
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2013

Hardware Assisted Security Platform
Mir Ahsan
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Engineering Commons

This Major Research Paper is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and
dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Ahsan, Mir, "Hardware Assisted Security Platform" (2013). Theses and dissertations. Paper 1928.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1928?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

HARDWARE ASSITED

SECURITY PLATFORM

by

Mir Ahsan

BASc, University of Toronto, 2009

A project

presented to Ryerson University

in fulfillment of the

thesis requirement for the degree of

Master of Engineering

in

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2013

©Mir Ahsan 2013

 ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this MRP. This is a true copy of the MRP,

including any required final revisions.

I authorize Ryerson University to lend this MRP to other institutions or individuals for the

purpose of scholarly research

I further authorize Ryerson University to reproduce this MRP by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my MRP may be made electronically available to the public.

 iii

Hardware Assisted Security Platform

Master of Engineering, 2013

Mir Ahsan

Electrical and Computer Engineering

Ryerson University

Abstract

Embedded systems are often used to monitor and control various dynamic and complex

applications. However, with greater accessibility and added features on many embedded

systems, more and more systems are being subject to sophisticated and new types of attacks.

As a result, the security aspect of embedded systems has become critical design step.

TrustZone has become a popular choice for security design solution in systems where

resources such as processing power, battery are limited. In TrustZone, two virtual

processors called "secure world" and “normal world” run on the same core in a time sliced

manner. These worlds have partitioned hardware and software resources, with different

modes of operation, isolated memory regions and interrupts. In this paper, the hardware and

software architecture of TrustZone is analyzed from the perspective of embedded system

security design. Then a mobile-ticketing system based on TrustZone is presented which

incorporates standard cryptographic engineering design practices to demonstrate the

feasibility and effectiveness of such system. The ticketing system is then simulated and

security threat analysis is performed in terms known vulnerabilities such as Buffer Overflow,

Static and dynamic code/data tampering, Return Oriented Programming (ROP) exploits, and

Man-in-the middle attacks. After evaluating the analysis results with various open source

vulnerability analysis tools, it is conclusive that the system design is an effective solution

particularly for embedded systems.

 iv

Acknowledgements

First, I would like to thank my supervising professor, Dr. K. Raahemifar. His dedication and

guidance in both technical and non-technical areas made for this project to be completed. I

appreciate his vast knowledge and skill in the areas of research.

I must thank my family for their never ending support, especially my wife, Afsana, for her

patience, encouragement and help.

 v

Table of Contents

AUTHOR'S DECLARATION ... ii

Abstract ... iii

Acknowledgements ... iv

Table of Contents ... v

List of Figures .. vii

List of Tables ... viii

Chapter 1 Introduction .. 9

Chapter 2 Background and Related Work .. 11

2.1 Embedded System Security Requirements ... 11

2.2 Embedded System Attack Classification .. 12

2.2.1 Types of Attackers ... 12

Class I (Clever outsiders): .. 12

Class II (Insider attack): ... 13

Class III (funded organizations): .. 13

2.2.2 Types of Attacks .. 13

2.3 Mitigating Embedded System Attacks ... 14

2.4 Existing Security Solutions .. 15

2.4.1 External Hardware Security Module ... 15

2.4.2 Internal Hardware Security Module .. 17

2.4.3 Software Virtualization ... 17

2.4.4 Software Access Control ... 18

Chapter 3 Cryptographic Theory .. 20

3.1 Cryptographic Tools ... 20

3.1.1 Symmetric Ciphers .. 20

3.1.2 Asymmetric Algorithm .. 21

3.1.3 Cryptographic Hash ... 21

3.1.4 Digital Signatures .. 22

Chapter 4 TrustZone Architecture .. 24

4.1 Trustzone Hardware Architecture .. 24

4.1.1 System and bus structure ... 24

4.1.2 Register Space ... 25

 vi

4.1.3 World Switching ... 27

4.1.4 Memory and Cache ... 28

4.1.5 Interrupts ... 30

4.1.6 Peripherals ... 31

4.2 Trustzone Software Architecture ... 33

4.3 Benefits of Trustzone ... 34

Chapter 5 Example Application: Mobile Movie Ticket Application .. 35

5.1 System Requirements ... 35

5.2 System Block Diagram .. 36

5.3 Operating System and Cryptographic Processor.. 37

5.4 Normal World User Application .. 37

5.4.1 Tamper Resistance .. 38

5.4.2 Data confidentiality ... 40

5.4.3 Secure World Kernel API ... 41

5.5 Key-exchange and software flow ... 41

Chapter 6 Simulation Results ... 44

Figure 24: System Canvas Simulation .. 44

Figure 25: Schematic of VE with ... 45

Figures 26-28 show screenshots of how Linux is loaded on this platform. ... 45

6.1 Security Threat Analysis .. 47

6.1.1 Buffer Overflow .. 47

6.1.2 Static Code tampering ... 48

6.1.3 Dynamic Code tampering ... 48

6.1.4 Return Oriented Programming (ROP) Exploitation .. 48

6.1.5 Man in the Middle Attack ... 49

Chapter 7 Conclusion ... 50

Appendix A Bibliography .. 51

Appendix B Simulation Environment .. 54

Appendix C TrustZone API ... 57

 vii

List of Figures

Figure 1: Embedded System attack types ………………………………………... 13

Figure 2: Power analysis of AES Key processing ……………………………….. 14

Figure 3: Attack prevention generic strategy………………................................... 15

Figure 4 Symmetric Cipher ..………………………………………..…………….. 20

Figure 5 Asymmetric Encryption ..…………………………………………..……. 21

Figure 6: Cryptographic Hash ..……………………………………………..……. 22

Figure 7: Tampered Message Hash ..…………………………………………..…. 22

Figure 8a: Digital Signature: Signing data ..…………………… ………..……… 23

Figure 8b: Verifying signatures ………………………………………………….. 23

Figure 9: Typical system block diagram with share resources………………........ 25

Figure 10: Arm register specificaiton……………….. 26

Figure 11: CP15 register contains the NS bit set according to mode of operation . 27

Figure 12: Secure world, normal world and monitor mode………………............ 27

Figure 13: Cache and TLBs………………………………………………………. 29

Figure 14: TrustZone memory access example ……………….............................. 30

Figure 15: Interrupt propagation between worlds ……………….......................... 31

Figure 16: Trustzone and secured peripherals………………................................. 32

Figure 17: Trustzone Software Architecture …………………………………….. 33

Figure 18: System Block Diagram ………………... 37

Figure 19: CRC comparison code ……………….. 38

Figure 20: CRC check instruction level……………….. 38

Figure 21: Check sum function pointer table ………………................................. 39

Figure 22: Actual function pointer table for CRC 0x09A1DE9F …….................. 40

Figure 23: Key exchange and software flow ……………….................................. 43

Figure 24: System Canvas for simulation ………………...................................... 44

Figure 25: Schematic of VE with Corex A15 processor ……………………….... 45

 viii

List of Tables

Table 1: Advantages and disadvantages of external hardware security module………. 16

Table 2: Advantages and disadvantages of Internal Hardwar Security Module ……… 17

Table 3: Advantages and disadvantages of security through software virtualization ... 18

Table 4: Advantages and disadvantages of software access control ………………….. 19

Table 5: Arm Processor Modes ……………………………………………………….. 25

Table 6: Notations …………………………………………………………………….. 41

Chapter 1

Introduction

Embedded systems have become integral part of our society over the last decade. In today’s

world, embedded systems are used to monitor and control various dynamic and complex

applications, ranging from non-safety-critical systems such as cellular phones, media players,

and televisions, to safety-critical systems such as automobiles, airplanes, and medical

devices. The critical nature of these applications, especially in military, medical and

transportation industries imply that these systems must be highly reliable as well as secured.

Thus security of embedded systems is emerging as a new dimension in modern embedded

systems design.

With increasing number of everyday embedded devices, more and more systems are being

subject to sophisticated and new types of attacks yielding to higher number break-ins. For

example, the IPhone was broken into only days after its public release [1]. The cost of such

security breach can be critical depending on the nature of the system. For example, it was

estimated that the “I Love You” virus caused nearly one billion dollars in lost revenues

worldwide [1]. With an increasing proliferation of such attacks, it is not surprising that a

large number of users in the mobile commerce world (nearly 52% of cell phone users and

47% of PDA users, according to a survey by Forrester Research [2]) feel that security is the

single largest concern preventing the successful deployment of next-generation mobile

services.

While security protocols and cryptographic algorithms address security considerations from a

functional perspective, it is unrealistic to assume that attackers will attempt to directly take

on the computational complexity of breaking the cryptographic primitives employed in

security mechanisms [3]. Functional cryptosystems often do not provide complete system

level security as explained by Schneier in [16]. As a result, the security model should be

considered from a system point-of-view. However, many embedded systems are constrained

by the execution environment and resource limitations such as low battery life, memory

 10

constraints, and lower computational power. For such systems, security is moving from a

function centric perspective into a system architecture (hardware/software) design issue. In

this paper, first the security requirements for embedded systems are outlined. Then attack

patterns are classified and various design solutions such as external hardware and software,

virtualization and virtual processors are presented. Then a virtual processor architecture

solution called “TrustZone” is described in detail from a hardware and software design view.

At the end, a secured mobile-ticketing system designed and implemented based on TrustZone

architecture is described.

 11

Chapter 2

Background and Related Work

2.1 Embedded System Security Requirements

Security has traditionally been an active area of research in Desktop and network computing.

A lot of network security protocols, such as IPSec and SSL, have been defined to achieve

authentication between communicating entities, and ensure the confidentiality and integrity

of communicated data [5].

Since the nature of embedded systems varies widely based on the application requirements,

the security requirements also vary. In typical systems available today, more than one aspect

of security needs to be considered as complex systems may comprise of individual modules

with different security requirements. For example, consider a smartphone that is capable of

wireless voice, multimedia, and data communications. Security requirements may varies

with the viewpoint of the manufacturer of a particular component inside the cell phone (e.g.,

baseband processor), the cell phone manufacturer, the cellular service provider, the content

provider, and the end user of the cell phone. The end user’s primary concern may be the

security of personal data stored and communicated by the cell phone, while the content

provider’s primary concern may be DRM related protection of multimedia content delivered

to the cell phone, and the cell phone manufacturer might additionally be concerned with the

secrecy of proprietary firmware that resides within the cell phone. As mentioned earlier, in

this paper, an example mobile ticketing application is explored. The application performs a

simple task of letting users browse through and pick a movie, and then stores the ticket

issued by the movie operator company in the device. The task at hand is to ensure security of

this transaction. There are six security requirements that any embedded system must

mitigate:

1. Data confidentiality: Embedded systems must protect sensitive information from

undesired eavesdroppers in the communication channel between two modules within

a system or between different parties.

 12

2. Data integrity: Embedded systems must ensure that user data stored on the device has

not been changed illegitimately

3. Authentication: Embedded systems must validate that the data received is actually

sent from the intended and correct sender.

4. Provide content Security: Embedded systems must provide full content security

under Digital Rights Management (DRM) protocol to ensure that the data processed

from media cannot to copied or altered.

5. Secure Storage: Embedded systems must provide a secure storage for critical and

sensitive information such as various keys so that these secrets are not leaked out for

the full duration of the device’s life time and erased afterwards.

6. Tamper Resistance: Embedded systems must provide tamperproof and may be

detection mechanism even when the device can be physically or logically probed.

As stated earlier, the system requirements vary according to the functionality and the typical

operation environment. However the requirements stated above cover most of the modern

devices today.

2.2 Embedded System Attack Classification

Attacks on embedded systems vary on the type and method of execution primarily based on

the nature and availability of the target device. Attackers typically rely on exploiting security

vulnerabilities in the hardware and software components. Even though, each attack is

different in terms of the methodology, the attackers can be categorized into three classes as

described below.

2.2.1 Types of Attackers

Class I (Clever outsiders): This type of attack is launched by individuals who are

intelligent but often do not have sufficient information about the systems. Usually these

attackers try to take advantage of existing flaw or vulnerability of a system instead of

creating one.

 13

Class II (Insider attack): May be launched by defected employee who has specialized

technical education and experience. They have varying degrees of understanding of parts of

the system but not full access to the system.

Class III (funded organizations): Attacks launched by teams of specialists with related and

complementary skills backed by great funding resources. They are capable of in-depth analysis of the

system, designing sophisticated attacks. Some well-known organizations today are “Anonymous”,

and “Masters of Deception”.

2.2.2 Types of Attacks

Ravi et al categorizes attacks on embedded systems into three areas based on the impact level in [3]

as shown in figure 1 below:

Figure 1: Embedded System attack types

1. Privacy attacks: The objective of these attacks is to gain knowledge of sensitive

information stored, communicated, or processed in an embedded system. A common

example is the Man-in-the-middle attack, Meet-in-the-middle attack, and Sniffing

using software approach. On the hardware level, common methods used by the

attackers include power analysis, fault injection and timing analysis to reveal patterns

or faults for a window of fault. For example, power analysis can show patterns when

 14

a certain cryptographic algorithm is executed. Figure 2 below shows the power

analysis of when AES key is processed, thus leading to exposure of the key.

2. Integrity attacks: These attacks attempt to change data or code associated with an

embedded system. Eavesdropping and data manipulation techniques are most

common types of attacks using key manipulation and key injection mechanisms.

3. Availability attacks: These attacks disrupt the normal functioning of the system by

misusing and suffocating system resources so that normal operation cannot continue.

Examples of such attacks are Denial of Service (DoS) attack and Replay attacks.

Figure 2: Power analysis of AES Key processing

2.3 Mitigating Embedded System Attacks

To mitigate or counter the attacks described in the previous section, a generic security model can be

developed. First line of defense is known as Attack Prevention. These are measures which are in

place to prevent the attacker from initiating an attack. Anti-tampering and code obfuscation are

examples of techniques used in attack prevention. Then in the next step, there must be mechanism to

detect that system configuration or code has been altered. Check sum validations or run-time

integrity checks are commonly used in this phase. Lastly, the attacked program or hardware must

 15

take measures to avoid execution or exposure of sensitive information upon detection of attacks, and

recover if possible.

Figure 3: Attack prevention generic security model

When considering full system security solutions, there are a number of common design

practices deployed in embedded platforms today. In the next section, four such solutions are

analyzed.

2.4 Existing Security Solutions

A number of solutions have been proposed in [4, 10, 11, and 17] using external, internal

hardware and software techniques. This section summarizes the pros and cons of some the

existing solutions.

2.4.1 External Hardware Security Module

External hardware security module based systems have a dedicated hardware block to

perform security related functionalities. This hardware is typically placed outside the Main

SoC and have predefined interface to communicate and execute services from the main

processor core [8]. A popular example of such solution is the SIM card in a mobile handset,

or a smartcard in a satellite receiver, or dedicated hardware block in the GPU to perform

DRM operations. Table 1 below highlights the key advantages and disadvantages of external

security based hardware designs.

 16

Table 1: Advantages and disadvantages of external hardware security module

Advantages Disadvantages

 The security assets such as keys,

algorithms are isolated in a dedicated

hardware block

 Isolation techniques provide high

levels of tamper resistance and

physical security

 Only authenticated applications can

be run on the secured hardware block

 Requires more silicon area, increases

power consumption, and cost and

reduces performance of the device.

 These hardware blocks typically

provide a platform for processing and

secure storage functions only. An

interface is required to the host

processor, which adds to design

effort. Also, this interface is

vulnerable to attacks. For example,

a user’s entry of a Personal

Identification Number (PIN) must be

managed by the less secure software

outside of the smartcard, making it

vulnerable to attack, even though

there is SIM hardware.

 17

2.4.2 Internal Hardware Security Module

The security block or dedicated hardware is located inside the main SoC.

Table 2: Advantages and disadvantages of Internal Hardwar Security Module

Advantages Disadvantages

 There is significant cost reduction in

terms of hardware design, and silicon

costs compared to the External

Hardware Security Module

 There is typically another separate

physical security processor, which is

less powerful than the main

applications processor, and also

consumes significant silicon area.

Additionally, communication

between the two processors requires

the use of external memory.

 Since the security processor is inside

the SoC, significant design and test

effort are needed.

2.4.3 Software Virtualization

Virtualization is a software security mechanism in which a highly trusted management layer,

known as a hypervisor, runs in a privileged mode of a general purpose processor [8]. The

hypervisor separates multiple independent software platforms running on top of it using the

Memory Management Unit (MMU), placing each inside a virtual machine controlled by the

hypervisor software. There are commercial vendors such as VMware that provide such

solutions. However, traditional OS vendors such as Microsoft contain hypervisor support by

default with the release of windows 8 [10].

 18

Table 3: Advantages and disadvantages of security through software virtualization

Advantages Disadvantages

 Any processor with an MMU can be

used to implement a virtualization

solution, and some of the common

rich operating systems have been

ported to run on top of them.

 There is also no requirement for

additional hardware to implement a

hypervisor. Security sensitive

applications can be ported to run in a

secure environment running on top of

the hypervisor, but outside of the

view of the rich operating

environment.

 The isolation provided by

virtualization technology is restricted

to the processor implementing the

hypervisor. Any other bus masters in

the system, such as DMA engines and

Graphics Processing Units (GPUs),

can bypass the protections provided

by the hypervisor and thus must also

be managed by the hypervisor to

enforce the required security policy.

This is difficult to achieve without

damaging the performance of the

system [8].

 Virtualization ignores the security

issues associated with hardware

attacks, such as threats that use the

debug or test infrastructure.

2.4.4 Software Access Control

Software firewall refers to techniques of using a set of rules that enforce security control

based on policies that confine user programs, or processes, to the minimum amount of

privileges and access to resources that they require for their execution. SElinux or Security

Enhanced Linux is a typical example of such “access control” mechanism embedded in

Linux distributions with security awareness. Fiorin et al. describes how SELinux is used in

securing desktop operating systems in [4]. Furthermore, the authors propose hardware

 19

architecture for enhancing security and accelerating retrieval and applications of SELinux

policies in embedded processors. The proposed system uses an external hardware accelerator

that aims at speeding up the most time consuming operation in policy enforcement: the

lookup of rules in the policy. The hardware modules include a caching mechanism,

dedicated security servers. The following figure outlines the advantages and disadvantages

of using software access control based approach.

Table 4: Advantages and disadvantages of software access control

Advantages Disadvantages

 Implementation is hardware

independent, and solely developed in

software

 Vulnerable to many types of attacks

such as DoS, and tampering.

 Severely affects system performance,

as rules are checked prior to any

kernel or I/O operation

 Size of the code increases

significantly, and typically not suited

for embedded system design and

development

 Disadvantages of using dedicated

hardware also applies

 20

Chapter 3

Cryptographic Theory

3.1 Cryptographic Tools

Cryptography is the art and science of encryption [20]. The application of cryptography in

computer security is critical and fundamental topic. The field of cryptography is vast and

contains many complex algorithms and techniques. For the purposes of this paper, we focus

on the simple components such as Symmetric Ciphers, Asymmetric Ciphers, Hashing, and

Digital signatures to design a security system. It is important to note that the secret of a

cryptographic solution is not the algorithm itself but the associated keys.

3.1.1 Symmetric Ciphers

Symmetric ciphers require the sender to use a secret key to encrypt data using a predefined

cryptographic algorithm (the data being encrypted is often referred to as plaintext) and

transmit the encrypted data (usually called the ciphertext) to the receiver. On receiving the

ciphertext, the receiver then uses the same secret key and cryptographic algorithm to decrypt

it and regenerate the plaintext. The following figure shows the process of using symmetric

encryption:

Figure 4: Symmetric Encryption

Examples of symmetric ciphers: DES, 3DES, AES, and RC4. Symmetric ciphers provide

data confidentiality.

 21

3.1.2 Asymmetric Algorithm

Asymmetric algorithms (also called public-key algorithms), use a pair of keys: one key to

encrypt the data while the other to decrypt it. Encryption of a message intended for a given

recipient requires only the public key to be known to the world, but decryption is only

possible with the recipient’s private key, which the recipient should keep secret. The

following figure shows how public-key algorithm is used:

Hi Bob! Encrypt A3344FDCBEE Decrypt Hi Bob!

Original
Plaintext

Decrypted
Plaintext

Ciphertext
Bob’s Public

Key
Bob’s

Private Key

Figure 5: Asymmetric Encryption

In the figure above, if Bob is the intended recipient of the message, then the plaintext data

“Hi Bob” is encrypted with Bob’s Public Key, which is advertised by Bob and then the

encrypted data can only be decrypted by Bob’s private key. One popular example of

asymmetric cryptography is RSA. This key-pair is also utilized in authorizing source of

messages by constructing a hash of a message and then ‘digitally signing’ the message hash

with its private key. The receiver the decrypts the hash with the public key, and checks the

message ensuring that the sender is authorized. Digital signatures are described in detail

later in this section.

3.1.3 Cryptographic Hash

A cryptographic hash is an algorithm that takes an entire message and, through a process of

shuffling, manipulating, and processing the bytes using logical operations, generates a small

fingerprint or message digest of the data [2]. Some examples of such algorithm are MD2,

MD5 and SHA. Figure 3 below demonstrates the result of such hash function.

 22

Message Text

Hi Bob!
Meeting is moved

to 11 am
(MD5 or SHA) A3344FDCBEE90402938

Hash function Message Digest

Figure 6: Cryptographic Hash

One critical feature of any hash function is that any minor change to the original message text

must produce an entirely different message digest, so that any tampering can be detected.

Thus hash functions are used in providing tamper proofing and/or data integrity of

instructions, or communication messages or code/data in memory. Figure 4 below shows,

how the end message digest changes with minor changes to the original data.

Message Text

Hi Bob!
Meeting is moved

to 10 am
(MD5 or SHA) FF5465FA55CC6DC0F

Hash function Message Digest

Figure 7: Tampered message Hash

3.1.4 Digital Signatures

Digital signatures, which use asymmetric cryptography and hashing functions, are

implemented to authenticate the sender. This mechanism is typically used along with the

encrypted data. The following figures illustrate how digital signatures are typically used.

Figure 5a shows how data is signed. First hash of the data file is calculated using hashing

functions (described in the previous section) such as SHA1 or MD5. Then this hash is

encrypted with the private key of the sender. This encrypted file is then sent along with the

data. Upon receiving the data, as depicted in figure 5b, the user decrypts the hash value with

the public key of the sender, and also decrypts the data using a pre-established key-exchange

mechanism. The receiver then calculates the hash of the decrypted data file, and compares to

the hash decrypted with the sender public key. If the two hashes match, then the data is

authenticated.

 23

78993344FDCBFFAD38

Hash function
SHA1 or MD5 Encrypt Hash with

private Key

FF44ACDC004FAD38 Signature

Attach to
data

Figure 8a: Digital Signature: Signing data

FF44ACDC004FAD38

78993344FDCBFFAD38

Decrypt using
Public keyHash function

SHA1 or MD5

78993344FDCBFFAD38 ?=

Compare

Figure 8b: Verifying signatures

 24

Chapter 4

TrustZone Architecture

4.1 Trustzone Hardware Architecture

The more recent designs of the ARM processor core such as the Cortex A-15 core introduces

concept of two virtual processors on the same core called "secure world" and "non-secure

world" or “normal world”. There is also a "secure monitor mode" used for switching

between the two modes. These cores are called ARM TrustZone cores. On a typical ARM

TrustZone core, secure world and non-secure modes coexist. Thus, Instead of protecting

assets in a dedicated hardware block, the TrustZone architecture enables any part of the

system to be made secure, enabling an end-to-end security solution [8]. Advantages of

TrustZone are described after the hardware and software architecture is described.

4.1.1 System and bus structure

As mentioned above, in TrustZone architecture, all of the SoC’s hardware and software

resources are partitioned so that they exist in one of two worlds - the secure world for the

security subsystem, and the Normal world for everything else. There is also a third mode

called the monitor mode which switches between the two worlds. Switching is explained in

section 4.1.3.

The third generation of Advanced Microcontroller Bus Architecture (AMBA) or

AMBA3 AXI bus fabric contains logic that ensures that no secure world resources can be

accessed by the normal world components, enabling a strong security protection barrier to be

built between the two. The AMBA3 AXI bus implements two new signals - ARPROT[1] and

AWPROT[1] [8]. These indicate whether the current read or write transaction is secure or

non-secure (LOW: Secure, and HIGH: Non-secure). Figure 9 below demonstrates typical

system architecture with isolated secure blocks and as well as shared blocks.

 25

Figure 9: Typical system block diagram with share resources

In the figure above, key storage, boot ROM and decoder blocks are executed only under the

secure world and normal world applications cannot access these resources. However, the

cache and SRAM are shared between the two. Memory component sharing will be explained

in details in section 4.1.4.

4.1.2 Register Space

Typically arm cores contain 16 registers including stack pointer, link register, program

counter and 13 general purpose registers per user mode as outlined in table 5. There are 7

user modes supported.

Table 5: Arm Processor Modes

Processor Mode Description Privileged

User User applications No

Supervisor Kernel Yes

System Special version of user mode -

RW access to status register

Yes

Abort Memory access violation Yes

Undefined Undefined instruction Yes

Fast interrupt request (FIQ) Higher interrupt level Yes

 26

Interrupt request (IRQ) Lower interrupt level Yes

There is also CPSR/SPSR status registers and system control registers (CP15) for the

privileged modes. Figure 10 below shows the register specification for six modes of

operation in arm cores.

Figure 10: Arm register specificaiton

For the TrustZone architecture, System Control Coprocessor (CP15) register and all other

registers relevant exist in separate banked secure and non-secure world versions as well. All

banked registers from figure 10 are shared between the two worlds. Security critical

processor core status bits (interrupt flags) and System Control Coprocessor registers are

either totally inaccessible to non-secure world or access permissions are strictly under the

control of secure world. The CP15 register contains a NS bit as shown in figure 11 below.

 27

This NS bit is set to 1 when the processor is operating in non-secure world and 0 when it is in

secure world. Access to this bit is only allowed from the secured mode, and monitor mode

which is responsible for switching worlds. Monitor mode is explained next.

Figure 11: CP15 register contains the NS bit set according to mode of operation

4.1.3 World Switching

For the purpose of interfacing between secure and non-secure world a special mode called

“Monitor Mode” is introduced. Monitor mode manages transition between the two modes

and also manages the NS (Not Secure) bit in Secure Configuration Register in CP15. Figure

12 below shows all three modes.

Normal world Secure World

Normal Mode
User Mode

Normal Mode
Privilideged Mode

Monitor Mode

Secure Mode
User mode

Secure Mode
Privileged Mode

Exceptions, FIQ / IRQ

SMC

NS = 0

NS = 1

Figure 12: Secure world, normal world and monitor mode

ARM introduced a special instruction is called SMC, Secure Monitor Call, which switches

execution from one world to the other. Normal mode software running in the non-secured

World can execute the SMC instruction to invoke a switch to secure world through the

 28

monitor mode software. The switch can also be configured to be triggered by IRQ, FIQ,

external Data Abort, and external Prefetch Abort exceptions.

In most designs its functionality will be similar to a traditional operating system context

switch, ensuring that state of the world that the processor is leaving is safely saved, and the

state of the world the processor is switching to is correctly restored. Typically all general

purpose ARM register, any coprocessor register and any world-dependant processor

configuration state in CP15 must be saved and restored during context switching.

Normal world and the secure world execute in a time-sliced fashion. This removes the need

for a dedicated security processor core, which saves silicon area and power, and allows high

performance security software to run alongside the normal world operating environment.

4.1.4 Memory and Cache

The major component of the L1 memory system is the Memory Management Unit (MMU),

which maps the virtual address space that is seen by the software to the physical address

space [12]. The address translation is managed using a software-controlled translation table,

which details which virtual address corresponds to each physical address, and some other

attributes about the memory access, such as access permissions. There are two virtual

MMUs on the arm TrustZone architecture. Thus each world maintains a local set of

translation tables and virtual address and physical address mappings.

ARM processors with TrustZone tag entries in the Translation Lookaside Buffers (TLBs) that

cache the results of translation table look up. This allows for non-secure and secure worlds

to co-exist in the TLBs and aids in fast context switching between worlds.

It is equally important to cache data and instructions for both the worlds to allow for fast

context switching as cache does not have to flushed and restored during the switch. To

enable this, the L1 and L2 (if applicable) processor caches have the NS tag bit which records

 29

the security state of the transaction that accessed the memory. However, both worlds are

allowed to clear cache lines upon memory shortage. Also, this allows for data to be shared

between non-secure and secure worlds. Figure 13 below shows the how cache and TLBs are

tagged.

Figure 13: Cache and TLBs

Figure 14 below shows memory organization with an example application that decrypts data

which is passed in as encrypted from the Normal World. The encrypted data is put in a

common non-secure memory block which is mapped to the same physical address space in

both normal and secure worlds. The data is fetched in the secured world, and then decrypted

using secured services and processed according to the application type such as DRM,

Banking etc.

 30

Normal world Secure World

SMC

Non Secure
(private) NS

=1

Non Secure
(common)

NS =1

0G

1G

4G

Non Secure
(private) NS

=1

Non Secure
(common)

NS =1

0G

1G

4G

Secure
(private) NS

=1

Non Secure
(common)

NS =1

4G

1G

0G

2G

3G

Secure
(private) NS

=1

User
Secured

App

Encrypted
Data Secured

App to
decrypt

Read
encrypted

Data

Monitor
Mode

Process
Data

Virtual
MemoryVirtual

Memory

Figure 14: TrustZone memory access example

4.1.5 Interrupts

ARM processor with TrusztZone extension contains an Interrupt Controller (GIC) that

provides secure interrupt sources which cannot be manipulated by the normal world

software. All interrupts are trapped in the monitor mode. If the core is in the other world

and an interrupt occurs, the monitor software causes a context switch and jumps to the

restored world, at which point the interrupt is handled as shown in figure 15. Also as an

added measure, a configuration register in CP15 to prevent any Normal world software

modifying the F (FIQ mask) and A (external abort mask) bits in the CPSR and therefore

blocking the apps from masking out secure world interrupts.

 31

Figure 15: Interrupt propagation between worlds

4.1.6 Peripherals

One of the most useful features of the TrustZone architecture is the ability to secure

peripherals, such as interrupt controllers, timers, and user I/O devices. Thus it is possible to

secure entire system instead of providing a secure data processing only. A secure interrupt

controller and timer allows a non-interruptible secure task to monitor the system, a secure

clock source enables robust DRM, and a securable keyboard peripheral enables secure entry

of a user password [8].

TrustZone architecture includes a peripheral bus known as the Advanced Peripheral Bus

(APB), which is attached to the system bus using an AXI-to-APB bridge as shown in figure

16 below. The AXI-to-APB bridge hardware is responsible for managing the security of the

APB peripherals by rejecting transactions of inappropriate security setting and must not

forward these requests to the peripherals.

 32

The bridge contains address decode logic that generates the APB peripheral select based on

the incoming AXI transaction. The bridge includes a single TZPCDECPROT input signal for

each peripheral that is located on the bus. This signal is used to determine if the peripheral is

configured as secure or non-secure. These bridge input signals can be tied persistently at

synthesis time or can be dynamically controlled via a trusted peripheral, such as the

TrustZone Protection Controller (TZPC), to allow dynamic switching of security state at run-

time.

Figure 16 demonstrates how 4 peripherals are controlled. The TZPC is configured as always

Secure [DESCPROT = 0], the Timers and Real-Time Clock (RTC) as always Non-secure

[DESCPROT = 1], and the Keyboard and Mouse Interface (KMI) have a programmable

security state under software control. Secure world software can program the TZPC at run-

time to change the signal input to the AXI-to-APB Bridge to switch the KMI from Secure to

Non-secure or vice versa. This allows the system to capture password entered by user

securely.

Figure 16: Trustzone and secured peripherals

 33

4.2 Trustzone Software Architecture

Figure 17 below shows the software architecture of trustzone. The normal world and secure

world kernels operate in stand alone mode. The secure world is responsible for secure

booting of the normal world kernel. Secure booting is out of scoepe of this paper, but Kai et

al describes secure booting of emebedded systems in [13] .

Typically a normal world user app would make a call to secure world for secured services

such as cryptographic funcitonalities. The user app interfaces with the TrustZone driver,

which makes a call to the monitor mode sofware using the SMC instruciton described earlier.

The normal world kernel or the user application is responsible for copying the data to be

processed into a shared memory region described in section 4.1.4. Upon finishing secure

operation, the return value is returned to the user app. Since both the OS operate in

standalone mode, multi-threading is possible in each of the worlds. Therefore, the choice of

OS is flexible, for example the normal world OS can be running Windows with Linux

running in the secure world. The TrustZone Driver is therefore modified based on the

configuration and the secure world implementation does not need to change.

Figure 17: Trustzone Software Arechitecture

 34

4.3 Benefits of Trustzone

The main benefits as outlined in [15] of TrustZone are:

1. TrustZone provides secure storage for keys, and data.

2. Full bus-bandwidth access is provided to all storage areas to provide fast memory

access speeds, which improves overall system performance.

3. Since TrustZone solution consists of software and hardware elements, it provides

flexibility to allow customizations upgrades to the secure system even after the SoC is

finalised.

4. Any peripheral channel such as, the user interface, SIM and smart cards as well as

audio output can be secured. For the non-secure world, TrustZone can enable

security through integrity checking for all the features within a SoC device. For

example, decoded DRM audio can be protected as it is passed to non-secure audio

drivers by integrity checking the relevant part of the OS infrastructure.

 35

Chapter 5

Example Application: Mobile Movie Ticket Application

This section explains design of a secure system based on the TrustZone architecture

described above.

With the evolution of the smart phones, tablets, and e-readers mobile commerce has become

a prominent industry. Nokia defines mobile commerce as the use of mobile handheld

devices to conduct any electronic transaction or information interaction that leads to transfer

of value in exchange for information, services or goods over wireless networks in a released

whitepaper [5]. Examples of m-commerce application include mobile financial services,

mobile context services, on-line games, tickets and mobile shopping. A lot of research has

been done to ensure secure communication over the air and through network backbone.

However, according to Group Inc. it is predicted that 85 percent of wireless security incidents

will be device related rather than over-the-air related [6]. Therefore content security can be

considered as the most important area of handheld security. This is where the advantage of

TrustZone based security solutions is crucial. Hussin, Coulton and Edwards outlined the

design for a secure mobile commerce application in [7]. Even though the design presented in

this paper follows the same set of requirements and application, the methodology and

security engineering practices is different. The design attempts to take advantage of the

concept of two worlds in one processor. In the next few sections, first system requirements

are outlined followed by software flow which is based on top of the TrustZone kernel ported.

The hardware setup for simulation is described in the next section.

5.1 System Requirements

Let’s consider a system to purchase movie tickets. The user browses and selects a movie a

particular theatre for a specific date and time. The user would then pay for the ticket using

mobile banking which is assumed to be secured for the purposes of this example. Upon

successful completion of the transaction the user needs to receive an electronic receipt as

proof of purchase, which is referred to as the “mobile ticket”. The mobile ticket must

possess the following characteristics:

 36

1. The ticket received cannot be falsified

2. The ticket can only be valid for a specific date and time

3. The ticket cannot be used twice and has to be unique

4. The ticket must be verified to be issued by the authorized movie operator only

To ensure such security requirements, one design based on TrustZone technology is

provided.

5.2 System Block Diagram

Figure 18 below shows the system block diagram for a TrustZone based movie ticket

application. The operator is connected to the handheld device over a secured network. The

handheld devices have a normal world application which interfaces with the operator. The

normal world app is also a secure application (described in the next section). The normal

world app talks to the secured world which provides security services such as cryptographic

library, secure storage of keys through the predefined TrustZone API (Appendix C). There

may also be attached peripherals such as a keypad, or touch screen to get user input and/or

display secured content. Note that a secured protocol such as HDCP can be deployed to

ensure output protection for the screen, but that is out of scope of this discussion and it is

assumed that the output is secure. User input is made secured by using the peripheral

security feature as explained earlier in section 4.1.6.

 37

Operator

Secured World Normal World

Secured
Memory

PeripheralCryptographic
processor

Network
API

Key Storage

Figure 18: System Block Diagram

The cryptographic processor is responsible for handling all cryptographic computations and

algorithrms such as AES, RSA, SHA-1 etc. OpenSSL implementation is used to simulation

this behavior but with real hardware crypto processing is accelerated.

5.3 Operating System and Cryptographic Processor

Linux Kernel is ported to the ARM Cortex A15 processor with ARM TrustZone support.

The scheduler is modified to schedule secure world and normal world applications in a time

sliced manner [21]. The normal world communicates with the secure world through the

TrustZone API and OpenTZ driver. The cryptographic processing is done with the software

implementation of OpenSSL [22]. When actual hardware is used the a separate cryptographic

accelerator can used which can be called through OpenSSL directly without code change.

5.4 Normal World User Application

The normal world user application interfaces with the network operator over a secured

network connection. The user app also connects to a third party payment service such as

Paypal or Interac. Since this secured app is place in system memory it must provide the

 38

security requirements outlined in section 2 such as tamper resistance, data confidentiality,

integrity, and authenticity.

5.4.1 Tamper Resistance

Tamper resistance is provided in two phases: 1) load-time integrity and 2) run-time integrity.

Load time integrity mechanism is rather simple. A checksum is pre-calculated during

compile time and is embedded in the program itself. The execution binary is processed by

another tool written to calculate the CRC and insert it in the execution header. The program

then calculates the checksum upon start up and continues execution only the calculated

checksum matches the embedded checksum. Since this is a crucial part of the integrity

check, the approach to ensure this process is secured needed to be sophisticated. For

example, if there is code such as the following figure then it is very easy break the code.

if (crc_caluclated != crc_stored){

break;

 }

Figure 19: CRC comparison code

The code snippet in figure 19 looks like the figure 20 in assembly. An attacker simply has to

change the je instruction (opcode 0x74) at offset 8048445 to a jmp instruction (opcode 0xEB)

to defeat this protection.

804842b: ff 75 fc pushl -4(%ebp)

804842e: ff 75 f8 pushl -8(%ebp)

8048431: e8 f2 fe ff ff call 8048328 <crc> ;call crc32()

8048436: 83 c4 10 add $0x10,%esp

8048439: 89 45 f4 mov %eax,-12(%ebp)

804843c: 8b 45 f4 mov -12(%ebp),%eax

804843f: 3b 05 d0 83 04 08 cmp 0x80483d0,%eax ;compare result
8048445: 74 22 je 8048469 ;jump-if-equal

Figure 20: CRC check instruction level

 39

To counter this type of attack, security through obfuscation is chosen, where a table of

function pointers is utilized to hide the actual value of the checksum. For example, if the

calculated checksum is 0x09A1DE9F then in the table the following entries would contain

actual valid data byte1[0], byte2[9], byte3[10], byte4[1], byte5[13], byte6[14], byte7[9],

byte8[15]. Each of these contains a pointer to the function that will process the next nibble in

the checksum, except for b8[15], which contains a pointer to the function that is called when

the checksum has proven valid. This theoretical concept is shown in figure 21 below:

byte1[16] = { crc_nib2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

byte2[16] = { 0, 0, 0, 0, 0, 0, 0, 0, crc_nib3, 0, 0, 0, 0, 0, 0, 0 },

byte3[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib4, 0, 0, 0, 0, 0, 0 },

byte4[16] = { crc_nib5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },

byte5[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib6, 0, 0, 0 },

byte6[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib7, 0, 0 },

byte7[16] = { 0, 0, 0, 0, 0, 0, 0, 0, crc_nib8, 0, 0, 0, 0, 0, 0, 0 },

byte8[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_good };

Figure 21: Check sum function pointer table

However, in reality, the 0’s in the function table also poses a threat to breakdown this

function pointer table. Thus, a lot of dummy functions are populated at random with a

random initial vector to obfuscate the code. A screenshot of the out of this example is given

in figure 22.

 40

Figure 22: Actual function pointer table for CRC 0x09A1DE9F

A separate program is written to calculate the static CRC of the user application. The static

CRC is also stored in the secure memory and checked when the user application is launched.

5.4.2 Data confidentiality

Tamper resistance provides protection against changing the data or code used by the

software. However, it is also important to protect data that resides in system memory.

There are few techniques to do secure memory for example by using memory in external

hardware such as a GPU. For key storage and other data storage purposes the memory space

in the secure world is used as described in the TrustZone Hardware Architecture section

(4.1.4). For added security, a secure memory library is used to protect data in the stack as

infrequently used data is usually swapped to disk. This library ensures that all memory

allocated by the program is locked, so that it cannot be swapped out. Code for this library is

included in the Appendix.

Another level of security is added by checking for the CRC dynamically. A CRC “lattice” is

calculated from the Read only sections of the binary and constantly checked during runtime

for modifications. The functions implementations reside in the Read only section and thus

cannot be modified by an attacker.

 41

5.4.3 Secure World Kernel API

Normal world app requests cryptographic services through the predefined API. The services

could include cryptographic calls, and data processing, but in this application, encrypted data

is passed to the secure world for decryption and processing as explained in the next section.

So the primary purpose of this application is to ensure secure data processing.

5.5 Key-exchange and software flow

This section describes the software flow of the mobile ticketing application and how

cryptographic blocks and design techniques described in section 3. Figure 23 below shows

the flow diagram. For rest of this section the following notation format is used as outlined in

Table 6.

Table 6: Notations

Notation Meaning

 1024 bit RSA public key of operator

 1024 bit RSA private key of operator

 128 bit AES key for encryption/decryption

Client Normal World Application

Hash(plaintext) SHA-1 Hash of {Plain Text}

As described earlier, the user browses for movie tickets and process secure payment through

third party vendors. The scope of secure payment is out of this discussion, but more details

can be found in [8]. After the operator receives a request, pre-generated public RSA keys

{ , } are exchanged between the normal world app and the

operator software. Then the operator processes the ticket request and generates a ticket in

plain text that contains the current time, movie name, location, and time. The format of the

file could be complex with watermark, and a bitmap image. The plain text information is

then sent to the secured app along with the keys. The application software then generates a

random 128 bit (16 bytes) key , . It is assumed that the random number generator is a

True Random Number (TRN) generator. The properties and nature of TRN is out of the

 42

scope of this project. The movie ticket, plain text format in this example, is then encrypted

with . This encrypted ticket is referred to as “cipher ticket”.

Then the SHA-1 hash of the cipher ticket, Hash(cipher ticket), is calculated and signed with

the private key of the client and sent along with the cipher ticket as digital certificate as

described in section 3.4. Also, or key to encrypt the plaintext ticket is encrypted with

 . After all the above steps are completed, the cipher ticket, digital certificate,

and the encrypted key are sent over the secured network channel to the operator.

On the operator side, first the encrypted AES key, , is decrypted with

 . Then using the decrypted key, the cipher movie ticket is decrypted. The

hash value of this decrypted ticket is calculated and stored. The digital signature received is

decrypted with and the received hash value is obtained. Then the calculated

hash value of the decrypted ticket and the received hash value are obtained. If the two

values match, then the transmission is marked as successful, and authenticated.

 43

Operator
Normal

World App
Secure
World

Browse,
choose ticket

Generate Tickets in
Plain text

Send over
secure network
communication

Generate random
128 bit AES Key

Encrypt plain text
ticket with AES Key

Encrypt AES key
with Public RSA key

of operatort

Exchange RSA
public keys and

plain text
information

Find SHA1 Hash of
encrypted ticket

FF44ACDC004FAD38

Encrypt HASH with
Private RSA key of

client

Send over
secure network
communication

Store Encrypted Ticket
and Certificate in Secure

memory

Decrypt AES Key
with Private RSA

Key of Client

Decrypt Ticket with
AES Key decrypted

Decrypt HASH with
Public RSA key of

operatorCompare Hashes

Calculate SHA1
Hash of decrypted

ticket

`

Generate Final
Ticket Barcode

Start Decryption

Send over
secure network
communication

Generate
Plain Text

information

Figure 23: Key exchange and software flow

 44

Chapter 6

Simulation Results

The concepts presented in this paper are simulated in ARM fast model simulation

environment. The cost of real hardware is significantly high, thus simulation used as proof

of concept. For this project, Versatile Express (VE) baseboard component is used with

Cortex A15 processor with 1 core. This processor has trustzone support enabled by default.

The details of the simulation environment can be found in [9]. Figure 24 below shows the

System Canvas block diagram editor being used to draw the schematic representation of the

VE, and figure 25 shows the schematic in detail.

Figure 24: System Canvas Simulation

 45

Figure 25: Schematic of VE with Corex A15 processor

Figures 26-28 show screenshots of how Linux is loaded on this platform.

Figure 26: Memory view

 46

Figure 27: Linux booting

Figure 28: Linux terminal with busybox

 47

The Linux kernel 2.6.34 patched code and application code is attached in Appendix B. When

the normal world application is run and key exchange and negotiation is successful, a number

of files containing the AES keys, RSA keys are dumped. The output files are attached with

this report. The final output is the barcode generated from the encrypted ticket. The figure

below shows the barcode generated using Zint – Grid Matrix (AIM Standard),

Figure: Grid Matrix generated barcode form encrypted data

6.1 Security Threat Analysis

A number of security threats were analyzed and simulated. Buffer Overflow attack, Static

code tampering, dynamic code tampering, ROP (Return Oriented Programming) exploitation

and Man-in-the middle attacks are carried out and the program behavior is noted.

6.1.1 Buffer Overflow

Buffer Overflow attack is the most common mechanism of attack in systems where the

binary can be exploited by an attacker. The attack is explained by Cown et al in [24] as is

an anomaly where a program, while writing data to a buffer, overruns the buffer's boundary

and overwrites adjacent memory. A typical solution is to use the compiler to protect against

such attack. All the binaries for this project were compiled with –fstack-protector option to

enable protection from buffer overflow attacks.

 48

6.1.2 Static Code tampering

In this mechanism, the program binary is modified to alter code data using a script and hex

modification tools. A number of patterns of code/data were modified either randomly or at

predefined intervals. In most cases, the executable crashed without processing any keys or

secrets. If however, the modifications did not crash the program, the CRC check against the

CRC value calculated and pre-injected failed and the program exit.

6.1.3 Dynamic Code tampering

If code/data were modified using a debugger while the code was running, the CRC checks

would also fail upon rechecking the value and the program would terminate itself. A full

proof monitoring mechanism, i.e, protection against an attack where the monitoring

mechanism itself is compromised is not implemented yet.

6.1.4 Return Oriented Programming (ROP) Exploitation

Another popular attack on binaries is the Return Oriented Programming (ROP) exploitation

where instead of jumping to the beginning of a library function, the attacker chains together

existing sequences of instructions (called Gadgets) that have been previously identified inside

existing code [23]. ROP analysis on the binary itself exposed the following Gadgets,

 49

 => mov %eax,(%e?x)

 - 0x08048be0(null) => pop %eax ; ret

 - 0x08048c1b(null) => pop %ebx ; ret

 - => pop %ecx

 - => pop %edx

 - => xor %eax,%eax

 - 0x08048bb0(null) => inc %eax ; ret

 - => inc %ax

 - => inc %al

 - => int $0x80

 - => sysenter

 - 0x08048fd3(null) => pop %ebp ; ret

 - 0x0804c380(null) => .data Addr

As a result, protection against ROP exploitation is needed. Onarlioglu et al, describes a

compiler-based approach that eliminates all unaligned free-branch instructions inside a

binary executable, and protects the aligned free-branch instructions to prevent them from

being misused by an attacker. To militate against ROP attack, the compiler modifications

could be implemented.

6.1.5 Man in the Middle Attack

For this scenario it was assumed that the attacker controls the interface between the user

mode and the kernel mode components and replays the traffic requesting cryptographic

services from secure mode. However, since the normal mode application is signed and

certified prior to execution the validation method implemented in the kernel mode driver did

not execute commands from and unauthorized source. One possible way the attacker could

still get control if the private key of the signing tool is compromised. As a result, this key is

to be refreshed periodically.

 50

Chapter 7

Conclusion

Embedded system security is identified to be one of the most important parts of the design

flow as more and more systems are exposed to attackers and the consequences of any breach

can result in costly damages. Data confidentiality, Data integrity, Authentication, Content

Security, Secure Storage and Tamper Resistance are some of the features that any secured

system must provide. A few different security solutions exist today such using a dedicated

hardware block, or software virtualization techniques. However, the benefits of such

solutions do not always apply to embedded systems where resources such as memory and

computing power are limited. TrustZone technology uses a concept of running a normal

processor and secured processor (which are isolated from each other) on the same SoC to

provide security services. TrustZone based solutions save silicon space but provide all

necessary security features such as secured storage, secure execution, secure peripherals in

performance efficient manner with robust hardware and software design explained in this

paper. Also, secure boot features can also be incorporated in TrustZone without the cost of

having to implement extra logic or hardware block. The upgrade process is also simplified.

To validate the use of TrustZone, a mobile ticketing system design is implemented using the

proposed architecture. Simulation results show that such system is an effective solution for

embedded systems with memory and resource constraints without compromising the security

requirements. A number of security attacks such as buffer overflow, static and dynamic code

and data tampering, ROP exploits were simulated an verified that the executable is able to

withstand such attacks. The next steps to validate the results include porting the TrustZone

code on actual Cortex-A15 based hardware and simulating various attack types and test the

integrity of the system design and measure performance for complex security features such

as DRM.

 51

Appendix A

Bibliography

 [1] Counterpane Internet Security, Inc. http://www.counterpane.com

[2] ePaynews - Mobile Commerce Statistics.

http://www.epaynews.com/statistics/mcommstats.html [checked 4/7/13]

[3] Ravi, S., Raghunathan, A., & Chakradhar, S. (2004). Tamper resistance mechanisms for

secure embedded systems. In VLSI Design, 2004. Proceedings. 17th International

Conference on (pp. 605-611). IEEE.

[4] Fiorin, L., Ferrante, A., Padarnitsas, K., & Carucci, S. (2010, October). Hardware-

assisted security enhanced Linux in embedded systems: a proposal. In Proceedings of the 5th

Workshop on Embedded Systems Security (p. 3). ACM.

[5] Nokia, “Connecting Mobile Consumers and Merchants”, Nokia White Papers,

http://whitepapers.zdnet.co.uk/0,39025945,60082474p-39000516q,00.htm, 2005 [checked

4/7/13]

[6] F-Secure Corporation,”Content Security at Hand: A White Paper on Handheld Device

Security”, www.fsecure.com/products/whitepapers/hhsecurity021122.pdf, 17/01/2005

[checked 4/7/13]

[7] Hussin, W. H. W., Coulton, P., & Edwards, R. (2005, July). Mobile ticketing system

employing TrustZone technology. In Mobile Business, 2005. ICMB 2005. International

Conference on (pp. 651-654).

 52

[8] T. Alves and D. Felton. TrustZone: Integrated hardware and software security. ARM

white paper, July 2004.

[9] ARM, Fast model simulation reference,

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0423l/index.html

[10] Morimoto, R., & Guillet, J. (2008). Windows server 2008 hyper-V unleashed. Sams

Publishing.

[11] Ricci, L. and McGinness, L., “Embedded System Security. White Paper. Applied Data

Systems” Columbia, USA, 2004

[12] Gilmont, T., Legat, J. D., & Quisquater, J. J. (1999). Enhancing security in the memory

management unit. In EUROMICRO Conference, 1999. Proceedings. 25th (Vol. 1, pp. 449-

456). IEEE.

[13] Kai, T., Xin, X., & Guo, C. (2012, January). The Secure Boot of Embedded System

Based on Mobile Trusted Module. In Intelligent System Design and Engineering Application

(ISDEA), 2012 Second International Conference on(pp. 1331-1334). IEEE.

[14] IOS Jailbreaking, http://en.wikipedia.org/wiki/IOS_jailbreaking

[15] W. Stallings, Cryptography and Network Security: Principles and Practice. Prentice

Hall,1998.

[16] B. Schneier, “Cryptographic Design Vulnerabilities,” In IEEE Computer, on vol. 31, pp.

29–33, Sept. 1998. IEEE.

 53

[17] Hadi Nahari, “Trusted Secure Embedded Linux - From Hardware Root Of Trust To

Mandatory Access Control” MontaVista Software, Inc.

[18] The IBM PCI Cryptographic Coprocessor. IBM Inc. (http://www-

3.ibm.com/security/cryptocards/). [checked 4/7/13]

[19] Messerges, T. S., Dabbish, E. A., & Sloan, R. H. (2002). Examining smart-card security

under the threat of power analysis attacks. Computers, IEEE Transactions on, 51(5), 541-

552.

[20] Ferguson, N., Schneier, B., & Kohno, T. (2012). Cryptography engineering: design

principles and practical applications. Wiley.

[21] Open Virtualization, SDK and Linux OS, http://www.openvirtualization.org/ [checked

4/7/13]

[22] OpenSSL, Cryptographic Library, http://www.openssl.org/ [checked 4/7/13]

[23] Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., & Kirda, E. (2010, December). G-

Free: defeating return-oriented programming through gadget-less binaries. In Proceedings of

the 26th Annual Computer Security Applications Conference (pp. 49-58). ACM.

[24] Cowan, C., Wagle, F., Pu, C., Beattie, S., & Walpole, J. (2000). Buffer overflows:

Attacks and defenses for the vulnerability of the decade. In DARPA Information Survivability

Conference and Exposition, 2000. DISCEX'00. Proceedings (Vol. 2, pp. 119-129). IEEE.

[25] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M. G., ... & Saxena, P.

(2008). BitBlaze: A new approach to computer security via binary analysis. In Information

systems security (pp. 1-25). Springer Berlin Heidelberg.

 54

Appendix B

Simulation Environment

The Versatile Express (VE) components have been specifically developed to model in software some

of the functionality of the VE hardware. A VE baseboard with Cortex A-15 processor was used for

simulation. The following image shows the actual Versatile Express board.

The following tables summarize the memory map options:

Table A1: Versatile Express memory map

 55

Table A2: Secured memory options

 56

Table A3: Peripheral Memory Map

Register spec can be found on the arm fast model website from the following link.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0423m/DUI0423M_fast_model_rm.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0423m/DUI0423M_fast_model_rm.pdf

 57

Appendix C

TrustZone API

Full TrustZone API which is made available by ARM can be found at the following link.

http://www.lcs.syr.edu/faculty/yin/teaching/CIS700-sp11/TrustZone_API_3.0_Specification.pdf

http://www.lcs.syr.edu/faculty/yin/teaching/CIS700-sp11/TrustZone_API_3.0_Specification.pdf

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2013

	Hardware Assisted Security Platform
	Mir Ahsan
	Recommended Citation

