

DEVELOPMENT OF SIMULATION MODEL FOR EVALUATING

OPERATIONAL PERFORMANCE OF RAILROAD NETWORKS

by

Saad Syed

Bachelor of Engineering, Ryerson University, Toronto, 2008

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Civil Engineering

Toronto, Ontario, Canada, 2011

© Saad Syed 2011

ii

DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

Saad Syed

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Saad Syed

iii

Development of Simulation Model for Evaluating

Operational Performance of Railroad Networks

By

Saad Syed

Master of Applied Science in Civil Engineering, 2011

Department of Civil Engineering, Ryerson University

ABSTRACT

Railroads move freight traffic on their network based on an overall operations plan that includes

blocking, train formation, and train scheduling plans. The optimization of these operations over

the entire network is integral to maximizing efficiency and minimizing costs. This thesis

develops a simulation model for analyzing various operation plans of a railroad network along

with guidelines for establishing a comprehensive operations plan. The objective is to move all

freight on the network with minimal cost. With the model simulation and comparison of several

operation plans can be performed to determine the ‘best case’ plan. The model implements a

discrete state, deterministic simulation approach. The user-friendly software for implementation

of the model was programmed in VBA and Excel. Application of the model is demonstrated

using a hypothetical railroad network. The results show that the model is an effective tool in

evaluating various scenarios and helping in determining the best plan.

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Said Easa, for his guidance and support in developing

this thesis. I would also like to thank the other members of the examining committee, Dr.

Bhagwant Persaud and Dr. Kaamran Raahemifar for taking the time to review the thesis, as well

as Dr. Ahmed El-Rabbany for chairing the examination.

I am grateful to Mr. Paul Kerry, Mr. Ray Dai, and Mr. Marc Waver of Canadian Pacific Railway

for providing me with their thoughts, experience and details about railroads during my research. I

would also like to express my gratitude to Miss Raji Sextus and Mr. Bernard James for their

thoughts and comments on my thesis document.

In addition, I would like to thank the Transport Association of Canada for awarding me their

Foundation Scholarship and a Discovery Grant from the Natural Sciences and Engineering

Research Council of Canada for the partial funding of my research.

v

DEDICATION

I would like to dedicate this thesis to my parents, grandparents, and siblings.

vi

TABLE OF CONTENTS

Declaration .. ii

Abstract .. iii

Acknowledgements .. iv

Dedication ... v

List of Tables ... xi

List of Figures .. xiii

1. INTRODUCTION ... 1

1.1. Background ... 1

1.2. Problem Statement .. 5

1.3. Objectives ... 6

1.4. Thesis Outline ... 8

2. LITERATURE REVIEW .. 11

2.1. General Freight Rail Information.. 11

2.1.1. Freight Rail Transportation .. 11

2.1.2. Freight Reliability and Flexibility .. 13

2.1.3. Train Dispatching ... 17

2.2. Capacity of Railroad Networks ... 18

2.2.1. Rail Network Operations and Modeling .. 18

2.2.2. Rail Network Planning .. 22

2.3. Classification Yards .. 24

2.3.1. Flat Yards .. 24

vii

2.3.2. Hump Yards .. 27

2.3.3. Typical Rail Yard Operations .. 28

2.3.4. Modelling Classification Yards ... 30

2.4. Classification Methods.. 36

2.4.1. First In First Out Method.. 37

2.4.2. Priority Based Method ... 38

2.4.3. Terminal Operations Optimization .. 42

2.5. Integration of Yard Operations and Main Line Operations .. 42

2.6. Summary ... 44

3. RAILROAD NETWORK SYSTEMS ... 45

3.1. Railroad Network Models ... 46

3.1.1. Mathematical Optimization Models .. 46

3.1.2. Simulation Models ... 47

3.1.3. Comparison of Models ... 48

3.2. Classification Yards and Yard Operations .. 48

3.2.1. Individual Yard Capacity ... 50

3.2.2. System Effects on Yard Capacity .. 50

3.3. Mainline (Linehaul) Operations .. 51

3.3.1. Origin-Destination Travel Demands ... 52

3.3.2. Train Composition (Pull lists) ... 52

3.3.3. Train Routing .. 53

3.4. Network Element Interactions .. 53

3.4.1. System Elements .. 55

viii

3.4.2. External Elements .. 55

3.5. Typical Model Components .. 56

3.5.1. Model Constraints .. 56

3.5.2. Model Objective Function(s) .. 57

3.5.3. Model Input Data ... 59

3.5.4. Model Output Data .. 61

3.5.5. Existing Routing Methods .. 62

3.6. Summary ... 63

4. MODEL DEVELOPMENT .. 65

4.1. Model and Guidelines Overview .. 65

4.2. Model Data Inputs... 67

4.2.1. Example Network ... 68

4.2.2. Network Data ... 68

4.2.3. Yard Data .. 71

4.2.4. Route Data ... 72

4.2.5. Origin-Destination Traffic Data .. 73

4.2.6. Blocking Plan Data ... 73

4.3. Guidelines for Train Scheduling ... 75

4.3.1. Train Schedules in the Model .. 78

4.4. Proposed Block Assignment Method.. 80

4.4.1. Block to Train Assignment in the Model .. 80

4.5. Proposed Train Routing Method ... 84

4.6. Model Outputs .. 88

ix

4.6.1. O-D Tables .. 88

4.6.2. Train Statistics .. 89

4.6.3. Yard Queue Determination .. 93

4.6.4. Yard Statistics ... 95

4.7. Analysis of Model Results .. 97

4.8. Model Capabilities .. 100

4.9. Model Limitations ... 101

4.10. Summary ... 102

5. MODEL VERIFICATION AND APPLICATION ... 104

5.1. Model Verification .. 104

5.1.1. Data Inputs ... 104

5.1.2. Outputs .. 107

5.1.3. Model Verification Summary ... 107

5.2. Model Application: Single Plan .. 109

5.2.1. Initial Process and Model Setup .. 110

5.2.2. User Intervention and Subsequent Iterations ... 115

5.2.3. Results and Analysis ... 115

5.3. Model Application: Multiple Plans ... 120

5.4. Summary ... 121

6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 122

6.1. Summary ... 122

6.2. Conclusions ... 123

6.3. Recommendations ... 124

x

REFERENCES ... 126

Appendix 1 – List of Definitions and Abbreviations .. 131

Appendix 2 – Data Inputs for Example Model Application ... 134

Appendix 3 – Model Application Results – First Iteration ... 138

Appendix 4 – Model Application Results – Final Iteration .. 144

Appendix 5 – Software Code .. 148

xi

LIST OF TABLES

Table 2.1 Cost and Effect of Freight Rail Capital Investments (AASHTO, 2009) 13

Table 2.2 Car Cycle Times From Kwon et al (1995).. 14

Table 2.3 Trip Time and Reliability Performance of Different Trains (Kwon et al. 1995) 15

Table 4.1 Example of Network Inputs .. 70

Table 4.2 Example of Yard Data Inputs .. 72

Table 4.3 Example of Route Inputs .. 74

Table 4.4 Example O-D Table for Daily Operations ... 74

Table 4.5 Example O-D Table for Weekly Operations ... 74

Table 4.6 Example of Blocking Plan ... 75

Table 4.7 Example of Train Schedule Input ... 79

Table 4.8 Example of Block to Train Assignments ... 84

Table 4.9 Example of Train Schedule Input ... 87

Table 4.10 Example Preliminary O-D Table ... 87

Table 4.11 Example Final O-D Table .. 87

Table 4.12 Example Post Simulation O-D Table ... 89

Table 4.13 Example of Train Statistics ... 94

Table 4.14 Example of Yard Statistics .. 96

Table 4.15 Example of Queuing at Yards ... 96

Table 4.16 Analysis Table ... 99

Table 5.1 Yard Inputs Settings (Model Verification) .. 105

xii

Table 5.2 Available Routes (Model Verification) ... 105

Table 5.3 Original O-D Tables (Model Verification) ... 106

Table 5.4 Train Schedule (Model Verification) .. 106

Table 5.5 Static Blocks Input (Model Verification)... 108

Table 5.6 Final O-D Tables (Model Verification) .. 108

Table 5.7 Yard Specific Outputs (Model Verification) .. 109

Table 5.8 Train Specific Outputs (Model Verification) ... 109

Table 5.9 Yard Data for Application ... 112

Table 5.10 Shortest Path Matrix .. 112

Table 5.11 Train Schedule (Model Application) ... 114

Table 5.12 Original O-D Table .. 117

Table 5.13 O-D Table – No User Intervention .. 117

Table 5.14 O-D Table – Post User Intervention ... 117

Table 5.15 Train Specific Results .. 118

Table 5.16 Yard Statistics ... 119

Table 5.17 Multiple Plan Assessment .. 120

xiii

LIST OF FIGURES

Figure 1.1 Overview of Thesis Structure .. 10

Figure 2.1 Flat Switching Diagram (Dirnberger J., 2006) ... 25

Figure 2.2 Kicking Cars Diagram (Dirnberger J., 2006)... 26

Figure 2.3 Typical Operations’ at a Classification Yard .. 28

Figure 2.4 Yard Processing Capacity VS Train Length (Kraft, 2002d) ... 33

Figure 2.5 Dwell Time VS Block Departures (Kraft, 2002d) ... 34

Figure 2.6 Dwell time VS Processing Capacity (Kraft, 2002d) .. 34

Figure 2.7 Three Links in Series (Kraft, 1998) .. 44

Figure 2.8 Three Links in Parallel (Kraft, 1998) .. 44

Figure 3.1 Example Network Railroad – Martinelli and Teng (1995) ... 54

Figure 3.2 Train Itineraries for Physical Route (1, 2, 4, 6) – Martinelli and Teng (1995) 54

Figure 4.1 Model Overview Flowchart ... 66

Figure 4.2 Example Railroad Network Map (http://www.cpr.ca) ... 69

Figure 4.3 Example Network .. 69

Figure 4.4 Process for Train Scheduling ... 76

Figure 4.5 Step 1 - Assignment of Direct and Pure Blocks ... 81

Figure 4.6 Step 2 - Assignment of Direct and Impure Blocks ... 82

Figure 4.7 Step 3 - Assignment of Unassigned Blocks ... 83

Figure 5.1 Network Configuration for Verification of Model .. 105

Figure 5.2 Network Topology and Yard Location ... 112

1

1. INTRODUCTION

Railroads move freight from location to location using fixed tracks and long trains to maximize

economies of scale and efficiency. As can be expected, the overall costs of the infrastructure are

quite high, whereas, comparatively, the operational costs are relatively low. Though this is the

case, there is still always room for improvement in the efficiency and cost effectiveness of

railroad operations since this may reduce costly infrastructure investments.

Railroads operate with four (4) major operating plans in place. These include the blocking plan,

the train formation plan, the train schedule and the empty car distribution plan. This thesis is

focused on three (3) of the major operating plans, which include the blocking plan, the train

formation plan, and the train schedule. The blocking plan regulates the contents and the number

of blocks (set of cars) whereas the train formation plan regulates which blocks make up each

train and how, consequently, the traffic flows over the network. The train schedules and empty

car distribution plans are typically created after the fact and often do not affect blocking or

formation plans (Martinelli, 1996).

This thesis is focused on railroad operations and maximizing their efficiency by modeling and

analyzing railroad operations including blocking, train formation and scheduling. Ultimately, the

goal is to move all the freight on the network with the minimal costs averaged over the entire

operation.

1.1. Background

The cost efficient and reliable movement of goods has always been a challenge in the freight

industry. In terms of freight transportation there are a few major modes available for business in

2

the current market. In the United States of America, the American Association of State Highway

and Transportation Officials (AASHTO) has standing committees for five of the following

freight transportation modes: Standing Committee on Rail, Standing Committee on Water,

Standing Committee on Aviation, Subcommittee on Highway Transport, and Special Committee

on Intermodal Transportation and Economic Expansion. Additionally there is also the mode of

pipeline freight transportation, but that has a very limited application.

Rail transportation competes primarily with highway transportation (short haul and long haul

trucking) and marine transportation. The advantages of highway transportation which rail

transportation does not often have, include door to door service, high reliability, and more

economic short haul service (i.e. within a city).

Rail transportation is the movement of goods or people from point A to point B in trains which

travel along a set path on a railway track. A train consists of a locomotive, individual cargo or

passenger cars, and a caboose coupled together. The coupling process usually happens in rail

yards. When it comes to freight trains, these rail yards are called Classification Yards (discussed

in detail in Section 2.3).

A railroad network consists of railway tracks and various classification and intermodal yards.

Each train travelling along a section of track is travelling from yard to yard in order to reach its

final destination. Because a railway track is a fixed asset and trains may only travel in one of two

directions along the track and there is no way to magically route trains to specific addresses or

venues like one can with land based vehicles, it is very important for freight shippers (rail

companies) to transport merchandise as close as possible to where it must be picked up (origin)

3

and dropped off (destination). This is often completed via the customer dropping their cargo off

and picking it up at predetermined locations such as rail yards.

These yards are the hubs where railcars are directed or redirected after each leg of their journey

in order for a specific piece of freight to get from its origin to its destination. In this operation the

individual rail cars are often transferred from train to train in order to reach its final destination.

This is analogous to how passengers travel from airport to airport often having to switch planes

and depart on connecting flights to reach their final destinations (Liu, Ahuja, & Sahin, 2008).

Similar to how aircraft passengers must obtain their own transportation to and from the airport,

rail freight must also be transported to and from classification yards (or to specific pick up

points).

It is common knowledge that railcars spend the majority of their time during trips at intermediate

(between origin and destination) classification yards. This is because classification yards can

only handle a certain number of cars for any given period of time and rely heavily on the skills

and experience of their yardmasters (Innovative Scheduling, 2005). As such, it is important not

only to limit the number of yards a railcar travels through, but it is even more important to make

that rail yard more efficient and capable to handling higher loads.

A railway system consists of three essential elements (Pachl, 2002):

1. Infrastructure (tracks, signalling equipment, stations, and yards/terminals);

2. Rolling Stock (locomotives and cars); and

3. Operating rules and procedures.

The combination and the interaction of these three elements is what we know today as a railway

system. The study of one or all of these elements with a goal to improve the efficiency of the

4

system will bring us closer to realizing the most efficient use of rail systems. This thesis will

focus on operating rules and procedures.

A railway track is a structure which consists of parallel lines of rail which are held together by

railway ties (sleepers) resting on a crushed stone ballast which helps to diffuse the weight of the

above trains onto the subgrade below. The rails are often prefabricated in sections and tied

together with either bolted or welded rail joints or butt welds between the rails. The main

function of a rail is to provide a rigid surface and direction to the trains passing on the track

above. Due to the immense weight and the lengths of the trains the tracks must provide very

gradual horizontal and vertical adjustments throughout the length of the track. The rails also

provide a medium through which electric currents travel for signalling purposes (Mundrey,

2005).

Railway tracks and their respective right of ways are generally owned by railroads such as

Canadian Pacific Railway or Canadian National Railway. Since individual railroads own, operate

and maintain their own sets of track there is typically no direct government agency involvement

as there is in the maintenance of roads and highways. Passenger rail companies such as Via Rail

Canada and Amtrak often use the existing infrastructure provided by the freight shippers and

many times freight shippers use each other’s infrastructure in order to meet customer needs. This

is done through trackage rights agreements between the various corporations.

Rolling stock, as with tracks, are owned and operated by individual railroads and even individual

shippers. More rolling stock means more flexibility but more operating costs in labour,

maintenance, and storage. Operating rules and procedures vary between railroad corporations,

5

countries and continents all have various different rules and regulations which determine how

they will operate a railroad.

There are three principal factors that contribute to railroad freight transportation efficiency

(Dirnberger J. , 2006) and (Armstrong, 1990):

1. The low coefficient of friction between the steel wheel and rail means low rolling

resistance which allows locomotives to power not only themselves but also additional

loads in the form of cars;

2. A fixed guide-way for the movement of trains by a single operating crew such that the

restriction of moving freight in single vehicles was removed; and

3. Infrastructure strong enough to support heavy loads over vast geographic areas in order to

permit economies of scale.

The combination of these three factors allows railroads to spread throughout the country and

create a cost effective means to transport large amounts of freight over the surface. Using trains,

as opposed to single vehicles, to move goods along a fixed track is also very important in that it

minimizes the need for large right of ways which waste enormous amounts of real estate

(Armstrong, 1990).

1.2. Problem Statement

In order to be competitive in the freight transportation market, railroads need to maximize their

economies of scale in a way that will allow them to pass on savings to their customers. In

addition to cost, there are additional issues of reliability and flexibility which must also be

addressed by railroads. These issues must be addressed by railroads in their operating plans.

6

Operating plans are used to guide railroad business at any given time by giving railroad workers

a framework and a guideline for performing tasks. This means that train schedules, train contents

and train movements must all be controlled by such a plan. In order to create a plan that is

effective, efficient and reliable, a railroad has to look at many factors such as delivery time,

service time for trains and cars, crew availability, business trends, etc. Once a plan has been

created, it is not enough to say that it works, but each railroad must do what it can to optimize its

operations such that “best case” plan is implemented and maximum economies of scale are

achieved. Guidelines for the assessment of multiple, integrated operations plans in a common

way are required in order to determine which plan is the best.

Existing railroads currently rely heavily on the skills and experience of veteran employees, who

make decisions about train schedules, product development (blocking plans) and how they split

up cars into the bowl (classification tracks). Additionally, current practices of railroad companies

prevent priority traffic from getting special treatment and all traffic is treated in the same

manner. Each train / car is served on a FIFO (first in-first out) basis at every yard it reaches.

When running simulations, railroads supply their software with various data which includes

static blocking plans, train schedules, traffic files (OD data, car types, etc.) as well as network

topology and geography. A shortest path algorithm is applied in order to route each individual

car to its destination. The software will then assign each car to a specific predetermined block or

set of blocks which are destined to travel from node to node. The blocks are, then, assigned to

individual trains which carry them to their destinations.

For this system to work, different sections and groups within the railroad come up with the

different strategies which make up the various operations plans. This means that the blocking

7

plan is created separately from the train schedule and the block to train assignment. With the

model developed in this thesis, the back and forth of two separate groups working on individual

plans is taken away. Instead, one analyst can develop, test and analyze an integrated operations

plan with only traffic, network, and yard data, thus, taking away the lengthy back and forth

required between multiple departments. This thesis addresses these issues with the model and

guidelines developed.

1.3. Objectives

There are three main objectives for this thesis:

1. To create a model to assist in testing and analysing the operation plan(s);

2. To create guidelines for building integral portions of the operations plan; and

3. To create a user friendly software application to implement the model.

The first objective, to create a model to assist in the testing and analysis of operation plans, is

accomplished by creating a simulation model which takes into account the various factors

associated with railroads on a network level. The many inputs and outputs are focused on what a

railroad analyst will actually use/need in order to make sound decisions with respect to the

quality of an operating plan.

The second objective of this thesis is to create a set of guidelines for preparing data to be entered

into the model. It is not enough just to have traffic and network data because train schedules,

block to train assignments and blocking within each yard play major roles in the transportation of

goods. This thesis will prepare step by step guidelines and/or provide examples of the

aforementioned operations.

8

The third objective is to create a user friendly software application by which the model can be

applied. This will be accomplished using Microsoft Excel and VBA as a programming platform.

The software will make it simple to enter the various data requirements in an organized fashion

and will provide the results of the model in a simple and easy to read manner. This will make

analysis of an operations plan quite simple for the user.

1.4. Thesis Outline

Figure 1.1 provides a general overview for the thesis structure and research activities. This thesis

is divided into six (6) main chapters as follows:

• Chapter 1 - Introduction: This chapter provides a brief introduction to freight rail and

movement of goods. It also serves to represent the scope of research in this thesis.

• Chapter 2 - Literature Review: This chapter provides a comprehensive literature review

of various railroad network systems and various types of models. The research conducted

prior to selection of the proposed model type and the proposed model development is also

represented here.

• Chapter 3 –Railroad Network Systems: This chapter provides a comprehensive review

of specific railroad characteristics and various model objectives in existing research. It

also provides an overview of model types used in railroad operations planning and

provides a brief overview of existing model applications used in industry.

• Chapter 4 – Model Development: This chapter outlines the proposed model including

inputs, outputs, and most importantly methodology. It also creates guidelines for how to

use the proposed model. Model capabilities and limitations are presented here.

9

• Chapter 5 – Software Application: This chapter provides an overview of the software

application which allows the user to easily apply the model. The model is validated using

hypothetical data and then an example application of the model using hypothetical data is

presented.

• Chapter 6 – Summary, Conclusions and Recommendations: This chapter provides a

summary, conclusions and recommendations based on the research in this thesis. The

recommendations proposed future study in this field applies to possible extensions of the

model.

10

Figure 1.1 Overview of Thesis Structure

11

2. LITERATURE REVIEW

A literature review was conducted on the existing research in freight rail networks and

classification yards. Peer reviewed journal papers, magazine articles, text books, government

reports, and project reports were reviewed for this purpose. These sources have been grouped

into several main categories and are summarized in this section.

2.1. General Freight Rail Information

This section discusses general freight rail characteristics and data with respect to Freight Rail

Transportation, Reliability and Flexibility, and finally Train Dispatching. Freight Rail

Transportation is discussed in terms of benefits, operational statistics and future potential

investments. Reliability and Flexibility are defined and discussed in terms of railcar movements

on class 1 railroads. Finally, Train Dispatching methods are discussed.

2.1.1. Freight Rail Transportation

There are significant benefits to Freight rail, not only to consumers but also the general public.

These benefits include Transportation System Capacity and Highway Cost Savings, Economic

Development and Productivity, International Trade Competitiveness, Environmental Health and

Safety, and Emergency Response Capabilities (AASHTO, 2009). According to AASHTO and

their 2009 Freight Rail report, there are currently only seven class 1 railroads in operation today

(BNSF Railway, CSX Railroad, Grand Trunk Corporation, Kansas City Southern Railway,

Norfolk Southern Railroad and Subsidiaries, Canadian Pacific Railroad, and Canadian National

12

Railroad). This is due to various consolidations and mergers which have occurred since 1980

when the railroads in America were deregulated.

AASHTO has also shown statistics regarding the operations of class 1 railroads (all data reflects

the year of 2000). AASHTO points out (since deregulation) rail networks have been downsized

significantly to only the “core” network but productivity has improved dramatically. Having said

that, the costs to consumers has gone down and is lower than all other general freight

transportation services such as marine or trucking. This is a significant improvement over the

1980’s when the costs for freight rail were higher than all other surface/marine based operations.

Even with all of these productivity gains lower consumer costs, the railroad freight transportation

services are not able to rebuild their market share (lost to long haul trucking and short haul

trucking).

According to the Railway Association of Canada in their 2009 publication of Railway Trends,

over the past 10 years freight revenues per tonne have been steadily increasing. Although there

has been a slight decline in carloads originated since 2005, the freight rail industry is still farther

ahead of where it was in 1991 (The Railway Association of Canada, 2001). Though the freight

industry is continuing to gain higher revenues per tonne, they are losing the overall fight against

trucking in the freight transportation business. In having said that, it is also important to note that

should issues such as service reliability and speed of delivery be addressed, rail may seem like a

more fruitful mode of freight transportation to its customers.

AASHTO has also conducted a study of what the future of freight rail will be if there is no

growth (limited investment), moderate growth (constrained investment), paced growth (moderate

investment) and aggressive growth (significant investment). This is a study of what 20 years

13

(between 2000 and 2020) of investment into rail services would cost and what the impacts on

shippers, highway users and highway costs would be, please refer to Table 2.1 to see the

consolidated effects as provided in the AASHTO report. Because the onus to provide the bulk of

the funding would be on railway corporations it is increasingly more important to find ways to

raise capital for any future growth. This can be done in a few ways such as by borrowing money

from banks, selling additional stocks, selling assets, optimizing the infrastructure in order to reap

the additional benefits, or any combination of the list.

Many papers have discussed the analysis and the optimization of class 1 railroads by either

improving the existing infrastructure, optimizing network flows, optimizing intermodal or

regional yards or even by significant capital infrastructure growth.

2.1.2. Freight Reliability and Flexibility

Reliability in freight transportation is an extremely important concept as it is in any freight

transportation network. This is the idea where freight is delivered to the appropriate delivery

Table 2.1 Cost and Effect of Freight Rail Capital Investments (AASHTO, 2009)

Scenario

Costs (In Billions of Dollars –
$USD)

Impacts (In Billions of Dollars – $USD)

Total
Private
Share

Public
Share

Shippers
Highway

Users
Highway

Needs
Total

No
Growth

105-156 82-102 23 326 492 21 839

Moderate
Growth

145-165 122-142 23 162 238 10 410

Paced
Growth

175-195 122-142 53 0 0 0 0

Aggressive
Growth

205-225 122-142 83 -239 -397 -17 -653

14

point at the appropriate time (both agreed to upon signing the delivery contract between the

shipper and the railroad company). It has been readily identified that reliability in rail is a very

important issue by Kwon et al (1995) and Kraft (2002a) just to name a couple. This is even more

important because of the high standards (98% reliability – as reported in Kraft (2002a)) set by

the trucking industry.

Reliability of a freight rail in North America was studied by Kwon et al (1995) using class 1

railroad data collected from the Association of American Railroads (AAR’s) Car Cycle Analysis

System (CCAS). In this study the authors selected a sample of Rail Origin-Rail Destination (O-

D) pairs within three major rail freight groups and typical car types: general merchandise train

service (general boxcars), unit train service (covered hopper cars), and intermodal train service

(double stack cars). The car cycle as described by the paper consisted of the time the first car is

loaded until the time the empty car is returned to the original loader. This includes the

aggregated total time where the car is being loaded, moved (loaded) on the mainline, sitting

(loaded) in terminals, emptied by the receiver (consignee), moved (empty) on the mainline,

sitting (empty) in terminals, and finally arrives empty at the shippers. Table 2.2 shows the results

of the car cycle time for the three different types of cars/services – all time is measured in days.

Table 2.2 Car Cycle Times From Kwon et al (1995)

Note: (all data measured in days) Boxcar Covered Hopper Double Stack
Loading Time 2.15 1.92 0.73
Loaded Time 8.77 5.33 3.21

Unloading Time 1.48 1.27 0.22
Empty Time 14.48 6.76 1.99

Total Cycle Time 26.88 15.27 6.15

15

In order to show trip time and reliability Kwon et al showed the mean trip time, standard

deviation, and two other measures known as the n-day-percent and the maximum n-day percent.

The n-day-percent is the measure of the probability that a car will arrive within a time window of

n/2 days of the mean trip time. Because there is a skew in the trim time distributions, the

maximum n-day-percent is the measure of the maximum probability that the car will arrive based

on n days but not focused in the mean (i.e. the window of n days can move along the distribution

in order to find the max). The results of the reliability study are presented in Table 2.3. It should

be noted that since the lowest reliability is that of the general merchandise box car and coupled

with the fact that unit trains do not typically spend much time in classification terminals, we can

deduce an important link between terminal efficiency and rail car reliability. As reported in

Kwon et al (1995), majority of trip time either empty or loaded is spent in terminals and that

terminal and train delays account for more than 40% of all shipment delays. This is important

because unreliable train service can be mitigated by improving the reliability and the efficiency

of these operations.

Table 2.3 Trip Time and Reliability Performance of Different Trains (Kwon et al. 1995)

Elements Box Car Hopper Car Double Stack
Number of O-D Pairs 477 102 20
Number of Railroads 2.11 1.47 n/a

Distance (miles) 788.1 831.0 n/a
Mean Trip Time(days) 7.16 5.25 2.53

Std Dev of Trip Time (days) 2.62 2.04 0.50
Maximum 1-day-% 32.42 41.90 89.2
Maximum 2-day-% 48.56 60.95 n/a
Maximum 3-day-% 61.07 73.21 n/a

16

Another very important function of a transportation network which affects reliability is known as

flexibility. Flexibility is defined as:

The ability of a system to adapt to external changes, while maintaining satisfactory

system performance. System performance is characterized by parameters such as level of

service, maintainability, and profitability. (Morlok & and Chang, 2004, p. 406).

External, uncontrollable, factors or variability could be as simple as poor weather conditions or

something as complicated and devastating as a massive earthquake. Other factors could include

traffic volume surges (based on economic factors), traffic flows (based on shifts in directional

flows), mainline outages based on motor vehicle accidents, car damages, etc. (Morlok & and

Chang, 2004) and (Dirnberger J. , 2006). Internal factors or variability should also be considered

in this definition and these can include poor management of resources such as mismanaging crew

allocation, misroutes and incorrect sorting at yards, rework, processing times at terminal

operations, worker experience variations, etc. (Dirnberger J. , 2006). These factors all affect

reliability and thus managing these factors appropriately by adapting to them while maintaining

satisfactory system performance (the definition of maintaining flexibility) will help to maintain

reliability for the network.

In addition to the above factors, there are also cost implications to having or not having certain

flexibilities in a railroad operation. The following excerpt emphasizes this importance.

Few railroads have fully embraced the concept of scheduled operations. While they

recognise the value of adhering to the plan, they still wish to retain some of flexibility in

their operations … Scheduling everything can lead to an increase in train starts and crew

expense. (Kraft, 2002e, p. 19).

17

The above quote makes mention of the concept by which railroads have the flexibility built into

their systems to be able to cancel or consolidate trains in an effort to save money. This is very

important because exploiting this kind of flexibility is one way a railroad can offer better service

to its investors, who also have a vested interest in not only the reliability but the overall economy

of their railroads.

2.1.3. Train Dispatching

Freight trains are dispatched either on a tonnage-based system or a scheduled system. The

tonnage based approach is an age old classic in which railroads hold all trains until they have

enough freight to fill the train to capacity. In this format, railroads maximize their train

utilization. Often times, using this approach many trains are either delayed or even cancelled and

thus minimizes the total number of trains operated. Serious drawbacks for the tonnage-based

approach include (Ireland P. e., 2004):

1. The yards cannot fine-tune their operations based on a repetitive schedule, and they

require more railcars and greater storage capacity to cope with the traffic variability;

2. Demands for crew and locomotive resources may increase along with the costs for

repositioning crews and equipment; and

3. Most importantly, customers suffer from unreliable service because the railroad gives

train-operation economics priority over customer needs.

A very different approach, the scheduled option, requires a disciplined corporate structure and

high levels of pre-planning. Serious drawbacks for the scheduled-based approach include

(Ireland P. e., 2004):

18

1. They require operating trains with low tonnage when customer demand is below

expectations;

2. They depend on railways' systematically forecasting traffic levels by the day of the week,

and quickly adjusting the plan;

3. They require a granular, actionable understanding of each customer's requirements in

each corridor; and

4. The needed schedule-based models require sophisticated operations research software to

conduct comprehensive and timely analyses of different alternatives.

In selecting which operating style a railroad will use, the above drawback factors for either the

tonnage-based or scheduled-based approach must be taken into account.

2.2. Capacity of Railroad Networks

The capacity of rail networks can be determined by design of said networks and the operation

practices on them. The following is a review of some of the previous research in modeling,

planning and operations of a railway network.

2.2.1. Rail Network Operations and Modeling

Looking at the metro line capacity (number of passengers) in Athens, Greece, Ballis et al (2004)

used a simulation model which worked in four separate phases. Phase one involved the

assumptions about train characteristics (power, shape, number of cars, car capacity, etc.). Phase

two involved description and assumptions of the stations and track geometry; this allowed the

model to trace train movements in reference to a zero point (a start point). Phase three involved

calculations of the train driving diagrams which used kinetic equations and the coasting method,

19

whereby a train accelerates and once at a specific velocity the train continues to move, coasting,

until required to stop. The kinetic equations take into account the general velocity equations

which include concessions for weight and also include concessions for the track geometry

(horizontal and vertical curves). Phase four involved the actual simulation and graphical

representation of the model in hopes of creating a timetable for trains through various blocks

(sets of tracks between sets of stations). It was in phase four where boarding and alighting times

for passengers and turnaround times for trains were also incorporated into the model and the

model was created to allow user intervention and adjustment to things such as interruptions, slow

down and speed up trains or even immobilize or reactivate lines to see the effect of such

behaviour on the capacity of the lines.

Although this model cannot specifically be applied to freight railways, it does show a very

simple framework which can be applied to specific rail lines in order to determine the maximum

capacity of a line. This could be based on number of cars (shipments), number of locomotives,

number of yards/hubs and track geometry in order to determine how many freight trains can be

accommodated. This is a far more difficult task than with a metro line, where number of

passengers can be somewhat accurately determined, while freight varies not only in how much is

being shipped regularly but also how much can be processed in any given yard. There are

already specific analysis models (discussed later in this section) which show how many cars a

yard can accommodate based on various inputs and yard types.

Another railroad capacity model by Ramsey et al (1986) used computer software to draw space-

time diagrams in a simulation which would plot the diagrams in front of the user. The simulation

could be stopped at any time by the user in order to backtrack and readjust the decisions made by

the computer model to determine different results. Though this model is very simplistic, it uses

20

three modules: a data entry module, a train performance calculator, and a straight rail capacity

model which helps to provide a fairly accurate and timely simulation of rail line capacity. This

model was comparable to existing, more complex models at the time.

A recent mathematical programming model by Higgins et al (1995) was created to identify train

schedules on single lines using a branch and bound procedure. This model took into account train

velocities, train priorities, line segment lengths with overtaking points (such as double track

sections and siding locations), and times of scheduled stops as required. The objective function

of this model was to minimize the delay of trains arriving at a destination as well as the operating

costs of each train (i.e. costs for fuel, crew, power etc.). Since single line rail schedule modeling

has been fairly extensively studied in the past, this paper primarily works to improve the solution

time of a single line train scheduling problem.

Another way to look at the capacity of railroads is not to focus on the number of trains and cars

that pass through a single line or a terminal, but to look at the amount of freight which can be

carried, in terms of overall system capacity. This means that instead of analyzing at specific

segments of rail links or terminals/yards, a model which addresses the operational measure of

system capacity as a whole had to be created. This was done by Morlok and Riddle (1999) where

they used a linear mathematical programming model to determine an estimate of the overall

system capacity based on origin-destination. This model included the limitations of capacity at

facilities, limited resources in the vehicle fleet, labour, and fuel, as well as environmental

regulations and even management structure. This model, called MAXCAP, makes it possible to

estimate overall system capacity based on tonnes per year or similar units. A variation of this

model, called ADDCAP, can also determine where capacity can be added in the various

components of the model, such as fleet size or terminal capacities. The authors also suggest that

21

this model could be used to assess the effects of regional trade agreements where origin-

destination pairs for various trips vary, the effect of technological changes in transportation, and

even the effect of natural disasters or other catastrophes.

Morlok and Chang (2004) expanded on the capabilities of MAXCAP by assessing both reserve

capacity and by assessing the sensitivity of a transportation system to changes in traffic patterns

using a new model deemed ADDVOL. The former was a conservative method of reserve

capacity estimation, whereas the latter allowed the authors to more accurately determine the

flexibility of demand variations on transportation systems. Flexibility is discussed later in this

text. The MAXCAP model is used to determine reserve capacity of a system, but the application

is limited to the use of only base traffic patterns (fixed traffic patterns). The ADDVOL model

uses adjusted traffic patterns which allow for a more flexible system that gives a more robust

estimate. Flexibility is a very important concept and is required in order to recover after any

given event and more importantly, flexibility is more important than speed in terms of overall

reliability (Judge, 2002).

In their 2006 study titled Estimating Freight Transportation System Capacity, Flexibility, and

Degraded-Condition Performance, Sun et al expanded on Morlok’s original model (MAXCAP)

by applying general characteristics of existing transportation network models to MAXCAP. The

authors pursued an idea that the absolute physical capacity of a network may not be reached

because the practical limits of the network due to the degradation of service quality (for example

level of service) becomes unacceptable. The authors complete their objective by adding three

main functions to the model:

1. Reflecting uncertainty in traffic patterns by use of Dirichlet distribution;

22

2. Incorporating volume-delay functions and service quality constraints; and

3. Assigning flows to paths using stochastic equilibrium models thus replacing the

predefined paths as set in MAXCAP originally.

This enhanced model becomes a nonlinear programming problem which must be solved using a

heuristic step-sized search method as developed by the authors. This is different from the simple

linear model originally proposed by Morlok, but it does prove to increase the overall levels of

confidence of the models results.

2.2.2. Rail Network Planning

The most important part of the paper by Higgins et al (1995) was finding a solution to the

optimal siding location problem while considering variable train velocities and non-uniform

departure times. The idea is not to change existing sidings or specific fixed sidings (fixed due to

various operational or regulation reasons), but to determine where best to place sidings in order

to resolve potential train conflicts (such as crossings or overtaking). This model takes into

account the cost parameters of delayed trains, operating costs, and upper speed limits at fixed

intervals on the track. The model assumes a weekly cyclical train schedule in which scheduled

stops are only permitted on fixed sidings. It is necessary for the model to solve for three sets of

variables which include track segment lengths, arrival and departure times and binary conflict

resolution. The model is solved by decomposing the original problem into two sub-problems

(one which solves the track segment lengths and arrival and departure time variables, and the

other which solves the binary conflict resolution variable) which are then solved using an

iterative process until there is no more improvement for either. The paper also shows an example

23

of how using optimal siding locations can help to minimize train delays due to conflicts on single

lines.

Mathematical programming was used by Liu, Ahuja & Sahin (2008) in figuring out a very top

level scientific approach to optimal network configuration (i.e. yard locations, line directions

etc.). This paper is of importance because it addresses what the newly formed and consolidated

class 1 railroads may be able to do in the future to optimize and expand their lines based on a

mathematical optimization using the greedy approach. In this study Liu et al looked at which

yards could be shut down with minimal impacts, if and where new hubs should be opened, and

where specific line or hub capacity expansions should be created. This study also looked at the

costs associated with the theorized improvements.

The study looked at the yard and the capacity problems separately creating optimization

problems for both and solving them using real data from an existing class 1 railway. In the yard

optimization model they included drop, add, and a pair-exchange algorithms which allowed for

the specific what-if analysis of existing facilities. The capacity expansion problem included three

separate items, the blocking capacity, the car handling capacity and the line capacity. If certain

yards would be added or removed or certain capacity was to be increased then overall costs could

go down according to the study, and as such, the optimization of a network is increased. This is a

very capital intensive program however, so the reality of such implementation is quite scarce, but

this top level scientific assessment is a great tool for railway companies to review when deciding

on how to conduct their operations in the future.

24

2.3. Classification Yards

The objective of a freight rail classification yard is to sort or classify cars from an inbound train

into blocks (single length of cars which all have similar characteristics such as destination, type

of cars, or even type of consist) which are then assembled into various outbound trains. This is

an important and necessary step because trains typically contain various cars moving from

different start points to different endpoints. It is rare to see a train which starts and ends at a

given location without the need to be split apart or added to in order to maximize train capacity

(with the exception of unit trains which are typically able to bypass the classification process

entirely).

There are two general types of classification yard: flat yards and hump yards. They both provide

the same function of classifying cars from inbound trains into new outbound trains but how they

get from inbound to outbound are two entirely different processes.

2.3.1. Flat Yards

A flat yard is a very easy to design and construct because it can be done on a level grade and

only requires an inbound line, an outbound line, and a classification area with a set of

classification tracks. This makes a flat yard very inexpensive to construct and operate. In the case

of a flat yard, switching locomotives take cars from the receiving track and then push and/or pull

them to their various classification tracks. The process is explained with the assistance of Figure

2.1 (A, B, and C):

2.1.A. A brakeman typically rides the leading car to ensure there are no obstacles to line

 switches as the movement proceeds;

25

2.1.B. The brakeman steps down near the point where cars are about to be uncoupled.

 When the cars have been placed and the train stops, the brakeman uncouples the

 cars; and

2.1.C. The Switch engine reverses, leaving the car(s) on the desired classification track.

The actual process is conducted by a method called Drilling. A switch engine begins by

accelerating quickly pushing a cut of cars. The engine then hits the brakes quickly, thereby

“kicking,” the car(s) toward their respective classification tracks where the car(s) either stop due

to friction or by hitting the existing cars already standing on the track. The process for kicking

cars is described using Figure 2.2 (A, B, and C).

Figure 2.1 Flat Switching Diagram (Dirnberger J., 2006)

26

2.2.A. First the air brakes are released from all cars. The locomotive pushes the cars

 towards the classification tracks while the brakeman lifts the uncoupling lever and

 signals the engineer to “kick” the cars;

2.2.B. The engine accelerates rapidly while the brakeman runs beside cars holding the

 uncoupling lever until the desired speed is reached. Once this occurs, the

 brakeman signals the engineer to apply the locomotive brakes leaving the

 uncoupled cars to continue rolling forwards toward the class tracks. A second

 brakeman lines the switches to route cars onto the desired class tracks.

2.2.C. This process continues until the locomotive and attached cars have run out of

 space on the lead track at which time the locomotive must pull the cars back to

 have enough room to continue “kicking” cars.

Figure 2.2 Kicking Cars Diagram (Dirnberger J., 2006)

27

Due to the large amount of manual labour involved, if a flat yard was classifying single cars all

the time, it would be a very cumbersome, inefficient and labour intensive process. Therefore flat

yards are best used when switching or classifying cuts of cars or blocks of cars from trains which

stay together throughout the switching process. It should also be noted that cars are subject to

additional handling in flat yards, especially if they are closer to the engine because the engine

periodically has to back up and build up track space between it and the classification tracks such

that the kicking process may proceed (Dirnberger J. , 2006). The process is also very damaging

to the cars and the cargo because of all the impacts which occur due to the kicking and

consequently the smashing into each other.

2.3.2. Hump Yards

Hump yards differ from flat yards because they use gravity, instead of drilling in order to help

classify individual cars. Hump yards are typically used by class 1 railroads for their major

classification hubs; such is the case for Canadian Pacific Railroads (CPR) Toronto Yard in the

Agincourt Borough of Toronto, Ontario. This is because hump yards are largely more efficient

than typical flat yards at classifying large amounts of individual cars. This efficiency is

extremely important when there are a large number of incoming and outbound trains with

multidiscipline cars with varying destinations. In a hump yard a hump locomotive will push a set

of cars over a hump, releasing each car individually at the crest of the hump and allowing gravity

to let the car slide down to the bowl. The cars are slowed down by mechanical retarders (brakes)

that prevent the cars from smashing into standing cars on the classification tracks at high speeds,

thus minimizing damage to couplers, cars and cargo. This is vastly more efficient than flat yards

not only in terms of energy use but also staffing since no additional personnel are required for

braking and uncoupling cars individually while they go over the hump.

28

2.3.3. Typical Rail Yard Operations

In a process similar to both types of yards, once all of the cars are in their respective tracks, they

are ready to be released for outbound trains. This is where (in both types of yards) trim engines

conduct the pull-down process where they take all blocks for an outbound train and string them

together to create said outbound train. There are four major operations at any given classification

yard. These operations happen sequentially and the next operation depends on the prior

operation. Typical operations at a classification yard can be grouped into the following (also see

Figure 2.3):

1. Train Receiving and Inbound Inspection;

2. Classification or Sorting of Cars onto Classification Tracks;

3. Train Marshalling or Assembly; and

4. Outbound Inspection and Train Departure.

Figure 2.3 Typical Operations’ at a Classification Yard

29

In addition to the above noted tasks, there are many tangentially relevant facilities within a

typical rail yard which do not directly affect classification (although they can indirectly) such as

intermodal facilities, shop facilities, short term storage facilities, etc. (Innovative Scheduling,

2005).

During the receiving the inbound inspection is comprised of checking the rail cars for structural

integrity, safety, as well as the consist of each car. During this time period in a hump yard the

yard crews will turn off the air brakes so that cars become free rolling (this way they can be

pushed or pulled as required) and the cars will then be put into queue so that they can be

classified. In a flat yard, the inbound cars will be uncoupled and split up only at the cut limits

and the air brakes will only be bled if individual cars are being classified.

The cars are then sorted onto various classification tracks which act as temporary storage for use

while building a new train or a portion of a new train. This sorting, or classification, is conducted

in one of two ways: by use gravity such as in hump yards or by use of switching locomotives in

flat yards as described above.

Once the cars have been sorted onto the classification tracks into their new yard assignments and

the cut off time for the departing train has come (time at which the train must be built for

departure) the cars are built into an outbound train at the trim end of the yard, inspected as they

were during receiving, and released to their next destination after a brake test. During this step,

the trim locomotives also perform a process where they pull all of the cars (those which are not

going to leave on the outbound train) on the classification track to the very end of the

classification tracks thus leaving room behind them for additional classification of new cars.

30

2.3.4. Modelling Classification Yards

Because a railcar in a yard goes through four major operations, one after the other, they are

naturally thought of as cars in a queue. Thus significant works in the past by authors such as

Petersen (1977), Turnquist and Daskin (1982), Martland (1982), and Kraft (1990’s – 2000’s)

have been completed in order to understand the delays in yards.

In 1977, Petersen used queuing theory to create an analytic model of the operations inside a

classification yard. The model was described in two papers Railyard Modeling: Part I -

Prediction of Put-Through Time and Railyard Modeling: Part II - The effect of Yard Facilities on

Congestion. The model determines the probability distribution of the time which any given rail

car will spend inside a yard. This model found difficulty in determining service time

distributions for the classification and the assembly operations of the yard but found that

exponential ones worked. The model further simplified the operations within the yard by

assuming the inter-departure times (the time between scheduled departing trains) for each train,

constant. According to the results of this simplified model, the major delays inside a yard are

caused by the classification and assembly processes. This makes sense due to the setup of most

yards where there are far fewer inbound/outbound tracks than there are classification tracks. The

inbound trains wait to be classified and the outbound trains wait to be assembled, while these

trains wait, the classification and assembly processes typically continue (either one after the

other or in parallel). Though this model did not work to optimize the work being completed in

the yard, it was one of the first to help understand the delays and the processes in a yard.

Turnquist and Daskin (1982) analyse yard operations from the rail cars point of view instead of a

train’s point of view. They build directly on the Petersen models and in this research they found

31

that possible causes for delays in yards are often conflicting thus a balance of different train

dispatching strategies must be taken into account to create a best case scenario. Through study of

this model Turnquist and Daskin determined that variance in train length causes significant

classification delays thus implying that constant train lengths may be required to minimize

classification delays. However, their connection delay model postulates that running trains on

anything but a strict schedule would cause variable delays because trains would just sit there and

wait until they were full prior to leaving. These provide conflicting views, because dispatching

trains only when they reach a specific number of cars will greatly change the scheduled train

departures or vice versa, departing trains at only the scheduled times will mean that a train may

have a random number of cars on it at the time of departure. It was through the study of this

model that Turnquist and Daskin determined that the solution to optimizing the yard delay

problem lay somewhere in between steady scheduled trains and constant trains lengths. The

major benefit of this model was that this information could be found without the need to tiresome

simulation work as was conducted in the past. Again, because the models were simplified

significantly in order to make them work efficiently, the authors urge that results of the models

be used only during preliminary analysis and as a guidance tool.

The PMAKE model (Martland, 1982) was created over a 10 year period by MIT in conjunction

with the Federal Railroad Administration. After a review of both simulation and queuing models

the author claimed that the PMAKE model is cheaper and easier to use than simulation or

queuing models because it is faster and more realistic. In addition, after a review of both the

Petersen and Turnquist models (above) Martland states:

Queuing models have not yet been used to any great extent by railroads. Part of the

reason for this ... may be that the basic assumptions of the queuing approach do not apply

32

in rail yard operations. Arrivals at a yard are not random, but exhibit daily, weekly, and

seasonal cycles that are well known to railroad operating officials. The service time

distribution is not constant, but varies as a railroad changes the number of switch crews

working at each part of the yard, adjusts maintenance activities, adjusts the shifts

operated, and changes the relative priorities of switching activities. The system, therefore,

is not in a steady state as required for the use of steady state queuing models. The number

of servers and the service rate are both adjusted continuously to reflect the build up of

queues at various parts of the yard. At most, the system is in a steady state only to the

extent that the expected queue length, arrival distribution, and service rate follow a

weekly cycle: the expected situation a week from now is the same as the expected

situation N weeks from now at the same time of day. (Martland, 1982).

In order to move away from the steady state assumptions made by the queuing models and the

cumbersome approach of simulation models, PMAKE aimed to determine the probability of cars

making their connections in the time available. This is done so by taking cut-off times (inbound,

outbound, or both) for trains into account. PMAKE is able to predict the impact of schedule

changes on yard performance in terms of yard times and potential delays. PMAKE can also take

other variables into account such as connection times, traffic priority, yard traffic volume, pattern

of car flows in a yard, the pattern or reliability of train arrivals in a day, and power availability.

PMAKE functions as developed by MIT are relatively easy to calibrate (can be done so using

various approaches) and use for analysis of yard performance. Thus, PMAKE is a system which

has been more commonly used than other models such as queuing or simulation in operations

and service planning by railroads (Martland, 1982).

33

In his 2002 Trains magazine article (Kraft 2002c, 2002d), Kraft describes how well a yard

operates is dependant primarily on a railroads operating strategy. He also notes that there are

three major descriptive formulas and plotted graphs which help to describe how well a yard

processes cars, what affects the dwell time in a yard and what affects the efficiency of a yard.

For yard processing capacity, the number of trains a yard may originate and the length of such

trains are the key factors. He states “As train lengths increases, train departures will decrease

drastically unless the yards processing capacity increases at a faster rate. Train departure

frequency in turn determines how long cars sit in yards.” Refer to Figure 2.4 for the graph and

the Equation 2.1 which corresponds to the graph.

Figure 2.4 Yard Processing Capacity VS Train Length (Kraft, 2002d)

34

Figure 2.5 Dwell Time VS Block Departures (Kraft, 2002d)

Figure 2.6 Dwell time VS Processing Capacity (Kraft, 2002d)

35

NUMTrains = CAPYard / LTrain (2.1)

where,

NUMTrains = (Train departures per day) (# of Trains)

CAPYard = Daily yard processing capacity (# of Cars)

LTrain = Average train length (# of Cars)

For dwell time in yards, the processing times and the frequency of departures per day are the

most important factors. Kraft states “Once block departure frequency increases much past 1.5

times per day, its effect on car dwell time approaches zero.” Thus, only a faster yard processing

time (which includes inbound inspection, classification, and assembly of outbound trains) could

have a hope in lowering dwell time. The graph presented in Figure 2.5 takes a best case scenario

where no additional delays (such as limited yard resources, overall yard capacity, directional

processing, etc.) are taken into consideration. Equation 2.2 represents the graph.

TDwell = (TProcess + 12) / BLOCKDepartures (2.2)

where,

TDwell = Yard Dwell Time (hours)

TProcess = Minimum processing time per car (hours)

BLOCKDepartures = # of times each block departs per day (#)

Another problem proposed by Kraft is that dwell time is farther aggravated by destroying its own

processing efficiency. This means that with more cars dwelling in the yards inventory the more

congestion there is, thus creating a slowdown for the processing of inbound trains. This is a

36

viscous cycle which eventually could lead to the shutting down of the classification process until

all cars are removed from the bowl and dispatched on outbound trains. This phenomenon is

represented in Figure 2.6 where longer dwell times drastically decrease the yard capacity and by

Equation 2.3 below.

TDwell= NUMCars / PROCCars (2.3)

where,

NUMCars = Yard inventory (# of cars)

PROCCars = Cars processed per day (# of cars).

2.4. Classification Methods

As Kraft explains (The Yard: Railroading's Hiddent Half (Part 1), 2002c), there are two extremes

of blocking practices in railroading, Extreme Deferment and Extreme Anticipation. Extreme

Deferment is a “bump-along” system where no classification of a car occurs until the car is

nearest its final destination. Extreme Anticipation is the opposite, where cars are classified at the

first possible yard in order to create and arrange blocks in the order of where they are going.

There are also varying possibilities for yard classification practices in between the two extremes.

Using hump yards and flat yards together, railroads are now able to conduct what is called

support blocking. This is a scenario where pre-sorting and pre-blocking of individual cars can be

completed using a hump yard such that when the blocks reach a flat yard, there is no individual

car to classify, only blocks. This practice allows railroads to realize cost savings by utilizing each

type of yard to its most efficient manner.

37

2.4.1. First In First Out Method

Various strategies exist for classifying rail cars within a yard. There is the common first in, first

out (FIFO) method which allows the cars on the first inbound train to be classified into their new

respective blocks and shipped out on the first outbound train. This is an example of an extreme

anticipation style method which classifies the cars as soon as they enter each yard. A few other

methods have been proposed, such as the priority based classification method and the dynamic

classification system. Both are great improvements over FIFO because they take train length and

capacity or shippers schedules and delivery times into account prior to sorting cars.

Currently, rail yards build car trip plans in two steps. The first step involves assigning a “yard

block” or classification code to each car based typically on its ultimate destination and other

various car characteristics. This is done by a computer which uses lookup tables to determine

which yard the car must go to next in order to reach its final destination (Kraft, 2000b). Step two

would involve determining which trains can carry the classified cars to their next destination.

Though car scheduling systems can accomplish this task, it is often disregarded due to schedule

fluctuations in the trains and thus cars are usually shipped out on the first available outbound

train in the order the cars were classified in. This is a flawed system in that it does not consider

car delivery times or specific train capacity and train schedules. If there are cars which have a

significant amount of slack time in their delivery deadline, this is not an issue. However, if there

are cars which have very sensitive delivery times, or their delivery times are time critical, they

must be “cherry picked” in order to be put on the next outbound train. This means that a crew

must manually extract the car from the bowl after classification by backing the switching engine

into the classification yards, uncoupling the cars ahead of it and removing the priority car onto a

different siding. Then they must return the unwanted cars back on to the tracks and continue with

38

their outbound train assembly. This whole process is very costly in both time and resources, but

should this method not be utilized, there are potential delivery delay losses which can also occur

hurting both the freight shipper and the rail corporation.

2.4.2. Priority Based Method

An excellent strategy to help mitigate the need to cherry pick high priority cars is called priority–

based classification as discussed in Kraft’s 2002 paper Priority-Based Classification for

Improving Connection Reliability in Railroad Yards- Part I: Integration with Car Scheduling. It

is very important, from a business standpoint, for carriers to provide reliable, on time services to

their clients. In this front, the rail companies have failed and thus have lost a great deal of their

market share in freight shipping to short haul and long haul trucking. Kraft mentions that when

trains are run on a scheduled system, they help in producing an environment where terminal

efficiency can be improved (because the inbound and outbound trains, theoretically, will be

scheduled to arrive or depart from the terminal in a way that mitigates overcrowding), but this

cannot change the terminal operations by itself. As has been described already, most car

scheduling systems create what is known as a “yard block,” which shows where each car will

end up along its journey. This does not take into account which train the cars will go on, and if

that were taken into account along with the yard information, this would be known as a “train

block.” The idea behind the priority based switching is that cars, instead of being cherry picked,

should be scheduled onto specific trains as well as yards based on priority. The cars can be then

classified onto different tracks based on: 1) Car Delivery Priority; 2) Train block; and 3) Yard

block. This would mitigate any need to cherry pick at the trim end of the yard and thus be a more

economical solution to creating reliable delivery service. In order to complete this task, low

39

priority cars would have to be rescheduled onto later trains thus maintaining minimum capacity

for the higher priority cars on the next outbound train.

In his 2000 paper, Kraft wrote about the Terminal Priority Movement Planner. This was a hybrid

model which combined the following:

1. Maximize the number of cars making scheduled connections; and

2. Minimize outbound train delay waiting for connections.

This model is a non-linear mathematical programming problem, when solved was able to show

management when there were any late connections, thus allowing humans, not computers to

make decisions on which trains to delay or which connections to disregard. In addition, this

problem is solved using a breadth-first branch and bound search algorithm which uses the FIFO

sequence of classification to set its upper bound (since FIFO is often not the optimized solution).

In his paper, Kraft outlines the process by which the mathematical formulation works and is as

follows:

1. Calculate the earliest time each outbound train can be “set” (the time when all the cars

scheduled to said train have been sorted onto the classification tracks);

2. Subtract the projected “set” time from the target “set” time (the time at which the train

should be “set” in order to meet its scheduled train departure) in order to define the

difference in hours;

3. Use the exponential function, ex to assign a solution “cost” for each train (higher the

difference time in step 2, the higher the function “cost”);

4. Sum the scores of each train to determine an aggregate score; and

5. Propose the hump sequence which results in the minimum score.

40

This algorithm was programmed in C and tests showed after 100 iterations there were few

improvements. Having said that, the program was cut off after 100 iterations and took between

15-20 seconds to solve realistic one day problems (according to the author). In his 2002 paper,

Kraft expanded on the original hump-sequencing model by adding a few steps:

1. Automatically reschedule cars which cannot be processed in time (onto later trains);

2. Advance any cars which are expected to be processed in time for earlier connections

(provided there is room on the train – this also helps to maximise train capacity

utilization as well as keeping the terminal from becoming over congested with extra

cars); and

3. If any outbound trains have more cars scheduled than it can handle, determine which cars

to bump to the next train.

It is important to note that all car scheduling occurs always and up to 36 hours prior to the actual

hump procedure. This pre-determining of where cars will go allow a yard to prioritize their hump

sequence of cars and place all priority cars onto specific classification tracks in their specific

train blocks. This is very important because it allows yards to start a separate block, or

classification track for those cars which are not of high priority and will not be taken on the first

out train due to capacity restrictions. Though this process requires an additional track, it is

important to note that once the initial train block is humped and classified, another train block

may start behind it, filling up the remainder of the classification track length. Another way to

mitigate (especially in smaller yards) yard congestion due to use of additional classification

tracks for low priority cars is by the use of a rehump track, where lower priority cars would be

sent in order to be rehumped later, after the priority train departs. This method is simple enough

41

to be completed manually (as noted by the Kraft, 2002). These two strategies, with similar

outcomes, would certainly help to create a more reliable service, where the higher yard costs are

mitigated by the overall service improvements and lowered requirements to run additional trains

due to a large number of missed connections.

Another part of the priority–based classification system, after the hump sequencing and train

block determination, is the block to track assignment sequence. This is an iterative process,

based on a set of heuristic rules which is not a mathematically optimization based solution due to

the complexity of the system, although Kraft poses that a better solution can be achieved through

mathematical programming. The rules for iterations and the process are presented (Kraft, 2002b).

In making the block to track assignments, the iterative process has to manage rehump cars by

making sure that no priority cars go to the rehump track unless there is time for them to make

their connection after the next rehump clearance. The typical rehump track in the Kraft paper

was quoted to be complete every 8 hours or so. The system then determines the number of active

blocks and determines whether or not they will fit in the tracks. This is done through the next set

of steps which include coercing previously assigned blocks (making sure that once a block to

track assignment has started then it remains in place unless the block is closed or the track is

full), assigning and splitting very large blocks to multiple tracks (this reduces the numbers of

blocks which can be actively assigned), and greedily assigning track space to small blocks (into

the spaces behind larger, closed out blocks). Due to the different lengths of rail cars, when

assigning blocks to the tracks a margin of safety in terms of block length was incorporated into

the system. Afterwards, the system looks to see whether all of the train blocks have been

assigned, if not then the system runs a loop lowering the number of active blocks by one in

attempts to see if the next iteration will fit.

42

2.4.3. Terminal Operations Optimization

A very different way of looking at optimizing terminal is an approach which looks at the

classification yard as a production system (Dirnberger J. a., 2007). This method looks at using

factory physics, lean, Theory of Constraints, and Statistical Process Control in order to improve

terminal operations. This research identified the pull-down process (actually the train assembly

process) as the bottleneck in a rail terminal. In order to improve operations at the pull-down area

this research proposes various improvement options including adding additional switching

engines and using the hump engine to help switch cars. More importantly, the research created

what is known as the Bowl Condition Manager (BCM) which helps managers determine the

quality of sorting after the hump process. This is important because sorting the cars properly the

first time allows the yard to focus on the pull-down process without being distracted by cherry

picking out of place cars or conducting what Dirnberger calls rework at the trim end of the yard.

2.5. Integration of Yard Operations and Main Line Operations

A combined solution, known as a dynamic car scheduling system, is one which integrates both

yard blocking and train dispatching models in a way to maximize train capacity and reliability

using a mathematical optimization. In his 2000 paper, Implementation Strategies for Railroad

Dynamic Freight Car Scheduling, Kraft notes that current difficulties with scheduling systems

can be “overcome by adopting an optimization based scheduling algorithm, which would couple

this decision making process by taking train capacities into account, and would allow for

dynamic routing of shipments based on delivery commitments and train capacity.” Dynamic

scheduling allows for changes to the current lookup table system, which statically assigns a

single path to each car based on its destination without taking other system factors into account.

43

These changes to the current system include identifying and utilizing all the paths available to a

car instead of only the original one, thus, creating a flexible car routing option. This “multi-

pathing” system, as Kraft calls it, is more reliable, mathematically, than a single-pathing system

in making the best use of all available train capacity and schedule slack time. This again is a

concept of flexibility, which as discussed earlier, is a major factor in reliability for railroads. This

concept can be theoretically established using simple probability calculations as shown by Kraft,

the single-pathing scenario of three links in a series which has a combined reliability of 51.2%

(0.8 x 0.8 x 0.8), whereas the multi-pathing scenario of three links in parallel which as a

combined reliability of 99.2% (1 - (0.2 x 0.2 x 0.2)). Refer to Figure 2.7 and Figure 2.8

respectively. These links and nodes can be thought of as mainlines and yards respectively.

Kraft looks at various options to assign cars to outbound trains based on the Dynamic Car

Scheduling process (DCS) but with respect to current railroad practices. The original DCS as

proposed by Kraft would require an overhaul of current practices in that very high data integrity

and accuracy would be required as well as a strictly adhered to schedule that to switch from the

full FIFO style of classification into a more priority based one. Kraft concluded in his paper a

decoupled, two step process for classification and train assembly:

1. At the yard: classify cars by yard block only, following the recommendation from the trip

plan but ignore the train information; and

2. At train assembly: count the number of cars assigned to each train and pull them from the

classification track irrespective of their priority, and if additional capacity remains on the

train, fill it with additional cars on the classification track.

44

Figure 2.7 Three Links in Series (Kraft, 1998)

Figure 2.8 Three Links in Parallel (Kraft, 1998)

From the notes above, this is a good way to implement a dynamic car scheduling system without

overhauling data collection and terminal processes while still being able to maximize train

capacity utilization so that all trains run at maximum capacity, even if car trip plans do not

necessarily require them to.

2.6. Summary

This chapter represents a broad, comprehensive literature review of existing research in freight

rail operations, classification yard operations and general railroad information. From the research

conducted, details of how a railroad network is set up, how it functions and how it can be

optimized can be determined. It is important to note that much of the existing literature has been

focused on mathematical optimization modeling and this leads to a lot of focus on single

elements of a larger network resulting in slightly unrealistic results.

45

3. RAILROAD NETWORK SYSTEMS

This chapter reviews the major components of the physical railroad network as well as the

operating rules and regulations by which railroads function. Additionally, this chapter discusses

various model components as reviewed in multiple existing models. The elements discussed here

are very general in nature.

A railroad network consists of a set of stations (or yards) connected by rails upon which trains of

rail cars powered by locomotives travel. This travel is the movement of goods from the origin

(the starting) yard to the destination (the finishing) yard. The operations of a railroad can

typically be split into two separate categories: yard operations and linehaul operations. Yard

operations include classification, inspection and maintenance of the individual rail cars whereas

linehaul operations involve the actual movement of the cars from one location to another.

It is important to note that railroads operate with four (4) major operating plans in place. These

include the blocking plan, the train formation plan, the train schedule and the empty car

distribution plan. The blocking plan regulates the contents and the number of blocks whereas the

train formation plan regulates which blocks make up each train and how the traffic will flow over

the network. The train schedules and empty car distribution plans are typically created after and

often do not affect blocking or formation plans (Martinelli, 1996). This thesis is focused on three

(3) of the major components of the operations plan including the blocking plan, the train

formation plan, and the train schedule.

46

3.1. Railroad Network Models

Rail network routing models can typically be classified into two types: optimization models and

simulation models. This section discusses these two types of models. These models sometimes

combine and integrate yard operations with mainline operations in order to provide a

simultaneous routing of traffic and workload output at yards.

3.1.1. Mathematical Optimization Models

Mathematical optimization is simply the minimization or maximization of a single objective

function given a set of constraints by which the system is governed. In doing this, analysts often

only get “optimal” results with respect to one aspect of the railroad network such as number of

car switches or overall distance of travel for cars. No literature reviewed in the course of this

study utilised multi-objective function optimization to determine an optimized solution.

Mathematical optimization can run specific algorithms and determine various things

individually, such as shortest path, lowest cost or minimum time in the network. Though this

may be an effective way to solve for a minimum in that one specific category this is not realistic

in that railroads have many criteria which must be satisfied simultaneously.

Since a rail network is so complicated and has so many different individual systems involved, it

is easy to see that single function mathematical programming solutions would never be globally

optimized. For example, minimizing the number of switches for individual cars can lead to long

waits in order to create specific unit trains which carry only one type of O-D traffic. Though this

will certainly make sure that the individual car is only switched at its Origin yard and then at its

47

Destination yard, it will create havoc for the railroad and the consumer in terms of delay, wasted

storage space and lost revenues.

3.1.2. Simulation Models

Simulation is the imitation of something real (a process, a system, etc.) and can be represented as

a physical model or as a mathematical model. Simulation models are defined as “abstractions of

a real system which retain the essential aspects of a system” (Papacostas & Prevedouros, 2001).

In saying that, it is important to note that since simulation models are abstractions of reality, they

are not exactly the same as real life. This means that some simplifications are necessary, but the

major system components are always included.

Simulation is often most typically used when a system is so large and so complex that an

analytical model would be inefficient and costly. Such an example of a large, complicated

system is a railroad network. The railroad system is one with many individual components which

work together in order to move traffic from origin to destination. Though there are physical

models of railroads (model train sets) these are different from the large scale mathematical

railroad network models used today in industry. The reason large scale mathematical models are

used is because the cost of implementing various train strategies in a test scenario in real life

would be very costly, time consuming, and aggravating to customers.

Mathematical Simulation models can be either deterministic or probabilistic in nature; however,

railroad network models are typically deterministic in nature. This is because railroads are, on a

whole, typically steady state systems with relatively low fluctuations in traffic patterns on a day

to day basis (Interview with Ray Dai of CPR, 2010).

48

3.1.3. Comparison of Models

Often optimization results are very general and they are not easy to implement in real life and,

thus, a simulation model can prove to be more effective in creating a more real world scenario.

Simulation can provide many individual details (outputs) at the same time given the same inputs

as an optimization model, but not require running multiple individual models independently of

one another. In addition, simulation is more realistic, existing conditions can be easily modeled

whereas an optimization model is more general and may not consider day to day events such as

track closures or routine maintenance operations without excessive programming. With

simulation, a mathematically optimized solution is not typically found. Instead, results are

provided for review and through completing multiple iterations of the analysis with varying data

or criteria, using human intelligence, a “best case” integrated solution can be determined.

For the reasons stated above, this research will focus on a simulation model to accomplish its

goals. The mathematical simulation model developed is a discrete-state, and deterministic

simulation model.

3.2. Classification Yards and Yard Operations

Yards are the hubs for all originating and terminating traffic. In a railroad network, yards are

where cars go to get “classified” (sorted) into their respective “blocks” (groups of cars with

similar properties such as destination or car type) after which they get built into trains to be

dispatched. These cars can be originating traffic stemming from the yard or they could be cars

which have been transported from other yards and have to be reclassified.

49

There are four major operations at any given classification yard. Although for any one car, these

operations happen sequentially and the next operation depends on the prior operation. Large

yards typically continue to run 24 hours a day and all tasks happen simultaneously. Typical

operations at a classification yard can be grouped into the following (also refer to Figure 2.3):

1. Train Receiving and Inbound Inspection;

2. Classification or Sorting of Cars onto Classification Tracks;

3. Train Marshalling or Assembly; and

4. Outbound Inspection and Train Departure.

During the receiving, the inbound inspection is comprised of checking the rail cars for structural

integrity, safety, as well as the consist of each car. During this time period in a hump yard, the

yard crews will turn off the air brakes so that cars become free rolling (this way they can be

pushed or pulled as required) and the cars will then be put into queue so that they can be

classified. In a flat yard, the inbound cars will be uncoupled and split up only at the cut limits

and the air brakes will only be bled if individual cars are being classified.

The cars are then sorted onto various classification tracks which act as temporary storage for use

while building a new train or a portion of a new train. This sorting, or classification, is conducted

in one of two ways: by using gravity such as in hump yards or by using switching locomotives in

flat yards as described above. Once the cars have been sorted onto the classification tracks into

their new yard assignments and the cut off time for the departing train has come (time at which

the train must be built for departure) the cars are built into an outbound train at the trim end of

the yard, inspected as they were during receiving, and released to their next destination after a

brake test.

50

3.2.1. Individual Yard Capacity

Yards can typically be assigned average capacities as is done in various papers such as Martinelli

and Teng (1996), Assad (1980) and as per the case study in Troup et al (1977). In these

situations, the yard is looked at as a black box where cars go in and cars go out (there needs to be

a conservation of flow here) but the specific yard operations are not typically modeled in train

routing/makeup models. In essence the yard can be looked at as a black box where incoming

trains arrive and are processed, and outgoing trains depart. In spite of this, yard resources affect

how many cars can be classified (the capacity) and how quickly. Factors affecting yard capacity

can include sorting techniques and strategies, system loads, and yard management.

3.2.2. System Effects on Yard Capacity

There are various system factors which influence how individual yards perform on a daily basis.

The following is a list of the major factors which affect individual yards adopted from Troup et

al (1977) pp176.

a. Composition and delivery times of cars from other yards (system, interchange or even

industrial);

b. Time allowances for delivery of cars to their destinations (i.e. contracts – this can often

be precluded when modeling routing of trains or blocks and agreements can be readjusted

between the industry and the railroad with notice based on schedule changes from the

railroad);

c. Constraints on sizes of trains (based on yard sizes, main line track infrastructure

strengths, and motive power allocation);

51

d. Availability and reliability of advanced information (train formation, consist information,

etc.) of incoming train traffic;

e. Rules and regulations for crews (unionized members);

f. Blocking and formation strategies followed in other system yards (i.e. yards working

together).

These above factors are just the broad spectrum of what can affect a yard outside of the yards

own management and resources. These are all things which are not within the control of

individual yards and, therefore, must be looked at and treated on a macro-network system level

in order to reap the benefits of synergy in the network. Making the entire system work together

in order to optimize the flow of traffic can lead to far greater benefits than the optimization of

individual yards.

3.3. Mainline (Linehaul) Operations

Track segments between yards can be single lines or multiple parallel lines which move between

yards in the network. Trains can typically move in opposite directions on the lines so long as

there are prebuilt sidings (short train length segments of track) where one train can wait while

another one passes. These sidings not only allow trains to pass each other in the opposite

direction but also in the same direction such that trains with higher priority and speed can

overtake slower or lower priority trains. The geometry of the main lines can affect how fast

trains can move on the lines and how heavy the trains can be. The important part of linehaul

operations involve decisions about which trains move which blocks over a given set of tracks in

order to get from one yard (origin) to another (destination).

52

3.3.1. Origin-Destination Travel Demands

Origin-Destination (O-D) demands are represented by the number of rail cars destined to arrive

at a given yard from an origin yard. This is similar to other forms of transportation such as

automobile. O-D demands on any given network are based very much on the economy and

industries located along rail routes. Though this is the case, railroads can still accurately predict

the travel demands on their network on, at the very least, a seasonal basis with some room for

fluctuations, and design an operating plan to justify running various trains in order to serve the

travel demand.

3.3.2. Train Composition (Pull lists)

Trains themselves are a composite of locomotive power (1 or more engines) and sets of blocks of

cars traveling in the same direction. A train can carry any car or set of cars (blocks) as required

by the railroad. The makeup of the train, the pull list (list of which blocks to take on its journey –

also known as block assignment), is a very contentious issue because if done correctly it can help

to prevent delays and minimize costs, but if predicted incorrectly the effects can be devastating

and crippling to a railroad. These lists are developed in an attempt to create minimal impacts on

the overall system.

Depending on the train route, different blocks of cars traveling to various destinations (either

final or intermediate) can be pulled. This means that trains do not have to pull blocks going to

the same destination as the train. They can pull additional traffic (preferably moving in the same

direction overall) in order to bring the traffic closer to its final destination yard. This can help in

keeping traffic moving and prevent traffic jams at yards.

53

3.3.3. Train Routing

The physical infrastructure, e.g. the tracks and yards, are typically set and not often the subject of

tactical planning studies. The actual use of existing physical systems is what is often being

planned, and this is done through creating itineraries based on physical routes and transportation

demands. Figure 3.1 shows an example of a simple network of 6 yards (the black dots) connected

by 10 sets of railroad tracks (lines). If for example there is a travel demand for traffic to travel

from yard 1 to yard 6, there are four different physical routes possible: (1, 2, 4, 6), (1, 2, 5, 6), (1,

3, 4, 6), and (1, 3, 5, 6). Along physical route (1, 2, 4, 6), there are four specific itineraries

possible and this is shown in Figure 3.2. The itineraries show how a block of cars which are to

travel from yard 1 can travel to yard 6 based on the (1, 2, 4, 6) physical route. The itineraries

(denoted by I#) show where a given train will travel from yard 1 to yard X on the way to its final

destination, each straight line between the arrows shows a different train. The most direct route is

one where a train travels from yard 1 to yard 6 without stopping at yards 2 or 4 but this can be

expensive and the demand may not justify running a straight train in this manner, therefore,

itineraries for each block of cars is required. The decision of which route to take can be affected

by the various factors suggested in prior sections but can also be adjusted based on travel

demands (Origin-Destination).

3.4. Network Element Interactions

This section presents how various elements of a railroad network interact with each other. The

types of elements which can affect a network can be categorized into two specific sections:

system elements and external elements.

54

Figure 3.1 Example Network Railroad – Martinelli and Teng (1995)

Figure 3.2 Train Itineraries for Physical Route (1, 2, 4, 6) – Martinelli and Teng (1995)

55

3.4.1. System Elements

System yards collect railcars from local industries (origin) and dispatch railcars to other yards

(destinations) in order to move traffic from one place to another. The network of yards is a

system where cars from one origin to another destination must travel in order to get as close as

possible to their final destination. The cars at system yards do not typically generate and

terminate exactly at those yards, but somewhere else local to those system yards.

For the purposes of modeling however, cars generated at local yards can often be considered as

being generated at system yards. Cars at the originating system yard must be sorted into blocks

which are moved on road trains from yard to yard until reaching its final yard destination, being

resorted or classified along the way at intermediate yards as required. In order to allow the

system to run smoothly and efficiently the car, block and train loads must be balanced in such a

way that it takes into account the traffic demands, yard capabilities, and main line capabilities.

This must be done in order to maximise profits and reliability while minimizing delays and

operating costs in order to satisfy the systems needs.

3.4.2. External Elements

Within the system there are other factors such as crew resources and unions which can affect

what, how and when work takes place, and there are government and regulatory restrictions

which can affect the performance of trains. Often these elements are not modelled. Crew

management can be excluded because it is a separate topic and it is typically considered that the

crews will be available for the operations that are being modelled. Regulatory elements such as

car inspections and safety do not need to be included because they are typically incorporated into

the train speeds or yard processes and are, therefore, often not modelled in a network sense.

56

Other elements such as regular maintenance and fuelling of locomotives, car repairs, are all

typically built into the schedules while yard work is being completed (e.g. while cars are being

classified, others are being fixed, engines are being maintained, etc.). This way they are not the

controlling operation and, therefore, become secondary focuses which are not often modelled in

existing routing models which have been reviewed as a part of this study.

3.5. Typical Model Components

A model is comprised of multiple segments which, together, create the whole picture. These

components include model objectives (objective functions), model constraints (model

formulations and calculations), model input data, and model output data. These are explained

below with examples of typical elements provided.

3.5.1. Model Constraints

There are various constraints and factors which must be considered when building a computer

simulation model for a railroad network. These constraints are what make the model realistic and

provide some resistance to the actual routing of cars throughout the network.

The following is a list of constraints upon which various previous models have been based:

a. Physical Constraints in the Network (such as yard and link data);

b. Individual Yard Capacities;

c. Yard Dwell Times;

d. Maximum and Minimum Train Lengths;

e. Maximum and Minimum Block Sizes;

57

f. Flow Conservation in intermediate yards (what goes in must come out);

g. All Cars must be Routed from Originating Yards to Specific Destination Yards

irrespective of how many intermediate yards they go through;

h. Cost constraints on specific movements (i.e. resistance on certain routes);

i. Time constraints based on delivery commitments (i.e. an exponential cost function in

order to mitigate delays or rerouting).

Though not each of the above noted constraints are considered in every individual model, the

above list goes to prove that many factors must be considered in the preparation of any model.

These constraints are what make the model fit into a system and define the characteristics of said

system. They also provide insight as to how the system works and how each element interacts

with one another within the system in reality. For example, if a constraint is put on the maximum

speed of a train on the network, the train will only be able to move that fast throughout the

course of its journey. An example of such a constraint is presented in Equation 3.1.

St ≤ Smax (3.1)

where,

 St = the speed of the train (km/h); and

 Smax = is the maximum allowable speed of travel on the entire network (km/h).

3.5.2. Model Objective Function(s)

When looking at optimization models, each model has a specific objective function. This is the

one individual item that a model is trying to optimize (either minimize or maximize) in order to

58

determine the “optimum” configuration of a given set of parameters in a specific network. This

objective function takes into consideration the various constraints considered in the model and

prints a specific output. The following list shows some general objective functions which have

been studied in past literature of mathematical optimization models:

a. Minimize car dwell time in yards (blocking optimization);

b. Minimize car costs (based on time spent on the network);

c. Minimize time spent on the network (while attached to a road train – e.g. transit time);

d. Minimize total number of car handlings/classifications (blocking optimization);

e. Minimize operating and delay costs (blocking or transit time optimization); and

f. Maximize number of cars which can run through a network.

The downfall of this method is that it looks only at one specific objective function and does not

consider all of the intricate realities of the entire network. Even with many constraints built into

the system there are often other considerations which are missed. Adding too many additional

constraints to the model can possibly render it computationally impossible to solve. An example

of this type of objective function is presented by Martinelli and Teng in Equation 3.2. This

equation represents a minimization problem which focuses on the overall operating time for a

given train/cars on a train over the course of travel time over a specific route and arrival

operations at the destination yard. This focus on minimizing the time does not particularly

consider the number of cars per yard or the total number of car handlings in a network.

Minimize Z= (∑j=1 tj * Xj) + (∑j=1(δ * Xj * cj + vj *Xj)) (3.2)

where,

59

 tj = average travel time for train j (hours)

Xj = number of cars on train j (# of Cars)

 δ is a 0-1 function which determines whether the constant cost is applied or not

 cj = constant operating time at the destination station (hours)

 vj = variable operating time at the destination station (hours)

The small scope of optimization functions is not a problem in simulation models as a simulation

can provide various results on any or all of the factors mentioned above. Though the system may

not be mathematically optimized for any individual function, the model can present various

outputs simultaneously. These outputs can be analyzed individually or together, providing a

more complete system overview as opposed to a narrow individual function. Optimizing

individual criteria may lead to losses in other sectors of the system, and a whole network synergy

may not be realized. The downfall of a simulation however involves running multiple analyses

and manually reviewing results in order to find a best solution as opposed to a mathematically

optimized solution. With simulation there is no “optimized” solution and thus an analyst may

revise and re-run simulations may be present in order to get a “best case” plan. This can prove be

quite time consuming should the analyst be unfamiliar with a specific model, however, the

overall result of a best solution can prove to be a more globally refined operations plan.

3.5.3. Model Input Data

In any given model there must be inputs which are entered by the user in order to feed

information to the model. Within railroad networks there are quite a few sets of data which are

60

required prior to even beginning a simulation or optimization in order for the model to run

realistically. The following is a list of typical input data used in existing models (based on

literature review). The list also includes whether the inputs are fixed (always the same when the

model is used) or variable (can vary between model uses):

a. Physical constraints of the network (number of yards, yard locations, lengths of tracks,

train running speeds) – these are typically fixed, however speed can be adjustable;

b. Motive power (number of locomotives) – this could be variable, fixed or assumed to be

infinite if not explicitly included in the model (i.e. railroads can acquire more power as

needed);

c. Crew requirements – this could be variable, fixed or assumed to be infinite if not

explicitly included in the model (i.e. railroads can acquire more crews as needed);

d. Travel demands (O-D) – variable (though they vary over time, these values are known or

estimated from past data);

e. Physical or variable costs for car movements of delays – variable (though they vary over

time, these values are known or estimated from past data);

f. Possible physical routes for trains – fixed (though the model can either determine routes

or they can be manually supplied);

g. Possible itineraries for all physical routes – fixed (though the model can either determine

itineraries or they can be manually entered);

h. Operating times for routes and itineraries – variable (known or estimated based on

congestion, speed restrictions, noise laws, etc.);

i. Typical Yard capacities (if the yards are looked at as a black box as suggested in Troup et

al (1977)) – these are typically fixed (estimated from past); and

61

j. Individual Yard operating times (if the yards are looked at as a black box as suggested in

Troup et al (1977)) – these are typically fixed (estimated from past).

The data inputs will all be entered into the model prior to or during the course of running the

model and will be used to determine the individual or various outputs which the model produces.

3.5.4. Model Output Data

The output(s) of a model are what the analyst requires in order to help make decisions about the

system and how to optimise performance. Optimization models often only provide a single

optimized output with some various outputs on “how” to get there, such as train configurations

or blocking movements. Simulation models on the other hand can often provide multiple and

various outputs which can be analyzed all at once, though not mathematically optimized, they

can be iteratively optimized by the user and running multiple simulations. The simulation

approach allows a more comprehensive and integrated system optimization rather than a single

function optimization.

The following is a list of various output(s) of existing models:

a. Physical routes and itineraries for given car(s)/block(s)/train(s);

b. If it is a train formation model – number and sizes of trains to be created (given a

blocking plan);

c. If it is a blocking model – number and sizes of blocks to be created;

d. Number of times each car is handled/switched;

e. Flow through each yard;

f. Number of cars in each train or in each block;

62

g. Number of trains required on a timely basis (and in turn crew requirements, overall costs,

etc.); and

h. Various or Overall costs (based on cost functions in the model).

The results of the above outputs will not only help to satisfy the objective function(s), but also

show what a railroad should do to accomplish the goals set out by the model and a means of

measuring the changes. These outputs must be analyzed by the user to determine whether they

are realistic and employable as well as if they actually make the system perform better than in its

current state.

3.5.5. Existing Routing Methods

The process of routing cars, blocks and trains, is an iterative and complicated process. Various

operating plans (the blocking plan, the train formation plan, the train schedule and the empty car

distribution plan) must be combined by the railroad to create a final operating plan which is not

only functional but also “optimal” / “best case.” It is important to note that in general, railroad

traffic is fairly steady state. There are some seasonal variances and some economic factors which

can affect railroad traffic but in general it is assumed that traffic at least on a monthly or seasonal

level is steady state. For this reason railroads are able to create general train schedules and static

blocking plans with reasonable confidence.

When running simulations of their networks, railroads supply their current software with various

data which includes static blocking plans, train schedules, traffic files (OD data, car types, etc.)

as well as network topology and geography. They, then, use the shortest path algorithm such as

Dijkstra’s algorithm in order to determine the shortest path for each individual car moving from

63

one node to another. They often combine a shortest path algorithm with one which takes

resistance factors into account, thus, preventing cars from being assigned undesirable paths.

After this, the software will assign each car to a specific predetermined block or set of blocks

which are destined to travel from node to node. The blocks are, then, assigned to individual

trains which carry them to their destinations. The existing models also provide various system

and network statistical data by which users can review overall system performance (Oliver

Wyman Group, 2010).

With this system, different sections and groups within the railroad come up with the different

strategies which make up an integral operations plan. This means that if there is a train schedule

is causing the blocking plan to be less efficient because trains are not scheduled at the time

blocks are ready, the blocking coordinator would have to go to the scheduling coordinator and

the two would have to go back and forth, running a long and time consuming simulation each

time. With the model developed here, the back and forth of two separate groups working on

individual plans is taken away. Instead, with the model and guidelines proposed, one analyst can

develop, test and analyze an integrated operations plan with only traffic, network, and yard data.

3.6. Summary

This chapter has reviewed the optimization and simulation models in order to determine which

one is the most suitable method for this thesis. This chapter also reviewed the major components

of the physical railroad network as well as the operating rules and regulations by which railroads

function. It has provided the basis for setting up and creating a model which will assist in

optimizing railroad networks on a whole. From the discussion in this chapter, selective criteria

64

are carried forward into the model development which address the major areas of concern with

respect to performance enhancement and cost minimization.

65

4. MODEL DEVELOPMENT

This chapter outlines the development of the simulation model and the methodology. This

chapter also discusses inputs and outputs to the model, as well as the guidelines which assist in

developing operation plans. Finally, model capabilities and limitations are discussed.

4.1. Model and Guidelines Overview

Railroads move freight traffic on their network based on an overall operations plan that includes

blocking, train formation, and train scheduling plans. The optimization of these operations over

the entire network is integral to maximizing efficiency and minimizing costs. The model

developed here uses a discrete state, deterministic simulation approach for analyzing various

operation plans of a railroad network. Along with the model, various guidelines for establishing a

comprehensive operations plan are developed. The objective of the operations plan is to move all

the freight on the railroad network reliably and with a minimal cost. In order to maintain reliable

service with a minimal cost, various factors must be reviewed such that they can be compared

amongst several alternative options. By analyzing and comparing several options using a

straightforward and consistent criteria will help in providing a ‘best case’ operations plan with

the aforementioned goals in mind. These factors for comparing multiple operation plans are

described, in detail, further in this chapter.

The general overview of the model is shown in Figure 4.1. The major components include

general network data entry, operation plan formation (various route restrictions, train schedules,

and blocking strategies) and data entry, block to train assignments, train and O-D pair routing, as

66

Figure 4.1 Model Overview Flowchart

well as analysis of operation plan and model results. To accomplish the data requirements of the

model, the analyst must enter some general network data including number of yards (variable),

number of trains (variable), and number of routes (variable), as well as minimum and maximum

train sizes. The data entered here affects what data will be required for each yard, various routes,

O-D pairs and train schedules. Typically, the yard, route and O-D data are fairly standard, or

given, for a particular network. The train schedules should be prepared using the methodology

and guidelines developed in this thesis, which are both straight forward and easy to use.

Once this data entry is complete, the model tentatively assigns blocks to trains using the 3-step

process developed here and allows the analyst to review the assignments for inconsistencies.

67

Since the analyst can review the block to train assignments, Braess Paradox may be avoided.

This paradox occurs because the model selects the shortest possible route for each train, without

consideration for the entire networks’ movements. Once the block assignment is complete, the

model then prioritizes trains based on build times and special handling requests. This allows the

model to build a queue list for each yard and provide the analyst with details of when each train

is using yard resources. The model, then, initiates the train routing algorithm simulating the

operation of each individual train and transporting each individual car in its O-D pair.

The model can output various individual train statistics, route statistics, and yard statistics

including when each yard is being used (for building or receiving trains). In these results, the

analyst can retrieve much needed data required to make a decision on which operations plan is

the ‘best.’ Though it is not always clear which plan is best, using the guidelines developed in this

thesis, a used can determining the “best case” plan based on various economic, reliability and

environmental factors. The model can also be used to test various train plans, blocking plans, and

yard plans (including resizing/closing yards). Alternatively, the model can also be used to

determine what effects traffic pattern changes would have on the network. More details about the

model components are presented in the following sections of this chapter.

4.2. Model Data Inputs

Various data requirements are present for the model to be effective in providing a realistic

simulation. Data input into the model are broken down into several distinct sections:

1. Network Data;

2. Yard Data;

68

3. Route Data;

4. Origin-Destination Traffic Data; and

5. Blocking Plan Data.

These inputs and their functions are described in the following subsections.

4.2.1. Example Network

Figure 4.2 shows an example of a large and comprehensive railroad network in Canada and the

northern United States owned by the Canadian Pacific Railroad (CPR) Company. The tracks

shown are the major lines connecting all of CPR’s major nodes of operation and City Centers.

Each of these Cities has a large yard on the CPR Network. Although additional yards of various

sizes exist on the network, this map only covers the major City Centers.

For the purposes of this thesis and providing a detailed explanation with examples of the model

inputs, a small hypothetical subset of a large network, similar to that of CPR’s, has been

provided as shown in Figure 4.3. The examples in all of Sections 4.2.X were created in reference

with this network diagram.

4.2.2. Network Data

Network inputs include the number of yards, number of trains, maximum and minimum train

sizes, and number of routes. An example of the network data as it is input into the model is

provided in Table 4.1. The number of yards represents how many yards are in the network being

analyzed and is typically a static number. The number of trains is typically a variable number

which varies over the course of the analysis and can be changed as often as the analyst chooses

to do so. The minimum and maximum size for each train is measured by number of cars.

69

Figure 4.2 Example Railroad Network Map (http://www.cpr.ca)

Figure 4.3 Example Network

70

Table 4.1 Example of Network Inputs

Total Number of Yards
5

Max Train Size
999

Min Train Size
0

of Trains
15

of Routes
25

This is variable and can depend on, but is not limited to, the following: how the network is setup

and the available locomotive power or size of sidings on mainline tracks. The number of routes

is dependent on how many yards exist in the network, their configuration, and the links between

them. The number of yards and number of routes can also change based on the analysis being

completed. For example, if a sensitivity study on the closure of one yard was being conducted,

removing a single yard from the network would have effects on the number of routes (as all

routes going through that said yard would be negated).

Though there is no limit to how many yards the model and software application can work with,

the software needs to be reconfigured manually when the number of yards changes. As with the

yards, there is no actual limit to the number of routes or trains that the model can handle, but

some software manipulation may be required if the number exceeds 50 and 35 respectively. It is

important to note that additional yards, additional routes, and additional trains cause slower

simulations. There are no software limits on the number of cars a train can carry. As the analyst

adds data into the model, the number of yards, trains, and routes can change during the

71

assessment of a network. Though it is quite easy to change the number of trains and routes, up to

35 and 50 respectively, as one would just need to add or subtract routes and trains, it is slightly

more difficult with yards. The yard data, discussed below, is simple to adjust, but the Origin-

Destination tables discussed below, require some more adjustments because removing or adding

a yard can dramatically change the O-D’s and the changes must be reflected within the model.

4.2.3. Yard Data

Yard data consists of yard identification (ID), the type of yard, yard input time and yard output

time. The Yard ID is a sequential numbering system starting at 1. This is a simplistic measure for

the model to identify each yard. For example if there were 5 yards in the network, each yard

would be given an ID number from 1 to 5. The daily blocking capability of a yard is limited to

the maximum number of yards in the network. This is due to a software limitation which does

not take into account more than one type of O-D traffic pairs. If other classification

characteristics for O-D traffic were to be incorporated then additional blocks would need to be

formed.

The Average Yard Input (Incoming Train) Time includes Train Receiving, Inbound Inspection

and preparation for the Classification of cars. The switching time per car is the amount of time it

takes, on average, for one car to be classified. This average time is how long it takes a car to

move from the control of the switching engine to its respective classification track. The Average

Yard Output (Yard Service) Time includes Train Assembly, Outbound Inspection and Train

Departure. An example of the yard data as it is entered into the model is shown in Table 4.2. The

Type of Yard can be a Hump Yard or a Flat Yard. The Type of Yard and the Minimum Pure

Block Size are for information purposes only.

72

Table 4.2 Example of Yard Data Inputs

Yard
Number

Type
of

Yard

Daily
Blocking

Capacities

Minimum
Pure Block

Size

Incoming
Train Prep

Time
(Minutes)

Switching
Time Per

car
(Minutes)

Yard Service
Time (Per

Train -
Minutes)

1 Hump 4 10 00:15:00 00:00:30 00:30:00
2 Flat 4 10 00:25:00 00:00:45 00:30:00
3 Hump 4 10 00:20:00 00:00:30 00:25:00

4.2.4. Route Data

Route inputs involve the user manually entering the various routes between each yard (so long as

they are connected). This is dependant also on whether the user decides to allow a specific route

to be used between two yards. If a route is not entered into the model, the model assumes that it

does not exist. An example of the route inputs into the model is provided in Table 4.3. The user

must enter the origin yard, the destination yard, path between the yards (i.e. which yards the train

would pass as it travels) and the overall distance between the two yards along that specific path.

The model determines which of the various routes/paths is the shortest and, then, assigns that

specific route/path to each specific train accounting for any connections present.

In the example, Route #4 and Route #5 both originate and terminate at yards 2 and 3,

respectively. If the model were presented a choice between the two routes, it would choose

Route #5 because the total route length is less than that of Route #4. If the user for some reason

did not want Route #5 to be used by the model, it should be left out of the Route Inputs.

73

4.2.5. Origin-Destination Traffic Data

Origin-Destination Traffic data are entered into the model in a tabular format which specifies

how many cars are generated at each origin yard destined for each destination yard. The model

can be setup to interpret the O-D data such that it is split up into 4 hour segments for a total

duration of a single day or duration of seven individual weekdays. Each of these segments is

considered to be a specific timeslot and this is used by the model when building trains. The time

period adjustment requires some programming modifications, but the methodology of the model

and formulations stay the same. Any O-D traffic data in the tables can be set to “Special Handle”

or Priority processing by formatting the text in the O-D table to be bold. This means that the bold

O-D traffic will always be handled (classified or assembled) first, prior to other similar traffic on

the train. Examples of O-D table can be seen in Table 4.4 and Table 4.5. An example of non-

priority and priority cars can be seen in Table 4.4 with O-D 1-5 at 08:00hrs and 12:00hrs

respectively. Other O-D’s can be interpreted similarly.

4.2.6. Blocking Plan Data

The blocking plan is set up by the user and determines which O-D pairs will be transported on

which blocks. The model determines whether the block is mixed or pure by realizing whether

there are multiple O-D pairs assigned to the same block or not. The number of blocks at any

given yard is limited to a maximum of the number of yards in a network less one. This is because

the model realizes only one type of car. There is no consideration for multiple classification

characteristics of O-D traffic. Pure blocks are denoted by a 1 and mixed blocks are denoted by a

0. This is determined by the model and is important because with train assignments, the mixed

74

blocks will be picked up by the first available train. This is discussed in more detail in Section

4.4.1.

Table 4.3 Example of Route Inputs

Route

Origin
Yard

Destination
Yard

Route Path (Yard to
Yard)

Route Length
(km)

1 1 2 12 55
2 1 3 13 45
3 1 4 14 130
4 2 3 243 205
5 2 3 213 100

Table 4.4 Example O-D Table for Daily Operations

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

1 1 1 2 2 0 1 0 0 6
1 2 3 3 16 9 27 0 0 58
1 3 1 2 11 5 6 0 0 25
1 4 0 0 0 0 0 0 0 0
1 5 2 5 34 21 40 0 0 102
Total 7 12 63 35 74 0 0 191

Table 4.5 Example O-D Table for Weekly Operations

From To Mon Tues Weds Thurs Fri Sat Sun Total

1 1 41 46 41 48 0 0 0 176

1 2 0 3 0 16 0 0 0 19

1 3 0 0 0 0 0 0 0 0

1 4 0 0 0 0 0 0 0 0

1 5 0 8 0 24 0 0 0 32

Total 41 57 41 88 0 0 0 227

75

Table 4.6 shows an example of a blocking plan at Yard 1 where only three (3) blocks are being

utilized. The Block number associated with each O-D pair is given and the model determines

whether the block is pure or mixed. Each O-D pair where the O is equal to the D is automatically

given a Block # of 0 because this traffic is deemed unnecessary to move from the yard. The

remainder are numbered from 1 to n-1 (where n is the number of yards) in any order determined

by the user. The example also shows the blocking plan at Yard 2 where each O-D pair has its

own traffic block.

4.3. Guidelines for Train Scheduling

This section describes the process by which a user can create or adjust a proposed train schedule

in order to clear the O-D tables (move each O-D pair from its Origin Yard to its Destination

Yard) for the analysis period. A train schedule should be based on historical traffic data from

Table 4.6 Example of Blocking Plan

Yard 1
Destination Yard Block # Pure or Mixed

1 0 1
2 1 1
3 2 1
4 3 1
5 3 0

Yard 2
Destination Yard Destination Yard Destination Yard

1 1 1
2 0 1
3 2 1
4 3 1
5 4 1

76

railroads. Traffic is typically steady state over the whole of the railroad network. This means that

once a train schedule is set, it is often in place for a long period of time. Figure 4.4 shows the

general steps with respect to creating a preliminary train schedule. This should be created in

conjunction with the blocking plan to ensure the optimal coordination.

Figure 4.4 Process for Train Scheduling

77

`The process should be repeated for each yard at least once, in order to assure that there is one

train leaving each yard. If there is no originating train at a single yard, at a minimum, a

connecting train should be provided, otherwise, all traffic will get stuck at the yard with no way

out. Additional trains at each yard should be created on an as needed basis. The process can be

repeated bearing in mind the largest O-D demand should be substituted by the remaining largest

in a yard, if trains have already been created originating from that yard.

The following provides some insight for the analyst when selecting yards and creating trains.

The train plan should start by determining which yard the most O-D traffic originates from and

which yard it is destined to. It must be determined whether there are enough cars during the

analysis period to fill an entire train or if additional cars may be required. It is important that at

least one train terminate at each yard and on at least one train pick-up cars at each yard by

originating or by connection at that yard. This will ensure that all cars will be given an

opportunity to get transported.

Scheduled times for each train must be determined by the user. This should be done in a way that

when a train is built, the cars are readily available in the yard. For example, if 30 cars are

available at 1200hrs and an additional 45 cars are not available until 1600hrs then it would be

best to build the train at or after 1600hrs. There is a balance of how many cars are available at

any given time and how long cars must wait inside a yard at any given time for a train to be built.

The sooner traffic is moved from the yard it originates from, the faster it can reach its

destination. At the same time, if a train moves with a less than full load of cars then the

economies of scale on crew and locomotive costs may not be realized. If there are enough cars

for one single O-D pair to fill an entire train, the absolute earliest time for train departure must be

assessed in order to limit car waiting time at yards.

78

Once all of the direct O-D trains (if any) have been established then the remainder of the trains

can be established. These remaining trains will carry multiple O-D pairs from one yard to

another. These are not necessarily the same yards as the O-D demand, but the progress of each

car should be towards its final destination. This is done by looking at the yards which have the

majority of the traffic and determining where the traffic is required to go. For example, one can

look at Yard 1 which may have O-D pairs of traffic going from Yard 1 to Yard 2 (1-2) and from

Yard 1 to Yard 3 (1-3). Assuming that the 1-2 pair has the majority of the cars, but not enough to

warrant a 1-2 only train and that the 1-3 pair has some cars but not enough to warrant a 1-3 train,

one can build a train which moves the 1-2 and 1-3 O-D pairs from Yard 1 to Yard 2. This way if

there are pairs of 2-3 traffic which must be transported from Yard 2 to Yard 3, the 1-3 traffic pair

will be combined with the 2-3 pair once it arrives at Yard 2. Yard 2 can now process and forward

the 2-3 pair (which is combined with the 1-3 pair that arrived from Yard 1) to Yard 3, its final

destination. Additionally, trains which are assigned connecting yards can be very helpful in

filling excess train capacity so that it does not go to waste. For example if there O-D pairs for

yards 1-3 and yards 2-3 exist with a combined traffic load sufficient to justify a single train, then

it makes sense to originate a train at Yard 1, connecting in Yard 2 and terminating at yard 3. On

its route it can pick up traffic from Yard 1 (originating) and Yard 2 (connecting).

4.3.1. Train Schedules in the Model

The Train Schedule is entered by the user with the six following characteristics: train number,

build time, origin yard, connecting yard, destination yard, and average train speed. The train

number is a sequentially numbered system by which the model identifies each train. The number

of trains here must match the number of trains identified by the user in the network inputs stage

(though this is something which can be revised by the user quite easily). The build time is the

79

time of day based on a 24-hour clock (or 168-hour clock for a seven day model) and for each

train it does not need to be in any specific order. The model determines when each train is built

automatically and, then, runs them in order based on a linear progression of time (not train ID

number). The origin yard, connecting yard, and destination yard are the yards which a train will

travel from, pick up additional cars from, and arrive at respectively. This is assuming that there

are routes which connect the origin yard to the destination yard.

If no routes are present, the model informs the user and stops the simulation for that specific

train. The final input is the (average) train speed by which the model calculates travel and arrival

times for each individual train. For each train the user is also required to enter whether special

handling (or priority) is required (this is a 0-1 variable). If the special handling variable is

triggered it directs the software to give priority (in any queue conflict situation) at yards, for

example, during the time of building a train or at the arrival and classification of cars.

An example of the input data for a train can be found in Table 4.7. In this example there are two

trains which run at 0800hrs and 1200hrs respectively. The first of the two trains starts in Yard 1

and ends in Yard 3. The speed is averaged to be 60 km/h and there is no special priority or

handling for this train required so the priority section is left as 0. Alternatively train 2 leaves

Yard 2, connects in Yard 4, and arrives at Yard 3 travelling at a speed of 70 km/h. Since this

train has priority for a reason determined by the user, the priority section is changed to 1. In this

manner, the entire train schedule can be entered into the model.

Table 4.7 Example of Train Schedule Input

Train # Scheduled Build Time OYard CYard DYard Speed Priority

1 08:00 1 - 3 60 0
2 12:00 2 1 3 70 1

80

4.4. Proposed Block Assignment Method

With respect to this thesis and the model it presents, the following routing methodology is

proposed. Users will be required to enter train schedule, static blocking, traffic O-D tables and

network geography data for the model. The model will suggest block to train assignments

(provide multiple options in some cases) for blocks from each yard to trains that are scheduled to

depart from each yard. The model also takes into account trains which pass through a yard and

conduct pick-up operations for specific blocks at a predetermined yard by assigning pick-up

blocks at connection yards. This operation, then, allows the user to intervene in the model

operation and adjust the block assignments as desired (one of multiple ways to conduct a

sensitivity analysis of the network).

A block can be assigned to one or more trains leaving from the same origin yard. This is

important because various trains will travel at various times of the day or week. This means that

multiple pickups for a block throughout the day can help to alleviate yard congestion and train

capacity overruns by moving freight more frequently. The following flow charts (Figure 4.4,

Figure 4.5, and Figure 4.6) show an overview and the step-by-step procedure of the routing

algorithm used in this model.

4.4.1. Block to Train Assignment in the Model

Block to Train Assignments are the backbone of the overall train movement simulation. Once a

train is scheduled, it needs a pull-list of which cars it is to take on its route. The block to train

assignment is the list of which blocks will be attached to each train. The model determines each

direct block assignment and each indirect assignment using the methodology presented here.

81

Although the Block to Train Assignments are recommended by the model, they still need to be

manually inspected and adjusted by the user as required. The user may adjust these

recommendations in order to represent a more realistic routing pattern or just to test additional

routing patterns as desired.

Figure 4.5 Step 1 - Assignment of Direct and Pure Blocks

82

Figure 4.6 Step 2 - Assignment of Direct and Impure Blocks

83

Figure 4.7 Step 3 - Assignment of Unassigned Blocks

84

Table 4.8 Example of Block to Train Assignments

Train # OYard CYard DYard Block Assignment

1 1 - 3 2 -
2 2 1 3 2 2

The example in Table 4.8 shows the block to track assignment as it is applied to Train #1 and

Train #2 scheduled as per Table 4.7 and using the Blocking Plan from Table 4.6. As per the

methodology developed in this thesis, it can be seen that Block #2 (assigned to O-D 1-3) is

assigned to Train #1. This is what is known as a direct, pure blocking assignment since the block

is not mixed and the train on which it is assigned is moving directly to the O-D pairs intended

Destination. For each connecting yard the block assignment is highlighted in the input cell.

4.5. Proposed Train Routing Method

The model takes the existing route data provided by the user and applies it to the train schedule

in order to determine train routes. This is done by determining the shortest direct path between

two nodes (bypassing all other yards in between if necessary) and only connecting to one yard if

specified by the user. This bypass method in the model allows trains to skip certain yards along a

route and thus skip additional classification procedures for cars which do not need it. Building

trains which bypass certain yards is a technique railroads have used in order to minimize

unnecessary classifications in the past, though it is often only applied to what are called unit

trains.

Once routes have been selected, the model calculates the desired arrival times for each train

based on length of route and average train speed. The desired build times and arrival times may

85

have conflicts (i.e. arrival of more than one train at the same time) at each individual yard and,

thus, the model calculates where these conflicts occur. If there are conflicts and the trains have

the same priority, the later train will get deferred until the earlier train has been processed. If one

train has priority over the other, it will be the first one processed irrespective of which train

arrived first (with respect to the time it takes to process each individual train at each individual

yard). This means the model can anticipate whether it should hold a low priority train in the

sidings while a higher priority train is on route. Using this methodology, adjusted arrival and

build times are calculated for each train (refer to Section 4.6.2).

At this point the model starts to process the trains in chronological order by build time

(irrespective of train ID number). Each block of traffic assigned to the train from the routing

process is attached to the train in order of the timeslot of when it is available in the O-D table.

This means that cars in the 08:00 hrs timeslot will be attached to the train prior to the cars in the

12:00 hrs timeslot. The only exception to this is if an O-D pair is bolded and deemed priority.

When there is a priority O-D pair, it is attached to a train prior to any others. When there are

multiple priority O-D pairs, they are attached to the train in chronological order. This is done

until the train reaches maximum capacity. Only cars which are ready prior to or at the build time

are attached to the train. This process is repeated for each train. If for any train the prescribed

minimum number of cars is not reached, the model does not run that train and alerts the user.

Once each train simulation is complete, the cars are added to the post simulation O-D table into

their respective timeslot. The model assumes that cars from a train are available in the

destination yard based on the actual arrival time plus the switching time (see Section 4.6.2 for

more discussion on this). The model moves the cars on the trains and updates the O-D tables,

printing the results on the screen in real time (as the individual trains are run). Once the overall

86

network simulation is complete, the user can determine if all the O-D demands have been

achieved or if the user must return to the planning stages and tweak the routing and/or the train

schedules to facilitate the full movements of the train. For guidelines on creating and tweaking

the train schedule, refer to Section 4.3. An illustrated example of this process is described below.

The following example of train routing helps to illustrate how the model conducts its routing

algorithm. From Table 4.9 it can be seen that Train 1 is scheduled to build at Yard 1 at 1200 hrs

and depart for Yard 2 whereas Train 2 is scheduled to be built at 1700hrs at Yard 2. The trains

will be assigned the shortest routes between the two yards (only two yards since there are no

connecting yards) of 55 km (determined from Figure 4.3). Assuming that Train 1 will take only

1-2 O-D traffic, it can be seen that all traffic from 1-2-1 (21 cars), 1-2-2 (33 cars), and 1-2-3 (11

cars) for a total of 65 cars will be taken. Similarly, Train 2 will take a total of 72 cars from 2-1-1,

2-1-2, 2-1-3, and 2-1-4, similarly. Since cars can only be taken from timeslots which are ready at

or before the build time of a train, cars from the 2-1-5 timeslot (2000hrs) will not be attached to

Train 2. O-D demand 2-1-3 is shown in bold meaning that it is of special priority. This means

that it will be handled first when it comes time to build the train. After this O-D is attached, the

remainder will be attached to the train and then the train will be ready to depart the station.

Since at least one O-D pair attached to Train 2 is of high priority, the arriving traffic from Train

2 will also be of high priority and is shown as bold text in the O-D tables below. Because each

train is travelling a short distance at a reasonable speed, it will reach its destination within the

time alloted to the next available timeslot. The cars from Train 1 are slotted to Yard 2 at 1600hrs

and the cars from Train 2 are sloted to Yard 1 at 2000hrs. Table 4.10 shows the original O-D

data whereas Table 4.11 shows the final results after the trains have been simulated.

87

Table 4.9 Example of Train Schedule Input

Train # Scheduled Build Time OYard CYard DYard Speed Priority

1 12:00 1 - 2 60 0
2 17:00 2 - 1 70 0

Table 4.10 Example Preliminary O-D Table

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

1 1 3 2 22 1 0 0 0 28
1 2 21 33 11 42 0 0 0 107
Total 24 35 33 43 0 0 0 136
2 1 12 21 25 14 32 12 0 126
2 2 6 3 8 8 3 0 0 28
Total 18 24 33 22 35 12 0 154

Table 4.11 Example Final O-D Table

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

1 1 3 2 22 1 72 0 0 100
1 2 0 0 0 42 0 0 0 42
Total 3 2 22 43 72 0 0 142
2 1 0 0 0 0 32 12 0 44
2 2 6 3 8 73 3 0 0 93
Total 6 3 8 72 35 12 0 147

88

4.6. Model Outputs

The model outputs various O-D tables, individual train statistics, route use statistics, and

individual yard statistics. This section provides an overview and examples of said outputs.

4.6.1. O-D Tables

The most important output of the model is the post simulation O-D table which provides

valuable information to the overall function of the simulated operating plan. The tables are

represented in place of the original tables as entered by the user. The new tables provide a post

simulation view on where cars are located within the network. The end sum of all the cars in the

network will be the same as the beginning sum (when the user entered the data) due to

conservation of flow.

The operational plan can be judged on whether all of the cars have moved from their origin yards

to their destination yards. If there are O-D pairs which have been left behind, then, the Operating

Plan has failed to some degree and some additional refinement may be necessary prior to

operational implementation. An example of a post simulation O-D table is provided in Table

4.12. In this example the table shows all the traffic to be received at Yard 1 totalling 117 cars

through the day. The yard 1 results are desirable, however, the table also shows 27 cars left over

in the 1-2 (20:00hrs) O-D. The 27 cars presented here have not been moved to their intended

destination and this is not a desirable result. As such, the user would review the operation plan

and determine the appropriate adjustment to the plan to fulfill the movement requirements. This

can be done by adjusting the train schedule/speed, blocking plan or even the original O-D tables.

89

Table 4.12 Example Post Simulation O-D Table

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

1 1 1 2 2 0 1 111 0 117
1 2 0 0 0 0 27 0 0 27
1 3 0 0 0 0 0 0 0 0
1 4 0 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0 0
Total 1 2 2 0 28 111 0 144

4.6.2. Train Statistics

Train statistics provide the following: Specific Route; Time for Route; Number of Cars

Transported; Amount of Time Required for Switching Cars; and Actual Build, Connection and

Arrival Times.

Specific Route

This is the route of travel for the specific train selected by the model based on the shortest route

of all the available routes entered by the user. If there is a connecting yard, the model selects two

separate routes, one for each leg of the journey between the Origin and Connection yards and the

Connection and Destination yards. This can be quite important if, for example, there are

residential communities along the given route and noise restrictions are in place. The analyst

then would have to readjust the routing plan, or train schedules in order to mitigate any noise

restrictions or by-laws in the area.

Time for Route

The model also shows the amount of time it will take a train to traverse a specific route as

90

selected by the model. This time is calculated using the following equation:

Ttrain(n) = Strain / Lroute(n) (4.1)

where,

Ttrain(n) = Time required for a specific train to travel the length of the route – for each leg

of the route (hours)

Strain = Speed of the specific train (km/h)

Lroute(n) = Length of a specific leg of the route (km)

In the formula above, n represents the leg of the route being assessed. Leg 1 (e.g. if n = 1)

represents the origin yard and/or the route between the origin yard and the next yard (could be

connection yard if there is one, or the destination yard otherwise). Leg 2 (e.g. if n = 2) represents

the connection yard and/or the route between the connection yard and the destination yard.

Number of Cars Transported

This is the total number of cars transported on the specific train after the simulation has been

completed. This is calculated by the following equation:

NUMcars = ‘NUM cars + O-Dcars(i,j,k) (4.2)

where,

NUMcars = the number of cars attached to a specific train in the current iteration/total

‘NUMcars = the number of cars attached to a specific train in the previous iteration

O-Dcars(i,j,k) = number of cars in an O-D pair (# of Cars)

91

i – Origin Yard (yard where the train is being built) (Yard #)

j – Destination Yard (yard where the cars are destined to go – not necessarily the same as

the train destination) (Yard #)

k – Timeslot for when the group of cars is being picked up (corresponds to the O-D-time

table as described in Section 4.2.5) (Timeslot #)

This is an iterative process by which the overall number of cars is calculated by running the

calculation multiple times until all of the required blocks have been attached to the train.

Amount of Time Required for Switching Cars

This is the time required for classification of all cars on a train once they arrive at the train

destination yard. This is calculated by:

Ttotalswitch = TPrep+ NUMCars* TSwitch (4.3)

where,

TTotalswitch = Total time required for switching an individual train at a yard (hours)

TPrep = Preparation time for switching each train (hours)

NUMCars = Number of cars on a specific train (# of Cars)

TSwitch = Time for switching each individual car as input (hours)

Actual Build, Connection and Arrival Times

92

The actual build time is calculated based on the desired build time entered by the user and the

various queues at the respective Origin Yard for each train. If there are no other trains being built

at the same time, the actual build time should equal the desired build time. Alternatively, the

actual build time for the current train will be delayed based on the length of time required to

build for another train which has already begun. The model calculates the actual build time based

on a table of trains being built at that given time at that same yard. Similarly, this is done at

connections and at arrivals for each yard individually.

The actual connection time is calculated using the following equation:

Tconnection = Tbuild + Tservice(1) + Ttrain(1) (4.4)

where,

Tconnection = Actual arrival time of train into connection yard (hours)

Tbuild = Actual train build time (hours)

Tservice(n) = Amount of time to build train as per user input for the respective yard (hours)

The actual arrival time of a train at a specific yard is calculated using the following equation:

Tarrival = Tbuild + Tservice(1) + Tservice(2) / 2 + Ttrain(1) + Ttrain(2) (4.5)

where,

Tarrival = Actual arrival time of train into destination yard (hours)

Tbuild = Actual train build time (hours)

Tservice = Amount of time to build train as per user input (hours)

93

The Tservice(2) is divided by 2 to cut the time down in half. This is because this model assumes

that the time required at a connection yard to attach cars to a train is not the same as the build

time required at the origin yard, since all of the inspection work required with the locomotive

and power required is shortened. This model also assumes that the cars are ready prior to the

train arriving at the connection yard, thus speeding up the connection process.

The time at which cars arrive in the actual class bowl and are attached to a specific timeslot in

the O-D table is calculated using the following equation:

Tarrivalfinal = Tbuild + Tservice+ Ttrain(1) + Ttrain(2) + Ttotalswitch (4.6)

where,

Tarrivalfinal = Actual arrival time of cars into the classification bowl of destination yard

such that they are ready to be incorporated into the next train (hours)

The timeslot where the cars are added to at the destination yard for each train is the next closest

(Tarrivalfinal rounded up to the nearest timeslot interval) timeslot corresponding to Tarrivalfinal in the

O-D table at that yard. More information on how the queues are calculated in the model are

provided in Section 4.6.3.

An example of the output as it is displayed by the model is provided in Table 4.13. Here, the

model displays only the final results, not the processes whereby it gets to the final numbers.

4.6.3. Yard Queue Determination

The model assumes a day has 2880 timeslots available to it over a 24 hour period (each timeslot

represents a 30 second period of time). With this, the model can assign a specific timeslot(s) to a

94

Table 4.13 Example of Train Statistics

Train Route1 Time Route2 Time
of
Cars

Switching
Time

Calculated Time

OYard CYard DYard

1 13 00:45 - - 87 01:03:30 08:00 - 08:45
2 21 00:47 13 00:39 56 00:48:00 12:00 12:47 14:01

train based on how long it needs each yard’s resources. Each timeslot is initially assigned a 0

which is replaced by a specific train number as the model progresses. Each yard has its own 2880

timeslots and each train is assigned to those slots as it uses the specific yards.

The model begins by placing priority trains into their respective timeslots first, followed by

regular trains. This process involves assigning one train at a time to the timeslots provided. For

each recurring train after the very first one, the model starts to determine whether there are any

conflicts with that train at that specific yard. If the starting time for the new train is in conflict

with another train (e.g. the timeslot is already full), the model determines the next available slot

and fills it with the new train. The model also ensures that the entire time required for the train at

the yard is in one single slot (e.g. the timeslots are all sequential) so that there are no stop and

starts for any given train. The model processes each train in order of entry (e.g. train 1 is slotted

prior to train 2) with exception to priority trains.

This process is completed for each train being built at the origin yard first, then the connecting

yard and then finally the destination yard. Since the assigned timeslots determine when the trains

will actually be built at the origin yard, new connection and arrival times must be generated for

each train. The model recalculates the new times for each train individually using the same

methodology as in calculating the desired times. The model, then, continues by calculating the

95

connecting yard timeslots for building trains and determines the new times based on the results.

After this, the model calculates the arrival timeslots for each yard. Since the switching time is

dependent upon the number of cars on a train (see Equation 4-6), during the first iteration of the

queue determination, the model assumes each train carries 75 cars.

This is done so that a relatively more accurate picture of how many cars will be on each train can

be gathered. Since the model runs each train individually, in chronological order, the arrival

times of cars into their respective yards’ class tracks can affect later trains’ lengths. This is the

reason the queue determination is run twice, once to determine semi-accurate train times and

again to determine more accurate times with train lengths taken into consideration. The second

iteration of the queue determination model follows the same processes (with the addition of a

determination of how many cars will be on each train).

4.6.4. Yard Statistics

At any given yard, the model provides information of how many cars were initially at the yard at

the beginning of the analysis period and how many additional cars are brought in and have been

classified in the yard at the end of the analysis period. This number includes cars which are

destined to end their trip at the yard and cars which are just connecting through. Additionally the

amount of time the classification engines (either hump or flat) are in use is also recorded as a

sum of all the individual trains throughout the day. This gives an overall amount of time when

the switching was being completed throughout the day.

The number of trains which have originated, connected through, or arrived at each yard is also

provided for the analyst. The train numbers can be very useful to an analyst when looking at

96

staffing levels at a yard and maintaining levels for the number of trains being processed. An

example of this set of outputs can be seen in Table 4.14.

Alhough the yard statistics output table shows the amount of time that classification occurred in

a day, it does not show the exact times when it occurred. There is another set of outputs, related

to yards specifically, which show yard usage at 30 second intervals throughout the day. This is

with respect to the schedules of each train and queuing at each yard. The model presents data on

the time when each specific train is using any given yard resource (building or switching). This

is important because with the information of when the yard is in use and how much traffic a yard

must process the analyst can recommend staffing requirements at each yard. This table is also the

backbone of how the model develops actual train movement times as opposed to the desired

times provided by the user which can often conflict. An example of the yard queuing output is

provided in Table 4.15.

Table 4.14 Example of Yard Statistics

Yard 1 2
Cars (Initial) 191 140

Cars (Additional) 212 71
Classification Time Used 04:00 01:00

of Train Origins 3 1
of Train Connections 0 1
of Train Destinations 4 2

Table 4.15 Example of Queuing at Yards

Yard Time
Train - Origin

Building Process
Train - Destination

Classification Process
1 22:33:30 6 11
1 22:34:00 6 11
1 22:34:30 6 11

97

4.7. Analysis of Model Results

In order to create a straightforward and consistent form of analyzing the results provided by the

model, several factors must be considered simultaneously. The major factors, in order of most to

least importance, to be reviewed by the user, should include the following:

a. Total number of individual trains per operations plan: This is highly connected with

railroad costs due to high start up prices for each individual train.

b. Total number of switches for all yards in the entire network: This is highly correlated

with railroad service times and reliability, more switching inadvertently means more

intermediate yards and more time spent waiting for trains as opposed to actual movement

of goods; and

c. Total car-distance travelled on entire network: This is highly correlated to the

environmental impacts trains have in that minimizing the distances traveled will also

minimize fuel consumption and emissions created by locomotives.

The total number of individual trains can be retrieved from the train schedule as created using the

methodology developed in this thesis. The number of trains should be translated into a per day

basis. This means that if a train runs every two days, it is equivalent to one half a train running in

one day. The translation is important because each operating plan may have different schedules

and they have to be compared at the same level for the analysis to be effective. The total number

of switches in the network is the sum of all the additional cars in each yard as provided by the

yard statistics output (reference Equation 4.7). The total car-distance travelled on the network is

calculated using Equation 4.8. This provides the amount of overall travel in car-km for the entire

98

network. Minimizing these three individual main criteria will result in an overall minimized cost

and minimized impacts for the entire railroad network.

 Numswitches = ∑ CarsAddn (4.7)

where,

Numswitches = total number of switches on the entire network.

CarsAddn = number of additional cars at yard n; and

DCAR = ∑ [(R1x + R2x) * NumCarsx] (4.8)

where,

 DCAR = the total distance of travel for all cars involved (car-km);

(R1 + R2) = the distance of each specific route for any given train;

 NumCars = the number of cars on any given train; and

x = a given the train involved with the operations plan.

This analysis is best completed using a tabular format. Table 4.16 shows an example of how to

best implement this. While assessing the three criteria individually amongst each of the operating

plans, the user can insert the actual number value for each criterion in the analysis table. After

each operating plan has been entered into the table, the user may assign each plan and criterion

with a rating from 1 to n, where 1 is the best and n is the worst (n being the number of operations

plans under review). In tallying up all of the ratings for each of the plans, the user will be left

with an overall score by which each plan can systematically be assessed based on the core

99

Table 4.16 Analysis Table

Criteria Weight
Plan 1 Plan 2 Plan 3

Value Rating Value Rating Value Rating
Number of Trains 3 10 3 8 1 9 2

Number of Switches 2 275 3 268 2 268 2
Total Car-Distance 1 1980 3 1895 2 1830 1

Non-Weighted Totals 9 5 5

criteria aforementioned. It is important to note that some users may find it beneficial to add a

weighting to each of the three criteria since the implications associated with each are quite

different. A suggested weighting for the criteria as listed above (a, b, and c) is 3, 2, and 1

respectively. This weighting reflects the costs for the most expensive to least expensive criteria.

This ensures that the final analysis will be conducted such that all operational costs are

minimized.

To review an example of this assessment system, refer to Table 4.16. In this example, three

hypothetical plans have been created and compared against each other. Plan 1 has the most

points followed by Plans 2 and 3 which both have an equal amount of points when considering

the non-weighted assessment criteria. The lower number of points indicates a better operations

plan in terms of optimization, therefore, Plans 2 and 3 would tie for the best plan. However,

when the weighting is applied it is clearly seen that Plan 2 has (3*1 + 2*2 + 1*2 = 9) points and

Plan 3 has (3*2 + 2*2 + 1*1 = 11) points. With this hypothetical scenario, since Plan 2 has the

lowest number of points overall, it is easy to see that it is the most economical option and should

be regarded as the ‘best alternative’ solution. Other plans can be analyzed similarly. In addition,

other factors can be developed in order to help assess the best alternatives but are beyond the

scope of this thesis.

100

4.8. Model Capabilities

The model capabilities are relevant to the creation and optimization of operations plans for a

given network. This is a versatile model which has many capabilities including the following:

1. The primary function of this model is to assist the user in creating, testing and analyzing

various operating plans on a railroad network. The model can be used to create a

preliminary operations plan including blocking, block to train assignments and train

schedules as well as train routing. This feature allows the user to create and update plans

as information is brought together from outside sources. This means that a user can look

at the operations of an existing network or of a brand new network without changing

models or software;

2. The model can analyze what-if scenarios with different train schedules and blocking

plans by adjusting or recreating new plans to simulate. Doing this, the user can review the

various outputs and analyze each one independently or together as one. This will allow

the analyst to determine which plan is the ‘best option’ considering not only train traffic,

but also yard and route impacts;

3. In terms of routing, the model automatically chooses the shortest path available to it. This

means that all shipments will travel the shortest possible distance as entered into the

model. Sometimes there are scenarios where the user may not want the shortest path to be

used; this is simply overcome by manually adjusting data in the model.

4. The model can be used to determine what effects traffic pattern changes would have on

the network; and

101

5. The model can assist the analyst determine what impact the closing of a yard or certain

routes would have on specific train traffic. This is especially important when testing

what-if scenarios with respect to natural disasters such as flooding (like what happened in

New Orleans during the aftermath of Hurricane Katrina).

4.9. Model Limitations

This section discusses some of the model’s limitations as it is applied in a real work application.

Though these limitations are apparent in the model, they can be overcome with some further

development of the model and its accompanying software application.

1. Each yard is setup such that it only has one set of hump/classification tracks inbound and

only one set of outbound tracks. This means that yards that have multiple leads into their

classification tracks or multiple departure tracks are not accurately modelled. In this

scenario, the best an analyst can do is to determine a combined average for the car

switching and train setup times as entered into the model and to conduct a sensitivity

analysis. With varying train setup and car switch times, the user can determine how the

whole network will likely respond to an operations plan.

2. Each car is assumed to be similar in that various weights or lengths are not incorporated

into the model. In reality, there are many different types of cars which can factor how a

yard and a railroad will block their traffic. In reality, blocking is not based solely on final

destination of cars but also on what they carry and what style of car they are (such as box

car, hopper car, etc.).

102

More discussion with respect to limitations is provided in the conclusions and

recommendations of this thesis.

4.10. Summary

This chapter has reviewed the guidelines used in the creation of railroad operations plan and the

model created for the purpose of simulating operation plans. The overall model as well as

specific inputs and outputs were discussed, with examples. Most importantly, a guide for

assessing various operations plans in a common way was presented. Finally, this chapter has

discussed some of the various capabilities and limitations of the model.

From the literature review, it was determined that reliable and cost effective deliveries of goods

are the most important characteristics railroads and customers are looking for. Effective

operation plans, priority traffic management plans, and management of emergency situations

(rerouting traffic, for example) are essential to reaching the aforementioned goals. The main

objectives of this thesis were to develop a model and guidelines which would assist in the

development, testing, and analysis of operation plans. In turn, the various, integrated, operation

plans can be compared against one and other resulting in a “best case” or “optimized” solution

which would satisfy reliability and cost effectiveness as mentioned above. Guidelines for this

type of analysis along with operation plan development developed in this thesis are easy to

comprehend and implement in real life situations.

Existing railroads currently rely heavily on the skills and experience of veteran employees, who

make decisions about train schedules, product development (blocking plans) and how they split

up cars into the bowl (classification tracks). Since there was not a large amount of literature with

103

respect to guidelines on how to develop a train schedule, how to develop block to train

assignments and how to analyzing multiple operation plans by comparing simulation results ,

this thesis focused on developing these guidelines. Guidelines with respect to the development of

train schedules are logical and intuitive. The easy to comprehend flowchart provides a

framework for creating the most logical and economical train schedule. The model is able to

simulate railroad networks in hours, days, or weeks and thus is very versatile when it comes to

developing train schedules. Guidelines with respect to the assignment of blocks to trains were

provided using a three-step system which uses human intelligence to maximise the efficiency of

car movements using scheduled trains. This system can be tested by the model and various

blocking plans can be created, tested and analysed to determine the best case blocking plan and

the block to train assignments. The final guidelines involved the assessment of multiple,

integrated operations plans in a common way. This assessment uses a quantitative and qualitative

comparison chart and can be customized to the analysts / railroads needs and goals.

Additionally, current practices of railroad companies prevent priority traffic from getting special

treatment and all traffic is treated in the same manner. With the exception of unit trains which

bypass yards completely, each train / car is served on a FIFO basis at every yard it reaches. In

terms of reliability for high paying customers and high priority traffic, this is a great hindrance.

This model addresses this issue by allowing for simulation of priority traffic, for both cars and

trains, being handled ahead of regular traffic.

104

5. MODEL VERIFICATION AND APPLICATION

A user friendly software application was created in order to assist in the use of the model

developed in this thesis. The data entry, network simulation, train routing and outputs follow the

process as described in Chapter 4. This chapter presents a worked example of the model using

hypothetical data in order to exhibit the solution process and analysis techniques. This chapter

also helps to highlight some of the capabilities of the model which are, then, discussed in detail.

5.1. Model Software Verification

The following section shows the verification of the model software comparing the results of the

software analysis versus the manually completed analysis. For the verification of the model and

the software, a small and simple network of three yards was used. Each yard was connected to

the other in a triangular formation and had traffic destined for each of the other yards.

Comparing the model results and outputs to what is expected of the model will help to verify that

the model software works correctly.

5.1.1. Data Inputs

The following image (Figure 5.1) shows the yard network setup and distances between yards.

For this hypothetical network data were entered into the software. The same data were used for

the manual calculations which were used to validate the application. The following tables show

the various inputs as required by the model. Descriptions and requirements for the Data are

discussed in Section 4.2. Table 5.1 shows the specifics of each yard and Table 5.2 shows the

various possible routes as entered into the model.

105

Figure 5.1 Network Configuration for Verification of Model

Table 5.1 Yard Inputs Settings (Model Verification)

Yard
Number

Type of
Yard

Switching Time (Per Train -
Minutes)

Building Time (Per Train -
Minutes)

1 Flat 00:30 00:30

2 Hump 00:30 00:30

3 Hump 00:30 00:30

Table 5.2 Available Routes (Model Verification)

Route

Origin
Yard

Destination
Yard

Route Path (Yard to
Yard)

Route Length
(km)

1 1 2 12 73

2 1 3 123 104

3 1 3 13 85

4 2 1 21 73

5 2 3 23 31

6 3 1 321 104

7 3 1 31 85

8 3 2 32 31

106

Table 5.3 shows the original O-D tables for the network. The goal will be to move all of the O-D

demands from their origins to their destinations, regardless of whether the situation is optimal or

not. This is just for verification purposes. Using the methodology created in Section 4.3, the train

schedule was created (as shown in Table 5.4). After all the data, including the blocking data (as

shown in Section 5.1.2), was entered into the model, the model was run and the outputs were

reviewed for consistency with manual calculations.

Table 5.3 Original O-D Tables (Model Verification)

From To 04:00 08:00 12:00 16:00 20:00 24:00 Next Day Total
1 1 0 10 0 0 0 0 0 30
1 2 0 10 0 0 0 0 0 0
1 3 0 10 0 0 0 0 0 0
Total 0 10 0 0 20 0 0 30
2 1 0 0 10 0 0 0 0 0
2 2 0 0 10 0 0 0 30
2 3 0 0 10 0 0 0 0 0
Total 0 0 20 0 10 0 0 30
3 1 0 0 0 10 0 0 0 0
3 2 0 0 0 10 0 0 0 0
3 3 0 0 0 10 0 0 0 30
Total 0 0 0 30 0 0 0 30

Table 5.4 Train Schedule (Model Verification)

Train # Scheduled Build Time OYard CYard DYard Speed Priority

1 08:00 1 - 2 50 0
2 12:00 2 - 3 50 0
3 16:00 3 2 1 50 0
4 16:30 3 - 2 50 0

107

5.1.2. Outputs

The model outputs, as described in Section 4.6, were reported by the software application as

predicted. The four trains moved all of the cars to each of their respective destination yards. The

model assigned blocks to each train as per the blocking plan (shown in Table 5.5) using the

methodology provided in chapter 4 earlier. After the trains were simulated, the yard statistics as

well the train statistics were calculated and provided in the software interface. As per the train

schedule, a total of two (2) trains used facilities at Yard 1, four (4) trains at Yard 2 and three (3)

Trains at Yard 3. Each of the trains carried 20 cars except for Train 4, which carried only 10 cars.

Table 5.6 presents the final O-D tables of the three yards used for the model verification, Table

5.7 provides the yard specific model outputs for the verification, and Table 5.8 shows the train

specific outputs including train arrival times at destination yards.

5.1.3. Model Verification Summary

In order to determine the block assignment algorithm one can review how the model assigned O-

D’s 1-2 (Block 1) and 1-3 (Block 2). Since there was only one train originating from yard 1, it

makes sense that all the outgoing blocks be assigned to train 1. This was in fact the case. If one

were to look at Yard 3, where there were two trains originating from the same yard, train 3 was

traveling to yard 1 and train 4 was traveling to Yard 2, logically all O-D traffic corresponding to

those yards should be on trains 3 and 4 respectively. This was the case when the model was run,

the model assigned Block 1 (O-D: 3 -1) and Block 2 (O-D: 3 -2) to trains 3 and 4 respectively.

The O-D demands were met by using only 4 trains which simulated the movement of all cars to

their respective yards. There were no carry over cars which remained in either of the yards

overnight and no trains which travelled overnight. Because this was a model verification, no

108

minimums on train size were declared and the maximum was set to 999 in order for the model to

assume train capacities negligent.

Table 5.5 Static Blocks Input (Model Verification)

Yard Pure or Train
O D Block Mixed Assignment
1 1 0 1
1 2 1 1 1
1 3 2 1 1
2 1 1 1 3
2 2 0 1
2 3 2 1 2
3 1 1 1 3
3 2 2 1 4
3 3 0 1

Table 5.6 Final O-D Tables (Model Verification)

From To 04:00 08:00 12:00 16:00 20:00 24:00 Next Day Total
1 1 0 10 0 0 20 0 0 30
1 2 0 0 0 0 0 0 0 0
1 3 0 0 0 0 0 0 0 0
Total 0 10 0 0 20 0 0 30
2 1 0 0 0 0 0 0 0 0
2 2 0 0 20 0 10 0 0 30
2 3 0 0 0 0 0 0 0 0
Total 0 0 20 0 10 0 0 30
3 1 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0
3 3 0 0 0 30 0 0 0 30
Total 0 0 0 30 0 0 0 30

109

Table 5.7 Yard Specific Outputs (Model Verification)

Yard 1 2 3
Cars (Initial) 30 30 30

Cars (Additional) 20 30 20
Classification Time Used 00:30:00 01:00:00 00:30:00

of Train Origins 1 1 2
of Train Connections - 1 -
of Train Destinations 1 2 1

Table 5.8 Train Specific Outputs (Model Verification)

Train

Route1 Time Route2 Time
of
Cars

Calculated
Time

(OYard)

Calculated
Time

(CYard)

Calculated
Time

(DYard)
1 12 01:27 - - 20 08:00 - 09:57
2 23 00:37 - - 20 12:00 - 13:07
3 32 00:37 21 01:27 20 16:00 17:07 19:04
4 32 00:37 - - 10 16:30 - 17:37

5.2. Model Application: Single Plan

The following section represents an example of model use, and analysis of the results. The

network topology as well as traffic data are provided and the analyst’s actions are mimicked in

order to present the various capabilities of the software. The objective of this specific model will

be to create a train schedule and block assignment plan which will clear the O-D tables (move all

pairs to their final destination) within the analysis timeframe. Any lagging O-D pairs which have

not made their final destination will be addressed also. Since the model is a simulation, multiple

iterations must be performed and results compared against one another in order to determine

whether the plan is the “best case” scenario.

110

5.2.1. Initial Process and Model Setup

This section provides a step-by-step process for operating the train model in the software

application. This general process will guide the user through the major steps in implementing the

model for a given operations plan. The application itself is described through the discussion in

the following sections of this chapter.

1. Enter General Data (Network, Yard and Route Data);

2. Click ‘Next’ Button to Continue;

3. Enter O-D Data;

4. Click ‘Create OD Array’ Button to Continue;

5. Formulate and Enter Train Schedule;

6. Click ‘Block Setup’ Button to Continue;

7. Click ‘Assign Blocks’ Button to Continue;

8. Review Block Assignments and Adjust as Required;

9. Click ‘Time Calculations’ Button to Continue;

10. Click ‘Run Trains’ Button to Continue;

11. Review and Analyze Train/Yard Results;

12. Make Adjustments to Various Model Data as Required; and

13. Repeat Steps 1 through 12 as Necessary – and re-run the Model.

Application Data

The data used for the model is hypothetical in nature. This data reflects a network with yards in

relatively close proximity of each other (as the time horizon for this study is only one day). Since

111

the model in this thesis has been developed for a local/regional sized application and analysis,

this hypothetical network suits the model well. The network consists of eight (8) yards connected

together as shown in Figure 5.2. Each circle represents a yard and each inscribed number

represents the yard ID. The distance between yards is listed along each connecting route. The

yard data are presented in Table 5.9. For this network, 72 routes were entered manually in the

software (see Appendix 2 for List of Routes) based on the network configuration as shown in

Figure 5.2. Using the routes list input by the user, the model calculated the shortest distance

between each yard (see Table 5.10). The time separated original daily O-D Data can be found in

Appendix 2.

Initial Train Schedule Setup

Using the daily O-D data, the train schedule was set up. Using the methodology in Section 4.3,

the train schedule was created as shown in Table 5.11. This table also presents the assumed

speed of the train and whether the train needs any special handling (or prioritization). For the

purpose of this study, it was assumed that the trains would have various speeds depending on

which yards they started at. Though this is not necessarily how train speeds are determined in

reality (various factors play a role) it will suffice for the purpose of presenting this application.

For the minimum and maximum number of cars per train, 0 and 999 were assumed. This allows

the model to run trains no matter what their size is and allows the user to analyze the train

schedule based on actual simulated car numbers. This way a user can decide that a train may not

be able to run every day, rather it may be possible to run a full train every two or more days

instead. If the limits had been set in place the trains that did not meet the minimum or maximum

requirements would not have run in the model.

112

Figure 5.2 Network Topology and Yard Location

Table 5.9 Yard Data for Application

Yard
Number

Type of
Yard

Switching Prep Time
(Per Train - Minutes)

Switching Time
Per car (Minutes)

Building Time (Per
Train - Minutes)

1 Hump 00:15:00 00:00:30 00:30:00
2 Hump 00:15:00 00:00:30 00:30:00
3 Flat 00:20:00 00:00:45 00:30:00
4 Flat 00:20:00 00:00:45 00:30:00
5 Flat 00:20:00 00:00:45 00:30:00
6 Hump 00:15:00 00:00:30 00:30:00
7 Flat 00:20:00 00:00:45 00:30:00
8 Hump 00:15:00 00:00:30 00:30:00

Table 5.10 Shortest Path Matrix

Yard 1 2 3 4 5 6 7 8
1 0 300 400 450 500 675 475 575
2 300 0 100 150 200 400 300 400
3 400 100 0 50 100 300 200 300
4 450 150 50 0 50 250 150 250
5 500 200 100 50 0 200 200 300
6 675 400 300 250 200 0 200 100
7 475 300 200 150 200 200 0 100
8 575 400 300 250 300 100 100 0

113

This would mean that all traffic assigned to non-simulated trains (due to minimum car

requirements not being met) would be deferred to the next day for movement at the same

originating yard thus creating more congestion and longer wait times at each yard. The model

determined the most logical route for each train (based on shortest distance) and calculated the

actual times based on the desired build time, routes and speed. The model determined data can be

found in Appendix 3.

Priority Traffic

Prioritization (special handle) of a train or O-D pair determines whether a train will be built or

loaded prior to any others which may have the same desired build time. This provides the analyst

an opportunity to assure that time sensitive traffic can be moved without delay. Since the

movement of train traffic is often based on large scale contracts (such as with major car

manufacturing companies), it is in the best interest of railroads to meet delivery times.

Block Assignment and Movement of Cars

The blocks were split up in the model as per O-D pairs at each yard meaning that there are a total

of seven (7) blocks at each yard. The model automatically assigns the block assignments to each

train as discussed in Section 4.4. Once this has been completed, the model is ready to run the

trains. The model generated block assignments can be found in Appendix 3.

The model, then, runs the trains to determine the movement of cars based on the O-D tables,

train schedule, and block assignments. When the model is run for the first time, there may be

areas which are flagged to the user, such as cars which have not reached their final destination or

114

trains which have abnormally high or abnormally low usage of capacity. The results of the initial

iteration (O-D tables, yard statistics and train statistics) can be found in Appendix 3.

Table 5.11 Train Schedule (Model Application)

Train ID #
Build
Time

Origin
Yard

Connection
Yard

Destination
Yard

Speed
(km/h)

Special
Handle

1 20:00 1 - 2 50 1
2 20:00 1 - 5 50 0
3 20:00 1 - 6 50 0
4 20:00 1 - 7 50 0
5 20:00 1 7 8 50 0
6 20:00 1 - 3 50 0
7 20:00 2 4 6 70 0
8 20:00 3 - 1 50 0
9 16:00 3 5 6 50 0
10 23:59 4 - 2 70 0
11 12:00 5 - 1 50 0
12 20:00 5 - 1 50 1
13 20:00 5 - 8 50 0
14 12:00 6 - 1 70 0
15 20:00 6 - 1 70 0
16 20:00 6 - 4 70 0
17 20:00 6 - 5 70 0
18 20:00 6 - 8 70 0
19 20:00 7 2 1 50 0
20 08:00 8 - 1 60 0
21 16:00 8 - 1 60 0
22 08:00 8 7 6 60 1
23 16:00 8 7 6 60 0
24 16:00 8 - 7 60 0

115

5.2.2. User Intervention and Subsequent Iterations

After the initial results of the model are determined, it is important to revisit the initial train

schedule, blocking assignments and routing of cars, especially if areas are flagged. This must be

done after some analysis of the O-D tables, yard statistics and train statistics has been completed.

Any areas which are flagged by the model, or by the user, can be addressed at this stage. The

typical areas of concern are improper utilization of train capacity, unmoved or inadequately

moved O-D combinations, extended delays for rail cars, and improper utilization of yard

capacity. They can be addressed by the user in a variety of ways which involve adjusting original

operational plan characteristics and data in the model.

The user can, then, adjust the train schedules such that it includes additional or fewer trains than

when they leave. The time at which a train leaves makes a difference in how many cars it can

carry and the arrival time at the destined yard because these can affect trains which are being

built at the destination yard. Additionally, the user can route non-pertinent traffic away from

heavily used yards or toward yards with unused capacity as required. Similarly, adjustments can

be made with the block assignments, to address areas of concern with train capacity utilization.

5.2.3. Results and Analysis

This section will provide a summary of the model results and compare the final iteration results

with the first iteration results. Table 5.12, Table 5.13 and Table 5.14 show a summary of the

original, overall O-D table, the overall table after the first iteration and the overall table after the

final iteration; the numbers in bold represent the traffic which was not moved from its original

location to its final destination. It can be seen that both the first and the final iterations route the

majority of the freight traffic to their final destinations, but not all of it. The differences between

116

how the traffic moves between the first and final iteration may seem small and inconsequential,

but do make quite a significant difference. This is because the routing can affect which yards are

in use and at what times, as well as which trains are filled or not filled.

An example of one difference is seen with the 6-2 O-D pair. Since there is no direct train to yard

2 from yard 6, the 6-2 pair must be moved through an intermediate yard. The first iteration which

moved the traffic using only the model suggested block assignments would have the 6-2 pair

move from yard 6 to yard 1 and then back to yard 2 on a separate train. This means an additional

600 km of movement for 38 cars. When some adjustments are applied to the blocking plan, the

6-2 block can be put on a train going from yard 6 to yard 4. In this manner the cars travel a lesser

distance overall, and can be picked up by the next available 4-2 train. This is very beneficial to

the 4-2 train, as it helps to maximize its capacity usage in the future since train 4-2 only has 13

cars on it after 24 hours. For a more detailed, time separated, O-D table, refer to Appendix 2,

Appendix 3, and Appendix 4 for the original, first iteration, and the final iteration data

respectively.

Table 5.15 shows the train specific results (block assignment and # of cars on the train at the end

of the analysis period). The block assignments which are highlighted correspond only to the

connecting yard. The table also has notes in the right most column regarding how frequently

each train should operate. It is assumed that the minimum amount of cars to justify running a

single train is a hard 60 with a desirable minimum amount of cars being a soft 80. The assumed

hard maximum number of cars is 150. This means that any trains with less than the absolute

minimum amount of cars should have some special instructions such as running on different

intervals (not daily). If a train is deemed unnecessary, then alternative solutions for moving the

117

O-D pairs associated with that train should be made and the blocking strategy and block

assignments should be adjusted appropriately.

Table 5.12 Original O-D Table

Yard 1 2 3 4 5 6 7 8
1 6 58 25 0 102 140 47 63
2 30 0 0 0 28 82 0 0
3 65 0 0 0 0 21 0 25
4 0 13 0 18 0 13 0 0
5 171 0 0 0 0 60 0 140
6 182 38 0 103 23 0 0 121
7 72 0 0 0 0 18 0 45
8 176 19 0 0 32 117 22 33

Table 5.13 O-D Table – No User Intervention

Yard 1 2 3 4 5 6 7 8
1 702 57 0 0 24 0 0 25
2 0 71 0 0 0 0 0 0
3 0 0 25 0 0 0 0 0
4 0 0 0 121 0 0 0 0
5 0 0 0 0 133 0 0 0
6 0 0 0 0 28 451 0 0
7 0 0 0 0 0 0 69 0
8 0 0 0 0 0 0 0 402

Table 5.14 O-D Table – Post User Intervention

Yards 1 2 3 4 5 6 7 8
1 702 16 0 0 0 0 0 0
2 0 71 0 0 0 0 0 0
3 0 0 25 0 0 0 0 0
4 0 38 0 121 0 0 0 0
5 0 0 0 0 157 0 0 0
6 0 0 0 0 28 451 0 25
7 0 0 0 0 0 0 69 0
8 0 0 0 0 0 0 0 402

118

Table 5.15 Train Specific Results

Train ID# Block Assignment
of
Cars

Analyst Notes

1 1 61

Run daily (initially allow a one day lag for

accumulation of additional cars from other yards –

additional 19 cars per day).

2 4 3 102 Run Daily

3 5 140 Run Daily

4 6 6 47
Run Train every 2 days to allow for internal

accumulation of additional cars.

5 7 7 108 Run Daily

6 2 25
Run Train every 3~4 days to allow for internal

accumulation of additional cars.

7 5 5 2 3 4 6 7 123 Run Daily

8 1 2 3 4 6 65 Run Daily

9 5 5 7 106 Run Daily

10 2 1 3 4 6 7 13

Run every 2 days to allow accumulation of

additional cars both internally (13 cars per day) and

cars from other yards (38 cars per day).

11 1 2 3 4 6 85 Run Daily

12 1 2 3 4 6 86 Run Daily

13 7 140 Run Daily

14 1 88 Run Daily

15 1 94 Run Daily

16 4 3 2 141 Run Daily

17 5 55 Run Daily

18 7 121 Run Daily

19 1 1 2 3 4 5 102 Run Daily

20 1 2 3 4 131 Run Daily

21 1 2 3 4 64 Run Daily

22 6 6 5 74 Run Daily

23 6 6 5 93 Run Daily

24 7 22
Run Train every 3~4 days to allow for internal

accumulation of additional cars.

119

Table 5.16 Yard Statistics

Yard 1 2 3 4 5 6 7 8
Cars (Initial) 441 140 111 44 371 467 135 399

Cars (Additional) 715 74 25 141 157 536 69 369
Classification Time Used 07:58 01:07 00:39 02:06 02:38 05:43 01:32 03:50

of Train Origins 6 1 2 1 3 5 1 5
of Train Connections 1 1 1 1 3
of Train Destinations 8 2 1 1 2 5 2 3

Table 5.16 shows the yard statistics after the final iteration. From this data one can determine

that the largest and most utilised yards are Yard 1, Yard 6, and Yard 8. This is important because

the railroad analyst can determine how best to allocate yard resources such as crews or engines.

Additionally, if this was a study where the user wanted to determine the relevancy of necessity of

a given yard, they could look more closely at Yards 3, 4 and 5. The yards are spaced closely

together and there is a very limited amount of traffic travelling to or through the yard. If one

were to combine the traffic in those yards, consolidation of trains and resources could potentially

be realized. The user would have to re-simulate a new network with adjusted O-D data and train

schedules in order to see the differences between the existing condition and the proposed.

The model, as applied to the hypothetical data, has provided an operating plan which uses 24

trains to move the traffic in the network. 19 trains operate daily while the other 5 operate

intermittently during the week. The blocking plan has been established and can be followed

easily at each yard. The queuing data for each yard can also be retrieved from the software as

well as other yard statistics which can then be downloaded to each yardmaster that can in turn

use that information for staffing and coordinating yard operations.

120

5.3. Model Application: Multiple Plans

When assessing two or more plans in attempts to determine the best plan, it is important to note

that the plans have to be for the same overall network and traffic data. The plan timeline should

also be the same so as to compare each plan on the same level. This example of assessment is

completed in accordance with the guidelines presented in Section 4.7.

This example is created using the network and traffic data from Section 5.2. Two plans are being

taken into consideration. Though both plans are solved by the model, they have one key

difference in that the route between Yard 1 and Yard 7 is not available to Plan 1 but is available

in Plan 2. This means that the cars and trains may have to travel farther in order to reach their

destinations for Plan 1. For the number of trains running per day, the calculation is made as

follows. For each daily train, the number of trains per day is increased by one. For each train

running in intervals of more than one day, the number is increased by the one day equivalent. For

example, if a train was running every three days, the daily number of trains would increase by a

factor of 1/3. The number of switches is calculated by the model and is the sum of additional cars

at all of the yards. The results of the plans and the analysis can be found in Table 5.17.

Table 5.17 Multiple Plan Assessment

Criteria Weight
Plan 1 Plan 2

Value Rating Value Rating
Number of Trains 1 21.00 1 21.50 2

Number of Switches 1 2059 1 2086 2
Total Car-Distance 1 982, 400 2 920, 298 1

Totals 4 5

121

As predicted, Plan 1 has a higher total Car-Distance, however it has fewer train starts and fewer

number of switches. Therefore, overall, Plan 1 seems to be superior to Plan 2 in this assessment.

If weighted factors were applied in accordance with section 4.7, Plan 1 would still be the optimal

plan as per this analysis.

5.4. Summary

This chapter has provided verification for the model software as well as a detailed example of its

use and analysis of an individual, hypothetical, operations plan. This hypothetical application

showed one example of creating an operations plan, using the least amount of trains to move the

majority of the traffic. Additional examples of creating operation plans considering minimum

number of switches, reutilization of yards and other resources, adjustments of routes and

blocking criteria can be created similarly and assessed using the criteria set forth in Section 4.7.

Hypothetical data were used in this thesis because real world data (as provided by CPR) was

overly detailed. The data were not able to be separated into O-D pairs as per the simplistic

characteristics used in this model. The O-D traffic data provided split its’ pairs up using car type,

car length, car consist, etc. The origins were always the original start point for each car, for

example, a warehouse or a small distribution center and the destinations were similar. Though

extracting a small subset of yards from a real network would have been possible, the traffic data

would have been incomplete at best. The data were more complicated that the model in this

thesis is able to handle, thus hypothetical data, similar to that in Troup et al (1977) was used.

122

6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1. Summary

Railroads move freight traffic on their network based on an overall operations plan that includes

blocking, train formation, and train scheduling plans. The optimization of these operations over

the entire network is integral to maximizing efficiency and minimizing costs. This thesis

developed and illustrates a simulation model for analyzing various operation plans of a railroad

network along with guidelines for establishing a comprehensive operations plan. This model

focuses on traffic routing and simulation of traffic flows. The three main objectives for this thesis

were:

1. To create a model to assist in testing and analyzing the operation plan(s);

2. To create guidelines for building integral portions of the operations plan; and

3. To create a user friendly software application to implement the model.

Details pertaining to the above objectives have been discussed and can be reviewed in Section

1.3. Through a broad literature review of various railroad and yard operations as well as general

railroad information, a comprehensive and realistic model for use on a small to medium sized

network has been created. A comprehensive example for the use of the model, the software

application and guidelines was also presented. The model and guidelines developed enable a

single analyst to create a fully integrated operations plan with only traffic, network, and yard

data at their fingertips. Inefficient train schedules, blocking plans, and block to train assignments

can be adjusted and revamped in a few simple steps. The model is intuitive and easy to use

making this a user friendly

123

The software application was created using Microsoft Excel and VBA as a programming

platform. The computer based simulation model is created in order to assist in designing a block

routing plan which is effective and efficient in terms of overall railroad costs and delivery times.

The simulations allow the user to determine results of various operating plans and various

scenarios within a virtual railroad network. This allows a user to review and analyze data from

various network elements and determine a globally acceptable “best case” solution taking many

factors into account. With the software, a user can also model and analyze the flexibility and

reliability of the system and determine the effects of various planned and unplanned changes in

the network. The software is easy to use and examples are provided in Chapter 5.

6.2. Conclusions

From the research conducted, the following conclusions may be drawn:

1. Railroad operations are quite complicated and major operation plans each play an

important role. The overall success of an operations plan on a railroad network can only

be achieved when all operating plans within the network are integrated. This includes the

integration of plans over the entire network by using excess yard and train capacity to

augment areas of a network which are overflowing with traffic.

2. With an optimized operations plan in place, railroads can greatly benefit from the

economies of scale which made them a force in the freight industry in the first place. The

optimized operations plans will not only save the railroad companies money, but also

increase the reliability and flexibility of their shipments. These are the most important

factors shippers look for in railroads.

124

3. This model will allow users to review different elements of the railroad network and the

impacts of simple or complex changes to each element of the network based on an overall

system point of view. Using this model, a user can simulate various elements of a railroad

network system as a whole and determine a global optimum solution to an operations

plan. This is different from many mathematical optimization models which often focus

on one objective and not a whole system wide analysis.

4. Railroads often have some form of priority traffic, whether it is for a high paying

customer or a military effort, there are always trains which will need special handling and

treatment in order for them to get to their destinations on time. This is addressed by this

model which has the ability to give special handling to either O-D pairs or trains

individually. This means that an analyst has flexibility in providing special handling to

cars prior to train formation and classification of cars, without the cumbersome act of

cherry picking at the end of a classification operation. This is one aspect of the model

which can save both time and money for railroads in the future, as succeeding in

providing special service can often give one railroad a competitive edge over another

which does not offer priority shipping.

6.3. Recommendations

The recommendations and proposed areas of further study/additions to the model are as follows:

1. Incorporating additional rail car characteristics such as height, width, length, weight, and

car type to the O-D traffic tables could help to really narrow down specific and realistic

constraints when creating blocks and trains. The length and weight are of great

125

importance in building trains as they will determine a more accurate maximum train size

and impact the number of locomotives required for each train.

2. Shortest route and least resistance algorithms can be added to the model, which do not

require the user to enter the route data manually. This can potentially save a significant

amount of time in data entry and network setup within the model itself. The use of

resistance methods in the routing algorithm can allow the model to determine appropriate

paths in a network, allowing the model to take into account the Braess paradox, thereby

alleviating the work from the user.

3. This model can also be augmented by combining additional train movement models

which take into account train specific information. This could include dynamic train

scheduling algorithms which use optimization techniques to maximize average train size.

This is based on time of departure and train movement models which show how trains

will actually move along a corridor. The latter of the two is also important when two

trains traveling either in the same or opposing directions meet on the same track and have

to overtake or pass each other (as this will delay train running time).

4. Full development of the software for the model which incorporates all of the guidelines

and assists in automating the analysis should be considered for the future.

126

REFERENCES

AASHTO. (2009). Freight Rail - Bottom Line Report. Washington: AASHTO.

Armstrong, J. (1990). The Railroad, What it is, What it does: The Introduction to Railroading -

3rd Edition. Omaha, NE: Simmons-Boardman Books Inc.

Assad, A. (1980). Modelling of Rail Networks: Toward a Routing/Makup Model. Transportation

Research Part B: Methodological , 14 (1-2), 101-114.

Ballis, A., Liberis, K., & Moschovou, T. (2004). Investigating the Capacity of a Metro Line by

Means of a Simulation Model. Journal of Rail and Rapid Transit. 218: Part F, pp. 67-78.

Institute of Mechanical Engineers.

Bodin, L. D., Golden, B., Schuster, A., & and Romig, W. (1980). A Model for Blocking Trains.

Transportation Research Part B: Methodological , 14 (1-2), 115-120.

Bradley, Hax, & Magnanti, a. (1977). Mathematical Programming: An Overview. In Bradley, Hax,

& a. Magnanti, Applied Mathematical Programming (pp. 1-37). Reading,

Massechusettes, United States of America: Addison-Wesley.

Canadian Pacific Railway. (2010, June 12). Where We Ship. Retrieved June 12, 2010, from

Canadian Pacific Railway Website:

http://www8.cpr.ca/cms/English/Customers/New+Customers/Where+We+Ship/default.

htm

Cardeau, J., Toth, P., & and Vigo, D. (1998, November). A Survey of Optimization Models for

Train Routin and Sorting. Transportation Science , 32 (4), pp. 380-404.

Daganzo, C. (1987). Dynamic Blocking for Railyards: Part 1. Homogeneous Traffic.

Transportation Research: Part B , 21B (1), 1-27.

Daganzo, C. (1987). Dynamic Blocking for Railyards: Part 2. Heterogeneous Traffic.

Transportation Research: Part B (21B), 29-40.

Daganzo, C. (1986). Static Blocking at Railyards: Sorting Implications and Track Requirements.

Transportation Science , 20 (3), 189-199.

Dirnberger, J. a. (2007). Lean railroading: Improving railroad classification terminal performance

through bottleneck management methods. Transportation Research Record - Journal of

the Transportation Research Board , 1995, 52-61.

127

Dirnberger, J. (2006). Development and Application of Lean Railroading to Improve

Classification Terminal Performance. Urbana, Illinois: University of Illinois at Urbana-

Champaign.

Eiselt, H. a. (2007). Linear Programming and its Applications. New York: Springer.

Fernandez, A., Cucala, A., & Cuadra, F. d. (2006). Predictive Traffic Regulation for Metro Look

Lines Based on Quadratic Programming. Journal of Rail and Rapid Transit. 220: Fart F,

pp. 79-89. Institute of Mechanical Engineers.

Gormick, G. (2005, August). How Fluid is Your Yard? Railway Age , 206 (8), pp. 18-28.

Higgins, A., Ferreira, L., & Kozon, E. (1995). Modeling Single-Line Train Operations.

Transportation Research Record - Journal of the Transportation Research Board , 1489,

9-16.

Hillier, F. a. (2001). Introduction to Operations Research (Seventh Edition ed.). New York:

Mcgraw-Hill Higher Education.

Innovative Scheduling. (n.d.). IHYM: Innovative Hump Yard Manager - Presentation - Innovative

Scheduling. Retrieved December 06, 2009, from

http://www.innovativescheduling.com/Files/Presentations/IS_IHYM_Product_Presentat

ion.pdf

Innovative Scheduling. (2005). IHYM: Innovative Hump Yard Manager - White Paper - Innovative

Scheduling. Retrieved December 06, 2009, from Innovative Scheduling Website:

http://www.innovativescheduling.com/Files/WhitePapers/IS_IHYM_WhitePaper.pdf

Ireland, e. a. (2003). Perfecting the Scheduled Railway: Model-Driven Operating Plan

Development. Princeton, NJ: MultiModal Applied Systems, Inc.

Ireland, P. e. (2004). The Canadian Pacific Railway Transforms Operations by Using Models to

Develop its Operating Plans. Interfaces , 34 (1), 5-15.

Jha, K., Ahuja, R., & and Sahin, G. (2007, November 28). New Approaches for Solving the Block-

to-Train Assignment Problem. Networks , pp. 48-62.

Judge, T. (2002). Industry Experts Address Railroad Congestion and Capacity. Railway Age , 203

(9), 20.

Kraft, E. (2000a). A Hump Sequencing Algorithm for Real Time Management of Train

Connection Reliability. Transportation Quarterly , 95-115.

128

Kraft, E. (1998). A Reservations-Based Railway Network Operations Management System - PHd

Dissertation. Philadelphia: University of Pennsylvania.

Kraft, E. (2002e, July). Adding Fexibility to the Scheduled Railraod. Railway Age , 203 (7), pp. 19-

21.

Kraft, E. (2000b). Implementation Strategies for Railroad Dynamic Freight Car Scheduling.

Transportation Quarterly , 119-137.

Kraft, E. (2002a). Priority-Based Classification for Improving Connection Reliability in Railroad

Yards- Part I: Integration with Car Scheduling. Transportation Quarterly , 93-105.

Kraft, E. (2002b). Priority-Based Classification for Improving Connection Reliability in Railroad

Yards: Part II - Dynamic Block to Track Assignment. Transportation Quarterly , 107-119.

Kraft, E. (2002c). The Yard: Railroading's Hiddent Half (Part 1). Trains , 62 (6), 46-67.

Kraft, E. (2002d). The Yard: Railroading's Hiddent Half (Part 2). Trains , 62 (7), 36-47.

Kraft, E., Srikar, B., & Phillips, R. (2000c). Revenue Management in Railroad Applications.

Transportation Quarterly , 157-175.

Kuehn, J. (1999). Transportation By Design. Princeton, NJ: MultiModal Applied Systems, Inc.

Kwon, O., Martland, C., Sussman, J., & Little, P. (1995). Origin-to-Destination Trip Times and

Reliability of Rail Freight Serices in North American Railroads. Transportation Research

Record - Journal of the Transportation Research Board , 1489, 1-8.

Liu, J., Ahuja, R., & Sahin, G. (2008). Optimal Network Configuration and Capacity Expansion of

Railroads. Journal of the Operational Research Society , 911-920.

martinelli, D. a. (1996). Optimization of Railway Operations Using Neural networks.

Transportation Research: Part C , 4 (1), 33-49.

Martinelli, D. a. (1996). Optimization of Railway Operations using Neural Networks.

Transportation Research - Part C , 4 (1), 33-49.

Martland, C. (1982). PMAKE Analysis: Predicting Rail Yard Time Distributions Using Probabalistic

Train Connection Standards. Transportation Science , No. 16 (No. 4), 476-506.

Miller, J. (1985). A Railroad Terminal Evaluation Methodology. West Virginia University, College

of Engineering. Morgantown, VA: West Virginia University.

129

Morlok, E., & and Chang, J. (2004). Measuring Capacity Flexibility of a Transportation System.

Transportation Research , 38A (No. 4), 405-420.

Morlok, E., & Riddle, P. (1999). Estimating the Capacity of Freight Transportation Systems - A

Model and Its Application in Transport Planning and Logistics. Transportation Research

Record: Journal of the Transportation Research Board , TRR No. 1653 (Paper No. 99-

166), 1-8.

Mundrey, J. S. (2005). Railway Track Engineering, 3rd Edition. New Dehli: Tata Mcgraw-Hill.

Niu, H., & Wong, W. (2002). A Train Dispatching Optimization for Classification Yards by Genetic

Algorithm. 3rd International Conference on Traffic and Transportation Studies, (pp. 299-

304). Guilin, China.

Oliver Wyman Group. (2010, March 16). MultiRail : RailPlanning Blog - MultiRail Enterprise

Edition. Retrieved August 13, 2010, from Oliver Wyman Group :

http://blog.railplanning.com/multi-rail/

Pachl, J. (2002). Railway Operation and Control. Rochester, WA: Gorham Printing.

Papacostas, C., & Prevedouros, P. (2001). Transportation Engineering & Planning. Upper Saddle

River, New Jersey: Prentice Hall Inc.

Petersen, E. R. (1977a). Railyard Modeling: Part I. Prediction of Put-Through Time.

Transportation Science , 11 (1), 37-49.

Peterson, E. R. (1977b). Railyard Modeling: Part II. The effect of Yard Facilities on Congestion.

Transportation Science , 11 (1), 50-59.

Railway Association of Canada. (2004). Meet Your Neighbor - The Railway in Your Community.

Retrieved February 1, 2010, from RAC - All About Rail:

http://www.railcan.ca/sec_rac/en_rac_allAboutRail.asp

Ramsey, G., Hutchingson, B., & Rilett, L. (1986). Simplified Railroad Capacity Model. Journal of

Transportation Engineering , 112 (4), 358-368.

Randolph, J. (2009). A Guide to Writing the Dissertation Literature Review. Practical

Assessment, Reseach & Evaluation , 14 (13), 1-13.

Sun, Y., Turnquist, M., & and Nizick, L. (2006). Estimating Freight Transportation System

Capacity, Flexibility, and Degraded-Condition Performance. Transportation Research

Record: The Journal of the Transportation Research Board , No. 1966, 80-87.

130

The Railway Association of Canada. (2001). Railway Trends. Ottawa: Railway Association of

Canada.

The Railway Association of Canada. (2009). Railway Trends. Ottawa: Railway Association of

Canada.

Turnquist, M. a. (1982). Queueing Model of Classification and Connection Delays in Railyards.

Transportation Science , 16 (2), 207-230.

Troup et al (1977). Railroad classification yard technology: an introductory analysis of functions

and operations. United States, Federal Railroad Administration, Office of Research and

Development.

Van Dyke, C. a. (1999). Algorithm-Based Blocking Plan Analysis. Princeton, JN: MultiModal

Applied Systems, Inc.

A1 – 131

Appendix 1 – List of Definitions and Abbreviations

Block – is a group of cars that are moved together by one or more trains from a common origin

or assembly point to a common destination or disassembly point. For an individual car, the

common origin and destination may be either the same as the ultimate origin or destination of the

car, or may be intermediate points in the car’s route where the car is to be marshalled. (Van

Dyke, 1999)

Bowl – a configuration of tracks branching off from a common main track suitable for

classifying cars for similar destinations or making blocks (also known as a set of classification

tracks) (Miller, 1985)

“Class 1” Railroad – is a railroad which has over $250 million (CAD) in profits.

Classification – the process of grouping or classifying railroad cars for common handling or

destination (Miller, 1985).

CPR – Canadian Pacific Railway

Cut – any set of cars that share a common destination track and, by chance or design, are

sequenced together in an arriving train (Dirnberger J. , 2006).

Hump – a set of tracks situated on a raised mound located at the entrance to a bowl. By pushing

railroad cars over the hump, the cars roll by force of gravity into the bowl for classification.

Hence the terms hump yard and gravity classification yard are somewhat synonymous. The term

humping therefore implies the processes described above (Miller, 1985).

A1 – 132

Power – a term used to indicate one or more locomotives (Miller, 1985).

Receiving/ Departure Tracks – used to receive an inbound train into a yard and/or make up and

depart outbound trains from a yard (Miller, 1985).

Rehump – process of humping cars more than once to achieve the desired classifications

(Miller, 1985).

Road Train – train operated between major yards for the purpose of hauling cars between yards

in different terminal areas (Miller, 1985).

Run-through – a train operated through a gateway or terminal area without being broken apart.

Such trains may be inspected and have locomotives serviced and crews changed in a yard

(Miller, 1985).

Sluff Tracks –overflow tracks designated to be used when classification tracks are not available

or when the anticipated volume of traffic is too small to warrant a separate classification track

(Miller, 1985).

Switch – the operation that separates two adjacent sets of cars, and sends the sets to their

assigned classification tracks. Although every car must be sorted, not all require switches

(Dirnberger J. , 2006).

Terminal – is an assemblage of facilities which are provided for the purposes of assembling,

assorting, classifying and relaying trains (Pachl, 2002). A terminal can consist of the minimum

of a receiving yard, a classification yard and a departure yard. Additionally terminals can have

A1 – 133

additional yards such as transload facilities, mechanical yards, roundhouses, etc (Armstrong,

1990).

Through Blocking – process of grouping or classifying cars into blocks which can be moved

through a second classification complex without being separated and reclassified (Miller, 1985).

Through Train – run-through train (Miller, 1985).

Trim Operation – the process of pulling blocks of cars from a bowl and setting the blocks onto

a departure track in order to assemble an outbound train (Miller, 1985).

Unit Train – is a train which has only one O-D combination and thus travels directly from one

yard to another bypassing (see run-through train) all yards on its way. This type of train is

typically reserved for large shipments of coal or grain originating at one single distribution

center.

Yard – is an arrangement of sidings (or set of tracks) which run parallel to each other used for

making up trains, sorting cars and trains, and similar purposes. (Pachl, 2002)

A2 - 134

Appendix 2 – Data Inputs for Example Model Application

List of Routes
Route

Origin
Yard

Destination
Yard

Route Path (Yard to
Yard)

Route Length
(km)

1 1 2 12 300
2 1 3 123 400
3 1 4 1234 450
4 1 5 12345 500
5 1 6 123456 700
6 1 8 1234568 800
7 1 7 12347 600
8 1 8 123478 700
9 2 1 21 300
10 2 3 23 100
11 2 4 234 150
12 2 5 2345 200
13 2 6 23456 400
14 2 8 234568 500
15 2 7 2347 300
16 2 8 23478 400
17 3 1 321 400
18 3 2 32 100
19 3 4 34 50
20 3 5 345 100
21 3 6 3456 300
22 3 8 34568 400
23 3 7 347 200
24 3 8 3478 300
25 4 1 4321 450
26 4 2 432 150
27 4 3 43 50
28 4 5 45 50
29 4 6 456 250
30 4 8 4568 350
31 4 7 47 150
32 4 8 478 250
33 5 1 54321 500
34 5 2 5432 200
35 5 3 543 100

A2 - 135

Route

Origin
Yard

Destination
Yard

Route Path (Yard to
Yard)

Route Length
(km)

36 5 4 54 50
37 5 6 56 200
38 5 8 568 300
39 5 7 547 200
40 5 8 5478 300
41 6 1 654321 700
42 6 2 65432 400
43 6 3 6543 300
44 6 4 654 250
45 6 5 65 200
46 6 8 68 100
47 6 7 687 200
48 6 8 65478 500

49 7 1 74321 600

50 7 2 7432 300

51 7 3 743 200

52 7 4 74 150

53 7 5 745 200
54 7 6 7456 400
55 7 8 78 100
56 7 6 786 200
57 8 1 874321 700
58 8 2 87432 400
59 8 3 8743 300
60 8 4 874 250
61 8 5 8745 300
62 8 6 86 100
63 8 7 87 100
64 8 5 87456 500
65 1 7 17 475

66 1 8 178 575

67 7 8 78 100

68 8 7 87 100

69 7 1 71 475

70 8 1 871 575

71 1 6 1786 675

72 6 1 6871 675

A2 - 136

Original Daily O-D Table (Broken Down into 4 Hour Section)

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

1 1 1 2 2 0 1 0 0 6
1 2 3 3 16 9 27 0 0 58
1 3 1 2 11 5 6 0 0 25
1 4 0 0 0 0 0 0 0 0
1 5 2 5 34 21 40 0 0 102
1 6 17 16 25 34 48 0 0 140
1 7 2 4 30 7 4 0 0 47
1 8 4 2 14 27 16 0 0 63
Total 30 34 132 103 142 0 0 441
2 1 0 5 10 5 10 0 0 30
2 2 0 0 0 0 0 0 0 0
2 3 0 0 0 0 0 0 0 0
2 4 0 0 0 0 0 0 0 0
2 5 27 0 0 0 1 0 0 28
2 6 10 22 14 22 14 0 0 82
2 7 0 0 0 0 0 0 0 0
2 8 0 0 0 0 0 0 0 0
Total 37 27 24 27 25 0 0 140
3 1 11 11 30 13 0 0 0 65
3 2 0 0 0 0 0 0 0 0
3 3 0 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0 0
3 5 0 0 0 0 0 0 0 0
3 6 4 4 13 0 0 0 0 21
3 7 0 0 0 0 0 0 0 0
3 8 5 5 15 0 0 0 0 25
Total 20 20 58 13 0 0 0 111
4 1 0 0 0 0 0 0 0 0
4 2 7 0 0 6 0 0 0 13
4 3 0 0 0 0 0 0 0 0
4 4 11 0 0 7 0 0 0 18
4 5 0 0 0 0 0 0 0 0
4 6 8 0 0 5 0 0 0 13
4 7 0 0 0 0 0 0 0 0
4 8 0 0 0 0 0 0 0 0
Total 26 0 0 18 0 0 0 44

A2 - 137

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

5 1 17 51 17 52 34 0 0 171
5 2 0 0 0 0 0 0 0 0
5 3 0 0 0 0 0 0 0 0
5 4 0 0 0 0 0 0 0 0
5 5 0 0 0 0 0 0 0 0
5 6 6 18 6 18 12 0 0 60
5 7 0 0 0 0 0 0 0 0
5 8 14 42 14 42 28 0 0 140
Total 37 111 37 112 74 0 0 371
6 1 70 18 0 56 38 0 0 182
6 2 7 15 0 13 3 0 0 38
6 3 0 0 0 0 0 0 0 0
6 4 8 88 0 6 1 0 0 103
6 5 2 13 0 2 6 0 0 23
6 6 0 0 0 0 0 0 0 0
6 7 0 0 0 0 0 0 0 0
6 8 56 9 0 35 21 0 0 121
Total 143 143 0 112 69 0 0 467
7 1 24 24 0 24 0 0 0 72
7 2 0 0 0 0 0 0 0 0
7 3 0 0 0 0 0 0 0 0
7 4 0 0 0 0 0 0 0 0
7 5 0 0 0 0 0 0 0 0
7 6 6 6 0 6 0 0 0 18
7 7 0 0 0 0 0 0 0 0
7 8 15 15 0 15 0 0 0 45
Total 45 45 0 45 0 0 0 135
8 1 41 46 41 48 0 0 0 176
8 2 0 3 0 16 0 0 0 19
8 3 0 0 0 0 0 0 0 0
8 4 0 0 0 0 0 0 0 0
8 5 0 8 0 24 0 0 0 32
8 6 35 19 14 49 0 0 0 117
8 7 0 9 0 13 0 0 0 22
8 8 8 9 8 8 0 0 0 33
Total 84 94 63 158 0 0 0 399

A3 - 138

Appendix 3 – Model Application Results – First Iteration

After First Iteration Daily O-D Table (Broken Down into 4 Hour Section)

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

1 1 1 2 2 0 1 213 483 702
1 2 0 0 0 0 0 3 54 57
1 3 0 0 0 0 0 0 0 0
1 4 0 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 24 24
1 6 0 0 0 0 0 0 0 0
1 7 0 0 0 0 0 0 0 0
1 8 0 0 0 0 0 0 25 25

Total 1 2 2 0 1 216 586 808
2 1 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 71 71
2 3 0 0 0 0 0 0 0 0
2 4 0 0 0 0 0 0 0 0
2 5 0 0 0 0 0 0 0 0
2 6 0 0 0 0 0 0 0 0

2 7 0 0 0 0 0 0 0 0
2 8 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 0 71 71
3 1 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0
3 3 0 0 0 0 0 0 25 25
3 4 0 0 0 0 0 0 0 0
3 5 0 0 0 0 0 0 0 0
3 6 0 0 0 0 0 0 0 0
3 7 0 0 0 0 0 0 0 0
3 8 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 0 25 25
4 1 0 0 0 0 0 0 0 0
4 2 0 0 0 0 0 0 0 0
4 3 0 0 0 0 0 0 0 0
4 4 11 0 0 7 0 0 103 121
4 5 0 0 0 0 0 0 0 0
4 6 0 0 0 0 0 0 0 0
4 7 0 0 0 0 0 0 0 0
4 8 0 0 0 0 0 0 0 0
Total 11 0 0 7 0 0 103 121

A3 - 139

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

5 1 0 0 0 0 0 0 0 0
5 2 0 0 0 0 0 0 0 0
5 3 0 0 0 0 0 0 0 0
5 4 0 0 0 0 0 0 0 0
5 5 0 0 0 0 0 0 133 133
5 6 0 0 0 0 0 0 0 0
5 7 0 0 0 0 0 0 0 0
5 8 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 0 133 133
6 1 0 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 0 0
6 3 0 0 0 0 0 0 0 0
6 4 0 0 0 0 0 0 0 0
6 5 0 0 0 0 0 0 28 28
6 6 0 0 0 66 0 81 304 451
6 7 0 0 0 0 0 0 0 0
6 8 0 0 0 0 0 0 0 0

Total 0 0 0 66 0 81 332 479
7 1 0 0 0 0 0 0 0 0
7 2 0 0 0 0 0 0 0 0
7 3 0 0 0 0 0 0 0 0
7 4 0 0 0 0 0 0 0 0
7 5 0 0 0 0 0 0 0 0
7 6 0 0 0 0 0 0 0 0
7 7 0 0 0 0 0 22 47 69
7 8 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 22 47 69
8 1 0 0 0 0 0 0 0 0
8 2 0 0 0 0 0 0 0 0
8 3 0 0 0 0 0 0 0 0
8 4 0 0 0 0 0 0 0 0
8 5 0 0 0 0 0 0 0 0
8 6 0 0 0 0 0 0 0 0
8 7 0 0 0 0 0 0 0 0
8 8 8 9 8 8 0 0 369 402

Total 8 9 8 8 0 0 369 402

A3 - 140

First Iteration – Block to Train Assignments (1)

O Yard D Yard Block Train Assignment
1 1 0
1 2 1 1
1 3 2 6
1 4 3 2
1 5 4 2
1 6 5 3
1 7 6 4
1 8 7 5
2 1 1 19
2 2 0
2 3 2 7
2 4 3 7
2 5 4 7

2 6 5 7
2 7 6 7
2 8 7 7
3 1 1 8
3 2 2 8
3 3 0
3 4 3 8
3 5 4 8
3 6 5 9
3 7 6 8
3 8 7 8
4 1 1 10
4 2 2 10
4 3 3 10
4 4 0
4 5 4 10
4 6 5 7
4 7 6 10
4 8 7 10

A3 - 141

First Iteration – Block to Train Assignments (2)

O Yard D Yard Block Train Assignment
5 1 1 11, 12
5 2 2 11, 12
5 3 3 11, 12
5 4 4 11, 12
5 5 0
5 6 5 9
5 7 6 11, 12
5 8 7 13
6 1 1 14, 15
6 2 2 14, 15
6 3 3 16
6 4 4 16
6 5 5 17
6 6 0
6 7 6 14, 15
6 8 7 18
7 1 1 19
7 2 2 19
7 3 3 19
7 4 4 19
7 5 5 19
7 6 6 22, 23
7 7 0
7 8 7 5
8 1 1 20, 21
8 2 2 20, 21
8 3 3 20, 21
8 4 4 20, 21
8 5 5 20, 21
8 6 6 22, 23
8 7 7 24
8 8 0

A3 - 142

List of Model Assigned Block Assignments and Train Data (first iteration)

Train ID# Proposed Build Time OYard CYard DYard Block Assignment SP Hand # of Cars

1 20:00 1 2 1 1 58
2 20:00 1 5 4 3 110
3 20:00 1 6 5 140
4 20:00 1 7 6 47
5 20:00 1 7 8 7 7 108
6 20:00 1 3 2 25
7 20:00 2 4 6 5 5 2 3 4 6 7 123
8 20:00 3 1 1 2 3 4 6 7 90
9 16:00 3 5 6 5 5 81
10 23:59 4 2 2 1 3 4 6 7 13
11 12:00 5 1 1 2 3 4 6 85
12 20:00 5 1 1 2 3 4 6 1 86
13 20:00 5 8 7 140
14 12:00 6 1 1 2 6 110
15 20:00 6 1 1 2 6 110
16 20:00 6 4 4 3 103
17 20:00 6 5 5 23
18 20:00 6 8 7 121
19 20:00 7 2 1 1 1 2 3 4 5 102
20 08:00 8 1 1 2 3 4 5 139
21 16:00 8 1 1 2 3 4 5 88
22 08:00 8 7 6 6 6 1 66
23 16:00 8 7 6 6 6 69
24 16:00 8 7 7 22

A3 - 143

List of Calculated Train Routes and Timings (first iteration)

Train #
Proposed

Build
Time

OYard CYard DYard Speed
Route

1 Time
Route

2 Time
Calculated

Time
(OYard)

Calculated
Time

(CYard)

Calculated
Time

(DYard)
1 20:00 1 2 50 12 06:00 20:00 26:30
2 20:00 1 5 50 12345 10:00 20:30 31:00
3 20:00 1 6 50 123456 14:00 21:01 35:31
4 20:00 1 7 50 12347 12:00 21:31 34:01
5 20:00 1 7 8 50 12347 12:00 78 02:00 22:02 34:32 37:02
6 20:00 1 3 50 123 08:00 22:32 31:02
7 20:00 2 4 6 50 234 03:00 456 05:00 20:00 23:30 29:00
8 20:00 3 1 50 321 08:00 20:00 28:30
9 16:00 3 5 6 50 345 02:00 56 04:00 16:00 18:30 23:00
10 23:59 4 2 50 432 03:00 23:59 27:29
11 12:00 5 1 50 54321 10:00 12:00 22:30
12 20:00 5 1 50 54321 10:00 20:00 30:30
13 20:00 5 8 50 568 06:00 20:30 27:00
14 12:00 6 1 50 654321 14:00 12:00 26:30
15 20:00 6 1 50 654321 14:00 20:00 34:30
16 20:00 6 4 50 654 05:00 20:30 26:00
17 20:00 6 5 50 65 04:00 21:01 25:31

18 20:00 6 8 50 68 02:00 21:31 24:01
19 20:00 7 2 1 50 7432 06:00 21 06:00 20:00 26:30 33:00
20 08:00 8 1 50 874321 14:00 08:30 23:00
21 16:00 8 1 50 874321 14:00 16:00 31:00
22 08:00 8 7 6 50 87 02:00 786 04:00 08:00 10:30 15:00
23 16:00 8 7 6 50 87 02:00 786 04:00 16:30 19:00 23:30
24 16:00 8 7 50 87 02:00 17:01 19:31

A4 - 144

Appendix 4 – Model Application Results – Final Iteration

After Final Iteration Daily O-D Table (Broken Down into 4 Hour Section)

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

1 1 1 2 2 0 1 213 483 702
1 2 0 0 0 0 0 3 16 19
1 3 0 0 0 0 0 0 0 0
1 4 0 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0 0
1 6 0 0 0 0 0 0 0 0
1 7 0 0 0 0 0 0 0 0
1 8 0 0 0 0 0 0 0 0

Total 1 2 2 0 1 216 499 721
2 1 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 71 71
2 3 0 0 0 0 0 0 0 0
2 4 0 0 0 0 0 0 0 0
2 5 0 0 0 0 0 0 0 0
2 6 0 0 0 0 0 0 0 0

2 7 0 0 0 0 0 0 0 0
2 8 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 0 71 71
3 1 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0
3 3 0 0 0 0 0 0 25 25
3 4 0 0 0 0 0 0 0 0
3 5 0 0 0 0 0 0 0 0
3 6 0 0 0 0 0 0 0 0
3 7 0 0 0 0 0 0 0 0
3 8 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 0 25 25
4 1 0 0 0 0 0 0 0 0
4 2 0 0 0 0 0 0 38 38
4 3 0 0 0 0 0 0 0 0
4 4 11 0 0 7 0 0 103 121
4 5 0 0 0 0 0 0 0 0
4 6 0 0 0 0 0 0 0 0
4 7 0 0 0 0 0 0 0 0
4 8 0 0 0 0 0 0 0 0
Total 11 0 0 7 0 0 141 159

A4 - 145

From To 04:00 08:00 12:00 16:00 20:00 23:59 Next Day Total

5 1 0 0 0 0 0 0 0 0
5 2 0 0 0 0 0 0 0 0
5 3 0 0 0 0 0 0 0 0
5 4 0 0 0 0 0 0 0 0
5 5 0 0 0 0 0 0 133 133
5 6 0 0 0 0 0 0 0 0
5 7 0 0 0 0 0 0 0 0
5 8 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 0 133 133
6 1 0 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 0 0
6 3 0 0 0 0 0 0 0 0
6 4 0 0 0 0 0 0 0 0
6 5 0 0 0 0 0 0 52 52
6 6 0 0 0 66 0 81 304 451
6 7 0 0 0 0 0 0 0 0
6 8 0 0 0 0 0 0 0 0

Total 0 0 0 66 0 81 356 503
7 1 0 0 0 0 0 0 0 0
7 2 0 0 0 0 0 0 0 0
7 3 0 0 0 0 0 0 0 0
7 4 0 0 0 0 0 0 0 0
7 5 0 0 0 0 0 0 0 0
7 6 0 0 0 0 0 0 0 0
7 7 0 0 0 0 0 22 47 69
7 8 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 22 47 69
8 1 0 0 0 0 0 0 0 0
8 2 0 0 0 0 0 0 0 0
8 3 0 0 0 0 0 0 0 0
8 4 0 0 0 0 0 0 0 0
8 5 0 0 0 0 0 0 0 0
8 6 0 0 0 0 0 0 0 0
8 7 0 0 0 0 0 0 0 0
8 8 8 9 8 8 0 0 394 427

Total 8 9 8 8 0 0 394 427

A4 - 146

After Final Iteration – Block to Train Assignments (1)

O Yard D Yard Block Train Assignment
1 1 0
1 2 1 1
1 3 2 6
1 4 3 2
1 5 4 2
1 6 5 3
1 7 6 4
1 8 7 5
2 1 1 19
2 2 0
2 3 2 7
2 4 3 7
2 5 4 7

2 6 5 7
2 7 6 7
2 8 7 7
3 1 1 8
3 2 2 8
3 3 0
3 4 3 8
3 5 4 8
3 6 5 9
3 7 6 8
3 8 7 9
4 1 1 10
4 2 2 10
4 3 3 10
4 4 0
4 5 4 10
4 6 5 7
4 7 6 10
4 8 7 10

A4 - 147

After Final Iteration – Block to Train Assignments (2)

O Yard D Yard Block Train Assignment
5 1 1 11, 12
5 2 2 11, 12
5 3 3 11, 12
5 4 4 11, 12
5 5 0
5 6 5 9
5 7 6 11, 12
5 8 7 13
6 1 1 14, 15
6 2 2 16
6 3 3 16
6 4 4 16
6 5 5 17
6 6 0
6 7 6 4
6 8 7 18
7 1 1 19
7 2 2 19
7 3 3 19
7 4 4 19
7 5 5 19
7 6 6 22, 23
7 7 0
7 8 7 5
8 1 1 20, 21
8 2 2 20, 21
8 3 3 20, 21
8 4 4 20, 21
8 5 5 22, 23
8 6 6 22, 23
8 7 7 24
8 8 0

A5-148

Appendix 5 – Software Code

Module 1
Option Explicit

' Explicitly create all variables in program

 Public NumYards As Long ' number of yards in the network
 Public MaxSize As Long ' max train size (number of cars)
 Public MinSize As Long ' min train size (number of cars)
 Public NumTrains As Long ' the number of trains which can run in the network

 Public T1() As Date, TC() As Date, T2() As Date ' collection start times for trains and arrival time for train to
next yard
 Public TX1() As Integer, TXC1() As Integer, TX2() As Integer ' conversion of collection times to integer times
(out of 1-7)

 Public OYard As Long, CYard As Long, DYard As Long ' Origin and Destination Yards for indivudual Trains

 Public i As Integer, j As Integer, k As Integer, l As Integer, m As Integer, n As Integer, x As Integer, y As Integer
' various counter variables for loops

 Public NumBlocks() As Long ' Maximum number of blocks which can be created at each yard
 Public MinBlockSize() As Long ' Minimum size of pure blocks at each yard (respectively)

 Public Blocks() As Long ' Blocks list
 Public Blocks_Pure_Mixed() As Long ' Blocks list

 Public ODArrayP1() As Long ' Daily OD data table for Priority 1 (in array format)
 Public ODArrayP2() As Long ' Daily OD data table for priority 2(in array format)

 Public SwitchArray() As Long ' Switchting data table (in arrray format)
 Public NumSwitches() As Long ' Number of cars switched per yard
 Public SwitchingPrepTime() As Date ' Switching prep time per train at a given yard
 Public SwitchingTime() As Date ' Switching time per yard
 Public ServiceTime() As Date ' Service time for each train at a given yard

 Public TrainNumber As Long ' the train which is being moved at the specific time
 Public Trains() As Long ' Storage value for number of cars on a train at a given time
 Public TrainSwitchTime() As Date ' Storage value for amount of time it takes to switch cars on train X

 Public TrainTime1() As Date ' the amount of time it takes the specific train to move along a route
 Public TrainTime2() As Date ' the amount of time it takes the specific train to move along a route
 Public TrainSpeed() As Long ' the speed associated to the specific train routes

 Public PossibleTrainRoutes1() As String ' the various train routes available for each specific train
 Public PossibleTrainRoutes2() As String ' the various train routes available for each specific train
 Public TrainRoute1() As String ' the various train route for each specific train (based on speed and distance) Leg 1
 Public TrainRoute2() As String ' the various train route for each specific train (based on speed and distance) Leg 2

 Public Fulltrain As Integer ' a 0/1 variable which determines whether the train is full or not
 Public Smalltrain As Integer ' a 0/1 variable which determines whether the train is large enough to run or not

 Public NumRoutes As Integer ' total number of routes in the network
 Public NetworkRoute() As String ' the various train routes available in the network

A5-149

 Public RouteDist() As Long ' the various distances wrt the various train routes
' Public RouteTime() As Date ' the various movement times wrt the various train routes

Sub ReDimAll()
Application.ScreenUpdating = False

''
' Get Original Value for n (# of yards)
''
 Sheets("Initial Input").Select
 Range("Number_Yards").Select
 NumYards = ActiveCell.Value
 Range("Max_Train_Size").Select
 MaxSize = ActiveCell.Value
 Range("Min_Train_Size").Select
 MinSize = ActiveCell.Value
 Range("Number_Of_Trains").Select
 NumTrains = ActiveCell.Value
 Range("Number_Of_Routes").Select
 NumRoutes = ActiveCell.Value
''
' Hide Unused Cells
''
 Sheets("Yard Data").Select
 Rows("1:100").EntireRow.Hidden = False
 Rows(3 + NumYards & ":17").EntireRow.Hidden = True
 Range("B2").Select

 Sheets("Routes").Select
 Rows("1:100").EntireRow.Hidden = False
 Rows(3 + NumRoutes & ":75").EntireRow.Hidden = True
 Range("B2").Select
''
' Redim all Variable Arrays
''
 ReDim ODArrayP1(1 To NumYards, 1 To NumYards, 1 To 7)
 ReDim ODArrayP2(1 To NumYards, 1 To NumYards, 1 To 7)

 ReDim SwitchArray(1 To NumYards, 1 To NumYards, 1 To 7)

 ReDim NumSwitches(1 To NumYards)

 ReDim NumBlocks(1 To NumYards)
 ReDim MinBlockSize(1 To NumYards)

 ReDim SwitchingPrepTime(1 To NumYards)
 ReDim SwitchingTime(1 To NumYards)
 ReDim ServiceTime(1 To NumYards)

 ReDim Trains(1 To NumTrains)
 ReDim TrainSpeed(1 To NumTrains)
 ReDim TrainSwitchTime(1 To NumTrains)

 ReDim T1(1 To NumTrains)
 ReDim TC(1 To NumTrains)
 ReDim T2(1 To NumTrains)

A5-150

 ReDim TX1(1 To NumTrains)
 ReDim TXC1(1 To NumTrains)
 ReDim TX2(1 To NumTrains)

 ReDim TrainTime1(1 To NumTrains)
 ReDim TrainTime2(1 To NumTrains)

 ReDim PossibleTrainRoutes1(1 To NumTrains, 1 To NumRoutes)
 ReDim PossibleTrainRoutes2(1 To NumTrains, 1 To NumRoutes)
 ReDim TrainRoute1(1 To NumTrains)
 ReDim TrainRoute2(1 To NumTrains)

 ReDim NetworkRoute(1 To NumRoutes)
 ReDim RouteDist(1 To NumRoutes)

 ReDim Blocks(1 To NumYards, 1 To NumYards)
 ReDim Blocks_Pure_Mixed(1 To NumYards, 1 To NumYards)
''
' Move user to yard Data Sheet
''
 Sheets("Yard Data").Select

 Application.ScreenUpdating = True
End Sub

Sub CreateODArray()
Application.ScreenUpdating = False
''
' Get Values for number of blocks and block sizes for each corresponding yard
 Sheets("Yard Data").Select
 Range("D3").Select
 For i = 1 To NumYards
 NumBlocks(i) = ActiveCell.Value
 ActiveCell.Offset(1, 0).Select
 Next i

 Range("E3").Select
 For i = 1 To NumYards
 MinBlockSize(i) = ActiveCell.Value
 ActiveCell.Offset(1, 0).Select
 Next i
''
' Get switching time values for each corresponding yard
''
 Range("F3").Select
 For i = 1 To NumYards
 SwitchingPrepTime(i) = ActiveCell.Value
 ActiveCell.Offset(1, 0).Select
 Next i
''
' Get switching time values for each corresponding yard
''
 Range("G3").Select
 For i = 1 To NumYards
 SwitchingTime(i) = ActiveCell.Value
 ActiveCell.Offset(1, 0).Select

A5-151

 Next i
''
' Get Service time values for each corresponding yard
''
 Range("H3").Select
 For i = 1 To NumYards
 ServiceTime(i) = ActiveCell.Value
 ActiveCell.Offset(1, 0).Select
 Next i
''
' Get Values for Train Route and Train Route Time information
''
 Sheets("Routes").Select
 Range("Route_Path1").Select
 For i = 1 To NumRoutes
 NetworkRoute(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 RouteDist(i) = ActiveCell.Value
 ActiveCell.Offset(1, -1).Select
 Next i
''
' Get Values for OD Array
''
 Sheets("O-D Matrices").Select
 Range("J3").Select
 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To 7
 If ActiveCell.Font.Bold = True Then
 ODArrayP1(i, j, k) = ActiveCell.Value
 Else
 ODArrayP1(i, j, k) = 0
 End If
 ActiveCell.Offset(0, 1).Select
 Next k
 ActiveCell.Offset(1, -7).Select
 Next j
 ActiveCell.Offset(3, 0).Select
 Next i

 Sheets("O-D Matrices").Select
 Range("J3").Select
 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To 7
 If ActiveCell.Font.Bold = False Then
 ODArrayP2(i, j, k) = ActiveCell.Value
 Else
 ODArrayP2(i, j, k) = 0
 End If
 ActiveCell.Offset(0, 1).Select
 Next k
 ActiveCell.Offset(1, -7).Select
 Next j
 ActiveCell.Offset(3, 0).Select
 Next i

A5-152

''
' Create initial values for number of cars in a yard / day and time to switch those cars / day
''
 Sheets("O-D Matrices").Select
 Range("Cars_Initial").Select
 ActiveCell.Offset(0, 1).Select
 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To 7
 ActiveCell = ActiveCell.Value + ODArrayP1(i, j, k) + ODArrayP2(i, j, k)
 Next k
 Next j
 ActiveCell.Offset(0, 1).Select
 Next i

 Sheets("O-D Matrices").Select
 Range("A1").Select

Application.ScreenUpdating = True
End Sub

Sub Blocks_Setup()
''
' Create setup of blocks
''
 Sheets("O-D Matrices").Select
 For j = 1 To NumYards
 For k = 1 To NumYards
 If Cells(k + 3, 3).Value <= NumBlocks(j) Then
 Blocks(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 3).Value
 Blocks_Pure_Mixed(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 4).Value
 End If
 Next k
 Next j
End Sub

Sub ReCreateODArray()
Application.ScreenUpdating = False
''
' Get Values for OD Array
''
 Sheets("O-D Matrices").Select
 Range("J3").Select
 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To 7
 If ActiveCell.Font.Bold = True Then
 ODArrayP1(i, j, k) = ActiveCell.Value
 Else
 ODArrayP1(i, j, k) = 0
 End If
 ActiveCell.Offset(0, 1).Select
 Next k
 ActiveCell.Offset(1, -7).Select
 Next j
 ActiveCell.Offset(3, 0).Select

A5-153

 Next i

 Sheets("O-D Matrices").Select
 Range("J3").Select
 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To 7
 If ActiveCell.Font.Bold = False Then
 ODArrayP2(i, j, k) = ActiveCell.Value
 Else
 ODArrayP2(i, j, k) = 0
 End If
 ActiveCell.Offset(0, 1).Select
 'Debug.Print ODArrayP2(i, j, k)
 Next k
 ActiveCell.Offset(1, -7).Select
 Next j
 ActiveCell.Offset(3, 0).Select
 Next i

Application.ScreenUpdating = True
End Sub

Sub Train_Call_Run(TrainNumber)
Application.ScreenUpdating = False
''
' get OYard
 If Cells(TrainNumber + 2, 26 + 5).Value = "" Then
 MsgBox "You have not chosen an origin yard"
 Exit Sub
 Else
 OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin)
 End If
''
' get CYard
 If Cells(TrainNumber + 2, 26 + 6).Value = "" Then
 CYard = 0
 Else
 CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection)
 End If
''
' get DYard
 If Cells(TrainNumber + 2, 26 + 7).Value = "" Then
 MsgBox "You have not chosen a destination yard"
 Exit Sub
 Else
 DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination)
 End If
''
 T1(TrainNumber) = Cells(TrainNumber + 2, 26 + 25).Value
 TC(TrainNumber) = Cells(TrainNumber + 2, 26 + 26).Value
 T2(TrainNumber) = Cells(TrainNumber + 2, 26 + 27).Value

 Call TrainTimes(TrainNumber, OYard, CYard, DYard, T1(TrainNumber), TC(TrainNumber), T2(TrainNumber))
 Call TrainMovement(TrainNumber, OYard, CYard, DYard, T1(TrainNumber), TC(TrainNumber),
T2(TrainNumber))

A5-154

Application.ScreenUpdating = True
End Sub

Sub TrainTimes(TrainNumber, OYard, CYard, DYard, TSub1, TSubC, TSub2)
Application.ScreenUpdating = False

 T1(TrainNumber) = TSub1
 TC(TrainNumber) = TSubC
 T2(TrainNumber) = TSub2

 Call ReCreateODArray
''
' Check Minimum Train Size
''
 Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber)

 If T1(TrainNumber) > #11:59:00 PM# Then TX1(TrainNumber) = 6 ' assumed that only cars from today can be
carried on any given train
 If T1(TrainNumber) <= #11:59:00 PM# Then TX1(TrainNumber) = 6
 If T1(TrainNumber) <= #8:00:00 PM# Then TX1(TrainNumber) = 5
 If T1(TrainNumber) <= #4:00:00 PM# Then TX1(TrainNumber) = 4
 If T1(TrainNumber) <= #12:00:00 PM# Then TX1(TrainNumber) = 3
 If T1(TrainNumber) <= #8:00:00 AM# Then TX1(TrainNumber) = 2
 If T1(TrainNumber) <= #4:00:00 AM# Then TX1(TrainNumber) = 1

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Font.ColorIndex = xlAutomatic Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(OYard, j) Then
 For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(OYard, j, k)
 Next k
 End If
 Next j
 End If
 ActiveCell.Offset(0, 1).Select
 Next i

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Font.ColorIndex = xlAutomatic Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(OYard, j) Then
 For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from

A5-155

 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(OYard, j, k)
 Next k
 End If
 Next j
 End If
 ActiveCell.Offset(0, 1).Select
 Next i

 If CYard = 0 Then

 CYard = 0

 Else

' because the train gets to CYard after some time, therefore additional cars may be picked up

 If TC(TrainNumber) > #11:59:00 PM# Then TXC1(TrainNumber) = 6 ' because cars on any train can only be
picked up from the day of the OD Demand (Assumed)
 If TC(TrainNumber) <= #11:59:00 PM# Then TXC1(TrainNumber) = 6
 If TC(TrainNumber) <= #8:00:00 PM# Then TXC1(TrainNumber) = 5
 If TC(TrainNumber) <= #4:00:00 PM# Then TXC1(TrainNumber) = 4
 If TC(TrainNumber) <= #12:00:00 PM# Then TXC1(TrainNumber) = 3
 If TC(TrainNumber) <= #8:00:00 AM# Then TXC1(TrainNumber) = 2
 If TC(TrainNumber) <= #4:00:00 AM# Then TXC1(TrainNumber) = 1

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Interior.Color = 65535 Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(CYard, j) Then
 For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(CYard, j, k)
 Next k
 End If
 Next j
 End If
 ActiveCell.Offset(0, 1).Select
 Next i

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Interior.Color = 65535 Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(CYard, j) Then
 For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(CYard, j, k)

A5-156

 Next k
 End If
 Next j
 End If
 ActiveCell.Offset(0, 1).Select
 Next i

 End If
''
 If Trains(TrainNumber) < MinSize Then
 Smalltrain = 1
 GoTo TrainIsTooSmall
 End If
''
 TrainSwitchTime(TrainNumber) = Trains(TrainNumber) * SwitchingTime(DYard) +
SwitchingPrepTime(DYard)
''
 Cells(TrainNumber + 2, 26 + 24) = TrainSwitchTime(TrainNumber)
''
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) > #11:59:00 PM# Then TX2(TrainNumber) = 7
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #11:59:00 PM# Then TX2(TrainNumber) = 6
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 PM# Then TX2(TrainNumber) = 5
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 PM# Then TX2(TrainNumber) = 4
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #12:00:00 PM# Then TX2(TrainNumber) = 3
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 AM# Then TX2(TrainNumber) = 2
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 AM# Then TX2(TrainNumber) = 1

 Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber)
''
' Error messages for trains which are too small or large
''
TrainIsTooSmall:
 If Smalltrain = 1 Then
 MsgBox ("Train(" & TrainNumber & ") does not have enough cars, and thus it will not" & _
 " run. This train only has " & Trains(TrainNumber) & " cars.")
 Smalltrain = 0
 Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber)
 Exit Sub
 End If

Application.ScreenUpdating = True
End Sub

Sub TrainMovement(TrainNumber, OYard, CYard, DYard, TSub1, TSubC, TSub2)
Application.ScreenUpdating = False

 T1(TrainNumber) = TSub1
 TC(TrainNumber) = TSubC
 T2(TrainNumber) = TSub2
''
' Movement of cars on Train (i)
''
 If T1(TrainNumber) > #11:59:00 PM# Then TX1(TrainNumber) = 6 ' because cars on any train can only be
picked up from the day of the OD Demand (Assumed)
 If T1(TrainNumber) <= #11:59:00 PM# Then TX1(TrainNumber) = 6
 If T1(TrainNumber) <= #8:00:00 PM# Then TX1(TrainNumber) = 5

A5-157

 If T1(TrainNumber) <= #4:00:00 PM# Then TX1(TrainNumber) = 4
 If T1(TrainNumber) <= #12:00:00 PM# Then TX1(TrainNumber) = 3
 If T1(TrainNumber) <= #8:00:00 AM# Then TX1(TrainNumber) = 2
 If T1(TrainNumber) <= #4:00:00 AM# Then TX1(TrainNumber) = 1

 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) > #11:59:00 PM# Then TX2(TrainNumber) = 7
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #11:59:00 PM# Then TX2(TrainNumber) = 6
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 PM# Then TX2(TrainNumber) = 5
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 PM# Then TX2(TrainNumber) = 4
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #12:00:00 PM# Then TX2(TrainNumber) = 3
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 AM# Then TX2(TrainNumber) = 2
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 AM# Then TX2(TrainNumber) = 1
''
' Loading of Priority (1) Cars (OYard)
''
 Dim Remainder As Long

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Font.ColorIndex = xlAutomatic Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(OYard, j) Then
 For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from
 If Trains(TrainNumber) + ODArrayP1(OYard, j, k) <= MaxSize Then
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(OYard, j, k)
 ODArrayP1(DYard, j, TX2(TrainNumber)) = ODArrayP1(DYard, j, TX2(TrainNumber)) + _
 ODArrayP1(OYard, j, k) ' destination yard is being added all cars
 ODArrayP1(OYard, j, k) = 0 ' origin yard is being negated all cars
 ElseIf Trains(TrainNumber) + ODArrayP1(OYard, j, k) > MaxSize Then
 Remainder = MaxSize - Trains(TrainNumber)
 Trains(TrainNumber) = Trains(TrainNumber) + Remainder
 ODArrayP1(DYard, j, TX2(TrainNumber)) = ODArrayP1(DYard, j, TX2(TrainNumber)) + _
 Remainder
 ODArrayP1(OYard, j, k) = ODArrayP1(OYard, j, k) - Remainder
 Remainder = 0

 Fulltrain = 1
 GoTo TrainIsFull

 End If
 Next k
 End If
 Next j
 End If

 ActiveCell.Offset(0, 1).Select
 Next i
''
' Loading of Priority (2) Cars (OYard)
''
 Cells(TrainNumber + 2, 26 + 13).Select

A5-158

 For i = 1 To NumYards
 If Selection.Font.ColorIndex = xlAutomatic Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(OYard, j) Then
 For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from
 If Trains(TrainNumber) + ODArrayP2(OYard, j, k) <= MaxSize Then
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(OYard, j, k)
 ODArrayP2(DYard, j, TX2(TrainNumber)) = ODArrayP2(DYard, j, TX2(TrainNumber)) + _
 ODArrayP2(OYard, j, k) ' destination yard is being added all cars
 ODArrayP2(OYard, j, k) = 0 ' origin yard is being negated all cars
 ElseIf Trains(TrainNumber) + ODArrayP2(OYard, j, k) > MaxSize Then
 Remainder = MaxSize - Trains(TrainNumber)
 Trains(TrainNumber) = Trains(TrainNumber) + Remainder
 ODArrayP2(DYard, j, TX2(TrainNumber)) = ODArrayP2(DYard, j, TX2(TrainNumber)) + _
 Remainder
 ODArrayP2(OYard, j, k) = ODArrayP2(OYard, j, k) - Remainder
 Remainder = 0

 Fulltrain = 1
 GoTo TrainIsFull

 End If
 Next k
 End If
 Next j
 End If

 ActiveCell.Offset(0, 1).Select
 Next i
 '''
 If CYard > 0 Then

' because the train gets to CYard after some time, therefore additional cars may be picked up
 If TC(TrainNumber) > #11:59:00 PM# Then TXC1(TrainNumber) = 6 ' because cars on any train can only be
picked up from the day of the OD Demand (Assumed)
 If TC(TrainNumber) <= #11:59:00 PM# Then TXC1(TrainNumber) = 6
 If TC(TrainNumber) <= #8:00:00 PM# Then TXC1(TrainNumber) = 5
 If TC(TrainNumber) <= #4:00:00 PM# Then TXC1(TrainNumber) = 4
 If TC(TrainNumber) <= #12:00:00 PM# Then TXC1(TrainNumber) = 3
 If TC(TrainNumber) <= #8:00:00 AM# Then TXC1(TrainNumber) = 2
 If TC(TrainNumber) <= #4:00:00 AM# Then TXC1(TrainNumber) = 1
''
' Loading of Priority (1) Cars (CYard)
''
 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Interior.Color = 65535 Then
 x = ActiveCell.Value
 Else
 x = 0
 End If

A5-159

 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(CYard, j) Then
 For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from
 If Trains(TrainNumber) + ODArrayP1(CYard, j, k) <= MaxSize Then
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(CYard, j, k)
 ODArrayP1(DYard, j, TX2(TrainNumber)) = ODArrayP1(DYard, j, TX2(TrainNumber)) + _
 ODArrayP1(CYard, j, k) ' destination yard is being added all cars
 ODArrayP1(CYard, j, k) = 0 ' origin yard is being negated all cars
 ElseIf Trains(TrainNumber) + ODArrayP1(CYard, j, k) > MaxSize Then
 Remainder = MaxSize - Trains(TrainNumber)
 Trains(TrainNumber) = Trains(TrainNumber) + Remainder
 ODArrayP1(DYard, j, TX2(TrainNumber)) = ODArrayP1(DYard, j, TX2(TrainNumber)) + _
 Remainder
 ODArrayP1(CYard, j, k) = ODArrayP1(CYard, j, k) - Remainder
 Remainder = 0

 Fulltrain = 1
 GoTo TrainIsFull
 End If
 Next k
 End If
 Next j
 End If

 ActiveCell.Offset(0, 1).Select
 Next i
''
' Loading of Priority (2) Cars (CYard)
''
 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Interior.Color = 65535 Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(CYard, j) Then
 For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from
 If Trains(TrainNumber) + ODArrayP2(CYard, j, k) <= MaxSize Then
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(CYard, j, k)
 ODArrayP2(DYard, j, TX2(TrainNumber)) = ODArrayP2(DYard, j, TX2(TrainNumber)) + _
 ODArrayP2(CYard, j, k) ' destination yard is being added all cars
 ODArrayP2(CYard, j, k) = 0 ' origin yard is being negated all cars
 ElseIf Trains(TrainNumber) + ODArrayP2(CYard, j, k) > MaxSize Then
 Remainder = MaxSize - Trains(TrainNumber)
 Trains(TrainNumber) = Trains(TrainNumber) + Remainder
 ODArrayP2(DYard, j, TX2(TrainNumber)) = ODArrayP2(DYard, j, TX2(TrainNumber)) + _
 Remainder
 ODArrayP2(CYard, j, k) = ODArrayP2(CYard, j, k) - Remainder
 Remainder = 0

 Fulltrain = 1
 GoTo TrainIsFull

A5-160

 End If
 Next k
 End If
 Next j
 End If

 ActiveCell.Offset(0, 1).Select
 Next i

 End If
''
' Error messages for trains which are too small or large
''
TrainIsTooSmall:
 If Smalltrain = 1 Then
 MsgBox ("Train(" & TrainNumber & ") does not have enough cars, and thus it will not" & _
 " run. This train only has " & Trains(TrainNumber) & " cars.")
 Smalltrain = 0
 Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber)
 Exit Sub
 End If

TrainIsFull:
 If Fulltrain = 1 Then
 MsgBox ("Train(" & TrainNumber & ") is Full, it will only take up to a maximum of " & _
 MaxSize & " cars. The train may only take a full block, it cannot take one in part." & _
 "This train took " & Trains(TrainNumber) & " cars.")
 Fulltrain = 0
 End If
''
' Replace OD Array
''
 Sheets("O-D Matrices").Select
 Range("J3").Select
 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To 7
 ActiveCell.Value = ODArrayP1(i, j, k)
 ActiveCell.Offset(0, 1).Select
 Next k
 ActiveCell.Offset(1, -7).Select
 Next j
 ActiveCell.Offset(3, 0).Select
 Next i

 Range("J3").Select
 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To 7
 ActiveCell.Offset(0, 1).Select
 If ActiveCell.Value > 0 Then
 ActiveCell.Font.Bold = True
 Else
 ActiveCell.Font.Bold = False
 End If

A5-161

 Next k
 ActiveCell.Offset(1, -7).Select
 Next j
 ActiveCell.Offset(3, 0).Select
 Next i

 Sheets("O-D Matrices").Select
 Range("J3").Select
 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To 7
 If ActiveCell.Font.Bold = False Then
 ActiveCell.Value = ODArrayP2(i, j, k)
 End If
 ActiveCell.Offset(0, 1).Select
 Next k
 ActiveCell.Offset(1, -7).Select
 Next j
 ActiveCell.Offset(3, 0).Select
 Next i
''
' Count Number of Trains Originating at Yard "O" and received at yard "D"
''
 Range("OYard_Number_Origin_Trains").Offset(0, OYard) = Range("OYard_Number_Origin_Trains").Offset(0,
OYard).Value + 1
''
 If CYard > 0 Then
 Range("CYard_Number_Trains").Offset(0, CYard) = Range("CYard_Number_Trains").Offset(0,
CYard).Value + 1
 End If
''
 Range("DYard_Number_Trains").Offset(0, DYard) = Range("DYard_Number_Trains").Offset(0, DYard).Value
+ 1
''
' Add to the values for number of cars in a yard / day and time to switch those cars / day
''
 Range("Cars_Additional").Offset(0, DYard) = Range("Cars_Additional").Offset(0, DYard).Value +
Trains(TrainNumber)

 Range("Class_Time_Additional").Offset(0, DYard) = Range("Class_Time_Additional").Offset(0, DYard).Value
+ TrainSwitchTime(TrainNumber)
''
Application.ScreenUpdating = True
End Sub

Module 2
Sub ButtonAll_Click()
Application.ScreenUpdating = False

' call each train to be run individually, in order of earliest to latest

 Dim Train_Run_List() As Long
 Dim Train_Run_Time() As Date

 ReDim Train_Run_List(1 To NumTrains)

A5-162

 ReDim Train_Run_Time(1 To NumTrains)

 For i = 1 To NumTrains
 Train_Run_List(i) = Cells(i + 2, 26 + 3).Value
 Train_Run_Time(i) = Cells(i + 2, 26 + 25).Value
 Next i

 Call Time_Sort_Run(Train_Run_Time, Train_Run_List)

 For m = 1 To NumTrains
 Call Run_Train(Train_Run_List(m))
 Next m

 Call Train_Sort_Run(Train_Run_List, Train_Run_Time)

Application.ScreenUpdating = True
End Sub

Sub Run_Train(S_TrainNumber)

 If S_TrainNumber > NumTrains Then Exit Sub
 Call ReCreateODArray
 Call Blocks_Setup
 Call Train_Call_Run(S_TrainNumber)
 If Trains(S_TrainNumber) < MinSize Then Exit Sub

 Cells(S_TrainNumber + 2, 26 + 21).Select
 ActiveCell = ActiveCell.Value + Trains(S_TrainNumber)

End Sub

Sub Time_Sort_Run(list1() As Date, list2() As Long)
Application.ScreenUpdating = False

' Sorts array

 Dim First As Integer, Last As Long
 Dim i As Long, j As Long
 Dim Temp1
 Dim Temp2

 First = LBound(list1)
 Last = UBound(list1)
 For i = First To Last - 1
 For j = i + 1 To Last
 If list1(i) > list1(j) Then
 Temp1 = list1(j)
 list1(j) = list1(i)
 list1(i) = Temp1

 Temp2 = list2(j)
 list2(j) = list2(i)
 list2(i) = Temp2
 End If
 Next j
 Next i

A5-163

Application.ScreenUpdating = True
End Sub

Sub Train_Sort_Run(list1() As Long, list2() As Date)
Application.ScreenUpdating = False

' Sorts array

 Dim First As Integer, Last As Long
 Dim i As Long, j As Long
 Dim Temp1
 Dim Temp2

 First = LBound(list1)
 Last = UBound(list1)
 For i = First To Last - 1
 For j = i + 1 To Last
 If list1(i) > list1(j) Then
 Temp1 = list1(j)
 list1(j) = list1(i)
 list1(i) = Temp1

 Temp2 = list2(j)
 list2(j) = list2(i)
 list2(i) = Temp2
 End If
 Next j
 Next i

Application.ScreenUpdating = True
End Sub

Module 3

 Public Queue_List_OBuild() As Long
 Public Queue_Time_OBuild() As Date

 Public Queue_List_CBuild() As Long
 Public Queue_Time_CBuild() As Date

 Public Queue_List_DSwitch() As Long
 Public Queue_Time_DSwitch() As Date

'''
 Public T1Start() As Long
 Public T1Stop() As Long
 Public T1New() As Date
 '''''''''''''''''''''''
 Public T2Start() As Long
 Public T2Stop() As Long
 Public T2New() As Date
 '''''''''''''''''''''''
 Public T3Start() As Long
 Public T3Stop() As Long
 Public T3New() As Date

A5-164

'''
 Public OYard_List() As Long
 Public OYard_Train_List() As Long
 Public OYard_Build_Time_List() As Date
 Public OYard_Priority_List() As Long

 Public CYard_List() As Long
 Public CYard_Train_List() As Long
 Public CYard_Build_Time_List() As Date
 Public CYard_Priority_List() As Long

 Public DYard_List() As Long
 Public DYard_Train_List() As Long
 Public DYard_Build_Time_List() As Date
 Public DYard_Priority_List() As Long

Sub Actual_Time_Calculations()
Application.ScreenUpdating = False

 Sheets("Queue Times").Select
 Columns("D:F").Select
 Selection.ClearContents
 Range("D1").Select
 ActiveCell = "OYard Build List"
 Range("E1").Select
 ActiveCell = "CYard Connection Only List"
 Range("F1").Select
 ActiveCell = "DYard Switching/Classification List"
 Sheets("O-D Matrices").Select

 For i = 1 To NumTrains
 Trains(i) = 75
 Next i

 Call Get_Shortest_Routes
 Call ArrayMovement
 Call Test_Queue
 Call New_OYard_Times
 Call Recalulate_CYard_and_DYard_Arrivals
 Call New_CYard_Times
 Call Recalulate_DYard_Arrivals
 Call New_DYard_Times
 Call Adjust_Times_24

 Sheets("Queue Times").Select
 Columns("D:F").Select
 Selection.ClearContents
 Range("D1").Select
 ActiveCell = "OYard Build List"
 Range("E1").Select
 ActiveCell = "CYard Connection Only List"
 Range("F1").Select
 ActiveCell = "DYard Switching/Classification List"
 Sheets("O-D Matrices").Select

 Call Test_Queue

A5-165

 Call Train_Call_Run_XX
 Call New_OYard_Times
 Call Recalulate_CYard_and_DYard_Arrivals
 Call New_CYard_Times
 Call Recalulate_DYard_Arrivals
 Call New_DYard_Times
 Call Adjust_Times_24

Application.ScreenUpdating = True
End Sub

Sub ArrayMovement()
Application.ScreenUpdating = False

 For TrainNumber = 1 To NumTrains
''
' get build time
 If Cells(TrainNumber + 2, 26 + 4).Value = "" Then
 MsgBox "You have not chosen a build time"
 Exit Sub
 Else
 T1(TrainNumber) = Cells(TrainNumber + 2, 26 + 4).Value ' start time period for collection of cars
 End If
''
' get OYard
 If Cells(TrainNumber + 2, 26 + 5).Value = "" Then
 MsgBox "You have not chosen an origin yard for train number" & TrainNumber & "."
 Exit Sub
 Else
 OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin)
 End If
''
' get CYard
 If Cells(TrainNumber + 2, 26 + 6).Value = "" Then
 CYard = 0
 Else
 CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection)
 End If
''
' get DYard
 If Cells(TrainNumber + 2, 26 + 7).Value = "" Then
 MsgBox "You have not chosen a destination yard for train number" & TrainNumber & "."
 Exit Sub
 Else
 DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination)
 End If
''
' get train speed and determine route(s)
''
 If Cells(TrainNumber + 2, 26 + 8).Value = "" Then
 MsgBox "You have not provided a train speed"
 Exit Sub
 ElseIf CYard > 0 Then
 TrainSpeed(TrainNumber) = Cells(TrainNumber + 2, 26 + 8).Value

 For i = 1 To NumRoutes

A5-166

 If InStr(NetworkRoute(i), OYard) = 1 And InStr(NetworkRoute(i), CYard) = Len(NetworkRoute(i)) Then
 PossibleTrainRoutes1(TrainNumber, i) = 1
 Else
 PossibleTrainRoutes1(TrainNumber, i) = 0
 End If
 Next i

 For i = 1 To NumRoutes
 If InStr(NetworkRoute(i), CYard) = 1 And InStr(NetworkRoute(i), DYard) = Len(NetworkRoute(i)) Then
 PossibleTrainRoutes2(TrainNumber, i) = 1
 Else
 PossibleTrainRoutes2(TrainNumber, i) = 0
 End If
 Next i

 Else

 TrainSpeed(TrainNumber) = Cells(TrainNumber + 2, 26 + 8).Value

 For i = 1 To NumRoutes

 If InStr(NetworkRoute(i), OYard) = 1 And InStr(NetworkRoute(i), DYard) = Len(NetworkRoute(i)) Then
 PossibleTrainRoutes1(TrainNumber, i) = 1
 Else
 PossibleTrainRoutes1(TrainNumber, i) = 0
 End If

 Next i

 End If
''
' determine total train time(s) for each route(s)

 If CYard > 0 Then
 x = 0
 TrainTime1(TrainNumber) = 25 ' intitial value of 23:59:59 hours for train time - set high so that it will be
replaced with a new, smaller time

 For i = 1 To NumRoutes
 x = x + PossibleTrainRoutes1(TrainNumber, i)
 Next i
 If x > 0 Then
 For i = 1 To NumRoutes
 If PossibleTrainRoutes1(TrainNumber, i) = 1 And ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) <
TrainTime1(TrainNumber) Then
 TrainRoute1(TrainNumber) = NetworkRoute(i)
 TrainTime1(TrainNumber) = ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24)
 Cells(TrainNumber + 2, 26 + 9) = TrainRoute1(TrainNumber)
 Cells(TrainNumber + 2, 26 + 10) = TrainTime1(TrainNumber)
 End If
 Next i
 Else
 MsgBox "There are no direct routes which take this train from Yard " & OYard & " to Yard " & CYard & "."
 Exit Sub
 End If

A5-167

 x = 0
 TrainTime2(TrainNumber) = 25 ' intitial value of 23:59:59 hours for train time - set high so that it will be
replaced with a new, smaller time

 For i = 1 To NumRoutes
 x = x + PossibleTrainRoutes2(TrainNumber, i)
 Next i
 If x > 0 Then
 For i = 1 To NumRoutes
 If PossibleTrainRoutes2(TrainNumber, i) = 1 And ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) <
TrainTime2(TrainNumber) Then
 TrainRoute2(TrainNumber) = NetworkRoute(i)
 TrainTime2(TrainNumber) = ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24)
 Cells(TrainNumber + 2, 26 + 11) = TrainRoute2(TrainNumber)
 Cells(TrainNumber + 2, 26 + 12) = TrainTime2(TrainNumber)
 End If
 Next i
 Else
 MsgBox "There are no direct routes which take this train from Yard " & CYard & " to Yard " & DYard & "."
 Exit Sub
 End If

 Else

 x = 0

 TrainTime1(TrainNumber) = 25 ' intitial value of 23:59:59 hours for train time - set high so that it will be
replaced with a new, smaller time

 For i = 1 To NumRoutes
 x = x + PossibleTrainRoutes1(TrainNumber, i)
 Next i
 If x > 0 Then
 For i = 1 To NumRoutes
 If PossibleTrainRoutes1(TrainNumber, i) = 1 And ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24) <
TrainTime1(TrainNumber) Then
 TrainRoute1(TrainNumber) = NetworkRoute(i)
 TrainTime1(TrainNumber) = ((RouteDist(i) / TrainSpeed(TrainNumber)) / 24)
 Cells(TrainNumber + 2, 26 + 9) = TrainRoute1(TrainNumber)
 Cells(TrainNumber + 2, 26 + 10) = TrainTime1(TrainNumber)
 End If
 Next i
 Else
 MsgBox "There are no direct routes which take this train from Yard " & OYard & " to Yard " & CYard & "."
 Exit Sub
 End If

 End If
''
' determine arrival time of train into CYard and DYard

 If CYard > 0 Then
 T2(TrainNumber) = T1(TrainNumber) + ServiceTime(OYard) + ServiceTime(CYard) / 2 +
TrainTime1(TrainNumber) + TrainTime2(TrainNumber) ' overall travel and service time for each train
 Else

A5-168

 T2(TrainNumber) = T1(TrainNumber) + ServiceTime(OYard) + TrainTime1(TrainNumber) ' overall travel and
service time for each train
 End If

 If CYard > 0 Then
 If T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) > 1 Then
 Cells(TrainNumber + 2, 26 + 22) = T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) -
1
 Cells(TrainNumber + 2, 26 + 22).Interior.Color = 65535
 Cells(TrainNumber + 2, 26 + 22).Font.Color = -16776961
 Else
 Cells(TrainNumber + 2, 26 + 22) = T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard)
 End If
 End If

 If T2(TrainNumber) > 1 Then
 Cells(TrainNumber + 2, 26 + 23) = T2(TrainNumber) - 1
 Cells(TrainNumber + 2, 26 + 23).Interior.Color = 65535
 Cells(TrainNumber + 2, 26 + 23).Font.Color = -16776961
 Else
 Cells(TrainNumber + 2, 26 + 23) = T2(TrainNumber)
 End If
''
 Next TrainNumber

Application.ScreenUpdating = True
End Sub

Sub Test_Queue()
Application.ScreenUpdating = False

 ReDim Queue_List_OBuild(1 To NumYards, 1 To 2880)
 ReDim Queue_Time_OBuild(1 To 2880)
 ReDim Queue_List_CBuild(1 To NumYards, 1 To 2880)
 ReDim Queue_Time_CBuild(1 To 2880)
 ReDim Queue_List_DSwitch(1 To NumYards, 1 To 2880)
 ReDim Queue_Time_DSwitch(1 To 2880)

 Sheets("Queue Times").Select

 For i = 1 To NumYards
 x = (i - 1) * 2880
 For j = 1 To 2880

 Queue_List_OBuild(i, j) = Cells(1 + j + x, 4).Value
 Queue_Time_OBuild(j) = Cells(1 + j, 3).Value

 Queue_List_CBuild(i, j) = Cells(1 + j + x, 5).Value
 Queue_Time_CBuild(j) = Cells(1 + j, 3).Value

 Queue_List_DSwitch(i, j) = Cells(1 + j + x, 6).Value
 Queue_Time_DSwitch(j) = Cells(1 + j, 3).Value

 Next j
 Next i

A5-169

 Sheets("O-D Matrices").Select

Application.ScreenUpdating = True
End Sub

Sub New_OYard_Times()
Application.ScreenUpdating = False

 ReDim OYard_List(1 To NumTrains)
 ReDim OYard_Train_List(1 To NumTrains)
 ReDim OYard_Build_Time_List(1 To NumTrains)
 ReDim OYard_Priority_List(1 To NumTrains)

 ReDim CYard_List(1 To NumTrains)
 ReDim CYard_Train_List(1 To NumTrains)
 ReDim CYard_Build_Time_List(1 To NumTrains)
 ReDim CYard_Priority_List(1 To NumTrains)

 ReDim DYard_List(1 To NumTrains)
 ReDim DYard_Train_List(1 To NumTrains)
 ReDim DYard_Build_Time_List(1 To NumTrains)
 ReDim DYard_Priority_List(1 To NumTrains)
''
ReDim T1Start(1 To NumTrains)
ReDim T1Stop(1 To NumTrains)

ReDim T1New(1 To NumTrains)
''
 Sheets("O-D Matrices").Select

 For i = 1 To NumTrains
 OYard_Train_List(i) = Cells(2 + i, 26 + 3).Value
 OYard_List(i) = Cells(2 + i, 26 + 5).Value
 OYard_Build_Time_List(i) = Cells(2 + i, 26 + 4).Value
 OYard_Priority_List(i) = Cells(2 + i, 26 + 20).Value
 Next i

Call Time_Sort(OYard_Build_Time_List, OYard_Train_List, OYard_Priority_List, OYard_List)
''
'Priority Trains
''
 For i = 1 To NumTrains
 If OYard_Priority_List(i) = 1 Then

 T1Start(i) = Round(OYard_Build_Time_List(i) * 2880, 0)
 T1Stop(i) = Round((OYard_Build_Time_List(i) + ServiceTime(OYard_List(i))) * 2880, 0)
 If T1Start(i) = 0 Then
 T1Start(i) = 1
 T1Stop(i) = T1Stop(i) + 1
 End If
' check if T1Stop(i) goes into next day.
 x = 0

 If T1Stop(i) < 2880 Then
 For j = T1Start(i) To T1Stop(i)
 x = Queue_List_OBuild(OYard_List(i), j) + x

A5-170

 Next j
 Else
 For j = T1Start(i) To 2880
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j

 For j = 1 To T1Stop(i) - 2880
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j
 End If
''
 If x = 0 Then
 If T1Stop(i) < 2880 Then
 For j = T1Start(i) To T1Stop(i)
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j
 Else
 For j = T1Start(i) To 2880
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j

 For j = 1 To T1Stop(i) - 2880
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j
 End If

 Else

 Do Until x = 0

 x = 0
 T1Start(i) = T1Start(i) + 1
 T1Stop(i) = T1Stop(i) + 1

 If T1Stop(i) < 2880 Then
 For j = T1Start(i) To T1Stop(i)
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j
 Else
 For j = T1Start(i) To 2880
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j

 For j = 1 To T1Stop(i) - 2880
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j
 End If

 Loop
''
 If T1Stop(i) < 2880 Then
 For j = T1Start(i) To T1Stop(i)
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j
 Else
 For j = T1Start(i) To 2880

A5-171

 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j

 For j = 1 To T1Stop(i) - 2880
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j
 End If

 OYard_Build_Time_List(i) = (T1Start(i)) / 2880

 End If
 End If
 Next i
''
'Non - Priority Trains
''
 For i = 1 To NumTrains
 If OYard_Priority_List(i) = 0 Then

 T1Start(i) = Round(OYard_Build_Time_List(i) * 2880, 0)
 T1Stop(i) = Round((OYard_Build_Time_List(i) + ServiceTime(OYard_List(i))) * 2880, 0)
 If T1Start(i) = 0 Then
 T1Start(i) = 1
 T1Stop(i) = T1Stop(i) + 1
 End If
' check if T1Stop(i) goes into next day.
 x = 0

 If T1Stop(i) < 2880 Then
 For j = T1Start(i) To T1Stop(i)
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j
 Else
 For j = T1Start(i) To 2880
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j

 For j = 1 To T1Stop(i) - 2880
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j
 End If
''
 If x = 0 Then
 If T1Stop(i) < 2880 Then
 For j = T1Start(i) To T1Stop(i)
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j
 Else
 For j = T1Start(i) To 2880
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j

 For j = 1 To T1Stop(i) - 2880
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j
 End If

A5-172

 Else

 Do Until x = 0

 x = 0
 T1Start(i) = T1Start(i) + 1
 T1Stop(i) = T1Stop(i) + 1

 If T1Stop(i) < 2880 Then
 For j = T1Start(i) To T1Stop(i)
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j
 Else
 For j = T1Start(i) To 2880
 x = Queue_List_OBuild(OYard_List(i), j) + x
 Next j
 j = 0
 For j = 1 To (T1Stop(i) - 2880)
 If j <= 2880 Then
 x = Queue_List_OBuild(OYard_List(i), j) + x
 End If
 Next j
 End If

 Loop
''
 If T1Stop(i) < 2880 Then
 For j = T1Start(i) To T1Stop(i)
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j
 Else
 For j = T1Start(i) To 2880
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j

 For j = 1 To T1Stop(i) - 2880
 Queue_List_OBuild(OYard_List(i), j) = OYard_Train_List(i)
 Next j
 End If

 OYard_Build_Time_List(i) = (T1Start(i)) / 2880

 End If
 End If
 Next
''
 Sheets("Queue Times").Select

 For i = 1 To NumYards
 x = (i - 1) * 2880
 For j = 1 To 2880

 Cells(1 + j + x, 4) = Queue_List_OBuild(i, j)

 Next j

A5-173

 Next i

 Sheets("O-D Matrices").Select
''
 For i = 1 To NumTrains
 T1New(i) = (T1Start(i) / 2880)
 Next i
Call Train_Sort(OYard_Train_List, OYard_Priority_List, OYard_List, T1New)
 For i = 1 To NumTrains
 Cells(i + 2, 26 + 25) = T1New(i)
 Next i

Application.ScreenUpdating = True
End Sub

Sub Recalulate_CYard_and_DYard_Arrivals()
Application.ScreenUpdating = False

For TrainNumber = 1 To NumTrains
''
' get build time
 If Cells(TrainNumber + 2, 26 + 25).Value = "" Then
 MsgBox "You have not chosen a build time"
 Exit Sub
 Else
 T1(TrainNumber) = Cells(TrainNumber + 2, 26 + 25).Value ' start time period for collection of cars
 End If
''
' get OYard
 If Cells(TrainNumber + 2, 26 + 5).Value = "" Then
 MsgBox "You have not chosen an origin yard"
 Exit Sub
 Else
 OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin)
 End If
''
' get CYard
 If Cells(TrainNumber + 2, 26 + 6).Value = "" Then
 CYard = 0
 Else
 CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection)
 End If
''
' get DYard
 If Cells(TrainNumber + 2, 26 + 7).Value = "" Then
 MsgBox "You have not chosen a destination yard"
 Exit Sub
 Else
 DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination)
 End If
''
' Recalculate CYard and DYard Arrival Times
 If CYard > 0 Then
 T2(TrainNumber) = T1(TrainNumber) + ServiceTime(OYard) + ServiceTime(CYard) / 2 +
TrainTime1(TrainNumber) + TrainTime2(TrainNumber) ' overall travel and service time for each train
 Else

A5-174

 T2(TrainNumber) = T1(TrainNumber) + ServiceTime(OYard) + TrainTime1(TrainNumber) ' overall travel and
service time for each train
 End If

 If CYard > 0 Then
 If T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) > 1 Then
 Cells(TrainNumber + 2, 26 + 26) = T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard) -
1
 Cells(TrainNumber + 2, 26 + 26).Interior.Color = 65535
 Cells(TrainNumber + 2, 26 + 26).Font.Color = -16776961
 Else
 Cells(TrainNumber + 2, 26 + 26) = T1(TrainNumber) + TrainTime1(TrainNumber) + ServiceTime(OYard)
 End If
 End If

 If T2(TrainNumber) > 1 Then
 Cells(TrainNumber + 2, 26 + 27) = T2(TrainNumber) - 1
 Cells(TrainNumber + 2, 26 + 27).Interior.Color = 65535
 Cells(TrainNumber + 2, 26 + 27).Font.Color = -16776961
 Else
 Cells(TrainNumber + 2, 26 + 27) = T2(TrainNumber)
 End If
Next TrainNumber

Application.ScreenUpdating = True
End Sub

Sub New_CYard_Times()
Application.ScreenUpdating = False
''
ReDim T2Start(1 To NumTrains)
ReDim T2Stop(1 To NumTrains)

ReDim T2New(1 To NumTrains)
''
 Sheets("O-D Matrices").Select

 For i = 1 To NumTrains
 CYard_Train_List(i) = Cells(2 + i, 26 + 3).Value
 CYard_List(i) = Cells(2 + i, 26 + 6).Value
 CYard_Build_Time_List(i) = Cells(2 + i, 26 + 26).Value
 CYard_Priority_List(i) = Cells(2 + i, 26 + 20).Value
 Next i
Call Time_Sort(CYard_Build_Time_List, CYard_Train_List, CYard_Priority_List, CYard_List)
''
'Priority Trains
''
 For i = 1 To NumTrains
 If CYard_Priority_List(i) = 1 And CYard_List(i) <> 0 Then

 T2Start(i) = Round(CYard_Build_Time_List(i) * 2880, 0)
 T2Stop(i) = Round((CYard_Build_Time_List(i) + ServiceTime(CYard_List(i))) * 2880 / 2, 0) ' assumed that
CYard operations are shorter than OYard
 If T2Start(i) = 0 Then
 T2Start(i) = 1
 T2Stop(i) = T2Stop(i) + 1

A5-175

 End If

' check if T2Stop(i) goes into next day.
 x = 0

 If T2Stop(i) < 2880 Then
 For j = T2Start(i) To T2Stop(i)
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j
 Else
 For j = T2Start(i) To 2880
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j

 For j = 1 To T2Stop(i) - 2880
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j
 End If
''
 If x = 0 Then
 If T2Stop(i) < 2880 Then
 For j = T2Start(i) To T2Stop(i)
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j
 Else
 For j = T2Start(i) To 2880
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j

 For j = 1 To T2Stop(i) - 2880
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j
 End If

 Else

 Do Until x = 0

 x = 0
 T2Start(i) = T2Start(i) + 1
 T2Stop(i) = T2Stop(i) + 1

 If T2Stop(i) < 2880 Then
 For j = T2Start(i) To T2Stop(i)
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j
 Else
 For j = T2Start(i) To 2880
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j

 For j = 1 To T2Stop(i) - 2880
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j
 End If

A5-176

 Loop
''
 If T2Stop(i) < 2880 Then
 For j = T2Start(i) To T2Stop(i)
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j
 Else
 For j = T2Start(i) To 2880
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j

 For j = 1 To T2Stop(i) - 2880
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j
 End If

 CYard_Build_Time_List(i) = (T2Start(i)) / 2880

 End If
 End If
 Next i
''
'Non - Priority Trains
''
 For i = 1 To NumTrains
 If CYard_Priority_List(i) = 0 And CYard_List(i) <> 0 Then

 T2Start(i) = Round(CYard_Build_Time_List(i) * 2880, 0)
 T2Stop(i) = Round((CYard_Build_Time_List(i) + ServiceTime(CYard_List(i))) * 2880 / 2, 0) ' assumed that
CYard operations are shorter than OYard
 If T2Start(i) = 0 Then
 T2Start(i) = 1
 T2Stop(i) = T2Stop(i) + 1
 End If

' check if T2Stop(i) goes into next day.
 x = 0

 If T2Stop(i) < 2880 Then
 For j = T2Start(i) To T2Stop(i)
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j
 Else
 For j = T2Start(i) To 2880
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j

 For j = 1 To T2Stop(i) - 2880
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j
 End If
''
 If x = 0 Then
 If T2Stop(i) < 2880 Then
 For j = T2Start(i) To T2Stop(i)
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)

A5-177

 Next j
 Else
 For j = T2Start(i) To 2880
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j

 For j = 1 To T2Stop(i) - 2880
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j
 End If

 Else

 Do Until x = 0

 x = 0
 T2Start(i) = T2Start(i) + 1
 T2Stop(i) = T2Stop(i) + 1

 If T2Stop(i) < 2880 Then
 For j = T2Start(i) To T2Stop(i)
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j
 Else
 For j = T2Start(i) To 2880
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j

 For j = 1 To T2Stop(i) - 2880
 x = Queue_List_CBuild(CYard_List(i), j) + x
 Next j
 End If

 Loop
''
 If T2Stop(i) < 2880 Then
 For j = T2Start(i) To T2Stop(i)
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j
 Else
 For j = T2Start(i) To 2880
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j

 For j = 1 To T2Stop(i) - 2880
 Queue_List_CBuild(CYard_List(i), j) = CYard_Train_List(i)
 Next j
 End If

 CYard_Build_Time_List(i) = (T2Start(i)) / 2880

 End If
 End If
 Next i

''

A5-178

 Sheets("Queue Times").Select

 For i = 1 To NumYards
 x = (i - 1) * 2880
 For j = 1 To 2880

 Cells(1 + j + x, 5) = Queue_List_CBuild(i, j)

 Next j
 Next i

 Sheets("O-D Matrices").Select
''
 For i = 1 To NumTrains
 T2New(i) = (T2Start(i) / 2880)
 Next i

Call Train_Sort(CYard_Train_List, CYard_Priority_List, CYard_List, T2New)

 For i = 1 To NumTrains
 If T2New(i) <> 0 Then Cells(i + 2, 26 + 26) = T2New(i)
 Next i

Application.ScreenUpdating = True
End Sub

Sub Recalulate_DYard_Arrivals()
Application.ScreenUpdating = False

For TrainNumber = 1 To NumTrains
''
' get CYARD build time
 If Cells(TrainNumber + 2, 26 + 26).Value = "" Then
 TC(TrainNumber) = 0
 Else
 TC(TrainNumber) = Cells(TrainNumber + 2, 26 + 26).Value ' start time period for collection of cars at
CYARD ONLY
 End If
''
' get CYard
 If Cells(TrainNumber + 2, 26 + 6).Value = "" Then
 CYard = 0
 Else
 CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection)
 End If
''
' Recalculate CYard and DYard Arrival Times
 If CYard > 0 Then
 T2(TrainNumber) = TC(TrainNumber) + ServiceTime(CYard) / 2 + TrainTime2(TrainNumber) ' overall travel
and service time for each train

 If T2(TrainNumber) > 1 Then
 Cells(TrainNumber + 2, 26 + 27) = T2(TrainNumber) - 1
 Cells(TrainNumber + 2, 26 + 27).Interior.Color = 65535
 Cells(TrainNumber + 2, 26 + 27).Font.Color = -16776961
 Else

A5-179

 Cells(TrainNumber + 2, 26 + 27) = T2(TrainNumber)
 End If

 End If

Next TrainNumber

Application.ScreenUpdating = True
End Sub

Sub New_DYard_Times()
Application.ScreenUpdating = True

''
ReDim T3Start(1 To NumTrains)
ReDim T3Stop(1 To NumTrains)

ReDim T3New(1 To NumTrains)
''
 Sheets("O-D Matrices").Select

 For i = 1 To NumTrains
 DYard_Train_List(i) = Cells(2 + i, 26 + 3).Value
 DYard_List(i) = Cells(2 + i, 26 + 7).Value
 DYard_Build_Time_List(i) = Cells(2 + i, 26 + 27).Value
 DYard_Priority_List(i) = Cells(2 + i, 26 + 20).Value
 Next i

Call Time_Sort(DYard_Build_Time_List, DYard_Train_List, DYard_Priority_List, DYard_List)
''
'Priority Trains
''
 For i = 1 To NumTrains
 If DYard_Priority_List(i) = 1 Then

 T3Start(i) = Round(DYard_Build_Time_List(i) * 2880, 0)
 T3Stop(i) = Round((DYard_Build_Time_List(i) + TrainSwitchTime(DYard_List(i))) * 2880, 0) ' assumed that
DYard operations (Switching are constant per train)
 If T3Start(i) = 0 Then
 T3Start(i) = 1
 T3Stop(i) = T3Stop(i) + 1
 End If

' check if T3Stop(i) goes into next day.
 x = 0

 If T3Stop(i) < 2880 Then
 For j = T3Start(i) To T3Stop(i)
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j
 Else
 For j = T3Start(i) To 2880
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j

 For j = 1 To T3Stop(i) - 2880

A5-180

 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j
 End If
''
 If x = 0 Then
 If T3Stop(i) < 2880 Then
 For j = T3Start(i) To T3Stop(i)
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j
 Else
 For j = T3Start(i) To 2880
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j

 For j = 1 To T3Stop(i) - 2880
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j
 End If

 Else

 Do Until x = 0

 x = 0
 T3Start(i) = T3Start(i) + 1
 T3Stop(i) = T3Stop(i) + 1

 If T3Stop(i) < 2880 Then
 For j = T3Start(i) To T3Stop(i)
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j
 Else
 For j = T3Start(i) To 2880
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j

 For j = 1 To T3Stop(i) - 2880
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j
 End If

 Loop
''
 If T3Stop(i) < 2880 Then
 For j = T3Start(i) To T3Stop(i)
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j
 Else
 For j = T3Start(i) To 2880
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j

 For j = 1 To T3Stop(i) - 2880
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j
 End If

A5-181

 DYard_Build_Time_List(i) = (T3Start(i)) / 2880

 End If
 End If
 Next i
''
'Non - Priority Trains
''
 For i = 1 To NumTrains
 If DYard_Priority_List(i) = 0 Then

 T3Start(i) = Round(DYard_Build_Time_List(i) * 2880, 0)
 T3Stop(i) = Round((DYard_Build_Time_List(i) + TrainSwitchTime(DYard_List(i))) * 2880, 0) ' assumed that
DYard operations (Switching are constant per train)
 If T3Start(i) = 0 Then
 T3Start(i) = 1
 T3Stop(i) = T3Stop(i) + 1
 End If

' check if T3Stop(i) goes into next day.
 x = 0

 If T3Stop(i) < 2880 Then
 For j = T3Start(i) To T3Stop(i)
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j
 Else
 For j = T3Start(i) To 2880
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j

 For j = 1 To T3Stop(i) - 2880
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j
 End If
''
 If x = 0 Then
 If T3Stop(i) < 2880 Then
 For j = T3Start(i) To T3Stop(i)
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j
 Else
 For j = T3Start(i) To 2880
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j

 For j = 1 To T3Stop(i) - 2880
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j
 End If

 Else

 Do Until x = 0

A5-182

 x = 0
 T3Start(i) = T3Start(i) + 1
 T3Stop(i) = T3Stop(i) + 1

 If T3Stop(i) < 2880 Then
 For j = T3Start(i) To T3Stop(i)
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j
 Else
 For j = T3Start(i) To 2880
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j

 For j = 1 To T3Stop(i) - 2880
 x = Queue_List_DSwitch(DYard_List(i), j) + x
 Next j
 End If

 Loop
''
 If T3Stop(i) < 2880 Then
 For j = T3Start(i) To T3Stop(i)
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j
 Else
 For j = T3Start(i) To 2880
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j

 For j = 1 To T3Stop(i) - 2880
 Queue_List_DSwitch(DYard_List(i), j) = DYard_Train_List(i)
 Next j
 End If

 DYard_Build_Time_List(i) = (T3Start(i)) / 2880

 End If
 End If
 Next i
''
 Sheets("Queue Times").Select

 For i = 1 To NumYards
 x = (i - 1) * 2880
 For j = 1 To 2880

 Cells(1 + j + x, 6) = Queue_List_DSwitch(i, j)

 Next j
 Next i

 Sheets("O-D Matrices").Select
''
 For i = 1 To NumTrains
 T3New(i) = (T3Start(i) / 2880)
 Next i

A5-183

Call Train_Sort(DYard_Train_List, DYard_Priority_List, DYard_List, T3New)

 For i = 1 To NumTrains
 Cells(i + 2, 26 + 27) = T3New(i)
 Next i

Application.ScreenUpdating = True
End Sub

Sub Time_Sort(list1() As Date, list2() As Long, list3() As Long, list4() As Long)
Application.ScreenUpdating = False

' Sorts array

 Dim First As Integer, Last As Long
 Dim i As Long, j As Long
 Dim Temp1
 Dim Temp2
 Dim Temp3
 Dim Temp4

 First = LBound(list1)
 Last = UBound(list1)
 For i = First To Last - 1
 For j = i + 1 To Last
 If list1(i) > list1(j) Then
 Temp1 = list1(j)
 list1(j) = list1(i)
 list1(i) = Temp1

 Temp2 = list2(j)
 list2(j) = list2(i)
 list2(i) = Temp2

 Temp3 = list3(j)
 list3(j) = list3(i)
 list3(i) = Temp3

 Temp4 = list4(j)
 list4(j) = list4(i)
 list4(i) = Temp4
 End If
 Next j
 Next i

Application.ScreenUpdating = True
End Sub

Sub Train_Sort(list1() As Long, list2() As Long, list3() As Long, list4() As Date)
Application.ScreenUpdating = False

' Sorts array

 Dim First As Integer, Last As Long
 Dim i As Long, j As Long

A5-184

 Dim Temp1
 Dim Temp2
 Dim Temp3
 Dim Temp4

 First = LBound(list1)
 Last = UBound(list1)
 For i = First To Last - 1
 For j = i + 1 To Last
 If list1(i) > list1(j) Then
 Temp1 = list1(j)
 list1(j) = list1(i)
 list1(i) = Temp1

 Temp2 = list2(j)
 list2(j) = list2(i)
 list2(i) = Temp2

 Temp3 = list3(j)
 list3(j) = list3(i)
 list3(i) = Temp3

 Temp4 = list4(j)
 list4(j) = list4(i)
 list4(i) = Temp4
 End If
 Next j
 Next i

Application.ScreenUpdating = True
End Sub

Sub Adjust_Times_24()
For TrainNumber = 1 To NumTrains
 Cells(TrainNumber + 2, 26 + 22).Select
 If Selection.Interior.Color = 65535 Then
 ActiveCell = ActiveCell.Value + 1
 End If
Next TrainNumber

For TrainNumber = 1 To NumTrains
 Cells(TrainNumber + 2, 26 + 23).Select
 If Selection.Interior.Color = 65535 Then
 ActiveCell = ActiveCell.Value + 1
 End If

For TrainNumber = 1 To NumTrains
 Cells(TrainNumber + 2, 26 + 26).Select
 If Selection.Interior.Color = 65535 Then
 ActiveCell = ActiveCell.Value + 1
 End If
Next TrainNumber

For TrainNumber = 1 To NumTrains
 Cells(TrainNumber + 2, 26 + 27).Select

A5-185

 If Selection.Interior.Color = 65535 Then
 ActiveCell = ActiveCell.Value + 1
End If
Next TrainNumber
End Sub

Sub Get_Shortest_Routes()

 Dim OYard_Dist_List() As Long ' oyards
 Dim DYard_Dist_List() As Long ' dyard
 Dim Length_Dist_List() As Long ' dyard

 Sheets("Routes").Select

 ReDim Shortest_Yard_Dist(1 To NumYards, 1 To NumYards)
 ReDim OYard_Dist_List(1 To NumRoutes)
 ReDim DYard_Dist_List(1 To NumRoutes)
 ReDim Length_Dist_List(1 To NumRoutes)

 For i = 1 To NumRoutes
 OYard_Dist_List(i) = Cells(2 + i, 3).Value
 DYard_Dist_List(i) = Cells(2 + i, 4).Value
 Length_Dist_List(i) = Cells(2 + i, 6).Value
 Next i

 For i = 1 To NumRoutes
 If Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) = 0 Then
 Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) = Length_Dist_List(i)
 End If

 If Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) <> 0 Then
 If Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) > Length_Dist_List(i) Then
 Shortest_Yard_Dist(OYard_Dist_List(i), DYard_Dist_List(i)) = Length_Dist_List(i)
 End If
 End If
 Next i

 Range("List_of_Shortest_Paths").Select
 For i = 1 To NumYards
 For j = i To NumYards
 ActiveCell.Offset(i, j) = Shortest_Yard_Dist(i, j)
 ActiveCell.Offset(j, i) = Shortest_Yard_Dist(j, i)
 Next j
 Next i

End Sub

Module 4
Public Shortest_Yard_Dist() As Long ' shortest distances between yards - based on routes provided by user

Sub Assign_Blocks()
Application.ScreenUpdating = False
''
' GET SHORTEST ROUTES
''

A5-186

 Call Get_Shortest_Routes
''
' GET BLOCKS SETUP
''
 Sheets("O-D Matrices").Select

 For j = 1 To NumYards
 For k = 1 To NumYards
 If Cells(k + 3, 3).Value <= NumBlocks(j) Then
 Blocks(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 3).Value
 Blocks_Pure_Mixed(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 4).Value
 End If
 Next k
 Next j
''
' ASSIGN DIRECT BLOCKS (Pure)
''

 For TrainNumber = 1 To NumTrains
''
' Get OYard, CYard, and DYard
''
 If Cells(TrainNumber + 2, 26 + 5).Value = "" Then
 MsgBox "You have not chosen an origin yard for train number" & TrainNumber & "."
 Exit Sub
 Else
 OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin)
 End If

 If Cells(TrainNumber + 2, 26 + 6).Value = "" Then
 CYard = 0
 Else
 CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection)
 End If

 If Cells(TrainNumber + 2, 26 + 7).Value = "" Then
 MsgBox "You have not chosen a destination yard for train number" & TrainNumber & "."
 Exit Sub
 Else
 DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination)
 End If
''
' Pure Blocks Direct Assignment Only
''
 Cells(TrainNumber + 2, 26 + 13).Select

 Do While ActiveCell <> ""
 ActiveCell.Offset(0, 1).Select
 Loop

 If ActiveCell = "" Then
 If Blocks_Pure_Mixed(OYard, DYard) = 1 Then
 ActiveCell.Value = Blocks(OYard, DYard)

A5-187

 If Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = "" Then
 Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = TrainNumber
 Else
 Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = Cells(3 + (3 + NumYards) * (OYard - 1) +
DYard, 5).Value & ", " & TrainNumber
 End If

 End If
 End If

 Cells(TrainNumber + 2, 26 + 13).Select

 Do While ActiveCell <> ""
 ActiveCell.Offset(0, 1).Select
 Loop

 If ActiveCell = "" Then
 If CYard > 0 Then
 If Blocks_Pure_Mixed(CYard, DYard) = 1 Then
 ActiveCell.Value = Blocks(CYard, DYard)
 Selection.Font.Color = -16776961
 Selection.Interior.Color = 65535

 If CYard > 0 Then
 If Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = "" Then
 Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = TrainNumber
 Else
 Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = Cells(3 + (3 + NumYards) * (CYard - 1)
+ DYard, 5).Value & ", " & TrainNumber
 End If
 End If

 End If
 End If
 End If

 Next TrainNumber
''
' ASSIGN DIRECT BLOCKS (Impure)
''
 For TrainNumber = 1 To NumTrains
''
' Get OYard, CYard, and DYard
''
 OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin)

 If Cells(TrainNumber + 2, 26 + 6).Value = "" Then
 CYard = 0
 Else
 CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection)
 End If

 DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination)
''
'Impure Blocks Direct Assignment Only
''

A5-188

 Cells(TrainNumber + 2, 26 + 13).Select

 Do While ActiveCell <> ""
 ActiveCell.Offset(0, 1).Select
 Loop

 If ActiveCell = "" Then
 If Blocks_Pure_Mixed(OYard, DYard) = 0 Then
 ActiveCell.Value = Blocks(OYard, DYard)

 If Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = "" Then
 Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = TrainNumber
 Else
 Cells(3 + (3 + NumYards) * (OYard - 1) + DYard, 5) = Cells(3 + (3 + NumYards) * (OYard - 1) +
DYard, 5).Value & ", " & TrainNumber
 End If

 End If
 End If

 Cells(TrainNumber + 2, 26 + 13).Select

 Do While ActiveCell <> ""
 ActiveCell.Offset(0, 1).Select
 Loop

 If ActiveCell = "" Then
 If CYard > 0 Then
 If Blocks_Pure_Mixed(CYard, DYard) = 0 Then
 ActiveCell.Value = Blocks(CYard, DYard)
 Selection.Font.Color = -16776961
 Selection.Interior.Color = 65535

 If CYard > 0 Then
 If Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = "" Then
 Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = TrainNumber
 Else
 Cells(3 + (3 + NumYards) * (CYard - 1) + DYard, 5) = Cells(3 + (3 + NumYards) * (CYard - 1)
+ DYard, 5).Value & ", " & TrainNumber
 End If
 End If

 End If
 End If
 End If

 Next TrainNumber
''
'Unassigned - BLOCKS ASSIGNMENT (Pure/Impure)
''
 Dim Train_Assignment_List() As Long
 Dim OYard_Assignment_List() As Long
 Dim CYard_Assignment_List() As Long
 Dim DYard_Assignment_List() As Long
 Dim x As Long, y As Long, z As Long

A5-189

 Dim Blocks_Assigned() As String

 ReDim Blocks_Assigned(1 To NumYards, 1 To NumYards)

 ReDim Train_Assignment_List(1 To NumTrains)
 ReDim OYard_Assignment_List(1 To NumTrains)
 ReDim CYard_Assignment_List(1 To NumTrains)
 ReDim DYard_Assignment_List(1 To NumTrains)

 For TrainNumber = 1 To NumTrains

 Train_Assignment_List(TrainNumber) = Cells(TrainNumber + 2, 26 + 3).Value ' yard number (Origin)

 OYard_Assignment_List(TrainNumber) = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin)

 If Cells(TrainNumber + 2, 26 + 6).Value = "" Then
 CYard_Assignment_List(TrainNumber) = 0
 Else
 CYard_Assignment_List(TrainNumber) = Cells(TrainNumber + 2, 26 + 6).Value ' yard number
(Connection)
 End If

 DYard_Assignment_List(TrainNumber) = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination)

 Next TrainNumber
''
 For j = 1 To NumYards
 For k = 1 To NumYards
 If Cells(k + 3, 3).Value <= NumBlocks(j) Then
 Blocks_Assigned(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 5).Value
 End If
 Next k
 Next j
''
For j = 1 To NumYards
 For k = 1 To NumYards
 If j <> k Then
 If Blocks_Assigned(j, k) = "" Then

 x = 0

 For TrainNumber = 1 To NumTrains
 If x = 0 And OYard_Assignment_List(TrainNumber) = j Then

 ' Shortest_Yard_Dist(x,x)

 If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) < Shortest_Yard_Dist(j, k) Then
 y = Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) - Shortest_Yard_Dist(j, k)
 End If
 x = TrainNumber ' assign first available trin no matter where it is going
 ElseIf x <> 0 And OYard_Assignment_List(TrainNumber) = j Then

 If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) < Shortest_Yard_Dist(j, k) Then
 z = Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) - Shortest_Yard_Dist(j, k)
 End If

A5-190

 ''''' assign new train only when it is more sensible to do so (eg the train is going
 ''''' towards but not passing the dyard and is the closest to the dyard)
 If y < z Then
 x = TrainNumber
 y = z
 End If
 End If
 Next TrainNumber
''
 For TrainNumber = 1 To NumTrains
 If x = 0 And OYard_Assignment_List(TrainNumber) = j Then

 ' Shortest_Yard_Dist(x,x)

 If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) > Shortest_Yard_Dist(j, k) Then
 y = Shortest_Yard_Dist(j, k) - Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber))
 End If
 x = TrainNumber ' assign first available trin no matter where it is going
 ElseIf x <> 0 And OYard_Assignment_List(TrainNumber) = j Then

 If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) > Shortest_Yard_Dist(j, k) Then
 z = Shortest_Yard_Dist(j, k) - Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber))
 End If

 ''''' assign new train only when it is more sensible to do so (eg the train is going
 ''''' towards but not passing the dyard and is the closest to the dyard)
 If y < z Then
 x = TrainNumber
 y = z
 End If
 End If
 Next TrainNumber
 ''
 ' cyard trains only if no oyard trains are available
 ''
 For TrainNumber = 1 To NumTrains
 If x = 0 And CYard_Assignment_List(TrainNumber) = j Then

 ' Shortest_Yard_Dist(x,x)

 If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) < Shortest_Yard_Dist(j, k) Then
 y = Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) - Shortest_Yard_Dist(j, k)
 End If
 x = TrainNumber ' assign first available trin no matter where it is going
 ElseIf x <> 0 And CYard_Assignment_List(TrainNumber) = j Then

 If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) < Shortest_Yard_Dist(j, k) Then
 z = Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) - Shortest_Yard_Dist(j, k)
 End If

 ''''' assign new train only when it is more sensible to do so (eg the train is going
 ''''' towards but not passing the dyard and is the closest to the dyard)
 If y < z Then
 x = TrainNumber
 y = z
 End If

A5-191

 End If
 Next TrainNumber
''
 For TrainNumber = 1 To NumTrains
 If x = 0 And CYard_Assignment_List(TrainNumber) = j Then

 ' Shortest_Yard_Dist(x,x)

 If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) > Shortest_Yard_Dist(j, k) Then
 y = Shortest_Yard_Dist(j, k) - Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber))
 End If
 x = TrainNumber ' assign first available trin no matter where it is going
 ElseIf x <> 0 And CYard_Assignment_List(TrainNumber) = j Then

 If Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber)) > Shortest_Yard_Dist(j, k) Then
 z = Shortest_Yard_Dist(j, k) - Shortest_Yard_Dist(j, DYard_Assignment_List(TrainNumber))
 End If

 ''''' assign new train only when it is more sensible to do so (eg the train is going
 ''''' towards but not passing the dyard and is the closest to the dyard)
 If y < z Then
 x = TrainNumber
 y = z
 End If
 End If
 Next TrainNumber
 ''
 ' print data onto spreadsheet
 ''
 Cells(x + 2, 26 + 13).Select

 Do While ActiveCell > 0
 ActiveCell.Offset(0, 1).Select
 Loop

 If ActiveCell = "" Then
 If x <> 0 Then
 If OYard_Assignment_List(x) = j Then
 ActiveCell.Value = Blocks(j, k)

 If Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = "" Then
 Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = x
 Else
 Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = Cells(3 + (3 + NumYards) * (j - 1) + k, 5).Value &
", " & x
 End If
 End If
 End If
 End If

 If ActiveCell = "" Then
 If x <> 0 Then
 If CYard_Assignment_List(x) = j Then
 ActiveCell.Value = Blocks(j, k)
 Selection.Font.Color = -16776961
 Selection.Interior.Color = 65535

A5-192

 If CYard > 0 Then
 If Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = "" Then
 Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = x
 Else
 Cells(3 + (3 + NumYards) * (j - 1) + k, 5) = Cells(3 + (3 + NumYards) * (j - 1) + k, 5).Value
& ", " & x
 End If
 End If
 End If
 End If
 End If
 End If
 End If
 Next k
 Next j
''
' Assure that Each Impure and Indirect Block is Assigned to the Same Train(s) - ELSE ALERT USER
''
 ReDim Blocks_Assigned(1 To NumYards, 1 To NumYards)

 For j = 1 To NumYards
 For k = 1 To NumYards
 If Cells(k + 3, 3).Value <= NumBlocks(j) Then
 Blocks(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 3).Value
 Blocks_Pure_Mixed(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 4).Value
 Blocks_Assigned(j, k) = Cells(3 + (3 + NumYards) * (j - 1) + k, 5).Value
 Else
 Blocks(j, k) = 0
 Blocks_Pure_Mixed(j, k) = 0
 Blocks_Assigned(j, k) = 0
 End If
 Next k
 Next j

 For i = 1 To NumYards
 For j = 1 To NumYards
 For k = 1 To NumYards
 If j <> k Then
 If Blocks_Pure_Mixed(i, j) = 0 And Blocks_Pure_Mixed(i, k) = 0 Then
 If Blocks(i, j) = Blocks(i, k) Then
 If Blocks_Assigned(i, j) <> Blocks_Assigned(i, k) Then

 If Blocks_Assigned(i, j) = "" And Blocks_Assigned(i, k) <> "" Then
 Cells(3 + (3 + NumYards) * (i - 1) + j, 5).Value = Cells(3 + (3 + NumYards) * (i - 1) + k,
5).Value
 End If

 If Blocks_Assigned(i, j) <> "" And Blocks_Assigned(i, k) = "" Then
 Cells(3 + (3 + NumYards) * (i - 1) + k, 5).Value = Cells(3 + (3 + NumYards) * (i - 1) + j,
5).Value
 End If

 If Blocks_Assigned(i, j) <> "" And Blocks_Assigned(i, k) <> "" And Blocks_Assigned(i, j) <>
Blocks_Assigned(i, k) Then
 Cells(3 + (3 + NumYards) * (i - 1) + j, 5).Select

A5-193

 Selection.Interior.ThemeColor = xlThemeColorLight2
 Selection.Font.ThemeColor = xlThemeColorDark1
 Selection.Font.Bold = True
 Selection.Font.Size = 16

 Cells(3 + (3 + NumYards) * (i - 1) + k, 5).Select
 Selection.Interior.ThemeColor = xlThemeColorLight2
 Selection.Font.ThemeColor = xlThemeColorDark1
 Selection.Font.Bold = True
 Selection.Font.Size = 16

 End If
 End If
 End If
 End If
 End If
 Next k
 Next j
 Next i

''
' Assure that only only OD is to each train - ELSE ALERT USER
''
 Call TEST_SAME_TRAIN
''
Application.ScreenUpdating = True
End Sub

Sub TEST_SAME_TRAIN()
 Dim saad_1() As Long
 Dim saad_2() As Long
 Dim saad_3() As Long

 ReDim saad_1(1 To NumTrains)
 ReDim saad_2(1 To NumTrains)
 ReDim saad_3(1 To NumTrains)

 For i = 1 To NumTrains

 saad_1(i) = Cells(i + 2, 26 + 5)
 saad_2(i) = Cells(i + 2, 26 + 6)
 saad_3(i) = Cells(i + 2, 26 + 7)

 Next i

 For i = 1 To NumTrains
 For j = 1 To NumTrains

 If i <> j Then
 If saad_1(i) = saad_1(j) And saad_2(i) = saad_2(j) And saad_3(i) = saad_3(j) Then
 Cells(i + 2, 26 + 5).Font.Bold = True
 Cells(i + 2, 26 + 6).Font.Bold = True
 Cells(i + 2, 26 + 7).Font.Bold = True

 Cells(i + 2, 26 + 5).Interior.Color = 65535
 Cells(i + 2, 26 + 6).Interior.Color = 65535

A5-194

 Cells(i + 2, 26 + 7).Interior.Color = 65535
 End If
 End If

 Next j
 Next i

End Sub

Module 5
Sub Train_Call_Run_XX()
Application.ScreenUpdating = False
 For TrainNumber = 1 To NumTrains
''
' get OYard
 If Cells(TrainNumber + 2, 26 + 5).Value = "" Then
 MsgBox "You have not chosen an origin yard"
 Exit Sub
 Else
 OYard = Cells(TrainNumber + 2, 26 + 5).Value ' yard number (Origin)
 End If
''
' get CYard
 If Cells(TrainNumber + 2, 26 + 6).Value = "" Then
 CYard = 0
 Else
 CYard = Cells(TrainNumber + 2, 26 + 6).Value ' yard number (Connection)
 End If
''
' get DYard
 If Cells(TrainNumber + 2, 26 + 7).Value = "" Then
 MsgBox "You have not chosen a destination yard"
 Exit Sub
 Else
 DYard = Cells(TrainNumber + 2, 26 + 7).Value ' yard number (Destination)
 End If
''
 T1(TrainNumber) = Cells(TrainNumber + 2, 26 + 25).Value
 TC(TrainNumber) = Cells(TrainNumber + 2, 26 + 26).Value
 T2(TrainNumber) = Cells(TrainNumber + 2, 26 + 27).Value

 Call TrainTimes_XX(TrainNumber, OYard, CYard, DYard, T1(TrainNumber), TC(TrainNumber),
T2(TrainNumber))

 Next TrainNumber

Application.ScreenUpdating = True
End Sub
''
Sub TrainTimes_XX(TrainNumber, OYard, CYard, DYard, TSub1, TSubC, TSub2)
Application.ScreenUpdating = False

 T1(TrainNumber) = TSub1
 TC(TrainNumber) = TSubC
 T2(TrainNumber) = TSub2

A5-195

 Call ReCreateODArray
''
' Check Minimum Train Size
''
 Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber)

 If T1(TrainNumber) > #11:59:00 PM# Then TX1(TrainNumber) = 6 ' assumed that only cars from today can be
carried on any given train
 If T1(TrainNumber) <= #11:59:00 PM# Then TX1(TrainNumber) = 6
 If T1(TrainNumber) <= #8:00:00 PM# Then TX1(TrainNumber) = 5
 If T1(TrainNumber) <= #4:00:00 PM# Then TX1(TrainNumber) = 4
 If T1(TrainNumber) <= #12:00:00 PM# Then TX1(TrainNumber) = 3
 If T1(TrainNumber) <= #8:00:00 AM# Then TX1(TrainNumber) = 2
 If T1(TrainNumber) <= #4:00:00 AM# Then TX1(TrainNumber) = 1

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Font.ColorIndex = xlAutomatic Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(OYard, j) Then
 For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(OYard, j, k)
 Next k
 End If
 Next j
 End If
 ActiveCell.Offset(0, 1).Select
 Next i

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Font.ColorIndex = xlAutomatic Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(OYard, j) Then
 For k = 1 To TX1(TrainNumber) ' the time period for the cars to be taken from
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(OYard, j, k)
 Next k
 End If
 Next j
 End If
 ActiveCell.Offset(0, 1).Select
 Next i

 If CYard = 0 Then

A5-196

 CYard = 0

 Else

' because the train gets to CYard after some time, therefore additional cars may be picked up

 If TC(TrainNumber) > #11:59:00 PM# Then TXC1(TrainNumber) = 6 ' because cars on any train can only be
picked up from the day of the OD Demand (Assumed)
 If TC(TrainNumber) <= #11:59:00 PM# Then TXC1(TrainNumber) = 6
 If TC(TrainNumber) <= #8:00:00 PM# Then TXC1(TrainNumber) = 5
 If TC(TrainNumber) <= #4:00:00 PM# Then TXC1(TrainNumber) = 4
 If TC(TrainNumber) <= #12:00:00 PM# Then TXC1(TrainNumber) = 3
 If TC(TrainNumber) <= #8:00:00 AM# Then TXC1(TrainNumber) = 2
 If TC(TrainNumber) <= #4:00:00 AM# Then TXC1(TrainNumber) = 1

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Interior.Color = 65535 Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(CYard, j) Then
 For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP1(CYard, j, k)
 Next k
 End If
 Next j
 End If
 ActiveCell.Offset(0, 1).Select
 Next i

 Cells(TrainNumber + 2, 26 + 13).Select
 For i = 1 To NumYards
 If Selection.Interior.Color = 65535 Then
 x = ActiveCell.Value
 Else
 x = 0
 End If
 If x > 0 And x <= NumYards Then
 For j = 1 To NumYards
 If x = Blocks(CYard, j) Then
 For k = 1 To TXC1(TrainNumber) ' the time period for the cars to be taken from
 Trains(TrainNumber) = Trains(TrainNumber) + ODArrayP2(CYard, j, k)
 Next k
 End If
 Next j
 End If
 ActiveCell.Offset(0, 1).Select
 Next i

 End If
''
 If Trains(TrainNumber) < MinSize Then

A5-197

 Smalltrain = 1
 GoTo TrainIsTooSmall
 End If
''
 TrainSwitchTime(TrainNumber) = Trains(TrainNumber) * SwitchingTime(DYard) +
SwitchingPrepTime(DYard)

 Cells(TrainNumber + 2, 26 + 24) = TrainSwitchTime(TrainNumber)
''
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) > #11:59:00 PM# Then TX2(TrainNumber) = 7
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #11:59:00 PM# Then TX2(TrainNumber) = 6
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 PM# Then TX2(TrainNumber) = 5
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 PM# Then TX2(TrainNumber) = 4
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #12:00:00 PM# Then TX2(TrainNumber) = 3
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #8:00:00 AM# Then TX2(TrainNumber) = 2
 If T2(TrainNumber) + TrainSwitchTime(TrainNumber) <= #4:00:00 AM# Then TX2(TrainNumber) = 1

 Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber)
''
' Error messages for trains which are too small or large
''
TrainIsTooSmall:
 If Smalltrain = 1 Then
 MsgBox ("Train(" & TrainNumber & ") does not have enough cars, and thus it will not" & _
 " run. This train only has " & Trains(TrainNumber) & " cars.")
 Smalltrain = 0
 Trains(TrainNumber) = 0 ' Reset Trains(TrainNumber)
 Exit Sub
 End If

Application.ScreenUpdating = True
End Sub

	SS - Saad Syed - Thesis 14.3x
	SS - Appendix 5x

