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Abstract

This research is aimed to improve star tracker performance in presence of dynamic conditions.

It offers an assessment of various image thresholding and centroiding algorithms to improve star

tracker centroiding accuracy at moderate slew rates (< 10 ◦/s). Star trackers generally have arc-

second accuracy in stationary conditions, however their accuracy degrades as slew rate increases.

In dynamic conditions, blur effects add to the challenges of star detection. This work presents an

image processing algorithm for star images that preserves star tracker detection accuracy and is

able to detect dim stars up to slew rates less than 10 ◦/s. A number of algorithms from literature

were evaluated and their performance in motion and simulations were measured. The primary

performance metrics are false positive ratio, and false negative ratio of star pixels. This Work

introduced a new algorithm for star acquisition in moderate slew rates that combines positive

features of existing algorithms.
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Chapter 1

Introduction

Star trackers are attitude sensors for small satellites that provide three-axis information. Main-

taining a star tracker’s attitude accuracy becomes more difficult during attitude maneuvers.

Small satellites are becoming the preferred platform for scientific and commercial missions and

they require high performance sensors. The need for both precision and agility requires a star

tracker to estimate both attitude and rate to operate at stationary and high slew rates.

From a fundamental standpoint, star trackers are autonomous camera-based sensors that use

the unique patterns formed by stars to determine spacecraft attitude. These sensors acquire

star field images, then identify stars in the sensed frame using an image segmentation and ob-

ject localization method. After matching the detected stars with an on-board star catalog, the

spacecraft’s attitude is estimated. The accuracy of a Star tracker’s attitude solution depends on

its sensitivity to star light, field of view (FOV), internal star catalog, number of stars detected

and how accurately the centroids of these stars can be determined [1]. Angular motion (i.e.

slewing) of the sensor during imaging decreases the signal-to-noise ratio (SNR) of imaged stars

and impairs centroid accuracy. The aim of this thesis to analyze different star detection algo-

rithms and evaluating better methodologies for star centroiding. Multiple+9 image processing

techniques are used to develop new star detection algorithms that maintains star centroiding

accuracy in dynamic conditions. It is hoped that this study of star detection algorithms in high

slew rates enables more agile small spacecraft to be able to track their absolute attitude during

angular maneuvers without hardware changes.

1
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1.1 Star Tracker Processing Framework

This section presents a general overview of the star tracker’s regular processing framework.

Steps that are studied in this thesis are explained in more details. The processing framework

of the star trackers can be simplified to following steps in Fig. 1.1 :

• Image Acquisition The camera system captures the star scene visible through the

FOV of the optical system. The image intensities are combination of star light and image

noise.

• Star Detection Images are processed to detect stars in the frame. The detection algo-

rithms aims to estimate the location of star centroid.

• Star V ector Computation The centroids are then converted to body-referenced vec-

tors using the camera model of the sensor [2].

• Star Matching The patterns formed by star vectors are compared to the catalog on-

board to find a matching pattern. Star matching identifies stars included in the pattern.

• Attitude Solution Star trackers calculate attitude solution by comparing vectors in

inertial frame and sensor frame. The attitude output of the star tracker can be a cosine

matrix, quaternion or Euler angles.

The star detection step is explained in more details in the next section.

Figure 1.1: Star tracker’s processing framewor.k

1.2 Star Detection

The first part of the work in this research is focused on the star detection step of the frame

work. Most star detection algorithms in literature employ the two steps of thresholding and

centroiding. Thresholding is the most common method for image segmentation. It is used to
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Figure 1.2: Simple illustration of star tracker process.

classify the pixels in a frame as background(noise) and foreground(stars). During thresholding

all the pixels with intensity above a certain level (threshold) are counted as objects and other

pixels are considered as background. The centroiding step, estimates the location of star centroid

on the focal plane. Common thresholding algorithms define centroids as the first moment of

brightness distribution so the calculated centroid lies in the middle of the imaged star.

The thresholding step could be divided into multiple parts. The thresholding step applied in

this work consists of two parts, pixel-level thresholding and object-level thresholding. The pixel-

level thresholding classifies the pixels into ones lit by star light and ones containing noise only.

The pixels above the threshold are assigned as lit pixels.The object-level thresholding groups

the lit pixels together and applies a second thresholding criteria on the grouped pixels. The

object-level thresholding applies a minimum number of contiguous pixel to the object to insure

grouped noise pixels are not classified as stars. Then the valid objects are tested for a minimum

integrated intensity to eliminate any area of bright noise pixels. The impact of the second step

can be seen in the Fig. 1.3 . The window centers around an imaged star. After the pixel

level thresholding, there are still bright noise pixels remaining around the star, that object-level

thresholding can often eliminate.

This thesis investigated several pixel-level thresholding algorithms within the star detection

process. Studying thresholding literature , a number of promising cluster-based, attribute-

based, and local thresholding methods are synthesized and analyzed. Based on the results, new

algorithms that combine advantages of existing algorithm are developed. The new algorithms are

then compared to other methods in the literature applied to dynamic star images. Throughout

this analysis, object-level thresholding and the centroiding algorithm are kept constant.

These detection algorithms are tested in different scenarios. Initially their detection ability are

tested with angular velocities from 0 ◦/s to 10 ◦/s. Then same algorithms are tested with

simulated star images that have uneven background level, this case studies the effect of bright
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Figure 1.3: Processed star images from left to right: raw image, image processed by pixel
level thresholding, image processed by object level thresholding.

bodies such as plants close to star tracker FOV. The last scenario looks at the centroiding

accuracy of the dim stars in dynamic conditions(low SNR) .

Figure 1.4: Star detection steps.

1.3 The ST-16 Star Tracker

The baseline sensor used for this work is ST-16 star tracker from Sinclair Interplanetary. The

ST-16 star tracker is a relatively new nanosatellite-class star tracker that became available in

2011 [6]. Some key specifications are listed in table 1.1. In this work, ST-16’s lens diameter, lens

F#, detector pixel size and field of view were used in image simulations. The ST-16 star catalog

contains the stars of a visual magnitude of 5.75 or brighter, hence the detection threshold at

static condition is set to 5.75. The ratio of the focal length to the aperture diameter is the F#

of the lens. This value represents the optical collecting power of the system.
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Table 1.1: Key Parameters of the ST-16 Star Tracker

Accuracy 0.01◦ with 85% confidence
Size 59× 56 ×31.5 mm
Mass ≈90 g

Field of View 7.5 ◦ half axis
Exposure Time 100 ms

Detection Threshold 5.75
Catalog 3746 stars

Availability > 99.9%
Lens Diameter D = 12 mm

Lens F# 1.2
Detector Pixel Size 2.2 µm

Although the test images are simulated using optical and detector properties of the ST-16, we

expect that the approach is applicable to any star tracker with only minor modifications.

1.4 Research Objective

The objective of this thesis to improve detection algorithm of star tracker for operating at high

slew rates. Maintaining accurate attitude estimates while slewing complicates the regular star

tracker process. This research concentrates on image processing and star tracker redesign. This

work presents an image processing algorithm for star images that preserves star tracker detection

accuracy and is able to detect dim stars up to slew rates less than 10s. Most of star detection

algorithms in literature are designed to work in stationary conditions. Multiple thresholding

and centroiding methods have been considered and two new window-based algorithms that

dynamically size their region of interest (ROI) based on the spacecraft motion projection are

developed. These methods combines local and histogram-based thresholding and it is robust to

both motion and stray light. This algorithm increases the star detection accuracy in moderate

slew rates and it is robust to stray light. The star trackers localization is then improved by

looking at different localization methods such as derivative, Gaussian and moment based.

1.5 Outline

In chapter 2-3, existing star detection algorithms are studied. Chapter 2 discusses existing

existing reviews of thresholding algorithms, and offers an introduction to promising algorithms

that are studied in this work. This section also summarizes the base-line sensor star detection
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algorithm. We present an overview of star simulation environment in Chapter 3. The main

part of that chapter focuses on the performances of the methodologies summarized in chapter 2.

Chapter 4 studies algorithms intended for high slew rate star tracking. It discusses the outline

of three new algorithms developed. This chapter tests the developed algorithms against some

of the existing star detection methods to compare their performances. Chapter 5 highlights

the detection improvements of the suggested algorithms by showing their centroiding accuracy

performance at high slew rates. This chapter also examines other localization methodologies

and tests each algorithm for stars of different visual magnitude. Concluding chapter summarizes

the findings of the research and suggest future works and improvements.



Chapter 2

Static Thresholding

This chapter studies several static thresholding algorithms in the literatures. Static thresholding

algorithms dont rely on previous knowledge of the spacecraft rate. These methods make no

assumption about expected shapes of PSF or effects of motion. Although these algorithms

are not specially designed for motion images, they may be usable for dynamic images. Image

segmentation is the process of classifying the pixels into objects and background. Segmentation

has application in many computer vision projects and problems, including feature detection,

three dimensional reconstructions, and stereo calibrations [7]. The most common method of

segmentation is thresholding and achieves its purpose by setting pixels above a threshold value

into the object and the rest as background. If g(x, y) is the processed version of f(x, y) then:

g(x, y) =

{
1 if f(x, y) ≥ T
0 otherwise

}
(2.1)

Thresholding can be local or global. A global threshold method considers all the pixels in an

image to calculate one threshold value for all the pixels in the image. Local thresholding methods

consider the local attributes and property of the image to calculate a threshold for each pixel

relative to its surrounding pixels. An ideal thresholding algorithm for the star tracker must be

robust to background noise, stray light and blur effects from sensor slew. The main sources of

background noise in star trackers are the read noise and dark current noise. Stray light from

bright bodies in space (Sun, Earth, Moon) cause image gradients [4]. To improve star tracker

attitude solution, star detection should be maximized in presence of motion and stray light.

Most thresholding static algorithms can be grouped into three categories: clustering-based,

attribute-based and local methods. Clustering-based algorithms classify pixels into two Gaussian

7



Chapter 2. Static Thresholding 8

(a) Initial Image with Noise (b) Segmented Image

Figure 2.1: Segmentation process.

distributions. Attribute-based algorithms look for a similarity between gray-level and binarized

image [8]. Local methods adjust the threshold based on local image characteristics. To narrow

down the options among thresholding algorithms, previous literature review like Tier and Jain

[7] and Sezgin and Sankur[8] were consulted. To evaluate the performance of each category,

we selected five algorithms: local thresholding Niblack and Bernsen, Cluster-based thresholding

Otsu and Kittler-Illingworth, and attribute-based threhsolding Tsai method. In thresholding

survey papers Tier and Jain [7] and Sezgin and Sankur [8], these five algorithms were found

to be superior in their respective categories. This section summarizes existing thresholding

algorithms and evaluates them based on their ability to detect stars. A testing procedure have

been developed to analyze the effectiveness of various thresholding methods on star images.

2.1 ST-16 Detection Routine

The detection routine onboard the ST-16 utilizes an adaptive thresholding algorithm to detect

stars. This algorithm uses a local averaging thresholding to estimate the background level.

Then the pixels classified as foreground will be grouped together and each group will be tested

for an integrated threshold test. Finally ST-16 implements a moment centroiding technique.

This routine can be summarized by three basic operations:

• Local Averaging Filter: An averaging filter is used to estimate the average background

illumination, B (x, y), for each pixel. Using a m×n-sized window, centered on pixel (x, y),



Chapter 2. Static Thresholding 9

the average background illumination for each pixel calculated as:

B (x, y) =
1

MN

M∑
x=1

N∑
y=1

I (x, y) (2.2)

where I(x, y) is the image intensity, and (x, y) are the row and column image coordinates.

Default ST-16 processing utilizes a window size of M = 1, N = 129 pixels.

• Lit Pixel. After defining the average background illumination, the algorithm steps through

each pixel and compares it against a static threshold T . If the I (x, y)−B (x, y) is larger

than T , the pixel is labeled as ’lit’, implying that it is lit by star light, as opposed to

just background illumination. Pixels with intensity values below T are discarded as back-

ground. Default ST-16 processing utilizes a value of T = 80 detector counts.

• Contiguous Pixel Threshold: Lit pixels are then grouped together into objects using 4-

connectivity. Blobs with at least 6 contiguous pixels are considered possible stars. The

minimum integrated intensity for the objects to be counted as star is 1000 detector counts.

Afterward the centroid of each star can be calculated as the first moment of illumination [9].

The centroid (xc, yc) is given as:

xc =
1∑

x

∑
y
f (x, y)

∑
x

∑
y

xf (x, y) (2.3)

yc =
1∑

x

∑
y
f (x, y)

∑
x

∑
y

yf (x, y) (2.4)

2.2 Local Thresholding Methods

The local thresholding algorithms assign a unique threshold value to a region or each individual

pixel based on the characteristics of their neighboring pixels. The size of the window in the local

method are significant as they must be small enough to preserve local characteristics but large

enough to be resilient to noise. Two of the most commonly used local adaptive thresholding

methods are Niblack’s [11] and Bernsen’s [10] methods. Niblack proposes a thresholding method

based on the local mean m̄ and the standard deviation σ̄ of the image, I (x, y) . Niblack’s

threshold value T for pixel (x, y) is calculated as:

T (x, y) = m̄ (x, y) + k σ̄ (x, y) (2.5)
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where m̄ and σ̄ are computed across a window of size wr ×wc and k is a design parameter that

determines how much of the surrounding pixels to include in the threshold calculation [11] .

Bernsen’s method makes use of the local image contrast to determine a threshold value . The

local image contrast C (x, y) is calculated based on a window wr × wc as:

C(x, y) = Ihigh − Ilow (2.6)

where Ihigh and Ilow are the highest and the lowest intensity value in the local window. If

C (x, y) < Tc, a predetermined contrast threshold, all the values inside of the window are

considered background. If C (x, y) > Tc, the local threshold is defined as:

T (x, y) =
1

2
(Ihigh + Ilow) (2.7)

2.3 Cluster-based Thresholding Methods

Cluster-based methods calculate the optimal threshold based on histogram analysis of the image

intensity. The histogram of images are assumed to be bimodal in these cases; each cluster

represents the objects or the background pixels. Many of the cluster based algorithms takes one

of the two approach; they either set the optimal threshold at the local minimum that separates

the two clusters in intensity histogram or the algorithm fits two Guassian distributions to the

histogram data. There a few challenges that cluster-based methods face; due to image noise

there may be multiple local minimum and maximum, also the distributions may not produce

two distinctive modes and overlap. The cluster based methodologies examined in this section

are Otsu [12] and Kittler-Illingworth [13] methods; these methods are applied globally to the

image.

2.3.1 Otsu Method

Otsu’s method attempts to septate the image’s intensity histogram into two distinctive modes:

background and objects. This is achieved by using a threshold, T , that is optimized to mini-

mize the within-class variance of intensities. Minimizing within class variances is the same as

maximizing between-class variances. As a result, the optimal threshold value corresponds to

the greatest separation of gray levels. Otsu’s method is the most commonly used thresholding

algorithm in the literature. This algorithm is based on the following assumptions [12]:
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• The histogram of the image is bimodal

• Background illumination is uniform throughout the image

• Stationary objects and scene

To solve for the Otsu threshold the expression for the within class variance is first derived. The

Otsu threshold T divides the pixels in the image into two class of background C1 and object C2.

Pixels with intensity in range of [ 1, ..., k] are place in C1 and pixels in range of [ k + 1, ..., L]

are placed in C2. So the weighted within-class variance σw is computed as:

σw
2 (T ) = q1 (T )σ1

2 (T ) + q2 (T )σ2
2 (T ) (2.8)

where the class probabilities q1, q2 and the class means µ1, µ1 are computed from:

q1 (T ) =

T∑
i=1

P (i) (2.9)

q2 (T ) =
L∑

i=k+1

P (i) (2.10)

µ1 (T ) =
T∑
i=1

iP (i)

q1 (t)
(2.11)

µ2 (T ) =
L∑

i=t+1

iP (i)

q2 (t)
(2.12)

The total variance of the intensity can be expressed as sum of the within-class variance and

between-class variance. The total is constant and independent of the threshold T . So the

between class variance can be expressed as Eq.2.13, and T can be calculated from optimization

problem that maximizes µB. The between class variance can be calculated from:

σB
2 (t) = σ2 − σw2 (t) (2.13)
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Fig. 2.2 represents the histogram of a window containing one star. The distribution approx-

imated by Otsu algorithm and the threshold value in between valley of those distribution is

marked on the figure.

Figure 2.2: Otsu threshold.

2.3.2 Kittler-Illingworth Method

In Kittler-Illingworth’s model, the threshold value, T , divides the gray histogram of an image

into approximation of two probability density function each representing either population of

background or objects. This method assumes that the object and background’s pixel gray level

values are normally distributed. The minimum error T , or optimal threshold, minimizes the

error in fitting the Gaussian models into the histogram data and the overlap between the two

density functions as it seen in Fig. 2.3.

Figure 2.3: Minimum Error Threshold
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The conditional probability e of gray level i being replaced in the image correctly is given by:

e (i, t) = P (i | n, t) Pn (t)

qn (t)
(2.14)

n =

{
1 if i ≤ T
2 if i > T

}
(2.15)

Since P (n) is independent of both n and T , the denominator in 2.14 will be ignored. Using the

numerator of Eq. 2.14 and taking logarithm of it; an alternative index of correct classification

performance is defined as:

ε (i, t) =

[
i− µn (t)

σn

]2
+ 2 log σn

2 (t)− 2 logPn
2 (t) (2.16)

and finally the criterion function is defined as Eq. 2.17 and the t that minimizes this expression

is the ideal threshold.

J (t) =
∑
i

P (i) ε (i, t) (2.17)

The value of threshold T yielding the lowest value of criterion J (t) will give the best fit model

and therefore the minimum error threshold.

2.4 Attribute-based Method

The attribute-based thresholding method considered in this research is the Tsai’s moment pre-

serving method. In this method the gray level moments of the image is computed, and threshold

level is calculated in a way that the processed image’s first three moments are equivalent to the

original image’s moment[14].

The image moments mn and binary image moments bn are defined, respectively, as:

mn =

L∑
i=0

P (i) in (2.18)
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bn = Pozo
n + Pbzb

n (2.19)

Here zo and zb represents the value that intensities in the image that replace pixels below the

threshold and pixels above the threshold. zo and zb are the fractions of the pixels classified as

objects and background. The solution to this system is offered in [14].

Figure 2.4: Moment Preserving Thresholding



Chapter 3

Simulation, Lab Testings and Static

Thresholding Results

This chapter evaluates the performance of the static algorithms. The challenges that star de-

tection algorithms face are discussed here. Then the Simulation environment used to synthesize

the test star images are explained and the layout for the testing methodologies and parameters

are discussed. For initial evaluation of each thresholding method a set of 50 star scenes were

simulated. Each scene was examined in rates between 0-10 ◦/s. After discussion of preliminary

results from the thresholding methods, the superior algorithms were selected and further testes

for centroiding accuracy. The results for centroiding accuracy is then verified using laboratory

testings.

3.1 Challenges of Detection Performance

There are various factors that can impair the star tracker’s to accuracy estimate the attitude

of the star tracker. The star tracker accuracy is dependent on how many stars the sensor is

able to detect withing its field of view (FOV) and how accurately their centroid on image frame

is calculated.In this section factors that are effecting detection performance of the star tracker

are studied. Detection performance of star tracker is set as ability of the algorithms to detect

all the available stars in FOV, while rejecting non-star pixels. Star detection algorithms should

also be able to localize the star centroids with sub-pixel accuracy. Three main problems with

threshold-based star detection routine are sensor noise from various sources, spacecraft dynamic

conditions, and inconsistence background light level.

15
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3.1.1 The Impact of Slew Rate on Centroiding Performance

Sensor slew is due to angular motion of the spacecraft during star tracker exposure. The primary

objective of this work is investigating star detection robustness to slew rate.

The point spread function (PSF) is the response of an imaging system to a point source of light.

In static conditions, a common model for the intensity of stars in the image is a symmetric

Gaussian distribution [3]. In dynamic conditions the star centroid moves on the image plane

during the exposure. In the presence of the spacecraft’s angular rate, the Star PSF is elongated

on the direction of the motion (blur effect). To model star’s track on the image plane, we use

the model by Dzamba and Enright [3]. The body-referenced star vectors at the beginning and

end of an image exposure are defined as b and b′ , respectively. The motion of the spacecraft

can be described through an angle ∆teω, where ∆te is the exposure time and ω is the spacecraft

angular velocity.

b′ =
(
I3×3 −∆teω

×) b (3.1)

Star streak length δb in the image is the:

δb = b′ − b = −∆te
[
ω×] b (3.2)

In Eq.3.1, ω× represents the skew-symmetric matrix of the vector ω. Where ω is:

ω =


ωx

ωy

ωz

 (3.3)

We then convert the vector difference δb in Eq.3.2 to a displacement of the centroid across the

focal plane, ∆b:

∆b =
f∆te
γbz

[
ωzby − ωybz
ωxbz − ωzbx

]
(3.4)
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where f is the focal length of the star tracker optics, γ is the detector pixel size, te is the

exposure time, ω is the satellite angular velocity and b is the star vector in the body frame at

the beginning of the exposure.

The overall light collected from a star during exposure is the same for both static and dynamic

conditions, however in dynamic condition this light spread across larger number of pixels com-

pare to static conditions as it can be seen in Fig. 3.1. While the same star is visibly brighter

compare to its background in static conditions, it is faint in dynamic condition and its intensity

is close to background level.

(a) Star intensity in static conditions. (b) Star intensity in dynamic conditions.

Figure 3.1: Effect of slew rate on star intensity distribution

Blur effects as modeled by Eq.3.4 cause the light from a star to be smeared across a larger region

of the image detector compare to static conditions. which decreases the signal-to-noise ratio

(SNR). In images with low SNR, the signals from dimmer stars are close to the background

noise level, and they are difficult to detect or localize. Blur effects impair both centroiding and

thresholding performance. As the slew rates increases, star PSF’ become longer and dimmer.

As the stars grow dimmer, centroid noise tends to increase until stars’ centroids can no longer

be reliably detected.

3.1.2 Stray Light

Stray light is another challenge for star detection algorithms. Any undesirable light within the

image and FOV is referred to as stray light. Celestial objects such as Sun, Moon, Earth and

other planets are main sources of stray light. The light from these objects causes the background

intensity variation in form of a gradient. When background intensity is not constant, the

detection scheme can work properly on the darker side, while it will collect the well of the pixels
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lit by stray light as false stars. Baffles are a stray light shielding element for star trackers. It is

common to see an increase in background level at the baffle edge[4].

Figure 3.2: Change in background level across 100 detector columns.

3.1.3 Star Trackers’ Noise Sources

The dominant noise sources in star trackers’ images could be listed as dark current noise, shot

noise and read noise. Dark response is the detector output while it is not illuminated which is

the collection of thermal electrons in pixel wells. Dark response is usually consists of two parts,

the bulk response part and random variation. The bulk response level could be averaged by

reading pixel levels on a dark frame. The average then can be deducted from an illuminated

frame to remove most of the dark response [5]. The random variation in the dark response

are called dark noise. Shot noise is described as random variation in the observed amount of

photoelectrons, due to the discrete, quantum nature of light. Shot noise is more dominant when

collecting a relatively small number of photons. Its effect can be reduced by collecting more

photons though with a longer exposure [1]. Read noise is essentially a summation of typical

image detector noise sources. A pixel read out of the detector is a tiny voltage, on the order of

microvolts per electron. The camera’s electronics then pass that voltage to an Analog to Digital

Converter (ADC) to be converted into a digital pixel value. During this process additional noise

are added to the image. Read noise is generally modeled as a zero-mean, normally distributed

random variable 3.5e−, where e− is the electron count. In this case the electron count e− is

approximated as 7 detector count.
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3.2 Simulation

To evaluate the performance of the algorithms studied, a set of simulated star scenes are ex-

amined. The existing star generation code in SAIL was used to produce the star images. The

common part used for each frame in the scene generation is the sensor properties from Table 1.1

and the star catalog. The angular rate and attitude are changed for each scene. The attitude for

each star scene are generated randomly. This section summarizes the function of the software:

• Scene Generation Using the baseline sensor properties and SKY2000 star catalog,

centroids and brightness of the stars in field of view (FOV) are found at different attitude

and angular rates.

• PSF Model The shape and the intensity profile of each star was simulated using the

method presented in Dzamba and Enright [3].

• Star Image The ideal signal is then combined with two typical imaging noise sources:

shot noise and detector read noise.

Figure 3.3: Star images simulation sequence.

Shot noise is typically modeled as a Poisson distribution with variance of 25 detector count

out of 4095. Read noise is essentially a summation of typical image detector noise sources and

is generally modeled as a zero-mean, normally distributed random variable 3.5e−. e− is the

electron count and in this case the electron count as approximately 7 detector count.

Two sets of star scenes were simulated: one with background gradient variation, and one without

to test robustness of algorithms to stray light. Variation in background light, is one of the major

causes of deficient centroiding accuracy. In Figure 3.2, the background level across 100 column

of the detector is plotted. The background intensity has rapidly increased and peaked at 250

detector count, which is higher than most of the dim star peak intensity.
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Figure 3.4: Sample simulated image.

3.3 Simulation Testing

The proposed thresholding algorithms are tested in multiple steps. The thresholding algorithms

discussed in this thesis are initially examined by their ability to separate lit pixels from the

background noise. This ability is then tested in presence of uneven background level. The test

image prior to addition of noise and background gradient is binarized such that any nonzero

pixel is set to 1, representing lit pixels. This image becomes the ideal binarized image and

thresholded images will be compared to it.

The metrics that will be used to evaluate the thresholding techniques are false positive ratio

(FPR) and false negative ratio (FNR). FPR is the ratio of incorrectly detected lit pixels to

number of actual lit pixels in the image, and false negative rate is the ratio of lit pixels missed

to be detected to number of actual lit pixels in the image. If the ideal binarized image is

subtracted from the processed image, the count of pixels with value of one are false positive

detection while the pixels with value of -1 are false negative detection. The second step of
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Figure 3.5: Sample Simulated Image with Background Gradient

Figure 3.6: Single star binarized.

evaluation groups the pixels together and applies the contiguous pixel threshold from ST-16

detection algorithms. From then it determines the correctly detected stars, missed stars, and

the number of bright noise spots misidentified as stars. An ideal segmentation algorithm should
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result in no to low number of false stars and high star detection rate. To solve for the attitude

problem from star tracker data, most of the algorithms available in literature require four stars

for matching step.

The best performing algorithms in previous tests are then tested for their centroiding accuracy

using first moment centroiding introduced in chapter 2. The centroid of the correctly detected

stars are calculated and then the results are compared to the centroids from the ideal image.

Finally the centroiding accuracy of these algorithms versus stars of different brightness is studied.

It is important for the detection algorithm to estimate the centroid of the deem star as accurately

as the brighter stars. The results are verified through lab testing in chapter 5 and discussion of

further verification using field tests is presented in chapter 6.

3.4 Static Thresholding Simulation Results

To compare the performance of each thresholding algorithm, their ability to separate the back-

ground pixels from lit pixels in simulated star scenes were examined. Scenes were simulated

for randomly generated orientations while slew rates in ranged of 0-10 ◦/s in steps of 0.5 ◦/s

were considered. For all of the local methods, a 1 × 129-sized window was implemented for

consistency with baseline sensor ST-16.

The three adaptive thresholding algorithms: Win, Niblack, Bernsen were tested in this paper.

The results are seen in Fig. 3.7 and Fig. 3.8. Please note the difference in Y axis scale.

Win thresholding has FNR of 35-40%, and 0% FPR. The FNR drops slightly as the slew rate

increases, since as the star smears across a greater number of pixels and becomes dimmer, the

mean value for the window also drops and more pixels are marked as lit. Niblack’s method has

a high FNR of 70%. Niblack’s threshold depends on the local image mean m̄ and σ̄ standard

deviation. Since m̄ and σ̄ are relatively high in star regions, many lit pixels were dropped.

In the background region, m̄ and σ̄ are relatively low, and therefore the threshold is lower in

these regions causing the FPR to increase. The FPR for Niblack stays negligible. Bernsen’s

method resulted in a FNR as high as 70% too. Bernsen’s method depends on the local contrast,

which could be relatively high in a window containing star, hence the high pixel rejection rate.

Bernsen’s method resulted in overall negligible FPR.

The global methods considered in this section are the two cluster-based algorithms of Otsu and

Kittler-Illingworth, and the moment-based method describe by Tsai. Otsu’s method does not

present satisfactory results. Otsu’s method assumes the histogram of the images are almost

bimodal distribution, in other words number of pixels in background and objects are almost



Chapter 3. Simulation, Lab Testings and Static Threhsolding Results 23

equal. In star images, object areas are very small compared to background, so global Otsu

thresholding did not perform well. Likewise the performance of Tsai’s method was also limited

by small object areas, and large variance of the objects. At higher rate when the contrasts

between stars and background level are negligible and Tsai algorithm fails to detect any lit

pixels. Kittler-Illingworth method performed the best with a FNR below 10%, and a negligible

FPR.

Figure 3.7: FNR versus slew rate.

Figure 3.8: FPR versus slew rate.

The Fig. 3.9 presents the ratio of correctly detected stars to all the stars in the scene plotted

versus rate. A star is marked as correctly detected if the calculated centroid error is less than
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0.2 pixels. While most of the algorithms are capable of detecting majority of the stars, the

detection rate drops fast with rate for Otsu and Tsai method. The Fig. 3.10 is the average

number of incorrectly detected objects in star scenes versus angular rate. In each rate for each

different frame number of the false detected objects are obtained then averaged for each rate.

Figure 3.9: Ratio of correctly detected stars.

Figure 3.10: Average false star detected.

In second case of tests, a gradient was added to the image background, simulating the presence

of a bright body (i.e. Earth, Sun, Moon) near the sensor field of view (FOV). This test was

used to examine the robustness of each algorithm to stray light. The results of this test are
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shown in Fig 3.11 and Fig 3.12.The performance of all three local thresholding algorithms was

not affected by background gradient. Otsu’s and Tsai methods were again unsuccessful in

segmenting the images effectively. Unlike the previous test without the background gradient,

Kittler-Illingworth’s method was unable to adjust to the non-uniform background level. Since

the Kittler-Illingworth method tries to fit the data into two Gaussian distributions pertaining to

the background and image objects, the addition of gradient to background limits this process.

Figure 3.11: FNR versus slew rate with background gradient.
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Figure 3.12: FPR versus slew rate with background gradient.
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The results in Fig. 3.13 and Fig. 3.14 are also for the case where the background light is not

constant. The Fig. 3.13 below present the ratio of correctly detected stars to all the stars in the

scene plotted versus rate. The Fig. 3.14 is the average number of incorrectly detected objects

in star scenes versus angular rate. In each rate for each different frame number of the false

detected objects are obtained then averaged for each rate. The local algorithms performances

are not affected by stray light in terms of star detection, while global algorithms resulted in

detecting a number of false stars in the image areas illuminated by stray light.

Figure 3.13: Ratio of correctly detected stars.

Figure 3.14: Average false star detected.
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Table 3.1: Summary of Static Algorithms Results

Method Performance in Slew Performance in Slew Summary
+ Stray Light

Window Low FPR, Modest FNR Low FPR, Modest FNR Not Sensitive
stray light and slew

Niblack Low FPR, High FNR Low FPR, High FNR Sensitive to
Stray Light

Bernsen Low FPR, High FNR Low FPR, High FNR Does Not detect
dim stars due

to low contrast
Otsu Low FPR, High FNR High FPR, High FNR Not acceptable

due to High FNR
Kittler-Illingworth Low FPR, Low FNR Modest FPR, Modest FNR Not Sensitive to slew

Tsai Low FPR, High FNR High FPR, High FNR Does Not detect
dim stars due

to low contrast

Among algorithms discussed in this section, the Kittler-Illingworth algorithm performed the

best with negligible FPR and low FNR; however this algorithm was not robust to stray light.

Win thresholding was the most robust to background gradient; the main drawback was the

FNR.

3.5 Static Thresholding Results Summary

In this section, the static thresholding algorithms were testing using synthetic star images. The

algorithms are tested based on their ability to identify lit pixels. Two conditions were tested in

this section, the performance in presence of motion and stray light. The results are summarized

in Table 3.1. Considering these results, a new routine combining Win and Kittler algorithms

was developed to be robust to gradients in images and have low detection errors. This routine

is presented in next section.





Chapter 4

Dynamic Thresholding

An ideal thresholding algorithm for a star tracker must identify as many star pixels as possible

close to noise level, while rejecting all the background pixels. The routine must also maintain

the performance accuracy in presence of spacecrafts angular velocity and light gradients from

other bright objects in sky. The thresholding algorithms investigated in this chapter uses In the

new algorithms outlined in this section, the scenes are first processed using Win thresholding to

estimate background level, and then areas of interest are processed using the Kittler-Illingworth

algorithm. This method is expected to have low FNR and FPR while be very robust to varying

background levels.

4.1 Existing Algorithms

Several adaptive star acquisition algorithms can be found in literature [15, 16]. The method

presented by Sun et al. [15] includes denoising, signal enhancement and background removal.

Sun et al. method is consisted of linear filters and operations so the wighted centroid of the star

is not shifted. A correlation filter with a Gaussian kernel is applied to the original image I for

the purpose of denoising the signal. The size of the kernel G was chosen to be 6 × 6 in order

to be consistent with the size of the point spread function (PSF) for the baseline sensor. The

denoised image H can be obtained mathematically by:

H(x, y) = I(x, y) ◦G(x, y) (4.1)

H(x, y) =
M∑
m=1

N∑
n=1

I(m,n)H(m− i, n− j) (4.2)

29
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Sun et al. suggest that the correlation filter is efficient for filtering Gaussian noise, and also

results in the PSF being extended and brighter without changing the centroid position.

Morphological operations (erosion and dilation) are implemented to smooth image background

levels. Erosion and dilation operation are processed using a disk kernel D with radius of 25,

values inside are 1 and outside are 0. To compute for M1, images S eroded by D we compute:

M1(x, y) = min[S(x+ i, y + j)−D(i, j)] (4.3)

Then the resulting image is dilated by D to obtain an estimate of the varying background level

M2.

M2(x, y) = max[M1(x− i, y − j) +D(i, j)] (4.4)

The background value B is estimated by applying an averaging window to M2. A constant

value d , with a value between 10 to 20 is added to B to obtain threshold level:

T (x, y) = B(x, y) + d (4.5)

This is then used to obtain the processed image F by:

F (x, y) = S(x, y)− T (x, y) (4.6)

Sun et al. implemented their routine on star images obtained from a LEO satellite with es-

timated angular velocity of 0.8 ◦/s. The experiment was repeated on simulated images of 0.4

0.8 ◦/s slew rates.

The second star acquisition algorithm we considered was presented by Zhang et al. [16] and

utilizes wavelet denoising to threshold star images in dynamic conditions . The specific wavelet

thresholding algorithm implemented in Ref [16]is called Normal Shrink, originated from Zhang

et al. [17]. Zhang et al. claims that it is easier to threshold star images in wavelet domain since

light from the star are distributed as a smooth signal while the background noise is distributed

at high frequency. Star images are transferred into wavelet domain using a 2-D orthogonal

discrete wavelet transform (DWT). The noise variance in Normal Shrink routine is computed

by following formula, where HH1 is the diagonal sub-band of level 1

σ2 =

[
median(‖HH1‖)

0.6745

]2
(4.7)
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The scale parameter β is calculated using Lk, which is the length of sub-band k level and J is

the largest level.

β =

√
log

(
Lk
J

)
(4.8)

Finally the threshold for each pixel is calculated by:

TN =
βσ2

σy
(4.9)

where σyis the standard deviation of each sub-band. Zhang et al. used SkyMap star simulation

software to simulate images with various noise and up to angular rates of 5 s for purpose of

their thresholding test.

4.2 New Algorithms

In this section new methodologies for extracting and centroiding stars in dynamic conditions

are discussed. This work offers two novel routines to improve star centroiding performance in

dynamic imaging conditions. Both methods utilize a dynamically sized window based on the

slew rate of the star tracker to refine the list of pixels selected for centroiding. Each method

assumes typical ST-16 processing has been run to report a coarse guess for the centroid location.

Knowledge of the spacecraft slew rate can be obtained by external sensors such as a rate gyro,

or directly from the star tracker, by comparing the change in attitude, or star centroid position

across multiple exposures. Using the knowledge of the slew rate and Eq.3.4 from section 1,

we can derive an estimate for star streak length. Utilizing this estimate of streak length,

and the results from the previous examination of thresholding performance, two new methods

for star detection was developed and they are based on dynamically-sized regions of interest

(ROIs). Considering the motion model, the reference window is adopted to perform centroid

determination.

The baseline processing of ST-16 was modified for this section. In cases where the slew is in

direction of columns, the size of the row averaging must be modified. When star light occupies

more than 30% of the averaging window pixels, the local threshold will be higher than the

extended part of the star. Due to this effect, part of the star will not be detected and the

centroid of the star is shifted. Using Eq.3.4 and an estimate of angular velocity, the extend

of star streak in column direction can be calculated. The window size then can be resized to

ensure the star will only occupy 30% or fewer pixels in the averaging window.
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Figure 4.1: Star Tracker

In the Local-Kittler method, we define a box-shaped region of interest (ROI), centered on the

initial estimate of the star position given by the modified ST-16 processing. The size of the ROI

is calculated using Eq.3.4, that is ∆b. We then use the pixels in this ROI to calculate Kittler-

Illingworth minimum error threshold. After processing, non-zero pixels are grouped together

again as stars and the centroid of each new lit region is recalculated.

In the shape-based routine, we refine the ROI to more closely follow the shape of the star image.

Using the initial centroid from the baseline sensor processor, we can find the star vector b using

the camera model, where b is defined as:

b =


bx

by

bz

 (4.10)

After obtaining b and an estimate of ω the satellite angular velocity; a line segment approxi-

mating star path on the image can be estimated from Eq.3.4. Given the the initial centroid,

and ∆b length of the star streak, initial and final points of star in frame are calculated and a

line path between them is obtained. we define a selection filter based on the convolution of a

line, ∆b in length, with a circular kernel C of fixed diameter (empirically determined to match

the sensor’s PSF).

F (x, y) = ∆b ◦ C(x, y) (4.11)

For the ST-16, this circular kernel is chosen to be 12 pixels in diameter. All the pixels inside

this ROI are classified as stars, and their centroid is computed by taking the first moment.

Alternatively a second central moment matrix of pixels selected in local adaptive threshold step

could be used to fit an ellipse shape to estimate the cluster of the pixels. This method has



Chapter 4. Dynamic Thresholding 33

the advantage of being independent of angular rate knowledge and elliptical model if easy to

formulate and fit. Since a blurred star image is not elliptical in shape, this method is just an

estimation of ROI. Pixels in the new estimated ellipse are used to recalculate the centroid of

the spots. The second central moment matrix of pixels belonging to a star could be computed

as:

M =


N∑
α=1

(x− x̄)2
N∑
α=1

(x− x̄)(y − ȳ)

N∑
α=1

(x− x̄)(y − ȳ)
N∑
α=1

(y − ȳ)2

 (4.12)

where (x̄, ȳ) is estimated centroid. Eigenvalues and eigenvector of M corresponds to size and

direction of major axis and minor axis of the estimated ellipse [18].

4.3 Simulation Tests and Results

The dynamic thresholding algorithms are tested in two cases again. Case one tests the algo-

rithms for slew rate tolerance,and case two tests their robustness to stray light. To simply ref-

erence the different algorithms, the first routine developed will be refereed to as Local-Kittler.

The second routine will be then labeled ’Shape Ellipse’ or ’Shape Footprint’, depending on

whether the shape was estimated using an ellipse or circle and line combination. The existing

algorithm by Sun et al. will be referred to as ’Sunxing’, and the algorithm developed by Zhang

et al. will be labeled ’Wave’.

Figure 4.2: False negative ratio versus slew rate.
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Figure 4.3: False positive ratio versus slew rate.

The result of the first case experiment is seen in Fig. 4.2 and Fig. 4.3. As it is seen in Eq.4.9,

the normal Shrink threshold is dependent on the noise variance, which is estimated from the

wavelet coefficient in sub-band HH1.

The Sunxing algorithm improves slightly as the slew rates increases. The size disk kernel C used

in this method was selected so that it could capture the star within its boundaries. The radius

of the disk was set to 25 pixels, so as the slew rates increases and the star cover more areas, the

size of star blur get closer to disk, hence the better performance. However this algorithm still

results in 40% FNR.

Among the Shape thresholding algorithms discussed, the Shape-Footprint outperformed the

Ellipse shape as expected since an elongated circle is closer shape of blurred PSF than an ellipse.

In slew rates lower than 2 deg/s, the false negative rate for the Shape footprint algorithm is

higher, since the size of the region is dependent on the star trail length. Since the star trial

length estimated is relatively is small, the area considered does not capture all of the pixels

in a lower rates. Overall this algorithm has FNR of 10 % or less.The Local-Kittler algorithm

outperformed the other four algorithms. This algorithm had FNR and FPR of less than 5%.

The Fig. 4.4 presents the ratio of correctly detected stars to all the stars in the scene. The Fig.

4.5 is the average number of incorrectly detected objects in star scenes versus angular rate. Most

of the algorithms were capable of detecting almost all the star with no false detection. However

the Wave algorithm detection rate drops with increasing angular velocity and it detects higher

number of false objects.
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Figure 4.4: Ratio of Correctly Detected Stars

Figure 4.5: Average False Star Detected

In the second case, a light gradient is added to the frames. Most of the algorithms tested in

this part are not affected by addition of extra background illumination except for the Sunxing

algorithm. The Sunxing algorithm uses a Gaussian kernel to intensify the signal, but in case of

the background illumination, the light from sources other than stars is also intensified and this

causes a high FPR.

The Fig. 4.8 presents the ratio of correctly detected stars to all the stars in the scene plotted

versus rate. The Fig. 4.9 is the average number of incorrectly detected objects in star scenes
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Figure 4.6: FNR versus Slew Rate with background gradient.
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Figure 4.7: FPR versus Slew Rate with background gradient.

versus angular rate. In the case of background gradient, the Sunxing algorithm detects large

number of false stars as the rate goes higher in the image area illuminated by stray light.

Based on the results of thresholding algorithms, Local-Kittler and Shape Footprint were deter-

mined to be superior algorithms in rejection of stray light and detection accuracy. In the next

test, the centroiding accuracy of these two algorithms are discussed and compared.
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Figure 4.8: Ratio of Correctly Detected Stars

Figure 4.9: Average False Star Detected

4.4 Dynamic Thresholding Results Summary

In this section, the static thresholding algorithms were testing using synthetic star images. The

algorithms are tested based on their ability to identify lit pixels. Two conditions were tested in

this section, the performance in presence of motion and stray light. The results are summarized

in Table 4.1. Considering these results, a new routine combining Win and Kittler algorithms
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was developed to be robust to gradients in images and have low detection errors. This routine

is presented in next section.

Table 4.1: Summay of Dynamic Algorithms Results

Method Performance in Slew Performance in Slew Summary
+ Stray Light

Local-Kittler Low FPR, Low FNR Low FPR, Low FNR Not sensitive to
slew rate and

stray light
Shape-Ellipse Low FPR, medium FNR High FPR, Medium FNR Sensitive

stray light
Shape-Footprint Low FPR, Low FNR Modest FPR, Low FNR Not sensitive to

slew rate and
stray light

Wave Medium FPR, High FNR Medium FPR, High FNR Sensitive
stray light and slew

Sunxingk Low FPR, Medium FNR High FPR, Medium FNR Not acceptable
due to High FPR
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Star Localization

This chapter examines the centroiding accuracy of the local Kittler and Shape based algorithms.

These two thresholding methods showed superior abilities to segment the image at dynamic

conditions with non-uniform background. Centroiding is a common method of localization

that uses the intensity values in pixels of the detected object to calculate the centroid of the

objects of interest. Since in dynamic condition the centroid of the star moves on the frame,

the localization methods are aimed at finding the centroid of the star half-way through the

exposure. In this chapter the pixel-level thresholding are tested with ST-16 object-level and

centroiding algorithm to compare their localizing accuracy. Afterward the detection schemes

are tested on the group of stars with different brightness. These tests are there to ensure that

the chosen algorithm maintain its localizing accuracy for dim star too. Then other localization

schemes such as Gaussian distribution fitting and derivative methods and they are compared

to the first moment centroiding. Finally these results are verified by lab tests and images taken

by ST-16 star tracker. It is aimed to show these methods exhibit sub-pixel accuracy in both

simulation and lab testing.

5.1 Centroiding Simulation Results

In this part, the Local Kittler and Shape Footprint algorithm are tested for centroiding accuracy.

The pixels that were classified as star after each process were grouped together, and their

first moment centroid was calculated. The root mean squared(RMS) errors in pixel for both

algorithms were calculated from the centroids’ location that was simulated. The results for this

test are shown in Fig. 5.1. The centroiding errors from shape algorithm are slightly higher in

lower slew rates, since star displacement in focal plane is small, the window size for these cases

39
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are is small and consequently some lit pixels were missed. The errors from both algorithms in x

and y directions were lower than 0.15 pixel, so these routines are successful in segmenting and

locating stars on the focal plane.

Figure 5.1: Centroiding accuracy.

5.1.1 Centroiding Performance for Different Stellar Magnitude

The stellar magnitude is a basic observable quantity for a star is its brightness. Because stars

can have a very broad range of brightness, astronomers commonly introduce a logarithmic scale

called a magnitude scale to classify the brightness [1]. In this scale, the lower the value of stellar

magnitude the brighter the star is. The stars are grouped into three groups of brightness with

magnitude M ranges of bright 2.5− 3.5, medium 3.5− 4.5 and dim 4.5− 5.5. The stars in these

magnitude range are slewed in lower than 10 ◦/s and algorithms detection accuracy for each

range is examined.

Both algorithms in all three magnitude range were able to achieve sub-pixels accuracy. For stars

with high to medium brightness level, the accuracy of the detection increases insignificantly with

increase in angular velocity. The dimmer star range however shows a strong dependency of ac-

curacy to rate. Stars in magnitude range of 4.5−5.5 are closer to detection magnitude threshold

of ST-16 which is 5.75. The detection magnitude threshold of star tracker are determined based

on the static conditions. The stars above these magnitude are reliably detected in static con-

ditions. However as the dim stars smear and its light spread across larger number of pixels, its
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Figure 5.2: Centroiding accuracy of Local-Kittler algorithm for various stellar magnitude.

Figure 5.3: Centroiding accuracy of Shape-Based algorithm for various stellar magnitude

peak intensity becomes closer to background level, hence the noise have a larger impact on the

stars centroid.

5.2 Laboratory Set Up

The algorithm developed in this study, was tested in labratory using ST-16 star tracker and a

motorized three-axis gimbal capable of slewing at a prescribed rate. Fig. 5.4, shows the general
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laboratory setup for a three pinhole telescope and the star tracker mounted on the gimbal. The

gimbal is used to control the sensor’s orientation with respect to the projected star light and

while sensor is slewing, images are taken of a star source.

In these tests, a triangular three star pattern was projected on projection screen and star tracker

was slewed from 0 to 5 deg/s in x axis with 0.5 increments. Each step was repeated 20 times to

insure the repeatability of the test. In the beginning of each tests stars were imaged 20 times

in static conditions and the length of the triangular pattern side was estimated and averaged.

Since the thresholding and centroiding algorithms are the most accurate in static conditions,

the side length at static images are set to be the ground truth for this test. As the stars slew

and their light smear across the large number of pixels, the relative distance between the star

vectors should stay the same. To evaluate the centroiding error in higher rates, we will compare

the estimated length of triangle side to the ground truth values. The difference in length is

averaged as the centroiding error for his rate. These results should be studied further to remove

the effects of ERS on the centroids of the stars.

Figure 5.4: Laboratory set up.

Figure 5.5: triangular pattern in static and dynamic condition.
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5.3 Lab Testing Validation

The algorithm developed in this study, was tested in labratory using ST-16 star tracker and

a motorized three-axis gimbal. Fig. 5.4, represents the general laboratory setup for a three

pinhole telescope and the star tracker mounted on the gimbal. In these tests, a triangular three

star pattern was projected on projection screen and star tracker was slewed from 0 to 5 ◦/s

in x axis with 0.5 ◦/s increments.Each step was repeated 10 times to insure the repeatability

of the test. In the begging of each tests stars were imaged 20 times in static conditions and

the length of the triangular pattern side was estimated and averaged. Since the thresholding

and centroiding algorithms are the most accurate in static conditions, the side length at static

images are set to be the ground truth for this test. As the stars slew and their light smear

across the large number of pixels, the relative distance between their centroids should stay the

same. To evaluate the centroiding error in higher rates, we will compare the estimated length of

triangle side to the ground truth values. The difference in length is averaged as the centroiding

error for his rate. These results should be studied further to remove the effects of ERS on the

centroids of the stars.

Figure 5.6: Triangular pattern length error in lab tests.

Unlike previous section, the images obtained in this section are influenced with electronic rolling

shutter of the detector. The results for this test are presented in Fig. 5.6. However because of

the sensor ERS, a centroid displacement in row and column direction of the image can also be

seen. Due to the ERS effect the error in star allocations are higher.
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Conclusion

In this work thresholding algorithms for star tracker images are reviewed to improve star cen-

troiding accuracy in high slew rates. The common thresholding algorithms in literature were

identified and studied. Static thresholding algorithms in literature do not make an assumption

regarding image motion and segment the images without prior knowledge of the angular rate.

The promising static thresholding algorithm in each subcategory of local, cluster-based and

attribute based was selected and synthesize. These algorithms were applied to star images in

angular rates from 0-10 ◦/s. In the second scenario these algorithms were tested in presence

of background gradient. It was observed that although local algorithms are robust to nonuni-

form background level, while they had a higher FNR. On the other hand, the global method,

Kittler-Illigworth had a low FNR and PNR and was robust to slew rate, however in presence

of varying background illumination, it did not exhibit the same results. Based on these results,

two new routines for star detection were developed. The new thresholding algorithms where

categorized as dynamic thresholding algorithms as they require prior knowledge of the space-

craft angular rate. The Local-Kittler algorithm applies the Kittler-Illigworth at the local level

in a ROI confining a star detected by the regular the baseline sensor detection process. The

Shape-based methods use a common blur model follow the shape of star PSF more closely to

select the lit pixels. The performance of these novel algorithms are then compared to other

dynamic thresholding algorithms in the literature. The dynamic algorithms were tested to ver-

ify the slew rate tolerance and robustness to stray light. After confirming the effectiveness of

the new thresholding routines, their centroiding accuracy was checked. Based on the simula-

tion results the centroiding accuracy of the both Local-kittler and Shape-Footprint was kept

below 0.2 pixel, which is the ST-16 centroiding noise at static conditions. A lab experiment

was designed to verify the performance of these algorithms using the baseline sensor. Unlike
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simulated images, the actual sensor images require ERS correction for an accurate analysis of

the detection algorithms. Since the lab test set up, does not provide an output of angular rate,

the commanded angular velocity to the platform was used to correct for ERS effects. Despite

the correction, the ERS effect on the streak length is still observed on the final results. this

suggest that these algorithms require a more accurate estimate of angular velocity than what is

currently available. As future work it is recommended to add a rate gyro to the testing platform

to be able to measure the angular velocity of the platform at the time of imaging more accu-

rately. Computational efficiency has not been considered in this evaluation; it is recommended

to reexamine these algorithms based on their computational cost. Despite the uncertainties in

the effective ERS correction, the Local-Kittler algorithm showed promising results in detect-

ing and centroiding the dim stars in presence of high angular rate. To validate the efficiency

of Local-Kittler algorithms, night sky field tests using ST-16 must be conducted. Given the

results from the lab tests, the novel detection algorithm offered in this work can enable small

spacecrafts with a star tracker on-board to track their absolute attitude without any hardware

changes.
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