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Abstract

Growing Self-Organizing Tree-Based Kernel Smoother

for Machine Learning and Data Mining
© Bohan Zheng, 2016

Master of Applied Science

Electrical and Computer Engineering

Ryerson University

With Internet of Things (IoT) being prevalently adopted in recent years, traditional machine learn-

ing and data mining methods can hardly be competent to deal with the complex big data problems if

applied alone. However, hybridizing those who have complementary advantages could achieve op-

timized practical solutions. This work discusses how to solve multivariate regression problems and

extract intrinsic knowledge by hybridizing Self-Organizing Maps (SOM) and Regression Trees. A

dual-layer SOM map is developed in which the first layer accomplishes unsupervised learning and

then regression tree layer performs supervised learning in the second layer to get predictions and

extract knowledge. In this framework, SOM neurons serve as kernels with similar training sam-

ples mapped so that regression tree could achieve regression locally. In this way, the difficulties

of applying and visualizing local regression on high dimensional data are overcome. Further, we

provide an automated growing mechanism based on a few stop criteria without adding new param-

eters. A case study of solving Electrical Vehicle (EV) range anxiety problem is presented and it

demonstrates that our proposed hybrid model is quantitatively precise and interpretive.

key words: Multivariate Regression, Big Data, Machine Learning, Data Mining, Self-Organizing

Maps (SOM), Regression Tree, Electrical Vehicle (EV), Range Estimation, Internet of Things (IoT)
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Chapter 1

Introduction

The central problems (or goals) of Artificial Intelligence (AI) research include knowledge rep-

resentation, reasoning, planning, learning, perception and the ability to control [1]. Currently pop-

ular approaches include statistical methods, computational intelligence and traditional symbolic

AI.

Knowledge representation and reasoning (KRR) are central to AI research. Many of the prob-

lems to be solved by machines will require extensive knowledge about the world. Among the things

that AI needs to represent are: objects, properties, categories and relations between objects [1]; sit-

uations, events, states and time; causes and effects; knowledge about knowledge (what we know

about what other people know); and many other less well researched domains. Rather than gen-

eral problem solvers, by the end of last century, AI changed its focus to logical, knowledge-based

approach ,i.e. expert systems, that could match human competence on a specific task, which is still

popular in practice. Expert systems gave us the terminology still in use today where AI systems

are divided into a Knowledge Base (KB) with facts about the world and rules and an inference en-

gine that applies the rules to the knowledge base in order to answer questions and solve problems.

However, in most expert systems, just as the name indicated, the knowledge base and inference

rules are usually provided by domain experts. Therefore the knowledge base tended to be a fairly
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flat structure, essentially assertions about the values of variables used by the rules.

In recent years, machine learning and data mining have become increasingly popular in the lit-

erature. Data mining involves discovering novel, interesting, and potentially useful patterns from

large data sets and applying algorithms to the extraction of hidden information. Many other terms

are used for data mining, for example, knowledge discovery (mining) in databases (KDD), knowl-

edge extraction, data/pattern analysis, data archeology, data dredging, and information harvesting.

The objective of any data mining process is to build an efficient predictive or descriptive model of

a large amount of data that not only best fits or explains it, but is also able to generalize to new

data. Based on a broad view of data mining functionality, data mining is the process of discovering

interesting knowledge from large amounts of data stored in either databases, data warehouses, or

other information repositories [2].

1.1 Problem Statement

Thanks to the research of machine learning and data mining methods, the knowledge could be

derived and represented from raw information where the knowledge base of expert systems could

be automatically built. Although computing statistical learning and data mining could provide

some insights of the data, they tend to lose the capacity of predicting accuracy and interpreting

when it comes to the big data problem.

Big Data starts with large-volume, heterogeneous, autonomous sources with distributed and

decentralized control, and seeks to explore complex and evolving relationships among data. These

characteristics make it an extreme challenge for discovering useful knowledge from the Big Data.

For example, in Internet of Things (IoT), different sensors or data sources generate only an aspect

of the whole view. The knowledge hidden underneath the data might be so multi-disciplinary that

experts can hardly aggregate their domains and provide effect decision support or plan for future

actions.
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Big Data problems offer exciting opportunities that simple data representations are incapable

of achieving. One of the fundamental characteristics of the Big Data is the huge volume of data

represented by heterogeneous and diverse dimensionalities. Also, while the volume of the Big Data

increases, so do the complexity and the relationships underneath the data. The correlations between

individuals inherently complicate the whole data representation and any reasoning process on the

data. Further, in the circumstances of big data, it is almost certain that most traditional mining

algorithms cannot be applied directly to function well and obtain the ideal results, for example

predicting accuracy.

1.2 Objectives and Contributions

Motivated by the above mentioned Big Data problems, in this thesis, we attempt to deal with

high-dimensional (unstructured) unlabelled data in order to provide future action support (predic-

tion or estimations) and knowledge discovery. In other words, we are trying to build the bridge

connecting the state-of-the-art of data mining methods to conventional Knowledge-Based Expert

Systems. It is important to note that aimed our attention at dealing with continuous data space, or

targeting variables; and for this reason, we focus our study regression analysis.

Our main contribution in this thesis is that we develop a hybrid self-learning model for regres-

sion analysis and data mining. Specifically, the contribution of this thesis includes 3 parts: (1)

Self-Organizing Maps (SOM) is adopted for data kernelization and preparation of further smooth-

ing; (2) Classification and Regression Trees (CART) serve as the local bin smoother; (3) a growing

mechanism is integrated to the hybrid model to select the right parameters involved.
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1.3 Case Study: Electrical Vehicle (EV) Range Estimation

Electrical Vehicles (EVs) are regarded as promising replacements of conventional fossil fuel

based vehicles in order to reduce carbon emissions and pollution. However, despite the global

interest and the investments worldwide, the user acceptance level is still low. Range Anxiety,

among others, is considered to be one of the major barriers to large scale adoption of EVs [3],

which is defined as the possibility of losing power and being shut down in the middle of a trip.

The main strategies existing to alleviate range anxiety among electric car drivers include the

deployment of extensive charging infrastructure (e.g. EV charging network [4]), the development

of higher battery capacity [5], battery swapping technology [6], use of range extenders [7]. These

solutions, admittedly, are attempting to tackle the problem directly with power electronics technol-

ogy. However, they could raise the high cost issue instead, which might retard the market growth

even more.

The range fear, as a matter of fact, mainly comes from the lack of precise information about

power consumption of the trips, especially for new EV drivers. A recent survey in Electrifying

Vehicles: Insights From The Canadian Plug-in Electric Vehicle Study [8], suggests that drivers

already familiar with electric cars are far more willing than the general public to buy a battery-

electric vehicle most likely because they understand how many miles a day they actually drive,

and how well a battery car of a given range will meet those needs. However, according to the

EV300 Program carried by Fleetwise (funded by Toronto Atmospheric Fund), novice EV drivers

consistently left themselves a 50-km (30-mile) buffer of unused battery capacity whether they

started the day with 60 or 120 kilometers of range (roughly 38 to 75 miles). Therefore, providing

a more accurate prediction of remaining range or power consumption could be an economic and

realistic solution to improve the market acceptance.

Most existing technologies that estimate how much longer a battery will last still provide in-

accurate measurements such as those proposed in [9, 10, 11, 12, 13] which concentrate on battery
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State of Charge (SoC) estimation or Battery Residual Capacity (BRC). Machine Learning solutions

come into literature in recent years partially because of the dropping price of embedded systems.

Huge amount of sensory data could be collected from the In-Vehicle Networks and transmitted to

the Cloud where Machine Learning Algorithms could be applied and provide services including

range prediction, influences of the power consumption and recommendations on energy harvesting.

However, the majority of the research concerning Machine Learning emphasis on or cut down the

problem down to only a limited aspect of the related variable. Methods proposed in [14] and [15]

focus on identifying different driving patterns. Approaches introduced in [16] consider more GPS-

based and manufacturers-provided data with a simplified EV power train model. Speed data has

been analysed as the main variable in [17].

Multiple variables must be comprehensively considered to provide a more accurate prediction

of power consumption [18]. For example, driving style matters because quick acceleration and

fast driving discharge the battery faster. Aggressive braking might also cheat the EV’s regenera-

tive braking system of the chance to recapture some energy and recharge the battery. It has also

been mentioned in the literature that factors such as temperature, weight, inclines and weather

are also important. For instance, nine factors are considered in an estimation method introduced

in [19] including the above mentioned features but it fails to consider the fact that the sensitivity

and reliability of the range estimation algorithm changes under different environmental and op-

erating conditions. An online prediction system based on regression analysis methods focusing

on time series data including distance, velocity and elevation is introduced in [20]. However, the

assumptions of knowing the applicable future information such as energy consumption of a trip

beforehand and the future energy consumption is sufficiently similar to the past do not often cor-

respond to reality. Rahimi-Eichi proposed a Big Data framework in [21] considering five types

of public data for EV range estimating including route information, weather data, driving behav-

ior data, electrical vehicle modeling data, and battery modeling data. However, the calculation of

power consumption is relied on the basic physical mechanisms accordingly in a distributed man-

ner, which is hard to adapt to the complexity of the stochastic nature of how these factors affect
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the power consumption. Lee and Wu, most recently, proposed a big-data analysis method in [22]

concerning Machine Learning Algorithms to process the related data. However, the prediction

problem was trimmed to the level that mature clustering and classification methods can be ap-

plied, which looks unreliable because normally a regression model is essentially used to predict

the continuous types of data while classification is most probably used for categorical ones. Based

on the hypothesis that the driving operation and the contextual data can be implied by the speed

time series, only speed-energy consumption ratio data is fed to the clustering and all other related

variables are considered in the classification.

Figure 1.1: Variables to be Considered for EV range Estimation
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1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, regression problem is formally stated and related literature review is presented;

In Chapter 3, our proposed hybrid machine learning model will be discussed in details. Re-

lated mathematical ingredients will be explained before discussing the formal integrated algorithm

and the presentation of the automated model selection algorithm.

In Chapter 4, we test and evaluate our proposed hybrid model in this chapter. A minor experi-

ment without any necessary data preparation is presented first with detailed Tree-layer map and the

corresponding variable importance ranking plottings of each of the trees. Further, we come back

to the EV Range Anxiety case study and apply our proposed algorithm. Details of our testing data

and related heuristics of data pre-processing are introduced and plotted followed by the utilization

procedure and testing results.

In Chapter 5, we conclude the thesis with a highlight on the important contributions and their

potential applications. Also, possible future expansion is presented in this chapter.
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Chapter 2

Literature Review

2.1 Regression Problems

Regression analysis, also called Function Approximation (FA), can be loosely defined as the

application of methods that investigate the relationship between a dependent (or response) variable

and a set of independent (or predictor) variables. This study is usually based on a sample of

measurements made on a set of objects. For example, one wishes to find a linear function that

best predicts a baby’s birth weight on the basis of ultrasound measures of his head circumference,

abdominal circumference, and femur length. Here, our domain set X is some subset of R3 (the

three ultrasound measurements), and the set of ”labels”, Y, is the the set of real numbers (the

weight in grams). In this context, it is more adequate to call Y the target set. Our training data as

well as the learner’s output are as before (a finite sequence of (x, y) pairs, and a function from X

to Y respectively).

Formally, the task of a regression method is to obtain a model based on a sample of objects

belonging to an unknown regression function. This sample (the training set) consists of pairs of

the form (xi, yi) where xi is a vector of the values of the attributes (predictor variables) and yi is
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the respective value of the response (output). Let X be the input matrix whose i − th row is the

input vector xi. If there are n vectors, X is a matrix with dimension n× a, where a is the number

of attributes. We will collect the target values of the input vectors in a n × 1 matrix, Y. We can

also represent a data set D as a n× (a+ 1) matrix D. We can look at a regression learning system

as a function that maps a data set D into a regression model. A regression model is also a function

that maps an input vector xi ∈ χ into a real number yi ∈ γ.

The measure of successful models are different. We may evaluate the quality of a hypothesis

function, h : X→ Y, by the expected square difference between the true labels and their predicted

values, namely,

LD(h)
def
= E(x,y)∼D(h(x)− y)2. (2.1)

To accommodate a wide range of learning tasks we generalize our formalism of the measure

of success with Generalized Loss Functions [23].

Given any setH (that plays the role of our hypotheses, or models) and some domain Z, let l be

any function from H× Z to the set of nonnegative real numbers, l : H× Z → R+. We call such

functions loss functions.

Note that for prediction problems, we have that Z = X × Y . However, our notion of the loss

function is generalized beyond prediction tasks, and therefore it allows Z to be any domain of

examples.

The loss functions used in the preceding examples of regression tasks are Square Loss:

lsq(h, (x, y))
def
= (h(x)− y)2. (2.2)

9



2.2 Kernel Smoothing

Kernel smoothing is a class of regression techniques that achieve flexibility in estimating the

regression function f(X) over the domain Rp by fitting a different but simple model separately at

each query point x0. This is done by using only those observations close to the target point x0 to fit

the simple model, and in such a way that the resulting estimated function f̂(X) is smooth in Rp .

This localization is achieved via a weighting function or kernel Kλ(x0, xi). For example, the

Gaussian kernel has a weight function based on the Gaussian density function:

Kλ(x0, xi) =
1

λ
exp

[
−‖x− x0‖

2

2λ

]
(2.3)

and assigns weights to the points, xi, that die exponentially with their squared Euclidean dis-

tance from x0. The parameter λ corresponds to the variance of the Gaussian density, and controls

the width of the neighborhood.

We focus our study on the kernel Kλ which are typically indexed by a parameter λ that dictates

the width of the neighbourhood. These memory-based methods require in principle little or no

training; all the work gets done at evaluation time. The only parameter that needs to be determined

from the training data is λ. The simplest form of kernel estimate is the Nadaraya-Watson weighted

average

f̂(x0) =

∑N
i=1Kλ(x0, xi)yi∑N
i=1Kλ(x0, xi)

. (2.4)

In general we can define a local regression estimate of f(x0) as fθ̂(x0),

RSS(fθ, x0) =
N∑
i=1

Kλ(x0, xi)(yi − fθ(xi))2, (2.5)

and fθ is some parameterized function, such as a low-order polynomial [24].
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2.2.1 Nearest-Neighbour Methods

Nearest Neighbour algorithms are among the simplest of all machine learning algorithms. The

idea is to memorize the training set and then to predict the label of any new instance on the basis

of the labels of its closest neighbours in the training set. The rationale behind such a method is

based on the assumption that the features that are used to describe the domain points are relevant

to their labellings in a way that makes close-by points likely to have the same label. Furthermore,

in some situations, even when the training set is immense, finding a nearest neighbour can be done

extremely fast (for example, when the training set is the entire Web and distances are based on

links) [23].

Assume a metric function ρ that returns the Euclidean distance between any two elements of

the instance domain X = Rd, formally ρ(x, x′) = ‖x− x′‖ =
√∑i=1

d (xi − x′i)2. Let S =

(x1, y1), ..., (xm, ym) be a sequence of training examples. For each x ∈ X , let π1(x), ..., πm(x)

be a reordering of 1, ...,m according to their distance to x, ρ(x, xi). That is, for all i < m,

ρ(x, xπi(x)) < ρ(x, xπi+1(x)). When k = 1, we have the 1-NN rule: Ŷ = yπ1(x) and the geometric

illustration of the 1-NN rule is a V oronoi Tessellation of the space, as given in Figure 2.1.

Figure 2.1: An illustration of the decision boundaries of the 1-NN rule. The points depicted are the sample

points, and the predicted label of any new point will be the label of the sample point in the center of the cell

it belongs to. These cells are called a Voronoi Tessellation of the space.
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Concentrating our study on regression problems, namely Y = R, one can define the prediction

to be the average target of the k nearest neighbours. That is, Ŷ (x) = 1
k

∑k
i=1 yπi(x). More generally,

for some function φ : (X, Y )k → Y the k-NN rule with respect to φ is:

Ŷ (x) = φ((xπ1(x), yπ1(x)), ..., (xπk(x), yπk(x))). (2.6)

It is easy to verify that we can cast the prediction by the averaged target (for regression) as in

the above Equation by an appropriate choice of φ. And the geometric meaning of the Nearest

Neighbour regression could be explained by combining the adjacent Voronoi tiles and average

among the merged samples. The generality can lead to other kernel smoothing rules such as taking

a weighted average of the targets according to the distance from x:

Ŷ (x) =
k∑
i=1

ρ(x, xπi(x))∑k
j=1 ρ(x, xπj(x))

yπi(x). (2.7)

2.3 Artificial Neural Networks

2.3.1 Multilayer Perceptrons

The term neural network (NN) has evolved to encompass a large class of models and learning

methods. We discuss here the most widely used single hidden layer back-propagation network, or

single layer perceptron.

A neural network is a two-stage regression or classification model. Most neural networks have

three layers: the input layer, a hidden layer, and the output layer, typically represented by a network

diagram as in Figure 2.2. The hidden layer is so named because it is invisible, with no direct contact

to inputs or outputs. This network applies both to regression or classification. And these networks

can handle multiple quantitative responses in a seamless fashion. We shall deal with the general

case.
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Figure 2.2: ANN Structure

Derived features Zm are created from linear combinations of the inputs, and then the target Yk

is modelled as a function of linear combinations of the Zm,

Zm = σ(α0m + αTmX),m = 1, ...,M,

Tk = β0k + βTk Z, k = 1, ..., K,

fk(X) = gk(T ), k = 1, ..., K,

(2.8)

where Z = (Z1, Z2, ..., ZM) and T = (T1, T2, ..., Tk). And the activation function σ(v) is usually

chosen to be the sigmoid σ(v) = 1/(1 + e−v).

The neural network model has unknown parameters, often called weights, and we seek values

for them that make the model fit the training data well [24]. We denote the complete set of weights

by θ, which consists of

{α0m, αm;m = 1, 2, ...,M} M(p+ 1) weights,

{β0k, βk; k = 1, 2, ..., K} K(M + 1) weights.
(2.9)
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For regression, we use sum-of-squared errors as our measure of fit (error function)

R(θ) =
K∑
k=1

N∑
i=1

(yik − fk(xi))2. (2.10)

The generic approach to minimizing R(θ) is by gradient descent, called back-propagation in

this setting. Because of the compositional form of the model, the gradient can be easily derived us-

ing the chain rule for differentiation. This can be computed by a forward and backward sweep over

the network, keeping track only of quantities local to each unit. Formally, the back-propagation

procedure could be described in detail as the following.

Let zmi = σ(α0m + αTmxi) and let zi = (z1i, z2i...zMi). Then we have

R(θ) =
N∑
i=1

Ri

=
N∑
i=1

K∑
k=1

(yik − fk(xi))2,

(2.11)

with derivatives

∂Ri

∂βkm
= −2(yik − fk(xi))g′k(βTk zi)zmi,

∂Ri

∂αml
= −

K∑
k=1

2(yik − fk(xi))g′k(βTk zi)βkmσ′(αTmxi)xil.
(2.12)

Given these derivatives, a gradient descent updated at the (r + 1)st iteration has the form

β
(r+1)
km = β

(r)
km − γr

N∑
i=0

∂Ri

∂β
(r)
km

,

α
(r+1)
ml = α

(r)
ml − γr

N∑
i=0

∂Ri

∂α
(r)
ml

,

(2.13)

where γr is the learning rate, discussed below.

Now, (2.12) can be written as:
∂Ri

∂βkm
= δkizmi,

∂Ri

∂αml
= smixil.

(2.14)
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The quantities δki and smi are ”errors” from the current model at the output and hidden layer units,

respectively. From their definitions, these errors satisfy

smi = σ′(αTmxi)
K∑
k=1

βkmγki, (2.15)

known as the back-propagation equations. Using this, the updates in (2.13) can be imple-

mented with a two-pass algorithm. In the forward pass, the current weights are fixed and the

predicted values f̂kxi are computed from (2.15). In the backward pass, the errors δki are com-

puted, and then back-propagated via (2.15) to give the errors smi. Both sets of errors are then used

to compute the gradients for the updates in (2.13), via (2.14).

The advantages of back-propagation are its simple and local nature. In the back propagation

algorithm, each hidden unit passes and receives information only to and from units that share a

connection. Hence it can be implemented efficiently on a parallel architecture computer. However,

back-propagation can be very slow, and for that reason it is usually not the method of choice.

2.3.2 Radial Basis Function Networks

Radial basis function (RBF) networks typically have three layers: an input layer, a hidden layer

with a non-linear RBF activation function and a linear output layer [25].

• Input layer, which consists ofmo source nodes, wheremo is the dimensionality of the input

vector x.

• Hidden layer, which consists of the same number of computation units as the size of the

training sample, namely, N ; each unit is mathematically described by a radial-basis function

ϕj(x) = ϕ(‖x− xj‖), j = 1, 2, ..., N. (2.16)
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The jth input data point xj defines the center of the radial-basis function, and the vector x is

the signal (pattern) applied to the input layer. Thus, unlike a multilayer perceptron, the links

connecting the source nodes to the hidden units are direct connections with no weights.

• Output layer, which, in the RBF structure of Fig. 2.3, consists of a single computational

unit. Clearly, there is no restriction on the size of the output layer, except to say that typically

the size of the output layer is much smaller than that of the hidden layer.

Figure 2.3: Structure of a practical RBF network.

Gaussian function is usually used as the radial-basis function, in which case each computational
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unit in the hidden layer of the network of Fig. 2.3 is defined by

ϕj(x) = ϕ(x− xj)

= exp(− 1

2σ2
j

‖x− xj‖2), j = 1, 2, ..., N
(2.17)

where σj is a measure of the width of the jth Gaussian function with center xj . Typically, but not

always, all the Gaussian hidden units are assigned a common width σ. In situations of this kind,

the parameter that distinguishes one hidden unit from another is the center xj . The rationale behind

the choice of the Gaussian function as the radial-basis function in building RBF networks is that it

has many desirable properties, which will become evident as the discussion progresses.

On the choice of the size of the hidden layer, the rudimentary one could be the size of the

training set. However, having a hidden layer of the same size as the input layer could be wasteful of

computational resources, particularly when dealing with large training samples. When the hidden

layer of the RBF network is specified in the manner described in (2.17), we find that any correlation

existing between adjacent data points in the training sample is correspondingly transplanted into

adjacent units in the hidden layer. Stated in another way, there is redundancy of neurons in the

hidden layer when they are chosen in accordance with (2.17) by virtue of the redundancy that may

inherently exist in the training sample. In situations of this kind, it is therefore good design practice

to make the size of the hidden layer a fraction of the size of the training sample.

In designing the RBF network of Figure 2.3, a key issue that needs to be addressed is how to

compute the parameters of the Gaussian units that constitute the hidden layer by using unlabeled

data. In other words, the computation is to be performed in an unsupervised manner. The solution

to this problem is usually rooted in clustering and the so-called K-means algorithm is often applied

because it is simple to implement, yet effective in performance.

Moreover, the approximating function realized by both of these two RBF structures has the

same mathematical form,

F (x) =
K∑
j=1

ωjϕ(x,xj). (2.18)
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where the dimensionality of the input vector x (and therefore that of the input layer) is m0 and

each hidden unit is characterized by the radial-basis function ϕ(x,xj), where j = 1, 2, ..., K, with

K being smaller than N . The output layer, assumed to consist of a single unit, is characterized by

the weight vector w, whose dimensionality is also K.

2.4 Principal Component Analysis

In many situations we have a large number of inputs, often very correlated. Principal Com-

ponents Analysis (PCA) is a way of identifying patterns in data, and expressing the data in such

a way as to highlight their similarities and differences. Since patterns in data can be hard to find

in data of high dimension, where the luxury of graphical representation is not available, PCA is a

powerful tool for analysing data by transforming a set of possibly correlated variables into a set

of uncorrelated linear re-combinations of those variables called principal components. The other

main advantage of PCA is that once you have found these patterns in the data, and you compress

the data, ie. by reducing the number of dimensions, without much loss of information. Focusing

on regression, formally, PCA produces a small number of linear combinations Zm,m = 1, ...,M

of the original inputs Xj , and the Zm are then used in place of the Xj as inputs in the regression.

The methods differ in how the linear combinations are constructed.

Principal component regression (PCR) forms the derived input columns zm = Xvm , and then

regresses y on z1, z2, ..., zM for some M ≤ p [24]. Since the zm are orthogonal, this regression is

just a sum of univariate regressions:

ŷpcr(M) = y1+
M∑
m=1

θ̂mzm,

where θ̂m = 〈zm,y〉 / 〈zm, zm〉. Since the zm are each linear combinations of the original xj , we

can express the solution of the above equation in terms of coefficients of the xj:

β̂pcr(M) =
M∑
m=1

θ̂mvm.
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Principal components depend on the scaling of the inputs, so typically they are first standard-

ized.

2.5 Difficulties

Returning to our EV range anxiety case study, the difficulty states itself from the related work

of data-driven estimation solutions discussed in Chapter 1. Multivariate high dimensional data in

different types must be analyzed to, ultimately, predict a numerical result.

We have seen that although nearest-neighbor and other local methods focus directly on estimat-

ing the function at a point, they face problems in high dimensions – curse of dimensionality. They

may also be inappropriate even in low dimensions in cases where more structured approaches can

make more efficient use of the data. The nearest-neighbor methods discussed so far are based on

the assumption that locally the function is constant; close to a target input x0, the function does

not change much, and so close outputs can be averaged to produce f̂(x0). Other methods such

as splines, neural networks and basis-function methods implicitly define neighborhoods of local

behavior.

PCA is a classic technique to derive underlying variables, reducing the number of dimensions

we need to consider in a dataset. However, PCA makes several assumptions, such as relying

on data spread and orthogonality to derive components. Also, the covariance matrix is difficult

to be evaluated in an accurate manner [26]. Further, even the simplest invariance could not be

captured by the PCA unless the training data explicitly provides this information [27]. The recently

proposed method of the Self-Organizing Maps (SOM) is likely to become a complementary or

alternative tool of the PCA. Reush et al. compared the pattern extraction capability of SOM and

PCA using synthetic example, and showed SOM is capable of extracting pattern in data without

superposition of input data.

19



Neural networks (NN) are relatively successful in applications dealing with subsymbolic raw

data; in particular, if the data is noisy or inconsistent. They exhibit the property to produce their

structure during learning by the integration (overlay) of many case data. Unfortunately, they have

the disadvantage that they cannot be interpreted by looking at the activity or weights of single

neurons [28]. It makes them hard to determine how they are solving a problem, because they

are opaque (black box). Further, there are also several issues in training the Neural Networks

because the model is generally over-parametrized, and the optimization problem is nonconvex and

unstable unless certain guidelines are followed [29]. For example, it is hard to decide the number

of hidden units and layers. With too few hidden units, the model might not have enough flexibility

to capture the nonlinearities in the data; with too many hidden units, the extra weights can be

shrunk toward zero if appropriate regularization is used. Choice of the number of hidden layers is

guided by background knowledge and experimentation. Each layer extracts features of the input

for regression or classification. Use of multiple hidden layers allows construction of hierarchical

features at different levels of resolution.
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Chapter 3

Methodology

In this chapter, we prepare the fundamental theories for our proposed the Hybrid Machine

Learning Model. The proposed Hybrid Model can be viewed as a modified version of Self-

Organizing Maps (SOM) with one layer deeper combining the Classification and Regression Tree

(CART) after the standard training process. The difference with training the conventional SOM is

that the data points mapped to the neurons are kept for building the regression trees. Each neuron

shall serve as a kernel smoothing neighborhood introduced in Chapter 2 and have a regression tree

built as the alternative codebook based on the mapped historical training data.

Local regression is usually considered less useful in dimensions much higher than two or three.

It is impossible to simultaneously maintain localness (i.e. low bias) and a sizable sample in the

neighborhood (i.e. low variance) as the dimension increases, without the total sample size increas-

ing exponentially in the number of dimensions, p. Visualization of f̂(X) also becomes difficult in

higher dimensions, and this is often one of the primary goals of smoothing. The Self-Organizing

Map (SOM), also known as the Kohonen network, is a computational method for the visualization,

low-dimensional approximation and analysis of high-dimensional data which also preserves the

topological structure of that data set.

21



However, SOM also has some drawbacks. Hybridizing localized regression based on the data

partitioning could not only provide more accurate prediction results but also reveal the inherent

of the data. Computational complexity is also improved without globally fitting each tester to the

training dataset.

3.1 Self-Organizing Maps

Self-organizing map (SOM) is a powerful paradigm that is used for cluster analysis and re-

gression learning thanks to its ability to provide a topological projection of high dimensional non-

linear data. Interestingly in SOM, neurons representing closely related information are kept close

together during training, mimicking human brains, so that they can interact via short synaptic

connections.

In a SOM, the neurons are placed at the nodes of a lattice that is usually one or two dimensional

and in the final configuration of the map. Depending on the competitive learning process, the

localized feature-sensitive neurons respond to the input patterns in an orderly fashion, as if a

curvilinear coordinate system. This reflects some topological order of events in the input space

and a SOM is therefore characterized by the formation of a topographic map of the input data

vectors, in which the spatial locations (i.e. coordinates) of the neurons in the lattice correspond to

intrinsic features of the input patterns.

The SOM defines a mapping from the input data space of k dimensions x = [x1, x2, ..., xk]
T

onto a regular two-dimensional array of nodes. The synaptic reference vectors mj = [mj1,mj2, ...,mjk]
T , j =

1, 2, ..., L of each neuron j has the same dimension as the input space; L is the total number of

neurons.

Before recursive processing, the codebooks, mi, must be initialized. Random values for the

components ofmi may do, but if the initial values of themi are selected with care, the convergence
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of the codebooks can be achieved much faster.

Selecting the neuron with the largest inner product mT
j x, is mathematically equivalent to min-

imizing the Euclidean distance between the input vectors x and mj . Thus, the winning neuron n is

defined as: c = argmin1≤j≤l{||x−mj||}. Essentially this sums up the competition process among

the neurons, where the best-matching node locates the center of a topological neighborhood [30].

During the learning, those nodes that are topographically close to a certain distance will activate

each other to learn from the same input. Using discrete-time formalism, reference vector at time t

is written as mj(t), and updated reference vector is defined as:

mi(t+ 1) = mi(t) + hci(t)[x−mi(t)], (3.1)

where hjc(t) is neighbourhood kernel and t is a discrete-time coordinate,mj is a reference vector, x

is a data sample, and hjc is a neighbourhood function, usually in the form of the Gaussian function,

hjc(t) = α(t) · exp(−‖rn − rj‖2

2σ2(t)
), (3.2)

where α(t) is the training rate function, r is the location vector in the matrix, ‖rn − rj‖ corresponds

to the distance between the best-matching node (location rn) and each of the other nodes (location

rj ) in the two-dimensional matrix, and σ(t) defines the brand-width of the kernel, often referred

to as the radius of training. Both α(t) and σ(t) are monotonically decreasing functions over the

time, which guarantees convergence and stability of the map.

The learning process involved in the computation of a feature map is stochastic in nature, which

means that the accuracy of the map depends on the number of iterations of the SOM algorithm.

First, the size of SOM determines the degree of generalization that will be produced by the SOM

algorithm - the more nodes, the finer the representation of the details, while the fewer nodes, the
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broader level of generalization. However, the same broad patterns are revealed at each level of gen-

eralization. Another issue regarding the size of the SOM, is that more nodes means longer training

time. Second, the learning steps must be reasonably large, since the learning is a stochastic pro-

cess. A ”rule of thumb” is that for good statistical accuracy, the number of steps must be at least

500 times the number of network nodes. Furthermore, the learning rate parameter α should start

with a value close to 1 and then during the first 1000 steps it should be decreasing monotonically

but kept above 0.1. The exact form of variation of α = α(t) is not critical, it can be linear, expo-

nential or inversely proportional to t. For instance, α(t) = 0.9(1 − t/1000) may be a reasonable

choice. It is during the initial phase of the algorithm that the topological ordering of the mi occurs.

This phase of the learning process is therefore called the ordering phase . The remaining (relatively

long) iterations of the algorithm are needed for the fine adjustment of the map; this second phase

of the learning process is called the convergence phase. For good statistical accuracy, α(t) should

be maintained during the convergence phase at a small value (on the order of 0.01 or less) for a

fairly long period of time, which is typically thousands of iterations. Neither is it crucial whether

the law for α(t) decreases linearly or exponentially during the convergence phase.

The Neighbourhood function can be chosen to be the simple neighbourhood-set definition of

hci(t) if the lattice is not very large, e.g. a few hundred nodes. For larger lattices, the Gaussian

function may do. The size of the Neighbourhood must be chosen wide enough at the start so

the map can be ordered globally. If the neighbourhood is too small to start with, various kinds

of mosaic-like parcellations of the map are seen, between which the ordering direction changes

discontinuously. This phenomena can be avoided by starting with a fairly wide neighbourhood

set Nc = Nc(0) and letting it shrink with time. The initial radius can even be more than half the

diameter of the network. During the first 1000 steps or so, when the ordering phase takes place,

and α = α(t) is fairly large, the radius of Nc can shrink linearly to about one unit, during the

convergence phase Nc can still contain the nearest neighbours of node c.
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3.2 Classification and Regression Trees (CART)

Tree-based methods recursively partition the space of explanatory variables into a set of rect-

angles, and then fit a simple model (like a constant) in each one. They are conceptually simple yet

powerful. The most famous recursive partitioning method is CART, an acronym for classification

and regression trees, see Breiman et al. (1984).

Adopting prediction trees to represent the recursive partition has several attractive advantages.

• Most intuitively, tree structure helps making regression results interpretable.

• CART is non-parametric. Therefore this method does not require specification of any func-

tional form and assumptions.

• CART does not require variables to be selected in advance. The algorithm itself will identify

the most significant variables and eliminate non-significant ones.

• CART can easily handle outliers. Outliers can negatively affect the results of some statistical

models, like Principal Component Analysis (PCA) and linear regression. But the splitting

algorithm of CART will easily handle noisy data because the influence of some variables

can be localized to some regions of the domain space and not matter on others.

As the name implies, the tree structure of the recursive partitioning method applies to both

regression and classification. However, the techniques used with trees for regression and for clas-

sification are quite different owing to the nature of the problem. We focus only on regression trees

in this thesis.

Consider the dataset consists of p input variables and a response variable, for each of N ob-

servations: that is, (xi, yi) for i = 1, 2, ..., N , with xi = (xi1, xi2, ..., xip). The algorithm needs

to automatically decide on the splitting variables and split points, and also what topology (shape)
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the tree should have. Suppose first that we have a partition into M regions R1, R2, ..., RM , and we

model the response as a constant cm in each region:

f(x) =
M∑
m=1

cmI(x ∈ Rm) (3.3)

If we adopt as our criterion minimization of the sum of squares
∑

(yi − f(xi))2, it is easy to

see that the best ĉm is just the average of yi in region Rm:

argmin
cm

∑
x̂,ŷ∈D

(f(x̂)− ŷ) = argmin
cm

∑
(x̂,ŷ)

(
∑
i

ciI[x ∈ Ri]− ŷ)2

= argmin
cm

∑
(x̂,ŷ):x̂∈Rm

(cm − ŷ)2

= mean
(x̂,ŷ):x̂∈Rm

ŷ

(3.4)

Now finding the best binary partition in terms of minimum sum of squares is generally com-

putationally infeasible. Hence we proceed with a greedy algorithm. Starting with all of the data,

consider a splitting variable j and split point s, and define the pair of half-planes:

R1(j, s) = {X|Xj 6 s} and R2(j, s) = {X|Xj > s} . (3.5)

Then we seek the splitting variable j and split point s that solve:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 +min
c2

∑
xi∈R2(j,s)

(yi − c2)2
 . (3.6)

For any choice j and s, the inner minimization is solved by:

ĉ1 = mean(yi|xi ∈ R1(j, s)) and ĉ2 = mean(yi|xi ∈ R2(j, s)) (3.7)
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For each splitting variable, the determination of the split point s can be done very quickly

and hence by scanning through all of the inputs, determination of the best pair (j, s) is feasible.

Having found the best split, we partition the data into the two resulting regions and repeat the

splitting process on each of the two regions. Then this process is repeated on all of the resulting

regions.
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Chapter 4

Growing Self-Organizing Kernel Smoother

In this section, we propose our hybrid regression learning model. The hybrid model contains

two layers in which the first layer is used for kernelization and input mapping, while the second

layer serves as the regression output function (approximator). We also provide the mechanism of

the self-growing process of the map. The criteria of building the trees will also partially affect the

automated map growth.

For one thing, on the purpose of adopting SOM in our proposed model at the first stage is

to cluster the similar cases and eventually the regression could be operated locally. For another,

in order to effectively apply Self-Organizing Maps in regression, the output functions play an

important role [31]. Therefore, we integrate CART, specifically Regression Tree model, as the

output layer of the SOM to achieve a reasonable predictability and mine knowledge from the data.

We consider the above architecture depicted in Figure 4.1. As can be seen from the diagram, it

is very similar to Radius-Based Function Networks structure illustrated in Figure 2.3 in Section

2.3.2. Indeed, the similarity is that the first layer SOM neurons serve as kernels by clustering the

similar historical data points. However, the difference from RBF is that the output layer of RBF is

trained as a linear model while ours not by adopting regression trees.

28



Figure 4.1: System Architecture

4.1 Self-Organizing Tree-Based Kernel Smoother

4.1.1 Self-Organizing Kernels

The SOM can be said to be a ”nonlinear projection” of the probability density function p(x)

of the high-dimensional input data vector x onto the two-dimensional array. The central result in

self-organization is that if the input patterns have a well-defined probability density function p(x) ,

then the weight vectors associated with the models mi should try to imitate it [30]. This will result

in a local relaxation or smoothing effect on the weight vectors of neurons in this neighbourhood,

which in continued learning leads to global ordering.

However, the self-organizing map algorithm suffers from several limitations. From a theoreti-

cal and applicational perspective, there are four shortcomings [25, 32, 30]:

1. The estimate of the probability density function of the input space provided by the algorithm
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lacks accuracy.

2. The formulation of the algorithm has no objective function that could be optimized, espe-

cially in the high-dimensional case.

3. Difficult to represent very many variables in two dimensional plane

4. SOM uses a fixed network architecture in terms of number and arrangement of neural pro-

cessing elements, which has to be defined prior to training.

5. Hierarchical relations between the input data are not mirrored in a straightforward fashion.

To cope the first two obstacles, modified versions of SOM have been applied with kernelization

in various ways [33, 34, 35]. F. Mulier and V. Cherkassky have already proved in [36] that SOM

can be considered in a statistical way in which SOM algorithm can be directly interpret as a kernel

smoothing problem.

Following the statistical SOM Kernel Smoothing in [36], in this section, we provide the math-

ematical explanations of using the SOM as the Kernel Smoother. Note that the terminology we use

in our model is ”Self-Organizing Kernels” rather than ”kernel SOM”. In spite of the connections

between them, the technique of ”kernel smoothing” should not be confused with those associated

with the more recent usage of the phrase ”kernel tricks”. The kernels for smoothing are mostly

used as a device for localization. In those contexts of kernel tricks, however, the kernel com-

putes an inner product in a high-dimensional (implicit) feature space, and is used for regularized

nonlinear modeling. Fortunately, there introduced connections between this two methodologies in

Chapter 6.7 of [24] and Chapter 5.10 of [25], since after all the essential operation of these ideas

is utilizing the regional neighbourhood data samples.

Assuming that the convergence to some stable state of the SOM is true [37], we require that

the expectation values of mi(t + 1) and mi(t) for t → ∞ must be equal, while hci is nonzero,

where c = c(x(t)) is the index of the winner node for input x(t). In other words we must have
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∀i, Et {hci(x(t)−mi(t))} = 0 where Et is the mathematical expectation value operator over t. In

the assumed asymptotic state, for t → ∞, the mi(t) are independent of t and are denoted by m∗i .

If the expectation values Et(.) are written, for t→∞, as (1/t)
∑

t(.), we can write

m∗i =

∑
t hcix(t)∑
t hci

(4.1)

Then it is useful to notice that for the different nodes i, the same addends occur a great number

of times. Therefore it is advisable, especially with very large SOMs, to first compute the mean

xm,j of all of the x(t) that are closest to model mj in the data space, and then weight it by the

number nj of the samples in this subset and by hji. Then we obtain

m∗i =

∑
j njhjixm,j∑
j njhji

(4.2)

where the notation xm,j is used to denote the mean of the inputs that are closest to the model mj ,

and nj is the number of those inputs.

With the shrinkage of the neighbourhood function hci and convergence of the map in the train-

ing process, each neuron of the map represents a V oronoi Partitioning of the input data and

can be used as a smoothing kernel. Mimicking the work in [36], we utilize the SOM as a kernel

estimate as in [36], batch SOM is adopted for getting rid of choosing the learning rate. Using the

interpretation given by (4.2), it is possible to view the SOM algorithm as a statistical nonparametric

regression problem. And the form of (4.2) is very similar to the Nadaraya-Watson kernel estimator

introduced in Chapter 2:

ŷ(x) =

∑K
k=1H(x− xk)yk∑K
k=1H(x− xk)

where x, y ∈ R1. Due to the similarities, (4.2) can be interpreted as a kernel estimate. The SOM

plays the role of kernel function and achieves spherical clusters [38] L(c) (the local set of mapped

data in neuron c).

Due to the high dimensionality, if local weight average is applied just as the traditional local

regression methods, the spatial resolution of each kernel L(c) is rather coarse to achieve a satisfac-

tory result, which is why the kernels are later to be further microscopically analysed in the second
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layer by locally generated regression trees T (c). This could meantime provide more interpretative

codebooks and reveal hierarchical relations of the data, solving the third and fifth shortcomings

mentioned above. The first layer of SOM will be used for locating the new case to its nearest

neighbours. And because of the second layer, T (c) − layer, will ultimately be applied for regres-

sion output functions, the criterion of selecting the radius of c should be based on the goodness of

fitting of the T (c) − layer. This will be discussed in detail in later verses.

4.1.2 Local Tree Settings

In conventional kernel/local regression methods, there include usually four components – band-

width, local polynomial degree, weight function and fitting criterion. The local polynomial degree

is selected to affect the bias-variance trade-off with the bandwidth and a weight function is selected

to provide a smoother estimate. Since our proposed kernel smoothing method is non-parametric,

selecting the local polynomial degree and weight function is substituted by building Classification

and Regression Tree (CART) locally instead. In regression, CART acts as a smart bin-smoother

that performs automatic variable selection. Bin smoothers might be the simplest non-parametric

estimators of a regression function.

CART is suitable for multivariate scenario because they are non-parametric, have naturally

define subgroups, scale with the complexity of the data, and are not limited by the number of

predictor variables. Also, single decision trees are highly interpretable. The entire model can be

completely represented by a simple two-dimensional graphic (binary tree) that is easily visualized.

However, CART suffers from its inaccuracy and recently, bagging and boosting trees are proposed

as remedy in which CART is usually considered as the base (weak) learner. On the other hand,

linear combinations of trees lose this important feature, and must therefore be interpreted in a

different way. Further, if applying the CART globally, a huge bushy tree shall be generated, which

is not efficient for regression prediction and drops the goal of knowledge extraction. Another well

known disadvantage of trees is that they can be unstable. Small changes in the data can result in
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completely different tree. One reason for this is that any change at an upper level of the tree is

propagated down the tree and affects all other splits. This is because if a particular split changes

then all the other splits that are under it change as well.

These dilemmas motivate us adopting CART locally on the rudimentary clusters trained by

SOM. First, it could gain a more sophisticated partitioning among local data cases and also achieve

a concrete and concise knowledge extraction, preserving its advantages. In addition, since there is

only a small portion of the dataset mapped to a single kernel (neuron), the cost of re-constructing a

new tree is fairly acceptable. Last but not least, there are very few parameters to be decided when

modelling.

Formally, for a fitting point x (trained as the centroid of SOM), define a bandwidth λ(x) and a

smoothing window (x−λ(x), x+λ(x)). To estimate f̂(x), only observations (local observations)

within this window are used to form a regression tree, formally:

T (c)
i = T (xi − x

λ(x)
, θ)

where T (·, θ) is the regression tree as the smoothing estimator taking global standard θ which is

the parameter set of building the tree. This is also important when it comes to the growing process

to be discussed in the section afterwards.

The only two parameters (eventually one) that we take into consideration in θ to build the local

regression trees are the minsplit and the minbucket . minsplit represents the minimum number of

observations that must exist in a node in order for a split to be attempted and this parameter can

save computation time, since smaller nodes are almost always pruned away by cross validation.

minbucket represents the minimum number of observations in any terminal (leaf) node. Setting

minbucket to 1 is meaningless, since each leaf node will (by definition) have at least one observa-

tion on it. If we set it to a higher value, say 3, then it would mean that every leaf node would have

at least 3 observations in that bucket. The smaller the value of minbucket , the more precise our

CART model will be. By setting minbucket to too small a value, such as 1, we may run the risk

of overfitting the model. If only one of minsplit or minbucket is specified, the code either sets
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minsplit to minbucket × 3 or minbucket to minsplit/3, as appropriate. For example, by default,

if we set the minbucket to 2, minsplit would be 2× 3 = 6.

4.1.3 Define and Select the Bandwidth (λ) of the Kernel

In each of the kernels Kλ, λ is a parameter that controls its width. For example, for the Epanech-

nikov or tri-cube kernel with metric width, λ is the radius of the support region and for the Gaussian

kernel, λ is the standard deviation. λ is the number k of nearest neighbours in k-nearest neighbour-

hoods, often expressed as a fraction or span k
N

of the total training sample.

The bandwidth λ(x) has a critical effect on the local regression fit. The goal in choosing the

bandwidth is to produce an estimate that is as smooth as possible without distorting the underlying

pattern of dependence of the response on the independent variables. In other words, we want f̂ to

have as little bias as possible and as small a variance as possible. There is a natural bias-variance

trade-off as we change the width of the (averaging) window, which is most explicit for local aver-

ages:

• If the window is narrow, f̂(x0) is an average of a small number of yi close to x0, and its

variance will be relatively large-close to that of an individual yi. The bias will tend to be

small, again because each of the E(yi) = f(xi) should be close to f(x0).

• If the window is wide, the variance of f̂(x0) will be small relative to the variance of any

yi, because of the effects of averaging. The bias will be higher, because we are now using

observations xi further from x0, and there is no guarantee that f(xi) will be close to f(x0).

In this work, we are mimicking k-NN kernels using Self-Organizing Maps (SOM) as our kernel

trainer in the first stage of unsupervised learning and the λ in our model indicates the size of the

SOM or the ideal number of samples mapped on each neuron.
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Selecting the size of the SOM is usually an observational result. The goodness of fit is usually

based on the node count, as recorded with the number of mapped training samples, and mapping

quality, as estimated by the average distance of an object to its corresponding codebook vector. If

a proper size of the map has been chosen, the sample distribution is relatively uniform. However,

as we discussed in Chapter 1, when multivariate data is encountered, experts’ empirical observa-

tion might be ineffectual. More importantly, as mentioned above, there lack object functions to be

optimized with conventional SOM and the two dimensional plane is not interpretable to observers.

There are some modified SOM trying to automatically grow the SOM in the literature. However,

each one has different settings in particular to the targeting the problems. These obstacles encour-

age us to explore new standard of bandwidth selection.

Since the modified SOM we proposed generates another layer of output functions composed

with regression trees, the goodness of fit of that layer should be considered as the criterion of

selecting the bandwidth. We develop our growing mechanism in Section 4.2 in details.

4.1.4 RTSOM Algorithm

In this section, we conclude the theories that have been discussed into a whole algorithm,

RTSOM. As can be seen in Algorithm 1, there are three inputs for the RTSOM model. They are X,

the data matrix in which each row vector is a training case and each column represents a variable,

n, is the number of neurons in the SOM (size) and θ include the parameters needed for deciding

whether to build a tree in the second stage of the algorithm.

At the beginning, the SOM codebooks will be initialized randomly. When training the first

stage SOM, we choose the learning rate decreasing linearly from 0.05 and to stop at 0.01, which

determines the size of the adjustments during training. And we choose the initial size of the

neighbourhood function radius in such a way that two-thirds of all distances of the map units fall

inside this number. The size of the neighbourhood decreases linearly during training; after one-
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third of the iterations only the winning unit is being adapted and the algorithm corresponds to

k-means. At the end of the algorithm, the object will be returned consisted of two layers of SOM

network information and they will be used later in the automated growing algorithm.

Algorithm 1 Dual-layer RT-SOM
1: procedure RT-SOM(X, n, θ)

2: for each node mi ∈ SOMGrid(n) do . Coodbook initialization

3: mi ← rand()

4: end for

5: count← nrow(X) . Get the size of the dataset

6: while count 6= 0 do . First Layer Training

7: xi ← X[randperm(count, 1)] . Random sampling without replacement

8: BMU i(xi)← argmin1≤j≤l{||xi −mj||} . Similarity matching

9: mj(t+ 1)←mj(t) + hjc(t)[x−mj(t)] . Updating

10: L[i]← append(xi) . Mapping Records

11: count← count− 1

12: end while

13: for each Kernel κi ∈ L do . Second Layer Training

14: Ti ← TreeBuilder(κi, θ(minbucket), θ(minsplit)) . Tree Building Criterion

15: if Ti 6= Null then

16: TreeGrid← Ti

17: else . If cannot build a tree in this neuron

18: TreeGrid← mi . use the codebook as result instead

19: end if

20: end for

21: retObj ← list(”SOM” : SOMGrid, ”RTMap” : TreeGrid)

22: return retObj . return the Dual-Layer map

23: end procedure
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4.1.5 The Fitting Criterion

When the model has been trained, we could now use it for prediction. When , xnew, a new data

case comes, it will first search in the first layer for mapping the BMU. Then, the BMU will be the

position locating the regression tree, T , in the second layer. Finally, the new data will be fitted to

the retrieved T to get the prediction of the targeting variable, ŷ.

Algorithm 2 Model Utilization: Fitting the RT-SOM
1: procedure FIT-RTSOM(xnew, RTSOM )

2: for each node mi ∈ RTSOM.SOMGrid(n) do

3: BMU i(xnew) = argmin1≤j≤l{||xnew −mj||}

4: end for

5: T ← RTSOM.TreeGrid[i(xnew)]

6: ŷ ← T (xnew)

7: return ŷ

8: end procedure

4.2 Automated Growing Mechanism

As discussed in 3.3.1, while the SOM has proven to be a very suitable tool for detecting struc-

ture in high-dimensional data and organizing it accordingly on a 2-D output space, at least two

limitations of SOM have to be noted, which are related to the static architecture of this model as

well as to the limited capabilities for the representation of hierarchical relations of the data. Ob-

viously, in case of largely unknown input data characteristics, it is far from trivial to determine

the network architecture that provides satisfying results. Thus, it certainly is worth considering

SOM models that determine the number and arrangement of units during their training process.

A growing self-organizing map (GSOM) is a growing variant of the popular self-organizing map

(SOM). The GSOM was developed to address the issue of identifying a suitable map size in the
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SOM. It starts with a minimal number of nodes (usually 4) and grows new nodes on the boundary

based on a heuristic [39]. Further, hierarchical relations may be observed in a wide spectrum of

application domains. Thus, their proper identification remains a highly important data mining task

that cannot be addressed conveniently within the framework of the SOM [32].

Our research is inspired by GHSOM introduced in [32] in which GHSOM layers the cluster

structure of the data. However, the cluster structure of the data could be revealed by the U-Matrix

proposed by Ultsch and the related methods [40]. We, on the other hand, focus on the structure

of the variables and feature selection from the dataset by integrating the Regression Tree model as

the second layer discussed above. In other words, GHSOM tries to build a tree of SOM neuron

clusters while we use the tree structure locally in the SOM neurons.

To solve the self-growing issue, our ideology is the same with GHSOM because for exploratory

data analysis, a homogeneous distribution of data samples across the map space is desired, allowing

to capture finer differences between clusters in more densely populated areas of the data space.

However, when it comes to the global termination criterion, other detailed parameters must

be considered such as the minimum quality of data representation of each unit, denoted as τ2.

In our work, we would like to keep the growing process nonparametric as the category that kernel

smoothing and tree-based structure fall under, rather than include other parameters needing manual

settings.

As in GHSOM, our growing two-layer grids, starting from a very small map such as 2 × 2

with a random initialization, tentatively add rows or columns of units during the training process.

During each iteration, we evaluate the current built experimental model with some goodness of

fit criteria serving as the stopping criteria as well. It is important to state that in the description

here, we would like to keep the stopping criteria as general and simple as possible because different

heuristics might be considered depending on the dataset or problem domain.
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4.2.1 Objective Function

In general we can define a local regression estimate of f(x0) as fθ̂(x0), where x0 is a centroid

and fθ̂(x0) minimizes:

RSS(fθ, x0) =
N∑
i=1

Kλ(x0, xi)(yi − fθ(xi))2 (4.3)

and fθ is some function with a parameter set θ [24]. For example, Nearest-neighbor methods can

be thought of as kernel methods having a more data-dependent metric:

Kk(x, x0) = I ‖x− x0‖ ≤
∥∥x(k) − x0∥∥ ,

where x(k) is the training observation ranked the k-th in distance from x0, and I(S) is the indicator

of the set S.

To avoid the curse of dimensionality, we modify the objective function to gain the stable state

of the learning process for our proposed hybrid model. On the whole, during the growing and

training process, in addition to the tree building criterion discussed in earlier sections, it must also

ensure that there ought to be no empty neurons in the tree-level and the current trial is better than

those tried before.

Formally in the objective function (4.4), a kernel (local) regression solves a separate least

squares problem at each centroid, in our case each neuron, mj:

min
λt,θmb

N∑
i=1

Kλt(mj,X
(mj)

i )

 P∑
p=1

∑
i∈Rp

(yi − f̂
(θmb,ms)
Rp

(mj))
2


subject to (1) θmb ≥ 2,

(2) θms = θmb × 3,

(3) λt ∈ [2× 2, rowmax × colmax] ,

(4.4)

where Kλt , the kernel, is each of the SOM neurons with projected training data (introduced above)

and f̂ serves as the fitting criterion by the Regression Tree built by the projected kernel data points,
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X
(mj)
i . For each of the kernels Kλt , λt is the tuning parameter, at the t-th, that controls the current

trying width of the kernel, in other words, the number of neurons in the SOM,Dt. It also implicitly

indicates the visionary node counts which are ideally uniformly distributed. The tuning of λt starts

from the smallest possible SOM, 2 × 2, with 2 rows and 2 columns and grows till the row and

column size reach the maximum, which are determined by the stopping criteria to be discussed

later.

Moreover, θmb ≥ 2, announces that the minibucket when building the trees must be at least

2, which has been explained in Section 4.1.2 along with its relationship with θms, the minsplit

indicated in constraint (2). For simplicity and accuracy, by default, we set this parameter to 2,

which means the model will try its best find the finest partition in each kernel. Given a kernel is

partitioned into P regions,R1, R2, ..., RP , the kernel fitting function on each regionRp provided by

the regression tree model is formally f̂Rp(x) =
∑P

p=1 cpI(x ∈ Rp) [24]. As discussed in Section

3.2, the optimized estimation ĉp in each region Rp is generated by the mean value of the responses

yi to the corresponding training instances xi, formally ĉp = ave(yi|xi ∈ Rp).

4.2.2 Goodness of Fit

In studies of linear regression, one often focuses on the regression coefficients. One assumes

the model being fitted is correct and asks questions such as how well the estimated coefficients

estimate the true coefficients. For example, one might compute variances and confidence intervals

for the regression coefficients, test significance of the coefficients or use model selection criteria,

such as stepwise selection, to decide what coefficients to include in the model. The fitted curve

itself often receives relatively little attention.

In local regression, we have to change our focus. Instead of concentrating on the coefficients,

we focus on the fitted curve. A basic question that can be asked is ”how well does f̂(x) estimate the

true mean f̂(x)?”. When variance estimates and confidence intervals are computed, they will be
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computed for the curve estimate f̂(x). Model selection criteria can still be used to select variables

for the local model. But they also have a second use, addressing whether an estimate f̂(x) is satis-

factory or whether alternative local regression estimates, for example, with different bandwidths,

produce better results.

In traditional local regression studies, one is faced with several model selection issues: Variable

selection, choice of local polynomial degree and smoothing parameters [41]. Since we are adopting

Tree based local leaner, variable selection has been implied in tree generation and we do not have

local polynomial degrees to select. Thus, we must have a goodness of fit to the regression trees in

order to evaluate the quality of the localization and the stopping mechanism of the growing.

It is important to remember that no one diagnostic technique will explain the whole story of a

dataset. Rather, using a combination of diagnostic tools and looking at these in conjunction with

both the fitted curves and the original data provide insights into the data.

After testing with some regression dataset and our case study, to be discussed in Chapter 4,

we are considering the following three factors: full tree-layer, R-Square and homogeneity. It is

intuitive to explain that a local regression tree would provide a better prediction value and insight

knowledge from the neighbourhood. Therefore, there must be a regression tree built in each neuron

based on the local tree degree discussed above. Homogeneity in SOM training means that ideally,

the sample distribution of the training data mapped to the map is relatively uniform. Large values

in some map areas suggests that a larger map would be beneficial. Empty nodes indicate that the

map size is too large for the number of samples.

The coefficient of determination, R2, is the proportion of the total (corrected) sum of squares

(SS) of the dependent variable ”explained” by the independent variables in the model:

R2 =
SS(Regr)

SS(Total)
=
SS(Regr)∑

y2i
,

where SS(Total) is used to denote the corrected sum of squares of the dependent variable and

SS(Regr) measures the additional information provided by the independent variable [42].
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The objective is to select a model that accounts for as much of the variation in Y as is practical.

Since R2 cannot decrease as independent variables are added to the model, the model that gives

the maximum R2 will necessarily be the model that contains all independent variables. The typical

plot of R2 against the number of variables in the model starts as a steeply upward sloping curve,

then levels off near the maximum R2 once the more important variables have been included. Thus,

the use of the R2 criterion for model building requires a judgement as to whether the increase in

R2 from additional variables justifies the increased complexity of the model. The subset size is

chosen near the bend where the curve tends to flatten.

4.2.3 Stopping Criteria

In our previous work [43], imitating many other SOM applications, we manually set the λ to

N
50

assuming that the sample space N is large enough so that, averagely speaking, each neuron

should be mapped with 50 training samples. Apparently, this is a rudimentary selection based on

experiments and observations and does not guarantee to be a good choice with another layer of

regression trees attached.

In this work, we introduce two stopping criteria, 4.5 and 4.6, considering more combinational

sampling possibilities to be explored (spreading and mapping) while letting the regression trees

play a role as much as possible. Note that these two are all-purpose factors and more heuristics

can absolutely be included according to different applications.

∀mj ∈ SOMGridt, ∃f̂θmb
∈ TreeGridt. (4.5)

R2
tcur(

Dtcur∑
dtcur=1

f̂θmb
) ≥ median

{
∀R2

t(
Dt∑
dt=1

f̂)|t ∈ (0, tcur − 1)

}
. (4.6)

The first stopping criterion, 4.5, indicates that the growing procedure attempts ensure that each
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neuron could have a tree trained based on its historical mapped training data. In the previously

demonstrated single trial of Algorithm 1, when a neuron does not have the eligibility of building

a local regression tree, that particular neuron would yield to the original codebook mj. However,

an empty neuron implies that there might be too many neurons for mapping the data and it is the

cause of overfitting.

The second stopping criterion, 4.6, indicates the rule of applying the goodness of fit, R-squares,

as the stopping criterion. A compromised scheme would be, in the current trial, tcur, if the average

R-squares of all the trees (Dtcur in total) is less than the median one of average R-squares of those

(Dt in total) in the previous tried models (not getting any better), the growing process stops and

the preceding model is retrieved as the final result. We choose the median value because, on one

hand, we would like to keep exploring more kernels with larger maps because it is obvious that

with the growing size of the map, local trees can achieve increasingly better local predictivity. On

the other hand, there is no point to continue searching if the global effect is not getting better.

It is important to point out that the stop criteria are logically conjunctional, which means that

the process stops when neither of them happens at the same time. This setting ensures the trade-

off between exploration (trying bigger maps) and exploitation (local regression trees). Therefore,

when the growing process stops, it is possible that the previous investigated model (the one we

are ultimately using) include neurons failed to train their regression trees and substituted with the

codebook from the first layer.

4.2.4 Growing RTSOM Algorithm

To sum up, the growing process is presented in the Algorithm 3 below. Algorithm 1 is called

inside of Algorithm 3. The input parameters of Algorithm 3 are the same as Algorithm 3 except

that the map size is dynamically fetched by its row and column. This also means that there is no

extra parameter added to the model to be decided before and during the training process.
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Algorithm 3 Self-Growing RT-SOM
1: procedure GROW-RTSOM(X, rinit = 2, cinit = 2, θ)

2: do

3: modelcur ← RT-SOM(X, rinit × cinit, θ)

4: for each node Ti ∈ RTSOM.TreeGrid do

5: R2
cur[i]← R2(Ti) . Calc the R2 for each tree

6: if Ti = Null then . Count empty neurons in Tree-layer

7: emptyCount++

8: end if

9: end for

10: R2
cur ← ave(R2

cur)

11: if r = c then . add one more row

12: r ← r + 1

13: else . add one more column to match the row

14: c← c+ 1

15: end if

16: while criterion 4.5 AND 4.6 are NOT satisfied

17: end procedure
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Chapter 5

Experimental Results and Analysis

We evaluate our proposed Growing SOM Kernel Smoother in this chapter with two test cases.

Both of them are multivariate regression problems. The first case, Building Energy Efficiency,

is rather small comparing to our EV range anxiety case study. In this test, we aim to visualize

the SOM tree-layer and the variable importance ranking as a whole. Therefore, the interpretative

power of hybridizing the tree-layer could be revealed.

We come back to our EV range anxiety case study in the second test case. Through this test, we

aim to demonstrate that our proposed hybrid model could resolve the complex power consumption

estimation problem practically. Applying our Growing RT-SOM testifies that hybridizing localized

regression based on the data partitioning could not only provide more accurate predictions but

also reveal the insights of the data, preserving a global trained bushy tree from losing meaningful

knowledge extraction. Numerical evaluations tested on various terrestrial trip profiles are presented

to demonstrate the feasibility of the proposed scheme.
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5.1 Experiment 1: Building Energy Efficiency

Energy analysis is performed using 12 different building shapes simulated in Ecotect. The

buildings differ with respect to the glazing area, the glazing area distribution, and the orienta-

tion, amongst other parameters. The author simulated various settings as functions of the afore-

mentioned characteristics to obtain 768 building shapes. The dataset comprises 768 samples and

8 features, aiming to predict two real valued responses. We focus only on regression in our work

but it can also be used as a multi-class classification problem if the response is rounded to the

nearest integer [44]. Each of the 768 simulated buildings can be characterized by eight building

parameters (to conform to standard mathematical notation and facilitate the analysis in this work,

henceforth these building parameters will be called input variables and will be represented with X)

which we are interested in exploring further. Also, for each of the 768 buildings we recorded Heat-

ing Load (HL) and Cooling Load (CL) which are called output variables and will be represented

with y. Table 1 summarizes the input variables and the output variables in this study, introduces

the mathematical representation for each variable, and indicates the number of possible values.

The whole growing process of the map stops very fast from 2 × 2 to 3 × 4. It makes sense

since only 600 samples of the total 768 were used for training and ideally, each neuron should

be mapped with around 50 data in average, which is a good empirical choice used in many SOM

applications such as [43].

As can be seen from the regression tree map Fig. 5.1, the leaf value only represents the possible

predictive heating load, ŷ9. An overall measure of variable importance is the sum of the goodness

of split measures for each split for which it was the primary variable. In each neuron, these are

scaled to sum to 100 and the rounded values are shown, omitting any variable whose proportion is

less than 1%. It can also be noted that a variable may appear in the tree many times. This does not
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Table 5.1: Mathematical representation of the input and output variables to facilitate the presenta-

tion of the subsequent analysis and results.

Math

representation
Input or output variable

Number of

possible values

X1 Relative compactness 12

X2 Surface area 12

X3 Wall area 7

X4 Roof area 4

X5 Overall height 2

X6 Orientation 5

X7 Glazing area 8

X8 Glazing area distribution 6

Y1 Heating load 586

Y2 Cooling load 636
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necessary mean that if a variable appears more than another, it is then more important. The reason

for this is that the trees in Fig. 5.1 only demonstrate the splitting decisions based on the regression

objectives described in Chapter 3. For example in neuron 6, x2 only appeared once comparing to

x1, x3 and x7 twice, but x2 turned to be very important amongst the others according to Fig. 5.2.

Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1Neuron 1

X7 < −1.4

X1 >= −1.1

X2 >= 1.4

X1 >= −1.1

X7 < −0.46

X1 >= −0.6

−1.6

−1.4 −1.2

−1.2 −1.1

−0.94

−0.75

yes no

Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2Neuron 2

X7 < −1.4

X3 < 0.28

X4 < −1.3

X1 < 0.73

X2 >= −0.82

X7 < −0.46

X3 < −0.29

−0.67

−0.51

−0.24

0.48

0.15

0.48

0.29

0.69

yes no

Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3Neuron 3

X2 >= −1.1

X2 >= −0.82

X7 < 0.66

X7 < 0.66

X1 >= 1.7

X7 < 0.66

X7 < 0.66

0.39

0.7

0.71

0.98

0.62

1

1

1.4

yes no

Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4Neuron 4

X7 < 0.66

X8 >= 1.1

X1 >= −0.6

X1 < −0.36

X2 < 0.85

−0.98

−0.96 −0.8

−0.8 −0.78 −0.7

yes no

Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5Neuron 5

X2 < −0.54

X2 >= −0.82

X7 < −0.46 X7 < −0.46

X1 >= 1.7

X1 < 1.1

X3 < −0.290.14 0.32
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Figure 5.1: Self-Organizing Regression Tree Map
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Figure 5.2: Variable Importance of Each Neuron
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5.2 Case Study: EV Range Anxiety

5.2.1 Data Description

We test our Hybrid Model using the data collected from the ChargeCar project of the CREATE

Lab at Carnegie Mellon University [45]. The dataset is crowd-sourced by actual EV drivers in

North America and Europe with real-world commutes in terms of speed, distance, traffic condi-

tions, hills and driving behaviour.

The dataset includes only 421 EV trips and in order to evaluating the proposed model with

flexibility, sensitivity and robustness, we generate a larger dataset of time-series data by applying

three levels of randomness among the original commutes. A trip profile is firstly randomly selected

from the 421 trips, a window of portional random size then cuts out a period of the time series

starting from a random time point appending the original static features of the selected trip. We

generate 5000 new trips for training our Hybrid Model off-line and 500 new trips for testing. It

must be explained that knowing the exact time series before hand the prediction is unrealistic but

we assume that the statistical features can be estimated as the predictive inputs such as the traffic

status marked as color scheme on Google maps. And as can be seen from the system architecture

in Fig. 4.1, it is the trip-feature vectors of new trips that are fed for prediction rather than raw trip

profiles.

5.2.2 Data Fusion and Normalization

Since some sensory data might be sampled as time-series data, they need to be properly rep-

resented and merged with other static sensory data sources so that (1) all related sensory variates

could be considered in model training together; and (2) common similarity measurements such

as Euclidian Distance can still function well enough to find the similar historical cases and form

clusters.
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The time series data in a trip profile is illustrated in Fig. 5.3a, Fig. 5.3b, Fig. 5.3c and Fig.

5.3d.

(a) Acceleration time series data (m/s2)

(b) Elevation time series data (m)

(c) Speed time series data (m/s) (d) Power time series data (kW)

Figure 5.3: EV trip time series data

The most straightforward representation of time-series data is the time domain form, then dis-

tances between time series relate to differences between the time-ordered measurements them-

selves. However, taking the actual values of the time series as the model training input, also

referred in [46] as instance based representation, presents several drawbacks such as it is sensi-

tive to the noise and length of time-series data [47]. Clustering becomes even more challenging

when tackling multivariate high dimensional data [48, 49]. Fortunately, feature based time series

data mining is a beneficial alternative in many ways and it thereby could transform the temporal
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problem to a static one.

In this work, four most common statistical features, mean µ, standard deviation σ, skewness

SKEW and kurtosis KURT, are considered following the previous work in [47] to represent an

univariate time-series data. The mathematical equations for these features are:

µTi =

∑N
t=1(yi(t))

N
, (5.1)

σTi =

√∑N
t=1(yi(t)− µ)2

N
, (5.2)

SKEWTi =

∑N
t=1(yi(t)− µ)3

Nσ3
, (5.3)

KURTTi =

∑N
t=1(yi(t)− µ)4

Nσ4
, (5.4)

where skewness and kurtosis contain information on the shape of the distribution of the time-

series values. Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A

distribution, or data set, is symmetric if it looks the same to the left and right of the center point.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

It is assumed in this paper that EVs are capable of collecting data from their own internal

communications bus such as Controller Area Network (CAN) and Local Interconnect Network

(LIN) and also able to penetrate Internet data such as temperature, GPS and traffic into the power

consumption estimation. The small variation of static data sensors is ignored for a single trip.

Namely, for example, temperature during a trip is assumed to be static.

Sensors measuring elevation, speed, acceleration and power are generating time-series data.

And the Area Under the power (in kW) Curve (AUC in kWh) is utilized as the dependent variable ŷ.

As discussed above, four statistical features are extracted as regressors from each of the other three

time-series variates. Therefore, twelve features consist the first part of the Trip-Feature Vector.

Other static factors considered include distance, trip run time, temperature, total weight of loads,

tire pressure, frontal area. The above mentioned factors related to EV power is listed in table 5.3.
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Note that the Vi index of each variable table is corresponding to the codebook plotting in Fig. 5.6

and tree-layer plottings in Fig. 5.7.

Table 5.2: Numerical Accuracy Evaluation

Source Trip-Features(Vi)

TSElevation MeanTElev
(V1) SDTElev

(V2) SkewTElev
(V3) KurtTElev

(V4)

TSSpeed MeanTsp(V5) SDTsp(V6) SkewTsp(V7) KurtTsp(V8)

TSAcceleration MeanTAcc
(V9) SDTAcc

(V10) SkewTAcc
(V11) KurtTAcc

(V12)

Static Variables distance(V13) run time(V14) Temperature(V15) total loads(V16)

Static Variables Tire Pressure(V17) Frontal Area(V18)

Targets Power Consumption(V19) Power Conservation(V20)

Table 5.3: Specification of EV trip factors

Before feeding the training data into the model, it is very important to normalize the features.

There can be instances found in data frame where values for one feature could range between 1

and 10 and values for other feature could range from 1 to 1000. In scenarios like these, owing

to mere greater numeric range, the impact on response variables by the feature having greater

numeric range could be more than the one having less numeric range, and this could, in turn,

impact prediction accuracy. The objective of normalization is to improve predictive accuracy and

not allow a particular feature impact the prediction due to large numeric value range. Thus, we

must scale the values under different features such that they fall under common range. Because

the physics and mechanisms are very complex when including many variables, we do not make

any assumptions on the relative importance or relationships of the variables and we choose the

standard score, X−µ
σ

, for normalization.

Eventually, the Trip-Feature Vector is constructed as follows:
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Trip− Feature

V ector
=



MeanTElev

SDTElev

SkewTElev

KurtTElev

...

Distance

RunTime

...

PowCon

PowSave




Features Extracted

from TSs

Static Features

Predicting Targets.

Trip profiles are now represented by he Trip-Feature Vectors and they are fed into the proposed

Hybrid Model for training, prediction and further knowledge extraction.

5.2.3 Training Process and Resulted Model

In this section, we demonstrate the growing process for model selection using our proposed

Algorithm 3. The training process and results of our proposed hybrid model, RTSOM, are also

shown and explained in details.

In our previous work in [43], we chose the empirical setting of the map size 10 × 10 and

it demonstrated an relatively uniform sample distribution, which was ideal. From the Building

Energy Efficiency experiment, we have also seen that averagely speaking, a neuron mapped by 50

samples could generate a good result. In this thesis, our growing algorithm gives a 9× 9 map. As

can be seen in Fig. 5.4, the ultimate model consist 81 neurons. This is better because a smaller

map means less complexity of computation and memory. Further, a bigger map have more chance

of overfitting and being less interpretative because with less local mapped samples, there might

exist more stumps (a tree with only one splitting) in the tree-layer. And furthermore, this 9 × 9
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model is ideal because (1)shown in Fig. 5.4a and Fig. 5.4b, the standard deviations (SD) of the

NodeCounts and MapQuality have been decreased and converged, which means that homogeneity

has been achieved among neurons; (2)plus, the average R2 of the 9 × 9 model is around 0.92 in

Fig. 5.4c, which is also the evidence that this is a good model to use.
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Figure 5.4: Growing Process
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We now take a close look at the selected 9 × 9 model. The training iterations progress of

the final selected 9 × 9 SOM model can be seen in Fig. 5.5a. The distance from each neuron

codebook to the samples represented by that node has been continually reduced, which means that

this distance has converged to a minimum plateau and no more iterations are required. The quality

of the training is plotted in Fig. 5.5c. It shows that the mean distances of objects mapped to a

unit to the codebook vector of that unit are generally small enough so that the codebook vectors

represent the objects sufficiently well.

In Fig. 5.5b, the background color of a unit corresponds to the number of samples mapped to

that particular unit; they are reasonably spread out over the map. All neurons have some samples

mapped (empty nodes indicate that the map size is too big for the number of samples). Intuitively,

the sample mapping distribution is illustrated in Fig. 5.5d. Take a close look at the first neuron

in the second row in Fig. 5.5d, it is a neuron without a regression tree trained in the map since

obviously, there was only one historical data mapped to it. As pointed out in Chapter 3, this

is because after training the 9 × 9 model, the stopping constraints in our objective function are

not fully satisfied. In this case, the codebook of this neuron from the first layer will be used for

prediction instead.

Property heatmap is a very important visualisation tool for SOM. The use of a weight space

view as in Fig. 5.6 that tries to view all dimensions on the one diagram is unsuitable for a high-

dimensional SOM. A SOM heatmap allows the visualisation of the distribution of a single variable

across the map. Typically, a SOM investigative process involves the creation of multiple heatmaps,

and then the comparison of these heatmaps to identify interesting areas on the map. However, our

regression tree layer could provide a more descriptive and revealing illustration. We plot Fig. 5.5e

and Fig. 5.5f here in order to briefly understand the distribution of our two predicting targets.

Similar to the Building Energy Efficiency experiment, we could achieve the detailed information

of the tree-layer neurons. Nonetheless, avoiding an unclear huge map of trees, only two randomly

chosen trees are plotted in Fig. 5.7 for illustration who are from the tree-map targeting PowCon

and that targeting PowSave respectively. Note that the values of the branch variables and leaves are
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still scaled because the model is under training at this stage. The leaves in Fig. 5.7a represents V19

and Fig. 5.7b represents V20 referring to Fig. 5.3. By comparison, we could tell that completely

two different trees are generated because they are fitting different targets. In addition, concise

structural knowledge is extracted from the kernels accordingly, which is also an important role

regression models should play.
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(b) Neuron 50 of PowSave Tree

Figure 5.7: Comparing the Tree-layer of Two Different Targets.

It is worth pointing out that, as illustrated in the trip-feature vector, there are two targets fed

into the first layer of SOM, Power Consumption (PowCon) and Power Conservation (Powsave).

Indeed, since the first layer performs unsupervised learning, no targets variables need to be as-

signed. However, regression has to be achieved in the second layer by supervised learning process

(CART). Therefore, the whole trip-feature vector (20 variables in total) would be fed for training

the unsupervised layer while only the regressors (18 variables) and one target are used for building

the supervised layer. In this case study, it also has to be clarify that the growing process shown

in Fig. 5.4 is based on evaluation of trees targeting PowCon because our original goal is to solve

the range anxiety problem by estimating the power consumption of EV trips. For simplicity, we

just use the trained 9× 9 SOM as the first layer to train the tree-layer of Powsave. And the results

shown in Fig. 5.9 proves that the prediction accuracy is fulfilling using the 9× 9 RTSOM model.
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5.2.4 Model Assessment

We have already demonstrated the interpretive ability of our proposed hybrid model. In this

section, we evaluate the prediction accuracy numerically still on the EV case study.

Cross-validation is used when tough decisions have to made for partitioning the dataset when

there are limited data available. However, we are in a data-rich situation since a random data

generation approach has been introduced in earlier Section 5.2.1. The best approach is hence the

traditional validation and as discussed also in Section 5.2.1, 500 generated testing trip profiles are

used for evaluation. That is 10% of the dataset, namely, with 5000 training samples.

Intuitively and typically, aiming to predict continuous response variables by multiple predictor

variables, Multiple Linear Regression (MLR) [50] and Principal Component Analysis/Regression

(PCA/PCR) [51] are adopted globally on the whole dataset. They are therefore picked in this work

as comparison to local regression methods. We also tried different possibilities of adopting SOM

including applying the SOM directly as regression model [30] and applying 1st-NN [52] to the

local clustered data instead of regression trees as comparisons.

Scatter graphs are used to provide a perceptual intuition of the predicting accuracy. In our

scatter plottings, abscissa axes represent the actual measured values and the vertical axes represent

the predicted values adopting different methods. Illustrated by the validation results for predicting

Power Consumption (V19) in the scatter graphs in Fig. 5.8, it can easily tell that the global methods,

MLR and PCA, perform acceptably on short trips while they generate intolerable results on rela-

tively longer trips. Local regression methods based on SOM also demonstrate agreeable accuracy

on short trips and achieve better but mediocre outcomes when predicting longer trips. It is obvious

that the proposed RTSOM Hybrid Model beats the others on all ranges. Favourable results are

produced not only for short trips but more importantly, the prediction accuracy is satisfactory for

long trips as well. Similar validation results for predicting Power Conservation (V20) can be found

in Fig. 5.9. Again, our proposed algorithm outperforms the other methods.
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Figure 5.8: Cross Validation for Power Consumption
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Figure 5.9: Validation for Power Conservation
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We also evaluate the prediction accuracy numerically using metrics such as the Mean Absolute

Error (MAE), the Root Mean Square Error (RMSE) and the Mean Absolute Percentage Error

(MAPE). Formally, assuming modelled with N testing samples and predictions Pi(i = 1, 2, ..., N)

and pairwise matched observations Oi(i = 1, 2, ..., N), they are calculated as as follows:

MAE =
1

N

N∑
i=1

|ei| , (5.5)

RMSE =

√√√√ 1

N

N∑
i=1

e2i , (5.6)

MAPE =
1

N

N∑
i=1

(
|ei|
|Oi|

), (5.7)

where ei = Pi−Oi indicating each of the prediction errors. MAE measures the average magnitude

of the errors in a set of predictions, without considering their direction. MAE is a linear score

which means that all the individual differences are weighted equally in the average. RMSE is a

quadratic scoring rule which measures the average magnitude of the error. Since the errors are

squared before they are averaged, RMSE gives a relatively high weight to large errors. This means

RMSE is most useful when large errors are particularly undesirable. MAPE expresses accuracy as

a percentage of the error and it is easier to be understood than the other statistics to the ultimate

EV users.

As can be seen from the numerical performance comparison in table 5.4, global methods in-

cluding MLR and PCA, in terms of MAE and RSME, are generally less accurate on both targets

than the other three kernel regression models measured. Especially when predicting the PowSave

using MLR and PCA, RMSE index highlights the large errors from predicting trips that consume

more energy corresponding to Fig. 5.9a and Fig. 5.9b. Applying 1st-nearest-neighbour on SOM

kernels (1stNN-SOM) performs slightly better than utilizing SOM as regression directly (simple

SOM) measured by MAE and RSME, but when it comes to MAPE, the prediction results of simple

SOM and 1stNN-SOM, 88.341% and 47.003% are far beyond acceptable. These are caused by the
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Table 5.4: Numerical Accuracy Evaluation

Accuracy Measurements

Methods MAE

(PowCon)

RMSE

(PowCon)

MAE

(PowSave)

RMSE

(PowSave)

MAPE

(PowCon)

MLR 1.95368 3.95865 1.74305 5.16654 77.473%

PCA 2.06659 4.28323 1.63533 5.47941 75.736%

Simple SOM 1.91543 3.01570 0.56985 1.81187 88.341%

1stNN-SOM 1.35387 2.65164 0.23387 0.70062 47.003%

RTSOM 0.76857 1.33579 0.17264 0.53064 26.112%

large margin of errors when using simple SOM and 1stNN-SOM to predict large trips.

The proposed Hybrid Model, RTSOM, outperforms all the other methods in all measurements.

Specifically speaking, the MAE shows that there is only averagely around 0.7 kWh prediction error.

The RMSE demonstrates that the power consumption of longer trips are estimated significantly

more accurate than the two global models and the other two kernel methods. Last but not least,

with the MAPE of 26.112%, our RT-SOM could eventually provide the EV users with a tolerable

power consumption estimation, which beats their conservative EV utility.
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Chapter 6

Conclusion and Future Expansion

In this thesis, we aim to tackle multivariate regression and data mining problems. Classical

methods such as kernel smoothing and PCA have their limitations and assumptions. Therefore,

each of them alone cannot effectively solve both of the problems facing the big data problems. We

propose a novel Kernel Smoothing method hybridizing SOM and CART into a dual-layer network

in which unsupervised learning is done to form kernels and regression is locally applied to achieve

the prediction on the targeting variables and extract knowledge from the neighborhoods.

6.1 Conclusion

We investigated the advantages and the disadvantages of SOM and CART and found that these

two have complementary advantages. We then demonstrated the proof that SOM neurons can be

used as kernel smoothers and it overcomes the limitation of conventional methods on high dimen-

sional data. Mimicking the typical kernel smoothing methods, important components including

local setting of building trees and bandwidth selections are discussed. After that, pieces are then

assembled to form our RTSOM hybrid algorithm.
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Further, we developed the automated growing mechanism as our model selection. A good-

ness of fit index, R2, and intuitively, the attempt of keeping a regression tree in each neuron are

combined as our stopping criteria for the self growing process.

To conclude, our proposed Growing Self-Organizing Kernel Smoother for data mining has

several merits. First, aiming to the regression goals, it is highly quantitatively precise and in-

terpretive. Examples in Chapter 4 could testify this points. More importantly, we successfully

keep the original advantages intact when hybridizing these two. For example, CART is popular

not only because its structure is illustrative but also CART is a non-parametric methods without

the difficulty of choosing suitable parameters such as NN. After hybridization, the model remains

non-parametric and no new tough decisions have to make on model selection.

However, we have found two drawbacks during the research and development of our proposed

Growing RTSOM. For one thing, also the hardest problem encountered, the growing process is

based on heuristics and it does not guarantee to give the reproducible model selection. In the case

study we have presented in Chapter 4, 9 × 9 map size was a repeated result after many trials.

However, occasionally, different decisions are made such as 8 × 9 or 9 × 10 maps. They also

provide similar good predicting results, though. For another, our proposed model can only predict

static real number values. It is not built for forecasting time series data such as their trends.

6.2 Future Work

Based on the conclusion, this work could be expanded to serve some interesting open research

areas.

In order to provide a more sophisticated framework for self-growing, Reinforcement Learning

(RL) could serve an intuitive mechanism because it is most suited to problems where an optimal

input-output mapping is unavailable a priori, but where a method for evaluating any given input-
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output pair is available instead [53]. As long as a reward function and state-action mapping could

be defined reasonably, more legitimate constrains could be integrated into our growing algorithm

to get reliable results.

As a result of adopting reinforcement learning, our hybrid model could also be applied to many

other potential research directions such as robotics control and subchannel allocation in multicell

OFDMA networks [54]. For example, similar dual-layer SOM models have been proposed in [55]

to deal with continuous state/action space in the reinforcement learning (RL) problem.
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