
' H i ?

SMARTLIFE
A POINT OF INTELLIGENCE FOR WIRELESS SENSOR NETWORKS IN

UBIQUITOUS ENVIRONMENT

by

Anwar Haq, M.Sc. Physics, 1995

Government College, University of the Punjab, Pakistan

A project

Presented to Ryerson University

In partial fulfillment of the

requirement for the degree of

Master of Engineering

In the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2005

© Anwar Haq, 2005

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

UMI Num ber; EC53471

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform EC53471

C opyrigh t2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United S tates Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

I hereby declare that I am the sole author of this project.

I authorize Ryerson University to lend this project to other institutions or individuals for the

purpose of scholarly research.

Anwar Haq

I further authorize, Ryerson University to reproduce this project by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Anwar Haq

II

Ryerson University requires the signatures of all persons using or photocopying this project.

Please sign below, and give address and date.

Ill

SMARTLiFE

A point of Intelligence for wireless sensor networks in ubiquitous environment

Anwar Haq,

Master of Engineering, 2005,

Electrical and Computer Engineering,

Ryerson University

Abstract

As home becomes more technologically advanced nowadays people not only need to

protect their homes and families from theft or fire, but from carbon monoxide, excessive heat or

low temperatures, flooding as well as monitoring their loved ones while they are away.

In this research Project, we present the design case for an intelligent embedded system

(Hardware and Software) called “SmartLife”. We build a working prototype for SmartLife which

is made up of tiny sensors, mobile devices, appliances and personal computers from diverse

sources. Considering diversity in smart home environment the architecture must be open and

flexible to embrace a variety of entities without any special favor towards particular participants

or target domains.

SmartLife will be the point of intelligence in the smart home environment (complete

pervasive environment) which not only communicates with wireless sensors network (monitor &

control) but also provides a secure state of mind to elderly homeowners.

The work introduces the basics of uClinux kernel as well as the differences between

uClinux and the general purpose operating system Linux. It also introduces FPGA based soft

core CPU NIOS-II as an embedded platform for our research project. Our uClinux based

architecture provides an integrated and comprehensive framework for building pervasive

applications. We describe the design and implementation of our architecture as well as building

SmartLife application within it.

Keywords:
NIOS-II, FPGA, Embedded Systems, RTOS, Microprocessor, uClinux, Micro controller.

Ubiquitous & Pervasive Computing.

IV

Acknowledgements

I would like to express my gratitude to my supervisor. Dr. Gul N. Khan, for his support

during the course of this project. I would like to thank Marc Leeman (Barco) and Scott (Psyent

Corporation) for various discussions on porting uClinux and U-boot loader on NIOS-II stratix

development board.

This project would not have been possible without the support and encouragement of my

wife Mariam Haq for her exceptional patience as I spent countless hours porting, writing and

testing Smartlife.

This project exists because of my parents support and encouragement. Last but not the

least I am very thankful to my sister Misbah and younger brother Ikram for their support and

encouragement during this research project.

Finally, I am grateful to Canadian Microelectronics Corporation (CMC) and Ryerson

University for providing research facilities for this project.

Table of Contents
Abstract... iv

Acknowledgement...v

Table of Contents..vi

List of Figures... viii

List of Tables.. ix

1 INTRODUCTION...1

1.1 Overview.. 1

1.2 Project Organization... 3

2 EMBEDDED SYSTEMS...4

2.1 Embedded Systems Today.. 4

2.2 Embedded Computing...5

2.2.1 Different Solutions... 6

2.2.2 Managing Embedded Devices.. 8

2.3 Hardware... 10

2.4 Nios-II Stratix Development Board..11

2.5 Nios-11 Processor... 15

3 uCLlNUX (MICRO CONTROLLER LINUX)... 18

3.1 History of uClinux... 18

3.2 uClinux Architecture..20

3.3 Supported Architectures...20

3.4 uClinux Kernel Internais... 21

3.5 Libraries..23

3.6 Applications... 24

3.7 FLAT files...24

3.7.1 Relocation...25

3.7.2 Position Independent Code... 25

3.8 Application Ports...27

3.9 Tools...27

4 PORTING uCLlNUX ON NlOS-11 DEVELOPMENT BOARD.......................................29

4.1 Development Tools..29

VI

4.2 Building a uClinux Kernel Image..30

4.3 Booting the uClinux Kernel... 31

4.4 Building Applications...32

4.4.1 Busy Box..32

4.4.2 Boa Web Server...33

4.5 Deployment of uClinux..34

5 SMARTLIFE ARCHITECTURE AND SIMULATION RESULTS..................................36

5.1 Overnight Monitoring Patients using Pulse Oximeter... 37

5.1.1 Wireless Pulse Oximeter...38

5.2 Long Term Oxygen Therapy in Adults.. 41

5.2.1 Oxygen Delivery Systems...41

5.2.2 Cylinders.. 42

5.2.3 Oxygen Concentrators...42

5.2.4 Liquid Oxygen Systems.. 43

5.2.5 Conservation Devices..43

5.2.6 Devices for delivering Oxygen...43

5.3 Application Architecture.. 43

5.4 Simulation Results.. 48

6 CONCLUSIONS AND FUTURE WORK... 50

7 REFERENCES.. 51

VII

List of Figures

Figure 1.1 Smart Home Environment ... 1

Figure 1.2 General Architecture of SmartLife.. 3

Figure 2.1 Embedded System Structure... 6

Figure 2.2 NIOS-II Development Board... 12

Figure 2.3 An Overview of Stratix device... 13

Figure 2.4 Stratix EP1S40 Block Diagram.. 14

Figure 2.5 Example of a NIOS-II Processor System...16

Figure 2.6 NIOS-II Processor Core Block Diagram..16

Figure 3.1 Processor Memory Mapping.. 26

Figure 5.1 Respiratory Patterns..38

Figure 5.2 Pulse Oximeter.. 39

Figure 5.3 Block Diagram of Oximeter Sensor...39

Figure 5.4 Light Absorption Characteristics of the two types of Hemoglobin...............................40

Figure 5.5 Illustration of the Principle of a Pulse Oximeter.. 40

Figure 5.6 Oxygen Concentrator...42

Figure 5.7 Block Diagram of SmartLife..44

Figure 5.8 Oximeter Data Flow Chart... 45

Figure 5.9 Oxygen Concentrator Data Flow Chart... 47

Figure 5.10 SmartLife Data Flow Chart.. 48

Figure 5.11 SmartLife Server...49

Figure 5.12 SmartLife Wireless Simulator..49

VIII

List of Tables

Table 2.1 Stratix 1840 Device Features... 14

Table 5.1 Statistics of Normal Oxygen..37

I X

CHAPTER 1

INTRODUCTION

1.1 Overview

In the future, computation will be human-centered. It will be freely available everywhere, like

batteries and power sockets, or oxygen in the air we breathe. Computation will enter the human

world, handling our goals and needs and helping us to do more while doing less. We will not

need to carry our own devices around with us. Instead, configurable generic devices, either

handheld or embedded in the environment, will bring computation to us, whenever we need it

and wherever we might be. As we interact with these "anonymous" devices, they will adopt our

information personalities [1]. They will respect our desires for privacy and security. We won't

have to type, click, or learn new computer jargon. Instead, we'll communicate naturally, using

speech and gestures that describe our intent ("send this to Hari" or "print that picture on the

nearest color printer"), and leave it to the computer to carry out our will as shown in figure 1.1.

New systems will boost our productivity. They will help us to automate repetitive human tasks,

control a wealth of physical devices in the environment, find the information we need (when we

need it, without forcing our eyes to examine thousands of search-engine hits), and enable us to

work together with other people through space and time [1].

Medical Monitor

C entf 11 Monitoring Sy«t

Juicer Refrigerator Electric katle PDA Self phone

Figure 1.1: Smart Home Environment

Challenges:

The SmartLife system must master many technical challenges to support highly dynamic and

varied human activities. It must be;

• Pervasive: It must be everywhere, with every portal reaching into the same information

base.

• Embedded: It must live in our world, sensing and affecting it.

• Nomadic: It must allow users and computations to move around freely, according to their

needs.

• Adaptable: It must provide flexibility and spontaneity, in response to changes in user

requirements and operating conditions.

• Powerful, yet efficient: It must free itself from constraints imposed by bounded hardware

resources, addressing instead system constraints imposed by user demands and available

power or communication bandwidth.

• Intentional: It must enable people to name services and software objects by intent, for

example, "the nearest printer," as opposed to by address.

• Eternal: It must never shut down or reboot, components may come and go in response to

demand, errors, and upgrades, but SmartLife system as a whole must be available all the

time.

The research mainly focuses on the architectural design of SmartLife using uClinux kernel with

FPGA based soft-core CPU NIOS-II primarily accommodated by stratix FPGA (EP1S40F780C).

Temperature
Sensor Motion Sensor

Acceleration Data Collection
Sensor

Smarlife Server
Power Based

Distance Access Point
Sensor

Client

Pulse Oximeter Sensor

Figure 1.2: General Architecture of SmartLife

It also states out some differences against the general purpose Linux as well as introduces the

architectural concept of uClinux kernel.

1.2 Project Organization

This project is organized into six chapters. This chapter provides an introduction and outlines the

project organization. Chapter 2 surveys embedded systems. This chapter also provides some

details about the FPGA based hardware platform used for our research. It also explains a

software based CPU architecture called NIOS-II. Chapter 3 describes an operating system

uClinux and its architecture. Chapter 4 describes all phases of porting uClinux on an FPGA

based hardware platform along with a boot loader that’s used to boot uclinux. Chapter 5 shows

some experimental work based on an application architectural design using uClinux based an

FPGA platform for wireless sensor networks to monitor and control critically ill patients at home.

Chapter 6 concludes the project by stating some directions for the future work.

CHAPTER 2

EMBEDDED SYSTEMS

An embedded system is a device embedded in a larger system, enabling the end system to

interact with the physical world. They are designed as low cost and reliable autonomous systems

for special purpose. Compared to desktop PC, both of them manage the interface between

application programs and the hardware, but the interface between the user and the system is

totally different. Usually embedded devices have a minimum user interface, which could only

include a single button, a touch screen or no interface at all. They usually act as stand-alone

devices that are designed for that particular task which could be from mobile phone to a

controller between the industrial machine and network.

2.1 Embedded systems today

Today embedded systems control lots of different tasks deploying more powerful and complex

devices. They are integrated and plugged in many kinds of machines, but also taking a stand

alone role as they have been released in devices like PDA’s, mobile phones and MP3 players.

Many times these devices affect in our everyday life in forms which are totally transparent to the

end user. One major sector of embedded devices from the beginning has been the devices in

industry. With an external controller an industry machine with a proper interface can easily be

connected to local area network or to internet without making any modifications to the system it

self [37]. The embedded controller acts as a modem like device to the end system. The collected

information can then be displayed via a table PC in the main controller room and the necessary

settings to the end machine can be done from there. More advanced embedded devices can also

include analog or digital inputs and outputs for controlling and process the collected information

before it is forwarded on. The embedded systems can roughly be divided into high-end

embedded systems and deeply embedded systems.

- The high-end embedded system classification is used when a general purpose OS is

stripped down and left with specific modules for specific purpose. As the different parts of

embedded solutions are becoming less expensive, more and more devices classified to this

category. Examples of these devices are router, personal digital assistant; PDA and today’s

mobile phones.

- Deeply embedded systems are designed for particular application. They need to be very

compact, integrated with only few basic functions. Many times these are designed with a

minimal operating systems and hardware layout designed for the specific purpose. One key word

for these kinds of devices is transparency as their functions is invisible to the end user. Examples

of these devices are small controllers and devices in our every day life like microwave, where

they are embedded in.

2.2 Embedded computing

As components like processor and memory has become less expensive are being embedded

devices integrated in several different kinds of devices. This also means that we are able to use

more processing power and memory on these devices, so they are becoming much more complex,

providing more functionalities. The different resources running on the device requires to be

controlled by more intelligent operating system. In many simple 8-bit controllers, the tasks can

be handled in a simple server loop, just by polling the different interfaces on the device. A more

intelligent device requires more intelligent operating system to manage all the several functions

that they provide. The operating systems for these devices are many times dérivâtes from a

general purpose operating system, so the barrier between embedded and general purpose

operating system can be inconsistent [37].

Usually the operating system (OS) is supposed to fulfill the tasks of providing an extension to the

hardware. This means that it provides layering by providing the lower level drivers for the

physical chips and an application programming interface (API) for the programmer. Operating

system also provides a resource management for different applications running on that device by

handling interrupts and allocating memory for applications. It also provides an advantage to the

programmer, as it supports some kind of protection against programming failures for low level

devices and gives a foundation where programs execute.

2.2.1 Different solutions

The main difference with general purpose operating system and embedded operating system is

that the footprint of the embedded version should be only a part of the general purpose OS. The

difference can be seen when exploring the systems mission. The limitation of memory, processor

and interfaces limit the tasks that a real embedded computer can attempt. As the system operates

on a narrow, pre-designed area it provides tasks that are useful for that purpose. All complex

embedded devices are designed to be beneficial solutions for specific tasks. The barrier between

general purpose and embedded operating system is nowadays becoming more and more invisible,

as the amount of memory and process power is increasing, which also allows the systems

mission to be crown.

Several companies and communities have developed operating system specially designed for

these embedded devices. Most of these solutions have chosen UNIX -like approach to develop

the system, as it holds clear solution for small simple device often without almost any external

interfaces. As the market of embedded devices are growing a substantial efforts from major

companies have been made to enter these markets, also with non Open Source distributions. All

of the embedded system can be inspected with the following different blocks.

Application Interface
Protocol

Real Time Operating System
Drivers

Firmware
Hardware

Figure 2.1: Embedded System Structure

The Linux is the most popular UNIX-like open source operating system used today. The

advantages that Linux provides are that it is royalty free solution with easy configuration and

strong networking support. It has also been ported to run on various embedded device and there

exists many companies providing commercial and non-commercial embedded Linux solutions.

When obtaining an embedded Linux distribution it usually includes a tool chain, some ported

applications, ported libraries and of course the actual kernel. The tool chain enables you to build

applications or to create the image for an embedded device. Most of these are based on a

standard GNU tool chain, but there also exists some packages that require proprietary tools. The

applications included to the package are a set of ported applications designed specially for the

solution that can be compiled to image.

The biggest problem with Linux in commercial usage is that the general public license (GPL)

rules forces companies to keep the source code available to everyone, including the competitors.

The license still allows applications and device drivers to be private if they remain separate from

the Linux kernel and do not contain any other parts from programs developed under the general

public license (GPL). Some companies providing Linux distributions have even provided

specially designed tools to check which parts of the software have general purpose license (GPL)

violations. One example of these companies is Lineo's general public license (GPL) Compliance

Tool. More problematic license in embedded devices is lesser general public license (LGPL). In

embedded device the whole application set is build in a single compact executable. To save

space, the package is in many cases linked statically with the libraries. This means that the

source code has to be available to all parts.

By dropping unnecessary modules and drivers from the general purpose Linux kernel, it can be

compiled in the size of -800Kb. Most embedded Linux solutions are using this approach, but

when adding some real-time support or supporting MMU-less solution, additional patching is

required. The open source efforts against embedded Linux systems can be inspected from

different angles depending how they are developed. One approach is to eliminate the

unnecessary functionalities that are not required by the embedded device. One example of this

stripped, small footprint operating system is uClinux. As the Linux it self can be compiled to

rather small package as it is, the standard Linux kernel itself can be patched to meet of the

demands of the embedded device. Main advantage of this system is that the Linux applications

can be ported easily to the platform. Examples of this kind of solution are AXIS and BlueCat

Linux.

Embedded Linux is also distributed by some bigger commercial companies like Lineo,

MontaVista and Red Hat. The main key behind these companies is that they provide support and

professional services, a thorough documentation of their software development kits, maybe some

specialized tools and systemization services. Some of these vendors, like Monta Vista provides a

real-time extension to the kernel which enables the embedded device to have real-time

performance. Two embedded solutions uClinux and ELKS are also focused on MMU-less

processors. From these the uClinux provides an advantage by offering an active developer

community and providing free support. It has also been ported to several different processor's

and development boards. The uClinux kernel and tools are also totally free so for embedded

solution it does not create any extra costs.

2.2.2 Managing embedded devices

Most common physical interfaces in embedded devices are serial, parallel, A/D, D/A and

ethemet interface. These are also the only interfaces which allow physical management to be

done to the device without any user interfaces like display or keyboard. The serial

communication can be used to create the end connection to the controlled machine, but at the

development stage with a proper serial communication program it can also be used to connect to

the embedded device. Here the host machine works as a terminal emulator for the embedded

device. Serial is also often used to move the systems image to the device or to set all the basic

configuration to the board. The USB has nowadays also taken a place of connectivity interface to

the end device, but in embedded devices it is not so common.

The physical ethemet with the connectivity application enables the device to be connected to the

network. The TCP/IP's OSI model layer 4 has two protocols UDP and TCP providing the

boundary between the user applications and host-layer protocols. Embedded controllers might

provide several of different applications that can be used to connect and control the devices.

Chapters 2 and 3 introduce the most used networking programs provided by the uClinux

platform.

Client-server programs in embedded devices are usually run as servers or daemons, to enable the

connection to be made to the device. Two most known and used program in this category are

Terminal Emulation, Telnet and Secure Shell (SSH). Telnet provides the ability to remotely

access an embedded device. The telnet daemon runs on the embedded device allowing

transmitting the keystrokes from the remote host to the target embedded device and displays the

resulting screen back to the remote host. SSH is a more secure version for remote connectivity

[2]. The idea is the same as in telnet, but provides secure encrypted communications between the

devices. For each new connection a new daemon is created which handles the exchange,

encryption, authentication, command execution, and data exchange.

The File transfer protocol (FTP) is designed for file up- and downloading. In embedded devices

it can often be used in both directions by running both a daemon and a client in an embedded

device [2]. This way we can easily place files in an embedded system and also send for example

log information back to the host machine. The Simple Mail Transfer Protocol (SMTP) is usually

in embedded device implemented as client software. It allows mail to be sent to the remote host

when an event triggers it. Usually it is used for sending scheduled information to a known host.

The HTTP can be used as a web configurator, which makes it a powerful tool. The GUI of the

HTTP page can be used as a virtual interface to control the device itself and the end system

connected to it. Usually this enables only the basic set configuration to be done, but still this is

extremely handy in embedded Linux as it regularly provides only a console based connection

used with the predefined set of commands. The simple network message protocol (SNMP) is

based on asynchronous request / response commands. It is a widely accepted protocol, providing

the management of different types of networks with a simple design that causes only a small

burden to the network. It also has an extensive range of tool support. The agent of a simple

network message protocol (SNMP) executes as a server in each of the monitored or managed

device. The simple network message protocol (SNMP) provides an ability to easily manage all

the devices distributed to the field by running special management software running on the

management station. The agent on the embedded device responds to the control stations query or

setting and acts on it. The protocol also enables the embedded device to act as a proxy toward the

end system by holding a specially designed management information base (MIB) for that task.

The agent end is also able to send asynchronous traps to the end station when a predefined event

occurs.

2.3 Hardware

The basic architecture of embedded device is usually the same when it is designed to provide

network connectivity to the end system. They usually hold and serial interface to connect the

embedded device to the end system, an ethemet plug for network connectivity and of course a

Micro Controller Unit (MCU) core and some kind of system memory. The different hardware

solutions usually concern the processor type, size and type of the memory and the interfaces that

the device provides. When designing the hardware, the design goals can meet the customer

markets by competing with better solution than the existing one or by getting the product to

market faster than the competitor.

The best substitute for devices without a hard drive is flash memory which can be designed to

emulate a drive. Flash also gives an advantage of being less power consuming, faster and space

efficient than standard storages. The processors in embedded devices have two major alignments

with and without memory management unit (MMU). The advantages gained from the memory

management unit (MMU) are that it provides memory protection against the applications, but

with precautions it is possible to run an MMU-less version on a smaller device for compact

embedded applications. Of course it also gives a cheaper solution for designing the embedded

controller.

The features that are required from the embedded devices are a possibility for long term

autonomy, cost efficiency, low power consumption and general reliability. The device is to

achieve reliability from the software and hardware. They are used to sense the outside world and

control the devices in house surrounding so a failure in embedded device might mean that the

controlled device is damaged. This requires a thorough testing of the hardware and the software.

The cost efficiency is also a key feature, as the embedded devices are usually distributed and a

small change in the price affects significantly to the purchasing. The target embedded system

developed in this project is based on NIOS-II soft CPU core from Altera.

10

2.4 NIOS-II Stratix Development Board
The Nios-II development Kit, startix professional edition [35] as shown in figure 2.2 includes the

following features:

Stratix EP1S40F780 FPGA device

MAX® EPM7128AE CPLD configuration control logic

SRAM (1 Mbyte in two banks of 512 Kbytes, 16-bit wide)

SDR SDRAM (16 Mbytes, 32-bit wide)

Flash (8 Mbytes)

CompactFlash connector header for Type I CompactFlash cards (40 available user I/O

pins)

10/100 Ethemet physical layer/media access control (PHY/MAC)

Ethemet connector (RJ-45)

Two serial connectors (RS-232 DB9 port)

Two 5-V-tolerant expansion/prototype headers (2x41 available user I/O pins)

Two JTAG connectors

50-MHz crystal (socket), extemal clock input

Mictor connector for debugging

Four user-defined push-button switches

Eight user-defined LEDs

Dual 7-segment LED display

Power-on reset circuitry

Stratix devices contain a two-dimensional row- and column-based architecture to implement

custom logic. A series of column and row interconnects of varying length and speed provides

signal interconnects between logic array blocks (LABs), memory block stmctures, and DSP

blocks [35]. The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE

is a small unit of logic providing efficient implementation of user logic functions. LABs are

grouped into rows and columns across the device.

II

w
Figure 2.2: NIOS-II Development Board (Reproduced from Ref. [35])

M512 RAM blocks are simple dual-port memory blocks with 512 bits plus parity (576 bits).

These blocks provide dedicated simple dual-port or single-port memory up to 18-bits wide at up

to 318 MHz. M512 blocks are grouped into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks with 4K bits plus parity (4,608 bits). These

blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits

wide at up to 291 MHz. These blocks are grouped into columns across the device in between

certain LABs [35]. M-RAM blocks are true dual-port memory blocks with 512K bits plus parity

(589,824 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port

memory up to 144-bits wide at up to 269 MHz. Several M-RAM blocks are located individually

or in pairs within the device’s logic array.

Digital signal processing (DSP) blocks can implement up to either eight full-precision 9 x 9-bit

multipliers, four full-precision 18 x 18-bit multipliers, or one full-precision 36 x 36-bit multiplier

with add or subtract features. These blocks also contain 18-bit input shift registers for digital

signal processing applications, including FIR and infinite impulse response (HR) filters. DSP

blocks are grouped into two columns in each device [35]

Each Stratix device I/O pin is fed by an I/O element (lOE) located at the end of LAB rows and

columns around the periphery of the device. I/O pins support numerous single-ended and

differential I/O standards.

12

Each lOE contains a bidirectional I/O buffer and six registers for registering input, output, and

output-enable signals [35]. When used with dedicated clocks, these registers provide exceptional

performance and interface support with extemal memory devices such as DDR SDRAM,

FCRAM, ZBT, and QDR SRAM devices. High-speed serial interface channels support transfers

at up to 840 Mbps using LVDS, LVPECL, 3.3-V PCML, or Hyper Transport technology I/O

standards. The number of M512 RAM, M4K RAM, and DSP blocks varies by device along with

row and column numbers and M-RAM blocks [35]

U5f2M/B)oclstorDv̂fionUtmoiy.SWfkçltt»rt.4RnBa!Nrt
DSP9adctttIMtptœoiiMdFuI

dfiRFttn

UtKMUBIocb
t f Tm Doihfioa D£t Sup(>oit DOR Pa. GTl*. SSR-l
Utmotyi OtherEmbtBM SSTL-tHSTLiyOS.imCLPCMl.
UeawyfatKtlotv HyperTremport* «lnrVOSiinBrdi

J • • •

Figure: 2.3: An overview of stratix device (Reproduced from Ref. [35])

The nios-II development board provides a hardware platform for developing embedded systems.

The board features s stratix EP1S40F780C5 device with 41,250 logic elements (LEs) and

3,423,744 bits of on-chip memory. It comes pre-programmed with a nios-II processor reference

design shown in figure 2.4.

13

50MHZ Osdlator

[> -
5.0 V Regulators

• Vccint(1.5V)
► Vcck) (3.3-V)

JTAG Connectof

Mictor Connector

Proto 1 Expansion
Prototype Connector

1 CompactFlash "

Proto 2 Expansion
Prototype Connector

Push-button
Switches [4J

I UserLEDstsT

I Dual Seven-Segment Display

4

Stratix
EP1S40
Device

16 Mbyte SDRAM

Configuration
Controller a

8 Mbyte Rash Memory I

I 1Mbyte SRAM |

Ethemet RJ45
MAC/PHY 4— Connectof

Figure: 2.4: Stratix EP1S40 Block diagram (Reproduced from Ref. [35])

Table 2.1 lists the Stratix device features [35].

Table 2.1: Stratix 1S40 device features
Logic Elements 41,250

M512 RAM blocks (32 x 18 bits) 384

M4K RAM blocks (128 x 36) 183

M-RAM blocks (4K x 144 bits) 4

Total RAM bits 3,423,744

DSP blocks 14

Embedded multipliers 112

PLLs 12

Maximum user I/O pins 822

The development board provides two separate methods for configuring the Stratix device.

• Using the Quartus II software running on a host computer, a designer configures the

device directly via an Altera download cable connected to the Stratix JTAG header (J24).

• When power is applied to the board, a configuration controller device (U3) attempts to

configure the Stratix device with hardware configuration data stored in flash memory [35].

14

2.5 NIOS-II Processor

The nios II processor is a general-purpose RISC processor core, providing:

• Full 32-bit instruction set, data path, and address space

• 32 general-purpose registers

• 32 extemal interrupt sources

• Single-instruction 32 x 32 multiply and divide producing a 32-bit result

• Dedicated instructions for computing 64-bit and 128-bit products of multiplication

• Single-instraction barrel shifter access to a variety of on-chip peripherals, and interfaces

to off-chip memories and peripherals

• Hardware-assisted debug module enabling processor start, stop step and trace under

integrated development environment (IDE) control software development environment

based on the GNU C/C++ tool chain and Eclipse IDE

• Instruction set architecture (ISA) compatible across all Nios II processor systems

performance beyond 150 DMIPS

A Nios II processor system is equivalent to a microcontroller or “computer on a chip” that

includes a CPU and a combination of peripherals and memory on a single chip. The term “Nios

II processor system” refers to a Nios II processor core, a set of on-chip peripherals, onchip

memory, and interfaces to off-chip memory, all implemented on a single Altera chip as shown in

figure 2.5. Like a microcontroller family, all Nios II processor systems use a consistent

instruction set and programming model [35].

15

i l l
; SDRAM.%
' .Meniràÿ

; SRAM
Memwy

JTAG connection
to software detxjgger

D̂ Modufe.ij

SSSifc
8 # #

DC

Data4-^
Inst.

y ; SDRAM y
‘ Oortrolter >

On-OiipROM'

Tnstatebrk̂ to
cffi-à)iô m e n w

»
s e

1
^sSII LCD Display Driver

UO

EWnet Nerfiace 8 -4

CompactFlash 8

-►TXD
— RXD

: LCD y
y Screen

Buttons,
llEDgetc.

.Ethernet
MAC^HY

Compact!
Rash'#

Figure 2.5: Example of a Nios II Processor System (Reproduced from Ref. [35])

The Nios II architecture describes an instruction set architecture (ISA). The ISA in turn

necessitates a set of functional units that implement the instructions. A Nios II processor core is a

hardware design that implements the Nios II instruction set and supports the functional units

described in this document. The processor core does not include peripherals or the connection

logic to the outside world. It includes only the circuits required to implement the Nios II

architecture. Figure 2.6 shows a block diagram of the Nios II processor core [35].

JWÛ
tOAOftVMTt

Nk>t H Proc««»or Cor*

JWQ
DobugModuU

N31.0I

Conkolor :

Elocopikm
ConboW
Wonup*
Oor#o##r

GmomI
PiapoM

lOtoiSI

; Oonboi

cm#oc#S

Cutlom y 'C u rte fii^y A dtnofc .
hobucion: LoÿcUnfc

TlgWyCoupW"
ln#*uc#onMo«noiy

yngNyCot̂ W
InotfucëonMomofy

TlgWyCoupW
DMMwnory

"ngWyCXNVkdDwmMwnory

Figure 2.6: Nios II processor core block diagram (Reproduced from Ref. [36])

16

The Nios II architecture defines the following user-visible functional units:

Register file

Arithmetic logic unit

Interface to custom instruction logic

Exception controller

Interrupt controller

Instruction bus

Data bus

Instruction and data cache memories

Tightly coupled memory interfaces for instructions and data

JTAG debug module

The functional units of the Nios II architecture form the foundation for the Nios II instruction set.

However, this does not indicate that any unit is implemented in hardware. The Nios II

architecture describes an instruction set, not a particular hardware implementation. A functional

unit can be implemented in hardware, emulated in software, or omitted entirely [35].

17

CHAPTERS

uCLINUX (MICRO-CONTROLLER LINUX)

Pronounced "you-see-linux", the name uClinwc comes from combining the

greek letter "mu" and the english capital "C". "Mu" stands fo r "micro", and

the "C" is fo r "controller".

Micro-Controller Linux (uClinux) is an open source project that adds support to Linux that

enable it to run on microprocessors without Memory Management Units (MMU).These types of

processors have traditionally made up the bulk of processors used in embedded systems [20].

This research project will cover the basic architecture of uClinux, and in particular the design

and code changes required to deal with not having any memory management. The kernel, device

driver, library and application level changes will be discussed and explained.

3.1 History of uClinux

uClinux project was started in 1997 with a goal to derive a version of Linux kernel 2.0 for low

cost micro controllers. It was Jeff Dionne, Kenneth Albanowski and a group of other developers

who discussed about this possibility to embed the Linux into a Memory Management Unit less

network controllers that could handle the communication between the network and

communication system [20]. The first release of this small footprint operating system was

released with Motorola 68000 processor, which was based on MC68328 DragonBall Integrated

Microprocessor that was deployed in a SCADA controller in 1997 / 98. The first release for

public open source conununity was released as an alternative operating system for Palm Pilot in

February 1998 [20].

Jeff Dionne and Michael Durrant from Lineo started to design and build a line of embedded

controllers known as uCsimm and uCdimm. At the same time Gerg Ungerer from the same

company ported uClinux onto Motorola's ColdFire platform and designed several systems with

this base platform. The early focus of a cross-platform development of uClinux soon led to port

it for other platforms. The interest for these small processors was growing rapidly and led to a

18

number of other software development. One of these was uC-libc library which was designed to

replace Linux libc and glibc libraries into a tiny package. Other improvements were done by

SnapGear by adding the binary flat format, bFLT support and by RidgeRun with ELF shared

library.

Originally the uClinux development was based on Linux kernel version 2.0.33. The kernel

release 2.2 did have only minor changes affecting to MMU-less devices. It turned out that the

drivers for the MMU-less design from this version could rather easily be ported to version 2.0

and the needed changes could be done in this way. In the late year of 2000 the Linux kernel 2.4

was released and the changes made to this revision were major enough to port it to MMU-less

platform. Nowadays most of the development is done with the 2.4Z2.6 kernel, but there still is a

strong interest to the code based on version 2.0 and changes are also made to this uClinux tree.

uClinux systems are true Linux systems though, the kernel support for running without an MMU

is in an add on to Linux, it is not a different code base. So the uClinux kernel support is no more

than a patch against standard Linux kernel sources [28]. Although the micro-controller market

contains 4bit to 64bit CPU architectures, uClinux is targeted at the classic 32bit (and even 64bit)

microprocessors. There is no support for 16bit or less CPU’s [20].

The differentiation between a micro-controller and a standard CPU is blurry [28]. A simplistic

definition is any CPU that may be used in an embedded system could be considered a micro

controller. Better is any CPU that integrates a number of system peripherals with the CPU core is

a micro-controller. Historically these types of CPUs are low cost or specialized for certain types

of functions, and they are not as full featured as their real computer counterparts. They did not

have features like memory management units. In recent years though the trend is to include

MMUs, even on ultra low cost specialized CPU’s. In any case uClinux is all about supporting

CPUs that do not have MMUs [24].

Interestingly because uClinux is a set of additional patches for standard Linux sources all the

existing CPU support for processors with MMUs is still present. The one kernel sources tree

supports both processors with and without MMUs.

19

3.2 uClinux Architecture

The uClinux kernel is just the Linux kernel with support added for processors without MMUs.

For the most part, you get the full Linux kernel feature set when you use uClinux. The Linux

kernel API (in this case the system call set) is unchanged from standard Linux. Architecture

implementation differences still apply, but in the same way as for all ports of Linux to non x86

architectures [22].

The uClinux system is fully multi-tasking, with the usual process and process control model. All

file systems and related operations are identical. All networking support and even the device

driver interfaces are unchanged for uClinux. uClinux even supports dynamic kernel loadable

modules [20]. Obviously some changes are required to the memory management sub-system of

the kernel. Outside of architecture support this is the bulk of the uClinux patch. There is no

notion of virtual memory (VM), and no form of memory protection between processes, between

the kernel and processes or hardware device register sets. That is a fact of life without an MMU

[20].

Not withstanding the different memory subsystem, uClinux maintains the classic separation of

user and kernel space. Each has its own stack, just as on a VM system, and if the hardware

supports it the kernel maintains different privilege levels for each. Although clearly it doesn’t

mean much when there is no memory protection. Where hardware does not support privilege

levels, or different mode stack pointers these are emulated in software.

A common question is whether uClinux needs less memory than a VM Linux system. In general

the answer is no, however, most uClinux systems are small by design, keeping their setup to a

minimum. Practical uClinux systems can be built in as small as I MB of RAM [20].

3.3 Supported Architectures

The range of CPU architectures and specific CPUs that uClinux supports is truly amazing. At the

very least the list is [21]:

20

Motorola 68k family (68x302, 68306,68x328, 68332, 68360)

Motorola ColdFire (5206,5206e, 5249,5272,5282, 5307, 5407)

ARM (silicon from Atmel, NetSilicon, Aplio, TI, Samsung, Conexant, etc.)

Intel i960

Spare LEON

MIPS (Brecis,...)

NEC v850 family

Hitachi H8/300

Xilinx Microblaze (FPGA Soft core CPU)

Altera NIOS and NIOS-II (FPGA Soft core CPU)

AXIS ETRAX

Analog Devices Blackfîn

There is more in development includeing [21]:

Hitachi Super SH2

Motorola MCORE

OpenCORES OpenRISC (FPGA)

There is probably more, the uClinux community is very active I

3.4 uClinux Kernel Internals

The key difference between standard Linux and uClinux is the lack of hardware assisted memory

management support. That implies no on demand loading, and that applications must wholly fit

in RAM (or at least RAM and flash/ROM if executing in place). No current uClinux systems

support swapping to any form of secondary storage [25].

The underlying memory allocation system of Linux is used “as is”. The management of free and

used areas of memory can be identical, it does not matter that virtual page mappings exist on top

of used memory or not. The only change in this area is to allow the Linux allocator to keep

regions of larger sizes available for allocation. When a memory allocation is requested in

21

uClinux the kernel allocator needs to find a single contiguous chunk of RAM big enough to

satisfy the request. It is not possible to virtually map a set of pages together to construct a larger

region, so uClinux needs these larger allocation regions to satisfy large requests [25].

For the most part the virtual mapping support code is just stubbed out for uClinux. Virtual and

physical addresses are treated identically. Most kernel data structures associated with virtual

memory support are left intact, and the internal function interfaces left unchanged. The changes

made within the 2.6 series kernels to support uClinux are clean and reasonably small, and

demonstrate low overall impact by adding MMU-less [24].

There are some interesting side effects of not having virtual memory in other parts of the kernel.

It is worth going over those here [25]:

• No easy way to implement rtd\fork()

• No way to dynamically grow an applications stack

• No way to dynamically grow a heap (effects sbrk() system call)

• Memory fragmentation problems

Fork is more of problem that it would first seem. A true fork creates a mirror image of the

current process memory space, and then each of the parent and child get to execute in their own

memory space. What one does has no effect on the other. Problem is that we have no notion of a

virtual address space and when applications are running in uClinux they are all sharing the same

address space with each other (the kernel and usually peripheral devices as well). Absolute

addresses are used when pointers are created or when call return addresses are pushed onto a

stack. One cannot just copy the process memory image to another location, all these absolute

addresses will now be wrong - pointing back into the parent’s memory region. There is also no

way to “fix” these absolute addresses as you copy, we just cannot tell what is really a pointer and

what is random data.

For efficiency sake in uClinux we use the vfork() system call in place offork(). With vfork() both

parent and child share the memory region of the process. The semantics are that the child process

22

runs to either exec() or exit() completion, the parent sleeps until then and resumes normal

scheduled execution. The child process must be extremely careful to leave the parent memory

region in a consistent state. vfork() has been around for years, originating from BSD UNIX. The

reasoning behind it was that most programs fork() then do an exec() soon after, effectively

tearing down the copy of the memory space that was just copied in the fork(). Without virtual

memory we have no page mapping and there is no way to set markers when the application stack

becomes full. In uClinux fixed size stacks are allocated for each process at exec() time. The stack

size is stored as part of the binary program file header and it can be set on a program by program

basis to minimize the wasted memory.

Moreover, we cannot dynamically grow a process heap in the conventional way without page

table mappings in place. There is no simple way to implement the convention sbrk() system call

that grows the heap contiguously. It is straight forward to allocate more memory, just not easy to

make it contiguous with the current heap allocation. It turns out that this is relatively easy to

work around the library code. The trick is to use mmap() to allocate memory instead of sbrk().

Using mmapO means the kernel will keep track of the application allocated memory regions

(which can be anywhere in the system address space) . When the process exists it is simple to

walk the list of associated mmap regions and free them back to the kernel free memory pool.

Lastly memory fragmentation is generally more of a problem under uClinux. When the kernel or

a process tries to allocate a chunk of memory it must be fulfilled with a single contiguous chunk;

It means that a single region of the right size needs to be found - separate smaller pages cannot

be virtually mapped together to form the desired region size.

3.5 Libraries

There is one good reason one would not use glibc in uClinux systems, it is rather large and in

practice no one uses it [27]. The preferred library for use in uClinux systems is uClibc. It is a

descendant of the original uClinux library uClibc which is a collection of lightweight, standards

compliant, functions providing about 95% coverage of the glibc function set. As a general rule

anything that compiles and works on glibc will compile and work on uClibc. uClibc can be used

23

on both MMU and MMU-less systems. uClibc can be used as a shared or static library, and

offers many advanced features including threading.

Some uClinux supported architectures support shared libraries. Currently they are only supported

on MC68k and ColdFire based systems. There has been at least one implementation of shared

library support for ARM based uClinux system, but this has never been made available as GPL

open source [27].

Fundamentally two changes need to be made to a C library to support uClinux. Firstly vfork()

needs to be implemented, and secondly the malloc() family of functions needs to be changed to

use mmapO as the system call to get and free memory. Generally these are simple tasks. Many

other libraries have also been ported to uClinux, The list includes openssl, libpcap, zlib, libjpeg,

libpng, and many others [27].

3.6 Applications

Applications are loaded and run the same way under uClinux as Linux. Applications are made up

of the same fundamental parts in uClinux too and they each have a code portion (sometimes

called the text segment) an initialized data section (often called the data segment), an un

initialized data section (called the bss) and a stack.

One notion that is supported on many uClinux target architectures is the ability to leave the code

section of an application in fixed random access storage (e.g. Rash or ROM memory) and

execute the instructions from that memory space. This is called “execute in place” (XI?) and can

provide great memory savings. In this case, the entire code section of the program must be stored

in one contiguous chunk. Not many filesystems actually do this. uClinux also supports the more

typical notion of loading a programs code and data into RAM and executing it from there.

3.7 FLAT Files

uClinux uses a new application binary file format called the flat file. The reasoning for a new file

format is two fold. Primarily to simplify the loading and executing process for an application.

24

Secondly a small and lightweight binary format to build a small footprint system. On a virtual

memory system applications are absolutely linked to load and execute in their own virtual

memory space. Addresses within the code and data are fixed in that virtual address space.

Generally we don’t have fixed addresses in uClinux. An application may be loaded and run

anywhere in RAM, or when XIP at some location in flash/ROM. We will not know in advance

the memory address the code actually resides in. There are basically two different methods used

in uClinux to deal with the unknown address problem [29].

3.7.1. Relocation

Relocation entries are stored in the flat binary. When an application program is being loaded to

execute, the kernel flat loader (binfmt_flat) patches the code and data with the relocations. It uses

the addresses range allocated for this application as the relocation address. Obviously for this

method an applications code must be loaded into RAM, it cannot be executed XIP in flash/ROM

[29].

3.7.2. Position Independent Code (PIC)

During compiling the application, the compiler can generate position independent code that is

code that has no absolute address references. It is not enough though to just have the code

position independent as we also need position independent data section. This is typically

achieved through the use of a global offset table, where a table of address offsets is created for

each address and all the accesses are indexed through a base register.

PIC code often tends to be a little slower, due to the indirect access required. But it has the

advantage of sharing of code regions and for XIP. Please note that every instance of a running

application still has to have its own data segment and stack in RAM. The code segment can only

be shared or left and used in place in the flash/ROM [29].

It would be fair to say that the PIC method is more popular in uClinux systems. However it

cannot be supported by all the architectures, and it does require a compiler capable of generating

25

PIC code and data. Relocation is simpler to implement and it is often supported first on a new

uClinux architecture port [29]. Relocation and PIC are not mutually exclusive; both can and

often are supported on a system. The kernel loader can determine from the flat format file header

whether the program can be run XIP or not.

Code

Data - initialized
bss

Stack Ü

Malloc region # 0

Malloc region # 1

Figure 3.1: Processes memory mapping

Figure 3.1 shows a simplistic representation of what a processes memory mapping might look

like. Note that typically the data and stack regions are allocated as a single chunk of memory and

notice that this is dislocated from the programs code section. The code section may well be in

flash/ROM or some other place in RAM, which is typical for XIP. It is also possible for a

relocation load that the code, data and stack are allocated as a single chunk and contiguous [29].

Also note the malloced regions (that is what is conventially referred to as the heap) is allocated

from whatever free memory the kernel has available.

Although it would be possible to support the executable and linking format (ELF) applications

on uClinux it has never been done. It would require relocating the code and data at load time -

unlike on a VM Linux kernel where it is already fully linked. So the Linux kernel ELF loader

could not be used as it is. The other advantage of flat format files is that they are extremely small.

The header is 40 bytes, and no padding is used within the file [29].

26

3.8 Application Ports

The great thing about building a system on top of standard Linux and preserving the API is that

one can port any application to uClinux that exists for Linux. The set of ported applications for

uClinux is simply huge. Here is a short list of ported application packages:

TOOLS/UTILITIES: sash shell, minix shell, busybox, tinylogin, agetty, python, vi

(clone), tip

NETWORKING: net-tools, ping, ipfwadm/iptables, tftp, ftp, dhcpcd, traceroute,

tcpdump, ssh, ntp, wget, iproute2

SERVERS: init, inetd, pppd, pptpd, diald, boa (web), telnetd, tftpd, ftpd,dhcpd, samba,

squid, snmpd, zebra, Freeswan (IPsec), dnsmasq, gdbserver, sshd

FILESYSTEM: mount/umount (including NFS), smbmount/smbumount, elfsprogs,

fdisk, reiserfs tools,

MISCELLANEOUS: mpSplay, microwindows, mtd-utils, netflash, hotplug tools

This is but a sampling of the packages ported. The uClinux-dist distribution contains over 150

application packages currently that can run on uClinux.

3.9 Tools

Like any other Linux system, uClinux systems are built using the standard GNU tools. Exact

versions vary between architectures but currently many of the main-stream stable targets are

using [26]:

• binutils-2.14

• gcc-2.95.3

• gdb-5.0

On many targets the uClinux community has patched these tools to improve position

independent code and data support, and support for shared libraries. This is certainly true for

MC68k and ARM tool chains used for uClinux. Moves are under way to update to more recent

27

gcc versions (specifically 3.3) and to integrate many of the uClinux specific patches back into the

gcc source base [26].

The GNU debugger (GDB) and its simulator capabilities can be used to run uClinux for some

architecture. For example the ARMulator simulator extension of GDB can run uClinux in its

own right. Makes a great development tool to get up to speed on uClinux on ARM platforms, or

to develop without real hardware.

Now a day many of the embedded processors contain jtag, bdm or on-chip debug modules.

Generally these can be driven by simple hardware dongles to parallel ports or similar on a PC.

Many are supported through servers or with patches by GDB. Many offer advanced debug

features like the ability to start and stop the CPU, set break points, dump and change memory.

Many also allow programming flash memory in the circuit. All these features make debug easier

on these embedded platforms. GDB can also be used to debug uClinux applications. Normally

this is done via a network debug arrangement, running the gdbserver stub on the uClinux target

system [26].

Another of the key tools required for uClinux development is the elJ2flt converter. Elf2flt

converts a uClinux application that has been compiled as an ELF format object (as is normally

done) to a uClinux flat format file. The conversion is actually reasonably strait forward. For

those unfamiliar with developing for deeply embedded targets the usual setup is to cross compile

for target from a host development PC. This is true for uClinux, where the target system is

almost never used as the development system. Most developers choose a Linux PC as their

development system. It has been done on PowerPC based laptops as well. And for the truly

disturbed one can even develop uClinux systems (compiling from source and all) under

Windows using Cygwin [26].

28

CHAPTER 4

PORTING uCLINUX ON NIOS-II DEVELOPMENT BOARD

4.1 Development Tools

Installing development tools to cross-compile the uClinux kernel for the Nios-II development

board is necessary. Cross compiling is the act of building source code on one system, the build

host, into executables or libraries to be executed on a different host, the native host. The build

host and native host may differ in operating system and/or processor type. Cross-compiling is a

relatively new thing if one compares it to the history of computers and software [26].

These tools provide a foundation for the development and can be obtained as a pre-build binary

tool package or compiled by the developer by patching the GNU tools and then compiling them.

The whole tool chain includes the following components is installed under /opt/nios2_toolchain

directory:

binutils - a collection of binary tools (Id, as, etc.). Based on

the GNU binutils-2.10.

gcc - C/C++ compiler. Based on GNU gcc-2.95.3.

elfZflt - An elf to flat converter.

All the tools have to be patched and configured in order to get them to work with the uClinux

kernel. An important issue in developing code is the ability to track down the instances that

might effect on programs execution. Under the uClinux, two different kinds of debugging is

required, one for kernel source code and the other for user applications. In this way, uClinux

provides the ability to use GNU debugger (GDB), which allows user to debug programs written

in C/C++ and with some other languages. Apart from cross compiler tool chain we need a

hardware design file for Nios-II development board as well as utility programs to download and

debug uClinux kernel [26].

29

4.2 Building a uCLinux Kernel Image

A typical uCLinux kernel can be built with the following steps:

1. The kernel source file (for example, linux 2.6.11.tar.bz2) can be unzipped if necessary using

the following bunzip2 command:

bunzip2 linux-2.6.11 .tar.bz2

2. The source code is extracted from the tar image using the tar command. An example follows:

tar -xvf linux-2.6.11 .tar

3. Create a new directory (for example, /usr/src/linux-2-6-11) and copy the extracted source files

to it.

4. The new kernel is now ready to be built. Drill down into the linux-2-6-11 directory by typing

the following: cd /usr/src/linux-2-6-11

5. Download the uclinux and nios2 patch files from www.niosforum.org and patch the linux-

2.6.11 stock kernel to a Nios-II kernel.

6. uClinux kernel compilation steps:

make ARCH=nios2nommu CROSS_COMPILE=nios2-linux~uclibc- hwselect SYSPTF=std_ls40.ptf

make ARCH=nios2nommu CROSSjCOMPILE=nios2-linux-uclibc-

make ARCH=nios2nommu CROSS_COMPILE=nios2-linux-uclibc- menuconfig

Configure the Linux kernel to be as large or small as required, depending on the number of

drivers and support functions that are needed on the final application.

7. Upload the uClinux kernel:

nios2-download -g vmlimix

The -g option starts after uploading.

30

http://www.niosforum.org

4.3 Booting the uCLinux kernel

With storage cases of flash and RAM, the processor is able to address directly to bits stored in

them. In a simplest case the execution of a uClinux kernel is achieved by placing the startup code

to the flash in to the processors startup address. With these kind of setting the uClinux kernel is

in charge of doing the hardware setup and placing the necessary segments into the RAM.

A more safe and flexible option is to place a small stand alone piece of code called a boot loader,

to the start offset of the flash. The boot loader can handle the initial settings of the board

including the basic hardware setup and allows downloading the image to the board via serial or

ethemet. It can also handle some environment settings, which enables the user to write some

simple configurations without needing a writable file system for the Flash.

The uClinux can be used with different boot loaders for specialized tasks in different stages of

the development. Some of the boot loaders for uClinux are CoLilo, My Right Boot, Motorola's

dBug and U-boot, which is used with the Nios-II platform. The Universal boot, U-boot enables

the loading of image or images through a serial or ethemet, with the Trivial File Transfer

Protocol (TFTP) protocol. It also enables the usage of environment variables, booting of

compressed and decompressed images and booting kernel from a JFFS2 partition.

Das U-Boot is a GPL'ed cross-platform boot loader shepherded by project leader Wolfgang Denk

and backed by an active developer and user community. U-Boot provides out-of-the-box support

for hundreds of embedded boards and a wide variety of CPUs including PowerPC, ARM, XScale,

MIPS, Coldfire, NIOS, Microblaze and x86. One can easily configure U-Boot to strike the right

balance between a rich feature set and a small binary footprint. U-Boot has its origins in the

SxxROM project, a boot loader for 8xx PowerPC systems by Magnus Damm. When bringing

that project to Sourceforge in 2000 the current project leader, Wolfgang Denk, renamed the

project PPCBoot since Sourceforge did not allow project names to begin with a digit.

The openness and utility of PPCBoot fanned the flames of its popularity, driving developers to

port PPCBoot to new architectures. By September 2002 PPCBoot supported four different ARM

31

processors and the name PPCBoot was becoming quaint. In November 2002 the PPCBoot team

retired the project, which led directly to the surfacing of "Das U-Boot".

4.4 Building Applications

When the kernel is complete and the root file system is configured, applications can be built to

run on the NIOS-II development board. These applications could range from telnet to the apache

web server. The development tools containing the NIOS-II cross compiler usually contain

application source files that can be built for a NIOS-II target. A couple of these software

packages are discussed below. Note that when the applications are built, the system must be

configured to run them correctly.

4.4.1 BusyBox

BusyBox provides basic utilities for embedded systems and is ideal for providing minimalist

replacements for most of the common utilities one would have on the desktop system (for

example, sh, tar. Is, etc.). It provides a good starting point for developing an effective and

efficient embedded Linux file system.

The following steps show an example of building BusyBox for the NIOS-II system:

1. Download the BusyBox source code from http://www.busybox.net/

2. Extract the BusyBox files using the tar command.

3. Modify the config.h file to define or undefined the applications to make new line during the

build.

4. If necessary, change the CROSS field in the main BusyBox Makefile to point to the NIOS-II

cross compiler.

5. Type make clean

6. Type make install

32

http://www.busybox.net/

7. The utilities for the system are now built and can be copied from the _install directory of

BusyBox to the location of the root file system to be mounted on the target board (e.g.,

/opt/nios2development/).

4.4.2 Boa Web Server

A computer that delivers web pages is a web server. Every web server has an IP address and

possibly a domain name. Installing server software and connecting the machine to the Internet

can turn any computer into a Web server.

Boa is a single-task HTTP server. Unlike traditional web servers, it does not fork for each

incoming connection, and it does not fork many copies of itself to handle multiple connections.

Boa internally multiplexes all of the ongoing HTTP connections and forks only for common

gateway interface (CGI) programs, which must be separate processes.

The following steps show how to build Boa for the NIOS-II system:

1. Download the Boa source code from http://www.boa.org/

2. Extract the Boa files using the tar command.

3. Type make clean.

4. Type ^configure

5. If necessary, change the CC field in the main Boa Makefile to point to the NIOS-II cross

compiler.

6. Type make all.

A Boa executable file should be located in the main Boa directory. Copy this file and relevant

other files to the root file system for the target.

33

http://www.boa.org/

4.5 Deployment of uCLinux

The Linux version used on the host was Debian Linux r3.0. The serial port (COM!) was

configured to operate at 115200 baud rate with no parity or stop bits and 8 data bits using the

Kermit application. The serial port of the host Linux PC was connected to the terminal port

(RS232) of the NIOS-II development board using a standard 9-way connector.

After building the uClinux kernel image we used a utility program mkimage that comes with U-

Boot to add a tiny header containing the load and execute address for the image as given below

(all on one line):

Vmkimage -A nios2 -O linux -T kernel -C gzip -a 0x01000000 -e 0x01000000 -n "Nios-

II Linux Kernel Image" -d vmlinux.gz ulmage

This command appends a small header containing the load and executes address 0x01000000 to

the kernel image and creates a new file called ulmage. The header also contains a CRC32

checksum, checked later during the image load.

The following output shows the uClinux kernel being downloaded and executed using U-Boot

loader.

DK1S40 ==> tftpboot 1100000 ulmage

Using MAC Address 00:07:FFFFFFED:0C:04:FFFFFFBD

TFTP from server 10.0.0.1; our IP address is 10.0.0.51

Filename 'ulmage'.

Load address: 0x1100000

done

Bytes transferred = 715524 (aeb04 hex)

DK1S40 ==> bootm 1100000

34

Booting image at 01100000 ...

Image Name; Linux Kernel Image

Image Type: Nios-II Linux Kernel Image (gzip compressed)

Data Size: 715460 Bytes = 698.7 kB

Load Address: 01000000

Entry Point: 01000000

Verifying Checksum... OK

Uncompressing Kernel Image ... OK

Linux version 2.6.11-ucO-barcol (root@debian-dell-p3) (gcc version 3.4.3 (Barco Control

Rooms)) #2 Sat Jul 2 11:40:34 EOT 2005

uClinux/Nios II

Altera Nios II support (C) 2004 Microtronix Datacom Ltd.

Built 1 zonelists

Kernel command line: CONSOLE=/dev/ttySO noinitrd ip=bootp root=/dev/nfs rw

FID hash table entries: 128 (order: 7, 2048 bytes)

Console: colour dummy device 80x25

Dentry cache hash table entries: 4096 (order: 2 ,16384 bytes)

Inode-cache hash table entries: 2048 (order: 1, 8192 bytes)

Memory available: 14464k/16384k RAM, Ok/Ok ROM (1524k kernel code, 215k data)

Mount-cache hash table entries: 512 (order: 0,4096 bytes)

NET: Registered protocol family 16

devfs: 2004-01-31 Richard Gooch (rgooch@atnf.csiro.au)

devfs: devfs_debug: 0x0

devfs: boot_options: 0x1

NIOS serial driver version 0.0

ttySO (irq = 4) is a builtin NIOS UART

io scheduler noop registered

io scheduler cfq registered

smc_probe: 50000 Khz Nios

SMSC LAN91C111 Driver (v2.1), (Linux Kernel 2.6)

35

mailto:rgooch@atnf.csiro.au

ethO; SMC91CllxFD(rev;l) at 0x82110300 IRQ:6 MEMSIZE:8192b NOWAIT;0 ADDR:

00:07;ed:0c;04:bd

smc_probe: 50000 Khz Nios

NET: Registered protocol family 2

IP: routing cache hash table of 512 buckets, 4Kbytes

TCP established hash table entries: 1024 (order: 1, 8192 bytes)

TCP bind hash table entries: 1024 (order: 0,4096 bytes)

TCP: Hash tables configured (established 1024 bind 1024)

NET: Registered protocol family 1

NET: Registered protocol family 17

ethO:PHY 100BaseT

ethO:PHY Full Duplex

Sending BOOTP requests . OK

IP-Config: Got BOOTP answer from 10.0.0.1, my address is 10.0.0.51

IP-Config: Complete:

device=ethO, addr=10.0.0.51, mask=255.0.0.0, gw= 10.0.0.1,

host=nios2, domain=nios2.net, nis-domain=(none),

bootserver= 10.0.0.1, rootserver= 10.0.0.1, rootpath=/opt/nios2development

Looking up port of RPC 100003/2 on 10.0.0.1

Looking up port of RPC 100005/1 on 10.0.0.1

VPS: Mounted root (nfs filesystem).

Mounted devfs on /dev

Freeing unused kernel memory: 68k freed (0x1190000 - 0x1 laOOOO)

init started: BusyBox vl.00-pre8 (2005.08.19-23:48+0000) multi-call binary

Bummer, could not run '/etc/init.d/rcS': No such file or directory

Please press Enter to activate this console.

BusyBox vl.00-pre8 (2005.08.19-23:48+0000) Built-in shell (msh)

Enter 'help' for a list of built-in commands.

#

36

CHAPTERS

SMARTLIFE ARCHITECTURE AND SIMULATION RESULTS

SmartLife is an FPGA based point of Intelligence that monitor the critically ill patients at home

as well as provide assistance in their daily life. People with asthma, emphysema chronic

bronchitis, occupational lung disease, lung cancer, cystic fibrosis, or congestive heart failure may

need oxygen therapy at home [30].

5.1 Overnight monitoring patients using pulse oximeter

It has long been recognized that the physiological response of the patient to a stress or disease

will largely determine the outcome. It is important, therefore, to monitor the physiological

responses of patients since this not only allows the assessment of physiological reserve but will

also give a baseline against which the effectiveness of any applied treatment can be judged. Pulse

oximetry is one of the most widely used tools to determine a patient’s cardio respiratory stability.

Over the last 40 years, it has often replaced arterial blood gas analysis because the arterial oxygen

saturation (SaOi) frequently gives a sufficient amount of information about a person’s respiratory

patterns. The reduced supply of oxygen over demand for oxygen results in cell injury and organ

dysfunction [31].

Pulse oximetry is a well-established tool routinely used in many settings of modem medicine to

determine a patient’s arterial oxygen saturation and heart rate. A descriptive statistics of normal

oxygen values in different age groups are shown in the following table.

Table 5.1; Statistics of normal oxygen
Age Group, Yr Patient, No. Low Sat (SD), % Sat 10 (SD). % Sat 50 (SD),%

All ages 350 90.4(3.1) 94.7(1.6) 96.5(1.5)
< 1 30 90.7(2.6) 95.2(1.0) 96.4(1.2)

1-10 180 90.1(3.6) 95.1(1.5) 96.8(1.4)
10-20 46 90.4(2.7) 94.5(1.8) 96.5(1.6)
20-30 12 92.0(3.4) 94.8(1.1) 96.3(1.0)
30-40 24 91.5(2.2) 94.8(1.3) 96.3(1.1)
40-50 25 91.1(2.0) 94.2(1.7) 96.0(1.3)
50-60 16 90.4(1.9) 93.6(1.6) 95.8(1.7)
>60 17 89.3(2.8) 92.8(2.3) 95.1(2.0)

Low Sat = lowest oxygen saturation during the night; Sat 10 = saturation below which the patient spent 10%

of the time; Sat 50 = median saturation during the night (Reproduced from Ref. [38])

37

An overnight oximetry data as shown in figure 5.1 shows a breathing pattern of an obstructive

apneas and hypopneas.

23:43:19
FLOW»

RESP«,

RESP-

RESP.

SaO,

78%

VWIATA T V ^ MA/vk / v v v 'JJW A A A A T w \ f

| / W \

' / 'M / V '

\AiyJV j \ / V v v AAlWVv\r
s . 96

S2
■s. 9!1 9:

7
y /

B y
N. 95

Figure 5.1 Respiratory patterns: A 3-min time period for a patient with OSA syndrome showing
obstructive hypopneas with a more regular up-and-down waveform of the pulse oximetry curve

(Reproduced from Ref. [38])

5.1.1 Wireless pulse oximeter

Advantages of wireless technology are obvious in situations where monitoring a patient from a

distance leads to improve efficiency [34]. As shown in figure 5.2 the oximeter auto magically

turns itself on. After a few seconds, the "perfusion display" LED starts blinking in sync with

your pulse. The color of the blinking LED is green, yellow or red, indicating whether the unit is

detecting good, marginal or inadequate pulse amplitude (If the indication is yellow or red, simply

reposition the clip or change to a different finger). After a few heartbeats, the two numeric LED

displays light up. The top number — labeled "%Sp02" — shows the percentage of oxygen

saturation of your arterial blood, normally a figure between 95% and 100% at sea level, and

progressively less at higher altitudes. The bottom number — labeled with a little heart symbol —

shows your pulse rate in beats per minute.

38

Figure 5.2: Pulse Oximeter (Reproduced from Ref. [34])

The figure 5.3 below shows the block diagram of a wireless Oximeter sensor. The sensor itself, a

way to perform rudimentary processing on its output to measure blood oxygen saturation where

as the controller convert the sensor output into a digital form and pass this data onto a suitable

form the transceiver, and of course, the wireless transmitter. Most medical equipment uses the

Industrial, Scientific and Medical (ISM) band, which operates at 2.4GHz.

Power

TransmitterSensor Controller

Figure 5.3: Block diagram of Oximeter Sensor

The most common non-invasive method used to measure blood oxygen saturation is known as

pulse oximetry. This technique is based upon the different red and infrared light absorption

characteristics of oxygenated (Hb02) and deoxygenated (Hb) hemoglobin. The figure below

illustrates the differences in absorption of both.

39

(RED)
660nm

(INFRARED)
910nm

Hb

0.1
600 700 800 900 1000 wavelength (nm)

Figure 5.4: Light absorption characteristics of the two types of hemoglobin

Both red and infrared light are shone through a part of the body that is translucent, and has good

blood flow (typically the ear, finger or toe). A photo detector at the opposite end determines the

strength of the resulting red and infrared signals.

Red Infrared

(X = 600-750nm) (X = 850-1 GOOnm)

ii

PHOTODETECTOR

Figure 5.5: Illustration of the principle of a pulse oximeter

The ratio of red to infrared is calculated, and from this the percent of oxygen saturation (or Sp02

value) can be determined. Most oximeters are pulse oximeter, which means they can compensate

for the fact that the pattern of saturation level at any instant will be a waveform, the peaks

occurring at every heartbeat or ‘pulse’ [46].

Pulse oximetry provides a rapid, simple, continuous, and noninvasive way to measure blood

oxygen saturation levels it’s perhaps the fastest and most objective early warning indicator

available to gauge the presence and degree of hypoxemia Pulse oximetry may alert you to

hypoxemia within seconds widening your window of opportunity for intervention. Baseline

40

oxygen saturation levels vary depending on patient's cardiopulmonary status, but in general, the

normal saturation for a patient at sea level is 95% Sp02 or above. The level at which a person

starts to become noticeably impaired is approximately 90% Sp02, and a reading close to 80%

Sp02 indicates severe hypoxia. However, there are limitations to this technique, which can affect

the accuracy of the reading [47].

5.2 Long Term Oxygen Therapy in Adults

Domiciliary oxygen therapy is an effective but potentially an expensive therapy. Previous studies

have demonstrated reduced mortality with the use of domiciliary oxygen therapy in patients with

chronic obstructive pulmonary disease (COPD) [30]. There is also evidence that it improves right

heart failure caused by corpulmonale, enhances neurophysiological function, and increases

exercise tolerance in the performance of day to day activity. Supplementary oxygen is unlikely to

contribute usefully to the relief of dyspnoea, heart failure or angina in absence of hypoxaemia

[31]. The other conditions likely to benefit from supplemental oxygen therapy include cyanotic

congenital heart disease, severe congestive cardiac failure, interstitial lung disease, advanced

lung cancer, bronchiectasis or any illness with chronic hypoxaemia [31].

5.2.1 Oxygen Delivery Systems

The various oxygen delivery systems are,

• Cylinders

• Concentrators

• Liquid oxygen

• Conservation devices

5.2.2 Cylinders

The cylinders contain pure oxygen in a compressed state. They deliver 100% oxygen at the outlet

and are preferred for intermittent use at home. Cylinders need to be protected from heat, as it

causes an increase in their pressure. When oxygen is used for more than 8 hours a day, it is more

convenient to use an oxygen concentrator. The use of portable oxygen cylinders may improve

exercise tolerance, quality of life and the ability to do simple tasks. Portable cylinders can be

41

refilled at home from a source of liquid oxygen using a special valve, but not from large gas

cylinder or an oxygen concentrator [33].

5.2.3 Oxygen Concentrators

Oxygen concentrators are electrically driven devices that entrain room air. A molecular sieve

removes nitrogen and delivers oxygen at the outlet. They do not store oxygen and hence must

run all the time for which oxygen is needed. The concentrators should be placed in a well-

ventilated area with adequate tubing and with multiple outlets to increase patient freedom. These

units deliver up to 90%-95% oxygen at the outlet at a flow rate of 2L/min. The percentage of

oxygen falls with the increase in flow rate. A back up oxygen cylinder is desirable in case of

concentrator breakdown or power failure [33].

Figure 5.6: Oxygen Concentrator (Reproduced from Ref. [33])

5.2.4 Liquid Oxygen Systems

Liquid oxygen systems provide the most flexible source of home oxygen. Oxygen has a boiling

point of -183°C and 1 liter of liquid oxygen provides 860 liters of oxygen. The liquid oxygen

containers are insulated and are at a relatively low pressure. Frost bite or bums can occur by

contact with the container or the tubing. The reservoir is used to fill light portable cylinders

containing 1 litre of liquid oxygen, which can last up to 8 hours when the oxygen is delivered at

42

2 litres/min [33].

5.2.5 Conservation Devices

Conservation devices are introduced between the oxygen delivery source and the patient. They

ensure that oxygen is delivered only during inspiration and not wasted during expiration. These

are useful cost and time conserving devices, especially for portable units. Conservation devices

switch on the flow by sensing negative pressure at the nares via the nasal cannula. These may not

trigger if the patient breathes by his mouth.

5.2.6 Devices for delivering oxygen

Nasal prongs are generally the best way of delivering long-term oxygen as it is convenient whilst

eating and talking. Extra-soft nasal prongs may be used for continuous oxygen therapy.

Facemasks can be used when there is no danger of carbon dioxide retention as the fraction of

inspired oxygen (Fi02) delivered by variable performing masks varies with changing breathing

pattern. Transtracheal oxygen delivery has the advantage of allowing substantially lower flow

rates. However, care of this relatively invasive delivery system is demanding.

5.3 Application Architecture

Due to limited research resources we build a software simulator for wireless sensors network

environment using Java language based on its platform independence as well as rich class

libraries. SmartLife (A point of Intelligence) application is written in C language which will run

on uClinux based NIOS-II development board. Figure 5.7 shows a block diagram of SmartLife.

43

W ireless
O xygen

C ontentrator
W ireless
O xim eterS m a r tL ife

Figure 5.7: Block diagram of SmartLife

Upon power on, the oximeter transmits an ‘announcement’ message, and then waits for a

response. If none is forthcoming after 2 seconds, it will try again. The acknowledgement consists

of a message identifier, as well as an ID for the oximeter, which is then used for all the

subsequent messages.

Sampling of the output from the wireless sensor then begins, and transmissions occur in a ‘burst’

every 20ms. Once per second, or 50 transmitted readings, the oximeter will begin to watch for a

‘refresh request’ message sent by the SmartLife and will respond with an acknowledgement. If

this message is not received after another 50 readings, then it is assumed that the

communications have been broken, and will re-transmit data otherwise it return to the beginning

and transmit the ‘announcement’ message as shown in figure 5.8.

44

Start

Ack Received?

Ack Received?

Transmit Data

Transmit Announcement
Msg

Wait for Ack

Figure 5.8: Oximeter Data Flow Chart

Oxygen concentrators arc stationary, electrical units that take in nitrogen from the air around the

patient, provides a streaming flow of oxygen. Oxygen concentrators are less expensive than

liquid oxygen and are the most cost-effective source of oxygen therapy. Almost 80% of US

home oxygen patients use oxygen concentrators in their daily lives. A concentrator does not store

oxygen like the aluminum cylinders of the past. It produces and distributes Oxygen on a

continuous basis. It takes the regular air, which normally contains 21% oxygen, and removes the

nitrogen. The resulting air is 95.5 percent pure oxygen. Actuality, concentrators produce oxygen

that is generally between 87 - 95 percent pure. US Medicare requires the purity to be greater than

85 percent.

45

Oxygen concentrators are very reliable and easy to maintain. Keeping the intake filter clean and

clear of dust is being the most important. This should be done weekly. There are also some very

important safety issues. Oxygen is the most dangerous in the presence of fire. There should be no

smoking, no flammable materials, and no heat sources near a working oxygen concentrator.

Oxygen concentrators have some limitations; they can't produce high flow oxygen or a supply of

portable oxygen. Light weight cylinders, liquid oxygen systems and oxygen conservation devices

are excellent portable supply systems and each should be discussed with the patient's physician

to determine which is the best. Supplemental oxygen is only available by prescription and must

meet certain requirements to be covered by Medicare or insurance. An oxygen concentrator

should have an oxygen sensing device which monitors the level of oxygen produced by the

concentrator and warns both visual and audible alarms when its level falls too low.

Upon power on, a typical oxygen concentrator transmits an ‘announcement’ message and when

waits for a response. If none is forthcoming after 2 seconds, it will try again. The

acknowledgement consists of a message identifier, as well as an ID for the oxygen concentrator,

which is then used for all subsequent messages. Sampling of the output from the wireless sensor

then begins, and transmissions occur as a ‘burst’ every 20ms. Once every second, or 50

transmitted readings, the concentrator will begin to watch for a ‘refresh request’ message sent by

the SmartLife and will respond with an acknowledgement. If this message is not received after

another 50 readings, then it is assumed that the communications have been broken and will re

transmit data. Otherwise it returns to the beginning, transmitting the ‘announcement’ message as

shown in figure 5.9.

46

s ta r t

-M-

Ack Received?

Ack Received?

Transmit Data

Transmit Announcement
Msg

Wait for Ack

Figure 5.9: Oxygen Concentrator Data Flow Chart

Upon power on, the SmartLife server waits for an announcement message, once it received a

message it sends an acknowledgement and then waits for an incoming data. If none is

forthcoming after 2 seconds, it will try again. Sampling of the data from the wireless sensor then

begins, and receiving occur as a ‘burst’ every 20ms. SmartLife will respond to the incoming data

appropriately. If this data is received from wireless oximeter sensor and its reading is less than

90 then it will set an oxygen concentrator to deliver oxygen at the rate of 31pm. If this data is

47

received from wireless oxygen concentrator and its reading is less than 85 then it will turn on the

alarm to make sure that oxygen concentrator is not malfunctioning as shown in figure 5.10.

Ack Received?

S p 0 2 < 90 ?

End

Pure Oxygen <

Oximeter/
Concentrator?^

Set Oxygen 31pm Turn on Alarm

Received Data

Received Msg

Send Ack

Figure 5.10: SmartLife Data Flow Chart

5.4 Simulation Results

A server running on uClinux shows sending and receiving data from different wireless sensor

devices as seen in figure 5.11. A simulator shows sending and receiving data from SmartLife

server as seen in figure 5.12.

48

f f l&OT » s#pTiLoSK%%
wwo

e»« " Edt., M«w \ iwrnmat o>b» ̂ fcfelp '<
./Sm artL ifeS «rv tr 1234 &

SmartLif#: A p o in t of In to ll ig e n c o fo r w iro lcss Sensor* Network in U biquitious Environment I
Date Received from w ire le s s Sensors: 06:74

Data from Oximeter: 96:74

A r te r ia l Oxygen S a tu ra tio n (Sp02) Reading: 96
Heart Rate (Pulse) Reading: 74
Data Received from W ire less Sensors: 92V

Data from Oxygen C oncentrator: 9Zk

Oxygen C oncentrator Reading: 92
Data Received from W ire less S ensors: 06:73

Data from Oximeter: 96:73

A r te r ia l Oxygen S a tu ra tio n (Sp02) Reading: 96
H e a rt R ate (P u ls e) R e a d in g : 73
Data Received from w ire le s s Sensors: 91V

Data from Oxygen C oncentrator: 91V

Oxygen C oncentrator Reading: 91
Data Received from W ire less Sensors: 89:84

Data from Oximeter: 89:84

A r te r ia l Oxygen S a tu ra tio n (Sp02) Reading: 89
Heart Rate (Pulse) Reading: 84
Data Received from w ire le ss Sensors: 84V

Data from Oxygen C oncentrator: 84V

Oxygen C oncentrator Reading: 84
D________________________

h^edeW an-W AomefhyyNo;^j# j^wmeÿaqA^^ CSnwyttJfe Stmul^y)

Figure 5.11: SmartLife server

^pteattonsx Actions "I c

, g y g
b u r GOING; 96 74
bUTGOING: 92%
INCOMING: I got data from Oxygen Concentrator II
joUTGOINC: 96:73
INCOMING: I got data from Oximeter II

ITGOING: 91%
Incoming: I got data from Oxygen Concentrator II
jOUTGOING: 89:84
INCOMING: I got data from Oximeter IlSei Concentrator to deliver Oxygen # 31pm II

ITGOING: 84%
kNCOMING; ALARM for Oxygen Concentrator I

Oxygen Concemrator OOxjntetff

Pisconnea

0 Conneaed

@ 1) # #!miwWk Sirntdator ^

Figure 5.12; SmartLife wireless simulator

49
PROPERTY OF

RYERSON UNIVERSITY UBRABŸ

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The research has been focused on uClinux based Embedded System architecture which provides

an integrated and comprehensive framework for building pervasive applications. We describe the

design and implementation of our architecture as well as building an application using uClinux.

Major contributions include the investigation, deployment, design and development of a wireless

sensor networks application for monitoring critically ill patients in smart home environment as

well as porting uClinux on an FPGA based hardware platform along with universal boot loader

called U-Boot. In this research project we simulated an environment in which a patient at home

can be monitored remotely, which is not only cost effective but it is also very convenient.

We focused on providing an embedded system that can be used for monitoring as well as

controlling critically ill patients that need oxygen therapy for long period of time. Recently

Microtronix company partner with Altera to provide an embedded operating system called

uClinux for NIOS-II based FPGA development boards.

Future Work:

Current uClinux kernel is based on linux kernel 2.6.11 which is made pre-emptive i.e., a higher-

priority task can now interrupt the lower-priority task even during the processing of a system call.

But there are still regions of kernel code wherein the task is not pre-emptive.

This research work will be more challenging if we use real wireless sensors instead of simulator

application. Research in this field is far from complete; in fact, it’s still in its infant stage. This

research project insight into a new approach of an FPGA based Ubiquitous computing

environment. We addressed future challenges of pervasive computing where network sensors

will be part of our daily life to assist us.

50

CHAPTER?

REFERENCES

[1] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, John Anderson,

“Wireless Sensor Networks for Habitat Monitoring,” WSNA, Atlanta, GA, Sept. 2002, pp.

88-97.

[2] Ke Cui, Zhenwei Wu, “Research and implementation of remote monitoring system based on

real-time uClinux,” Services Systems and Services Management, 2005. Proceedings of

ICSSSM '05. 2005 International Conference, vol. 2, June 13-15,2005, pp.l 182-1187.

[3] A. Weaver, J. Luo, and X.Zhang, “Monitoring and control using the Internet and Java,”

IEEE Int. Conf. on Indu. Elec. (IECON’99), 1999, pp. 1152-1158.

[4] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A Taxonomy of Wireless Micro-

Sensor Network Models,” MC2R, vol. 6, no. 2, Apr. 2002, pp. 28-36.

[5] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging Challenges: Mobile Networking for

Smart Dust,” J. Commun, and Networks, vol. 2, no. 3, Sept. 2000, pp. 188-96.

[6] P. Juang Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan Peh, Daniel

Rubenstein, “Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and

Early Experiences with ZebraNet,” Proc. ASPLOS X, San Jose, CA, Oct. 2002,pp.96 -107.

[7] Florian Michahelles, Peter Matter, Albrecht Schmidt, Bemt Schiele, “Applying Wearable

Sensors to Avalanche Rescue,” Computers and Graphics, vol. 27, no. 6,2003, pp. 839-847.

[8] H. Baldus, K. Klabunde, and G. Muesch. “Reliable Set- Up of Medical Body-Sensor

Networks,” Proc. EWSN 2004, Berlin, Germany, Jan. 19-21,2004, pp. 353-363.

[9] C. Kappler and G. Riegel, “A Real-World, Simple Wireless Sensor Network for Monitoring

Electrical Energy Consumption,” Proc. EWSN 2004, Berlin, Germany, Jan. 19-21, 2004, pp.

339-352.

[10] S. Antifakos, P. Michahelles, and B. Schiele, “Proactive Instructions for Furniture

Assembly,” Proc. Ubicomp 2002, Gothenburg, Sweden, Sept. 2002, pp. 351 - 360.

[11] Liang Cheng, Yuecheng Zhang, Tian Lin, Qing Ye, “ Integration of Wireless Sensor

Networks, Wireless Local Area Networks and the Internet”. Proc. IEEE Sensing and

Control ,Taipei, Taiwan, Mar. 21-23, 2004, pp.462-467.

[12] William M. Merrill, Fredric Newberg, Kathy Sohrabi, William Kaiser, Greg Pottie,

51

“Collaborative Networking Requirements for Unattended Ground Sensor Systems,” Proc.

IEEE Aerospace Conf., vol. 5, Mar. 8-15,2003, pp. 5_2153- 5_2165.

[13] G. Simon, A. Ledezczi, and M. Maroti. “Sensor Network- Based Countersniper System,”

Conference On Embedded Networked Sensor Systems, Baltimore, MD, Nov. 2004, pp. 1-12.

[14] Bovet, Daniel P - Cesati Marco. 2001. Understanding the Linux Kernel. Sebastopol:

O'Reilly & Associates, Inc.

[15] Labrosse, Jean J. MicroC. 1998. OS II: The Real Time Kernel, 2nd Edition. Gilroy: R&D

Books.

[16] Levine, John R., Linkers & Loaders. 1999. San Francisco: Morgan Kaufmann Publishers.

[17] Matthew, Neil-Stones Richard, 2000. Beginning Linux Programming, 2nd edition.

Birmingham: Wrox Press Ltd.

[18] Rubini, Alessandro - Corbet, Jonathan. 2001. Linux Device Drivers, 2nd Edition

Sebastopol: O'Reilly & Associates, Inc.

[19] Tanenbaum, Andrew S-Woodhull Albert S. Operating Systems: Design and Implementation,

2nd Edition. Upper Saddle River: Prentice Hall, Inc. 1997.

[20] Arcturus Networks, Inc. 2001. uClinux WHITE PAPER OVERVIEW.

http://www.arcturusnetworks.com/Docs/UCLINUXWP.pdf.

[21] deBlaquiere, Joe. Supporting New hardware Environments with uClinux.

http://www.redhat.com/embedded/technologies/resources/deblaquiere.pdf.

[22] Drabik, John. 2002. uClinux: World's most popular embedded Linux distro?.

http://www.linuxdevices.com/articles/AT3267251481 .html.

[23] Free Software Foundation, Inc. 1999. GNU Lesser General Public License.

http://www.gnu.org/copyleft/lesser.html.

[24] Gillham, Miles, 2002. uClinux and Linux Set To Merge, http://www.snapgear.com/

[25] McCullough, David. 2002. Why is Malloc Different Under uClinux?.

http://www.linuxdevices.com/articles/AT7777470166.html.

[26] Peacocku, Craig, 2002, uClinux - Understanding the build tools.

http://www.beyondlogic.org/uClinux/builduC.htm.

[27] uClibc — a C library for embedded systems, http://www.uclibc.org/

[28] uClinux—Linux on Microcontrollers.

http://www.linuxdevices.eom/links/LK8053710489.html.

52

http://www.arcturusnetworks.com/Docs/UCLINUXWP.pdf
http://www.redhat.com/embedded/technologies/resources/deblaquiere.pdf
http://www.linuxdevices.com/articles/AT3267251481
http://www.gnu.org/copyleft/lesser.html
http://www.snapgear.com/
http://www.linuxdevices.com/articles/AT7777470166.html
http://www.beyondlogic.org/uClinux/builduC.htm
http://www.uclibc.org/
http://www.linuxdevices.eom/links/LK8053710489.html

[29] Ungerer, Greg, 2002. Using Flash Memory with uClinux. http://www.realtimeinfo.

[30] Iven H Young, Alan J Crockett and Christine F McDonald, “Adult domiciliary oxygen

therapy. Position Statement of the Thoracic Society of Australia and New Zealand”.

MJA (Medical Journal Association) 1998, vol. 168, pp. 21-25.

[31] Recommendations for long term oxygen therapy (LTOT). Report of European Society of

Pneumology Task Group. Eur Respir J 1989, vol. 2, pp. 160-65.

[32] Fletcher EC, Luckett RA, Good-night White S, Miller CC, Qian W, Costarangos-Galarza C.

A double-blind trial of nocturnal supplemental oxygen for sleep desaturation in patients

with chronic obstructive pulmonary disease and a day time P02 above 60 mm Hg. Am Rev

Respir Dis 1992, vol. 145, pp. 1070-76.

[33] http://www.airseD.com/medical

[34] http://www.nonin.eom/products/9500.asp

[35] http://www.altera.com/products/devkits/altera/kit-nios 1 S40.html

[36] http://www.altera.com/literature/lit-nio2.isp

[37] Karim Yaghmour, Building Embedded Linux Systems, O’Reilly 2003.

[38] Nikolaus Netzer, Am H. Eliasson, Cordula Netzer and David A. Kristo, “Overnight Pulse
Oximetry for Sleep-Disordered Breathing in Adults: A Review”. Chest 2001, vol. 120,
pp. 625-633.

53

http://www.realtimeinfo
http://www.airseD.com/medical
http://www.nonin.eom/products/9500.asp
http://www.altera.com/products/devkits/altera/kit-nios
http://www.altera.com/literature/lit-nio2.isp

