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Abstract

RESOURCE ALLOCATION AND TASK ADMISSION CONTROL IN CLOUD SYSTEMS

c©Haleh Khojasteh 2016

Doctor of Philosophy

Computer Science

Ryerson University

The focus of this thesis is solving the problem of resource allocation in cloud datacenter

using an Infrastructure-as-a-Service (IaaS) cloud model. We have investigated the behavior

of IaaS cloud datacenters through detailed analytical and simulation models that model lin-

ear, transitional and saturated operation regimes. We have obtained accurate performance

metrics such as task blocking probability, total delay, utilization and energy consumption.

Our results show that the offered load does not offer complete characterization of datacen-

ter operation; therefore, in our evaluations, we have considered the impact of task arrival

rate and task service time separately.

To keep the cloud system in the linear operation regime, we have proposed several dy-

namic algorithms to control the admission of incoming tasks. In our first solution, task

admission is based on task blocking probability and predefined thresholds for task arrival

rate. The algorithms in our second solution are based on full rate task acceptance threshold

and filtering coefficient. Our results confirm that the proposed task admission mechanisms

are capable of maintaining the stability of cloud system under a wide range of input param-

eter values.

Finally, we have developed resource allocation solutions for mobile clouds in which

offloading requests from a mobile device can lead to forking of new tasks in on-demand

manner. To address this problem, we have proposed two flexible resource allocation mech-
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Abstract
anisms with different prioritization: one in which forked tasks are given full priority over

newly arrived ones, and another in which a threshold is established to control the priority.

Our results demonstrate that threshold-based priority scheme presents better system perfor-

mance than the full priority scheme. Our proposed solution for clouds with mobile users

can be also applied in other clouds which their users’ applications fork new tasks.

vi



Acknowledgments

There are many people to whom I owe credit for this thesis. Without the support and

encouragement of these wonderful people it would not be possible to finish this work.

First and foremost, I express my deepest gratitude to my supervisor, Dr. Jelena Mišić
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Chapter 1

Introduction

1.1 Cloud Computing at a Glance

Cloud computing has become a tremendous paradigm for hosting and delivering ser-

vices over the Internet. The goal of this computing model is to make a better use of various

computer resources, keep together in order to achieve higher throughput and to resolve

problems requiring high performance computations. It allows users to develop and lever-

age available computer resources in pay-as-you go manner.

In this thesis, we adopt the definition of cloud computing provided by The National

Institute of Standards and Technology (NIST) [46] as it covers the essential aspects of

cloud computing:

NIST definition of cloud computing: Cloud computing is a model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction.

1
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Figure 1.1: The NIST Cloud Model [46].

This cloud model is composed of five essential characteristics, three service models, and
four deployment models.

Fig. 1.1 illustrates the cloud’s essential characteristics, service models, deployment

models and the layers defined by NIST [46].

1.1.1 Essential Characteristics of Cloud

Five essential characteristics of cloud computing is clearly articulated in these defini-

tions [46]:

a) On-demand self-service: a user can provision cloud resources, such as server time

and network storage, automatically without requiring human interaction with each

service provider.

b) Broad network access: cloud resources are available over the internet and accessed

2
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through diverse terminals such as thin or thick client platforms (e.g., computers, mo-

bile phones, tablets etc.).

c) Resource pooling: the computing resources are pooled together to serve multiple

consumers in a multi-tenant manner. These physical and virtual resources are as-

signed based on the users’ requirements. User generally has no control or knowledge

over the exact location of the provided computer resources, but s/he may be able to

specify location at a country, state or datacenter levels. Computer resources provided

to users include storage, processing, memory, and network bandwidth.

d) Rapid elasticity: computer resources provisioned to customers can be elastically

provisioned and released and can be scaled rapidly outward and inward appropri-

ately with demand. User generally is able to scale out resources that appear to be

“unlimited” and can be provisioned in any quantity at any time.

e) Measured service: computer resources can be automatically controlled and opti-

mized using a metering capability appropriate to the type of service provisioned (e.g.,

storage, processing, bandwidth, and active user accounts). Resource utilization can

be monitored, controlled, and reported for both the provider and user to provide

transparency.

1.1.2 The Service Models of Cloud

Following cloud service models have been used to classify the services in cloud com-

munity [46]:

I) Software as a Service (SaaS): cloud user release their applications on a hosting en-

3



Chapter 1: Introduction
vironment, which can be accessed through internet from diverse terminals (e.g. web

browser, PDA, etc.). Cloud users do not have control over the multi-tenant cloud

infrastructure. Cloud users’ applications are managed in a single virtual environ-

ment on the SaaS to leverage optimized amount of resources in terms of availabil-

ity, speed, security, maintenance and disaster recovery. Some examples of SaaS are

SalesForce.com, Google Mail, Google Docs, Workday, Concur, Citrix GoToMeeting

and Cisco WebEx.

II) Platform as a Service (PaaS): PaaS is a development platform supporting the full

“Software Lifecycle” which allows cloud users to develop cloud services and appli-

cations (e.g. SaaS) directly on the PaaS cloud. Hence the difference between SaaS

and PaaS is that SaaS only hosts completed cloud applications whereas PaaS offers a

development platform that hosts both completed and in-progress cloud applications.

This requires PaaS, in addition to supporting application hosting environment, to pos-

sess development infrastructure including programming environment, tools, config-

uration management, and so forth. Some examples of PaaS are Google AppEngine,

Force.com and Apache Stratos.

III) Infrastructure as a Service (IaaS): cloud users directly use IT infrastructures (pro-

cessing, storage, networks, and other fundamental computing resources) provided

in the IaaS cloud. Virtualization is extensively used in IaaS cloud in order to inte-

grate/decompose physical resources in an ad-hoc manner to meet growing or shrink-

ing resource demand from cloud users. The basic strategy of virtualization is to set

up independent Virtual Machines (VMs) that are isolated from both the underlying

hardware and other VMs. Notice that this strategy is different from the multi-tenancy

4
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model, which aims to transform the application software architecture so that multiple

instances (from multiple cloud users) can run on a single application (i.e. the same

logic machine). Some examples of IaaS are Amazon EC2, Microsoft Azure, Google

Compute Engine (GCE), Rackspace and Joyent.

1.1.3 The Deployment Models of Cloud

Four cloud deployment models have been defined in cloud community [46], [52], [1]:

a) Public cloud: a cloud that can be used by general public. The cloud may be less

secure due to its openness. Public cloud are the dominant form of current cloud

computing deployment models and they require significant investment and are usu-

ally owned by large corporations such as Microsoft (Azure), Google (AppEngine) or

Amazon (EC2, S3).

b) Private cloud: a cloud that is exclusively used by one organization, company or

one of its customers. The cloud may be operated by itself or a third party. Private

cloud offers increased security at greater cost. The St. Andrews Cloud Computing

Co-laboratory and Concur Technologies (Lemos, 2009) are illustration associations

that have a private cloud.

c) Community cloud: a cloud that is shared by two or more several organizations or

companies and is usually set up for their specific requirements. This cloud is typically

used for a shared concern (e.g. such as schools within a university).

d) Hybrid cloud: the cloud infrastructure is a combination of two or more clouds (pri-

vate, community, or public). In this model, the clouds remain as unique entities

5



Chapter 1: Introduction
but are bound together by standardized or proprietary technology that enables data

and application portability (e.g., cloud bursting for load-balancing between clouds).

Organizations use the hybrid cloud model in order to optimize their resources to in-

crease their core competencies by offloading peripheral business functions onto the

cloud while controlling core activities on-premise through private cloud.

1.1.4 The Layered Models of Cloud

Cloud computing architecture is divided into four layers [46]:

I) The hardware layer refers to managing the physical resources of the cloud comput-

ing infrastructure, including physical servers, routers, switches, power and cooling

systems. This layer is implemented in datacenters and contains thousands of servers

which are arranged in racks and interconnected through switches, routers or other

techniques.

II) The infrastructure layer (or the virtualization layer) manages a pool of storage

and computing resources by partitioning the physical resources using virtualization

techniques (such as Xen, KVM and VMware).

III) The platform layer includes operating systems and application frameworks. The

aim of this layer is to minimize the burden of deploying applications directly into

virtual machine containers.

IV) The application layer consists of the cloud applications which can be exploited with

the automatic-scaling feature to achieve better performance, availability and lower

operating cost.
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1.1.5 The Advantages of Cloud Computing

Cloud computing offers numerous advantages both to end users and businesses of all

sizes. Some of the key advantages offered by cloud computing are listed as [47]:

• Lower-Cost Computers for Users

• Improved Performance

• Lower IT Infrastructure Costs

• Reducing Business Risks and Maintenance Issues

• Lower Software Costs

• Instant Software Updates

• Increased Computing Power

• Unlimited Storage Capacity

• Increased Data Safety

• Improved Compatibility Between Operating Systems

• Improved Document Format Compatibility

• Easier Group Collaboration

• Universal Access to Documents

• Latest Version Availability

• Removing the Tether to Specific Devices
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1.2 Major Challenges in Cloud Computing

Cloud computing indeed provides several compelling features that make it attractive

to business owners. However, there are some open challenges which are not completely

addressed yet. The major challenges in this field are listed in [56], [1], [53]:

1.2.1 Resource Allocation Issues in Cloud

• Predictable and unpredictable workloads: The load of requests send to the cloud

may change drastically and increasingly as the demand of applications grows. This

type of workload can be classified as unpredictable workload and it is difficult to

manage this type of workload.

• Homogenous and heterogeneous workloads: Homogenous workloads primarily

are hosted on VMs which have similar type of configuration, i.e., required number

of CPUs, RAM, storage and mean time required to execute. Whereas, heterogeneous

workloads are accommodated on VMs with different configurations. The resource

allocation for both types of workloads can be challenging for the cloud system.

• Batch workloads and transactional workloads: The difference between batch and

transactional workloads is that batch workloads do not need user intervention such

as the input from user. But transactional workloads need user intervention. Example

of transactional workloads is online transactional systems. Batch workloads are non-

preemptive whereas transactional workloads can be preemptive. Batch workloads

can be unchanging, but transactional workloads fluctuate. To deal with both types of

workloads, an efficient resource allocation algorithm is to be addressed.
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• Elasticity: Elasticity in cloud means how much it can dynamically handle the fluc-

tuation in the requirements of the resources. The demand for resources may grow in

time; the cloud must automatically detect the demand and scale the resources. An

efficient resource management in cloud should have a clear solution for this issue.

• Minimization of costs and maximization of resource utilization: The two impor-

tant constraints to be met in cloud resource allocation are the minimization of over-

all operation cost and maximization of resource utilization. A robust cloud system

should provide services to its users with the intention to entrust them with continuing

their services. In order to reach this goal, the service provider should be able to give

services to the users with low cost. This can be done by having adequate techniques

to monitor the resource usage and minimize the cost for the users and maximize the

system utilization.

• VMMigration: Virtual Machine migration is one of the methods which can be uti-

lized by load balancer or used in energy preservation policies. To accommodate the

resources, VMs can be migrated between hosts. VM Migration in cloud computing

can be used to increase efficiency, balance load across the datacenters and it enables

robust and highly responsive provisioning in datacenters. However, the implementa-

tion of VMMigration can be challenging due to the additional overhead of deploying

and managing VMs.

• Handling high availability for long running tasks: The tasks on cloud can be run-

ning for a long time such as many hours or days. Therefore, it is required to have

resources which are available for tasks without any interruption or failure. The tech-
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niques are to be addressed to automatically detect any failure or unavailability and

shift the tasks to the available resources. Moreover, these techniques should handle

the situation in a short time and in a way that users do not sense the unavailability.

• Parallel task scheduling: Computing tasks in parallel would increase the make span

of the task. The tasks can be independent or dependent. Independent tasks can

be executed in several virtual machines in parallel. Whereas, dependent tasks can

experience communication issues, so they must be scheduled carefully.

• Networked Cloud: Cloud datacenters have resource allocation problem within their

intra domains. In case of distributed clouds, the resources allocation algorithms suit-

able for local environments are not compatible with the distributed clouds. Some

of the research issues associated with distributed clouds is communication delay,

optimal assignment of networked resources, virtualization of networked resources,

etc. The problem of mapping virtualized network resources is referred as Virtualized

Network Embedding (VNE) problem.

• Contention among requests: Resource contention arises when two applications

want to access the same resource at the same time. In a decentralized cloud en-

vironment, user requests may be stuck in contention while searching for suitable

resources.

• Scarcity of resources: this issue arises when there are limited resources.

• Resource fragmentation: this situation arises when the resources are isolated. There

will be enough resources, but they are not available for allocation.
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• Over-provisioning of resources: This case happens when the application gets more

resources than the demanded ones.

• Under-provisioning of resources: this issue occurs when the application is assigned

to less resources than it requires.

1.2.2 Cloud Security, Privacy and Reliability

Two of the key issues in cloud computing are security and privacy. A company’s confi-

dential data must be unavailable and inaccessible by other companies. Companies offering

cloud computing services must satisfy security concerns. Customers only pay to these

companies when they are convinced in security measures.

Privacy is another issue. As user’s data can be accessed from any location, proper

authentication techniques should be developed. Using authorization, each user can access

only the data and applications relevant to his or her job. Replication time and costs is

important for data resiliency.

Reliability is another concern which should be considered in cloud system. Server’s

stability should be provided to avoid outrage in cloud servers.

1.2.3 Server Consolidation

Server consolidation is an approach to maximize resource utilization while minimizing

energy consumption in a cloud computing environment. Some under-utilized servers can

be set to an energy-saving state by combining VMs located on several servers onto a single

server using VM migration.
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1.2.4 Energy Management

Increasing energy efficiency in cloud computing and designing energy-efficient data-

centers is one of the important issues in this area. Some solutions to this problem include

the development of Energy-efficient hardware architecture which deploys techniques such

as slowing down CPUs’ speed, turning off partial hardware components, energy-aware job

scheduling and server consolidation used to reduce power consumption by turning off un-

used machines and studying energy-efficient network protocols and infrastructures. These

techniques are intended to achieve a trade-off between energy savings and application per-

formance.

1.2.5 Bandwidth

One of the bottlenecks of cloud computing is bandwidth. Without utilizing efficient

strategies, the network speed can decrease or the network can halt when a large number of

users or some high transaction processes want to contact the datacenter.

1.2.6 Traffic Management and Analysis

Analysis of network traffic is important for datacenters to increase the system’s ef-

ficiency. Furthermore, network operators need to know how traffic flows through the net-

work in order to make management and planning decisions. Also, it is important to improve

network performance in datacenter networks.
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1.3 General Issues of Mobile Cloud Computing

Although there are many advantages offered by mobile cloud computing, still there are

many problems that hinder mobile cloud’s success and adoption; these issues should be

seriously tackled to realize the potential of promising mobile clouds.

The major challenges in mobile cloud computing come from the characteristics of the

involved elements, namely, mobile devices, wireless network and cloud [28], [55], [21];

this makes the implementation of mobile cloud computing more complicated than station-

ary clouds. The major issues and challenges in mobile cloud computing are as following:

• Limitations of the Mobile devices: compared to personal computers, mobile de-

vices have limited storage capacity, poor display, less computational power and en-

ergy resource. Although smart phones have improved significantly, they still have

battery power constraint.

• Network Bandwidth and Latency: mobile cloud computing may face the challenge

from the transmission channel due to the intrinsic nature and constraints of wireless

networks and devices. Furthermore, the cloud services may be located far away from

mobile users, which in turn increase the network latency.

• Heterogeneity: heterogeneity can appear among mobile devices, wireless networks

and cloud servers; this can cause major issues in the integration, interoperability,

compatibility, portability and efficiency of different elements. It is even possible to

experience heterogeneity in a single type of mobile devices, wireless network and

cloud.
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• Service Availability: mobile clients may not be able to connect to the cloud due to

traffic congestion, network failures and being out of signal.

• Security and Privacy: mobile devices usually lack the computing power to execute

sophisticated security algorithms. Moreover, it is difficult to enforce a standardized

credential protection mechanism due to the variety of mobile devices. Clouds and

wireless networks also have security and privacy problems.

• Reliability: maintenance, fault tolerance and reliability can be an issue in all levels

and elements of mobile cloud computing.

• Context-awareness issues: context-aware and socially-aware computing are insep-

arable traits of contemporary handheld computers. Designing resource-efficient ap-

plications which are environment-aware is an essential need.

• Elasticity: cloud providers confront situations in which there is more demand than

available resources. The negative impact of cloud-resource unavailability and service

interruption for mobile clients is more severe than stationary clients connected to the

wall power and stationary networks. Frequent suspension of energy-constraint mo-

bile clients due to resource scarcity, not only shrinks usefulness of cloud outsourcing

for Mobile users, but also divests privilege of intensive computation anytime, any-

where from mobile users. Hence, several challenging tasks (e.g. resource provision-

ing without service interruption, quick disaster recovery, and high service availabil-

ity) need to be realized since service unavailability and interruption prolong execu-

tion time, increase monitoring overhead, and consume smartphones’ local resources,

especially battery; therefore, emerging solutions must be employed to allocate cloud
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resources on demand.

• Live VMmigration issues: executing resource-intensive mobile application via VM

migration-based application offloading involves encapsulation of application in VM

instance and migrating it to the cloud, which is a challenging task due to additional

overhead of deploying and managing VM on mobile devices.

• Cloud Policies for Mobile Users: cloud service providers apply certain policies to

restrain service quality to a desired level. Also, service provisioning, controlling,

balancing and billing are often matched with the requirements of desktop clients

rather than mobile users. Considering the great differences in wired and wireless

communications, disregarding mobility and resource limitations of mobile devices

in design and maintenance of cloud structures can significantly impact on feasibility

of mobile cloud solutions. Metrics such as bandwidth quota and number of API calls

per day limit users and have impact on users’ experience. Therefore, it is essential to

amend restriction rules and policies to meet mobile users’ requirements.

• Service Execution and Delivery: cloud-mobile users, require an efficient monitor-

ing means to measure and evaluate the quality of service they receive. Considering

the mobile clouds’ dynamism, several network challenges such as inconsistent band-

width and packet delivery ratio, delay, jitter, and network blips hamper service deliv-

ery and they raise ambiguity in SLA. This ambiguity can increase dispute between

cloud vendors and mobile cloud end-users. Therefore, current static SLA can be

fleshed out with more powerful, dynamic representation and monitoring techniques

established in heterogeneous wireless environment for cloud mobile users.
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• Mobile Cloud Billing: user mobility in the rapidly changing environment diverges

the cloud billing system in mobile clouds from billing scheme in cloud comput-

ing. Designing an appropriate billing system for mobile clouds with dynamic hetero-

geneous environment requires considering additional parameters compared to sta-

tionary clouds. Interception latency, jitter, session reestablishment delay, bandwidth

capacity, and quality of security are examples of major parameters in designing a

mobile cloud billing system.

1.4 Motivations

Managing a cloud system is complex due to its unpredictable environment. It is ex-

tremely challenging to obtain accurate information on the state of the system. Moreover,

it contains large resources which are shared and require complex policies to manage them.

The main factors affecting the resource management in cloud are performance, functional-

ity and cost.

Resource management in cloud computing is associated with fluctuating workloads

which pose a major challenge to elasticity of cloud computing. This fluctuation can occur

in planned or unplanned spikes. For the first case, the situation can be predicted in advance

and resource allocation can be done in advance. For the second case, resources have to be

allocated on-demand and reallocated when needed. This concept is called “Auto-scaling” in

cloud [45]. The cloud service requirements indicate that the adopted resource management

policies in cloud computing should be different from the policies applied to the traditional

network systems.

For a cloud provider, predicting the dynamic nature of cloud users’ application de-
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mands is inapplicable. For the cloud users, the task should be completed on time with

minimal cost. An efficient resource allocation scheme requires overcoming lack of limited

resources, resource heterogeneity, locality restrictions, environmental necessities and dy-

namic nature of resource demand. Finding an optimum resource allocation strategy in huge

systems like datacenters is challenging due to dynamic or uncertain resource demand and

supply [1].

Resource allocation in cloud can be classified into two main steps:

The first step is mapping the VMs onto Physical Machines (PMs). Resources in cloud

include the software and hardware required to execute user workloads. Examples of such

resources are memory, CPU, bandwidth, storage and network. Resource allocation is the

process of allocating optimal resources to the tasks requested by the cloud users. In a

cloud environment, resource allocation generally means allocating VMs while satisfying

the configurations specified by the user. The configurations include the operating system,

MIPS, network bandwidth, storage, etc.

The second step is mapping the workloads onto the VMs: There is another situation

where the cloud contains a set of existing Virtual Machines and a built environment with

predefined memory, CPU and bandwidth. The users submit their workloads which may be

time varying and deadline based. These workloads need to be allocated to the optimal re-

sources such that the workloads are processed efficiently. This step of allocation is referred

as mapping the workloads onto the VMs.
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1.4.1 The Key Definitions in Cloud Resource Management

The important definitions in cloud resource management [56], [73] are highlighted as

follows:

• Resource allocation: refers to the process of provisioning available computer re-

sources for the cloud users’ requests. This includes the provisioning of VMs in PMs

and also, user task requests on VMs.

• Virtualization: Virtualization is a technology that abstracts away the details of phys-

ical hardware and provides virtualized resources for high-level applications. A virtu-

alized server is commonly called a VM. Virtualization forms the foundation of cloud

computing, as it provides the capability of pooling computing resources from clusters

of servers and dynamically assigning or reassigning virtual resources to applications

on-demand.

• Quality of Service (QoS): refers to metrics such as task blocking rate, task rejection

rate, delay, response time, operational cost, throughput, maximization of profit and

etc.

• Workload balancing: load balancing of tasks among the resources to improve the

system utilization.

• Energy Management: refers to optimized use of energy in the datacenter.

• Admission control: one of the general policies to be considered in cloud resource

management. It makes decision whether to admit a task/request to be processed in

the cloud.
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1.4.2 The Components of Cloud Resource Management System

The cloud resource management system contains the following basic components:

• SLAManagement: The Service Level Agreement (SLA)Management module makes

an agreement between the user and the service provider for the services requested by

the user. The agreement contains the resource requirements of a user like the CPU,

memory and other architectural configuration of a VM. It also includes QoS require-

ments such as task blocking rate, task rejection rate, delay, response time, task com-

pletion time, operational cost, etc. The user can also negotiate with service provider

regarding the price of services. The SLA Management module communicates with

the admission controller before making an agreement. After successful agreement,

the user requests are sent to the scheduler.

• Admission Controller: The request made by the client through SLA is validated

based on the availability of requested resources and other constraints specified in the

SLA. If the requirements cannot be satisfied, the request is rejected by the service

provider. This avoids provisioning of invalid tasks in the cloud resources.

• Pricing: Pricing is done for dynamic tasks based on their usage of resources. The

time and cost of the consumed resources are calculated in a real time manner.

• Scheduler: The scheduler provisions the requested tasks in the available VMs or

provisions a requested VM in a PM. There will be a queue to determine the priority

of the task. Only one task can be processed on a VM at the same time. The scheduler

should decide about which VM or PM the task has to be provisioned on. For this

purpose, the scheduler should have information regarding the status of the datacenter
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such as available number of CPUs, available amount of memory, bandwidth, etc. The

scheduler may get this information from a load balancer. After completion of tasks

requested by the user, the pricing module is invoked to prepare the bill according to

the resources consumed by the user.This information is sent to the user through the

SLA management module.

• Load Balancer: The load balancer finds the overused and underutilized VMs or

PMs. It balances the workload among the VMs to control the resource utilization.

Also, energy can be saved by utilizing the idle resources. The load balancer interacts

with scheduler and admission controller to balance the workload on VMs.

1.4.3 Resource Management Requirements

Resource management in cloud system is different from the traditional network systems

and the characteristics of the cloud’s services, users and architecture yields some require-

ments in resource management which should be carefully addressed [56], [54], [53].

• Resource Provisioning: Cloud providers should utilize robust resource management

techniques in cloud environment which efficiently deal with the problem of VM pro-

visioning and VM placement. It is crucial to have clear solution for how to match

tasks to available VMs.

• Job Scheduling: Cloud providers should address the problem of job scheduling

which is the order of giving service to the user requests or the order of execution

of the applications.

In all chapters of this thesis, we have used First Come First Served (FCFS) scheduling
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algorithm. However, in Chapter 5, we have also applied a priority-based scheduling

algorithm. Our priority scheme includes two types of tasks with different levels of

priority. In each level of priority, tasks are served on FCFS basis.

• Scalability: Cloud providers should use flexible mechanisms to dynamically scale

up and down resources on demand in terms of VMs. A cloud user requires to access

the resources on-demand. The cloud system may scale up to additional available

resources when the system is experiencing high user demand and it may later scale

down when the user demand decreases. A scalable cloud system also checks the idle

VMs and turns them off if they are idle for more than a specific time.

Increasing the workload on available resources is called scaling in and increasing

the workload by adding resources on demand is called scaling out. A flexible cloud

system adopts these scaling methods to increase the system’s utilization.

• Load balancing: Cloud providers should utilize dynamic load balancing algorithms

which can strongly control the abrupt changes in workload and provide better results

in heterogeneous and dynamic environments.

The applied load balancing algorithms should also prevent inappropriate utilization

of the resources in the cloud system; under-utilization results in waste of resources

and energy and over-utilization leads to slower response times of the applications. To

tackle this problem, migration of VMs is one solution which is called as autonomic

management of resources in cloud.

However, as the distribution attributes become more complex and dynamic, some of

the dynamic load balancing algorithms can become inefficient and cause excessive
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overhead which can result in degrading of system performance [49].

• Pricing: The primary attribute of cloud computing inspired from utility computing

is its feature of pay-per-use model, i.e., services rendered through cloud are charged

based on service consumption. The services may be hardware or software appliances.

This leads to the need of a pricing model whose objective is profit maximization for

the service providers and quality of service for the users. Moreover, there is a trade-

off between these two objectives along with service request fluctuation in cloud.

• Availability: The system becomes unavailable due to reasons like hardware or soft-

ware failures, load fluctuations, long waiting time of jobs, etc. The traditional method

to provide high availability is providing extra idle resources to be used in case of fail-

ures which can result in wasting resources. Dynamic methods are required in cloud

systems to automatically detect any failure or unavailability and shift the tasks to the

available resources in a short time.

• Quality of Service (QoS) constraints: This includes various parameters like task

blocking and rejection rate, delay, cost, response time, throughput, etc. A cloud

system providing services to its customers should fulfill their quality of service re-

quirements.

• Overheads: Workloads to be processed on virtualized cloud platforms may be CPU

intensive or network I/O intensive. The in-depth understanding of these overheads

and network bandwidth as a constraint is necessary for effective resource manage-

ment in the cloud.
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1.4.4 The Requirements of Mobile Cloud Computing

Mobile clouds have some requirements coming from the characteristics of their services

and the involved networks; these requirements play an important role in the development

of models and solutions in this field.

As we have discussed in Section 1.3, the integration of mobile devices, wireless net-

works and clouds raises some major issues. The coexistence of these heterogeneous net-

works and the characteristics of the mobile services, emerges some requirements which

should be met.

Mobile cloud computing requires wireless connectivity with the following features:

• Mobile cloud computing requires an “always-on” connectivity for a low data rate

cloud control signaling channel.

• Mobile cloud computing requires an “on-demand” available wireless connectivity

with a scalable link bandwidth.

• Mobile cloud computing requires a network selection that takes energy-efficiency

and costs into account.

The coexistence requirements in mobile cloud computing are not limited to mobile

device and wireless network connectivity necessities. In order to represent the operational

requirements in mobile clouds, we describe the general offloading scheme in mobile device.

Fig. 1.2 illustrates the overview of the scheme.

The components of an offloading system can be divided in two planes: components on

the client (i.e., the mobile device) and components in the environment (i.e., either a cloud,

a cloudlet, a peer device, or a hybrid environment).
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Figure 1.2: The general offloading scheme [50].

The profiling component in a mobile device is able to assess the way in which the ap-

plication is functioning through various mechanisms, such as static or dynamic analysis.

The information obtained from the profiling component may be used by the partitioning

component, which aims to split the application in components of predefined granularities

and identify which of them can be offloaded. There is also a need to assess the resources

(both local resources in the mobile device and remote resources on the cloud) that are avail-

able for running the application. Thus, the resource management component spans both the

mobile device and the cloud. In the mobile device, the resource monitoring component as-

sesses parameters such as battery level, CPU load, wireless connection quality, etc. In the

cloud, the resource supply component manages the external resources that may be used in

offloading, through mechanisms such as discovery and provisioning. Resource discovery is

useful in opportunistic approaches, such as cyber foraging, in which the mobile device tries

to find available offloading targets in its environment [50]. Resource allocation is a proac-

tive approach, highly utilized in cloud environments, in which resources are dynamically
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assigned to adjust to computing needs. The offload process itself needs to be an iterative

process, due to mobility and the changing nature of the execution conditions. For exam-

ple, the mobile user may switch from Wi-Fi to 3G/4G or may reach a critical battery level,

which affects the offloading process. The offload decision component receives informa-

tion from application monitoring and resource management of a mobile device, to assess

the current offloading needs and conditions, and from previous iterations of the offload

operation, to assess their benefits and defects.

Offload decision making scheme in a mobile device can choose what, when and where

to offload. However, as we will describe in Chapter 5, the scheme of “what, where and

when” offloading in the mobile devices can cause some serious issues for the cloud which

is hosting the offloaded job requests; the coexistence issues between the offloaded jobs of

mobile devices and the cloud servers is the main challenge we address in Chapter 5.

1.5 Objectives

In Section 1.1.1, we have introduced the five essential characteristics of clouds high-

lighted by NIST [46]. However, in Sections 1.2 and 1.3 which the key challenges of clouds

were presented, we have seen that these characteristics are not realized in the current clouds

appropriately. Also, the cloud requirements which are outlined in Section 1.4, emerge the

need of developing dynamic and comprehensive models in this area.

In this thesis, we deal with resource allocation, elasticity and on-demand service provi-

sioning issues in clouds and each chapter deals with some or all of these issues.

The major contribution of this thesis is providing efficient resource allocation solutions

for cloud datacenters. Note that in this work, “resource” is referred to the VMs which are
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instantiated on PMs and the proposed resource allocation solutions provision the requested

tasks on available VMs in PMs.

We have analyzed the behavior of IaaS cloud datacenters through our analytical and/or

simulation models. In all cases, we have studied the system’s performance in different

operating regions including linear, transition to saturation, and saturation regimes. Perfor-

mance metrics are in linear operation region if they are linearly dependent on the input

parameters including mean task arrival rate, mean task service rate and number of active

servers. The system is in saturated operation region when the performance metrics do not

change significantly as the input parameters increase; this is due to the high traffic load

imposed on the cloud system and the fullness of the system.

In the chapters which are mostly focused on stationary clouds (i.e., Chapters 3 and 4),

servers are partitioned into pools of hot (i.e., always on), warm (i.e, switched on without

any instantiated VM), and cold machines (i.e., switched on if there is a demand). The

cold PMs can be switched on according to user request increment or the hot PMs can be

switched off due to energy preservation policy. As an exception, in Section 3.2 the servers

are only partitioned into hot and cold pools as we aim to evaluate the sensitivity of the

energy expenditure on the partitioning threshold. The performance parameters which have

been evaluated in this thesis include task blocking probability, total delay, utilization and

energy consumption. Task blocking probability is the probability of rejecting the task due

to the lack of room in the waiting queues or insufficient resource capacity.

In order to prevent the cloud system getting into the saturation region, we have devel-

oped dynamic algorithms to control the admission of task arrivals. These algorithms are

discussed in Chapter 4 and they are based on controlling parameters such as full rate task

26



Chapter 1: Introduction
acceptance threshold and filtering coefficient or establishing thresholds for task arrival rate

and task blocking probability. Full rate task acceptance threshold is the threshold of ac-

cepting all of the arriving tasks into the cloud system. Filtering coefficient is the coefficient

of task admission in the system and determines the acceptance rate of the arriving tasks.

The characteristics of mobile devices and wireless network makes the development of

mobile cloud computing more complicated than the stationary clouds. Offloading requests

from a mobile device usually require quick response, may be infrequent, and are subject to

variable network connectivity. Also, the volume of workload which is going to be offloaded

is not predefined or known for a mobile device when it starts the offload process. There is a

possibility that the mobile device offloads a large burst of tasks toward the clouds or it may

scarcely offload any application to the cloud; from this definition we can conclude that the

mobile device has a stochastic behavior during the offload process. In this thesis, we ad-

dress the elasticity in mobile cloud computing and the heterogeneity issues between cloud

and mobile devices. We have developed a solution which allocates resources for on-demand

job requests in the mobile clouds. This solution can also be applied to the stationary clouds

which their users’ applications fork new tasks. The solution uses prioritization method to

provide resources for offloaded tasks from the mobile devices. The details of the proposed

solution for mobile requests and the priority schemes are outlined in Chapters 5.

1.6 Main Contributions

This section introduces our main contributions in the cloud systems’ resource allocation

and admission control.
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Table 1.1: The illustration of main contributions in this thesis.

Thesis Structure Contributions Challenges

Chapter 3: Investigating

The Behavior of IaaS

Cloud Datacenters

Examining the the trade-off

between performance and

power consumption in the

proposed model in differ-

ent operating regions. Eval-

uating the effects of pool

threshold and mean look up

time in hot and cold pools

on the system performance

Lack of analysis of the be-

havior of IaaS Clouds in

the linear and transition

regimes

Chapter 4: Task Admission

Control for Cloud Server

Pools

Developing several task ad-

mission control algorithms

based on thresholds for task

arrival rate and task block-

ing probability or based on

two controlling parameters,

full rate task acceptance

threshold and filtering coef-

ficient

Lack of control over mov-

ing to the saturation operat-

ing region

Chapter 5: Prioritization

of Overflow Tasks to Im-

prove Performance of Mo-

bile Cloud

Deploying two flexible re-

source allocation mecha-

nisms which use prioritiza-

tion and developing a vir-

tual machine provisioning

model

Lack of efficient resource

management schemes for

mobile clouds and clouds

which their users’ applica-

tions fork new tasks

• In Chapter 3, we utilize an analytical model which consists of three interactive

stochastic submodels and is solved via successive fixed point iteration. In Section 3.1,

we evaluate the behavior of an IaaS cloud datacenter in which servers are partitioned

into pools of hot, warm and cold machines. We examine the behavior of this pool

management scheme, specifically, the trade-off between performance and power con-

sumption in different operating regions including linear operation, transition to satu-

ration, and saturation. In Section 3.2, we consider a model in which partitioning only

uses hot and cold pools. Also, we investigate the effects of pool threshold and mean
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look up time in hot and cold pools on the performance of an IaaS cloud system in the

different operating regions.

• In Chapter 4, we have added several admission control algorithms of task arrivals to

the resource allocation model introduced in Section 3.1. We have defined two admis-

sion control algorithms of task arrivals in Section 4.1 to keep the cloud system in the

non-saturation operating region. These admission control algorithms are executed in

two steps: first step is adjusting the partitioning coefficient according to the mean

task arrival rate; the second tier is tracking the task blocking probability in the sys-

tem and adjusting the task acceptance rate according to the predefined task blocking

probability thresholds.

In Section 4.2, we have proposed two other task admission algorithms to keep the

system in the stable operating region. We have used two controlling parameters,

full rate task acceptance threshold and filtering coefficient, to deploy task admission

policies. First algorithm is lightweight and appropriate for the cloud systems with

smooth changes of task arrival rate. This algorithm is based on long-term estimation

of average utilization and offered load. Second algorithm is suitable for highly dy-

namic systems and is based on instantaneous utilization. Offered load represents the

traffic load in the system and is computed as the mean task arrival rate into the cloud

system divided by the mean task service rate.

• In Chapter 5, we have defined two flexible resource allocation mechanisms for clouds

where their users’ requests fork new tasks, especially, mobile clouds. These mech-

anisms use prioritization method to provide appropriate service for offloaded tasks

from the mobile devices. The first mechanism gives the full priority to the forked
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tasks over newly arrived tasks. The second mechanism establishes a threshold to

control the priority of the forked tasks over newly arrived tasks. This chapter also

includes a model for virtual machine provisioning.

Table 1.1 outlines the main contributions presented in this thesis.

1.7 Thesis Organization

The rest of this thesis is organized as following:

• Chapter 2 discusses the state-of-the-art research works in the fields of resource allo-

cation and admission control in cloud computing.

• In Chapter 3, we evaluate the performance and power consumption of the proposed

IaaS cloud model in different operating regions and the trade-off between perfor-

mance and power consumption. Also, we have analyzed the effect of provisioning

overhead time on the proposed IaaS cloud model.

• In Chapter 4 we have introduced a model for task admission control based on thresh-

olds of task arrival rate and blocking probability and we have evaluated the perfor-

mance this model. Also, we have presented two dynamic task admission control

algorithms which have been developed based on task filtering policy.

• In Chapter 5, we have developed a solution which allocates resources to cloud job

requests which can fork new tasks, specifically, on-demand job requests in the mobile

clouds. In this model, we have prioritized serving the overflow tasks over the new

incoming tasks. Also, we have modeled virtual machine provisioning in this solution.
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• Chapter 6 concludes the thesis and and discusses some directions for future work.

Table A.2 lists the parameters defined in this work.
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Related Work

2.1 Resource Allocation in Stationary Cloud Computing

Resource provisioning in stationary cloud computing has been extensively studied with

different focuses. In this section, we are going to explore the current research works in this

area.

In [70], energy-efficient virtual resource allocation for the cloud has been formulated

as a multi-objective optimization problem which is solved using an intelligent optimization

algorithm. The work presented in [65] has proposed a congestion control method using

an index for evaluating fair resource allocation in case of congestion. In [63], authors have

proposed a dynamic resource allocation in a cloud environment which considers computing

job requests that are characterized by their arrival and teardown times, as well as a predic-

tive profile of their computing requirements during their activity period. Two algorithms to

adjust resource allocation and task scheduling adaptively based on the actual task execution

time have been proposed in [42].
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In [39], allocating VMs to applications with real-time tasks is formulated as a con-

strained optimization problem. Since an exhaustive search for solutions has exponential

complexity, polynomial-time heuristic model was proposed to solve the problem. More-

over, the cost obtained by this heuristic model was compared with the optimal solution and

an Earliest Deadline First (EDF-greedy) approach.

In [68], an ad hoc parallel data processing framework has been presented to exploit the

dynamic resource allocation for both task scheduling and task execution in IaaS clouds.

Specific tasks of a processing job can be assigned to different types of VMs. The algorithm

presented in [20] formed groups of VM instances according to their runtime deadlines and

packed VMs in the same group on the same servers. Moreover, it shuts down some servers

in time when the service request decreases in order to reduce energy consumption.

The work presented in [25] has proposed a resource allocation model using combi-

natorial auction mechanisms which uses energy parameters. Three algorithms have been

introduced for different aspects of resource allocation.

[48] has applied the queueing theory to evaluate the average response time and explore

the trade-off between performance and cost in the hybrid cloud (collaboration of private

cloud and public cloud). By taking advantage of Lyapunov optimization techniques, an

online decision algorithm is designed for request distribution which achieves the average

response time arbitrarily close to the theoretically optimum and controls the outsourcing

cost based on a given budget.

The work in [72] has presented a multi-resource cloud computing model with resource

trade-offs. In this model, each user is allowed to specify multiple resource requirements

(corresponding to the requirements of different task implementations) and the utility a user
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derives from the resources allocated to him is the maximum number of tasks he can com-

plete with these resources. The work has proposed two different mechanisms, which reflect

two different classical economic approaches for fairly allocating resources: the Nash Bar-

gaining (NB) mechanism and the Lexicographically Max- Min Fair (LMMF) mechanism.

The work presented in [74] has proposed a randomized auction mechanism based on an

application of smoothed analysis and randomized reduction, for dynamic VM provisioning

(pricing tailor-made VMs on the spot) and pricing in geo-distributed cloud data centers.

This auction achieves truthfulness in expectation, polynomial running time in expectation,

and (1 − ǫ)-optimal social welfare in expectation for resource allocation, where ǫ can be

arbitrarily close to 0.

[75] has used online procurement auction mechanisms to address the resource pooling

issue in cloud storage systems. The online nature of the auction is in line with asynchronous

user request arrivals in practice. With characterizing truthfulness conditions under the on-

line procurement auction paradigm, authors have converted the mechanism design problem

into an online algorithm design problem, with a marginal pricing function for resources as

variables set by cloud storage service providers for online procurement auction.

The problem of optimal placement of VMs in clouds was tackled in [3] for minimizing

latency. Complexity was reduced by recurring to a hierarchical split of the placement prob-

lem into two reduced complexity sub-problems of choosing the datacenters, then choosing

the specific racks and servers, and applying a partitioning of the application placement

graph.

A resource allocation problem in [10] was formulated. In this model, later tasks could

reuse resources released by earlier tasks and the problem was solved with an approximation
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algorithm that could yield close to optimum solutions in a polynomial time.

However, to the best of our knowledge, no research has been done on the effects of the

variation of offered load on cloud computing centers’ behavior in linear and transition to

saturation region. This is particularly important for congestion and admission control. We

have examined the effects of the variation of offered load on cloud systems’ performance

in the Chapters 3 to 5.

2.2 Task Admission Control in Cloud Systems

Resource allocation and admission control in clouds have been the topic of much re-

search effort in recent years. Some of the solutions were based on queueing theory: for

example, [66] made use of the queueing information available in the system to make online

control decisions. It used Lyapunov Optimization to design an online admission control,

routing, and resource allocation algorithm for a virtualized datacenter. The algorithm con-

siders a joint utility of the average application throughput and energy costs of the datacenter

in decision making. In [41], authors proposed an autonomous scheme for admission control

in cloud services aiming at preventing overloading, guaranteeing target response time and

dynamically adapting the admitted workload to compensate for changes in system capacity.

They employed an adaptive feedback control scheme alongside with a queue model of the

application. Cloud service, modeled using queuing theory, and controlled through adaptive

proactive controllers that estimate whether services need some of the resources in the near

future or not, was discussed in [2].

A Markov Decision Process (MDP) framework was proposed in [17] to model admis-

sion control in cloud while Approximate Dynamic Programming (ADP) paradigm was
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utilized to devise optimized admission policies. In [24] authors formulated an optimization

problem for dynamic resource sharing of mobile users in Mobile Cloud Computing hotspot

with a cloudlet as a Semi-Markov Decision Process (SMDP) which was, then, transformed

into a Linear Programming (LP) model to obtain an optimal solution. A unified frame-

work of admission control and resource allocation was provided in [15] which modeled

the system’s dynamic behavior with a group of state-space models, scaled between differ-

ent desired operation points and used a set-theoretic control technique to solve admission

control and resource allocation problems.

A technique for determining the effective bandwidth for aggregated flow was developed

in [23] to make admission decisions using network calculus. Authors also examined the re-

lationship between effective bandwidth and equivalent capacity for aggregated flow, while

[36] modeled the admission control problem in a cloud using the General Algebraic Mod-

eling System (GAMS) and solved it under provider-defined settings. Same authors in [37]

presented a technique for admission control of a set of horizontally scalable services and

their optimal placement into a federated Cloud environment. They have considered in their

model that a request may also be partially accommodated in federated external providers,

if needed or if it is more convenient.

A session-based adaptive admission control approach for virtualized application servers

was presented in [4]. Also, a session deferment mechanism was implemented to reduce the

number of rejected sessions. In [64] three key characteristics of cloud services and IaaS

management practices was identified which are burstiness in service workloads, fluctua-

tions in virtual machine resource usage over time and virtual machines being limited to

pre-defined sizes only. Based on these characteristics, paper proposed scheduling and ad-
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mission control algorithms that incorporate resource overbooking to improve utilization.

A combination of modeling, monitoring, and prediction techniques was used to avoid ex-

ceeding the total infrastructure capacity.

Our task admission control solutions presented in Chapter 4 are unified with our re-

source allocation solution discussed in Section 3.1. The proposed task admission con-

trol algorithms are based on establishing thresholds for task arrival rate and task blocking

probability in one solution, and based on full rate task acceptance threshold and filtering

coefficient in another solution.

2.3 Resource Allocation in Mobile Cloud Computing

Several research studies have proposed solutions to address the issues of computa-

tional power and battery lifetime of mobile devices by offloading computing tasks to cloud.

CloneCloud [12] has been an approach for extending the concept of VM-based clone cloud

offloading from LAN surrogates to cloud servers. OS supporting VM migration was in-

troduced in CloneCloud. MAUI [14] has provided method level code offloading based on

the .NET framework. MAUI aimed to optimize energy consumption of a mobile device by

estimation and evaluating the trade-off between the energy consumed by local processing

versus the transmission of code and data for cloud offloading. Decision process in MAUI

is based on information and complex characteristics of the mobile environment. A frame-

work for moving smartphone application processing to the cloud centers was introduced in

ThinkAir [38]. This framework is based on the concept of smartphone virtualization in the

cloud and addresses lack of scalability by creating VM of a complete smartphone system

on the cloud. ThinkAir provides on-demand resource allocation by dynamically manag-
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ing VMs in the cloud via using an execution controller. The execution controller handles

decision-making and communication with the cloud server. It considers execution time, en-

ergy, and cost to make decision in order to achieve optimum performance. With regard to

the network profile parameters, device profile parameters, and program profile parameters

of the smartphone, ThinkAir dynamically allocates the available cloud resources to the pro-

grams. CMcloud [9] is a mobile-to-cloud offloading platform which attempts to minimize

both the server costs and the user service fee by offloading as many mobile applications to

a single server as possible, while trying to satisfy the target performance of all applications.

To achieve such goals, CMcloud exploited architecture performance modeling and server

migration techniques. In POMAC framework (Properly Offloading Mobile Applications to

Clouds) [22], other than offloading decision making technique, an offloading mechanism

was designed through method interception at Dalvik virtual machine level to allow mobile

applications to offload their computation intensive methods.

In most of the works related to resource allocation in mobile cloud computing, there

are some trade-offs among power consumption, QoS parameters and costs. These objec-

tives are usually dependent on cloud resources, applications profiles and network param-

eters. COSMOS (Computation Offloading as a Service for Mobile Devices) system [57]

has provided computation offloading as a service to mobile devices. The COSMOS system

receives mobile user computation offload demands and allocates them to a shared set of

compute resources that it dynamically acquires (through leases) from a commercial cloud

service provider.

The partitioning of elastic mobile datastream applications was formulated in [30] as an

optimization problem by minimizing the cost function which is combination of communi-
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cation energy and computation energy.

In [19], a model has been built that considers some characteristics of the workflow’s

software and the network’s hardware devices. With this model, the objective functions have

been constructed which guide the offloading decisions. A heuristic algorithm was presented

in this model that produced offloading plans according to these objective functions and their

variations.

A technique of coalesced offloading was proposed in [69], which exploited the potential

for multiple applications to coordinate their offloading requests with the objective of saving

additional energy on mobile devices. Authors believe that by sending these requests in

bundles, the period of time that the network interface stays in the high-power state can

be reduced. Two online algorithms were presented, collectively referred to as Ready, Set,

Go (RSG), that make near-optimal decisions on how offloading requests from multiple

applications are to be best coalesced.

In [51], some practices for managing the resources required for the mobile cloud model

has been formulated, namely energy, bandwidth and cloud computing resources. These

practices were realised with the authors’ mobile cloud middleware project, featuring the

Cloud Personal Assistant (CPA). In order to realise resource allocation in their work, they

have estimated a cost model for each VM running on a server in the cloud and they have

calculated the summation of the costs required to run the physical resources required on

the server.

In another attempt to connect mobile devices to cloud servers in [29], given an appli-

cation described by a task dependency graph, an optimization problem was formulated to

minimize the latency while considering prescribed resource utilization constraints. Authors
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have proposed Hermes, a fully polynomial time approximation scheme (FPTAS) algorithm

to solve this problem. Hermes provides a solution with latency no more than (1 + ǫ) times

of the minimum while incurring complexity that is polynomial in 1/ǫ and the problem size.

The proposed model in [67] is based on the wireless network cloud (WNC) concept

and a multi-objective optimization approach using an event-based finite state model and

dynamic constraint programming method has been used to determine the appropriate trans-

mission power, process power, cloud offloading and optimum QoS profiles. However, es-

timation and approximation techniques used in this work approximate the parameters lin-

early and the main objective of this paper concerns performance metrics of mobile devices

and users and the challenges of cloud computing centers have not been covered.

In [58], other than presenting a study on virtual machine deployment, authors have

evaluated the impact of VM deployment and management for application processing by

analyzing the parameters such as VM deployment and execution time of applications. The

work presented in [59], has analyzed the impact of performance metrics on the execution

of applications (cloudlets). Performance metrics associated with the execution of cloudlets

in distributed mobile cloud computing environment are presented as cloudlet offloading,

cloudlet allocation to VM, cloudlet scheduling in VM, cloudlet migration in datacenter and

cloudlet reintegration.

The work in [31] has presented a task scheduling and resource allocation scheme which

used the continually updated data from the loosely federated General Packet Radio Service

(GRPS) to automatically select appropriate mobile nodes to participate informing clouds,

and to adjust both task scheduling and resource allocation according to the changing con-

ditions due to the dynamicity of resources and tasks in an existing cloud.

40



Chapter 2: Related Work
Unlike most of existing works that either rely on a linear programming formulation

or on intuitively derived heuristics that offer no theoretical performance guarantees, our

solution to the resource allocation problem in mobile clouds presented in Chapter 5 does

not simplify the computational complexity of offloading problem to make it solvable. It

should be mentioned that our model is not dealing with the offloading decision process in

the mobile devices and we assume that offloading decision has been made and our scheme

allocates cloud resources to the offloaded applications when they arrive in the cloud data

centers.

2.4 The Markov Models with Multiple Priority Classes

TheMarkov models with multiple priority classes have been used in different fields. For

example, a Markov chain flow decomposition for a two class priority queue in presented in

[8].

Also, threshold-based priorities have been utilized in the development of Markov mod-

els. For instance, in [43], a multiserver queueing system with two priority classes have been

employed which has a threshold defined according to number of servers in the system.

In another approach, a threshold based Markov chain system has been deployed in [62]

to model elastic and inelastic traffic flows in TCP-friendly admission control; the threshold

was defined according to some inelastic flow parameters.

In Chapter 5, we have utilized a Markovian multiserver queueing system with two

priority levels to model the two types of mobile cloud tasks as two classes of services.
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2.5 Chapter Summary

In this chapter, we have surveyed the current research works in the area of resource

allocation in stationary and mobile cloud computing. Also, we have outlined the literature

related to task admission control in cloud. Finally, we have introduced some Markov Mod-

els with Multiple Priority Classes which remotely inspired us in the development of our

resource allocation model in mobile clouds presented in Chapter 5.
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Investigating The Behavior of IaaS

Cloud Datacenters

To save energy, physical machines (servers) in cloud datacenters are partitioned in dif-

ferent pools, depending on whether they are kept on at all time and/or whether they have

virtual machines instantiated. Partitioning (pooling) of servers not only affects the power

consumption of the datacenter but also the performance and responsiveness to user re-

quests. In Section 3.1, we examine the behavior of pool management scheme in different

operating regions which correspond to linear operation, transition to saturation, and satura-

tion, in particular the trade-off between performance and power consumption. Our results

in Section 3.1.2 show that the definition of offered load presented in [13] does not offer

complete characterization of data center operation; instead, the impact of task arrival rate

and task service time must be considered separately. In [13], offered load is defined as the

traffic load in the system and is computed as the mean task arrival rate into the cloud system

divided by the mean task service rate.
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In Section 3.2, we analyze an efficient pool management model for cloud systems that

partitions the PMs into a hot and cold pool to improve energy efficiency. Servers are moved

from one pool to the other as needed to fulfill the incoming task requests, which are provi-

sioned on virtual machines running on the servers. The model features two levels of task

admission control: one at the global input, the other at each server separately. We examine

the behavior of the cloud system in the regions of linear operation, transition to saturation

and saturation, from the viewpoint of task rejection rates and energy consumption. Fur-

thermore, we evaluate the sensitivity of task blocking probability and energy consumption

to the pool partitioning threshold and the value of mean look up time in hot and cold pools,

respectively, in different test scenarios.

This chapter is organized as follows: Section 3.1 provides the proposed model of re-

source allocation in a pooled IaaS cloud and presents the analysis of trade-off between per-

formance and power consumption. In Section 3.2, we evaluate the effects of pool threshold

and mean look up time in hot and cold pools on the system performance. Section 3.3

outlines the summary of this chapter.

3.1 Characterizing Energy Consumption of IaaS Clouds

in Non-saturated Operation

Energy efficiency is one of the top priorities in a cloud datacenter [71], which is why

ways to reduce energy consumption without sacrificing performance are among the most

important research topics. If the cloud datacenter is configured so that user tasks are pro-

visioned on VMs executing on servers or PMs, energy efficiency may be improved by
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dividing the PMs in three groups or pools [33]. In this approach, PMs in the cold pool are
normally kept switched off, while PMs in the warm and hot pool are normally switched on,
the latter having VMs already instantiated and ready to provision user tasks. When a user

request that asks for one or more VMs arrives, the pools are checked in sequence from hot

through warm to cold; if necessary, PMs are switched on and/or VMs instantiated. Upon

termination of user tasks, hot PMs with idle VMs are moved back to the warm pool, while

excess warm PMs are switched off and, thus, moved back to the cold pool.

In this manner, power consumption is made dependent on the datacenter load, which

leads to improved energy efficiency and ‘greener’ computing [5]. At the same time, the

manner in which the PMs are partitioned into hot, warm, and cold pools will affect the

performance of the datacenter with respect to request response time and probability that a

request will be blocked due to insufficient resource availability.

Earlier performance studies of pool management schemes [33] have focused on IaaS

clouds operating in saturation regime where all the PMs are essentially busy (almost) all

the time. This region is not really usable for cloud operators since blocking of user requests

reaches values which are unacceptably high. Instead, in this chapter we focus on linear

and transition regimes which are more important in practice. We analyze the boundaries

between the operating regimes with respect to overall system load, which is a function

of the distribution of task arrival rate, task service time, and look-up overhead needed to

decide whether the task can be accommodated or not. We evaluate the energy efficiency of

this model in different scenarios.

Interestingly enough, our results indicate that characterizing the load with a single

value, which is customary in the performance evaluation of communication networks [35],
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Figure 3.1: The steps of servicing and corresponding delays (adapted from [33]).

is not quite appropriate for cloud datacenters. Namely, searching for the appropriate PM

(or PMs) on which tasks from the current user request will be provisioned, necessitates a

certain overhead which depends on the characteristics of the request but also on the current

load of the system. Therefore, it is of interest to evaluate the performance of the scheme

under both varying user request arrival rate and user task service time.

3.1.1 Analytical Model

We assume that the IaaS cloud center has a common input queue, while the three PM

pools have separate queues of their own. A single PM can host a number of VMs simul-

taneously; this number is limited in order to ensure satisfactory performance level of the

VMs. Without loss of generality, we assume that all PMs are homogeneous as are the

VMs. Furthermore, we assume that a single pre-built VM image can satisfy all requests

[33]; however, the model can easily be extended to cover PMs and/or VMs with different

characteristics. We assume that a PM can simultaneously run up to 10 VMs. VM Provi-

sioning on hot PMs has the minimum delay compared to warm and cold PMs. Warm PMs
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need more time to be ready for provisioning and cold PMs require additional time to be

started up before a VM instantiation. In this chapter, system has single task arrivals.

According to Fig. 3.1, when a task arrives, it will get accepted or rejected due to lack of

room in the global queue. A task should wait until the Resource Assigning Module (RAM)

processes it. RAM either assigns a PM in hot, warm or cold pool (indicated by h, w and c

respectively) to the task or rejects it due to insufficient capacity. If one of the PMs accepts

the task, it would be queued in that PM’s queue. At last, the VM Provisioning Module

(VMM) starts the instantiation and deployment of VMs for that task and the actual service

starts.

RAM processes the tasks in the global queue on a First-In, First-Out (FIFO) basis;

RAM first tries to provision the task on a PM machine in the hot pool. If the process is not

successful then RAM tries the warm pool and if there is no PM available in warm pool,

RAM tries the cold pool. If RAM cannot assign a PM to a task, it gets rejected. When a

running task is done, the assigned capacity will be released. If there is no running task on a

PM for certain time, the Pool Management Module (PMM) moves the PM to warm or cold

pool according to the pool policy and traffic condition. PMM is responsible for manage-

ment of pools during the operation of the cloud center. PMM moves the PMs among the

pools depending on the load, according to two criteria: first, achieving minimal response

time and blocking probability and second, in order to have less energy consumption, idle

hot PMs should power down to either warm or cold mode after certain idle time.

To model the performance of an IaaS cloud center, we have constructed a probabilistic

model that consists of three different submodels with one, three, and one instance each,

respectively. Our model closely follows the one presented in [33], but our emphasis is on
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Figure 3.2: CTMC of the Resource Allocation module (adapted from [33]).

energy-related issues in the context of a non-saturated IaaS cloud center.

Resource Allocation

Task requests arrive according to a Poisson process with arrival rate λt. An incoming

request will be processed by the RAM, shown with the two-dimensional Continuous Time

Markov chain (CTMC) in Fig. 3.2. RAM checks the hot, warm, and cold pools (in that

order) to find whether there is a sufficient number of PMs and idle VMs to accommodate

the request; 1/αh, 1/αw and 1/αc are the mean look up delays in the respective pools. A

hot PM can immediately begin service of a request, provided it has VMs to spare. If there

is no hot PM with the required capacity, a warm PMmay be used, but it must instantiate the

required number of VMs before provisioning the request. If there is no warm PM either, a

cold PM will be used, but must be switched on before instantiating the VMs. Obviously,

the delays for the three types of PMs will differ, with hot PMs providing the shortest one.
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Once an idle VM is found, RAM will allocate the request. A request may be rejected if

there is no space in the input queue, or a suitable PM can’t be found. The probability of the

former event is Pbq = π(Lq, h)+π(Lq, w)+π(Lq, c), where π(i, j) denotes the probability

of pool j having i requests while Lq is the capacity of the input queue; the probability of the

latter is Pbr =

Lq
∑

i=0

αc(1− Pc)

αc + λt

π(i, c). Total blocking probability is, then, Pblk = Pbq + Pbr.

If we define the probability generating function (PGF) for the number of tasks in the

queue [61] as

V (z) = π(0, 0) +

Lq
∑

i=0

(π(i, h) + π(i, w) + π(i, c))zi, (3.1)

mean waiting time can be calculated using Little’s law [35] as

wt =
v

λt(1− Pbq)
, (3.2)

and mean look up time among pools can be obtained [33] as

lut =
1/αh + (1− Ph)((1/αw) + (1− Pw)(1/αc))

1− Pbq

. (3.3)

Virtual Machine Provisioning

The request then waits in the PM input queue until a VM is ready to provision it.

Provisioning is described with a VMM modeled as another CTMC, shown schematically

in Fig. 3.3. The complete analytical model employs three such modules with identical

structure corresponding to hot, warm, and cold pools, respectively.

Let φh as the rate at which a VM can be provided on a PM in the hot pool, and let µ be
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Figure 3.3: CTMC of the Virtual Machine Provisioning module of the hot pool (adapted

from [33]).

the service rate of each task. The arrival rates can be calculated as

λh =
λt(1− Pbq)

Nh

λw =
λt(1− Pbq)(1− Ph)

Nw

λc =
λt(1− Pbq)(1− Ph)(1− Pw)

Nc

(3.4)

for hot, warm, and cold pool, respectively, where Nh, Nw, and Nc denote the number of

PMs in the respective pools. Ph = 1 − (P h
na)

Nh denotes the probability of a PM in the

hot pool accepting the task; the complementary probability may be calculated as P h
na =

∑

x∈η π
h
x . In the last expression, η = {(i, j, k)|i = Lq} denotes a subset of VMM states in

which a task may be blocked.

By the same token, success probability for provisioning a task in warm and cold pool
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Figure 3.4: CTMC of the Pool Management module (adapted from [33]).

is Pw = 1− (Pw
na)

Nw and Pc = 1− (P c
na)

Nc , respectively.

Pool Management

Provisioning of requests may require that PMs are moved between pools under the

control of the PMM, modeled with a CTMC shown in Fig. 3.4. The transition from a warm

to hot PM occurs at a rate of FRw = (λtPbq(1 − Ph) + (1/SUw))
−1, where 1/SUw is the

mean time required for a warm PM to switch to hot state. Similarly, a cold PM can be

moved to the hot pool at a rate of FRc = (λtPbq(1 − Ph) + (1/SUc))
−1, where 1/SUc is

the mean time needed for a cold PM to switch to hot state.

Conversely, if, upon a task ends execution and the number of idle hot PMs exceeds

a predefined threshold, an idle hot PM can be moved to the warm pool to reduce energy

consumption, or even to the cold pool if the number of PMs in the warm pool is above the

predefined threshold, at a rate RPi.

51



Chapter 3: Investigating The Behavior of IaaS Cloud Datacenters
Integrated Model

The overall model, consists of three interactive stochastic submodels; this reduces com-

plexity of the model itself but also the computational complexity of solving the model. It is,

then, solved via successive fixed point iteration [44], shown as pseudocode in Algorithm 1.

Algorithm ends when the difference between the values of probabilities in successive iter-

ations drops below a predefined threshold (∆ = 10−6).

The interactions among sub-models are presented in Fig. 3.5. VM Provisioning Sub-

Model (VMSM) computes the mean success probabilities (Ph, Pw and Pc) that at least

one PM in a pool (hot, warm and cold, respectively) can be assigned to a task. Success

probabilities are used as input parameters to the Resource Allocation Sub-Model (RASM).

The hot PM Sub-Model (VMSM hot) computes Ph which is the input parameter for both

warm and cold sub-models. The warm PM submodel (VMSM warm) computes Pw which

is the input parameter for the cold sub-model (VMSM cold). Moreover, the hot PM model

provides Ph and the probability by which a hot PM becomes idle (Pi) for Pool Manage-

ment Sub-Model (PMSM). On the other hand, PMSM computes Nh, Nw and Nc as input

for hot, warm and cold PM sub-models respectively. The RASM computes the blocking

probability, Pbq, which is the input parameter to VM provisioning sub-models and PMSM.

Task waiting time is obtained as the sum of four components: waiting time in the global

input queue, until the processing by RAM; RAM processing time; waiting time in the

PM queue; lastly, the time for VM instantiation and deployment. Total response time is

obtained by adding the waiting time to the duration of the actual service time.

52



Chapter 3: Investigating The Behavior of IaaS Cloud Datacenters

���������

�����	
�

������
�

��������

�	

�	

�	

�	
��

��

��

��

�	

��

���

���

��� ��

Figure 3.5: Interaction diagram among sub-models (adapted from [33]).

Algorithm 1 Successive Substitution Method

Input: Initial success probabilities in pools: Ph0, Pw0, Pc0;

Input: Initial idle probability of a hot PM: Pi0;

Output: Blocking probability in common input queue: Pbq;

count←− 0; maximum←− 30; ∆ ←− 1;
Pbq0 ←− RAM (Ph0, Pw0;Pc0);
[Nh, Nw, Nc]←− PMM (Ph0, Pi0)
while ∆ ≥ 10−6 do

count←− count +1;

[Ph, Pi]←− VMM hot (Pbq0, Nh);
Pw ←− VMM warm (Pbq0, Ph, Nw);
Pc ←− VMM cold (Pbq0, Ph, Pw, Nc);
[Nh, Nw, Nc]←− PMM (Ph, Pi)
Pbq1 ←− RAM (Ph, Pw;Pc);
∆ ←− |(Pbq1 − Pbq0)|;
Pbq0 ←− Pbq1;

if count = maximum then

break;

end if

end while

if count = maximum then

return -1;

else

return Pbq0;

end if
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3.1.2 Performance

The analytical model has been solved using Maple 15 from Maplesoft Inc. [26].

To evaluate the performance of the pooled cloud system and to investigate the performance-

energy trade-off in more detail, we have solved the model for two scenarios. First, we kept

the task service time constant and varied task arrival rate. Second, we kept the task arrival

rate constant but varied task service time. In both cases, we have kept the total number of

PMs constant at N = 100 while varying the initial proportion of PMs allocated to different

pools: γN PMs in the hot and warm pools each, and (1 − 2γ)N PMs in the cold pool. In

addition, the number of PMs in the hot pool was kept at or above γN , while the other two

pools were allowed to change. Transition to the warm pool was initiated when the number

of idle hot PMs exceeded 2, and the same threshold was used for the transition from warm

to cold pool.

Mean provisioning time for a task consists of the following components: mean waiting

time in the input queue, mean time for pool look-up (which was shown to have a Coxian

distribution [33]), mean waiting time in the queue of the allocated PM, and mean waiting

time for VM provisioning. To obtain the total service time, we need to add the actual time

of request execution.

In the performance evaluation process, we have assumed that the service time changes

in the range of 20 to 120 minutes based on the cloud users’ experience. The task arrival

rate in a cloud datacenter can change during the different times of day or night. In order

to capture the behavior of the system during different times, in the first scenario we have

varied task arrival rate in the range of 100 to 1200 tasks per hour.
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Figure 3.6: Task blocking probability and total delay.

Task Blocking and Total Task Delay

In Fig. 3.6, we analyze the effect of service time and task arrival rate on blocking

probability and total delay for a task. To facilitate comparison under different combination

of fixed and variable independent variables, we have plotted the diagrams as functions of γ

and offered load calculated as ρ =
λt

10Nµtot

, where the maximum number of VMs running

on a single PM is assumed to be 10. For clarity, we have divided the range of offered loads

for the scenario with constant service time into two sub-ranges; the corresponding results

are shown in the diagrams in the leftmost and middle columns of Fig. 3.6.
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Figure 3.7: Pertaining to steady-state partitioning of PMs into pools. Mean service time

fixed at 40 minutes, task arrival rate variable from 500 to 1200 per hour).

As expected, both request blocking and total delay increase with load. Below the load

of ρ ≈ 0.3 to 0.4, Figs. 3.6a and 3.6d, the cloud datacenter operates in linear regime with

low blocking and reasonably small delay.

Beyond this load, however, blocking rapidly increases as does the delay. Figs. 3.6b

and 3.6e show the increase of delay which appears to be gradual but only because a large

number of task requests (over 10%) is rejected.

On the other hand, increasing the mean service time whilst keeping the task arrival rate

constant, shown in Figs. 3.6c and 3.6f, results in an increase of blocking and delay which

are much smoother. Note, however, that the datacenter operates in linear regime, well

beyond the saturation limit, even though the value of ρ does increase above the threshold

identified in the other four diagrams.

We note that for the same offered load, the cloud center appears to be more sensitive to

the task arrival rate than to task service time, which is due to the overhead imposed by the

provisioning process which increases with the number of tasks but is independent of the

task service time.
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Pool Management

The observations above can be corroborated by calculating the steady-state number

of PMs in different pools. The number of PMs in both hot and warm pools, shown in

Figs. 3.7a and 3.7c, exhibit a steady increase which is approximately linear function of the

offered load, in one dimension, and similarly a linear function of the parameter γ. (We

note that the distinction between variable arrival rate and variable service time does not

apply here, since the overhead is incurred before the actual provisioning of tasks.) As

can be seen, higher load leads to a shift in the partitioning of PMs, from the initial ratio

defined by γ, towards an ever increasing number of PMs in the hot and warm pools, and

the corresponding depletion of the cold pool.

However, the increase is far from being stationary, as witnessed by the diagram of

standard deviation of the number of PMs in the hot pool in Fig. 3.7b. As the offered load

increases, the standard deviation exhibits a rapid increase, which means that the fluctuation

of the number of PMs increases, as many PMs are being moved to and from the hot (and

warm) pool in order to cater to the variable load.

At the same time, at low values of offered load, the mean number of PMs in the warm

pool, Fig. 3.7c, is noticeably lower than that in the hot pool, Fig. 3.7a. Only when the load

increases towards a rather high value of ρ = 0.8 do the two numbers begin to converge,

meaning that most PMs are either hot or warm, and only a handful ever remains in the cold

pool.
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Figure 3.8: Energy consumption as function of offered load and partitioning of PMs into

pools.

3.1.3 Energy Consumption

The fluctuation of the number of PMs in the three pools is reflected on energy con-

sumption of the cloud center. Let the power consumption of a hot PM be δp, while that of

a warm PM beWcδp (the power consumption of a PM in the cold pool is, obviously, zero).

If we denote the mean time spent in each state of the CTMC for the PMM, Fig. 3.4, with

Tst, the total energy consumption is

Ec =
∑

s∈ζ

(Nhs
+WcNws

)δpTst (3.5)

where ζ is the set of PMM states and Nhs
and Nws

denote the number of PMs in hot and

warm pool, respectively, in state s of the PMM.

Our first experiment follows closely the scenarios outlined in the previous Section, with

the ratio of power consumption of a warm PM vs. that of a hot one fixed atWc = 0.5. (For

simplicity, we express all energy consumption values relative to the energy consumption of
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a hot PM with all 10 VMs instantiated.) The results are shown in Fig. 3.8; as before, we

have split the range of observed values for the offered load in order to highlight the differ-

ence between linear and saturation regimes. As can be seen, the shape of surfaces obtained

under variable task request arrival rate, Figs. 3.8a and 3.8b, clearly indicate the boundaries

of the linear regime in which the energy consumption is low and not very dependent on the

offered load. Of course, if the initial partitioning of PMs gives preference to PMs in the hot

and warm pools, higher energy consumption will result.

However, as soon as the task arrival rate exceeds the value of ρ ≈ 0.3, energy consump-

tion begins to rise at a considerable rate, due to higher proportion of PMs being in the hot

pool, but also due to longer time spent in switching to and from hot state. (We assume that

energy expenditure of a PM during switching is equal to that of a fully loaded hot PM.)

Energy consumption appears to flatten at high loads above ρ ≈ 0.6, but only because most

of the PMs are in hot and warm pools most of the time, switching only occasionally to the

cold state.

When the task arrival rate is constant, energy consumption exhibits a nearly linear de-

pendency on the mean task service time and the partitioning coefficient γ, as can be seen

from Fig. 3.8c. This behavior is similar to that observed for blocking probability and total

task delay in Fig. 3.6.

Our final experiment involved energy expenditure under constant task request arrival

rate and mean service time (i.e., under constant offered load), but with variable power

consumption ratio Wc of a PM in the warm state vs. that of a PM in the hot state. The

resulting diagrams are shown in Fig. 3.9, where energy expenditure (relative to the energy

consumption of a single fully loaded PM) is nearly linearly dependent on both γ and Wc.
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Figure 3.9: Energy consumption as function of the ratio of warm-vs.-hot PM power con-

sumption and partitioning of PMs into pools. Mean service time fixed at 40 minutes.

However, it is much more sensitive to the former than to the latter, as the consequence of

the fact that the partitioning parameter imposes a lower bound on the number of PMs in

the hot pool. Thus the energy expenditure will not drop as much when reducing the load,

as in Fig. 3.9a, since the minimum number of PMs in the hot pool is still limited by the

value of the partitioning parameter γ. This hints that partitioning into three pools may be

inefficient, and that better results with respect to energy consumption could be obtained

by simply having two pools, a hot and cold one, despite performance degradation possibly

incurred in this setup. This remains a promising direction for further research.

3.2 Analyzing The Impact of Provisioning Overhead Time

in Cloud Computing Centers

In an IaaS cloud, an incoming task service request undergoes several processing steps

before being actually provisioned on a VM executing on a designated PM [33]. These

processing steps generally pertain to the search for a suitable PM that will provision the
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task; moving the task to the selected PM; and, finally, waiting for the instantiation of the

VM on which the task will execute. Admission control through task rejection or blocking

is thus performed at two steps along the way: at the global input queue and at the input

queue of the selected PM.

To reduce energy expenditure incurred by PMs running idle, PMs are often partitioned

into pools. For example, the model presented in [32] deals with three pools, hot pool with

PMs that are always on and VMs already instantiated, warm pool with PMs that are on

but without any instantiated VMs, and cold pool that consists of PMs switched off. In this

setup, PMs are moved from cold to warm to hot state in order to fulfill the incoming task

requests, and moved back to warm or cold pool when there is idle capacity in order to

reduce energy consumption. The performance of the cloud center is then evaluated using

the tools of probabilistic analysis and queueing theory. However, the emphasis was on the

performance in saturation region, which is not the preferred operational regime for cloud

providers as the achievable performance levels, esp. task blocking rate, is not very good;

moreover, the analysis in that paper does not consider energy consumption in detail.

An extension of that analysis is presented in Section 3.1 where the focus was on linear

and transitional regime, rather than on saturation regime. An interesting finding was that

the aggregated metric of offered load, similar to the metric used to characterize networking

systems, is insufficient to characterize the behavior of the cloud system. This is caused

by the overhead incurred in processing the incoming task requests and admission control

activities, which are dependent on the task arrival rate but not on the task service time.

In this section, we consider a model in which partitioning uses two pools: the hot pool

in which PMs are running with the maximum number of VMs instantiated and ready to
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provision user requests, and the cold pool in which PMs are turned off. We assume that the

number of PMs in the hot pool does not fall below a predefined threshold, which serves to

maintain the performance at an acceptable level. Our focus is again on the linear and tran-

sitional operational regimes which are much more interesting to cloud service providers,

rather than the saturation regime in which task blocking reaches values that are unaccept-

ably high in practice. We evaluate the performance of the cloud system expressed as task

blocking rate and energy expenditure. Furthermore, we evaluate the sensitivity of the en-

ergy expenditure on the partitioning threshold, as well as on the mean look up time in the

hot and cold pools.

3.2.1 The Model of The Cloud System

An IaaS cloud center consists of a number of PMs (servers) running a number of VMs

each that fulfill task requests submitted by users. All task requests are provisioned using a

customized disk image [33]. For simplicity, we assume that the PMs are homogeneous as

are the VMs, and that pre-built images satisfy all service requests. Also, we assume that

each task request can be provisioned on a single VM.

We implement functional sub-models and their interactions to obtain an overall solu-

tion. First, we implement separate sub-models for different provisioning steps of a cloud

service. In the next step, we obtain the overall solution by iteration over individual sub-

model solutions and deploying interaction among these sub-models (Fig. 3.10). Our typical

cloud center has a number of PMs which will allocate resources to perform tasks in the or-

der of their arrival.
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Figure 3.10: Interaction diagram among sub-models.

Resource Allocation

An incoming task request is first received in the global input queue, where it waits

processing by a resource allocation module. This module will search the hot and cold pools

for the required resources, i.e., PMs with idle capacity. If such a PM is found, the module

will allocate the task to it, possibly instructing the PM to be switched on in the process;

otherwise, the task may be rejected in what is effectively the first level of admission control.

The operation of the resource allocation module can be described with a CTMC shown in

Fig. 3.11. Task request arrivals are modeled as a Poisson process with rate λt. Task requests

are lined up in the global finite queue with a maximum capacity of Lq to be processed. Each

state of the CTMC in Fig. 3.11 is labeled as (i, j), where i denotes the number of tasks in

the queue and j presents the pool on which the current task is under provisioning. Index

h and c indicate hot and cold pool respectively. Ph and Pc present success probabilities of

finding a PM that can accept the current task in the hot and cold pool respectively. 1/αh and

1/αc are mean look up times for finding an adequate PM in hot and cold pool respectively.

The resource allocation module also calculates the task blocking probability, Pbq, which is

the input parameter for the modules described below.
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Figure 3.11: Resource allocation.

Virtual Machine Provisioning

If the task is allocated to one of the PMs, it is transferred to the input queue of the PM,

which effectively implements the second level of task admission control. Once the task

reaches the head of the said queue, the required VM is instantiated and the task is actually

provisioned, i.e., the actual service starts. The operation of virtual machine provisioning

module managing the hot PM pool can be described with a CTMC shown in Fig. 3.12.

Each state of Markov chain is labeled by (i, j) in which i denotes the number of tasks in

PM’s queue and j is the number of VM that are already deployed on the PM. λh is the

arrival rate to each PM in the hot pool and is in proportion to λt) and Nh. ϕh is the rate

at which a VM can be deployed on a PM in hot pool and µ is the service rate of each

VM.The total service rate for each PM is the product of number of running VMs by µ.

The maximum number of VMs on a PM is equal to m and in this model, it is set to 10.

The virtual machine provisioning module calculates the success probabilities (Ph and Pc)

that at least one PM in a given pool (hot and cold, respectively) can be assigned to a task.

Success probabilities are, then, used as input parameters for the resource allocation module

and the other virtual machine provisioning module, as well as for the pool management

module described below. In addition, the hot PM model provides the probability by which
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Figure 3.12: Virtual machine provisioning in the hot pool.

a hot PM becomes idle, Pi. An analogous CTMC, but with different transition rates, can

be drawn for the corresponding module managing the cold pool.

Also, pool management module computes Nh and Nc as input for hot and cold PM

sub-models respectively.

Pool Management

As noted above, a cold PM is switched on and populated with the required number

of VMs when there is no capacity in the hot pool to satisfy user requests. Conversely, if

a hot PM is idle for a predefined time, it is switched off. However, the number of PMs

is never below a predefined threshold in order to maintain acceptable performance. The

management of PM pools is done by a separate module, the operation of which can be

described by a two dimensional CTMC shown in Fig. 3.13. The system starts from the

state (i, j) which indicates that i and j PMs are in the hot and cold pool, respectively. If

next search in the hot pool is successful (with probability of Ph), system will remain in

the starting state, otherwise one of the cold PMs will be moved into the hot pool. This
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Figure 3.13: Pool management.

transition occurs with the rate of FRc. With higher demand of PMs, cold PMs can become

hot PMs gradually until all the PMs are hot. Also, due to the low demand of resources, idle

hot PMs will be turned off gradually, but the number of hot PMs cannot get less than γN .

The idle hot PM is moved to the cold pool by rate of RPi.

Solving the Integrated Model

Our overall model thus consists of three inter-connected stochastic models which com-

pute the cloud performance parameters such as task blocking probability and energy con-

sumption. However, there is a cyclic inter-dependency among the modules, which can be

resolved using fixed point iterative method [44] through a modified version of successive

substitution approach presented in Algorithm 2.

3.2.2 Performance Evaluation

The proposed model has been solved using Maple 15 [26].

In our experiments, the total number of available PMs is maintained at a constant value

of N = 100. The threshold coefficient γ determines the initial partitioning of the PMs
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Algorithm 2 Iterative Algorithm for Substitution

Input: Starting success probabilities in pools: Ph0, Pc0;

Input: Starting idle probability of a hot PM: Pi0;

Output: First level of probability of blocking: Pbq;

count←− 0; maximum←− 30; ∆ ←− 1;
Pbq0 ←− RAM (Ph0, P c0);
[Nh, Nc]←− PMM (Ph0, Pi0);
while ∆ ≥ 10−6 do

count←− count +1;

[Ph, Pi]←− VMM hot (Pbq0, Nh);
Pc ←− VMM cold (Pbq0, Ph, Nc);
[Nh, Nc]←− PMM (Ph, Pi);
Pbq1 ←− RAM (Ph, Pc);
∆ ←− |(Pbq1 − Pbq0)|;
Pbq0 ←− Pbq1;

if count = maximum then

break;

end if

end while

if count = maximum then

return -1;

else

return Pbq0;

end if

between hot and cold pools, with γN PMs in the hot pool and (1 − γ)N PMs in the cold

pool. As noted above, the number of PMs in the hot pool can never drop below γN .

Due to space limitations, we do not show the actual equations describing the model, as

they closely follow the analysis presented in Section 3.1. Instead, we show just the results

obtained from the solution of the model.

The response time or total delay is the sum of four provisioning times: waiting in the

global queue, processing in the resource allocation module, waiting time in the PM queue,

and VM instantiation and deployment, to which the actual service time should be added

[32–34]. We note that:

67



Chapter 3: Investigating The Behavior of IaaS Cloud Datacenters

0.1

0.2

0.3

0.4

ρ

0.2
0.25

0.3
0.35

0.4

γ

30

40

50

60

Energy consumption

(a) Energy consumption, mean look

up time in the cold pool 12 seconds.

0.1

0.2

0.3

0.4

ρ

0.2
0.25

0.3
0.35

0.4

γ

20

30

40

50

60

Energy consumption

(b) Energy consumption, mean look

up time in the cold pool 7.2 seconds.

Task Blocking Probability

0.1

0.2

0.3

0.4

ρ

0.2
0.25

0.3
0.35

0.4

γ

0.005

0.01

0.015

0.02

0.025

0.03

(c) Task blocking probability, mean

look up time in the cold pool 12 sec-

onds.

Task Blocking Probability

0.1

0.2

0.3

0.4

ρ

0.2
0.25

0.3
0.35

0.4

γ

0.005

0.01

0.015

0.02

0.025

(d) Task blocking probability, mean

look up time in cold pool 7.2 seconds.

Figure 3.14: Performance of cloud datacenter at mean service time 40 minutes, mean look

up time in the hot pool 18 seconds, task arrival rate variable from 100 to 600 per hour.

• Mean waiting time in global queue (wt) is exponentially distributed with mean value

of task arrival rate (1/λt).

• Mean look up time between the pools (lut) has a Coxian distribution with two steps

of look-up time between hot and cold pools [33].

• Mean waiting time in the input queue of the select PM (PMwt) is exponentially

distributed for each pool with mean values of arrival rate (1/λh and 1/λc that are in

proportion to 1/λt).

• Mean waiting time for VM provisioning (pt) is exponentially distributed with mean

value of task arrival rate (1/λt).

68



Chapter 3: Investigating The Behavior of IaaS Cloud Datacenters
Cloud System Behavior at Low Loads

In our first experiment, we have investigated the impact of system load and pool thresh-

old on energy consumption and task blocking, under the conditions of low system load

(values of ρ up to 0.4). Mean task service time is assumed to be constant at 40 minutes, so

that the adjustment of system load is achieved through the adjustment of task arrival rate.

Task rejection probability is obtained from the model. Energy consumption is calculated

by considering the mean time Tst spent in each state of the Markov chain in Fig. 3.13 and

power consumption δp of a hot machine, as

Ec =
∑

s∈ξ

Nhs
δp Tst (3.6)

where ξ is the set of states of the Markov chain from Fig. 3.13, while Nhs
is the number of

PMs in hot pool in state s. In this work, δp is assumed to be 1, as all PMs are assumed to be

homogeneous; the resulting values of energy expenditure may be interpreted as ‘the mean

number of PMs that are on.’ The resulting diagrams are shown in Fig. 3.14.

As can be seen, energy consumption, shown in Figs. 3.14a and 3.14b, is approximately

linearly dependent on the pool threshold, as could be expected. However, it is initially

nearly independent of the system load, up about ρ = 0.2, but then increases rapidly. This

is caused by the fact that in the first part of the range of values for ρ, the current number of

PMs in the hot pool suffices to service the incoming task requests. However, the increase

of the load in second part of the range of values for ρ means that more PMs are switched

on (i.e., moved into the hot pool), with the associated increase in energy consumption.

At the same time, the blocking probability in Figs. 3.14c and 3.14d is comparatively
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Figure 3.15: Performance of cloud datacenter at mean service time 40 minutes, mean look

up time in the hot pool 7.2 seconds, task arrival rate variable from 500 to 1200 per hour.

low, well below 1% in the most part of the observed range, but it does rise when the system

load increases. Also, blocking probability remains low as long as the pool threshold is kept

near the maximum value of γ = 0.4, but it does increase at lower values of γ. The rationale

for such behavior is simple: when the pool threshold is low, most PMs are kept in the cold

pool (i.e., they are switched off), and they are brought in to the hot pool only when there is

a need. However, this action incurs a certain overhead which may cause some tasks to be

rejected. Keeping more PMs in the hot pool helps reduce the number of rejected tasks and

keeps the blocking probability low; since the mechanism of moving the PMs between pools

is continuously adaptive to the instantaneous load, the increase in blocking probability is
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gradual and does not exhibit a distinct threshold such as the one observed in the diagrams

of energy consumption.

We have also used two values for the mean look up time in the cold pool which corre-

spond to the mean look up rates of 300 (diagrams on the left) and 500 searches per hour

(diagrams on the right). The mean look up time in the hot pool was kept constant at 200

searches per hour. We note that faster search reduces both the energy consumption and the

task rejection probability, although the differences are not significant in either case.

Cloud System Behavior at High Loads

We have repeated the first experiment but with the range of system loads that is wider

and extends well into higher loads, up to ρ = 0.8; the mean look up times have been

reduced in order to make the system more responsive. As before, the changes in system

load were accomplished by changing the mean task arrival rate while the mean task service

time was kept constant. The results are shown in Fig. 3.15.

As can be seen, the higher values of system load lead to considerable increase in energy

consumption as well as in task blocking. As the task arrival rates are higher, a distinct

threshold may be observed in the diagrams for task blocking probability, Figs. 3.15c and

3.15c. The corresponding thresholds in the diagrams for energy consumption can’t be seen

– in fact, they would be visible if the range of system loads were extended downward

towards values of ρ < 0.2.

But in either case, higher system load leads to higher energy consumption and consid-

erably higher task rejection rate. The values seem to flatten at high system loads, but only

because the system has effectively entered saturation, with a large number of incoming
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Figure 3.16: The impact of look up times on energy consumption. Mean task arrival rate

1000 per hour, mean task service time 40 minutes.

tasks rejected (values are well over 10%). Operation in this regime is most likely unaccept-

able in practice and should be avoided.

As before, shorter mean look up times (i.e., faster searches) give a slight improvement

in performance. This has motivated us to conduct the experiments described in the next

Subsection.
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The Impact of Look up Times on Energy Consumption

Finally, we have investigated the impact of look up times on energy consumption; the

resulting diagrams are shown in Fig. 3.16. As can be seen, lower values of the mean look up

time in the cold pool results in higher energy consumption which is due to faster searches

and quicker bringing up of new PMs into the hot pool. The increase is somewhat higher

than in the case of corresponding mean look up time in the hot pool, which is caused by

the additional overhead needed to turn on a cold PM. The difference in impact between the

mean look up times in the cold and hot pools is confirmed in Fig. 3.16c.

3.3 Chapter Summary

In Section 3.1 we have examined the behavior of an IaaS cloud data center in which

servers are partitioned into pools of hot, warm, and cold machines. We have focused on the

operation in the linear regime, and we have shown that the transition to saturation is clearly

visible from the diagrams of task request blocking probability. We have shown that the

manner in which servers are partitioned in the pools affects the performance, sometimes

even more than the variations of offered load. We have also shown that the task arrival rate

is more critical parameter affecting the performance of the cloud data center than mean

task service time, due to the overhead generated in resource allocation and provisioning.

We have also shown that the energy expenditure is highly dependent on the manner in

which servers are partitioned into pools, and that reduced power consumption of servers

kept in the warm state does not result in commensurate savings in energy.

Also, we have analyzed the effects of pool threshold and mean look up time in hot and
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cold pools on the performance of an IaaS cloud system where PMs are partitioned into a

hot and a cold pool in Section 3.2. Our results confirm that the system should operate well

below saturation in order to provide acceptably low task rejection probability and energy

consumption. Also, we have shown that the performance is more sensitive to the mean look

up time for the PMs in the cold pool.

A continuation to the work discussed in this chapter can be investigation of the perfor-

mance of the networked cloud system as well as of the system with migration of live VMs

between servers (PMs).
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Task Admission Control for Cloud

Server Pools

This chapter provides a model for task admission control and resource allocation in

the cloud infrastructure. In Section 4.1, we have investigated the operating regions of the

proposed cloud model and evaluated the performance of resource allocation in the proposed

model. In order to prevent the cloud system getting into the saturation region, we have

presented two algorithms to control the admission of incoming tasks. These algorithms are

based upon establishing thresholds for task arrival rate and task blocking probability. Our

experiments indicate that these simple admission control algorithms can vastly improve

system performance.

In Section 4.2, we develop two task admission control algorithms which are based on

task filtering policy. First, we present a lightweight task admission control algorithm which

is appropriate for the cloud systems with smooth changes of task arrival rate. This algo-

rithm is based on long-term estimation of average utilization and offered load. Second, we
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introduce a task admission algorithm which is efficient for highly dynamic systems and

is based on instantaneous utilization. The performance of the proposed schemes is eval-

uated against varying intensities of offered load. Performance evaluation of the proposed

schemes in Section 4.2.2 confirms that both of them are able to ensure that the system is

kept in the stable operating region.

In Section 4.2, we have also conducted experimental simulations to examine the short-

term variability of the system. We have also investigated the effect of the size of tasks’

waiting queue and the filtering coefficient on the system performance through the simula-

tion model. Our simulation results show that utilizing larger waiting queue improves the

task blocking rate. Also, our observations confirm that using more aggressive scheme of

filtering coefficient in the lightweight algorithm decreases the task blocking rate and delay.

This chapter is organized as follows: Section 4.1 presents our task admission control

solution which are based on establishing thresholds for task arrival rate and task blocking

probability. Section 4.2 describes the proposed admission control mechanisms which are

based on task filtering policy. Section 4.3 concludes the chapter.

4.1 Task Admission Control in Cloud Based on Thresh-

olds of Task Arrival Rate and Blocking Probability

In Chapter 3, we have introduced virtualization as an effective technique for maximiz-

ing the utilization of physical servers (hosts) in an IaaS cloud datacenter, with a number of

VMs running on a given host. Furthermore we have discussed that energy expenditure of

such servers can be minimized by pooling of hosts. In Section 3.1, servers are partitioned
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Figure 4.1: System model.

into a hot pool (always on and with VMs instantiated and ready to run), a warm pool (on

but without VMs instantiated), and a cold pool with hosts turned off. Servers are, then,

moved from one pool to another as needed to fulfill user requests or to conserve energy.

In this setup, maintaining desired performance levels is a major concern. In particu-

lar, accepting tasks when they arrive, only to reject them later, might lead to performance

deterioration for tasks already taken into service and might also damage the reputation of

the cloud service provider. Admission control is an effective mechanism to enforce those

performance levels and fulfill their respective SLAs with users as required. In this section,

we propose a simple yet effective admission control mechanism that can be easily added to

an existing cloud center and investigate its performance as the function of system load and

baseline partitioning of servers into pools.
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4.1.1 System Model and Its Performance

System Model

The system model of a cloud server pool with a number of servers or hosts is shown

in Fig. 4.1. We assume that the system has a common input queue. Task requests arrive

according to a Poisson process with arrival rate λ and they are served in the FIFO order.

Without loss of generality, we assume that all servers are homogeneous as are the VMs;

furthermore, we assume that a single VM image can satisfy all requests for a task.

To accommodate a request, the server selection module checks the server pools to find

whether there is a server with sufficient number of idle VMs. The hot pool is checked

first; if a server with sufficient number of idle VMs is found, the task can be serviced

immediately. Otherwise, the warm pool is checked; if a warm server is to be used, it must

first instantiate the required number of VMs which incurs some delay. Finally, the cold

pool is checked, but bringing a server from the cold pool to the hot one requires additional

delay for server start-up and VM instantiation. Either way, the request is routed to the

server FIFO queue where it awaits for the VM that will provision it.

If there is no server with sufficient capability, the request will be rejected. Requests can

also be rejected if there is no space in the input queue.

Initial partitioning of available N servers is performed as follows: γN PMs are allo-

cated to the hot and warm pools each, and the remaining (1 − 2γ)N PMs are allocated to

the cold pool. Servers are ‘upgraded’ (i.e., moved from cold to warm, or from warm to

hot pool) when requests need to be provisioned; they are ‘downgraded’ as soon as requests

finish service so that all VMs on a hot server become idle. To keep the system performance

at an acceptable level, the number of hosts in the hot pool is never reduced below γN ; the
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Figure 4.2: Task blocking probability and total delay.

other two pools are allowed to change as needed.

Performance of The Original Pooled System

To investigate the performance of the pooled cloud system described above we have

built a discrete event simulator using MATLAB R2013a with the Simulink component

[27]. Simulink is a block diagram environment for multi-domain simulation and model-

based design. It supports system-level design, simulation, automatic code generation and

continuous test and verification of embedded systems. Simulink provides a graphical edi-

tor, customizable block libraries and solvers for modeling and simulating dynamic systems.
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Moreover, it enables the designers to incorporate MATLAB algorithms into models and

export simulation results to MATLAB for further analysis. Regarding the nature of ser-

vice/resource provisioning in cloud computing datacenters and also our analytical model

which has been developed based upon the queuing systems, we required an efficient tool

which could support discrete-event simulation (DES) approach. According to the model’s

requirements and Simulink’s features, we found it a suitable simulator.

The results are shown in Fig. 4.2. The diagrams in the top row show blocking proba-

bility as the function of the partitioning coefficient (i.e., default proportion of hot servers)

γ and system load ρ = λ
m·Nµtot

, assuming the distribution of service times is exponential;

diagrams in the bottom row show total delay under the same conditions. First two diagrams

in each row are obtained by varying the task arrival rate under constant service time; the

rightmost diagram is obtained by varying the task service time under constant task arrival

rate. For clarity, we have separated the range of offered loads into two sub-ranges: one from

ρ = 0.1 to 0.5, shown in the diagrams in the leftmost column, and another from ρ = 0.4 to

0.8, shown in the diagrams in the middle column; both correspond to mean service time of

40 minutes. The diagrams in the rightmost column were obtained under task arrival rate of

400 tasks per hour.

As can be seen, task blocking rate decreases with γ, which could be expected. When

the task arrival rate increases, task blocking also increases. In the lower half of the range

of load values, Fig. 4.2a, this increase begins to show at low values of γ and higher values

of ρ. However, when we look at the upper range of load values, Fig. 4.2b, we see that the

system actually enters saturation when task blocking rapidly increases beyond ρ = 0.5.

The increase in blocking is more gradual when task arrival rate is constant while mean
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service time increases, but the overall increase is quite steep, from around 0.02 (i.e., 2% of

rejected tasks) to above 0.15 (i.e., 15%); again, this could be expected.

Saturation is also evident on the diagrams that show total task delay, especially in

Fig. 4.2e, even though the delay is only about twice of the maximum value in the lower

part of the range, Fig. 4.2d. Saturation is more noticeable in the diagram of delay obtained

under constant task arrival rate and variable service rate, Fig. 4.2f.

Obviously, if we want to keep the cloud center out of saturation, in other words if we

need to keep the delay and rejection rate low, some kind of admission control is desirable.

By rejecting task arrivals that stand little to no chance of being serviced immediately, cloud

service provider will improve the quality of service for the existing customers.

4.1.2 Simple Admission Control Mechanisms

The aim of applying admission control schemes to the pool management system is to

keep the cloud system in the linear operation region with low blocking and reasonably small

delay. We have seen that the partitioning coefficient γ affects blocking, and we can use this

feature to improve performance. Therefore, admission control mechanism executes in two

steps.

1. In the first tier, it adjusts the partitioning coefficient according to the mean task arrival

rate. When the task arrival rate increases, the partitioning coefficient is increased

to soften the impact of increased load, and vice versa. As task arrivals are random

events, fluctuations of the task arrival rate are smoothed out by using an exponentially

weighted moving average.

2. As the second tier of adjustment, if the probability of the task being rejected by the
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Figure 4.3: Dynamics of changing of γ according to admission control algorithms.

server selection module exceeds a predefined threshold Pblk0, the task is rejected out-

right. Again, the rejection probability is smoothed out via an exponentially weighted

moving average.

In this manner, admission control filters out tasks so that most of the rejected ones are

rejected outright, whereas only a small predefined percentage of them are rejected only after

being processed by the server selection module, which takes additional time. This helps to

maintain the rejection rate of the admitted tasks low. Furthermore, the elimination process

of the admission control module can be used in a different way to improve performance,

i.e., to redirect superfluous task requests to another cloud server center instead; however,

the elaboration of this approach is beyond the scope of the present work.

Performance of Admission Control

To investigated the performance of the admission control, we have defined two algo-

rithms. The first one uses two distinct values of the partitioning coefficient, the default

value γ0 and the high-load value γ1, as shown in Fig. 4.3a; it is shown as Algorithm 3

below. The second one uses a ‘softer’ changeover with three values for the partitioning
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coefficient: the default value γ0, the mid-range value γ1, and the high range value γ2, as

shown in Fig. 4.3b; it is shown as Algorithm 4 below.

Algorithm 3 Admission control mechanism 1.

Set λ←− λ0

while true do

With each task arrival, recalculate λ
if λ > λ1 then

Set γ ←− γ1;
else

Set γ ←− γ0;
end if

With each task rejection, recalculate Pblk

if Pblkl < Pblk < Pblk0 then

Drop most recently arrived task with the rate of α = f(λ);
else if Pblk ≥ Pblk0 then

Drop most recently arrived task;

end if

end while

The resulting blocking probability under the two algorithms is shown in Fig. 4.4, with

initial partitioning coefficient and system load as independent variables. (Load is varied

by varying the task arrival rate.) For Algorithm 3, the thresholds were λ1 = 300 tasks

per hour, γ0 = 0.2, and γ1 = 0.4. In the blocking probability range of Pblkl to Pblk0,

dropping rate (α) is a function of λ which means that by increasing of mean task arrival

rate, dropping rate is going to increase as well. In defining α, we have been remotely

motivated by packet dropping rate in Random Early Detection (RED) mechanism used in

TCP congestion control [18]. For Algorithm 4, the thresholds were λ1 = 300 tasks per

hour, λ2 = 400 tasks per hour, γ0 = 0.2, γ1 = 0.3 and γ2 = 0.4. Mean service time was

kept at 40 minutes. As can be seen, both algorithms, together with pool management of the

proposed approach, manage to maintain the overall blocking probability within reasonably

low range. Interestingly enough, the ‘softer’ adjustment provided by Algorithm 4 is less
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Figure 4.4: Task blocking probability with admission control.

successful in keeping the overall blocking probability low than the ‘harder’ one provided

by Algorithm 3.

Algorithm 4 Admission control mechanism 2.

Set λ←− λ0

while true do

With each task arrival, recalculate λ
if λ > λ2 then

Set γ ←− γ2;
else

if λ > λ1 then

Set γ ←− γ1;
else

Set γ ←− γ0;
end if

end if

With each task rejection, recalculate Pblk

if Pblk ≥ Pblk0 then

Drop most recently arrived task;

end if

end while

As further validation of the efficiency of Algorithm 3, we have plotted the task block-

ing rate of the system without admission control, with the task arrival rate periodically

increased from 100 to 700 tasks per hour after every 250 seconds. Mean task service time
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was fixed at 40 minutes. As can be seen from the timing diagram in Fig. 4.5b, task blocking

rate is steadily increasing with each increment of the task arrival rate. However, when ad-

mission control according to Algorithm 3 is applied, task blocking rate is kept reasonably

constant, as shown in Fig. 4.5c. The initial increase is due to the smoothing algorithm,

which takes some time after the change in task arrival rate to adjust the mean task arrival

rate as well as the mean blocking rate. Mean delay that tasks experience is also kept rea-

sonably constant, as shown in Fig. 4.5d, with the same caveat about transitory regime as

above. In fact, the delay even decreases slightly, which is due to the fact that some tasks

are not admitted in the first place, and therefore do not affect the performance.

In another test case which its results have been presented in Fig. 4.6, we have increased

the task arrival rate from 100 to 700 tasks per hour and then we have decreased the rate

to 100 tasks per hour periodically after every 250 seconds. Mean service time was set

to 40 minutes. It can be seen that in Fig. 4.6c, using Algorithm 3 is improving the task

blocking rate. Moreover, Figs. 4.6d and 4.6e present the changes of task rejection rate and

γ respectively; these are the controlling parameters in Algorithm 3 and when task arrival

rate increases, task rejection rate and γ will increase as well to reduce the task blocking

rate. On the other hand, with decreasing of task arrival rate repeatedly, γ will be reduced

to its minimum value and task rejection rate will get to zero.
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(a) Task arrival rate changes during the test time.

(b) Task blocking rate without admission control.

(c) Task blocking rate with admission control (Algorithm 3).

(d) Total delay with admission control (Algorithm 3).

Figure 4.5: Test case of task arrival rate variable from 100 to 700 per hour, service time 40

min.
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(a) Task arrival rate changes during the test time.

(b) Task blocking rate without admission control.

(c) Task blocking rate with admission control (Algorithm 3).

Figure 4.6: Test case of task arrival rate variable from 100 to 700 per hour and down to 100

per hour, service time 40 min.
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(d) Task rejection rate with admission control (Algorithm 3).

(e) γ change with admission control (Algorithm 3).

Figure 4.6: Test case of task arrival rate variable from 100 to 700 per hour and down to 100

per hour, service time 40 min.

In another test case presented in Fig. 4.7, we have increased the task arrival rate from

100 to 1200 tasks per hour and in a similar case in Fig. 4.8, we have increased the task

arrival rate from 100 to 1000 tasks per hour periodically after every 250 seconds and mean

service time has been fixed to 40 minutes in both figures. In this test case, we have applied

Algorithm 3 to control the admission of arriving tasks and we have ignored the task block-

ing threshold of Pblk0 to get into the higher rates of incoming tasks and examine the task

blocking rate. The task rejection rate is increased according to the increasing of incom-

ing task rate. As can be seen, in Fig. 4.7a, task blocking rate is less than the case of not

using any admission control mechanism (Fig. 4.2a). Furthermore, when task arrival rate

increases in the ranges of 500 to 1200 tasks per hour (Fig. 4.7b), task blocking rate will

get into the saturation regime in higher rates of task arrival compared to Fig. 4.2b which
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Figure 4.7: Task blocking probability with admission control (Algorithm 3 without consid-

ering task blocking threshold of Pblk0).

no admission control has been applied. In the timing diagrams in Figs. 4.8b and 4.8e, task

blocking rate and total delay are increasing respectively with each increment of the task

arrival rate. When Algorithm 3 is applied to model, task blocking rate and delay have been

reduced as shown in Figs. 4.8c and 4.8f. According to Fig. 4.8d as the incoming task rate

increases, the applied admission control mechanism will increase the task rejection rate to

keep the total delay and task blocking below the threshold.
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(a) Task arrival rate changes during the test time.

(b) Task blocking rate without admission control.

(c) Task blocking rate with admission control (Algorithm 3 without considering

task blocking threshold of Pblk0).

Figure 4.8: Test case of task arrival rate variable from 100 to 1000 per hour, service time

40 min.
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(d) Task rejection rate with admission control (Algorithm 3 without considering

task blocking threshold of Pblk0).

(e) Total delay without admission control.

(f) Total delay with admission control (Algorithm 3).

Figure 4.8: Test case of task arrival rate variable from 100 to 1000 per hour, service time

40 min.

4.2 Task Filtering as a Task Admission Control Policy in

Cloud Server Pools

In a cloud server pool, resources are comprised of VMs which are deployed on PMs. In

this work, every task is served with a single VM. A cloud server pool cannot serve unlimited

number of tasks simultaneously. The decision whether to admit a service request or reject it
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is not trivial. However, with utilizing appropriate admission control and resource allocation

mechanisms, it is possible to improve the usage of resources and provide a satisfactory level

of utilization.

In this section we propose a dynamic controlling algorithm to devise task admission

policies. First, we have implemented a lightweight task admission control algorithm which

is based on the measurements of utilization and offered load. Second, we have developed

the analytical model of the scheme as a queueing model and demonstrated its performance.

Third, we have presented an alternative task admission algorithm for the cloud systems

which experience abrupt changes in their task arrival rates. Finally, we have analyzed the

short-term variability of the system through simulation model. Also, we have examined the

effect of the size of tasks’ waiting queue on the system performance in our simulations. We

have also utilized a different calculation scheme for filtering coefficient in the lightweight

task admission control algorithm which is more aggressive toward rejecting the incoming

tasks. We have evaluated the effect of the different filtering coefficients on the system

performance.

4.2.1 Admission Control Policy

Cloud providers need to have clear policies for task admission control and they should

deploy robust task admission mechanisms to have a trade-off between SLA requirements

and cloud system’s resources. Admission control policies are defined according to different

requirements in a cloud system and users’ expectations.

In the current work, we have assumed that at the beginning of resource allocation pro-

cess all of the users’ incoming requests can get into the server pool and they will be provi-
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sioned in the resource allocation process. With utilizing an appropriate resource allocation

mechanism, resources which in this case are VMs, will be assigned to the tasks. The

system’s performance is monitored continuously. During this process, admission control

mechanism can reject some of the incoming tasks according to the system’s requirements,

e.g., when a utilization threshold is defined as a goal or when a definite proportion of VMs

are assigned to the tasks; the target threshold is defined regarding to the system’s require-

ments and it is not limited to the mentioned goals.

Controlling Parameters and Related Policies

In this work, we aim to keep the system in the stable operating region of the utilization

threshold, Uthr. In order to achieve this goal, we have utilized two controlling parameters

in the cloud system.

Fig. 4.9 illustrates the proposed task admission and resource allocation scheme in a

server pool. Also, it depicts the overview of task admission controlling parameters. Us-

ing filtering coefficient results in selective task acceptance. The system’s current resource

availability is given as a feedback to the admission control mechanism. The resource allo-

cation mechanism has been developed as three interactive stochastic sub-models including

Resource Assigning Module, Pool Management Module and VM Provisioning Module; the

overall solution is obtained by iteration over individual sub-model solutions. The details of

resource allocation mechanism and related provisioning processes are presented in details

in Section 3.1.

Filtering policy can be defined according to the preferences of the operator; for ex-

ample, cloud management system can set a lower position as the admission threshold and
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Figure 4.9: The task admission control and resource allocation scheme in a cloud server

pool.

chose a larger filtering coefficient (i.e., lower task dropping rate) or it can select a higher

position threshold with a lower filtering coefficient (i.e., higher task dropping rate). In

the former approach, system starts to drop the tasks earlier with a lower rate; whereas in

the latter approach, system will start task dropping later, but with the higher rates. Cloud

management system can select the appropriate policy according to the users’ preference or

system requirements.

Task Admission Scheme Based on Offered Load

Admission control mechanism used in this work is presented in Algorithm 5. In this

algorithm, whenever a task arrives in the system or departs from it, some parameters will

be re-calculated. First, average offered load (ρav) is calculated using the current task ar-

rival rate. We have used Exponentially Weighted Moving Average (EWMA) technique [7]

to smoothen the effect of sudden changes on the system. ρav is computed using EWMA
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smoothing factor (α), the previous average offered load (ρavp) and the system’s current

offered load (ρc) Estimated average utilization (u′

av) is calculated according to EWMA

smoothing factor (β), the previous estimated average utilization (u′

avp) and the cloud sys-

tem’s current utilization (us). In case of task arrival, if u′

av is less than the utilization

threshold, Uthr, the system accepts the incoming task; otherwise, the system calculates the

filtering coefficient as Fcf = 1 − (ρav − ρthr) and it will reject the incoming task with

the probability of 1 − Fcf . The offered load threshold, ρthr is set to 0.75. The utilization

threshold, Uthr is set to 0.75.

Algorithm 5 Admission mechanism based on offered load.

Upon task departure:

Re-calculate ρav, us and u
′

av;

Upon task arrival:

Re-calculate ρav as ρav ←− α · ρc + (1− α)ρavp;
Estimate new average utilization (u′

av) as

u′

av ←− β · us + (1− β)u′

avp;

if u′

av > Uthr then

Calculate Fcf ←− 1− (ρav − ρthr);
Reject the incoming task with the probability of

1− Fcf ;

else

Accept the incoming task;

end if

Algorithm 5 is appropriate for systems which experience small steps of change in task

arrival rate. It is easy to determine α and β in these systems as the systems’ behavior is

predictable. For the systems with unexpected arrival rate, the computation of parameters

is more complicated and in Section 4.2.1, we have proposed Algorithm 6 to maintain task

admission control in those systems.
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Figure 4.10: Markov chain model admission control.

Analytical Model of Admission Control

Admission control scheme can be modeled as a birth-death process which is a spe-

cial case of CTMC. The task admission scheme can be analyzed using the Markov chain

depicted in Fig. 4.10. In this setup, T and R represent the thresholds of full rate task accep-

tance and full rate task rejection, respectively. Namely, when the mean blocking probability

of the system is below the first threshold, admission control accepts all incoming tasks. As

the result, T is the last state where all of the arrived tasks will be admitted. Beyond this

threshold, admission control begins to drop some of the incoming tasks. R is the full rejec-

tion threshold state beyond which all incoming tasks will be rejected and it is also known

as the capacity of the system or the number of VMs in the model.

Transition rates of going from state i to state i+ 1 (i.e., that the task is accepted by the

admission control) are calculated in Equation 4.2 and the accepted rate of incoming tasks,

λf , can be set as

λf =



























λ state i = 0..T

Fcf · λ state i = T + 1..R

0 state i > R

(4.1)
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where λ is the task arrival rate and Fcf is filtering coefficient calculated as Fcf = 1 −

(ρi − Uthr). Offered load in the state i presented as ρi and utilization threshold, Uthr,

determine the value of filtering coefficient. The state probabilities of the Markov model

can be calculated as

Pk =























1

k!

(

λ

µ

)k
1

DD
0 ≤ k ≤ T

λT
k−T
∏

i=1

λi

k! µk

1

DD
T < k ≤ R

(4.2)

where

DD =
T
∑

0

1

i!

(

λ

µ

)i

+

(

λ

µ

)T R
∑

T+1

i−T
∏

i=1

λi

i! µi−T
(4.3)

and µ is the mean service rate. The average utilization of the system, uav, and the blocking

probability of T threshold, Pblk, is given by

uav =
1

R

R
∑

k=0

kPk (4.4)

Pblk =
R
∑

k=T+1

Pk (4.5)

We have obtained the value of threshold T using two different methods. In the first

method, we have solved the system of equations (4.1) to (4.4) according to given utilization

threshold, Uthr. In the second method, we have applied exhaustive search to find optimal

value of T threshold which renders minimal difference between estimated utilization and

utilization threshold, Uthr.
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Task Admission Scheme Based on Current Utilization

Algorithm 6 Admission mechanism based on current utilization.

flgo ←− 0;
Upon task arrival:

Consider the current utilization including the

pending task (u′

c);

if u′

c > Uthr then

if
∣

∣u′

c − u′

prev

∣

∣ > Mthr or flgo = 0 then
for Ti = Uthr ·R to R do

Adopt the instantaneous utilization (uc) equation from the system of equa-

tions (4.1) to (4.4);

Apply Ti threshold to uc to obtain uci;
Calculate Fci according to uci;
Calculate δi ←− |uci − Uthr|;

end for

Find the minimum δi;
Select the corresponding Ti and Fci as the
optimal values of T and Fcf respectively;

flgo ←− 1;
else

Use the previous T as the current T ;
Apply T threshold to uc and calculate Fcf

according to uc;

end if

Reject the incoming task with the probability of

1− Fcf ;

else

Accept the incoming task;

end if

Task admission mechanism presented in Algorithm 5 is efficient for the cloud systems

which go through smooth changes of incoming task rate. However, in the systems where

change of arrival rate is highly dynamic, smoothing factors α and β, and Algorithm 5

does not predict the filtering coefficient with sufficient accuracy. Therefore, we propose

an alternative algorithm which is better for handling the systems with abrupt changes of

arrival rate. In this solution, system applies exhaustive search to find admission arrival rate
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which is derived by the closest value of instantaneous utilization to the utilization threshold,

Uthr. In this iterative mechanism, system tracks Uthr as closely as possible. This solution

is inspired by the Delta Modulation technique used in Pulse Code Modulation (PCM) [60].

Algorithm 6 demonstrates this approach. When a task arrives, offered load (ρ) is calculated

using the current task arrival rate. Also, the current utilization including the pending task,

u′

c, is calculated. if u
′

c is less than the utilization threshold, Uthr, the system accepts the

incoming task. Otherwise, if the difference between u′

c and the previous utilization before

considering T threshold, u′

prev, is more than a threshold margin,Mthr, or if it is the first time

occurrence of utilization more thanUthr, the system examines the threshold range ofUthr ·R

to R. In this case, the typical Ti (the threshold position of full rate task acceptance) will be

replaced in current utilization (uc) equation, adopted from the system of equations (4.1) to

(4.4). It then calculates the filtering coefficient (Fci) corresponding to Ti. Then, uci will be

computed using the values of (Fci) and Ti. Also, the difference between uci and Uthr, δi, is

calculated. The minimum value of δi represents the closest value of utilization to Uthr and

the corresponding Ti and Fci will be chosen as target T and Fcf values respectively. also, if

the difference between u′

c and u′

prev is less than Mthr margin, system will use the previous

T as the current T and after applying this T to uc, Fcf can be calculated. The system will

reject the incoming task with the probability of 1 − Fcf . The utilization threshold, Uthr is

set to 0.75.

4.2.2 Performance Evaluation

To investigate the behavior of the admission control model, we have evaluated different

performance parameters under varying levels of offered load, ρ, calculated as ρ =
λf

m·N ·µtot
.
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In our experiments, N = 100 is the number of PMs and m = 10 is the maximum number

of VMs on each PM; therefore, the system’s capacity is 1000 VMs. We have kept the

task service time constant and varied the task arrival rate to achieve the offered load in the

range of 0.4 to 0.95. In order to investigate the effect of mean service time varieties on the

performance metrics separate from the effects of offered load and task arrival rate changes,

we have examined four service times of 20, 40, 60 and 80 minutes for each parameter.

The utilization threshold, Uthr is set to 75%; in this range of value, Uthr is relatively high

and the system is in normal condition, not yet in the saturation operational region in which

significant number of tasks will get blocked due to the excessive traffic load. We have used

Maple 15 to develop this model [26].

Fig. 4.11 shows the accepted rate of incoming tasks. It can be seen that while offered

load is under 0.75, with increasing of arrival rate, accepted rate increases as well. When

offered load goes beyond 0.75, accepted rate of incoming tasks becomes flat to keep the

average utilization in the defined threshold. Also, in order to have the same ranges of

offered load in Fig. 4.11, with increasing of constant service time, the accepted rate of

incoming tasks moves to the lower ranges (from maximum value of 0.64 tasks per second

or 2300 tasks per hour to 0.16 tasks per second or 570 tasks per hour).

Performance Evaluation of Algorithm 5

In this section, we investigate the performance of task admission scheme that uses Al-

gorithm 5.

Fig. 4.12 presents the threshold positions according to changing offered load for four

constant service times. As can be seen in Fig. 4.12, same offered load can result in same
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Figure 4.11: Accepted rate of incoming tasks at constant service time and variable task

arrival rate.

threshold position. Also, with increasing of offered load or in other word, increasing of in-

coming task, threshold position moves to higher number of VMs in order to keep the aver-

age utilization around 75%. Boxes represent the obtained thresholds according to Equation

4.4 and crosses are the obtained thresholds of the exhaustive search method discussed in

Section 4.2.1. As can be seen, the outcomes of two methods match quite well.

Fig. 4.13 illustrates the blocking probability of admission control process. In Fig. 4.13,

when offered load is below 0.75, the blocking probability of admission control process

is negligible, but when offered load goes beyond 0.75, the blocking probability increases

when the offered load increases. This is because the system is getting full and it is blocking

more tasks to maintain the desired level of utilization. Also, it can be seen that in different

service times, the same offered load results in almost same blocking probability, despite

the slight discrepancies which arise from rounding errors in the computations.
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Figure 4.12: Threshold position at constant service times of 20, 40, 60 and 80 mins and

variable task arrival rate using Algorithm 5.
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Figure 4.13: Blocking probability at constant service time and variable task arrival rate

using Algorithm 5.

Fig. 4.14 shows the utilization of the admission control scheme. This figure presents

the outcome of applying the obtained threshold to the system. As expected, in all cases

with choosing appropriate threshold position, utilization is not degrading and with offered

loads higher than 0.75, utilization gets into the stable condition of utilization threshold,

Uthr. Therefore, our goal of keeping the utilization around a specific threshold is achieved.
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Figure 4.14: Utilization at constant service times of 20, 40, 60 and 80 mins and variable

task arrival rate using Algorithm 5.

In Fig. 4.15, the value of filtering coefficient in four cases has been presented. As

expected, in the same ranges of offered load, these coefficients are identical; this is because

in Algorithm 5, filtering coefficient is calculated as a function of offered load and therefore,

same offered load gives same filtering coefficient. Also, in all cases, when offered load is

less than 0.75, the system does not filter the incoming tasks; but when offered load is getting

higher than 0.75, system drops some of the arriving tasks. With increasing of offered

load, dropping rate of arriving tasks increases linearly to compensate the target utilization

threshold. In the worst case of ρ = 95%, system only accepts 82% of the incoming tasks.

Fig. 4.16 illustrates the total delay in four cases. The total delay includes the total re-

source provisioning time in a server pool and it is obtained by forwarding the accepted

incoming tasks to the pool management scheme presented in Fig. 4.9. The details of pro-

visioning time calculation has been described in Section 3.1. As can be seen in Fig. 4.16,

higher service time generally results in higher delay, but the admission control scheme pre-

vents the system to experience dramatic changes in total delay and it keeps the total delay
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Figure 4.15: Filtering coefficient at constant service times of 20, 40, 60 and 80 mins and

variable task arrival rate using Algorithm 5.
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Figure 4.16: Total delay at constant service times of 20, 40, 60 and 80 mins and variable

task arrival rate using Algorithm 5. Legends are same as the legends in Fig. 4.11.

in an almost steady range.

Performance Evaluation of Algorithm 6

The performance of task admission scheme that uses Algorithm 6 is presented in this

section. It can be seen that the performance of Algorithm 6 is very close to Algorithm 5.

In Fig. 4.17, when offered load goes beyond 0.75, threshold position approximately
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Figure 4.17: Threshold position at constant service times of 20, 40, 60 and 80 mins and

variable task arrival rate using Algorithm 6. Legends are same as the legends in Fig. 4.11.

changes in the range of 805 to 915 VMs to keep the average utilization around 75%, similar

to Fig. 4.12; although, in this case, threshold position is found through exhaustive search.

As can be seen, similar to Fig. 4.12, same offered load gives presents almost same threshold

position and the slight differences are the result of rounding errors in the calculations.

The blocking probability of the alternative solution is shown in Fig. 4.18. The blocking

probability of this solution is slightly higher than the blocking probability presented in

Fig. 4.13; however, the range and pattern of changes of blocking probabilities are close.

In the case of offered load larger than 75%, the system is getting full and it is blocking

more tasks to maintain the desired level of utilization. Also, it can be seen that in different

service times, the same offered load results in almost same blocking probability, despite

the slight discrepancies which come from rounding errors in the calculations.

The system’s utilization in Fig 4.19 matches the utilization presented in Fig 4.14; al-

though, in Fig 4.19, utilization is slightly changing over the different offered loads.

The pattern and the range of changes of filtering coefficient in Fig. 4.20 are similar

to the pattern and ranges of changes illustrated in Fig. 4.15; although, in Fig. 4.20, the
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Figure 4.18: Blocking probability at constant service time and variable task arrival rate

using Algorithm 6.
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Figure 4.19: Utilization at constant service times of 20, 40, 60 and 80 mins and variable

task arrival rate using Algorithm 6. Legends are same as the legends in Fig. 4.11.

filtering coefficient is decreasing slightly faster. Also, the slight discrepancies of filtering

coefficients in Fig. 4.20 are the result of rounding errors in the computations and the same

offered load presents almost same filtering coefficient.

Also, the system’s delay shown in Fig. 4.21 matches the total delay in Fig. 4.16.
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Figure 4.20: Filtering coefficient at constant service time and variable task arrival rate using

Algorithm 6.
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Figure 4.21: Total delay at constant service times of 20, 40, 60 and 80 mins and variable

task arrival rate using Algorithm 6. Legends are same as the legends in Fig. 4.11.

Analyzing the Effect of The Size ofWaiting Queue and FilteringCoefficient on System

Performance

In this subsection, we analyze the effect of changing the size of FIFO waiting queue and

filtering coefficient in Algorithm 5 on the system. In the results presented in Section 4.2.2

107



Chapter 4: Task Admission Control for Cloud Server Pools
and 4.2.2, we have assumed that the size of waiting queue, Lq, is equal to 50. Also, filtering

coefficient, Fcf , in Algorithm 5 is calculated as Fcf = 1 − (ρav − ρthr). We have built a

discrete event simulator using MATLAB R2013a with the Simulink component [27] to

analyze the effect of changing parameters.

Simulation Experiments Using Short Waiting Queue Figs. 4.22 and 4.23 illustrate the

simulation snapshots when Lq is equal to 50 and in the case of applying Algorithm 5, Fcf

is calculated as Fcf = 1− (ρav − ρthr).

As can be seen in Figs. 4.22a and 4.22b, when task arrival rate is less than 1100 tasks

per hour or in other words, offered load is less than 0.75, system admits all arriving tasks;

whereas, when offered load goes beyond 0.75, system starts rejecting some tasks and fil-

tering coefficient decreases. According to task blocking rates presented in Figs. 4.22c and

4.22d, using Algorithm 5 results in almost 50% decreasing of the task blocking probability.

Also, comparison of Figs. 4.22e and 4.22f shows that using Algorithm 5 improves the

total delay.
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(a) Task arrival rate changes during the test time.
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(b) Filtering coefficient with admission control (Algorithm 5).
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(c) Task blocking probability without admission control.

Figure 4.22: Test case of Lq = 50, task arrival rate variable from 700 to 1600 per hour,

service time 40 min. Fcf = 1− (ρav − ρthr).
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(d) Task blocking probability with admission control (Algorithm 5).

0 500 1000 1500 2000 2500

50

100

150

200

250

Time (s)

T
o
ta

l 
D

e
la

y
 (

s
)

(e) Total delay without admission control.
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(f) Total delay with admission control (Algorithm 5).

Figure 4.22: Test case of Lq = 50, task arrival rate variable from 700 to 1600 per hour,

service time 40 min. Fcf = 1− (ρav − ρthr).

Fig. 4.23 illustrates the snapshots of performance parameters when Algorithm 6 is used

and no task admission control is applied. In Fig. 4.23b, similar to Fig. 4.22b, when offered

load goes beyond 0.75, filtering coefficient decreases; although, in the case of using Al-

gorithm 6, the dropping rate is slightly higher. Also, according to the task blocking rate

presented in Fig. 4.23d, using Algorithm 6 improves the task blocking rate; though, the

blocking rate improvement is not as high as the case of Algorithm 5. This is due to the

heavy load of computation in Algorithm 6.
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(a) Task arrival rate changes during the test time.

0 500 1000 1500 2000 2500

0.8

0.9

1

1.1

Time (s)

F
ilt

e
ri
n

g
 C

o
e

ff
ic

ie
n

t

(b) Filtering coefficient with admission control (Algorithm 6).
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(c) Task blocking probability without admission control.

Figure 4.23: Test case of Lq = 50, task arrival rate variable from 700 to 1600 per hour,

service time 40 min.
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(d) Task blocking probability with admission control (Algorithm 6).
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(e) Total delay without admission control.
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(f) Total delay with admission control (Algorithm 6).

Figure 4.23: Test case of Lq = 50, task arrival rate variable from 700 to 1600 per hour,

service time 40 min.

Simulation Experiments Using Large Waiting Queue Figs. 4.24 and 4.25 present the

simulation snapshots when Lq is equal to 200 and in the case of applying Algorithm 5, Fcf

is calculated as Fcf = 1− (ρav − ρthr).

If we compare the Figs. 4.24c and 4.22c, we can see that even without using any ad-

mission control mechanism, increasing the size of waiting queue has a significant positive

effect on task blocking rate; this is because more tasks have a chance to stay in the larger

waiting queue and they do not get rejected. As shown in Fig. 4.24d, using Algorithm 5 also

improves the task blocking rate. However, Figs. 4.24e and 4.24f indicate that using a larger

waiting queue causes higher delay in the system; although, using Algorithm 5 still results
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(a) Task arrival rate changes during the test time.
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(b) Filtering coefficient with admission control (Algorithm 5).
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(c) Task blocking probability without admission control.

Figure 4.24: Test case of Lq = 200, task arrival rate variable from 700 to 1600 per hour,

service time 40 min. Fcf = 1− (ρav − ρthr).

in lower delay.
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(d) Task blocking probability with admission control (Algorithm 5).
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(e) Total delay without admission control.
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(f) Total delay with admission control (Algorithm 5).

Figure 4.24: Test case of Lq = 200, task arrival rate variable from 700 to 1600 per hour,

service time 40 min. Fcf = 1− (ρav − ρthr).

Similar to the case of Algorithm 5, using Algorithm 6 and increasing the size of waiting

queue has a positive effect on task blocking rate (Fig. 4.25d) and Algorithm 6 improves the

total delay (Fig. 4.25f compared to Fig. 4.25e); though, in case of using Algorithm 6,

delay is slightly higher than case of Algorithm 5. Also, the larger waiting queue (Lq =

200) results in the higher delay than short waiting queue (Lq = 50). This is because of

experiencing longer waiting times in larger queues.
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(a) Task arrival rate changes during the test time.
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(b) Filtering coefficient with admission control (Algorithm 6).
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(c) Task blocking probability without admission control.

Figure 4.25: Test case of Lq = 200, task arrival rate variable from 700 to 1600 per hour,

service time 40 min.
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(d) Task blocking probability with admission control (Algorithm 6).
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(e) Total delay without admission control.
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(f) Total delay with admission control (Algorithm 6).

Figure 4.25: Test case of Lq = 200, task arrival rate variable from 700 to 1600 per hour,

service time 40 min.

In order to achieve higher system performance in Algorithm 5, we have used a more

aggressive calculation scheme for filtering coefficient. In this case, Fcf is calculated as

Fcf = 1 − ((ρav − ρthr)/ρthr). the results presented in Figs. 4.26d and 4.26f demonstrate

that using this aggressive calculation scheme for filtering coefficient decreases the task

blocking rate and total delay compared to its counterpart case presented in Figs. 4.24d and

4.24f. Hence, this new calculation scheme for Fcf results in further improvement of system

performance.
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(a) Task arrival rate changes during the test time.
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(b) Filtering coefficient with admission control (Algorithm 5).
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(c) Task blocking probability without admission control.

Figure 4.26: Test case of Lq = 200, task arrival rate variable from 700 to 1600 per hour,

service time 40 min. Fcf = 1− ((ρav − ρthr)/ρthr).
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(d) Task blocking probability with admission control (Algorithm 5).
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(e) Total delay without admission control.
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(f) Total delay with admission control (Algorithm 5).

Figure 4.26: Test case of Lq = 200, task arrival rate variable from 700 to 1600 per hour,

service time 40 min. Fcf = 1− ((ρav − ρthr)/ρthr).

4.3 Chapter Summary

In Section 4.1, we have examined the behavior of a cloud center in different operating

through our simulation model. Also, two algorithms for task arrival admission control are

presented to keep the cloud system in the non-saturation operating area. These admission

control algorithms execute in two steps: first step is adjusting the partitioning coefficient

according to the mean task arrival rate; the second tier is tracking the task blocking proba-

bility in the system and adjusting the task acceptance rate according to the predefined task

blocking probability thresholds. Our simulation results confirm that the proposed admis-
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sion control algorithms enhance system performance. However, adjustments provided by

Algorithm 3 appeared to be more successful in keeping the overall blocking probability

low than the adjustments provided by Algorithm 4. Although, the cost of this success is

dropping some of the incoming tasks in the linear to transition operating regions in Algo-

rithm 3.

The two proposed task admission algorithms presented in Section 4.2 are aimed to

keep the system in the stable operating region defined by the operator. We have utilized

two controlling parameters, full rate task acceptance threshold and filtering coefficient, to

deploy task admission policies. The first task admission algorithm is lightweight, more

conservative in making decisions and suitable for the cloud systems which are relatively

stable in their task arrival rate; whereas, the second algorithm is appropriate for the systems

with the wide ranges of change in arrival rate and it is more complicated.

The evaluation of our model shows that in different ranges of incoming task rate and

mean service time, the average offered load will result in the similar average performance

in the cloud system. Also, our numerical results confirm that both of the task admission

mechanisms provide the cloud system’s stability.

We have also analyzed the effect of the size of tasks’ waiting queue using experimental

simulation. We have observed that increasing the size of waiting queue reduces the task

blocking probability; although, it causes higher delay due to experiencing longer waiting

times in larger queues. Also, we have observed that using more aggressive scheme of

filtering coefficient in the lightweight algorithm improves the task blocking rate and delay.

A continuation to the work presented in this chapter can be optimal placement of filtered

tasks in a networked cloud system.
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Prioritization of Overflow Tasks to

Improve Performance of Mobile Cloud

When the required computational resources exceed the capabilities of a mobile device,

the application may be offloaded to a cloud and executed in a virtual machine running on

a host. In many cases, this application forks new tasks which require virtual machines of

their own that need to be provisioned on the same physical machine as was the original

application. Achieving satisfactory performance level in such a scenario requires flexible

resource allocation mechanisms in the cloud datacenter. In this chapter we present two

such mechanisms which use prioritization: one in which forked tasks are given full priority

over newly arrived ones, and another in which a threshold is established to control the

priority. We analyze the performance of both mechanisms using a Markovian multiserver

queueing system with two priority levels to model the resource allocation process, and

a multi-dimensional Markov system based on a Birth-Death queueing system with finite

population, to model virtual machine provisioning. We have examined the performance of
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the proposed system in Section 5.3 and found that the threshold-based priority scheme not

only performs better, but can also be tuned to achieve the desired performance level.

This chapter is organized as follows: in Section 5.1, we introduce our resource alloca-

tion mechanism in mobile cloud computing. Section 5.2 describes the proposed resource

allocation solution for mobile cloud computing. Section 5.3 discusses the performance of

our system and the related outcomes. Section 5.4 summarizes this chapter.

5.1 Introduction

Mobile applications such as face recognition, natural language processing, interactive

gaming, and augmented reality are demanding intensive computation and high energy con-

sumption. However, mobile devices have limited computation resources and limited battery

life. The tension between resource-hungry applications and resource-constrained mobile

devices hence poses a significant challenge for future mobile platform development. Mo-

bile cloud computing, where mobile devices can offload some computational jobs to the

cloud is envisioned as a promising approach to address such a challenge [11].

The characteristics of mobile devices and wireless network makes the implementation

of mobile cloud computing more complicated than stationary clouds. Offloading requests

from a mobile device usually require quick response, may be infrequent, and are subject to

variable network connectivity, whereas cloud resources incur relatively long setup times,

are leased for long time quanta, and are not too sensitive to network connectivity [57].

Also, the volume of workload which is going to be offloaded is not predefined or known

for a mobile device when it starts the offload process. There is a possibility that the mobile

device offloads a large burst of tasks toward the clouds or it may scarcely offload any
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application to the cloud; from this definition we can conclude that the mobile device has a

stochastic behavior during the offload process.

In this work, we address the elasticity in mobile cloud computing and the heterogeneity

issues between cloud and mobile devices. We have developed a solution which allocates

resources for on-demand job requests in the mobile clouds. Offloaded jobs are placed in

PMs in mobile cloud. However, these jobs can fork new tasks which may not find sufficient

resources in home PM. In that case, they need to be returned to resource allocation module

in order to be assigned the resources they need; we call these tasks “overflow tasks”. The

proposed solution manages these two types of tasks as two classes of services with differ-

ent levels of priority. We have utilized Markovian multiserver queueing system with two

priority levels. In our solution, each type of task has its corresponding distinctive queue.

Also, this solution prioritizes serving the overflow tasks over the new incoming tasks as we

assume the overflow tasks generally have a shorter deadline than the new arrivals. Also, we

have followed two approaches of priority differentiation. In the first approach, we assume

that the overflow tasks have full priority and the new arrivals will not get service unless

there is no overflow task left in the queue. In the second approach, we consider a threshold

for the number of waiting overflow tasks. Below this threshold, each type of task has access

to the resources based on its corresponding probability. If the number of waiting overflow

tasks gets larger than the predefined threshold, the full priority is given to the overflow tasks

and new arriving tasks should wait until the number of waiting overflow tasks becomes less

than the threshold.

Dynamic side of offloaded jobs and existence of overflow tasks put a burden on resource

management system. Major issue is how to assign priority to the tasks in order to satisfy
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bounds on job completion times. In this work, we consider soft bounds on completion

times and relative priority between the tasks. Note that in this work, “job” is referred to the

mobile device’s application offloaded toward cloud and it may include one or more “tasks”.

In this work, based on the characteristic of service demands of mobile devices, we as-

sume that the size of a job can vary during its service time. A job initially has a single task,

however, it may generate new tasks during its service time. The service times of the tasks

are independent and identically distributed and each task requires a VM for its execution.

Hence, the number of tasks in a job during its service time will be a random variable. A

job is completed when all the tasks belonging to that job complete their service. In order to

develop our VM provisioning scheme, we have proposed a model regarding the dynamic

behavior of the mobile requests which is based on integration of multi-dimensional Markov

system and Birth-Death queueing systems with finite population (M/M/L//L) inspired by

the Birth-Death queueing systems developed in [35]. However, there is a possibility that

mobile jobs offload a large burst of tasks toward cloud servers. The task provisioning would

be impossible without limiting the size of offloaded job, i.e., the maximum number of tasks

that it can contain. Also, since the cloud has finite number of PMs and every PM has a finite

operational capacity (e.g., the number of CPUs and memory capacity) and assuming that

single task gets a VM (VMs are homogenous with respect to the resources), there is a limit

on maximum number of jobs that a PM can host. With these limitations, we have prevented

the mobile devices to take the resources extensively and deteriorate the performance of the

cloud and the quality of service presented to cloud users including the mobile users.
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Figure 5.1: The overview of system model.
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Figure 5.2: The service order in the queue when full priority is given to overflow tasks.

5.2 Resource Allocation Solution

Fig. 5.1 depicts the overview of our solution. When the offloaded task reaches the dat-

acenter, RAM looks into the PM pool to find idle resources. If sufficient VMs are available

at that moment, they will be assigned to the task. Otherwise, the task should wait for the

VMs to become available. Once the task gets to the head of the queue, RAM will look into

the server pool to assign appropriate VMs. Our system also has the ability to control the
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(b) After threshold: Nov > Tr.

Figure 5.3: The service order in the queue when threshold-based priority is given to over-

flow tasks.

overflow tasks in the PM, i.e., if the PMs cannot host the assigned tasks, they will be re-

turned to RAM to get another chance to obtain required resources. The RAM gives higher

priority to overflow task than the new incoming tasks. However, there is a possibility that

a task is rejected because of insufficient resources inside a PM. Another possibility is that

RAM gets full and as the result, arriving tasks into this module get blocked.

The order which the tasks get service is based on the priority scheme adopted in the

queueing system shown in Fig. 5.1. We have assumed that each type of task (new arrival

and overflow) have a dedicated queue and the size of each queue is Lq. If the queues

are full, they cannot accept new tasks; therefore, these tasks will get blocked. We have

considered two priority scheme, full priority of overflow tasks and the threshold-based
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priority of overflow tasks. If full priority is given to overflow tasks, the overflow tasks

waiting in queue will get service in FCFS order before the new incoming tasks as shown

in Fig. 5.2. Once there is no overflow task left in queue, the new incoming tasks will be

served in FCFS order. If threshold-based priority is given to overflow tasks, as long as

the number of overflow tasks in queue is less than a threshold (Nov < Tr) as illustrated in

Fig. 5.3a, overflow tasks and new incoming tasks get service according to the probabilities

of Po and PN respectively; this approach is similar to Weighted Fair Queueing (WFQ)

method presented in [16]. If the number of overflow tasks in queue is larger than the

threshold (Nov > Tr), the full priority is given to overflow tasks and they get service in

FCFS order as presented in Fig. 5.3b. Once the number of overflow tasks becomes less

than the threshold, new arriving tasks get the chance to access the resources and both type

of tasks get weighted priorities.

5.2.1 The Queueing Model of Resource Allocation

We have assumed that task requests arrive according to a Poisson process with arrival

rate λ. An incoming request will be processed in the RAM which is modeled as a multi-

dimensional CTMC presented in Figs. 5.4 and 5.5. RAM checks server pool to find whether

there is a sufficient number of idle VMs on a PM to accommodate every request. 1/β is the

mean look up time to find appropriate PM in the server pool.

In this model, we have developed two types of tasks; the first type is the overflow tasks

which can be generated in PMs because of resource shortage in PMs. The overflow tasks

will return to RAM to get service. The second type of tasks is the new task arrivals into the

system which includes the majority of the tasks. We have prioritized the overflow tasks over
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new arrivals because of the deadline of the tasks already accepted into the system. Priority

is a useful scheduling method that allows different customer types to receive differentiated

performance levels.

The first type of tasks which are the overflow tasks have a non-preemptive strict priority

over the new incoming tasks.

We have followed two different approaches in defining the priority scheme. In the

first approach, full priority is given to the overflow tasks and in the second approach, the

overflow tasks have threshold-based priority over the new incoming tasks.

The Queueing Model of Resource Allocation with Full Priority of Overflow Tasks

In this approach, illustrated in Fig. 5.4, we have assumed that overflow tasks have the

full priority, i.e., new arrival tasks will not be served if there is an overflow task left in

queue. We have modeled RAM as Markovian multiserver queueing system with two prior-

ity levels.

The vertical direction illustrates the overflow tasks waiting in the queueing system.

The horizontal direction demonstrates the new incoming tasks waiting in the queue to get

service. The maximum number of the waiting tasks in queue is Lq. The states are labeled

as (i, j, k): i denotes the number of overflow tasks waiting in queue, j indicates the number

of new arriving tasks waiting in queue and k presents the admission mode: ’A’ represents

the acceptance of the task and ’Ro’ and ’RN ’ are corresponding to rejection of the overflow

and new incoming task respectively.

The new arriving tasks can only get service in the first horizontal line direction which

is corresponding to the case where no overflow task is left in queue (i = 0). The dashed
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state shown in Fig. 5.4 is corresponding to the case of new arriving task rejection and is

represented as (0, Lq, RN). The new task arrives with rate of λ. If this task is accepted,

the system moves to the state (0, j − 1, A)) with the rate of Psβ. Otherwise, the system

moves to (0, j + 1, A) which means the new task is added to the waiting new tasks. If the

queue is full, a new task cannot be added to queue and system moves from state (0, Lq, A)

to (0, Lq, RN) with the rate of β(1 − Ps). Then, the system moves to (0, Lq, A) with rate

of η and the task is rejected. η is the clean up rate and we have assumed η = 10β. Ps is the

success probability of finding appropriate VMs in VMM and later in this section, we will

explain how it is calculated.

As can be seen, in the other horizontal lines, new incoming tasks arrive with rate of λ

and they only wait for the completion of overflow tasks (i = 0) to have access to resources.

The overflow tasks can get served in all vertical line directions. This means that they

have access to the resources despite the new arrivals. Therefore, they have full priority

over new arriving tasks. The case of overflow task rejection is represent in the dotted states

which are represented as (Lq, j, Ro). The overflow tasks arrive in RAM with rate of Oo.

Similar to the new arriving tasks, if the overflow task is accepted, the system moves to the

state (i−1, j, A) with the rate of Psβ. Otherwise, the system moves to the state (i+1, j, A)

which means the overflow task is added to the waiting tasks. In this case, if the queue is

full, system moves from state (Lq, j, A) to (Lq, j, Ro) with the rate of β(1−Ps). Then, the

system goes back to (Lq, j, A) with rate of η and the task is rejected.

In this approach of RAM, the task blocking probability, Pbq, which is due to having full
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Figure 5.4: RAM: Overflow tasks have full priority over new arriving tasks.

RAM module, is computed as

Pbq =

Lq−1
∑

i=0

π(i, Lq, A) +

Lq
∑

j=0

∑

k∈S2

π(Lq, j, k) + π(0, Lq, RN) (5.1)

where S2 = {A,Ro}.

The task rejection probability, Pbr, which is the rejection due to insufficient resources,

is calculated as:

Pbr =
β(1− Ps)

η
π(0, Lq, RN) +

Lq
∑

j=1

β(1− Ps)

η
π(Lq, j, Ro) (5.2)

129



Chapter 5: Prioritization of Overflow Tasks to Improve Performance of Mobile Cloud
The total rejection probability, Prj , is the sum of the two above parameters:

Prj = Pbq + Pbr (5.3)

The Queueing Model of Resource Allocation with Threshold-based Priority of Over-

flow Tasks

In order to decrease the waiting time of new arrivals and giving them more opportu-

nity to have access to resources, we have followed a second approach. In this approach,

overflow tasks have threshold-based priority over new arrivals, i.e., new arrival tasks and

overflow tasks will be served based on the probabilities of PN and Po respectively until the

number of waiting overflow tasks reaches a threshold, Tr. After this threshold, the overflow

tasks have the full priority in the system and new arrivals should wait as long as number of

waiting overflow tasks is larger than the threshold. PN is calculated as PN = λ
λ+Oo

and Po

is obtained as Po =
Oo

λ+Oo
.

In Fig. 5.5, the vertical direction demonstrates the overflow tasks waiting in the queue.

The horizontal direction illustrates the new incoming tasks waiting in the queue to get

served. The maximum number of waiting tasks is Lq. The states are labeled similar to the

first approach.

In this case, new arriving tasks can get service in the horizontal line direction while the

number of waiting overflow tasks is less than a threshold (i ≤ Tr) and overflow tasks do

not have priority over the new incoming tasks. When the number of waiting overflow tasks

is larger than Tr, new arrivals must wait until this number gets less than Tr. The dashed

states illustrate the case of new incoming task rejection and the corresponding states are
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represented as (i, j, RN ) where i ≤ Tr. The new tasks arrive with rate of λ. If the task is

accepted, the system moves to the state (i, j−1, A) with the rate of PNPsβ. Otherwise, the

system moves to (i, j + 1, A) and the task waits in queue. In this case, if the queue is full,

system moves to the state of (i, Lq, RN) with the rate of β(1 − PNPs) and after rejecting

the task, system will move to state (i, Lq, A) with clean up rate of η.

It can be seen that in the horizontal direction lines with a number of line less than or

equal to Tr, both type of tasks get same type of service; whereas in the horizontal direction

lines beyond the threshold, new incoming tasks arrive with rate of λ and they only wait

for the number of waiting overflow tasks get less than the threshold value (i ≤ Tr) to be

served.

The overflow tasks can get service in all vertical line directions and they have access

to the resources without considering whether the new arrivals are permitted to access the

resources or not. Thus, overflow tasks have a higher priority than new arriving flow. The

case of overflow task rejection is represented in the dotted states which are represented as

(i, j, Ro). The overflow tasks reach in RAM with Oo rate. If the overflow task is accepted,

the system moves to the state (i− 1, j, A) with the rate of PoPsβ or Psβ; this rate depends

on i. if i ≤ Tr, the rate is PoPsβ and if i > Tr, the rate is Psβ. On the other hand, if task

is rejected, the system moves to (i + 1, j, A) and the overflow task is added to the waiting

tasks. In this case, if the queue is full, system moves from state (Lq, j, A) to (Lq, j, Ro)

with the rate of β(1 − Ps). Then, the system goes back to (L − q, j, A) with rate of η and

the task is rejected.

In this case, task blocking probability, Pbq and task rejection probability Pbr are calcu-
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Figure 5.5: RAM: Overflow tasks have a threshold-based priority over new arriving tasks.

lated as follows:

Pbq =
Tr
∑

i=0

∑

k∈S1

π(i, Lq, k) +

Lq
∑

j=0

∑

k∈S2

π(Lq, j, k) (5.4)

where S1 = {A,RN} and S2 = {A,Ro}.
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Pbr =
Tr
∑

i=1

β(1− PNPs)

η
π(i, Lq, RN ) +

Lq
∑

j=1

β(1− Ps)

η
π(Lq, j, Ro) (5.5)

Total rejection probability, Prj , is the sum of Pbq and Pbr.

5.2.2 The Queueing Model of Virtual Machine Provisioning

In the cloud datacenter, each mobile device is associated with a cloud clone, which

runs on VMs that can execute mobile applications on behalf of the mobile device. Our

default setting for resource allocation is using only one VM which clones the data and

applications of the mobile device called primary server. The primary server is always

online, waiting for the mobile device to connect to it. If the mobile application needs

more computation resources, system will use the second type of VMs. These VMs, called

secondary servers, in general do not clone the data and applications of a specific mobile

device and can be allocated to any user on demand. When the mobile device connects to

the cloud, it communicates with the primary server which in turn manages the secondaries,

informing them that a new client has connected. All interactions between the mobile device

and the primary server are as cloud user-server, but now the primary server behaves as a

(transparent) proxy for the secondaries. Every time when the mobile device asks for service

requiring more than one VM, the primary server resumes the needed number of secondary

clones.

We use the semantics of VM forking to clone the primary and secondary servers. The

VM fork abstraction lets an application take advantage of cloud resources by forking mul-
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tiple copies of its VM. VM fork preserves the isolation and ease of software development

associated with VMs [40]. The basic idea behind VM forking is similar to the familiar

process fork: a parent VM (in our case primary server) issues a fork call which creates a

number of clones, or child VMs (secondary servers). Each of the forked VMs proceeds

with an identical view of the system, but using a unique identifier (vmid) allows them to

be distinguished from one another and from the parent. However, each forked VM has its

own independent copy of the operating system and virtual disk, and state updates are not

propagated between VMs. Forked VMs are entities whose memory image and virtual disk

are discarded once they exit. Any application-specific state or values they generate must

be explicitly communicated to the parent VM, for example by message passing or via a

distributed file system. VM fork has to be used with care as it replicates all the processes

and threads of the parent VM; if multiple processes within the same VM simultaneously

invoke VM forking, conflicts can happen. Therefore, VM fork should be used in VMs that

have been customized to run a single application or perform a specific task. Upon VM fork,

each child is configured with a new IP address based on its vmid, and it is placed on the

same virtual subnet as the VM from which it was created.

Regarding to the dynamic demands of mobile service requests, we assume that number

of tasks in a job varies randomly during the time that job is in service. The arrival of the

jobs to the system is according to the Poisson distribution with the rate of λ and arrival rate

to each PM is a Poisson process with the rate of λi. A new arriving job initially demands

service for a single task. A job generates random number of tasks according to a Poisson

process with the rate of λci during its service time. Each task requires a VM for its execution

and task execution times are exponentially distributed. Service time of a job begins with
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its arrival to the system and it is completed when there are no more tasks belonging to that

job left in the system.

The proposed VMM develops the instantiation, provisioning and deployment of VMs

on PMs. The service time is corresponding to the task execution time of the allocated VM

and time spent on generation of overflow in PMs. The model provisions all the tasks of a

job request on a single PM.

Fig. 5.6 depicts the VMM model in a PM where the PM can accept up to three jobs.

We have developed a multi-dimensional CTMC to model the accommodation of jobs. Each

state is labeled as (i, j, k)where i indicates the jobs waiting in the PM‘s queue to get served,

j denotes the number of primary servers in service process or in general, the number of

jobs being served on the PM and k denotes the number of secondary servers which are

serving a job. Each PM can host up to m VMs. Mean service rates of primary VMs

and secondary VMs are respectively represented as µ and d and they are exponentially

distributed. Oi denotes the incoming overflow rate which is directed from RAM to the PMs

and Oo represents the overflow rate which is generated in the PM and will be forwarded to

RAM for reallocation process. ϕ is the instantiation rate of a VM and it is also considered

as the transition rate of adding a new serving job in the PM; as can be seen in Fig. 5.6,

this transition rate is not constant through the Markov system and it varies according to

the number of jobs which are in service in the PM. The details of the transition rate are

presented later in this section. The arrival rate to each PM, λi, is computed as

λi =
λ(1− Pbq)

N
(5.6)
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where Pbq is the blocking probability obtained from RAM and N is the number of PMs in

the system.

In Fig. 5.6, the main plane of the multi-dimensional Markov model illustrates the wait-

ing queues and serving status of primary VMs. The horizontal rows represent how many

primary tasks, more accurately how many mobile job requests, are waiting in line to get

served; vertical rows are corresponding to the number of jobs in service.

In the secondary task queues which are branched off from the main plane of the Markov

model, forked tasks are generated according to Poisson distribution with the rate of λci. The

mean service rate, d, is exponentially distributed. The maximum length of the secondary

or forked task queue can be L which in this model we have considered: L = 4, i.e., every

job is assigned to a primary VM and can get a maximum of 4 secondary VMs. The forking

time is included in the service time of the secondary task queues.

The secondary task queues are modeled as Birth-Death queueing systems with finite

population, L-server case (M/M/L//L). This queueing system is inspired by the Birth-

Death queueing systems with finite population presented in [35]. The equilibrium proba-

bility, pk, which is the stationary state probability of being in the kth state of the queue, can

be obtained as

pk = p0

(

λci

d

)k (
L

k

)

(5.7)
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we compute pk for the states of 0 ≤ k ≤ L. p0 is calculated as

p0 =

[

L
∑

k=0

(

λci

d

)k (
L

k

)

]−1

=
1

(1 + λci/d)L
(5.8)

and pk is computed as

pk =











(λci
d )

k

(Lk)
(1+λci/d)L

0 ≤ k ≤ L

0 otherwise

(5.9)

The average number of secondary tasks in the queue is

Q =
L
∑

k=0

kpk =

L
∑

k=0

k
(

λci

d

)k (L
k

)

(1 + λci/d)L
=

Lλci/d

1 + λci/d
(5.10)

In order to decide the number of mobile job requests which can be accommodated on a

single PM, we have defined some intermediate parameters. We have a limitation over the

number of tasks in the job requests (i.e., L+ 1) and a constant number of VM available on

each PM (defined as m). Therefore, we can be sure that in case of m > L, at least one job

can be accommodated on a PM. The number of jobs with size of L+ 1 in a PM is at least

c =

⌊

m

L+ 1

⌋

(5.11)

Parameter c represents the minimum number of tasks which can be deployed on a PM.

However, if we consider c jobs accommodable on a PM, some of the VMs on the PM will

be underused. Since we want to make sufficient use of VMs, we go beyond c jobs and the

number of tasks which we have deployed on a PM is considered as c + c
2
. However, we

137



Chapter 5: Prioritization of Overflow Tasks to Improve Performance of Mobile Cloud
����� �����

�����

�

�

��

��

��

�����

�����

����
�

��� ��

� �����
��������

	�

����� �
��

�����

�����

����
�

��� ��

� �����
��������

	�

����� �
��

�����

�����

����
�

��� ��

���� �����
��������

	�

�����

�������

�

�

��

��

��

�������

�������

����
�

��� ��

� �������
��������

	�

������� �
��

�������

�������

����
�

��� ��

� �������
��������

	�

������� �
��

�������

�������

����
�

��� ��

������ �������
��������

	�

��

��

��

������

��������

��

��

��������

��������

����
�

��� ��
� ��������

��������
	�

��������
��

��������

��������

����
�

��� ��

� ��������
��������

	�

��������
��

��������

��������

����
�

��� ��

������� ��������
��������

	�

��

��

��

������

������

������

����
�

���

������
��������

	�

������

������

������

����
�

���

� ������
��������

	�

������

������

������

����
�

���

����� ������
��������

	�


	
� 
	
� 
	
� 
	
�


	
�
	
�
	
�

�
	
� �
	
� �
	
� �
	
�

�
	
��
	
��
	
�


	
� 
	
� 
	
� 
	
�


	
�
	
�
	
�


�


� 
� 
�


� 
� 
�


� 
� 
�


� 
� 
�


� 
� 
�


� 
� 
�
�


�

Figure 5.6: Virtual machine provisioning model of a PM with the ability to accept maxi-

mum three jobs.

have assumed that after deploying c jobs, the transition rate of moving to serve the next job

is less than the previous jobs.

In our case: m = 10 and L = 4, i.e., a task of a mobile user can acquire maximum 5

VMs (1 primary and 4 secondary VMs). Also, c =
⌊

10
5

⌋

= 2 and the number of tasks on a

PM is: 2 + 1 = 3 which is the number we have used in the provisioning module illustrated

in Fig. 5.6.

As can be seen, the transition rate in not constant in VMM: if number of current tasks

on a PM is less than or equal to c, the transition rate is ϕ which corresponds to instantiation

rate and we assume the instantiation time is equal to 1 sec; if number of current tasks hosted
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in a PM is more than c, the transition rate is ϕi,x and is obtained as

ϕi,x = Pti,x · ϕ (5.12)

where x indicates the number of served jobs more than c. In the case illustrated in Fig .5.6,

x is equal to 1. Pti,x is the transition coefficient corresponding to level x where i jobs are

waiting in line and is computed as

Pti,x =

c+x
∑

h=1

L
∑

k=Q

p(i, jh, k)

c+x
∑

r=1

L
∑

k=1

p(i, jr, k)

(5.13)

where (c + x) is the number of primary VMs until the horizontal level x. Q is the average

number of expected secondary tasks in a single secondary queue and its value is calculated

as (5.10). In the nominator of (5.13), with (c + x) jobs under service and i jobs waiting

in line, the sum of steady-state probabilities where the length of each secondary queue is

larger thanQ is calculated and in denominator, the sum of steady-state probabilities for full

length of each secondary queue is calculated.

The probability that job request cannot be deployed on the PM is calculated as

Pna = p(Lq, 0, 0) +
L
∑

k=1

c+ c
2

∑

j=1

p(Lq, j, k) +

Lq−1
∑

i=0

∑

y∈Φ

Py (5.14)

where p(i, j, k) indicates the steady-state probability of the corresponding state and Py is a

member of Φ.

Φ is a set of product of probability of states (one state from each job’s secondary queue

139



Chapter 5: Prioritization of Overflow Tasks to Improve Performance of Mobile Cloud
in the vertical direction) which the sum of their corresponding secondary VMs is more than

the capacity of secondary VMs on a PM. The probability that the total number of secondary

VMs in a PM gets more than a specific number is a combinatorial probability and it can be

computed as a sum of products in (5.14). Φ is represented as

Φ =







c+ c
2

∏

l=1

p(i, jl, kl)

∣

∣

∣

∣

∣

∣

c+ c
2

∑

l=1

kl > m− (c+
c

2
)







(5.15)

wherem− (c+ c
2
) denotes the number of allowed secondary VMs on a PM.

The successful provisioning probability can be obtained from

Ps = 1− PN
na (5.16)

Finally, the overflow rate generated in a PM, Oo, is calculated as

Oo =

(λi/µ)
c+ c

2

(c+ c
2
)!
· (λci/d)

m−(c+ c
2 )

[m−(c+ c
2
)]!

c+ c
2

∑

i=0

m−(c+ c
2
)

∑

j=0

(λi/µ)i

i!
· (λci/d)j

j!

(5.17)

In order to obtain Oo, we have computed the probability that a job request is blocked

due to lack of resources. We have been inspired by Erlang B formula and the truncation of

a system consisting two independent queues in a multi-dimensional Markov system [6] to

determine this rate.

Algorithm 7 demonstrates how we have solved the VMM module and obtained its pa-

rameters. In Section 5.2.3, we will discuss the successive iteration model of RAM and
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VMM. Algorithm 7 will only be deployed for one time during the first iteration of the inte-

grated model. During the next iterations of the integrated model, same transition rates will

be used in VMM module.

In Algorithm 7, first, we assume that all the transition rates in the module are equal to

(ϕ) and we solve the model using this rate and obtain the steady-state probability of all

the states and overflow rate; then, we calculate the Pti,x for every level after the c jobs in

the system; according to these new transition rates, we solve the module and we compute

the new values of steady-state probability of all the states and using these values, we can

calculate Ps. Overflow rate is independent of the steady-state probabilities; therefore, it is

not needed to calculate it again.

Algorithm 7 First Time Solving of VMMModule

Use basic transition/instantiation rate (ϕ) to solve the sub-model;
Compute outgoing overflow rate, Oo;

Calculate Pti,x coefficient for every corresponding state of i and level of x;
Solve the module with new transition rates (ϕ or ϕi,x);
Calculate Ps in the new solved sub-model;

5.2.3 The Integrated Model

The overall model, consists of two interactive stochastic modules. This reduces com-

plexity of the model itself but the computational complexity of solving the model is solved

via successive fixed point iteration. The associated pseudocode is shown in Algorithm 8. It-

eration ends when the difference between the values of probabilities in successive iterations

drops below a predefined threshold (∆ = 10−6).

The interactions among modules are presented in Fig. 5.7. VMM computes the suc-

cessful provisioning probability (Ps) and also the overflow rate (Oo). Success provisioning
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Figure 5.7: Interaction of provisioning modules.

probability and overflow rate are used as input parameters to RAM. On the other hand,

RAM computes the task blocking probability, Pbq, which is the input parameter to VM pro-

visioning module. Note that only during the first iteration, VM provisioning module will

execute Algorithm 7 to find the transition rates.

Algorithm 8 The Integrated model Algorithm

Input: Initial successful provisioning probability and overflow rate: Ps0, Oo0;

Output: Blocking probability in the RAM: Pbq;

count = 0; maximum = 30; ∆ = 1;
Pbq0 ←− RAM (Ps0, Oo0);
while ∆ ≥ 10−6 do

count←− count +1; Ps ←− VMM (Pbq0);
Oo ←− VMM (Pbq0);
Pbq1 ←− RAM (Ps, Oo);
∆ ←− |(Pbq1 − Pbq0)|;
Pbq0 ←− Pbq1;

if count == maximum then

break;

end if

end while

if count == maximum then

return -1;

else

return Pbq0;

end if
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5.3 Performance Evaluation

The proposed model is solved using Maple 15 [26].

To evaluate the performance of the proposed mobile cloud system, we have solved the

model for four scenarios. First, we kept the mean service time constant and varied task

arrival rate; in this case, we have analyzed the effects of incoming mobile tasks on three

important metrics, blocking probability, total delay and utilization. Second, we kept the

task arrival rate constant but varied mean service time; in this case we investigate the impact

of service time on blocking probability and total delay imposed by the cloud center. In both

of these scenarios, the maximum length of the secondary task queue or in other words, the

number of forked tasks accepted in a job, L, is equal to 4. Note that size of a job is equal

to L + 1. In the third scenario, we kept mean service time and task arrival rate constant

and varied L. We have analyzed the impact of changing the maximum number of accepted

tasks in a job on blocking probability and total delay. In the fourth scenario, we evaluate

the effect of changing threshold location in overflow queue on blocking probability in the

case of threshold-based priority; in this scenario, arrival rate, mean service time and L are

constant and threshold location is changed.

To facilitate comparison under different combination of fixed and variable independent

variables, we have plotted the diagrams as functions of offered load, computed as ρ =

λ
m·N ·µ

, wherem, the maximum number of VMs running on a single PM is assumed to be 10

and N , the total number of PMs in the system is 100. Also, we have assumed that Lq = 50

and except in fourth scenario represented in Fig. 5.15 which in threshold is variable, in

other cases Tr = 30.
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5.3.1 Task Blocking Probability

Task blocking probability obtained in two first scenarios is shown in Figs.5.8 and

5.9. As expected, probability of task blocking increases with the offered load. Overflow

tasks are given priority and, consequently, easier access to resources under both full and

threshold-based priority mechanisms, which is why the blocking probability is much lower

for such tasks. However, when threshold-based priority is applied, blocking probability

for newly arrived tasks is noticeably lower, while that for overflow tasks is slightly higher.

This indicates that the performance for one or the other type of tasks may be adjusted within

certain limits. In the worst case, less than 4of overflow tasks are blocked.

We have also investigated the blocking probability under constant offered load but with

a variable limit to the number of secondary tasks L (i.e, third scenario); the results obtained

under both service policies are shown in Fig. 5.10. Note that the case L = 0 corresponds

to the absence of secondary tasks which, by extension, means that there are no overflow

tasks; consequently, there is no corresponding data value for threshold-based priority curve.

Again, new arriving tasks suffer a higher blocking rate which slowly increases with the task

forking limit L; overflow tasks, on the other hand, are not affected much due to the dual-

queue prioritization mechanism presented above. As before, threshold-based prioritization

provides much better performance for new tasks than its full priority counterpart. We note

that a rough upper bound for the probability that a job does not complete because a forked

task is ultimately blocked may be obtained as the product of mean length of secondary task

queue and probability of overflow, PnaQ.

144



Chapter 5: Prioritization of Overflow Tasks to Improve Performance of Mobile Cloud

Overflow Tasks
New Arriving Tasks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
rho

(a) Task Blocking Probability in case of full pri-
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(b) Task Blocking Probability in case of

threshold-based priority (Tr = 30).

Figure 5.8: Task Blocking Probability wrt constant service time and variable arrival rate in

case of giving full and threshold-based priorities to overflow tasks. Service time = 1 min.

Variable task arrival rate (100-1300 tasks/min). L = 4.
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(b) Task Blocking Probability in case of

threshold-based priority (Tr = 30).

Figure 5.9: Task Blocking Probability wrt constant arrival rate and variable service time

in case of giving full and threshold-based priorities to overflow tasks. Arrival rate = 250

tasks/min. Variable service time (30-180 sec). L = 4.

5.3.2 Mean Task Delay

As for the mean task delays, threshold-based prioritization offers lower values (i.e.,

better performance), as can be seen in Figs. 5.11, 5.12 and 5.13. As can be expected, mean

delays increase rather sharply with the offered load. As the system operates well below
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threshold-based priority (Tr = 30).

Figure 5.10: Task Blocking Probability wrt constant service time and variable arrival rate

in case of giving full and threshold-based priorities to overflow tasks. Arrival rate = 1300

tasks/min. Service time = 1 min. Variable L (0–4).

saturation, rise in delay values is approximately linear. In case of variable task forking

limit, the rise is somewhat milder, but this may be due to the comparatively low value of

offered load utilized to generate data for Fig. 5.13. We note that for the same offered load

in the both priority cases, the cloud center generally appears to be more sensitive to the

task arrival rate than to mean service time. This is due to the overhead imposed by the

waiting times and provisioning processes which increases with the number of tasks but is

independent of the task service time.

5.3.3 Utilization

Server utilization is shown in Fig. 5.14. Under both prioritization policies, utilization

increases with the offered load. As the system does not enter saturation, the rate of rise

is approximately linear in both cases, although some flattening may be observed at offered

load ρ = 0.7 and above. We note that utilization is slightly lower when full priority is given

to the overflow tasks, compared to the threshold-based policy, since the number of overflow
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Figure 5.11: Total Delay Probability wrt constant service time and variable arrival rate in

case of giving full and threshold-based priorities to overflow tasks. Service time = 1 min.

Variable task arrival rate (100-1300 tasks/min). L = 4.
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(b) Total Delay in case of threshold-based priority

(Tr = 30).

Figure 5.12: Total Delay Probability wrt constant arrival rate and variable service time

in case of giving full and threshold-based priorities to overflow tasks. Arrival rate = 250

tasks/min. Variable service time (30-180 sec). L = 4.

tasks is low.
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Figure 5.13: Total Delay wrt constant service time and variable arrival rate in case of giving

full and threshold-based priorities to overflow tasks. Arrival rate = 250 tasks/min. Service

time = 1 min. Variable L (0–4).
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Figure 5.14: Utilization wrt constant service time and variable arrival rate in case of giving

full and threshold-based priorities to overflow tasks. Service time = 1 min. Variable task

arrival rate (100-1300 tasks/min). L = 4.
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Figure 5.15: Task Blocking Probability wrt constant service time and variable arrival rate

in case of giving full and threshold-based priorities to overflow tasks. Arrival rate = 1000

tasks/min. Service time = 1 min. L = 4. Variable Tr (25–40)

5.3.4 The Impact of Queue Threshold Tr

Fig. 5.15 shows the effect of queue threshold in the threshold-based prioritization policy

on task blocking probability. As the threshold moves closer to the queue size of Lq = 50,

value of the blocking probability for new and overflow tasks are getting closer to each other

as the probability that the threshold will be exceeded diminishes. Conversely, lower values

of the threshold push the system to behave in a manner closer to that under full priority

in fact, full priority policy is equivalent to a threshold-based one with threshold value of

Tr = 0.

5.3.5 Task Blocking Probability Through Iterations

Fig.5.16 illustrates task Blocking Probability of new incoming and overflow tasks through

iterations in case of giving full and threshold-based priorities to overflow tasks. The value

of last iteration is considered as the final value of each parameter.

Overall, the threshold-based policy allows the cloud operator to fine-tune the perfor-
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Figure 5.16: Task Blocking Probability through iterations in case of giving full and

threshold-based priorities to overflow tasks. Arrival rate = 1300 tasks/min. Service time =

1 min. L = 4.

mance of the cloud, as there are a number of parameters which can be adjusted to provide

the desired values, or ranges thereof, for critical performance indicators such as mean delay

and task blocking.
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5.4 Chapter Summary

We have proposed a solution for resource allocation of on-demand job requests in mo-

bile cloud computing. We have developed two priority schemes for resource allocation in a

server pool based on giving different priorities to the overflow tasks including full priority

of overflow tasks and the threshold-based priority of overflow tasks. Unlike most of ex-

isting works that either rely on a linear programming formulation or on intuitively derived

heuristics that offer no theoretical performance guarantees, our model does not sacrifice the

complexity of offloading problem just to make it solvable. Instead, complexity is addressed

through the use of two interacting stochastic models which are solved through fixed point

iteration to achieve any desired error level. We have investigated the impact of task arriving

rate, service time and the size of offloaded job on the performance metrics for both priority

schemes. Also, we have evaluated the effect of threshold location on the threshold-based

priority scheme. Our results confirm that threshold-based priority presents better system

performance than full priority of overflow tasks.

Also, we have observed that the performance metrics do not change linearly with regard

to the offered load, which indicates that finding the settings of parameter values that would

lead to optimal values of performance metrics is non-trivial.

A continuation to the work presented in this chapter can be the modification of threshold-

based priority scheme in order to adjust the location of threshold in the overflow queue.
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Conclusion

In this thesis we have examined the behavior of an IaaS cloud data center in which

servers are partitioned into pools of hot, warm, and cold machines. This evaluation has

been performed in different operating areas of linear, transition to saturation and satura-

tion. We have observed that the manner in which servers are partitioned in the pools affects

the performance, sometimes even more than the variations of offered load. We have also

demonstrated that the task arrival rate is more critical parameter affecting the performance

of the cloud datacenter than mean task service time, due to the overhead incurred in re-

source allocation and provisioning. We have also shown that the energy expenditure is

highly dependent on the manner in which servers are partitioned into pools.

Also, in other attempt where PMs are partitioned into a hot and a cold pool, we have

analyzed the effects of pool threshold and mean look up time in hot and cold pools on

the performance. Our results confirm that the system should operate well below saturation

in order to provide acceptable level of performance. Moreover, we have shown that the

performance is more sensitive to the mean look up time for the PMs in the cold pool.
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Next, we have proposed two task admission control algorithms to prevent the cloud

system getting into the saturation region. These algorithms are based upon establishing

thresholds for task arrival rate and task blocking probability. Our simulation results confirm

that the proposed admission control algorithms improve system performance.

Furthermore, we have proposed two task admission control algorithms utilizing two

controlling parameters, full rate task acceptance threshold and filtering coefficient. The

first algorithm is lightweight and it is appropriate for systems which experience small steps

of change in task arrival rate. This algorithm is based on long-term estimation of aver-

age utilization and offered load. The second algorithm is efficient for the systems with

unexpected arrival rate, is more computationally-intensive and is based on instantaneous

utilization. Our results confirm that both of the task admission mechanisms maintain the

cloud’s stability. Also, we have observed that in different ranges of incoming task rate and

mean service time, the average offered load will result in the similar average performance

in the cloud system.

We have proposed a solution for resource allocation of on-demand offloaded jobs in

mobile clouds. This solution can be also used in other clouds which their users’ requests

fork new tasks. We have developed two priority schemes for resource allocation in a server

pool based on giving different priorities to the overflow tasks. The overflow tasks are the

forked tasks that may not find sufficient resources in the designated PM. The two priority

schemes include full priority of overflow tasks and the threshold-based priority of overflow

tasks. We have evaluated the impact of task arriving rate, service time and the size of of-

floaded job on the performance metrics for both priority schemes. Also, we have examined

the effect of threshold location on the threshold-based priority scheme. Our results con-
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firm that threshold-based priority presents better system performance than full priority of

overflow tasks.

Our next step in providing resource allocation for mobile clouds will be the modifica-

tion of threshold-based priority scheme in order to adjust the location of threshold in the

overflow queue. Finding the best location of threshold is an optimization problem and the

position can change according to the performance metrics, different policies adopted by

cloud computing providers or cloud system’s requirements. Also, we have observed that

the performance metrics do not change linearly with regard to the offered load. Therefore,

finding the optimal position of the performance metrics is difficult. One approach can be

the segmentation of the performance metrics into linear regions and solve the optimization

problem according to these linear regions.
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Abbreviations and Symbols

A.1 Abbreviations

ADP Approximate Dynamic Programming

AP Access Point

BMHA Batch Mode Heuristic Scheduling Algorithm

CPA Cloud Personal Assistant

CTMC Continuous Time Markov Chain

DES Discrete Event Simulation

EDF Earliest Deadline First

EWMA Exponentially Weighted Moving Average

FCFS First Come First Served

FIFO First-In, First-Out

FPTAS Fully Polynomial Time Approximation Scheme
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GAMS General Algebraic Modeling System

GPRS General Packet Radio Service

IaaS Infrastructure-as-a-Service

IEEE Institute of Electrical and Electronics Engineers

LMMF Lexicographically Max- Min Fair

LP Linear Programming

MAC Medium Access Control

MFTF Most Fit Task First

MDP Markov Decision Process

NIST National Institute of Standards and Technology

PaaS Platform-as-a-Service

PGF Probability Generating Function

PHY Physical Layer

PM Physical Machine

PMM Pool Management Module

PMSM Pool Management Sub-Model

QoS Quality of Service

RAM Resource Allocation Module

RASM Resource Allocation Sub-Model

RED Random Early Detection

RR Round Robin
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SaaS Service-as-a-Service

SJF shortest-Job-First

SLA Service Level Agreements

SMDP Semi-Markov Decision Process

WLAN Wireless LAN

VM Virtual Machine

VMM VM Provisioning Module

VMPM Virtual Machine Provisioning Module

VMSM VM Provisioning Sub-Model

VNE Virtualized Network Embedding

A.2 Symbols and Corresponding Descriptions

N Number of servers

m Number of available VMs on the PM

λ, λt Incoming task rate

γ Partitioning coefficient of hot, warm and cold servers

ρ Offered load

µtot Overall service rate

Pblk Blocking probability

Pk Probability of occurrence of state k
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λorg Full rate of incoming task rate

λf Accepted rate of task arrivals

Fcf Filtering coefficient

ρav Average utilization of the system

T Threshold of full rate task acceptance rate

R System capacity / Thresholds of full rate task rejection

Nov Number of waiting overflow tasks in RAM

Uthr Utilization threshold

u′

av Estimated average utilization

uc Instantaneous utilization

Mthr Threshold margin

ρthr Offered load threshold

ρav Average offered load

1/β Mean look up time to find a PM

1/η Mean clean up time in RAM

λi Primary task arrival rate into the PMs

λci Secondary task generation rate in a job

µ Mean service rate of primary tasks

d Mean service rate of secondary tasks

Lq Size of queue/queues in RAM

L Maximum number of secondary tasks in a job
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c Minimum number of jobs which can be accommodated on a PM

Oi Incoming overflow rate from the RAM to VMM

Oo Outgoing overflow rate from the VMM to RAM

Tr Threshold of number of waiting overflow tasks in RAM

Po Probability of giving service to the overflow tasks

PN Probability of giving service to the new incoming tasks

Ps Successful provisioning probability

Pbq Blocking probability due to full RAM

Pbr Rejection probability due insufficient resources

Prj Total rejection probability

ϕ Basic instantiation/ Full transition rate

ϕx Partial transition rate
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Publications

B.1 Journal Papers

• Submitted, under review: H. Khojasteh, J. Misic, and V. B. Misic. Prioritization of

Overflow Tasks to Improve Performance of Mobile Cloud, In IEEE Transactions on
Cloud Computing (TCC) 2016.

• To appear in: H. Khojasteh and J. Misic. Task Admission Control Policy in Cloud

Server Pools Based on Task Arrival Dynamics, In Wireless Communications and
Mobile Computing (WCMC) 2016.

• V. B. Misic, M. S. I. Khan, Md. M. Rahman, H. Khojasteh and J. Misic. Simple

Solutions May Still Be Best: On the Selection of Working Channels in a Channel-

Hopping Cognitive Network, In Wireless Communications and Mobile Computing
(WCMC) 2013.

• H. Khojasteh, J. Misic, and V. B. Misic. Integration of an IEEE 802.15.4 RFID
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Network with Mobile Readers with a 802.11 WLAN, In Wireless Communications
and Mobile Computing (WCMC) 2012.

B.2 Conference Papers

• H. Khojasteh, J. Misic and V. B. Misic. Task Filtering as a Task Admission Control

Policy in Cloud Server Pools, In IEEE International Wireless Communications and
Mobile Computing Conference (IWCMC 2015), Dubrovnik, Croatia, August 2015.

• H. Khojasteh, J. Misic and V. B. Misic. Task Admission Control for Cloud Server

Pools, In IEEEWireless Communications and Networking Conference (WCNC 2015),
New Orleans, LA, United States, March 2015.

• H. Khojasteh, J. Misic and V. B. Misic. Analyzing the Impact of Provisioning Over-

head Time in Cloud Computing Centers, In IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE2014), Toronto, ON, Canada, May 2014.

• H. Khojasteh, J. Misic and V. B. Misic. Characterizing Energy Consumption of IaaS

Clouds in Non-saturated Operation, In IEEE INFOCOM 2014 Workshop on Mobile
Cloud Computing, Toronto, ON, Canada, April 2014.

• H. Khojasteh, J. Misic and V. B. Misic. A Two-Tier Integrated RFID/Sensor Network

with a WiFi WLAN, In IEEE International Wireless Communications and Mobile
Computing Conference (IWCMC 2012), Limassol, Cyprus, August 2012.

• J. Misic, H. Khojasteh, N. Khan and V. B. Misic. CSCD: A Simple Channel Scan

Protocol to Discover and Join a Cognitive PAN, In IEEE Wireless Communications
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and Networking Conference (WCNC 2012), Paris, France, June 2012.

• J. Misic, N. Khan, H. Khojasteh and V. B. Misic. Towards an Efficient Rendezvous

Protocol for a Cognitive PAN, In IEEE International Conference on Communications
(ICC 2012), Ottawa, ON, Canada, June 2012.

• H. Khojasteh and A. Abhari, Mobile Mash-up Model Based on Hybrid P2P Using

Ajax Technology. In Spring Simulation Multiconference (SCS/SpringSim10 Poster
Workshop in Collaboration with ACM/SIGSIM), Orlando, FL, United States, April
2010.

B.3 Book Chapters

• H. Khojasteh, J. Misic and V. B. Misic. Task Admission Control for Cloud Server

Pools, A chapter in Advances in Mobile Cloud Computing Systems, F. R. Yu and V.
Leung, editors, CRC Press (Taylor & Francis Group), December 2015.
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Related Scripts

C.1 Resource Allocation Model in a Pooled IaaS cloud

#Algorithm 1 Successive Substitution Method

#Input: Initial success probabilities in pools: Ph0; Pw0; Pc0

#Input: Initial idle probability of a hot PM: Pi0

#Output: Blocking probability in Global Queue: BPq

#counter=0; max=30; diff=1

Digits:=20:

differc:=1:

maxim:=30:

Lq:=50;

lambdast:=1000/3600:

alphah:=0.1736:

alphaw:=0.2291:

alphac:=0.2291:

phih:=0.021:
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phiw:=0.027:

phic:=0.03:

Ph0:= 0.5:

Pw0:= 0.8:

Pc0:= 0.9:

Pi0:= 0.4:

Nh:=15: Nw:=10: Nc:=10:

energyfact:= 0.5:

Ntotal:=Nh+Nw+Nc:

mu:=1/2400:

# BPq0 <-RASM(Ph0,Pw0,Pc0) (Fig2: Resource Allocation Sub-model)

rho1:=(alphac+lambdast+(Ph0*alphah)+(Pw0*alphaw))/(alphah+lambdast);

rho2:=(alphah*(1-Ph0)+lambdast)/(alphaw+lambdast);

rho3:=(alphaw*(1-Pw0)+lambdast)/(alphac+lambdast);

lastrho1:=(((lambdast+(Ph0*alphah)+(Pw0*alphaw))/(alphaw))ˆLq)/Lq!;

lastrho2:= (((alphah*(1-Ph0)+lambdast)/alphaw)ˆLq)/Lq!;

lastrho3:= (((alphaw*(1-Pw0)+lambdast)/alphac)ˆLq)/Lq!;

Gtrunc1:=sum((rho1ˆk1)/k1!, k1=0..Lq-1);

k1=’k1’:

Gtrunc2:=sum((rho2ˆk1)/k1!, k1=0..Lq-1);

k1=’k1’:

Gtrunc3:=sum((rho3ˆk1)/k1!, k1=0..Lq-1);

k1=’k1’:

Gtrunc:=Gtrunc1+Gtrunc2+Gtrunc3+lastrho1+lastrho2+lastrho3;

i:=’i’:

for i from 0 to 2 do

for j from 0 to Lq-1 do

if (i=0) then
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resiv[i][j]:= ((rho1ˆj)/j!)/Gtrunc;

elif (i=1) then

resiv[i][j]:= ((rho2ˆj)/j!)/Gtrunc;

else

resiv[i][j]:= ((rho3ˆj)/j!)/Gtrunc;

end if;

od;

od;

resiv[0][Lq]:=lastrho1/Gtrunc;

resiv[1][Lq]:=lastrho2/Gtrunc;

resiv[2][Lq]:=lastrho3/Gtrunc;

BPq0:= resiv[0][Lq]+resiv[1][Lq]+resiv[2][Lq];

# [Nh,Nw,Nc]<-PMM(Ph0, Pi0) (Fig5: Pool Management Sub-model)

Gtrunc:=0: Gtrunc1:=0: Gtrunc2:=0: Gtrunc3:=0: rho1:=0: rho2:=0: rho3:=0:

i:’i’: j:=’j’: k:=’k’: k1:=’k1’:

i:=Nh; j:=Nw; k:=Nc;

totalp:=0:

rho1:=FRw/RPi;

rho2:=RPi/FRw;

rho3:=(FRc+FRw)/(FRc+SU+RPi);

rho4:=(SU+FRw+RPi)/(SU+FRw+RPi);

rho5:=(SU+2*RPi)/(FRw+RPi);

SUw:=3: SUc:=2: RPi:=1: SU:=2:

FRw:=1/(lambdast*BPq0*(1-Ph0)+(1/SUw)):

FRc:=1/(lambdast*BPq0*(1-Ph0)+(1/SUc)):

Gtrunc1:=sum((rho1ˆk1)/k1!, k1=0..i+j-1);

k1:=’k1’:

Gtrunc2:=sum((rho2ˆk1)/k1!, k1=0..j-1);
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k1:=’k1’:

Gtrunc3:=sum((rho3ˆk1)/k1!, k1=j..j+k);

k1:=’k1’:

Gtrunc4:=sum((rho4ˆk1)/k1!, k1=j..j+k-1);

k1:=’k1’:

Gtrunc5:=sum((rho5ˆk1)/k1!, k1=j-1..j+k-2);

k1:=’k1’:

Gtrunc:= Gtrunc1+Gtrunc2+Gtrunc3+Gtrunc4+Gtrunc5;

mp:=’mp’:

Ncalculatori:=0:

Ncalculatorj:=0:

#Ncalculatork:=0:

for mp from 0 to i do

pmiv[i-mp][j][k+mp]:= ((rho1ˆmp)/mp!)/Gtrunc;

Ncalculatori := Ncalculatori+(i-mp)*pmiv[i-mp][j][k+mp];

Ncalculatorj := Ncalculatorj+j*pmiv[i-mp][j][k+mp];

#Ncalculatork := Ncalculatork+(k+mp)*pmiv[i-mp][j][k+mp];

od;

mp:=’mp’:

for mp from 0 to j-2 do

pmiv[0][j-mp][k+i+mp]:= ((rho1ˆ(mp+i))/(mp+i)!)/Gtrunc;

Ncalculatorj := Ncalculatorj+(j-mp)*pmiv[0][j-mp][k+i+mp];

#Ncalculatork := Ncalculatork+(k+i+mp)*pmiv[0][j-mp][k+i+mp];

od;

mp:=’mp’:

for mp from 0 to j-1 do

pmiv[i+mp][j-mp][k]:= ((rho2ˆmp)/mp!)/Gtrunc;

Ncalculatori := Ncalculatori+(i+mp)*pmiv[i+mp][j-mp][k];
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Ncalculatorj := Ncalculatorj+(j-mp)*pmiv[i+mp][j-mp][k];

#Ncalculatork := Ncalculatork+k*pmiv[i+mp][j-mp][k];

od;

mp:=’mp’:

for mp from 0 to k do

pmiv[i+j+mp][0][k-mp]:= ((rho3ˆ(mp+j))/(mp+j)!)/Gtrunc;

Ncalculatori := Ncalculatori+(i+j+mp)*pmiv[i+j+mp][0][k-mp];

#Ncalculatork := Ncalculatork+(k-mp)*pmiv[i+j+mp][0][k-mp];

od;

mp:=’mp’:

for mp from 0 to k-1 do

pmiv[i+j+mp][1][k-mp-1]:= ((rho4ˆ(mp+j))/(mp+j)!)/Gtrunc;

Ncalculatori := Ncalculatori+(i+j+mp)*pmiv[i+j+mp][1][k-mp-1];

Ncalculatorj := Ncalculatorj+pmiv[i+j+mp][1][k-mp-1];

#Ncalculatork := Ncalculatork+(k-mp-1)*pmiv[i+j+mp][1][k-mp-1];

od;

mp:=’mp’:

for mp from 0 to k-1 do

pmiv[i+j+mp-1][2][k-mp-1]:= ((rho5ˆ(mp+j-1))/(mp+j-1)!)/Gtrunc;

Ncalculatori := Ncalculatori+(i+j+mp-1)*pmiv[i+j+mp-1][2][k-mp-1];

Ncalculatorj := Ncalculatorj+2*pmiv[i+j+mp-1][2][k-mp-1];

#Ncalculatork := Ncalculatork+(k-mp-1)*pmiv[i+j+mp-1][2][k-mp-1];

od;

mp:=’mp’:

Nh:=Ncalculatori;

Nh:= ceil(Nh);

Ncalculatori:=0:

if (Nh=0) then
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Nh:=1:

end if;

Nw:=Ncalculatorj;

Nw:= ceil(Nw);

Ncalculatorj:=0:

if (Nw=0) then

Nw:=1:

end if;

Nc:= Ntotal-(Nh+Nw);

#while diff >= 10ˆ-6 do

Nhvaraverage := 0:

counter:=’counter’:

for counter from 1 to maxim while differc > 0.000001 do

# [Ph, Pi] <-VMPSM-hot(BPq0,Nh)

i:’i’: j:=’j’: k:=’k’: k1:=’k1’: k2:=’k2’: m:=10:

lambdah:=lambdast*(1-BPq0)/Nh:

Gtrunc1:=sum((((mu+lambdah)/(phih+lambdah))ˆk1)/k1!,k1=0..1);

k1:=’k1’:

Gtrunc2:=sum((((mu+lambdah)/(2*phih+lambdah))ˆk1)/k1!, k1=2..Lq);

k1:=’k1’:

Gtrunc3:=sum((((2*mu+lambdah+phih)/(phih+lambdah+mu))ˆk1)/k1!,k1=0..1);

k1:=’k1’:

Gtrunc4:=sum(sum((((k2*mu+lambdah+2*phih)/(2*phih+lambdah+(k2-1)*mu))ˆk1)

/k1!, k1=2..Lq),k2=2..m-1);

k1:=’k1’: k2:=’k2’:

Gtrunc5:=sum((((m*mu+lambdah+2*phih)/(phih+lambdah+(m-1)*mu))ˆk1)

/k1!,k1=0..Lq+1);

k1:=’k1’:
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Gtrunc6:=sum((((phih+lambdah)/(m*mu+lambdah))ˆk1)/k1!, k1=0..Lq);

k1:=’k1’:

Gtrunc:= Gtrunc1+Gtrunc2+Gtrunc3+Gtrunc4+Gtrunc5+Gtrunc6;

totalp:=0;

for t from 0 to 1 do

vmivh[t][1][0]:= ((((mu+lambdah)/(phih+lambdah))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 2 to Lq do

vmivh[t][2][0]:= ((((mu+lambdah)/(2*phih+lambdah))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 0 to 1 do

vmivh[0][t][1]:= ((((2*mu+lambdah+phih)/(phih+lambdah+mu))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 2 to Lq do

for n from 1 to m-1 do

vmivh[t][2][n]:= ((((n*mu+lambdah+2*phih)/

(2*phih+lambdah+(n-1)*mu))ˆt)/t!)/Gtrunc;

od;

od;

t:=’t’: n:=’n’:

vmivh[0][0][m-1]:= 1/Gtrunc;

for t from 0 to Lq do

vmivh[t][1][m-1]:= ((((m*mu+lambdah+2*phih)/

(phih+lambdah+(m-1)*mu))ˆt)/t!)/Gtrunc;

od;
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t:=’t’:

for t from 0 to Lq do

vmivh[t][0][m]:= ((((phih+lambdah)/(m*mu+lambdah))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

Bh:= sum(vmivh[Lq][2][t],t=0..m-2)+vmivh[Lq][1][m-1]+vmivh[Lq][0][m];

t:=’t’:

Ph:= 1-(BhˆNh);

# Pw <-VMPSM-warm(BPq0,Ph,Nw) (Similar to Fig4: VMPSM for a PM in hot pool)

i:’i’: j:=’j’: k:=’k’: k1:=’k1’: k2:=’k2’: m:=10:

lambdaw:=lambdast*(1-BPq0)*(1-Ph)/Nw:

Gtrunc1:=sum((((mu+lambdaw)/(phiw+lambdaw))ˆk1)/k1!,k1=0..1);

k1:=’k1’:

Gtrunc2:=sum((((mu+lambdaw)/(2*phiw+lambdaw))ˆk1)/k1!, k1=2..Lq);

k1:=’k1’:

Gtrunc3:=sum((((2*mu+lambdaw+phiw)/(phiw+lambdaw+mu))ˆk1)/k1!,k1=0..1);

k1:=’k1’:

Gtrunc4:=sum(sum((((k2*mu+lambdaw+2*phiw)/

(2*phiw+lambdaw+(k2-1)*mu))ˆk1)/k1!, k1=2..Lq),k2=2..m-1);

k1:=’k1’: k2:=’k2’:

Gtrunc5:=sum((((m*mu+lambdaw+2*phiw)/(phiw+lambdaw+(m-1)*mu))ˆk1)

/k1!,k1=0..Lq+1);

k1:=’k1’:

Gtrunc6:=sum((((phiw+lambdaw)/(m*mu+lambdaw))ˆk1)/k1!, k1=0..Lq);

k1:=’k1’:

Gtrunc:= Gtrunc1+Gtrunc2+Gtrunc3+Gtrunc4+Gtrunc5+Gtrunc6;

totalp:=0;

for t from 0 to 1 do
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vmivw[t][1][0]:= ((((mu+lambdaw)/(phiw+lambdaw))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 2 to Lq do

vmivw[t][2][0]:= ((((mu+lambdaw)/(2*phiw+lambdaw))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 0 to 1 do

vmivw[0][t][1]:= ((((2*mu+lambdaw+phiw)/(phiw+lambdaw+mu))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 2 to Lq do

for n from 1 to m-1 do

vmivw[t][2][n]:= ((((n*mu+lambdaw+2*phiw)/

(2*phiw+lambdaw+(n-1)*mu))ˆt)/t!)/Gtrunc;

od;

od;

t:=’t’: n:=’n’:

vmivw[0][0][m-1]:= 1/Gtrunc;

for t from 0 to Lq do

vmivw[t][1][m-1]:= ((((m*mu+lambdaw+2*phiw)/

(phiw+lambdaw+(m-1)*mu))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 0 to Lq do

vmivw[t][0][m]:= ((((phiw+lambdaw)/(m*mu+lambdaw))ˆt)/t!)/Gtrunc;

od;

t:=’t’:
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Bw:= sum(vmivw[Lq][2][t],t=0..m-2)+vmivw[Lq][1][m-1]+vmivw[Lq][0][m];

t:=’t’:

Pw:= 1-(BwˆNw);

# Pc <-VMPSM-cold(BPq0,Ph,Pw,Nc)

i:’i’: j:=’j’: k:=’k’: k1:=’k1’: k2:=’k2’: m:=10:

lambdac:=lambdast*(1-BPq0)*(1-Ph)*(1-Pw)/Nc:

Gtrunc1:=sum((((mu+lambdac)/(phic+lambdac))ˆk1)/k1!,k1=0..1);

k1:=’k1’:

Gtrunc2:=sum((((mu+lambdac)/(2*phic+lambdac))ˆk1)/k1!, k1=2..Lq);

k1:=’k1’:

Gtrunc3:=sum((((2*mu+lambdac+phic)/(phic+lambdac+mu))ˆk1)/k1!,k1=0..1);

k1:=’k1’:

Gtrunc4:=sum(sum((((k2*mu+lambdac+2*phic)/(2*phic+lambdac+(k2-1)*mu))ˆk1)

/k1!, k1=2..Lq),k2=2..m-1);

k1:=’k1’: k2:=’k2’:

Gtrunc5:=sum((((m*mu+lambdac+2*phic)/(phic+lambdac+(m-1)*mu))ˆk1)

/k1!,k1=0..Lq+1);

k1:=’k1’:

Gtrunc6:=sum((((phic+lambdac)/(m*mu+lambdac))ˆk1)/k1!, k1=0..Lq);

k1:=’k1’:

Gtrunc:= Gtrunc1+Gtrunc2+Gtrunc3+Gtrunc4+Gtrunc5+Gtrunc6;

totalp:=0;

for t from 0 to 1 do

vmivc[t][1][0]:= ((((mu+lambdac)/(phic+lambdac))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 2 to Lq do

vmivc[t][2][0]:= ((((mu+lambdac)/(2*phic+lambdac))ˆt)/t!)/Gtrunc;
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od;

t:=’t’:

for t from 0 to 1 do

vmivc[0][t][1]:= ((((2*mu+lambdac+phic)/(phic+lambdac+mu))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 2 to Lq do

for n from 1 to m-1 do

vmivc[t][2][n]:= ((((n*mu+lambdac+2*phic)/

(2*phic+lambdac+(n-1)*mu))ˆt)/t!)/Gtrunc;

od;

od;

t:=’t’: n:=’n’:

vmivc[0][0][m-1]:= 1/Gtrunc;

for t from 0 to Lq do

vmivc[t][1][m-1]:= ((((m*mu+lambdac+2*phic)/

(phic+lambdac+(m-1)*mu))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

for t from 0 to Lq do

vmivc[t][0][m]:= ((((phic+lambdac)/(m*mu+lambdac))ˆt)/t!)/Gtrunc;

od;

t:=’t’:

Bc:= sum(vmivc[Lq][2][t],t=0..m-2)+vmivc[Lq][1][m-1]+vmivc[Lq][0][m];

t:=’t’:

Pc:= 1-(BcˆNc);

# [Nh,Nw,Nc] <-PMM(Ph, Pi) (Fig5: Pool Management Sub-model)

# Not in use Nh:=10: Nw:=10: Nc:=10:
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Gtrunc:=0: Gtrunc1:=0: Gtrunc2:=0: Gtrunc3:=0: rho1:=0: rho2:=0: rho3:=0:

i:’i’: j:=’j’: k:=’k’: k1:=’k1’:

i:=Nh; j:=Nw; k:=Nc;

totalp:=0:

rho1:=FRw/RPi;

rho2:=RPi/FRw;

rho3:=(FRc+FRw)/(FRc+SU+RPi);

rho4:=(SU+FRw+RPi)/(SU+FRw+RPi);

rho5:=(SU+2*RPi)/(FRw+RPi);

totalpower:= 0;

SUw:=3: SUc:=2: RPi:=1: SU:=2:

FRw:=1/(lambdast*BPq0*(1-Ph)+(1/SUw)):

FRc:=1/(lambdast*BPq0*(1-Ph)+(1/SUc)):

Gtrunc1:=sum((rho1ˆk1)/k1!, k1=0..i+j-1);

k1:=’k1’:

Gtrunc2:=sum((rho2ˆk1)/k1!, k1=0..j-1);

k1:=’k1’:

Gtrunc3:=sum((rho3ˆk1)/k1!, k1=j..j+k);

k1:=’k1’:

Gtrunc4:=sum((rho4ˆk1)/k1!, k1=j..j+k-1);

k1:=’k1’:

Gtrunc5:=sum((rho5ˆk1)/k1!, k1=j-1..j+k-2);

k1:=’k1’:

Gtrunc:= Gtrunc1+Gtrunc2+Gtrunc3+Gtrunc4+Gtrunc5;

mp:=’mp’:

Ncalculatori:=0:

Ncalculatorj:=0:

#Ncalculatork:=0:
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for mp from 0 to i do

pmiv[i-mp][j][k+mp]:= ((rho1ˆmp)/mp!)/Gtrunc;

timeiv[i-mp][j][k+mp]:= (1/RPi)*((i-mp)*POWER_UNIT+j*energyfact*POWER_UNIT);

totalpower:= totalpower+timeiv[i-mp][j][k+mp];

Ncalculatori := Ncalculatori+(i-mp)*pmiv[i-mp][j][k+mp];

Ncalculatorj := Ncalculatorj+j*pmiv[i-mp][j][k+mp];

#Ncalculatork := Ncalculatork+(k+mp)*pmiv[i-mp][j][k+mp];

od;

mp:=’mp’:

for mp from 0 to j-2 do

pmiv[0][j-mp][k+i+mp]:= ((rho1ˆ(mp+i))/(mp+i)!)/Gtrunc;

timeiv[0][j-mp][k+i+mp]:= (1/RPi)*((j-mp)*energyfact*POWER_UNIT);

totalpower:= totalpower+timeiv[0][j-mp][k+i+mp];

Ncalculatorj := Ncalculatorj+(j-mp)*pmiv[0][j-mp][k+i+mp];

#Ncalculatork := Ncalculatork+(k+i+mp)*pmiv[0][j-mp][k+i+mp];

od;

mp:=’mp’:

for mp from 0 to j-1 do

pmiv[i+mp][j-mp][k]:= ((rho2ˆmp)/mp!)/Gtrunc;

timeiv[i+mp][j-mp][k]:= (1/FRw)*((i+mp)*POWER_UNIT+

(j-mp)*energyfact*POWER_UNIT);

totalpower:= totalpower+timeiv[i+mp][j-mp][k];

Ncalculatori := Ncalculatori+(i+mp)*pmiv[i+mp][j-mp][k];

Ncalculatorj := Ncalculatorj+(j-mp)*pmiv[i+mp][j-mp][k];

#Ncalculatork := Ncalculatork+k*pmiv[i+mp][j-mp][k];

od;

mp:=’mp’:

for mp from 0 to k do
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pmiv[i+j+mp][0][k-mp]:= ((rho3ˆ(mp+j))/(mp+j)!)/Gtrunc;

timeiv[i+j+mp][0][k-mp]:= (1/(FRc+SU+RPi))*((i+j+mp)*POWER_UNIT);

totalpower:= totalpower+timeiv[i+j+mp][0][k-mp];

Ncalculatori := Ncalculatori+(i+j+mp)*pmiv[i+j+mp][0][k-mp];

#Ncalculatork := Ncalculatork+(k-mp)*pmiv[i+j+mp][0][k-mp];

od;

mp:=’mp’:

for mp from 0 to k-1 do

pmiv[i+j+mp][1][k-mp-1]:= ((rho4ˆ(mp+j))/(mp+j)!)/Gtrunc;

timeiv[i+j+mp][1][k-mp-1]:= (1/(SU+FRw+RPi))*((i+j+mp+energyfact)

*POWER_UNIT);

totalpower:= totalpower+timeiv[i+j+mp][1][k-mp-1];

Ncalculatori := Ncalculatori+(i+j+mp)*pmiv[i+j+mp][1][k-mp-1];

Ncalculatorj := Ncalculatorj+pmiv[i+j+mp][1][k-mp-1];

#Ncalculatork := Ncalculatork+(k-mp-1)*pmiv[i+j+mp][1][k-mp-1];

od;

mp:=’mp’:

for mp from 0 to k-1 do

pmiv[i+j+mp-1][2][k-mp-1]:= ((rho5ˆ(mp+j-1))/(mp+j-1)!)/Gtrunc;

timeiv[i+j+mp-1][2][k-mp-1]:= (1/(FRw+RPi))*((i+j+mp-1+(2*energyfact))

*POWER_UNIT);

totalpower:= totalpower+timeiv[i+j+mp-1][2][k-mp-1];

Ncalculatori := Ncalculatori+(i+j+mp-1)*pmiv[i+j+mp-1][2][k-mp-1];

Ncalculatorj := Ncalculatorj+2*pmiv[i+j+mp-1][2][k-mp-1];

#Ncalculatork := Ncalculatork+(k-mp-1)*pmiv[i+j+mp-1][2][k-mp-1];

od;

mp:=’mp’:

Nh:=Ncalculatori;
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Nh:= ceil(Nh);

Ncalculatori:=0:

if (Nh=0) then

Nh:=1:

end if;

Nw:=Ncalculatorj;

Nw:= ceil(Nw);

Ncalculatorj:=0:

if (Nw=0) then

Nw:=1:

end if;

Nc:= Ntotal-(Nh+Nw);

Nhvar:=0: Nhmean:=0:

mp:=’mp’:

for mp from 0 to i do

Nhvar := Nhvar+((i-mp-Nh)ˆ2)*pmiv[i-mp][j][k+mp]:

Nhmean:= Nhmean + (i-mp)*pmiv[i-mp][j][k+mp]:

od;

mp:=’mp’:

for mp from 0 to j-2 do

Nhvar := Nhvar+((0-Nh)ˆ2)*pmiv[0][j-mp][k+i+mp]:

od;

mp:=’mp’:

for mp from 0 to j-1 do

Nhvar := Nhvar+((i+mp-Nh)ˆ2)*pmiv[i+mp][j-mp][k]:

Nhmean:= Nhmean + (i+mp)*pmiv[i+mp][j-mp][k]:

#Ncalculatorj := Ncalculatorj+(j-mp)*pmiv[i+mp][j-mp][k];

od;
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mp:=’mp’:

for mp from 0 to k do

Nhvar := Nhvar+((i+j+mp-Nh)ˆ2)*pmiv[i+j+mp][0][k-mp]:

Nhmean:= Nhmean + (i+j+mp)*pmiv[i+j+mp][0][k-mp]:

od;

mp:=’mp’:

for mp from 0 to k-1 do

Nhvar := Nhvar+((i+j+mp-Nh)ˆ2)*pmiv[i+j+mp][1][k-mp-1]:

Nhmean:= Nhmean + (i+j+mp)*pmiv[i+j+mp][1][k-mp-1]:

od;

mp:=’mp’:

for mp from 0 to k-1 do

Nhvar := Nhvar+((i+j+mp-1-Nh)ˆ2)*pmiv[i+j+mp-1][2][k-mp-1]:

Nhmean:= Nhmean + (i+j+mp-1)*pmiv[i+j+mp-1][2][k-mp-1]:

od;

mp:=’mp’:

Nhvaraverage := Nhvaraverage+Nhvar;

# BPq1 <-RASM(Ph,Pw,Pc)

rho1:=(alphac+lambdast+(Ph*alphah)+(Pw*alphaw))/(alphah+lambdast);

rho2:=(alphah*(1-Ph)+lambdast)/(alphaw+lambdast);

rho3:=(alphaw*(1-Pw)+lambdast)/(alphac+lambdast);

#lastrho1:= ((lambdast/alphah)ˆLq)/Lq!;

#lastrho1:=(((alphac+lambdast+(Ph*alphah)+(Pw*alphaw))/alphaw)ˆLq)/Lq!;

lastrho1:=(((lambdast+(Ph*alphah)+(Pw*alphaw))/(alphaw))ˆLq)/Lq!;

lastrho2:= (((alphah*(1-Ph)+lambdast)/alphaw)ˆLq)/Lq!;

lastrho3:= (((alphaw*(1-Pw)+lambdast)/alphac)ˆLq)/Lq!;

Gtrunc1:=sum((rho1ˆk1)/k1!, k1=0..Lq-1);

k1=’k1’:
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Gtrunc2:=sum((rho2ˆk1)/k1!, k1=0..Lq-1);

k1=’k1’:

Gtrunc3:=sum((rho3ˆk1)/k1!, k1=0..Lq-1);

k1=’k1’:

Gtrunc:=Gtrunc1+Gtrunc2+Gtrunc3+lastrho1+lastrho2+lastrho3;

i:=’i’: j:=’j’:

for i from 0 to 2 do

for j from 0 to Lq-1 do

if (i=0) then

resiv[i][j]:= ((rho1ˆj)/j!)/Gtrunc;

elif (i=1) then

resiv[i][j]:= ((rho2ˆj)/j!)/Gtrunc;

else

resiv[i][j]:= ((rho3ˆj)/j!)/Gtrunc;

end if;

od;

od;

resiv[0][Lq]:=lastrho1/Gtrunc;

resiv[1][Lq]:=lastrho2/Gtrunc;

resiv[2][Lq]:=lastrho3/Gtrunc;

BPq1:= resiv[0][Lq]+resiv[1][Lq]+resiv[2][Lq];

#diff <-|(BPq1 - BPq0)|

differc := abs(BPq1-BPq0);

#BPq0 <-BPq1

BPq0:= BPq1:

i:=’i’: j:=’j’:

# Calculate BPr according to Equation (3) in the paper.

BPr:= sum((alphac*(1-Pc)*resiv[2][k1])/(alphac+lambdast), k1=0..Lq);
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k1=’k1’:

# End of the main loop

end do:

sumresiv:= 0:

Q_res_average:= 0:

for j from 0 to Lq do

for i from 0 to 2 do

sumresiv:= sumresiv + resiv[i][j]:

od:

Q_res_average:= Q_res_average + j * sumresiv:

sumresiv:= 0:

od:

i:=’i’: j:=’j’:

wt:= Q_res_average / (lambdast *(1-BPq0));

lut:= ((1/alphah)+((1-Ph)*(1/alphaw))+((1-Pw)*(1/alphac)))/(1-BPq0);

if (counter=maxim) then

BPq0:= -1;

end if;

#Return BPq0 and Preject.

BPq0;

BPr;

Preject:= BPq0+BPr;

Nhvaraverage:= Nhvaraverage/counter;

Nhdev := sqrt(Nhvaraverage);

Q_res_average;

Nhmean;

PMwt := Nhmean/FRw;

t:=’t’:
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vprovision_total :=0:

for t from 0 to 1 do

vprovision_total := vprovision_total + t* vmivh[t][1][0]:

od:

t:=’t’:

for t from 2 to Lq do

vprovision_total := vprovision_total + t* vmivh[t][2][0]:

od:

t:=’t’:

for t from 0 to 1 do

vprovision_total := vprovision_total + t* vmivh[0][t][1]:

od:

t:=’t’:

for t from 2 to Lq do

for n from 1 to m-1 do

vprovision_total := vprovision_total + t*vmivh[t][2][n]:

od;

od;

t:=’t’: n:=’n’:

for t from 0 to Lq do

vprovision_total := vprovision_total + t*vmivh[t][1][m-1]:

od:

t:=’t’:

for t from 0 to Lq do

vprovision_total := vprovision_total + t*vmivh[t][0][m]:

od:

t:=’t’:

vprov_delay := vprovision_total/lambdah;
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total_delay := vprov_delay + wt + lut + PMwt;

coeffi := Nhdev/Nhmean;

C.2 Admission Control Algorithms

C.2.1 Admission Control Model Based on Offered Load

mu:= 1/2400;

R:=1000:

utilT:=0.75:

lambda:=’lambda’;

dis := proc ( k, ind, T) options operator, arrow;

local tmp, discourage, disca:

description "produces discourage coefficient beyond the threshold";

# discourage:= 1- (k-T)/(R-T):

# discourage:= 1/(k+1):

# in this case after threshold T we admit only T/R of the tasks

# discourage:= (T)/(R):

# here discouragement depends on offered load above some threshold

# we relate rho_T= T/R so in this script T should be T=R*rho_t

# below the threshold disc is equal to 0 but we do not call it

# discourage := max(0, (rho[ind]- T/R) );

# here max function is not needed since we start admission when

# util[lind]>utilT

discourage := 1 - ( rho[ind] - utilT) ;

tmp:= discourage:
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return(tmp);

end proc:

## this procedure returns offered load into state k beyond the threshold

offload := proc ( k, ind, T) options operator, arrow;

local tmp:

description "produces offered load for state k in Markov chain";

tmp:= dis(k, ind, T)* lambda / (mu*k) :

return(tmp);

end proc:

#### this procedure returns probability state k beyond the threshold

PT := proc ( k, lind, T) options operator, arrow;

local tmp, li:

description "produces probability of state k beyond the threshold";

tmp:= Pt[0]*(lambda/mu)ˆT /T! *

product(offload(li,lind, T), li=T+1..k) :

return(tmp);

end proc:

#### this procedure returns color of plot, to be used in plot command

## for a distribution of MC

colr := proc ( k) options operator, arrow;

local tmp::string:

description "produces color of plot";

if k=1 then tmp:="red": elif k=2 then tmp:="blue"; elif k=3 then

tmp:="brown"; elif k=4 then tmp:="green"; elif k=5 then

tmp:="black": end if:

return(tmp);

end proc:
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for lind from 12 to 28 do

print(‘lind=‘, lind);

lambda := (lind*100)/(2*3600):

rho[lind]:= lambda/(R*mu):

# Probability that system is empty comes from normalization condition

P[0]:= 1/ (1 + sum( (lambda/mu)ˆi /i! , i=1..R) ):

Pp[0][lind]:= P[0]:

#individual state probabilities when we do not have the theshold

for l from 1 to R do

P[l]:= P[0]*(lambda/mu)ˆl /l!

od:

l:=’l’:

# we plot the distribution

for i from 0 to R do

Point_p[i]:= [i, P[i]]:

od:

i:=’i’:

seqP[lind]:= [seq(Point_p[i], i=0..R)]:

plotP[lind]:= plot(seqP[lind], axes=boxed, style=point,

symbol=box,symbolsize=16, color=colr(1), labels=[k,""]):

# test for normalization must be 1 always

l:=’l’:

test[lind] := add(P[l], l=0..R);

Pb[lind]:= P[R]:

util[lind]:= sum( P[jj]*jj, jj=0..R):

### now we check if admission control should be triggered, by comparing

# to threshold normalized utilization for preparation we set threshold

# to be R this can be changed in following if construct
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T[lind]:=R:

myT[lind]:=R:

if util[lind]/R > utilT then

# we need to introduce the threshold and to try to find it under given

# discouragement threshold has to be an integer but solution will be

# a real number so we need rounding

disc[lind]:= dis(1, lind, T): Tf:= floor(Tt):

Pt[0]:= 1/ (1 + sum( (lambda/mu)ˆi /i! , i=1..Tf )

+ sum( (lambda/mu)ˆTt /Tt! * product( offload(i,lind,Tf),

i=Tf+1..k ), k=Tf +1..R)):

utiln:= sum( (Pt[0]/jj!)*((lambda/mu)ˆjj)*jj, jj=0..Tf)

+ sum( (Pt[0]/ko!)* ((lambda/mu)ˆTt)*

((offload(ko, lind,Tf))ˆ(ko-Tt))* ko, ko=Tf +1..R):

# we want utilization to be equal or as close to limiting util T

# exact solutions would not work since utilization can not be exactly

# equal to utilT but we need approximations in the form floor(Tt)

eqn1:= utiln/R = utilT :

sols:= fsolve(eqn1, Tt, Tt=utilT*R-10..R):

## watch out this T[lind] is not an integer

Ti[lind]:= subs(Tt=sols, Tt);

T[lind]:= floor(Ti[lind]);

util[lind]:= subs(Tt=sols, utiln);

Pth[0]:= evalf(subs(Tt=T[lind], Pt[0]));

for j from floor(utilT*R) to R-1 do

xutil[j]:= evalf(subs(Tt=j, utiln));

delta[j]:= abs(utilT- xutil[j]/R) :

od:

j:=’j’:
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deltaseq[lind]:= seq(delta[j], j=floor(utilT*R)..R-1):

mydelta[lind]:= min(deltaseq[lind]);

for j from floor(utilT*R) to R-1 do

if delta[j]=mydelta[lind] then

mythresh[lind]:= j; myutil[lind]:= xutil[j];

fi:

od:

# this value is for the reference, we use solutions from the equation

myT[lind]:= mythresh[lind];

for l from 1 to T[lind] do

Pt[l]:= Pth[0]*(lambda/mu)ˆl /l!

od:

l:=’l’:

for l from T[lind]+1 to R do

Pt[l]:= Pth[0]*(lambda/mu)ˆmyT[lind] /myT[lind]! *

product(offload(li,lind, myT[lind]), li=myT[lind]+1..l):

od:

# we plot the distribution

for i from 0 to R do

Point_pt[i]:= [i, Pt[i]]:

od:

i:=’i’:

seqPt[lind]:= [seq(Point_pt[i], i=0..R)]:

plotPt[lind]:= plot(seqPt[lind], axes=boxed, style=point,

symbol=box,symbolsize=16, color=colr(1), labels=[k, ""]):

# test for normalization must be 1 always;

l:=’l’:

testt[lind] := Pth[0]+add(Pt[l], l=1..R);
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Pb[lind]:= sum( Pt[ko], ko=T[lind]+1..R ) :

else

disc[lind]:=1:

end if: # utilT

final_lambda[lind]:=disc[lind]*lambda;

Point_finlamb[lind]:=[rho[lind], final_lambda[lind]];

PointPt0[lind]:= [rho[lind], Pth[0]];

PointPbt[lind]:= [rho[lind], Pb[lind]];

Point_util[lind]:= [rho[lind], util[lind]/10];

Point_dis[lind]:= [rho[lind], disc[lind]];

Point_thrsh[lind]:= [rho[lind], T[lind]];

Point_mythrsh[lind]:= [rho[lind], myT[lind]];

Point_test[lind]:= [rho[lind], test[lind]];

Point_zero[lind]:= [rho[lind], 0];

od;

C.2.2 Admission Control Model Based on Current Utilization

mu:= 1/2400;

R:=1000:

utilT:=0.75:

lambda:=’lambda’;

Fcr:=’Fcr’:

Tf:=’Tf’:

Tt:=’Tt’:

offload := proc ( k, ind, T) options operator, arrow;
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local tmp:

description "produces offered load for state k in Markov

chain";

tmp:= Fcr * lambda / (mu*k) :

return(tmp);

end proc:

#### this procedure returns probability state k beyond the threshold

PT := proc ( k, lind, T) options operator, arrow;

local tmp, li:

description "produces probability of state k beyond the

threshold";

tmp:= Pt[0]*(lambda/mu)ˆT /T! *

product(offload(li,lind, T), li=T+1..k):

return(tmp);

end proc:

#### this procedure returns color of plot, to be used in plot command

#for a distribution of MC

colr := proc ( k) options operator, arrow;

local tmp::string:

description "produces color of plot";

if k=1 then tmp:="red": elif k=2 then tmp:="blue"; elif k=3

then tmp:="brown";

elif k=4 then tmp:="green"; elif k=5 then tmp:="black": end if:

return(tmp);

end proc:

for lind from 12 to 28 do
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print(‘lind=‘, lind);

lambda := (lind*100)/3600:

rho[lind]:= lambda/(R*mu):

# Probability that system is empty comes from normalization condition

P[0]:= 1/ (1 + sum((lambda/mu)ˆi /i! , i=1..R) ):

Pp[0][lind]:= P[0]:

#individual state probabilities when we do not have the theshold

for l from 1 to R do

P[l]:= P[0]*(lambda/mu)ˆl /l!

od:

l:=’l’:

# we plot the distribution

for i from 0 to R do

Point_p[i]:= [i, P[i]]:

od:

i:=’i’:

seqP[lind]:= [seq(Point_p[i], i=0..R)]:

plotP[lind]:= plot(seqP[lind], axes=boxed, style=point,

symbol=box,symbolsize=16, color=colr(1), labels=[k, ""]):

# test for normalization must be 1 always

l:=’l’:

test[lind] := add(P[l], l=0..R);

Pb[lind]:= P[R] :

myutil[lind]:= sum( P[jj]*jj, jj=0..R):

myT[lind]:=R:

if util[lind]/R > utilT then

Tf:= floor(Tt):

i:=’i’: k:=’k’: jj:=’jj’: ko:=’ko’: ii:=’ii’: kl:=’kl’:
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Pt[0]:= 1/ (1 + sum( (lambda/mu)ˆi /i! , i=1..Tf )

+ sum( (lambda/mu)ˆTt /Tt! * product( offload(i,lind,Tf),

i=Tf+1..k ), k=Tf +1..R)):

utiln:= sum( (Pt[0]/jj!)*((lambda/mu)ˆjj)*jj, jj=0..Tf )

+ sum( (Pt[0]/ko!)* ((lambda/mu)ˆTt)*

((offload(ko, lind,Tf) )ˆ(ko-Tt))* ko, ko=Tf +1..R ):

norml:= sum( (Pt[0]/ii!)*((lambda/mu)ˆii), ii=0..Tf)

+ sum( (Pt[0]/kl!)* ((lambda/mu)ˆTt)*

((offload(kl, lind,Tf) )ˆ(kl-Tt)), kl=Tf+1..R ):

# we want utilization to be equal or as close to limiting util T

# exact solutions would not work since utilization can not be exactly

# equal to utilT but we need approximations in the form floor(Tt)

for j from floor(utilT*R) to R-1 do

i:=’i’: k:=’k’: jj:=’jj’: ko:=’ko’: ii:=’ii’: kl:=’kl’:

xutil[j]:= evalf(subs(Tt=j, utiln));

normx[j]:=evalf(subs(Tt=j, norml));

eqn:= normx[j]/R =1:

sols:=’sols’:

sols:= fsolve(eqn, Fcr, Fcr=0..1);

filt[j]:= subs(Fcr=sols, Fcr);

delta[j]:= abs(utilT- xutil[j]/R) :

od:

j:=’j’:

deltaseq[lind]:= seq(delta[j], j=floor(utilT*R)..R-1):

mydelta[lind]:= min(deltaseq[lind]);

for j from floor(utilT*R) to R-1 do

if delta[j]=mydelta[lind] then

mythresh[lind]:= j; myutil[lind]:= xutil[j];
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disc[lind]:= filt[j];

fi :

od:

# this value is for the reference, we use solutions from the equation

myT[lind]:= mythresh[lind];

for l from 1 to T[lind] do

Pt[l]:= Pth[0]*(lambda/mu)ˆl /l!

od:

l:=’l’:

for l from T[lind]+1 to R do

Pt[l]:= Pth[0]*(lambda/mu)ˆmyT[lind] /myT[lind]!*

product(offload(li,lind, myT[lind]), li=myT[lind]+1..l) :

od:

# we plot the distribution

for i from 0 to R do

Point_pt[i]:= [i, Pt[i]]:

od:

i:=’i’:

seqPt[lind]:= [seq(Point_pt[i], i=0..R)]:

plotPt[lind]:= plot(seqPt[lind], axes=boxed, style=point,

symbol=box,symbolsize=16,

color=colr(1), labels=[k, ""]):

l:=’l’:

testt[lind] := Pth[0]+add(Pt[l], l=1..R);

Pb[lind]:= sum( Pt[ko], ko=T[lind]+1..R ) :

else

disc[lind]:=1:

end if: # utilT

191



Appendix C: Related Scripts
final_lambda[lind]:=disc[lind]*lambda:

Point_finlamb[lind]:=[rho[lind], final_lambda[lind]];

PointPt0[lind]:= [rho[lind], Pth[0]];

PointPbt[lind]:= [rho[lind], Pb[lind]];

Point_util[lind]:= [rho[lind], util[lind]/10];

Point_dis[lind]:= [rho[lind], disc[lind]];

Point_thrsh[lind]:= [rho[lind], T[lind]];

Point_mythrsh[lind]:= [rho[lind], myT[lind]];

Point_test[lind]:= [rho[lind], test[lind]];

Point_zero[lind]:= [rho[lind], 0];

od;

C.3 Resource Allocation Solution for Clouds with Mobile

Devices

# Algorithm 8 The Integrated model Algorithm

# (The full priority of overflow task Scheme)

# Input: Initial successful provisioning probability

# and overflow rate: Ps0,Oo0

# Output: Blocking probability in the RAM: BPq0

# count = 0; maximum = 30; diff = 1;

Digits:=20:

differc:=1:

maxim:=30:

Lq:=50;

N:=100:
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lambdast:=600/3600:

Ps0:=0.8:

Oo0:= 1/60;

A:= 1:

Ro:=0:

Rn:=0:

mu:=1/2400:

betav:=1/0.1;

etav:=10*betav:

flag:=0:

#Pbq0 <- RAM (Ps0,Oo0)

rho1:=(lambdast+(2*Ps0*betav))/(Oo0+lambdast+(Ps0*betav));

rho2:=(lambdast+Oo0+(Ps0*betav))/(Oo0+lambdast+(Ps0*betav));

rho3:=(lambdast+Oo0+etav)/(lambdast+betav);

rho4:= ((1-Ps0)*betav)/etav;

lastrho3:=(((1-Ps0)*betav)/etav)ˆLq)/Lq!;

Gtrunc1:=sum((rho1ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc2:=sum((rho2ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc3:=sum((rho3ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc4:=sum((rho4ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc:=Gtrunc1+Gtrunc2+Gtrunc3+Gtrunc4+lastrho3;

i:=’i’:

for i from 0 to Lq do

for j from 0 to Lq do
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if (i=0) then

resiv[i][j][A]:= ((rho1ˆj)/j!)/Gtrunc;

elif (i>0 and i<Lq) then

resiv[i][j][A]:= ((rho2ˆj)/j!)/Gtrunc;

else

resiv[i][j][A]:= ((rho3ˆj)/j!)/Gtrunc;

end if;

od;

od;

resiv[0][Lq][Rn]:=lastrho3/Gtrunc;

BPq0:=resiv[0][Lq][Rn]:

j:=’j’:

for j from 0 to Lq do

resiv[Lq][j][Ro]:= ((rho4ˆj)/j!)/Gtrunc;

BPq0:= BPq0 + resiv[Lq][j][R0];

od;

i:’i’: j:=’j’:

for i from 0 to Lq do

BPq0:= BPq0 + resiv[i][Lq][A];

od;

i:’i’:

bphi:=1:

#while diff >= 10ˆ-6 do

Nhvaraverage := 0:

counter:=’counter’:

for counter from 1 to maxim while differc > 0.000001 do

# [Ps, Oo] <-VMM(BPq0)

i:’i’: j:=’j’: k:=’k’: k1:=’k1’: k2:=’k2’:
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m:=10: L:=4: d:=1/2400:

lambdai:=lambdast*(1-BPq0)/N:

lambdaci:= 0.3*lambdai:

if (flag=0) then

cphi:= bphi:

Oo:= 0.1 * lambdai:

Oi:= 0.1 * lambdai:

flag:= 1:

else

cphi:= 0.5*bphi:

end if:

Gtrunc1:=’Grtunc1’: Gtrunc2:=’Grtunc2’: Gtrunc3:=’Grtunc3’:

Gtrunc4:=’Grtunc4’: Gtrunc:=’Gtrunc’:

rho1:=(lambdai+mu+Oo)/(lambdai+Oi+bphi);

rho2:=(lambdai+bphi+Oi+2*mu+Oo)/(lambdai+cphi+Oi+mu+Oo);

rho3:=(lambdai+cphi+d+Oi+3*mu+Oo)/(lambdai+Oi+2*mu+Oo+cphi+L*lambdaci);

rho4:=(lambdai+cphi+d+Oi)/(lambdai+Oi+cphi+L*lambdaci+3*mu+Oo));

Gtrunc1:=sum((rho1ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc2:=sum(sum((rho2ˆk1)/k1!, k1=0..Lq)*((L-k2+1)

*lambdaci+(k2+1)*d)/((L-k2)*lambdaci+k2*d),k2=0..L);

k1:=’k1’: k2:=’k2’:

Gtrunc3:=sum(sum((rho3ˆk1)/k1!, k1=0..Lq)*((L-k2+1)

*lambdaci+(k2+1)*d)/((L-k2)*lambdaci+k2*d),k2=0..L);

k1:=’k1’: k2:=’k2’:

Gtrunc4:=sum(sum((rho4ˆk1)/k1!, k1=0..Lq)*((L-k2+1)

*lambdaci+(k2+1)*d)/((L-k2)*lambdaci+k2*d),k2=0..L);

k1:=’k1’: k2:=’k2’:
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Gtrunc:= Gtrunc1+Gtrunc2+Gtrunc3+Gtrunc4;

for i from 0 to Lq do

for j from 0 to 3 do

if (j=0) then

vmm[i][j][0]:= ((rho1ˆj)/j!)/Gtrunc;

elif (j=1) then

for k from 0 to L do

vmm[i][j][k]:= ((rho2ˆj)/j!)*((L-k+1)

*(lambdaci+(k+1)*d)/((L-k)*lambdaci+k*d))/Gtrunc;

od;

elif (j=2) then

for k from 0 to L do

vmm[i][j][k]:= ((rho3ˆj)/j!)*((L-k+1)

*(lambdaci+(k+1)*d)/((L-k)*lambdaci+k*d))/Gtrunc;

od;

else

for k from 0 to L do

vmm[i][j][k]:= ((rho4ˆj)/j!)*((L-k+1)

*(lambdaci+(k+1)*d)/((L-k)*lambdaci+k*d))/Gtrunc;

od;

end if;

od;

od;

i:’i’: j:=’j’: k:=’k’:

capphi:=0:

for i from 0 to Lq do

for j from 0 to 3 do

for k from 3 to 5 do
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capphi := capphi+vmm[i][j][k];

od;

od;

od;

i:’i’: j:=’j’: k:=’k’:

Pna:=vmm[Lq][0][0]+ sum(sum(vmm[Lq][k1][k2], k1=1..3),k2=0..L)+capphi;

k1:=’k1’: k2:=’k2’:

Ps:=1-(PnaˆN);

#Pbq1 <- RAM (Ps,Oo)

Gtrunc1:=’Grtunc1’: Gtrunc2:=’Grtunc2’: Gtrunc3:=’Grtunc3’:

Gtrunc4:=’Grtunc4’:Gtrunc:=’Gtrunc’:

rho1:=’rho1’:

rho1:=(lambdast+(2*Ps*betav))/(Oo+lambdast+(Ps*betav));

rho2:=(lambdast+Oo+(Ps*betav))/(Oo+lambdast+(Ps*betav));

rho3:=(lambdast+Oo+etav)/(lambdast+betav);

rho4:= ((1-Ps)*betav)/etav;

lastrho3:=(((1-Ps)*betav)/etav)ˆLq)/Lq!;

Gtrunc1:=sum((rho1ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc2:=sum((rho2ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc3:=sum((rho3ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc4:=sum((rho4ˆk1)/k1!, k1=0..Lq);

k1=’k1’:

Gtrunc:=Gtrunc1+Gtrunc2+Gtrunc3+Gtrunc4+lastrho3;

i:=’i’:

for i from 0 to Lq do
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for j from 0 to Lq do

if (i=0) then

resiv[i][j][A]:= ((rho1ˆj)/j!)/Gtrunc;

elif (i>0 and i<Lq) then

resiv[i][j][A]:= ((rho2ˆj)/j!)/Gtrunc;

else

resiv[i][j][A]:= ((rho3ˆj)/j!)/Gtrunc;

end if;

od;

od;

resiv[0][Lq][Rn]:=lastrho3/Gtrunc;

BPq1:=resiv[0][Lq][Rn]:

j:=’j’:

for j from 0 to Lq do

resiv[Lq][j][Ro]:= ((rho4ˆj)/j!)/Gtrunc;

BPq1:= BPq1 + resiv[Lq][j][R0];

od;

i:’i’: j:=’j’:

for i from 0 to Lq do

BPq1:= BPq1 + resiv[i][Lq][A];

od;

i:’i’:

for j from 0 to Lq do

resiv[Lq][j][Ro]:= ((rho4ˆj)/j!)/Gtrunc;

od;

j:=’j’:

#diff <-|(BPq1 - BPq0)|

differc := abs(BPq1-BPq0);
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#BPq0 <-BPq1

BPq0:= BPq1:

i:=’i’: j:=’j’:

if (counter=maxim) then

BPq0:= -1;

end if;

od; #end of main loop
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[32] H. Khazaei, J. Mišić, and V.B. Mišić. A Fine-Grained Performance Model of

Cloud Computing Centers. IEEE Transaction on Parallel and Distributed Systems,
24(11):2138–2147, November 2013.
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