, j, k) 
                        Next k 
                    End If 
                        Next j 
                End If 
                ActiveCell.Offset(0, 1).Select 
            Next i 
 
        Cells(TrainNumber + 2, 26 + 13).Select 
            For i = 1 To NumYards 
            If Selection.Interior.Color = 65535 Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
                If x > 0 And x <= NumYards Then 
                        For j = 1 To NumYards 
                    If x = Blocks(CYard, j) Then 
                        For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from 
                            Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(CYard, j, k) 
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                        Next k 
                    End If 
                        Next j 
                End If 
                ActiveCell.Offset(0, 1).Select 
            Next i 
 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If Trains(TrainNumber) < MinSize Then 
        Smalltrain = 1 
        GoTo TrainIsTooSmall 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    TrainSwitchTime(TrainNumber) = Trains(TrainNumber) * SwitchingTime(DYard) + 
SwitchingPrepTime(DYard) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Cells(TrainNumber + 2, 26 + 24) = TrainSwitchTime(TrainNumber) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) > #11:59:00 PM# Then TX2(TrainNumber) = 7 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #11:59:00 PM# Then TX2(TrainNumber) = 6 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 PM# Then TX2(TrainNumber) = 5 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 PM# Then TX2(TrainNumber) = 4 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #12:00:00 PM# Then TX2(TrainNumber) = 3 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 AM# Then TX2(TrainNumber) = 2 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 AM# Then TX2(TrainNumber) = 1 
     
        Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Error messages for trains which are too small or large 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
TrainIsTooSmall: 
    If Smalltrain = 1 Then 
        MsgBox ("Train(" & TrainNumber & ") does not have enough cars, and thus it will not" & _ 
            " run. This train only has " & Trains(TrainNumber) & " cars.") 
        Smalltrain = 0 
        Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber) 
        Exit Sub 
    End If 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub TrainMovement(TrainNumber, OYard, CYard, DYard, TSub1, TSubC, TSub2) 
Application.ScreenUpdating = False 
 
    T1(TrainNumber) = TSub1 
    TC(TrainNumber) = TSubC 
    T2(TrainNumber) = TSub2 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Movement of cars on Train (i) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If T1(TrainNumber) > #11:59:00 PM# Then TX1(TrainNumber) = 6 ' because cars on any train can only be 
picked up from the day of the OD Demand (Assumed) 
    If T1(TrainNumber) <= #11:59:00 PM# Then TX1(TrainNumber) = 6 
    If T1(TrainNumber) <= #8:00:00 PM# Then TX1(TrainNumber) = 5 
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    If T1(TrainNumber) <= #4:00:00 PM# Then TX1(TrainNumber) = 4 
    If T1(TrainNumber) <= #12:00:00 PM# Then TX1(TrainNumber) = 3 
    If T1(TrainNumber) <= #8:00:00 AM# Then TX1(TrainNumber) = 2 
    If T1(TrainNumber) <= #4:00:00 AM# Then TX1(TrainNumber) = 1 
 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) > #11:59:00 PM# Then TX2(TrainNumber) = 7 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #11:59:00 PM# Then TX2(TrainNumber) = 6 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 PM# Then TX2(TrainNumber) = 5 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 PM# Then TX2(TrainNumber) = 4 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #12:00:00 PM# Then TX2(TrainNumber) = 3 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 AM# Then TX2(TrainNumber) = 2 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 AM# Then TX2(TrainNumber) = 1 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Loading of Priority (1) Cars (OYard) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Dim Remainder As Long 
         
        Cells(TrainNumber + 2, 26 + 13).Select 
        For i = 1 To NumYards 
            If Selection.Font.ColorIndex = xlAutomatic Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
            If x > 0 And x <= NumYards Then 
                    For j = 1 To NumYards 
                If x = Blocks(OYard, j) Then 
                        For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from 
                    If Trains(TrainNumber) + ODArrayP1(OYard, j, k) <= MaxSize Then 
                        Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(OYard, j, k) 
                        ODArrayP1(DYard, j, TX2(TrainNumber)) = ODArrayP1(DYard, j, TX2(TrainNumber)) + _ 
                            ODArrayP1(OYard, j, k) ' destination yard is being added all cars 
                        ODArrayP1(OYard, j, k) = 0 ' origin yard is being negated all cars 
                    ElseIf Trains(TrainNumber) + ODArrayP1(OYard, j, k) > MaxSize Then 
                        Remainder = MaxSize - Trains(TrainNumber) 
                        Trains(TrainNumber) = Trains(TrainNumber) + Remainder 
                        ODArrayP1(DYard, j, TX2(TrainNumber)) = ODArrayP1(DYard, j, TX2(TrainNumber)) + _ 
                            Remainder 
                        ODArrayP1(OYard, j, k) = ODArrayP1(OYard, j, k) - Remainder 
                        Remainder = 0 
                         
                        Fulltrain = 1 
                        GoTo TrainIsFull 
                         
                    End If 
                        Next k 
                End If 
                    Next j 
            End If 
 
        ActiveCell.Offset(0, 1).Select 
        Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Loading of Priority (2) Cars (OYard) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Cells(TrainNumber + 2, 26 + 13).Select 
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        For i = 1 To NumYards 
            If Selection.Font.ColorIndex = xlAutomatic Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
            If x > 0 And x <= NumYards Then 
                    For j = 1 To NumYards 
                If x = Blocks(OYard, j) Then 
                        For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from 
                    If Trains(TrainNumber) + ODArrayP2(OYard, j, k) <= MaxSize Then 
                        Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(OYard, j, k) 
                        ODArrayP2(DYard, j, TX2(TrainNumber)) = ODArrayP2(DYard, j, TX2(TrainNumber)) + _ 
                            ODArrayP2(OYard, j, k) ' destination yard is being added all cars 
                        ODArrayP2(OYard, j, k) = 0 ' origin yard is being negated all cars 
                    ElseIf Trains(TrainNumber) + ODArrayP2(OYard, j, k) > MaxSize Then 
                        Remainder = MaxSize - Trains(TrainNumber) 
                        Trains(TrainNumber) = Trains(TrainNumber) + Remainder 
                        ODArrayP2(DYard, j, TX2(TrainNumber)) = ODArrayP2(DYard, j, TX2(TrainNumber)) + _ 
                            Remainder 
                        ODArrayP2(OYard, j, k) = ODArrayP2(OYard, j, k) - Remainder 
                        Remainder = 0 
                         
                        Fulltrain = 1 
                        GoTo TrainIsFull 
                         
                    End If 
                        Next k 
                End If 
                    Next j 
            End If 
 
        ActiveCell.Offset(0, 1).Select 
        Next i 
 ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If CYard > 0 Then 
 
' because the train gets to CYard after some time, therefore additional cars may be picked up 
        If TC(TrainNumber) > #11:59:00 PM# Then TXC1(TrainNumber) = 6 ' because cars on any train can only be 
picked up from the day of the OD Demand (Assumed) 
        If TC(TrainNumber) <= #11:59:00 PM# Then TXC1(TrainNumber) = 6 
        If TC(TrainNumber) <= #8:00:00 PM# Then TXC1(TrainNumber) = 5 
        If TC(TrainNumber) <= #4:00:00 PM# Then TXC1(TrainNumber) = 4 
        If TC(TrainNumber) <= #12:00:00 PM# Then TXC1(TrainNumber) = 3 
        If TC(TrainNumber) <= #8:00:00 AM# Then TXC1(TrainNumber) = 2 
        If TC(TrainNumber) <= #4:00:00 AM# Then TXC1(TrainNumber) = 1 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Loading of Priority (1) Cars (CYard) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Cells(TrainNumber + 2, 26 + 13).Select 
        For i = 1 To NumYards 
            If Selection.Interior.Color = 65535 Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
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            If x > 0 And x <= NumYards Then 
                    For j = 1 To NumYards 
                If x = Blocks(CYard, j) Then 
                        For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from 
                    If Trains(TrainNumber) + ODArrayP1(CYard, j, k) <= MaxSize Then 
                        Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(CYard, j, k) 
                        ODArrayP1(DYard, j, TX2(TrainNumber)) = ODArrayP1(DYard, j, TX2(TrainNumber)) + _ 
                            ODArrayP1(CYard, j, k) ' destination yard is being added all cars 
                        ODArrayP1(CYard, j, k) = 0 ' origin yard is being negated all cars 
                    ElseIf Trains(TrainNumber) + ODArrayP1(CYard, j, k) > MaxSize Then 
                        Remainder = MaxSize - Trains(TrainNumber) 
                        Trains(TrainNumber) = Trains(TrainNumber) + Remainder 
                        ODArrayP1(DYard, j, TX2(TrainNumber)) = ODArrayP1(DYard, j, TX2(TrainNumber)) + _ 
                            Remainder 
                        ODArrayP1(CYard, j, k) = ODArrayP1(CYard, j, k) - Remainder 
                        Remainder = 0 
                         
                        Fulltrain = 1 
                        GoTo TrainIsFull 
                    End If 
                        Next k 
                End If 
                    Next j 
            End If 
 
        ActiveCell.Offset(0, 1).Select 
        Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Loading of Priority (2) Cars (CYard) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Cells(TrainNumber + 2, 26 + 13).Select 
        For i = 1 To NumYards 
            If Selection.Interior.Color = 65535 Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
            If x > 0 And x <= NumYards Then 
                    For j = 1 To NumYards 
                If x = Blocks(CYard, j) Then 
                        For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from 
                    If Trains(TrainNumber) + ODArrayP2(CYard, j, k) <= MaxSize Then 
                        Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(CYard, j, k) 
                        ODArrayP2(DYard, j, TX2(TrainNumber)) = ODArrayP2(DYard, j, TX2(TrainNumber)) + _ 
                            ODArrayP2(CYard, j, k) ' destination yard is being added all cars 
                        ODArrayP2(CYard, j, k) = 0 ' origin yard is being negated all cars 
                    ElseIf Trains(TrainNumber) + ODArrayP2(CYard, j, k) > MaxSize Then 
                        Remainder = MaxSize - Trains(TrainNumber) 
                        Trains(TrainNumber) = Trains(TrainNumber) + Remainder 
                        ODArrayP2(DYard, j, TX2(TrainNumber)) = ODArrayP2(DYard, j, TX2(TrainNumber)) + _ 
                            Remainder 
                        ODArrayP2(CYard, j, k) = ODArrayP2(CYard, j, k) - Remainder 
                        Remainder = 0 
                         
                        Fulltrain = 1 
                        GoTo TrainIsFull 
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                    End If 
                        Next k 
                End If 
                    Next j 
            End If 
 
        ActiveCell.Offset(0, 1).Select 
        Next i 
 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Error messages for trains which are too small or large 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
TrainIsTooSmall: 
    If Smalltrain = 1 Then 
        MsgBox ("Train(" & TrainNumber & ") does not have enough cars, and thus it will not" & _ 
            " run. This train only has " & Trains(TrainNumber) & " cars.") 
        Smalltrain = 0 
        Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber) 
        Exit Sub 
    End If 
     
TrainIsFull: 
    If Fulltrain = 1 Then 
        MsgBox ("Train(" & TrainNumber & ") is Full, it will only take up to a maximum of " & _ 
            MaxSize & " cars. The train may only take a full block, it cannot take one in part." & _ 
                "This train took " & Trains(TrainNumber) & " cars.") 
        Fulltrain = 0 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Replace OD Array 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("O-D Matrices").Select 
        Range("J3").Select 
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To 7 
                ActiveCell.Value = ODArrayP1(i, j, k) 
                ActiveCell.Offset(0, 1).Select 
            Next k 
                ActiveCell.Offset(1, -7).Select 
        Next j 
                ActiveCell.Offset(3, 0).Select 
    Next i 
     
        Range("J3").Select 
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To 7 
                ActiveCell.Offset(0, 1).Select 
                If ActiveCell.Value > 0 Then 
                    ActiveCell.Font.Bold = True 
                Else 
                    ActiveCell.Font.Bold = False 
                End If 
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            Next k 
                ActiveCell.Offset(1, -7).Select 
        Next j 
                ActiveCell.Offset(3, 0).Select 
    Next i 
         
        Sheets("O-D Matrices").Select 
        Range("J3").Select 
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To 7 
                If ActiveCell.Font.Bold = False Then 
                    ActiveCell.Value = ODArrayP2(i, j, k) 
                End If 
                ActiveCell.Offset(0, 1).Select 
            Next k 
                ActiveCell.Offset(1, -7).Select 
        Next j 
                ActiveCell.Offset(3, 0).Select 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Count Number of Trains Originating at Yard "O" and received at yard "D" 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Range("OYard_Number_Origin_Trains").Offset(0, OYard) = Range("OYard_Number_Origin_Trains").Offset(0, 
OYard).Value + 1 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If CYard > 0 Then 
        Range("CYard_Number_Trains").Offset(0, CYard) = Range("CYard_Number_Trains").Offset(0, 
CYard).Value + 1 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Range("DYard_Number_Trains").Offset(0, DYard) = Range("DYard_Number_Trains").Offset(0, DYard).Value 
+ 1 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Add to the values for number of cars in a yard / day and time to switch those cars / day 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Range("Cars_Additional").Offset(0, DYard) = Range("Cars_Additional").Offset(0, DYard).Value + 
Trains(TrainNumber) 
 
    Range("Class_Time_Additional").Offset(0, DYard) = Range("Class_Time_Additional").Offset(0, DYard).Value 
+ TrainSwitchTime(TrainNumber) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
Application.ScreenUpdating = True 
End Sub 
 

Module 2 
Sub ButtonAll_Click() 
Application.ScreenUpdating = False 
 
' call each train to be run individually, in order of earliest to latest 
     
    Dim Train_Run_List() As Long 
    Dim Train_Run_Time() As Date 
     
    ReDim Train_Run_List(1 To NumTrains) 
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    ReDim Train_Run_Time(1 To NumTrains) 
     
    For i = 1 To NumTrains 
        Train_Run_List(i) = Cells(i + 2, 26 + 3).Value 
        Train_Run_Time(i) = Cells(i + 2, 26 + 25).Value 
    Next i 
     
    Call Time_Sort_Run(Train_Run_Time, Train_Run_List) 
 
    For m = 1 To NumTrains 
        Call Run_Train(Train_Run_List(m)) 
    Next m 
 
    Call Train_Sort_Run(Train_Run_List, Train_Run_Time) 
     
Application.ScreenUpdating = True 
End Sub 
 
Sub Run_Train(S_TrainNumber) 
     
        If S_TrainNumber > NumTrains Then Exit Sub 
        Call ReCreateODArray 
        Call Blocks_Setup 
        Call Train_Call_Run(S_TrainNumber) 
        If Trains(S_TrainNumber) < MinSize Then Exit Sub 
 
    Cells(S_TrainNumber + 2, 26 + 21).Select 
    ActiveCell = ActiveCell.Value + Trains(S_TrainNumber) 
     
End Sub 
 
Sub Time_Sort_Run(list1() As Date, list2() As Long) 
Application.ScreenUpdating = False 
 
' Sorts array 
 
    Dim First As Integer, Last As Long 
    Dim i As Long, j As Long 
    Dim Temp1 
    Dim Temp2 
 
    First = LBound(list1) 
    Last = UBound(list1) 
    For i = First To Last - 1 
        For j = i + 1 To Last 
            If list1(i) > list1(j) Then 
                Temp1 = list1(j) 
                list1(j) = list1(i) 
                list1(i) = Temp1 
 
                Temp2 = list2(j) 
                list2(j) = list2(i) 
                list2(i) = Temp2 
            End If 
        Next j 
    Next i 
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Application.ScreenUpdating = True 
End Sub 
 
Sub Train_Sort_Run(list1() As Long, list2() As Date) 
Application.ScreenUpdating = False 
 
' Sorts array 
 
    Dim First As Integer, Last As Long 
    Dim i As Long, j As Long 
    Dim Temp1 
    Dim Temp2 
     
    First = LBound(list1) 
    Last = UBound(list1) 
    For i = First To Last - 1 
        For j = i + 1 To Last 
            If list1(i) > list1(j) Then 
                Temp1 = list1(j) 
                list1(j) = list1(i) 
                list1(i) = Temp1 
                 
                Temp2 = list2(j) 
                list2(j) = list2(i) 
                list2(i) = Temp2 
            End If 
        Next j 
    Next i 
     
Application.ScreenUpdating = True 
End Sub 
 
Module 3 

    Public Queue_List_OBuild() As Long 
    Public Queue_Time_OBuild() As Date 
     
    Public Queue_List_CBuild() As Long 
    Public Queue_Time_CBuild() As Date 
     
    Public Queue_List_DSwitch() As Long 
    Public Queue_Time_DSwitch() As Date 
 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Public T1Start() As Long 
    Public T1Stop() As Long 
    Public T1New() As Date 
    ''''''''''''''''''''''' 
    Public T2Start() As Long 
    Public T2Stop() As Long 
    Public T2New() As Date 
    ''''''''''''''''''''''' 
    Public T3Start() As Long 
    Public T3Stop() As Long 
    Public T3New() As Date 
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''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Public OYard_List() As Long 
    Public OYard_Train_List() As Long 
    Public OYard_Build_Time_List() As Date 
    Public OYard_Priority_List() As Long 
     
    Public CYard_List() As Long 
    Public CYard_Train_List() As Long 
    Public CYard_Build_Time_List() As Date 
    Public CYard_Priority_List() As Long 
     
    Public DYard_List() As Long 
    Public DYard_Train_List() As Long 
    Public DYard_Build_Time_List() As Date 
    Public DYard_Priority_List() As Long 
 
Sub Actual_Time_Calculations() 
Application.ScreenUpdating = False 
 
    Sheets("Queue Times").Select 
        Columns("D:F").Select 
        Selection.ClearContents 
        Range("D1").Select 
        ActiveCell = "OYard Build List" 
        Range("E1").Select 
        ActiveCell = "CYard Connection Only  List" 
        Range("F1").Select 
        ActiveCell = "DYard Switching/Classification List" 
    Sheets("O-D Matrices").Select 
     
    For i = 1 To NumTrains 
        Trains(i) = 75 
    Next i 
     
    Call Get_Shortest_Routes 
    Call ArrayMovement 
    Call Test_Queue 
    Call New_OYard_Times 
    Call Recalulate_CYard_and_DYard_Arrivals 
    Call New_CYard_Times 
    Call Recalulate_DYard_Arrivals 
    Call New_DYard_Times 
    Call Adjust_Times_24 
     
    Sheets("Queue Times").Select 
        Columns("D:F").Select 
        Selection.ClearContents 
        Range("D1").Select 
        ActiveCell = "OYard Build List" 
        Range("E1").Select 
        ActiveCell = "CYard Connection Only  List" 
        Range("F1").Select 
        ActiveCell = "DYard Switching/Classification List" 
    Sheets("O-D Matrices").Select 
         
    Call Test_Queue 
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    Call Train_Call_Run_XX 
    Call New_OYard_Times 
    Call Recalulate_CYard_and_DYard_Arrivals 
    Call New_CYard_Times 
    Call Recalulate_DYard_Arrivals 
    Call New_DYard_Times 
    Call Adjust_Times_24 
     
Application.ScreenUpdating = True 
End Sub 
 
Sub ArrayMovement() 
Application.ScreenUpdating = False 
 
    For TrainNumber = 1 To NumTrains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get build time 
    If Cells(TrainNumber + 2, 26 + 4).Value = "" Then 
        MsgBox "You have not chosen a build time" 
        Exit Sub 
    Else 
        T1(TrainNumber) = Cells(TrainNumber + 2, 26 + 4).Value ' start time period for collection of cars 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get OYard 
    If Cells(TrainNumber + 2, 26 + 5).Value = "" Then 
        MsgBox "You have not chosen an origin yard for train number" & TrainNumber & "." 
        Exit Sub 
    Else 
        OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get CYard 
    If Cells(TrainNumber + 2, 26 + 6).Value = "" Then 
        CYard = 0 
    Else 
        CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get DYard 
    If Cells(TrainNumber + 2, 26 + 7).Value = "" Then 
        MsgBox "You have not chosen a destination yard for train number" & TrainNumber & "." 
        Exit Sub 
    Else 
        DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get train speed and determine route(s) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If Cells(TrainNumber + 2, 26 + 8).Value = "" Then 
        MsgBox "You have not provided a train speed" 
        Exit Sub 
    ElseIf CYard > 0 Then 
        TrainSpeed(TrainNumber) = Cells(TrainNumber + 2, 26 + 8).Value 
         
        For i = 1 To NumRoutes 
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            If InStr(NetworkRoute(i), OYard) = 1 And InStr(NetworkRoute(i), CYard) = Len(NetworkRoute(i)) Then 
                PossibleTrainRoutes1(TrainNumber, i) = 1 
            Else 
                PossibleTrainRoutes1(TrainNumber, i) = 0 
            End If 
        Next i 
     
        For i = 1 To NumRoutes 
            If InStr(NetworkRoute(i), CYard) = 1 And InStr(NetworkRoute(i), DYard) = Len(NetworkRoute(i)) Then 
                PossibleTrainRoutes2(TrainNumber, i) = 1 
            Else 
                PossibleTrainRoutes2(TrainNumber, i) = 0 
            End If 
        Next i 
     
    Else 
         
        TrainSpeed(TrainNumber) = Cells(TrainNumber + 2, 26 + 8).Value 
         
        For i = 1 To NumRoutes 
             
            If InStr(NetworkRoute(i), OYard) = 1 And InStr(NetworkRoute(i), DYard) = Len(NetworkRoute(i)) Then 
                    PossibleTrainRoutes1(TrainNumber, i) = 1 
                Else 
                    PossibleTrainRoutes1(TrainNumber, i) = 0 
            End If 
             
        Next i 
         
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' determine total train time(s) for each route(s) 
     
    If CYard > 0 Then 
        x = 0 
    TrainTime1(TrainNumber) = 25 ' intitial value of 23:59:59 hours for train time - set high so that it will be 
replaced with a new, smaller time 
     
    For i = 1 To NumRoutes 
        x = x + PossibleTrainRoutes1(TrainNumber, i) 
    Next i 
        If x > 0 Then 
            For i = 1 To NumRoutes 
                If PossibleTrainRoutes1(TrainNumber, i) = 1 And ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) < 
TrainTime1(TrainNumber) Then 
                    TrainRoute1(TrainNumber) = NetworkRoute(i) 
                    TrainTime1(TrainNumber) = ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) 
                    Cells(TrainNumber + 2, 26 + 9) = TrainRoute1(TrainNumber) 
                    Cells(TrainNumber + 2, 26 + 10) = TrainTime1(TrainNumber) 
                End If 
            Next i 
        Else 
            MsgBox "There are no direct routes which take this train from Yard " & OYard & " to Yard " & CYard & "." 
            Exit Sub 
        End If 
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        x = 0 
    TrainTime2(TrainNumber) = 25 ' intitial value of 23:59:59 hours for train time - set high so that it will be 
replaced with a new, smaller time 
     
    For i = 1 To NumRoutes 
        x = x + PossibleTrainRoutes2(TrainNumber, i) 
    Next i 
        If x > 0 Then 
            For i = 1 To NumRoutes 
                If PossibleTrainRoutes2(TrainNumber, i) = 1 And ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) < 
TrainTime2(TrainNumber) Then 
                    TrainRoute2(TrainNumber) = NetworkRoute(i) 
                    TrainTime2(TrainNumber) = ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) 
                    Cells(TrainNumber + 2, 26 + 11) = TrainRoute2(TrainNumber) 
                    Cells(TrainNumber + 2, 26 + 12) = TrainTime2(TrainNumber) 
                End If 
            Next i 
        Else 
            MsgBox "There are no direct routes which take this train from Yard " & CYard & " to Yard " & DYard & "." 
            Exit Sub 
        End If 
 
    Else 
     
    x = 0 
     
    TrainTime1(TrainNumber) = 25 ' intitial value of 23:59:59 hours for train time - set high so that it will be 
replaced with a new, smaller time 
     
    For i = 1 To NumRoutes 
        x = x + PossibleTrainRoutes1(TrainNumber, i) 
    Next i 
        If x > 0 Then 
            For i = 1 To NumRoutes 
                If PossibleTrainRoutes1(TrainNumber, i) = 1 And ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) < 
TrainTime1(TrainNumber) Then 
                    TrainRoute1(TrainNumber) = NetworkRoute(i) 
                    TrainTime1(TrainNumber) = ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) 
                    Cells(TrainNumber + 2, 26 + 9) = TrainRoute1(TrainNumber) 
                    Cells(TrainNumber + 2, 26 + 10) = TrainTime1(TrainNumber) 
                End If 
            Next i 
        Else 
            MsgBox "There are no direct routes which take this train from Yard " & OYard & " to Yard " & CYard & "." 
            Exit Sub 
        End If 
         
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' determine arrival time of train into CYard and DYard 
 
    If CYard > 0 Then 
        T2(TrainNumber) = T1(TrainNumber) + ServiceTime(OYard) + ServiceTime(CYard) / 2 + 
TrainTime1(TrainNumber) + TrainTime2(TrainNumber) ' overall travel and service time for each train 
    Else 



A5-168 

 

        T2(TrainNumber) = T1(TrainNumber) + ServiceTime(OYard) + TrainTime1(TrainNumber) ' overall travel and 
service time for each train 
    End If 
     
    If CYard > 0 Then 
        If T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) > 1 Then 
            Cells(TrainNumber + 2, 26 + 22) = T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) - 
1 
            Cells(TrainNumber + 2, 26 + 22).Interior.Color = 65535 
            Cells(TrainNumber + 2, 26 + 22).Font.Color = -16776961 
        Else 
            Cells(TrainNumber + 2, 26 + 22) = T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) 
        End If 
    End If 
     
    If T2(TrainNumber) > 1 Then 
        Cells(TrainNumber + 2, 26 + 23) = T2(TrainNumber) - 1 
        Cells(TrainNumber + 2, 26 + 23).Interior.Color = 65535 
        Cells(TrainNumber + 2, 26 + 23).Font.Color = -16776961 
    Else 
        Cells(TrainNumber + 2, 26 + 23) = T2(TrainNumber) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Next TrainNumber 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub Test_Queue() 
Application.ScreenUpdating = False 
     
    ReDim Queue_List_OBuild(1 To NumYards, 1 To 2880) 
    ReDim Queue_Time_OBuild(1 To 2880) 
    ReDim Queue_List_CBuild(1 To NumYards, 1 To 2880) 
    ReDim Queue_Time_CBuild(1 To 2880) 
    ReDim Queue_List_DSwitch(1 To NumYards, 1 To 2880) 
    ReDim Queue_Time_DSwitch(1 To 2880) 
 
    Sheets("Queue Times").Select 
 
    For i = 1 To NumYards 
        x = (i - 1) * 2880 
        For j = 1 To 2880 
 
            Queue_List_OBuild(i, j) = Cells(1 + j + x, 4).Value 
            Queue_Time_OBuild(j) = Cells(1 + j, 3).Value 
             
            Queue_List_CBuild(i, j) = Cells(1 + j + x, 5).Value 
            Queue_Time_CBuild(j) = Cells(1 + j, 3).Value 
             
            Queue_List_DSwitch(i, j) = Cells(1 + j + x, 6).Value 
            Queue_Time_DSwitch(j) = Cells(1 + j, 3).Value 
 
        Next j 
    Next i 
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        Sheets("O-D Matrices").Select 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub New_OYard_Times() 
Application.ScreenUpdating = False 
 
    ReDim OYard_List(1 To NumTrains) 
    ReDim OYard_Train_List(1 To NumTrains) 
    ReDim OYard_Build_Time_List(1 To NumTrains) 
    ReDim OYard_Priority_List(1 To NumTrains) 
     
    ReDim CYard_List(1 To NumTrains) 
    ReDim CYard_Train_List(1 To NumTrains) 
    ReDim CYard_Build_Time_List(1 To NumTrains) 
    ReDim CYard_Priority_List(1 To NumTrains) 
     
    ReDim DYard_List(1 To NumTrains) 
    ReDim DYard_Train_List(1 To NumTrains) 
    ReDim DYard_Build_Time_List(1 To NumTrains) 
    ReDim DYard_Priority_List(1 To NumTrains) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
ReDim T1Start(1 To NumTrains) 
ReDim T1Stop(1 To NumTrains) 
 
ReDim T1New(1 To NumTrains) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Sheets("O-D Matrices").Select 
 
    For i = 1 To NumTrains 
        OYard_Train_List(i) = Cells(2 + i, 26 + 3).Value 
        OYard_List(i) = Cells(2 + i, 26 + 5).Value 
        OYard_Build_Time_List(i) = Cells(2 + i, 26 + 4).Value 
        OYard_Priority_List(i) = Cells(2 + i, 26 + 20).Value 
    Next i 
 
Call Time_Sort(OYard_Build_Time_List, OYard_Train_List, OYard_Priority_List, OYard_List) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'Priority Trains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
     If OYard_Priority_List(i) = 1 Then 
      
        T1Start(i) = Round(OYard_Build_Time_List(i) * 2880, 0) 
        T1Stop(i) = Round((OYard_Build_Time_List(i) + ServiceTime(OYard_List(i))) * 2880, 0) 
            If T1Start(i) = 0 Then 
                T1Start(i) = 1 
                T1Stop(i) = T1Stop(i) + 1 
            End If 
' check if T1Stop(i) goes into next day. 
        x = 0 
 
        If T1Stop(i) < 2880 Then 
            For j = T1Start(i) To T1Stop(i) 
                x = Queue_List_OBuild(OYard_List(i), j) + x 
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            Next j 
        Else 
            For j = T1Start(i) To 2880 
                x = Queue_List_OBuild(OYard_List(i), j) + x 
            Next j 
 
            For j = 1 To T1Stop(i) - 2880 
                x = Queue_List_OBuild(OYard_List(i), j) + x 
            Next j 
        End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        If x = 0 Then 
            If T1Stop(i) < 2880 Then 
                For j = T1Start(i) To T1Stop(i) 
                    Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
            Else 
                For j = T1Start(i) To 2880 
                    Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
 
                For j = 1 To T1Stop(i) - 2880 
                   Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
            End If 
 
        Else 
 
            Do Until x = 0 
 
                x = 0 
                T1Start(i) = T1Start(i) + 1 
                T1Stop(i) = T1Stop(i) + 1 
 
                If T1Stop(i) < 2880 Then 
                    For j = T1Start(i) To T1Stop(i) 
                        x = Queue_List_OBuild(OYard_List(i), j) + x 
                    Next j 
                Else 
                    For j = T1Start(i) To 2880 
                        x = Queue_List_OBuild(OYard_List(i), j) + x 
                    Next j 
 
                    For j = 1 To T1Stop(i) - 2880 
                        x = Queue_List_OBuild(OYard_List(i), j) + x 
                    Next j 
                End If 
 
            Loop 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
            If T1Stop(i) < 2880 Then 
                For j = T1Start(i) To T1Stop(i) 
                    Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
            Else 
                For j = T1Start(i) To 2880 
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                    Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
 
                For j = 1 To T1Stop(i) - 2880 
                   Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
            End If 
 
            OYard_Build_Time_List(i) = (T1Start(i)) / 2880 
 
        End If 
     End If 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'Non - Priority Trains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
     If OYard_Priority_List(i) = 0 Then 
      
        T1Start(i) = Round(OYard_Build_Time_List(i) * 2880, 0) 
        T1Stop(i) = Round((OYard_Build_Time_List(i) + ServiceTime(OYard_List(i))) * 2880, 0) 
            If T1Start(i) = 0 Then 
                T1Start(i) = 1 
                T1Stop(i) = T1Stop(i) + 1 
            End If 
' check if T1Stop(i) goes into next day. 
        x = 0 
 
        If T1Stop(i) < 2880 Then 
            For j = T1Start(i) To T1Stop(i) 
                x = Queue_List_OBuild(OYard_List(i), j) + x 
            Next j 
        Else 
            For j = T1Start(i) To 2880 
                x = Queue_List_OBuild(OYard_List(i), j) + x 
            Next j 
 
            For j = 1 To T1Stop(i) - 2880 
                x = Queue_List_OBuild(OYard_List(i), j) + x 
            Next j 
        End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        If x = 0 Then 
            If T1Stop(i) < 2880 Then 
                For j = T1Start(i) To T1Stop(i) 
                    Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
            Else 
                For j = T1Start(i) To 2880 
                    Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
 
                For j = 1 To T1Stop(i) - 2880 
                   Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
            End If 
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        Else 
 
            Do Until x = 0 
 
                x = 0 
                T1Start(i) = T1Start(i) + 1 
                T1Stop(i) = T1Stop(i) + 1 
 
                If T1Stop(i) < 2880 Then 
                    For j = T1Start(i) To T1Stop(i) 
                        x = Queue_List_OBuild(OYard_List(i), j) + x 
                    Next j 
                Else 
                    For j = T1Start(i) To 2880 
                        x = Queue_List_OBuild(OYard_List(i), j) + x 
                    Next j 
                    j = 0 
                    For j = 1 To (T1Stop(i) - 2880) 
                        If j <= 2880 Then 
                        x = Queue_List_OBuild(OYard_List(i), j) + x 
                        End If 
                    Next j 
                End If 
 
            Loop 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
            If T1Stop(i) < 2880 Then 
                For j = T1Start(i) To T1Stop(i) 
                    Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
            Else 
                For j = T1Start(i) To 2880 
                    Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
 
                For j = 1 To T1Stop(i) - 2880 
                   Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i) 
                Next j 
            End If 
 
            OYard_Build_Time_List(i) = (T1Start(i)) / 2880 
 
        End If 
     End If 
    Next 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("Queue Times").Select 
 
    For i = 1 To NumYards 
        x = (i - 1) * 2880 
        For j = 1 To 2880 
 
            Cells(1 + j + x, 4) = Queue_List_OBuild(i, j) 
 
        Next j 
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    Next i 
 
        Sheets("O-D Matrices").Select 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
        T1New(i) = (T1Start(i) / 2880) 
    Next i 
Call Train_Sort(OYard_Train_List, OYard_Priority_List, OYard_List, T1New) 
    For i = 1 To NumTrains 
        Cells(i + 2, 26 + 25) = T1New(i) 
    Next i 
     
Application.ScreenUpdating = True 
End Sub 
 
Sub Recalulate_CYard_and_DYard_Arrivals() 
Application.ScreenUpdating = False 
 
For TrainNumber = 1 To NumTrains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get build time 
    If Cells(TrainNumber + 2, 26 + 25).Value = "" Then 
        MsgBox "You have not chosen a build time" 
        Exit Sub 
    Else 
        T1(TrainNumber) = Cells(TrainNumber + 2, 26 + 25).Value ' start time period for collection of cars 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get OYard 
    If Cells(TrainNumber + 2, 26 + 5).Value = "" Then 
        MsgBox "You have not chosen an origin yard" 
        Exit Sub 
    Else 
        OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get CYard 
    If Cells(TrainNumber + 2, 26 + 6).Value = "" Then 
        CYard = 0 
    Else 
        CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get DYard 
    If Cells(TrainNumber + 2, 26 + 7).Value = "" Then 
        MsgBox "You have not chosen a destination yard" 
        Exit Sub 
    Else 
        DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' Recalculate CYard and DYard Arrival Times 
    If CYard > 0 Then 
        T2(TrainNumber) = T1(TrainNumber) + ServiceTime(OYard) + ServiceTime(CYard) / 2 + 
TrainTime1(TrainNumber) + TrainTime2(TrainNumber) ' overall travel and service time for each train 
    Else 
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        T2(TrainNumber) = T1(TrainNumber) + ServiceTime(OYard) + TrainTime1(TrainNumber) ' overall travel and 
service time for each train 
    End If 
     
    If CYard > 0 Then 
        If T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) > 1 Then 
            Cells(TrainNumber + 2, 26 + 26) = T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) - 
1 
            Cells(TrainNumber + 2, 26 + 26).Interior.Color = 65535 
            Cells(TrainNumber + 2, 26 + 26).Font.Color = -16776961 
        Else 
            Cells(TrainNumber + 2, 26 + 26) = T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) 
        End If 
    End If 
     
    If T2(TrainNumber) > 1 Then 
        Cells(TrainNumber + 2, 26 + 27) = T2(TrainNumber) - 1 
        Cells(TrainNumber + 2, 26 + 27).Interior.Color = 65535 
        Cells(TrainNumber + 2, 26 + 27).Font.Color = -16776961 
    Else 
        Cells(TrainNumber + 2, 26 + 27) = T2(TrainNumber) 
    End If 
Next TrainNumber 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub New_CYard_Times() 
Application.ScreenUpdating = False 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
ReDim T2Start(1 To NumTrains) 
ReDim T2Stop(1 To NumTrains) 
 
ReDim T2New(1 To NumTrains) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Sheets("O-D Matrices").Select 
 
    For i = 1 To NumTrains 
        CYard_Train_List(i) = Cells(2 + i, 26 + 3).Value 
        CYard_List(i) = Cells(2 + i, 26 + 6).Value 
        CYard_Build_Time_List(i) = Cells(2 + i, 26 + 26).Value 
        CYard_Priority_List(i) = Cells(2 + i, 26 + 20).Value 
    Next i 
Call Time_Sort(CYard_Build_Time_List, CYard_Train_List, CYard_Priority_List, CYard_List) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'Priority Trains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
     If CYard_Priority_List(i) = 1 And CYard_List(i) <> 0 Then 
      
        T2Start(i) = Round(CYard_Build_Time_List(i) * 2880, 0) 
        T2Stop(i) = Round((CYard_Build_Time_List(i) + ServiceTime(CYard_List(i))) * 2880 / 2, 0) ' assumed that 
CYard operations are shorter than OYard 
            If T2Start(i) = 0 Then 
                T2Start(i) = 1 
                T2Stop(i) = T2Stop(i) + 1 
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            End If 
             
' check if T2Stop(i) goes into next day. 
        x = 0 
 
        If T2Stop(i) < 2880 Then 
            For j = T2Start(i) To T2Stop(i) 
                x = Queue_List_CBuild(CYard_List(i), j) + x 
            Next j 
        Else 
            For j = T2Start(i) To 2880 
                x = Queue_List_CBuild(CYard_List(i), j) + x 
            Next j 
 
            For j = 1 To T2Stop(i) - 2880 
                x = Queue_List_CBuild(CYard_List(i), j) + x 
            Next j 
        End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        If x = 0 Then 
            If T2Stop(i) < 2880 Then 
                For j = T2Start(i) To T2Stop(i) 
                    Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
            Else 
                For j = T2Start(i) To 2880 
                    Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
 
                For j = 1 To T2Stop(i) - 2880 
                   Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
            End If 
 
        Else 
 
            Do Until x = 0 
 
                x = 0 
                T2Start(i) = T2Start(i) + 1 
                T2Stop(i) = T2Stop(i) + 1 
 
                If T2Stop(i) < 2880 Then 
                    For j = T2Start(i) To T2Stop(i) 
                        x = Queue_List_CBuild(CYard_List(i), j) + x 
                    Next j 
                Else 
                    For j = T2Start(i) To 2880 
                        x = Queue_List_CBuild(CYard_List(i), j) + x 
                    Next j 
 
                    For j = 1 To T2Stop(i) - 2880 
                        x = Queue_List_CBuild(CYard_List(i), j) + x 
                    Next j 
                End If 
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            Loop 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
            If T2Stop(i) < 2880 Then 
                For j = T2Start(i) To T2Stop(i) 
                    Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
            Else 
                For j = T2Start(i) To 2880 
                    Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
 
                For j = 1 To T2Stop(i) - 2880 
                   Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
            End If 
 
            CYard_Build_Time_List(i) = (T2Start(i)) / 2880 
 
        End If 
     End If 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'Non - Priority Trains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
     If CYard_Priority_List(i) = 0 And CYard_List(i) <> 0 Then 
      
        T2Start(i) = Round(CYard_Build_Time_List(i) * 2880, 0) 
        T2Stop(i) = Round((CYard_Build_Time_List(i) + ServiceTime(CYard_List(i))) * 2880 / 2, 0) ' assumed that 
CYard operations are shorter than OYard 
            If T2Start(i) = 0 Then 
                T2Start(i) = 1 
                T2Stop(i) = T2Stop(i) + 1 
            End If 
             
' check if T2Stop(i) goes into next day. 
        x = 0 
 
        If T2Stop(i) < 2880 Then 
            For j = T2Start(i) To T2Stop(i) 
                x = Queue_List_CBuild(CYard_List(i), j) + x 
            Next j 
        Else 
            For j = T2Start(i) To 2880 
                x = Queue_List_CBuild(CYard_List(i), j) + x 
            Next j 
 
            For j = 1 To T2Stop(i) - 2880 
                x = Queue_List_CBuild(CYard_List(i), j) + x 
            Next j 
        End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        If x = 0 Then 
            If T2Stop(i) < 2880 Then 
                For j = T2Start(i) To T2Stop(i) 
                    Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
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                Next j 
            Else 
                For j = T2Start(i) To 2880 
                    Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
 
                For j = 1 To T2Stop(i) - 2880 
                   Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
            End If 
 
        Else 
 
            Do Until x = 0 
 
                x = 0 
                T2Start(i) = T2Start(i) + 1 
                T2Stop(i) = T2Stop(i) + 1 
 
                If T2Stop(i) < 2880 Then 
                    For j = T2Start(i) To T2Stop(i) 
                        x = Queue_List_CBuild(CYard_List(i), j) + x 
                    Next j 
                Else 
                    For j = T2Start(i) To 2880 
                        x = Queue_List_CBuild(CYard_List(i), j) + x 
                    Next j 
 
                    For j = 1 To T2Stop(i) - 2880 
                        x = Queue_List_CBuild(CYard_List(i), j) + x 
                    Next j 
                End If 
 
            Loop 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
            If T2Stop(i) < 2880 Then 
                For j = T2Start(i) To T2Stop(i) 
                    Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
            Else 
                For j = T2Start(i) To 2880 
                    Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
 
                For j = 1 To T2Stop(i) - 2880 
                   Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i) 
                Next j 
            End If 
 
            CYard_Build_Time_List(i) = (T2Start(i)) / 2880 
 
        End If 
     End If 
    Next i 
     
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
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        Sheets("Queue Times").Select 
 
    For i = 1 To NumYards 
        x = (i - 1) * 2880 
        For j = 1 To 2880 
 
            Cells(1 + j + x, 5) = Queue_List_CBuild(i, j) 
 
        Next j 
    Next i 
 
        Sheets("O-D Matrices").Select 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
        T2New(i) = (T2Start(i) / 2880) 
    Next i 
         
Call Train_Sort(CYard_Train_List, CYard_Priority_List, CYard_List, T2New) 
 
    For i = 1 To NumTrains 
        If T2New(i) <> 0 Then Cells(i + 2, 26 + 26) = T2New(i) 
    Next i 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub Recalulate_DYard_Arrivals() 
Application.ScreenUpdating = False 
 
For TrainNumber = 1 To NumTrains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get CYARD build time 
    If Cells(TrainNumber + 2, 26 + 26).Value = "" Then 
        TC(TrainNumber) = 0 
    Else 
        TC(TrainNumber) = Cells(TrainNumber + 2, 26 + 26).Value ' start time period for collection of cars at 
CYARD ONLY 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get CYard 
    If Cells(TrainNumber + 2, 26 + 6).Value = "" Then 
        CYard = 0 
    Else 
        CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' Recalculate CYard and DYard Arrival Times 
    If CYard > 0 Then 
        T2(TrainNumber) = TC(TrainNumber) + ServiceTime(CYard) / 2 + TrainTime2(TrainNumber) ' overall travel 
and service time for each train 
         
        If T2(TrainNumber) > 1 Then 
            Cells(TrainNumber + 2, 26 + 27) = T2(TrainNumber) - 1 
            Cells(TrainNumber + 2, 26 + 27).Interior.Color = 65535 
            Cells(TrainNumber + 2, 26 + 27).Font.Color = -16776961 
        Else 
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            Cells(TrainNumber + 2, 26 + 27) = T2(TrainNumber) 
        End If 
         
    End If 
     
Next TrainNumber 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub New_DYard_Times() 
Application.ScreenUpdating = True 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
ReDim T3Start(1 To NumTrains) 
ReDim T3Stop(1 To NumTrains) 
 
ReDim T3New(1 To NumTrains) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Sheets("O-D Matrices").Select 
 
    For i = 1 To NumTrains 
        DYard_Train_List(i) = Cells(2 + i, 26 + 3).Value 
        DYard_List(i) = Cells(2 + i, 26 + 7).Value 
        DYard_Build_Time_List(i) = Cells(2 + i, 26 + 27).Value 
        DYard_Priority_List(i) = Cells(2 + i, 26 + 20).Value 
    Next i 
 
Call Time_Sort(DYard_Build_Time_List, DYard_Train_List, DYard_Priority_List, DYard_List) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'Priority Trains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
     If DYard_Priority_List(i) = 1 Then 
      
        T3Start(i) = Round(DYard_Build_Time_List(i) * 2880, 0) 
        T3Stop(i) = Round((DYard_Build_Time_List(i) + TrainSwitchTime(DYard_List(i))) * 2880, 0) ' assumed that 
DYard operations (Switching are constant per train) 
            If T3Start(i) = 0 Then 
                T3Start(i) = 1 
                T3Stop(i) = T3Stop(i) + 1 
            End If 
             
' check if T3Stop(i) goes into next day. 
        x = 0 
 
        If T3Stop(i) < 2880 Then 
            For j = T3Start(i) To T3Stop(i) 
                x = Queue_List_DSwitch(DYard_List(i), j) + x 
            Next j 
        Else 
            For j = T3Start(i) To 2880 
                x = Queue_List_DSwitch(DYard_List(i), j) + x 
            Next j 
 
            For j = 1 To T3Stop(i) - 2880 
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                x = Queue_List_DSwitch(DYard_List(i), j) + x 
            Next j 
        End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        If x = 0 Then 
            If T3Stop(i) < 2880 Then 
                For j = T3Start(i) To T3Stop(i) 
                    Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
            Else 
                For j = T3Start(i) To 2880 
                    Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
 
                For j = 1 To T3Stop(i) - 2880 
                   Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
            End If 
 
        Else 
 
            Do Until x = 0 
 
                x = 0 
                T3Start(i) = T3Start(i) + 1 
                T3Stop(i) = T3Stop(i) + 1 
 
                If T3Stop(i) < 2880 Then 
                    For j = T3Start(i) To T3Stop(i) 
                        x = Queue_List_DSwitch(DYard_List(i), j) + x 
                    Next j 
                Else 
                    For j = T3Start(i) To 2880 
                        x = Queue_List_DSwitch(DYard_List(i), j) + x 
                    Next j 
 
                    For j = 1 To T3Stop(i) - 2880 
                        x = Queue_List_DSwitch(DYard_List(i), j) + x 
                    Next j 
                End If 
 
            Loop 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
            If T3Stop(i) < 2880 Then 
                For j = T3Start(i) To T3Stop(i) 
                    Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
            Else 
                For j = T3Start(i) To 2880 
                    Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
 
                For j = 1 To T3Stop(i) - 2880 
                   Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
            End If 
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            DYard_Build_Time_List(i) = (T3Start(i)) / 2880 
 
        End If 
     End If 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'Non - Priority Trains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
     If DYard_Priority_List(i) = 0 Then 
      
        T3Start(i) = Round(DYard_Build_Time_List(i) * 2880, 0) 
        T3Stop(i) = Round((DYard_Build_Time_List(i) + TrainSwitchTime(DYard_List(i))) * 2880, 0) ' assumed that 
DYard operations (Switching are constant per train) 
            If T3Start(i) = 0 Then 
                T3Start(i) = 1 
                T3Stop(i) = T3Stop(i) + 1 
            End If 
 
' check if T3Stop(i) goes into next day. 
        x = 0 
 
        If T3Stop(i) < 2880 Then 
            For j = T3Start(i) To T3Stop(i) 
                x = Queue_List_DSwitch(DYard_List(i), j) + x 
            Next j 
        Else 
            For j = T3Start(i) To 2880 
                x = Queue_List_DSwitch(DYard_List(i), j) + x 
            Next j 
 
            For j = 1 To T3Stop(i) - 2880 
                x = Queue_List_DSwitch(DYard_List(i), j) + x 
            Next j 
        End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        If x = 0 Then 
            If T3Stop(i) < 2880 Then 
                For j = T3Start(i) To T3Stop(i) 
                    Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
            Else 
                For j = T3Start(i) To 2880 
                    Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
 
                For j = 1 To T3Stop(i) - 2880 
                   Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
            End If 
 
        Else 
 
            Do Until x = 0 
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                x = 0 
                T3Start(i) = T3Start(i) + 1 
                T3Stop(i) = T3Stop(i) + 1 
 
                If T3Stop(i) < 2880 Then 
                    For j = T3Start(i) To T3Stop(i) 
                        x = Queue_List_DSwitch(DYard_List(i), j) + x 
                    Next j 
                Else 
                    For j = T3Start(i) To 2880 
                        x = Queue_List_DSwitch(DYard_List(i), j) + x 
                    Next j 
 
                    For j = 1 To T3Stop(i) - 2880 
                        x = Queue_List_DSwitch(DYard_List(i), j) + x 
                    Next j 
                End If 
 
            Loop 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
            If T3Stop(i) < 2880 Then 
                For j = T3Start(i) To T3Stop(i) 
                    Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
            Else 
                For j = T3Start(i) To 2880 
                    Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
 
                For j = 1 To T3Stop(i) - 2880 
                   Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i) 
                Next j 
            End If 
 
            DYard_Build_Time_List(i) = (T3Start(i)) / 2880 
 
        End If 
     End If 
    Next i 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Sheets("Queue Times").Select 
 
    For i = 1 To NumYards 
        x = (i - 1) * 2880 
        For j = 1 To 2880 
 
            Cells(1 + j + x, 6) = Queue_List_DSwitch(i, j) 
 
        Next j 
    Next i 
 
        Sheets("O-D Matrices").Select 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For i = 1 To NumTrains 
        T3New(i) = (T3Start(i) / 2880) 
    Next i 
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Call Train_Sort(DYard_Train_List, DYard_Priority_List, DYard_List, T3New) 
 
    For i = 1 To NumTrains 
        Cells(i + 2, 26 + 27) = T3New(i) 
    Next i 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub Time_Sort(list1() As Date, list2() As Long, list3() As Long, list4() As Long) 
Application.ScreenUpdating = False 
 
' Sorts array 
 
    Dim First As Integer, Last As Long 
    Dim i As Long, j As Long 
    Dim Temp1 
    Dim Temp2 
    Dim Temp3 
    Dim Temp4 
 
    First = LBound(list1) 
    Last = UBound(list1) 
    For i = First To Last - 1 
        For j = i + 1 To Last 
            If list1(i) > list1(j) Then 
                Temp1 = list1(j) 
                list1(j) = list1(i) 
                list1(i) = Temp1 
 
                Temp2 = list2(j) 
                list2(j) = list2(i) 
                list2(i) = Temp2 
 
                Temp3 = list3(j) 
                list3(j) = list3(i) 
                list3(i) = Temp3 
 
                Temp4 = list4(j) 
                list4(j) = list4(i) 
                list4(i) = Temp4 
            End If 
        Next j 
    Next i 
 
Application.ScreenUpdating = True 
End Sub 
 
Sub Train_Sort(list1() As Long, list2() As Long, list3() As Long, list4() As Date) 
Application.ScreenUpdating = False 
 
' Sorts array 
 
    Dim First As Integer, Last As Long 
    Dim i As Long, j As Long 
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    Dim Temp1 
    Dim Temp2 
    Dim Temp3 
    Dim Temp4 
     
    First = LBound(list1) 
    Last = UBound(list1) 
    For i = First To Last - 1 
        For j = i + 1 To Last 
            If list1(i) > list1(j) Then 
                Temp1 = list1(j) 
                list1(j) = list1(i) 
                list1(i) = Temp1 
                 
                Temp2 = list2(j) 
                list2(j) = list2(i) 
                list2(i) = Temp2 
                 
                Temp3 = list3(j) 
                list3(j) = list3(i) 
                list3(i) = Temp3 
                 
                Temp4 = list4(j) 
                list4(j) = list4(i) 
                list4(i) = Temp4 
            End If 
        Next j 
    Next i 
     
Application.ScreenUpdating = True 
End Sub 
 
 
Sub Adjust_Times_24() 
For TrainNumber = 1 To NumTrains 
    Cells(TrainNumber + 2, 26 + 22).Select 
    If Selection.Interior.Color = 65535 Then 
        ActiveCell = ActiveCell.Value + 1 
    End If 
Next TrainNumber 
 
For TrainNumber = 1 To NumTrains 
    Cells(TrainNumber + 2, 26 + 23).Select 
    If Selection.Interior.Color = 65535 Then 
        ActiveCell = ActiveCell.Value + 1 
    End If 
 
For TrainNumber = 1 To NumTrains 
    Cells(TrainNumber + 2, 26 + 26).Select 
    If Selection.Interior.Color = 65535 Then 
        ActiveCell = ActiveCell.Value + 1 
    End If 
Next TrainNumber 
 
For TrainNumber = 1 To NumTrains 
    Cells(TrainNumber + 2, 26 + 27).Select 
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    If Selection.Interior.Color = 65535 Then 
        ActiveCell = ActiveCell.Value + 1 
End If 
Next TrainNumber 
End Sub 
 
Sub Get_Shortest_Routes() 
 
    Dim OYard_Dist_List() As Long ' oyards 
    Dim DYard_Dist_List() As Long ' dyard 
    Dim Length_Dist_List() As Long ' dyard 
     
    Sheets("Routes").Select 
 
    ReDim Shortest_Yard_Dist(1 To NumYards, 1 To NumYards) 
    ReDim OYard_Dist_List(1 To NumRoutes) 
    ReDim DYard_Dist_List(1 To NumRoutes) 
    ReDim Length_Dist_List(1 To NumRoutes) 
     
    For i = 1 To NumRoutes 
        OYard_Dist_List(i) = Cells(2 + i, 3).Value 
        DYard_Dist_List(i) = Cells(2 + i, 4).Value 
        Length_Dist_List(i) = Cells(2 + i, 6).Value 
    Next i 
     
    For i = 1 To NumRoutes 
        If Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) = 0 Then 
            Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) = Length_Dist_List(i) 
        End If 
         
        If Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) <> 0 Then 
            If Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) > Length_Dist_List(i) Then 
                Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) = Length_Dist_List(i) 
            End If 
        End If 
    Next i 
     
    Range("List_of_Shortest_Paths").Select 
    For i = 1 To NumYards 
        For j = i To NumYards 
            ActiveCell.Offset(i, j) = Shortest_Yard_Dist(i, j) 
            ActiveCell.Offset(j, i) = Shortest_Yard_Dist(j, i) 
        Next j 
    Next i 
     
End Sub 
 

Module 4 
Public Shortest_Yard_Dist() As Long ' shortest distances between yards - based on routes provided by user 
 
Sub Assign_Blocks() 
Application.ScreenUpdating = False 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' GET SHORTEST ROUTES 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 



A5-186 

 

    Call Get_Shortest_Routes 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' GET BLOCKS SETUP 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Sheets("O-D Matrices").Select 
     
    For j = 1 To NumYards 
        For k = 1 To NumYards 
            If Cells(k + 3, 3).Value <= NumBlocks(j) Then 
                    Blocks(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 3).Value 
                    Blocks_Pure_Mixed(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 4).Value 
            End If 
        Next k 
    Next j 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' ASSIGN DIRECT BLOCKS (Pure) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
 
    For TrainNumber = 1 To NumTrains         
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' Get OYard, CYard, and DYard 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        If Cells(TrainNumber + 2, 26 + 5).Value = "" Then 
            MsgBox "You have not chosen an origin yard for train number" & TrainNumber & "." 
            Exit Sub 
        Else 
            OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin) 
        End If 
         
         
        If Cells(TrainNumber + 2, 26 + 6).Value = "" Then 
            CYard = 0 
        Else 
            CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection) 
        End If 
 
         
        If Cells(TrainNumber + 2, 26 + 7).Value = "" Then 
            MsgBox "You have not chosen a destination yard for train number" & TrainNumber & "." 
            Exit Sub 
        Else 
            DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination) 
        End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' Pure Blocks Direct Assignment Only 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        Cells(TrainNumber + 2, 26 + 13).Select 
             
            Do While ActiveCell <> "" 
                ActiveCell.Offset(0, 1).Select 
            Loop 
             
            If ActiveCell = "" Then 
                If Blocks_Pure_Mixed(OYard, DYard) = 1 Then 
                    ActiveCell.Value = Blocks(OYard, DYard) 
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                    If Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = "" Then 
                        Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = TrainNumber 
                    Else 
                        Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = Cells(3 + (3 + NumYards) * (OYard - 1) + 
DYard, 5).Value & ", " & TrainNumber 
                    End If 
                 
                End If 
            End If 
         
        Cells(TrainNumber + 2, 26 + 13).Select 
                 
            Do While ActiveCell <> "" 
                ActiveCell.Offset(0, 1).Select 
            Loop 
             
            If ActiveCell = "" Then 
                If CYard > 0 Then 
                    If Blocks_Pure_Mixed(CYard, DYard) = 1 Then 
                        ActiveCell.Value = Blocks(CYard, DYard) 
                        Selection.Font.Color = -16776961 
                        Selection.Interior.Color = 65535 
                         
                        If CYard > 0 Then 
                            If Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = "" Then 
                                Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = TrainNumber 
                            Else 
                                Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = Cells(3 + (3 + NumYards) * (CYard - 1) 
+ DYard, 5).Value & ", " & TrainNumber 
                            End If 
                        End If 
                     
                    End If 
                End If 
            End If 
 
    Next TrainNumber 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' ASSIGN DIRECT BLOCKS (Impure) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    For TrainNumber = 1 To NumTrains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' Get OYard, CYard, and DYard 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin) 
         
        If Cells(TrainNumber + 2, 26 + 6).Value = "" Then 
            CYard = 0 
        Else 
            CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection) 
        End If 
 
        DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination)  
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'Impure Blocks Direct Assignment Only 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
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        Cells(TrainNumber + 2, 26 + 13).Select 
             
            Do While ActiveCell <> "" 
                ActiveCell.Offset(0, 1).Select 
            Loop 
             
            If ActiveCell = "" Then 
                If Blocks_Pure_Mixed(OYard, DYard) = 0 Then 
                    ActiveCell.Value = Blocks(OYard, DYard) 
                     
                    If Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = "" Then 
                        Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = TrainNumber 
                    Else 
                        Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = Cells(3 + (3 + NumYards) * (OYard - 1) + 
DYard, 5).Value & ", " & TrainNumber 
                    End If 
                 
                End If 
            End If 
         
        Cells(TrainNumber + 2, 26 + 13).Select 
                 
            Do While ActiveCell <> "" 
                ActiveCell.Offset(0, 1).Select 
            Loop 
             
            If ActiveCell = "" Then 
                If CYard > 0 Then 
                    If Blocks_Pure_Mixed(CYard, DYard) = 0 Then 
                        ActiveCell.Value = Blocks(CYard, DYard) 
                        Selection.Font.Color = -16776961 
                        Selection.Interior.Color = 65535 
                         
                        If CYard > 0 Then 
                            If Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = "" Then 
                                Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = TrainNumber 
                            Else 
                                Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = Cells(3 + (3 + NumYards) * (CYard - 1) 
+ DYard, 5).Value & ", " & TrainNumber 
                            End If 
                        End If 
                     
                    End If 
                End If 
            End If 
 
    Next TrainNumber 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'Unassigned - BLOCKS ASSIGNMENT (Pure/Impure) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Dim Train_Assignment_List() As Long 
    Dim OYard_Assignment_List() As Long 
    Dim CYard_Assignment_List() As Long 
    Dim DYard_Assignment_List() As Long 
    Dim x As Long, y As Long, z As Long 
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    Dim Blocks_Assigned() As String 
     
    ReDim Blocks_Assigned(1 To NumYards, 1 To NumYards) 
     
    ReDim Train_Assignment_List(1 To NumTrains) 
    ReDim OYard_Assignment_List(1 To NumTrains) 
    ReDim CYard_Assignment_List(1 To NumTrains) 
    ReDim DYard_Assignment_List(1 To NumTrains) 
 
    For TrainNumber = 1 To NumTrains 
 
        Train_Assignment_List(TrainNumber) = Cells(TrainNumber + 2, 26 + 3).Value ' yard number (Origin) 
 
        OYard_Assignment_List(TrainNumber) = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin) 
 
        If Cells(TrainNumber + 2, 26 + 6).Value = "" Then 
            CYard_Assignment_List(TrainNumber) = 0 
        Else 
            CYard_Assignment_List(TrainNumber) = Cells(TrainNumber + 2, 26 + 6).Value ' yard number 
(Connection) 
        End If 
 
        DYard_Assignment_List(TrainNumber) = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination) 
         
    Next TrainNumber 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''     
    For j = 1 To NumYards 
        For k = 1 To NumYards 
            If Cells(k + 3, 3).Value <= NumBlocks(j) Then 
                    Blocks_Assigned(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 5).Value 
            End If 
        Next k 
    Next j 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
For j = 1 To NumYards 
        For k = 1 To NumYards 
            If j <> k Then 
                If Blocks_Assigned(j, k) = "" Then 
                     
                    x = 0 
                     
                    For TrainNumber = 1 To NumTrains 
                        If x = 0 And OYard_Assignment_List(TrainNumber) = j Then 
                             
                            ' Shortest_Yard_Dist(x,x) 
                             
                            If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) < Shortest_Yard_Dist(j, k) Then 
                                y = Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) - Shortest_Yard_Dist(j, k) 
                            End If 
                                x = TrainNumber ' assign first available trin no matter where it is going 
                        ElseIf x <> 0 And OYard_Assignment_List(TrainNumber) = j Then 
                         
                            If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) < Shortest_Yard_Dist(j, k) Then 
                                z = Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) - Shortest_Yard_Dist(j, k) 
                            End If 
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                            ''''' assign new train only when it is more sensible to do so (eg the train is going 
                            ''''' towards but not passing the dyard and is the closest to the dyard) 
                            If y < z Then 
                                x = TrainNumber 
                                y = z 
                            End If 
                        End If 
                    Next TrainNumber  
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
                    For TrainNumber = 1 To NumTrains 
                        If x = 0 And OYard_Assignment_List(TrainNumber) = j Then 
                             
                            ' Shortest_Yard_Dist(x,x) 
                             
                            If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) > Shortest_Yard_Dist(j, k) Then 
                                y = Shortest_Yard_Dist(j, k) - Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) 
                            End If 
                                x = TrainNumber ' assign first available trin no matter where it is going 
                        ElseIf x <> 0 And OYard_Assignment_List(TrainNumber) = j Then 
                         
                            If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) > Shortest_Yard_Dist(j, k) Then 
                                z = Shortest_Yard_Dist(j, k) - Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) 
                            End If 
                             
                            ''''' assign new train only when it is more sensible to do so (eg the train is going 
                            ''''' towards but not passing the dyard and is the closest to the dyard) 
                            If y < z Then 
                                x = TrainNumber 
                                y = z 
                            End If 
                        End If 
                    Next TrainNumber 
                '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
                ' cyard trains only if no oyard trains are available 
                '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
                    For TrainNumber = 1 To NumTrains 
                        If x = 0 And CYard_Assignment_List(TrainNumber) = j Then 
                             
                            ' Shortest_Yard_Dist(x,x) 
                             
                            If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) < Shortest_Yard_Dist(j, k) Then 
                                y = Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) - Shortest_Yard_Dist(j, k) 
                            End If 
                                x = TrainNumber ' assign first available trin no matter where it is going 
                        ElseIf x <> 0 And CYard_Assignment_List(TrainNumber) = j Then 
                         
                            If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) < Shortest_Yard_Dist(j, k) Then 
                                z = Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) - Shortest_Yard_Dist(j, k) 
                            End If 
                             
                            ''''' assign new train only when it is more sensible to do so (eg the train is going 
                            ''''' towards but not passing the dyard and is the closest to the dyard) 
                            If y < z Then 
                                x = TrainNumber 
                                y = z 
                            End If 
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                        End If 
                    Next TrainNumber 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
                    For TrainNumber = 1 To NumTrains 
                        If x = 0 And CYard_Assignment_List(TrainNumber) = j Then 
                             
                            ' Shortest_Yard_Dist(x,x) 
                             
                            If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) > Shortest_Yard_Dist(j, k) Then 
                                y = Shortest_Yard_Dist(j, k) - Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) 
                            End If 
                                x = TrainNumber ' assign first available trin no matter where it is going 
                        ElseIf x <> 0 And CYard_Assignment_List(TrainNumber) = j Then 
                         
                            If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) > Shortest_Yard_Dist(j, k) Then 
                                z = Shortest_Yard_Dist(j, k) - Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) 
                            End If 
                             
                            ''''' assign new train only when it is more sensible to do so (eg the train is going 
                            ''''' towards but not passing the dyard and is the closest to the dyard) 
                            If y < z Then 
                                x = TrainNumber 
                                y = z 
                            End If 
                        End If 
                    Next TrainNumber 
                '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
                ' print data onto spreadsheet 
                '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
                Cells(x + 2, 26 + 13).Select 
                     
                    Do While ActiveCell > 0 
                        ActiveCell.Offset(0, 1).Select 
                    Loop 
                 
                    If ActiveCell = "" Then 
                    If x <> 0 Then 
                        If OYard_Assignment_List(x) = j Then 
                            ActiveCell.Value = Blocks(j, k) 
                             
                            If Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = "" Then 
                                Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = x 
                            Else 
                                Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = Cells(3 + (3 + NumYards) * (j - 1) + k, 5).Value & 
", " & x 
                            End If 
                        End If 
                    End If 
                    End If 
                 
                    If ActiveCell = "" Then 
                    If x <> 0 Then 
                        If CYard_Assignment_List(x) = j Then 
                            ActiveCell.Value = Blocks(j, k) 
                            Selection.Font.Color = -16776961 
                            Selection.Interior.Color = 65535 
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                            If CYard > 0 Then 
                                If Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = "" Then 
                                    Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = x 
                                Else 
                                    Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = Cells(3 + (3 + NumYards) * (j - 1) + k, 5).Value 
& ", " & x 
                                End If 
                            End If 
                        End If 
                    End If 
                    End If 
                End If 
            End If 
        Next k 
    Next j 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' Assure that Each Impure and Indirect Block is Assigned to the Same Train(s) - ELSE ALERT USER 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    ReDim Blocks_Assigned(1 To NumYards, 1 To NumYards) 
     
    For j = 1 To NumYards 
        For k = 1 To NumYards 
            If Cells(k + 3, 3).Value <= NumBlocks(j) Then 
                    Blocks(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 3).Value 
                    Blocks_Pure_Mixed(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 4).Value 
                    Blocks_Assigned(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 5).Value 
                Else 
                    Blocks(j, k) = 0 
                    Blocks_Pure_Mixed(j, k) = 0 
                    Blocks_Assigned(j, k) = 0 
            End If 
        Next k 
    Next j 
     
    For i = 1 To NumYards 
        For j = 1 To NumYards 
            For k = 1 To NumYards 
                If j <> k Then 
                    If Blocks_Pure_Mixed(i, j) = 0 And Blocks_Pure_Mixed(i, k) = 0 Then 
                        If Blocks(i, j) = Blocks(i, k) Then 
                            If Blocks_Assigned(i, j) <> Blocks_Assigned(i, k) Then 
                                 
                                If Blocks_Assigned(i, j) = "" And Blocks_Assigned(i, k) <> "" Then 
                                    Cells(3 + (3 + NumYards) * (i - 1) + j, 5).Value = Cells(3 + (3 + NumYards) * (i - 1) + k, 
5).Value 
                                End If 
                                 
                                If Blocks_Assigned(i, j) <> "" And Blocks_Assigned(i, k) = "" Then 
                                    Cells(3 + (3 + NumYards) * (i - 1) + k, 5).Value = Cells(3 + (3 + NumYards) * (i - 1) + j, 
5).Value 
                                End If 
                                 
                                If Blocks_Assigned(i, j) <> "" And Blocks_Assigned(i, k) <> "" And Blocks_Assigned(i, j) <> 
Blocks_Assigned(i, k) Then 
                                    Cells(3 + (3 + NumYards) * (i - 1) + j, 5).Select 
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                                        Selection.Interior.ThemeColor = xlThemeColorLight2 
                                        Selection.Font.ThemeColor = xlThemeColorDark1 
                                        Selection.Font.Bold = True 
                                        Selection.Font.Size = 16 
                                     
                                    Cells(3 + (3 + NumYards) * (i - 1) + k, 5).Select 
                                        Selection.Interior.ThemeColor = xlThemeColorLight2 
                                        Selection.Font.ThemeColor = xlThemeColorDark1 
                                        Selection.Font.Bold = True 
                                        Selection.Font.Size = 16 
                                     
                                End If 
                            End If 
                        End If 
                    End If 
                End If 
            Next k 
        Next j 
   Next i 
        
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' Assure that only only OD is to each train - ELSE ALERT USER 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Call TEST_SAME_TRAIN 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
Application.ScreenUpdating = True 
End Sub 
 
Sub TEST_SAME_TRAIN() 
    Dim saad_1() As Long 
    Dim saad_2() As Long 
    Dim saad_3() As Long 
     
    ReDim saad_1(1 To NumTrains) 
    ReDim saad_2(1 To NumTrains) 
    ReDim saad_3(1 To NumTrains) 
     
    For i = 1 To NumTrains 
         
        saad_1(i) = Cells(i + 2, 26 + 5) 
        saad_2(i) = Cells(i + 2, 26 + 6) 
        saad_3(i) = Cells(i + 2, 26 + 7) 
         
    Next i 
     
    For i = 1 To NumTrains 
        For j = 1 To NumTrains 
         
            If i <> j Then 
                If saad_1(i) = saad_1(j) And saad_2(i) = saad_2(j) And saad_3(i) = saad_3(j) Then 
                    Cells(i + 2, 26 + 5).Font.Bold = True 
                    Cells(i + 2, 26 + 6).Font.Bold = True 
                    Cells(i + 2, 26 + 7).Font.Bold = True 
                     
                    Cells(i + 2, 26 + 5).Interior.Color = 65535 
                    Cells(i + 2, 26 + 6).Interior.Color = 65535 
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                    Cells(i + 2, 26 + 7).Interior.Color = 65535 
                End If 
            End If 
             
        Next j 
    Next i 
     
End Sub 
 

Module 5 
Sub Train_Call_Run_XX() 
Application.ScreenUpdating = False 
    For TrainNumber = 1 To NumTrains 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get OYard 
    If Cells(TrainNumber + 2, 26 + 5).Value = "" Then 
        MsgBox "You have not chosen an origin yard" 
        Exit Sub 
    Else 
        OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get CYard 
    If Cells(TrainNumber + 2, 26 + 6).Value = "" Then 
        CYard = 0 
    Else 
        CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
' get DYard 
    If Cells(TrainNumber + 2, 26 + 7).Value = "" Then 
        MsgBox "You have not chosen a destination yard" 
        Exit Sub 
    Else 
        DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination) 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    T1(TrainNumber) = Cells(TrainNumber + 2, 26 + 25).Value 
    TC(TrainNumber) = Cells(TrainNumber + 2, 26 + 26).Value 
    T2(TrainNumber) = Cells(TrainNumber + 2, 26 + 27).Value 
 
    Call TrainTimes_XX(TrainNumber, OYard, CYard, DYard, T1(TrainNumber), TC(TrainNumber), 
T2(TrainNumber)) 
     
    Next TrainNumber 
     
Application.ScreenUpdating = True 
End Sub 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
Sub TrainTimes_XX(TrainNumber, OYard, CYard, DYard, TSub1, TSubC, TSub2) 
Application.ScreenUpdating = False 
     
    T1(TrainNumber) = TSub1 
    TC(TrainNumber) = TSubC 
    T2(TrainNumber) = TSub2 
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    Call ReCreateODArray 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Check Minimum Train Size 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber) 
     
    If T1(TrainNumber) > #11:59:00 PM# Then TX1(TrainNumber) = 6 ' assumed that only cars from today can be 
carried on any given train 
    If T1(TrainNumber) <= #11:59:00 PM# Then TX1(TrainNumber) = 6 
    If T1(TrainNumber) <= #8:00:00 PM# Then TX1(TrainNumber) = 5 
    If T1(TrainNumber) <= #4:00:00 PM# Then TX1(TrainNumber) = 4 
    If T1(TrainNumber) <= #12:00:00 PM# Then TX1(TrainNumber) = 3 
    If T1(TrainNumber) <= #8:00:00 AM# Then TX1(TrainNumber) = 2 
    If T1(TrainNumber) <= #4:00:00 AM# Then TX1(TrainNumber) = 1 
         
    Cells(TrainNumber + 2, 26 + 13).Select 
        For i = 1 To NumYards 
            If Selection.Font.ColorIndex = xlAutomatic Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
            If x > 0 And x <= NumYards Then 
                    For j = 1 To NumYards 
                If x = Blocks(OYard, j) Then 
                    For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from 
                        Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(OYard, j, k) 
                    Next k 
                End If 
                    Next j 
            End If 
            ActiveCell.Offset(0, 1).Select 
        Next i 
 
    Cells(TrainNumber + 2, 26 + 13).Select 
        For i = 1 To NumYards 
            If Selection.Font.ColorIndex = xlAutomatic Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
            If x > 0 And x <= NumYards Then 
                    For j = 1 To NumYards 
                If x = Blocks(OYard, j) Then 
                    For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from 
                        Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(OYard, j, k) 
                    Next k 
                End If 
                    Next j 
            End If 
            ActiveCell.Offset(0, 1).Select 
        Next i 
 
    If CYard = 0 Then 
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        CYard = 0 
         
    Else 
 
' because the train gets to CYard after some time, therefore additional cars may be picked up 
     
        If TC(TrainNumber) > #11:59:00 PM# Then TXC1(TrainNumber) = 6 ' because cars on any train can only be 
picked up from the day of the OD Demand (Assumed) 
        If TC(TrainNumber) <= #11:59:00 PM# Then TXC1(TrainNumber) = 6 
        If TC(TrainNumber) <= #8:00:00 PM# Then TXC1(TrainNumber) = 5 
        If TC(TrainNumber) <= #4:00:00 PM# Then TXC1(TrainNumber) = 4 
        If TC(TrainNumber) <= #12:00:00 PM# Then TXC1(TrainNumber) = 3 
        If TC(TrainNumber) <= #8:00:00 AM# Then TXC1(TrainNumber) = 2 
        If TC(TrainNumber) <= #4:00:00 AM# Then TXC1(TrainNumber) = 1 
         
        Cells(TrainNumber + 2, 26 + 13).Select 
            For i = 1 To NumYards 
            If Selection.Interior.Color = 65535 Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
                If x > 0 And x <= NumYards Then 
                        For j = 1 To NumYards 
                    If x = Blocks(CYard, j) Then 
                        For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from 
                            Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(CYard, j, k) 
                        Next k 
                    End If 
                        Next j 
                End If 
                ActiveCell.Offset(0, 1).Select 
            Next i 
 
        Cells(TrainNumber + 2, 26 + 13).Select 
            For i = 1 To NumYards 
            If Selection.Interior.Color = 65535 Then 
                x = ActiveCell.Value 
            Else 
                x = 0 
            End If 
                If x > 0 And x <= NumYards Then 
                        For j = 1 To NumYards 
                    If x = Blocks(CYard, j) Then 
                        For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from 
                            Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(CYard, j, k) 
                        Next k 
                    End If 
                        Next j 
                End If 
                ActiveCell.Offset(0, 1).Select 
            Next i 
 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If Trains(TrainNumber) < MinSize Then 
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        Smalltrain = 1 
        GoTo TrainIsTooSmall 
    End If 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    TrainSwitchTime(TrainNumber) = Trains(TrainNumber) * SwitchingTime(DYard) + 
SwitchingPrepTime(DYard) 
     
    Cells(TrainNumber + 2, 26 + 24) = TrainSwitchTime(TrainNumber) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) > #11:59:00 PM# Then TX2(TrainNumber) = 7 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #11:59:00 PM# Then TX2(TrainNumber) = 6 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 PM# Then TX2(TrainNumber) = 5 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 PM# Then TX2(TrainNumber) = 4 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #12:00:00 PM# Then TX2(TrainNumber) = 3 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 AM# Then TX2(TrainNumber) = 2 
    If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 AM# Then TX2(TrainNumber) = 1 
     
        Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber) 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'   Error messages for trains which are too small or large 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
TrainIsTooSmall: 
    If Smalltrain = 1 Then 
        MsgBox ("Train(" & TrainNumber & ") does not have enough cars, and thus it will not" & _ 
            " run. This train only has " & Trains(TrainNumber) & " cars.") 
        Smalltrain = 0 
        Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber) 
        Exit Sub 
    End If 
 
Application.ScreenUpdating = True 
End Sub 
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