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Abstract

Embedded systems are often used to monitor and control various dynamic and complex
applications. However, with greater accessibility and added features on many embedded
systems, more and more systems are being subject to sophisticated and new types of attacks.
As a result, the security aspect of embedded systems has become critical design step.
TrustZone has become a popular choice for security design solution in systems where
resources such as processing power, battery are limited. In TrustZone, two virtual
processors called "secure world" and “normal world” run on the same core in a time sliced
manner. These worlds have partitioned hardware and software resources, with different
modes of operation, isolated memory regions and interrupts. In this paper, the hardware and
software architecture of TrustZone is analyzed from the perspective of embedded system
security design. Then a mobile-ticketing system based on TrustZone is presented which
incorporates standard cryptographic engineering design practices to demonstrate the
feasibility and effectiveness of such system. The ticketing system is then simulated and
security threat analysis is performed in terms known vulnerabilities such as Buffer Overflow,
Static and dynamic code/data tampering, Return Oriented Programming (ROP) exploits, and
Man-in-the middle attacks. After evaluating the analysis results with various open source
vulnerability analysis tools, it is conclusive that the system design is an effective solution

particularly for embedded systems.
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Chapter 1

Introduction

Embedded systems have become integral part of our society over the last decade. In today’s
world, embedded systems are used to monitor and control various dynamic and complex
applications, ranging from non-safety-critical systems such as cellular phones, media players,
and televisions, to safety-critical systems such as automobiles, airplanes, and medical
devices. The critical nature of these applications, especially in military, medical and
transportation industries imply that these systems must be highly reliable as well as secured.
Thus security of embedded systems is emerging as a new dimension in modern embedded

systems design.

With increasing number of everyday embedded devices, more and more systems are being
subject to sophisticated and new types of attacks yielding to higher number break-ins. For
example, the IPhone was broken into only days after its public release [1]. The cost of such
security breach can be critical depending on the nature of the system. For example, it was
estimated that the “I Love You” virus caused nearly one billion dollars in lost revenues
worldwide [1]. With an increasing proliferation of such attacks, it is not surprising that a
large number of users in the mobile commerce world (nearly 52% of cell phone users and
47% of PDA users, according to a survey by Forrester Research [2]) feel that security is the
single largest concern preventing the successful deployment of next-generation mobile

services.

While security protocols and cryptographic algorithms address security considerations from a
functional perspective, it is unrealistic to assume that attackers will attempt to directly take
on the computational complexity of breaking the cryptographic primitives employed in
security mechanisms [3]. Functional cryptosystems often do not provide complete system
level security as explained by Schneier in [16]. As a result, the security model should be
considered from a system point-of-view. However, many embedded systems are constrained

by the execution environment and resource limitations such as low battery life, memory



constraints, and lower computational power. For such systems, security is moving from a
function centric perspective into a system architecture (hardware/software) design issue. In
this paper, first the security requirements for embedded systems are outlined. Then attack
patterns are classified and various design solutions such as external hardware and software,
virtualization and virtual processors are presented. Then a virtual processor architecture
solution called “TrustZone” is described in detail from a hardware and software design view.
At the end, a secured mobile-ticketing system designed and implemented based on TrustZone

architecture is described.
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Chapter 2
Background and Related Work

2.1 Embedded System Security Requirements

Security has traditionally been an active area of research in Desktop and network computing.
A lot of network security protocols, such as IPSec and SSL, have been defined to achieve
authentication between communicating entities, and ensure the confidentiality and integrity

of communicated data [5].

Since the nature of embedded systems varies widely based on the application requirements,
the security requirements also vary. In typical systems available today, more than one aspect
of security needs to be considered as complex systems may comprise of individual modules
with different security requirements. For example, consider a smartphone that is capable of
wireless voice, multimedia, and data communications. Security requirements may varies
with the viewpoint of the manufacturer of a particular component inside the cell phone (e.g.,
baseband processor), the cell phone manufacturer, the cellular service provider, the content
provider, and the end user of the cell phone. The end user’s primary concern may be the
security of personal data stored and communicated by the cell phone, while the content
provider’s primary concern may be DRM related protection of multimedia content delivered
to the cell phone, and the cell phone manufacturer might additionally be concerned with the
secrecy of proprietary firmware that resides within the cell phone. As mentioned earlier, in
this paper, an example mobile ticketing application is explored. The application performs a
simple task of letting users browse through and pick a movie, and then stores the ticket
issued by the movie operator company in the device. The task at hand is to ensure security of
this transaction. There are six security requirements that any embedded system must
mitigate:

1. Data confidentiality: Embedded systems must protect sensitive information from

undesired eavesdroppers in the communication channel between two modules within

a system or between different parties.
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2. Data integrity: Embedded systems must ensure that user data stored on the device has
not been changed illegitimately

3. Authentication: Embedded systems must validate that the data received is actually
sent from the intended and correct sender.

4. Provide content Security: Embedded systems must provide full content security
under Digital Rights Management (DRM) protocol to ensure that the data processed
from media cannot to copied or altered.

5. Secure Storage: Embedded systems must provide a secure storage for critical and
sensitive information such as various keys so that these secrets are not leaked out for
the full duration of the device’s life time and erased afterwards.

6. Tamper Resistance: Embedded systems must provide tamperproof and may be

detection mechanism even when the device can be physically or logically probed.

As stated earlier, the system requirements vary according to the functionality and the typical
operation environment. However the requirements stated above cover most of the modern

devices today.

2.2 Embedded System Attack Classification

Attacks on embedded systems vary on the type and method of execution primarily based on
the nature and availability of the target device. Attackers typically rely on exploiting security
vulnerabilities in the hardware and software components. Even though, each attack is
different in terms of the methodology, the attackers can be categorized into three classes as

described below.

2.2.1 Types of Attackers

Class | (Clever outsiders): This type of attack is launched by individuals who are
intelligent but often do not have sufficient information about the systems. Usually these
attackers try to take advantage of existing flaw or vulnerability of a system instead of
creating one.

12



Class Il (Insider attack): May be launched by defected employee who has specialized
technical education and experience. They have varying degrees of understanding of parts of
the system but not full access to the system.

Class lll (funded organizations): Attacks launched by teams of specialists with related and
complementary skills backed by great funding resources. They are capable of in-depth analysis of the
system, designing sophisticated attacks. Some well-known organizations today are “Anonymous”,

and “Masters of Deception”.

2.2.2 Types of Attacks

Ravi et al categorizes attacks on embedded systems into three areas based on the impact level in [3]
as shown in figure 1 below:

Embedded System
Attacks

s S

1§
-E ﬁ Integrity Attacks H'.[ FPrivacy Attacks ] e miovailability Attacks]
L} L}
= L} L L}
e L : - :
] n n
L} L}
n ]
i " s "
: :
3 £ i :
= EXTETE
1] o
=5
3
Physical Software
Attachks Aonalk Attacks
Side-Channel
Attacks

Figure 1: Embedded System attack types

1. Privacy attacks: The objective of these attacks is to gain knowledge of sensitive
information stored, communicated, or processed in an embedded system. A common
example is the Man-in-the-middle attack, Meet-in-the-middle attack, and Sniffing
using software approach. On the hardware level, common methods used by the
attackers include power analysis, fault injection and timing analysis to reveal patterns

or faults for a window of fault. For example, power analysis can show patterns when
13



a certain cryptographic algorithm is executed. Figure 2 below shows the power
analysis of when AES key is processed, thus leading to exposure of the key.

2. Integrity attacks: These attacks attempt to change data or code associated with an
embedded system. Eavesdropping and data manipulation techniques are most
common types of attacks using key manipulation and key injection mechanisms.

3. Availability attacks: These attacks disrupt the normal functioning of the system by
misusing and suffocating system resources so that normal operation cannot continue.

Examples of such attacks are Denial of Service (DoS) attack and Replay attacks.

AES-128
(Symmetric-Key) Side-channel leakage observed from
< AES-128 executing on a PPC Processor
| Program o
- (]
v Local - ' i
= S
7S s H\\ i
I+D Memory =
Interface e n wn En wn wR wR mn e wn

(_——’
Register File It
| O

. Side-channel Analysis
Execution

Pipeline &

Stored Secret

Figure 2: Power analysis of AES Key processing

2.3 Mitigating Embedded System Attacks

To mitigate or counter the attacks described in the previous section, a generic security model can be
developed. First line of defense is known as Attack Prevention. These are measures which are in
place to prevent the attacker from initiating an attack. Anti-tampering and code obfuscation are
examples of techniques used in attack prevention. Then in the next step, there must be mechanism to
detect that system configuration or code has been altered. Check sum validations or run-time

integrity checks are commonly used in this phase. Lastly, the attacked program or hardware must

14



take measures to avoid execution or exposure of sensitive information upon detection of attacks, and

. \

]
1
A ttack Tamper
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recover if possible.
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.
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Detection Re ) Time
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Figure 3: Attack prevention generic security model
When considering full system security solutions, there are a number of common design
practices deployed in embedded platforms today. In the next section, four such solutions are

analyzed.

2.4 Existing Security Solutions

A number of solutions have been proposed in [4, 10, 11, and 17] using external, internal
hardware and software techniques. This section summarizes the pros and cons of some the

existing solutions.

2.4.1 External Hardware Security Module

External hardware security module based systems have a dedicated hardware block to
perform security related functionalities. This hardware is typically placed outside the Main
SoC and have predefined interface to communicate and execute services from the main
processor core [8]. A popular example of such solution is the SIM card in a mobile handset,
or a smartcard in a satellite receiver, or dedicated hardware block in the GPU to perform
DRM operations. Table 1 below highlights the key advantages and disadvantages of external

security based hardware designs.
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Table 1: Advantages and disadvantages of external hardware security module

Advantages Disadvantages
v' The security assets such as keys, v Requires more silicon area, increases
algorithms are isolated in a dedicated power consumption, and cost and
hardware block reduces performance of the device.
v' Isolation techniques provide high v These hardware blocks typically
levels of tamper resistance and provide a platform for processing and
physical security secure storage functions only. An

interface is required to the host
v Only authenticated applications can processor, which adds to design

be run on the secured hardware block effort. Also, this interface is
vulnerable to attacks. For example,
a user’s entry of a Personal
Identification Number (PIN) must be
managed by the less secure software
outside of the smartcard, making it
vulnerable to attack, even though
there is SIM hardware.

16




2.4.2 Internal Hardware Security Module

The security block or dedicated hardware is located inside the main SoC.

Table 2: Advantages and disadvantages of Internal Hardwar Security Module

Advantages Disadvantages
v There is significant cost reduction in v" There is typically another separate
terms of hardware design, and silicon physical security processor, which is
costs compared to the External less powerful than the main
Hardware Security Module applications processor, and also

consumes significant silicon area.
Additionally, communication
between the two processors requires
the use of external memory.

v" Since the security processor is inside
the SoC, significant design and test

effort are needed.

2.4.3 Software Virtualization

Virtualization is a software security mechanism in which a highly trusted management layer,
known as a hypervisor, runs in a privileged mode of a general purpose processor [8]. The
hypervisor separates multiple independent software platforms running on top of it using the
Memory Management Unit (MMU), placing each inside a virtual machine controlled by the
hypervisor software. There are commercial vendors such as VMware that provide such
solutions. However, traditional OS vendors such as Microsoft contain hypervisor support by
default with the release of windows 8 [10].

17




Table 3: Advantages and disadvantages of security through software virtualization

Advantages Disadvantages
v Any processor with an MMU can be v The isolation provided by
used to implement a virtualization virtualization technology is restricted
solution, and some of the common to the processor implementing the
rich operating systems have been hypervisor. Any other bus masters in
ported to run on top of them. the system, such as DMA engines and

Graphics Processing Units (GPUSs),

v There is also no requirement for can bypass the protections provided
additional hardware to implement a by the hypervisor and thus must also
hypervisor. Security sensitive be managed by the hypervisor to
applications can be ported to run in a enforce the required security policy.
secure environment running on top of This is difficult to achieve without
the hypervisor, but outside of the damaging the performance of the
view of the rich operating system [8].

environment.

v Virtualization ignores the security
issues associated with hardware
attacks, such as threats that use the

debug or test infrastructure.

2.4.4 Software Access Control

Software firewall refers to techniques of using a set of rules that enforce security control
based on policies that confine user programs, or processes, to the minimum amount of
privileges and access to resources that they require for their execution. SElinux or Security
Enhanced Linux is a typical example of such “access control” mechanism embedded in
Linux distributions with security awareness. Fiorin et al. describes how SELinux is used in

securing desktop operating systems in [4]. Furthermore, the authors propose hardware
18




architecture for enhancing security and accelerating retrieval and applications of SELinux
policies in embedded processors. The proposed system uses an external hardware accelerator
that aims at speeding up the most time consuming operation in policy enforcement: the
lookup of rules in the policy. The hardware modules include a caching mechanism,
dedicated security servers. The following figure outlines the advantages and disadvantages

of using software access control based approach.

Table 4: Advantages and disadvantages of software access control

Advantages Disadvantages
v Implementation is hardware v Vulnerable to many types of attacks
independent, and solely developed in such as DoS, and tampering.
software v Severely affects system performance,

as rules are checked prior to any
kernel or 1/O operation

v' Size of the code increases
significantly, and typically not suited
for embedded system design and
development

v' Disadvantages of using dedicated

hardware also applies
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Chapter 3
Cryptographic Theory

3.1 Cryptographic Tools
Cryptography is the art and science of encryption [20]. The application of cryptography in

computer security is critical and fundamental topic. The field of cryptography is vast and
contains many complex algorithms and techniques. For the purposes of this paper, we focus
on the simple components such as Symmetric Ciphers, Asymmetric Ciphers, Hashing, and
Digital signatures to design a security system. It is important to note that the secret of a
cryptographic solution is not the algorithm itself but the associated keys.

3.1.1 Symmetric Ciphers

Symmetric ciphers require the sender to use a secret key to encrypt data using a predefined
cryptographic algorithm (the data being encrypted is often referred to as plaintext) and
transmit the encrypted data (usually called the ciphertext) to the receiver. On receiving the
ciphertext, the receiver then uses the same secret key and cryptographic algorithm to decrypt
it and regenerate the plaintext. The following figure shows the process of using symmetric

encryption:

= decryption -
plaintext ciphertaxt plaintext

Figure 4: Symmetric Encryption
Examples of symmetric ciphers: DES, 3DES, AES, and RC4. Symmetric ciphers provide

data confidentiality.

20



3.1.2 Asymmetric Algorithm

Asymmetric algorithms (also called public-key algorithms), use a pair of keys: one key to
encrypt the data while the other to decrypt it. Encryption of a message intended for a given
recipient requires only the public key to be known to the world, but decryption is only
possible with the recipient’s private key, which the recipient should keep secret. The

following figure shows how public-key algorithm is used:

Original A Bob’s Public Ciohertext A .Bobs Decrypted
Plaintext ( Key Iphertex ( Private Key Plaintext

4

Hi Bob! — Encrypt A3344FDCBEE —> Decrypt ——> Hi Bob!

Figure 5: Asymmetric Encryption

In the figure above, if Bob is the intended recipient of the message, then the plaintext data
“Hi Bob” is encrypted with Bob’s Public Key, which is advertised by Bob and then the
encrypted data can only be decrypted by Bob’s private key. One popular example of
asymmetric cryptography is RSA. This key-pair is also utilized in authorizing source of
messages by constructing a hash of a message and then ‘digitally signing’ the message hash
with its private key. The receiver the decrypts the hash with the public key, and checks the
message ensuring that the sender is authorized. Digital signatures are described in detail

later in this section.

3.1.3 Cryptographic Hash

A cryptographic hash is an algorithm that takes an entire message and, through a process of
shuffling, manipulating, and processing the bytes using logical operations, generates a small
fingerprint or message digest of the data [2]. Some examples of such algorithm are MD2,
MD5 and SHA. Figure 3 below demonstrates the result of such hash function.

21



Message Text Hash function Message Digest

Hi Bob!
Meeting is moved
to 11l am

\ 4
A\ 4

A3344FDCBEE9S0402938

(MD5 or SHA)

Figure 6: Cryptographic Hash
One critical feature of any hash function is that any minor change to the original message text
must produce an entirely different message digest, so that any tampering can be detected.
Thus hash functions are used in providing tamper proofing and/or data integrity of
instructions, or communication messages or code/data in memory. Figure 4 below shows,

how the end message digest changes with minor changes to the original data.

Message Text Hash function Message Digest
Hi Bob!
Meeting is moved —>» (MDS5 or SHA) > FF5465FA55CC6DCOF
to 10 am

Figure 7: Tampered message Hash

3.1.4 Digital Signatures

Digital signatures, which use asymmetric cryptography and hashing functions, are
implemented to authenticate the sender. This mechanism is typically used along with the
encrypted data. The following figures illustrate how digital signatures are typically used.
Figure 5a shows how data is signed. First hash of the data file is calculated using hashing
functions (described in the previous section) such as SHA1 or MD5. Then this hash is
encrypted with the private key of the sender. This encrypted file is then sent along with the
data. Upon receiving the data, as depicted in figure 5b, the user decrypts the hash value with
the public key of the sender, and also decrypts the data using a pre-established key-exchange
mechanism. The receiver then calculates the hash of the decrypted data file, and compares to
the hash decrypted with the sender public key. If the two hashes match, then the data is

authenticated.
22



|::> ‘ 78993344FDCBFFAD38

Hash function
SHA1 or MD5 Encrypt Hash with
private Key

FF44ACDCOO4FAD38 Signature

-
Attach to
data

b

Figure 8a: Digital Signature: Signing data
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Chapter 4

TrustZone Architecture

4.1 Trustzone Hardware Architecture

The more recent designs of the ARM processor core such as the Cortex A-15 core introduces
concept of two virtual processors on the same core called "secure world" and "non-secure
world" or “normal world”. There is also a "secure monitor mode" used for switching
between the two modes. These cores are called ARM TrustZone cores. On a typical ARM
TrustZone core, secure world and non-secure modes coexist. Thus, Instead of protecting
assets in a dedicated hardware block, the TrustZone architecture enables any part of the
system to be made secure, enabling an end-to-end security solution [8]. Advantages of
TrustZone are described after the hardware and software architecture is described.

4.1.1 System and bus structure

As mentioned above, in TrustZone architecture, all of the SoC’s hardware and software
resources are partitioned so that they exist in one of two worlds - the secure world for the
security subsystem, and the Normal world for everything else. There is also a third mode
called the monitor mode which switches between the two worlds. Switching is explained in

section 4.1.3.

The third generation of Advanced Microcontroller Bus Architecture (AMBA) or

AMBAS3 AXI bus fabric contains logic that ensures that no secure world resources can be
accessed by the normal world components, enabling a strong security protection barrier to be
built between the two. The AMBA3 AXI bus implements two new signals - ARPROT[1] and
AWPROT[1] [8]. These indicate whether the current read or write transaction is secure or
non-secure (LOW: Secure, and HIGH: Non-secure). Figure 9 below demonstrates typical

system architecture with isolated secure blocks and as well as shared blocks.
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Figure 9: Typical system block diagram with share resources
In the figure above, key storage, boot ROM and decoder blocks are executed only under the
secure world and normal world applications cannot access these resources. However, the
cache and SRAM are shared between the two. Memory component sharing will be explained

in details in section 4.1.4.

4.1.2 Register Space

Typically arm cores contain 16 registers including stack pointer, link register, program
counter and 13 general purpose registers per user mode as outlined in table 5. There are 7
user modes supported.

Table 5: Arm Processor Modes

User User applications No
Supervisor Kernel Yes
System Special version of user mode -  Yes

RW access to status register

Abort Memory access violation Yes
Undefined Undefined instruction Yes
Fast interrupt request (FIQ)  Higher interrupt level Yes
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Interrupt request (IRQ) Lower interrupt level Yes

There is also CPSR/SPSR status registers and system control registers (CP15) for the
privileged modes. Figure 10 below shows the register specification for six modes of

operation in arm cores.

System & User FlQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
Ri1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
RS RS RS RS R5 RS
RE RE R6 R6 R6 RE
R7 R7 R7 R7 R7 R7
RE \RB fig RB RE R& RB
Ro [\ Ro_fiq R9 RO R9 R9
R10 R10_fig R10 R10 R10 R10
R11 \RH fig R11 R11 R R11
RiZ I\ R12 fig R12 R12 R12 Ri2
R13 \R13 fig \R13 sve R13_abt R12 irg RA13_und
R14 R14_fig R14_sve R14_abt R14_irq R14_und
R15(PC) R15 {PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)
ARM State Program Status Registers
CPSR | CPSR CPSR CPSR CPSR CPSR
\SPSR fig \SPSR sve \SPSR abt \SPSR irg SPSR_und
B = banked register

Figure 10: Arm register specificaiton
For the TrustZone architecture, System Control Coprocessor (CP15) register and all other
registers relevant exist in separate banked secure and non-secure world versions as well. All
banked registers from figure 10 are shared between the two worlds. Security critical
processor core status bits (interrupt flags) and System Control Coprocessor registers are
either totally inaccessible to non-secure world or access permissions are strictly under the

control of secure world. The CP15 register contains a NS bit as shown in figure 11 below.
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This NS bit is set to 1 when the processor is operating in non-secure world and 0 when it is in

secure world. Access to this bit is only allowed from the secured mode, and monitor mode

which is responsible for switching worlds. Monitor mode is explained next.

31 76 543210
UNK/SBZP FW|EA NS
ET- FIQJ
AW—  [RQ—

Figure 11: CP15 register contains the NS bit set according to mode of operation

4.1.3 World Switching

For the purpose of interfacing between secure and non-secure world a special mode called

“Monitor Mode” is introduced. Monitor mode manages transition between the two modes

and also manages the NS (Not Secure) bit in Secure Configuration Register in CP15. Figure

12 below shows all three modes.

Privilideged Mode Privileged Mode

Figure 12: Secure world, normal world and monitor mode

ARM introduced a special instruction is called SMC, Secure Monitor Call, which switches

execution from one world to the other. Normal mode software running in the non-secured

World can execute the SMC instruction to invoke a switch to secure world through the
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monitor mode software. The switch can also be configured to be triggered by IRQ, FIQ,

external Data Abort, and external Prefetch Abort exceptions.

In most designs its functionality will be similar to a traditional operating system context
switch, ensuring that state of the world that the processor is leaving is safely saved, and the
state of the world the processor is switching to is correctly restored. Typically all general
purpose ARM register, any coprocessor register and any world-dependant processor

configuration state in CP15 must be saved and restored during context switching.

Normal world and the secure world execute in a time-sliced fashion. This removes the need
for a dedicated security processor core, which saves silicon area and power, and allows high

performance security software to run alongside the normal world operating environment.

4.1.4 Memory and Cache

The major component of the L1 memory system is the Memory Management Unit (MMU),
which maps the virtual address space that is seen by the software to the physical address
space [12]. The address translation is managed using a software-controlled translation table,
which details which virtual address corresponds to each physical address, and some other
attributes about the memory access, such as access permissions. There are two virtual
MMUs on the arm TrustZone architecture. Thus each world maintains a local set of

translation tables and virtual address and physical address mappings.

ARM processors with TrustZone tag entries in the Translation Lookaside Buffers (TLBs) that
cache the results of translation table look up. This allows for non-secure and secure worlds

to co-exist in the TLBs and aids in fast context switching between worlds.

It is equally important to cache data and instructions for both the worlds to allow for fast
context switching as cache does not have to flushed and restored during the switch. To
enable this, the L1 and L2 (if applicable) processor caches have the NS tag bit which records
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the security state of the transaction that accessed the memory. However, both worlds are
allowed to clear cache lines upon memory shortage. Also, this allows for data to be shared
between non-secure and secure worlds. Figure 13 below shows the how cache and TLBs are

tagged.
Core Processing Logic —
Current status: VA [NSTID |
Y ] ' | | Arbiter
X TLB
r 1 Pagetable
VA NSTID }—»{ PA NS Walk
L [NeTH : NS | g 2K
: : : : ‘= 8]
H H H H 2 E
| VA | NSTID }—’| PA | NS | ﬁ & | Decoder
| | E 54
Y - <
| 2
! Level 1 Cache
( |
PA NS Li Dat Data Store
C [NS }—{ GineDaa | .
| PA [ NS |——» LineData | Security
Check
Cache Hit4
Cache Miss: External Load

Figure 13: Cache and TLBs

Figure 14 below shows memory organization with an example application that decrypts data
which is passed in as encrypted from the Normal World. The encrypted data is put in a
common non-secure memory block which is mapped to the same physical address space in
both normal and secure worlds. The data is fetched in the secured world, and then decrypted
using secured services and processed according to the application type such as DRM,

Banking etc.
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Figure 14: TrustZone memory access example

4.1.5 Interrupts

ARM processor with TrusztZone extension contains an Interrupt Controller (GIC) that
provides secure interrupt sources which cannot be manipulated by the normal world
software. All interrupts are trapped in the monitor mode. If the core is in the other world
and an interrupt occurs, the monitor software causes a context switch and jumps to the
restored world, at which point the interrupt is handled as shown in figure 15. Also as an
added measure, a configuration register in CP15 to prevent any Normal world software
modifying the F (FIQ mask) and A (external abort mask) bits in the CPSR and therefore

blocking the apps from masking out secure world interrupts.
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Figure 15: Interrupt propagation between worlds

4.1.6 Peripherals

One of the most useful features of the TrustZone architecture is the ability to secure
peripherals, such as interrupt controllers, timers, and user 1/0 devices. Thus it is possible to
secure entire system instead of providing a secure data processing only. A secure interrupt
controller and timer allows a non-interruptible secure task to monitor the system, a secure
clock source enables robust DRM, and a securable keyboard peripheral enables secure entry

of a user password [8].

TrustZone architecture includes a peripheral bus known as the Advanced Peripheral Bus
(APB), which is attached to the system bus using an AXI-to-APB bridge as shown in figure
16 below. The AXI-to-APB bridge hardware is responsible for managing the security of the
APB peripherals by rejecting transactions of inappropriate security setting and must not
forward these requests to the peripherals.
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The bridge contains address decode logic that generates the APB peripheral select based on
the incoming AXI transaction. The bridge includes a single TZPCDECPROT input signal for
each peripheral that is located on the bus. This signal is used to determine if the peripheral is
configured as secure or non-secure. These bridge input signals can be tied persistently at
synthesis time or can be dynamically controlled via a trusted peripheral, such as the
TrustZone Protection Controller (TZPC), to allow dynamic switching of security state at run-

time.

Figure 16 demonstrates how 4 peripherals are controlled. The TZPC is configured as always
Secure [DESCPROT = 0], the Timers and Real-Time Clock (RTC) as always Non-secure
[DESCPROT = 1], and the Keyboard and Mouse Interface (KMI) have a programmable
security state under software control. Secure world software can program the TZPC at run-
time to change the signal input to the AXI-to-APB Bridge to switch the KMI from Secure to
Non-secure or vice versa. This allows the system to capture password entered by user

securely.

SPIDEN | TrustZone
"| ARM Core

AX] Bus
l DECPROT[1:0] l DECPROT[3:2]
TZMA |LOSIZE 0™ AXlo-APB [T
Bridge — 1 —
TZPC RTC
SRAM
KMI Timers
AN

Figure 16: Trustzone and secured peripherals
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4.2 Trustzone Software Architecture

Figure 17 below shows the software architecture of trustzone. The normal world and secure
world kernels operate in stand alone mode. The secure world is responsible for secure
booting of the normal world kernel. Secure booting is out of scoepe of this paper, but Kai et
al describes secure booting of emebedded systems in [13] .

Typically a normal world user app would make a call to secure world for secured services
such as cryptographic funcitonalities. The user app interfaces with the TrustZone driver,
which makes a call to the monitor mode sofware using the SMC instruciton described earlier.
The normal world kernel or the user application is responsible for copying the data to be
processed into a shared memory region described in section 4.1.4. Upon finishing secure
operation, the return value is returned to the user app. Since both the OS operate in
standalone mode, multi-threading is possible in each of the worlds. Therefore, the choice of
OS is flexible, for example the normal world OS can be running Windows with Linux
running in the secure world. The TrustZone Driver is therefore modified based on the

configuration and the secure world implementation does not need to change.

i Nomalword LT T T T TSecureworid 'i
| |
|
| 1 |
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: Generic Security Security | 1 : Security Security Standalone :
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1 1
[ [
[User s S S R S ; S User |
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Kemel ! Kernel
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1 1 |
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I
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1 1 1
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[
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AR R | | ______________ -
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Figure 17: Trustzone Software Arechitecture
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4.3 Benefits of Trustzone

The main benefits as outlined in [15] of TrustZone are:

1. TrustZone provides secure storage for keys, and data.

2. Full bus-bandwidth access is provided to all storage areas to provide fast memory
access speeds, which improves overall system performance.

3. Since TrustZone solution consists of software and hardware elements, it provides
flexibility to allow customizations upgrades to the secure system even after the SoC is
finalised.

4. Any peripheral channel such as, the user interface, SIM and smart cards as well as
audio output can be secured. For the non-secure world, TrustZone can enable
security through integrity checking for all the features within a SoC device. For
example, decoded DRM audio can be protected as it is passed to non-secure audio

drivers by integrity checking the relevant part of the OS infrastructure.
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Chapter 5
Example Application: Mobile Movie Ticket Application

This section explains design of a secure system based on the TrustZone architecture
described above.

With the evolution of the smart phones, tablets, and e-readers mobile commerce has become
a prominent industry. Nokia defines mobile commerce as the use of mobile handheld
devices to conduct any electronic transaction or information interaction that leads to transfer
of value in exchange for information, services or goods over wireless networks in a released
whitepaper [5]. Examples of m-commerce application include mobile financial services,
mobile context services, on-line games, tickets and mobile shopping. A lot of research has
been done to ensure secure communication over the air and through network backbone.
However, according to Group Inc. it is predicted that 85 percent of wireless security incidents
will be device related rather than over-the-air related [6]. Therefore content security can be
considered as the most important area of handheld security. This is where the advantage of
TrustZone based security solutions is crucial. Hussin, Coulton and Edwards outlined the
design for a secure mobile commerce application in [7]. Even though the design presented in
this paper follows the same set of requirements and application, the methodology and
security engineering practices is different. The design attempts to take advantage of the
concept of two worlds in one processor. In the next few sections, first system requirements
are outlined followed by software flow which is based on top of the TrustZone kernel ported.
The hardware setup for simulation is described in the next section.

5.1 System Requirements

Let’s consider a system to purchase movie tickets. The user browses and selects a movie a
particular theatre for a specific date and time. The user would then pay for the ticket using
mobile banking which is assumed to be secured for the purposes of this example. Upon
successful completion of the transaction the user needs to receive an electronic receipt as
proof of purchase, which is referred to as the “mobile ticket”. The mobile ticket must

possess the following characteristics:
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The ticket received cannot be falsified
The ticket can only be valid for a specific date and time
The ticket cannot be used twice and has to be unique

M 0D e

The ticket must be verified to be issued by the authorized movie operator only

To ensure such security requirements, one design based on TrustZone technology is
provided.

5.2 System Block Diagram

Figure 18 below shows the system block diagram for a TrustZone based movie ticket
application. The operator is connected to the handheld device over a secured network. The
handheld devices have a normal world application which interfaces with the operator. The
normal world app is also a secure application (described in the next section). The normal
world app talks to the secured world which provides security services such as cryptographic
library, secure storage of keys through the predefined TrustZone API (Appendix C). There
may also be attached peripherals such as a keypad, or touch screen to get user input and/or
display secured content. Note that a secured protocol such as HDCP can be deployed to
ensure output protection for the screen, but that is out of scope of this discussion and it is
assumed that the output is secure. User input is made secured by using the peripheral

security feature as explained earlier in section 4.1.6.
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Figure 18: System Block Diagram

The cryptographic processor is responsible for handling all cryptographic computations and
algorithrms such as AES, RSA, SHA-1 etc. OpenSSL implementation is used to simulation
this behavior but with real hardware crypto processing is accelerated.

5.3 Operating System and Cryptographic Processor

Linux Kernel is ported to the ARM Cortex A15 processor with ARM TrustZone support.
The scheduler is modified to schedule secure world and normal world applications in a time
sliced manner [21]. The normal world communicates with the secure world through the
TrustZone APl and OpenTZ driver. The cryptographic processing is done with the software
implementation of OpenSSL [22]. When actual hardware is used the a separate cryptographic
accelerator can used which can be called through OpenSSL directly without code change.

5.4 Normal World User Application

The normal world user application interfaces with the network operator over a secured
network connection. The user app also connects to a third party payment service such as

Paypal or Interac. Since this secured app is place in system memory it must provide the
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security requirements outlined in section 2 such as tamper resistance, data confidentiality,

integrity, and authenticity.

5.4.1 Tamper Resistance

Tamper resistance is provided in two phases: 1) load-time integrity and 2) run-time integrity.
Load time integrity mechanism is rather simple. A checksum is pre-calculated during
compile time and is embedded in the program itself. The execution binary is processed by
another tool written to calculate the CRC and insert it in the execution header. The program
then calculates the checksum upon start up and continues execution only the calculated
checksum matches the embedded checksum. Since this is a crucial part of the integrity
check, the approach to ensure this process is secured needed to be sophisticated. For

example, if there is code such as the following figure then it is very easy break the code.

if (crc caluclated != crc stored){
break;

b

Figure 19: CRC comparison code
The code snippet in figure 19 looks like the figure 20 in assembly. An attacker simply has to
change the je instruction (opcode 0x74) at offset 8048445 to a jmp instruction (opcode OXEB)

to defeat this protection.

804842b: ff 75 fc pushl -4 (%ebp)

804842e: ff 75 £8 pushl -8 (%ebp)

8048431: e8 f2 fe ff ff call 8048328 <crc> ;call crc32( )

8048436: 83 c4 10 add $0x10, %esp

8048439: 89 45 f4 mov %eax,-12 (%ebp)

804843c: 8b 45 f4 mov -12 (%ebp), %eax

804843f: 3b 05 40 83 04 08 cmpn 0x80483d0, $eax ;compare result
8445: 74 22 je 8048469 ;jump-if-equal

Figure 20: CRC check instruction level
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To counter this type of attack, security through obfuscation is chosen, where a table of
function pointers is utilized to hide the actual value of the checksum. For example, if the
calculated checksum is 0X09A1DEOSF then in the table the following entries would contain
actual valid data byte1[0], byte2[9], byte3[10], byte4[1], byte5[13], byte6[14], byte7[9],
byte8[15]. Each of these contains a pointer to the function that will process the next nibble in
the checksum, except for b8[15], which contains a pointer to the function that is called when
the checksum has proven valid. This theoretical concept is shown in figure 21 below:

bytelfl6] = { c¢rc¢ nib2, 0, 0, 0, 0, 0, 0, 0, 0, O, O, 0, O, O, O, O 1},
byte2[l6] = { 0, 0, 0, 0, 0, 0, 0, O, crc nib3, 0, 0, 0, O, 0, 0, O 1},
byte3[1l6] = { 0, 0, 0, 0, 0, O, 0, O, 0, crc nib4, 0, 0, O, 0, O, O 1},
byted4[l6] = { crc nib5, o0, 0, 0, 0, O, 0, O, 0, O, O, O, O, O, O, O 1},
byte5[(16] = { O, O, ©0, O, O, O, O, O, O, 0, 0, 0, crc nibe6, 0, 0, 0 },
byte6[16] = { 0O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc nib7, 0, 0 },
byte7(16] = { 0, 0, 0, 0, 0, O, 0, O, crc nibg8, 0, 0, 0, O, 0, O, O },
bytesg8[l6] = { O, 0, 0, 0, O, O, O, O, O, O, O, O, O, 0, 0, crc good };

Figure 21: Check sum function pointer table

However, in reality, the 0’s in the function table also poses a threat to breakdown this
function pointer table. Thus, a lot of dummy functions are populated at random with a
random initial vector to obfuscate the code. A screenshot of the out of this example is given

in figure 22.
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Figure 22: Actual function pointer table for CRC 0x09A1DE9F

A separate program is written to calculate the static CRC of the user application. The static
CRC is also stored in the secure memory and checked when the user application is launched.

5.4.2 Data confidentiality

Tamper resistance provides protection against changing the data or code used by the
software. However, it is also important to protect data that resides in system memory.
There are few techniques to do secure memory for example by using memory in external
hardware such as a GPU. For key storage and other data storage purposes the memory space
in the secure world is used as described in the TrustZone Hardware Architecture section
(4.1.4). For added security, a secure memory library is used to protect data in the stack as
infrequently used data is usually swapped to disk. This library ensures that all memory
allocated by the program is locked, so that it cannot be swapped out. Code for this library is
included in the Appendix.

Another level of security is added by checking for the CRC dynamically. A CRC “lattice” is
calculated from the Read only sections of the binary and constantly checked during runtime
for modifications. The functions implementations reside in the Read only section and thus

cannot be modified by an attacker.
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5.4.3 Secure World Kernel API

Normal world app requests cryptographic services through the predefined API. The services
could include cryptographic calls, and data processing, but in this application, encrypted data
is passed to the secure world for decryption and processing as explained in the next section.

So the primary purpose of this application is to ensure secure data processing.

5.5 Key-exchange and software flow

This section describes the software flow of the mobile ticketing application and how
cryptographic blocks and design techniques described in section 3. Figure 23 below shows
the flow diagram. For rest of this section the following notation format is used as outlined in
Table 6.

Table 6: Notations

Notation Meaning

K,.p(operator) 1024 bit RSA public key of operator

K, iv(operator) 1024 bit RSA private key of operator

K s 128 bit AES key for encryption/decryption
Client Normal World Application
Hash(plaintext) SHA-1 Hash of {Plain Text}

As described earlier, the user browses for movie tickets and process secure payment through
third party vendors. The scope of secure payment is out of this discussion, but more details
can be found in [8]. After the operator receives a request, pre-generated public RSA keys
{Kpup(operator) , K, (client) } are exchanged between the normal world app and the
operator software. Then the operator processes the ticket request and generates a ticket in
plain text that contains the current time, movie name, location, and time. The format of the
file could be complex with watermark, and a bitmap image. The plain text information is
then sent to the secured app along with the keys. The application software then generates a
random 128 bit (16 bytes) key ,K,gs. It is assumed that the random number generator is a

True Random Number (TRN) generator. The properties and nature of TRN is out of the
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scope of this project. The movie ticket, plain text format in this example, is then encrypted

with K,zs. This encrypted ticket is referred to as “cipher ticket”.

Then the SHA-1 hash of the cipher ticket, Hash(cipher ticket), is calculated and signed with
the private key of the client and sent along with the cipher ticket as digital certificate as
described in section 3.4. Also, K4 Or key to encrypt the plaintext ticket is encrypted with
K,up(client). After all the above steps are completed, the cipher ticket, digital certificate,

and the encrypted key are sent over the secured network channel to the operator.

On the operator side, first the encrypted AES key, K s , is decrypted with
K,riw(operator). Then using the decrypted key, the cipher movie ticket is decrypted. The
hash value of this decrypted ticket is calculated and stored. The digital signature received is
decrypted with K, (client) and the received hash value is obtained. Then the calculated

hash value of the decrypted ticket and the received hash value are obtained. If the two

values match, then the transmission is marked as successful, and authenticated.
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Chapter 6

Simulation Results

The concepts presented in this paper are simulated in ARM fast model simulation
environment. The cost of real hardware is significantly high, thus simulation used as proof
of concept. For this project, Versatile Express (VE) baseboard component is used with
Cortex A15 processor with 1 core. This processor has trustzone support enabled by default.
The details of the simulation environment can be found in [9]. Figure 24 below shows the
System Canvas block diagram editor being used to draw the schematic representation of the
VE, and figure 25 shows the schematic in detail.
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Figure 24: System Canvas Simulation

44



(]

cluster (ARMCortexA15x1 CT)

acp_s CHTHPIRG

cfgend CHTPMSIRCG

cfgsdisable CNTPSIRQ

clk_in CHTVIRC

clusterid avent |:| ™
cplEsdisable pmuirg —
© puporaset pvbus_mO [)

i standbywia .
irq standbywfi

—-ims ARM ticks

Erasat

periphbase

presetdhg

reset

teinit

Wi

winithi

Wirg

daughterhoard ] motherhoard L]
(VEDaughterBeard) (VEMotherBoard)
=) cpu_clk L4 dauahter_leds CB [
clk_in cpu_irgs [T daughter_switches cpu_pvbus [
CpU_pv bus mmb [) mmb_dbi interrupts [
interrupts smb_cs [/ smb_cs masterclk [
7 ticks

Figure 25: Schematic of VE with Corex A15 processor

Figures 26-28 show screenshots of how Linux is loaded on this platform.
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The Linux kernel 2.6.34 patched code and application code is attached in Appendix B. When
the normal world application is run and key exchange and negotiation is successful, a number
of files containing the AES keys, RSA keys are dumped. The output files are attached with
this report. The final output is the barcode generated from the encrypted ticket. The figure

below shows the barcode generated using Zint — Grid Matrix (AIM Standard),

Figure: Grid Matrix generated barcode form encrypted data

6.1 Security Threat Analysis

A number of security threats were analyzed and simulated. Buffer Overflow attack, Static
code tampering, dynamic code tampering, ROP (Return Oriented Programming) exploitation

and Man-in-the middle attacks are carried out and the program behavior is noted.

6.1.1 Buffer Overflow

Buffer Overflow attack is the most common mechanism of attack in systems where the
binary can be exploited by an attacker. The attack is explained by Cown et al in [24] as is
an anomaly where a program, while writing data to a buffer, overruns the buffer's boundary
and overwrites adjacent memory. A typical solution is to use the compiler to protect against
such attack. All the binaries for this project were compiled with —fstack-protector option to

enable protection from buffer overflow attacks.
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6.1.2 Static Code tampering

In this mechanism, the program binary is modified to alter code data using a script and hex
modification tools. A number of patterns of code/data were modified either randomly or at
predefined intervals. In most cases, the executable crashed without processing any keys or
secrets. If however, the modifications did not crash the program, the CRC check against the
CRC value calculated and pre-injected failed and the program exit.

6.1.3 Dynamic Code tampering

If code/data were modified using a debugger while the code was running, the CRC checks
would also fail upon rechecking the value and the program would terminate itself. A full
proof monitoring mechanism, i.e, protection against an attack where the monitoring

mechanism itself is compromised is not implemented yet.

6.1.4 Return Oriented Programming (ROP) Exploitation

Another popular attack on binaries is the Return Oriented Programming (ROP) exploitation
where instead of jumping to the beginning of a library function, the attacker chains together
existing sequences of instructions (called Gadgets) that have been previously identified inside
existing code [23]. ROP analysis on the binary itself exposed the following Gadgets,
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.......... =>mov %eax,(%e?x)

- 0x08048be0(null) => pop %eax ; ret
- 0x08048c1b(null) => pop %ebx ; ret
EET =>pop %ecx

s => pop %edx

EIT => Xor %eax,%eax

- 0x08048bb0(null) => inc %eax ; ret
EET =>inc %ax

- =>inc %al

s =>int $50x80

e => sysenter

- 0x08048fd3(null) => pop %ebp ; ret

- 0x0804c¢380(null) => .data Addr

As a result, protection against ROP exploitation is needed. Onarlioglu et al, describes a
compiler-based approach that eliminates all unaligned free-branch instructions inside a
binary executable, and protects the aligned free-branch instructions to prevent them from
being misused by an attacker. To militate against ROP attack, the compiler modifications

could be implemented.

6.1.5 Man in the Middle Attack

For this scenario it was assumed that the attacker controls the interface between the user
mode and the kernel mode components and replays the traffic requesting cryptographic
services from secure mode. However, since the normal mode application is signed and
certified prior to execution the validation method implemented in the kernel mode driver did
not execute commands from and unauthorized source. One possible way the attacker could
still get control if the private key of the signing tool is compromised. As a result, this key is

to be refreshed periodically.
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Chapter 7

Conclusion

Embedded system security is identified to be one of the most important parts of the design
flow as more and more systems are exposed to attackers and the consequences of any breach
can result in costly damages. Data confidentiality, Data integrity, Authentication, Content
Security, Secure Storage and Tamper Resistance are some of the features that any secured
system must provide. A few different security solutions exist today such using a dedicated
hardware block, or software virtualization techniques. However, the benefits of such
solutions do not always apply to embedded systems where resources such as memory and
computing power are limited. TrustZone technology uses a concept of running a normal
processor and secured processor (which are isolated from each other) on the same SoC to
provide security services. TrustZone based solutions save silicon space but provide all
necessary security features such as secured storage, secure execution, secure peripherals in
performance efficient manner with robust hardware and software design explained in this
paper. Also, secure boot features can also be incorporated in TrustZone without the cost of
having to implement extra logic or hardware block. The upgrade process is also simplified.
To validate the use of TrustZone, a mobile ticketing system design is implemented using the
proposed architecture. Simulation results show that such system is an effective solution for
embedded systems with memory and resource constraints without compromising the security
requirements. A number of security attacks such as buffer overflow, static and dynamic code
and data tampering, ROP exploits were simulated an verified that the executable is able to
withstand such attacks. The next steps to validate the results include porting the TrustZone
code on actual Cortex-A15 based hardware and simulating various attack types and test the
integrity of the system design and measure performance for complex security features such
as DRM.
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Appendix B

Simulation Environment

The Versatile Express (VE) components have been specifically developed to model in software some
of the functionality of the VE hardware. A VE baseboard with Cortex A-15 processor was used for
simulation. The following image shows the actual Versatile Express board.

Versatile Express

The following tables summarize the memory map options:
Table Al: Versatile Express memory map
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Peripheral Modeled Address range Size
MNOR FLASHO (CS0) Yes 2x00_0enenoo0-0x00_83FFFFFF 64MB
Reserved @x20_B4030en0-0x00_B7FFFEFF 64MB
MOR FLASHO alias (CS0) Yes @x00_080enone-2x00_DBFFFFFF 64MB
MOR FLASHI (Cs4) Yes @x20_BCos0e00-0x00_BFFFFEFF 64MB
Unused (C535) @x@0_1e080000-0x00_13FFFFFF =
PSRAM (CS1) - unused Mo @x80_14000200-0x00_17FFFFFF -
Peripherals {C52) see Yes @x20_1B020000-0xA0_1BFFFFFF 64MIB
Peripherals (C53) see Yes @x@0_1C000000-0x00_1FFFFFFF 64MIB
CoreSight and peripherals No @x00_20000000-0x00_2CFFFFFF2 -
(Graphics space No @x3@_20000000-0x00_2000FFFF -
System SRAM Yes @x@0_2EQBDR00-0x00_2EFFFFFF 64k B
Ext AX] No @x80_2FO20a00-0x00_Y FFFFFFF -

4GB DRAM (in 32-bit address space)?  Yes @x00_s0000000-0x00_FFFFFFFF 2GB

Table A2: Secured memory options

Peripheral

Address range

Functionality with
secure_memory enabled

NOR FLASHO (C50)

Bx00_02020208-0x00_BOALFFFF

Secure RO, aborts on
NON-3eCUre accesses,

Reserved

Bx00_04020008-0x00_B4B1FFFF

Secure SRAM, aborts on
NON-3eCUre accesses,

NOR FLASHO alias (C50)

Bx00_0B020208-2x80_YOFFFFFF

Mormal memory map, aborts
0N SECUre ACCesses.

Ext AXI

Bx00_7e020008-2x00_7FFFFFFF

Secure DRAM, aborts on
NON-38CUre ACCesses,

4GB DRAM (in 32-bit address space)

Bx00_52020208-2xFF_FFFFFFFF

Mormal memory mpa, aborts
0N SECUre AcCesses.
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Table A3: Peripheral Memory Map

Peripheral Modeled Address range Size :?1::5
VRAM - aliased Yes 0xBO_18000000-0x00_19FFFFFF 32MB -
Ethernet (SMSC 9ICI111) Yes BxB0_1AB00BO0-0xB0_1AFFFFFF 16MB 47
USB - unused No @xB8_1E000B00-0x80_1BFFFFFF 16MB -

Register spec can be found on the arm fast model website from the following link.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0423m/DU10423M fast model rm.pdf
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Appendix C
TrustZone API

Full TrustZone API which is made available by ARM can be found at the following link.
http://www.lcs.syr.edu/faculty/yin/teaching/CIS700-sp11/TrustZone APl 3.0 Specification.pdf
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