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SUPPORT VECTOR MACHINES FOR ENVIRONMENTAL INFORMATICS:
APPLICATION TO BIOLOGICAL NITROGEN REMOVAL IN WASTEWATER
TREATMENT PLANTS

Master of Applied Science, 2005
Yinghui Yang

Electrical and Computer Engineering, Ryerson University

Abstract

In order to meet the more stringent environmental regulations, the adaptive and optimal
control strategics should be investigated for the biological nitrogen removal(BNR) processes
in wastewater trecatment plants. Because of the complex nature of the microbial metabolism
involved, the conventional mechanistic models for nitrogen removal are difficult to formulate
and the existing ones are still uncertain to some extent. Alternatively, the machine learning
methods have been investigated as black-box modelling techniques. A new approach, Support
Vector Machine (SVM) was proposed to be used to model the biological nitrogen removal
processes in this thesis. Specifically, LS-SVM, a simplified formulation of SVM, was applied
to predict the concentration of nitrate & nitrite (NO). The simulation results indicate that
the proposed method has better generalization performance in comparison with generalized
regression neural network, especially under weather conditions that are quite different from

the training weather condition.
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Chapter 1

Introduction

1.1 Motivation

As the regulations for effluent quality are getting more and more stringent throughout North
America, the advanced biological wastewater trecatment (WWT) techniques are required to
achieve better level of nutrient removal. Such techniques include conversion of ammonia
nitrogen to nitrate by biological nitrification and removal of nitrate by biological denitrifi-
cation. To accommodate plant influent fluctuations and other disturbances, there is a need
to investigate the development and implementation of adaptive process control strategics,
so that more precise and timely controls are achicved for the aforementioned techniques.
As the basis of the development of the adaptive controllers, estimating the dynamics of the
concentrations of some important trace clements (e.g., nitrogen) in the cffluent is of primary
consideration.

Conventionally, mechanistic models have been the most commonly used method for pre-
dicting the process dynamics so as to estimate the concentrations of various clements. Many
mechanistic models and various control strategies have been incorporated in different soft-
ware packages to address practical wastewater treatment problems. However, mechanistic
models suffer from several fundamental deficiencies that have been discussed extensively by
several authors in the literature (2, 3, 21, 32]. A recent synthesis and consolidation of these
deficiencies can be found in the article by Guergachi and Patry [12]. The conclusion can be
summarized as: mechanistic models are not able to deal with uncertainty in an effective man-

ner. Mechanistic models can only roughly approximate the underlying function. The model



paramecters arc calibrated using empirical method, such as using the real data. That means,
the mechanistic model with specific parameters can only reflect a portion of the dynamics
of the complex wastewater treatment systems. The data used to determine the parameter
have an impact on the model performance. Furthermore, the numerous parameters (e.g.,
kinetic and stoichiometric parameters) involved in the mechanistic models make the models
too complex to use.

An alternative approach to modelling the uncertainty in wastewater treatment systems
is machine lecarning. Machine learning is a black-box modelling technique that make use
of empirical data. A lot of rescarch work has been done to investigate the application of
necural networks (NN) in modelling the wastewater treatment processes. However, as most
of the empirical models, the weakness of neural network is that its use is limited to the
range of data over which it was trained. The generalization ability of neural network is
not so satisfactory. While we are aware of the strengths and weaknesses of many of the
exiting technologics such as neural networks, fuzzy logic and knowledge-based systems, a
novel system modelling approach called support vector machine (SVM) [49] emerged recently
as a natural consequence of the results of statistical learning theory and needs extensive
investigation at the empirical level.

The formulation of SVM is based on Vapnik’s statistical learning theory (SLT) and
structural risk minimization (SRM) [48]. According to the statistical learning theory, an
upper bound on the generalization error guarantees the existence of a hypothesis with a
certain level of accuracy. This generalization bound considered the trade-off between the
cmpirical error and complexity of the model. By applying the structural risk minimization,
an appropriate hypothesis can be found with proper complexity to fit the given data set.

Several researchers and authors have reported that this approach, when it is applied to
pattern recognition, the discrete case, is a powerful one and delivers better results than the
other traditional and competing approaches such as neural networks do [41, 47]. There is,
however, a need to carry out more investigations (empirical first and then theoretical) of the
performance of the support vector machines (SVMs) in the case of continuous and complez
systems such as biological wastewater treatment plants. It is the intention of this thesis to

present an empirical investigation of SVMs by applying them to the modelling of nitrogen



removal in wastewater trcatment systems.

After the SVM concept was introduced by Vapnik, many variations of SVMs have been
developed by other researchers to leverage the strength while overcoming the difficulties in
applications of the initial SVM concept. One of these variations known as the least squares
SVM (LS-SVM) was introduced by Suykens and co-workers [45]. It is this variation that
will be investigated in this study. An advantage of the LS-SVM is its simplicity in terms of
memory requirements and algorithmic implementation, and the fact that LS-SVM can be
used for cases where adaptive and online learning is needed.

In modelling the nitrogen removal processes and predicting a certain variable in wastewa-
ter treatment systems, the output depends on many inputs and control variables, as well as
on the previous values of the output itsclf. Because of the correlation between the variable
to be predicted and its previous values, as well as with the current and previous values of the
other variables, NARX (Nonlincar AutoRegressive model with Exogenous Inputs) modelling
concept was integrated into LS-SVM to accommodate the information contained in both the
current and historical data. Extensive simulations using simulated data generated from the
wastewater treatment software package GPS-X [10] were carried out to examine how LS-
SVM can perform on predicting nitrogen concentrations in trcated wastewater. Specifically,
LS-SVM Matlab toolbox is used in the cstimation of nitrate & nitrite (NO) concentration.
Moreover, to compare the performance of LS-SVM in prediction, the simulations using a
special neural network called Generalized Regression Neural Network (GRNN) under the
same settings and procedures were also implemented. The simulation results indicate that
LS-SVM has better generalization ability than GRNN because it can predict the response
of the system to dynamic variations while only trained on a limited sct of data that don’t
include all of the patterns of the variation. Through the scnsitivity analysis, it can be seen
that the performance of LS-SVM is highly dependent on the sclection of NARX memory
orders.

The results of this study confirmed the advantages of LS-SVM in modelling uncertainty
of complex continuous system. Also, some future work directions can be derived from this

empirical study.



1.2 Summary of Contributions

Although SVMs have had plenty of applications since its emergence in 1995, the research
of SVM mostly focused on classification or pattern recognition, which are discrete cases.
Based on our literature review, there were very few paper discussing the application of SVM
in complex continuous system modeling. In wastewater treatment system, especially the
biological nitrogen removal, there hasn’t been any research that investigated SVMs as the
modelling method. In contrast, neural networks have been applied in wastewater treatment
processes modelling in a wide range, including some research on nitrogen removal. This
thesis contributed to this arca in the following aspects:

This research is innovative to apply SVM to complex continuous system modelling. For
this purpose, a variety of SVM-based methods were investigated and LS-SVM was selected
as a better one for modeling the dynamic of complex continuous system.

In the case of modelling biological nitrogen removal process, the domain knowledge has
been studied and relevant input and output variables were identified, in order to enable the
modelling procedure and improve the simulation performance.

A critical step leading to the successful results is the selection of COST (European Co-
operation in the field of Scientific and Technical Research) simulation benchmark in GPS-X
to generate the simulated data for LS-SVM training and testing.

To take advantage of both regression and time series prediction ability of LS-SVM, NARX
model was proposed to transform the input and output variables into a new space with
cmbedded memory. Using this new input and output space enables accurate prediction of
the target variable, which can’t be obtained by using regression or time series prediction
individually.

All of the learning and prediction simulations, including the input-output transformation,
parameter tuning, training and prediction, were implemented in MATLAB with LS-SVM
Toolbox. The simulation results were visualized in tables and plots to make it interpretable.

The comparison between the prediction performance of LS-SVM and GRNN indicated
that LS-SVM had better generalization performance than GRNN when tested over the data

not from the training data set. These empirical results reinforce the power of statistical



learning theory and SRM principle.

1.3 Thesis outline

This thesis is organized into 5 chapters. Besides this introduction chapter, chapter 2 presents
the background of this study, the previous work in this arca and the proposed approach.
Chapter 3 reviews the fundamental concepts, algorithms and related tools of SVM. Three
kinds of neural network, BPNN, RBFNN and GRNN, are illustrated and compared. LS-
SVM, NARX and NOE prediction models are introduced and proposed as the techniques
for solving the target problem. In chapter 4, the simulation procedures and results arc

illustrated. The conclusion and the futurc work are summarized in chapter 5.



Chapter 2

Literature Review

2.1 Biological Nutrient Removal

The municipal wastewater includes significant nutrients which need to be removed. Nitrogen
and phosphorus are the principal nutrients of concern in treated wastewater discharges.
In general, the nitrogen and phosphorus contained in the discharged wastewater, if not
removed, will stimulate the growth of algae and rooted aquatic plants in shallow strcams. As
the consequence, cutrophication phenomenon will be accelerated in the lake and reservoirs,
which not only has an impact on the aesthetics of the water body but also interfere with
the benceficial use of the water resources, particularly when they are used for water supplies,
fish propagation, and recreation. If the nitrogen concentrations are significant in treated
cffluents, other adverse effects may be caused. Toxicity toward aquatic life and hazard to
public health will be presented so that the wastewater can not be reused. Therefore, the
control of nitrogen and phosphorus islbecoming increasingly important in water quality
management and in the design of wastewater treatment plants [35].

The regulations of effluent quality with regard to these two chemicals are getting more
and more stringent throughout North America. As the result, the discharge of one or both
of these constituents have to be controlled.

The traditional wastewater treatment plant placed emphasis on eliminating carbonaceous
pollutants and sludge. A typical traditional wastewater treatment plant consists of a primary
biological reactor that remove the carbonaceous organic and a secondary settler that clarify

the suspended solids. Advanced wastewater treatment is defined as the additional treatment



needed to remove suspended and dissolved substances remaining after conventional secondary
treatment. Since the early 1970s, the number of advanced wastewater trecatment facilitics
has increased significantly, and a great deal of information has been published, especially
with respect to the removal of nitrogen and phosphorus [35].

Various treatment methods have been used employing chemical, physical, and biological
systems to limit or control the amount and form of nitrogen discharged by the treatment
system. Biological nutrient removal is relatively low-cost means of removing nitrogen and
phosphorus from wastewater. Recent experience has shown that biological processes are
reliable and effective in removing nitrogen and phosphorus [35).

Nutrient removal options that nced to be considered include the following:
1. Nitrogen removal without phosphorus removal

2. Nitrogen and phosphorus removal

3. Phosphorus removal with or without nitrification

4. Year-round removal of phosphorus with scasonal removal of nitrogen

In our study, we focus on the first option, nitrogen removal without phosphorus removal.

The two principal mechanisms for the removal of nitrogen are assimilation and nitrifica-
tion/denitrification.

Nitrogen in untreated wastewater is principally in the form of ammonia or organic nitro-
gen, both soluble and particulate. Untreated wastewater usually contains little or no nitrite
or nitrate. During biological trcatment, most of the particulate organic nitrogen is trans-
formed to ammonium and other inorganic forms. A portion of the ammonium is assimilated
into the cell material of the biomass. Most of the nitrogen in treated sccondary cffluent
is in the ammonium form. In order to remove ammonia, the advanced biological nitrogen
removal (BNR) techniques, such as nitrification-denitrification, arc required in addition to
the traditional acration tank and secondary settler.

In nitrification-denitrification, the removal of ammonia (NH{) is accomplished in two
conversion steps. These two processes are considered separately. In the first step, nitrifica-

tion, ammonium is converted to nitrite (NO3) and nitrate (NO53) by autotrophic bacteria
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under aerobic conditions. However, the nitrogen has merely changed forms and not been
removed. In the second step, denitrification, nitrate and nitrite are converted to a gaseous
product by heterotrophic bacteria under anoxic conditions with the use of organic compounds
as reducing agent. The gascous product, Na, is one of the components of the atmosphere
and can be directly released to the air. Anoxic zones can be placed either in the beginning
of the bioreactor (pre-denitrification) or in the end of the bioreactor (post-denitrification).
In a pre-denitrifying system, an internal recirculation flow is usually introduced to transport
the nitrate rich water back to the anoxic zone. The nitrogen transformation within the BNR

process is illustrated in Figure 2.1.

Organic nitrogen
(proteins; urea)

Bacterial
decomposition
and
hydrolysis
A
o Assimilation Organic nitrogen Organic nitrogen
Ammonia nitrogen (bacterial cells) (net growth)
T Lysis and autooxidation l
02
c
2 A
[
Qo
g Nitrite (NO2-)
=
02 )
. Denitrification .
Nitrate (NO3-) I Nitrogen gas (N2)
Organic carbon

Figure 2.1: Nitrogen transformations in biological treatment processes [35].

The reaction of nitrification can be illustrated by the equations:

55N H; + 760, + 100HCO; — CsHy0oN + 54NO; + 57TH,0 + 104H,CO,  (2.1)
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400NO; + NH{ + 4H,CO3 + HCO3 + 1950, — CsH;05N + 3H,0 + 400NO;  (2.2)

The denitrification can be described as:

NO3 — NO; —» NO — N,O — N, (2.3)

The biological nitrogen removal can be implemented within the traditional wastewater
treatment plant by modifying the biological conditions within the plant. For example, Acti-
vated sludge process (ASP) is one of the most widespread processes for biological wastewater
trcatment. ASP has undergone successive modifications since its original application, which
have improved its efficiency and expanded its use from the climination of carbonaccous or-
ganic matter to the simultancous removal of nutrients, especially nitrogen (as nitrate and
ammonia). We can see later about the application of ASP in the data collection part.

According to a study [35], less than 30 percent of the total nitrogen is removed by conven-
tional secondary trcatment. Biological nitrification can remove 5-20% of the total nitrogen
entering process, while denitrification can remove 70-95% of the total nitrogen, provided that
the proper environment is produced and controlled effectively. In addition, biological treat-
ment is relatively low cost. As the result, biological nitrification/denitrification is becoming
more and more important in nutrient removal in wastewater trcatment.

Even though the application of biological nitrogen removal has many benefits, we should
be aware of the difficulties in utilizing this technique. Nitrogen can occur in many forms in
wastewater and undergo numerous transformations in wastewater trcatment. The transfor-
mations allow the conversion of ammonia-nitrogen to products that can casily be removed
from the wastewater. Because of the complicated activitics of microbial metabolism involved,
nitrogen removal is a nonlinear, dynamic, and time variant complex process. To properly
control such a complex system and achieve the highest level of nitrogen removal, the function
between a certain target variable in the effluent and the affecting variables in the influent
needs to be established.

There is a need to investigate the development and implementation of adaptive process
control strategies accommodating influent fluctuation and other disturbances, in order to

obtain more precise and timely controls. The first consideration of developing the adaptive



controllers is to estimate the concentrations of some important trace elements in effluent in
respond to the dynamic change of the influent characteristics.

The target problem of this thesis is to predict the concentration of an important indica-
tor variable in nitrogen removal processes, Nitrate & Nitrite (NO), in a short term. From
Figure 2.1, we can sce the concentration of Nitrate and Nitrite indicates the effect of nitrifi-
cation/denitrification. The objective is to study how the concentration of NO is affected by
the influent fluctuations and some control strategics. The purpose is to examine the effec-
tiveness of our proposed method on a benchmark biological wastewater treatment process
involving nitrification/denitrification. We will further apply the proposed method to real

systems if the simulation results are appealing.

2.2 Previous work

To reach the goal of predicting the NO concentration in the treated effluent, it is necessary
to establish a model which can map the target output to the selected inputs. As part of the
study, various methodologics for modelling and simulating the dynamics of nitrogen removal
arc studied. Models are mathematical and computer representation of real systems. The
real systems of interest here are the unit processes in a wastewater treatment plant, such as
the acration tank or the sedimentation tank in an activated sludge treatment system, or the
combination of them. There are two types of models which are widely applied in wastewater
treatment arca, mechanistic models and empirical models.

Mechanistic models (Figure 2.2) are based on first principles, that is, laws of physics,
chemistry, and biology. The models are based on theoretical results and the model para-
meters often have physical significance. Actual data can be used to estimate the model
parameters. The aim of parameter estimation is not only to fit the model to the data but
also calculate the parameter values that are good estimates of the true values of the physical
quantities. For example, the law of conservation of mass is the essential building block on
which dynamic equations are based. Data collected in the real system are used to adjust rate
constants and other parameters in the equations. This is a kind of “bottom-up” approach

to modelling in which the model is provided a firm foundation by natural laws. These laws
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Model
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dA
— =-kA
— dt

* actual data determine k

Figure 2.2: Mechanistic Models are Based on First Principles

help us to understand more thoroughly the behaviour observed in the real systemn and the
model.

Empirical models rely solely on data. The choice of the structure of the empirical model
is more arbitrary. The statistical properties of the parameter may not be as meaningful in
physical sense as in mechanistic models. In this approach, the model structure is determined
by selecting from a set of general mathematical functions such as those shown in the center
of Figure 2.3. Essentially, the data “spcak for themselves” and ultimately dictate the form
of equations - selected among a sct of candidate equations on the basis of goodness-of-fit
to be used in the model. This “top-down” approach to modelling is deemed weaker than
the mechanistic approach as the model structure is simpler and the meaning less clear. A
different set of data can often result in a different model structure and we are not always
certain how to interpret the meaning of parameters in the model. Nevertheless, empirical
models are useful as long as their use is limited to the data ranges over which they are
fitted, and in many cases are the only choice when we have limited knowledge about the recal
system being modelled. For example, empirical models often give good predictions and can
ultimately lead to the discovery of more gencral mechanistic expressions.

Conventionally, structured process models (mechanistic models) have been the most com-
monly used method for simulating and predicting the wastewater treatment process dynam-
ics. Such models are developed on the basis of the information that is available about the
physical process mechanisms. For instance, the series of Activated Sludge Models, i.c. ASM

No.1,2,3 [17, 18, 20] developed by IAWPRC (International Association on Water Pollution
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Figure 2.3: Empirical Models Fit the Data to a Certain Model Form

Resecarch and Control) and IAWQ (International Association on Water Quality), predict
oxygen consumption, sludge production, nitrification and denitrification of activated sludge
systems, by mathematically manipulating the kinetic and stoichiometric equations of the
reactions occurring in the biorcactor. However, establishing such mechanistic models is a
formidable task for biological nutrient removal processes. A multitude of microbial reactions
coupled with environmental interactions that are nonlinear, time-variable and still uncertain
are actively involved in these processes [27]. The complexity of such mechanistic models of
biological WWT processes is unparalleled in the chemical industry [21]. Beck [2] pointed out
the lack of identifiability of the IAWPRC Model. “The lack of model identifiability is due
to the fact that available models explain just a portion of the behaviour of highly complex
systems. The other portion which is not accounted for by those models shows itself through
the variability of model parameters. Lack of identifiability is then an inherent feature of
complex systems” [12]. Kang-Young Ko et al [25] claimed that these models are too com-
plicated due to many stoichiometric and kinetic parameters that require extensive off-line
calibration and long computation time. Moreover, the resulting analytic dynamic models are
incompletely formulated due to biochemical nature and numerous parameters of wastewater
treatment process and they are only valid for municipal wastewater treatment processes.
As both mechanistic models and empirical models are not quite suitable in modelling
wastewater treatment processes, researchers have been seeking more effective modelling tech-

niques. In the artificial intelligence literature, an emerging modelling approach is machine
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learning. Machine learning method is similar to empirical models as it is based on a sct
of data examples. The advantage of using machine learning methods is onc doesn’t nced
to know the underlying probability distribution of the data. Most of the machine learn-
ing methods can approximate any functions (lincar or nonlincar) to an arbitrary degree of
accuracy over a compact interval.

For machine learning methods, the model identifiability is not essential. Neural networks
(NN), for instance, “are fundamentally non-identifiable, yet they have been used extensively
and successfully in the area of wastewater treatment process modelling” [12]. NN models
have already been applied to the implementation of “software sensors” [27, 51] and to the
estimation of wastewater parameters|7, 14]. The development of NN models for the model-
based dynamic control of the entire wastewater treatment process can be found in [15, 11, 43].

Several other types of empirical models have been developed and applied for the waste-
water treatment processes. Fuzzy control is used to reduce the cffect of unmeasured distur-
bances [37]. Fuzzy inference method is applied to the fuzzy model to predict a possibility
distribution of a future BOD (Biochemical Oxygen Demand) value and take appropriate
judgement and control based on the prediction[42]. Time serics technique is used for pa-
rameter estimation and process optimization in GPS-X [10]. GPS-X has both mechanistic
and empirical models. Note that the difference between empirical and mechanistic models
is more a continuum than a crisp classification as mechanistic models often have some em-
pirical component. As mentioned before, actual data are used to modify parameters in the
structured models.

The problem of the aforementioned empirical modelling techniques is that the model is
limited over the range of training data set and there is no guarantee that the model is correct
on the data outside the training data sct. Another problem is the difficulty to determine the
complexity of the model. “If the size of the data set used for model identification is small
while the number of model parameters is large (i.c. the model is highly complex), then the
problem of data overfitting by the model would occur. On the other hand, if the model is
too simple and, therefore, the number of parameters is sufficiently low compared to the size
of the data set, then the explanatory power of the model would be so low that the value of

the objective function would become very high, meaning the model prediction of the true
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process behaviour is of a low quality. Consequetnly, the degree of complexity of a process
model has to be adjusted to the amount of data that is available for the identification of
this model. For any fixed amount of data, there is an optimal mdoel complexity that has to
be determined. Models that are more complex would cause overfitting, and models that are
less complex would lead to a low prediciton quality” [12]. The mathematical framework that
was developed in Guergachi and Patry [12] defines all the necessary concepts and tools that
help determine the optimal structure complexity of a WWT process model, corresponding

to a fixed amount of data.

2.3 Proposed method

While we are aware of the strengths and weaknesses of many of the exiting technologies such
as ncural networks, fuzzy logic and time series, the introduction of an innovative machine
learning approach by Vapnik [49] provided answers for the shortcomings. Support Vector
Machine emerged as a natural consequence of the results of statistical learning theory and
structural risk minimization principle. Statistical learning theory provided theoretical foun-
dation of the generalization ability of SVM. Structural risk minimization offers a structured
way to determine the complexity of the model so as to avoid overfitting. The solution of SVM
has the properties such as global optimum, sparseness and bounded generalization error.

Even though the theoretical foundation of SVM is very strong, there is, however, a need to
carry out more investigations (empirical and theoretical) of the performance of SVMs. Since
its introduction, SVM has been applied to many classification problems and outperformed
other techniques. However, in the case of continuous and complex systems such as biological
wastewater treatment plants, there were much less research that has been done. It is the
intention of this thesis to present an empirical investigation of SVMs by applying them to |
the modelling of BNR in wastewater treatment systems.

Some variations of SVMs have been developed by researchers to leverage the strength
while overcome some difficulties in applications of standard SVM. For example, SVM so-
lutions are usually found via batch algorithms and can not be used for online learning. A

simplication of SVM formulation known as the least squares SVM (LS-SVM) has nice prop-
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erties in the sense that their solution can be found by solving a sct of lincar equations making
the algorithm amenable for on-line application.

For these reasons, in our study, we proposed to make use of LS-SVM to model the
dynamics of the nitrogen removal processes and predict the NO concentration under different
weather conditions. In order to compare the performance of our proposed methods with NN
style methods, one special neural network, gencralized regress necural network, was also

applied to the modelling and prediction as a comparison to LS-SVM.
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Chapter 3

Theoretical Background and
Proposed Solution

Mathematical models have been developed to solve a variety of problems such as classifica-
tion and regression. However, the nature of the systems that scientists and engineers deal
with has evolved. Two characteristics of such systems have emerged as a result of this evolve-
ment: increased complexity and increased amount of data. More and more tasks with high
complexity cannot be solved by classical programming techniques, since no mathematical
model of the problem is available. One solution for such complex system modeling, analysis
and control is to make use of the second characteristic (increased data) to address the chal-
lenges posed by the first characteristic (increased complexity). The construction of machines
capable of learning from experience (historical data) has received an enormous impetus from
the advent of electronic computers. Machine learning methodology is an artificial intelligence
approach to develop and train a model ‘to recognize the pattern or underlying mapping of a
system based on a set of training examples consisting of input and output patterns. It has
been demonstrated that machines can display a significant level of learning ability, though
the boundaries of this ability are far from being clearly defined.

In this chapter, we will give an overview of the important concepts of one important
machine learning methodology — supervised learning. Then we will introduce a family of
innovative supervised learning methods - Support Vector Machines (SVMs) and explain why
Support vector machines meet many of the challenges confronting machine learning systems,
in comparison to neural networks. MLP, RBF, and GRNN will be emphasized when neural

networks (NNs) are introduced. Three prediction models will be explained. At the end, a
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solution combining LS-SVM, NARX and NOE prediction models is proposed for the target

problem.

3.1 Supervised Learning

There are many situations that the traditional programming approach cannot be cffective.
Such as, the system designer cannot precisely specify the method by which the correct output
can be computed from the input data, or the computation may be very expensive. When such
situations arise, an alternative strategy for solving this type of problem is for the computer
to attempt to learn the input/output relationships from cxamples. The approach of using
examples to synthesize models is known as learning, and in the particular case when the
examples are input/output pairs it is called supervised learning. It is inspired by the fact
that the kids are taught by the teacher to learn the real world problems such as classification
by looking at some examples and gencralizing to new items. The examples of input/output
are referred to as the training data. The input/output pairings typically reflect a functional
relationship mapping inputs to outputs, though this is not always the case as for example
when the outputs are corrupted by noise. When an underlying function from inputs to
outputs exists, it is referred to as the target function. The estimate of the target function
which is learnt or output by the learning algorithm is known as the solution of the learning
problem. The solution is chosen from a set of candidate functions which map from the input
space to the output domain. Usually we will choose a particular set or class of candidate
functions known as hypotheses before we begin trying to learn the correct function. Hence,
the choice of the set of hypotheses (or hypothesis space) is onc of the key ingredients of
the learning strategy. The sccond important ingredient is the algorithm which takes the
training data as input and sclects a hypothesis from the hypothesis space. It is referred to
as the learning algorithm. The ability of a hypothesis to correctly perform input/output
mapping outside the training set is known as its gencralization, and it is this property that
shall be optimized. The aim is to find the hypothesis that gives the right output according
to the generalization criterion. The hypothesis has become a functional measure rather than
a descriptional one, that is, it is not necessary to be a correct representation of the true

function. In this sense the criterion places no constraints on the size or on the ‘meaning’ of
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the hypotheses — for the time being these can be considered to be arbitrary.

The learning models are divided into two types according to the way in which the training
data are gencrated and how they are presented to the learner. One type is batch learning
in which all the data are given to the learner at the start of learning. The other type is
online learning in which the learner reccives one example at a time and the hypothesis is
updated according to each new example. The advantages of online learning is it can be used
when there is no fixed training set (new data keeps coming in) and it is better at tracking
nonstationary environments (where the best model gradually changes over time).

Support vector machines, the learning approach we will emphasize in the following of
this chapter, cannot be used online. But a simplified SVM method — LS-SVM can be used
online. Our target problem is stochastic, so online learning is more suitable. But in a short
term, we can treat it as a stationary process so that batch learning can be applied. The
study of this thesis concerns the supervised learning methodology from batch training data.

The advantages of machine learning methodology are very attractive. Firstly, the range
of applications that can potentially be solved by such an approach is very large. Secondly, it
appears that we can also avoid much of the laborious design and programming inherent to
the traditional solution development methodology, at the expense of collecting some labelled
data and running an off-the-shelf algorithm for learning the input/output mapping. Finally,
there is the attraction of discovering insights into the way that humans’ brains function, an
attraction that inspired early work in neural networks.

There are, however, many difficulties inherent to the learning methodology that deserve
careful study and analysis. The first is that the learning algorithm may prove inefficient as
for example in the case of local minima. The second is that the size of the output hypotheses
can frequently become very large and impractical. The third problem is that if there are only
a limited number of training examples, too rich a hypothesis class will lead to overfitting
and hence poor generalization. The fourth problem is that frequently the learning algorithm
is controlled by a large number of parameters that are often chosen by tuning heuristics,
making the system difficult and unreliable to use.

Take neural networks (NN) as example, despite the notable successes of NN in many kinds

of applications, neural networks often suffer from the local minima, overfitting and a large
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number of parameters. In addition, there is frequently a lack of understanding about the
conditions that render an application successful, in both algorithmic and statistical inference
terms. We will see in the next section that Support Vector machines address all of these
problems.

The most common tasks in supervised learning problems belong to two major categorics:
classification and regression. Time scrics prediction is another often confronted task that
can be dealt with as a regression problem. In the sequel of this thesis, we will focus on

regression and time series prediction.

3.2 Support Vector Regression

3.2.1 Vapnik’s e-insensitive SVM

Support Vector machines (SVM) are learning systems that use a hypothesis space of lincar
functions in a high dimensional feature space, trained with a learning algorithm derived from
optimization theory and implements a learning bias derived from statistical lecarning theory.
This learning strategy introduced by Vapnik and co-workers [48, 49] is a principled and very
powerful method that, in the last few years since its introduction, has alrcady outperformed
most other systems in wide varicty of applications, especially in pattern recognition [41, 47].

The simplest support vector machines were developed for binary classification. With
continuous extension and advancement, SVMs were applied to functional approximation
and time series prediction.

Linear learning machines are the fundamental formulations of SVMs. The objective of
the linear learning machine is to find the linear function that minimizes the gencralization
error from a set of functions which can approximate the underlying mapping between the

input and output data. Consider the following sct of lincar functions:

f(z;w,b) =wTz +b (3.1)

with N given training data that have input values zx € ®" and output values y, € R. w

is the weight vector and b is the bias.
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The empirical error is defined as

1 X 1 ¥
§Remp(““',b) = 'ﬁ kX: lyk - f(m;“)’b)l = ]_V' Z ka - wT:L' - bl (32)

The generalization error can be expressed as

R(w,b) = [ Iy = F(@iw,5)|p(z,y)dedy (3:3)

which measures the error for all input/output patterns that would be generated from
the underlying gencrator of the data characterized by the probability distribution p(z,y).
Unfortunately, the probability distribution p(z,y) is not known in practice.

According to statistical learning theory [49], the generalization error can be upper bounded

in terms of training crror and a confidence term as shown in Equation 3.4:

h(In(2N/h) + 1) — In(n/4)
N

where N is the number of training examples and h is VC dimension. VC dimension is used

R(w, b) < Remp(w, b) + \/ (3.4)

to describe the complexity of the learning system [49]. This bound holds with probability
1 — 7. The term on left side represents generalization error. The first term on right side is
empirical error calculated from the training data and the second term is called confidence
term which is associated with the VC dimension h of the learning machine. The relationship

between these three items is illustrated in Figure 3.1.

Error

Bound on the test error
Confidence term

Training error

Figure 3.1: Upper bounded generalization error

Thus, even though we don’t know the underlying probability distribution based on which

the data are generated, it is possible to minimize the upper bound of the generalization
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error in place of minimizing the generalization error itself. That means one can minimize
the expression in the right side of the equation 3.4.

Unlike the principle of Empirical Risk Minimization (ERM) which aims to minimize the
training error and is used in neural network training, SVMs implemented Structural Risk
Minimization (SRM) in their formulations. SRM principle takes both the training crror and
the complexity of the model into account, and intends to find the minimum of the sum of
these two terms as a trade-off solution (as shown in Figure 3.1) by scarching a nested set of
functions of increasing complexity [48, 49).

Vapnik’s formulation of SVM regression employed a so-called Vapnik’s e-insensitive cost

function defined as

v~ (&)l = { e foy e, TS (35)

(z)| —e, otherwise
Estimation of the linear function in 3.1 nceds to find w and b. w can be optimized
by replacing f(x) in Equation 3.5 with the lincar function in Equation 3.1 and solving a

constrained optimization problem shown in formulation 3.6:

. * 1 N *
min Jp(w,§,&) = o w+CY (6 +E) (3.6)
u, 7576* 2 k=1
such that yk—wak——szf-l-ék,k:l,...,N
Wiy +b—y<e+&k=1,...,N

6k)£;ZO,k=1,...,N.

C is a regularization parameter which adjusts the balance of the training error and the
complexity of the system. This formulation is called Vapnik’s e-insensitive cost function due
to ignoring the error within a band around the target function. & and & arc slack variables.
w is the weight vector of the linear function in Equation 3.1 and is derived from the solution
of the optimization problem in Equation 3.6. b can be calculated using the complementary
conditions [45]. This formulation 3.6 is a constrained optimization problem in primal weight

space. The Lagrangian for this problem is:
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N
- Z ap(e+ & +yk — wlz, —b) (3.7
k=1

N
= (€ + miés)
=1

with positive Lagrange multipliers ax, o, Nk, 75- The conditions for optimality are

(L =0 - w=3,(ox—ap)zk

=0 - Zilw—0p)=0

b
(3.8)
-gé=0 — c—ak—nk=0
kggl;:=0 — c—ap—mn=0.

Replacing 3.8 back to 3.6, the dual problem is a QP problem described in the formulation
3.9:

. 1 &
min Jp(ax, o) = —5 > (ar — of)(eu — o Jzim
@ 2

N N
—&Y (ax+af) + > yrlon — of)
k=1 k=1
(3.9)
N
such that > (e —ag) =0
k=1

ax, ay, € [o,¢].

Lagrangian multipliers o and af can be obtained by solving this dual optimization
problem. The examples (zx,yx) corresponding to the non-zero Lagrangian multipliers ax
and o} are called support vectors. Only support vectors are involved in the expression of

the target function as in Equation 3.10:
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N

fl@) = (ax —ap)zfz +b (3.10)
k=1

The advantage of using the dual representation is derived from the fact that in this
representation the number of free parameters relies on the number of support vectors instead
of the number of dimensions of the input space (cquals the dimension of weight vector in the
primal space). This property enables the regression in a high dimensional space.

However, most of the practical problems are nonlincar instead of simple lincar ones.
Kernel functions extended the power of lincar lecarning machine by mapping the input data
into a high dimensional feature space. A lincar learning machine can be employed in the
feature space to solve the original non-lincar problem. Kernel functions satisfying Mercer
condition [34] not only enable implicit mapping of data from input space to feature space but
also ensure the convexity of the cost function which leads to the unique optimum. Mercer
condition states that a continuous symmetric function K (z, z) must be positive semi-definite
to be a kernel function which can be written as inner product between the data pairs as in

Equation 3.11 [45]:

K(z,) = > A (@i(2) = 9l2)"0(2) (3.11)

where ny, is the dimension of the feature space R and ); are positive numbers.
Several typical choices of kernels are lincar, polynomial, MLP and RBF kernel. Their

expressions are as following:

K(z,zx) = =iz (linear kernel) (3.12)
K(z,zx) = (t+ziz)* (polynomial kernel) (3.13)
K(z,zx) = exp(—|lz —zxl3/0®) (RBF kernel) (3.14)
K(z,z;) = tanh(kiziz+ k) (MLP kernel) (3.15)

In the Lagrangian expression, the training examples never appear isolated but always in
the form of inner products between pairs of examples. By replacing the inner product of

input data pairs with an appropriately chosen ‘kernel” function, onc can avoid to explicitly
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cstablish a non-lincar mapping to a high dimensional feature space. In the feature space,
the size of the model is determined by the number of support vectors so that the difficulty
caused by large dimensions of the input space is avoided.

Thus, linear support vector regression can now be extended to the nonlinear space, by
application of the so called ‘kernel trick’. In the primal weight space the function takes the

form

f(z;w,b) = wlp(z) + b (3.16)

The optimization problem in the primal weight space becomes

. o o_ 1 y .
min Jpw,€,&) = gw'w+ed (& +&) (3.17)
w1 1{1{‘ 2 k=1

such that y—wip(zy) —b<e+&,k=1,...,N
ngo(:z;k)+b—yk§g+§,‘;,k=1,...,N
gk)&l):Z(Lk: 1"")N'

By replacing the inner product to a kernel function, the dual problem becomes 3.18:

. * 1 N * *
minJp(ax,of) = —5 > (= af)( — of) K (ax, z1)
! k,l=1

N N
- (ar+of) + > ye(ax — of)

k=1 k=1
(3.18)
N
such that > (ax—af) =0
k=1
ax, ay, € [o,c].
The dual representation of the target function becomes:
N
f(@) =3 (ox — o) K (z,z) +b (3.19)
k=1

The linear learning machine is one of the main building blocks of the system. The kernel
functions are used to define the implicit feature space in which the linear learning machines

operate. The danger of overfitting inherent to high dimensions is avoided by the guaranteed
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generalization error bound provided by the statistical learning theory. Optimization theory
gives a precise characterization of the properties of the solution which guide the implemen-
tation of efficient learning algorithms and ensure that the output hypothesis has a sparse
representation. The choice of a convex cost function also results in the absence of local
minima so that solutions can always be found cfficiently cven for training sets with hundreds
of thousands of examples, while the sparse representation of the hypothesis means that the
evaluation on new inputs is very fast. The size of the dual problem is independent of the
dimension of the input space, but depends on the number of support vectors. So we say
the primal problem is parametric while the dual problem is non-parametric. Hence, the four
problems of efficiency of training, cfficiency of testing, overfitting and algorithm parameter
tuning are all avoided in the SVM design.

In summary, Vapnik’s standard SVM posscsses the properties of global optimum, sparse
representation and bounded generalization risk, which can be derived directly from the so-
lution of the optimization problem and statistical learning theory [8]. These propertics
make SVMs advantageous compared to Neural Networks that suffer the local optimum and

over-fitting problem due to using ERM principle.

3.2.2 SVM Implementation Techniques

As we explained in the section 3.2.1, training of SVM is essentially a constrained optimization
problem. The optimization problem is converted to a convex quadratic form in the dual
space using Lagrange techniques. The convex property ensures that the problem has global
optimum. Since the risk of local minimum is avoided, the solution can be found efficiently
by the off-the-shelf optimization algorithm. In addition, the dual form indicates that the
complexity of the optimization problem depends on the number of support vectors instcad
of the dimension of the input space, thus, this learning method can be applied in very high
dimensional space.

Most of the off-the-shelf optimization algorithms ecmploy a numerical strategy to find
the minimum. The numerical strategy is starting from an arbitrary feasible point, then
moving along the direction mostly improving the objective function without violating the

constraints until a stopping criterion is reached. In the context of SVM formulation, the
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stopping criterion can be selected from the following options [8]:

e The most straightforward criterion is to monitor the increase of the cost function.
The training can be stopped when the fractional rate of the increase of the objective
function falls below a given tolerance (e.g. 107°). Unfortunately, this criterion has

been shown to be unreliable and in some cases can deliver poor results.

e The second way is to verify the Karush-Kuhn-Tucker conditions for the primal problem,
since they are the necessary and sufficient conditions for convergence. Naturally these
stopping criteria must be verified within some chosen tolerance, for example a good

choice in this case is 1072.

e The third stopping criterion is to observe the gap between the primal and dual objec-
tive functions, since this difference is zero at the optimal point for convex quadratic
optimization problems. This difference is called feasibility gap to distinguish it from
the duality gap of an optimization problem, which is the difference between the values

of the primal and dual solutions.

The conventional optimization algorithms to solve the dual problem include gradient
ascent/decent, conjugate gradient, Newton method, primal dual interior-point methods.
Conceptually, they are not very. different in the sense that they all iteratively update the
objective function to the optimum. The benefits of using these algorithms are that they
are well understood and widely available in a number of commercial and freeware packages.
But these traditional quadratic prograrﬁming algorithms are not suitable for large size prob-
lems because of the following reasons. First, many of them require that the kernel matrix
be computed and cached in memory. This requires extremely large memory. Second, the
computation of kernel matrix is expensive. Third, the implementation is difficult. As the
consequence, these algorithms can not be used in on-line learning. For large size problems,
these approaches can be inefficient. Attempts have been made to develop methods that
overcome. some or all of these problems. Decomposition techniques are proposed to be used
in conjunction with these optimization algorithms to reduce the space complexity 8]-

As we have shown, the solution of the dual quadratic optimization problem is finally

involved with support vectors corresponding to non-zero Lagrangian multipliers, i.e., to the
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active constraints. For larger problems, if it is possible to find a subset of data which are
an approximation of the support vectors using heuristic, it would be possible to discard
all of the other data and simplify the problem. The heuristic such as decomposition starts
with an arbitrary subset of data and solves the optimization problem on this subset of
data. The chunk of data being optimized at a particular stage is referred to as the working
set. The active set is the sct of support values (a’s) which is returned from the solution
of the optimization problem. At cach iteration, the optimization algorithm can be any
of the generic quadratic program optimizer that can be directly applied to the moderate
size optimization problems. The working set is iteratively updated by some criteria and the
active set is gradually built until the stopping criterion is satisficd. The goal of decomposition
techniques is to optimize the global problem by acting on a small subsct of data at a time.
The important point is to select the working sct in such a way that the optimization on the
working set leads to an improvement in the overall objective function. An cfficient heuristic
for choosing the working set at cach step is to sclect new working sct from points that
contribute most of the feasibility gap or cquivalently that violate the Karush-Kuhn-Tucker
conditions mostly. The stopping criterion can be one of the three options explained above.

The pseudo code for the decomposition method is shown in Table 3.1:

Table 3.1: Pseudo code of the decomposition method [8]

Given training set S

a—0

select an arbitrary working sct $ C S
repeat

solve optimization problem on S
select new working set from data not satisfying Karush-Kuhn-Tucker conditions

until stopping criterion satisfied
return o

Platt proposed an algorithm, called SMO [36], for solving SVM classification problems.
The basic idea is to drive the decomposition technique to its extreme - utilizing a minimum
working set with two data points. At each step SMO chooses two Lagrangian multipliers

a; and o; to jointly optimize, given that all the others are fixed, and updates the o vector
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accordingly. The choice of the two points is determined by a heuristic, while the optimization
of the two multipliers is performed analytically. Therefore, the quadratic programming
optimization algorithms arc not needed. This technique addresses the aforementioned three
difficulties to implement quadratic program optimizer on SVM dual problems. First, since
the kernel matrix operation is not involved, the computation speed in each iteration is faster.
Even though more iterations are needed to converge, the overall speed-up can be achieved.
Second, the memory requirement for kernel matrix caching is not necessary. Third, the
implementation of the analytical solution is much easier and no other packages of quadratic
programming optimizer arc needed.

Smola and Scholkopf [38, 39] extended these ideas for solving SVM regression problems.

3.2.3 LS-SVM

LS-SVM Regression

Although SVMs have many appealing properties that avoid the problems (e.g., overfitting,
inefficiency of training and testing, a large set of parameters to be tuned) frequently as-
sociated with the classical supervised learning methods, they also have some drawbacks.
The standard SVM requires the kernel matrix to be cached to improve the computation
speed that makes online learning infeasible. Also, the fact that SVM formulation is a convex
quadratic programming (QP) guarantees the global optima, but QP is still difficult to solve,
especially for the learning tasks where the speed is concerned. Based on the concept and
formulation of SVMs, researchers have investigated the modification and improvement of
this machine for different purposes.

Least Squares Support Vector Machine (LS-SVM) is a reformulation of the standard
SVM. LS-SVM models for classification and nonlinear regression are characterized by sim-
plifying the quadratic optimization problem into a system of linear equations. Such charac-
terizations of LS-SVM allow fast training and less storage, and thus enable its use in on-line
training. LS-SVMs can be related to regularization networks and Gaussian processes. As
SVMs, LS-SVMs exploit primal-dual transformations of the optimization problem. The nice

properties of SVMs, such as sparseness, can be imposed to LS-SVMs where needed. A
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Bayesian framework with three levels of inference has been developed to select the hyper-
parameters and reduce the input space. For ultra large scale problems, on-line lecarning is
proposed using LS-SVM |[31].

LS-SVM was originally proposed by Suykens et al. [45] and aims at simplifying the
formulation of the standard SVM. It is a modification of Vapnik’s SVM. The nonlincar
target function is the same as in 3.16 and the optimization problem can be expressed as in

the formulation 3.20:

t\’)lv—t

. 1 N
minJe(re) = guTw g 3(e)
(3.20)

such that Y =w () +b+ek=1,...,N.

In fact, this is nothing but a ridge regression cost function formulated in the feature
space [8]. v plays the same role as the regularization parameter C in SVM formulation. This
LS-SVM formulation modifies Vapnik’s SVM at two points. First, LS-SVM takes cquality
constraints instead of incquality constraints. Second, the error variable e;, was introduced in
the sense of least-square minimization. These error variables play a similar role as the slack
variables in SVM formulation so that relatively small errors can be tolerated [45].

In the case of linear function approximation, one could casily solve this primal problem
as it involves lincar equality constraints. But, when the dimension of w becomes infinite as
the dimension of the input space, the primal problem is difficult to solve. The solution is to

derive the dual problem by constructing the Lagrangian for this primal problem:

z

L(w,b,e;a) = Jp(w,e) Z (WTp(zk) + b+ e — yk) (3.21)

Taking the condition for optimality of the Lagrangian yiclds a sct of lincar equations

shown in equation set 3.22:
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Solving this sct of lincar equations in a and b, the resulting LS-SVM model for function

approximation becomes as follows:

y(z) = X_: apK(z,zr) + b (3.23)

As it was shown in the previous section, SVMs solve the nonlinear regression problems by
means of convex quadratic programs (QP). The use of least squares and equality constraints
for the models leads to solving a set of lincar equations, which is easier to use than QP
solvers. But, on the other hand, it has potential drawbacks such as the lack of sparseness
which is indicated from the condition a; = 7 ) in equation set 3.22, since the error would
not be zero for most of data points. One can overcome the drawbacks using special pruning
techniques for sparse approximation [45]. Pruning is a technique that can be used to improve
the generalization performance by iteratively eliminating a small set (i.e. 5%) of the less rel-
evant support vectors until the user-defined performance index degrades. If the performance
becomes worse, one might check whether an additional modification of (v, o) (in the RBF
kernel case) could improve the performance. The insight of such pruning technique comes
from the pruning techniques used with NN. For MLP it is well known that by sarting from a
huge network and deleting interconnection weights which are less relevant one can improve

the generalization performance [4].

LS-SVMlab

The software of LS-SVM implementation in MATLAB is named LS-SVMlab and is mainly
intended for use with the commercial Matlab package [31]. The present LS-SVMlab toolbox

contains Matlab/C implementations for a number of LS-SVM algorithms. Functions can be
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called either in a functional way or using an object oriented structure (referred to as the
model), depending on the user’s choice.

LS-SVMlab toolbox is one of the SVM related toolboxes we have scarched and tested
thoroughly. A number of functions are restricted to LS-SVMs, while the others are generally
usable. Most functions can handle datasets up to 20000 data points or more. LS-SVMlab’s
interface for Matlab consists of a basic version and a more advanced version. The basic
version is for beginners and implements the algorithms for classification, regression, time
series prediction, model selection and model validation. The advanced version contains
multi-class encoding techniques, a Baycsian framework, NARX models and fixed-size LS-

SVM. Users can choose which version to install and use depending on their own needs.

3.3 Neural Networks

3.3.1 MLP Neural Network

Neural networks, as the name implied, are inspired by biological nervous systems. The basic
idea of neural networks start from the concept of “ncuron” or perceptron. According to
the McCulloch-Pitts model, a neuron is modelled as a simple static nonlinear element which
takes a weighted sum of incoming signals z; and a bias term as input. The McCulloch-Pitts
neuron model [45] is shown in Figure 3.2.

The output y = h(XX, wiz; +b), where z; is input clement, h(-) is activation function or
transfer function, w; is the connection weight and b is a bias value. The transfer function in
the figure is just an example. In fact, it can be any lincar or nonlinear differentiable function.
This neuron model corresponds to the biological interpretation of firing of a ncuron depending
on gathering and synthesizing information of incoming signals. In the perspective of machine
learning, such neuron can be used to map the relationship between a pair of input and output
data example.

Neural networks are composed of neurons organized in a network structure. The network
structure consists of input and output layers, and several hidden layers in between. In each

layer, there are a number of neurons. Between two layers, the neurons are interconnected.
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Figure 3.2: Neuron and Transfer Function [45]

By constructing such multilayer perceptron network (MLP), neural network can be very
powerful. It has been mathematically proven that MLPs can approximate any continuous
nonlinecar function arbitrarily well over a compact interval to any degree of accuracy provided

they contain one or more hidden layers [45].
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Figure 3.3: Multilayer Perceptron Network [45]

Neural networks are adjusted, or trained, so that a particular input leads to a specific

target output. Typically many such input/target pairs are used, in supervised learning,
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to train a network. The function implemented by a necural network is determined by the
number of layers, the number of nodes in cach layer, the transfer function and the values
of the connections (weights) between elements. The number of layers, the number of nodes
in each layer and the transfer functions are usually sclected by the designer using empirical
methods. There are many algorithms that can be used to determine the weights and most
of them are based on the standard optimization techniques such as conjugate gradient and
Newton methods [33]. These kind of neural networks are also referred to as backpropagation

neural networks (BPNN).

3.3.2 RBF Neural Network
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Figure 3.4: RBF Neural Network Architecture [33]

The architecture of the Radial Basis Function Neural Network (RBFNN) is shown in
Figure 3.4. As shown in Figure 3.4, besides the input and output, the RBFNN consists of a
hidden radial basis layer and a linear layer. The first layer, Radial Basis layer, has as many
radial basis neurons as there are input vectors in the training data. The distance between an
input vector P and a weight vector IWy, denoted by ||dist||, is passed through a transfer

function in the form in Equation 3.24:

radbas(n) = e™ (3.24)
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Figure 3.5 is a plot of the radbas transfer function.

n

0 H H >
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a = radbas(n)

Radial Basis Function
Figure 3.5: Radial Basis Function [33]

From this plot, we can see that the function radbas has a normal curve. The spread of the
curve can be adjusted by the bias term b1 in Figure 3.4. The maximum 1 occurs at n = 0,
that is, the output of radial basis layer is about 1 when the distance of the weight vector
and the input vector is close to 0 (i.e, the weight vector and the input vector are identical).
In contrast, radial basis neurons with weight vectors quite different from the input vector P
have outputs near zero. This implies that the radial basis layer is to detect the input vectors
that are close to the weight vectors.

The S outputs of the radial basis layer are then sent to the second layer, linear layer, as
the inputs. The sccond layer is simply a linear layer with a linear transfer function plotted
in Figure 3.6. The input of the linear transfer function is LW, ja; + b2 as shown in Figure
34.

The small outputs of the first layer have only a negligible effect on the linear output
ncurons. Only if the output of the first layer is close to 1, its output weight in the second
layer passes its value to the linear neurons in the second layer.

Thus, the final output is the weighted sum of the number of input vectors whose distance

are deemed close to the radial basis layer weight vectors.
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Figure 3.6: Linear Transfer Function [33]

RBFNN vs. BPNN

The RBFNN is usually designed quickly by setting the first-layer weights to the same as
input vectors in the training data. Thus, the number of radial basis neurons is proportional
to the size of the training data. Compared to standard feed-forward backpropagation (MLP
or BPNN) networks, RBFNN may require more ncurons and work best when many training
data are available.

The generalization capability of BPNN lacks of cnough accuracy in predictions that re-
quire extrapolation. RBFNN combining unsupervised learning like sclf-organized feature
mapping and supervised learning like back-propagation ncural network is applicable to over-
come the over-fitting model problem. RBFNN is generally considered as a function approx-

imator that can be employed in the time series forecast [5].

3.3.3 Generalized Regression Neural Network

RBFNN can be used for both classification and regression. A special neural network often
used for function approximation is called Generalized Regression Neural Network (GRNN).
GRNNs were introduced in 1991 by Specht [44] as a variant of RBFNN. The difference
between GRNN and RBFNN is in the sccond layer as shown in Figure 3.7.

GRNN was introduced as a memory based neural network that would store all the training
data available for a particular mapping. Suppose the GRNN is designed using input/target
vector pairs, P and T. As in RBFNN, the weight vectors in the first layer are set to the
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Figure 3.7: Generalized Regression Neural Network [33]

input vectors P. To be noted, in the second layer of GRNN, the weight vectors are set to the
target vector T. The ‘nprod’ means to take the dot product. If the first layer detects a new
input vector that is close to a training input vector, the second layer will output the target
value of the training input vector.

The bias in the radial basis layer adjusts the smoothness of the function approximation.
In short, the larger the spread is, the smoother is the approximating function.

Like many other neural architectures, GRNNs exhibit the universal approximation prop-
erty for smooth functions, and can solve any approximation problem, given sufficient data.
The GRNN has many advantages, but it also suffers from disadvantage.

The advantage of GRNN networks is its parallel structure and one-pass learning ability,
as there is no iterative training. For this property, GRNNs can potentially be implemented
in special purpose firmware, on custom-designed boards, or executed on parallel computer
systems. The parallel network form could be used in applications such as learning the
dynamics of a plant model for prediction or control.

However, because they must store every training sample, they are very large and require
more memory. In spite of rapid training, they run relatively slowly compared with other
neural architectures. Because of the high computational cost, GRNN should be used pri-
marily for off-line applications. They also do not extrapolate, and can be used only for tasks

(such as image interpolation) that can be formulated as regression problems.
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GRNNs have been successfully used in approximation applications, including clinical

prediction models, drug design, and ultrasound speckle modeling, but are not as commonly

used as RBFNNs or backpropagation-trained networks.

GRNN vs. RBFNN

Both GRNN and RBFNN use radial basis function in the hidden layer and perform lincar
operations in the output layer. The main difference is that GRNN output layer performs a
weighted average while the RBFNN performs a weighted sum.

Which of these two networks is better depends mainly on the application. The GRNN
definition requires that it store the majority of the training data. When computational
constraints are not significant, such as in stock market prediction where predictions may
only be required once per day, it is probably best to use the memory based GRNN. However
in most other applications, such as cmbedded control systems, computational efficiency is

more crucial and the RBFNN would be preferred [16].

3.4 SVM vs. Neural Network

SVMs and Neural Networks are both approaches of supervised learning. Neural Networks
were invented earlier and have seen a lot of successful applications in various arcas, espe-
cially in the 1990’s. SVMs were introduced in 1995 and have outperformed other learning
methods in many applications, especially in classification problems. As the theoretical parts
of SVMs and NNs were reviewed in the previous sections, in order to better understand their

differences, their comparison is summarized in Table 3.2.

3.5 Prediction models

Basically, SVM is used for classification or function approximation, which involves the map-
ping of multi-dimensional input and output. Prediction can be treated as a special function
approximation problem that maps the new output value into the previous input and output

values. In this section, we introduce three prediction models.
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3.5.1 Time Series Prediction model

Time series prediction is to predict one or more variables in the future point in time. From the
perspective of machine learning, time series prediction is a special case of function estimation
and equivalent to find the underlying functional relationship between previous values and

the next value. Thus, SVMs can be used in time series prediction in the form of 3.25 :

Ge+1 = F(Uks Y1, - - Yk—p) (3.25)

The number p is referred to as embedding dimension or memory order in time series.

Note that the value of p determines the dimension of inputs of the SVM model.

3.5.2 NARX model

One of the deficiencies of time series prediction is that it is unable to accommodate other
meaningful input variables in system identification or dynamic modelling. An important
and useful class of discrete-time nonlinear model is NARX model (Nonlinear AutoRegressive

model with Exogenous Inputs) as in Equation 3.26.

k41 = f(yk, Yk—1y- -y Yk—p) Uk, Uk—1, - - -, Uk—q) (3-26)

where uy, and y, represent input and output of the model at time k, ¢ and p are the input

memory order and output memory order respectively, and the function f is a nonlinear

Table 3.2: Comparison between SVM and Neural Network

SVMs NNs
Generalization statistical learning theory | Regularization
Risk  minimiza- | SRM ERM
tion principle
Nonlinearity Kernel function Nonlinear transfer functions
Challenge Choice of kernel functions | Structure of network
Parameter fewer free parameters more free parameters
Solution - unique and global optimum [ subject to local optimum
Sparseness Sparse solution Not sparse
Dimensionality Infinite dimension Curse of dimensionality
Training time Faster Slower
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function.

NARX model combines the power of function approximation and time serics prediction.
The embedded memory of the input and output variables plays an important role in learning
capability and generalization performance by incorporating the historical information. The
selection of input-memory and output-memory is critical for the forecasting performance.
“The problem of choosing the proper memory architecture corresponds to giving a good
representation of input data. A good representation can make useful information explicit

and easy to extract.” [28, 29]

3.5.3 NOE model

Even though the NARX model intends to model the dynamic of the system, it is inherently
feedforward model since this model uses the true output values as the model input. In real
prediction problem, it is usually not possible to know the true output values. For example, in
the prediction of NO concentration in the nitrogen removal processes, NO is a state variable
for which the actual concentration is difficult to measure. So a prediction model that can
utilize the predicted value as the model input is nceded. Nonlincar Output Error (NOE)

model is such a recuurent model 3.27:

gk+l = f(?]ka gk—l: (R gk—ln Uy Uk—1,y--- ’uk-(l) (3‘27)

3.6 Proposed solution

As we found LS-SVM has some advantages in terms of simplicity and potential use for on-
line learning, we propose to use LS-SVM as the learning machine for our target problem —
predicting the NO concentration in biological nitrogen removal processes.

LS-SVM is a learning method that can solve function approximation as previously ex-
plained. In order to predict the short-term NO concentration in a short term, we need to
collect the training and testing data set and apply them into appropriate prediction model.

NARX and NOE models are good choices. To make it simple at this stage, we usc batch
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learning as the training data are all at hand. The online learning could be studied in the
future work. NARX model is proposed to be used to transform the training data into an
appropriate prediction form. However, during the testing, we proposed to use NOE model
that made use of the predicted output values instead of the true output values because the
true output values are not available in the real prediction process.

The next chapter presents the simulations that were developed for utilizing LS-SVM,
NARX and NOE for the modelling of the dynamics of the NO concentration.

In order to compare the performance of our proposed methods with NN-based methods,
gencralized regression neural network (GRNN), was also applied to the same modeling and
prediction. BPNN lacks extrapolation accuracy while RBFNN is considered more suitable
for time serics prediction. GRNN is a special kind of RBFNN. Our target problem is a
prediction problem, so we choose GRNN to compare with LS-SVM.
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Chapter 4

Simulations and Applications to
Nitrogen Removal

The objective of our study is to predict the behavior of the nitrogen removal of a wastewater
treatment plant with two control loops using the novel machine learning approach — LS-
SVM. NARX and NOE models are utilized for describing the relationship between inputs
and outputs for training and testing, respectively. In order to investigate the advantages
of LS-SVM, the comparison was done with GRNN, a special Neural Network approach.
The further study on adaptive control of the nitrogen removal processes can be carried on

provided that accurate prediction be obtained using LS-SVM model.

4.1 Data generation

As has been shown, the essential constitute of machine learning approach is data. In order
to predict the level of nitrogen removal using the machine learning method, we nced the
data (which reflect the behaviour of nitrogen removal processes under different conditions)
to train and test the learning model. Collecting such data from a real plant is not an
easy task because it takes time and requires the mobilization of a great deal of resources.
Furthermore, it is impossible to obtain the data reflecting quite different influent loads during
a short period of time.

An alternative to using the real measured data is to use simulated data. There are
simulation software packages, such as GPS-X [10], that mostly implement the mechanistic

models to simulate the operations of wastewater treatment systems. We propose to use
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the simulated input and output data from GPS-X for the training and testing of LS-SVM
prediction. GPS-X is a modular, multi-purpose computer program for the modeling and
simulation of municipal and industrial wastewater treatment plants [10].

The central task of GPS-X is simulation. Simulations can be either steady-state or
dynamic. Steady-state simulation is assuming that the system variables do not vary with
time. Dynamic simulations require a solution for the set of defining differential equations
which are solved numerically. GPS-X provides an casy-to-use, integrated environment for
developing interactive simulations of dynamic, large-scale treatment plant models.

In GPS-X, we sclected to use a built-in sample system, COST (European Cooperation
in the field of Scientific and Technical Research) simulation benchmark, to generate the
input and output data set. COST simulation benchmark is a comprehensive description of
simulation and evaluation procedures including plant layout, simulation models and model
parameters, a detailed description of disturbance to be applied during testing. A complete
description of the benchmark background and how to use the simulation benchmark layout
can be found in [6]. The simulation benchmark plant design comprises five reactors in series
with a 10-layer sccondary settling tank. The first two reactors are anoxic tanks. The following
three are acrobic tanks. An internal recycle from the fifth to the first tank is designed in

order to bring the nitrogen rich water back to realize nitrification and denitrification.

> | |
L8 > 9 o > % o
00 00 00 00

A

Figure 4.1: Schematic representation of ‘COST simulation benchmark’ configuration showing
tanks 1 & 2 mixed and unaerated, and tanks 3,4 & 5 aerated. [6]

In this process, wastewater enters the biological reactor. Here, firstly, bacterial particles
are brought in contact with the organic material in the wastewater. The bacteria utilize

the organics in wastewater as food. In the second stage of the reactor, bacteria known
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as nitrifying bacteria predominate. These bacteria utilize ammonia as food, and convert
ammonia into nitrate. After the wastewater is discharged from the acration tank, a clarifier
separates the suspended solids from the treated wastewater. Treated water is discharged
into surface waters while concentrated sludge suspension is continuously withdrawn at the
bottom of the secondary settler. Most of the concentrated sludge suspension is recycled
and mixed again with wastewater entering the treatment plant. The excess sludge produced
due to bacterial growth during degradation processes is normally discarded as a fraction of
the concentrated sludge flow withdrawn at the bottom of the sccondary scttler and treated
separately in the sludge treatment facilitics of the activated sludge plant. The internal recycle
from the 5th to the 1st tank is referred as nitrate internal recycle. The aim of introducing
this recycle is to bring the nitrate rich water back to the first two anoxic tank and achiceve
denitrification there.

Two internationally accepted process models were chosen to carry out the simulations.
The IAWQ’s Activated Sludge Model#1 (ASM1) was chosen as the biological process model
[17] in the reactor. The double-exponential scttling velocity function of Takdcs et al.[46] was
chosen as a fair representation of the settling process.

The activated sludge process aims to achicve, at minimum costs, a sufficiently low con-
centration of biodegradable matter in the effluent together with minimal sludge production.
To do this, the process has to be controlled. The basic control strategy has two control loops,
or two controllers [6]. The first loop involves controlling the dissolved oxygen (DO) level in
the final tank to a setpoint of 2.0gm™ by manipulation of the oxygen transfer cocfficient
(Figure 4.2). The DO sensor used in this first loop is assumed to be ideal with no delay or
noise.

The second control loop involves controlling the nitrate level in the sccond anoxic tank
to a setpoint of 1.0gm™3 by manipulaing the internal recycle flow rate (Figure 4.3). In this
loop, the nitrate sensor is assumed to have a time delay of 10 minutes, with white, normally
distributed (standard deviation of 0.1 gm-3), zero-mean noisc. The internal recycle flow rate
is constrained to a maximum of 92230 m3d~! or 1.66 times the default rate.

The built-in COST benchmark simulator in GPS-X is pre-configured and finely tuned

to achieve minimum integral of the square error (ISE) [6]. The plant layout in GPS-X is
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Figure 4.2: Control loop 1: DO controller [6]
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Figure 4.3: Control loop 2: Nitrate controller [6]

shown in Figure 4.4. This figure consists of four icons and their connections, which are
drag-and-drop objects in GPS-X process design toolboxes. The REACTORS in this figure
is only a general graphical representation of the Plug-Flow tank. The physical structure and

configuration can be specified in the dialog windows associated with this Plug-Flow tank
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Figure 4.4: COST benchmark plant layout in GPS-X

In order to collect the training and testing data examples for the learning machine, we
need to make a decision about the most appropriate input and output variables with respect
to the problem under study. The variable to be predicted is known as NO concentration
in the effluent of the reactor. Using domain knowledge about the wastewater trcatment
process, it was found that the influent flow rate, the concentration of TSS, COD, TKN and
TN in the influent of the plant have significant cffects on the NO concentration within the
above system, so they are sclected as the clements of the input vector. Because the plant
is operated in closed loop with dissolved oxygen (DO) controller and nitrate controller, the
variables under control are also included in the input vector. These variables are the oxygen
transfer coefficient (KLa) in the final tank and the controlled nitrate value in the second
anoxic tank. Thus, the input is a vector with 7 dimensions. The output is a scalar valuc
of the concentration of NO in the cffluent of the reactor (indicated by the symbol “mlss” in
figure 4.4). The input and output variables as well as their description are listed in Table
4.1.

There are three influent files that have been defined in the ‘simulation benchmark’ descrip-

tion [6, 50]. The influent files include the data of influent flow rate and influent composition.
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Table 4.1: Description of the input and output variables selected for the model

Variable Description Symbol Units
Q Influent flow rate gconraw m3/d
TSS Total Suspended Solids Xraw g/m3
COD Chemical Oxygen Demand codraw gCOD/m?
TKN | Total Kjeldahl Nitrogen (organic N + NH} ) tknraw gN/m?
TN Total Nitrogen tnraw gN/m3
KLa Oxygen Transfer Cocefficient klalmlss(5) 1/d
Nitrate Nitrate in the second anoxic tank conno3anox2 g/m3
NO Nitrate and Nitrite snomlss gN/m?

The data are given in the following order:
Time, Ss, Xp,u, Xs, X1, Snu, S1, Snp, Xnp, Q

with influent Sp, Xp 4, Xp and Sy assumed to be zero. Time is given in days, the influent
flow rate, @, is given in m3/day and the concentrations are given in g/m®. The meaning of

these symbols are described in Table 4.2.

Table 4.2: Description of the variables included in the influent file

Variable Description Units
Time Elapsed time from the starting point days
Ss Readily biodegradable substrate gCOD/m3
XB.u Active heterotrophic biomass gCOD/m?
Xg Slowly biodegradable substrate gCOD/m?
X/ Particulate inert organic matter gCOD/m?
Snu NH} + NHj nitrogen gN/m3
Sy Soluble inert organic matter gCOD/m3
SnD Soluble biodegradable organic nitrogen gN/m3
Xn~ND Particulate biodegradable organic nitrogen gN/m3
Q Influent flow rate m3/d
So Dissolved oxygen g0? /m?
XB.a Active autotrophic biomass 9COD/m
Xp Particulate products arising from biomass decay | gCOD/m?
Sno Nitrate and Nitrite gN/m3

The files are representative of three disturbances: dry weather, a rain event and a storm
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event. Each of the influent files contains 4 wecks (28 days) of influent data at 15-minute
intervals. We select to use the last 2 wecks (14 days) of influent data to generate the
required input and output data. In gencral, these data depict expected diurnal variations
in influent flow and COD. As well, expected trends in weekly data have been incorporated.
That is, much lower peak flows are depicted in the ‘weckend’ data, which is consistent with
normal load behaviour at a municipal treatment facility [6]. The influent flow rates under
three weather conditions during the last 2 wecks (14 days) arc illustrated in Figure 4.5. In
Figure 4.5(a), the dry weather lasts along two weeks and the influent flow rate depicts what is
considered to be normal diurnal variations in flow. In Figure 4.5(b) and 4.5(c), the first week
contain the same data as the dry weather data. But there is variation in the sccond week.
Figure 4.5(b) represents a long rain event occurring in the second week. The influent flow
during this rain event does not reach very high level, but the increased flow is sustained for
a long period of time. Figure 4.5(c) is a variation on the dry weather with the incorporation
of two storm events in the second week. The first storm cvent is of high intensity and short
duration. The peak flow for both storms is the same, while the peak flow of the second storm
is maintained over a longer period of time.

Now the question is: how can we obtain the data of the input and output variables that
are of interest to us, such as TSS, COD, TKN, TN, KLa, Nitratc and NO? The answer comes
from the simulation procedures in GPS-X. The system of mechanistically-based differential
equations, which GPS-X automatically gencrates in the model building process, provides a
description of the relationships among model variables. Some of these variables, referred
to as state variables, are important because they define the state of the system. The state
variables determine how the system bchavior evolves over time. Sccondary, or composite,
variables are calculated from state variables and other constants, thus, always depend on
how the state variables change. For example, as shown in Figure 4.6, Total Kjeldahl Nitrogen
(TKN) is a composite variable calculated as the sum of several organic state variables.

State variables are the basis on which models are organized in the GPS-X libraries [10].
But composite variables are often the kind of variable typically measured in a plant.

In our problem, NO is a state variable and can be obtained as:
NO = Sno

47



Influnet Flow Rate (m3/d)
W & o -

»N

L' j\ LMW"U P‘W %\W\;

-

C

10 12 14

o
NF
rS

Fene (cayn

(a)
i\ . |
g., ga
b

| 5 !
A Y T
% 2 a éima(da yf) 0 2 % 2 s ém(da yf) 0 2z
(b) (c)

Figure 4.5: Influent flow rate under different weather conditions (a) dry (b) rain (c) storm.

The concentrations of TSS, COD, TKN and TN in the influent are composite variables

in GPS-X. These composite variable calculations are defined as [6]:

TSS =0.75(Xs + Xpn + Xpa + Xp + X))
COD = Ss + S; + Xs+ Xpu + Xpa + Xp + X,
TKN = Snu + Snvp + Xnp +ixp(Xsn + Xpa) + ixp(Xp + Xi)
TN =TKN + NO

The data about the state variables Ss, Xp y, X5, X], SNH)SI’SND)XNDy‘SO)XB,A)XP

and Syo have been given in the influent files, as mentioned before. By running COST
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Figure 4.6: Nitrogen State (Boxed Variables) and Composite (Bold Text) Variables [10].

benchmark simulation in GPS-X using the influent files as input files, the composite variables
TSS, COD, TKN, TN and NO can be calculated automatically. Since GPS-X has fully
implemented COST simulation benchmark into three scenarios (dry weather, a rain event
and a storm event), what we nced to do is simply run the simulator under these scenarios.
While the simulation is running, the data about the influent flow rate, TSS, COD, TKN
and TN in the influent, KLa, Nitrogen control variables and the NO at the cffluent of the
reactor were saved to separate files in order to be used later as input and output for LS-SVM
model. A snapshot of the interface of simulation is shown in Figure 4.7. The windows in the
left display the variations of the influent flow and its composition, as well as the controller
status. The windows on the right-top corner show the response of the specified variables in
the effluent. The windows on the right-bottom corner plot the dynamic variations of the
variables of interest, such as influent flow rate, TSS, COD, TKN, and NO.

The recorded concentrations of NO in the cffluent under three weather conditions are
depicted in Figure 4.8, which indicates that the concentrations of NO also have diurnal

pattern and weekly trend. Note that the concentration of NO under rain or storm event is
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Figure 4.7: COST benchmark Simulation Interface in GPS-X

reduced because the wastewater is diluted by the excess water flow due to the rain or storm.

4.2 Simulation procedures

As discussed in section 3.2.3, in terms of simplicity, memory requirement and potential for
implementing in on-line learning, LS-SVM has more advantages than standard SVM. Thus,
we proposed to use LS-SVM combined with the NARX model to predict the target variable.
Now that we have obtained the simulated input and output data from GPS-X, we can use
these data as the training and testing data for LS-SVM prediction. The NARX model
was employed to transform the input and output into a more suitable state space in order to
accommodate the historical data and extract the information effectively. LS-SVM MATLAB
Toolbox was then used to train the LS-SVM learning machine and test the prediction [45].
The simulation approach includes five steps and the procedure is illustrated in Figure 4.9.
We have two objectives by doing extensive simulations following the first four steps
in Figure 4.9. The first objective is to compare the prediction of the NO concentration
under different weather conditions using LS-SVM. The second objective is to investigate

how methods in neural network flavor can predict the NO concentration under the same
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Figure 4.8: NO concentration in ML under different weather conditions (a) dry (b) rain (c) storm.

settings as LS-SVM. We chose GRNN as the counterpart in ncural network to LS-SVM,

because GRNN is often used for function approximation.

In order to do the simulations associated with these objectives, we need to determine the

following settings for both LS-SVM and GRNN:
o Training data size
e Memory order of input and output
For training LS-SVM, the following parameters should be determined:

e Regularization parameter (i.c., v in Equation (3.20))
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Figure 4.9: Simulation approach of prediction using LS-SVM

e Kernel function and kernel parameter
For training GRNN, one parameter needs to be determined:
e Sprecad parameter

The details of each step will be explained in the following subsections. To compare the
performance of LS-SVM and GRNN, the discussion will emphasize on the differences between

the simulation procedures and the results.

4.2.1 Pre-processing

Pre-processing aims to find the appropriate input and output presentation, determine the

appropriate size of training and testing data, scaling or normalizing data. In our simulations,
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transforming the input and output data and determining the training and testing data size

are identical for both LS-SVM and NN.

Selection of the training data size

Selecting the training data size is not a simple issuc and there isn’t any method that proves
to be effective. The general opinion is more training data leads to more accurate result. The
size of the whole data set we have collected is 2 x 24 x 7 x 4 = 1344, since 2 weeks data were
collected at a 15-minute interval. It is not a large data sct. As our goal is to predict the
future NO concentration and cxamine the generalization capacity of LS-SVM and GRNN,
we decided to use the first week’s data under dry weather as the training data and the second
week’s data as the testing data. That means we will use LS-SVM and GRNN trained by onc
week’s data under dry weather to predict the NO concentration in the cffluent data under
dry weather, rain event and storm cvent. This seems beyond the ability of the cmpirical

models that are thought their uses are limited to the data ranges over which they are fitted.

NARX transformation

In section 4.1, we explained how the input and output variables are sclected. It is from
the domain knowledge that we choose 7 variables as input and 1 variable as output. The
input variables are Influent Flow Rate, TSS, COD, T KN, TN, KLa and Nitratc control
variable. These variables form an input vector, while the output NO is a scalar variable.
Our objective is to predict the NO concentration based on the previous input and output
data. Because the prediction is highly correlated to the historical data, we proposed to use
NARX model to transform the input and output variables into a more appropriate space to
involve the previous values. The NARX transformation requires the selection of input and
output memory orders. Since there isn’t any gencral method that can effectively be used
to select the memory order, we decided to use a trial and error approach to determine the
memory order of the input and output variables for the NARX transformation.

After the proper memory order is determined, the NARKX transformation can be imple-

mented by manipulating matrices in MATLAB using a function called windowizeNARX.

The function syntax is:
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[Xw,Yw,xdim,ydim,n]=windowizeNARX(X,Y,xdelays,ydelays,steps) ;

Outputs
Xw Matrix of the data used for input including the delays
Yw Matrix of the data used for output including the next

steps
xdim(*) Number of dimensions in new input

ydim(*) Number of dimensions in new output

n(*) Number of new data points

Inputs
X N x m vector with input data points
Y N x d vector with output data points

xdelays Number of lags of X in new input
ydelays Number of lags of Y in new output
steps(*) Number of future steps of Y in new output

(by default 1)

where the variables with (*) are options that are not necessary to be specified. N is the
number of the original training data. m is the dimension of the original input data and d is
the dimension of the original output data.

For example, given 5 values of the input vectors [Q T'SS COD TKN TN Kla Nitrate ]

and the corresponding 5 values of the output variable NO, we get

m=7 7 )
LQI TSS1 COD1 TKN1 TN1 Klal Nitratel
Q2 TSS2 COD2 TKN2 TN2 Kla2 Nitrate2
X=|Q3 TSS3 COD3 TKN3 TN3 Kla3 Nitrate3| YN =5
Q4 TSS4 COD4 TKN4 TN4 Klad Nitrated

Q5 TSS5 COD5 TKN5 TN5 Kla5 Nitrateb

! Iy




If we transform X and Y with input memory order 1 and output memory order 1, the

function windowizeNARX can be called using the following syntax:
[Xw Yw, xdim, ydim, n]=windowizeNARX(X, Y, 1, 1)

The transformation result is:
m=7 m=7 d=1
Q1TSS1 ... Nitratel Q2TSS2 ... Nitrate2 NOI;
Xw= | Q2TSS2 ... Nitrate2 Q3TSS3 ... Nitrate3 NO2; n=4
Q3TSS3 ... Nitrate3 Q4TSS4 ... Nitrated NOS,;
Q4TSS4 ... Nitrated Q5TSS5 ... Nitrates NO4,;

NO2
Yw = %gi n=4
NO5

xdim= 7 + 7 + 1 = 15, ydim= 1, n=4.

The resulting matrices Xw and Yw will be used as the new input and output vectors
appropriate for the training of LS-SVM and GRNN. This transformation should be applied
to both training and testing data.

NOE prediction

The training input and output data arc resulted from the NARX transformation. For the
testing data, NARX and NOE models should be used in combination by employing function
windowizeNARX as well. Firstly, the testing data should be transformed by NARX model
as in the previous section. Secondly, when test the prediction, the predicted output value
should be iteratively integrated into the NARX transformed input vector to predict the next
output value using NOE model. For example, in the testing data sct, given 5 values of the
input vectors [Q TSS COD TKN TN Kla Nitrate ] and the corresponding 5 values of the

output variable NO, we get

[ m=17 1)
“06 TSS6 COD6 TKN6 TN6 Kla6 Nitrate6
Q7 TSST COD7 TKN7 TN7 Kla7 Nitrate?
X=| Q8 TSS§ COD8 TKN8 TN8 Kla8 Nitrate8 N=5
Q9 TSS9 COD9 TKN9 TN9 Kla9 Nitrated

Q10 TSS10 COD10 TKN10 TN10 Klal0 Nitratel0

L 3
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| NO10 | |
We transform X and Y with the same input memory order 1 and output memory order

1 as the transformation for the training data using NARX transformation, the function

windowizeN ARX can be called using the following syntax:
[Xt Yt, xdim, ydim, n]l=windowizeNARX(X, Y, 1, 1)

The transformation result is:
m=T7 m=T7 d=1
- % - — ~ ——
Q6TSS6 ... Nitrate6  Q7TSS7 ... Nitrate7  NOG;
Xt = | Q7TSS7 ... NitrateT @Q8TSS8 ... Nitrate8 NOT,; n=4¢4
Q8TSS8 ... Nitrate8 Q9TSS9 ... Nitrate9  NOS;
QITSS9 ... Nitrate9 Q10TSS10 ... Nitratel0 NOY;

NOT7
NOS8
Yt = NO9 n=4

NO10
If we use the first transformed input vector

[Q6 TSS6 ... Nitrate6 Q7 TSST ... Nitrate7T NO6)

as the starting values to predict the next value of output NO7, then NO7 should replace

NOT in the transformed input vector

[Q7 TSST ... NitrateT Q8 TSS8 ... Nitrate8 NO7|
and the resulted new testing input vector

[Q7 TSST ... Nitrate? Q8 TSS8 ... Nitrate8 NO7)

is used to predict the next value of output N 08, and so on.

Finnaly, the predicted output vector
NO7
- NOS8
Yt = N:OQ
NO10
can be compared to the desired output vector Yt and the error can be calculated.

n=4
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Data scaling

Before training, it is often useful to scale the inputs and targets so that they always fall
within a specified range. In LS-SVM MATLAB toolbox, certain preprocessing steps such as
scaling or normalizing data can be done automatically by specifying the ‘preprocess’ option
in the commands used for training.

In implementing GRNN in MATLAB, scaling network inputs and targets should be done
by using appropriate functions. In our simulations, in order to normalize the training sct,

function prestd is used in the syntax:
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);

The original network inputs and targets are given in the matrices p and t. The normalized
inputs and targets, pn and tn that arc rcturned will have zero mean and unity standard
deviation. The vectors meanp and stdp contains the mean and standard deviations of the
original inputs, and the vectors meant and stdt contains the mean and standard deviation
of the original data. After the network has been trained, these vectors should be used to
transform any future inputs that are applied to the network.

If prestd is used to scale both the inputs and targets, then the output of the network is
trained to produce outputs with zero mean and unity standard deviation. To convert these
outputs back into the same units that were used for the original targets, the routine poststd

should be used:

anew = poststd(anewn,meant,stdt);

Dimension Reduction
In some situations, the dimension of the input vector is large, but the components of the vee-
tors are highly correlated (redundant). It is useful in this situation to reduce the dimension

of the input vectors.
In LS-SVM, Automatic Relevant Dimension (ARD) technique can be used to reduce the

dimension of the input vectors. However, this step is not used in the LS-SVM simulations due
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to some difficulties to run the relative functions in LS-SVMIlab toolbox. We will investigate
this problem in the future work.

In GRNN, an effective procedure for performing this operation of dimension reduction
is principal component analysis (PCA). This technique has three effects: it orghogonalizes
the components of the input vectors (so that they are uncorrelated with each other); it
orders the resulting orthogonal components (principal components) so that those with the
largest variation come first; and it eliminates those components that contribute the least to
the variation in the data sct. The following statement illustrates the use of prepca, which

performs the principal component analysis:
[ptrans,transMat] = prepca(pn,0.02);

Note that pn is the normalized input vectors using prestd, so that they have zero mean
and unity variance. Normalization is a standard procedure when using principal components.
In this example, 0.02 means that prepca eliminates those principal components that con-
tribute less than 2% to the total variation in the data set. In our simulations, the dimension
of the input vector for training is 15 as shown in NARX transformation in 4.2.1. Performing
PCA on the input vector with respect to the parameter 0.02 resulted in an input vector with
dimension reduced from 15 to 4. The matrix transMat contains the principal component
transformation matrix. After the network has been trained, this matrix should be used to
transform any future inputs that are applied to the network.

meanp, stdp, meant, stdt, and transMat effectively become a part of the network, just
like the network weights and biases. The normalized input vectors pn multiplied by the
transformation matrix transMat become the transformed input vectors ptrans to be used

to train the network.

4.2.2 Model selection

LS-SVM model selection

Since we decided to use LS-SVM model, the model selection involves choosing kernel function

and turning the kernel parameter and regularization parameter.
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Among the commonly used kernel functions listed in equations 3.12-3.15, RBF kernel is
a better choice. The linear kernel is too simple to use and can’t approximate the nonlincar
case. Furthermore, the linear kernel is a special case of RBF [26]. The sigmoid kernel
behaves like RBF for certain parameters [30], but sigmoid kernel does not satisfy the Mercer
condition under some parameters [48]. The polynomial kernel has more hyperparameters
than the RBF kernel. In addition, the RBF kernel has less numerical difficultics [19].

According to Baesens [1], RBF kernel has the best classification performance compared
to linear and polynomial kernels. In our function approximation problem, we also sclected
Radio Basis Function (RBF) kernel because RBF kernel behaves well when there is little
information about the training data sect.

In this case, the parameters to be tuned are regularization parameter -y in LS-SVM formu-
laion (3.20) and kernel parameter o2 in RBF kernel (3.14). In LS-SVM MATLAB toolbox,
given the training data, the hyperparameters (v, 62) can be determined on a validation set

using the following code:

[gam,sig2] = tunelssvm(Xi,Yu, ‘function’,10,50, ‘RBF kernel’, {1,

‘gridsearch’,, ‘validate’,Xtra,Ytra, Xval, Yval);

In the function tunelssvm, Xi, Yu arc the transformed input and output vector used
for training. ‘function’ means it is a function approximation problem. 10 and 50 arc
the initial values selected for the regularization parameter v and RBI kernel parameter
o?. ‘gridsearch’ means the method to search for the jointly optimal parameters gam and
sig2. ‘validate’ means using validation to cvaluate the two paramecters gam and sig2.
The tuning process is to select the optimal values of (7, 0?) within a specified range. The
training data are divided into two distinct set: {Xtra, Ytra} for training and {Xval, Yval}
for validation. The parameter (7, o) selected using a certain of search method is applied to
the training data set ({Xtra, Ytra}), then the prediction error on the validation set ({Xval,
Yval}) is calculated. By comparing the prediction errors resulted from each parameter sct

(7, 0?), the parameter set leading to the minimum prediction error is regarded as the optimal.

59



Neural Network model selection

In using gencralized regression neural network (GRNN), there is only one parameter spread,
which determines the width of an area in theinput space to which each neuron responds. In

our simulations of prediction using GRNN, spread is set to default value 1.

4.2.3 Training and Prediction

In the preprocessing step, the original data were transformed to a new set of input and
output pairs using NARX model. These new input and output data pairs can be fed to the
training function to return a model that can map the relationships between the transformed
input and output.

Our target prediction problem can be modeled as a NOE prediction problem. NOE
prediction can be considered as a regression. For regression, the output is the system response
to the input. For prediction, the output is the future value of the target variable, which
corresponds to the previous values of the input and output variables. Thus, within the

implementation of NOE prediction, the regression algorithm is actually used.

LS-SVM Training and Prediction

Using the NARX transformed data in preprocessing step and the results of model selection
step, the training of LS-SVM for function approximation (regression) can be realized using

the following code:

model = trainlssvm(X,Y, ‘function estimation’, gam,sig2,

‘RBF kernel’, ‘preprocess’) ;

X and Y are matrices holding the training input and training output. In our case, they
are NARX transformed input and output. ‘function estimation’ indicates this is a function
approximation model. ‘RBF kernel’ specifies the kernel type. gam is the regularization para-
meter. The effect of adjusting gam to lower value emphasizes on minimizing of the complexity
of the model, while higher gam value stresses good fitting of the training data points. sig2 is

the parameter of the RBF kernel. A large sig2 indicates a stronger smoothing. ‘preprocess’
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means the preprocessing of the training data is performed automatically. model is the object
oriented representation of the LS-SVM model.

After the LS-SVM model is trained, iterative prediction can be done using NOE pre-
diction model. Every predicted output value will be returned to be used together with
the transformed input for predicting the next output value. Since the prediction function in
LS-SVM MATLAB Toolbox can only perform time series prediction one step ahead, we mod-
ified it into an iterative prediction function called LSSVM_predict_NARX and it is described

as follows:

Yp = SVM_predict_NARX(model, Xt, Xf, nb);

Outputs
Yp nb X 1 matrix with the predictions

Inputs
model Object oriented representation of the LS-SVM model
Xt matrix of the starting points for the prediction
Xf matrix of the transformed inputs for the prediction
nb Number of outputs to predict

The predicted output Yp is evaluated on the input points contained in X£ by default using

a function simlssvm. The syntax of simlssvm is:
Yt = simlssvm (model, Xt)

The matrix Xt represents the points for which one wants to make a prediction. model is
the object oriented representation of the LS-SVM model returned from training. simlssvm
is iteratively called within SVM_predict_NARX to cvaluate the input points that integrate the

previously predicted output value as we described in section 4.2.1.

GRNN Training and Prediction

The normalized and transformed input and output data, denoted by ptrans and tn, are

used to train a generalized regression RBF network (GRNN ) using function newgrnn:
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net = newgrnn(ptrans,tn);

net represents the trained GRNN and is used to predict the future value of the target output
(NO concentration). The iterative prediction function called NN_GRNN_predict NARX with
the same flavour as SVM_predict_NARX is implemented. Besides, the normalization vectors
Meanp, stdp, meant,stdt, and the principal component transformation matrix transMat
resulted from the preprocessing step are transferred as arguments to make corresponding
manipulations on the testing input and convert the output back to the original unit. The

syntax of NN_GRNN_predict_NARX is:

prediction = NN_GRNN_predict_NARX(net,Xt,Xf,nb,

meanp,stdp,meant,stdt,transMat) ;

The returned prediction is a vector containing the specific number (nb) of predicted
output values. Each predicted value is evaluated on the input points contained in Xf by

default using a function sim. The syntax of sim is:
anewn = sim(net, pnewntrans)

where anewn is the output value evaluated at input value pnewntrans and needs to be

converted back to the original unit by:

anew = poststd(anewn ,meant,stdt)

4.2.4 Results visualization

The performance of the prediction is estimated by Mean Square Error (MSE), for LS-SVM
and GRNN respectively. The result visualization aims at analyzing the simulation results
associated with different objectives and illustrate the outcomes of the analysis using tables
or plots in order to make the simulation results easier to understand and fulfill the research

objectives. The visualized results of the simulations are illustrated in the following sections.
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4.3 Simulation results

4.3.1 LS-SVM prediction

Memory order selection

The emphasis of this simulation is on exploring the effects of input and output memory order
of NARX model on the performance of LS-SVM prediction under different weather condi-
tions. 672 training data examples over the first week (representing dry weather) were used
to train the LS-SVM with RBF kernel and predict the next 672 values of NO concentration
over the second week for three different weather conditions (representing dry weather, rain
event and storm event respectively). Mean Squarc Error (MSE) was used to measure the
prediction accuracy. MSE is calculated as in Equation 4.1:

L 2
¢

MSE = —=]\;~ (4.1)

where L is the number of testing data points, e; is the difference between the predicted value
and the desired value.

In Table 4.3, the prediction errors with different combinations of input and output mem-
ory orders are listed for three weather conditions. These results indicate that LS-SVM using
input memory order 3 and output memory order 1 has the best performance for predicting
NO concentration under the dry weather. Under rain or storm cvent, the optimal input and

output memory order are both 1.

LS-SVM prediction results

Figure 4.10 shows the comparison of predicted and actual NO concentrations using the
optimal input and output memory order selected in the previous subsection under three

weather conditions. The solid line represents the actual concentration and the dashed line

the predicted value.
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Table 4.3: LSSVM prediction error of NO concentration (gNm~3) under different weather condi-
tions (a) dry (b) rain (c) storm.

Input memory order— 0 1 2 3
Output memory order|
0 0.5204 | 0.3624 | 0.3104 | 0.2827
1 0.2793 | 0.1550 | 0.1208 | 0.1049
2 0.3338 | 0.1924 | 0.1423 | 0.1112
3 0.2473 1 0.1693 | 0.1389 | 0.1166

(a)

Input memory order— 0 1 2 3
Output memory order|
0 8.0022 | 7.2378 | 6.5409 | 6.1016
1 4.6539 | 1.7146 | 2.5735 | 3.3245
2 6.0985 | 2.2491 | 2.0145 | 2.3592
3 6.0974 | 2.7482 | 2.4547 | 2.4989
(b)
Input memory order— 0 1 2 3
Output memory order]
0 5.0235 | 4.3416 | 4.0412 | 3.9068
1 2.6405 | 2.0437 | 2.6062 | 3.1143
2 3.532 | 2.5308 | 2.6585 | 3.0345
3 3.7025 | 2.8422 | 2.9338 | 3.1949

4.3.2 GRNN prediction

Memory order selection

The objective of this simulation is to find the optimal input and output memory order
of NARX model for GRNN prediction under different weather conditions. The simulation
settings and procedures are exactly the same as those of LS-SVM prediction. 672 training
data examples over the first week (representing dry weather) was used to train the GRNN

and predict the next 672 values of NO concentration over the second week for three different
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Figure 4.10: The comparison of predicted and desired NO concentration in ML under different
weather conditions using LS-SVM (a) dry (input memory order:3, output memory order:1) (b) rain
(input memory order:1, output memory order:1) (c) storm (input memory order:1, output memory

order:1).

weather conditions (dry weather, rain event and storm event). Mean Square Error (MSE) was
used to measure the prediction accuracy. In Table 4.4, the prediction crrors with different

combinations of input and output memory orders are listed for three weather conditions.
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These results indicate two aspects that are different from LS-SVM. First, GRNN obtains
comparable prediction accuracy under dry whether but can’t predict NO concentrations
under the rain and storm events very well. Second, increasing the input and output memory
order doesn’t seem to significantly improve the prediction performance under any of the
three weather conditions, even though a little bit smaller prediction errors occur at larger

input and output memory orders.

Table 4.4: GRNN prediction error of NO concentration (gNm~3) under different weather condition
(a) dry (b) rain (c) storm.

Input memory order— 0 1 2 3
Output memory order|
0 0.4697 | 0.3727 | 0.3384 | 0.3067
1 0.4268 | 0.3453 | 0.3139 | 0.2866
2 0.4135 | 0.3303 | 0.2981 | 0.2811
3 0.3957 | 0.3132 | 0.2811 | 0.2662
(a)
Input memory order— 0 1 2 3
Output memory order]
0 17.1464 | 16.1249 | 17.0145 | 17.1079
1 15.9773 | 14.7584 | 14.2671 | 13.8830
2 15.8655 | 14.9118 | 14.3167 | 13.8022
3 15.6117 | 14.9126 | 14.4225 | 13.8353
(b)
Input memory order— 0 1 2 3
Output memory order]
0 7.5397 | 7.1705 | 7.6782 | 6.5200
1 7.2219 | 6.7170 | 6.4900 | 6.3764
2 7.1232 1 6.5102 | 6.2255 | 6.1887
3 6.8724 | 6.4441 | 6.1766 | 6.1610
(c)
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GRNN prediction results

Figure 4.11 shows the comparison of predicted and actual NO concentrations using the same

input and output memory order as those used with LS-SVM under three weather conditions.

The solid line represents the actual concentration and the dashed line the predicted value.
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Figure 4.11: The comparison of predicted and desired NO concentration in ML under different
weather conditions using GRNN (a) dry (b) rain (c) storm .
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4.3.3 Comparison of the prediction results between LS-SVM and
GRNN

In order to summarize the prediction performance of LS-SVM and GRNN and make their
difference clear, we put together the simulation results with the optimal memory order in
Table 4.5. As it is shown, the prediction performance of LS-SVM is better than that of
GRNN, especially under the rain and storm event, which are not covered by the training
data. These results reinforce the claim that SVMs have better generalization performance

since they are based on the generalization bound derived from statistical learning theory.

Table 4.5: The prediction error comparison between LS-SVM and GRNN with the same input
and output memory order.

Weather dry rain storm

Memory order | Input: 3, output:1 | Input:1, output:1 | Input:1, output:1
LS-SVM 0.1049 1.7146 2.0437
NN 0.3453 14.758 6.717

To have a rough idea about the speed for training and prediction of LS-SVM and GRNN,
the simulations were run on an identical server. The server is IBM XSERIES_345 with
2.8GHz CPU and 3.75GB of RAM. The CPU computation time was recorded and listed in
Table 4.6. In order to be fair, we didn’t perform dimension reduction on both LS-SVM and
GRNN. In our experiments, whether to use PCA doesn’t affect the performance of GRNN
significantly. However, we took the time needed for preprocessing in both LS-SVM and
GRNN into account for the training time. As it is indicated in Table 4.6, the training and
prediction of GRNN is a little faster than that of LS-SVM. But, considering the prediction
crrors compared in Table 4.5, we claim that the computation speed of LS-SVM is still in a

reasonable range and the performance of LS-SVM is better than GRNN.
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Table 4.6: The comparison of CPU computation time between LS-SVM and GRNN.

Learning machine | Weather | Training time | Prediction time
LS-SVM dry 1.2813 8.4844
rain 0.8281 7.6250
storm 0.8125 7.6719
NN dry 0.0781 5.6250
rain 0.0781 5.1250
storm 0.0625 5.0469
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Chapter 5

Conclusions

In this thesis, first we reviewed the fundamental ideas and mathematical formulations of
SVMs and NNs, with emphasis on LS-SVM, BPNN, RBFNN and GRNN. Then a benchmark
nitrogen removal process in a wastewater plant was described. Both LS-SVM and GRNN

were trained and tested on predicting NO concentration, with the following objectives:

e To investigate the prediction performance of LS-SVM
e To compare the generalization performance of LS-SVM and GRNN

e To test the sensitivity of memory orders of NARX model with both LS-SVM and
GRNN

We will discuss the above three aspects with respect to the simulation results and then

outline the future work.

5.1 Prediction performance of SVM

In a short term period, the LS-SVM model with RBF kernel can accurately predict the
NO concentration in the effluent of the reactor, provided that the optimal parameters are
selected. From the simulation results presented in Figure 4.10, the generalization ability of
LS-SVM in combination with NARX model is evident. We used only the data representing
dry weather condition to train LS-SVM, but we tested the prediction of NO concentrations

under dry weather, rain and storm event, respectively. As we can see from the prediction
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results, given the influent disturbances, the dynamics of the NO concentrations under dry,
rain and storm weather conditions can be predicted using the same LS-SVM model trained
by the same one-week dry weather data.

The generalization capability of LS-SVM can be attributed to the guaranteed upper
bound of the gencralization error by statistical learning theory.

To some extent, the excellent prediction performance of LS-SVM is also attributed to
the using of the NARX model to extract the information from past data. The NARX model
combined the power of regression and time series prediction. With the relatively optimal
memory orders selected by experiments, NARX model shows cffectiveness in transforming
the input and output data into appropriate space in order to obtain better prediction results

in the target problem.

5.2 Comparison of LS-SVM and GRNN

In order to compare the generalization performance of LS-SVM with that of GRNN, the
comparative simulations were done using GRNN under the same settings and procedures,
e.g., the same plant layout and specifications, same training data, same testing data and
same memory orders in the NARX model.

As we used only the dry weather data to train the LS-SVM and GRNN, we want to
see if the trained model can predict the NO concentration correctly under different weather
patterns, such as rain or storm events. It can be scen from the prediction results shown in
Figure 4.10 for LS-SVM and Figure 4.11 for GRNN, when predicting under dry weather, both
LS-SVM and GRNN display comparatively good accuracy. However, the differences between
the performance of LS-SVM and GRNN are obvious under the rain and storm cvents. We
can see from the plots of influent flow rate (Figure 4.5) and NO concentration (Figure 4.8)
under rain and storm event, as the influent flow increases, the NO concentration decreases.
LS-SVM predictions reflected such patterns that were not contained in the dry weather data.
In contrast, GRNN cannot predict such seemingly unusual pattern. This difference indicates

that LS-SVM behaves well in prediction that requires extrapolation while GRNN can only

be used to predict over the range of the training set.
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We relate this difference of prediction performance between LS-SVM and GRNN to two
points. As was cxplained, SVMs are based on the Structural risk minimization principle
that consider to minimize the training error and the complexity of the model in a balanced
way. In addition, as the statistical learning theory guarantces the generalization bound,
the SVM-based methods like LS-SVM should have good generalization ability. In NN-based
method, such as GRNN, the empirical risk minimization principle is applied and there is no
guarantee for the generalization ability, especially when the training data don’t contain all

of the patterns that may exist within the entire data set.

5.3 Memory orders of NARX model

In this thesis, the NARX model was proposed to transform the inputs and outputs into a
new state space in order to extract useful information. The embedding theory state that the
forecasting performance could be seriously deficient if a model’s memory order is either too
little or too large [28]. Therefore, choosing the appropriate memory architectures for a given
task is a critical issue in employing NARX models.

The scnsitivity of the memory orders shows evident difference between LS-SVM and
GRNN prediction.

From Table 4.3, it was shown that under dry weather the memory orders have no signif-
icant impact on the prediction performance for LS-SVM. But the memory orders do make
difference on the prediction error under rain and storm events using LS-SVM.

As scen from Table 4.4, the memory orders in the NARX model have no significant
impact on the prediction performance of GRNN under all three weather conditions.

In summary, when used for interpolation prediction (the training data and the testing
data have the same pattern, e.g.,under dry weather), both LS-SVM and GRNN can perform
well and the memory orders have little effects. When used for extrapolation (the training
data and testing data have different patterns, e.g.,under rain and storm events), the mem-
ory orders have a strong impact on the prediction performance of LS-SVM and empirically
selected optimal memory orders can help improve the generalization performance signifi-

cantly. However, the memory orders have little effect and cannot improve the generalization
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performance of GRNN in extrapolation.

These observations reinforce the power of the proposed solution by combining the LS-

SVM with NARX model.

5.4 Future work

Since the simulation results gave us a strong cvidence that LS-SVM combined with the NARX
model can obtain a good generalization performance and prediction ability in the context
of biological nitrogen removal processes, further study could emphasize on investigating and
improving the performance of LS-SVM model in the case of real-world wastewater treatment,

plants. Some potential future work directions are listed as in the following;:

1. Now that we have been successful with simulations, it is possible to investigate the

performance of SVM in the case of rcal plants, using real data.
2. Using real data, we can carry out a comparative study of SVM and mechanistic models.

3. Develop a theoretical method to compute the memory orders automatically, in order

to effectively extract the information from the past data.

4. Expand the applications of SVM to modeling the dynamics of other variables of waste-

water treatment plants, including the phosphorous and the COD.

5. Study the generalization ability of SVM in the cases when data come from several

different probability distributions.

6. Develop SVM-based control strategics for the plant using on-line learning.
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