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ABSTRACT

Operational Risk has become more popular in the past fifteen years. The Basel committee

realized its importance and banks have to allocate more capital charge, yet this is still not

enough. With these new rules, banks have put in place new procedures to compute their

risk measures and allocate enough capital charge to avoid bankruptcy. The Basel

committee under Basel II has proposed different approaches to compute risk measures for

Operational Risk, namely the Basic Indicator Approach, the Advanced Measurement

Approach and the Standardized Approach. In our research, we will study the case of Loss

Distribution Approach, which has been discussed before, and will contribute to the field

by using a heavy-tailed distributed severity: g-and-h distributed. Then, we will analyze

and test some methods to compute the value-at-risk( VaR) and conditional value-at-risk

or expected shortfall (CVaR).
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Chapter 1

INTRODUCTION

The twentieth century and the beginning of the twenty-first century have been economically

and financially very hard for the world. These centuries have seen The Panic of 1907 with

bank failures, the Great Depression of 1929, the Subprime mortgage crisis of 2008.

Along with these crisis, the bad internal behaviors of some employees - such as Jérôme

Kerviel, a French trader who caused the loss of 50 Billions euros to Société Générale - have

caused bankruptcy to their financial institutions. As a result, banks were weakened in their

comfort and some regulations were put in place so that they have sufficient capital reserve

based on the risk structure. These were sometimes too strict.

In the 90’s, Operational Risk, which was a type of risk neglected, started to monopolize

attention. The Basel Committee on Banking Supervision implemented more detailed regu-

lations in Operational Risk. Banks are allowed to explore advanced models but must submit

them to the regulator for approbation before being inserted to their daily tasks. This will

mitigate the excessive weight of capital required. (see Enhancing Bank Transparency - Pub-

lic disclosure and supervisory information that promote safety and soundness in banking

systems; Basel Committee on Banking Supervision - September 1998).

Nowadays, we notice an increasing interest toward Risk Management in the Financial In-

dustry, especially Operational Risk. We become more aware of its importance even though,
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Type of Risk Capital Charge Weight

Credit 6% 75%

Market 0.4% 5%

Operational 1.6% 20%

Total 8% 100%

Table 1.1: Capital charge and weight of each Type of Risk

in most banks, people still give more attention to Market and Credit Risks. Table (1.1)

illustrates the capital charge and weight allocated to Operational Risk compared to the

other types of risks.

We also notice an increase of research in the field. Most of them are theoretical. Only

recently financial institutions have incorporated analytical models based on some applied

research. This is probably due to the fact that the models are not compliant with real case

scenarios, or have not yet been studied deep enough. Either way, financial institutions do

not necessarily give access to their full data for academic research, nor the data available

is enough. Nonetheless, standard techniques such as Monte Carlo simulation, and Fourier

Transform are being used for Operational Risk Management to compute risk measures.

In this thesis, we would like to approximate the Value-at-Risk (VaR) and the Expected

Shortfall (ES) in Operational Risk. On top of Monte Carlo simulation, we will design a

methodology to use other methods, which, we believe, could be less expensive in term of

time.
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For the thesis purpose and given the methods used, we will divide our analysis in three

parts : On the first part, we will review some concept, definition and properties which will

be useful to determine the VaR and CVaR. Then we will review methods and test them for

single Operational Risk cell. On the second part, we will analyze the aggregate loss in two

Operational Risk cells i.e two risk categories defined by the type of event and the business

line by using other methods to compute the overall loss based on the dependence of the risk

categories, introduced by a copula for severities and frequencies.

In this analysis, we will contribute to the Operation Risk research field by exploring the

g-and-h distribution as an alternative to model severities. This distribution is heavy-tailed

which results convenient to analyze extreme losses. On the other hand, it has no explicit

density function expression thus we have faced some numerical challenges. Given the sever-

ity distribution, we will discuss the computation of VaR and CVaR using Monte Carlo

approach and recursive convolution, Fast Fourier Transform and Panjer recurrence for a

single cell. For two cells, we will model the dependence among cells via Copula and, again,

compute the VaR and CVaR. Another contribution to the field is to explore the methods

for parameter estimation.

Due to the lack of real data available, we will generate our own. We know that financial

institutions do not only use their internal data and only use losses above a certain amount.

Therefore, we will discuss the truncation and the mixture of internal and external data.

We will also discuss the parameter estimation based on the Methods of Moments and Maxi-

mum Likelihood Estimators. The structure of the thesis is as follow: Chapter 2 explains the
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Loss Distribution Approach by giving a history as well as a definition of Operational Risk

to make the concept clear to the reader, the general concept of the VaR and the Expected

Shortfall. Also, we will provide the reader with some properties and simulations of uni-

variate mixing g-and-h, Truncation and mixing internal with external data before exploring

the computing methods for the VaR and the CVaR for a single cell using Monte Carlo,

recursive convolution, Fast Fourier Transform and Panjer recurrence. Chapter 3 focuses on

the computation of the same risk measures in aggregate loss by modeling the dependence

among cells via copula. We will present the aggregate model, review the copula properties

and present the results obtained using Clayton copula. Chapter 4 explores the parameter

estimation methods: Method of Moments and MLE. Finally, Chapter 5 concludes our re-

search.
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Chapter 2

LOSS DISTRIBUTION APPROACH IN OR AND SINGLE CELL LOSS

VAR/CVAR

2.1 LDA: General concepts

Basel II is the second Basel Accord. It consists of regulations and laws issued by the Basel

Committee on Banking Supervision. It proposes VaR as a risk measure to evaluate the

capital charge. Due to the fact that VaR is a quantile, we need a distribution of Operational

Losses. This distribution is called Loss Distribution Approach. Under this approach, the

bank estimates, for each business line/risk type cell, the probability distributions of the

severity (single event impact) and of the one year event frequency using its internal data.

With these two distributions, the bank then computes the probability distribution of the

aggregate operational loss. The total required capital is the sum of the Value-at-Risk of

each business line and event type combination( see Frachot et al.(2001)).

LDA is a statistical approach which is very popular in actuarial sciences for computing

aggregate loss distributions. Under the Loss Distribution Approach, the bank estimates, for

each business line/risk type cell, the probability distribution functions of the single event

impact and the event frequency for the next (one) year using its internal data, and computes

the probability distribution function of the cumulative operational loss (see Frachot et al.

(2001)). The LDA model for the total loss Lt on an interval [0,1], generally t = 1year in a
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Financial Institution can be formulated as:

Lt =
J

∑
=1

L
()
t ;

where L
()
t =

N
()
t

∑
ı=1

X
()
ı (the loss of a single cell );

j = 1,2, .., J

N
()
t ∼ ρθ1 (Frequency of loss events - The number of times a loss occurs in a particular time

frame.)

X
()
ı ∼ ρθ2 (Severity - The size of the losses)

LDA is very popular because it allows one hold less capital than with standard methods

proposed by the Basel Committee. In general terms, LDA consists in estimating the param-

eters θ1 and θ2 and compute V aRα i.e the Value-at-Risk such that FL(V aRα) = α, where

FL is the cumulative distribution function of the loss L.

2.2 Loss Model - OR definition and OR matrix

Operational Risk was introduced by the Basel Committee. It is a process including risk

assessment, risk decision making and also risk of Loss due to bad internal procedures, it’s

a risk due to human error. The Basel II Committee defines operational risk as:

”The risk of loss resulting from inadequate or failed internal processes, people and systems

6



or from external events (see Basel Committee on Banking Supervision (2006, p. 204))”.

It includes legal risk but not strategic and reputational risk. Therefore they have in place

a list of seven risk categories called event types:

(1) Internal Fraud - misappropriation of assets, tax evasion, intentional mismarking of

positions, bribery,

(2) External Fraud - theft of information, hacking damage, third-party theft and forgery,

(3) Employment Practices and Workplace Safety - discrimination, workers com-

pensation, employee health and safety

(4) Clients, Products and Business Practice - market manipulation, antitrust, im-

proper trade, product defects, fiduciary breaches, account churning.

(5) Damage to Physical Assets - natural disasters, terrorism, vandalism.

(6) Business Disruption and Systems Failures - utility disruptions, software fail-

ures, hardware failure.

(7) Execution, Delivery and Process Management - data entry errors, accounting

errors, failed mandatory reporting, negligent loss of client assets.

These seven event types permit to collect data for the eight business lines: Corporate

Finance, Trading and Sales, Retail Banking, Commercial Banking, Payment and Settlement,

Agency Services, Asset Management and Retail Brokerage. The combination in pairs of the

seven event types and eight risk categories ( 56 cells) form the Operational Risk Matrix.
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2.3 Univariate mixing g-and-h distribution

The g-and-h family of distributions was introduced by Tukey (1977), found application in

Operational Risk in Moscadelli (2004) and Dutta and Perry (2007) and has been discussed

by Degen et al. (2007) on the subadditivity of VaR for g-and-h random variables and

showed that for reasonable g-and-h parameter values, superadditivity when estimating high

quantiles. It allows the transformation of standard normal random variables with g and h

parameters to generate non-normal distributions (see Kowalchuk and Headrick (2010).).

Definition 2.1. A g-and-h distributed random variable X is a transformed normal variable

Z according to

X = A +B
egZ − 1

g
e
hZ2

2 = A +Bk(Z) (2.1)

with A and B determining the location and scale of the distribution, respectively, whereas g

and h > 0 determine skewness and the kurtosis of the distribution.

We define the function k(x) as:

k(x) =
egx − 1

g
e
hx2

2 , x ∈ R (2.2)

Its derivative is:

k′(x) =
1

g
(((g + hx)egx − hx)e

hx2

2 ) (2.3)

Notice that k(x) is a one-to-one function as its derivative k′ is strictly positive for g > 0

or strictly negative for g < 0. Hence, the inverse function exists even though there is no

analytic expression for it. Its probability density function (p.d.f.) can be computed by an
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elementary approach:

fX(x) = fZ((k
−1

(x)) ∣(k−1)
′
(x)∣ (2.4)

where fZ is the probability density function (p.d.f.) of a standard normal distribution.

Notation: X ∼ g − and − h(A,B, g, h)

Remark 2.2. The parameter g controls the skewness whereas h governs the heavy-tailedness

of a distribution. This was shown using MatLab in graphs 2.1 and 2.2

When g = 0. Equation (2.1), interpreted as the limit g→ 0 is given by:

X = A +BZe
hZ2

2 (2.5)

and is called the h-distribution.

Although, when h = 0, we have:

X = A +B
egZ − 1

g
(2.6)

and is called the g-distribution. This distribution is a scaled log-normal distribution (see

Johnson and Kotz (1970)).

In the next lemma we summarize the cumulative distribution function (c.d.f.), the prob-

ability density function (p.d.f.) and the quantile function of the g-and-h distribution.

Lemma 2.3. Let X ∼ g − and − h(A,B, g, h) be a random variable then their c.d.f, p.d.f.

9



and quantile function are given respectively by:

FX(y) = Φ(k−1
(
y −A

B
)) (2.7)

fX(y) =
1

B
√

2π
e−
(k−1(

y−A
B
))

2

2 [k′(k−1
(
y −A

B
))]

−1

(2.8)

QX(y) = F −1
X (y) = k ○Φ−1

(
y −A

B
) = k ○QZ(

y −A

B
) (2.9)

where Φ, fZ and QZ are the c.d.f., p.d.f. and the quantile function of a standard normal

distribution.

Proof. From equation (3.8), noting that k(.) is a strictly increasing function:

FX(y) = P (k(Z) <
y −A

B
) = Φ(k−1

(
y −A

B
)) (2.10)

After differentiating with respect to y we have a density given equation (2.8). The quantile

function follows computing its inverse.

On the other hand, moments of a g-and-h distribution have been obtained, see example

Iglewicz and Martinez (1984). For g > 0 and 0 < h < 1
n the n-th moment of the g-and-h is

finite and given by (see Dutta and Perry (2007, Appendix D).):

E(Xn
) =

n

∑
l=0

⎛
⎜
⎜
⎜
⎝

n

l

⎞
⎟
⎟
⎟
⎠

An−lBl

∑
n
r=0(−1)r

⎛
⎜
⎜
⎜
⎝

l

r

⎞
⎟
⎟
⎟
⎠

exp
[(l−r)g]2
2(1−lh)

gl
√

1 − lh
(2.11)

The next result is about the probability of a sum of independent random variables with

g-and-h distribution. It will be needed in computing the p.d.f of the sum of severities.
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Lemma 2.4. Let X1 ∼ g − and − h(A,B, g, h) and X2 ∼ g − and − h(A,B, g, h) independent

random variables, then:

i)

FX1+X2(y) = FY1+Y2(
y − 2A

B
) (2.12)

where Y1, Y2 are two independent random variables Yi ∼ g − and − h(0,1, g, h), i = 1,2.

ii)

FY1+Y2(y) =
1

√
2π
∫
R

Φ(v(y, z))e−
z2

2 dz = E(Φ(v(y,Z))

= ∫

1

0
Φ(v(y, z))dz (2.13)

where v = v(y, z) solves:

(egv − 1)e
hv2

2 − g(y − k(z)) = 0 (2.14)

iii) The p.d.f. is given by:

fY1+Y2(y) =
1

2πg
∫
R
e−

1
2
((1+h)v21(y,z)+z2)[(g + hv1(y, z))e

gv1(y,z) − hv1(y, z)]
−1dz (2.15)

Proof.

FX1+X2(y) = P(X1 +X2 < y)

= P(A +B(k(Z1)) +A +B(k(Z2)) < y)

= P(k(Z1) + k(Z2) <
y − 2A

B
)

= FY1+Y2(
y − 2A

B
)

11



By the convolution product formula and equation (2.4):

FY1+Y2(y) = ∫
R
FY1(y − x)dFY2(x) = ∫R

FY1(y − x)fY2(x)dx

= ∫
R

Φ(k−1
(y − x))fZ(k

−1
(x))(k′(k−1

(x)))−1dx

Taking the change of variable z = k−1(x) we have:

∫
R

Φ(k−1
(y − x))fZ(k

−1
(x))(k′(k−1

(x)))−1dx = ∫
R

Φ(k−1
(y − k(z)))fZ(z)dz

=
1

√
2π
∫
R

Φ(k−1
(y − k(z)))e−

z2

2 dz

Now, for a function u and random variable Y ∼ g−and−h(0,1, g, h) such that E(u(Y )) < ∞,

after the change of variable y = FX(x) we note that:

Eu(Y ) = ∫
R
u(x)fY (x)dx = ∫

1

0
u(QY (y))dy = ∫

1

0
u(k(QZ(y)))dy

But specializing the previous result for g(x) = FY1(y − x)

FY1+Y2(y) = P (Y1 + Y2 < y) = E(1[Y1+Y2<y] = E(E(1[Y1+y2<y]/Y2))

= E(FY1(y − Y2)) = ∫

1

0
FY1(y − k(QZ(y)))dz

= ∫

1

0
Φ(k−1

(y − k(QZ(y)))dz = ∫
1

0
Φ(v(y, z))dz

Equation (2.15) is obtained in a similar way. Namely:

fY1+Y2(y) = ∫
R
fY1(y − x)fY2(x)dx = ∫R

fZ(k
−1

(y − x))(k′(k−1
(y − x)))−1fZ(k

−1
(x))(k′(k−1

(x)))−1dx

= ∫
R
fZ(k

−1
(y − k(z)))(k′(k−1

(y − k(z))))−1fZ(z)dz

=
1

2πg
∫
R
e−

1
2
((1+h)v21(y,z)+z2)[(g + hv1(y, z))e

gv1(y,z) − hv1(y, z)]
−1dz

12



Remark 2.5. The function k−1 is not explicitly available. Zeros of k need to be computed for

different values of the argument. The algorithm is implemented in MatLab. Figure 2.1 shows

density functions of a g-and-h probability distribution with parameters A = 0,B = 1, h = 0.25

and g = 1(blue line), g = 2(green line) and g = 3 (red line). As we can observe g is a

parameter capturing the asymmetry or skewness of the data.

Figure 2.1: Variation of g-and-h density for different values of parameter g

In figure 2.2 the graph of a g-and-h p.d.f. is shown for different values of the parameter

h. The curves provide the shapes for the functions with parameters A = 0,B = 1, g = 2 and

13



h = 0.1(blue line), h = 0.3(green line) and h = 0.3 (red line). It illustrates how the parameter

h captures the thickness in the tail of the distribution.

Figure 2.2: Variation of g-and-h density for different values of parameter h

Note that the code to retrieve graphs 2.1 and 2.2 is in Appendix A (densitydependgh.m)

Given a random variable L representing the loss in a single cell the value-at-risk at level

α, denoted by V aRα, solves FL(V aRα) = α.

The conditional value-at-risk or expected shortfall at level α, denoted by CV aR(α) or

14



ES(α) is defined as

ES(α) = E(L/L > V aRα) =
1

1 − α
∫

1

α
V aRβdβ (2.16)

Notice that the conditional value-at-risk represents the average loss in a single cell given

that the loss surpasses the value-at-risk (see for example Pavel V. Shevchenko, 2011).

We denote by F ∗k
X the convolution of function FX with itself k times. Under a model

with Poissonian frequencies and g-and-h severities described by a random variable X, by

conditioning on the number of loss events, the c.d.f. of the loss L is given by:

FL(y) =
+∞
∑
k=0

e−λλk

k!
F ∗k
X (2.17)

where F ∗0
X ∶= δ0 and F ∗1

X = FX , i.e. the dirac delta at zero and the c.d.f. of X respectively.

Unfortunately this equation does not have an explicit solution. Numerical methods are

needed. In forthcoming sections we study the implementation of different approaches.

2.4 Truncating and mixing internal and external data

Due to the characteristic of the data available, modeling the severity by a standard g-and-h

distribution has limited application. Two modifications are required. On one hand, losses

below certain threshold are not usually reported by banks and another financial institutions,

it suggests the introduction of a truncated distribution.

On the other hand, in order to increase the amount of data available, banks use a combina-

tion of internal and external information, with possible different probability distributions.

It leads to the use of mixing distributions to model losses. Here we assume frequencies
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come from two independent Poisson distributions, in general with different parameters, and

severities come from a mixing of independent g-and-h probability distributions with differ-

ent parameters and truncation levels.

We begin by tackling both problems separately, then we consider both, truncation and mix-

ing together.

For a random variable X we define its truncated c.d.f. with truncation level T as:

FX,T (y) = P (X < y/X > T ), y ∈ R (2.18)

The respective p.d.f. and quantile functions are denoted by fX,T and QX,T .

Results from the previous section can easily adapted by noticing that a truncated distri-

bution is nothing but a conditional one on the set [X > T ], where T is the truncation

level.

Proposition 2.6. Let X ∼ g − and − h(A,B, g, h) truncated at T then:

FX,T (y) =
Φ (k−1 (

y−A
B )) −Φ (k−1 (T−A

B
))

1 −Φ (k−1 (T−A
B

))
1[T,+∞)(y) (2.19)

QX,T (y) = F
−1
X (y) = k ○QZ((1 − FY (

y −A

B
)y + FY (

y −A

B
))) (2.20)

where FX,T (y) and QX,T are the c.d.f. and the quantile function of a standard normal

distribution respectively, and

fX,T (y) =
1

B
√

2π(1 −Φ(k−1(T−AB )))
e−
(k−1(

y−A
B
))

2

2 (k′(k−1
(
y −A

B
)))

−11[T,+∞](y) (2.21)

is its p.d.f.
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Proof.

FX,T (y) = P (X < y/X > T ) =
P [X < y] ∩ [X > T ]

P (X > T )

=
FX(y) − P (X < y,X ≤ T )

1 − FX(T )
=
FX(y) − FX(T )

1 − FX(T )

where the last equality holds for y > T and is equal to zero otherwise.

Combining equation (2.7) in Lemma 1 with the expression above we have equation (2.19).

Differentiating the latter leads to equation (2.21).

Finally, we notice that by definition the value x = QX,T (y) solves FY,T (x) = y. Then, for

y > T :

y =
FX(x) − FX(T )

1 − FX(T )

or equivalently (1 − FX(T ))y + FX(T ) = FX(x), then:

QX,T (y) = F
−1
X ((1−FX(T ))y+FX(T )) = QX((1−FX(T ))y+FX(T )) = k○QZ((1−FX(T ))y+FX(T ))

The truncated moments are obtained in the next proposition:

Proposition 2.7. Let X ∼ g − and − h(A,B, g, h) and u a real valued function such that

E(u(X)) < +∞. Then:

E(u(X)/X > T ) =
1

B2
√

2π(1 −Φ(k−1(T−AB )))
∫

+∞

k−1(T−A
B

)
u(Bk(z) +A)e

−z2

2 dz (2.22)

In particular for h < 1
n :

E(Xn
/X > T ) =

1

B2(1 −Φ(k−1(T−AB ))

n

∑
l=0

⎛
⎜
⎜
⎜
⎝

n

l

⎞
⎟
⎟
⎟
⎠

BlAn−l

gl
(1 − hl)−

1
2 Il(T,A,B, g, h) (2.23)
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where:

Il(T,A,B, g, h) = Jl(T,A,B, g, h) −Kl(T,A,B, g, h) (2.24)

Jl(T,A,B, g, h) =
l

∑
m=0

(−1)me
m2

2(1−hl) (2.25)

Kl(T,A,B, g, h) =
l

∑
m=0

(−1)me
m2

2(1−hl)Φ(
A − T

B
−

m

1 − hl
)(1 − hl)

1
2 ) (2.26)

Proof.

E(u(X)/X > T ) = ∫

+∞

T
u(x)fX,T (x)dx =

1

1 − FX(T )
∫

+∞

T
u(x)fX(x)dx (2.27)

=
1

(1 −Φ(k−1(T−AB ))B
√

2π
∫

+∞

T
u(x)e−

(k−1(x−A
B
))

2

2 (k′(k−1
(
x −A

B
)))

−1dx(2.28)

After the changes of variables u = x−A
B and z = k−1(u) we have:

E(u(X)/X > T ) =
1

(1 −Φ(k−1(T−AB )))B2
√

2π
∫

+∞
T−A
B

u(Bu +A)e−
k−1(u)2

2 (k′(k−1
(u)))−1du(2.29)

=
1

(1 −Φ(k−1(T−AB )))B2
√

2π
∫

+∞

k−1(T−A
B

)
u(Bk(z) +A)e−

z2

2 dz (2.30)
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We specialize for u(x) = xn.

E(Xn
/X > T ) =

1

(1 −Φ(T−AB ))B2 ∫

+∞
T−A
B

(Bu +A)
nfZ(k

−1
(u))(k′(k−1

(u)))−1du (2.31)

=
1

(1 −Φ(k−1(T−AB )))B2 ∫

+∞

k−1(T−A
B

)
(Bk(z) +A)

nfZ(z)dz (2.32)

=
1

(1 −Φ(k−1(T−AB )))B2

n

∑
l=0

⎛
⎜
⎜
⎜
⎝

n

l

⎞
⎟
⎟
⎟
⎠

BlAn−l ∫
+∞

k−1(T−A
B

)
k(z)lfZ(z)dz (2.33)

=
1

(1 −Φ(k−1(T−AB )))B2
√

2π

n

∑
l=0

⎛
⎜
⎜
⎜
⎝

n

l

⎞
⎟
⎟
⎟
⎠

BlAn−l ∫
+∞

k−1(T−A
B

)
k(z)le−

z2

2 dz (2.34)

=
1

(1 −Φ(k−1(T−AB ))B2
√

2π

n

∑
l=0

⎛
⎜
⎜
⎜
⎝

n

l

⎞
⎟
⎟
⎟
⎠

BlAn−lg−l ∫
+∞

k−1(T−A
B

)
(egz − 1)le

hlz2

2 e−
z2

2 dz(2.35)

(2.36)
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Now, expanding again:

∫

+∞

k−1(T−A
B

)
(egz − 1)le

hlz2

2 e−
z2

2 dz (2.37)

=
l

∑
m=0

⎛
⎜
⎜
⎜
⎝

l

m

⎞
⎟
⎟
⎟
⎠

∫

+∞

k−1(T−A
B

)
(−1)l−memgze

hlz2

2 e−
z2

2 dz (2.38)

=
l

∑
m=0

⎛
⎜
⎜
⎜
⎝

l

m

⎞
⎟
⎟
⎟
⎠

(−1)l−m∫
+∞

k−1(T−A
B

)
e−

1
2
((1−hl)z2−2mgz)dz (2.39)

=
l

∑
m=0

⎛
⎜
⎜
⎜
⎝

l

m

⎞
⎟
⎟
⎟
⎠

(−1)l−me
(mg)2

2(1−hl)
∫

+∞

k−1(T−A
B

)
e
− 1

2
(1−hl)(z2−2 mg

(1−hl)
z+( mg

1−hl
)2)
dz (2.40)

=
l

∑
m=0

⎛
⎜
⎜
⎜
⎝

l

m

⎞
⎟
⎟
⎟
⎠

(−1)l−me
(mg)2

2(1−hl)
∫

+∞

k−1(T−A
B

)
e
− 1

2
(1−hl)(z− mg

(1−hl)
)2
dz (2.41)

=
√

2π
l

∑
m=0

⎛
⎜
⎜
⎜
⎝

l

m

⎞
⎟
⎟
⎟
⎠

(−1)l−m(1 − hl)−
1
2 e

(mg)2

2(1−hl)Φ((k−1
(
T −A

B
) −

mg

(1 − hl)
) (1 − hl)

1
2)(2.42)

where the last equality occurs after the change of variable y = (1 − hl)
1
2 (z − mg

(1−hl))

Next, consider the case of mixing g-and-h distributions, namely, let Yi ∼ g − and −

h(Ai,Bi, gi, hi), i = 1,2. be independent random variables and independent also of a random

variable U ∼ U(0,1). A mixing g-and-h random variable defined as:

Y = 1[U<p]Y1 + 1[U≥p]Y2 (2.43)

where p is the (known) proportion of internal data.

Denote by

ki(x) =
(egix − 1)

gi
e
hi
2
x2 , i = 1,2 (2.44)
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Their c.d.f., p.d.f. and quantile function are respectively:

FY (y) = P(1[U<p]Y1 + 1[U≥p]Y2 < y)

= P(1[U<p]Y1∣U < p) + P(1[U≥p]Y2∣U ≥ p)

= P(Y1 < y)P(U < p) + P(Y2 < y)P(U ≥ p)

= pFY1(y) + (1 − p)FY2(y)

By Lemma 2.3, we have:

FY (y) = pΦ(k−1
1 (

y −A1

B1
)) + (1 − p)Φ(k−1

2 (
y −A2

B2
)) (2.45)

fY (y) = pfY1(y) + (1 − p)fY2(y) =
p

√
2πB1

e
(k−11 (

y−A1
B1

))
2

2 (k′1k
−1
1 (

y −A1

B1
))
−1

+
1 − p

√
2πB2

e
(k−12 (

y−A2
B2

))
2

2 (k′2k
−1
2 (

y −A2

B2
))
−1 (2.46)

QY (y) = pk1 ○QZ(
y −A1

B1
) + (1 − p)k2 ○QZ(

y −A2

B2
) (2.47)

In figure 2.3 the graph of the empirical density of a mixture of g-and-h functions with

parameters A1 = 0,B1 = 1, g1 = 2, h1 = 2,A2 = 5,B2 = 1, g2 = 4, h2 = 0.2, p = 0.5 is shown. The

density is computed using a Gaussian kernel. We observe a bimodal probability density

function in agreement with the theory.
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Figure 2.3: Density function of g-and-h mixing internal and external data

We have the following proposition for the probability distribution of the sum of two

mixing g-and-h random variables.

Proposition 2.8. Let Y1 and Y2 be two independent mixing g-and-h random variables given
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by equation (2.43) then:

FY1+Y2(y) =
p2

2π
∫
R

Φ(vm1(y, z))e
−z2

2 dz

+
p(1 − p)B2

2πB1
∫
R

Φ(um2(y, z))e
−z2

2 dz

+
p(1 − p)B1

2πB2
∫
R

Φ(um1(y, z))e
−z2

2 dz

+
(1 − p)2

2π
∫
R

Φ(vm2(y, z))e
−z2

2 dz (2.48)

where vmi = vmi(y, z), i = 1,2 solves:

(egivmi − 1)e
hivm

2
i

2 − gi(ki(z) +
2Ai − y

Bi
) = 0, i = 1,2

and umi = umi(y, z), i = 1,2 solves:

(egiumi − 1)e
hium

2
i

2 − gi(k3−i(z) +
A1 +A2 − y

Bi
) = 0, i = 1,2

and

fY1+Y2(y) =
p2

2π
∫
R

∂vm1(y, z)

∂y

1
√

2π
e
−1
2
(vm1(y,z)2)e

−z2

2 dz

+
p(1 − p)B2

2πB1
∫
R

∂um1(y, z)

∂y

1
√

2π
e
−1
2
(um1(y,z)2)e

−z2

2 dz

+
p(1 − p)B1

2πB2
∫
R

∂um2(y, z)

∂y

1
√

2π
e
−1
2
(um2(y,z)2)e

−z2

2 dz

+
(1 − p)2

2π
∫
R

∂vm2(y, z)

∂y

1
√

2π
e
−1
2
(vm2(y,z)2)e

−z2

2 dz (2.49)

(2.50)
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Proof.

FY1+Y2(y) = ∫
R
FY1(y − x)fY2dx (2.51)

= ∫
R

⎛

⎝
pΦ(k−1

1 (
y − x −A1

B1
)) + (1 − p)Φ(k−1

2 (
y − x −A2

B2
))

⎞

⎠
(2.52)

⎛
⎜
⎝

p
√

2πB1

e
(k−11 (

x−A1
B1

))

2

2 (k′1k
−1
1 (

x −A1

B1
))

−1 (2.53)

+
1 − p

√
2πB2

e
(k−12 (

x−A2
B2

))

2

2 (k′2k
−1
2 (

x −A2

B2
))

−1
⎞
⎟
⎠
dx (2.54)

=
p2

√
2πB1

∫
R

Φ(k−1
1 (

y − x −A1

B1
))e

(k−11 (
x−A1
B1

))
2

2 (k′1k
−1
1 (

x −A1

B1
))

−1dx(2.55)

+
p(1 − p)
√

2πB1
∫
R

Φ(k−1
2 (

y − x −A2

B2
))e

(k−11 (
x−A1
B1

))
2

2 (k′1k
−1
1 (

x −A1

B1
))
−1dx(2.56)

+
p(1 − p)
√

2πB2
∫
R

Φ(k−1
1 (

y − x −A1

B1
))e

(k−12 (
x−A2
B2

))
2

2 (k′2k
−1
2 (

x −A2

B2
))
−1dx (2.57)

+
(1 − p)2

√
2πB2

∫
R

Φ(k−1
2 (

y − x −A2

B2
))e

(k−12 (
x−A2
B2

))
2

2 (k′2k
−1
2 (

x −A2

B2
))
−1dx (2.58)

= I1 + I2 + I3 + I4 (2.59)

where Ij corresponds with the j-th term in the previous expression.

After we combine the change of variables u = x−Ai
Bi

and z = k−1
i (u), i = 1,2 depending on the

integrals above:

I1 =
p2

2π
∫
R

Φ(k−1
1 (

y − 2A1

B1
− k1(z)))e

− z
2

2 dz (2.60)

I2 =
p(1 − p)B2

2πB1
∫
R

Φ(k−1
1 (

y −B2k2(z) −A2 −A1

B2
))e−

z2

2 dz (2.61)

I3 =
p(1 − p)B1

2πB2
∫
R

Φ(k−1
2 (

y −B1k1(z) −A1 −A2

B2
))e−

z2

2 dz (2.62)

I4 =
(1 − p)2

2π
∫
R

Φ(k−1
2 (

y − 2A2

B2
− k2(z)))e

− z
2

2 dz (2.63)

therefore, we have (2.48) and by differentiating we get (2.50).
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Finally we tackle the more general case of truncated mixing g-and-h severities with a

similar procedure.

Let YTi ∼ g − and − h(Ai,Bi, gi, hi, Ti), i = 1,2 be truncated independent g-and-h random

variables with respective truncation levels T1 and T2, and

Y = 1[U<p]YT1 + 1[U≥p]YT2 (2.64)

The probability distribution of the sum of mixing g-and-h is given in the next theorem.

Theorem 2.9. Let Y1 and Y2 be independent g-and-h random variables with parameters

(Ai,Bi, gi, hi), i = 1,2 satisfying equation:

Yi = 1[Ui<p]YT1 + 1[Ui≥p]YT2 , i = 1,2. (2.65)

where U1 and U2 are independent random variables, and independent of YTi also, uniformly

distributed on [0,1], then:

FY1+Y2(y) = E1∫

k−11 ( y−T1−A1
B1

)

k−11 (T2−A1
B1

)
(Φ(vm1(y, z))e

− z
2

2 dz

− E1Φ(k−1
1 (

T1 −A1

B1
)))

√
2π(Φ(k−1

1 (
y − T1 −A1

B1
)) −Φ(k−1

1 (
T2 −A1

B1
))

+ E2∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(um2(y, z))e

− z
2

2 dz

−
√

2πE2Φ(k−1
1 (

T1 −A1

B1
)))(Φ(k−1

2 (
y − T1 −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
)))

+ E3∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(um1(y, z))e

− z
2

2 dz

− E3Φ(k−1
2 (

T2 −A2

B2
))

√
2π(Φ(k−1

2 (
y − T1 −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
)))

+ E4∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(vm2(y, z))e

− z
2

2 dz

− E4Φ(k−1
2 (

T2 −A2

B2
))

√
2π(Φ(k−1

2 (
y − T1 −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
))) (2.66)
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where:

E1 =
p2

2π(1 −Φ(k−1
1 (T1−A1

B1
)))2

(2.67)

E2 =
p(1 − p)B2

2πB1(1 −Φ(k−1
2 (T2−A2

B2
)))(1 −Φ(k−1

1 (T1−A1

B1
)))

(2.68)

E3 =
p(1 − p)B1

2πB2(1 −Φ(k−1
1 (T1−A1

B1
)))(1 −Φ(k−1

2 (T−A2

B2
)))

(2.69)

E4 =
(1 − p)2

2π(1 −Φ(k−1
2 (T2−A2

B2
)))2

(2.70)

Proof. As in proposition 2.6 we can write:

FYTi (y) =
Φ(k−1

i (
y−Ai
Bi

)) −Φ(k−1
i (

T−Ai
Bi

))

1 −Φ(k−1
i (

T−Ai
Bi

))
1[Ti,+∞](y) (2.71)

QYTi (y) = F
−1
XTi(y) = ki ○QZ((1 − FY (

y −Ai
Bi

)y + FY (
y −Ai
Bi

))) (2.72)

where QZ is the quantile function of a standard normal distribution.

fYTi (y) =
1

(1 −Φ(k−1
i (

T−Ai
Bi

)))Bi
√

2π
e−
(k−1i (

y−Ai
Bi

))
2

2 (k′i(k
−1
i (

y −Ai
Bi

)))
−11[Ti,+∞] (2.73)

Combining proposition 2.49 for Y = 1[U<p]Y T1 + 1[U≥p]Y T2 it gives:

FY (y) = pFYT1 (y) + (1 − p)FYT2 (y) = p(
Φ(k−1

1 (
y−A1

B1
)) −Φ(k−1

1 (T1−A1

B1
))

1 −Φ(k−1
1 (T1−A1

B1
))

)1[T1,+∞](y)

+ (1 − p)(
Φ(k−1

2 (
y−A2

B2
)) −Φ(k−1

2 (T2−A2

B2
))

1 −Φ(k−1
2 (T2−A2

B2
))

1[T2,+∞](y))

fY (y) = p
1

(1 −Φ(k−1
1 (T1−A1

B1
)))B1

√
2π
e−
(k−11 (

y−A1
B1

))
2

2 (k′1(k
−1
1 (

y −A1

B1
)))

−11[T1,+∞](y)

+ (1 − p)
1

(1 −Φ(k−1
2 (T2−A2

B2
)))B2

√
2π
e−
(k−12 (

y−A2
B2

))
2

2 (k′2(k
−1
2 (

y −A2

B2
)))

−11[T2,+∞](y)

(2.74)
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Then for y > T1 + T2:

FY1+Y2(y) = ∫
R
FY1(y − x)fY2(x)dx (2.75)

= ∫

y−T1

T2

⎛

⎝
p(

Φ(k−1
1 (

y−x−A1

B1
)) −Φ(k−1

1 (T1−A1

B1
))

1 −Φ(k−1
1 (T−A1

B1
))

) (2.76)

+ (1 − p)(
Φ(k−1

2 (
y−x−A2

B2
)) −Φ(k−1

2 (T−A2

B2
))

1 −Φ(k−1
2 (T2−A2

B2
))

⎞

⎠
(2.77)

⎛

⎝
p

1

(1 −Φ(k−1
1 (T−A1

B1
)))B1

√
2π
e−
(k−11 (

y−A1
B1

))
2

2 (k′1(k
−1
1 (

y −A1

B1
)))

−11[T1,+∞] (2.78)

+ (1 − p)
1

(1 −Φ(k−1
2 (T2−A2

B2
)))B2

√
2π
e−
(k−12 (

y−A2
B2

))
2

2 (k′2(k
−1
2 (

y −A2

B2
)))

−11[T2,+∞](x)
⎞

⎠
dx(2.79)

= I1 + I2 + I3 + I4 (2.80)

After we combine the change of variables u = x−Ai
Bi

and z = k−1
i (u), i = 1,2 depending on the
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integrals above:

I1 = E1∫

y−T1−A1
B1

T2−A1
B1

(Φ(k−1
1 (

y − 2A1

B1
− k(z))) −Φ(k−1

1 (
T1 −A1

B1
)))e−

z2

2 dz (2.81)

= E1∫

k−11 ( y−T1−A1
B1

)

k−11 (T2−A1
B1

)
(Φ(k−1

1 (
y − 2A1

B1
− k(z)))e−

z2

2 dz (2.82)

− E1Φ(k−1
1 (

T1 −A1

B1
)))∫

k−11 ( y−T1−A1
B1

)

k−11 (T2−A1
B1

)
e−

z2

2 dz (2.83)

= E1∫

k−11 ( y−T1−A1
B1

)

k−11 (T2−A1
B1

)
(Φ(k−1

1 (
y − 2A1

B1
− k(z)))e−

z2

2 dz (2.84)

− E1Φ(k−1
1 (

T1 −A1

B1
)))

√
2π(Φ(k−1

1 (
y − T1 −A1

B1
)) −Φ(k−1

1 (
T2 −A1

B1
)) (2.85)

I2 = B1E2∫

y−T1

T2
(Φ(k−1

1 (
y − x −A1

B1
)) −Φ(k−1

1 (
T1 −A1

B1
)))e−

(k−12 (
y−A2
B2

))
2

2 (k′2(k
−1
2 (

x −A2

B2
)))

−1(2.86)

= E2∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(k−1

1 (
y −B2u −A1 −A2

B2
)) −Φ(k−1

1 (
T1 −A1

B1
)))e−

z2

2 dz (2.87)

= E2∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(k−1

1 (
y −B2u −A1 −A2

B2
))e−

z2

2 dz (2.88)

−
√

2πE2Φ(k−1
1 (

T1 −A1

B1
)))(Φ(k−1

2 (
y − T1 −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
))) (2.89)

I3 = B2E3∫

y−T1

T2
(Φ(k−1

2 (
y − x −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
))e−

(k−11 (
y−A1
B1

))
2

2 (k′1(k
−1
1 (

x −A1

B1
)))

−1dx(2.90)

= E3∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(k−1

2 (
y − x −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
))e−

z2

2 dz (2.91)

= E3∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(k−1

2 (
y −B1k1(z) −A1 −A2

B2
))e−

z2

2 dz (2.92)

− E3Φ(k−1
2 (

T2 −A2

B2
))

√
2π(Φ(k−1

2 (
y − T1 −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
))) (2.93)

I4 = B2E4∫

y−T1

T2
(Φ(k−1

2 (
y − x −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
))e−

(k−12 (
y−A2
B2

))
2

2 (k′2(k
−1
2 (

x −A2

B2
)))

−1dx(2.94)

= E4∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(k−1

2 (
y −B2k2(z) −A1 −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
))e−

z2

2 dz (2.95)

= E4∫

k−12 ( y−T1−A2
B2

)

k−12 (T2−A2
B2

)
(Φ(k−1

2 (
y −B2k2(z) −A1 −A2

B2
))e−

z2

2 dz (2.96)

− E4Φ(k−1
2 (

T2 −A2

B2
))

√
2π(Φ(k−1

2 (
y − T1 −A2

B2
)) −Φ(k−1

2 (
T2 −A2

B2
))) (2.97)
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therefore, we have (2.66).

2.5 Monte Carlo VaR and CVaR

We aim to simulate the loss process:

Lt =
Nt

∑
k=0

Yk (2.98)

where (Nt)t≥0 is a Poisson process with intensity λ > 0 describing the frequency process or

number of losses on [0, t] and (Yi)i∈N is a sequence of independent random variables with

common g-and-h probability distribution and parameters A,B, g and h. Both random ele-

ments are independent. For notational simplicity we drop the dependence on cell i and fix

the time period , typically a year, dropping the time dependency in equation (2.98). Hence

we write N and L instead of Nt and Lt.

Simulation of severities, i.e. numbers coming from a g-and-h distribution is a matter of

evaluating a non-linear function of standard normal random variables. Algorithms to sim-

ulate the latter as well as frequencies given by a Poisson distribution, are widely known.

By combining both we will be able to simulate losses in a single cell. The algorithm goes

in the following lines:

Algorithm 2.10. (1) Inputs: A,B,g,h,λ (parameters), n(number of simulated losses).

(2) Generate n Poisson random variables with parameter λ given by a vector N .

(3) Generate N × n standard normal random numbers given by matrix Z.

(4) Generate N × n g-and-h random numbers given by Y = k(Z).
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(5) Compute the losses Li = ∑
Ni
k=0 Yk, i = 1,2, . . . , n.

In Figure 2.4 both the theoretical (blue line) and empirical (green line) g-and-h density

functions are shown. The parameters are A = 0, b = 1, g = 2, h = 0.25. The empirical p.d.f. is

obtained by simulating n = 10000 g-and-h numbers according to the previous algorithm with

the same parameters via a Gaussian kernel. We observe a reasonable agreement between

both.

Figure 2.4: Empirical VS Theoretical g-and-h density functions

Next we show in figure 2.5 the empirical density of the loss distribution (green line) in
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comparison with a normal density with the same mean and variance (blue line). Parameters

for severity are A = 100000, B = 1, g = 2 and h = 0.25.

The empirical p.d.f. of the loss random variable, conditionally on having observed at least

one loss event and obtained also by a Gaussian kernel, is observed to have thicker tail than

the normal distribution. Frequency of losses is assumed to follow a Poisson distribution

with an average λ = 200 events per year. Notice that actually the loss distribution is not

absolutely continuous, it has a positive mass at zero.

Figure 2.5: Empirical g-and-h VS normal density functions
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λ / measure(L) Mean(L) STD(L) Skewness(L) Excess of kurtosis(L) Median(L)

λ = 100 10,003,000 999,980 0.1021 3.0109 10,000,000

λ = 200 19,999,086 1,415,281 0.0727 3.0036 20,000,752

λ = 300 30,001,299 1,732,590 0.0562 3.0096 30,001,280

Table 2.1: Statistical Measures of the Losses by Monte Carlo

In table 2.1 we present a summary with relevant statistical information about empirical

losses on a single cell of the Operational risk Matrix, obtained by Monte Carlo simulation

and assuming a Poisson probability distribution for the frequency with λ = 200 events

per year and a g-and-h severity distribution with parameters A = 100000, B = 1, g = 2 and

h = 0.25. We observe that asymmetry and excess of kurtosis are translated from the severity

to the loss probability distribution formation itself.

Moreover, a quantile comparison between the empirical loss density obtained from a

Gaussian kernel and the normal distribution is given in figure 2.6. Quantile levels range

from 95% to 99.5%.
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Figure 2.6: Quantile Comparison between g-and-h and normal distribution

In table 2.2 results for the Var and CVaR on a single cell are shown, using a model with

Poisson frequencies of intensity λ = 200 and a range of values for the VaR/CVaR levels.

VaR is computed by obtaining the correct percentile from the sequence of generated losses.

CVaR is computed according to equation 2.16

In table 2.3 the dependence of VaR and CVaR on the parameters of the severity are

shown.
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measure/α 95% 97.5 % 99 % 99.5%

VaR 22,400,458 22,801,680 23,400,597 23,701,560

CVaR 22,975,101 23,372,236 23,852,866 24,174,057

Table 2.2: Dependence of VaR and CVaR with λ = 200 on Quantile α

measure/h 0.1 0.25 1 2

VaR 23,701,306 23,701,560 26,790,688 24,899,532,560

CVar 24,235,562 24,174,057 1.121×109 99.624×1015

Table 2.3: Dependence of VaR and CVaR with λ = 200 on severity parameter h with

α = 99.5% (One can observe that h ≥ 1 is unrealistic)

The algorithm to generate losses for a single cell, with severities coming from a mixed

truncated g-and-h distribution, and frequencies representing external and internal losses

requires minor modifications from Algorithm 2.10.

Notice that a Poisson process having intensity λ, counting two type of events representing

internal and external losses, is equivalent to consider two independent Poisson processes

with respective intensities λ1 = pλ and λ1 = (1 − p)λ, where p is the probability to have

an internal event. We can compute separately the losses in cell i due to internal events,

denoted by L(i,1), from the losses due to external events, denoted by L(i,2). It leads to

the following algorithm:

Algorithm 2.11. (1) Inputs: A1,B1, g1, h1, λ, A2,B2, g2, h2, n, p.
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(2) Generate n Poisson random variables with parameter λ1 = pλ and λ1 = (1− p)λ given

by vectors Ni, i = 1,2.

(3) Generate Ni × n standard normal random numbers given by matrices Zi, i = 1,2.

(4) Generate Ni × n g-and-h random numbers given by Yi = ki(Z), i = 1,2.

(5) Compute the losses L(i, j) = ∑
Ni(j)
k=0 Y

(j)
k , i = 1,2, j = 1,2, . . . , n.

(6) Compute the aggregate loss L(1, j) +L(2, j).

In figure 2.7 it can be observed the empirical density of the loss for a single cell. Pa-

rameters used in the simulation are A1 = 10000,B1 = 1, h1 = 0.25, g1 = 2 for the severities of

internal data and A2 = 20000,B2 = 1, h2 = 0.3, g2 = 2 for external data, i.e. a distribution

with heavier tails and more skewed. The frequency of loss events is a Poisson distribution

with an average of λ = 100 events per year. The losses are chosen from external and internal

data at 50%. It is compared with a normal distribution with the same mean and variance.

Heavier tails can be observed.
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X 10 6

Figure 2.7: Mix internal and external g-and-h VS normal distribution

Table 2.4 shows the results of mixing internal and external data

In figure 2.8 percentiles of the loss probability distributions with g-and-h severities fol-

lowing a mixture of g-and-h distributions and mixed Poissonian frequencies with parameters

as above are contrasted with the percentiles of an equivalent normal distribution (green line).

Table 2.4, graphs 2.7 and 2.8are obtained using losssincelmix.m
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measure/α 95% 97.5 % 99 % 99.5%

VaR 1,770,355 1,820,537 1,880,501 1,920,866

CVaR 1,837,688 1,886,774 1,944,731 1,981,561

Table 2.4: Dependence of VaR and CVaR on Quantile mixing internal and external data

Figure 2.8: VaR comparison between g-and-h and normal distributions mixing internal and

external data

37



2.6 Computing VaR/CVaR by recursive convolution

Alternatively to a Monte Carlo approach, the value-at-risk at level α for a single cell can

be computed by solving numerically the equation FL(x) = α, where FL verifies equation

(2.17). The series need to be truncated at some value M .

Convolution products can be computed recursively following a similar approach than in

Lemma 2.4.

More precisely, for the case when severities are given by a random variable with g-and-h

probability distribution and k ≥ 3 the recursion formula follows as:

F ∗k
X (y) = ∫

R
F
∗(k−1)
X (y − x)dFY (x) = ∫

R
F
∗(k−1)
X (y − x)fX(x)dx

= ∫
R
F
∗(k−1)
X (y − x)fZ(k

−1
(x))(k′(k−1

(x)))−1dx

= ∫
R
F
∗(k−1)
X (y − k(z))fZ(z)dz

=
1

√
2π
∫
R
F ∗(k−1)

(y − k(z))e−
z2

2 dz (2.99)

First, we compute the convolution product of two independent g-and-h probability distri-

butions, cumulative and density functions, according to formulas (2.12), (2.13) and (2.15).

The integrals are approximately calculated by the trapezoid rule. It requires to solve for

the inverse of function k at several points determined by the truncation interval over the

integral.

In figures 2.9 and 2.10 the respective two fold cumulative and density convolutions functions

are shown. The parameters of the distribution are A = 0,B = 1, g = 2 and h = 0.25. Interval

in the trapezoid rule is [−3,3] while a number of 100 points were used.
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Figure 2.9: Two fold cumulative convolution function
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Figure 2.10: Two fold density convolution function
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The algorithm to compute the VaR goes in the following lines:

Algorithm 2.12. (1) Inputs: parameters:A,B,g,h, truncation levels: my,My,mz,Mz,TL,

points in trapezoid:M.

(2) Compute the two-fold c.d.f. convolution F ∗2.

(3) Compute the k-th fold c.d.f.convolution F ∗k from formula (2.99), k = 3, . . . , TL.

(4) Compute FL.

(5) Solve FL(x) = α to compute V aRα.

(6) Compute the conditional VaR, ESα =
1

1−α ∫
1
α V aRβdβ.

When combining external and internal data with truncated values, the algorithm is

similar, but now we use equation (2.74) for the p.d.f. Hence:

F ∗k
X (y) = [p

1

(1 −Φ(k−1
1 (T1−A1

B1
)))B1

√
2π

. ∫
R
F
∗(k−1)
X (y − x)e−

(k−11 (
x−A1
B1

))
2

2 (k′1(k
−1
1 (

x −A1

B1
)))

−11[T1,+∞](x)dx]

+ [(1 − p)
1

(1 −Φ(k−1
2 (T2−A2

B2
)))B2

√
2π

. ∫
R
F
∗(k−1)
X (y − x)e−

(k−12 (
x−A2
B2

))
2

2 (k′2(k
−1
2 (

x −A2

B2
)))

−11[T2,+∞](x)dx]

Although we have not implemented numerically, the algorithm seems to require a consider-

able computational effort.
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2.7 Computing VaR/CVaR by Fast Fourier Transform

Here, we will study a methodology to compute VaR/CVaR via FFT. Note that the char-

acteristic function of the loss process driven by the model described by equation (2.98),

denoted by ϕLt(u) = E(eiuLt) is computed as follows:

ϕLt(u) = E [(EeiuLt/Nt)] = E(
Nt

∏
k=0

E (eiuYk) = E(E [(eiuYk)Nt]

= E(ϕY (u))Nt) = E(elog(ϕY (u))Nt) = E(ei(−i log(ϕY (u)))Nt) = ϕNt(−i log(ϕY (u)))

= eλt(ϕY (u)−1)

where ϕY (u) is the characteristic function of a random variable Y with probability distri-

bution g − and − h(A,B, g, h).

On the other hand the characteristic function of the severity Y following a g-and-h distri-

bution can be computed as:

ϕY (u) = eiuAϕY (uB) =
eiuA

B
∫
R
eiuBxfY (x)dx

=
eiuA

B
∫
R
eiuBxfZ(k

−1
(x))(k′(k−1

(x))−1dx

=
eiuA

B
∫
R
eiuBk(z)fZ(z)dz (2.100)

By inversion Fourier formula, for x, y > 0:

FLt(x) − FLt(y) =
1

2π
lim
T→+∞∫

T

0

e−ixu − e−iyu

iu
ϕLt(u)du

=
1

2π
lim
T→+∞∫

T

0

e−ixu − e−iyu

iu
eλt(ϕY (u)−1)du (2.101)

fLt(x) =
1

2π
∫

+∞

0
e−ixuϕLt(u)du =

1

2π
∫

+∞

0
e−ixueλt(ϕY (u)−1)du (2.102)
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where the density is understood conditionally on the loss being greater than zero.

Efficient methods to compute the integrals above are based on the Fast Fourier Transform,

see for example Bailey and Swarztrauber (1993) for details. Moreover, its efficiency can me

improved with the use of a Fractionary Fourier Transform (FRFT). The latter has been

applied by Chourdakis (2004) in connection to option prices. The method FRFT offers

a great advantage over FFT when the c.d.f. is calculated repetitively over only a small

interval, as it is the case when we try to compute the VaR solving the equation FLt(x) = α.

FRFT provides more flexibility in choosing the grid about which the function is to be

evaluated.

Our approach is based on a double approximation. First, the characteristic function of

the loss has to be computed from the integrals in expression (2.100) then approximated by

(2.101). It goes in the following lines:

eiuA

B
∫
R
eiuBk(z)fZ(z)dz ≃

eiuA

B
∫

M1

−M1

eiuBk(z)fZ(z)dz (2.103)

=
eiuA

B
∫

M1

−M1

eiuzeiuB(k(z)− z
B
)fZ(z)dz = ∫

M1

−M1

eiuzh1(z)dz (2.104)

= ∫

0

−M1

eiuzh1(z)dz + ∫
M1

0
eiuzh1(z)dz (2.105)

= ∫

M1

0
e−iuzh1(−z)dz + ∫

M1

0
eiuzh1(z)dz (2.106)

where h1(z) =
1
B e

iuB(k(z)− z
B
)+iuAfZ(z).

Now, we build a grid of N points: (zk = βk)k=0,1,...,N−1, and the corresponding grid in the

space of the characteristic function ϕY (u) given by (uj)j=0,1,...,N−1, uj = −
N
2 δ + δj, where β

and δ are the sizes of the subintervals in the corresponding grids.
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Next using a trapezoidal rule we approximate both integrals at any point uj as follows:

∫

M1

0
eiujzh1(z)dz = ∫

Nβ

0
eiujzh1(z)dz

≃ β
N−1

∑
k=0

eiujzkh1(zk)wk = β
N−1

∑
k=0

ei(−
N
2
δ+δj)βkh1(zk)wk

= β
N−1

∑
k=0

ei(−
N
2
δ+δj)βkh1(zk)wk = β

N−1

∑
k=0

eiδβjke−i
N
2
δβkh1(zk)wk

= β
N−1

∑
k=0

eiδβjkh2(zk)

where wk = 2 for k = 1, . . .N − 2 and w0 = wN−1 = 1, h2(zk) = h2(k) = e
−iN

2
δβkh1(zk)wk

On the other hand, the inverse discrete FT of the vector h2 = (hk) is given by:

IDFT (h2) =
1

N

N−1

∑
k=0

ei
2π
N
jkh2(k)

Then, by identifying the terms we find the relationship between δ = 2π
Nβ .

In summary we have the approximations:

∫

M1

0
eiujzh1(z)dz = βNIDFT (h2)

∫

M1

0
eiujzh1(z)dz = βDFT (h3)

where h3(k) = h2(−zk) and DFT (h3) is the discrete FT of the vector h3.

As explained above discrete fractionary FT(DFRT) allows for a more efficient computation

of the characteristic function. It generalizes DFT and it is defined for a vector h and α ∈ R

as:

DFRTk(h,α) =
N−1

∑
j=0

e−i2πjkαh(k)
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and its inverse:

IDFRTj(h,α) =
1

N

N−1

∑
k=0

ei2πjkαh(j)

The choice of α = 1
N leads to the standard FT approach. Actual choice of α will depend on

the interval on which the values of the characteristic function is calculated and the precision

required.

Moreover, as in Bailey and Swarztrauler (1991,1994) the fractionary FT can be calculated

by applying three times a standard FT with 2N points. Indeed:

DFRTk(h,α) = e
−iπk2α

○ IDFT (DFT (y) ○DFT (z))

where DFT and IDFT and the discrete direct and inverse FT respectively, and the vectors

y and z are defined as:

y = ((hje
−iπj2α

)j=0,...N−1,0j=0,...N−1) (2.107)

z = ((eiπj
2α

)j=0,...N−1, (e
iπ(N−j)2α

)j=0,...N−1) (2.108)

Here v ○ u represents the Hadammard or componentwise product.

Now, we proceed to compute the c.d.f. of the loss Lt given by equation (2.101). Notice that

it is continuous everywhere except at x = 0. Moreover, for large values of the parameter λt

for the intensity of frequencies, as the ones found in Operational Risk context, the jump

size at zero is associate with the probability of zero losses is exp(−λt) which becomes a

negligible quantity. Therefore, for practical purposes the c.d.f. is considered continuous.

For a large value M2, using again a trapezoidal approximation on grids x = {xk = β2k, k =

0, . . . ,N − 1} and
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(u) = {uj = δ2j, j = 0, . . . ,N −1}. We denote by ϕ̂Lt(u) the estimated characteristic function

using the previous procedure. Then:

FLt(xk) − FLt(xk−1) ≃
1

2π
∫

M2

0

e−ixk−1u − e−ixku

iu
ϕ̂Lt(u)du

≃
δ2

2π

N−1

∑
j=0

e−ixkujα
e−i(xk−1−xk)uj − 1

iuj
ϕ̂Lt(uj)wj

=
δ2

2π

N−1

∑
j=0

e−ixkujα
e−iβ2uj − 1

iuj
ϕ̂Lt(uj)wj

=
δ2

2π

N−1

∑
j=0

e−iδ2β2kjα
e−iβ2uj − 1

iuj
ϕ̂Lt(uj)wj

=
δ2

2π

N−1

∑
j=0

e−iδ2β2kjαh4(uj)

=
δ2

2π

N−1

∑
j=0

e−i2πδ2β2kjα1h4(uj) =
δ2

2π
DFRT (h4, α1)

=
δ2

2π
e−iπk

2α1 ○ IDFT (DFT (y1) ○DFT (z1))

where h4(uj) =
e−iβ2uj−1

iuj
ϕ̂Lt(uj)wj , α1 =

β2δ2
2π α and

y1 = ((h4(j)e
−iπj2α1)j=0,...N−1,0j=0,...N−1)

z1 = ((eiπj
2α1)j=0,...N−1, (e

iπ(N−j)2α1)j=0,...N−1)

Finally, we recover the c.d.f. from the increments by:

FLt(xj) =
N−1

∑
k=1

(FLt(xk) − FLt(xk−1))

with FLt(x0) = FLt(0) = 0.

We invoke the procedure above several times to compute the c.d.f. of losses FLt(xj) in

solving the equation FLt(x) = α by Newton-Rhapson to obtain the V aRα and the CV aRα.

The algorithm can be summarized as follows:
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Algorithm 2.13. (1) Initialization

(a) Select FRFT parameters: α, β1, β2 δ1 and δ2.

(b) Select loss distribution parameters: λ,A,B, g, h

(2) Compute ϕY (u) in a grid [0, (N − 1)δ1) to produce values ϕ̂Y (u).

(3) Compute ϕ̂Lt(u) = e
λ(ϕ̂Y (u)−1)

(4) Compute ∆Fk = F (xk) − F (xk−1) in a grid [0, (N − 1)β2).

(5) Compute F (xk) = ∑
k
l=1 ∆Fl.

(6) Solve FLt(x) = α by Newton-Rhapson to compute V aRα.

(7) Compute

CV aRα =
1

α
∫

1

α
V aRβdβ

by the trapezoidal rule.

Alternatively we compute the characteristic function of ϕY as above then noting that:

ϕ∑kj=1 Yk
(u) =

k

∏
j=1

ϕY (u) =
eikuA

Bk
ϕX(uB))

k
=
eikuA

Bk
(∫

R
eiuBk(z)fZ(z)dz)

k

and an estimated of the characteristic function can be obtained as:

ϕ̂Lt(u) = e
−λt

(1 +
N1

∑
k=1

(λt)kϕ̂Y
k!

)
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2.8 Computing VaR/CVaR by Panjer recurrence

Panjer’s recursion has been introduced by Harry J. Panjer in 1981. By using this recursion,

we would like to calculate the aggregate loss distribution C of Lt = ∑
Nt
i=0 Yi

assuming a discretized severity F . In this section, we will simply review the method to

compute the VaR and CVaR.

DISCRETE VERSION

We define the sequences:

fk ∶= P(Yi = kh);k ∈ N0 (2.109)

pn ∶= P(N = n);n ∈ N0 (2.110)

gn ∶= P(L = nh);n ∈ N0; (2.111)

(2.112)

where N0 = {0, 1, 2,...}

For h > 0, the size discretized interval. Yi for i ≥ 1, the sequence of i.i.d. severity random

variables. N is a discrete random variable, independent of the sequence and L, the compound

loss e.g a Poisson distribution.

Theorem 2.14. Let a,b ∈ R, with a,b ≥ 0. If for n = 1,2,.... and k = 1,....n a distribution

follows the recursion

pn = (a +
b

n
)pn−1 (2.113)
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then

gn =
1

1 − af0

n

∑
k=1

(a + b
k

n
)gn−kfk (2.114)

and

g0 = wN(f0) =
∞
∑
j=0

pjf
j
0 (2.115)

where wN is the probability generating function of N.

The proof of theorem 2.14 is based on the book of Rolski(1999) , we need three lemmas.

Lemma 2.15. For any j ∈ N0 and n = 1,2,...

E[Y1∣
n

∑
i=1

Yi = j] =
j

n
(2.116)

Proof: We set Ln =
n

∑
i=1
Yi. We have:

nE[X1∣Ln = j] =
n

∑
i=1

E[Xi∣Ln = j]

= E[
n

∑
i=1

Yi∣Ln = j]

= E[Ln∣Ln = j]

= j

Lemma 2.16. For any j, k ∈ N0; n = 1,2,... and f∗nk denoting the n-fold convolution of fk.

49



P
⎛

⎝
Y1 = k

RRRRRRRRRRR

n

∑
i=1

Yi = j
⎞

⎠
=
fkf

∗(n−1)
j−k
f∗nj

(2.117)

Proof:

P(X1 = k∣Y1 + Y2 + ... + Yn = j) =
P(Y1 = k, Y2 + ... + Yn = j − k)

P(Y1 + Y2 + ... + Yn = j)

=
P(Y1 = k)P(Y2 + ... +Xn = j − k)

P(Y1 + Y2 + ... + Yn = j)

=
fkf

∗(n−1)
j−k
f∗nj

Lemma 2.17. For any j ∈ N0;

j

∑
k=0

fkf
∗(n−1)
j−k = f∗nj (2.118)

Proof:

1 =
n

∑
k=0

P(Y1 = k∣
n

∑
i=1

Yi = j)

=

j

∑
k=0

P(Y1 = k∣
n

∑
i=1

Yi = j)

=

j

∑
k=0

fkf
∗(n−1)
j−k

f∗nj

Proof of the theorem.

For n=0
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f∗n0 (y) = P(Y1 + Y2 + ... + Yn = 0)

= P(Y1 = 0, Y2 = 0, ..., Yn = 0)

=
n

∏
i=1

P(Yi = 0)

= P(Y1 = 0)n

= fn0 (Y )

and for n ≥ 1; f∗0
0 = 0 and

g0 = P(L = 0)

= P(
N

∑
ı=1

Yi = 0)

= P(N = 0) +
∞
∑
n=1

P(
n

∑
i=1

Yi = 0∣N = n)P(N = n)

= p0 +
∞
∑
n=1

P(Yi = 0)npn

= wN(f0)

Also, for n ≥ 1; f∗n0 = 1. We have:
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gj =
∞
∑
n=0

pnf
∗n
j

= p0f
∗0
j +

∞
∑
n=1

pnf
∗n
j

= 0 +
∞
∑
n=1

(a +
b

n
)pn−1f

∗n
j

=
∞
∑
n=1

(a + bE[
Y1

j
∣
n

∑
i=1

Yi = j])pn−1f
∗n
j

=
∞
∑
n=1

(a + b
j

∑
k=0

k

j
.P(Y1 = k∣

n

∑
i=1

Yi = j)pn−1f
∗n
j

=
∞
∑
n=1

(a + b
j

∑
k=0

k

j
.
fkf

∗(n−1)
j−k
f∗nj

)pn−1f
∗n
j

=
∞
∑
n=1

(af∗nj + b
j

∑
k=0

k

j
.fkf

∗(n−1)
j−k )pn−1

=
∞
∑
n=1

(a
j

∑
k=0

fkf
∗(n−1)
j−k + b

j

∑
k=0

k

j
.fkf

∗(n−1)
j−k )pn−1

=
∞
∑
n=1

j

∑
k=0

(a + b.
k

j
)fkf

∗(n−1)
j−k pn−1

=

j

∑
k=0

(a + b.
k

j
)fk

∞
∑
n=1

f
∗(n−1)
j−k pn−1

=

j

∑
k=0

(a + b.
k

j
)fk

∞
∑
n=0

f
∗(n)
j−k pn

=

j

∑
k=0

(a + b.
k

j
)fkgj−k

= af0gj +
j

∑
k=1

(a + b.
k

j
)fkgj−k

Rearranging, we get:

(gj − af0gj) =
j

∑
k=1

(a + b
k

j
)fkgj−k ↔ gj =

1

1 − af0

j

∑
k=1

(a + b
k

j
)gj−kfk

The frequency can only have four discrete distributions: Poisson, binomial, negative
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binomial and geometric. In our case as we decided, we will use the Poisson distribution

which means that a = 0 and b = λ.We have then

pn = (0 +
λ

n
)pn−1 =

λ

n
.
λn−1

(n − 1)!
e−λ =

λn

n!
e−λ (2.119)

Example 3.6. 1. Suppose N ∼ Poi(λ) and fk = P(Yi = k) = 1
4 for k = 1, 2, 3, 4 and f0 = 0.

P(L = nh) for n = 0, 1, 2, 3, 4. Assume h = 1. This example is very basic to be able to do

the calculation by hand using Panjer’s recursion.

f0 = 0; f1 = f2 = f3 = f4 =
1
4 . a = 0; b = λ ; p0 = e−λ; wN(t) = eλ(t−1)

P(L = n) = gn =
λ
n

n

∑
k=1

k.gn−kfk gives us by the recursion:

g0 = wN(f0) = wN(0) = e−λ

g1 =
λ

1
g0f1 =

λ

1
g0

1

4

g2 =
λ

2
g1f1 +

2λ

2
g0f2 =

λ

2
g1

1

4
+ g1

g3 =
λ

3
g2f1 +

2λ

3
g1f2 +

3λ

3
g0f3 =

λ

3
g2

1

4
+

2λ

3
g1

1

4
+ g1

g4 =
λ

4
g3f1 +

2λ

4
g2f2 +

3λ

4
g1f3 +

4λ

4
g0f4

=
λ

4
g3

1

4
+

2λ

4
g2

1

4
+

3λ

4
g1

1

4
+ g1
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With the results obtained, the probability for the loss distribution can be calculated by:

gn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−λ for n = 0

1

4
λg0 for n = 1

1

4

λ

n

n−1

∑
k=1

k.gn−k + g1 for n = 2, 3, 4

The algorithm to compute Var/CVaR by Panjer recursion is the following:

Algorithm 2.18. (1) Initialization: calculate f0 and g0 and set G0 = g0

(2) For n = 1,2, ...

(a) Calculate fn.

(b) Calculate gn =
1

1−af0

n

∑
k=1

(a + b kn)gn−kfk.

(c) Calculate Gn = Gn−1 + gn.

(d) Interrupt the procedure if Gn is larger than the require quantile level α, e.g.

α = 0.999. Then the estimate of the quantile qα is n×h

(3) Then do an increment (n+1) and return to step 2
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Chapter 3

COMPUTING VAR/CVAR IN AGGREGATE LOSS

In Banks and Financial Institutions, Losses occurring in a certain Business line may have

effects on the others and lead to losses on the others. Thus, we have a dependence existing

between the losses of these business lines. To model this dependence, we are introducing

in our thesis the concept of copula. Embrechts et al. (2003) introduced an application of

copula to Risk Management.

3.1 Copulas

A d dimensional copula is a d variate probability distribution function on [0,1]× ...×[0,1] =

[0,1]d with uniform marginal distributions. A copula C(u) as a function may be defined

as follow (see Cherubini(2004)).

C(u) = C(u1, u2, ...ud) ∶ [0,1]
d
→ [0,1], u = (u1, u2, ..., ud)

The above definition implies that for any given copula C(u) there exists a random vector

U = (U1, U2, ...Ud) with Ui, i = 1, ..., d being a uniform random variable on [0,1] and

C(u1, ..., ud) = P (U1 ≤ u1, ..., Ud ≤ ud), ui ∈ [0,1], i = 1, ..., d

3.1.1 Properties of Copulas

This section presents some useful properties of copulas.
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(1) Characterization of Copula: A function C(u1, ...ud) defined on [0,1]d is a copula if

and only of the following conditions are satisfied.

a. C(u1, ..., ud) is increasing in each ui ∈ [0,1]

b. C(1, ...,1, ui,1, ...,1) = ui for all i = 1, ..., d

c. For all (a1, ..., ad), (b1, ..., bd) ∈ [0,1]d with ai ≤ bi, i = 1, ..., d,

2

∑
i1=1

⋅ ⋅ ⋅
2

∑
id=1

(−1)i1+...+id C(u1i1 , ..., udid) ≥ 0

where uj1 = aj and uj2 = bj for all j = 1, ..., d

(2) Sklar Theorem: Let F be a d dimensional PDF with marginal distributions F1, ..., Fd.

Then, there exists a copula C(u1, ..., ud) ∶ [0,1]
d → [0,1] such that for all x1, x2, ..., xd ∈

[−∞,∞],

F (x1, x2, ..., xd) = C(F1(x1), ..., Fd(xd))

(3) Invariance Property: Let (X1,X2, ...,Xd) be a random vector with continuous marginal

distributions and copula C. Let T1, ...Td be strictly increasing functions. Then

(T1(X1), ..., Td(Xd)) also has the copula C.

3.1.2 Fundamental Copulas

This presents some popular copulas and their properties.

(1) The Gaussian Copula: Let Σ ∈ Rd×d be a correlation matrix. The Gaussian copula

with parameter matrix Σ is defined by the following equation.

CΣ(u) = ΦΣ (Φ−1
(u1), ...,Φ

−1
(ud))
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where Φ−1 is the inverse cumulative distribution function of a standard normal dis-

tribution ΦΣ is is the joint cumulative distribution function of a multivariate normal

distribution with mean vector zero and correlation matrix Σ.

(2) The T Student Copula: Let Σ ∈ Rd×d be a correlation matrix. The T student copula

with parameter matrix Σ and ν degrees of freedom is defined by the following equation.

CΣ,ν(u) = TΣ,ν (T
−1
ν (u1), ..., T

−1
ν (ud))

where T −1 is the inverse cumulative distribution function of univariate central Student

T distribution with ν degrees of freedom and TΣ,ν is is the joint cumulative distribution

function of multivariate Student T distribution with mean vector zero and correlation

matrix Σ.

(3) The independence Copula: The independence copula can be defined as follows.

C(u) = u1u2...ud

3.2 Aggregated losses in two cells

We study now the aggregated losses in two cells of the OR matrix corresponding to the loss

event of type j. This loss event affects all business lines to a different extend. For the seek

of concreteness we fix two cells (j, k) and (j,m), where (j, k) reflects the j-th loss event at

the k-th business line, j = 1,2, . . . ,8, k,m = 1,2, . . . ,7. Loss events and business lines are

explained in chapter 2.
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The losses in the respective cells are given by:

Lt(j,m) =

Nt(j,m)
∑
l=1

X
(j,m)
l (3.1)

Lt(j, k) =

Nt(j,k)
∑
l=1

X
(j,k)
l (3.2)

The aggregated loss in both cells is:

LAt = Lt(j,m) +Lt(j, k) (3.3)

The analysis of the total aggregated loss follows in a similar way, of course at much more

computational effort.

We first consider the case of severities given by no-truncated g-and-h distributions coming

from internal data. The case of a combination of internal and external truncated data

follows in a similar way.

In addition to common loss events, in the seven business lines, it is convenient to take into

account loss events that affect exclusively a particular business line. Equations (3.1) and

(3.2) are rewritten as:

Lt(j,m) =

N0
t

∑
l=1

X
(j,m)
0,l +

Nt(j,m)
∑
l=1

X
(j,m)
l (3.4)

Lt(j, k) =

N0
t

∑
l=1

X
(j,k)
0,l +

Nt(j,k)
∑
l=1

X
(j,k)
l (3.5)

where (N0
t )t≥0,(Nt(j,m))t≥0 and (Nt(j, k))t≥0 are independent Poisson processes with re-

spective intensities λ0, λjm and λjk.

The process (N0
t )t≥0 accounts for the number of common loss events while (Nt(j,m))t≥0

and (Nt(j, k))t≥0 account for the number of loss events exclusively affecting cells (j, k) and
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(j,m) respectively.

Severities coming from exclusive events in two different cells are independent. Also severi-

ties coming from a single cell are independent and equally distributed.

On the other hand severities coming from the same loss event, denoted by X
(j,m)
l and

X
(j,k)
l have marginals coming from a g-and-h distribution with respective parameter set

θk = (Ak,Bk, gk, hk) and θm = (Am,Bm, gm, hm) and dependence driven by a copula Cj .

Next, we follow a Monte Carlo approach to compute the VaR and CVaR of the aggregated

loss. The main difficulty is in generating the common dependent severities.

to this end we consider a conditional copula simulation approach, consisting in generating

pairs of random variables (U1, U2) with dependence driven by the copula Cj , by condition-

ing on the first component and generating the second one using the inverse transform of the

conditional distribution , i.e. U2 = C−1(V1/U1), there U1 and V1 are uniform independent

random variables in (0,1).

For copulas within the Archimedian class the inverse of the conditional copula is explicitly

available.

Once the pair (U1, U2) is generated, successive monotone transforms lead to pair of random

variables (Z1, Z2) and (X
(j,m)
0,l ,X

(j,k)
0,l ) with the same copula dependence than the original

uniform random variables and the desired marginal distribution.

We summarize the results in the following proposition:

Proposition 3.1. Let the loss processes in cells (j,m) and (j, k), j = 1,2, . . . ,8, k,m =

1,2, . . . ,7 be given by equations (3.4) and (3.5) and aggregated loss process given by equation

59



(3.3).

Let the pair (U1, U2) of random variables on [0,1] with dependence driven by the copula Cj

and uniform marginals and define the transforms:

X1 = A1 +B1k1(Z1) = A1 +B1k1(Φ
−1

(U1)) (3.6)

X2 = A2 +B2k2(Z2) = A2 +B2k2(Φ
−1

(U2)) (3.7)

where:

kl(x) =
eglx − 1

gl
e
hlx

2

2 , x ∈ R, gl > 0, l = 1,2 (3.8)

Then the pair (X1,X2) has a copula dependence Cj and marginal g-and-h p.d.f. with pa-

rameters θl = (Al,Bl, gl, hl), l = 1,2..

Proof. First, notice that kl ○Φ−1 is a strictly increasing function as the composition of two

strictly increasing functions. By the inverse transform method Zl = Φ−1(Ul) has standard

Gaussian p.d.f.

On the other hand by construction Xl has a g-and-h distribution with parameter θl.

Finally, strictly increasing transforms preserve the copula dependence. More precisely:

FX1,X2(x1, x2) = P (X1 ≤ x1,X2 ≤ x2) = P (A1 +B1k1(Φ
−1

(U1)) ≤ x1,A2 +B2k2(Φ
−1

(U2)) ≤ x2)(3.9)

= P (U1 ≤ Φ ○ k−1
1 (

x1 −A1

B1
) , U2 ≤ Φ ○ k−1

2 (
x2 −A2

B2
)) (3.10)

= FU1,U2(Φ ○ k−1
1 (

x1 −A1

B1
) ,Φ ○ k−1

2 (
x2 −A2

B2
)) (3.11)

= C(Φ ○ k−1
1 (

x1 −A1

B1
) ,Φ ○ k−1

2 (
x2 −A2

B2
)) = C(FX1(x1), FX2(x2)) (3.12)

where the last two equalities follow from the relationship between copulas and joint c.d.f.

and the expression for the marginal c.d.f. in equation (2.7).
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Remark 3.2. Once common severities are generated the procedure to simulate losses and

to compute VaR and CVaR follow the lines of algorithm 3.9.

Remark 3.3. Pairs of random numbers coming from a random vector (U1, U2) with copula

C and uniform marginals are obtained using a conditional generation approach. See for

example Embrechts, Lindskog and McNeil (2001). The conditional probability distribution

is obtained by differentiating the copula with respect to the corresponding variable. In the

case of bivariate copulas for 0 < x, y < 1:

P (U2 ≤ y/U1 = x) = lim
h→0

P (U2 ≤ y/x ≤ U1 < x + h) (3.13)

= lim
h→0

P (U2 ≤ y, x ≤ U1 < x + h

P (x ≤ U1 < x + h)
) (3.14)

= lim
h→0

P (U2 ≤ y,U1 ≤ x + h) − P (U2 ≤ y,U1 ≤ x)

P (U1 ≤ x + h) − P (U1 ≤ x)
) (3.15)

= lim
h→0

FU1,U2(x + h, y) − FU1,U2(x, y)

FU1(x + h) − FU1(x)
(3.16)

=

∂FU1,U2
(x,y)

∂x

fU1

=
∂C(x, y)

∂x
(3.17)

The algorithm to compute the aggregated VaR and CVaR can be written as:

Algorithm 3.4. 1.- Initialization: Set N , number of simulated losses, θ0
jm = (A0

jm,B
0
jm, g

0
jm, h

0
jm),

θ0
jk = (A0

jk,B
0
jk, g

0
jk, h

0
jk), parameters of the g-and-h distribution for common sever-

ities coming from an event type j at business lines m and k respectively, θjm =

(Ajm,Bjm, gjm, hjm), θjk = (Ajk,Bjk, gjk, hjk), parameters of the g-and-h distribu-

tion for idiosyncratic severities coming from an event type j at business lines m and

k respectively, λ0, λjm, λjk parameters of the Poisson processes, α, level of the Value-

at-Risk, T , simulation time.
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2.- Simulate Poisson processes N0
T , NT (j,m) and NT (j, k).

3.- Generate (U1, U2) with copula Cj and uniform marginals, following:

3a) Generate independent uniform numbers U1 and V1 in (0,1).

3b) Set U2 = (D(1)C)−1(V1/U1)

4.- Compute Z1 = Φ−1(U1) and Z2 = Φ−1(U2).

5.- Compute g-and-h severities Xjm
0 = kjm(Z1) and Xjk

0 = kjk(Z2).

6.- Repeat steps 3-5 N0
T times to obtain two 1 ×N0

T vectors of common severity losses in

cells (j,m) and j, k).

7.- Generate NT (j,m) severities with a g-and-h p.d.f. having parameter θjm.

8.- Generate NT (j, k) severities with a g-and-h p.d.f. having parameter θjk.

9.- Compute the loss Lt(j,m) at cell (j,m) by adding common and idiosyncratic losses

in steps 7 and 8.

10.- Compute the loss Lt(j, k) at cell (j, k) by adding common and idiosyncratic losses in

steps 7 and 9.

11.- Compute the aggregate loss LAt = Lt(j,m) +Lt(j, k).

12.- Repeat steps 6-11 until complete a vector of 1 ×N aggregated losses.

13.- Compute the percentile of vector LAt to obtain V aRα.
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14.- Integrate V aRβ on the interval [α,1] to obtain CV aRα.

For implementation we specifically take a Clayton copula given by equation:

C(u, v, θ) = (u−θ + v−θ − 1)−
1
θ , θ > 0

The Clayton copula has low dependence tail, with coefficient on lower dependence tail

λL = 2−
1
θ . Moreover, it has a simple structure, depending on a single parameter, with an

explicit expression for the inverse of its first order partial derivative.

Thus:

D(1)Cθ(v/u) = (1 + uθ(v−θ − 1))−
θ+1
θ , θ > 0

Inverting, we have:

(D(1)C)
−1
θ (v/u) = (1 + uθ(v−

θ
θ+1 − 1) + 1)−

1
θ , θ > 0

Therefore step 3b) in the algorithm is done by setting:

U2 = (1 +U θ1 (V
− θ
θ+1

1 − 1) + 1)−
1
θ

which guarantees that the pair (U1, U2) has a copula dependence C.
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λ / measure(L) Mean(L) STD(L) Skewness(L) Excess of Kurtosis(L) Median(L)

λ = [200 100 100] 100,841,939 13,671,902 31.4262 1,437 100,277,096

λ =[100 200 100] 70,389,713 10,334,457 37.2724 1,785 70,110,517

λ = [100 100 200] 70,698,855 25,627,416 59.0799 3,775 70,061,178

Table 3.1: Statistical Measures of the Aggregate Losses in two cells by Monte Carlo

measure/α 95% 97.5 % 99 % 99.5%

VaR 110,571,658 113,174,873 116,654,190 120,651,194

CVaR 121,799,690 130,599,525 169,114,639 259,787,044

Table 3.2: Dependence of VaR and CVaR with λ = [200,100,100] on Quantile α

In table 3.1 we present a summary with relevant statistical information about empirical

losses in two cells of the Operational risk Matrix, obtained by Monte Carlo simulation and

assuming a Poisson probability distribution for the frequency

In table 3.2 results for the Var and CVaR for two cells are shown, using a model with

Poisson frequencies of intensity λ = [200,100,100] and a range of values for the VaR/CVaR

levels. VaR is computed by obtaining the correct percentile from the sequence of generated

losses.

In figure (3.1), perlossint, perlossint2, perlossint3 and perlossint4 respectively represent

the variation of the VaR at quantiles 95%, 97.5 %, 99 % and 99.5%.
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In figure (3.2), corvar1, corvar2, corvar3 and corvar4 respectively represent the variation

of the CVaR at quantile 95%, 97.5 %, 99 % and 99.5% and different types of losses.

Results are obtained using losstwocell.m in Appendix 1.
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Figure 3.1: Dependence of VaR on quantile α
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3.3 Aggregated losses with mixed truncated g-and-h probability distribution

Consider now the case where severities in both cells (j,m) and (j, k) come from a mixing

of truncated internal and external data.

Now, severities on each cell can be written as a combination of internal and external g-and-

h random variables truncated at respective thresholds TI and Te. Internal severities are

related by a copula CI , while the dependence of external severities is driven by the copula

Ce. Internal are external data are independent among them.

The following proposition provides the joint c.d.f. and p.d.f. of severities on both cells,

suggesting a method to simulate them.

Proposition 3.5. Let U1 and U2 two independent random variables on (0,1), 0 < p < 1 and

Y1 = 1[U1<p]X
I
1 + 1[U1>p]X

e
1 (3.18)

Y2 = 1[U2<p]X
I
2 + 1[U2>p]X

e
2 (3.19)

where (XI
1 ,X

I
2) and (Xe

1 ,X
e
2) are couples of independent random variables indicating in-

ternal and external severities losses in cells 1 and 2. The pair (XI
1 ,X

I
2) has a depen-

dence given by the copula CI and the pair (Xe
1 ,X

e
2) has a dependence given by the cop-

ula Ce. The marginal c.d.f. are truncated g-and-h truncated at levels T Il and T el , i.e.

XI
l ∼ g − and − h(A

I
l ,B

I
l , g

I
l , h

I
l , TI) and Xe

l ∼ g − and − h(A
e
l ,B

e
l , g

e
l , h

e
l , Te).

Then, the joint c.d.f. FY1,Y2 is given by:

FY1,Y2(y1, y2) = CI(FXI
1
(x1), FXI

2
(x2))p

2
+ [FXI

1
(x1)FXe

1
(x2) + FXe

1
(x1)FXI

2
(x2)]p(1 − p)

+ Ce(FXe
1
(x1), FXe

2
(x2))(1 − p)

2
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Proof. From the Law of total Probability:

FY1,Y2(y1, y2) = P(Y1 ≤ y1, Y2 ≤ y2)

= P(XI
1 ≤ y1,X

I
2 ≤ y2/U1 < p,U2 < p)p

2
+ P(XI

1 ≤ y1,X
e
2 ≤ y2/U1 < p,U2 ≥ p)p(1 − p)

+ P(Xe
1 ≤ y1,X

I
2 ≤ y2/U1 ≥ p,U2 < p)p(1 − p) + P (Xe

1 ≤ y1,X
e
2 ≤ y2/U1 ≥ p,U2 ≥ p)(1 − p)

2

= CI(FXI
1
(x1), FXI

2
(x2))p

2
+ [FXI

1
(x1)FXe

1
(x2)]p(1 − p) + [FXe

1
(x1)FXI

2
(x2)]p(1 − p)

+ Ce(FXe
1
(x1), FXe

2
(x2))(1 − p)

2

= CI(FXI
1
(x1), FXI

2
(x2))p

2
+ [FXI

1
(x1)FXe

1
(x2) + FXe

1
(x1)FXI

2
(x2)]p(1 − p)

+ Ce(FXe
1
(x1), FXe

2
(x2))(1 − p)

2

Therefore equation for the joint c.d.f. immediately follows from the relationship between

copulas and joint c.d.f.
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Chapter 4

METHODS FOR PARAMETER ESTIMATION

In the chapter we review some methods for the estimation of parameters in the model.

We first consider data coming from a well delimited mixing of internal and external data.

The data set consists in observations of the number of internal and external data over the

same period, respectively nI and ne respectively. As in previous chapters we assume both

frequencies are independent Poisson distributed with parameters λI and λe.

Severities coming form internal data have a common distribution g −and−h(AI ,BI , gI , hI)

with known truncation level TI , while external severities have a common distribution g −

and − h(Ae,Be, ge, he) with unknown truncation level Te.

The set of internal and external observed severities are x1, x2, . . . xne and y1, y2, . . . ynI . The

parametric space is:

Θ = {θ = (θI , θe, Te, λI , λe), θI = (AI ,BI , gI , hI), θe = (Ae,Be, ge, he)}

4.1 Method of Moments

The method of moments is susceptible of application as expression for the moments of a

g-and-h are available for moderated values of the skewness parameter h, see for example

Iglewicz and Martinez (1984).

In the simplest case of non-truncated severity data, well delimited between external and
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internal observations the problem requires solving four non-linear equation that equal the-

oretical truncated moments given by equation (2.23) with the empirical four first moments.

Hence, assuming the condition h < 1
4 to guarantee the existence of the first four moments:

E(X/X > T ) =
1

B2
I (1 −Φ(u(TI , θI))

[AI0(TI , θI) +
BI
gI
I1(TI , θI)] = x̄I ∶=

1

nI

nI

∑
j=1

xj

E(X2
/X > T ) =

1

B2
I (1 −Φ(u(TI , θI))

[A2
II0(TI , θI) + 2

BI
gI
I1(TI , θI) +

B2
I

g2
I

I2(TI , θI)] =
1

nI

nI

∑
j=1

x2
j

E(X3
/X > T ) =

1

B2
I (1 −Φ(u(TI , θI))

[A3
II0(TI , θI) + 3A2

I

BI
gI
I1(TI , θI)

+ 3AI
B2
I

g2
I

I2(TI , θI) +
B3
I

g3
I

I3(TI , θI)] =
1

nI

nI

∑
j=1

x3
j

E(X4
/X > T ) =

1

B2
I (1 −Φ(u(TI , θI))

[A4
II0(TI , θI) + 4A3

I

BI
gI
I1(TI , θI) + 6A2

I

B2
I

g2
I

I2(TI , θI)

+ 4AI
B3
I

g3
I

I3(TI , θI) +
B4
I

g4
I

I4(TI , θI)] =
1

nI

nI

∑
j=1

x4
j

where:

J0(TI , θI) = 1;J1(TI , θI) = 1 − exp
1

2(1−hI )

J2(TI , θI) = 1 − J1(TI , θI) + exp
2

1−2hI

J3(TI , θI) = 1 − J2(TI , θI) + exp
9

2(1−3hI )

J4(TI , θI) = 1 − J3(TI , θI) + exp
8

1−4hI

K0(TI , θI) = Φ(
AI − T

BI
);K1(TI , θI) =K0(TI , θI) − exp

1
2(1−hI ) Φ((

AI − T

BI
−

1

1 − hI
))(1 − hI)

1
2 )

K2(TI , θI) = K1(TI , θI) + exp
2

1−2hI Φ((
AI − TI
BI

−
2

1 − 2hI
))(1 − 2hI)

1
2 )

K3(TI , θI) = K2(TI , θI) − exp
9

2(1−3hI ) Φ((
AI − TI
BI

−
3

1 − 3hI
))(1 − 3hI)

1
2 )

K4(TI , θI) = K3(TI , θI) + exp
8

1−4hI Φ((
AI − T

BI
−

4

1 − 4hI
))(1 − 4hI)

1
2 )

Il(TI , θI)) = Jl(TI , θI) −Kl(TI , θI), l = 1,2,3,4

71



or equivalently the parameters solve the equations:

AI0(TI , θI) +
BI
gI
I1(TI , θI) −B

2
I (1 −Φ(u(TI , θI))x̄I = 0 (4.1)

A2
II0(TI , θI) + 2

BI
gI
I1(TI , θI) +

B2
I

g2
I

I2(TI , θI) −B
2
I (1 −Φ(u(TI , θI))

1

nI

nI

∑
j=1

x2
j = 0(4.2)

A3
II0(TI , θI) + 3A2

I

BI
gI
I1(TI , θI) (4.3)

+ 3AI
B2
I

g2
I

I2(TI , θI) +
B3
I

g3
I

I3(TI , θI) −B
2
I (1 −Φ(u(TI , θI))

1

nI

nI

∑
j=1

x3
j = 0 (4.4)

A4
II0(TI , θI) + 4A3

I

BI
gI
I1(TI , θI) + 6A2

I

B2
I

g2
I

I2(TI , θI) (4.5)

+ 4AI
B3
I

g3
I

I3(TI , θI) +
B4
I

g4
I

I4(TI , θI) −B
2
I (1 −Φ(u(TI , θI))

1

nI

nI

∑
j=1

x4
j = 0 (4.6)

with similar equations for external data.

4.2 Maximum Likelihood Estimation

The likelihood, after neglecting terms not depending on θ can be written as:

l(xI , xe, θ) ∶= logL(xI , xe, θ) = logL(xI , θI) − λI + nI log(λI)

+ logL(xe, θe, Te) − λe + ne log(λe)

= l(xI , θI) − λI + nI log(λI) + l(xe, θe, Te) − λe + ne log(λe)

As the likelihood splits into four well delimited terms, each one depending on a different

part of the parameter vector, they can be treated separately.
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We first focus on the part corresponding to the internal data. Then from equation:

l(xI , θI) = − log(BI)nI − log(1 −Φ(k−1
(
T −AI
BI

)))nI −
nI

∑
m=1

(k−1(
xm−AI
BI

))2

2

−

nI

∑
m=1

log(k′(k−1
(
xm −AI
BI

)))
−1

= − log(BI)nI − log(1 −Φ(u(TI , θI)))nI −
nI

∑
m=1

(u2(xm, θI)

2

−

nI

∑
m=1

log(k′(u(xm, θI)))
−1

where u(x, θI) solves:

BIk(u(x, θI)) +AI − TI = BI
egu(x,θI) − 1

g
e

1
2
hu2(x,θI) +AI − TI = 0

Similarly:

l(xe, θe) = − log(Be)ne − log(1 −Φ(k−1
(
T −Ae
Be

)))ne −
ne

∑
m=1

(k−1(xm−AeBe
))2

2

−
ne

∑
m=1

log(k′(k−1
(
xm −Ae
Be

)))
−1

= − log(Be)ne − log(1 −Φ(u(Te − θe)))ne −
ne

∑
m=1

(u2(xm, θe)

2

−
ne

∑
m=1

log(k′(u(xm, θe)))
−1

where vk(θe) solves:

Bek(v(x, θe)) +Ae − Te = Be
egv(x,θe) − 1

g
e

1
2
hv2(x,θe) +Ae − Te = 0

The estimations of λI and λe are computed separately, as they do not depend on the

remainder parameter it easily follows that λ̂I =
nI
PI

and λ̂e =
ne
Pe

, where PI and Pe are the

length of the periods in which the process is observed. To simplify we take PI = Pe = 1.
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By differentiating with respect to the parameters we obtain the following set of normal

equations, using chain rule and implicit differentiation:

∂l(xI , θI)

∂AI
= −

fZ(u(TI , θI))

(1 −Φ(uk(θI))
k′′(u(TI , θI))

∂u(TI , θI))

∂AI
nI −

nI

∑
m=1

(u2(xm, θI)

2

−

nI

∑
m=1

log(k′(u(xm, θI)))
−1

and similar expressions for other parameters. Here

k′′(x) =
1

g
[g(g + hx)egx + hegx − h] e

1
2
hx2

+
1

g
[g(g + hx)egx + hegx − h] e

1
2
hx2

+
1

g
((g + hx)egx − hx)hxe

1
2
hx2

=
1

g
e

1
2
hx2 [g(g + hx) + h + (g + hx)egx − h2x2

− h]

Maximum likelihood estimators are defined as the vector θ̂ = argminθ∈Θl(x, θ), i.e. the

value that minimizes the log-likelihood for all values of θ in the parametric space. They

solve the following system of equations:

∂l(xI , θI)

∂AI
= 0;

∂l(xI , θI)

∂BI
= 0

∂l(xI , θI)

∂gI
= 0;

∂l(xI , θI)

∂hI
= 0
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Chapter 5

CONCLUSION

In our thesis, under the framework of the Loss Distribution Approach, we explored various

methods to compute the Value-at-Risk and Expected Shortfall. Due to the heavy-tailedness

and the complexity of the g-and-h severity, we have faced some numerical challenges. Nev-

ertheless, we implemented some of them and verified their accuracy in a way that was not

done before. After exploring the one cell case, we analyzed the two cells case while consid-

ering and modeling the dependency among cells via copula.For the single cell case:

1) We explored and implemented the Monte Carlo algorithm for internal and mixed data,

2) we reviewed the properties of the recursive convolution and applied truncation to the

algorithm for mixed data,

3) We explored the Fractionary Fourier Transform algorithm, and finally,

4) We reviewed the theorem and algorithm of Panjer’s recurrence.

For the two cells case, we used the Monte Carlo Simulation to Compute The VaR and CVaR.

We used the Clayton Copula, which has a simple structure with an explicit expression for

the inverse of its first order partial derivative, to model the dependence among cells.

Previous studies have proven that Monte Carlo is very reliable. Fast Fourier Transform is
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quick but is dependent on the parameters chosen. A wrong estimation of these parameters

could lead to erroneous results. One could compare FFT and Monte Carlo to obtain accu-

rate parameters.

We saw that the methods of computing the two risk measures of our analysis, namely VaR

and ES/CVaR were actually proven and good methods for stable risk measures. One could

think in our case (heavy-tail severity) that CVaR, given the fact that it is higher, is better

since the end goal is for the banks to have enough capital reserve to avoid bankruptcy. Also,

in the future perhaps, one could find more results on the g-and-h distribution and use the

methods introduced in this analysis.
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Appendix A

ONE CELL CASE

(1) densitydependgh.m plots the density functions of g-and-h dependeding on parameters

g and h

1 %running d i f f e r e n t dens i ty g - and - h

2 A=0; B=1; gv = [ 1 , 2 , 3 ] ; h=0.25 ;

3 hv=[ .2 , .25 , .5 , . 8 ] ; g=2;

4 fg1=densigandh (A,B, gv (1 ) ,h ) ;

5 fg2=densigandh (A,B, gv (2 ) ,h ) ;

6 fg3=densigandh (A,B, gv (3 ) ,h ) ;

7 fh1=densigandh (A,B, g , hv (1 ) ) ;

8 fh2=densigandh (A,B, g , hv (2 ) ) ;

9 fh3=densigandh (A,B, g , hv (3 ) ) ;

10 x=l i n s p a c e ( -5 , 5 , 100) ;

11 p l o t (x , fg1 , x , fg2 , x , fg3 ) ;

12 p l o t (x , fh1 , x , fh2 , x , fh3 )

13 fn=densigandh (A,B, g , h ) ;

14 [ y , f s ] = gandhsim (A,B, g , h ,100000 ) ;

and below is the code gandhsim.m of the function gandhsim
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1 %generate n numbers coming from a g - and - h d i s t r i b u t i o n (y )

2 % and compute the emp i r i c a l dens i ty by ks f i l t e r ( normal ke rne l )

3 %inputs : parameters : a , b , g , h ; n : no . o f va lue s

4 func t i on [ y , f ] = gandhsim (a , b , g , h , n )

5 rn=randn (1 , n) ;

6 y=a+b ∗ ( ( exp ( g∗ rn ) -1) . ∗exp (h∗ r n . ˆ2/2) ) . /g ;

7 x i = l i n s p a c e ( -5 , 5 , 100 ) ;

8 f = ksdens i ty (y , xi , ' f unc t i on ' , ' pdf ' ) ;

(2) losssincel.m returns the loss, the VaR and the CVaR for a single cell

1 func t i on [ L , f , orvar , esh ]= l o s s s i n c e l (A,B, g , h , lambda , alpha , n)

2 %monte c a r l o s imua l t i on l o s s in a s i n g l e c e l l ,

3 %f r e q Poisson , sev g - and -h , n : no . o f l o s s e s

4 %typ i c a l data in or : h=0.25 ; g=2; A=100000; B=1; lambda=100; alpha =

95

5 N=po i s s rnd ( lambda , 1 , n ) ;

6 L=ze ro s (1 , n) ;

7 f o r k=1:n

8 rn=randn (1 ,N(k ) ) ;

9 y=A+B∗ ( ( exp ( g∗ rn ) -1) . ∗exp (h∗ r n . ˆ2/2) ) . /g ;

10 L(k )=sum(y ) ;

11 end

12 xx = l i n s p a c e (0 ,max(L) ,300) ;

13 f = ksdens i ty (L , xx , ' f unc t i on ' , ' pdf ' ) ;
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14 %fnor=pdf ( 'Normal ' , xx ,mean(L) , std (L) ) ;

15 %p lo t ( xx , f , xx , fnor )

16 LS=(L-mean(L) ) . / std (L) ;

17 h=k s t e s t (LS) ;

18 orvar=p r c t i l e (L , alpha ) ;

19 normvar1=norminv (0 .01 ∗alpha ,mean(L) , std (L) ) ;

20 a l f=l i n s p a c e (95 ,99 .5 , 100 ) ;

21 %comparing vars with poisson - gandh and normal d i s t r i b u t i o n

22 pernorm=norminv (0 .01 ∗ a l f , mean(L) , std (L) ) ;

23 p e r l o s s=p r c t i l e (L , a l f ) ;

24 i i n t=l i n s p a c e ( ( a lpha . /100) ,1 ,100) ;

25 p e r l o s s i n t=p r c t i l e (L , i i n t ∗100) ;%VaR on p e r c e n t i l e s de f in ed by i i n t

26 esh=trapz ( i i n t , p e r l o s s i n t ) . /(1 - a lpha . /100) ;%computing expected

s h o r t f a l l

(3) losssincelmix.m returns the loss, the VaR and the CVaR for a single cell mixing internal

and external data

1 func t i on [ L , f , orvar , esh ]= l o s s s i n c e lm i x (A1 ,B1 , g1 , h1 , lambda ,A2 ,B2 , g2 ,

h2 , p , alpha , n)

2 %monte c a r l o s imua l t i on l o s s in a s i n g l e c e l l ,

3 %f r e q mixed Poisson , sev two g - and -h , n : no . o f l o s s e s

4 %p : p r obab i l i t y o f s e l e c t i n g the f i r s t o f the s e v e r i t i e s

5 %typ i c a l data in or : h1=0.25 ; g1=2; A1=10000; B1=1; lambda=100; p=0. 5 ;

h2=0. 3 ; g2=2; A2=20000; B2=1; lambda=100; p=0. 5 ; alpha=0.95
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6 L1=l o s s s i n c e l (A1 ,B1 , g1 , h1 , p∗ lambda , alpha , n) ;

7 L2=l o s s s i n c e l (A2 ,B2 , g2 , h2 , ( 1 - p) ∗ lambda , alpha , n) ;

8 L=L1+L2 ;

9 xx = l i n s p a c e (0 ,max(L) ,300) ;

10 f = ksdens i ty (L , xx , ' f unc t i on ' , ' pdf ' ) ;

11 %fnor=pdf ( 'Normal ' , xx ,mean(L) , std (L) ) ;

12 %p lo t ( xx , f , xx , fnor )

13 %LS=(L-mean(L) ) . / std (L) ;

14 %h=k s t e s t (LS) ;

15 orvar=p r c t i l e (L , alpha ∗100) ;

16 normvar1=norminv ( alpha ,mean(L) , std (L) ) ;

17 a l f=l i n s p a c e (95 ,99 .5 , 100 ) ;

18 %comparing vars with poisson - gandh and normal d i s t r i b u t i o n

19 pernorm=norminv (0 .01 ∗ a l f , mean(L) , std (L) ) ;

20 p e r l o s s=p r c t i l e (L , a l f ) ;

21 i i n t=l i n s p a c e ( alpha , 1 , 100 ) ; %Des i r e mu l t i p l i e d alpha by 100

22 p e r l o s s i n t=p r c t i l e (L , i i n t ∗100) ;%VaR on p e r c e n t i l e s de f in ed by i i n t %

d e s i r e d iv ided i i n t by 100

23 esh=trapz ( i i n t , p e r l o s s i n t ) . /(1 - alpha ) ;%computing expected s h o r t f a l l
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Appendix B

TWO CELLS CASE

losstwocell.m computes the aggregate loss of two cell, then the VaR and CVaR

1 func t i on [LA, orvar , corvar ]= l o s s tw o c e l l ( lambda , AV,BV, gv , hv , theta , alpha , n)

2

3 %monte c a r l o s imua l t i on aggregate l o s s in two c e l l s , common l o s s e s are

4 %generated from a c layton copula

5 %inputs : f r e q Poisson 1x3 vec to r , sev g - and - h parameters AV,BV,gV

6 %hv , each a 1x4 vector , n : no . o f s imulated l o s s e s

7 % theta : param ca lyton copula

8 %theta : parameter c layton copula

9 %typ i c a l data in or : lambda=[200 100 1 0 0 ] ; AV=[200000 200000 100000 100000 ] ;

BV=[2 2 1 1 ] ; gv=[ 3 3 2 2 ] ; hv=[0 . 5 0 . 5 0 .25 0 .25 ] ; theta=5; alpha=0.99 ;

10 theta0jm=[AV(1) , BV(1) , gv (1 ) hv (1 ) ] ;

11 the ta0 jk=[AV(2) , BV(2) , gv (2 ) hv (2 ) ] ;

12 thetajm=[AV(3) , BV(3) , gv (3 ) hv (3 ) ] ;

13 the ta jk=[AV(4) , BV(4) , gv (4 ) hv (4 ) ] ;

14 N0=po i s s rnd ( lambda (1) ,1 , n ) ;

15 N1=po i s s rnd ( lambda (2) ,1 , n ) ;

16 N2=po i s s rnd ( lambda (3) ,1 , n ) ;

17 LAjmp=ze ro s (1 , n ) ;
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18 LAjkp=ze ro s (1 , n) ;

19 LA0jm=ze ro s (1 , n) ;

20 LA0jk=ze ro s (1 , n) ;

21 LAjk=ze ro s (1 , n) ;

22 LAjm=ze ro s (1 , n) ;

23 LA=ze ro s (1 , n) ;

24 f o r k=1:n

25 [ loss0jm , l o s s 0 j k ]= l o s s s 0 ( theta0jm , theta0 jk , theta ,N0(k ) ) ;

26 lo s s jm=loss sgandh ( thetajm ,N1(k ) ) ;

27 l o s s j k=los s sgandh ( theta jk ,N2(k ) ) ;

28 LAjmp(k )=sum( lo s s jm ) ;

29 LAjkp (k )=sum( l o s s j k ) ;

30 LA0jm(k )=sum( los s0 jm ) ;

31 LA0jk (k )=sum( l o s s 0 j k ) ;

32 LAjm(k )=LAjmp(k )+LA0jm(k ) ;

33 LAjk (k )=LAjkp (k )+LA0jk (k ) ;

34 LA(k )=LAjm(k )+LAjk (k ) ;

35 end

36 xx = l i n s p a c e (0 ,max(LA) ,300) ;

37 f = ksdens i ty (LA, xx , ' f unc t i on ' , ' pdf ' ) ;

38 %fnor=pdf ( 'Normal ' , xx ,mean(L) , std (L) ) ;

39 %p lo t ( xx , f , xx , fnor )

40 LS=(LA-mean(LA) ) . / std (LA) ;

41 h=k s t e s t (LS) ;

42 orvar=p r c t i l e (LA,100∗ alpha ) ;

43 normvar1=norminv ( alpha ,mean(LA) , std (LA) ) ;
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44 a l f=l i n s p a c e (95 ,99 .5 , 100 ) ;

45 %comparing vars with poisson - gandh and normal d i s t r i b u t i o n

46 pernorm=norminv (0 .01 ∗ a l f , mean(LA) , std (LA) ) ;

47 p e r l o s s=p r c t i l e (LA, a l f ) ;

48 i i n t=l i n s p a c e ( alpha , 1 , 100 ) ;

49 p e r l o s s i n t=p r c t i l e (LA,100∗ i i n t ) ;%VaR on p e r c e n t i l e s de f i ned by i i n t

50 corvar=trapz ( i i n t , p e r l o s s i n t ) . /(1 - alpha ) ;%computing expected s h o r t f a l l

The functions loss0 and lossgandh

(1) loss0.m

1 func t i on [ l o s s01 , l o s s 0 2 ]= l o s s s 0 ( theta01 , theta02 , theta , n)

2 %monte c a r l o s imua l t i on l o s s e s in two c e l l s , common l o s s e s are

3 %generated from a c layton copula

4 %inputs : lambda , f r e q Poisson , sev g - and - h parameters theta01 and

5 %theta02 in both c e l l s

6 % n : no . o f s imulated l o s s e s

7 % theta : param ca lyton copula

8 %typ i c a l data in or : AV=[10000 20000 ] ; n = 500 ; BV=[1 1 ] ; gv=[3 2 ] ;

hv=[0 . 5 0 . 25 ] ; theta01=[AV(1) ,BV(1) , gv (1 ) , hv (1 ) ] ;

9 %theta02=[AV(2) ,BV(2) , gv (2 ) , hv (2 ) ] ; theta =10;

10 u=copularnd ( 'Clayton ' , theta , n ) ;

11 z=norminv (u , 0 , 1 ) ;

12 l o s s01p=theta01 (1 )+theta01 (2 ) ∗ ( ( exp ( theta01 (3 ) ∗z ( : , 1 ) ) -1) . ∗exp ( theta01 (4 )

∗z ( : , 1 ) . ˆ2/2) ) . / theta01 (3 ) ;
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13 l o s s02p=theta02 (1 )+theta02 (2 ) ∗ ( ( exp ( theta02 (3 ) ∗z ( : , 2 ) ) -1) . ∗exp ( theta02 (4 )

∗z ( : , 2 ) . ˆ2/2) ) . / theta02 (3 ) ;

14 l o s s 0 1=l o s s 0 1 p . ∗( loss01p >0) ;

15 l o s s 0 2=l o s s 0 2 p . ∗( loss02p >0) ;

16 %p lo t ( l o s s01 , l o s s02 , ' . ' )

(2) lossgandh.m

1 func t i on L=loss sgandh ( thetajm , n)

2 %monte c a r l o s imua l t i on l o s s in a s i n g l e c e l l ,

3 %outpui t : n s e v e r i t y l o s s e s from a g - and - h d i s t r i b u t i o n with param

thetajm

4 %inputs : lambda , f r e q Poisson , thetajm sev g - and - h parameters , n : no . o f

l o s s e s

5 %typ i c a l data in or : h=0.25 ; g=2; A=100000; B=1; lambda=100

6 %thetajm=[A,B, g , h ] ;

7 z=randn (1 , n) ;

8 L=thetajm (1)+thetajm (2) ∗ ( ( exp ( thetajm (3) ∗z ) -1) . ∗exp ( thetajm (4) ∗ z . ˆ2/2) ) . /

thetajm (3) ;
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