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Abstract 

\Yhile the use of wavelet filtering on applications such as audio and video is knov.:n, in 

this research. wavelet filters are applied as a practical tool to improve positioning accuracy 

of a navigatioll-grade receiver in challenging environments. A single, stationary recel\,'er 

operating OIl the L1 frequency, and collecting data in 15-minute segments, was used to 

obtain pseudoranges which were then used to compute positions. The magnitudes of these 

pseudoranges are often overstated due to multipath. ~Iultipath mitigation was applied to 

these signals using a hvo-stage wavelet filter. The first stage operates in the pseudorange 

domain to remove bias error and the second stage operates in the position domain to minimize 

the effect of the low velocities that existed among the stationary positions. This filtering 

had a marked effect of reducing positioning scatter (variance). To measure the effect of this 

filtering, several statistical moments (before and after filtering), were compared. Throughout 

datasets studied, the unfiltered position scatters tend to be markedly non-Gaussian shov"ing 

extreme effects of skew and kurtosis in addition to high variance. The position scatters after 

filtering tend to be highly Gaussian with far lower degrees of skew and kurtosis. In this 

study, the results obtained from the data sets sho'Ned significant improvement, less than 1.5 

m with a probability of 96.5%, in standard deviation of the estimated positions. 
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Chapter 1 

Introduction 

The Global Positioning system (GPS) is a satellite based system which was initially devel

oped for military purposes to track targets by the U.S. Department of Defense (000); but 

beyond its original uses, the GPS has proved to be an asset in variety of civilian applica

tions as well. Flight, marine, land navigations, logistics, asset location, survey, construction, 

animal husbandry, and recreation are just a few to name for the GPS applications. One of 

the GPS usage is to pinpoint a location on the Earth. One's position could be reported \"ith 

an accuracy up to 300 m, as if the user was in the right place or anywhere on a circle of 

radius 300 m. Interestingly, this huge difference comes from a tiny time error as low as 1 Ii 

s. Eliminating this tiny error has been of the interest for many years. Estimating a signal 

that is corrupted by noise has been the focus of many researchers for practical as well as 

theoretical reasons. The problem is to recover the original signal from the noisy data. \Ve 

\vant the recovered signal to be as close as possible to the original signal, retaining most 

of its important properties (e.g. smoothness). Traditional denoising schemes are based on 

linear methods, where the most common choice is the 'Wiener filtering. Recently, nonlinear 

methods, especially those based on wavelets have become increasingly popular [1]. The ap

plication of wavelets in signal processing especially in the area of Global Navigation Satellite 

System (GNSS) has been of interest for many years. \Vavelets are applied to the GNSS 

signal, i.e. GPS (Global Positioning System), to denoise or mitigate multipath error which 

in turn helps to decrease the standard deviation of the computed positions. 

1 



1.1 Global Positioning System (GPS) Overview 
2 

CPS is a line-of-sight, all weather, world-wide continuously available satellite-based Radio 

Frequency (RF) positioning system, providing three-dimensional position, velocity, and time 

capability to end-users with an appropriate receiver. The system may be vie\ved as consist

ing of space (the actual satellites), control (management of satellite operations), and user 

segments. The user segment includes all aspects of the equipment required for civil and 

military use of the system. The full operational constellation of CPS \~.:as declared in April 

1995 with the baseline CPS system being specified for 24 satellites. However, the system 

rnrwntly employs more satellites than spcdfi(xl in the nominal constellation, and at the 

time of writing, the CPS constellation consists of 29 Block II/HA/IIR satellites (US :0l"aval 

Observatory, 2006). 

All the satellites are inclined at 55° to the equator and are orbiting the Earth every 11 hours 

and 58 minutes at a height of 20180 km on six different orbital planes [2]. These satellites 

are orientated in such a \vay that from any place on the Earth, at any time, at least four 

satellites are available for navigational purposes as shO\vn in Fig. 1.1. As the demand for 

Figure 1.1: GPS Satellites Orbiting the Earth,taken from [6J. 

the use of CPS is increasing, the higher performance and accuracy are required. Although 

the degree of accuracy is highly application dependent (like life threatening applications), 

the fundamental aspects of positioning remain unchanged. CPS uses pseudoranges, derived 

from the broadcast satellite signals, to locate a user's position. The pseudorange is measured 



3 
either by travel time of the coded signal and multiplying it by its velocity or by measuring 

the phase of the signaL In both cases the clocks of the receiver and the satellite are employed. 

Since these clocks are never perfectly synchronized, instead of true ranges, pseudoranges are 

obtained where the synchronization error (delloted as clock error) is taken into account [3]. 

GPS offers two kinds of services. the Precise Positioning Service (PPS) and the Standard 

Positioning Service (SPS). PPS includes a feature, called Anti-Spoofing (AS), and can be ac

cessed only by DoD-authorized users equipped with appropriate encryption keys. However, 

SPS is open to all civil users and is used in this research. 

1.2 GPS Architecture 

The all \veather global system consists of three segments: 

• the space segment, consisting of satellites which broadcast signals 

• the control segment, steering the whole system 

• the user segment, including the many types of receivers. 

1.2.1 Space Segment 

The space segment of the system includes the constellation of GPS satellites. These space 

vehicles (SVs) transmit radio signals from space to the users. Each satellite has four atomic 

clocks on-board, but only one of them is being used to generate the fundamental L-band 

frequency of 10.23 11Hz. From this fundamental frequency two other carrier frequencies are 

derived. The L1 and L2 frequencies are generated by multiplying the fundamental frequency 

by 154 and 120 respectively [5]. 

• L1=1575.42 MHz, A=19 em 

• L2=1227.60 MHz, A=24.4 cm 

Fig. 1.2 shows detailed block diagram of the transmitted signal. The minimum signal 
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Figure 1.2: Detailed CPS Transmitted Signal, C/ A on L1 Band. 

strength received on Earth is approximately -158 dBW to -160 dBW [6]. Every SV transmits 

its exact position and its precise on board clock time to the Earth at rate of Ll frequency. 

Navigation Message 

The navigation message is a continuous stream of data transmitted at 50 bps, as illustrated 

in Fig. 1.2. Each satellite relays the following information to Earth: 

• system time and clock correction values 

• its own highly accurate orbital data (ephemeris) 

• approximate orbital data for all other satellites (almanac) 

• system health (the whole satellite system is \vorking properly or not) 

The navigation message is needed to calculate the current position of the satellites and to 

determine signal transit times. The Cj A (coarse acquisition) code is a bi-phase coded signal 

which changes the carrier phase between 0 and 7r at a rate of 1.023 :t\IHz. The navigation 

data bit is also bi-phase code, but its rate is only 50 Hz, or each data bit is 20 ms long. Since 

the Cj A code is 1 ms, there are 20 Cj A codes in one data bit. Thus, in one data bit all 20 

Cj A codes have the same phase. 
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1.2.2 Control Segment 

The control system consists of a master control station, monitor stations, and ground control 

satiations. The main operational tasks of the control segment are [3, 6]: 

• observing the movement of the satellites and computing orbital data (ephemeris) 

• monitoring the satellite clocks and predicting their behavior 

• synchronizing on hoard satellite time 

• relaying precise orbital data received from satellites in communication 

• relaying the approximate orbital data of all satellites (almanac) 

• checking the satellite health and clock errors. 

The control segment is also responsible for SA (selective availability) to degrade the system's 

positional accuracy for civil use. 

1.2.3 User Segment 

User segment includes user hardware and processing software for positioning, navigation, 

and timing applications. Today, GPS receivers are routinely being used to conduct all types 

of land and geodetic control surveys. Nowadays, most of the receivers can provide a good 

position approximation (less than 15 m horizontally) in an open sky, which most of the time 

is not the case. In an urban area such as downtown Toronto, the accuracy and precision of 

the computed positions will decrease mainly due to multipath error. The multipath could 

cause an error in the order of hundreds of meter horizontally. 

GPS receivers track and decode the signals from the satellites. A CPS receiver computes 

the location of the satellites based on their ephemeris and al;o measures the distance to the 

satellites based on the travel time of the radio signals. The receiver then deduces its own 

location based on a simple mathematical principle called trilateration in three-dimensional 

space. Accurate timing is the key to measuring distance to satellites. Atomic clocks carried 
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on board the satellites are synchronized. In order to use inexpensive quartz oscillators, the 

receivers can utilize an extra satellite range measurement. With the distance mea . .'mrements 

from at least four satellites, not only can the receiver calculate its position, but the receiver 

can also remove its clock bias (refer to chapter 2 for more details ). 

1.3 Objective of the Thesis 

l'Iultipath mitigation of the CPS signals both in terms of theory and application have been 

of the interest for many years. In this thesis we developed an algorithm which post-processes 

the signals and positions, from an inexpensive receiver operating only on Ll frequency, to 

decrease the standard deviation of the computed positions. 

'Wavelet analysis was used in two different stages to mitigate the effect of multipath and 

noise associated with the received data. Fig. 1.3 shows the block diagram of the proposed 

algorithm. 

Figure 1.3: Block Diagram of the Proposed Algorithm. 

1.4 Main Contribution of the Thesis 

The blocks which are shaded in Fig. 1.3 are the author's main contributions, which are 

broken down to: 

• study of CPS system and signal in details 

• investigate wavelets for CPS multipath and signal processing; the discussion is neces

sary to build background for the proposed threshold value 

• propose a novel threshold value based on eigenvalues of the wavelet coefficients 

• develop adaptive filter level selection procedure 
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• to identify and eliminate low velocities that exist among computed positions 

• do performance evaluation using real data, and validation of the proposed algorithm 

1.5 Organization of the Thesis 

This thesis is organized in six chapters. In Chapter 1 we review at basics of the CPS. ?\lore 

specifically the CPS architecture is reviewed. CPS signal structure and characteristics are 

discussed in Chapter 2. In this chapter we study positioning, Cj A code, and CPS errors. 

Chapter 3 is about \vavelets. An introductory part on wavelets is presented first, ami then 

we analyze noise reduction and filtering procedures. rvlultipath mitigation strategies are 

discussed in Chapter 4. In this chapter entropy and proposed algorithm are discussed in 

details. Chapter.5 is 3..'1signed to the results, and finally, Chapter 6 is the conclusion of the 

thesis. 



Chapter 2 

GPS Signal Structllre and 
Characteristics 

The accuracy and precision of the computed positions in a receiver mainly depend on the 

location of the user. If the location is in an urban canyon area (such as downtmvn Toronto), 

the distance bet\veen the user and the satellites play an important rule in calculating the 

coordinates. The distance is calculated from the basic equation of velocity (i.e., speed of the 

light) times the traveling time. Therefore, the main source of error is hidden in the time. 

The transmitted signals from SVs will be affected by the channel characteristics which are 

mainly the atmospheric errors, including tropospheric and ionospheric delays, and multipath 

error. All these errors, plus the other sources of errors such as receiver clock drift, or thermal 

noises will show themselves as timing errors, which will consequently be converted to the 

ranging errors. 

2.1 Computing a Position in 3-D 

~leasuring signal transit time and knowing the distance to a satellite are still not enough to 

calculate one's position in three dimensional plane. To achieve this, four independent transit 

time measurements are required. That is, four different satellites are needed to locate a 

recei ver (user). 

8 
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2.1.1 Determining a Position on a Plane 

\Vith only one satellite in view, the 'user has the pseudorange value of P. Then, the position 

of the user \-vill be on the circumference of a circle having radius P. This radius is at least 

20000 km long; therefore, imagine where could the user be on the circle. To narrow down the 

search, the user could use two pseudoranges (P l , P2 ) from two SVs. In this case, the position 

of the user is where the two circles of the radius P 1 and P2 intersect. Obviously, there are 

two intersection points in that case, but the point above the satellites will be ignored as 

shown in Fig. 2.1. 

X.Axis 

Figure 2.1: Positioning on 2 Dimensional Plane. 

2.1.2 Determining a Position on Three Dimensional Space 

\Vhile two satellites are sufficient to locate a receiver in two dimensional plane (with lat

itude and longitude), a position has to be determined in three dimensional space (with 

latitude,longitude, and height). Therefore, a third satellite is needed to fully position a user. 

With three pseudoranges, the position of the user will be on the surface of a sphere, which 

results from the intersection of the three spheres as illustrated in Fig. 2.2. It was stated 

[3] that three pseudoranges are needed to compute a position. This is true provided that 

there is no timing errors. In other words, the atomic clock on-board and the receiver clock 

need to be synchronized. However, this is not the case. There is no synchronization between 
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~--...... -
Figure 2.2: Positioning on 3 Dimensional Space, taken from [6]. 

a receiver and satellite clocks. Even if the error difference between the receiver clock and 

the transmit time is 1 ps, it produces a position error of 300 m. To overcome this problem 

the timing error is considered to be an unknown; consequently, there are four unknowns 

(longitude, latitude, hight, and time error) to be solved in a 3-D positioning. 

2.1.3 Position Calculations 

In order for a GPS receiver to determine its position, it has to receive time signals from 

four different satellites to calculate signal transit times ~tl to ~t4. The range of the user 

from the four satellites Rb R2 , R3 , and R4 can be determined with the help of signal transit 

times, ~tl to ~t4' between the four satellites and the receiver. Since the locations of the four 

satellites are known, as mentioned in section 1.2.1, the user co-ordinates can be calculated 

[6]. Due to the atomic clocks on-board, the time at which the satellite signal is transmitted 

is known precisely. All satellite clocks are synchronized based on universal time co-ordinates 

(UTC) [2]. In contrast, the receiver clock is not synchronized to UTC and is therefore, 

slower or faster by ~to. The sign of ~to is positive when the user clock is faster and negative 

otherwise. The resultant time error ~to causes inaccuracies in the measurement of signal 

transit time and the distance R (true range of.the satellite from user) [6], 

~tmeas'Ured = ~t + ~to => P S R = ~tmeas'Ured • c 

PSR = (~t + ~to) . c 

P S R = R + ~to . c => P S R = R + r, 

(2.1) 

(2.2) 

(2.3) 
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where tlt is signal transit time from satellite to receiver, tlto is the resultant time error, 

which is the difference between sat,ellite and receiver clock plus the time delay due to errors 

(such as multipath), c is the speed of the light, and PSR represents the pseudorange. In 

Eq. (2.3) the error distance r is the distance dne to the resultant time error !:lt~. One of the 

main contributions in this thesis is to derive approximate value for r. 

Since the X, Y, Z coordinates of the SVs are known to users, the true distance R can be 

calculated as: 

(2.4) 

where Xs; is the X coordinate of the known satellite and Xu, is the user coordinate (un

known). The subscripts si and ui in X 8 , and Xu, are the index values. Eq. (2.1) is a general 

equation representing a distance. It could be used in a stationary or a dynamic mode. Since 

the number of satellites must be at least four to fully locate a user position, the indexing i 

is from 1 to 4. By replacing Eq. (2.4) in Eq. (2.3), the resultant pseudoranges will have the 

form of Eq. (2.5). 

(2.5) 

Eq. (2.5) represents a set of non-linear equations with four unknowns. One method to solve 

the system of non-linear equations is to linearize them first. The Taylor series is a known 

method to be used for this problem. The general form of the Taylor series is as follows: 

j' (xo) f" (XO)2 j''' (xO)3 
f(x) = f(xo) + -,-.!:lx + , .!:lx + , .tlx + ... , 

1. 2. 3. 
(2.6) 

where tlx is the error or deviation from the true value of x (tlx = x - xo) and xo is an 

initial or guessing value. The same principle is used to approximate a solution for the above 

mentioned non-linear system. However, as the value of error decreases at the high order of 

Taylor series in navigation applications, it is sufficient to accept the Taylor series up to its 

first order for our purpose [2]. 

l' (xo) 
J(x) = J(xo) + -l!-·tlx (2.7) 
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Eq. (2.7) is the simplified version of the Taylor series to be used to solve the llon-linear 

system of equations expressed in Eq. (2.5). 

Therefore, the unknown terms Xu" Yu" and Zu, in the Eq. (2.5) can be replaced with the 

initial values of [2, 5]: 

Xu, = Xg + ~x 

Yu , = Yg + ~y 

ZUi = Zg + ~z (2.8) 

where the Xg is an initial or guessing value for the X coordinate of the user. Consequently, 

Eq. (2.4) will be transformed to Eq. (2.9). 

(2.9) 

where R9i is the guessing distance between a user and a satellite. By applying the Taylor 

series on Eq. (2.9), the pseucloranges expressed in Eq. (2.5) \vill be transformed to Eq. 

(2.10), 

D(R ) D(R ) D(R ) 
P RS· = R . + g, .~x + g, .~y + g, .~z + c.~t 

I g, ax iJy oz 0 
(2.10) 

where, 

8(Rg,) Xg - Xs. 

Dx Rgi 
(2.11) 

Therefore, Eq. (2.12) is a final represclltatioll of the pscudoranges. 

(2.12) 

Now, we can solve the linear system of equations with the unknowns ~x, ~y, ~z, and ~to 

[2,5]. 

(2.13) 



Xg-X.! Yg-Y,! Zg-Z.! -1 

~ [ ~~] = 

Rg!< R9y' R9Z 
C 

[ PSR, - Rg, ] Xg- "2 Yg- "2 Zg- "2 
C PSR2 - Rg2 RYk . Rgf-; Ry~ 

X g-_ "I Yg- "3 Zg- "3 
C . PSR3 - Rg3 

6.to 
Rg} Rg?, RgZ PSR4 - Rg4 Xg- "I Yg- "4 Zg- "4 

C Rg4 Rg4 R94 

13 

(2.14) 

The solutions of the unknowns are used to update the initial positions X g , Yg, and Zg in 

accordance with Eq. (2.15). 

XneWi = X01dg + ~x 

Ynewi = Y01dg + 6.y 

(2.15) 

In case there is no solution to the system of the equations, we could use another satellite data. 

For example, in case we have six satellites in view, we could replace PSR5 and PS~ with 

the PSR1 and PSR2. The estimated values X newil Ynewil and Znew, can now be entered into 

the set of equations given by Eq. (2~14) using normal iterative process until error components 

6.x, !;).y, and !;)'z are smaller than the desired error value (Le., 10 cm) [6]. Usually, three to 

five iterations would be sufficient to get an error less than 10 em [3]. 

2.2 G PS Signal Structure 

Because GPS signal falls into the category of signals known as spread spectrum signaling, 

the fundamentals of spread spectrum signaling are introduced next._ The chapter continues 

with a detailed description of the GPS signal structure for civil coarse acquisition (el A code) 

signal. 

2.2.1 Fundamentals of Spread Spectrum Signaling 

Spread spectrum signaling in its most fundamental form is a method of taking a data signal 

D(t) of bandwidth Bd that is modulated on a sinusoidal carrier to form d(t), and then 

spreading its bandwidth to a much larger value Bs, where Bs > > Bd • The bandwidth 

spreding can be accomplished by multiplying the data modulated carrier by a wide bandwidth 
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spreading waveform s(t) [2J. 

The binary data bit stream D(t) with values D = ±1 and clock rate h is first modulated 

on a carrier of power Pd to form the narrow bandwidth signal: 

d(t) = D(th!2PdCOS(Wdt). (2.16) 

This narrow bandwidth signal of bandwidth Bd is then spread in bandwidth by a binary 

pseudorandom signal s(t), where s(t) = ±1 and has a clock rate Ie that greatly exceeds the 

data bit rate, i.e. Ie > > h [2J. 

The spread spectrum signal then has the following form: 

so(t) = s(t)d(t) = s(t)D(t)y'2Pdcos(Wdt), (2.17) 

where the spreading signal is as follows: 

00 

s(t) = L Snp(t - nTe), (2.18) 
n=-oo 

and p(t) is a rectangular unit pulse over the interval (0, Te = 1/ Ie), and Sn is a random or 

pseudorandom sequence Sn = ±1 [2]. 

2.3 GPS Signal (CIA Code) Characteristics 

As mentioned previously, each GPS satellite transmits signals on two L-band frequencies 

of ILl at 1575.42 MHz and hz at 1227.60 MHz. The signal can be split into three parts. 

The first part is the carriers which are the carrier waves with hI or hz frequency. The 

second part of the signal is the navigation data. The navigation data provides the means 

for the receiver to determine the location of the satellite at the time of signal transmission. 

The navigation message, which contains inforf!1ation about the satellites, G PS time, clock 

behavior, and system status, is modulated on both the Ll and L2 carriers at a chip rate of 50 

bits per second (bps) with a bit duration of 20 ms. These information are transmitted to all 

satellites from the ground stations in the GPS Control Segment. The third part, spreading 

sequence, was briefly explained in section 2.2.1. 
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Each satellite has two unique spreading sequences or codes. The first one is the coarse 

acquisition (CIA) pseudorandom noise (PRN) code sequence modulating the L1 carrier 

phase, and the other one is the encrypted precision code (P(Y)) sequence modulating both 

the L1 and L2 carrier phases. L1 is Binary-Phase Shift Key (BPSK) modulated with a pseudo 

random noise 1.023 MHz code known as the Coarse/Acquisition (CIA) code. This CIA 

code sequence repeats every millisecond. The transmitted PRN code sequence is actually 

the modulo-2 addition of the 50 Hz navigation message and the CIA code [5]. 

2.3.1 CIA Code Generation 

The signal transmitted from satellite k can be described as [2, 4]: 

Sk(t) = J2Pc(Ck (t) EEl Dk(t»cos(21fJLlt) + V2PPLl(pk(t) ttl Dk(t»sin(21f fLlt) 

+V2PPL2(pk(t) @ Dk(t»sin(21fJL2t) (2.19) 

where Pc, PPLl, and PPL2 are the powers of signals with CjA code, Ck is the CIA code 

sequence assigned to satellite number k, pk is the P(Y) code sequence assigned to satellite 

number k, Dk is the navigation data sequence, and fLl and h2 are the carrier frequencies 

of L1 and L2 respectively. 

The spreading sequences used as CIA codes in GPS belong to a unique set of sequences. 

They are often referred to as Gold codes. They are also referred to as pseudo-random 

noise sequences or simply PRN sequences because of their characteristics. The generation 

of the Gold codes is sketched in Fig. 2.3. As illustrated in there, the CIA code generator 

contains two shift registers known as Gland G2. Each of these shift registers has ten states 

generating sequences of length 1023 chip. The two resulting 1023 chip long' sequences are 

modulo-2 added to generate a 1023 chip long Cj A code. For every 1023rd chip, the shift 

registers are reset with all ones, making the code to start over. G 1 always has a feed back 

configuration with the following polynomial. [2]: 

(2.20) 
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Figure 2.3: C/ A Code Generation, taken from [8]. 
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which states that the registers three and ten are inputs to the XOR gate and the output of 

the gate goes back into the register one. In the same way, the G2 register has the following 

polynomial [2]: 

(2.21) 

The G1 always supplies its output, but the G2 supplies two of its states to a modulo-2 adder 

to generate its output. The selection of states for the modulo-2 adder is called the phase 

selection. Fig. A.1 (given in Appendix A) shows the combination of the phase selections for 

each C/ A code. It also shows the first 10 chips of each code in octal representation. Fig. 2.4 

shows a sample generated (with Matlab) CIA ~ode (PRN 6). 

2.3.2 Auto and Cross Correlation of the C/ A Codes 

The most important characteristics of the CIA codes are their correlation properties. Based 

on the design of the Gold codes, all the CIA codes are nearly uncorrelated with themselves, 
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Figure 2.4: The First 1023 Cj A (PRN6) Code. 

except at zero lag, and nearly uncorrelated Witll each other. Fig. 2.5(a) shows high correla-
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(a) Auto-correlation of the C/ A Code (PRN 6). (b) Cross-correlation between PRN6 and PRN7. 

Figure 2.5: Auto and Cross correlation of the Cj A Code (PRN6 and PRN7). 

tion at zero lag when correlating with the same Cj A code, while Fig. 2.5(b) illustrates low 

correlation when correlating with another Cj A code (PRN6 and PRN7). 

Correlation property of the C/ A codes is used in receivers to find out which satellite is being 

tracked. The principle is that receivers generate their own PRNs and try to match them 

with the received signals. Therefore, the high value of correlation at zero lag makes it easy 

to find out when two similar codes are perfectly aligned. 
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2.3.3 The Transmitted Satellite Signals 

As shown in Fig. 2.6, the transmitted satellite signal (on Ll, C/ A code) consists of Ll

carrier, navigation data, and the C/ A ranging code. The description of the navigation data 

is mentioned in sections 1.2.1 and 2.3. The transmitted signal undergoes changes on the way 

Carrier frequency 
generator 
1575.42 MHz 

PRN code 
generator 
1.023 MHz 

Data generator 
(C/A code) 
50 Bit/sec 

Data 

L 1 carrier 

Multiplier 

Transmitted 
}-----. sate lIite signal 

(BPSK) 

Exdusive-or 

Figure 2.6: GPS Transmitted Signal, Cj A on 11 Band. 

to a receiver on the Earth. These changes take place in the space (mainly passing through 

the troposphere and ionosphere layers) and on the Earth (equipment and multipath errors). 

Therefore, the GPS signal incurs losses during its propagation from the satellite to the Earth. 

Signal Power 

The line-of-sight CPS signals received by users are -160 dB\V in strength [2]. The dimension 

dB\V denotes the ratio of power relative to 1 Watt. A value of -160 dB\V corresponds to -130 

dBm, which denotes power with respect to 1 m \V. The GPS signals are not to exceed the 

internationally agreed power values set to avoid interference with other users and systems 

[10]. The noise power of the broadcast GPS signal is: 

Np = kTB, (2.22) 

where Np is the noise power in \Vatt, k is the Boltzmans constant (1.38066xlO-23 J/K), T 

is the equivalent noise temperature (nominally 273 K), and B is the bandwidth in units of 

Hz. Within Ll C/ A main lobes of a 2.046 l\IHz bandwidth, which contains about 90% of 
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the signal power, the noise power is approximately -141 dBW. In poor signal conditions the 

power of the satellite signal is even further decreased. Metals and concrete Ilear the receiver 

result in up to a 20 dB loss or more; plywood sheets may lead to a 3 dB loss; drywall to a 

loss of about 1 dB; trees typically bring about a loss of 5 to 8 dB and up to 20 dB or even 

more, depending on the tree size and density of foliage [10]. Thus, the amount of signal 

attenuation depends on the structure of the material, its density, and how much material 

the signal passes through. 

2.4 Error Sources 

Error sources affecting the GPS signals can be categorized in four groups as follows: 

1. Satellite originated errors: including hard"vare delay, speed of the light, ephemeris, and 

clock errors. 

• Although each satellite has four atomic clocks on-board, a time error of just 10 

ns creates an error of 3m. 

• The position of a satellite is generally known only to within approximately 1 to 

5m. 

• The signals from satellite to the user travel at the speed of light. This slows down 

when traveling through the Ionosphere and Troposphere layers of the atmosphere, 

therefore, speed of the light can not considered to be constant. 

2. Ionospheric and Tropospheric delays 

• A major source of bias error is the delay of the GPS carrier signals as they pass 

through the layer of charged ions and free electrons known as the ionosphere. 

Varying in density and thickness as it rises and falls ( 50 to 500 km) due to solar 

pressure and geomagnetic effects, the ionosphere layer can delay the GPS signals 

(code) by as much as 300 ns (100 m) [2]. 
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• GPS signal delays through the troposphere, the layer of atmosphere usually asso-

ciated with changes in weather (from ground level up to 8 to 13 km), are subject 

to local conditions and are difficult to model. 

3. Geometric effect of the satellites 

• Satellite geometry is the constellation of the satellites in the sky. If the four SV's 

needed to compute a position are close to each other, the accuracy and precision 

deteriorates and visa versa. 

4. Receiver errors: including hardware delay, system noise, clock, and multipath errors. 

• Among the receiver errors, multipath is the most difficult one to mitigate, since 

it is very hard to model it. 1lultipath interference, caused by local reflections of 

the GPS signal that mix with the desired signal, introduces varying bias errors in 

the order of nanoseconds. 

2.4.1 Received Signals 

The quality of the received signals, by a GPS receiver, highly depend on the environment 

where the receiver's antenna is placed, since GPS signals can arrive at the receiver via 

multiple paths. Although signal degradation caused by troposphere and ionosphere delays 

have the same degree of importance as the multipath error, the emphasis is on multipath 

mitigation in this thesis. 

The transit time of a signal from a satellite to a receiver can be measured as the amount 

of shift required to align the C/ A code replica generated at the receiver with the signal 

received from the satellite. The received signal is identified and aligned \vith the receiver 

clock generated signal through the exploitation of the autocorrelation properties of the PRN 

codes. 1lultiplying the transit time by the speed of light results in the measured satellite-to

user range. Timing errors between the receiver clock and the satellite clock from system time 

cause the observed range to differ from the geometric distance corresponding to the instants 

of transmission and reception of the satellite signal [10]. Therefore, the measured range is 
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called the pseudorEmge. In addition to the clocks causing the pseudorange to differ from the 

geometric range, the pseudorange measurement contains various other error components as 

mentioned above. The effect of some of these errors or biases are taken into account and 

corrected hy the receiver, like the effect of the receiver dock drift, which is included as an 

unknown in the calculation of the position, or the effect of the ionosphere, "vhich is mitigated 

using ionospheric models. However, the effect of multipath, \vhich is to delay the line-of-sight 

signal by some amount, is difficult to mitigate. r..lultipnt h disturbance is largely illflllcn('(~d 

by the receiver's antenna environment since satellite signals can arrive at a CPS receiver via 

multiple paths due to reflections from nearby trees, terrain, buildings, and vehicles. For the 

CPS Cj A signal, this error can range from a few meters up to more than 100 m, depending 

on the scenario [2]. 

2.4.2 Multipath Error Modeling 

A multipath transmission takes place when a transmitted signal arrives at the receiver by 

two or more paths of different delays. In radio links, a signal can be received by direct path 

between the transmitting and the receiving antenna and also by reflections from other objects 

such as hills or buildings, and so on [11]. In each of these cases, the transmission channel 

can be represented as several channels in parallel, each with different relative attenuation 

and a different time delay. A simplified version of a direct GPS signal, Eq. (2.19), can be 

expressed as: 

(2.23) 

where A is amplitude, P(t) is the pseudo-code, and We is the carrier frequency of the trans

mitted signal. The reflected signals could be modeled as: 

m 

Sm(t) = L GkAP(t - 6k)sin(wct + (h), k = 1, ... , Tn (2.24) 
k=l 

where m represents the number of reflected signals, Ok is the attenuation factor, 6k is the 

delayed time, and Ok is the phase shift caused by the reflection of the signal from any physical 
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object. Therefore, the received CPS signal, S(t) in Eq. (2.25), is a superposition of the direct 

plus the reflected signals. 

(2.25) 

m 

S(t) = AP(t)sin(wct ) + L akAP(t - 6k )sin(wc t + Ok) 
k=l 

At the receiver, these multipath waves with randomly distributed amplitudes and phases 

combine to give a resultant signal. Therefore, a receiver at one location may have a signal that 

is much different from the signal at another location only a short distance a\vay because of 

the change in the phase relationship among the incoming radio \vaves. This situation causes 

significant fluctuations in the signal amplitude. This phenomenon of random fluctuations in 

the received signal level is termed as fading [11]. If it is assumed that there is llO direct path 

or line of sight (LOS) component, which is the case in most of the urban canyon areas, the 

received signal, S(t), can be expressed as: 

m 

S(t) = L akcos(wct + Ok)' 
k 

(2.26) 

When there is relative motion between the transmitter and the receiver, Eq. (2.26) must 

be modified to include the effects of motion induced frequency and phase shifts. The kth 

reflected wave with amplitude ak and phase Ok arrive at the receiver from an angle (k relative 

to the direction of motion of antenna or the transmitter. The Doppler shift of this wave is 

given by: 

(2.27) 

where v is the velocity of the mobile, c is the speed of the light, and (k is uniformly distributed 

over [0,271"]. Therefore, the received signal now can be shown as: 

m 

S(t) = L akcos(wct + Wdk
t + Ok)' (2.28) 

k=l 

Obviously, in case of stationary process the value of Wdk will be zero. Figs. 2.7(a) and 2.7(b) 

show the generated received signals when the number of paths is simulated to be one and 
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tpn l'l'sr)('ctiw'h'. III Fig. 2.7. tile darker color \\'(1.\'f' (constHllt alllplitude) is the direct a.nd 

ulHlistortcd t rClW:lllli tt('d signal. \\·hilp t he more oscillaton- \\'c\\T is t he corm ptC'd signal with 

random ampli t udes and pllases (resultant of tilt> lluritipaths signal) . 

In order to observp the effect of the multipn,th more closely, two C / A cod('s (PRX6 H.nd 

pnx~) \\-ere gellerat('cl. These t\\'() signals \\,(':1'(' the11 SE llt through <l Ra.yleigh chamlcl to 

observe the effect. of multipaths. In this regard, Rayleigh fading is first discussed. 

Rayleigh Distribution 

The Ra.yleigh distributioll usually arises whe11 a two dimensional vector which ha,'j its two 

orthogonal cOlllPonents nonn(\.ll~· awl independc11th' d ist ributed. The distributioll lIlay also 

arise in the case of randolIl complex numbers whose real a.ud imaginary components are 

normall.\' (lnd illdepenclcntly distributed. The absolute \'alue of these numbers will then be 

Rayleigh distributed. The Rayleigh densit.\, function is chamcterizecl b,v the PDF givell ill 

Eq. (2.29) [11]. 

,.~o 

T < () 
(2.29 ) 
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R rv Rayleigh(li) is a Rayleigh distribution if R = J X2 + y2 \vhere X and Yare both 

rv N(O, li2
), and are two independent normal distributions. 

Rayleigh Fading 

In practice, we encounter channels whose transmission characteristics vary with time. The 

time variations of the channel properties arise because of semi-periodic and random changes 

in the propagation characteristics of the medium. Hence, the effective channel transfer 

function varies semi-periodically and randomly, causing random attenuation of the signal. 

This phenomenon is known as fading [11]. 

Rayleigh fading is a statistical model for the effect of a propagation environment on a radio 

signal, such as that used by wireless devices. It assumes that the power of a signal that 

has passed through such a transmission medium (also called a communications channel) 

will vary randomly, or fade, according to a Rayleigh distribution. It is a reasonable model 

for tropospheric and ionospheric signal propagation as well as the effect of heavily built-up 

urban environments on radio signals. Rayleigh fading is most applicable when there is no 

line of sight between the transmitter and receiver. If there is a line of sight, Rician fading is 

more applicable. In other words, Rayleigh fading is a reasonable model when there are many 

objects in the environment that scatter the radio signal before it arrives at the receiver. The 

requirement that there will be many scatterers present means that Rayleigh fading can be 

a useful model in heavily built-up city centers where there is no line of sight between the 

transmitter and receiver and many buildings and other objects attenuate, reflect, refract and 

diffract the signal. 

In order to observe how Rayleigh fading is affecting the transmitted signal, two real C/ A 

code were simulated and passed through the Rayleigh channel as illustrated in Fig. 2.8. In 

Fig. 2.8(a), the darker color represents the transmitted signal, and the lighter color shows 

the received signal. The resulting bit error rate (BER), is plotted and shown in Fig. 2.9. 

The lower curve in Fig. 2.9 represents the BER of the transmitted signal before fading. 

As expected, the received signal (after fading) has a higher BER due to the distortions. To 



25 
, , 

:~~$~ttool II 
12 - 1 2 

1 - I 
~ I-I ' I 

0.8 o 8t 

06- 06 ~ 

0.4 ~ 

I "'I 
02 - J 02 f 

-- -- 01 -

-O~ 1 
, , , , -0 ~1 , 

0.105 011 0115 0 12 0 125 013 0135 01' 0 1 .. 5 015 0105 011 0 115 0.12 0125 0.13 0135 0.14 0.145 o i5 
IImI {IltS) ltt11$(ms) 

(a ) PR:'\ / C.\ Code :'\ulltl wr 6. (b) PR 1\"/ CA CO([(> ~\llllh <:' r 0. 

F igure 2.8: The Effect of Rayleigh Channel on the GPS Signals. 

gCW-'l'<lt e F ig . 2 .0. the a uthor Ilsed d seqlle llce ofbill il.ry nUlllbe ni passillg through t he R avlcigh 

dl H.ll11el (us ing "rayleighcll1-l,ll"" :\Ia t lab fUll(' t io ll) \\"ithout HllV s ig llHI cOl1lbilling techniques. 

This is just to illus tra te ho\\" ll1ultip ilth could d egrade the BER. 

BER over a Rayleigh Fading Channel 

- 5 10 15 20 

Figure 2.9: Bit Error Rate of Rayleigh Cha llnel. 



2.5 Current Multipath Mitigation Methods 
26 

Currently, various mitigation techniques are available that help to minimize the effect of the 

errors contributing in position computations in the GPS world. Depending on the nature of 

applications, any of the following techniques could be applied. Generally, multipath mitiga

tion could be categorized into two methods of hardware and software mitigation techniques. 

In terms of hardware improvements, antenna based mitigation methods, which are ba.'-;ed 

on improving the antenna gain pattern by choke rings, are very common. The elimination 

of multipath signals is possible by selecting an antenna that takes advantage of the signal 

polarization, The transmitted G PS signals are right handed circularly polarized, whereas 

the reflected signals are left handed polarized. A choke ring consists of se\'eral concentric 

thin \\'alls, or rings, around the center where the antenna element is located. These rings 

haw no effect on direct signal. but from the reflected signals the rings create two so-called 

primary and secondary waws. The objective of the choke ring is for the primary anel sec

ondary reflected signals to subst antially cancel each other, and the direct signal remains as 

the dominant signal. Csing narrow correlator spacing and extending the multipath estima

tion dda.v lock loop is another approach to reduce the effect of multipath, 

In terms of software mitigation. signal and data processing have been used by lllany re

searchers, Exploring the signal-to-noise ration, using multiple reference stations. smoothing 

carrier phase. and applying different tilters are just a few to name. 

Software mitigation has been improYing so that many researchers have changed their ap

proaches from the traditional denoising schemes, which are mainly based on \Viener filtering. 

to nOll-linear methods, especially those based on \\'a\'elets have become increasingly popular. 

The application of \\'awlets in signal processing especially in the area of global navigation 

:-;atellite system (G:'\SS) has been of interest for many years. \Yawlets are applied to the 

G:'\SS signal (i.e., GPS), to denoise and mitigate multipath errors ,,'hich in turn helps to 

decrease the standard deviation of the computed positions. In the next section, some of the 

related \\'ark done by other scholars on wawlet analysis are discussed. 
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The use of wavelet analysis on CPS signals has proved to be an effective way of mitigating 

multipath. Satirapod and Rizos [12] applied wavelet decomposition technique on dOllble

differenced residuals to extract multipath signals from CPS observations using data collected 

by three dual frequency receivers. Their approach wuuld not be applicable all data collected 

from single antenna receivers (sHch as data used in this thesis), since there is no second 

antenna to form the double-differenced signal. Furthermore, in their experiment setup, they 

had access to a station which was considered to be multipath free (open sky), \vhile in our 

case there was no open sky data available. In [12], the majority of the multipaths data 

came from a concrete wall close to the second recciver, which could be considered as a fixed 

multipath. \Yhereas, the collected data for this thesis work is from street levels as opposed 

to [12] where their experimcnt was carried out on top of a building. In street level, the kind 

of multipath a receiver recei\-es varies \vith time while it is constant on a roof. 

Zhang and Bartone [13] applied both wavelet filtering and Waveslllooth techniques to miti

gate IIlllltipath on dual frequency measurements as well. They used L1 and L2 frequencies 

to form ionosphere free code and carrier phase measurements, and then applied adaptive 

wavelet filtering on ion-free datil,. Their approach is also not useful v,·hen using a receiver 

\vhich is not capable of receiving L2-band data, which is the case for almost all the inexpen

sive receivers (at the time of \vriting the thesis). 

Xia and Liu [14] applied wavelet transform to douhle differential phase observations to miti

gate phase multipath in GPS relative positioning. Applying their method also requirs access 

to the L2-band data. Furthermore, in all the cases mentioned above ([12]-[14]), there is no 

indication of threshold selection and how the threshold value could affect the results. The 

value of the threshold has a significant impact on the signal smoothing process. 

In [12]-[14], there is no actual positioning after multipath extraction. While goal of multipath 

reduction is to increase the position precision. Whereas, in this thesis the experiment was 

carried out based on actual positioning, and at the end the degradation or improvement are 

clearly expressed in terms of some statistical quantities such as standard deviation, Kurtosis, 
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and skev\:ness of the positions. In this thesis, \vavelet analysis technique is applied to a set 

of data taken from a single stationary n:ceiver operating on L1 frequency. Since the focus 

of this thesis is on multipath mitigation by means of multi-resolutional analysis, the next 

chapter gi yes an overview on wavelets. 



Chapter 3 

Wavelet Analysis of GPS Signal 

3.1 Wavelet Analysis Overview 

Although wavelet analysis goes back to 1930s, the development of the technique for various 

applications ill engineering and the sciellces began in 19808. In that relatively short time, the 

wavelet analysis has been adopted to a variety of applications, from fingerprint compression, 

coding (audio and video), and classification to imprmwl processing of CPS data [15]. 

Almost all the signals generated by pieces of equipment snch as receivers carry some kind of 

noises, or they are biased by lIlultipath in their measurement. One of the best tool available 

to process the data is wavelet. The fundamental behind wavelet analysis is to break up the 

::;ignal into different frequencies and investigate each component in terms of its scale. 

As oppose to sinusoidal waves, vvhich are considered to be big waves(infinite duration), 

wavelets are small \vaves. In other words, wavelets are finite in duratioll. \Vhere sinusoids 

are smooth and predictable, wavelets tend to be irregular and asymmetric. Fig. 3.1 shows 

Figure 3.1: A Typical \Vavclct (db2). 

29 
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a typical wavelet known as db2. \Vavelets are analysis tools mainly used for image or time 

series analysis. 7j;( t) is considered to be a wavelet function if the following conditions are 

met [16]. 

(3.1 ) 

(3.2) 

Eq. (3.1) tell us that the average value ofthe wavelet has to be zero, and Eq. (3.2) represent 

unit energy property of the wavelets. 

As Fourier analysis is to break up a signal into sine waves of various frequencies, wavelet 

analysis breaks up a signal into shifted and scaled versions of the wavelet. 

Generally speaking there are two kinds of \vavelets. 

1. Continuous \vavelet transform (C\VT) 

2. Discrete wavelet transform (D\VT) 

Continuous wavelet transform (CWT) 

\Vavelet transform is a tool that cuts up data or function into different frequency components, 

and then studies each component with a resolution matched to its scale [17]. III signal 

analysis, the wavelet transform allmvs us to view a time history in terms of its frequency 

components. In this respect the wavelet transform performs in much the same way as 

the Fourier transform [18]. The Fourier transform extracts from the signal details of the 

--'" 
time 

(a) Raw Signal (b) Fixed Tiling 

Figure 3.2: Constant Resolution of a Windowed Signal (STFT). 



31 
fleqnellC\' CO ll tC'llt hu t loses all inforl1l(1,tioll OIl tht, loca t ion of (l pmticuli:u fr cC[ucnc\' with ill 

t he signal. T ime localizatioll must then be achieved by first \vindol\'ing t he signal. (-t Ile! theIl 

bl' tc'lkillg its Four iC'r tL:msfmll1. T he' problc lll Il it ll \\'l11clo\\'in.e; is tha,t the slice of tlw signal 

that is ext r acted is a l\\'(:)'I 's t he sam C' lengt h, TIm :,; , t he ti llie slice (!lumher of data poin ts) 

llsed to rcsolw' a high fr ecp ICIlC\' CO IllPO Ill'Il t is the same as t hE' 11ll1ll1l C I ll sed to rc::io lve i-L low 

frequt'llC\' comp onent [18]. F ig. 3,2 shol\'s t itE:: cons tant resolutioll of tht: \\'illclO\\'cc! signal 

T he \\'illclO\\' FomiN t rallsform (\\ 'FT) . also kllO\\'l1 a~ short t ime FOlll' icr t ransform (ST FT). 

of a t illl E' fUllctioll f(t) is defined as [16]: 

(3 .:3) 

\\' \Wlt' fl ( /) is Cl P'; l\'(-,ll \I'illd u\\' f\lllct ioll sMis[\'illg 0 < J Ih(L )12 eli < x , III pradicc . the 

windo\\' fUllct ioll fl ( t) is llsualh- a. !C)\\'PiIS:-i fUllction [16], T hc-' Sllnrt-Til1lC' Fourit'r Tr;llIs fm 11 I 

(STFT) . 11I H!!::; H s iglla l into a, t 1,m -di IllCllS iull't1 ft met iotl of ti llle HUe! frcquC' llC,v (1;0 shol\'n ill 

F ig , 3 .2. T hr' STFT l E' prt'Sellts a S(l1t of C()ll1 pl()llli~c Il c t\I, 'C'C' ll the time (lIld fr('qU CllC\' h,l;o8d 
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views of R sigllal. it provides some information about hoth when aml at I'\'!tat frequencie::; FL 

signa.l event occur::;, HOW(N ~ r, olle C<'t.ll only ohtaill this info rrm tion with lilllitecl precision , 
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and that precision is determined by the size of the window as shown in Fig. 3.3. A short 

window will produce an excellent time resolution, but a poor frequency resolution. A long 

window will produce the opposite. 

In contrast to windowed Fourier transform, the wavelet adapts the width of its time-slice 

according to the frequency components being extracted. In other words, the resolution is 

high for high frequency components and low for low frequency components, because \vavelet 

uses short windows at high frequency and long window at low frequency as shown in Fig. 

3.4. In \vavelet analysis the scale that the data is looked at plays a special role. \Vavelet 

Figure 3.4: One Represcntation of a Time-Frequcncy Tile for the 'Vavclet Transform. 

algorithm process data at different scales or resolutions. If one looks at a signal with a large 

window, the gross features will be noticed. Similarly, if one looks at a signal with a small 

window, the small features will be noticed [19]. 

According to the definition of the inner product, the CWT can be thought of as an inner 

product of the original signal \vith scaled, shifted versions of the basis wavelet function 1/;( t) 

[15], 

< x, Wa,b >= CvVT(a, b) = J x(t)1/;(t)dt (3.4) 

where: 

1 t - b 
Wab= -1/;(-) , Va a 

(3.5) 

In which "a" represents the scale (dilation) and "b" is the time-shift (translation) parameter. 

Therefore, the wavelet transform of a continuous (analog) signal x{t} is known as C\VT which 
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is defined as : 

1 f' x (t-b ) CWT(a , b) = Va -;x: J:(t) . - a- dt (3.6) 

Fig. 3.5 shO\\·s the scn.logUl.lll (CWT) of the signet! \\'ith the sca les froIll 1 to 5. T he wavelet 

Absolute Values of CWT(a.b) Coefficients for a = 1. 2. 3. 4. 5 

4 

100 200 300 400 500 600 700 800 
time (or space) b 

Figure 3.5 : Scalogralll of tiL(' Sigllal. 

fUllct ions han; tillle-\\'iclt hs aclapted to their frequcnc.\' such t hat high frequency a re WU TO\\'. 

\\'hile low frequen('\" (Ire lllHCh wider. As a. result. t he wR.n .'let tnmSfOrlll is bet.t er to " ZO Olll 

ill" on \'cr:- short liH~d high freqllE'nc,\' phellomenon. such as transients [17]. 

3.1.1 Multilevel Representation of a F\lnction 

III orcler to develop a, multilevel represcntL1tioll of n function in L2(R), a sequence of em

bedded subspa.ccs Vi is needed sHeh that [18]: 

... cV-1 CVo CV1 C V 2 c ... CL2(R) (3.7) 

with the following properties: 

• The emhedded subspaccs a.re related by a sCeding law 

(3,8) 



34 
• Each subspace is spanned by integer translates of a single function g(x) such that: 

g(:r:) E Vo ¢:> g(x + 1) E Vo (3.9) 

Therefore, a scaling function <b( x) E Vo is needed such that its integer translates {4>( x - k), k E Z} 

form a Riesz basis for the space Vo. Then 4>(2x - k) form a basis for the space VI' Thus: 

Vo = span {4>(x - k),k E Z} 

V I = span {4>(2x - k), k E Z} 

(3.10) 

(3.11) 

Since the space Vo lies within the space VI, then Vo can be expressed in terms of the basis 

functions of VI: 
00 

4>(x) = L ak4>(2x - k) (3.12) 
k=-oo 

Eq. (3.12) is known as dilation or scaling function. The constant coefficients ak are called 

filter coefficients, and it is often the case that only a finite number of these are non-zero [18]. 

The filter coefficients are derived by imposing certain conditions on the scaling function. One 

of these conditions is that scaling function and its translations should form an orthonormal 

set i.e.: 

1: 4>(x)4>(x + l)dx = 60.1 

{ 
1 1=0 

8 = 
0,1 0 otherwise 

IE Z 

A wavelet, 1j.;(x), is orthogonal to the scaling function, 4>(x), and is defined by: 
00 

1j.;(x) = L (-1)kaN_1_k4>(2x - k) 
k=-oo 

(3.13) 

(3.14) 

where N is an even integer. This definition satisfies orthogonality since from Eqs.{3.12) and 

(3.14) we have: 

(4)(x),1j.;(x)) = 100 f ak4>(2x - k) f (-1)laN_1_14>(2x -l)dx 
-OOk=-oo 1=-00 

(3.15) 

1 00 

'* (4)(x) , ljJ(x)) ="2 L (-1)kakaN_l_k = 0 
k=-Xl 

(3.16) 
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The sets of coefficients {ad and {(-I)kaN _1_k} are said to form a pair of quadraturE mi'TTOr 

filter [18]. Fig. 3.6 shows Daubechies (db2) scaling function and its corresponding wavelet. 

(a) db2 Scaling Function. (b) db2 Wavelet Function 

Figure 3.6: Daubechies (db2) Scaling and Corresponding Wavelet Functions. 

3.2 Discrete Wavelet Transform (DWT) 

The time series signals are sampled and discretized in case we are working with C\VT. In 

other words, the wavelet series are simply a sampled version of the C\VT, and the amount 

of information it provides is highly redundant as far as the reconstruction of the original 

signal is concerned. This redundancy requires a significant amount of time and memory. On 

the other hand, D\VT provides sufficient information both for analysis and synthesis of the 

original data with a significant reduction in time and memory. D\VT can provide filter bank 

structure which is amicable for hardware implementation. In D\VT, the scaling and shifting 

variables are discretized so that wavelet coefficients can be described by two integers, m and 

n [15]. Thus, the D\VT is given as: 

1 
DWT(rn, n) = . f(iffi L x[kJ4J[aom n - kJ 

v u,o k 

(3.17) 

where x[k] is a signal or a digitized version of an analog signal with sample index k, and ¢[nJ 

is the wavelet. 'Vith different choices of m we obtain a geometric scaling: 1, l/ao, l/a5, .... 

It is found in practice that the most convenient value of ao is 2. This analysis method then 

consists of decomposing a signal into components at several frequency levels that are related 
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by powers of two (a dyadic scale) [15]. 

Let X be the observed time series and for convenience assume N is integer multiple of 2]. 

Let w be N X N orthonormal D\VT matrix and W be the vector of D\VT coefficients [16]. 

X<=>W 

The D\VT can be looked at as the multiresolutional decomposition of a sequence. It takes 

a length N sequence x(n) as input and generates a length N sequence as the output. The 

output has N /2 values at the highest resolution and N / 4 values at the next resolution, and 

so 011, that is the frequency resolution is low at the high frequencies and high at the low 

frequencies, whereas the time resolution is high at the higher frequencies and low at the 

lower frequencies. 

3.3 Filter Banks 

The idea is the same as it is in DWT. A time-scale representation of a digital signal is 

obtained using digital filtering techniques. To process the data, we look into the low and 

high frequency contents of the signal. In case of working with stationary data, the Fourier 

analysis is sufficient, whereas working with a time varying data the Fourier analysis won't 

be a suitable tool since Fourier is not able to show the time localization. Fourier basis 

functions are localized in frequency but not in time. Small frequency changes in the Fourier 

transform will produce changes everywhere in the time domain. \Vavelets are local in both 

frequency (scale) via dilations and in time via translation. This localization makes wavelet 

transform a suitable tool for time varying signals. It is well known that the computational 

complexity ofthe fast Fourier transform is 0 (nlog2 (n)), while for discrete wavelet transform 

the computational complexity goes down to O(n) [21]. 

For many signals, the low frequency content is the most important part. Considering the 
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human voice, if one removes the high frequency components, the voice sounds different, but 

you can still tell what's being said. However, if you remove enough of the low frequency 

components, you hear gibberish. In wavelet analysis we often speak of approximation and 

details. The approximations are the high-scale, low frequency components of the signal. The 

details are the low-scale, high frequency components [22]. Fig. 3.7 shows a typical data 

analysis by wavelet. 

I raw data I --+ I wavelet decomposition 1--+ I thresholding I --+ I wavelet reconstruction I --+ I filtered data I 

Figure 3.1: A Typical Block Diagram of Wavelet Analysis. 

Filtering Process 

The data ,vith coarse resolution contaius information about lower-frequency components and 

retains the main features of the original signal. The data with finer resolution retains infor

mation about the higher-frequency components. The filtering approach to multi-resolutional 

wavelet transform is to form a series of half band filters that divide a spectrum into a high 

frequency band and a low frequency band. It is formulated on a scaling function or low-pass 

filter and a wavelet function or high-pass filter. ~Iultiresolutional analysis builds a pyramidal 

structure that requires an iterative application of scaling and wavelet functions to low pass 

and highpass filters, respectively [15]. 

Theses filters initially act on the entire signal band at the high frequencies (small scale) 

first and gradually reduce the signal band at each stage as shown in Fig. 3.8. Therefore, 

filtering process begin ,,,ith passing the raw data through a few high-pass filters (ht) and 

their complementary low-pass filters (gt). Fig. 3.8 shows a three level wavelet decomposi

tion. First the raw data passes through a high and low pass filter (here filters of db2 type). 

This decomposition divides the raw signal into level one approximation (al) and detail (dl). 

Then in turn level one approximation will be passed through the same filtering to construct 

the level two approximation (a2) and detail (d2). This process can be iterated to a suitable 
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3.4 De-noising 

III \I.-avdet dC(,Olllpositiull \\-h Cll detclib an:' slJlalL the,' lllight hE' ullli tted \\- itlIout :-) ltlX-itdll t ia lh

affect ing the origin a l s ignal. Thus , the idea of thres holding \\-cwelet coefficients is a. \ \"eLy of 

clealling out ·-ullimportant"· d etails cOlls id ered to he noise [21 ]. Therefo re. d elloitiillg refcrs 

to manipulation of wavelet coeffi cients for noise reduction in \\'hich coefficient values below 

a carefulh- select eel tllrcs hold level Hr C' replaced Iw 7.e ro 8fte r \\'!licl t a n illvc rse tra. lJ sform of 

1I1Ou ified coeffi ciellts is Llsed to recovcr dcltoiseu s ignal. i\IathcI Ilat ic: ally. t hresholcli llg can abo 

b e described by a transformation of the wavelet coefficients ill which t rallsfol'ltl m at rix i.' cL 

diagolli:d llla t rix with clements (] o r 1 [2:3] . Zero elclIlents forc es t hp. corresponding coeffi c ient 

I>elo\v a g iven thresholcl to he set to ze ro \\-hil~ uthers con e::; polldillg to one . reduce ' tit 

coeffi cients b:y the giYen thres hold. 

The two applOaches which a 1' . considcTf'd fill' d eno ising are hani a ncl soft th resholdillg. 
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• In hard thresholding only those wavelet coefficients with absolute values below or at the 

threshold level are affected. They are replaced by zero and others are kept unchanged 

as shown in Fig. 3.9. 

Hard Thresholding: 

{ 
W Tn = W if I WI > th 
W Tn = 0 if IWI < th 

where Wand W Tn are the wavelet coefficient before and after thresholding respectively . 

• In soft thresholding coefficients above threshold level arc also modified where they are 

reduced by the amount of threshold! as shown in Figs. 3.9 and 3.10. 

Soft Thresholding: 

0.5 

0 

-0.5 

-1 
0 

{ 
WTn = sign(W)(IWI - th) if IlVI > th 
W Tn = 0 if IWI < th 

Original Hard Soft 

0.5 0.5 

0 0 

-0.5 -0.5 

-1 -1 
0.5 0 0.5 0 0.5 

Figure 3.9: Illustration of Soft and Hard Thresholding 

3.4.1 Noise Reduction Model 

1 

A basic model used to analysis the noise content of a signal is shown in Eq. (3.18). 

X(k) = S(k) + O'N(k), k = 1,2, .. " n (3.18) 

In Eq. (3.18), X(k) is the measurements (known to us), S(k) is the true values of the signal 

(unknown), 0' is the noise level (unknown), N(k) is the noise components (unknown), and 

1 Donoho refers to soft thresholding as 'shrinkage' Dince it can be proved that reduction in coefficient 
amplitudes by soft thresholding, also results in a reduction of the signal level thus a 'shrinkage' [23]. 
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Figure 3.10: Soft and Hard Thresholding of the real CPS Data 

n is the signal length. Under an orthogonal decomposition, each coefficient is decomposed 

into component attributed to the true signal values ,sen), and to noise as follows [23]: 

i = 1,2, ... , n 

or in a vector form 

where C, U, and D are the vector representation of empirical (observed) wavelet coefficients, 

true coefficient values and noise content of the coefficients respectively. It is assumed that 

cocfficicnts at the high frequency details provick a good estimate of the noise content of the 

signal [23]. 

Standard Deviation and Threshold Level Estimation 

In noise reduction under Gaussian white noise, the estimation of standard deviation 0', 

in Eq. (3.18), is used to determine a suitable threshold. An estimate of the standard 

deviation at the dl level (details at the level one coefficients) is then used to determine a 

suitable threshold level for coefficient thresholding at all levels [23]. This approach is global 

thresholding which is applied to all detail coefficients. The justification for this approach 
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is that at the high frequency dl level, only a few large amplitude coefficients carry much 

of the signal information and a large portion of the coefficients attribute to insignificant 

information and considered to be noise. In case of non-\vhite (colored) noise, we still impose 

white noise mOfiel on the coefficients, however. threshold levels are considered to be level 

(scale) dependent [23]. Gaussian \vhite noise model is used on detail coefficients \vhere 

standard deviation and threshold levels are evaluated for each level separately. 

3.4.2 Threshold Selection 

The quality of the signal estimation is investigated by the risk function. A risk function (or 

loss function) is mainly the variance of the estimation error, i.e. the difference between the 

estimated value and the actual unknown value. The risk function is dcfincu as follows: 

R(8, 8) = Ell (8 - 8)11 2 
(3.19) 

\vhere 8 and 8 are the actual and the estimated values of a signal respectively. I\Iinimizing 

the risk function results in an estimate of the variance of the signal [23]. Since the noise 

component is assumed to be zero mean Gaussian. the difference (8 - 8) is a measure of an 

error. Therefore, Eq. (3.19) is a measure of the energy of the noise, i.e. 2]N(k)]2. One 

best estimate is obtained using minimax rule [23, 24], 

minmax R(8, 8) = infs sup (8 - S) (3.20) 

where inf and sup represent the infimum emd supremum respectively. In analysis the infimum 

or greatest lower bound of a set S of real numbers is denoted by inf(S) and is defined to be 

the biggest real number that is smaller than or equal to every number in S. The supremum 

or least upper bound of a set S of real numbers is denoted by sup(S) and is defined to be 

the smallest real number that is greater than or equal to every number in S. 

Based on orthogonal decomposition, minimization of the risk function at the signal level as 

defined hy Eq. (3.19), ean equivalently he defined at the coefficient level as shown below 

[23]: 

(3.21) 



42 
where 6 is the estimate of the true coefficient values. Accordingly, minimization of the risk 

function at the coefficient level results equivalently in estimating the true vale of the signal. 

Under the assumption of i.i.d. for the wavelet coefficients and Gaussian white noise, [24] 

obtained a solution which minimizes the maximum risk, 

CT 
th= .;nv'2Iog (n) (3.22) 

where th is the threshold value, and n is the length of the signal. In Donoho's estimator, 

Eq. (3.22), the only unknown is the value of the CT. Therefore, estimation of the CT in Eq. 

(3.22) is the main challenge when using it. 

There are two general methods for estimating the CT in Eq. (3.22). As mentioned in section 

3.4.1, the standard deviation at the d1 level (details at the level one coefficients) is used to 

determine a suitable threshold level for coefficient thresholding at all levels. This approach 

is glohal thresholding which is applied to all detail coefficients. 

The second method to estimate the standard deviation, CT, is to apply Eq. (3.23) [23], 

2 median(lcl) 
CT = ------~~~ 

0.6745 
(3.23) 

where c is the wavelet coefficients. For level dependent thresholding, thresholds are rescaled 

at each level to arrive at a new estimate corresponding to the standard deviation of wavelet 

coefficients at that level. 

3.5 Conventional Thresholding 

So far the value of the threshold was based on an estimation value which in turn depends 

heavily on the standard deviation CT. The noise level could change with time as it depends 

on the channel. For example in case of GPS, most of the received signals contain multipaths 

which could be caused due to any obstructions. Fig. 3.11 shows a typical real GPS data. 

Figure 3.12 illustrates the soft and hard thresholding based on Donoho (Eq. (3.22)). 

Fig. 3.12(a) was plotted based on the noise level of the dl coefficients, while Fig. 3.12{b) 
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~13 

\\'as plotted bi'l~cd Oil the Eq(3.23). A silllple visual inspectioll cOllfirms that there is no 

significant Jiffcrcncc iJctwccn Fig3.12( a) and F ig,3.12(b) . In both c'.Ujes sincr t he noise levels 

were low, the difference between the original and the thresholded coefficients are almost zero. 

In some signal processill?; such H~ CPS data. tlw repeti tion of suddpll changes of the data. 

especia.lly from zero to a high value (usuall~: above 200 (m)), \vhich a.cts like spike. is an 

indication of error ill meaSlll'l'IllCllt as shown in Fig. 3.11(b). The threshold \'alue obtained 

by [211] WOld be suitH,ble for such date". In other words , we need a criteria that sets a liIl1it 

for data to be tlSP(l. As shown in Fig. 3.H, ill processing a data biased by high nlllitipath 

values, the reconstructed signal has artifacts \vhen applyillg Donoho's estimator, which ill 
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eigenvalue which will enable liS to investigate the signal more c.:losel.\-. 

3.6 The Proposed Thresholding Method 

\ \ 'e a.re looking for an upper-bound t hreshold vnIue tha.t ignorE'S t he high sharp cha ngE s ill <L 

data set and reduces the coefficients by some amounts tha.t represents the effect of the biased 

values , since the effect of multipath could be seen as time delay or extra distances t ha.t t he 

signal goes through. Therefore , the added distHllces have to be estimated nnll COw:icqucntly 
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subtracted from the corrupted data. In order to estimate the changes, we need a criteria 

which shows the dispersiveness of the data. Eigenvalue is a good candidate to be considered. 

In the following sections the eigenvalue criteria is analyzed first, and then the answer to the 

question why eigenvalue is chosen to be the new threshold value is discussed. 

Generalized Eigenvalue Problem 

Given two N X N matrices A and B, determining the scalars Ai (eigenvalues) and Xi 

(eigenvectors) such that: 

(3.24) 

or equivalently determine the scalars Ai such that: 

(3.25) 

is known as generalized eigenvalue problem. 

The concept of the eigenvalues: Eigenvalues parameterize the dynamical properties of 

a system (it is like an amplification factor). Therefore, the general state of the system can 

be expressed as a linear combination of eigenvectors. 

Since the data we are \\:orking with is usually an f.\,f X N matrix, the concept of eigenvalue 

problem becomes a singular value decomposition issue. 

Singular Values Decomposition 

Suppose D is an M X N matrix, then there exists a factorization of the form: 

D = U:EV· (3.26) 

where U is an M X M unitary matrix, :E is an M X N matrix with nonnegative numbers 

on the diagonal and zeros off the diagonal, and V· denotes the conjugate transpose of V, 

an N X N unitary matrix. Such a factorization is called a singular value decomposition of 

D. 

The matrix :E contains the singular values, which can be thought of as scalar gain control, 
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by \vhich each corresponding input is multiplied to give a corresponding output. 

Now, in order to observe how a received signal is related to its eigenvalue we need to obtain a 

relationship between the received data and its eigenvalue. Therefore, we start with modeling 

the data, which is described in the next section. 

3.6.1 Modeling the Data 

\Ve assume there exists N transmitters and M receivers (or channels) with a full M X N 

channel matrix H in between. Therefore, the data received at the M elements can be 

modeled as: 

y=Hx+n, (3.27) 

where M parallel channels are A\VGN with a noise level of (j2, and y is the received data 

from the input data x. 

Based on the singular value decomposition, one can decompose Has: 

(3.28) 

and, 

(3.29) 

where U, and V are the eigenvectors, and drn ~ 0 are the M singular values (eigenvalues) 

of H. By substituting Eq. (3.28) in Eq. (3.27), 

and multiplying both sides by U H
: 

=> UHy = UHU~VHx + UHn 

=> UHU = 1M 

=> UHy = ~VHx + UHn 

=> fj = ~x + it 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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where ii = UHy and x = VHx. 

Eq. (3.31) shows how the values of the transmitted signals could be affected by the eigen

values. The matrix ~ can be thought of as scalar gain control, by which each corresponding 

input is multiplied to give a corresponding output. 

Therefore, the eigenvalues in the received data are representing the extreme deviation and 

model the dispersiveness that exists among the data. Consequently, the eigenvalue is con

sidered to be the upper-bound threshold value used in soft thresholding of the wavelet coef

ficients. 

Soft Thresholding: 

where: 

and 

{ 
Crn = sgn(C)(ICI - th) if ICI > th 
Crn = 0 if I ci < th 

C>o 
C=O sgn(C) = { ~ 

-1 C < 0 

th = eig(C) (3.35) 

In the above equations Crn represents the modified coefficients after filtering and C repre

sents the coefficients before thresholding, Fig. 3.15 shows the soft and hard thresholding of 

the coefficients based on the new threshold value. Clearly the difference bet,\'een the hard 

and soft thresholding is distinguishable. 

3.7 Chapter Summary 

In this chapter wavelet analysis was investigated with the focus on a new thresholding system. 

Although the thresholding by Donoho's equation is a possibility, there are signals which Eq. 

(3.22) will not be applicable. The estimation of the noise level in Eq. (3.22) is a major 

draw back. The value of the noise level in data might be low but the bias value caused by 

multipath could be very high, In these cases the value of (j will not be the correct value 



18 

30 
- -original 

hard 

20 soft 

10 

0 

- 10 

r -20 

-30 

5 10 15 20 25 30 35 

Figure 3.15: Soft cllld Hard T ltr('sllOld illg of t h(' rca l C P S Data 

to he chosell <:-IS H t h reshold \'a lue. III our st udv \\'E' proposed a l1e\\' th re~ hold n tlll ( ' ba~ecl 

on C'igC'nvalllC' of thC' \nlvdet c()C'ffkirmts . EigC'nval llc paralllC'ter izt's tlte dnl<:-lIll ical propl'rt ics 

of a system (it is like <'I n ;ullp lificatioll f;tetm). III other \vords. eigcll\'a lu E' rep rCSE' ll tCi th(' 

ex t rettle' dC'\'ia t ioll and Illoclcl::; t il t' disPE'rsiH' Il(,SS t ha t exis ts aIllong tlte delta. Thi~ nt/ up i:-. 

cOl1sidered to he t hl' llpper-ho ulld t hr('s hold \',till E' . 



Chapter 4 

Multipath Mitigation Strategies 

As we discussed previously in Chapter 2 (section 2.6), there are different methods \,.,.hich 

enable us to mitigate multipath. However, they are not suitable if a user is using a single 

frequency receiver. The work presented in this thesis is based on an autonomous and Ll 

frequency receiver. Therefore, we looked for another approach to reduce the effect of mul

tipath. In previous chapter, we introduced wavelet analysis as a strong tool for de-noising 

and multipath estimation. In this chapter, \ve will discuss other elements which we need to 

complete our process. 

4.1 Proposed Algorithm 

4.1.1 Introduction 

In wavelet analysis, there are two major challenges which could affect the analysis. First, 

it is the level of filtering, and the last is the value of the threshold which was discussed in 

Chapter 3. Basically, by looking at each level, the amount of low and high frequencies are 

emerged. In each level we decide how much of a frequency is needed and what should be 

disregarded. In other words, we decide how much of a low frequency or high frequency has 

to be filtered. The number of levels is highly depended on the desired application. Since 

multi path behavior is considered to be randomly distributed, we look for a criteria which 

could express the randomness. In GPS analysis, Entropy could be considered as a criteria 

to adaptively select a level for filtering the data. 

49 
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4.1.2 Entropy 

The concept of entropy in information theory describes how much randomness (or alterna

tively "uncertainty") there is in a signal or in a random event. An alternative way to look at 

this is to talk about how much information is carried by the signal. As a system gets more 

random, its entropy goes up. Entropy of a system increases as the system becomes more 

disordered. 

The base of the logarithm determines the units. \Vhen we use the base 2 the units are in 

bits (base 10 gives digits and the base of the natural logarithms e gives nits). Information 

is always a measure of the decrease of ullcertainty at a receiver. Shannon defines entropy in 

terms of a discrete random event X, \vith possible states (or outcomes) Xl."X n as: 

(4.1) 

where P(Xi) is the probability of the ith outcome of X. 

In GPS concept, the randomness or entropy of a signal could be related to the signal dis

tortion. In this chapter, the relationship between the distortion or multipath and entropy 

is investigated to show a multi path classification. This classification \vill be used to detect 

the amount of multipath carried out by a signal and consequently this value will be used to 

set a number for the levels in \vavelet analysis (more details are discussed in Chapter 5). It 

could be shO\vn that the higher is the entropy value of a signal, the higher is thc effcct of 

multipath on the signal. Fig 4.1 shows value of the entropies for a data set. The data set 

used to plot the Fig. 4.1 has seven satellites available for processing. As shown in Fig. 4.1, 

each satellite exhibits a different entropy per satellite, meaning that the condition or chan

nels used to received the signals were different at the given time. Since the atmospheric and 

hardware errors could be considered constant for the 15 minutes of data collection time, the 

difference is considered to be caused by different amount of multipaths affecting each signals 

separately. The data collection for the same place "vas repeated on different days to see how 

multipath is behaving in terms of entropy value. A data set consists of eight days of data 

collection is presented in Fig. 4.2. Entropies of each day for each satellites were computed 



,.. 
a. 

4 

3.5 

3 

2.5 

g 2 
<: w 

1.5 

0.5 

o 

o 

o o 

o 
o 

OL-----~-----L------~----~----~----~ 
1 2 3 4 5 6 7 

Number of Satellites 

Figure 4.1: Entropies Corresponding to Each of the Satellites. 

51 

and plotted as shown in Fig. 4.2. For example, data set number one (the one marked with 

plus sign) has eight satellites in view, therefore, there are eight entropies calculated for each 

satellite. If we follow the markers for each satellite, it could be concluded that the amount 

of multipath affecting each signal is different in each day. For instance, consider satellite 

number two. On the first day of measurement, the entropy was calculated to be 3.7, while 

on the day of eight, it was computed to be 2.5. In another words, on the day of eight, we 

had a better condition (less multipath) while collecting the data. 

All these entropies, shown in Fig. 4.2, have to be averaged in order to have a clear pic

ture. The simplest method is to average the entropies of each satellite as shown in Fig. 4.3. 

Therefore, for each satellite there is one entropy. The same procedure was carried out on 

three different locations as well. Fig. 4.4 shows the averaged entropies for each location. 

The averaged values were normalized to show the comparison. In Fig. 4.4, the location with 

averaged entropy of one (red dot) exhibits the highest multipath environment. 

Although the computed entropies will be used to classify them, there is another element 
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that has to be looked at before simply taking the average of the entropies. This element is 

the number of satellites available to be processed by the receiver. Although we may have 

a high multipath situation, there could be more that 6 satellites in view. The more SV's 

are available to the receiver, the better the precision of the computed positions will show. 

Therefore, both the entropy and the number of satellites must be taken into account while 

classifying them. To classify a location based on the effect of muitipath, the norm of the 

entropies are considered for further processing. 

4.1.3 Norm of the Entropies 

Each data set used in this thesis is in a matrix form of M X N, where rv'I rows represent 

the real value data, and the N columns indicate the number of satellite available during the 

data collection. Therefore, for each data set there are N entropies corresponding to each 
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satellite. The higher is the value of N , the better condition we have in terms of position 

calculation. Consequently, in addition to entropy, the number of satellites play an important 

rule in deciding how multipath is effecting the data set. To contribute both the entropy and 

the number of SV's in an adaptive level selection, the p-norm (Eq. (4.2)) of each data set is 

calculated. 

(4.2) 

where Ei is the entropy of each Sv's, and p is the total number of satellites used for that 

data set. For example, 900x7 data set has seven entropies and one Ep. Table 4.1 shows the 

computed entropies using Eq. (4.1) for the mentioned example. 

SV 1 2 3 4 5 
E 2.85 2.88 3.52 5.31 5.71 

Table 4.1: Entropies of the Example. 

Ep yt2.855 + 2.885 + 3.525 + 5.315 + 5.715 = 6.46 

Fig. 4.5 shows the norm of the entropies for the same location as Fig. 4.2, computed for the 

whole data set. The norm of the entropies for four locations were computed. Since for each 

location we have a few measurements from different days, the mean value of the Ep's were 

taken and then normalized as shown in Fig. 4.6. In Fig. 4.6, each dot represents a location 

in down-town Toronto. The red dot illustrates the location with the highest multipath. The 

adaptive level selection is then based on this classification. For high value of multipath the 

level is chosen to be 10, while for the low multipath area the level is selected to be 2. 

Before working with real data sets, which is the subject of the next chapter, a synthetic data 

set was generated, using Matlab, to test the proposed algorithm. 

4.2 Generating Synthetic Signal 

A simulated direct-signal (line-of-sight) could be defined as: 

Y = cos(wct ), . (4.3) 
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( 

8 

where We is the carrier frequency considered to be 1575.42 MHz (same as the Ll-band 

frequency). A multipath signal could be generated by adding random amplitudes and phases 
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4.3 A pplying the Proposed Algorithm on the Real GPS 
Data 

To observe the effect of t he proposed threshold value along wi t h t he \nwt' lC't leve l ~e le C't io n , 

res idual::; of t he delta ~et \H're passed t hrough t he \\'cLH'let "lllah 'sis tuol. FoUl' ~alllpl e~ of the 

filt ered data are shown in F ig. 4.9 and F ig. 4.10. F ig. 4.9(a) and 1.9(1) ) are rep resell tillg two 

~a mp l e~ of t he bad clata t) inc(' t hev CHlT\' spikes such as ~ignals \\'it h high ampli t udcs . T hC'sc 

tq)e of sign(l ls degrade the posi tioning a nd must I w ignored d m ing t he position calcula.t iOlls . 

As shown in F ig. 4.9, the filtered data is computed to be zero, mealli!lg t hat t ile sH.te lli te 

will !lot be used in posit ioll ing. Alt hough there are mOlllent::; which t he values of t he da.ta is 

rca.')ollable to be used . for example in F ig. ,1. 9( b) aWHlld 200 (s) , it is safe r not to use t he 

satelli te if more t han fOUl SV 's are rwailable. 

On t he other hanel, \\'hell t he data is good t he clllah 'sis approximates t he distortion H.t) 

shO\vn in Figs. 4.10(a) and 4.10(b) . In these figures, the red (lighter) color represents t he 

dat a before filtering and t he darker one illustrates the data aft er being filtered. 
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Chapter 5 

Results and Discussions 

5.1 Experiment al Setup 

To evaluat.e the effect of the new threshold value and the \,"avelet len'l selectioll Oil the ('al

cu la ted po~itiow;. 29 data sets I,\"ere collE'c tecl in dm\"lltO\\"1l T oro ll to . III t his experimell t data, 

collect ioll Cct lliPl1l (" ll t consis ted of: ll-hlox T)'I-LPl.J evaluation ki t with ll-(,C' llte r A\,TARIS 

soft\\"[Lre a nd ,I la ptop . A ll etcti vc ante Il na ,,"as 1ll000Illtecl on a porta l lie Cln te llwl t ha t was 

lIlOllllt (llll' lllct<:>r ;.1,l>o\·e thc groulld. \\"c did !lo t woe (Il l cx tClIl a.1 groulld pla.ll e' [25j. F ig. 

5.1 ~ho\\" :) t h(' rccl' iwr se t llp u~('cl to collect d ata.. T he dat a \H I.') collected in four different 

F igure 5.1: Data Collect ioll Set\lp. 

regiOns , each exhibiting different amount of rnul t ipaths in t erms of low to high degree of 

rnultipath. Fig. 5.2 shows the fom ch()~en locations . The circle in each photo illustra tes the 

loci'tt ion of t he receiver. Although ill all four loca tions the p()~i t ion~ of t he receiver or t he 
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to (0,0) coordinate, and the confidence ellipse is plotted based on 30'. In this thesis a ne\v 

algorithm as discussed in Chapters 3 and 4 are designed to reduce the scatter points, in 

another words, the algorithm minimize the effect of the multipath errors and reduces the 

standard deviation of the computed positions. 

5.2 Residual (Signal) Modeling 

In order for a CPS receiver to determine its position, it has to receive time signals from at 

least four different satellites [2]. Then pseudoranges, from code (Ycode(t») and carrier phase 

(YphaBe(t»), of the user from the satellites can be determined with the help of signal transmit 

times bebveen the satellites and the receiver [2]. These pseudoranges are computed from 

both pseudo random code (PRN) and carrier phase information as: 

(5.1) 

\",here c is the speed of the light, t is the CPS true time, tr(t) is the reception time, r is 

the total signal travel time, tB (t - r) is the transmission time from a satellite, and €p is the 

error added to the measurements. Considering the atmospheric effect including ionospheric 

delay dian, and tropospheric delay dtrop along \vith multipath delay dm~ on the received 

signals, Eq. (5.1) can be broken down with more detailed components [2]. 

Ycode(t) = pet, t - r) + c[dr(t) + dB(t - r)] (5.2) 

Here, p( t, t - r) is the geometric distance between the satellite and the observing point, dB 

and d r are the satellite and receiver equipment delay respectively, and dtr(t) is the reception 

time. Eq. (5.3) shows a representation of the carrier phase measurements [2], 

YphaBe(t) = pet, t - r) + C[dr(t) + dB(t - r)] + dtrop 

+c[dtr(t) - dtB(t - r)] + dian + .\[¢r(tO) - ¢B(tO)] + AN + dm~ + €cP' (5.3) 

where dr(t), dB(t), ¢r(tO), and ¢B(tO) are the carrier phase equipment delays and the initial 

phases of the receiver and satellite carrier signal respectively, A is the wavelength and N is 
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an integer representing the carrier phase ambiguity. The resultant time error caused by the 

error sources creates inaccuracies in the measurement. Among the errors multipath creates 

an incremental time delay, causing the respective pseudoranges (Ycode(t») to be incorrect [6]. 

The input data to be analyzed is a set of residuals (i.e. code minus carrier) given by Eq. 

(5.4). 

yet) = Ycode(t) - Yphase(t) 

=* yet) = 2dian + dm; - >"N (5.4) 

\Yhen such a difference is performed, all common errors such as satellite clock error, tro

pospheric error, and receiver clock error are eliminated. \Vhat remains is predominantly 

twice the ionospheric error, the pseudorange multipath error, and the carrier phase ambi

guity. The carrier phase multipath (8m~) is ignored since its value is very small compared 

to pseudorange multipath. The ambiguity term could be seen as a bias value \vhich is re

moved by taking the mean value of the observations and subtracting the mean from the 

data. Therefore, the remaining values represent the iOllosphere plus the multipath errors. 

To approximate the multipath error, wavelet analysis tool is applied to the remaining surn. 

Fig. 5.4 illustrates two typical CPS residuals. Fig. 5.4(a) shows 900 seconds of a normal 
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Figure 5.4: Typical Code-Carrier Data. 

data, while Fig. 5.4(b) contains high values of multipath. The high amplitudes (spikes or 

transients like) indicate that data carries strong multipath signals. An approach to mitigate 
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this strong multipath is by using a time varying approach such as wavelet analysis. This is 

discussed in the next section. 

5.3 Performance Analysis 

To evaluate the performance of the proposed algorithm three statistical elements namely 

standard deviation, kurtosis, and skewness of both raw and filtered positions are computed, 

and then they are compared to sho\',," the degree of improvements or degradations. In that re

ganl, the two major characteristics of a multi-resolutional analysis, thresholding and number 

of levels, are separately discussed. 

5.3.1 Wavelet Analysis on Residuals, Thresholding 

In order to be consistent with the signal modeling approach proposed by Donoho [24], Eq. 

(5.4) can be simplified to a standard non-parametric regression problem as: 

i = 1,2, ... , k, (5.5) 

where y(ti ) represents the code minus carrier signal (from the measurement), X(ti) is the 

signal we wish to approximate, and ni is considered to be noise added to the system. As 

shown in Fig. 3.7, the raw data, y(ti), is decomposed by wavelet filtering to details and 

approximations. Thresholding is then applied to the coefficients to keep the approximations 

and disregard the insignificants. Donoho [24] showed that such wavelet estimators with a 

properly chosen threshold value have various important optimality properties. The choice of 

the thresholding value, therefore, becomes a crucial step in the estimation procedure. 

The observables pseudorange and carrier phase information were obtained from the receiver, 

and then residuals were computed as expressed in Eq. (5.4). These residuals data were 

filtered with both Donoho's estimator Eq. (3.22), and the proposed threshold value estima

tion Eq. (3.35) to mitigate the effect of mllitipaths on the pseudoranges and consequently 

have a better precisions on the computed positions. Figs.5.5 and 5.6 show two samples of 

the computed positions. The lighter (red) dots represent the positions from the raw data 
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the positions are taken as expressed in Eq. (5.6). 

Snorrn = y'std(longitudes)2 + std(latitudes)2 (5.6) 

The lov,,'er the value of Snorrn, the lower the data is scattered (lower standard deviation). 

The Snorrn of the Fig. 5.5(a) is calculated to be 102 (Ill) for the filtered data, whereas the 

raw data has the value of 79 (m), meaning that there is no improvement in this case. This 

shows that the Snorrn of the positions has increased by 29%. The Snorrn of the Fig. 5.5(b), 

for the filtered data is computed to be 62 (m) which implied that with our filtering the 

Snorrn of the positions for that location has improved by 21%. Tabel (5.1) represents the 

comparison of the Snorrn for Figs. 5.6(a) and 5.6(b). 

Fig. 5.7 shows the norm of the standard deviations for the 29 data sets. In Fig. 5.7, the 

Donoho Estimator The Proposed 
Raw Data Filtered Data Raw Filtered Data 

Snorrn (m) 46 58 46 32 

Table 5.1: Comparison of the Snorrn for the Location Shown in Fig. 5.6. 

lighter color (grey) represents the raw data, " .. hile the darker bars represent the filtered data. 

As illustrated in Fig. 5.7(a), there are improvement and degradation \vhen the threshold 

value is set to the Donoho's estimator, Eq. (3.22). It could be observed that there are cases 

that standard deviation of the filtered data is higher than the original data (the data not 

being filtered). vVhile using the eigenvalue as the threshold value, we observe that there is 

no degradation over the raw data. As shown in Fig. 5. 7(b), there are a few cases that both 

raw and filtered data have the same standard deviation. This could be from the fact that 

these data sets carry very low amount of errors. This is an indication that the proposed 

algorithm is operating properly. If the presence of multipath is negligible, meaning that the 

effect of line-of-sight signals arc much stronger that the multipaths, the algorithm does not 

affect the data, while by applying the Donoho's estimator as the threshold value, the results 

are changing regardless of the density of the errors. In another words, when multipaths are 

present in a data set, the algorithm detects them by properly thresholding the signals, and 
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then mitigates them through multi-resolution analysis which adaptively select the number of 

levels necessary to extract the errors. Furthermore, comparing the Figs5. 7( a) and 5. 7(b) by 

each corresponding data sets thresholded by Donoho's estimator and eigenvalue, we observe 

that in all cases standard deviation resulted from eigenvalue thresholding is less than what 

is obtained when Eq. (3.22) is used. 

5.3.2 Wavelet Analysis on Computed Positions 

Although the work in this thesis is based on stationary receiver/antenna, as shown in Fig. 

5.3, the coordinates of a location does not stay constant. One way to decrease the deviations 

was to mitigate the errors on the pseudoranges as illustrated in Fig. 5.7(b). 

To further decrease the standard deviation of the computed positions and lowering the 

virtual motion (velocity) that exists among the coordinates, a second stage multi-resolutional 

analysis is applied on the calculated positions. 
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The Effect of Levels on Standard Deviation 

As t he t hreshold plays all im port ant rule in wclVelet fil t ering, t lte Hu m! wr of levels de ter

m ines the resolution of the fi ltered data. which is another maj ()r c:I1 i:uadrristics of t he lllulti-

rrsol u tioIl ;-lIla h-sis . T he lligh flequeIlcies in a s ig llal coulc! he cOllsicll'lt'c1 a;; nui::-; l' Hdded to 

t he s ignal B\· select ing higher le \'els, b I'L':i icall.\· \\'e are t n 'illg t o l emove marc of t lte high 

frequencies in each le \'els . 

T he coordinat es of a locat ion could oe secn a.s Ic)\\' freque ll ci (~s (illformatioll ). a lld t lt (~ g cl[lS 

t hat L'xist hct\\'ccn t he points are cOll::-;idered to he high frpqncllcies . III t Cl"lns of ph\'sical 

ltlCc1lli llg . t he::;e gaps rr ::;Plllhk tit(, velocit\· of ( \.ll ohj ect ltlovillg randoml\' \\' it hon t Hm ' desti-

nation. cL,,) ::; hO\\"ll ill F ig . 3.3. Sincc the ohjccti \'C of positio llillg is to haw (l \'ClY 10\\' stalld a rd 

deviation (less than 2 m) , wavel t filt ering is used on the positioll poill ts . T he ::-;(llIlP locat iotls 
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the results. For example, we are looking for norm of the standard deviation to be 55 m. 

There are two choices to be considered, as shmvn in Fig. 5.9(b). 'Without filtering the data, 

we have 58% chance to hit the target (55 Ill), while with filtering the data the probability 

goes higher to 75%. 

Since the object of this thesis is to obtain a standard deviation of less than 2 m for 95% of 

the time, the number of levels was increased to 10. Fig. 5.10 shows the same locations as 

before (Fig. 5.5) to have a visual comparison between the levels and the scattering points. 

\Ve observe that there is a noteable difference between the scatter points from level 2 to 

10. By a simple visual inspection we can observe that the standard deviation has improved 

significantly to the point that the objective of the proposed research work has been reached. 

The total improvements are plotted and shown in Fig. 5.11. As mentioned before, in the 

bar plots, the raw data is presented by a lighter color (grey) while the results are the darker 

ones. Since the results are very small compared to the raw data, the zoomed version of the 

results are shown in Fig. 5.12(a). The cdf of the results are shmvn in Fig. 5.12(b). As shown 

in Fig. 5.12(b), with a probability of about 96.55%, the norm of the standard deviation "vill 

be less than 1.5 m. In another words, there is only one case that shows the norm t~ be 2.2 
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1.6 

Figure 5.12: Final Norm and Cumulativc Distribution Function (cdf) Improvcments. 

Kurtosis of a data set is computed to observe how outlier-prone a distribution is. In prob

ability theory and statistics, kurtosis is a measure of the "peakness" of the probability 

distribution of a real-valued random variable. Higher kurtosis means more of the variance is 

due to infrequent extreme deviations, as opposed to frequent modestly-sized deviations. For 

example, the kurtosis of the normal distribution is 3. Distributions that are more outlier

prone than the normal distribution have kurtosis greater than 3; distributions that are less 

outlier-prone have kurtosis less than 3 [22]. The kurtosis of a distribution is defined as: 

k = _E_{ X __ I-L_)_4 
0'4 

(5.7) 

where I-L is the mean of x, 0' is the standard deviation of x, and E(.) represents the expected 

value of the quantity (.). Some definitions of kurtosis subtract 3 from the computed value, 

so that the normal distribution has kurtosis of O. 

As shown in Fig. 5.13, about 95% of the raw data shows a norm Kurtosis of greater than 

3, while the results are 100% below 3. The average value of the Kurtosis is calculated to be 

2.8 m. This value indicates that the filtered data distribution could be considered as normal 

distribution. The last statistical elements to be computed is Skewness of the data. Sk~wness 
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Figure 5.13: Kurtosis of the \Vholc Data Sets. 

is a measure of the asymmetry of the data around the sample mean. If skewness is negative, 

the data are spread out more to the left of the mean than to the right. If skewness is positive, 

the data are spread out more to the right. The skewness of the normal distribution (or any 

perfectly symmetric distribution) is zero [22]. The skewness of a distribution is defined as: 

y= (5.8) 

As shO\vn in Fig. 5.14, while the norm of Skewness of the raw data (lighter color) is varied 

from data I::)ct to data set, the skcwncss of thc filtcrcd data is almost constant. The variation 

makes it difficult to calibrate the computed positions in terms of accuracy of the coordinates 

as in case of raw data. \Vhen the data sets are exhibiting a uniform skewness, this feature 

enables us to calibrate the algorithm in case the computed coordinates show deviation from 

the true coordinates. At the end, coordinates of two locations in down town Toronto were 

mapped to compare the raw and filtered positions, as shown in Figs.5.15 and 5.16. In these 

figures, the blue dots (darker color) are the raw coordinates, and the lighter color dots 

represent the positions after being filtered. Fig. 5.15(b) shows the zoomed version of the 

Fig. 5.15(a) to illustrate the tightness of the results compared to the raw data. As noted 
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in Fig. 5.15(b), the maximum deviation for this location is about 2 m. Fig. 5.16 illustrates 

another location, \vhich exhibits a much less standard deviation comparing with the raw 

data (blue color). In Fig. 5.16(a), the desired position is shown by a dark square. Fig. 
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Figure 5.15: Actual Computed Positions of a Location. 

5.16(b) shows the estimated positions before (darker color) and after (lighter color) filtering, 
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and Fig. 5.16(c) is the zoomed version of Fig. 5.16(b). The deviation in this ca..se is about 

0.4 m. 
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Fig. 5.17 provides a graphical illustration of the techniques used in this v;ork. Basically, 

four or more satellites signals will be received by a receiver, and from them residuals (code 

minus carrier) will be made as the input to the proposed algorithm (filter 1 in Fig. 5.17). 

These residual will be filtered to estimate the signal distortions and subsequently their values 

will be subtracted from the measurements (pseudoranges) to construct the estimated ranges. 

These ranges will be then used to compute the positions. Although these positions show 

improvements compared to the unfiltered (lata, their standard deviation in this stage is not 

below 2 m, and it is in the range of 20 m to 80 m. To achieve the desired standard deviation, 

\vhich is 1.5 m or less for about 95% of the time, the computed positions are filtered (filter 

2 in Fig. 5.17) to finalize the coordinate of the user. The final positions achieved from the 

proposed algorithm shmvs with a probability of 96.5%, the norm of the standard deviation to 

be less than 1.5 m. In addition to lowering the standard deviation, the proposed algorithm 

affected the data distribution at the end. 

Although the focus of the thesis is not to gaussify the data distribution, we see that the out

puts are normally distributed as shown in Fig. 5.13. Normally distributed data is a very well 

known feature \vhich helps in data modeling, estimation and prediction. The achievement 

Residuals Filter 1 1--..... ::1 PR - d, I ~ ; ;:~~: 
L-~~~~::==::---'~~:L--~~~--J::::::dr4L-----------==:;R=.=~--r-----r-~ r 4 

Figure 5.17: Block Diagram of the Proposed Positioning. 

obtained in this work is significant. We have the outputs of an expensive receiver/antenna 
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from an inexpensive (about $500) receiver. Having a low cost GPS system with high precision 

opens doors to the public and industrial sectors. It is sure to offer numerous, significant and 

affordable solutions. \Ye see beneficial sport/recreational applications, business solutions, 

child safety, and traffic control applications just to mention a few. 



Chapter 6 

Conclusions 

Beside harchvare improvements to acquire more accuracy and precision on computed posi

tions from a GPS w('eiver, different soft.,Yare solutions have been employed to post-process 

data to decrease the standard deviation of the positions. To mitigate errors which cause 

deviations from the true value of the calculated coordinates, ,vavelet analysis has been used 

by many researchers on data extracted from dual frequency (L1 and L2 bands) receivers, 

and without investigating the effect of the levels and threshold value on the positions. In all 

the previous works, the scholars were working with multiple high cost receivers. 

In our study, we post-process the data from an inexpensive receiver based solely on L1 fre

quency. The proposed algorithm characterizes multipath error by employing eigenvalues and 

entropy of the data, and then mitigates the effect of multipath by applying multi-resolution 

analysis on the data. The algorithm proceeds with first, decomposing the data into different 

levels based on entropy. Then, two different methods of computing a threshold value are 

selected to filter the wavelet coefficients. 

In the first method of thresholding, Donoho's estimator [24] is used, as most of the previous 

works in this area are based on. For the second method, the new threshold based on singular 

value data decomposition is proposed. The results obtained from 29 data sets collected from 

downtown Toronto showed significant improvement in standard deviation of the estimated 

positions (less than 1.5 m with probability of 96.5%) when the new threshold value along 

with the level selection criteria applied on the data sets. 
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Figure A.I: Cj A Code Phase Assignment, taken from [2]-
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