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Abstract 

Embedded systems are often used to monitor and control various dynamic and complex 

applications.  However, with greater accessibility and added features on many embedded 

systems, more and more systems are being subject to sophisticated and new types of attacks.  

As a result, the security aspect of embedded systems has become critical design step. 

TrustZone has become a popular choice for security design solution in systems where 

resources such as processing power, battery are limited.   In TrustZone, two virtual 

processors called "secure world" and “normal world” run on the same core in a time sliced 

manner.  These worlds have partitioned hardware and software resources, with different 

modes of operation, isolated memory regions and interrupts.  In this paper, the hardware and 

software architecture of TrustZone is analyzed from the perspective of embedded system 

security design.  Then a mobile-ticketing system based on TrustZone is presented which 

incorporates standard cryptographic engineering design practices to demonstrate the 

feasibility and effectiveness of such system.  The ticketing system is then simulated and 

security threat analysis is performed in terms known vulnerabilities such as Buffer Overflow, 

Static and dynamic code/data tampering, Return Oriented Programming (ROP) exploits, and 

Man-in-the middle attacks.  After evaluating the analysis results with various open source 

vulnerability analysis tools, it is conclusive that the system design is an effective solution 

particularly for embedded systems.   
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Chapter 1 

Introduction 

 

Embedded systems have become integral part of our society over the last decade.  In today’s 

world, embedded systems are used to monitor and control various dynamic and complex 

applications, ranging from non-safety-critical systems such as cellular phones, media players, 

and televisions, to safety-critical systems such as automobiles, airplanes, and medical 

devices.  The critical nature of these applications, especially in military, medical and 

transportation industries imply that these systems must be highly reliable as well as secured. 

Thus security of embedded systems is emerging as a new dimension in modern embedded 

systems design.   

 

With increasing number of everyday embedded devices, more and more systems are being 

subject to sophisticated and new types of attacks yielding to higher number break-ins.  For 

example, the IPhone was broken into only days after its public release [1].  The cost of such 

security breach can be critical depending on the nature of the system.  For example, it was 

estimated that the “I Love You” virus caused nearly one billion dollars in lost revenues 

worldwide [1]. With an increasing proliferation of such attacks, it is not surprising that a 

large number of users in the mobile commerce world (nearly 52% of cell phone users and 

47% of PDA users, according to a survey by Forrester Research [2]) feel that security is the 

single largest concern preventing the successful deployment of next-generation mobile 

services. 

 

While security protocols and cryptographic algorithms address security considerations from a 

functional perspective, it is unrealistic to assume that attackers will attempt to directly take 

on the computational complexity of breaking the cryptographic primitives employed in 

security mechanisms [3].  Functional cryptosystems often do not provide complete system 

level security as explained by Schneier in [16].  As a result, the security model should be 

considered from a system point-of-view.  However, many embedded systems are constrained 

by the execution environment and resource limitations such as low battery life, memory 
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constraints, and lower computational power.  For such systems, security is moving from a 

function centric perspective into a system architecture (hardware/software) design issue.  In 

this paper, first the security requirements for embedded systems are outlined.  Then attack 

patterns are classified and various design solutions such as external hardware and software, 

virtualization and virtual processors are presented.  Then a virtual processor architecture 

solution called “TrustZone” is described in detail from a hardware and software design view.    

At the end, a secured mobile-ticketing system designed and implemented based on TrustZone 

architecture is described.   
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Chapter 2 

Background and Related Work 

2.1 Embedded System Security Requirements 

Security has traditionally been an active area of research in Desktop and network computing.  

A lot of network security protocols, such as IPSec and SSL, have been defined to achieve 

authentication between communicating entities, and ensure the confidentiality and integrity 

of communicated data [5]. 

 

Since the nature of embedded systems varies widely based on the application requirements, 

the security requirements also vary.  In typical systems available today, more than one aspect 

of security needs to be considered as complex systems may comprise of individual modules 

with different security requirements.  For example, consider a smartphone that is capable of 

wireless voice, multimedia, and data communications.  Security requirements may varies 

with the viewpoint of the manufacturer of a particular component inside the cell phone (e.g., 

baseband processor), the cell phone manufacturer, the cellular service provider, the content 

provider, and the end user of the cell phone.  The end user’s primary concern may be the 

security of personal data stored and communicated by the cell phone, while the content 

provider’s primary concern may be DRM related protection of multimedia content delivered 

to the cell phone, and the cell phone manufacturer might additionally be concerned with the 

secrecy of proprietary firmware that resides within the cell phone.  As mentioned earlier, in 

this paper, an example mobile ticketing application is explored.  The application performs a 

simple task of letting users browse through and pick a movie, and then stores the ticket 

issued by the movie operator company in the device.  The task at hand is to ensure security of 

this transaction.  There are six security requirements that any embedded system must 

mitigate: 

1.  Data confidentiality:  Embedded systems must protect sensitive information from 

undesired eavesdroppers in the communication channel between two modules within 

a system or between different parties.   
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2. Data integrity: Embedded systems must ensure that user data stored on the device has 

not been changed illegitimately 

3. Authentication: Embedded systems must validate that the data received is actually 

sent from the intended and correct sender. 

4. Provide content Security:  Embedded systems must provide full content security 

under Digital Rights Management (DRM) protocol to ensure that the data processed 

from media cannot to copied or altered.   

5.  Secure Storage:  Embedded systems must provide a secure storage for critical and 

sensitive information such as various keys so that these secrets are not leaked out for 

the full duration of the device’s life time and erased afterwards.   

6. Tamper Resistance: Embedded systems must provide tamperproof and may be 

detection mechanism even when the device can be physically or logically probed. 

 

As stated earlier, the system requirements vary according to the functionality and the typical 

operation environment.  However the requirements stated above cover most of the modern 

devices today. 

 

2.2 Embedded System Attack Classification 

Attacks on embedded systems vary on the type and method of execution primarily based on 

the nature and availability of the target device.  Attackers typically rely on exploiting security 

vulnerabilities in the hardware and software components.   Even though, each attack is 

different in terms of the methodology, the attackers can be categorized into three classes as 

described below.   

2.2.1 Types of Attackers 

Class I (Clever outsiders):  This type of attack is launched by individuals who are 

intelligent but often do not have sufficient information about the systems.  Usually these 

attackers try to take advantage of existing flaw or vulnerability of a system instead of 

creating one.   
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Class II (Insider attack):  May be launched by defected employee who has specialized 

technical education and experience. They have varying degrees of understanding of parts of 

the system but not full access to the system.   

 

Class III (funded organizations):  Attacks launched by teams of specialists with related and 

complementary skills backed by great funding resources. They are capable of in-depth analysis of the 

system, designing sophisticated attacks.  Some well-known organizations today are “Anonymous”, 

and “Masters of Deception”.   

2.2.2 Types of Attacks 

Ravi et al categorizes attacks on embedded systems into three areas based on the impact level in [3] 

as shown in figure 1 below:     

 

 

Figure 1:  Embedded System attack types 

 

 

1. Privacy attacks: The objective of these attacks is to gain knowledge of sensitive 

information stored, communicated, or processed in an embedded system.  A common 

example is the Man-in-the-middle attack, Meet-in-the-middle attack, and Sniffing 

using software approach.  On the hardware level, common methods used by the 

attackers include power analysis, fault injection and timing analysis to reveal patterns 

or faults for a window of fault.  For example, power analysis can show patterns when 
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a certain cryptographic algorithm is executed.  Figure 2 below shows the power 

analysis of when AES key is processed, thus leading to exposure of the key.   

2.  Integrity attacks: These attacks attempt to change data or code associated with an 

embedded system.  Eavesdropping and data manipulation techniques are most 

common types of attacks using key manipulation and key injection mechanisms.   

3. Availability attacks: These attacks disrupt the normal functioning of the system by 

misusing and suffocating system resources so that normal operation cannot continue. 

Examples of such attacks are Denial of Service (DoS) attack and Replay attacks.  

 

Figure 2:  Power analysis of AES Key processing 

 

2.3 Mitigating Embedded System Attacks 

To mitigate or counter the attacks described in the previous section, a generic security model can be 

developed.  First line of defense is known as Attack Prevention.  These are measures which are in 

place to prevent the attacker from initiating an attack.  Anti-tampering and code obfuscation are 

examples of techniques used in attack prevention.  Then in the next step, there must be mechanism to 

detect that system configuration or code has been altered.   Check sum validations or run-time 

integrity checks are commonly used in this phase.  Lastly, the attacked program or hardware must 
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take measures to avoid execution or exposure of sensitive information upon detection of attacks, and 

recover if possible.   

 

 

Figure 3:  Attack prevention generic security model 

When considering full system security solutions, there are a number of common design 

practices deployed in embedded platforms today.  In the next section, four such solutions are 

analyzed.   

2.4 Existing Security Solutions 

A number of solutions have been proposed in [4, 10, 11, and 17] using external, internal 

hardware and software techniques.   This section summarizes the pros and cons of some the 

existing solutions.   

2.4.1 External Hardware Security Module 

External hardware security module based systems have a dedicated hardware block to 

perform security related functionalities.  This hardware is typically placed outside the Main 

SoC and have predefined interface to communicate and execute services from the main 

processor core [8].  A popular example of such solution is the SIM card in a mobile handset, 

or a smartcard in a satellite receiver, or dedicated hardware block in the GPU to perform 

DRM operations.  Table 1 below highlights the key advantages and disadvantages of external 

security based hardware designs.   
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Table 1:  Advantages and disadvantages of external hardware security module 

Advantages Disadvantages 

 The security assets such as keys, 

algorithms are isolated in a dedicated 

hardware block 

 

 Isolation techniques provide high 

levels of tamper resistance and 

physical security 

 

 Only authenticated applications can 

be run on the secured hardware block 

 Requires more silicon area, increases 

power consumption, and cost and 

reduces performance of the device. 

 

 These hardware blocks typically 

provide a platform for processing and 

secure storage functions only.  An 

interface is required to the host 

processor, which adds to design 

effort.  Also, this interface is 

vulnerable to attacks.    For example, 

a user’s entry of a Personal 

Identification Number (PIN) must be 

managed by the less secure software 

outside of the smartcard, making it 

vulnerable to attack, even though 

there is SIM hardware.   
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2.4.2 Internal Hardware Security Module 

The security block or dedicated hardware is located inside the main SoC.   

Table 2:  Advantages and disadvantages of Internal Hardwar Security Module 

Advantages Disadvantages 

 There is significant cost reduction in 

terms of hardware design, and silicon 

costs compared to the External 

Hardware Security Module 

 There is typically another separate 

physical security processor, which is 

less powerful than the main 

applications processor, and also 

consumes significant silicon area.  

Additionally, communication 

between the two processors requires 

the use of external memory. 

 Since the security processor is inside 

the SoC, significant design and test 

effort are needed. 

 

2.4.3 Software Virtualization 

Virtualization is a software security mechanism in which a highly trusted management layer, 

known as a hypervisor, runs in a privileged mode of a general purpose processor [8].  The 

hypervisor separates multiple independent software platforms running on top of it using the 

Memory Management Unit (MMU), placing each inside a virtual machine controlled by the 

hypervisor software.  There are commercial vendors such as VMware that provide such 

solutions.  However, traditional OS vendors such as Microsoft contain hypervisor support by 

default with the release of windows 8 [10]. 

 

 

 

 

 



 

 18 

Table 3:  Advantages and disadvantages of security through software virtualization 

Advantages Disadvantages 

 Any processor with an MMU can be 

used to implement a virtualization 

solution, and some of the common 

rich operating systems have been 

ported to run on top of them. 

 

 There is also no requirement for 

additional hardware to implement a 

hypervisor.  Security sensitive 

applications can be ported to run in a 

secure environment running on top of 

the hypervisor, but outside of the 

view of the rich operating 

environment.  

 The isolation provided by 

virtualization technology is restricted 

to the processor implementing the 

hypervisor. Any other bus masters in 

the system, such as DMA engines and 

Graphics Processing Units (GPUs), 

can bypass the protections provided 

by the hypervisor and thus must also 

be managed by the hypervisor to 

enforce the required security policy.  

This is difficult to achieve without 

damaging the performance of the 

system [8]. 

 

 Virtualization ignores the security 

issues associated with hardware 

attacks, such as threats that use the 

debug or test infrastructure. 

 

   

2.4.4 Software Access Control 

Software firewall refers to techniques of using a set of rules that enforce security control 

based on policies that confine user programs, or processes, to the minimum amount of 

privileges and access to resources that they require for their execution.  SElinux or Security 

Enhanced Linux is a typical example of such “access control” mechanism embedded in 

Linux distributions with security awareness.  Fiorin et al. describes how SELinux is used in 

securing desktop operating systems in [4].  Furthermore, the authors propose hardware 
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architecture for enhancing security and accelerating retrieval and applications of SELinux 

policies in embedded processors.  The proposed system uses an external hardware accelerator 

that aims at speeding up the most time consuming operation in policy enforcement: the 

lookup of rules in the policy.  The hardware modules include a caching mechanism, 

dedicated security servers.  The following figure outlines the advantages and disadvantages 

of using software access control based approach.   

 

Table 4:  Advantages and disadvantages of software access control 

Advantages Disadvantages 

 Implementation is hardware 

independent, and solely developed in 

software 

 Vulnerable to many types of attacks 

such as DoS, and tampering.   

 Severely affects system performance, 

as rules are checked prior to any 

kernel or I/O operation 

 Size of the code increases 

significantly, and typically not suited 

for embedded system design and 

development 

 Disadvantages of using dedicated 

hardware also applies 
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Chapter 3 

Cryptographic Theory 

3.1 Cryptographic Tools 

Cryptography is the art and science of encryption [20].  The application of cryptography in 

computer security is critical and fundamental topic.  The field of cryptography is vast and 

contains many complex algorithms and techniques.  For the purposes of this paper, we focus 

on the simple components such as Symmetric Ciphers, Asymmetric Ciphers, Hashing, and 

Digital signatures to design a security system.  It is important to note that the secret of a 

cryptographic solution is not the algorithm itself but the associated keys.   

3.1.1 Symmetric Ciphers 

Symmetric ciphers require the sender to use a secret key to encrypt data using a predefined 

cryptographic algorithm (the data being encrypted is often referred to as plaintext) and 

transmit the encrypted data (usually called the ciphertext) to the receiver. On receiving the 

ciphertext, the receiver then uses the same secret key and cryptographic algorithm to decrypt 

it and regenerate the plaintext.  The following figure shows the process of using symmetric 

encryption: 

 

 

Figure 4:  Symmetric Encryption 

Examples of symmetric ciphers:  DES, 3DES, AES, and RC4.  Symmetric ciphers provide 

data confidentiality.   
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3.1.2 Asymmetric Algorithm 

Asymmetric algorithms (also called public-key algorithms), use a pair of keys: one key to 

encrypt the data while the other to decrypt it. Encryption of a message intended for a given 

recipient requires only the public key to be known to the world, but decryption is only 

possible with the recipient’s private key, which the recipient should keep secret.  The 

following figure shows how public-key algorithm is used: 

 

Hi Bob! Encrypt A3344FDCBEE Decrypt Hi Bob!

Original 
Plaintext

Decrypted 
Plaintext

Ciphertext
Bob’s Public 

Key
Bob’s 

Private Key

 

Figure 5:  Asymmetric Encryption 

 

In the figure above, if Bob is the intended recipient of the message, then the plaintext data 

“Hi Bob” is encrypted with Bob’s Public Key, which is advertised by Bob and then the 

encrypted data can only be decrypted by Bob’s private key.  One popular example of 

asymmetric cryptography is RSA.  This key-pair is also utilized in authorizing source of 

messages by constructing a hash of a message and then ‘digitally signing’ the message hash 

with its private key.  The receiver the decrypts the hash with the public key, and checks the 

message ensuring that the sender is authorized.   Digital signatures are described in detail 

later in this section.    

 

3.1.3 Cryptographic Hash 

A cryptographic hash is an algorithm that takes an entire message and, through a process of 

shuffling, manipulating, and processing the bytes using logical operations, generates a small 

fingerprint or message digest of the data [2]. Some examples of such algorithm are MD2, 

MD5 and SHA.  Figure 3 below demonstrates the result of such hash function.   
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Message Text

Hi Bob!
Meeting is moved 

to 11 am
(MD5 or SHA) A3344FDCBEE90402938

Hash function Message Digest

 

Figure 6:  Cryptographic Hash 

One critical feature of any hash function is that any minor change to the original message text 

must produce an entirely different message digest, so that any tampering can be detected.  

Thus hash functions are used in providing tamper proofing and/or data integrity of 

instructions, or communication messages or code/data in memory.  Figure 4 below shows, 

how the end message digest changes with minor changes to the original data.   

Message Text

Hi Bob!
Meeting is moved 

to 10 am
(MD5 or SHA) FF5465FA55CC6DC0F

Hash function Message Digest

 

Figure 7:  Tampered message Hash 

3.1.4 Digital Signatures 

Digital signatures, which use asymmetric cryptography and hashing functions, are 

implemented to authenticate the sender.  This mechanism is typically used along with the 

encrypted data.  The following figures illustrate how digital signatures are typically used.  

Figure 5a shows how data is signed.  First hash of the data file is calculated using hashing 

functions (described in the previous section) such as SHA1 or MD5.  Then this hash is 

encrypted with the private key of the sender.  This encrypted file is then sent along with the 

data.  Upon receiving the data, as depicted in figure 5b, the user decrypts the hash value with 

the public key of the sender, and also decrypts the data using a pre-established key-exchange 

mechanism.  The receiver then calculates the hash of the decrypted data file, and compares to 

the hash decrypted with the sender public key.  If the two hashes match, then the data is 

authenticated.   
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78993344FDCBFFAD38

Hash function 
SHA1 or MD5 Encrypt Hash with 

private Key

FF44ACDC004FAD38 Signature

Attach to 
data

 

Figure 8a:  Digital Signature:  Signing data 

FF44ACDC004FAD38

78993344FDCBFFAD38

Decrypt using 
Public keyHash function 

SHA1 or MD5

78993344FDCBFFAD38 ?=

Compare

 

Figure 8b:  Verifying signatures 
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Chapter 4 

TrustZone Architecture 

4.1 Trustzone Hardware Architecture 

The more recent designs of the ARM processor core such as the Cortex A-15 core introduces 

concept of two virtual processors on the same core called "secure world" and "non-secure 

world" or “normal world”.  There is also a "secure monitor mode" used for switching 

between the two modes.  These cores are called ARM TrustZone cores.  On a typical ARM 

TrustZone core, secure world and non-secure modes coexist.  Thus, Instead of protecting 

assets in a dedicated hardware block, the TrustZone architecture enables any part of the 

system to be made secure, enabling an end-to-end security solution [8].  Advantages of 

TrustZone are described after the hardware and software architecture is described. 

 

4.1.1 System and bus structure 

As mentioned above, in TrustZone architecture, all of the SoC’s hardware and software 

resources are partitioned so that they exist in one of two worlds - the secure world for the 

security subsystem, and the Normal world for everything else.  There is also a third mode 

called the monitor mode which switches between the two worlds.  Switching is explained in 

section 4.1.3.   

The third generation of Advanced Microcontroller Bus Architecture (AMBA) or 

AMBA3 AXI bus fabric contains logic that ensures that no secure world resources can be 

accessed by the normal world components, enabling a strong security protection barrier to be 

built between the two. The AMBA3 AXI bus implements two new signals - ARPROT[1] and 

AWPROT[1] [8]. These indicate whether the current read or write transaction is secure or 

non-secure (LOW: Secure, and HIGH:  Non-secure).  Figure 9 below demonstrates typical 

system architecture with isolated secure blocks and as well as shared blocks.   
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Figure 9:  Typical system block diagram with share resources 

In the figure above, key storage, boot ROM and decoder blocks are executed only under the 

secure world and normal world applications cannot access these resources.  However, the 

cache and SRAM are shared between the two.  Memory component sharing will be explained 

in details in section 4.1.4.   

4.1.2 Register Space 

Typically arm cores contain 16 registers including stack pointer, link register, program 

counter and 13 general purpose registers per user mode as outlined in table 5.  There are 7 

user modes supported.   

Table 5:  Arm Processor Modes 

Processor Mode Description Privileged 

User User applications No 

Supervisor Kernel Yes 

System Special version of user mode - 

RW access to status register 

Yes 

Abort Memory access violation Yes 

Undefined Undefined instruction Yes 

Fast interrupt request (FIQ) Higher interrupt level Yes 
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Interrupt request (IRQ) Lower interrupt level Yes 

 

There is also CPSR/SPSR status registers and system control registers (CP15) for the 

privileged modes.  Figure 10 below shows the register specification for six modes of 

operation in arm cores.   

 

Figure 10:  Arm register specificaiton 

For the TrustZone architecture, System Control Coprocessor (CP15) register and all other 

registers relevant exist in separate banked secure and non-secure world versions as well. All 

banked registers from figure 10 are shared between the two worlds.  Security critical 

processor core status bits (interrupt flags) and System Control Coprocessor registers are 

either totally inaccessible to non-secure world or access permissions are strictly under the 

control of secure world. The CP15 register contains a NS bit as shown in figure 11 below.  
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This NS bit is set to 1 when the processor is operating in non-secure world and 0 when it is in 

secure world.  Access to this bit is only allowed from the secured mode, and monitor mode 

which is responsible for switching worlds.  Monitor mode is explained next.   

 

Figure 11:  CP15 register contains the NS bit set according to mode of operation 

 

4.1.3 World Switching 

For the purpose of interfacing between secure and non-secure world a special mode called 

“Monitor Mode” is introduced.  Monitor mode manages transition between the two modes 

and also manages the NS (Not Secure) bit in Secure Configuration Register in CP15.  Figure 

12 below shows all three modes. 

Normal world Secure World

Normal Mode 
User Mode

Normal Mode 
Privilideged Mode

Monitor Mode

Secure Mode
User mode

Secure Mode
Privileged Mode

Exceptions, FIQ / IRQ

SMC

NS = 0

NS = 1

 

Figure 12:  Secure world, normal world and monitor mode 

ARM introduced a special instruction is called SMC, Secure Monitor Call, which switches 

execution from one world to the other.  Normal mode software running in the non-secured 

World can execute the SMC instruction to invoke a switch to secure world through the 
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monitor mode software.  The switch can also be configured to be triggered by IRQ, FIQ, 

external Data Abort, and external Prefetch Abort exceptions.   

 

In most designs its functionality will be similar to a traditional operating system context 

switch, ensuring that state of the world that the processor is leaving is safely saved, and the 

state of the world the processor is switching to is correctly restored.  Typically all general 

purpose ARM register, any coprocessor register and any world-dependant processor 

configuration state in CP15 must be saved and restored during context switching.   

Normal world and the secure world execute in a time-sliced fashion. This removes the need 

for a dedicated security processor core, which saves silicon area and power, and allows high 

performance security software to run alongside the normal world operating environment.  

 

4.1.4 Memory and Cache 

The major component of the L1 memory system is the Memory Management Unit (MMU), 

which maps the virtual address space that is seen by the software to the physical address 

space [12]. The address translation is managed using a software-controlled translation table, 

which details which virtual address corresponds to each physical address, and some other 

attributes about the memory access, such as access permissions.  There are two virtual 

MMUs on the arm TrustZone architecture.  Thus each world maintains a local set of 

translation tables and virtual address and physical address mappings. 

 

ARM processors with TrustZone tag entries in the Translation Lookaside Buffers (TLBs) that 

cache the results of translation table look up.  This allows for non-secure and secure worlds 

to co-exist in the TLBs and aids in fast context switching between worlds.   

 

It is equally important to cache data and instructions for both the worlds to allow for fast 

context switching as cache does not have to flushed and restored during the switch.  To 

enable this, the L1 and L2 (if applicable) processor caches have the NS tag bit which records 
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the security state of the transaction that accessed the memory.  However, both worlds are 

allowed to clear cache lines upon memory shortage. Also, this allows for data to be shared 

between non-secure and secure worlds.   Figure 13 below shows the how cache and TLBs are 

tagged.   

 

 

Figure 13:  Cache and TLBs 

 

Figure 14 below shows memory organization with an example application that decrypts data 

which is passed in as encrypted from the Normal World. The encrypted data is put in a 

common non-secure memory block which is mapped to the same physical address space in 

both normal and secure worlds.  The data is fetched in the secured world, and then decrypted 

using secured services and processed according to the application type such as DRM, 

Banking etc.   
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Figure 14:  TrustZone memory access example 

4.1.5 Interrupts 

ARM processor with TrusztZone extension contains an Interrupt Controller (GIC) that 

provides secure interrupt sources which cannot be manipulated by the normal world 

software.  All interrupts are trapped in the monitor mode.  If the core is in the other world 

and an interrupt occurs, the monitor software causes a context switch and jumps to the 

restored world, at which point the interrupt is handled as shown in figure 15.  Also as an 

added measure, a configuration register in CP15 to prevent any Normal world software 

modifying the F (FIQ mask) and A (external abort mask) bits in the CPSR and therefore 

blocking the apps from masking out secure world interrupts.   
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Figure 15:  Interrupt propagation between worlds 

 

4.1.6 Peripherals 

One of the most useful features of the TrustZone architecture is the ability to secure 

peripherals, such as interrupt controllers, timers, and user I/O devices.  Thus it is possible to 

secure entire system instead of providing a secure data processing only. A secure interrupt 

controller and timer allows a non-interruptible secure task to monitor the system, a secure 

clock source enables robust DRM, and a securable keyboard peripheral enables secure entry 

of a user password [8]. 

 

TrustZone architecture includes a peripheral bus known as the Advanced Peripheral Bus 

(APB), which is attached to the system bus using an AXI-to-APB bridge as shown in figure 

16 below.  The AXI-to-APB bridge hardware is responsible for managing the security of the 

APB peripherals by rejecting transactions of inappropriate security setting and must not 

forward these requests to the peripherals. 
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The bridge contains address decode logic that generates the APB peripheral select based on 

the incoming AXI transaction. The bridge includes a single TZPCDECPROT input signal for 

each peripheral that is located on the bus. This signal is used to determine if the peripheral is 

configured as secure or non-secure.  These bridge input signals can be tied persistently at 

synthesis time or can be dynamically controlled via a trusted peripheral, such as the 

TrustZone Protection Controller (TZPC), to allow dynamic switching of security state at run-

time. 

 

Figure 16 demonstrates how 4 peripherals are controlled. The TZPC is configured as always 

Secure [DESCPROT = 0], the Timers and Real-Time Clock (RTC) as always Non-secure 

[DESCPROT = 1], and the Keyboard and Mouse Interface (KMI) have a programmable 

security state under software control. Secure world software can program the TZPC at run-

time to change the signal input to the AXI-to-APB Bridge to switch the KMI from Secure to 

Non-secure or vice versa.  This allows the system to capture password entered by user 

securely.   

 

Figure 16:  Trustzone and secured peripherals 
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4.2 Trustzone Software Architecture 

Figure 17 below shows the software architecture of trustzone.  The normal world and secure 

world kernels  operate in stand alone mode.  The secure world is responsible for secure 

booting of the normal world kernel.  Secure booting is out of scoepe of this paper, but Kai et 

al describes secure booting of emebedded systems in [13] .   

Typically a normal world user app would make a call to secure world for secured services 

such as cryptographic funcitonalities.  The user app interfaces with the TrustZone driver, 

which makes a call to the monitor mode sofware using the SMC instruciton described earlier.  

The normal world kernel or the user application is responsible for copying the data to be 

processed into a shared memory region described in section 4.1.4.  Upon finishing secure 

operation, the return value is returned to the user app.  Since both the OS operate in 

standalone mode, multi-threading is possible in each of the worlds.  Therefore,  the choice of 

OS is flexible, for example the normal world OS can be running Windows with Linux 

running in the secure world.  The TrustZone Driver is therefore modified based on the  

configuration and the secure world implementation does not need to change.  

 

Figure 17:  Trustzone Software Arechitecture 
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4.3 Benefits of Trustzone 

The main benefits as outlined in [15] of TrustZone are: 

1. TrustZone provides secure storage for keys, and data. 

2. Full bus-bandwidth access is provided to all storage areas to provide fast memory 

access speeds, which improves overall system performance.    

3. Since TrustZone solution consists of software and hardware elements, it provides 

flexibility to allow customizations upgrades to the secure system even after the SoC is 

finalised.   

4. Any peripheral channel such as, the user interface, SIM and smart cards as well as 

audio output can be secured.   For the non-secure world, TrustZone can enable 

security through integrity checking for all the features within a SoC device. For 

example, decoded DRM audio can be protected as it is passed to non-secure audio 

drivers by integrity checking the relevant part of the OS infrastructure.   
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Chapter 5 

Example Application:  Mobile Movie Ticket Application 

This section explains design of a secure system based on the TrustZone architecture 

described above.   

With the evolution of the smart phones, tablets, and e-readers mobile commerce has become 

a prominent industry.  Nokia defines mobile commerce as the use of mobile handheld 

devices to conduct any electronic transaction or information interaction that leads to transfer 

of value in exchange for information, services or goods over wireless networks in a released 

whitepaper [5]. Examples of m-commerce application include mobile financial services, 

mobile context services, on-line games, tickets and mobile shopping.  A lot of research has 

been done to ensure secure communication over the air and through network backbone.  

However, according to Group Inc. it is predicted that 85 percent of wireless security incidents 

will be device related rather than over-the-air related [6]. Therefore content security can be 

considered as the most important area of handheld security.  This is where the advantage of 

TrustZone based security solutions is crucial.   Hussin, Coulton and Edwards outlined the 

design for a secure mobile commerce application in [7].  Even though the design presented in 

this paper follows the same set of requirements and application, the methodology and 

security engineering practices is different.  The design attempts to take advantage of the 

concept of two worlds in one processor.  In the next few sections, first system requirements 

are outlined followed by software flow which is based on top of the TrustZone kernel ported.  

The hardware setup for simulation is described in the next section.   

5.1 System Requirements 

Let’s consider a system to purchase movie tickets.  The user browses and selects a movie a 

particular theatre for a specific date and time.  The user would then pay for the ticket using 

mobile banking which is assumed to be secured for the purposes of this example.  Upon 

successful completion of the transaction the user needs to receive an electronic receipt as 

proof of purchase, which is referred to as the “mobile ticket”.  The mobile ticket must 

possess the following characteristics: 
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1. The ticket received cannot be falsified 

2. The ticket can only be valid for a specific date and time 

3. The ticket cannot be used twice and has to be unique 

4. The ticket must be verified to be issued by the authorized movie operator only 

 

To ensure such security requirements, one design based on TrustZone technology is 

provided.   

 

5.2 System Block Diagram 

Figure 18 below shows the system block diagram for a TrustZone based movie ticket 

application.  The operator is connected to the handheld device over a secured network.  The 

handheld devices have a normal world application which interfaces with the operator.  The 

normal world app is also a secure application (described in the next section).  The normal 

world app talks to the secured world which provides security services such as cryptographic 

library, secure storage of keys through the predefined TrustZone API (Appendix C).  There 

may also be attached peripherals such as a keypad, or touch screen to get user input and/or 

display secured content.  Note that a secured protocol such as HDCP can be deployed to 

ensure output protection for the screen, but that is out of scope of this discussion and it is 

assumed that the output is secure.  User input is made secured by using the peripheral 

security feature as explained earlier in section 4.1.6.   
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Figure 18:  System Block Diagram 

 

The cryptographic processor is responsible for handling all cryptographic computations and 

algorithrms such as AES, RSA, SHA-1 etc.  OpenSSL implementation is used to simulation 

this behavior but with real hardware crypto processing is accelerated.     

5.3 Operating System and Cryptographic Processor 

Linux Kernel is ported to the ARM Cortex A15 processor with ARM TrustZone support.  

The scheduler is modified to schedule secure world and normal world applications in a time 

sliced manner [21].  The normal world communicates with the secure world through the 

TrustZone API and OpenTZ driver.  The cryptographic processing is done with the software 

implementation of OpenSSL [22]. When actual hardware is used the a separate cryptographic 

accelerator can used which can be called through OpenSSL directly without code change.   

5.4 Normal World User Application 

The normal world user application interfaces with the network operator over a secured 

network connection.  The user app also connects to a third party payment service such as 

Paypal or Interac.  Since this secured app is place in system memory it must provide the 
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security requirements outlined in section 2 such as tamper resistance, data confidentiality, 

integrity, and authenticity.   

5.4.1 Tamper Resistance 

Tamper resistance is provided in two phases: 1) load-time integrity and 2) run-time integrity.  

Load time integrity mechanism is rather simple.  A checksum is pre-calculated during 

compile time and is embedded in the program itself. The execution binary is processed by 

another tool written to calculate the CRC and insert it in the execution header.   The program 

then calculates the checksum upon start up and continues execution only the calculated 

checksum matches the embedded checksum.  Since this is a crucial part of the integrity 

check, the approach to ensure this process is secured needed to be sophisticated.  For 

example, if there is code such as the following figure then it is very easy break the code.   

 
if (crc_caluclated != crc_stored){ 

break; 

  } 

  

 

Figure 19:  CRC comparison code 

The code snippet in figure 19 looks like the figure 20 in assembly. An attacker simply has to 

change the je instruction (opcode 0x74) at offset 8048445 to a jmp instruction (opcode 0xEB) 

to defeat this protection.   

804842b: ff 75 fc pushl -4(%ebp) 

804842e: ff 75 f8 pushl -8(%ebp) 

8048431: e8 f2 fe ff ff call 8048328 <crc> ;call crc32( ) 

8048436: 83 c4 10 add $0x10,%esp 

8048439: 89 45 f4 mov %eax,-12(%ebp) 

804843c: 8b 45 f4 mov -12(%ebp),%eax 

804843f: 3b 05 d0 83 04 08 cmp 0x80483d0,%eax ;compare result 
8048445: 74 22 je 8048469 ;jump-if-equal 

 

 

Figure 20:  CRC check instruction level 
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To counter this type of attack, security through obfuscation is chosen, where a table of 

function pointers is utilized to hide the actual value of the checksum.  For example, if the 

calculated checksum is 0x09A1DE9F then in the table the following entries would contain 

actual valid data byte1[0], byte2[9], byte3[10], byte4[1], byte5[13], byte6[14], byte7[9], 

byte8[15].  Each of these contains a pointer to the function that will process the next nibble in 

the checksum, except for b8[15], which contains a pointer to the function that is called when 

the checksum has proven valid.  This theoretical concept is shown in figure 21 below: 

 

byte1[16] = { crc_nib2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 

byte2[16] = { 0, 0, 0, 0, 0, 0, 0, 0, crc_nib3, 0, 0, 0, 0, 0, 0, 0 }, 

byte3[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib4, 0, 0, 0, 0, 0, 0 }, 

byte4[16] = { crc_nib5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 

byte5[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib6, 0, 0, 0 }, 

byte6[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib7, 0, 0 }, 

byte7[16] = { 0, 0, 0, 0, 0, 0, 0, 0, crc_nib8, 0, 0, 0, 0, 0, 0, 0 }, 

byte8[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_good }; 

 

Figure 21:  Check sum function pointer table 

 

However, in reality, the 0’s in the function table also poses a threat to breakdown this 

function pointer table.  Thus, a lot of dummy functions are populated at random with a 

random initial vector to obfuscate the code.  A screenshot of the out of this example is given 

in figure 22.    
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Figure 22:  Actual function pointer table for CRC 0x09A1DE9F 

 

A separate program is written to calculate the static CRC of the user application.  The static 

CRC is also stored in the secure memory and checked when the user application is launched.   

5.4.2 Data confidentiality 

Tamper resistance provides protection against changing the data or code used by the 

software.   However, it is also important to protect data that resides in system memory.  

There are few techniques to do secure memory for example by using memory in external 

hardware such as a GPU.  For key storage and other data storage purposes the memory space 

in the secure world is used as described in the TrustZone Hardware Architecture section 

(4.1.4).  For added security, a secure memory library is used to protect data in the stack as 

infrequently used data is usually swapped to disk.  This library ensures that all memory 

allocated by the program is locked, so that it cannot be swapped out.  Code for this library is 

included in the Appendix.   

Another level of security is added by checking for the CRC dynamically.  A CRC “lattice” is 

calculated from the Read only sections of the binary and constantly checked during runtime 

for modifications.  The functions implementations reside in the Read only section and thus 

cannot be modified by an attacker.   
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5.4.3 Secure World Kernel API 

Normal world app requests cryptographic services through the predefined API.  The services 

could include cryptographic calls, and data processing, but in this application, encrypted data 

is passed to the secure world for decryption and processing as explained in the next section.  

So the primary purpose of this application is to ensure secure data processing.   

5.5 Key-exchange and software flow 

This section describes the software flow of the mobile ticketing application and how 

cryptographic blocks and design techniques described in section 3.  Figure 23 below shows 

the flow diagram.  For rest of this section the following notation format is used as outlined in 

Table 6.   

 

Table 6:  Notations 

Notation Meaning 

               1024 bit RSA public key of operator 

                1024 bit RSA private key of operator 

     128 bit AES key for encryption/decryption 

Client Normal World Application 

Hash(plaintext) SHA-1 Hash of {Plain Text} 

 

As described earlier, the user browses for movie tickets and process secure payment through 

third party vendors.  The scope of secure payment is out of this discussion, but more details 

can be found in [8].  After the operator receives a request, pre-generated public RSA keys 

{               ,               } are exchanged between the normal world app and the 

operator software.  Then the operator processes the ticket request and generates a ticket in 

plain text that contains the current time, movie name, location, and time.  The format of the 

file could be complex with watermark, and a bitmap image.  The plain text information is 

then sent to the secured app along with the keys.  The application software then generates a 

random 128 bit (16 bytes) key ,    .  It is assumed that the random number generator is a 

True Random Number (TRN) generator.  The properties and nature of TRN is out of the 
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scope of this project.  The movie ticket, plain text format in this example, is then encrypted 

with     .   This encrypted ticket is referred to as “cipher ticket”.  

 

Then the SHA-1 hash of the cipher ticket, Hash(cipher ticket), is calculated and signed with 

the private key of the client and sent along with the cipher ticket as digital certificate as 

described in section 3.4.  Also,      or key to encrypt the plaintext ticket is encrypted with  

            .  After all the above steps are completed, the cipher ticket, digital certificate, 

and the encrypted key are sent over the secured network channel to the operator.   

 

On the operator side, first the encrypted AES key,      ,  is decrypted with 

               .  Then using the decrypted key, the cipher movie ticket is decrypted.  The 

hash value of this decrypted ticket is calculated and stored.  The digital signature received is 

decrypted with              and the received hash value is obtained.  Then the calculated 

hash value of the decrypted ticket and the received hash value are obtained.   If the two 

values match, then the transmission is marked as successful, and authenticated.   
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Chapter 6 

Simulation Results 

The concepts presented in this paper are simulated in ARM fast model simulation 

environment.  The cost of real hardware is significantly high, thus simulation used as proof 

of concept.  For this project, Versatile Express (VE) baseboard component is used with 

Cortex A15 processor with 1 core.  This processor has trustzone support enabled by default. 

The details of the simulation environment can be found in [9].  Figure 24 below shows the 

System Canvas block diagram editor being used to draw the schematic representation of the 

VE, and figure 25 shows the schematic in detail.   

 

 

Figure 24:  System Canvas Simulation 
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Figure 25: Schematic of VE with Corex A15 processor 

Figures 26-28 show screenshots of how Linux is loaded on this platform. 

 

Figure 26:  Memory view 
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Figure 27:  Linux booting 

 

Figure 28:  Linux terminal with busybox 
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The Linux kernel 2.6.34 patched code and application code is attached in Appendix B.  When 

the normal world application is run and key exchange and negotiation is successful, a number 

of files containing the AES keys, RSA keys are dumped.  The output files are attached with 

this report.  The final output is the barcode generated from the encrypted ticket.  The figure 

below shows the barcode generated using Zint – Grid Matrix (AIM Standard), 

 

Figure:  Grid Matrix generated barcode form encrypted data 

 

6.1 Security Threat Analysis 

A number of security threats were analyzed and simulated. Buffer Overflow attack, Static 

code tampering, dynamic code tampering, ROP (Return Oriented Programming) exploitation 

and Man-in-the middle attacks are carried out and the program behavior is noted. 

6.1.1 Buffer Overflow 

Buffer Overflow attack is the most common mechanism of attack in systems where the 

binary can be exploited by an attacker.  The attack is explained by Cown et al in [24] as is 

an anomaly where a program, while writing data to a buffer, overruns the buffer's boundary 

and overwrites adjacent memory.  A typical solution is to use the compiler to protect against 

such attack.  All the binaries for this project were compiled with –fstack-protector option to 

enable protection from buffer overflow attacks.   
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6.1.2 Static Code tampering 

In this mechanism, the program binary is modified to alter code data using a script and hex 

modification tools.  A number of patterns of code/data were modified either randomly or at 

predefined intervals.  In most cases, the executable crashed without processing any keys or 

secrets.  If however, the modifications did not crash the program, the CRC check against the 

CRC value calculated and pre-injected failed and the program exit.   

6.1.3 Dynamic Code tampering 

If code/data were modified using a debugger while the code was running, the CRC checks 

would also fail upon rechecking the value and the program would terminate itself.  A full 

proof monitoring mechanism, i.e, protection against an attack where the monitoring 

mechanism itself is compromised is not implemented yet.   

6.1.4 Return Oriented Programming (ROP) Exploitation 

Another popular attack on binaries is the Return Oriented Programming (ROP) exploitation 

where instead of jumping to the beginning of a library function, the attacker chains together 

existing sequences of instructions (called Gadgets) that have been previously identified inside 

existing code [23].  ROP analysis on the binary itself exposed the following Gadgets,  
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        .......... => mov %eax,(%e?x) 

        - 0x08048be0(null) => pop %eax ; ret 

        - 0x08048c1b(null) => pop %ebx ; ret 

        - .......... => pop %ecx 

        - .......... => pop %edx 

        - .......... => xor %eax,%eax 

        - 0x08048bb0(null) => inc %eax ; ret 

        - .......... => inc %ax 

        - .......... => inc %al 

        - .......... => int $0x80 

        - .......... => sysenter 

        - 0x08048fd3(null) => pop %ebp ; ret 

        - 0x0804c380(null) => .data Addr  

 

  

As a result, protection against ROP exploitation is needed.  Onarlioglu et al, describes a 

compiler-based approach that eliminates all unaligned free-branch instructions inside a 

binary executable, and protects the aligned free-branch instructions to prevent them from 

being misused by an attacker. To militate against ROP attack, the compiler modifications 

could be implemented.   

6.1.5 Man in the Middle Attack 

For this scenario it was assumed that the attacker controls the interface between the user 

mode and the kernel mode components and replays the traffic requesting cryptographic 

services from secure mode.  However, since the normal mode application is signed and 

certified prior to execution the validation method implemented in the kernel mode driver did 

not execute commands from and unauthorized source.  One possible way the attacker could 

still get control if the private key of the signing tool is compromised.  As a result, this key is 

to be refreshed periodically.   
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Chapter 7 

Conclusion 

Embedded system security is identified to be one of the most important parts of the design 

flow as more and more systems are exposed to attackers and the consequences of any breach 

can result in costly damages.   Data confidentiality, Data integrity, Authentication, Content 

Security, Secure Storage and Tamper Resistance are some of the features that any secured 

system must provide.  A few different security solutions exist today such using a dedicated 

hardware block, or software virtualization techniques.  However, the benefits of such 

solutions do not always apply to embedded systems where resources such as memory and 

computing power are limited.  TrustZone technology uses a concept of running a normal 

processor and secured processor (which are isolated from each other) on the same SoC to 

provide security services.  TrustZone based solutions save silicon space but provide all 

necessary security features such as secured storage, secure execution, secure peripherals in 

performance efficient manner with robust hardware and software design explained in this 

paper.  Also, secure boot features can also be incorporated in TrustZone without the cost of 

having to implement extra logic or hardware block.  The upgrade process is also simplified.  

To validate the use of TrustZone, a mobile ticketing system design is implemented using the 

proposed architecture.  Simulation results show that such system is an effective solution for 

embedded systems with memory and resource constraints without compromising the security 

requirements.  A number of security attacks such as buffer overflow, static and dynamic code 

and data tampering, ROP exploits were simulated an verified that the executable is able to 

withstand such attacks.  The next steps to validate the results include porting the TrustZone 

code on actual Cortex-A15 based hardware and simulating various attack types and test the 

integrity of the system design and measure performance for complex security features such 

as DRM.   
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Appendix B 

Simulation Environment 

The Versatile Express (VE) components have been specifically developed to model in software some 

of the functionality of the VE hardware. A VE baseboard with Cortex A-15 processor was used for 

simulation.  The following image shows the actual Versatile Express board. 

 

The following tables summarize the memory map options: 

Table A1:  Versatile Express memory map 
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Table A2:  Secured memory options 
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Table A3: Peripheral Memory Map 

 

Register spec can be found on the arm fast model website from the following link.   

http://infocenter.arm.com/help/topic/com.arm.doc.dui0423m/DUI0423M_fast_model_rm.pdf 

http://infocenter.arm.com/help/topic/com.arm.doc.dui0423m/DUI0423M_fast_model_rm.pdf
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Appendix C 

TrustZone API 

Full TrustZone API which is made available by ARM can be found at the following link. 

http://www.lcs.syr.edu/faculty/yin/teaching/CIS700-sp11/TrustZone_API_3.0_Specification.pdf 

 

 

 

http://www.lcs.syr.edu/faculty/yin/teaching/CIS700-sp11/TrustZone_API_3.0_Specification.pdf
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