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Abstract 

 

With the increasing utilization of X-ray Computed Tomography (CT) in medical diagnosis, obtaining 

higher quality image with lower exposure to radiation is a highly challenging task in image processing. 

Sparse representation based image fusion is one of the sought after fusion techniques among the current 

researchers. A novel image fusion algorithm based on focused vector detection is proposed in this thesis. 

Firstly, the initial fused vector is acquired by combining common and innovative sparse components of 

multi-dosage ensemble using Joint Sparse PCA fusion method utilizing an overcomplete dictionary 

trained using high dose images of the same region of interest from different patients. And then, the 

strongly focused vector is obtained by determining the pixels of low dose and medium dose vectors which 

have high similarity with the pixels of the initial fused vector using certain quantitative metrics. Final 

fused image is obtained by denoising and simultaneously integrating the strongly focused vector, initial 

fused vector and source image vectors in joint sparse domain thereby preserving the edges and other 

critical information needed for diagnosis. This thesis demonstrates the effectiveness of the proposed 

algorithms when experimented on different images and the qualitative and quantitative results are 

compared with some of the widely used image fusion methods.  
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Chapter 1. Introduction 
 

 

 

 

 

 

 

With the tremendous growth in imaging sensor technology in various applications such as 

remote sensing, automatic object detection, computer vision and medical imaging, the need for 

effective fusion algorithms is inevitable. This is due to the fact that image captured by different 

sensors carry complementary information. Even the images captured by the same sensor over an 

extended period of time need not contain same details. Image fusion is the process of integrating 

relevant information from source images to single composite image. And the composite image 

must carry all the salient details that can describe the scene better than any of the source images. 

This integrated image can be used for machine perception or human perception.  

1.1. Background 

Extraordinary advances in medical scanning technology have revolutionized clinical 

diagnosis. The arrival of various imaging modalities provides invaluable information about 

pathology and anatomy of patients. Optimal exploitation of all the critical information necessary 

for diagnosis in the clinical treatment is a challenging task. There are many technical hurdles to 

be handled while fusing medical images. The fast and detailed insight in to the patient’s body 

noninvasively makes computer tomography tremendously widespread in today's healthcare 
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system. Technological advances of CT in usage of radiological diagnosis and treatment makes it 

an indispensible tool in clinical examinations.   

1.2. Problem statement 

Drastic increase in the number of CT examinations led to the increase in radiation dose in 

the patients. Even though the clinical diagnosis is precise, increase in dose has created anxiety 

among the radiological community. Hence the demand for reducing the dose arises but this 

might impact the quality of the image. There is a tradeoff between noise and dose. Decreasing 

the dosage leads to increase in noise that might hinder the details needed for clinical diagnosis. 

Reducing the dose without compromising the image quality is a challenging task. The objective 

is to improve the quality of low dose images equivalent to that of image generated with a high 

dose. For instance, usage of low pass filter might remove high frequency noise but some small 

content might be lost and edges will be blurred. Hence there is a compromise between image 

quality and dose. Integrating multiple low dose and medium dose data of the same region of 

interest in to a coherent composite image, assuring all salient information without any loss of 

diagnostically relevant content would be an optimal way to enhance and preserve the important 

information and reduce the noise. Therefore a great care has to be given while developing fusion 

algorithm for this specific application for efficient expert interaction. 

The following are the main goals in fusing low dose and medium dose CT data: 1. 

Minimize noise and improve PSNR and CNR; 2. Improve composite image that provides an 

invaluable roadmap for precise clinical diagnosis than any of the low dose and medium dose 

images; Objective of this thesis is to provide a technical solution for integrating and denoising 

low dose and medium dose images simultaneously. 

1.3. Techniques adopted 

 Sparse representation of any image requires only limited number of prototypes to 

represent the underlying salient features of the image. Any image can be represented as sparse 

linear combination of basis functions in a dictionary and each basis function is gmcalled an atom. 

Hence the fused image can be represented by sparse coefficients and well designed overcomplete 

dictionaries. Signal can be approximated through many optimal iterative algorithms utilizing a 
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well designed dictionary.  The dictionaries can be analytical or adaptive. Analytical dictionaries 

are pre-specified dictionaries where the atoms are created using predefined basis functions like 

curvelets, cosine functions, bandlets, etc. These fixed dictionaries are simple to implement but 

they are not specialized in representing all images. But on the other hand, in adaptive 

dictionaries, the atoms are generated and updated based on the training data. Learning algorithms 

deal with this problem to find an optimal solution. 

 Multiple low dose and medium dose images of the same scene can be seen as an 

ensemble of intercorrelated images. Firstly, the data in the ensemble is sparsely represented 

using an overcomplete dictionary as common and innovative sparse components. It is a well 

known fact that common feature has more chances to be clean and innovative components might 

contain noise. Then an appropriate fusion rule is applied to combine common and innovative 

components in sparse domain to enhance the underlying sparse information and simultaneously 

the innovative components are denoised. Finally the fused image is recovered from the 

composite vector. 

1.4. Framework and Requirements 

 Through image fusion synergy process, the source data can be fused to obtain a 

composite image with an improved quality, reduced uncertainty and increased reliability. 

Generalized fusion processing chain is shown in Figure 1.1. Multiple CT images are fused only 

when they “speak a common language”. Common representational block makes sure that the 

preliminary condition for fusion of source images having common representation format is 

satisfied. Hence before fusion, first the source images have to be aligned spatially in to the same 

geometric base, temporally  aligned to a common time and radiometrically calibrated in to a 

common measurement scale. Image fusion block integrates the aligned data together into a 

composite one. There are various fusion operations: 1. Pixel operations, 2. Sub-space 

methodology and 3. Multi-scale fusion methodology.  

 Requirements for effective fusion algorithm are: 1. Composite image should preserve all 

the necessary information, 2. The fused image should be artifact free, 3. Framework should be 

rotational and shift invariant and 4. Algorithm should be temporally stable and consistent.  



4 
 

 

Source 

Images

Common

Representation 

Block

Pixel Level 

Fusion

Spatial Alignment

Temporal Alignment

Radiometric 

Callibration

 

Figure 1.1 Generic pixel level fusion processing chain 

1.5. Major contributions 

 Motivated by the need for processing the low dose images and to address the challenges 

and key technical issues faced while fusing low dose and medium dose images, our research 

demonstrates the use of pixel level fusion in sparse domain for integrating multiple dose images. 

Contribution I: Simultaneous Controlled Stage-wise Orthogonal Matching Pursuit (SCSt-

OMP) algorithm, which is a new efficient simultaneous sparse coding iterative framework, is 

developed to fasten the approximation process of joint sparse model. 

Contribution II: A hybrid Joint Sparse PCA model is proposed in [1.] that can 

simultaneously fuse the common and innovative component using different fusion rules and 

denoise the source innovative components. 

Contribution III: Development of a novel fusion algorithm [2.], applicable for both noisy 

and clean images, that determines the focused sparse vector from initial fused image and fuse the 

common and innovative components of focused sparse vector, initial fused image and the 
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ensemble. The signals in the ensemble are represented sparsely by adopting SCSt-OMP 

(Contribution I) utilizing the dictionary trained from high dose data set. 

 

1.6. Overview of the thesis 

 This thesis is organized as follow: Sparse representation techniques that are used to 

represent the source data effectively for clinical diagnosis is presented in chapter 2. All the 

algorithms in chapter 2 are constructed based on assumption that the dictionary is already 

known. Well designed dictionaries and effective dictionary learning methodologies for better 

interpretation of images are described in chapter 3. Computed tomography technique with the 

assembly of image fusion methodologies and image quality measurement is rendered in chapter 

4. In chapter 5, our contributions that were developed to fuse low dose and medium dose CT 

images are presented in detail. Chapter 6 explores the quantitative and qualitative analysis of 

composite images obtained from proposed methodologies.  The efficiency of the proposed 

methods is well demonstrated by comparing with other state-of-the-art fusion methods. Finally, 

in chapter 7, the thesis is concluded with a summary and avenues for extending our proposed 

work.  

 

 

 

 

 

 

 

 

 



6 
 

 

 

 

Chapter 2. Sparse Representation  

 

 

 

 

 

2.1. Introduction to Sparsity 

The ultimate goal of transform coding algorithms is to find a transform that will represent 

any signal with few coefficients. Previously Orthogonal Transform [1] is applied for generating 

sparse approximation of the signal but finding the exact representation is almost impossible. An 

example for transform domain representations is the Fourier Transform with vector space having 

Fourier orthogonal basis since they can represent periodic functions sparsely.  

The word “Sparse” means quantitative property of a vector. Sparsity is the measure of number of 

non-zero coefficients in a vector. Computational efficiency of multiplication of non sparse vector 

and matrix is better compared to the multiplication of sparse vector and matrix.  

Considering a dictionary        to be over complete (   ) for the given signal     , 

solution      obtained from the underdetermined linear system shown in figure 2.1 and the 

equation is given by: 
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                     (2.1) 

Sparse vectors are memory efficient way of mapping position and value of entries.  

                                       (2.2) 

     defines the number of non-zero entries of the vector.       represents the   -norm of the 

vector  . As   -norm informally represents the number of non-zero entries, they are focused to 

find the sparsest solution for any under determined linear system. Many image processing 

applications try to obtain sparsest solution by minimizing the number of non-zero entries by 

applying certain constraints.  This problem is called   -minimization and is formulated as: 

         subject to                   (2.3) 

Solution to this problem is unattainable due to the lack of mathematical representation of   -

norm.  

Mathematically,    -norm is formulated as: 

            
 

               (2.4) 

     is called norm. Norm is a function that represents the length of each vector in vector space. 

Norm has many profiles like Euclidean distance, minimum square error, etc. 

Representation of   -norm following the definition of     -norm is: 

                          (2.5) 

Mean absolute error    of two vectors    and    of size   can be computed by: 

   
 

 
                       (2.6) 

This is the most well known norm and is demanding in image processing applications. By the 

definition of norm,   -norm or Euclidean norm can be represented as: 

                           (2.7) 
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   -norm calculated for difference between two vectors is given as: 

    
 

 
        

                 (2.8) 

   is called the Euclidean distance between vectors    and    of size    . Mean Square Error 

(MSE) is one of the important quantitative measurements to compute Peak Signal to Noise Ratio 

(PSNR) of the denoised signal. 

2.2. Regularization 

This problem of   -minimization is formulated as: 

         subject to                  (2.9) 

Considering D to be a full rank matrix, this underdetermined linear system is likely to have 

infinite number of solutions. Computation is highly complex to draw the best possible solution 

for this problem. Lagrange multipliers   are used to make this cumbersome process workable. 

          
                        

(2.10) 

Optimal solution is obtained by equating the derivative of Lagrangian      to zero: 

        
 

 
               (2.11) 

Substituting this solution in constraint equation gives: 

  
 

 
                  (2.12)  

                        (2.13) 

Optimal solution of   -optimization is obtained by substituting Lagrange multiplier   in equation 

(2.10) 

        
                       (2.14) 
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This problem is called the least square optimization problem and the optimal solution is instantly 

obtained by solving this equation. This equation is popularly called Moore-Penrose Pseudo-

inverse [2]. Unique solution is very hard to find because of the smooth nature of Euclidean norm 

even though it is computationally simple. 

This problem is   -minimization and is formulated as: 

         subject to                (2.15) 

As   -norm is not smooth in nature, it has the tendency to draw best sparse solution. Thus unique 

best solution from the infinitely many solutions can be drawn. Since it is mathematically 

complex to draw from pool of infinite solutions, complex optimization algorithms are developed 

to easily select the best unique solution. 



b D

x
 

Figure 2.1. Depiction of sparse representation concept and the size of each matrix 

 

2.3. Spare Approximation 

1) All the sparse approximation algorithms are constructed by assuming the dictionary D to be 

known.  
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The problem defined in (2.3) will have infinitely many solutions if   is the span of dictionary 

matrix  .  The solution   cannot reproduce the signal b exactly since the equality constraint is 

strict. 

2) Considering D and b to be same as problem (2.15), applying a condition to find the solution is 

given as: 

                  subject to                    (2.16) 

Where    is the global representation error and    . For this problem, the value of   is flexible 

since the solution is no longer required to reproduce the signal exactly and the constraint is not 

too strict. 

 

2.4. Examples of sparse representation and approximation 

Sparse approximation of a randomly generated vector utilizing randomly generated overcomplete 

matrix is given as: 

1) 

    0.8147    0.6324    0.9575    0.9572    0.4218

    0.9058    0.0975    0.9649    0.4854    0.9157

    0.1270    0.2785    0.1576    0.8003    0.7922

    0.9134    0.5469    0.9706    0.1419    0.9595

0
 0.6557

1.1464
 0.0357

0
 0.8491

0
 0.9340

 0.2400

 
    
    
     
    
    
    

 

 

2) 

    0.8147    0.6324    0.9575    0.9572    0.4218

    0.9058    0.0975    0.9649    0.4854    0.9157

    0.1270    0.2785    0.1576    0.8003    0.7922

    0.9134    0.5469    0.9706    0.1419    0.9595

0
 0.6557

0
 0.0357

0
 0.8491

0
 0.9340

  0.7323

 
    
    
     
    
    
    

 

 

The error in second example is 0.8058 which is lower than the length of the source vector which 

is 1.4229. First example has two sparse coefficients and the error is 0.4878 which is much lower 

than the example with only one sparse coefficient.  
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2.5. Uncertainty 

Consider the dictionary   to be the concatenation of two orthogonal bases   and  . Simply the 

dictionary   is considered as the composition of identity matrix and Fourier matrix. For the 

defined underdetermined system, there are many solutions that represent the signal as a 

superposition of columns from the concatenated matrices that are spikes and sinusoids: 

                            (2.17) 

Optimal sparse solution represents the signal with fewer non-zero entries that is the superposition 

of fewer sinusoids and spikes. 

Uncertainty principle states that any function and Fourier transform of the same function cannot 

be sharply localized [61]. 

          
 

  
               

 

  
     

 

 
                 (2.18) 

Measuring the concentration in terms of standard deviation defined on   and hence:  

        
 

  
              (2.19) 

Signal can be represented as the linear combination of columns of identity matrix or Fourier 

matrix as: 

                   (2.20) 

Where    is the time-domain representation of signal b and    is the frequency domain 

representation of signal b. For the pair of considered orthogonal bases either    or    can be 

sparse. Mutual coherence of the dictionary   is proximity between the two orthogonal bases 

which is: 

 

                    
             (2.21) 
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If   is a unit matrix and   is a Fourier matrix, then mutual coherence [3] is 
 

  
 . Both    and    

cannot be sparse at the same time as      is small.      can also be determined as the non 

diagonal entry of gram matrix       as: 

                                    (2.22) 

2.6. Uniqueness of sparse representation 

In order to narrow the choice of well defined solution, certain constraints are applied to this 

problem. 

Sparsest possible solution is drawn if 

       
        

 
          (2.23) 

         [4] is the smallest number of linearly dependent vectors of D. Consider        , the 

sparse representation of the signal   can be represented as:  

           (     )         (2.24) 

                    (2.25) 

                          (2.26) 

But the minimality nature of          is contradicted. Hence the unique representation cannot 

be guaranteed. But it is only upto a bounded deviation hence one can get closer to such matrices 

with this scheme. 

2.7. Necessity of sparse approximation 

Sparse approximation algorithms are widely used in image and signal processing applications. 

Obtaining the sparse approximation is not as simple as an abstract mathematical problem. It is 

very challenging to store vectors containing large amount of data and computation also becomes 

very tedious since Graphics Processing Units (GPUs) carry very limited amount of quickly 

accessible memory. Sparse approximation techniques effectively store sparse vectors.  Data can 

be analyzed by the reciprocality of sparse vectors. A sparse matrix allows processes to take 
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advantage of background or zero elements and represents the underlying salient elements. Nature 

of Sparsity of any matrix depends upon its structure and application. 

2.8. Sparse coding algorithms 

The objective of sparse problem    is to obtain fewer coefficients for the given constraint 

function (2.2). Obtaining exact solution for this problem is NP-hard. There are various iterative 

algorithms which are used to find the objective function. During each iteration, appropriate 

column vectors are chosen for obtaining the optimum global solution. 

2.8.1. LASSO and Basis Pursuit 

Basis Pursuit (BP) is used to substitute a complex sparse problem by an easier optimization 

problem. Equation (2.2) is the formal way of defining the sparse problem. The main difficulty 

with this sparse problem is the   -norm. BP replaces   -norm with     constraint for solving the 

problem with relative ease and can be defined as: 

         subject to               (2.27) 

 Least Absolute Shrinkage and Selection Operator (LASSO) also known as BP de-noising 

introduced in [5] replaces the sparse problem by a convex problem for efficient shrinkage and 

variable selection in linear models. Derivative of the objective function is not possible due to the 

   constraint. This motivates the need for special optimization techniques. Grafting, which is the 

stage-wise gradient descent algorithm, is developed in [6] to solve LASSO problem. However 

this method is not computationally efficient. After many attempts to solve the issues faced while 

solving the problem, gradient LASSO algorithm was proposed by [7] overcomes these issues. 

This converges to global optimum and can efficiently handle large dimensional data set since this 

algorithm does not require matrix inversion. LASSO problem can be mathematically formulated 

as: 

            subject to               (2.28) 

2.8.2. Greedy Algorithms 
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Unique solution is obtained when the dictionary   has           , and the value of the 

optimization problem    is 1. Identification of columns are done when the signal is a scalar 

multiple of those identified columns. Objective is to minimize the error      and is represented 

mathematically as: 

                   
                (2.29) 

Minimizing the representation error leads to:  

  
  

  
  

     
              (2.30) 

Substituting   
  in error function leads to: 

      
  
  

     
      

 

 

          (2.31) 

The best solution is obtained when error is zero. Greedy pursuit iterative algorithm [8] constructs 

approximation iteratively reducing the residual error. Locally optimum solution is identified at 

each iteration step. Properly identifying the local optimal solutions at each step will result in a 

global optimal solution. 

2.8.2.1. Matching Pursuit with Time-Frequency Dictionaries 

This algorithm is introduced by [9] which provides extremely flexible signal representation and 

can decompose any signal in to a linear expansion of waveforms that are well localized both in 

time and frequency. The property of decomposition varies with respect to the choice of time-

frequency atoms. This iterative algorithm decomposes any signal in to waveforms that well 

describe the time-frequency property of the signal.  Best represented signal structures that 

correlate well with the given dictionary are detected and isolated by this algorithm. 

Table 2.1 Pseudo algorithm of Matching Pursuit [9] 

Objective:  Construct an approximation for the problem P0 

(P0):             subject to        
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User defined input parameters: Dictionary D, Signal b and error threshold   . 

Initial conditions: k=0, start by setting 

Intial residual           (set initial solution       

Initial index set       

Iteration process:  k=k++ (incrementing) 

Sweep stage: Error computation                       
  for all  . Minimizing error leads to 

the optimal choice   
  

  
     

     
  .  

Update solution stage:  If the inner product between row vectors    of dictionary D and 

residual is    and is maximum, then assign     . Update the set                . Set 

        and update the entry               
  

Update residual stage: compute the residual                   
    . 

Stopping condition: check the stopping criterion. If         , global optimum solution is 

obtained; Otherwise, proceed the iteration process again. 

Output:    is the global optimum solution obtained after   iterations. 

 

2.8.2.2. Weak Matching Pursuit algorithm 

Simplified version of MP algorithm is the weak matching pursuit algorithm [9]. Greedy selection 

step in weak matching pursuit algorithm is relaxed by allowing a suboptimal choice of the next 

element to be added to the support set.  Instead of looking for the largest inner-product value, we 

select the first found that exceeds  -weaker threshold. Using the Cauchy-Schuartz inequality, 

   
      

 

     
          

   
      

 

     
         

        (2.31) 
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At the beginning of the sweep stage,        
  is computed and we select     that produces the 

smallest error     .    is chose by: 

    
      

 

      

            
        

     

   
      

 

     
       (2.32) 

Table 2.2 Pseudo algorithm of Weak Matching Pursuit [9] 

Objective:  Construct an approximation for the problem P0 

(P0):             subject to      . 

User defined input parameters: Dictionary D, Signal b and error threshold   . 

Initial conditions: k=0, start by setting 

Initial residual           (set initial solution       

Initial index set       

Iteration process:  k=k++ (incrementing) 

Sweep stage: Error computation                       
  for all  . Minimizing error leads to 

the optimal choice   
  

  
     

     
  . When 

   
      

     
           , stop the sweep. 

Update solution stage: use    from sweep stage and  assign     . Update the set           

     . Set         and update the entry               
  

Update residual stage: compute the residual                   
    . 

Stopping condition: check the stopping criterion. If         , global optimum solution is 

obtained; Otherwise, proceed the iteration process again. 

Output:    is the global optimum solution obtained after   iterations. 

2.8.2.3. Orthogonal Matching Pursuit algorithm 
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The strategy of Orthogonal Matching pursuit [8] [10] [11] makes the approximation 

computationally efficient by abandoning exhaustive searches.  Orthogonalization makes this 

algorithm different from simple matching pursuit algorithm. Update provisional stage, which 

updates the residual vector at each iteration using least square step, enhances the approximation. 

The columns in dictionary D and residual should be orthogonal and already selected atoms will 

not be selected in the following iterations. 

Table 2.3 Pseudo algorithm of Orthogonal Matching Pursuit [8] 

Objective:  Construct an approximation for the problem P0 

(P0):             subject to      . 

User defined input parameters: Dictionary D, Signal b and error threshold   . 

Initial conditions: k=0, start by setting 

Initial residual           (set initial solution       

Initial index set:      

Iteration process:  k=k++ (incrementing) 

Sweep stage: Error computation                       
  for all  . Minimizing error leads to 

the optimal choice   
  

  
     

     
  .  

Update solution stage:  If the inner product between row vectors    of dictionary D and 

residual is    and is maximum, then assign     . Update the set                . Find the 

minimizer    the term        
   such that the support is   . 

Update residual stage: compute the residual          . 

Stopping condition: check the stopping criterion. If      , global optimum solution is 

obtained; Otherwise, proceed the iteration process again. 

Output:    is the global optimum solution obtained after   iterations. 
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Error values in the sweep stage is represented as: 

                      
          (2.33) 

      
  
     

     
         

 

 

         (2.34) 

Error can be minimized if the inner product between the residual       and normalized 

dictionary matrix D is large. 

 

2.8.2.4. Stage wise Orthogonal Matching Pursuit 

To represent the signal sparsely faster and to solve the sparse representation optimization 

problem, iterative stage wise orthogonal matching pursuit method is proposed in [12]. This 

algorithm is extended from orthogonal matching pursuit algorithm. Global optimum solution is 

build by adding one vector at a time in OMP algorithm, whereas many vectors are extracted at 

each stage in St-OMP algorithm. Thus the number of iterations to obtain the global optimal 

solution is reduced. Firstly, the residual starts out being equal to the signal. In St-OMP method, 

the dot products of the signal to be approximated with the columns of dictionary are compared 

and the vectors above the set threshold value are selected for the next stage. Sparse 

approximation is done by applying least square method. The same process is repeated comparing 

every time with the residue vector. Set threshold value should select subset of atoms with higher 

correlation. Challenge lies in selecting optimum threshold value since different threshold 

produces different results. Hence the results of robust St-OMP will be more sparser for optimum 

threshold value. 
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Figure 2.2 Block diagram of St-OMP framework 

 

 

Table 2.4. Pseudo algorithm of Stage-wise Orthogonal Matching Pursuit [12] 

Objective:  Construct an approximation for the problem P0 

(P0):             subject to      . 

User defined input parameters: Dictionary D, Signal b and error threshold   . 

Initial conditions: k=0, start by setting 

Initial residual           (set initial solution       

Initial index set       

Iteration process:  k=k++ (incrementing) 

Sweep stage: Error computation                       
  for all  . Minimizing error leads to 

the optimal choice   
  

  
     

     
  .  
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Update solution stage:  If the inner product between row vectors    of dictionary D and 

residual is    and is maximum, then assign     . Update the set                . Find the 

minimizer    and the term        
   such that the support is   . 

Update residual stage: compute the residual          . 

Stopping condition: check the stopping criterion. If      , global optimum solution is 

obtained; Otherwise, proceed the iteration process again. 

Output:    is the global optimum solution obtained after   iterations. 
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Chapter 3. Analytical and Adaptive                       

Dictionaries                             

 

 

 

 

 

Sparseland model is the basis for all the sparse image fusion algorithms described in this 

thesis. All the sparse approximation algorithms are developed under the fundamental 

consideration that the dictionary         is known. All the sparse coding algorithms rely 

heavily on costly computation with dictionary and signal on each iteration stage. Wise selection 

of dictionary results in redundant representation of signal efficiently.  This chapter explains the 

nature of analytical and adaptive dictionaries.  

3.1. Comparison of analytical and adaptive dictionary 

Due to the rising need for efficient sparse representation, a variety of dictionaries have been 

constructed. There are mainly two sources for dictionary development: 1) Predefined 

mathematical model and 2) Realizations of training data. Analytical dictionaries such as 

wavelets, Discrete Cosine Transform [13], Contourlets [14], and many more are the wise 

dictionaries for fast implementation and better representation of signals in certain image 

processing applications. These pre-constructed dictionaries have the ability to sparsify only the 

signals having smooth boundaries. Even though these dictionaries, which are also called 
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transforms, have simple implementation, they cannot be used to sparsify many type of signals of 

interest due to the analytical formulation.  

By endorsing a learning point of view, learned based dictionaries overcome these limitations. On 

the other hand, trained dictionaries have generating atoms as a result of learning of empirical 

data instead from a theoretical model. They have the ability to sparsify any signal since they 

deliver high flexibility. The implementation is complex and it’s computationally costly which do 

not expose the frequency information of the signal. Hence they are limited to low dimensional 

signals. In order to overcome the problems of learnt based dictionaries, these dictionaries are 

handled on small patches. 

3.2. Time-Frequency Dictionaries 

Transformation of a signal from spatial domain to frequency domain is necessary to reduce the 

observations representing the input data. Fourier transform is a widely used transform in various 

image processing tasks which decomposes an image into its sine and cosine components. This 

transformation exposes the frequency information of given data and divides the images based on 

the frequency information thereby performing the dimensionality reduction process naturally. It 

is known that Sinusoidal functions having different frequencies are orthogonal. Hence all the 

signals can be effectively represented as the linear combination of a set of orthogonal sinusoidal 

signals. During the earlier days, signal is represented as the combination of orthogonal basis 

using Fourier Transform due to the pair-wise orthogonality nature of sinusoidal functions. This 

has been widely given attention for extracting the frequency domain information of the signal.   

Inner product of signal to be represented and its Fourier basis leads to the coefficients for 

effective representation of the signal which is nothing but the inverse Fourier transform. 

          
 

  
                    (3.1) 

Signal can be represented as the combination of orthogonal waveforms by Fourier basis. To 

approximate the signal, the Fourier basis creates K low frequency atoms of the dictionary. The 

signals described above are smooth and have less noise.   
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3.2.1. Discrete Cosine Transform  

DCT introduced in [13] is closely related to DFT but not complex. DCT decomposes the image 

based on differing frequencies. Most of the energy will be accumulated in the lower frequencies 

of the image. Decomposing the image based on frequency components, amount of details needed 

to describe the image well can be reduced by eliminating the high frequency coefficients. Fourier 

transformation works on the assumption that the signal is periodically extended which results in 

discontinuous boundaries. In order to overcome this and to produce real coefficients, the signal is 

assumed to be extended anti-symmetrically thereby making the boundary continuous. Due to the 

efficiency of DCT, it is much preferred in practical applications.  

For a signal sequence,     , its   number of DCT coefficients       can be calculated by: 

       
 

 
        

        

  
   
      where                 (3.2) 

And 0
th

 DCT coefficient is given by 

      
  

 
        
            (3.3) 

Inverse Cosine Transform can be represented in (3.4) as 

     
 

  
               

        

  
   
         (3.4) 

Two dimensional extension follows straight forwardly from single dimensional DCT, the IDCT 

equation can be written as: 

                    
        

  

   
   

   
      

        

  
    (3.5) 

 3.2.2. Overcomplete Discrete Cosine Transform  

We know that every signal can be sparsely represented when the dictionary forms a basis. When 

utilizing orthogonal dictionaries, salient coefficients are computed by calculating the inner 

product of the signal and atoms of orthogonal dictionary. Representation coefficients are 
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computed by taking the inner product of signal and inverse of non-orthogonal dictionary and are 

referred to as bi-orthogonal dictionary. 

 

  

Figure 3.1. Depiction of Simple     DCT Dictionary of 16 atoms and     DCT Dictionary of 

64 atoms 

 

These dictionaries have limited ability to represent all the images. Due to the mathematical 

computational efficiency, these orthogonal and bi-orthogonal dictionaries were predominantly 

used until the development of a dictionary having more number of atoms than the signal 

dimension and is called overcomplete dictionary [16].  

Considering the signal length of 64, the overcomplete dictionary to be designed is presumed to 

have 256 columns. In non-overcomplete case, inner product of sample and atoms shows the 

representation coefficients. Transforming the sample into cosine space is done as shown in 

Figure 3.2. 
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        Figure 3.2. DCT dictionary with     patches 

 

Two dimensional matrix   which is transformed can be represented by 

1 1 1

3 15
cos cos cos

16 16 16

7 21 105
cos cos cos

16 16 16

  



  

 
 
 
 


 
 
 
  

 

In between the orthogonal bases of  , non-orthogonal rows and columns are added thereby 

generating an overcomplete dictionary D of size       . 

 

1 1 1

3 15
cos cos cos

32 32 32

15 45 225
cos cos cos

32 32 32

D

  

  

 
 
 
 


 
 
 
  
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3.2.3. Overcomplete Haar Dictionary 

The idea of using Overcomplete Haar Dictionary is first proposed in [16].  

One dimensional Haar transformed matrix of size     is shown below: 

 

 
 
 
 
 
 
 
 
                 
             
            
           
            
           
            
           

 
 
 
 
 
 
 

  

Overcomplete Haar transformed matrix of size        is constructed by adding non 

orthogonal rows in between the orthogonal bases indicated by arrows. As usual the patches are 

vectorized and located at designated columns in a matrix. These columns are then normalized. 
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3.2.4. Continuous Wavelet Transform (CWT) 

Wavelet transform provides flexible time frequency window to adapt to the frequencies of 

different input images. This is proposed in [17] to overcome the problems of Fourier Transform. 

CWT of the signal      can be expressed by 

        
 

  
     
 

  
  

   

 
           (3.6) 

Where   defines the scale which is a positive value and   represents shift which is a real number. 

By shifting and scaling the basic wavelet     , wavelets are generated. This basic wavelet is 

well designed to be computationally efficient and easily reversible. CWT         of the given 

signal represents a high frequency component of the signal if the scale   is larger. Undoubtedly, 

window size of   
   

 
  will be smaller for large scale value.  

3.2.5. Continuous Wavelet Transform with Discrete Wavelet Coefficients (DC-CWT) 

DC-CWT overcomes the problem of intense implementation of CWT. Sampling the time scale 

period parameters   and   values are restricted as: 

       and       

CWT in this case is called DC-CWT and can be written as: 

        
 

    
     
 

  
  

      

   
          (3.7) 

Discrete scaling and discrete wavelet functions are given by: 

                           (3.8) 

                            (3.9) 

Where    and    are the FIR filters. 

Convoluting         and           results in: 

                                    (3.10) 
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                                    (3.11) 

Scaling function      can be understood as a low pass filter. Location-scaling resolution plane is 

given in figure 3.3. 

  

(a) 

 

(b) 

 

         (c) 

Figure 3.3. (a) DWT having one decomposition level [23] (b) DWT having three decomposition 

levels [23] and (c) Haar Dictionary basis [22] 
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3.2.6. Discrete Wavelet Transform 

Pure Discrete transforms are used in signal coding applications due to its computational 

efficiency. It is the modified version of DC-CWT where both the time and time scale parameters 

are discrete. Computation structure is same as DC-CWT. Simple 1D DWT having only one level 

is represented in Figure 3.3. (a) 

Multi-scale reconstruction of the image from transformed coefficients is done using Inverse 

transform. Orthonormal filter method is used to design filters for IDWT. Shift variance property 

of DWT motivates the need for complex extended DWT. DTCWT, introduced by Kingsbury 

[18], was used with filters and that resulted in good shift invariance, directional selectivity and 

reduced over completeness. Complex filters are applied separately to rows and columns of an 

image which produces six bandpass bands at each decomposition level that are aligned at ±15, 

±45 and ±75 degrees. Complex filters help in interpreting one wavelet as the real part and the 

other wavelet as the imaginary part of complex-valued 2D wavelet. This complex nature 

provides approximate shift invariance perpendicular to wavelet orientation. These properties can 

be seen in Figure 3.4. DTCWT is vaguely represented as the union of four real orthonormal 

bases of two DTCWT trees, though DTCWT is not actually the union of four orthonormal bases. 

Reconstruction of the image is more accurate as the complex filters are chosen bi-orthogonal set. 

 

 

Figure 3.4. Left image representing the Wavelets associated with the orientation of DTCWT and 

Right image represents the Overcomplete DTCWT dictionary 
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3.3. Dictionary Learning 

The prominence of dictionary learning has grown for constructing a dictionary to well 

approximate a given signal. Since empirically learned dictionary can faithfully represent the 

signals, they can be well used for better data fusion. Suppose a training set is generated by an 

unknown model, it is not simple to identify the generating model and more importantly the 

dictionary D itself. This was first addressed by Field and Olshausen in [19]. Motivated by this, 

the researchers were able to develop a localized, oriented, bandpass receptive fields through 

dictionary learning, which are similar to the population of simple cells in visual cortex. Later the 

contributions by various other experts [16] [20] [21], resulted in the development of novel 

dictionary learning algorithms. We have presented two training methods: 1) Methods of optimal 

direction algorithm by Engan et al., [21] and 2) K-SVD by Aharon et al., [16]. 

Consider the following problem  which shows that the sparse representation    of signal    over 

an unknown dictionary  . Assuming the error   to be known,  

           
       

 
     subject to                       (3.12) 

Objective of this problem is to find best representation and unknown dictionary. If the above 

defined problem [24]  is solved, proper representations    and the generating model can be 

found. This problem can also be presented by reversing roles of the penalty and constraints as: 

           
           

  
     subject to                    (3.13) 

 

3.5.1 Method of Optimal Directions Algorithm 

This is a frame design algorithm which aims to find true dictionary D and best representation of 

the source signal.  We can view the two problems (3.12) and (3.13) as nested minimization 

problems. Objective of inner minimization is to obtain few non-zeros in the vector     , for a 

fixed dictionary D. Algorithm can be summarized as: 

1) Update the dictionary in      stage which is    using the dictionary      from 

previous stage. 
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2) Using the dictionary      solve   instances of   
 , one for each data set   . 

Solving    can be done using least squares and error is evaluated using Forbenius norm: 

                   
         (3.14) 

      
           (3.15) 

Table 3.1. Pseudo algorithm of MOD dictionary learning strategy [21] 

Objective: To find the dictionary D that sparsely represents the training vector        
 . 

Initialization:     

1) Build an initial dictionary     
    by using random entries. 

2) Normalize the columns of the initially constructed dictionary. 

Main Iteration: Increment  by 1, then follow the steps 

Sparse approximation stage: Use any efficient pursuit algorithm to find the best approximation  

                       
  subject to         ,      . 

These sparsely representations for the matrix   . 

Dictionary update stage:  Update the dictionary using,                   
  and 

      
  

Stopping criterion: If change in         
  is small enough, stop the process. Otherwise, 

follow the iteration. 

Output: Dictionary   . 

3.5.2. K-SVD Algorithm 

Even though the objective of KSVD and MOD algorithms are same, difference lies in the 

dictionary update stage. KSVD algorithm developed by Aharon generalizes the K-means method 

for efficient dictionary learning and the atoms in the dictionary are updated sequentially. All the 
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columns in the dictionary are fixed except   
   and    . Updating the atoms can be done, along 

with the coefficients that multiply them, in matrix  . Modifying (3.13) by isolating the 

dependency on     as, 

        
          

  
    

 

 
          

  
    

        
  

 

 
   (3.16) 

Error matrix is the term inside the parenthesis, 

            
  

    
          (3.17) 

Optimal     and     
  to minimize the function is the best rank one approximation of    . This can 

be attained through Singular Value Decomposition (SVD) but this leads to a vector   
  with more 

non-zero coefficients. Minimizing the term and fixing the number of non-zero coefficients can be 

achieved by selecting a subset of columns of     whose entries that correspond to the original 

signal from the data samples are taken and these components use the elements of     
  in   .This 

may lead to the variation in existing non-zero coefficients while preserving the cardinality. To 

remove the non-relevant columns by introducing a restriction matrix     that multiplies     from 

right,     is constructed with   rows (number of samples in data set) and   columns (number of 

entries that use   
  -atom). Restriction on the row     

   is defined as: 

    
  

 
     

              (3.18) 

This is done to choose only non-zero entries. In order to achieve optimal    and optimal sparse 

representation    
 , a rank one approximation via SVD is applied for the sub matrix       . SVD 

decomposition is applied for decomposing computation error by, 

   
                  (3.19) 

where     is the first column of   and    
   is the first column of   multiplied by       . 

Table 3.2. Pseudo Algorithm of KSVD Algorithm [16] 

Task: To find the dictionary D that sparsely represents the training vector        
 . 
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Initialization: Initialize     

1) Build an initial dictionary     
    by using random entries. 

2) Normalize the columns of the initially constructed dictionary. 

Main Iteration: Start the process by incrementing ,      

Sparse approximation stage: Use any efficient pursuit algorithm to find the best approximation  

                       
  subject to         ,      . 

These sparsely representations for the matrix   . 

Dictionary Update stage: 

To minimize the optimization problem, use this stage to update both the atom     and obtaining 

the dictionary   , for every            : 

1) Define the data samples that use atom    , 

                        . 

2) Compute the residual matrix and error             
  

    
     

     

Obtain    
  by restricting the pre computed error by choose only the columns 

corresponding to    . 

Decompose the computed representation error    
  by applying SVD decomposition 

   
      . Update the dictionary atoms by        and representation by    

  

         . 

Convergence criteria:  

         
   , otherwise apply another iteration. 

Output: Dictionary   . 
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Chapter 4. Image Fusion 

 

 

 

 

 

 

Human Visual System (HVS) has an uncanny ability to visually inspect a particular scene 

and mentally map the focused regions in the mind. Our human visual system can perceive 

enormous focal volume even in complex challenging environment. Spatial alignment of the 

object of interest, its discrete nature and its context increases the sharpness of the human 

perception model. At a specified instant, human visual cortex typically perceives an object or 

focal volume. Among the perceived information, a few are processed and mentally mapped but 

other subset of information might be ambiguous and disregarded [30]. 

4.1. Introduction 

Need for information fusion arose in 1950’s with a search of algorithms for integrating source 

images from different sensors to obtain a composite image for identifying natural and manmade 

objects with better interpretation and classification. Image fusion can be broadly defined as the 

process of enhancing the perception of the scene by synergistic integration of the images of the 

same scene from different sensors. The single composite image should contain all the ‘relevant’ 

information with increased robustness, spatial and temporal resolution for better human and 

machine perception. The context of the term ‘relevant’ depends upon the application. While 



35 
 

fusing medical images, the ‘relevant’ information could be the data necessary for diagnosis. 

Single image from a sensor cannot generate the accurate perception of the scene. Composite 

image from the collection of images with complementary information of the same scene from 

different sensors or same sensor over an extended period of time generates more description of 

the scene than any of the source information. For the effective registration of source images, the 

accuracy of co-alignment of sensors is very important. Determining the best framework for 

obtaining the reliable composite image that enables the effective understanding of the scene in 

terms of geometry and semantic interpretation is a challenging task. Benefits of fused 

information include reduced uncertainty, extended spatial and temporal coverage. Recognition of 

information fusion is not limited to clinical diagnosis but also extends to Geosciences, tracking 

of targets in defense systems, etc. 

4.2. Generic requirements of fusion algorithm 

The requirements for a fusion algorithm vary with the application. General requirements of the 

fusion algorithm for better representation of the scene are: 

1) The fused image should preserve all the salient information while suppressing the noise 

and undesired artifacts that might mislead the observer. 

2) It should be highly reliable and robust to noise and misregistration. 

In order to understand the challenges that we encounter when developing information fusion 

algorithm, we consider two registered images of the same scene in Figure 4.1. As a result of 

visual inspection, the person is clearly observed in visible image, whereas some of the details 

like fence is not discernible. In contrast Infrared image of the same scene shows the fence details 

clearly but the person is imperceptible.  

Challenges faced for fusing these two images are: 

1) Complementary information of visible and infrared images 

2) There are some common objects in both the images but of extremely opposite 

contrast. 

3) Inputs from different sensors have different range and resolution.  
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Fusion can be simply performed by averaging or adding of source images pixel by pixel. But this 

might produce undesired effects if the objects are of opposite contrast. Hence multi scale 

transform fusion scheme is proposed. 

                                           

(a)                (b) 

Figure 4.1. Source images to be integrated: (a) Visual image (b) infrared image. 

4.3. Preprocessing to satisfy Common Represnetation Format 

Basic requirement for fusion algorithm is observation from different sensors should have 

common format. Input images are compatible for fusion only when they share same 

representational format. Constructing a common coordinate system is the preprocessing step for 

image fusion algorithm. This conversion of source images to a common format includes: 

1) Geometric and Temporal Alignment: Aligning the local spatial positions and local times 

to a common coordinate system. In our thesis, we use the already registered images. 

2) Feature Extraction: This process involves the extraction of characteristic features from 

source images. 

3) Decision Labeling: Images are transformed into multi label images by applying decision 

operators. 

4) Semantic Equivalence: Tranformation of input images to a same object. Images should be 

semantically equivalent for feature extraction and decision labeling to be performed. 

5) Radiometric Calibration: Transformation of input images to a common radiometric scale. 

It’s impossible to fuse images having different radiometric calibration acquired at 

different illuminations. 
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For decades, proper registering of images has been a progressive research area to make the 

different source images speak a common language for further processing. The process of 

aligning the multiple images of an ensemble geometrically is image registration. Basically 

features of the reference image will be fixed and all the source images are aligned with respect to 

common ground control point [25]. In earlier days, only the translational differences between the 

source images were registered. Introduction of corner detection [28] using gradient to register the 

images and introduction of segmentation to register images using optimal boundaries [26] and 

approximating methods [27]  facilitates the registration process to align rotational and 

translational differences. Finding the acurrate transformation map that maps all the points from 

fixed image to the image to be registered is the appropriate goal for effective registration. 

Quality of image registration can be analysed by: 1) Transformation model: A linear model 

cannot be used to register images related by non-linear transformation because that might 

detoriate the registration process and 2) Precision measurement by determining the landmark 

points: Locating the landmark points accurately and the use of efficient geometric transformation 

model leads to a well registered image. In [29], projective transformations are used to find the 

geometric relation between the images. This algorithm is constructed for the images to be 

registered are capturted from different angle and field of view. 

4.4. Selection methodology 

Straight forward fusion techniques like arithmetic, image gradient method, etc introduce 

demerits like contrast reduction in the resultant image. A good selection fusion methodology 

should have noise resilience property, fused image with better contrast and should preserve all 

the detailed information acclaiming high computational efficiency. Based on the mode of 

operation, fusion methods are classifies as shown below [31][32]: 

(1) Pixel level fusion: Pixel by pixel operation is a straight forward fusion that can be 

performed in spatial domain or tranform domain. Spatial domain methods like 

Principal Component Analysis (PCA), weighted average method, etc integrate pixels 

using activity level measurement in a linear or non-linear fashion. In transform 

domain fusion methods like Pyramid decomposition methods, Wavelet 
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Transformation method, etc. tranformed images are combined according to salience 

measure. Our research uses pixel level fusion method in sparse domain. 

(2)  Region based methods: An image is segmented into number of regions and taking the 

property of these regions into account, fusion rules are applied. Resultant fused image 

is composed of focussed regions. 

4.5. A brief review on area of application 

This thesis applies fusion in the area of Medical Computed Tomography. The objective 

of Computed Tomography [33] is to discern and visualize objects inside the human body non-

invasively. Algorithms proposed in this thesis are specifically designed for CT in clinical 

applications since the issues to be considered in medical imaging and other image processing 

fields are different. As the non-invasive Computed Tomography (CT) is a high dose application, 

the increased radiation exposure is associated with the elevated risk of malignancy. This 

increases the need for reducing the dose but low dose might lead to noise which might hinder 

clinical decision making and the diagnostic process. A major area of research is devoted for 

processing the low dose CT images to interpret the scene better.  

4.5.1. Historical Milestones of Computed Tomography 

Computed Tomography is a standard imaging modality, which has revolutionized the medical 

diagnosis.  CT is the first non-invasive method for acquiring cross sectional “slices” of anatomy 

to understand the internal structures of the object. Beauty of this non-invasive modality cannot 

be understood without the knowledge of X-rays, data processing and measurement and 

instrumentation [34]. Looking back through the centuries, in 400 BC, a Greek philosopher 

Democritus speculated the nature of matter as structure of invisible and indivisible particles. In 

600 BC, another Greek philosopher Thales observed that amber acquires property of attracting 

even light objects when rubbed with fur. The term ‘electron’ meaning amber was used since 

amber acquired charge on rubbing.   

The phenomenon of Faradays Electro Magnetic Induction in 1831 led Maxwell to discover that 

an accelerated charge is the source of electromagnetic radiation in 1867. According to Maxwell, 

electromagnetic waves which are transverse in nature can propagate through free space without 
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any material medium. Hertz in 1888 demonstrated the existence of electromagnetic waves 

experimentally. In different regions of wavelength, electromagnetic waves were produced by 

varying the excitation. The most important event which has revolutionized the field of imaging is 

the discovery of X-rays. 

In 1895, a German scientist named William Roentgen discovered when accelerated electrons 

strike an anode target having high atomic weight, melting point and thermal conductivity gives 

up kinetic energy and thereby produces electromagnetic rays. The physical properties of 

electromagnetic waves are determined by the wavelength. Due to the unknown nature of these 

rays, Roentgen called them X-rays. X-rays are shorter wavelength electromagnetic waves of 

range     to     . These contributions are exploited by Coolidge and that led to the invention of 

first rotating anode x-ray tube. First CT scanner based on a radioactive source conceived by 

Hounsfield [36] and mathematical solutions to the Tomographic reconstruction problem by 

Cormack [35] are some of the major breakthroughs in the development of CT. In a very short 

span, CT has progressively grown to a great extent that it no longer requires optical 

reconstruction techniques. 

4.5.2. Working of CT 

Ability of conventional X-ray radiography is limited to obtaining 2D projections for 3D 

structures which results in the reduction of spatial information due to the process of averaging 

[37]. Averaging produces low contrast results which are difficult to interpret even for an expert.  

The need for eliminating the processing of averaging led to the development of Tomography 

which has the ability to produce radiographic slices of region of interest. This is also referred to 

as Tomosynthesis, if digital post processing is required. In conventional CT, X-ray tube and film 

are synchronously moved in opposite directions.  

The point above and below the slice are blurred and points along the center of rotation are 

imaged sharply. Blurring angle determines the quality region of interest.  Unlike conventional 

radiography, computed tomography avoids the superimposition of blurred structures. This results 

in higher contrast that enhances even the soft tissue. Four generations of CT scanners, scanners 

with cone shaped X-ray beam, acquisition through slip ring technology and many other 

advancements have been developed and this huge success is due to the leap in medical imaging 
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diagnosis. Clinical applications of CT have drastically increased after the subsequent growth of 

helical scanning in 1980s and multi detector row technology in 1990s [43]. 

X-ray tube rotates perpendicularly to the length of axis of the stationary patient in a 

circular orbit during data acquisition. The detector arrays are opposite to the X-ray tube that 

absorbs the x-ray photons from the region of interest. The Tomogram is produced after 

measuring the attenuation coefficients. Arrangement of x-ray tube and receptor array varies in 

different generation scanners. Resultant image quality and dosage are interrelated. 

4.5.3. Reconstruction methods 

Attenuation coefficient decides the intensity of the projection image. The word image 

refers to reconstructed 2D slice. The interpretation of attenuation coefficient in the object has to 

be computed first. Reconstruction of internal structure of object from the measured projection 

can be done through several ways. A matrix of  -values for the slice is constructed. These 

reconstruction algorithms [38] are customized based on projections at different angles and are 

used to find the  -values in each voxel of the slice perpendicular to the rotation axis. In early 

days, algebraic methods were carried out for reconstructing CT images. Since they are complex 

and computational intensive, computationally efficient filtered back projection methodology is 

used in all the modern CT systems.   

4.5.4. Computed Tomography Dose 

According to the National Council on Radiation Protection & Measurements, the usage of CT in 

Medical Imaging has increased more than six fold from 1980s to 2006. Approximately, around 

67 million CT examinations were made in 2006 in USA alone, which was around 3 million in 

1980 [39]. This rapid increase in usage of CT is due to its fast scanning speed and isotropic 

spatial resolution of 0.3mm to 0.4mm which enables physicians to diagnose precisely in less time 

by providing invaluable information than other imaging modalities. But the potential risk of 

developing radiation induced cancer is associated with the increase of ionizing radiation 

exposure. Hence reducing the radiation dose in Computed Tomography as reasonably achievable 

as possible is a must to increase the benefit/risk ratio.  
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Figure 4.2. Principle of Computed Tomography [44]. 

 

Quantification of radiation dose in CT can be done using several methods such as scanner 

radiation output, organ dose and effective dose for evaluating the risk of developing induced 

malignancy. Volume CT dose index         is a standard way of representing scanner output 

level. These quantitative measures [41] do not directly represent the patient dosage rather they 

represent the scanner output. 

The accuracy of         is doubtful for cone beam CT scanners. Organ dose is used to measure 

the radiation risk association with patients’ organs according to age and sex specifications. 

Energy dose   is the ratio of absorbed energy to structure mass and its unit is Gray. 
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      (4.1) 

Since the weighting factor of different organ with respect to radiation varies, equivalent dose 

    of specific tissue is expressed as: 

                      (4.2) 

Considering the radio sensitivity of different organs [40], effective dose represents the weighted 

sum of relative doses of individual organs and is expressed in     units. Considering the tissue 

weighting factor, effective dose            is given by: 

                            (4.3) 

Quality of CT result is determined by the amount of radiation dose. Trade off between the image 

quality and dosage level should be understood for reducing the CT dose without compromising 

the image quality. Image quality is assessed by contrast-to-noise ratio (CNR) and signal to noise 

ratio (SNR). Dose and SNR are be related as [40]: 

                    (4.4) 

The aspects to be considered for dose reduction are: 1) Defining and understanding the expected 

image quality for each diagnostic task which allows high noise level and low dose without 

compromising the clinical diagnosis and 2) To reduce image noise that might hinder important 

details necessary for diagnosis. Quantum noise and electronic noise are associated with CT. 

Quantum noise is determined by incident radiation and photons collected by receptor. At low 

dosage values, quantum noise affects the quality of image. Fluctuation of electronic components 

in CT system results in electronic noise which degrades the image quality. Optimizing the 

detector and collimator in the CT system for dose performance of a CT system is very important 

to reduce peripheral radiation dose. Various other factors that influence the dose are tube current, 

exposition time, slice thickness and minimizing the detector size. Improving the reconstruction 

algorithm and effective data processing algorithms optimally reduce noise without sacrificing the 

diagnostic valuable information is important. 
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4.5.5. Computed Tomography Noise 

Visual noise and increased blurring of the image impairs the visibility of anatomic structures. To 

evaluate the quality of image quantitatively, signal to noise ratio is defined as the ratio of signal 

level to noise level. 

    
 

 
           (4.5) 

where   is the mean and   is the standard deviation of image. Considering two registered images 

   and    to differentiate noise and structure, two disjoint subset of projections      and 

     having same number of samples with         and         are used to 

reconstruct images    and   . Assuming the noise in   and    to be uncorrelated, the 

reconstructed image can be represented by [42]: 

       ,           (4.6) 

                   (4.7) 

The ideal noise free signal,               is assumed to have zero noise             

  where      is a statistical expectation operator.   

Since the noise in the projections is uncorrelated, noise in corresponding reconstructed image 

will also be uncorrelated. Covariance of the noises of reconstructed images is given by: 

                      (4.8) 

Local noise is estimated for each orientation to assess the difference between diagnostic detail 

and noise. Reconstructed of the dataset is given by: 

  
     

 
           (4.9) 

Noise can be represented as the difference between the two datasets: 

                                                                                                                         (4.10) 

   can be represented as the linear combination of random variables with weights: 
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                      (4.11) 

The reconstructed image include noise free signal, hence the variances can be expressed as: 

  
    

   
    

   
                        (4.12) 

Assuming that the noise in the projections is uncorrelated and amount of noise is approximately 

equal, the relation between the standard deviation in average and input data set is given by: 

   
  

  
 

  

  
 

  

 
          (4.13) 

4.6. Fusion Méthodologies 

4.6.1. Image fusion using multi scale approach 

Motivated by the ability of the human visual system to analyze the information at different 

scales, researchers proposed the multi-scale fusion is methods. Basically, multi-scale transform 

fusion, like pyramid fusion, is the transformation of synergistic combination of different levels of 

information representation into an image mosaic. Firstly desired transformation is applied over 

the source images. Secondly, fusion rule is applied for transformed coefficients at different levels 

and each decomposition level represents different bands of image frequencies. Lastly, fused 

image is recovered by applying inverse transform. Framework of pyramid based fusion is shown 

in Figure 4.2.  

Laplacian pyramid framework [45] supports the convolution of Laplacian decomposition map 

and Gaussian pyramid of weighting map at each decomposition level. Fusion using pyramid 

involves the following process: 

1) The source images to be fused are decomposed to pyramid coefficients belonging to a 

different frequency band which are obtained as a result of low pass filtering and sub-

sampling by a factor of 2. 
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Decision Map

 

Figure 4.2. Pyramid image fusion results 

 

2) The scalar weighting        map for each pixel is calculated by combining the quality 

metrics contrast   and the photometric measure luminance   whose unit is candela per 

square metre        . This is represented by: 

               
          

          (4.14) 

                   
          

   
    

  
         (4.15) 

where          represents the normalized weighting map,    and    are the weighting 

components. Then the Gaussian pyramid            of normalized weight map is 

calculated. 
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3) Blending is performed by calculating the weighted average of Laplacian pyramid with 

Gaussian pyramid at each level. 

                     
                            

  
           (4.16) 

 

4) Finally, reconstruct the fused image by expanding and adding all the levels of Laplacian 

pyramid         
 . 

Redundancy between different scales in pyramid decomposition method and unavailability of 

directional information are the major limitations of this method. Wavelet based approach has 

benefits over pyramid based approach. In the following section multi-scale wavelet transform 

fusion has been discussed.  

4.6.2. 2D-Discrete Wavelet Transform Fusion 

Since the image data are discrete in nature, DWT can be very well used for image processing 

tasks. Moreover there exists a dependency between spatial resolution and frequency. One 

decomposition results in four frequency bands LL, LH, HL and HH. Second decomposition will 

be applied over the current LL band. This is shown in Figure 4.3. When DWT [53] is applied 

over the image to be processed, the low frequency bands will have low spatial resolution and 

high frequency bands will have high spatial resolution.  

2HH2HL

2LH
1HH

1HL

1LH
1LL

1,2---Decomposition levels

H---High frequency bands

L---Low frequency bands

 

Figure.4.3. 2D Decomposition; level=3 
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Figure.4.4. 2D DWT Fusion framework 

In LL band, the spatial resolution will be very low and it shows the approximate coefficients. In 

contrary, diagonally opposite HH band shows the detailed coefficients and has higher spatial 

resolution. 

Following are the steps to fuse images using DWT: 

1) Images to be fused are decomposed using wavelet transform.  

2) Fusion decision map is constructed by choosing the appropriate transformed coefficients 

that is represented better by any of the source images in different decomposition levels. 

Pixel (maximum selection or weighted average) or Window based fusion rule can be 

applied to fuse the transformed coefficients.  This process is shown in Figure 4.4. 

3) Fused image can be recovered by applying inverse transform. Recovered image    can be 

reprseneted by: 

                                   (4.17) 
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Work flow of DTCWT Fusion [51] is presented in Figure 4.5. First, the Source images to be 

fused are decomposed into detailed and approximate coefficients using DTCWT. Fusion rule is 

applied to form decision map. Fused image    is recovered by applying inverse transform. 

  

                                   (4.18) 

Decision Map

1I
2I

1( )DTCWT I 2( )DTCWT I

IDTCWT

 

Figure.4.5. 2D DTCWT Fusion framework 

4.6.3. Principal Component Analysis based fusion 
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This unsupervised dimension reduction technique is based on the idea of projecting the high 

dimensional information into a low dimensional sub-space. Specifically, this technique is carried 

out by constructing the covariance matrix from the input images [47] [46].  

To understand this best known linear sub-space transformation technique, we consider an image 

  having   rows and   columns as a one dimensional vector  . Finding the low dimensional 

subspace in which the input image resides from the    dimensional space is the basic idea of 

this statistical technique. If                 is a       array that represents a set of   

orthonormal basis functions, the transformation into a single dimensional vector of reduced 

length   can be represented as follows: 

                   (4.19) 

where   is a      column vector and    has the length     . Approximation of   can be 

reconstructed from    by applying inverse transform as: 

                    (4.20) 

Error obtained from recovered vector    and the input vector   should be minimal. 

To adequately represent the source images as the linear combination of orthogonal basis, we seek 

the orthonormal vectors                with     . For a given training set of   images 

represented by    one dimensional vectors, directions are selected along the training vectors 

having largest variances. The dimension is reduced to   by discarding the directions having 

minimal variance. 

Lower dimensional representation enhances the generalization and the visualization. Hence it 

provides better understanding of essentialities in the information. Manipulations performed in 

low dimensional space is computationally efficient than manipulating high dimensional data 

since the latter requires more memory and consumes more time. 

Considering the spatially and temporally aligned source images to be fused    and    of size 

   , the orthonormal vectors are               . Columns vectors of source images can 
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be represented as   and   . The orthonormal vectors are the Eigen vectors of covariance matrix 

  . 

   
 

 
               
                                          (4.21) 

where    
 

 
     
 
     

                   (4.22) 

If    is of length   , then the covariance matrix    will have the dimension of      . If 

there are many source images, then Eigen vector decomposition will become computationally 

tedious.  Eigen vector can also be calculated using an alternative algorithm known as Turk-

Pentland algorithm. Eigen vector can be calculated by initially constructing   using column 

vectors    and    as: 

                          (4.23) 

Let    be the     eigenvector of covariance matrix       , 

                     (4.24) 

                           (4.25) 

Hence        is the Eigen vector of       . For the unitary matrix  , the eigen spaces are 

orthogonal. We select a small subset to find a low dimensional sub-space that yields better 

performance. We know that using covariance matrix, PCA is performed.  For improving signal 

to noise ratio, correlation matrix can be used in place of covariance matrix. 

   
  

  
           (4.26) 

In order to equalize the dynamic range of   , eigen vectors are divided by    . Whitening is the 

combination of PCA and normalization. This normalization can be represented mathematically 

as: 
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          (4.27) 

Corresponding whitening vector is: 

    
 

  
                 (4.28) 

Applying the above equation, covariance matrix becomes unit matrix. This shows that the 

whitening vector is invariant to further orthonormal transformations and the whitening vector can 

be rotated for maximum discriminate power. 

By converting the two dimensional data to a column vector, row to row relationships between 

pixel gray levels is destroyed. Performing statistical operations directly on input images instead 

of column vector preserves row to row relationships. This is the main idea of 2D-PCA. 

Normalizing each source images    , 

                  (4.29) 

Covariance matrix can be constructed by, 

   
 

 
    

     
 
                        (4.30) 

Using weighted superposition, source images are fused together. As discussed earlier, PCA 

converts the input image into its Eigen space by selecting the principal components having 

influencing Eigen values, thereby preserving the salient areas and enhancing the spatial 

resolution of the source images without the introduction of artifacts and hence signal to noise 

ratio is improved. 

Following steps are involved in fusion using PCA 

Step 1: covariance matrix     is calculated for N source images. Converting the two dimensional 

source images to one dimensional column vector, covariance matrix can be written as: 

                                      
 

   
     

      (4.31) 
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where    is the fused image. 

Step 2: Eigen space of the covariance matrix can be calculated by: 

                       (4.32) 

where    is the eigenvector and   is the influencing Eigen value  

Step 3: Eigen vector can be normalized by: 

        
       

            
                            (4.33) 

Step 4: Normalized Eigen vector of maximum Eigen value is selected. Final fused image is 

reconstructed by considering these Eigen vectors as weightings. 

 

Figure.4.6. PCA Fusion framework 
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4.7. Image Quality Measurement 

Assessing the performance of a fusion result is done based on quantitative and qualitative 

measures. Qualitative analysis is the measure of observers’ experience and can be done by 

quantifying the subjective evaluation done by experts. Measuring the quality of image 

mathematically without any human observer is image quality metric. There are mainly two 

different ways of quantitatively measuring the quality of fused image based on spatial and 

spectral similarity: 1) Non-reference method which states the quality of the fused image without 

requiring any reference. This is very challenging due to the lack of ground truth. 2) Reference 

method which requires both reference and composite image for IQ metric evaluation. Brief 

reviews on some of the metrics which are used in thesis are presented as follows: 

Entropy: It measures the amount of details in the image; the high entropy indicates high details. 

Since the first order entropy doesn’t consider the spatial correlation, therefore we employed the 

second order entropy as quality evaluation which will enable us to measure the transition 

between gray levels. The second order entropy is based on the co-occurrence matrix        and its 

probability       as given bellow [45][54], 

                                                        (4.34) 

where        
    

      
   
   

   
   

 

Absolute mean brightness error (AMBE) [45]: It measures the shift in mean intensity of the 

fused image    from mean intensity of the original image      and it is given as [54], 

                       (4.35) 

Mutual information [54]: 

To find the mutual information of registered image I1 and reference image Ir, 
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where 1 , ( , )
rI Ip a b

 is the joint probability a pixel  (x, y) in I1 has a gray-level a and the same pixel 

in B has a gray level b. 

Normalized mutual information            may vary if the number of pixels which are common 

to the source images changes. Even a small variation may lead to inaccuracies in this spatial 

alignment. So normalized mutual information can be used: 
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  (4.37) 

PSNR [54]: It is Peak Signal to Noise Ration which is used to measure the reconstruction quality 

of fused image. PSNR of the fused image If is calculated using the standard formula: 

2

10( ) 10logf

M
PSNR I

MSE

 
  

                (4.39) 

where M is the maximum possible pixel value of the image and MSE is the Mean Square error.  

While the SNR and RMSE are given as follows, where r(x,y) is the reference image and t(x,y) is 

the fused image . 

             
         

    
   

    
   

                  
    
   

    
   

       (4.38) 
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SSIM [55]: It is the Structure Similarity Index which provides structural information of objects 

in the image. This measure is based on similarity of contrast of local patch       , structure of 

local patch        and luminance of local patch       . PSNR estimate perceived errors where as 

SSIM assumes image degradation as the perceived change in structural information. Structural 

information considers the spatially close pixels having strong inter-dependencies that carry the 

salient details. Range of SSIM is between -1 and 1, and value 1 occurs only for identical data set.  

Contrast to Noise Ratio (CNR)  

There is a tradeoff between radiation quality and contrast and effect or influence of this can be 

described using Contrast to Noise Ratio (CNR) [56]. CNR has certain properties which are given 

below:  

1) Relates to contrast difference between larger object and background of the image. 

2) Relates to exposure factors. 

3) Doesn’t incorporate any information about resolution.  
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Chapter 5. Proposed  Methodologies 

 

 

 

 

 

5.1. Image Fusion Using Simultaneous Controlled St-OMP 

The goal of integrating the source images using sparse representation method is to enhance the 

important details without the introduction of distortion. Signal can effectively be represented by 

sparse representation as the linear combination of effective sparse model and well designed 

dictionary. Salient features of the images can be represented with least number of coefficients 

using sparse representation which is effective than traditional multi transform methods because 

of the nature of sparsity and overcompleteness of dictionary. Sparsity results in many zero 

coefficients thereby leading to the improvement of computational efficiency. It is not necessary 

for the atoms to be orthogonal in overcomplete dictionary and number of atoms are more than 

number of image pixels. We utilize Modified Cosine Transform Dictionary generated by cosine 

basis functions incorporated with shift variations. We use sparse approximation and utilize 

effective dictionaries to fuse low dose and medium dose CT images. The process of image fusion 

using sparse representation contains two stages: Signal approximation stage and fusion stage. In 

signal approximation stage, all the patches of the source images are transformed into linear 

combination of atoms of, MDCT dictionary tailoring matching pursuit methodology specifically 

designed for fusion application. Generally, the approximation solution is achieved by matching 

pursuit algorithms through an iterative process. Locally optimum solution is obtained in each 

iteration when residual vector closely resemble the vector to be approximated and global 
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optimum solution is obtained after the sequence of locally optimum solutions. Due to the 

computational efficiency of OMP over BP, it is used to solve the optimization problem in 

applications. In fusion stage, global approximated solution of source images are integrated by 

applying absolute maximum fusion rule. 

Inspired by [52], we are proposing a simultaneous approximation method which adopts CSt-

OMP for representing the several source images as linear combination of elementary signals at 

once. St-OMP discussed in previous chapter that uses many atoms each stage solves the 

optimization problem in less iteration. St-OMP uses threshold value in the aim of selecting 

highest matching atoms from the well designed dictionary. So the approximation depends upon 

the threshold value and every atom above the threshold value contributes to reconstruct the 

signal. So lower threshold might allow more non-zero entries at each stage.  In contrast, high 

threshold allows only few non-zero entries each stage to reconstruct the signal. But this takes 

more iteration to find the approximate solution due to the dependency on threshold value and it is 

computationally intense due to the calculation of pseudo inverse at each stage. In order to 

overcome this, CSt-OMP is proposed to approximate a single input signal at a time. 

We propose Simultaneous CSt-OMP that adopts a different atom selection strategy that solves 

the optimization problem more efficiently and in less time. Considering a matrix    of size 

    whose columns are   source images, Simultaneous CSt-OMP solves the following 

optimization problem: 

             
   subject to                 (5.1) 

where   is the coefficient matrix having   non zero coefficients. 
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Figure 5.1. Framework of proposed Simultaneous Controlled St-OMP fusion 

In this algorithm, number of atoms to be added at each stage is pre-declared thereby reducing the 

dependency on preset threshold value. Framework of the proposed method is shown in figure 

5.1. The residual matrix starts out to be the corresponding training signals itself. The objective of 

each iteration is to minimize the optimal simultaneous representation error at each stage.  

Hard thresholding selects the matching atoms when the inner product of row vectors of 

dictionary and residual is maximum and these selected atoms are stored in a local dictionary  

       to be updated. In the seletion strategy, largest matching atom is selected. Covariance of 

largest matching atom with         is computed and the least correlated atom is chosen as the 

second representative since it contributes more on signal reconstruction. The process should be 

repeated unless the reconstruct error is optimally minimum. Due to the less dependency on 

threshold value, at the same time using two atoms in each stage and approximating 

simultaneously makes this algorithm efficient than SOMP algorithm. 
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Table 5.1. Pseudo algorithm of proposed Simultaneous Controlled St-OMP fusion 

Objective:  Construct an approximation for the problem P0 

(P0):             subject to        and fuse the approximated coefficients 

User defined input parameters: Dictionary D, Signal matrix   for   source images and error 

threshold   . 

Sparse coding stage 

Initial conditions: k=0, start by setting 

Initialize residual matrix           (set initial solution       

Initial index set      

Iteration process:  k=k++ (incrementing) 

Sweep stage: Calculate the correlation   of  residual     and dictionary D. 

Hard Thresholding stage:                    and store the atoms in local dictionary       . 

Update solution stage:  If the inner product between row vectors    of local dictionary        

and residual is    and is maximum, it is the most relevant first atom. Calculate the covariance 

between maximum matching and       , then select the least representative as second atom. 

Update the solution: Obtain the approximation   , by     
    

    
     the solution to 

         
  

Stopping condition: check the stopping criterion. If      , global simultaneous optimum 

solution is obtained; Otherwise, proceed the iteration process again. 

Approximation stage output:    is the global optimum solution obtained after   iterations. 

Fusion stage  
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Output: Reconstructed final fused image   . 

We assume the source images to be spatially aligned. If the source images are not registered, 

proper registration algorithms should be used to align the image spatially and temporally in order 

to avoid geometric distortion. Consider   geometrically registered source images. The fusion 

process is given below: 

1) Source image    is divided into       possible patches using sliding window 

technique and then all the patches are transformed into  -dimensional column vector. 

2) Using CSt-OMP, find the sparse approximation of corresponding vectors. 

3) Fusion rule to be applied 

Choosing the appropriate fusion rule determines the quality of final fused image. There 

are two important concerns to be addressed for fusion using pixel level algorithms 1) 

Activity level measurement identifies the salient coefficients of the source images. 2) 

Coefficient combination uses the salient coefficients from the source images in to the 

fused image. Weighted average fusion scheme smoothens the salient information. Thus 

maximum absolute fusion rule is applied to preserve the salient information. 

    
      

    
         (5.2) 

    
         

         
    

         (5.3) 

 

4) Fused vector   
 is calculated by: 

    
     

         (5.4) 

5) Final fused image is recovered from   
  vector by reshaping this to block size of        

     . Each pixel position of the fused image    is the summation of several block 

values. Final image is obtained by dividing each pixel of the final image by number of 

summations occurred at that pixel. 

6) The overcompleteness nature of dictionary and the sliding window technique makes this 

algorithm shift invariant. 
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5.2. Medical Image Fusion Based on Joint Sparse Method 

Image fusion using sparse representation methodology guarantees robustness which can extract 

the underlying information from source images effectively. As we have seen in previous 

chapters, sparse representation techniques are used to represent signals with the fewest number 

of non-zero coefficients.  

For a signal   , sparse representation assumes the representation of the signal as a linear 

combination of given atoms from the overcomplete dictionary         where (   ). 

Overcomplete dictionary has the capability to sparsify the signal efficiently since number of 

atoms exceeds number image pixels. Every signal can be represented as     , where      

is the sparse vector that contain few salient entries. Since dictionary has more number of 

columns than rows,      is an under-determined system and there can be infinite solutions. 

Finding the approximate solution for the signal is not easy due to the strict equality constraint. 

Hence, the following optimization problem is solved to find the best approximation: 

                subject to                    (5.5) 

where       represents the number of non zero coefficients which can be positive or negative in 

  and   is the representation error. Since the above defined optimization problem is NP-hard, 

greedy algorithms are used to solve due to the computational efficiency and less intense nature. 

Non-zero sparse coefficients of the source images are considered to be the salient features for 

fusion. In this section the problem of fusion and denoising low dose CT images can be 

simultaneously addressed. Low dose and medium dose CT images of the same region of interest 

possess their own characteristics and also share common information. Sparse coefficient vectors 

are estimated for representing the ensemble of source images to be fused using the matching 

pursuit methodology. Proposed algorithm effectively extracts the common and complementary 

information and integrates effectively. 

This thesis proposes a new algorithm inspired by joint sparse representation model for 

compressed sensing [62], which employs different rules to extract common and innovative 
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sparse components from the source images. Inspired by [62] [48] and [60], a novel image fusion 

algorithm is proposed which integrates the source vectors in sparse domain using Principal 

Component Analysis.  

Low dose and medium dose images of the same region of interest to be fused form an ensemble. 

Sparse theory states that any signal can be sparsely represented. In the same way, the ensemble 

of signals are represented by    where             will also have joint sparse nature. That 

means all the data in an ensemble    will have a common sparse component and each image will 

have innovative sparse components. Assuming the sparse basis          is known where    is 

approximately represented. For the signal  , let the measurement matrix be    of size     . 

And the measurement matrix will have different entries for different  .  

Joint sparse model I: Sparse common component       many innovative components 

In this model, all the source signals will have common components and each signal will have an 

innovative component and this can be represented as: 

               ,                                                                                      (5.6) 

where        and        . This means the    is the common component of      and 

         in basis  . Whereas    are the unique proportions of ensemble having        
    

in the same basis  . We use joint sparse model I for our experiment. 

Joint sparse model II: Common sparse model 

In this model, all the signals which are taken over an extended period of time are constructed 

from same basis   but having different coefficients   : 

             ,                                                                                           (5.7) 

Thus all the signals can be represented sparsely with   non-zero coefficients using different 

coefficient in the same basis having  elements. 

For a signal     
   , there is a common component     

    and   innovative components 

     
   . Signal    can be represented as: 
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                                                                                          (5.8) 

Where              is the overcomplete dictionary and    is the noise component. 

Innovative components might contain noise. The above equation can be sparsely represented by: 
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  (5.9)                                                           

This can be generally written as: 

                    (5.10) 

if 

1

1

0

0 0
, ,

0
n

C

I

n

I

D D
B

D
B D

B
D D

  
                
          

 and 

1

2

n

n

n
n

n

 
 
 
 
  
 

 (5.11) 

Extracting the      
    among the source images is the most challenging task. 

Sparse vector can be calculated using any of the sparse approximation techniques for solving the 

following optimization problem, 

         
   

 
  subject to        

 
        (5.12) 

In our proposed method, we apply simultaneous controlled stage wise orthogonal matching 

pursuit proposed in the previous section to solve it. Selection of efficient dictionary plays an 

important role in extracting the salient features from the source images. As we know the 

limitations of fixed dictionaries, we use dictionary learning technique to learn the basis vectors 

that are capable of well representing the signal. 



64 
 

The source images are traversed from left top to right bottom using sliding window technique 

and divide the image into   number of       patches. These patches are then converted 

lexiographically into   column vectors for each image      
 . As discussed all the source 

images are constructed using the same subset of atoms in the dictionary. Sparse coefficients are 

considered as image features where the coefficient of each patch is calculated separately by 

solving the optimization problem    under the overcomplete dictionary  . The signal in the     

ensemble can be represented as: 

                                   (5.13) 

Where    and     denotes the sparse coefficients of common and innovative information and 

JSM can be represented as: 

                   (5.14) 

where    is the ensemble assuming the signals are noiseless and  

         
       

           
      , Dictionary    

   
   
   

              and 

        
       

           
                 

But ensemble of low dose and medium dose images can be represented as: 

                                (5.15) 

where   is the noise.    can be obtained by solving the optimization problem using the 

Simulataneous CSt-OMP method with appropriate error tolerance. The detailed steps of the 

algorithm are summarized: 

1) We assume the source images        
    have common representation format. All the 

images to be integrated are divided into       patches using sliding window technique 

and are lexicographically transformed to  -dimensional column vectors. Each source 

image will have                    patches. 
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2) Mean values   
 
of                   patches of the source images is 

subrtracted from the patches and can be represented as: 

     
 
   

 
   

 
        (5.16) 

where    
 
 is the joint representation of a common component    

 
 and two innovative 

components    
 
    

 
 and can be calculated by solving the optimization problem. 

 

3) Appropriate fusion rules are applied to integrate the sparse vectors.  Fused innovative 

sparse vector    
  is obtained by integrating innovative sparse vectors using PCA rule.  

Using PCA, orthogonal directions enhancing the variance of the innovative sparse vectors 

is obtained. Unlike other fusion rules in sparse domain, PCA preserves salient features 

while eliminating the artifacts since innovative components might have noise. PCA 

converts sparse vector into its Eigen space which is done by selecting principal 

component having influencing Eigen values. Covariance matrix of sparse vectors is 

calculated as: 

    
 
         

 
       

 
             (5.17) 

 

Then the Eigen space of the covariance matrix is calculated by: 

      
 
   

 
        

 
          (5.18) 

where   
 
 is the Eigen vector and   

 
 is the Eigen value. Normalized Eigen vector of 

maximum Eigen value is chosen as the weightings of the images to be fused. 

     
                

  
      

      
       

                           (5.19) 

Innovative fused vector is obtained by: 

   
 
   

                  
 
   

                  
 
     

                    
 

     (5.20) 

4) Fused innovative vector   
 
 and sparse vector of common component are fused using 

“choose-max” rule since the common components are noiseless, that is the vector with 
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maximum    norm is considered as the salient feature. Weighted average fusion rule is 

used to fuse the mean values. 

     
 
     

 
   
 
          (5.21) 
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Figure 5.2. Framework of Joint Sparse PCA fusion methodology 

Weighted average fusion of mean values can be done by: 

     
 
     

 
   

 
     

 
        

 
      (5.22) 
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where the weighting parameter    
 

              
 
 
 
     

 
 
 
   
      

 

5) Final fused vector is calculated by combining with the overcomplete dictionary: 

     
 
    

 
    

 
   

 
        (5.23) 

Lastly,   
 
 is reshaped into a block of size       . All the blocks are appropriately placed 

in the specific location of the fused image. Many block values represent single pixel value 

due to the usage of sliding window technique and hence final fused image is obtained by 

average processing at each pixel location. 

Table 5.2. Pseudo algorithm of Joint Sparse PCA fusion method 

Objective:  To integrate the source images 

User defined input parameters: Dictionary D,    source images mage    and error threshold 

  . 

Initial conditions: k=0, start by setting 

Initialize residual matrix:           (set initial solution       

Initial index set:      

Iteration process:  k=k++ (incrementing) 

Sparse coding stage:  

-Common and innovative vectors through JSR 

-Patches of the original images are subtracted from the mean of patches    
 
   

 
   

 
 

-Stopping condition: check the stopping criterion. If      , global simultaneous optimum 

solution   
 
 is obtained; Otherwise, proceed the iteration process again. 
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Fusion stage: 

-PCA fusion to integrate innovative vectors    
 
        

       
 
      

-weighted average rule to fuse   
 
 and common component    

 
     

 
   
 
  

-weighted average of mean values    
 
     

 
   
 
  

Output: Reconstructed final fused image   . 

 

5.3. Simultaneous medical image fusion and denoising using focused region in sparse 

domain 

To the best of our knowledge only the contributed methods in this thesis are used to fuse low 

dose and medium dose images and denoise them simultaneously. It is necessary to know that 

most of the fusion algorithms are developed based on the assumption that the images are noise 

free. Such algorithms are effective for noise free images and presence of noise might 

compromise the quality of fusion. Since the proposed hybrid Sparse PCA method seems to show 

promising results, a novel image fusion is proposed which uses an initial fused image from the 

previous method.  Then in sparse domain, pixels of fused image similar to the pixels of the 

original image are determined and considerably focused region map is obtained. Final fused 

image is obtained after simultaneous dictionary learning, fusion and denoising in sparse domain. 

This algorithm is designed for both noisy and noise free source images. 

5.3.1 Dictionary learning and acquisition of initial fused image 

First step starts out to be dividing the source images in to       using sliding window 

technique and lexicographically ordered as  -dimensional column vectors   
 
. From the previous 

section we know that, an ensemble of intercorrelated images has a common component and 

multiple innovative components. Initial fused vector   
 

 
is obtained by Joint Sparse PCA method 

that employs different fusion rules for integrating common, innovative sparse components and 

mean of patches. Dictionary   learnt from high dose patches are used for representing the signal. 

Integrated image is obtained by: 
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          (5.24) 

where   
 

 
 is the fused vector of common and innovative sparse vectors and   

 

 
 is the fusion of 

mean of patches and dictionary   is trained using high dose patches. 

Dictionary learning method is used for joint sparse fusion method. Proposed method uses a 

dictionary learning method specifically for joint sparse model. Let us assume an ensemble     , 

               containing low dose and medium dose images.  

Mathematical definition of objective function can be written as: 

           
 

 
         

  subject to                (5.25) 

where this function denotes sparsity,   denotes the number of non zero coefficients. 

Optimization problem subject to certain amount of error tolerance   is give by: 

        
 

     subject to                   (5.26) 

Where   represenets the dictionary that governs the optimality of sparse representation. Firstly, 

joint sparse coding is done and   is obtained through proposed simultaneous controlled OMP by 

fixing the dictionary   and the general equation can be represented as: 
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      (5.27)  

Then the dictionary is updated keeping   fixed by solving the problem given below: 

             
 

     
 

 
         

     
 
 

 

 
                

  
                (5.28) 

This can be extensively written as 
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     (5.29) 

Optimum is obtained by setting the gradient function to zero: 

 

  
                                

 

 

   

 

                
                    

  
   

 
       (5.30) 

 

For                
  

   and                    
  

     

Then we yield, 

                (5.31) 

When rank of the matrix H is not   then according to Land weber [61],  

          
 

 
                 (5.32) 

where noise intensity          . Iterative joint sparse coding stage change   and hence 

spectral norm has to be calculated again. A good initial point hasten the computation since 

Hermitian matrix’s spectral norm is known for its enhanced Eigen value [61]. 

If SVD of   is       , dictionary is initially updated by 

                  (5.33) 

Due to the diagonal dominance theory [61], optimum of the equation (5.32) is obtained. We 

normalize the atoms in the dictionary   so that         and if     , the corresponding 

coefficient is scaled but when     , any non-zero column of     is substituted after the 

normalization of atoms.  
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5.3.2. Detection of focused region and fusion scheme 

Source vectors   
 
and initial fused vector are compared and similar points are determined. Using 

certain quantitative measures like RMSE and correlation, proper focused vector   
 

        
 is 

designed. Source image vectors, focused vector and initial fused vector are jointly represented as 

common and innovative components using a trained dictionary after subtracting from the mean 

of the corresponding patches. 

         
 
     

 

        
    

 

 
 =                (5.34) 

where     is obtained by applying PCA fusion for integrating innovative components  

           
 

 
     

 

         
    

 

  
 .        (5.35) 

Final fused vector is obtained by 

   
 
    

 
   

 
       (5.36) 

where   
 

 is the composite vector of common and complementary components and   
 
 is 

obtained by applying weighted average rule to fuse the mean of patches of JSR components. 

Finally, the final image is constructed by positioning the blocks in designated location and 

averaging each pixel location. 
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Figure5.3. Framework of fusion based on focused region 



73 
 

Table 5.3. Pseudo algorithm of fusion based on focussed region 

Objective:  To integrate the source images 

User defined input parameters: Dictionary D,    source images    and error threshold   . 

Initial conditions: k=0, start by setting 

Intialize residual matrix           (set initial solution       

Initial index set      

Iteration process:  k=k++ (incrementing) 

Initial fused image stage:   

objective function is solved by 
1

1

...
min [ .... ] [ ]

...C I
N

C C

N C I
D D

I I

S S D D
  

  
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1
, ,.....,

N

C

I I   obtained at the end of all iterations. 

Initial fused image is obtained by 
1

( , ,....., )
N

C

initial I II      

Focused region detection stage: Focused vector is selected by comparing

1
, , ,...,

N

C

initial I I     

Final fusion stage: Final fused vector is 1( , , ,....., )final Initial focussed NJSR       

Stopping condition: check the stopping criterion. If      , global simultaneous optimum 

solution is obtained; Otherwise, proceed the iteration process again. 
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Chapter 6. Results and Discussion 

 

 

 

 

 

6.1. Implementation using Graphical User Interface 

A graphical user interface lets the user interact with the program and makes them 

understand the information through graphical icons. GUI is efficient and easy to use compared to 

the steep learning curve of command line interfaces. GUI can free the user from understanding 

intricate algorithms and complex command languages. User friendliness results in transparency 

thereby letting the user to understand the program. 

We develop GUI in Matlab environment 2013. Besides basic functions such as loading the 

source images and displaying the fused image, there are certain initial parameters which allow 

the user to assign values for dictionary size, number of sparse coefficients and number of 

iterations. Quantitative evaluations results are shown for evaluating the proposed methods. 

Button titled “input images” allows the user to load the source image to be fused. Compatible 

formats are gray scale images of JPEG, bmp, gif and dicom format.  

Parameters for experimental setup can be initialized by adding values at the respective labeled 

input data box. Primary purpose of this GUI is to fuse low dose and medium dose CT images 

using proposed methods and to quantitatively measure the performance. Hence this algorithm is 

compatible to dicom images. 
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Figure 6.1. Screenshot of Graphical User Interface for pixel level fusion method  

 

6.2. Experimental setup and results of Simultaneous Controlled St-OMP 

To evaluate the performance of the proposed method, we use overcomplete dictionaries like 

MDCT dictionary and overcomplete DCT dictionary that consists of 64 non-redundant bases. 
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Overcomplete dictionaries which can also contain non-orthogonal atoms, overcomes the 

limitations of fixed dictionary.  MDCT dictionary used in our proposed method is created with 6 

shifts in the first part, 4 in the middle and 2 in the last and is shown in Figure 6.6 (b). 

Overcomplete DCT is constructed using 29 frequency divisions from   to    without any phase. 

Constructed dictionaries contain 841 atoms and are used to approximately represent the images 

in sparse domain using the conventional OMP fusion method and the proposed method. 

Two parameters decide the efficiency of sparse coding stage: 1) Selection of appropriate size of 

sliding window and 2) Global representation error. We know that dictionary size is large for 

larger sliding window size and computational efficiency becomes lower. Decreasing the size of 

sliding window makes the sparse coding algorithm to perform faster. But with smaller sliding 

window, the patches might miss some of the salient information. After trial and error, 

appropriate sliding window size of     is chosen so that the important features of the low dose 

images are not being missed. And the patches are chosen without any overlapping. We set the 

stopping criterion as global representation error       . Threshold value used in the proposed 

method is 0.6 and 16 atoms are used to represent the images sparsely. 

Performance of the proposed algorithm is compared with well known methods like OMP fusion 

and SOMP fusion methods. SCST-OMP is the extended version of SOMP fusion method with 

the following differences: 1) Fusion algorithm in [52] is developed using Overcomplete DCT 

dictionary of size        which is shown in Figure 6.6.(a). 2) Core idea of SOMP is to extract 

one atom in each stage. 

Proposed algorithms are developed in MATLAB GUI 2013 environment for measuring the 

realistic computational time. Experiment is performed on natural images and some of the 

provided CT phantoms with the assumption that they all have common representation format.  
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(1)  

 

 

 (2) 

 

 

 (3) 

Figure 6.2. Displaying the fusion result and difference from reference of standard images using 

1. Multifocus source images and a Reference image 2. OMP-DCT, 3.OMP-MDCT. 
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 (4) 

    

 (5) 

    

 (6) 

Figure 6.2. Displaying the fusion result and difference from reference of standard images using 

4. SOMP-MDCT, 5. SCStOMP-DCT and 6. SCStOMP- MDCT. 
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In order to validate the performance, we investigate the performance of the proposed method by 

performing the experiment on standard images and CT images. All the source images used were 

geometrically registered. Firstly the proposed method is experimented on multi focus clock 

images. First row of the Figure 6.1 presents the source images having two clocks to be fused and 

a reference image. First source image is captured by focusing the big clock and second source 

image is captured by focusing the small clock. Visually, the fusion result of OMP-DCT and 

OMP-MDCT seem to have low spatial resolution and the difference is more obvious. We can see 

that OMP-DCT fusion result contains artifacts. Results using simultaneous fusion methodology 

have clear details and better spatial resolution than OMP fusion methods. Proposed fusion 

method utilized MDCT dictionary contain clear clocks. 

Table 6.1. Performance evaluation of proposed method for standard images quantitatively 

Source Images Methodology PSNR 

(db) 

  SSIM Correlation MI 

Clock 

(Multifocus) 

OMP-DCT 28.8290 3.2442 0.8966 0.9966 0.5011 

OMP-MDCT 29.9021 3.1751 0.8999 0.9973 0.5147 

SOMP-MDCT 31.2682 2.9144 0.9666 0.9980 0.5142 

SCSt-OMP DCT 31.5374 2.9239 0.9667 0.9981 0.5164 

SCSt-OMP MDCT 31.5420 2.9252 1.9669 0.9981 0.5205 

 

The objective evaluation on the fusion results of all the methods with reference image of 

the clock image is listed in Table 6.1. Best quantitative results are represented in bold. Proposed 

method outperforms other methods quantitatively. Simultaneous fusion methods perform way 

better than the OMP fusion methods qualitatively and quantitatively.  
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 (1) 

 

 (2) 

 

 (3) 

Figure 6.3. Displaying the fusion result and contrast map using 1. Low dose image, 2.Highdose 

image as reference, 3. OMP-DCT. 
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 (4) 

 

 (5) 

 

 (6) 

Figure 6.3. Displaying the fusion result and contrast map using 4.OMP-MDCT, 5. SOMP-

MDCT, 6. SCSt-OMP utilizing Overcomplete DCT. 
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 (7) 

 

 (8) 

 

 (9) 

Figure 6.3. Displaying the fusion result and contrast map using 7. SCSt-OMP utilizing MDCT 

(Contribution I), 8. Joint Sparse PCA model (Contribution II), 9. Focussed Region fusion 

(Contribution III) 
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Table 6.2. Performance evaluation of proposed method for CT images quantitatively 

Source Images Methodology PSNR 

(db) 

  SSIM Correlation MI 

Low dose  

and  

medium dose 

Phantoms 

OMP-DCT 28.8290 3.2442 0.8966 0.9966 0.5011 

OMP-MDCT 29.9021 3.1751 0.8899 0.9973 0.5147 

SOMP-MDCT 31.2682 2.9144 0.8899 0.9980 0.5142 

SCSt-OMP DCT 31.5374 2.9239 0.8999 0.9981 0.5164 

SCSt-OMP MDCT 32.7969 0.6780 0.8947 1.0000 0.5174      

Sparse PCA Joint Model 34.7480 0.7781 0.9800       1.0000 0.7764 

Region focused Fusion 34.9423 0.7780 1.9880        1.0000 0.7861 

 

Figure 6.3 shows the results of integrating low dose and medium dose CT phantom 

images using different methodologies. Low dose image in (1) of Figure.6.3 seems to be very 

noisy and the noise hides some details especially the circles. Our proposed algorithm is 

implemented to fuse 60% dose image (low dose) and 90% dose (medium dose) image. Results of 

fusion using various methods are shown in Figure 6.3.Visually, fusion result of the Contribution 

I is better than the existing algorithms since the circle details on the left side are discernible. 

Contrast plot of Contribution I and sparse method is similar to the contrast map of high dose 

image as compared to other conventional fusion methods. SOMP fusion results are also better 

compared to conventional OMP method but contribution I shows superior results than SOMP 

fusion.  



84 
 

 These experiments on these low dose and medium dose CT phantom images illustrates 

that the proposed method outperforms other existing fusion algorithms quantitatively as shown in 

Table 6.2.  

Use of “max-abs rule” in all OMP, SOMP fusion methods has considered the enhanced details 

from both the images but noise is not removed. So these methods discussed in this section can 

give promising results only on clean images. A good threshold in each iteration stage and MDCT 

dictionary results in good sparse reconstruction of proposed SCSt-OMP and ensures better fusion 

results compared to already existing fusion methods. 

  

 (1) 

  

 (2) 

Figure 6.4. Displaying the fusion result and contrast map using 1. Low dose image, 2.Highdose 

image as reference. 
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 (3) 

 

 (4) 

  

 (5) 

Figure 6.4. Displaying the fusion result and contrast map using 3.OMP-MDCT, 4. SCSt-OMP 

utilizing Overcomplete DCT and 5. SCSt-OMP utilizing MDCT. 
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Table 6.3. Performance evaluation of proposed method for CT images quantitatively 

Source Images PSNR (db)   MI Correlation SSIM CNR 

Low dose and 

Medium dose 

Phantoms 

OMP-DCT 16.4079 0.1982 

 

    0.2494 

 

0.9840 

 

    0.174 

 

OMP-MDCT 21.4514 0.1260 

 

    0.3762 

 

0.9846     0.1831 

 

SOMP MDCT 30.2658 

 

0.1274 

 

    0.3924 

 

0.9844    0.2264 

 

SCSt-OMP DCT 31.3789 0.1131      0.8738 0.9888 0.3338 

SCSt-OMP MDCT 34.3732 0.1011    1.0000 0.9889 0.5174 

 

Figure 6.4 shows the results of integrating low dose and medium dose CT phantom 

images using different methodologies. Our proposed algorithm is implemented to fuse 60% dose 

image (low dose) and 90% dose (medium dose) image. Results of fusion using various methods 

are shown in Figure 6.3. Visually, fusion result of proposed method is similar to high dose 

image. Contrast plot of proposed method and sparse method is similar to the contrast map of 

high dose image. It is observed that the result of conventional OMP fusion methods shows 

artifacts and the results are disappointing visually. Fused result seems to contain the details 

available in low dose and medium dose images without the introduction of artifacts. From Table 

6.3, Quantitative results of all the other methods except proposed seems to be really low for the 

existing methods.  Choosing the threshold as 0.6 makes this algorithm computationally efficient. 
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6.3. Experimental setup and Results of Contribution II and Contribution III  

Under this section, the experiments are performed on low dose and medium dose CT 

images using proposed Joint Sparse PCA and fusion using focused vector. As similar to previous 

section, the same five evaluation criteria are used to assess the quality of the fused image. 

Learning-based dictionaries are used for efficient sparse representation than fixed dictionaries. 

We use a patch size of     and the dictionary learned from high dose images has the size 

      . For the noise intensity of  , we set the stopping error criterion as           .  

 

  

(1) 

Figure 6.5. Displaying the fusion result and contrast map using 1. Low dose image (source image)  
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(2) 

 (3) 

Figure 6.5. Displaying the fusion result and contrast map using 1. Low dose image (source image), 

2.Medium dose image (source image), 3. High dose image (reference image).  
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 (4) 

 

 (5) 

Figure 6.5. Displaying the fusion result and contrast map using 4.Focussed Region Fusion, 5. CSt-OMP 

fusion 
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(6) 

Figure 6.5. Displaying the fusion result and contrast map using 6. Joint Sparse PCA fusion  

Table 6.4. Performance evaluation of proposed method for CT images quantitatively 

Source Images PSNR (db)   MI Correlation SSIM CNR 

Low dose and 

Medium dose 

Phantoms 

CSt-OMP fusion 27.7356 0.0357     0.999 

 

    0.9609 

 

23.4655 

Joint Sparse PCA 

fusion 

27.7925 0.0418 

 

    0.999 

 

0.9644 22.5055 

Focused Region 

fusion 

29.5398 0.035     1.0000     0.9777 

 

20.5025 

Figure 6.3 (6) and (7) are the fused images of Joint Sparse PCA fusion and Region 

focused image fusion methods. All the details are clearly discernible. Especially the circular 
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rings on the left are visible and obviously better than the existing methods. Circular rings on 

right side are also slightly visible which are not at all visible in other fusion results. Contrast map 

of Contribution II and Contribution III are even better. Especially, the contrast map of 

contribution III is almost same as that of high dose contrast map. 

Objective evaluations are presented in Table 6.4. It is observable that all the image 

quality metrics value show superior results for the contributed works. CNR is the important 

quantity metrics evaluation for medical images which is better for the contributed methods. 

 

(a)       (b)         (c)  

Figure 6.6. The overcomplete dictionaries: (a) Overcomplete DCT (b) MDCT Dictionary (c) Trained 

Overcomplete dictionary 

Figure 6.5 depicts the results of integrating 60% low dose and 90% medium dose CT 

phantom images. Visually, Fusion result of Contributed methods, in particular, Contribution III 

is same as high dose image. Contrast plot of proposed all the three contributed methods are very 

similar to the contrast map of high dose image. Result of conventional OMP fusion methods 

shows noise and its contrast map is very similar to medium dose image.   

Objective evaluation of Figure 6.5 results is presented in Table 6.3. From all the objective 

results presented, contributed methods are obviously better than other methods. Among the 

contributed methods, Contribution III gives out superior result since it denoises and fuses the 

information simultaneously. 
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6.4. Integration of unregistered images using Focused Region fusion 

To confirm the effective performance of the focused region based sparse fusion, further, 

unregistered low dose images of the same region of interest is fused. The fused result is 

evaluated using Contrast Noise Ratio (CNR) and contrast map. Maximum iteration of K-SVD is 

set to 40. High dose resolution CT set is incorporated during the training process for enhancing 

the details and the trained dictionary is shown in Figure 6.6.(c). Source images are two Cone 

Beam CTs (CBCT) of the same patient at two different times. The goal is to denoise the CBCTs 

using the high resolution CT as learning set. 

 

 

 

 (1) 

Figure 6.7. Displaying the fusion result and Contrast map of fusing two Cone Beam CTs (CBCT) 1. Low 

dose image with CNR  22.8330  
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 (2) 

 

 (3) 

Figure 6.7. Displaying the fusion result and Contrast map of fusing two Cone Beam CTs (CBCT) 2. 

Another low dose image with CNR of 22.1172, 3.Fusion result of proposed method with CNR of 21.4806 
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 (4) 

Figure 6.7. Displaying the fusion result and Contrast map of fusing two Cone Beam CTs (CBCT) 4. High 

resolution image with CNR of 20.0067 

 

Intuitively the details of source images are transferred to a composite image through the 

proposed method. The fatty portions and details are better in composite image than the source 

images. Quantitative CNR is also better for the integrated image.  Visually comparing the 

contrast map of all the provided images in Fig 6.7., contrast map of proposed method is almost 

similar to that of high dose image apart from some minor variants in the gray level range of 0 to 

250.  

All the experiments are performed in the environment of Pentium dual core CPU 2.93 GHz with 

2 GB RAM PC operating with Matlab 13. 
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Chapter 7. Conclusion and Future 

Works 

 

 

 

 

7.1. Image fusion with simultaneous controlled orthogonal matching pursuit 

  Medical Image fusion plays a vital role in clinical diagnosis. We proposed a simultaneous 

sparse fusion method where the images are integrated in sparse domain. Sparse coding and 

fusion process is done parallelly by simultaneous controlled orthogonal matching pursuit (SCSt-

OMP) utilizing MDCT dictionary. Experiments are done in low dose and medium dose images 

to check the performance of the proposed method and results are compared with the conventional 

sparse fusion methods and SOMP fusion method. Based on the qualitative and quantitative 

analysis,   the proposed method produces superior results than SOMP fusion method and OMP 

fusion method. Use of SCSt-OMP methods increases the computational efficiency since each 

stage allows multiple atoms but sliding window technique makes the process slightly time 

consuming. Even though the fusion results are superior, this fusion assumes the source images to 

be noiseless. But source images are prone to noise and for noisy images, the fused result will 

have reduced PSNR. Tuning the error stopping criterion with respect to the noise intensity would 

be the ideal idea for further improvement. 

 

 



96 
 

7.2. Image fusion with Joint Sparse Fusion 

Another method based on Joint Sparse Representation (JSR) is aimed to effectively integrate 

multi-dosage images to enhance the details necessary for diagnosis. This framework makes use 

of the proposed SCSt-OMP method for simultaneous sparse coding in JSR. And PCA fusion is 

used to integrate the innovative component sparse vector. It’s necessary to note that many fusion 

algorithms are developed with the assumption that the source images are noise free. Since our 

algorithm is experimented on multi-dosage images, low dose CT images are prone to noise. 

Unlike traditional fusion methods, the proposed Joint Sparse fusion method simultaneously fuses 

and denoises the image by tuning the error threshold with respect to the noise intensity. Visually 

and quantitatively, the experimental results show that the proposed method has effectively 

expressed the geometric structures and edges and has proved to outperform some of the state-of-

the-art fusion algorithms. Objective results and contrast map shows that combination of PCA 

fusion and weighted average fusion works great for fusing multi-dosage images than the other 

combinations. 

7.3. Fusion based on Focused Vector 

In this paper a novel sparse image fusion method is proposed for fusing low dose CT images 

based on focused vector. This method is the extension of the proposed Joint Sparse PCA fusion 

method where fusion result is constructed from initial fused image and focused vector. In this 

method, sparse coding stage utilizes a dictionary trained from high resolution CT images and 

denoises the low dose image by fusing low dose and medium dose CT images in sparse domain. 

The results of the proposed method outperform all the other existing fusion methods presented 

here in terms of qualitative and quantitative measurements when tested on both noisy and 

noiseless images. Contrast map the fusion result of this proposed method is almost same as high 

dose image. This framework effectively fuses the information without the introduction of 

artifacts, transfers the details from source images to composite image, suppresses noise without 

losing any detail. The dictionary used here is trained off-line. This work can be further refined 

exploiting dictionaries that are trained so that they will be suitable for different source images.  
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