
NETWORK INTRUSION DETECTION USING MACHINE LEARNING

by

Seyed Pedrum Jalali Mosallam

Master of Science in Structural Engineering from Sharif University of Technology, 2014

Bachelor of Science in Civil Engineering from Sharif University of Technology, 2011

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Computer Science

Toronto, Ontario, Canada 2018

© Seyed Pedrum Jalali Mosallam, 2018

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

Abstract
Network Intrusion Detection Using Machine Learning

Seyed Pedrum Jalali Mosallam, Master of Science in Computer Science

Ryerson University, 2018

In this research we have studied the use of machine learning techniques in detecting network

intrusions. Most research in the field has used the very outdated dataset (KDDCup99) which

consists of a set handcrafted features. In our research we present models that work well on both

the older dataset and on newer datasets such as ISCX2014 and ISCX2012. We also present

methods for extracting features from these datasets. Another issue we found with most research in

this field is that they do not study the effect of surges in regular network traffic and how that might

affect the model. We put our model to test in 10x traffic and show its effectiveness under these

conditions. We also study how semi-supervised models can be used in training NIDS models

without directly showing them labeled data.

iv

Acknowledgement
We thank NSERC and J-SAS Inc. for the funding of this research. We also thank the Canadian

Institute of Cybersecurity with the University of New Brunswick for providing us with the datasets

to train and test our models.

v

Contents
Abstract iii

List of Tables viii

List of Figures ix

List of Equations xi

1 Introduction 1

1.1 Motivation .. 3

1.2 Research Statement .. 3

1.3 Novelty and Contribution ... 4

1.4 Organization ... 5

2 Attack Taxonomy 7

 TCP/IP Hijacking .. 7

 Denial of Service Attacks [4] .. 7

2.1.2.1 TCP SYN Flood Attack [5] .. 7

2.1.2.2 TCP Reset Attack [6] ... 8

2.1.2.3 UDP Flood Attack .. 9

2.1.2.4 ICMP Attack .. 9

2.1.2.5 The ping of Death .. 10

2.1.2.6 Teardrop ... 10

2.1.2.7 CGI Attack ... 10

2.1.2.8 Mail Bomb Attack .. 10

 Amplification Attacks.. 11

 Distributed Dos Flooding .. 11

 Port Scans [3]... 12

2.1.5.1 Stealth Syn Scan... 12

2.1.5.2 FIN, X-Mas and Null Scans ... 12

2.1.5.3 Spoofing Decoys .. 12

2.1.5.4 Idle Scanning.. 13

3 Machine Learning Review [7] 14

3.1 Logistic Regression .. 14

 Threshold ... 14

vi

 Non-Numeric Predictors .. 16

 Error Calculation ... 17

 Model Validation ... 19

 Feature Selection ... 22

3.2 Linear Discriminant Analysis (LDA) ... 25

3.3 Quadratic Discriminant Analysis (QDA) ... 26

3.4 K-Mean Clustering Algorithm ... 26

4 Literature Review 28

4.1 Software Exploitation ... 29

4.2 Sampled Packets ... 30

4.3 Web Related Classification Methods ... 32

4.4 NIDS Using Machine Learning .. 33

4.5 Dataset Preparation... 35

4.6 Network Attack Through Software Exploitation ... 36

4.7 Anomaly Detection... 36

5 Statistical Model of Network Under Attack (Part 1) 39

5.1 Dataset .. 39

5.2 Theory .. 39

 Stage 1, Generating Clean Traffic Model .. 40

 Stage 2, Generating The 20 Minute Probability Distribution 41

 Stage 3, Unfiltered Traffic Distribution .. 43

5.3 Attack Detection ... 45

5.4 Results .. 45

5.5 Issues .. 46

6 Supervised Model of Network Under Attack (Part 2) 48

6.1 Dataset .. 48

 ISCX2012 Dataset ... 49

 Darpa 1998 Dataset ... 50

6.2 Model.. 52

 Predictors ... 52

6.2.1.1 Application Type.. 53

vii

6.2.1.2 Protocols... 55

6.2.1.3 Unique Local and Remote IPs ... 56

6.2.1.4 Direction... 57

6.2.1.5 Packet Count .. 57

6.2.1.6 Bytes Transferred ... 57

 Machine Learning Models ... 57

 Intervals ... 57

6.2.3.1 Feature Selection .. 58

6.2.3.2 Low Count of Attack Records ... 58

6.2.3.3 Sensitivity and Specificity ... 59

6.2.3.4 Binary or Multiple Classes ... 59

6.2.3.5 Naming convention .. 60

6.2.3.6 Training, Validation and Test Set .. 67

6.3 Surge Test ... 68

6.4 Implementation ... 69

 ISCX2012 Dataset ... 70

6.4.1.1 Phase 1, Obtaining the Dataset .. 70

6.4.1.2 Phase 2, Setting Up the Database ... 71

6.4.1.3 Phase 3, Data Generation ... 72

6.4.1.4 Phase 4, Running the Machine Learning Models 73

6.4.1.5 Phase 5, Unseen Traffic and Attack Evaluation 74

6.4.1.6 Phase 6, Surge Test .. 75

 Darpa Dataset .. 76

6.4.2.1 Phase 1, Obtaining the Dataset .. 76

6.4.2.2 Phase 2, Setting Up Database .. 77

6.4.2.3 Phase 3 Flow Generation: .. 78

6.4.2.4 Phase 4, Matching Labels .. 80

6.4.2.5 Phase 4, Post Process ... 81

6.4.2.6 Step 5, Applying Surge, Generating Features and and Running

Model .. 83

6.5 Deployment and Architecture .. 83

viii

6.6 Results .. 84

 ISCX 2012 Dataset .. 84

6.6.1.1 Model Evaluation ... 89

6.6.1.2 Interpretation of the Results ... 91

 Surge Test .. 98

 Comparison with Other Papers .. 101

7 Semi-Supervised Model of Network Under Attack (Part 3) 103

7.1 Dataset .. 103

 ISCX2012 Dataset ... 103

 ISCX2014 Dataset ... 103

7.2 Model.. 104

7.3 Training Phase .. 105

 Step 1, Obtaining Data Points .. 105

 Step 2, Clustering .. 106

7.4 Detection Phase .. 107

 Step 1, Obtaining Data Points .. 107

 Step 2, Cluster Assignment ... 107

 Step 3, Attack Detection .. 107

7.4.3.1 Test 1 .. 108

7.4.3.2 Test 2 .. 108

7.5 Implementation ... 108

7.6 Results .. 109

8 Conclusion and Future Work 112

Appendix A, Interpreting the Results of the Semi-Supervised Model 114

A.1 Applications ... 114

A.2 Protocols .. 117

A.3 Local Vs Remote Nodes .. 118

A.4 Direction .. 119

A.5 Other .. 121

References 123

ix

List of Tables
Table 1 The different models considered in the research ... 35

Table 2 Results .. 46

Table 3 Results .. 46

Table 4 Different applications used in the ISCX2012 dataset .. 54

Table 5 Different protocols used in the ISCX2012 dataset .. 55

Table 6 Sample flows.. 56

Table 7 Naming convention .. 60

Table 8 The different logistic models tested ... 61

Table 9 The different linear discriminant and quadratic discriminant analysis models tested 63

Table 10 Results .. 85

Table 11 Top 20 .. 90

Table 12 Day 7 Results ... 91

Table 13 Comparison with other work ... 102

Table 14 ISCX2014 top models based on threshold ... 111

Table 15 ISCX2012 top models based on threshold ... 111

x

List of Figures
Figure 1, Data point generated from linear model with noise .. 19

Figure 2 Linear regression .. 20

Figure 3 Higher order regression .. 20

Figure 4: Markov chain model used in analysis. Some actions have been omitted for clarity 40

Figure 5 Clean traffic log probability distribution .. 43

Figure 6 cumulative clean traffic log probability ... 43

Figure 7 Unfiltered traffic log probability distribution ... 44

Figure 8 difference in probability buckets between clean and unfiltered traffic 45

Figure 9 Obtaining the dataset .. 70

Figure 10 Setting up the database ... 71

Figure 11 Data generation ... 72

Figure 12 Running the machine learning models ... 73

Figure 13 Test set .. 74

Figure 14 Surge test .. 75

Figure 15 Obtaining the dataset .. 76

Figure 16 Setting up the database ... 77

Figure 17 Flow generation .. 79

Figure 18 Maching labels.. 80

Figure 19 Post Process .. 81

Figure 20 Deployment Architecture ... 83

Figure 21 Effects of different interval sizes .. 91

Figure 22 Ratio of interval size selected by the top 20 models .. 92

xi

Figure 23 Ratio of top 20 models that considered copying the attack records 93

Figure 24 Ratio of the top 20 models that the feature evaluation was based on the attack records

... 94

Figure 25 Ratio of the top 20 models that the feature evaluation was based on the validation set

... 95

Figure 26 Predictors selected in the top 20 models .. 96

Figure 27 Performance deterioration with increase in normal traffic using the ratio with the prior

all method.. 98

Figure 28 Performance deterioration with increase in normal traffic using the ratio method and the

F1 score ... 99

Figure 29 Performance deterioration with increase in normal traffic using full flow counts and the

prior all methods ... 100

Figure 30 Performance deterioration with increase in normal traffic using the full flow counts and

the f1 score .. 100

Figure 31 Obtaining the data points .. 105

Figure 32 Data points .. 106

Figure 33 Results .. 110

xii

List of Equations
Equation 1 ... 14

Equation 2 ... 17

Equation 3 ... 18

Equation 4 ... 18

Equation 5 ... 19

Equation 6 ... 22

Equation 7 ... 22

Equation 8 ... 23

Equation 9 ... 23

Equation 10 ... 23

Equation 11 ... 24

Equation 12 ... 24

Equation 13 ... 25

Equation 14 ... 27

Equation 15 ... 27

Equation 16 ... 30

Equation 17 ... 42

Equation 18 ... 101

Equation 19 ... 101

Equation 20 ... 101

Equation 21 ... 101

Equation 22 ... 101

xiii

Equation 23 ... 101

Equation 24 ... 102

xiv

Acronyms
NIDS: Network Intrusion Detection System

TCP: Transmission Control Protocol

UDP: User Datagram Protocol

IPV4: Internet Protocol Version 4

MAC: Media Access Control Address

CSV: Comma Separated File

DDOS: Distribute Denial of Service

DOS: Denial of Service

1

1 Introduction

Today we have become more dependent on our computers and the internet than ever before.

Hospitals, banks, businesses are all connected to the internet. While this connectedness has

facilitated a lot of our daily tasks it has also opened up the doors to security issues. As attacks

become more and more sophisticated it become clear that we need better methods for tackling

these attacks. In order to protect us against network attacks a set of tools have been made. They

generally fall into two categories:

- Intrusion Detection Systems

- Intrusion Prevention Systems

Intrusion detection systems are used to detect an attack. They do not take any action against the

attack though. They could be used to notify system admins or to trigger another software to stop

the attack. Intrusion prevention systems on the other are used in stopping the attack once it has

been detected. These two systems are normally used together.

The topic of this research is mainly focused on intrusion detection. Generally, intrusion detection

systems are classified into 3 different categories:

- Host Intrusion Detection Systems

- Signature Based

- Anomaly Based

Host intrusion detection systems are generally installed on hosts in the network. Information on

the host is used in detecting attacks. The information could include cpu utilization, memory usage,

files accessed, network connections, ... If changes are noticed from regular usage an attack would

2

be detected. One issue with these types of systems is that the intrusion detection system needs to

be installed on all the hosts on the system, this may not be possible on all networks.

Signature intrusion detection systems are based on known attacks. In these types of systems, the

network pattern is compared with a set of well known attacks. If a match is detected, then it is

assumed that there is an attack. The problem with these types of systems is that there needs to be

an exact match for the system to detect the attack.

In anomaly detection systems, different techniques are used to detect unseen attacks. They are

generally divided into three categories:

- State based

- Supervised

- Unsupervised

In state, based methods a group of features regarding the network are considered. The probability

of transitioning from one of these states to another for regular network traffic is considered. It is

then compared to the observed probabilities of the actual network traffic. In Supervised models,

regular and anomalous traffic is shown to the model. The model learns to differentiate between the

two. When actual network traffic appears, depending on which pattern it is more similar to it will

either be classified as attack or normal traffic. In unsupervised models only, normal traffic is shown

to the model. If the actual traffic deviates more than a certain amount form the normal traffic, then

it is considered an attack.

Three datasets were used in this research. The first being the Darpa intrusion detection data sets

[1]. The second and third datasets were the 2012 and 2014 New Brunswick ISCX datasets [2]

3

1.1 Motivation

This research was part of an industrial project funded jointly by NSERC and J-SAS Inc. The object

of this project was to find an AI model that would be able to detect attacks in the network

environment. The model must be able to detect both local and external anomalous behaviour.

There are some issues with the current research in this field. To point out to a few:

- Most of the research in this field use a very outdated dataset (KDDCup99) which was

generated for a competition in the year 1999. As network patterns have greatly changed

over the years we believe that a practical AI model must be tested on newer datasets to

prove its efficiency.

- The KDDCupp99 dataset consists of a set of 42 hand crafted features. However, there is

much more information in network traffic that can be used towards building AI models. As

most papers are using the KDDCup99 dataset they fail to utilize the vast amount of data

available in network traffic. We demonstrate an architecture that can be used for extracting

data from the incoming traffic and using them in our AI models.

- Another issue we find with research in this field is they do not take variations of network

traffic into account. In other words, they don’t take into account how well the model will

perform if there are sudden increases in network traffic due to unpredictable events. As an

example, consider a university campus network where all grades are released on the same

day. On that day there will probably be a surge in network traffic. The method we proposed

worked well both under regular traffic and increased traffic.

1.2 Research Statement

The research is divided into 3 different parts:

4

Part 1: Statistical model using the markov chain

Part 2: Supervised model

Part 3 Semi-Supervised

In order to find an effective machine learning model at detecting network attacks we first start off

by testing a simple statistical method in detecting network attacks. In this part of the project we

test a statistical based method using the markov chain that monitors the incoming and outgoing

connections to a particular node in order to detect anomalies.

After running this model, we point out to some of the difficulties of using such models in this

research and continue our research in a supervised machine learning direction. In the second part

of the research we test different supervised learning methods in detecting attacks on two different

datasets. We also compare the results with previous research and perform surge tests to see the

model’s effectiveness when there is an increase in regular traffic.

A perfect model would be a fully unsupervised model that only requires the regular network traffic

to train on and would be able to detect attacks without being trained on them. Although we don’t

look into fully unsupervised models in this research, however in the last part of the research we

test semi supervised models on two different datasets.

1.3 Novelty and Contribution

- Most of the research in this field use a very outdated dataset (KDDCup99) which was

generated for a competition in the year 1999. For the supervised model we use both the

KDDCupp99 dataset and the ISCX2012 dataset. We also compare our results with previous

research and show that our model can work well on both the newer datasets and the older.

5

- For the semi-supervised model, we use the ISCX2012 and ISCX2014 datasets showing

that our model can perform well on new datasets unlike previous research which have used

an outdated dataset.

- For the supervised model, we apply surges to the traffic and show our model works well

even under increased traffic, something that other research does not point out to.

- As most research in the field limit themselves to the KDDCupp99 dataset they fail to use

the vast amount of information available in the network traffic. We demonstrate methods

for extracting additional features from the network traffic.

1.4 Organization

The chapters have been organized as follows:

- In chapter 2 we explain the different types of threats and attacks that can be used by

hacker to perform malicious activity.

- In chapter 3 we provide a brief review of some of the machine learning techniques that

have been used in this research.

- In chapter 4 we provide a literature review of the different research that has been

performed in this fields

- In chapter 5 we discuss the initial statistical model that was used in detecting network

attacks and point out to some its drawbacks in the end

- In chapter 6 we discuss our supervised machine learning model, compare it with

previous work and apply surges to test its effectiveness on increased traffic.

- In chapter 7 we test out a semi supervised method in detecting attacks.

- In chapter 8 we discuss the results and provide directions for future work

6

- In appendix A we have plotted the feature selection plots for the supervised learning

models

- In appendix B we try to interpret the meaning of the clusters of the semi-supervised

model of the research.

- In appendix C we plot the results of the different models tested in the semi-supervised

model.

7

2 Attack Taxonomy

 In this section we explain some of the more common attacks. The attack we aim at detecting

during this research are mainly network attacks. Network Attacks [3]

 TCP/IP Hijacking

This form of attack only works when the attacker can sniff the packets sent between the two hosts.

This is usually the case when the attacker is on the same network as the victim. The way it works

is the attacker constantly monitors the packets being sent between the two hosts. During this

process the attacker keeps track of the acknowledgement and sequence numbers. It then sends a

spoofed packet to the target host spoofed with the victims IP address. Since the sequence and

acknowledgement numbers work out the target host will respond to the sent packet. Using this

technique, the attacker can gain important information from the host.

 Denial of Service Attacks [4]

In these type of attacks, the attacker does not gain any form of additional privileges or access to

any form of restricted information. The attacker

2.1.2.1 TCP SYN Flood Attack [5]

In a typical TCP connection, a SYN packet is sent to the server. The server stores information

about the node that has been trying to connect. It then responds with SYN ACK packet. The server

then waits for the host to respond with an ACK packet, after which regular communication will

start.

In a SYN attack the attackers send a large number of SYN packets to the server using a spoofed

IP address. For each SYN packet sent the server adds a record in a table of hosts that it is waiting

8

on for an ACK. If the number of such packets increases beyond a certain amount then the table

will be filled up and there will be no more room for legitimate requests.

Some of the methods currently employed to reduce the impact of such attacks includes:

- Filtering certain IPs: If the range of IPs that can legitimately connect to the server is limited,

one option would be to use a firewall and only allow traffic through those IPs pass through.

- Increase Capacity: As memory becomes cheaper it become less of an issue to increase the

size of the backlog table that stores the open connections.

- Reducing the timeout: Normally when a SYN-ACK packet is sent the server waits a certain

amount of time before closing the connection. One option would be to reduce the timeout

period to reduce the effectiveness of SYN attack.

2.1.2.2 TCP Reset Attack [6]

A TCP connection has a set of flags. One of such flags is the reset flag. The reset flag indicates

that the host wishes that the other host close the connection. One scenario where this might occur

is if the for any reason one of the hosts loses information about the connection. For example, the

host crashes or is restarted. The other side of the TCP may not know that this has happened and

would continue sending packets. In such a scenario, the host that has lost the relevant information

about the connection would send a reset packet back to the other host indicating that it no longer

has information about the connection and the connection should be closed.

An attacker could however exploit this mechanism to disrupt legitimate TCP traffic. This can be

achieved by sending reset packets to either side of the connection and spoofing all other

information. When the host receives the packet it will not be able to differentiate between the

attacker and the actual host due to the fact that all other fields appear valid. It will then terminate

9

the connection.

One of the ways such attacks are countermeasure is by using IPSec layer encryption. Doing so

would prevent the attacker form actually reading the TCP headers and being able to spoof the

conversation.

2.1.2.3 UDP Flood Attack

When a server receives a UDP packet it first determines the port number of the packet. Once the

port number has been figured out it then searches for the process that is listening on the port. If no

such process is found, it then sends an ICMP packet back to the host that sent the UDP packet to

notify it that the target port is closed.

An attacker could exploit this vulnerability by sending a large number of packets to the victim

with random port numbers. The return address is normally spoofed so the attacker could remain

anonymous. For each packet the host receives it needs to look up the port number, check the open

sockets and fin a matching process and respond with an ICMP message. This could overload the

target machine to a point that it may not be able to respond to legitimate users.

In order to reduce the impact of such attacks it is often recommended to disable the ICMP response

mechanism and to only keep ports that are absolutely essential open.

2.1.2.4 ICMP Attack

This form of attack occurs when the attacker sends a large number of ICMP requests to the host.

If the number of such requests exceeds a certain amount the hosts resources will be overloaded an

therefore the host will be unable to respond to legitimate users.

10

2.1.2.5 The ping of Death

In an ICMP message it is assumed the size of the message is at most 65,536 bytes. There was a

time where if you sent an ICMP message that was larger than the maximum specified size it would

cause the system to crash. This type of attack shows the importance of not making any form of

assumptions about the type of input that can be received from users or the outside world

2.1.2.6 Teardrop

When the size of the transmitting message is long it is fragmented into multiple packets. The

packets are then reassembled at the destination. In the packet header, there is a field that specifies

the offset with which the packets must be reassembled. In some of the older systems when these

offsets did not align it would cause the system to crash.

2.1.2.7 CGI Attack

In this attack, the attacker first needs to find a cgi script located on the server. The attacker would

then constantly invoke the cgi script using spoofed source address. This would cause system

resources to be consumed to a point that the server becomes irresponsive. Cgi scripts can often be

found in web applications with backend capabilities.

2.1.2.8 Mail Bomb Attack

Mail bomb attacks are generally performed against email servers. In these type of attacks, the

attacker attempts to overload the email server with email messages to a point where it either

become unresponsive because of the volume of incoming messages to process or it runs out space

to store the emails. There are different variations of this type of attack. In the most simple type the

attacker constructs a large number of emails and floods the emails server with the emails. This

11

attack is normally performed as distribute denial of service attack. A simple DOS attack could

easily be detected due to the fact that the source address cannot be spoofed in this type of attack.

When a user wants to send an email, the email client looks up the ip address associated with the

email. It the initiates the appropriate protocol with the target email server in order to send the

email. The email server will be contacted regardless of whether the email exists or not. This will

end up consuming the server’s resources. One form of attack would be to register a large number

of random email addresses from the email server’s domain in a large list of subscription based

mailing lists. The mailing lists would constantly send emails to the email server thus using up all

of its resources.

 Amplification Attacks

Some networks allow communication to the broad cast address. What happens in this case is the

attacker will send a ICMP request to the broadcast address of this network. By doing this all the

hosts in the network will receive the request. There might be hundreds of hosts on this network.

Then source address will be set as the victims address. This will cause all the hosts on the broadcast

network to send an ICMP request to the victim. By doing this the attacker will be amplifying his

attack without using too much bandwidth of his own.

 Distributed Dos Flooding

 In this attack, the attacker first gains access to a set of hosts. Then using those hosts the attackers

performs attacks towards the target machine.

12

 Port Scans [3]

Before being able to perform any form of software exploits on the target host we need to figure

out what applications are active on the target machine. This is usually done through port scans.

Every application that requires network access normally operates on a set of port numbers. By

figuring out what ports are open and listening we can gain an understanding as to what applications

are active on the target host.

2.1.5.1 Stealth Syn Scan

In this type of port scan a SYN packet is sent over a range of ports to a node. If an application is

listening on that port using the tcp protocol, it will respond with a SYN/ACK packet. If no

SYN/ACK packet is received then it can be implied that the port is not open. Also a RST packet

could be sent if a SYN/ACK packet is received in order to prevent a DOS attack.

2.1.5.2 FIN, X-Mas and Null Scans

In the FIN port scan a FIN packet is sent to a range of ports of a node. X-Mas sends a packet with

FIN, URG and PUSH set and NULL sends a packet with no flags set. If the target port is closed

the node will respond with an RST packet. If nothing is received it can be implied that the port is

open.

2.1.5.3 Spoofing Decoys

One issue with port scans is that they are easily detectable. When packets are sent back to back

from a single node to another node over a range of ports this can easily be detected. One technique

that is used to make detection more difficult is interleaving some tcp packets with spoofed

addresses in between the port scans.

13

2.1.5.4 Idle Scanning

Another way to avoid being detected is using idle scanning. In idle scanning, initially a target that

is idle needs to be found. An idle target would be a node that is not sending or receiving too many

packets. The attacker can then send a SYN packet to the victims spoofed with the address of the

idle node. If the port is open the victim will respond with a SYN/ACK packet to the idle host. The

attacker can then send a SYN/ACK packet to the idle node. If the identification number has

increased that would indicate that the port was open, else the port was closed.

14

3 Machine Learning Review [7]

In this section we provide a review of some the machine learning techniques and theories used in

this research

3.1 Logistic Regression

The logistic regression classifier is a machine learning technique used for classification. The

classifier returns a value between zero and one, indicating the likelihood that the input predictors

belongs to a particular class.

The general form of the classifier is shown below:

Equation 1

𝑝 = (𝑌 = 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1, 𝑋, 𝛽)

In the equation above we have:

 𝑝: The probability that X belongs to category 1

 𝑋: The input predictors

 𝛽: The coefficients of the model to be determined by training

In the binary case only one model is trained. However, in the case of multiple categories, a separate

model needs to be fit for every category.

 Threshold

As mentioned in the previous section the logistic regression classifier returns the probability that

a data point belongs to a particular category. One way of classifying data points is to assign them

to the category with the highest probability. For example, in the binary case we would assign the

data point to the category where:

15

𝑖𝑓 𝑃(𝑋 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1) > 0.5

 𝑋 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1 𝑝𝑜𝑖𝑛𝑡

𝑒𝑙𝑠𝑒

 𝑋 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2 𝑝𝑜𝑖𝑛𝑡

In a non-binary case the data point would be assigned to the category with the highest probability:

𝑚𝑎𝑥𝑃

= max{𝑃(𝑋 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1), 𝑃(𝑋 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2), … , 𝑃(𝑋 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑀)}

𝑖𝑓 𝑃(𝑋 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1) = 𝑚𝑎𝑥𝑃

 𝑋 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1 𝑝𝑜𝑖𝑛𝑡

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑃(𝑋 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2) = 𝑚𝑎𝑥𝑃

 𝑋 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2 𝑝𝑜𝑖𝑛𝑡

…

However, in some cases we may deliberately change this threshold. For example, consider

Category 1 the data points where a network attack is not happening and all other categories network

attacks. Misclassifying Category 1 as an attack wouldn’t be a big deal, it will only result in a false

alarm. However, misclassifying an attack as category 1 could be devastating. Therefore, we can

change the classification as follows:

𝑖𝑓 𝑃(𝑋 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1) > 0.9

16

 𝑋 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1 𝑝𝑜𝑖𝑛𝑡

𝑒𝑙𝑠𝑒

 𝑋 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2 𝑝𝑜𝑖𝑛𝑡

As seen above only when we are more than 90% certain do we assign a data point to the non-attack

category.

 Non-Numeric Predictors

In the equations above it is assumed that the predictors are numeric. In other words, they are values

such as:

 Packets count

 Packet size

 Connection Duration

However, there may be cases where the predictors are not numeric such as:

 IP Protocol

 Application type

 …

In such cases for each possible value we create a new predictor. Each predictor will be able to take

on a value of one or zero. For example, consider the case for application type, let’s assume the

following applications are possible:

- Ping

- SSH

17

- MySQL

- HTTP

Therefor 4 predictors will be created one for each application:

𝑃 = (1, 0, 0, 0)

𝑃 = (0, 1, 0, 0)

𝑃 = (0, 0, 1, 0)

𝑃 = (0, 0, 0 1)

Where 𝑃 refers to a data point, where the application that was used was Ping. It can be seen

that for this application the first predictor is set to 1 and the other 3 to zero.

 Error Calculation

Assume that we have N predictors and M categories. Assume that we have gathered K labeled data

points:

Equation 2

𝑃 = (𝑌 , 𝑌 , … 𝑌 |𝑋 , 𝑋 , … , 𝑋)

Where:

 𝑃 : labeled point i

 𝑌 : A binary value one or zero.

 𝑌 = 1 ⇒ 𝑃 belongs to category j.

 𝑌 = 0 ⇒ 𝑃 does not belong to category j.

18

 ∑ 𝑌 = 1 in other words, each data point can belong to at most one

category

 𝑋 : The numerical value of the predictor

For each data point we refer to the category it belongs to by 𝑌 . Where 𝑌 is a number between 1

and M referring to the category the data point belongs to. It is clear that:

𝑌 = 1

And all other 𝑌 = 0.

For each data point 𝑃 we evaluate the following:

Equation 3

𝑌 (𝑃) =
𝑒 ⋯

1 + 𝑒 ⋯

Where:

 𝑌 (𝑃): The probability the data point 𝑃 belongs to category j.

 𝛽 , 𝛽 , …: Coefficient for the different predictors for category j.

 𝑋 , 𝑋 , …: Predictors for the different data points.

For each data point the following values will be calculated:

𝑌 (𝑃), 𝑌 (𝑃), … 𝑌 (𝑃)

And

Equation 4

𝑌 = 1 − 𝑌 (𝑃)

19

Using the discussion in the threshold section one of the categories will be assigned to each data

point. We will refer to the category assigned to each data point 𝑌 . 𝑌 will be a number between 1

and M. The measure of fit quality is calculated as follows:

Equation 5

𝑀𝑆𝐸 =
∑ 𝑌 ≠ 𝑌

𝐾

 Model Validation

One of the issues that might arise in a machine learning model is overfitting. For example, consider

the data points in Figure 1:

Figure 1, Data point generated from linear model with noise

Fitting a line through the model above we get Figure 2:

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

Y

X

20

Figure 2 Linear regression

However, we could also fit a higher order polynomial and get a smaller error (Figure 3):

Figure 3 Higher order regression

The consequence of this overfitting is that once another dataset comes along, the performance of

the higher order regression will be far worse than the linear model. Therefore, in order to avoid

R² = 0.9554

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Y

X

R² = 0.9701

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

Y

X

21

the overfitting, issue we need to a method for evaluating our model. There are different methods

for performing this evaluation.

The Validation Set Approach: In this method the initial data is split in 2 equal sets. The first set

is used to train the model. The second set is used for validation. Models are compared based on

their performance on the validation set.

Leave One Out Cross Validation: The problem with the validation set approach is that we are

putting half our data points aside. With statistical methods, the more data points we have the better

our model will be. In cases where we have very limited data points this could greatly reduce the

accuracy of our model. In the leave one out cross validation method, one of the data points is put

aside and the model is trained using the rest of data. The error of the model is calculated using the

single point. This process is repeated for every point. The errors obtained are averaged and the

model performance is evaluated based on the average error obtained.

K-Fold Cross Validation: This method is similar to the leave one out cross validation, however

instead of keeping one data point out, we put 1/k of the data aside. Normally K is chosen to be a

number around 10. There for 10% of the data is put aside. The model is trained using the rest of

the 90% data. The error is calculated using the 10% put aside. This is repeated for different 10%

subsets and the average error is calculated. The benefits of this method in comparison with the

previous method is that only K models need to be trained, while the previous method required on

model to be generated for each data point.

22

 Feature Selection

One of the purposes of running machine learning models is to find the relevant predictors.

Considering all the available predictors will also result in overfitting. There are different methods

for performing feature selection

Forward Selection: In forward selection we start with a single predictor model. We select one of

the predictors and fit the data points to the model below:

Equation 6

𝑌 =
𝑒

1 + 𝑒

This is repeated for all other predictors:

Equation 7

𝑌 =
𝑒

1 + 𝑒

Where

 𝑌 : Model fit using predictor i

 𝛽 : Coefficient for the predictor in model i

 𝛽 : Constant coefficient for model i.

23

The error for each model is calculated and the minimum error is found:

Equation 8

𝑀𝑆𝐸 = 𝑀𝐼𝑁{𝑀𝑆𝐸 , 𝑀𝑆𝐸 , … , 𝑀𝑆𝐸 }

Where:

 𝑀𝑆𝐸 : The lowest error obtained among the different models

 𝑀𝑆𝐸 : The error obtained considering predictor i.

The predictor associated with the smallest error is chosen. We will call this 𝑋 , .The same

process is repeated:

Equation 9

𝑌 =
𝑒 ,

1 + 𝑒 ,

However, this time we will consider models with 2 predictors. The first predictor is the best

predictor chosen in the previous step. The second predictor is chosen from the remaining

predictors. And again, the best predictor is chosen by finding the minimum error obtained:

Equation 10

𝑀𝑆𝐸 = 𝑀𝐼𝑁{𝑀𝑆𝐸 , 𝑀𝑆𝐸 , … , 𝑀𝑆𝐸 }

24

Note that this time there will only be N-1 error values.

After each new predictor is added, the model will generally be evaluated with a validation set. If

the error is decreasing the process continues and a new predictor is chosen. If the error has

increased, then we are probably overfitting and the process is stopped.

Backward Selection: In this method initially all the predictors are chosen, and a model is fit. The

error of this model is calculated:

Equation 11

𝑌 =
𝑒 ⋯

1 + 𝑒 ⋯

𝑀𝑆𝐸 = 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑢𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡

One at a time each of the predictors are removed and a model is fit with the remaining data points.

Similar to forward selection the error of each model is evaluated.

Equation 12

𝑌 , =
𝑒 ⋯ ⋯

1 + 𝑒 ⋯ ⋯

Where:

 N: The number of predictors

25

 𝑋 , 𝑋 , … The model predictors

 𝑌 , : The model the where the I’th predictor has been removed

 𝛽 , 𝛽 : The coefficient for predictors in the I’th model.

The error values are calculated:

Equation 13

𝑀𝑆𝐸 = 𝑀𝐼𝑁{𝑀𝑆𝐸 , 𝑀𝑆𝐸 , … , 𝑀𝑆𝐸 , 𝑀𝑆𝐸 , … , 𝑀𝑆𝐸 }

The predictor that its removal that results in the minimum error is remove from the model. Similar

to forward selection this process is continued. In the next step the predictor selected in the original

state along with another predictor will be remove from the model. This process continues until our

error increases in the validation set.

Mixed Selection: In this method a combination of forward and backward selection is performed.

Initially forward selection is performed. After each new predictor is added, an iteration is

preformed over all currently selected predictors to see if removing the predictor will result in

improved accuracy.

3.2 Linear Discriminant Analysis (LDA)

The linear discriminant analysis is based off the bays theorem. Basically, it attempts to provide us

with an answer of the following question:

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑤𝑒 𝑠𝑒𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑋 𝑤ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑒 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑖𝑠 𝑌

It assumes that the data points have a gaussian distribution and attempts to find the best model that

fits the data. The parameters that need to be determined are the covariance matrix and the mean of

26

the data points. In the multiple output case it assumes that the different classes share the same

covariance matrix.

3.3 Quadratic Discriminant Analysis (QDA)

In quadratic discriminant analysis the covariance matrix is not considered to be the same for

different classes. Each class is assumed to have its own covariance matrix. Therefore, there will

be more predictors to evaluate and therefore makes the model more flexible

3.4 K-Mean Clustering Algorithm

The k-mean clustering algorithm attempts to cluster a set of data points in a manner that results in

the least amount of inter-cluster variance. In other words, each data point is assigned to the cluster

where the Euclidean distance between the data point and the cluster mean is smallest. The

procedure is iterative. For each cluster, the mean is calculated. For each data point the distance to

all the cluster centroids is calculated. If the distance between a point to the centroid of another

cluster is less that the distance to the current cluster the data point is assigned to the other cluster.

After this reassignment, the cluster centroid for both the initial and the second cluster is

recalculated, and the process is repeated until convergence is obtained.

The algorithm has an initialization phase. In this phase, a set of initial clusters are chosen. The

initial set of clusters are normally chosen entirely at random. However, [8] proposes a much more

efficient method of making this selection. The improved algorithm is called the k-means++. The

algorithm proceeds as follows:

1. With equal probability, a data point is chosen from among the provided data points. This

will be considered the centroid for the first cluster.

27

2. A second point is chosen among the remaining points. The probability of each point being

chosen as the second points is as bellow. The second points will be considered the centroid

for the second cluster:

Equation 14

𝑃(𝑋) =
𝑑 (𝑋 , 𝑋)

∑ 𝑑 (𝑋 , 𝑋)

Where 𝑑 (𝑋 , 𝑋) is the Euclidean distance between point 𝑋 and 𝑋 . It can be seen

that points that are farther away from the original point have a higher chance of being

selected

3. The rest of the centroids are chosen similar to step 2 however the probability of a point

being selected as a centroid is as follows:

Equation 15

𝑃(𝑋) =
𝑑 (𝑋 , 𝐶)

∑ 𝑑 (𝑋 , 𝐶)

Where 𝐶 is the cluster closest to 𝑋 .

The k-means clustering algorithm converges to a local minimum. Therefore, the final

clusters depend on the initially chosen clusters. Therefore, the model needs to be run

several times with different initial clusters in order to obtain better results.

28

4 Literature Review

Shiravi et al. explain how the ISCX datasets were generated. The authors present a way to generate

synthetic labeled data sets. In preparing the data an actual physical lab was prepared. Two different

network traffics were considered, an 𝛼 set and a 𝛽 set. The 𝛼 set are network attacks. They are

manually applied to and from the nodes in the lab. The 𝛽 set are profiles built from regular users.

Based on these profiles the computers are setup to mimic real user behavior with some additional

randomness. With this setup an entire network is simulated with intervened attacks.

Other researchers have also used the ISCX datasets in their research. Zhao et al. use a decision tree

model to classify attack from normal attack. In their model they consider a time interval T. During

that time interval they calculate certain features such as average packet payload, length of

connection interval, or the average time between the packets in the time interval. They also

consider some features not related to the time interval such ip and port numbers. Their model

resulted in fairly accurate results.

Yassin et al. perform a combination of k-means clustering and the naive Bayes classifier. The k-

means clustering is initially performed to reduce the number of data points. After that the NBC is

performed to correctly classify the data points as attack or normal traffic. The results showed an

accuracy of over 98% with false alarms around 2%.

D Lin et al. explain how PCAPLib can be used to capture packets in real time and classify and

anonymize the data for future research. Although the paper does not go into the details of how the

software performs the anomaly detection phase, but it does provide test results with the ISCX

dataset showing over 96% accuracy.

29

4.1 Software Exploitation

In security analysis, we are often encountered with binary data in which we are required to

determine which file type this data belongs to. While in a typical scenario we could open the file

with a hex editor and read the header to determine the file type, this is not always the case. The

binary data may be sampled data from a network packet therefore showing data from the middle

of the file. Conti et al propose statistical mapping techniques for classifying binary data to file

types.

They considered 14 commonly known files types and found 1000 fragments of each of these file

types. A fragment was considered 1024 bytes. On these 1024 bytes they obtained different

statistical features such as:

- Shannon Entropy

- Arithmetic mean

- Chi Square

- Hamming Weight

They applied these statistical models to the individual bytes in the fragment. Applying these

statistical models for each file type they obtained a mean and variance for each statistical model.

By applying the same statistical models to random dataset of binary files they were able to

determine how likely it is that the file belongs to the specified category.

Cho et al suggest using a Markovian model for detecting intrusions through software exploits. The

Markov chain has 2 states, privileges and unprivileged. The transitions in the model were the

system calls. For each user and application, a typical usage model is built. Should the users or

applications behavior deviate from the normal model it will be assumed that an attack is happening.

30

A similar approach has also been proposed by N Ye.. the authors suggest a Markov chain model

for intrusion detection. In this model the states are the system calls. The author considered 284

states for the different system calls. In a typical use case it is assumed that system calls for an

application follow a certain pattern. If system call A is made then normally either B, C or D is

called next. Should system call E be made after A then there is probably an anomaly. The general

assumption in the model was that system calls follow specific patterns. In order to catch these

effects, the authors suggest considering window sizes of 100 system calls. Having built a model

from previously seen data, we know the probability of transition from state A to the next state.

Therefore, the probability of making the 100 transitions are known:

Equation 16

𝑃 = 𝑃 𝑃 … 𝑃

Such probabilities are calculated for the normal use case. A distribution will be obtained. If an

attack happens and the P value obtained is not in the normal range obtained in the previously

obtained range, then an attack is detected.

Ourston et al use a similar approach using the Markov mode. However, this time they have a

training set for attack data. They train the model using the attack data. When applying the model

if the probability follows closely to the trained model then there is probably an attack happening.

4.2 Sampled Packets

One of the goals in NIDS is to detect attacks as they are occurring. In research we are usually

working with previously logged data and our only goal is to accurately determine if an attack has

happened in the logged data. In practice however only detecting whether an attack has happened

or not is not enough and it is required to detect the attack in a timely manner. If the amount of

31

traffic in our network is large, monitoring every single packet may be infeasible. Mai et al. have

studied the effect of sampling on network statistics required for detecting anomalies. The research

was mainly focused on finding the effects of sampling on two types of anomalies, volume

anomalies and port scans.

Volume anomalies are the type of anomalies that cause a significant change in the volume of

network traffic such as DOS attacks. For volume anomalies the statistic that they considered was

the rate of flow arrival. In both cases it was shown that flow sampling greatly reduces the accuracy

of detection and increases the false alarms.

Duffield et al also explain the impact of sampling on flow statistics. In this paper statistics refers

to the mean and variance. The properties they consider are the flow counts per interval time, byte,

packet count and flow duration. They measure how sampling effects the statistics of these features.

Brauckhoff et al study the impact of packet sampling on the detection of the blaster worm. They

show that although packet sampling greatly effects flow counts, however it does not affect volume

metrics such packet and byte count very much. They suggest that while some metrics change a lot

by sampling however using entropy methods the blaster worm can still be detected with reasonable

accuracy.

Most machine learning research performed on network classification has been done on the whole

dataset, while the actual application of the model has been done on sampled data. Nguyen et al

suggest performing the machine learning models on sampled datasets. In this research the authors

aimed at classifying the type of application generating the flow though machine learning models.

The models they chose were the Naïve Bayes and the C4.5 Decision tree model. In their models

32

they only consider the latest N packets from a flow. The results show an increased performance

when the training is performed on sub flows rather than full flows.

4.3 Web Related Classification Methods

While in the field of NIDS we are aiming at classifying network traffic, researchers have also been

working on classifying web related patterns. While these research attempts are not related to

security, however their ideas may extended to the detection of network intrusions.

One of the areas of research is finding certain users on social media that are trend makers and also

spotting users that are good at finding these trend makers. The benefits of being able to detect these

users is twofold:

1. It enables us to better detect trends on the internet

2. It improves the recommender system on such systems

 Sha et al suggest using support vector machines in classifying users as trend makers or trend

spotters. Their results show reasonable accuracy.

Another field of research that could potentially be related to NIDS is predicting the number of

users during different hours and days of the week. Having such models could potentially be used

to detect anomalies. Amico et al study just that. In their research they consider 3 different datasets.

IM, GW and KAD. IM is a dataset extracted from an instant messaging server in Italy. GW is from

a dataset extracted from an ISP In France. KAD is a dataset extracted mainly from users of the

eDonkey2000 client. Their model uses a combination of the logistic regression, Bayesian inference

33

and the LA approximation to implement their model. Using this model obtain relatively accurate

results.

Hsieh et al provide hidden Markov solution to classify applications through their network traffic.

In their model they consider the handshake phase of the applications. They suggest that since

different applications have a different initial handshake the first few packets sent between client

and server can be used to detect the type of application. In their research they generate a hidden

Markov model for each application. When a new connection is established the connection, pattern

is compared with the different Markov models. The connection is then associated with the

application that results in the highest probability. Knowing the application could greatly help in

NIDS research as different application may pose different threats. There is also room for future

research to investigate the potential of finding different handshakes for attacks compared to regular

traffic.

4.4 NIDS Using Machine Learning

Other researchers have previous worked on the field of NIDS using machine learning. [9] discusses

some of the recent researches performed on the field. The papers also lists some of latest NIDS

application implemented in the industry along with the companies that have implemented them.

Tsai et al review some of the recent papers published in the field on NIDS using machine learning.

They also show the trend as to which machine learning models recent research is going towards.

Liao et al provide a very comprehensive review of different intrusion detection techniques. It

breaks down the models into different categories:

- Statistical, Pattern Based, Rule Based, State Based, Heuristic

- Anomaly-based, signature based, stateful protocol analysis

34

And also by how well the methods perform. Other papers which have reviewed NIDS systems are

[10]

One of the issues of implementing machine learning techniques in network intrusion detection is

the computational cost of the models. Models such as KVM have proven to be very effective,

however applying such models to very large datasets may not be computationally feasible. Horng

et al suggest a combination of a supervised and unsupervised method for detecting network

intrusions. The authors suggest initially applying a clustering algorithm to the dataset. The

clustering algorithm will greatly reduce the number of data points required to consider. After the

clustering phase an SVM [11] is applied to the clusters.

The datasets used in this research was the KDD Cup (1999). The dataset consisted of 41 different

network features. A backward feature selection algorithm was performed on the features to select

only the relevant features. The clustering algorithm performed was the Birch Hierarchal Clustering

Algorithm [12]. The algorithm provides a method of clustering that does not required all the data

to be present at once. The clusters are built incrementally as more data is presented. This is very

important when working with very large datasets. As new data points are introduced they are

replaced by clusters. If the variance in a cluster gets to big the algorithm splits the cluster in two.

For each cluster 3 parameters are stored. Using those three parameters the mean of the cluster can

be obtained.

In [13] two different machine learning techniques are compared. The Cascading K-means

Clustering and C4.5 Decision Tree Algorithm [14]. The authors perform the machine learning

models on the KDD 99 Cup dataset. The research showed generally good results.

35

Bouzdia et al propose a machine learning model on the KDD 99 CUP. In the research they use one

unsupervised learning method and two supervised learning methods. The unsupervised method

was the principal component method. The supervised methods were the nearest neighbor and the

decision tree models. They consider 4 different models (Table 1):

Table 1 The different models considered in the research

Model Apply unsupervised method Supervised method

1 Yes PCA

2 Yes Decision Tree

3 No PCA

4 No Decision Tree

In 2 of the models they initially apply the unsupervised learning method. In the other 2 they went

directly to the supervised methods. The results show that the results were pretty close for the cases

where the unsupervised learning method was applied with the cases where the unsupervised

learning methods were not applied. Applying the PCA method can greatly reduce the number of

predictors, hence making computations much more efficient.

4.5 Dataset Preparation

One of the challenges in NIDS research is preparing the required datasets. Most of the labeled

datasets publicly available are out of date. Sangster suggest using war games to prepare the

required datasets. Such competitions generally require two teams. Each team will have a set of

computers they will need to protect. These computers must be able to provide a minimum required

service level at all times. While protecting their computers they will also be required to perform

36

attacks on their opponent’s computers. Other versions of these warfare games include cases where

there is a third team that performs attacks, and the other teams are only required to protect their

computers.

4.6 Network Attack Through Software Exploitation

While monitoring network traffic is good way to detect network anomalies however it is not

enough to detect all attacks. Some attack might have a perfectly normal traffic pattern, but may be

exploiting vulnerabilities in software. It is evident that monitoring network traffic alone will not

be enough. Chen et al propose applying machine learning techniques to the process system calls

pattern in order to detect normal usage from attacks. The dataset they used in this research was

from the DARPA 1998 dataset. They considered the frequency of the different system calls made

by each process. Therefore, for each process they obtained a vector. Each vector was labeled as

attack or normal. The machine learning models they considered were the support vector machines

and the artificial neural networks methods. The results showed that the SVM methods performed

much better than the ANN.

4.7 Anomaly Detection

Generally applying machine learning techniques to labeled datasets is good for building models to

detect known or previously seen attacks. However as new attacks are discovered every day it is

also necessary to come up with a model that can detect attacks that have not yet been seen. Such

models are generally referred to as anomaly detection models. In [15] three different methods have

been proposed for detecting anomalies. The first method is a cluster based method. In this method

each feature is placed in an element of a vector in N dimensional space. The number of neighbors

surrounding each point in a radius of R are considered. The points that have few neighbors are

37

considered anomalies. In the second method the sum of the distance to its closest k neighbors is

calculated. If this number is large then the point is an anomaly. The third method is an SVM

method. In this model it is assumed that the normal points are close to the origin and the anomalies

are far away from the origin. A hyper plane if found that will best separate the points in the origin

from the points far out. The best hyper plane is the one that creates the largest margin.

Leung et al propose using a clustering algorithm for detecting network intrusions. They use the

MAFIA clustering method [16]. In this clustering method the space is split into cells, initially of

equal size. Each data point is assigned to once cell. Cells are considered to be adjacent if they have

at least one common side. Clusters are groups of adjacent cells. Not all the cells in the cluster need

to be adjacent but there must be some path of adjacent cells between any two cells in the cluster.

In regions where there are more data points the cell size is adaptively reduced. Leung et al use the

1999 KDD Cup Data set. They used the training set for training the model and the test set for

validation. Data points are considered anomalies if they are not part of the clusters obtained in the

training set.

While good accuracy was obtained however the model should have been tested on a second dataset

to confirm its effectiveness. Also, the 1999 KDD Data set is a very old and outdated dataset. A lot

of the different network usage seen today (such as video streaming, …) were not in use at that

time.

Pransta et al suggests using a clustering algorithm for anomaly detection. In this paper the author

assumes that each predictor can only take on a finite set of values. Data points are added to clusters

based on the number of similar predictors. The more predictors that share the same value the

similar the data points are. If a matching cluster is not found a new cluster is only created if the

data point has a certain amount of similarity with the rest of the data points. While the approach

38

was able to obtain high accuracy, however the same issues as the previous paper exist. While the

authors claim this is unsupervised it is really a supervised algorithm as tuning parameters need to

be set. Also in the case that the predictors are continuous parameters, the continuous parameters

would need to be converted to discrete parameters. This granularity for which this is done will

have an impact on the clusters, therefore this is also another tuning parameter that needs to be set.

Monowar et al use a tree method in order to perform clustering. Similar data points are clustered

together by assigning them the same parent. There are two tuning parameters for building the tree,

𝛼 and 𝜖. Where 𝛼 determines if nodes are similar enough to fall in the same cluster and 𝜖 controls

how the height of the tree is increased.

Casas combine two different methods for detecting anomalies. In the first step they generate flows

based off the arriving packets. They then split the flows into time intervals. They consider different

properties of the flows in the time interval, such as bytes transferred, packets transferred and other

similar properties. If a change is noticed during a certain time slot then that time slot is taken to

the next step. In this step a clustering algorithm is performed on the flows in that time slot. Outliers

will be considered as anomalies.

Portnoy et al perform a clustering algorithm on the KDD 1999 dataset. They initially normalize

the data to standard gaussian distribution. They then apply a clustering algorithm to the data. They

take the clusters with the most amount of data points as clean traffic and the rest as anomalies. The

issue with taking such an approach is that you are assuming that only certain points of space

contain anomalies. This contradicts the idea of assuming all unknowns are anomalies.

39

5 Statistical Model of Network Under Attack (Part 1)

Today whenever a complicated problem involving a large amount of data is encountered the first

thing that comes to mind is to use machine learning. However, we decided to start out with a much

simpler approach and see the draw backs before attempting a more complicated machine learning

approach. The purpose of this chapter is to do just that.

The statistical model used in this chapter is the markov chain. In this chapter we demonstrate a

simple model in detecting network attacks by looking only at the flow-in and flow-out patterns.

The dataset used was the Darpa intrusion detection dataset of the year 1998.

5.1 Dataset

The dataset used in this research was the Darpa Intrusion detection dataset of the year 1998. The

dataset consists of 7 weeks of captured network traffic. During the 7-week period multiple

controlled attacks were performed on the network. The network attacks that were present in the

dataset were DOS Attacks (Back, land, Neptune, pod, smurf, teardrop, syslog), Dictionary attacks,

FTP Attacks, port sweep (isweep, portsweep, spy) and warez (warez, warezclient, warezmaster)

5.2 Theory

In this model we attempt at predicting network attacks by building a markov chain model based

on the connectivity to a particular node. The model detects when an attack is happening targeted

at a particular node.

By obtaining the probability of transition from one state to another we can find abnormal behavior

and flag them as attacks. States in the model are defined based on two parameters.

40

Connection Count: The number of connections that were initiated with the server during that one-

minute period.

Repeat: The number of previous intervals that the connection count property remained the same.

The model is built in three stages

 Stage 1, Generating Clean Traffic Model

In the first stage the clean traffic behavior was modeled using the markov chain model. The traffic

was split into one-minute periods.

Each state has a series of transitions. The transitions show the probability that the state went from

its current state to the next state. Therefore, the markov chain model would look something like

Figure 4. To avoid clutter in the figure below only the transitions propagating from the states in

the middle row have been drawn:

Figure 4: Markov chain model used in analysis. Some actions have been omitted for clarity

41

The algorithm for determining the next state is as follows:

Step 1: S = S(0, 0) and 𝑇 = 𝑇

Step 2: 𝑇 = 𝑇

Step 3: Find the number of connections initiated during 𝑇 .

If 𝐶 = 𝐶 go to step 4.

If 𝐶 ≠ 𝐶 go to step 5.

Step 4: 𝑆 = 𝑆(𝐶 , 0). Go to step 2.

Step 5: 𝑅 = 𝑅 + 1. 𝐺𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 6.

Step 6: 𝑆 = 𝑆(𝐶 , 𝑅). 𝐺𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 2

Where

𝑺(𝑪, 𝑹): The state with connection count C and repeat R

𝑻𝒊: The I’th one-minute time interval.

𝑪𝒊: The number of connections initiated with server during time interval i.

𝑹𝒊: The number of consecutive times this connection count has been repeated up to interval i.

 Stage 2, Generating The 20 Minute Probability Distribution

Once the markov chain model for the clean traffic has been generated, the following distribution

probability is calculated:

42

Equation 17

𝑃 = 𝐴(𝑆 , 𝑆)

Where:

𝑃 : 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑐𝑙𝑒𝑎𝑛 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑚𝑎𝑟𝑘𝑜𝑣 𝑚𝑜𝑑𝑒𝑙 𝑑𝑢𝑟𝑖𝑛𝑔

𝑎 20 𝑚𝑖𝑛𝑢𝑡𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑡 𝑚𝑖𝑛𝑢𝑡𝑒 𝑖

𝑆 : 𝑇ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑠𝑡𝑎𝑡𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑗 + 𝑖)

𝑆 : 𝑇ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑠𝑡𝑎𝑡𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑗 + 1 + 𝑖)

𝐴 𝑆 , 𝑆 : 𝑇ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑐𝑙𝑒𝑎𝑛 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑡𝑜 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑡𝑜 𝑗

+ 1

The result of generating the probability distribution for the clean traffic are shown in Figure 5 and

Figure 6. The 95% cut-off point can be obtained as follows:

𝑃𝑟𝑜𝑏(𝐿𝑜𝑔(𝑃) > −9.2) = 0.95 ⇒ 𝐿𝑜𝑔(𝑃) > −9.2 ⇒ 𝑃 >0.000101

43

Figure 5 Clean traffic log probability distribution

Figure 6 cumulative clean traffic log probability

 Stage 3, Unfiltered Traffic Distribution

Using the markov model for clean traffic, the unfiltered traffic was passed through the model and

the 20-min probability distribution was calculated. The results have been plotted in Figure 7. The

0

0.05

0.1

0.15

0.2

0.25

[0
,-0

.4
]

[-
0.

8,
-1

.2
]

[-1
.6

,-2
]

[-
2.

4,
-2

.8
]

[-
3.

2,
-3

.6
]

[-4
,-4

.4
]

[-
4.

8,
-5

.2
]

[-5
.6

,-6
]

[-
6.

4,
-6

.8
]

[-
7.

2,
-7

.6
]

[-8
,-8

.4
]

[-
8.

8,
-9

.2
]

[-
9.

6,
-1

0]
[-1

0.
4,

-1
0.

8]
[-1

1.
2,

-1
1.

6]
[-1

2,
-1

2.
4]

[-1
2.

8,
-1

3.
2]

[-1
3.

6,
-1

4]
[-1

4.
4,

-1
4.

8]
[-1

5.
2,

-1
5.

6]
[-1

6,
-1

6.
4]

[-1
6.

8,
-1

7.
2]

[-1
7.

6,
-1

8]
[-1

8.
4,

-1
8.

8]
[-1

9.
2,

-1
9.

6]
[-2

0,
-2

0.
4]

[-2
0.

8,
-2

1.
2]

Pe
rc

en
t o

f i
nt

er
nv

al

Log probability buckets

Clean Traffic Log Probability Distribution

0

0.2

0.4

0.6

0.8

1

1.2

[0
,-0

.4
]

[-0
.8

,-1
.2

]
[-1

.6
,-2

]
[-2

.4
,-2

.8
]

[-3
.2

,-3
.6

]
[-4

,-4
.4

]
[-4

.8
,-5

.2
]

[-5
.6

,-6
]

[-6
.4

,-6
.8

]
[-7

.2
,-7

.6
]

[-8
,-8

.4
]

[-8
.8

,-9
.2

]
[-9

.6
,-1

0]
[-1

0.
4,

-1
0.

8]
[-1

1.
2,

-1
1.

6]
[-1

2,
-1

2.
4]

[-1
2.

8,
-1

3.
2]

[-1
3.

6,
-1

4]
[-1

4.
4,

-1
4.

8]
[-1

5.
2,

-1
5.

6]
[-1

6,
-1

6.
4]

[-1
6.

8,
-1

7.
2]

[-1
7.

6,
-1

8]
[-1

8.
4,

-1
8.

8]
[-1

9.
2,

-1
9.

6]
[-2

0,
-2

0.
4]

[-2
0.

8,
-2

1.
2]

pe
rc

en
t o

f i
nt

er
va

ls

Log probability buckets

Cumulative Clean Traffic Log Probability
Distribution

44

large number of observations in the right most bucket was due to observations with zero

probability.

Figure 7 Unfiltered traffic log probability distribution

In the Figure 8 the difference in log probability distribution between the two traffics is plotted.

The really low and high-end buckets have been removed for better visualization. It can be seen

that the left-hand buckets are positive which shows that clean traffic has a better correlation with

the markov model. As we move to the right the values become negative indicating that the

uncorrelation is more in the unfiltered traffic.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

[0
,-0

.4
]

[-
0.

8,
-1

.2
]

[-1
.6

,-2
]

[-
2.

4,
-2

.8
]

[-
3.

2,
-3

.6
]

[-4
,-4

.4
]

[-
4.

8,
-5

.2
]

[-5
.6

,-6
]

[-
6.

4,
-6

.8
]

[-
7.

2,
-7

.6
]

[-8
,-8

.4
]

[-
8.

8,
-9

.2
]

[-
9.

6,
-1

0]
[-

10
.4

,-1
0.

8]
[-

11
.2

,-1
1.

6]
[-

12
,-1

2.
4]

[-
12

.8
,-1

3.
2]

[-
13

.6
,-1

4]
[-

14
.4

,-1
4.

8]
[-

15
.2

,-1
5.

6]
[-

16
,-1

6.
4]

[-
16

.8
,-1

7.
2]

[-
17

.6
,-1

8]
[-

18
.4

,-1
8.

8]
[-

19
.2

,-1
9.

6]

pe
rc

en
t o

f i
nt

er
va

ls

Log probability buckets

Unfiltered Traffic Log Probability Distribution

45

Figure 8 difference in probability buckets between clean and unfiltered traffic

5.3 Attack Detection

In this paper our main goal was to find attacks where there is a significant change in incoming

connections. Therefore, our main targets where the following type of attacks:

 Network mapping
 Illegal upload of copyright content using Warez
 Illegal download of copyright content using Warez
 Syn flood denial of service
 Port sweep
 Network probing tools
 DOS attack using misfragmented UDP packets.
 DOS using ping of death

We considered 24 different attacks from the dataset.

5.4 Results

We considered Log(P)<-18 as our cut-off point for detecting attacks. The results are based on a 7-

week period of monitoring (Table 2 and Table 3):

-0.002
0

0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016

[-
1.

6,
-2

]
[-2

.4
,-2

.8
]

[-3
.2

,-3
.6

]
[-

4,
-4

.4
]

[-4
.8

,-5
.2

]
[-

5.
6,

-6
]

[-6
.4

,-6
.8

]
[-7

.2
,-7

.6
]

[-
8,

-8
.4

]
[-8

.8
,-9

.2
]

[-9
.6

,-1
0]

[-
10

.4
,-1

0.
8]

[-
11

.2
,-1

1.
6]

[-1
2,

-1
2.

4]
[-

12
.8

,-1
3.

2]
[-1

3.
6,

-1
4]

[-
14

.4
,-1

4.
8]

[-
15

.2
,-1

5.
6]

[-1
6,

-1
6.

4]
[-

16
.8

,-1
7.

2]
[-1

7.
6,

-1
8]

[-
18

.4
,-1

8.
8]

[-
19

.2
,-1

9.
6]

pe
rc

en
t o

f i
nt

er
va

ls

Log Probability Buckets

Difference in Probability Buckets Between Clean
and Unfiltered Traffic

46

Table 2 Results

 True Detections Missed Attacks

Count 20 4

Accuracy 83% 16%

Table 3 Results

 False Alarms Total

Connections

Count 7 25181

Accuracy 0.027%

5.5 Issues

There were a number of issues with this model that motivated the research towards machine

learning models.

- In the model we are specifically looking at connection counts. The issue with such an

approach is that we are not taking any of the other predictors into account. There might be

other features that could also help in detecting attacks such as the number of bytes or

packets being transferred or the type of application responsible for generating the flow.

- The model was evaluated on a relatively old dataset. The network traffic was much less

complex than today’s traffic. Due to the simplicity in the network traffic there were very

few states which made the model work well. Had we used a dataset with more recent

network traffic there would have been a much larger variety in states. Such a variety in

47

states would results in a large number of transitions not being observed in the initial training

phase and hence would results in false alarms.

- The model only takes into account a single node. Some attacks are not visible by just

observing a single attack and would require looking at the entire network.

48

6 Supervised Model of Network Under Attack (Part 2)

One of the issues with most of the research done in the field of network intrusion detection using

machine learning techniques is that they all use a very old and outdated dataset (KDDCup99). In

this section we propose a supervised machine learning technique that performs well both on the

old dataset and on a newer dataset (ISCX2012). The ISCX dataset was provided by the New

Brunswick Institute of Security [17]. In [18] the authors explain how the ISCX datasets were

generated

Also, one of the issues with most research in this field is that they limit themselves to the limited

handcrafted features provided by KDDCup99 dataset. We demonstrate a method for extracting

features from network logs. Using this method researchers will no longer be limited to the features

provided to them.

Another issue we find with research in this field is they do not take variations of network traffic

into account. In other words, they don’t take into account how well the model will perform if there

are sudden increases in network traffic due to unpredictable events. As an example, consider a

university campus network where all grades are released on the same day. On that day there will

probably be a surge in network traffic. The method we proposed worked well both under regular

traffic an increased traffic.

6.1 Dataset

Two different datasets were used in this part of the research:

- The ISCX2012 dataset

- The Darpa 1998 Dataset

49

 ISCX2012 Dataset

This dataset was prepared by the University of New Brunswick. The dataset consists of 7 days of

network traffic with controlled attacks.

Day 1: Normal Activity

Day 2: Normal Activity + small amount of brute force attacks

Day 3: Normal Activity + Infiltrating the network from inside

Day 4: normal activity + HTTPS denial of service

Day 5: normal Activity + DDOS using IRC Botnets

Day 6: normal Activity + small amount of brute force attacks

Day 7: Normal Activity + Brute force ssh

The dataset consists of labeled flows. The flows consist of the following data:

- AppName: The name of the application used in the connection. I am assuming this is based

on port number. Not all flows have AppName. For unknown applications this field is set

to “Unknown TCP” or “Unknown UDP”

- Total Source Bytes: The total number of bytes transferred from the source node to the

destination node during the duration of the flow.

- Total Dest Bytes: The total number of bytes transferred from the destination node to the

source node during the duration of the flow.

- Total Source Packets: The total number of packets transferred from the source node to

the destination node during the duration of the flow.

50

- Total Destination packets: The total number of packets transferred from the destination

node to the source node during the duration of the flow.

- sourcePayloadAsBase64: The source payload in base 64 format.

- sourcePayloadAsUTF: The source payload in UTF format

- destinationPayloadAsBase64: The destination payload in base 64 format.

- destinationPayloadAsUTF: The destination payload in UTF format.

- direction: This value is set to one of the following {L2L, R2L, L2R, R2R} which

determines the direction of the flow.

- sourceTCPFlagsDescription: TCP flags that were set by the source node.

- destinationTCPFlagsDescription: TCP flags that were set by the destination node.

- source IP: IP address of the source node

- destination IP: IP address of the destination node.

- protocolName: The name of the protocol used in the flow, tcp, udp, icmp, ..

- source Port: The port number used by the source node.

- destination Port: The port number used by the destination node.

- startDateTime: The start time of the flow.

- stopDateTime: The end time of the flow

- Tag: Normal or Attack

 Darpa 1998 Dataset

The second dataset that was used in validating the model was the Darpa 1998 dataset. This dataset

was prepared by the MIT Lincoln laboratory. Unlike the ISCX2012 dataset where all the required

features were extracted, the Darpa dataset was missing some of the required features. Therefore,

we had to extract all the features ourselves.

51

The dataset consists of 7 weeks of data. Each week consisted of 7 days of data. For each data two

files were provided:

- A libpcap file

- A csv file with labels

The libpcap file is a binary file with network data. The csv consisted of flow data with labels. Due

to the fact that csv file did not contain all the features required by our model, the required features

had to be extracted from the libpcap file and matched with the labels in the csv file.

The csv file consisted of the following data:

- Date: The date when the flow was captured

- Start Time: The time when the flow started

- End Time: The time when the flow ended

- Application: The application that generated the flow. This was most probably guessed

based off the port number as only the well-known ports had this field set. For the not well-

known ports a port number was used in this column

- Source Port: The port number the source node used for communication (if applicable).

- Dest Port: The port number used by the destination node for communication (if applicable)

- Source Node: The source node in the flow

- Destination Node: The destination node in the flow

- Tag: 1 determines an attack and 0 determines a normal flow

- Attack Type: The name of the attack if any

52

6.2 Model

Our goal is to come up with a model that satisfies the following:

1- Is generalized: It can be applied to multiple datasets and still provide satisfactory results

2- Perform well under surge conditions

In coming up with such a model a lot of questions arise:

- What type of machine learning model do we choose? Linear Regression? Linear

Discriminant Analysis? Support Vector Machines?

- How do we take temporal data into account?

- What predictors do we consider in our model and how do we choose the relevant

predictors?

- How do prevent the model fitting to closely to normal data points since there may be many

more normal data points then attack points.

Rather than taking a guess at the questions above, we performed 120 different machine learning

models with varying assumptions to find the models that perform best on the datasets. In the

sections below, we describe in further detail how the models where generated and how they were

varied.

 Predictors

While flow data provides useful information about a single flow however it lacks the required

information to capture temporal data. In order to better capture temporal data, we generate a new

set of predictors from the flow information.

53

In order to generate these new predictors, we consider intervals of T seconds. For each interval of

time we end up with one vector of predictors. The intervals are overlapping considering a

granularity of 1 second. For example, considering 10 second intervals, the first vector of predictors

will be for the time interval 0~10, the second vector of predictors will be for the time interval 1~11

and so on.

In our model we consider three different intervals:

- 1 second intervals

- 5 second intervals

- 10 second intervals

6.2.1.1 Application Type

Each flow is generated by a certain application. As an example, the application could be an http or

ssh server. The application could also be a network layer protocol, for example ICMP. For the

ISCX 2012 dataset the environment was controlled and the applications for most the flows where

known. Table 4 displays the applications used in the dataset:

54

Table 4 Different applications used in the ISCX2012 dataset

1 NA 18 Gnutella 35 IRC
2 Anet 19 Google 36 Kazaa
3 AOL-ICQ 20 Groove 37 LDAP
4 Authentication 21 GuptaSQLBase 38 ManagementServices
5 BGP 22 H.323 39 MDQS
6 BitTorrent 23 Hosts2-Ns 40 MGCP
7 Blubster 24 Hotline 41 MicrosoftMediaServer
8 Citrix 25 HTTPImageTransfer 42 Misc-DB
9 Common-P2P-Port 26 HTTPWeb 43 Misc-Mail-Port

10 Common-Ports 27 iChat 44 Misc-Ports
11 DNS 28 ICMP 45 MiscApp
12 DNS-Port 29 IGMP 46 MiscApplication
13 dsp3270 30 IMAP 47 MS-SQL
14 Filenet 31 Ingres 48 MSMQ
15 Flowgen 32 Intellex 49 MSN
16 FTP 33 IPSec 50 MSN-Zone
17 giop-ssl 34 IPX 51 MSTerminalServices
52 Nessus 71 Real 90 Tacacs
53 NETBEUI 72 rexec 91 Telnet
54 NetBIOS-IP 73 rlogin 92 TFTP

55
Network-Config-
Ports

74 RPC 93 Timbuktu

56 NFS 75 rsh 94 TimeServer
57 NNTPNews 76 RTSP 95 Unknown_TCP
58 NortonAntiVirus 77 SAP 96 Unknown_UDP
59 NortonGhost 78 SecureWeb 97 UpdateDaemon
60 NTP 79 SIP 98 VNC
61 OpenNap 80 SMS 99 Web-Port
62 OpenWindows 81 SMTP 100 WebFileTransfer
63 Oracle 82 SNA 101 WebMediaAudio
64 PCAnywhere 83 SNMP-Ports 102 WebMediaDocuments
65 PeerEnabler 84 Squid 103 WebMediaVideo
66 POP 85 SSDP 104 Webmin
67 POP-port 86 SSH 105 WindowsFileSharing
68 PostgreSQL 87 SSL-Shell 106 XFER
69 PPTP 88 StreamingAudio 107 XWindows
70 Printer 89 SunRPC 108 Yahoo

55

In a real situation we will most likely not have that information available. One way to guess the

application used to generate the flow would be through port numbers. Further details about how

this has been provided in the implementation section.

All the applications that have been presented in the dataset are discovered and a one hot vector is

generated for each flow. The one will represent the application that was used to generate the flow.

For the duration of the interval all of these one hot vectors are summed and divided by the number

of flows in that interval. Therefore, we end up with a vector of ratios between [0, 1]. Each column

represents the ratio of flows during that interval which were using that application.

6.2.1.2 Protocols

Similar to the case with application type we generate a vector of ratio for each interval. Each

column is a value between [0, 1]. They show the ratio of flows during the interval which used a

particular protocol. The protocols could be of different layers, for example the following protocols

could be considered for a dataset (TCP, UDP, ICMP).

The following were the protocols found in the ISCX2012 dataset (Table 5):

Table 5 Different protocols used in the ISCX2012 dataset

1 NA
2 icmp_ip
3 igmp
4 ip
5 ipv6icmp
6 tcp_ip
7 udp_ip

56

6.2.1.3 Unique Local and Remote IPs

These are two predictors each indicating the total ratio of unique local and remote IPs to the overall

unique IPs used during that interval. For example, consider the following flows during a time

interval (Table 6):

Table 6 Sample flows

Flow number Source Destination

1 192.168.1.1 141.48.75.41

2 192.168.1.1 141.48.75.41

3 171.465.485.45 184.48.45.14

4 192.168.1.2 171.465.485.45

5 184.48.45.14 192.168.1.2

6 192.168.1.2 192.168.1.1

7 192.168.1.2 184.48.45.14

The unique local IPS are:

- 192.168.1.2
- 192.168.1.1

The unique remote IPS are:

- 141.48.75.41
- 171.465.485.45
- 184.48.45.14

Therefore, the ratio of unique local IPs will be: 2 5 = 0.4

And the ratio of unique remote IPs will be: 3 5 = 0.6

57

6.2.1.4 Direction

These are a set of four predictors determining the direction of the flows:

- R2L are connections initiated remotely and contacting local nodes.

- L2R are connections initiated locally and contacting remote node.

- R2R are connections initiated remotely and contacting remote nodes

- L2L are connections initiated locally and contacting local nodes.

6.2.1.5 Packet Count

This is the average packet count per flow during the interval.

6.2.1.6 Bytes Transferred

This is the average bytes transferred per flow during the interval

 Machine Learning Models

One of the questions that needs to be answered is that which type of machine learning model will

perform best for this type of problem. In this research 3 different machine learning models where

used:

 Logistic regression
 Linear Discriminant Analysis
 Quadratic Discriminant Analysis

 Intervals

It was mentioned that the data points where grouped in intervals and a new set of features were

generated for each interval. The larger the interval the more temporal data we will be capturing.

On the other hand, smaller intervals will capture finer details about the flow.

58

Three different intervals were considered

 1 second intervals
 5 second intervals
 10 second intervals

6.2.3.1 Feature Selection

In each model forward selection was performed for predictor selection. Generally, in forward

selection the predictors are chosen based on the best accuracy obtained from the training data.

However, in the initial stages of running the models it was seen that the predictors fit too closely

to the training data using this method. Therefore 2 different methods of feature selection where

considered:

1- Accuracy of the model is selected based on the training set.

2- Accuracy of the model is selected based on the validation set.

However, the second method must be used with caution as it might also cause overfitting.

Therefore, we also put aside a third dataset as a test set.

6.2.3.2 Low Count of Attack Records

While the number of attack flows was comparable with normal traffic, however since some of the

attack flows occurred in bursts, the number of records containing attack flows ended up being very

low. To overcome this one solution was to copy attack records based on the number attack flows

it is representing. Therefore 2 different models where considered:

1- Attack records are not repeated

2- Attack records are repeated by the amount of attack flows it represents

59

6.2.3.3 Sensitivity and Specificity

As mentioned above after generating data records from the input flows, the number of records

containing attacks will be very small relative to the total number of records. In our datasets this

was something around 99 normal records for every attack record. Assume a model where it always

classifies points as normal traffic. Such a model will have an accuracy of 99%. This is clearly not

correct.

While copying attack records as explained above does help, in this research we also consider

another method of alleviating this issue. In evaluating the models in forward selection two different

methods have been considered:

1- The total accuracy is calculated

2- The attack accuracy is calculated

6.2.3.4 Binary or Multiple Classes

Two different methods for categorizing data points have been considered in this research:

1- Binary: A record either does contain an attack flow (which is assigned to category 1), or

does not contain an attack flow (which is assigned category 0)

2- Multi Class: Records that do not contain attack traffic are assigned category 0. However,

records that do have attack flows are assigned a label based on the type of attack:

o Brute Force (Day 2) : 1

o Infiltrating network from inside: 2

o HTTPS attack: 3

o Botnet DDOS: 4

o Brute Force (Day 6): 5

60

o Brute Force SSH 6.

6.2.3.5 Naming convention

The naming convention used in this research is as follows (Table 7)

_ _ _ _ I _ E _ S _ C _

Table 7 Naming convention

Model Name Description

M *********** An M at the start of the model name indicates that the different

attacks types had been differentiated in the analysis. A nonexistent

M indicates that all attack types had been assigned to the same

class.

*LDA******** Linear Discriminant Analysis

*LOG******** Logistic regression

*QDA******** Quadratic Analysis

****I1****** The model considers 1 second intervals

****I5****** The model considers 5 second intervals

****I10****** The model considers 10 second intervals

******E1**** In calculating errors in the forward selection process, the error is

calculated only based off the attack records. In other words, the

accuracy shows how many attack records were missed.

61

Model Name Description

******E0**** In calculating errors in the forward selection process all records are

taken into account. Therefore, false alarms and missed attacks will

both contribute to the error value

********S1** In calculating errors in the forward selection process, the validation

set is used.

********S0** In calculating errors in the forward selection process, the training

set is used.

**********C1 Due to the fact that attack flows are bursty, the number of attack

records will be far less than the number of normal records. In this

model each attack record is copied by the amount of attack records

it is representing

**********C0 No copying of attack records is performed

A total of 24 different logistic models have been considered (Table 8):

Table 8 The different logistic models tested

Name Type Binary

Category

Interval Evaluation

based on attack

records

Evaluation

based on

validation set

Copied attack

records

LOGI1E0S0C0 Logistic T 1 F F F

LOGI1E0S0C1 Logistic T 1 F F T

LOGI1E0S1C0 Logistic T 1 F T F

LOGI1E0S1C1 Logistic T 1 F T T

62

Name Type Binary

Category

Interval Evaluation

based on attack

records

Evaluation

based on

validation set

Copied attack

records

LOGI1E1S0C0 Logistic T 1 T F F

LOGI1E1S0C1 Logistic T 1 T F T

LOGI1E1S1C0 Logistic T 1 T T F

LOGI1E1S1C1 Logistic T 1 T T T

LOGI5E0S0C0 Logistic T 5 F F F

LOGI5E0S0C1 Logistic T 5 F F T

LOGI5E0S1C0 Logistic T 5 F T F

LOGI5E0S1C1 Logistic T 5 F T T

LOGI5E1S0C0 Logistic T 5 T F F

LOGI5E1S0C1 Logistic T 5 T F T

LOGI5E1S1C0 Logistic T 5 T T F

LOGI5E1S1C1 Logistic T 5 T T T

LOGI10E0S0C0 Logistic T 10 F F F

LOGI10E0S0C1 Logistic T 10 F F T

LOGI10E0S1C0 Logistic T 10 F T F

LOGI10E0S1C1 Logistic T 10 F T T

LOGI10E1S0C0 Logistic T 10 T F F

LOGI10E1S0C1 Logistic T 10 T F T

LOGI10E1S1C0 Logistic T 10 T T F

LOGI10E1S1C1 Logistic T 10 T T T

63

Due to instability of the logistic regression method, Multi category was not considered for this

method.

A total of 96 different discriminant analysis models have been considered (Table 9):

Table 9 The different linear discriminant and quadratic discriminant analysis models tested

Name Type Binary

Category

Interval Evaluation based

on attack records

Evaluation based

on validation set

Copied attack

records

LDAI1E0S0C0 LDA T 1 F F F

LDAI1E0S0C1 LDA T 1 F F T

LDAI1E0S1C0 LDA T 1 F T F

LDAI1E0S1C1 LDA T 1 F T T

LDAI1E1S0C0 LDA T 1 T F F

LDAI1E1S0C1 LDA T 1 T F T

LDAI1E1S1C0 LDA T 1 T T F

LDAI1E1S1C1 LDA T 1 T T T

LDAI5E0S0C0 LDA T 5 F F F

LDAI5E0S0C1 LDA T 5 F F T

LDAI5E0S1C0 LDA T 5 F T F

LDAI5E0S1C1 LDA T 5 F T T

LDAI5E1S0C0 LDA T 5 T F F

LDAI5E1S0C1 LDA T 5 T F T

LDAI5E1S1C0 LDA T 5 T T F

LDAI5E1S1C1 LDA T 5 T T T

LDAI10E0S0C0 LDA T 10 F F F

64

Name Type Binary

Category

Interval Evaluation based

on attack records

Evaluation based

on validation set

Copied attack

records

LDAI10E0S0C1 LDA T 10 F F T

LDAI10E0S1C0 LDA T 10 F T F

LDAI10E0S1C1 LDA T 10 F T T

LDAI10E1S0C0 LDA T 10 T F F

LDAI10E1S0C1 LDA T 10 T F T

LDAI10E1S1C0 LDA T 10 T T F

LDAI10E1S1C1 LDA T 10 T T T

MLDAI1E0S0C0 LDA F 1 F F F

MLDAI1E0S0C1 LDA F 1 F F T

MLDAI1E0S1C0 LDA F 1 F T F

MLDAI1E0S1C1 LDA F 1 F T T

MLDAI1E1S0C0 LDA F 1 T F F

MLDAI1E1S0C1 LDA F 1 T F T

MLDAI1E1S1C0 LDA F 1 T T F

MLDAI1E1S1C1 LDA F 1 T T T

MLDAI5E0S0C0 LDA F 5 F F F

MLDAI5E0S0C1 LDA F 5 F F T

MLDAI5E0S1C0 LDA F 5 F T F

MLDAI5E0S1C1 LDA F 5 F T T

MLDAI5E1S0C0 LDA F 5 T F F

MLDAI5E1S0C1 LDA F 5 T F T

65

Name Type Binary

Category

Interval Evaluation based

on attack records

Evaluation based

on validation set

Copied attack

records

MLDAI5E1S1C0 LDA F 5 T T F

MLDAI5E1S1C1 LDA F 5 T T T

MLDAI10E0S0C0 LDA F 10 F F F

MLDAI10E0S0C1 LDA F 10 F F T

MLDAI10E0S1C0 LDA F 10 F T F

MLDAI10E0S1C1 LDA F 10 F T T

MLDAI10E1S0C0 LDA F 10 T F F

MLDAI10E1S0C1 LDA F 10 T F T

MLDAI10E1S1C0 LDA F 10 T T F

MLDAI10E1S1C1 LDA F 10 T T T

QDAI1E0S0C0 QDA T 1 F F F

QDAI1E0S0C1 QDA T 1 F F T

QDAI1E0S1C0 QDA T 1 F T F

QDAI1E0S1C1 QDA T 1 F T T

QDAI1E1S0C0 QDA T 1 T F F

QDAI1E1S0C1 QDA T 1 T F T

QDAI1E1S1C0 QDA T 1 T T F

QDAI1E1S1C1 QDA T 1 T T T

QDAI5E0S0C0 QDA T 5 F F F

QDAI5E0S0C1 QDA T 5 F F T

QDAI5E0S1C0 QDA T 5 F T F

66

Name Type Binary

Category

Interval Evaluation based

on attack records

Evaluation based

on validation set

Copied attack

records

QDAI5E0S1C1 QDA T 5 F T T

QDAI5E1S0C0 QDA T 5 T F F

QDAI5E1S0C1 QDA T 5 T F T

QDAI5E1S1C0 QDA T 5 T T F

QDAI5E1S1C1 QDA T 5 T T T

QDAI10E0S0C0 QDA T 10 F F F

QDAI10E0S0C1 QDA T 10 F F T

QDAI10E0S1C0 QDA T 10 F T F

QDAI10E0S1C1 QDA T 10 F T T

QDAI10E1S0C0 QDA T 10 T F F

QDAI10E1S0C1 QDA T 10 T F T

QDAI10E1S1C0 QDA T 10 T T F

QDAI10E1S1C1 QDA T 10 T T T

MQDAI1E0S0C0 QDA F 1 F F F

MQDAI1E0S0C1 QDA F 1 F F T

MQDAI1E0S1C0 QDA F 1 F T F

MQDAI1E0S1C1 QDA F 1 F T T

MQDAI1E1S0C0 QDA F 1 T F F

MQDAI1E1S0C1 QDA F 1 T F T

MQDAI1E1S1C0 QDA F 1 T T F

MQDAI1E1S1C1 QDA F 1 T T T

67

Name Type Binary

Category

Interval Evaluation based

on attack records

Evaluation based

on validation set

Copied attack

records

MQDAI5E0S0C0 QDA F 5 F F F

MQDAI5E0S0C1 QDA F 5 F F T

MQDAI5E0S1C0 QDA F 5 F T F

MQDAI5E0S1C1 QDA F 5 F T T

MQDAI5E1S0C0 QDA F 5 T F F

MQDAI5E1S0C1 QDA F 5 T F T

MQDAI5E1S1C0 QDA F 5 T T F

MQDAI5E1S1C1 QDA F 5 T T T

MQDAI10E0S0C0 QDA F 10 F F F

MQDAI10E0S0C1 QDA F 10 F F T

MQDAI10E0S1C0 QDA F 10 F T F

MQDAI10E0S1C1 QDA F 10 F T T

MQDAI10E1S0C0 QDA F 10 T F F

MQDAI10E1S0C1 QDA F 10 T F T

MQDAI10E1S1C0 QDA F 10 T T F

MQDAI10E1S1C1 QDA F 10 T T T

6.2.3.6 Training, Validation and Test Set

The ISCX2012 dataset was split into two parts. Days one to six and day seven. Day seven was

used as the test set. Days one to six were used as the training and validation sets. The generated

68

data points where randomly split into two groups. One of these were used as the training set and

the other was used as the validation set.

After obtaining the best model we also tested the model on the Darpa dataset. In order to perform

this, test the Darpa dataset was split into two random parts. One was used for training and the other

was used for validation.

6.3 Surge Test

One of the goals was to find a model that performs well when there are variations in network

traffic. In other words, the model must perform well if there are sudden increases in network traffic

due to unpredictable events. As an example, consider a university campus network where all

grades are released on the same day. On that day there will probably be a surge in network traffic.

However, an NIDS model trained to protect that campus will most likely not have seen data from

that day.

In order to test how well the model works, surges were applied to the network traffic and tested

with the best model obtained from among the 120 models tested. The following steps were

performed to apply surges to the dataset:

- All 7 days of traffic were considered for this test

- The following load ratios were considered: 120%, 140%, 180%, 220%, 260%, 300%,

400%, 500%, 600%, 700%, 800%, 900%, 1000%

- The total number of clean records was obtained.

- The final number of clean records was determined using the equation: 𝑅𝑒𝑠 =

𝑃𝑒𝑟 ×

- A total of 𝑅𝑒𝑠/1000 random records were selected.

69

- The table is sorted based on start time. 1000 records starting at each of the records started

at the time of the records selected in step 5 are selected.

- Another random record was selected.

- The records selected in step 6 were copied and shifted starting at the start time of the record

selected in step 7.

Using the method specified above we were able to increase the amount of regular traffic while

preserving its temporal pattern.

The data points where then generated and split into two random batches for training and validation.

6.4 Implementation

Due to the format of the data the project has two different implementations. One for the ISCX

2012 dataset and another for the Darpa dataset.

70

 ISCX2012 Dataset

6.4.1.1 Phase 1, Obtaining the Dataset

Figure 9 Obtaining the dataset

Download: The dataset was provided by the University of New Brunswick. The content was

downloaded from the website.

Unpacking: The dataset contains a zip file with 25 different files. The zip file was unpacked. The

files in the zip file included:

- readme.txt

- 12 xml files

- 12 xsd files

The extra files were deleted and only the xml files were kept.

Structuring: The 12 xml files were labeled data for the 7 days of attack. Some days contained

several files. Directories were created for each day and the xml files for each day were placed in

each folder.

Download Unpacking

Structuring

Structuring

Structuring

xml to csv

xml o csv

xml to csv

importing

Import

Import

Tag Class

Tag Class

Tag Class

Merging

71

XML to CSV: A custom script for importing csv to MySQL was implemented. In order to be able

to reuse this script all xml files were converted to csv files.

6.4.1.2 Phase 2, Setting Up the Database

Figure 10 Setting up the database

Import: The csv files in each directory are uploaded to the MySQL database. One table is created

for each day. Therefore, for directories with more than one csv file they are all uploaded to the

same table.

Tag Class: Each day consisted of a different type of attack. A new column was created in each

table and if the row was an attack, the day number is put in that column. This was a way of

indicating the type of attack that is occurring on that day.

Merging: After tagging the attacks class the tables were all merged into a single table. This was

because during the research a set of modules were written that perform common tasks. In order for

these modules to be reusable in the different parts of the research the data has to be in a specific

importing

Import

Import

Tag Class

Tag Class

Tag Class

Merging

IP addr

App Type

Direction

Protocol

Prune

72

format for that particular module. The parts explained in the next phase requires all the data to be

in a single table.

IP Addr, App type, protocol, direction: At this point these values are all text values. They needed

to be converted to numeric values. A new table is created for each them. Each table consists of two

columns:

- id

- value

The distinct values for each column are extracted and inserted into the new table. The text values

are then replaced by the ids in the associated table.

Prune: In order to keep day 7 data for testing all records belonging to day 7 are removed

6.4.1.3 Phase 3, Data Generation

Figure 11 Data generation

3 different intervals were considered in this research:

Flows

1s Interval

5s Interval

10s Interval

Copied Att

Not Copied

Copied Att

Not Copied

Copied Att

Not Copied

73

- 1 second

- 5 seconds

- 10 seconds

For each interval 2 different methods for generating the data points were considered:

- The data points that contain attacks were copied multiple times. Once for every attack

record in that interval.

- The data points were not copied

Overall 6 files were generated.

6.4.1.4 Phase 4, Running the Machine Learning Models

Figure 12 Running the machine learning models

Models: Each of the input files are put through 20 different machine learning models for a total of

120 different models. The program written to perform the machine learning models would output

the results on the console.

Post Proc: The outputs of the models were generated in a way that would make debugging easiest.

However, they were not in the best format for performing comparisons. A set of VBA scripts were

written to post process the output from each of the individual files and output the results in a table

that could be used for comparison.

File 1
File 2

…

File 6

Model 1

Model 2

...

Model 20

Post Proc
Post Proc

Post Proc

Post Proc

Merge

74

6.4.1.5 Phase 5, Unseen Traffic and Attack Evaluation

Figure 13 Test set

We also test the model on unseen data and attacks using the day 7 data. Most of the steps are

similar to the steps performed before.

Import: The day 7 csv file is imported into a new table in the MySQL database.

IP Addr, App Type, Protocol, Direction: In the previous part a new table was created for each

of these four columns and text values for the columns where replaced with numeric values based

on their Ids in these tables. In this part we don’t generate the tables again but rather use the existing

tables to replace the textual values of these four columns with numeric values.

Gen Feats: The required feature files are generated.

Model: The top 20 models are run based on the generated files.

Post Proc: Similar to the previous phase the output data from the machine learning models were

post processed by a VBA script

Merge: The results were merged into a table for comparison.

Day 7 Import

IP Addr

App Type

Protocol

Direction

Gen Feats

Model Post Proc Merge

75

6.4.1.6 Phase 6, Surge Test

Figure 14 Surge test

As mentioned one of the requirements of any generated model is to perform well under surges in

network traffic. In this phase we apply surges to the network traffic and reapply the best machine

learning model obtained in the previous sections.

Step 1: A new table is generated for each surge value. 0% would be an exact replicate of the

current flow table, while 100% would a table with twice as much regular traffic as the current flow

table.

Step 2, Feat Ext: The required features are generated from the newly generated flow tables.

Step 3, ML Model: The output files are put through the machine learning model.

100%

Flows

0%

120%

1000%

140%

…

Feat Ext

Feat Ext

Feat Ext

Feat Ext

Feat Ext

Feat Ext

ML Model

ML Model

ML Model

ML Model

ML Model

ML Model

Output
Output Output

VBA

76

Step 4, VBA: The results are post processed and merged into a table for analysis.

 Darpa Dataset

The purpose of the Darpa dataset is to prove the generality of the model and to show that the model

is not only effective on one dataset. It also allows us to compare our results with previous work in

this field. If the top model obtained using the ISCX dataset proves effective, then we have been

able to prove the effectiveness of the model.

The main issue with the Darpa dataset is that the extracted features do not give us all the predictors

we require in order to run our model. Therefore, we need to manually extract the features from the

binary pcap files and match the flows with the labeled files. Below I have explained the steps

required to achieve this.

6.4.2.1 Phase 1, Obtaining the Dataset

Figure 15 Obtaining the dataset

The Darpa Dataset consists of 7 weeks of data. In each week data had been collected for 5 days.

There was a total of 35 days of collected data. The data can be found on the MIT Lincoln labs

website. In order to perform the model over this dataset both the pcap files along with the labels

were needed. One issue with the data was that it was scattered on multiple pages over the website.

Download Unpacking

pcap

Download Unpacking

labels
Structuring

Clearing

Clearing

77

The labels were also in an entirely different location. A group of scripts were written to download

and structure the data in an easier to user format.

Download: Each of the 35 different pcap files where separately located and downloaded into a

central location. The same was done for the labels.

Unpacking and Clearing: Each pcap file and label was zipped along with a series of extra files

that were not required. After extracting each zip file, the extra content was removed.

Structuring: The data was then placed in a structured directory format. 7 folders one for each

week. In each of these folders there were 5 additional folders one for each day. In each of those

folders there was 1 pcap file and one label file.

6.4.2.2 Phase 2, Setting Up Database

Figure 16 Setting up the database

Unlike the ISCX Dataset where the flows were provided to us, in this dataset we need to generate

the flows ourselves.

Extract: Pcap files consist of binary data. While they are a very compact form of storing data, we

need to extract human readable values from these files. In this first stage certain feature that we

are interested in are extracted from these files and outputted into a csv file. Originally a program

pcap File

pcap File

pcap File

Extract PreProc Import

Ip Addr

78

was written in C to perform. Later it was realized that tshark (a command line version of wireshark

for linux) is also able to do this and it was used.

PreProc: Corrupt data in any of the network layers will result in invalid data appearing in the

output columns of the previous stage. In this stage the checksums extracted and computed from

the previous stage are compared, both in the ethernet layer and in the network layer. If there are

discrepancies, the payloads are nulled.

Import: The data obtained in the previous stage is inserted into a MySQL database. The data from

all the Pcap files will appear as one big table.

IP Addr: In this stage an Ip address table is created. All the unique Ip addressed that appear in the

Pcap files are extracted and inserted into this table. The packet tables ip address fields are then

linked back to this table.

6.4.2.3 Phase 3 Flow Generation:

Packets alone do not provide much information about the traffic. In this stage all the flows are

extracted and inserted into a new table. This table is linked back to the packet table to be able to

later obtain aggregated features such as the number of packets or bytes transferred by the flow.

In order to generate flows 5 features of the packets are considered

- Source IP

- Destination IP

- Source Port

- Destination Port

- Protocol

79

If the packet only contains IVP4 layer data, the port values would be set to negative 1. Below we

present the algorithm used for generating the flows. The algorithm has a simple implementation

therefore it was chosen. Later we present another algorithm which is scalable and can be used in a

deployment version of this model (Figure 17).

Figure 17 Flow generation

Get Packet: The packet table is sorted by the time column. The first packet that has not been

assigned a flow is selected.

Flow Exists: The flow table is checked if a matching flow exists for the packet. In order for a

matching flow to exists the following conditions must be met:

1 – The 5 values mentioned above must match (IP address source and dest, port source and dest

and protocol)

2 -The last packet seen by the flow should not have been more than 60 seconds ago.

Update Packet: The packets flow column is update to match the id of the associated flow in the

flow columns

Get Packet Flow
Exists

Yes
Update Packet

Update Flow

Insert Flow

80

Update Flow: The end time of the flow is updated in the flow table. This is used for matching the

second criterion in the flow exists section.

Insert Flow: A new record is inserted into the flow table. The start and end times are set to the

time of the packet.

6.4.2.4 Phase 4, Matching Labels

In the previous section we were able to generate flows, which can then be used to generate the

required features for our machine learning model. The issue is that the extracted labels are not

labeled. In order to label them we need to match them with the provided xml file that contains the

tags for the flows (Figure 18).

Figure 18 Maching labels

Import: The labeled xml files are imported into the MySQL database. They are all combined into

a single table.

IP Addr: One of the tags in the xml file is the source and destination ip address. As we already

have a table with a list of all Ip addresses, the Ip addresses in this table are matched with the ones

in the previous table.

Match: The labeled flows are matched with the flows obtained using the Pcap file by looking at:

- source and destination ip address

labels

Labels

Labels

Import Ip Addr

Match

Flows

81

- source and destination port number

- start day and time of the flow

6.4.2.5 Phase 4, Post Process

Figure 19 Post Process

PostProc: The model requires the total bytes and packets transferred during the flows. As the flow

table and the packet table are linked and indexed, this information is obtained by aggregating the

information in the packet table and applying it to the flow table.

App Type: Unlike the previous sections were the App Type was provided, this is however not

always the case. A good indicator of the application that was used to generate the flow are the port

numbers in the connections. Although this is not always an exact one to one match, however it can

be said that there is some correlation between port numbers and the application used in the

connection.

In every connection there is normally two ports. One on the receiving side and another on the client

side. The client side is normally some random value, it is usually the receiving side that has a well-

known port number. The following procedure was used for generating the App Type column:

1- If the flow is not transport layer, then the app type is set to -1.

Post Proc

App Type

Protocol

Direction

Prune

82

2- As the better-established port numbers are below 1024 we only consider these. If both port

numbers are larger than 1024, we set the application type to 1025.

3- If both port numbers are below 1024 we choose the smallest (although this would be a very

unusual case as normally there is only one side uses a privileged port number).

4- If one port number is larger than 1024 and the other is smaller, we set the app type as the

smaller port number. So for example a flow might have an app type of 80, 22, 443, …

After obtaining the app type of each flow, the unique values are obtained and put in a separate

table. The ids of these records are then replaced by the app types in the original table.

Protocol: For transport layer flows this column would be the transport layer protocol. For other

flow types this would be set as NA. Similar to the app type column explained above a new table

is generated and the unique values are inserted into this table. The ids are then replaced by the

protocols in the original flow table.

Direction: In our research we consider a node as local if it belongs to any of the following

subdomains:

- 10.0.0.0 - 10.255.255.255

- 172.16.0.0 - 172.31.255.255

- 192.168.0.0 - 192.168.255.255

All other nodes are considered remote. Depending on the direction of the flow, it will be labeled

as either LL, RL, LR or RR.

Prune: The different modules in this project were written at different times and they expect

different format for their input data. In this stage we rename the columns in the database to match

the format expected by the other modules in the program.

83

6.4.2.6 Step 5, Applying Surge, Generating Features and and Running Model

This is similar to phase 5 of the ISCX dataset. Surges are applied, features are generated and the

machine

6.5 Deployment and Architecture

The steps outlined in the previous sections are the steps taken in the research phase of the project.

Once the best model is obtained we need a scalable way to apply the model in real time to incoming

network traffic. We propose the following architecture for the actual deployment (Figure 20).

Figure 20 Deployment Architecture

logging phase: In this phase the network traffic is logged along with controlled labeled attacks.

This information will be stored in Pcap files along with a detailed list of attacks that have taken

Sim Attacks

Storage

Logging

logging phase

Database

Feat Ext

Modeling

Training Phase Protection Phase

Flow Flow Flow

Feat Feat Feat

Detection Detection Detection

84

place during this period to use as labels. This phase would normally last a couple of weeks. No

real-time response is necessary at this stage.

Training phase: In this phase the information gathered during the logging phase is extracted from

the Pcap files, inserted into the database and structured. Then a model is built similar to what was

done in this project. Again, this stage does not require any real-time response either. Even if

retraining is required on regular periods this is still feasible as the training the machine learning

models did not take considerable amount of time in our research.

Protection phase: This is the only phase that requires real time response. As traffic is captured

the flows are to be extracted in real time. This can either be done by a variant of the program that

we have implemented in this research, or using already available hardware that generate flow in

real time. After the flow has been generated the rest of the process is scalable and can be done on

parallel processors or even clusters of computers. A separate process is assigned to each flow to

generate the required features. The features are then put inside the trained model and the result is

output. Again, as the model is already generated this would take very little computational power

and is scalable.

6.6 Results

 ISCX 2012 Dataset

The results have been brought in the table below:

- Model: The name of the model. Details can be found in the sections above

- Total Accuracy: The accuracy of the model using all the records

- Attack Accuracy: The accuracy of the model only considering attack records

85

- False Alarms: the ratio of false alarms

- Predictors: This is a list of predictors used in the model. They are displayed in the order

selected by the forward selection model. In the ISCX2012 dataset the predictors were as

follows:

o 1-108: Applications (Table 4)

o 109-114: protocols (Table 5)

o 115-116: Unique local and remote nodes

o 117-120: Directions

o 121: packet count

o 122: byte count

Some rows have an NA. This is caused by the instability and the inability of the model to converge

using the provided data and model (Table 10).

Table 10 Results

Model
Total

Accuracy
Attack

Accuracy
False

Alarms
Predictors

LOGI1E0S0C0 0.9893 0.8752 0.0037
119, 120, 117, 16, 86, 66, 26, 30,
114, 6, 35, 91, 76, 28, 92

LOGI1E0S0C1 0.9774 0.9420 0.0073
86, 117, 118, 35, 16, 66, 91, 24,
29

LOGI1E0S1C0 0.9894 0.8760 0.0037
119, 120, 117, 16, 86, 66, 26, 30,
35, 114, 91, 46, 6, 44, 80

LOGI1E0S1C1 0.9777 0.9417 0.0070 86, 117, 118, 35, 16, 116, 66, 9

LOGI1E1S0C0 0.9896 0.8685 0.0037
119, 35, 120, 117, 26, 16, 25,
115, 91, 74, 54, 96, 28, 81, 22

LOGI1E1S0C1 0.9790 0.9424 0.0059
117, 118, 86, 16, 66, 35, 96, 91,
74, 30, 25

LOGI1E1S1C0 0.9896 0.8723 0.0036
119, 35, 120, 117, 16, 26, 25, 66,
91, 74, 96, 11, 105, 49

LOGI1E1S1C1 0.9790 0.9424 0.0059
117, 118, 16, 86, 66, 35, 96, 91,
74, 30, 25

86

Model
Total

Accuracy
Attack

Accuracy
False

Alarms
Predictors

LOGI5E0S0C1 0.9519 0.8635 0.0190
26, 86, 118, 11, 35, 30, 66, 81, 8,
62

LOGI5E0S1C0 0.9754 0.8351 0.0052
35, 91, 86, 96, 117, 118, 26, 16,
66, 30, 54, 116, 102, 122

LOGI5E0S1C1 0.9519 0.8635 0.0190
26, 86, 118, 11, 35, 30, 66, 81, 8,
62

LOGI5E1S0C0 0.9696 0.1853 0.0041 116, 35, 119, 11, 6, 91, 74

LOGI5E1S0C1 0.9661 0.8751 0.0073
117, 118, 66, 16, 35, 11, 30, 91,
96, 33, 92, 74

LOGI5E1S1C0 0.9698 0.1856 0.0040
116, 35, 11, 119, 28, 91, 74, 105,
48

LOGI5E1S1C1 0.9664 0.8743 0.0069
117, 118, 16, 66, 35, 11, 91, 96,
28, 74, 116, 30, 86, 46

LOGI10E0S0C0 0.9650 0.4836 0.0040 119, 86, 91, 11, 116, 74
LOGI10E0S0C1 0.9448 0.8420 0.0225 118, 86, 11, 66, 35, 96, 60
LOGI10E0S1C0 0.9655 0.4841 0.0040 119, 74, 86, 11, 91, 28

LOGI10E0S1C1 0.9602 0.8564 0.0100
25, 117, 119, 78, 35, 118, 11, 91,
74, 30, 81, 105, 95

LOGI10E1S0C0 0.9731 0.9363 0.0052
11, 35, 119, 120, 74, 91, 26, 117,
25, 105, 81, 95, 46, 96

LOGI10E1S0C1 0.9631 0.8561 0.0070
118, 117, 119, 16, 35, 11, 66, 30,
91

LOGI10E1S1C0 0.9737 0.9340 0.0050
119, 11, 35, 120, 26, 117, 25, 54,
95, 81, 91, 105, 46, 28, 42, 116

LOGI10E1S1C1 0.9640 0.8561 0.0062
118, 117, 119, 35, 16, 11, 91, 25,
26, 74, 86, 30, 78, 105, 54, 115,
81, 20, 96, 97

LDAI1E0S0C0 0.9682 0.9373 0.0221 26, 54, 66, 30, 105, 16, 116, 91

LDAI1E0S0C1 0.9481 0.9366 0.0339
26, 86, 119, 25, 116, 30, 78, 35,
121, 91, 101

LDAI1E0S1C0 0.9775 0.9629 0.0183
54, 66, 30, 105, 16, 91, 26, 119,
117, 118

LDAI1E0S1C1 0.9506 0.9369 0.0315
26, 86, 119, 25, 116, 91, 16, 35,
66, 11, 81

LDAI1E1S0C0 0.9866 0.9261 0.0085
86, 118, 117, 16, 26, 66, 105, 91,
74, 114, 95, 51

LDAI1E1S0C1 0.9728 0.9238 0.0056
117, 118, 13, 16, 35, 76, 91, 116,
74, 6, 5, 4, 121, 19, 41

LDAI1E1S1C0 0.9882 0.9315 0.0071
86, 118, 117, 16, 26, 119, 28,
120, 104

87

Model
Total

Accuracy
Attack

Accuracy
False

Alarms
Predictors

LDAI1E1S1C1 0.9740 0.9371 0.0081
117, 118, 13, 16, 35, 76, 86, 110,
119, 33, 78

LDAI5E0S0C0 0.9637 0.9563 0.0210 54, 66, 30, 91, 16, 105, 119
LDAI5E0S0C1 NA NA NA NA
LDAI5E0S1C0 0.9638 0.9272 0.0143 119, 120, 117, 16, 26, 118, 42
LDAI5E0S1C1 NA NA NA NA
LDAI5E1S0C0 0.9669 0.0951 0.0069 118, 35, 11

LDAI5E1S0C1 0.9213 0.9070 0.0216
54, 116, 66, 86, 30, 35, 96, 16,
119, 102, 91, 90, 81, 60, 74

LDAI5E1S1C0 0.9741 0.8011 0.0075
118, 11, 35, 74, 116, 26, 117, 16,
96, 66, 95, 81, 78, 91, 60, 113

LDAI5E1S1C1 0.9417 0.9313 0.0162
54, 116, 66, 86, 30, 35, 96, 119,
16, 117, 11, 91, 120, 46, 93

LDAI10E0S0C0 0.9392 0.9613 0.0323 119, 120, 117, 118, 105
LDAI10E0S0C1 NA NA NA NA

LDAI10E0S1C0 0.9671 0.9784 0.0139
117, 26, 66, 118, 16, 30, 54, 105,
91, 96, 25, 4, 114, 35, 78, 6

LDAI10E0S1C1 NA NA NA NA
LDAI10E1S0C0 0.9624 0.3720 0.0076 11, 35, 118, 25, 60

LDAI10E1S0C1 0.9321 0.9324 0.0167
116, 86, 117, 35, 66, 33, 6, 119,
16, 74

LDAI10E1S1C0 0.9634 0.3759 0.0087 11, 118, 35, 119, 30, 81, 29

LDAI10E1S1C1 0.9321 0.9324 0.0167
116, 86, 117, 35, 66, 33, 6, 119,
16, 74, 29, 17

MLDAI1E0S0C0 0.9834 0.9542 0.0134 117, 118, 16, 26, 28, 119
MLDAI1E0S0C1 0.9468 0.9548 0.0404 118, 117, 119, 122, 24

MLDAI1E0S1C0 0.9761 0.9578 0.0208
117, 118, 16, 95, 26, 28, 25, 46,
91, 74, 51, 121

MLDAI1E0S1C1 0.9468 0.9548 0.0404 118, 117, 119, 122, 24
MLDAI1E1S0C0 0.9756 0.1894 0.0000 91, 74, 2, 51, 41

MLDAI1E1S0C1 0.9769 0.9528 0.0097
117, 118, 110, 16, 35, 11, 95, 91,
74, 13, 19, 26, 96

MLDAI1E1S1C0 0.9756 0.1894 0.0000 91, 74, 89, 51
MLDAI1E1S1C1 0.9756 0.9503 0.0103 118, 117, 110, 16, 35, 119, 115

MLDAI5E0S0C0 0.9652 0.9669 0.0206
117, 118, 91, 16, 28, 11, 46, 66,
30, 54, 114, 95

MLDAI5E0S0C1 0.6428 0.9958 0.3547 46

MLDAI5E0S1C0 0.9677 0.9583 0.0185
119, 91, 11, 95, 46, 120, 117, 26,
25, 96, 16, 118, 78, 81, 28, 6, 2

MLDAI5E0S1C1 0.6428 0.9958 0.3547 46

88

Model
Total

Accuracy
Attack

Accuracy
False

Alarms
Predictors

MLDAI5E1S0C0 0.9755 0.8887 0.0075
11, 35, 118, 120, 26, 91, 25, 96,
74

MLDAI5E1S0C1 0.9226 0.8987 0.0152
116, 86, 117, 11, 118, 16, 35,
119, 84, 78

MLDAI5E1S1C0 0.9746 0.8371 0.0070 11, 35, 117, 120, 26, 16, 53, 4, 91

MLDAI5E1S1C1 0.9228 0.9071 0.0201
116, 86, 117, 118, 11, 35, 119,
43, 12

MLDAI10E0S0C0 0.9692 0.9744 0.0123
119, 91, 11, 46, 86, 120, 117, 26,
16, 30, 66, 54, 105, 115, 25

MLDAI10E0S0C1 NA NA NA NA

MLDAI10E0S1C0 0.9584 0.9802 0.0237
117, 118, 26, 66, 91, 28, 11, 46,
95, 86, 30, 119

MLDAI10E0S1C1 NA NA NA NA
MLDAI10E1S0C0 0.9648 0.3910 0.0079 11, 35, 120, 74, 119, 25, 91

MLDAI10E1S0C1 0.9087 0.9078 0.0215
54, 66, 116, 86, 35, 11, 30, 114,
119, 4, 16, 81, 91

MLDAI10E1S1C0 0.9641 0.4568 0.0083
11, 35, 118, 54, 91, 51, 119, 30,
114, 17

MLDAI10E1S1C1 0.9091 0.9095 0.0224
54, 66, 116, 86, 11, 35, 30, 114,
119, 16, 4, 81, 91, 6, 102, 74

MQDAI1E0S0C0 0.9707 0.9528 0.0265 117, 118, 122
QDAI1E0S0C0 0.8171 0.9853 0.1814 117, 96, 102, 66
QDAI1E0S0C1 0.3178 0.9977 0.6816 46
QDAI1E0S1C0 NA NA NA NA
QDAI1E0S1C1 0.3178 0.9977 0.6816 46
QDAI1E1S0C0 0.9758 0.0420 0.0071 33, 28
QDAI1E1S0C1 0.9806 0.9564 0.0070 117, 86, 16, 118, 114, 11, 35, 66
QDAI1E1S1C0 0.9758 0.0421 0.0071 33, 28, 95

QDAI1E1S1C1 0.9821 0.9620 0.0071
117, 86, 16, 118, 114, 11, 35, 66,
60, 78, 104, 26, 116, 61, 110, 95,
46, 105

QDAI5E0S0C0 NA NA NA NA
QDAI5E0S0C1 NA NA NA NA
QDAI5E0S1C0 NA NA NA NA
QDAI5E0S1C1 NA NA NA NA
QDAI5E1S0C0 0.9725 0.0485 0.0112 49, 104, 95
QDAI5E1S0C1 0.9273 0.9076 0.0159 116, 86, 118, 117, 16, 53
QDAI5E1S1C0 0.9725 0.0485 0.0112 49, 104, 95
QDAI5E1S1C1 0.9273 0.9076 0.0159 116, 86, 118, 117, 16, 53

QDAI10E0S0C0 0.0497 1.0000 0.9503 107

89

Model
Total

Accuracy
Attack

Accuracy
False

Alarms
Predictors

QDAI10E0S0C1 NA NA NA NA
QDAI10E0S1C0 0.0497 1.0000 0.9503 107
QDAI10E0S1C1 NA NA NA NA
QDAI10E1S0C0 0.9697 0.0325 0.0111 49, 95, 115, 114
QDAI10E1S0C1 0.9095 0.9190 0.0291 116, 86, 119, 20
QDAI10E1S1C0 0.9697 0.0325 0.0111 49, 95, 114, 115
QDAI10E1S1C1 0.9095 0.9190 0.0291 116, 86, 119, 20
MQDAI1E0S0C1 NA NA NA NA
MQDAI1E0S1C0 0.9759 0.9538 0.0211 117, 118, 26
MQDAI1E0S1C1 NA NA NA NA
MQDAI1E1S0C0 NA NA NA NA
MQDAI1E1S0C1 0.9686 0.9615 0.0205 117, 118, 26
MQDAI1E1S1C0 NA NA NA NA
MQDAI1E1S1C1 0.9686 0.9615 0.0205 117, 118, 26
MQDAI5E0S0C0 0.3990 0.9872 0.5980 118, 121, 122
MQDAI5E0S0C1 0.6418 0.9969 0.3564 122
MQDAI5E0S1C0 0.1631 0.9883 0.8358 96, 121, 122
MQDAI5E0S1C1 0.6418 0.9969 0.3564 122
MQDAI5E1S0C0 NA NA NA NA
MQDAI5E1S0C1 0.9288 0.9242 0.0247 118, 119, 26, 78
MQDAI5E1S1C0 NA NA NA NA
MQDAI5E1S1C1 0.9288 0.9242 0.0247 118, 119, 26, 78

MQDAI10E0S0C0 0.8786 0.9383 0.0874 30
MQDAI10E0S0C1 NA NA NA NA
MQDAI10E0S1C0 0.8810 0.9507 0.0861 66
MQDAI10E0S1C1 NA NA NA NA
MQDAI10E1S0C0 NA NA NA NA
MQDAI10E1S0C1 0.8930 0.9107 0.0393 120, 119, 26, 25
MQDAI10E1S1C0 0.9558 0.0293 0.0144 96
MQDAI10E1S1C1 0.8930 0.9107 0.0393 120, 119, 26, 25

6.6.1.1 Model Evaluation

The best model is a model that has the best attack prediction along with the lowest false alarms. In

order to find the best model, we assign 2 numbers to each model:

1- First Number: We order the models from best model in predicting attacks to worst. The

number will be the models rank in the list

90

2- Second number: We order the models in order of lowest false alarms to highest. The

number will be the models rank in this list.

The best models will be the models where the sum of the 2 numbers above is least. The top 20

models are printed below (Table 11):

Table 11 Top 20

Model Attack Accuracy
Attack

Ranking
False

Alarms
False Alarm

Ranking
Total

Ranking
QDAI1E1S0C1 0.9564 23 0.0070 21 44
QDAI1E1S1C1 0.9620 17 0.0071 27 44
LOGI1E1S0C1 0.9424 33 0.0059 15 48
LOGI1E1S1C1 0.9424 34 0.0059 16 50

LOGI10E1S1C0 0.9340 43 0.0050 11 54
LOGI10E1S0C0 0.9363 42 0.0052 12 54
LOGI1E0S1C1 0.9417 36 0.0070 20 56

MLDAI10E0S0C
0

0.9744 14 0.0123 45 59

LDAI10E0S1C0 0.9784 13 0.0139 47 60
LOGI1E0S0C1 0.9420 35 0.0073 29 64
LDAI1E1S0C1 0.9238 52 0.0056 14 66

MLDAI1E1S0C1 0.9528 30 0.0097 38 68
LDAI1E1S1C0 0.9315 46 0.0071 24 70
LOGI1E0S0C0 0.8752 66 0.0037 5 71
LOGI1E0S1C0 0.8760 65 0.0037 6 71
LOGI1E1S1C0 0.8723 69 0.0036 3 72

MLDAI1E1S1C1 0.9503 32 0.0103 40 72
LDAI1E0S1C0 0.9629 16 0.0183 56 72
LDAI1E1S1C1 0.9371 39 0.0081 34 73

MLDAI1E0S0C0 0.9542 27 0.0134 46 73

The results of applying the top model to the data in day 7 can be seen below (

Table 12):

91

Table 12 Day 7 Results

Model
Total

Accuracy
Attack

Accuracy
False

Alarms
QDAI1E1S0C1 0.9535 0.8302 0.0030

6.6.1.2 Interpretation of the Results

Interval size: Figure 22 shows thatFigure 1 most of the top 20 models had the 1s interval size as

their interval size. This shows that following sharp changes in network traffic rather than an

averaged effect over an interval was better for detecting the attacks in the dataset. The intuition

behind this can be seen in Figure 21.

Figure 21 Effects of different interval sizes

While at the time t=19 there was an anomaly, but by averaging the effect over 10 second intervals

we have basically faded out the anomaly. Although in our current dataset using a small interval

has improved performance this may not always be the case. As smaller intervals will also catch a

lot of noise.

92

The figures below show the distribution of the parameters selected by the top 20 models

Figure 22 Ratio of interval size selected by the top 20 models

Copying Attack Records: Due to the fact that the number of attack records were far less than the

number of normal records one of the ideas that were tried was to copy the attack records by the

number of attack flows it represents as it was mentioned in the previous sections, in order to

generate data points there is a sliding window that slides over 1 second at a time. In each interval

we consider the flows that start during that time period. I would show the intervals that contain

attack flows multiple times, based on the number of attack flows that it contains. As it can be seen

in Figure 23 there was a 50/50 split in the top 20 models choosing between copying and not

copying. This shows that by selecting enough features we can obtain good accuracy even when

the number of attack records is much less than the number of normal records

93

Figure 23 Ratio of top 20 models that considered copying the attack records

Evaluation Based on Attack Records: In the feature selection phase there were 2 steps. In the

first step each of the predictors are used in a single predictor model and the error is calculated.

Then the best among all these predictors is chosen. 2 different approaches were considered in this

step for calculating the error. In one approach the error was calculated based off all the records. In

the other approach the error was calculated only based off attack records. Figure 24 shows that the

top 20 models leaned towards the second approach. This was mainly because we had much less

attack records than normal records. By calculating the error based off attack records more emphasis

is placed on these records.

94

Figure 24 Ratio of the top 20 models that the feature evaluation was based on the attack records

Evaluation Based on Validation Set: Similar to the case of “Evaluation based on attack records”

this model was involved with the method of calculating the error term in the first step of the feature

selection phase. The usual method for calculating the error term is based off the training set.

However, another method was also considered were the error term is calculated based off the

validation set. This may cause some overfitting, however since the models were validated based

off a third dataset, this was not of much concern. Figure 25 shows that the top 20 models showed

a 50/50 split between the 2 methods, indicating that both methods perform as well.

95

Figure 25 Ratio of the top 20 models that the feature evaluation was based on the validation set

Top 20 predictors:

In Figure 26 I have plotted the top predictors selected by the models

96

Figure 26 Predictors selected in the top 20 models

117: The predictor that appeared most in the top 20 models was predictor 117. This predictor

showed the ratio of remote to local connection during that interval. By ratio we are referring the

ratio of remote to local connection over the sum of:

- Remote to remote
- Local to local
- Local to remote
- Remote to local

This does fall in line with the fact that during DDOS attacks there will be a lot of connections

initiated with the local nodes from remote addresses

16 (FTP), 35(IRC Chat), 91 (Telnet), 66 (POP), 86(SSH), 26(HTTP Web), 11(DNS),

30(IMAP), 25(HTTP Image Transfer): These were also among the top 15 predictors used by the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ra
tio

 o
f t

op
 2

0
m

od
el

s
th

at
 s

el
ec

te
d

th
at

 p
re

di
ct

or

Predictor

Ratio of top 20 Models Using Predictor

97

top 20 models. The machine learning models detected that monitoring the traffic from these

applications is critical as they pose the most risk. FTP and SSH could be used for brute force

attacks. IRC, DNS, POP, IMAP for DDOS attacks. Telnet and HTTP for custom made attacks.

118: This was the 4th most common predictor among the top 20 models. Predictor 118 is the ratio

of local to remote connections initiated during that time interval. As most the attacks in the data

sets were remote to local, predictor 118 was a good indicator that the connection is not an attack

199: This was the 9th most common predictor among the top 20 models. Predictor 119 is the ratio

of remote to remote connections initiated during that time interval. While a remote to remote

connection is a very suspicious connection but due to the fact that our training dataset did not label

any of the remote to remote connection as attacks, similar to 118 this predictor was an indicator

that the connection is not an attack.

120: This was the 2nd last most common predictor among the top 20 models. Predictor 120 is the

ratio of local to local connections initiated during that time interval. An increase in this parameter

would indicate that a lot of activity is happening inside the network. If this predictor raises beyond

a certain amount, then it could be an indicator of an attack.

Other Predictors: Asides from the predictors above there were several other predictors that were

not among the top 15 predictors selected. Among these predictors there was the ip protocol.

Initially it was assumed that this predictor would have an impact on our models, but results show

otherwise. This was mainly due to the fact that attacks can happen using any type of protocol (TCP,

UDP, …). Therefore, keeping track of the protocol is not very useful in detecting attacks.

Another predictor that was initially assumed to have an impact on our models was the ratio of

connection per unique IP. In other words, an average fan-in and fan-out over all nodes active during

98

that interval. After further investigation the reason why, these predictors were not considered

important became apparent. The attacks were mainly from a large number of node to a large

number of nodes. Therefore, the average fan-in and fan-out per active node isn’t a very large

number.

The last 2 predictors that were not considered important by the model, was the average number of

packets per connection and the average bytes per connection. The reason for this was because the

attack connection had similar packet and traffic patterns to normal connections.

 Surge Test

After running the model on each of the ratios above the results have been plotted below (Figure

27):

Figure 27 Performance deterioration with increase in normal traffic using the ratio with the prior all
method

99

It can be seen that increasing normal flow causes the results to become very unstable and highly

correlated with the split. In order to overcome this several other methods are tested and plotted

below (Figure 28):

Figure 28 Performance deterioration with increase in normal traffic using the ratio method and the F1
score

Using the F1 score did not improve the instability. Using full flow counts did improve the attack

accuracy at the cost of false alarms (Figure 29).

100

Figure 29 Performance deterioration with increase in normal traffic using full flow counts and the prior
all methods

By using the F1 score and full flows we managed to find highly stable results even in the presence

of increase traffic (Figure 30).

Figure 30 Performance deterioration with increase in normal traffic using the full flow counts and the
f1 score

101

 Comparison with Other Papers

As different papers have used different metrics for their results, there needs to be a way to display

them using the same metric. In the equations below, I have assumed that TP, TN, FP, FN are ratios:

Equation 18

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

Equation 19

𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 = 𝐹𝑃

Equation 20

𝐴𝑡𝑡𝑎𝑐𝑘 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation 21

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ⇒ 𝑇𝑃 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐹𝑃 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ⇒ 𝐹𝑃

=
𝑇𝑃(1 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Equation 22

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ⇒ 𝑇𝑃 × 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝐹𝑁 × 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 ⇒ 𝐹𝑁 =

𝑇𝑃(1 − 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑅𝑒𝑐𝑎𝑙𝑙

Equation 23

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 ⇒ 𝑇𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑇𝑃

For simplicity we will denote:

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∶ 𝐴

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 𝑃

102

𝑅𝑒𝑐𝑎𝑙𝑙 ∶ 𝑅

Equation 24

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 = 1 ⇒ 𝑇𝑃 + 𝑇𝑃 + 𝐴 − 𝑇𝑃 +
𝑇𝑃(1 − 𝑅)

𝑅
+

𝑇𝑃(1 − 𝑃)

𝑃
= 1

⇒ 𝑇𝑃 1 − 1 +
1

𝑅
− 1 +

1

𝑃
− 1 = 1 − 𝐴 ⇒ 𝑇𝑃 =

1 − 𝐴

1
𝑅

+
1
𝑃

− 2

Using the equations above all results will be converted into the same basis (Table 13).

Table 13 Comparison with other work

Paper Total Accuracy Attack Accuracy False Alarms

This Research 0.982 0.989 0.026

[19] 0.76 0.75 0.09

[20] 0.96 0.98 0.064

[21] 0.957 0.39 0.007

103

7 Semi-Supervised Model of Network Under Attack (Part 3)

An perfect model would be a fully unsupervised model that only requires the regular network

traffic to train on and would be able to detect attacks without being trained on them. Although we

don’t look into fully unsupervised models in this research, however in this part of the research we

test semi supervised models on two different datasets. The datasets we tested our model on were

the ISCX2012 and ISCX2014 dataset.

7.1 Dataset

Two different datasets were used in this part of the research:

- The ISCX2012 dataset

- The ISCX2014 dataset

 ISCX2012 Dataset

The details of this dataset have been provided in chapter 6.

 ISCX2014 Dataset

The ISCX2014 dataset consists of a series of botnet attacks. The following botnets have been used

in the dataset: following botnets have been used in the dataset:

- Neris

- Rbot

- Virut

- NSIS

- SMTP Spam

104

- Zeus

- Zeus Control

- UDP Storm

- Tbot

- Zero Access

- Weasel

- Smoke Bot

- ISCX IRC Bot

- Menti

- Sogou

- Murlo

- Blackhole

- Osx_trojan

-

Unlike the 2012 dataset where the flows have already been extracted, the 2014 dataset only

provides a set of pcap files and the flows and all other information need to be extracted. The only

information provided by the dataset is the list of malicious IP addresses. After the flows have been

generated the flows that originate or terminate in one of the malicious IPs are tagged as attacks.

7.2 Model

The model consists of two stages, the training and the detection stage.

105

7.3 Training Phase

In this stage, the model is trained based of regular network traffic. The model does not require any

form of labeled data sets for this training, therefore it is considered unsupervised. The outcome of

this stage are a set of clusters, (or to be more precise a set of cluster centroids). The training phase

proceeds as follows:

 Step 1, Obtaining Data Points

Figure 31 Obtaining the data points

As network traffic arrives they are captured and converted into Pcap files. As Pcap files are in

binary format the relevant information needs to be extracted from them and imported into a

database for easier access. This part was explained in Phase 2 of the Darpa dataset of chapter 6.

After the extracted features have been uploaded in the database flows need to be extracted from

them. This was explained in Phase 4 of the Darpa dataset of chapter 6.

While flow data provides useful information about a single flow however it lacks the required

information to capture temporal data. In order to better capture temporal data, we generate a new

set of predictors from the flow information.

In order to generate these new predictors, we consider intervals of T seconds. For each interval of

time we end up with one vector of predictors. The intervals are overlapping considering a

granularity of 1 second. For example, considering 10 second intervals, the first vector of predictors

Net Traffic Pcap Extract Flow Gen

Feat Gen

106

will be for the time interval 0~10, the second vector of predictors will be for the time interval 1~11

and so on.

In our model we consider seven different intervals:

- 1 second intervals

- 5 second intervals

- 10 second intervals

- 20 second intervals

- 30 second intervals

- 60 second intervals

- 120 second intervals

The predictors generated in each interval are the same as those explained in chapter 6.

 Step 2, Clustering

In step 1 for each interval a vector is obtained. The elements of this vector have been discussed

above. Figure 32 shows the vector along with where each predictor is coming from. The first N

columns are the values associated with the protocol. The next N columns are the values associated

with the applications. The next 2 columns are the number of unique local and remote nodes. The

next 4 columns are the values associated with direction. The last 2 columns are for the packet and

byte count.

Figure 32 Data points

107

Protocol App Type Nodes Direction Packet Count Byte Count

Using the kmeans++ algorithm the vectors are clustered. After obtaining these clusters we can

proceed to the detection phase.

7.4 Detection Phase

Once we have trained our model we can use it to detect attacks. The detection is performed as

follows.

 Step 1, Obtaining Data Points

This step is similar to the training phase with one difference that for the actual use case it would

be performed in an online manner. As network traffic is logged, the predictors are immediately

extracted.

 Step 2, Cluster Assignment

As each data point is obtained it is assigned to one of the clusters obtained in the training phase.

Each data point is assigned to the cluster for which it has the smallest Euclidean distance with the

clusters centroid.

 Step 3, Attack Detection

As each data point is generated, and assigned to a cluster it is put to two tests. If either one of these

tests pass the point is considered to be an anomaly.

108

7.4.3.1 Test 1

In order to perform the test two parameters, need to be determined first:

𝜎: Each of the clusters obtained in the training phase has a size (the number of points in the cluster).

This is the variance in size between the different clusters.

c: This is a tuning parameter that needs to be determined.

If a point falls in a cluster with less than 𝜎𝑐 points then it is considered an anomaly. The reason

for considering this test is to consider the possibility of anomalies existing in the original training

data set. Should this happen assuming that the number of anomalies is low, this tests leaves room

for those clusters generated by the anomalies to be recognized as anomalous.

7.4.3.2 Test 2

In order to perform the test two parameters, need to be determined first:

𝜎′: Each point in a cluster has a distance from the centroid. This is the variance of all such values.

c’: This is a tuning parameter that needs to be determined.

If a point falls a distance greater than 𝜎 𝑐 from the centroid of the cluster, it will be considered an

anomaly.

7.5 Implementation

The model was evaluated on both the ISCX2012 and ISCX2014 datasets. In each case the

following steps where performed:

1- The data points were generated.

2- The normal and attack data points where separated.

109

3- 10,000 random data normal and attack data points where selected.

4- Both the clean and attack data points where split into k equal and random.

5- A K fold cross validation is performed. K-1 of the data sets are used for training and one

of the datasets is used for validation. For training only, the clean data points are considered.

For testing both attack and clean data points are considered.

6- An average is obtained of the K trial

The above is run once for each of the configurations below:

1- The threshold value Is changed between 2 to 14 with 0.25 increments.

2- The clusters count is changed from 1 to 1000 with 10 increments.

3- The interval values, 1, 5, 10, 15, 20, 30, 60 and 120 seconds are considered.

In total over 153,000 simulations were run for each of the datasets.

The results of the best models were taken and applied to the test set.

7.6 Results

Before explaining how the model is evaluated two things need to be defined:

Attack Flow: An attack is defined as series of flows originating from one or more malicious nodes

during adjacent time intervals. All such flows are considered a single attack.

Normal Flow: All other flows are considered normal.

Two different metrics are considered for the evaluation of the models, Attack accuracy and False

positives. Attack accuracy is defined as:

𝐴𝑡𝑡𝑎𝑐𝑘 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

110

A good model generally performs best in both metrics. However, one generally comes at the

expense of the other. To compare the different models, we set a threshold for the false alarm rate

and find the best attack accuracy. The results have been plotted below (Figure 33):

Figure 33 Results

111

The results have also been brought in table format below (Table 14, Table 15):

Table 14 ISCX2014 top models based on threshold

ISCX 2014 Dataset
False Alarms

Threshold (%)
Sigma clusters Interval Attack Accuracy False Alarms

0.1 7.25 581 120 1.000 0.037
0.09 7.25 581 120 1.000 0.037
0.08 7.25 581 120 1.000 0.037
0.07 7.25 581 120 1.000 0.037
0.06 7.25 581 120 1.000 0.037
0.05 7.25 581 120 1.000 0.037
0.04 7.25 581 120 1.000 0.037
0.03 7.75 761 120 1.000 0.029
0.02 10 621 120 0.992 0.020

Table 15 ISCX2012 top models based on threshold

ISCX 2012 Dataset
False Alarms

Threshold (%)
Sigma clusters Interval Attack Accuracy False Alarms

0.1 10.75 781 120 0.998 0.099
0.09 12 661 120 0.997 0.090
0.08 13.25 681 120 0.997 0.080
0.07 12.5 791 60 0.995 0.070
0.06 10.5 611 20 0.993 0.060
0.05 12 651 20 0.990 0.049
0.04 14 721 20 0.988 0.040
0.03 10 781 5 0.976 0.030
0.02 12.75 651 5 0.972 0.020

112

8 Conclusion and Future Work

In chapter 5 we used a statistical model in detecting network attacks. There were a number of

issues with this model that motivated the research towards machine learning models.

- In the model we are specifically looking at connection counts. The issue with such an

approach is that we are not taking any of the other predictors into account. There might be

other features that could also help in detecting attacks.

- The model was evaluated on a relatively old dataset. The network traffic was much less

complex than today’s traffic. Due to the simplicity in the network traffic there were very

few states which made the model work well. Had we used a dataset with more recent

network traffic there would have been a much larger variety in states. Such a variety in

states would results in a large number of transitions not being observed in the initial training

phase and hence would results in false alarms.

- The model only takes into account a single node. Some attacks are not visible by just

observing a single attack and would require looking at the entire network.

In chapter 6 we used machine learning models in detecting attacks. Our model performed well

both using the old KDDCup99 Dataset and using the newer ISCX2012 dataset. Our model also

proved effective under surge conditions of up to 1000% more traffic.

In chapter 7 we study a semi-supervised machine learning model. The model was tested on both

the ISCX2012 and ISCX2014 dataset. What we learned was that there is a major trade off between

the false alarm rate and the attack accuracy. Depending on how much false alarm rate we can

tolerate we will get more or less accurate results

There is a lot of room for future research in this field:

113

- Future research can study the impact of malicious data being in the training set used for the

semi supervised model and to see if the model can clearly separate those data points

- Research can also be done to see the impact of surges on the semi-supervised model.

- There is still a lot of room left for finding a fully unsupervised model that can detect unseen

attacks in the network.

114

Appendix A, Interpreting the Results of the Semi-Supervised

Model

In order to better understand how the model is working I have plotted the values of some of the

clusters. In each of the 13 selected clusters I have extracted the data points that belong to it and

plotted the results for the data points below

A.1 Applications

Figure A1 Percent of flows connecting to port 80

115

Figure A2 Percent of flows connecting to port 80

Figure A3 Percent of flows connecting to port 25

116

Figure A4 Percent of flows connecting to port 38

Figure A5 Percent of flow not on a well known port number

117

A.2 Protocols

Figure A634 Percent UDP flows

Figure A7 Percent TCP Flows

118

A.3 Local Vs Remote Nodes

Figure A8 Percent Unique Local Nodes

Figure A9 Percent Unique Remote Nodes

119

A.4 Direction

Figure A10 Percent local to local flows

Figure A11 Percent local to remote flows

120

Figure A12 Percent remote to local flows

Figure A13 Percent remote to remote flows

121

A.5 Other

Figure A14 Average Byte Count per Flow

Figure A15 Average packet count per flow

122

Figure A16 Average time per flow

123

References

[1] M. I. o. Technology, "Lincoln Labratory," 2000. [Online]. Available:

https://www.ll.mit.edu/ideval/data/. [Accessed 30 11 2017].

[2] U. o. N. Brunswick, "University of New Brunswick," 2013. [Online]. Available:

http://www.unb.ca/cic/research/datasets/ids.html. [Accessed 30 11 2017].

[3] J. Ericson, Hacking: The Art of Exploitation, No Starch Press, 2008.

[4] Carnegie Mellon University, "Software Engineering Institute," 24 September 1997.

[Online]. Available: http://www.cert.org/historical/advisories/CA-1996-01.cfm.

[Accessed 30 11 2017].

[5] H. S.H.C, A. R.B and G. M.A.H.A, "Detecting TCP SYN Flood Attack based on

Anomaly Detection," in Second International Conference on Network Applications,

Protocols and Services (NETAPPS 2010), Kedah, Malaysia, 2010.

[6] G. B.B, J. R.C and M. Manoj, "Defending against Distrubuted Denial of Service

Attacks," Information Security Journal: A Global Perspective, pp. 224-247, 2009.

[7] G. James, D. Witten, H. Trevor and R. Tibshirani, An Introduction to Statistical

Learning with Applications in R, Springer, 2013.

124

[8] A. David and V. Sergei, "k-means++: the advantages of careful seeding," in SODA '07

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

New Orleans, Louisiana, 2007.

[9] P. Garcia-Teodoro, J. Diaz-Verdjo, G. Macia-Fernandez and E. Vazquez, "Anomaly-

based network intrusion detection: techniques, systems and challenges," Journal of

Computers & Security, 2008.

[10] J. Jyothsna, V. V Rama Prasad and K. Munivara Prasad, "A Review of Anomaly Based

Intrusion Detection Systems," International Journal of Computer Applications, 2011.

[11] C.-W. Hsu, C.-C. Chang and C.-J. Lin, "A Practical Guide to Support Vector

Classification," 2016.

[12] T. Zhang, R. Ramakrishnan and M. Livny, "BIRCH: An Effecient Data Clustering

Method for Very Large Databases," in Proceeding SIGMOD '96 Proceedings of the

1996 ACM SIGMOD international conference on Management of data, 1996.

[13] A. P. Muniyandi, R. Rajeswari and R. Rajaram, "Network Anomaly Detection by

Cascading K-Means Clustering and C4.5 Decision Tree Algorithm," Journal of

Procedia Engineering, 2012.

[14] B. Hssina, A. Merbouha, H. Ezzikouri and M. Erritali, "A comparative study of decisino

tree ID3 and C4.5," Internation Journal of Advanced Cmoputer Science Applications,

2014.

125

[15] E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo, "A geometric framework for

unsupervised anomaly detection: detecting intrusions in unlabeled data," Columbia

University, New York, 2002 .

[16] G. Sanjay, N. Harsha and C. Alok, "MAFIA: Effecient and Scalable Subspace

Clustering for Very Large Data Sets," Center for Parallel and Distributed Computing,

Evanston, 1999.

[17] Canadian Institute for Cybersecurity, "Intrusion detection evaluation dataset,"

Brunswick, University of New, 2013. [Online]. Available:

http://www.unb.ca/cic/research/datasets/ids.html. [Accessed 30 11 2017].

[18] A. Shiravi, H. Shiravi, M. Tavallaee and A. A. Ghorbani, "Toward developing a

systematic approach to generate benchmark datasets for intrusion detection," Computers

and Security, vol. 31, no. 3, pp. 357-374, 2012.

[19] T. A. Tang, L. Mhamdi and D. McLernon, "Deep learning approach for Network

Intrusion Detection in Software Defined Networking," in International Conference on

Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 2016.

[20] A. Sultana and M. Jabbar, "Intelligent network intrusion detection system using data

mining techniques," in 2nd International Conference on Applied and Theoretical

Computing and Communication Technology (iCATccT), Bangalore, India, 2016.

126

[21] Shi-JinnHorng, Ming-YangSu and Yuan-HsinChen, "A novel intrusion detection system

based on hierarchical clustering and support vector machines," Expert Systems with

Applications an International Journal, vol. 38, no. 1, pp. 306-313, 2011.

[22] W. Yassin, N. I. Udzir, Z. Muda and M. N. Sulaiman, "Anomaly based intrusion

detection through k-means clustering and naives bayes classification," Proceedings of

the 4th international conference on Computing and informatics, 2013.

[23] Y.-D. Lin, P.-C. Lin, S.-H. Wang and Y.-C. Lai, "PCAPLib: A system of extracting,

classifying and anonmyizing real packet traces," IEEE systems journal, 2014.

[24] N. Ye, "A markov chain model of temporal behavior for anomaly detectoin,"

proceedings of the 2000 ieee, 2000.

[25] D. Ourston, S. Matzner, W. Stump and B. Hopkins, "Applicatoins of Hidden Markov

Models to Detecting Multi-Stage Network Attacks," Proceedings of the 36th Hawaii

International Conference on System Sciences, 2003.

[26] K. Leung and C. Leckie, "Unsupervised Anomaly Detection in Network Intrusion

Detection Using Clusters," in Proceeding ACSC '05 Proceedings of the Twenty-eighth

Australasian conference on Computer Science - Volume 38, 2005.

[27] B. Monowar, D. Bhattacharyya and J. Kalita, "An Effective Unsupervised Network

Anomaly Detection Method," in ICACCI '12 Proceedings of the International

Conference on Advances in Computing, Communications and Informatics, Chennai,

India, 2012.

127

[28] L. Portnoy, E. Eskin and S. Stolfo, "Intrusion detection with unlabeled data using

clustering," in In Proceedings of ACM CSS Workshop on Data Mining Applied to

Security (DMSA-2001, 2001.

[29] W.-H. Chen, S.-H. Hsu and H.-P. Shen, "Application of SVM and ANN for intrusion

detection," Journal of Computers and operations research, 2005.

[30] G. Conti, B. Sergi, A. Shubina, R. Ragsdale, M. Supan, A. Lichtenber and P.-A. Robert,

"Automated mapping of large binary objects using primitive fragment type

classification," Journal of Digital Investigation, 2010.

[31] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani and D. Garant, "Botnet

detection based on traffic behavior analysis and flow intervals," Elsevier Journal of

Computers and Security, 2013.

[32] S.-B. Cho and H.-J. Park, "Efficient anomaly detection by modeling privilege flors using

hidden markov model," Elesevier Journal of Computer and Security, 2003.

[33] Y. Bouzida, F. Cuppens, N. Cuppens-Boulahia and S. Gombault, "Efficient Intrusion

Detection Using Principal Component Analysis," Departement RSM GET/ENST

Bretagne, Cedex, France, 2010.

[34] D. Brauckhoff, T. Bernhard, A. Wagner, M. May and L. Anukool, "Impact of packet

sampling on anomaly detection metrics," in Proceeding IMC '06 Proceedings of the 6th

ACM SIGCOMM conference on Internet measurement, 2006.

128

[35] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin and W.-Y. Lin, "Intrusion detection by machine

learning: A review," Journal of Expert Systems with Applications, 2009.

[36] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin and K.-Y. Tung, "Intrusion detection system:

A comprehensive review," Journal of Network and Computer Applications, 2012.

[37] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye and H. Zang, "Is Sampled Data Sufficient for

Anomaly Detection," in Proceeding IMC '06 Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement, 2006.

[38] G. Prasanta, B. Bhogeswar and B. Dhruba, "Network Anomaly Detection Using

Unsupervised Model," 2013 International Conference on Network Security and

Cryptography, no. 1, pp. 19-30, 2011.

[39] I.-C. Hsieh, L.-P. Tung and B.-S. Paul Lin, "On the classification of mobile broadband

applications," in 2016 IEEE 21st International Workshop on Computer Aided Modelling

and Design of Communication Links and Networks (CAMAD), Hsinchu, Taiwan, 2016.

[40] M. Dell Amico, M. Filippone, P. Michiardi and Y. Roudier, "On user Availability

Prediction and Network Applications," IEEE/ACM Transactions on Networking, 2015.

[41] N. Duffield, C. Lund and M. Thorup, "Properties and prediction of flow statistics from

sampled packet streams," At&T Labs - Research, NJ, USA, 2002.

[42] T. T. Nguyen, G. Armitage, P. Branch and S. Zander, "Timely and Continuous Machine-

Learning-Based Classification for Intervative IP Traffic," IEEE/ACM Transactions on

Networking, 2012.

129

[43] A. Shiravi, H. Shiravi, M. Tavallaee and A. A. Ghorbani, "Toward developing a

systematic approach to generate benchmark datasets for intrusion detection," Elsevier

Journal of Computers and Security, 2012.

[44] B. Sangster, T. O'Connor, T. Cook, R. Fanelli, E. Dean, W. Adams and C. Morrel,

"Towards Instrumenting Network Warfare Competitiions to Generate Labeled

Datasets," United States Military Academy, West Point, New York, 2009.

[45] X. Sha, D. Quercia and M. Dell'Amico, "Trend Makers and Trend Spotters in a Mobile

Application," Proceeding CSCW '13 Proceedings of the 2013 conference on Computer

supported cooperative work, 2013.

[46] P. Casas, J. Mazel and P. Owezarski, "Unsupervised network Intrusion Detection

Systems: Detecting the Unknown without knowledge," Journal of Computer

Communications, vol. 35, no. 7, p. 772–783, 2011.

