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ABSTRACT 

HUMAN EMOTIONAL STATE RECOGNITION USING 3D 

FACIAL EXPRESSION FEATURES  

© Yun Tie 

Doctor of Philosophy, Electrical and Computer Engineering, 

Ryerson University, Toronto, Canada, 2011 

 

In recent years there has been a growing interest in improving all aspects of the 

interaction between human and computers. Emotion recognition is a new research 

direction in human-computer interaction (HCI) which is based on affective computing 

that is expected to significantly improve the quality of HCI system and communications. 

Most existing works address this problem using 2D features, but they are sensitive to 

head pose, clutter, and variations in lighting conditions. In light of such problems, two 3D 

visual feature based approaches are presented in this dissertation. First, we present a 

recognition method based on the Gabor library for real 3D visual features extraction and 

an improved kernel canonical correlation analysis (IKCCA) algorithm for emotion 

classification. Second, to reduce the computation cost and provide a more general 

approach, we propose using a fiducial points’ controlled 3D face model to recognize 

human emotion from video sequences. An Elastic body spline (EBS) technique is applied 

for deformation feature extraction and a discriminative Isomap (D-Isomap) based 

classification is used for the final decision. The most significant contributions of this 

work are detecting and tracking fiducial points automatically from video sequences to 

construct a generic 3D face model, and the introduction of EBS deformation features for 
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emotion recognition. The experimental results show the robustness and effectiveness of 

the proposed methods.  
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Chapter 1 

Introduction 

 

EMOTION plays a critical role in human-to-human interaction, allowing people to 

express themselves beyond the verbal domain and understand each other from various 

modalities. Some emotions motivate human actions, and others enrich the meaning of 

human communication. The human computing paradigm suggests that user interfaces of 

the future need to be anticipatory and human-centered, and based on naturally occurring 

human communication [1]. Human-centered interfaces must have the ability to detect 

subtleties of, and changes in, the user‟s behaviour, and to initiate interactions based on 

this information, rather than simply responding to the user‟s commands [2].  

The ability to recognize the human emotional or affective state is desirable to empower 

the intelligent computer to interpret, understand, and respond to human emotions, moods, 

and, possibly, intentions, which is similar to the way that humans rely on their senses to 

assess each other‟s affective state [3]. Automatically recognizing the human emotional or 

affective state can enhance not only the computer‟s performances in detecting and 

sensing affective states of the human, but also the abilities to interpret and respond 

appropriately to the user‟s affective feedback. Presented in [4], as an affective computing, 

emotion recognition enables human–computer interaction (HCI) for more naturally and in 

a more friendly manner. Many potential applications such as intelligent automobile 
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systems, game and entertainment industries, interactive video, indexing and retrieval of 

images or video databases can be obtained from this ability.  

Research in computer-vision based emotion recognition has expanded rapidly in recent 

years due to the advances in imaging technology and newfound interests in psychology. It 

is well known that the human face provides an important and spontaneous channel for the 

emotional states. It contains powerful, natural and immediate information for human-to-

human communication and social life. Facial expression functions as a conversation 

enhancer, communicates feeling and a cognitive mental state, shows empathy and 

acknowledges the actions of other people. Contemporary research in psychology reveals 

that certain emotions were associated with distinct facial signals. Analyzing facial 

expression in real time, without human intervention, provides an efficient and robust 

approach to recognizing human‟s emotions.  

In this dissertation, we explore two 3D feature based approaches for automatic emotion 

recognition, i.e. the 3D Gabor feature and the 3D elastic body spline (EBS) features from 

video sequences. These methods open new research directions for human computer 

communication with applications to security systems, the intelligent home, a learning 

environment, and educational software to name a few. 

1.1 Research Challenge      

The vision based emotion recognition studies mainly focus on facial expression analysis 

because of the importance of the face in emotion expression and perception. Many 

studies on the machine analysis of facial expressions have seen much progress in the past 
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decade. In spite of considerable previous work documented in this area, many challenges 

still remain. Since the faces are non-rigid and have a high degree of variability in 

location, color and pose, several features of the face that are not common to other pattern 

recognition issues make facial expressions based emotion recognition more complex. 

Occlusion and lighting distortions, as well as illumination conditions can also change the 

overall appearance of the face. Such changes will cause the large intra-class variations of 

the emotion distribution to be highly nonlinear and complex in any space. 

The majority approaches for solving the human facial expressions recognition problem 

are based on 2D spatiotemporal data: either 2D static images or 2D video sequences. Few 

efforts have been investigated on 3D face data for the vision-based emotions recognition. 

The performance of 2D based algorithms remains unsatisfactory, and is often unreliable 

under adverse conditions. It is difficult to handle pose variations, lighting illumination 

and subtle facial behaviour. Therefore, the 2D based approaches are limited to 

constrained environment. To achieve more robust performance, a growing body of 

research has been focused on addressing the problem using 3D information. 

Automatically analyzing facial expressions for human emotion recognition in video 

sequences is also a challenging problem due to the fact that current techniques for the 

detection and tracking of facial expressions are sensitive to head pose, clutter and 
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variations in lighting conditions. To recognize emotional states, the facial feature 

extraction attempts to find the most appropriate way to represent the facial expressions. 

The representations of expression patterns should be considered carefully since it is 

important for feature extraction and classification, which will strongly affect the 

performance of an emotion recognition system. A good representation should have such 

characteristics as small within-class variations, large between-class variations, and robust 

to transformations without changing the class labels. Furthermore, its extraction should 

not depend much on manual operation. 

Context dependency of facial expressions is also a largely unexplored research area for 

current emotion recognition systems. It is a fact that most present approaches to 

automatic facial expression analysis are context insensitive. However, the interpretation 

of human emotional signals is context dependent. To interpret an emotional signal, it is 

important to know the context in which this signal has been displayed. 

1.2 Objectives of the Research  

Motivated by the aforementioned challenges in this field, the proposed work aims to 

improve human–computer interaction intelligent (HCII) techniques with two 3D feature 
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based approaches: 3D Gabor feature-based method and 3D EBS feature-based method 

from video sequences. 

Our work consists of 3D Gabor library for real 3D visual features extraction from 3D 

geometric information plus color/density information of the facial expressions, automatic 

detecting and tracking from video sequences, 3D EBS mesh modeling, active 

deformation extraction, and intelligent pattern classification. An active deformation 

approach using 3D EBS features for facial expressions transformation forms a major 

research activity in this work. It is expected to benefit the advancement of computer 

vision techniques and the applications in communication and information technology. 

The presented methods can be implemented on, among others, a mobile security robot for 

the detection and recognition of dangerous and suspicious intention and activities at 

airports, subway stations and other places of national and military importance, or on a 

domestic helper for assisting elderly and/or disabled people at home or community 

houses. 

Key research objectives of this work are summarized as follows: 

1. Real 3D visual features extraction. Generally, the existing 3D-based methods 

consider only geometric information for feature extraction. In this work, we present a 

real 3D visual feature-based method for human emotion recognition. The 3D 
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geometric information plus colour/density information of the facial expressions are 

extracted by the 3D Gabor library to construct visual feature vectors. The filter‟s 

scale, orientation, and shape of the library are specified according to the appearance 

patterns of the 3D facial expressions. An improved kernel canonical correlation 

analysis (IKCCA) algorithm is proposed for emotion decision. 

2. Video/images processing with intelligent detecting and tracking methods. 

Automatical and robust detecting and tracking for face and fiducial points are primary 

for 3D EBS based recognition. Existing methods leave uncertainties and difficulties 

in practice and for real time applications. We try to solve such problems and apply to 

on-line uses.  

3. 3D data modeling. We have developed a new framework to construct view-

independent facial expression recognition based on a generic 3D face model, which is 

controlled by fiducial point to synthesize the animated facial expressions. Few 

attempts have been reported so far based on the 3D face model toward the vision-

based emotion recognition. The proposed method can be robust to arbitrary head 

movement occlusions, scene complexity like the presence of other people and 

dynamic background. It can also form the first step in the realization of facial 

expressions analysis capable of handling unconstrained environments. 
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4. Active deformation analysis. The EBS technique is applied on the 3D face mesh 

model to generate a smooth warp that reflects control point and to extract the 

deformation feature of the realistic expression from the neutral face. Very few 

existing studies have been made of the context-dependent interpretation of the 

observed facial expressions. The proposed EBS method can function as an 

interpolation approach to generate corresponding intrinsic geometries of the facial 

expressions and investigate the interpretation of emotional space. 

5. Intelligent classifications. The IKCCA and a discriminative Isomap (D-Isomap) 

are applied in classification. The IKCCA is used for Gabor feature-based recognition. 

The semantic ratings that best describe the different facial expressions are computed 

by the IKCCA to generate a seven-dimensional semantic expression vector. The 

correlation with different testing samples is learned for classifying the associated 

prototypic facial expression with the trained facial feature distribution. For the D-

Isomap classification, the deformation features of facial expressions are embeded into 

the low dimensional manifold with seven class centres, which span in a face space 

with six emotions and neutral. The discriminative information of a facial feature is 

considered so that it can reflect appropriately the discriminative structures of the 

emotional space on the manifold.  
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1.3 Outline of Dissertation 

As mentioned in the previous sections, two 3D emotion recognition methods are 

proposed in this dissertation. Chapter 3 presents the work for the Gabor-feature based 

method. Since the EBS feature-based method consists of several crucial components, it is 

arranged into three Chapters: Chapter 4 – automatic face detection, Chapter 5 – fiducial 

point detection and tracking, and Chapter 6 – 3D face modeling and recognition. The rest 

of this dissertation is organized as follows: 

Chapter 2: Background and Related Works, reviews the background and related works 

reported in the literatures for vision-based human emotion recognition. 

Chapter 3: 3D Gabor Based Recognition, conducts a 3D Gabor library-based method for 

3D facial expressions‟ recognition. The IKCCA is used for the classification. 

Chapter 4: Face Detection, discusses the automatic face region detection using the local 

normalization and optimal adaptive correlation (OAC) analysis. 

Chapter 5: Fiducial Points’ Detection and Tracking, describes the scale invariant feature 

examination for fiducial points‟ detection and multiple Differential Evolution Markov 

Chain (DE-MC) particle filters for tracking. 
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Chapter 6: 3D EBS Based Recognition, details the 3D face modeling and feature 

extraction with EBS techniques, a D-Isomap based method is also described for final 

emotion classification. 

Chapter 7: Conclusions and Future Works, discusses the results from our experiment 

and summarizes the contributions of this work. Future works are also presented.  
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Chapter 2 

Background and Related Work 

 

2.1 Background Study 

EMOTIONS have been the study of intense interest in philosophy since the fourth 

century B.C., and the beginning of modern and scientific inquiry into the nature of 

emotion is thought by many to have begun with Charles Darwin's study of emotional 

expression in animals and humans [5]. Research into human emotion in psychology and 

neurophysiology has grown rapidly in recent years. It is generally accepted that all 

emotions are processed by a circuit of interconnected brain structures known as the 

limbic system [6]. The basic emotions may be coded by partially distinct brain systems. 

Based on discoveries made through neural mapping of the limbic system, the 

neurobiological explanation of human emotion is that emotion is a pleasant or unpleasant 

mental state organized in the limbic system. These states are manifestations of non-

verbally expressed feelings. For instance, the amygdala has been revealed to be playing a 
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significant role in recognizing facial and vocal expressions of fear [7].  A survey of 

research in psychology about defining, studying, and explaining emotion can be found in 

[8]. 

Two main methods are often used to describe emotions. One is to label the emotions in 

discrete categories, such as joy, fear, love, surprise, sadness.  The main advantage of a 

category representation is that people use this categorical scheme to describe observed 

emotional displays in daily life. The labeling scheme based on category is very intuitive 

and thus matches people‟s experience. But the problem with this approach is that it may 

contain blended emotions. Discrete lists of emotions fail to describe the range of 

emotions that occur in natural communication settings. Also, the choice of words that can 

describe the wide variety of emotional displays may be too restrictive, or culturally 

dependent.  

Another way is to have multiple dimensions or scales to describe emotions, where an 

emotional state is characterized in terms of a small number of latent dimensions rather 

than in terms of a small number of discrete emotion categories. Two common dimensions 

are valence and arousal that are expected to reflect the main aspects of emotion. The 

different emotional labels can be plotted at various positions on a two-dimensional plane 

spanned by these two axes to construct a 2D emotion model [9]. Scholsberg [10] also 
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suggested a three-dimensional model in which attention–rejection was in addition to the 

above two. In contrast to categorical representation, dimensional representation enables 

raters to label a range of emotions. However, the matching of the high-dimensional 

emotional states onto a rudimentary 2D space results in the loss of information. Some 

emotions become indistinguishable and some emotions lie outside the space. This 

representation is not intuitive, and raters need special training to use the dimensional 

labeling system.  

Most of the existing human emotion recognition systems attempt to recognize 

prototypic emotions. The most important and widely accepted set of measurement is the 

so-called “six-basic” emotions: happiness, sadness, anger, fear, surprise, and disgust, 

which were pioneered by Ekman and Friesen [11]. According to [11], the “six-basic” 

emotions are not culturally determined, but universal to human culture and thus 

biological in origin. They also indicate that humans perceive certain basic emotions with 

respect to facial expressions. This influence of a basic emotion theory has resulted in the 

fact that many of the existing studies of automatic emotion recognition focus on 

recognizing these basic emotions. There are also several other emotions, and many 

combinations of emotions, which have been studied but remain unconfirmed as 

universally distinguishable. In our present work, this set of six emotions is analyzed. 
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2.2 Emotional Behaviours 

Emotion is complex, hidden under the expressions. There are many emotional states: 

anger, anticipation, boredom, disgust, fear, regret, sadness and more. Also, they may be 

combined with each other in face to face chatting or communications. In psychology and 

common use, those are aspects of a human being's mental state, normally based on or tied 

to the person's internal (physical) and external (social) sensory feeling.  

    Emotions arise spontaneously rather than through conscious effort. Every emotion is 

actually a neural impulse that moves an organism to action, prompting automatic reactive 

behaviour that has been adapted through evolution as a survival mechanism to meet a 

survival need. So, emotions are expressed through physiological functions such as facial 

expressions, heartbeat, and affect behaviours such as aggression, crying, or covering the 

face with hands [12]. When fear, the body frequently responds to shame by warmth in the 

upper chest and face, by a heightened heartbeat, increased "flinch" response, and 

increased muscle tension. The sensations connected with anger are nearly 

indistinguishable from fear. Happiness is often felt as an expansive or swelling feeling in 

the chest and the sensation of lightness or buoyancy, as if standing underwater. Sadness 
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brings a feeling of tightness in the throat and eyes, and relaxation in the arms and legs. 

Desire can be accompanied by a dry throat and heavy breath.  

2.3 Facial Expression Based Emotion Recognition 

The main characteristics of human emotions are the multiplicity and multimodality of 

communication channels. The psychological studies also indicated that facial expression 

in the visual channel is a most natural and primary cue for communicating the quality and 

nature of emotions, and correlates well with the body and voice [13]. Each of the six 

basic emotions corresponds to a unique facial expression. To the objectives of an emotion 

recognition system, facial expression analysis is considered to be the major indicator of a 

human affective state [14].  

Automatically recognizing human emotion from facial expressions is inherently a 

multidisciplinary enterprise involving different research fields [15], including psychology, 

computer vision, feature data fusion, and machine learning. There are two main streams 

in the current research on the machine analysis of facial expressions: the recognition of 

affect and the recognition of facial muscle action. The most commonly used vision-based 

coding system is the facial action coding system (FACS) proposed by Ekman and Friesen 

[16] for the manual labeling of facial behaviour. FACS is a comprehensive and 
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anatomically based system that is used to measure all visually discernible facial 

movements. To recognize emotions from facial clues, FACS enables facial expression 

analysis through standardized coding of changes in facial motion in terms of atomic 

facial actions called Action Units (AUs). The changes in the facial expression are 

described with FACS in terms of AUs. FACS decomposes the facial muscular actions 

into 44 basic actions and describes the facial expressions as combinations of the AUs.  As 

AUs are independent of interpretation, they can be used for any high-level decision-

making process, including the recognition of basic emotions, the recognition of various 

affective states and the recognition of other complex psychological states. AUs of the 

FACS are very suitable to use in studies on human naturalistic facial behaviour, as the 

thousands of anatomically possible facial expressions can be described as combinations 

of 27 basic AUs and a number of AU descriptors. This work inspired many researchers to 

analyze facial expressions. 

Different methods have been explored so far to perform facial expression analysis, 

which can be roughly categorized into two groups: the geometric feature-based methods 

and appearance-based methods. The geometric facial feature-based methods present the 

shape, or location information of prominent components such as the mouth, eyes, nose, 

eyebrow, and chin, which can cover the variation in the appearance of the facial 
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expression. The appearance-based methods, on the other hand, using image filters such as 

Gabor wavelets, generate the facial feature for either the whole-face or specific regions in 

a face image. Pantic and Rothkrantz [17] proposed an automatic facial action recognition 

system using a dual-view static image. The face was detected using watershed 

segmentation with markers method, in which the markers were extracted based on the 

Hue Saturation Value (HSV) colour model. A multi-detector approach to facial feature 

localization was utilized to spatially sample the profile contour and the contours of the 

facial components such as the eyes and mouth. They reported an average recognition rate 

of 86% by classifying facial actions into a group of 32 individual facial muscle actions 

occurring along or in combination using rule-based reasoning. Lyons et al. [18] used a set 

of multi-scale, multi-orientation Gabor filters to transform the images first. A grid was 

then automatically registered with the face using an elastic graph matching method. The 

Gabor coefficients sampled on the grid were combined into one single vector as the 

features. Principal Components Analysis (PCA) was applied to reduce the dimensionality 

of the feature space. They tested their system with a database of 193 images posed by 9 

Japanese females, and achieved 75% expression classification accuracy by using Linear 

Discriminant Analysis (LDA). Silva and Hui [19] determined the eye and lip position 

using low-pass filtering and an edge detection method. They achieved an average 



17 

 

emotion recognition rate of 60% using a neural network (NN). Cohen et al. [20] 

introduced and tested different classifiers for recognizing human facial expression from 

video sequences. A face tracking algorithm called Piecewise Bezier Volume Deformation 

tracker (PBVD) was used, and 12 motion units (MU) were extracted as the basic features 

for classification. They introduced a multi-level hidden Markov model (HMM) classifier 

for dynamic classification, in which the temporal information was also taken into 

account. Two types of Bayesian network classifiers, Naive Bayes (NB), and Tree-

Augmented Naive Bayes (TAN), and neural network were investigated to perform 

classification on a single frame. A person-independent experiment using their own 

database showed that the TAN classifier gave the best correct recognition rate of 66.53%. 

Guo and Dyer [21] introduced a linear programming based method for face expression 

recognition with a small number of training images of each expression. A pairwise 

framework for feature selection, instead of using all classes simultaneously, was 

presented and three methods were compared in the experiment part. Pantic and Patras 

[22] presented a method to handle a large range of human facial behaviour by 

recognizing facial muscle actions that produce expressions. AUs and their temporal 

models were automatically recognized from long, profile-view face image sequences. 

The algorithm performed both automatic segmentation of an input video into facial 
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expressions pictured and recognition of temporal segments of 27 AUs occurring alone or 

in a combination in the input face-profile video. Anderson and McOwan [23] presented 

an automated multistage system for real-time recognition of facial expression. The 

system used facial motion to characterize monochrome frontal views of facial 

expressions and was able to operate effectively in cluttered and dynamic scenes, 

recognizing the six emotions universally associated with unique facial expressions. 

Gunes and Piccardi [24] proposed an automatic method for temporal segment detection 

and affect recognition from face and body display. Facial expressions and body gestures 

were detected from each individual frame and temporal segments were analyzed. 

Individual classifiers were separately trained from face and body features. Affective 

states were then addressed in two ways of sequence-based and frame-based detection 

from the bimodal analysis of a video. Wang and Guan [25] constructed a bimodal system 

for emotion recognition. They used a face detection scheme based on a HSV colour 

model to detect the face from the background and Gabor wavelet features to represent the 

facial expressions. They achieved the best overall recognition rate of 82.14% using the 

proposed multi-classifier scheme.  

Many difficulties still remain in facial expression recognition techniques due to head 

pose, clutter, variations in lighting conditions, and the variation across the human 
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population and to the context-dependent variation even for the same individual. 

Traditionally, the majority approaches for human facial expression recognition try to 

analyze either 2D static images or 2D video sequences. Unfortunately, the performance 

of 2D based algorithms is unsatisfactory, and often proves unreliable under adverse 

conditions. It is difficult to handle pose variations, lighting illumination and subtle facial 

behavior. Therefore, the above method is limited to a constrained environment.  

In order to achieving a more robust approach, some research has addressed the 

problem using 3D information for recognizing and understanding facial expressions. The 

analysis of 3D facial expressions will facilitate the examination of the fine structural 

changes inherent in the spontaneous expressions. The 3D based algorithm allows the 

transfer of feature-like models from the given single view into new arbitrary views, thus 

making the solution far more pose invariant than current 2D solution. Furthermore, 3D 

data is by definition lighting invariant, thus eliminating errors associated with changes in 

illumination becomes more tractable with knowledge of the physical surfaces being 

considered.  

Song et al. [26] presented a generic facial expression analogy technique to transfer 

facial expressions between arbitrary 3D face models, as well as between 2D face images. 

Geometry encoding for triangle meshes, vertex-tent-coordinates were proposed to 
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formulate expression transfer in 2D and 3D cases as a solution to a simple system of 

linear equations. Hu et al. [27] proposed a work on the non-frontal-view facial expression 

analysis by generating a multi-view from 3D data. Geometric salient facial points were 

manually labeled and then the geometric displacement between emotional and neutral 

expressions was calculated for the person at the corresponding angle. Various classifiers 

were investigated and the experiments showed that the support vector machine (SVM) 

returned the best performance with the average error rate of 0.335. Chin et al. [28] 

presented an emotional intensity-based facial expression modeling process by generating 

3D customized face and facial expressions. The generated customized face integrated 

expression data used different expression intensities. They identified six universal 

expressions by determining the anatomical, parametric values of linear and sphincter 

muscles. Facial expressions were also simulated by intensity mapping.  

There are other limitations of the previous approach such as the lack of temporal and 

detailed spatial information in the visual cues both at local and global scales. They may 

be caused by the principle difficulties and the sheer complexities of describing human 

facial movement. Moreover, no effort in automatic detection and the segments based on 

the face components in image sequences with respect to emotion recognition has been 

reported so far. Lots of psychological researches support that the timing of expressions is 
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a critical parameter in recognizing emotions and the detailed spatial dynamic deformation 

of the expression is important in expression recognition.  

2.4 Proposed Methods 

2.4.1 3D Gabor Feature Based Recognition 

We first present a new 3D emotion recognition method using geometric features and the 

colour/density information. The main contribution of this work consists of applying the 

3D Gabor library for feature extraction and an IKCCA algorithm for final classification. 

To the best of our knowledge, no similar work has been reported with 3D Gabor library 

for emotion or face recognition. The block diagram of this method is shown in Figure 2.1.  

We extract primitive 3D facial expression feature vectors by using the 3D Gabor library. 

The filter‟s scale, orientation, and shape of the library are specified according to the 

appearance patterns of the 3D facial expressions. Then the IKCCA is proposed for the 

final decision. From training samples, the semantic ratings that describe the different 

facial expressions are computed by the IKCCA to generate a seven-dimensional semantic 

expression vector. It is applied for learning the correlation with different testing samples. 

According to this correlation, we estimate the associated expression vector and perform 

expression classification. 
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Figure 2.1 Block diagram of the 3D Gabor based method 

    To validate our proposed approach, we have conducted experiments for person-

independent facial expression recognition on a public 3D facial expression database, i.e. 

the BU_3DFE database [29]. The experimental results yield an overall recognition rate of 

85.39%. 

2.4.2 3D EBS Feature Based Recognition 

We present an automatic emotion recognition system from video sequences using a 3D 

physical face model with the EBS technique. The main contribution of this work is using 

the EBS-based method for automatic human emotion recognition from video sequences 

with the active deformation feature extraction depending on the 3D generic face model, 

which is driven by the key fiducial points, and thus to make it possible to generate the 

intrinsic geometries of the emotional space. The block diagram of this method is shown 

in Figure 2.2.  
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Figure 2.2 EBS Feature Based Recognition System (I) input data processing, (II) visual feature extraction, 

(III) emotional space classification 

 

We detect the facial region in a video sequence that consists of feature selection and 

classification based on a local normalization technique and face detection algorithm using 

a Gabor wavelet transform and the Adaboost algorithm. This step incorporates a 

normalization technique based on normalized local histograms with OAC technique, 

which alleviates the illumination problem in conventional face detection methods. Scale 

space extrema are calculated on the facial region for selection of candidate points of 

interest. The direction of each candidate in its neighborhood is calculated by a gradient 

orientation histogram. The feature description for each fiducial point is obtained by 
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connecting the direction descriptions of it with its neighbours and is used for fiducial 

point detection. We apply multiple DE-MC particle filters to track the fiducial points 

depending on the locations of the current appearance of the spatially sampled features. A 

DE-MC particle filter leads to a more reasonable approximation to the proposal 

distribution and hence considerably improves accuracy for tracking by building a path 

connecting a sampling with measurement. The kernel correlation based on HSV colour 

histograms is used to estimate the observation likelihood and measures the correctness of 

particles.   

We also construct a 3D generic face model based on the results of fiducial points 

detection and tracking. As a physics-based transformation, EBS is applied to the face 

model to generate a smooth warp that reflects control point correspondences and extracts 

the deformation feature of the realistic expression. D-Isomap based classification is used 

to embed the facial expression movements into a low dimensional manifold, which span 

in a 3D expressional face space. 
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Chapter 3 

3D Gabor Based Recognition 

 

TO recognize an emotional state from facial expressions, a set of feature vectors that can 

best describe the particular set of facial expressions needs to be extracted to discriminate 

between expressions. The feature vector includes the amount of information extracted 

from the particular facial expression and should not match with another one that belongs 

to some other expression. It is the most important aspect for a successful emotion 

recognition system. The general 3D approaches reported in the literature only use 

geometric information without any colour/density information of the face. However, 

these features can strongly affect the performance of an emotion recognition system. 

In this chapter, we present a new emotion recognition method using 3D geometric 

features with facial density information. Gabor transform-based facial expression 

recognition systems show that their representation method has a high degree of 

correlation with the human semantic ratings [30]. It is a reasonable model of visual 

processing in the primary visual cortex and can be one of the most successful approaches 
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for processing images of the human face. The Gabor filter based feature extraction 

technique has proved to produce an extremely effective method for facial expression 

recognition, and is reported to yield good results on novel individuals applied in face 

recognition among several facial emotion recognition researches.  

A Gabor filter is a multiple sinusoid modulated by a Gaussian function. It has wide 

applications in many research areas such as image processing and pattern recognition. 

Many previous research works [31-34, 42] have experimentally shown that the Gabor 

filter representation is optimal for classifying facial expressions since it captures various 

visual properties of facial regions using spatial localization, orientation selectivity and 

spatial-frequency characteristics. Compared with other popular transformations, such as 

traditional Fourier transform, DCT and various wavelets, the Gabor filter can be designed 

to be highly selective in frequency while displaying good spatial localization. It also has 

multi-resolving ability and tunable focus. Using multi-channel filtering, Gabor wavelets 

can be applied with different spatial-frequency properties to extract expression features 

from facial images. In the aspect of facial features extraction, Gabor wavelet 

transformation is insensitive to illumination variety, and the limited localization in space 

and frequency yields a certain amount of robustness against translation, distortion, 

rotation and scaling of the images. The observed expression images do not need to 
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correspond to the expression template strictly. Thus, the robustness of the whole system 

can be approved. All in all, Gabor filter based feature extraction can obtain more 

significant information and outperform other approaches. It is a promising feature 

extraction technique for face and expression recognition tasks. 

3.1 3D Gabor Feature Extraction 

Applying the 3D Gabor transform for feature extraction attracted more interests in recent 

years [35]. Feng et al. [36] used 3D Gabor for motion estimation with adjustable 

spatiotemporal resolution, Zhen et al. [37] applied the 3D Gabor library for MRI tagging 

sheet extraction and tracking, Kepenekci et al. [38] analyzed motion using the 3D Gabor 

kernels. In this work, we proposed to apply the 3D Gabor library to the 3D facial 

expressions for human emotion recognition. 

    The 3D Gabor library is used to extract 3D geometric information plus colour/density 

information by spatial localization, orientation selectivity and spatial-frequency 

characteristics to discriminate between expressions. The feature vector from the 3D 

Gabor library includes the amount of information extracted from the particular facial 

expression and will not match with another one that belongs to some other expressions.  

3.1.1 3D Gabor Filter 



28 

 

A 3D Gabor transform is basically a product of a complex sinusoid wave modulated by a 

3D Gaussian window. We have the 3D Gabor transform as the following: 

),,()',','(),,(,, zyxSzyxHAzyxG                                  (3.1) 

where 
'''

2/3)2(

1

zyx

A


  is a normalization scale,  )',','( zyxH is a 3D Gaussian 

envelope that: 

)])
'

()
'

()
'

((
2

1
exp[)',','( 2

'

2

'

2

' zyx

zyx
zyxH


                          (3.2) 

and  

)](2exp[),,( LzNyMxjzyxS                                      (3.3) 

where ),,( zyx  is the non-rotated spatial coordinate, 'x
'y

'z are defined as the width of 

the Gaussian envelop in different x, y and z axes, respectively, and can be tuned to the 

local structures. 
TT zyxRzyx ),,()',','(  is the rotated spatial coordinates of the 3D 

Gaussian envelope, R is a rotation matrix for transforming the Gaussian envelope to 

coincide with orientation of the sinusoid. These two coordinates are set to be the same 

value for normalization purposes. The Gaussian scale parameters 'x
'y

'z  may not be 

the same though they are normally set to be the same, and the sinusoid and the Gaussian 

envelop can have different orientations. Thus the shape of this Gaussian envelope can be 

an ellipsoid. ),,( LNM  are the 3D frequencies of the complex sinusoid that 
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where )( 222 LNM  is the amplitude of the complex sinusoid wave with 

frequency ),,( LNM ,  0  and  0 determine the orientation and spacing of 

the Gabor filter in the spatial domain. The rotation matrix of the Gaussian envelope R  is 

given as 
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which is the normalization process to make the Gaussian envelope have the same 

orientation as the complex sinusoid. 

 

Figure 3.1 A slice view of a 3D Gabor filter  

Figure 3.1 shows projections of a 3D Gabor filter with   ''' zyx , 25.0 , 

2/  , 2/  ,  /1 , and the size of the filter is 606060  . 
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3.1.2 Gabor Library Design 

Since the prior information about the 3D facial expression is unknown, we consider 

constructing the 3D Gabor library using a set of Gabor filters with different frequencies 

and orientations ),,(   to obtain sufficient information as the following:  
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where max  is the upper centre frequencies of the signal to be analyzed. We denote the 

wavelets as }1,...,0,1,...,0,1,...,0{,,,  WwVvKkG wvk
. The feature of 3D facial 

volume I  can be extracted with the frequency and orientation information F  from the 

voxel T : 

),,)()(()( ,, zyxGTITF wvk                                             (3.7) 

    Since the magnitude of the convolution result can express the response of a Gabor 

wavelet to the facial volume I , the useful information of the intensity changes at voxel 

T  can be obtained by applying the Gabor library to a 3D facial expression. In this 

dissertation, the library parameters are set to be 444  , and in Figure 3.2, we show the 

designed 3D Gabor filter library in both space domain and frequency domain.  
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(a)                                                      (b) 

Figure 3.2 The 3D Gabor library of 444   (a) 3D Gabor library in space domain, (b) 3D Gabor library 

in frequency domain 

 

3.1.3 Feature Representation 

In this section, we describe our method for visual feature extraction using the 3D Gabor 

library. We normalize all the input data to be the same size and denote it as ),,( zyxI . The 

Gabor wavelet transform ),,( zyxF of this volume ),,( zyxI can be calculated from (3.7) 

as: 

111111

*

111 ),,,(),,(),,( dzdydxzzyyxxGzyxIzyxF kvwkvw                   (3.8) 

where * indicates the complex conjugate. In this case, we obtain a very big coefficient 

matrix for each face. We use a total of 64444   Gabor filters, and thus the size of the 

matrix is 64606060  . With a feature space of such a big size, the computation cost is 

very high, and thus it is not very suitable for a system which demands fast processing. 
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We take the mean kvw  and standard deviation kvw of the magnitude of the transform 

coefficients of each sub-band filter to represent the features: 
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    Then we can construct a feature vector for each emotional face using kvw  and kvw  as 

feature components. In this dissertation, we use four scales 4K  and four orientations 

4WV  in and   directions, resulting in a feature vector of 128 dimensions for 

latter classification: 

 3333330010010000003 ...... DGaborf              (3.10) 

3.2 IKCCA Classification 

Canonical correlation analysis (CCA) is a powerful method to correlate the linear 

relations between arbitrary variables. It tends to combine the variables into a single-

dimension in the new space if they are highly correlated. However, for emotion 

recognition tasks, multidimensional feature representations of the person-independent 

facial expressions are nonlinearly correlated. CCA may not correctly correlate the 

relationships between these feature representations. 

    Although the idea of kernelizing CCA is not new, all the previous works [39, 40] 

tackle the singularity problem using the regularization method or the eigenvalue 
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decomposition method. Fukumizu et al. [41] provided an improved kernel CCA 

algorithm to solve this problem based on a normalized cross covariance approach. It was 

applied for expressing the nonlinear dependence between two variables. In our work, we 

extend this method to multiple emotional states recognition with 3D visual features. 

3.2.1 IKCCA Algorithm 

IKCCA is a nonlinear extension of the CCA algorithm with the normalized cross 

covariance operator. It has the ability to infer semantic relations between the nonlinear 

feature representation variables. This method tries to find projections of each feature 

representation separately such that the representations are maximally correlated. This 

implies that the visual feature variables represent the same emotional expression from 

different faces. So we can extract person-independent emotions using the 3D visual 

features from the last section. 

    Let xn
RX   denote the sample feature vector and yn

RY  the semantic expression 

vector. XaA T , YbB T are their projections. To determine the corresponding 

emotional classification for a given vector X , we need to find a pair of directions 
Xa and 

Yb so that the canonical correlations  can be maximized: 
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The canonical correlation   measures the strength of association between the sample 

feature vector X and the semantic expression vector Y . In practice, we estimate the 

objective function   as a desired individual expression pattern classification for a finite 

sample.  

For the nonlinear emotion recognition case, let )(X and )(Y  denote the diagonals 

of X  and Y in Hilbert space through nonlinear mapping respectively, so the correlation 

function  can be reformed as: 
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where )]()([ YXE T  is the empirical covariance that: 
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Since a  and b  can be rescaled without changing the problem, we can constrain them to 

be equal to 1. The objective function can be written as: 

max       bYXEa TT )]()([   
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subject to   1)()( )()(   X

TT

X aXXa  

and        1)()( )()(   Y

TT

Y bYYb                                           (3.15) 

Using the corresponding Lagrangian, we can denominate the original objective as: 
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Thus, to compute the canonical correlations   is equivalent to finding a pair of directions 

a  and b  to maximize   using (3.17). 

3.2.2 IKCCA Classifier 

Applying IKCCA for the emotion classification, first we set )( testX to be an input test 

feature vector and )( semanticY the corresponding semantic expression vector. Let  testA  be 

the projection of )( testX onto the directions 
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    We can rewrite (3.19) when 
T

yy PP  is singular: 

testyn

T

yytest BPIPPY 1)()(                                     (3.20) 

    Using (3.15), (3.17) and (3.20), we can estimate the corresponding semantic expression 

vector semanticY  for a given input feature vector testX . The index of the most matched 

emotion class of the input sample is signed by: 
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3.2.3 Semantic Ratings Classification  

We can further increase the recognition rate by using the semantic ratings classification. 

Directly applying the IKCCA classifier on face data for emotion recognition, all feature 

vectors are treated equally. The emotion class information is not used for distinguishing 

from others. By considering the overall correlations for the different classes with the class 

label information, the semantic ratings classification can reflect successfully the 

discriminant structures of the feature vector on the emotional space. 

    We construct the semantic ratings 
semantic'Y from each training data by a weight factor

ijw , which is used to compact the training semantic expression vector
 

iY  and 
jY
 
if they 
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share the same label, and expand 
iY  and 

jY  if they belong to different classes. Then we 

have: 
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    We need to construct the semantic expression vector first for the semantic ratings 

implementation and compute the overall correlations between the pairs. Note that 
ijw is 

not the weight between training data, 
iX and 

jX , but an informative factor represented 

for semantic expression vectors, which is determined by class label information ),( jiL

and the correlations between semantic expression vectors 
iY  and

jY . By considering the 

overall correlations between the pairs, we have that: 

 
],),,(),,([ jiji

ij XXjiLYYfw 
                                       

(3.23) 

where ),( ji YY gives the overall correlations between the pairs, and ),( jiL  is a label 

function defined as following: 
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ijw would be able to affect the overall correlations between the pairs. When 1),( jiL , 

that means 
iX and 

jX come from the same emotion class. So we would like to preserve 

the projections of 
iY and

jY  getting higher correlation if they are from the same class. 



38 

 

And the inverse is also true, that means decreasing the correlation if they are from the 

different classes. 

3.3 Experiment and Results 

3.3.1 3D Facial Expression Database 

A public person-independent 3D facial expression database, BU_3DFE database is used 

in our experiment to validate our proposed approach. The BU_3DFE database is the 

largest publicly available data set for 3D facial expression recognition research and 

contains images exhibiting substantial expression variation, which can cause problems 

for many recognition algorithms. Figure 3.3 shows some samples from this database. 

    In BU_3DFE 3D facial expression database, there are 100 subjects who participated in 

face scans, including undergraduates, graduates and faculty from State University of New 

York at Binghamton. The resulting database consists of about 60% female and 40% male 

subjects with a variety of ethnic/racial ancestries. Each subject in the database performed 

seven expressions (including neutral), captured by a 3D face scanner. With the exception 

of the neutral expression, each of the six prototypic expressions (happiness, disgust, fear, 

angry, surprise and sadness) includes four levels of intensity. From the database, we 

choose 560 samples for classifier training and 280 samples for testing, and each delivers 
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one of the seven facial expressions. There was no overlap between the training and 

testing subjects.  

 

Figure 3.3 Sample Expressions of 4 subjects from BU_3DFE database 

3.3.2 Feature Selection 

The performance of the IKCCA based emotion recognition system depends on how to 

find out the best correlations between the feature vectors for the classification task. For a 

pattern recognition system, the length of the feature vector and the discriminating ability 

of the features, in terms of separating patterns belonging to different classes in the feature 

space, will critically affect the overall performance of the system. The importance of 

selecting relevant subset from the original feature set is closely related to the “curse of 

dimensionality” problem in function approximation, in which sample data points become 
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increasingly sparse as the dimensionality of the function domain increases. The finite set 

of samples may not be adequate for characterizing the original mapping and the 

computational requirement is higher for implementing a high dimensional mapping. 

In this work, we use the PCA to reduce the dimensionality of the input feature vector 

to alleviate the aforementioned problems by reducing the number of transformed features, 

whilst retaining most of the intrinsic information content of the original data. The PCA 

technique arranges the feature vector in descending order of variance and is truncated at 

desired length such that the remaining feature vector is sufficient for accurate recognition 

of facial expressions.  

In the PCA parameter determination, we first produce the data set with zero mean, and 

then compute the covariance matrix from the covariance between two dimensions. New 

data vectors are formed by projecting the original data onto the principal component 

vectors with the following criterion. The components of the new feature vector are 

derived from the first M eigenvectors that satisfy 9.0

1

1 







N

i i

M

i i




, where 

i  is the ith 

largest eigenvalue, and N is the dimension of the original feature space [25]. The 

component vectors are determined and then can be used for the later emotion 

classification. 
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3.3.3 IKCCA Classifier 

Table 3.1 Recognition Rates of the IKCCA classifier 

 neutral angry  disgust fear happiness sadness surprise 

3D Gabor 70.12 77.92 63.66 67.86 69.67 63.90 76.96 

3D Gabor +PCA 70.74 84.69 64.62 65.18 82.71  66.52  81.04  

To clarify the relationship between feature vectors and the corresponding emotion 

category, in our experiment, all kinds of expression feature vectors of seven facial 

expressions collected from different people are extracted and compared using individual 

IKCCA classifiers. The IKCCA is carried out on the training samples of the 3D Gabor 

feature vectors, and then used to classify the data. This approach attempts to maximize 

the intra-class correlation following (3.15) and (3.17). We show the recognition rates by 

individual IKCCA classifiers with and without PCA feature selection in Table 3.1. From 

the table we can see that by applying PCA, the system performance is improved. 

Table 3.2 Confusion matrix of IKCCA on BU_3DFE database 

 Detected 

Desired Neutral Happiness Disgust Fear Angry Surprise Sadness 

Neutral 70.74 1.89 7.35 8.65 5.66 1.56 4.15 

Happiness 2.95 82.71 5.56 3.32 1.45 1.04 2.97 

Disgust 1.70 1.78 64.62 13.81 9.81 0.76 7.52 

Fear 0.94 1.42 4.55 65.18 9.09 18.18 0.64 

Angry 5.31 0.45 4.62 1.89 84.69 1.38 1.66 

Surprise 1.85 1.60 1.26 6.12 3.56 81.04 4.57 

Sadness 4.92 3.52 4.76 14.29 1.37 4.62 66.52 
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In Table 3.2, we show the confusion matrix of the IKCCA classifier on the BU_3DFE 

database. From Table 3.2, the same expressions collected from different subjects are very 

similar due to the fact that they are highly correlated within the same emotion class. The 

overall recognition rate using individual classifiers with PCA is about 73.64%. 

From the results we find that expressions with a negative value correspond to a 

negative reaction in terms of arousal and stance, while positive values correspond to a 

positive reaction. Note, the expressions that are detected with high accuracy and low 

confusion are in the happiness, anger and surprise classes. The reason is that, in general, 

these emotions have strong negative or positive values with more distinguishable 

corresponding facial expressions. The confusion matrix also illustrates the most common 

misclassifications. In general, emotions of sadness, fear and disgust have low recognition 

rates, as they do not occur naturally alone but associated with other emotions. Moreover, 

the misclassifications can be attributed to the inherent difficulty of the classification into 

a few categories of expressions.  

We compare the 3D Gabor based IKCCA classifier with and without PCA selection, 

and a 2D Gabor based method by [25]. Figure 3.4 summarizes the results of the best 

classification accuracy as an average percentage achieved by these methods. From the 
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figure, it is very clear that when classifying the seven prototypic facial expressions, using 

the 3D Gabor feature with PCA selection representation obtains a recognition rate of 

73.64% which significantly exceeds the recognition rates of 49.29% by the 2D Gabor 

based method and 67.3% without PCA selection.  

 

Figure 3.4 Classification Comparisons of 2D and 3D Gabor Filters 

3.3.4 Semantic Ratings Classification  

To improve the recognition rate, we introduce a semantic ratings classification method 

based on the individual IKCCA classifiers by considering the overall correlations for the 

different classes. We use the calculated semantic ratings by quantitatively evaluating the 
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seven emotional expression, while minimizing the overall correlations between the 

projected means of different samples we intend to separate.  

 

(a)                                                                (b) 

 

(c)                                                                      (d) 

 

(e)                                                (f)                                                 (g) 

Figure 3.5 Samples of semantic ratings for different expressions of emotions (a) Happiness (b) Fear 

(c) Angry (d) Sadness (e) Neutral (f) Surprise (g) Disgust 
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Figure 3.6 Final Emotion Recognition Rate with IKCCA Based Algorithm 

The semantic ratings are computed from the training samples and combined into a 

seven- dimensional semantic expression vector for analysis. For a new 3D facial 

expression query, we first generate the feature vector using the 3D Gabor filters. The 

corresponding semantic ratings of each facial expression are estimated using (3.22), and 

then the emotion classification is performed according to (3.21) with the new trained

semantic'Y . From the result we can see that features representing different expressions 

exhibit diversity since the correlations between different emotions are relatively low. 
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Figure 3.5 illustrates some samples of the semantic ratings for the facial expression 

model.  

 

Figure 3.7 Comparison of Recognition results from different classifiers 

The proposed method is also tested using the leave-one-out cross validation approach, 

which is the most frequently used approach for testing the generalization performance of 

a classifier. This approach is applied in order to make maximal use of the available data 

and produce averaged classification accuracy results. The facial expressions belonging to 

one subject are used as the testing data and the remainders as the training data. This is 

repeated for all the possible trials until all subjects are used as testing data. The 

recognition accuracy is calculated as the ratio of the number of correctly classified 

samples and the total number of samples in the data set. The experimental results are 

averaged to produce the final recognition rate and shown in Figure 3.6. From Figure 3.6, 
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we observe an overall recognition rate of 85.65% by this strategy, a 12% improvement 

over the individual classifier. 

We conduct extensive experiments using different classification schemes, i.e., 

Gaussian Mixture Model (GMM), Fisher's Linear Discriminant Analysis (FLDA), and 

NN algorithm. The experimental results, for the performance comparison with the same 

data set, are drawn in Figure 3.7. The GMM classifier is implemented in a modular 

architecture. A separate GMM is trained for each individual class. The parameters 

including the weights, mean and standard deviation of each component are estimated by 

the Expectation Maximization (EM) algorithm. In out experiments, we try a range of k 

values, so that the distribution of the data can be modeled as the sum of k Gaussian 

functions. The applied FLDA classifier has six outputs corresponding to the six emotions. 

An input signal is labeled with the class that gives the maximum output value. In NN 

classification, a three-layer feed-forward neural network is investigated. The number of 

input layer neurons is equal to the dimension of the input feature set, while the output 

neurons correspond to the six emotion classes. The back-propagation algorithm is used to 

train the network. A new input is labeled with the class that produces maximum output 

value. From Figure 3.7 we can see IKCCA-based method achieves the best results for the 

final emotion recognition. 
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Comparisons of the recognition rates achieved by the 2D feature-based and 3D feature-

based approaches are depicted in Table 3.3 and 3.4. We can see that 3D feature-based 

approaches have better performances due to the ability to handle pose variations and 

lighting illumination problems, and outperform the 2D-based methods that are sensitive 

to such conditions. 

Table 3.3 Comparison with 2D feature-based Emotion Recognition approaches  

Table 3.4 Comparison with 3D feature-based Emotion Recognition approaches 

 

    Computationally, our proposed method has the advantages of automatic feature 

extraction using the real 3D visual features over the existing 3D based methods that only 

consider the 3D geometric information of the facial expressions. Note that the method 

proposed in [46] and [47] achieved an overall recognition rate of 95.1% and 91.3% 

Ref. 
Lyons   

[18] 
Silva [19] Cohen [20] 

Y. Wang 

[25] 
Lu [43] Wu [44] 

Lajevardi 

[45] 
This Work 

Dimension 2D 2D 2D 2D 2D 2D 2D 3D 

Feature Gabor geometric PBVD Gabor Gabor Gabor 
Log- 

Gabor 
Gabor 

Classifier LDA NN HMM FLDA NKFDA LDA NN IKCCA 

Recognition 

Rate 
75% 60% 66.53% 78% 81% 78% 70% 85% 

Ref. Hu [27] Tang [46] Soyel [47] J. Wang [48] This Work 

Ini Manu Manu Manu Auto Auto 

Feature Geometric points Geometric Gabor geometric Gabor 

Classifier SVM AdaBoost NN LDA IKCCA 

Database BU_3DFE BU_3DFE BU_3DFE BU_3DFE BU_3DFE 

Recognition 

Rate 
71% 95% 91.3% 83% 85% 
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respectively. However, these methods are only tested on perfect manually aligned feature 

points and no experiments in fully automatic conditions were reported. Therefore, direct 

comparison with our proposed method, in terms of performance, will be biased and 

unrealistic. 

3.4 Chapter Summary 

In this chapter, we proposed a new facial emotion recognition method using real 3D 

visual features which are extracted automatically. We constructed a 3D Gabor library for 

facial feature extraction with an IKCCA algorithm for final decision making. We 

observed that using 3D visual features for emotion analysis has better performances with 

more visual feature information. Apparently, this work points to a promising direction for 

the analysis of 3D-based emotion recognition.  

We applied the IKCCA algorithm to seven-dimensional semantic expression vector 

ratings to classify the prototypic facial expressions. Our work shows that IKCCA is a 

very effective method for correlating the nonlinear relationship between the facial 

features and the associated semantic features. It provides us with an effective way to 

predict the semantic expression information of a facial expression. We observed superior 

performance by the proposed method when compared with several other methods using 
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automatic feature extraction. To improve the performance of the semantic ratings-based 

approach, a better way could be obtaining more accurate semantic ratings of each facial 

image by constructing the corresponding semantic expression vector.  

Although the quality of 3D Gabor library based recognition is typically high, the 

process is slow, costly. On the other hand, the general input devices are 2D-based, and it 

is difficult to collect 3D data for emotion recognition. Therefore, using simplified feature 

representation with a generic face model will be an appropriate solution for real time 

applications. We then present an automatic emotion recognition system from video 

sequences using a 3D physical face model with EBS technique. 
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Chapter 4 

Face Detection 

 

FACE detection is considered to be essential requirements for intelligent vision-based 

human computer interaction systems. Automatic face detection is considered to be the 

first primary step for our emotion recognition system from video sequences. In this 

Chapter, we present a robust and effective method to detect human faces that combines 

feature extraction and face detection based on local normalization, Gabor wavelets 

transform and Adaboost algorithm. The main contribution of this step is the incorporation 

of a normalization technique based on local histograms with OAC technique to alleviate a 

common problem in conventional face detection methods: inconsistent performance due 

to sensitivity to variation illuminations such as local shadowing, noise and occlusion. The 

approach uses a cascade of classifiers to adopt a coarse-to-fine strategy for achieving 

higher detection rates with lower false positives. 

4.1 The State of the Art 
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Face detection techniques have been studied extensively in the past decades. Examples 

include feature based methods, using geometric information such as skin color [49-52], 

geometric shapes [53, 54], motion information [55-58], and machine-learning based 

approaches like neural networks [59-62], Gaussian mixtures [63], support vector 

machines [64-66] and statistical modeling [67, 68].  

Facial feature based techniques use prior knowledge about the face‟s features. Low 

level feature analysis first deals with the segmentation of visual features using edges, 

intensity skin color, motion, or generalized measures, including those based on template 

matching where several correlation templates are used to detect local sub-features, 

considered as rigid in appearance or deformable. The visual features are organized into a 

more global concept of face through facial feature and constellation analysis using face 

geometry constraints. The main drawback of feature-based approaches is that these 

systems are often simple, but do not work well in practice. The global constraints and 

extracted features can be significantly influenced by noise, occlusions, changes in face 

expression and viewpoint, and motion information may be distracted by alternate motion 

in the video.  

Machine-learning based techniques have been developed to handle difficult scenarios 

where multiple faces of different sizes and poses have to be detected in heavily cluttered 
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backgrounds. They require no prior, or relatively minimal, knowledge of what constitutes 

a face, and detect the type of faces they have been trained or defined on. Pre-classified 

face samples and non-face samples are usually used for training the system and are 

mostly processed offline. These approaches avoid the specific and possibly inaccurate 

face modeling by learning underlying rules contained in highly variable face patterns 

from large training sets of face examples. They have proven to be very tolerant to noise 

and distortions affecting the face patterns. However, most systems are complex and 

computationally expensive, and research is ongoing to improve the real-time performance 

of those systems.  

The information between consecutive frames is highly correlated, so this property can 

be exploited for faces detection. The shortest weighted feature distance between the face 

pattern and the possible face candidates can be used for this intent. And also, the weights 

of the features can be updated adaptively in the successive frames. X. Li and X. Zhou 

[69] proposed a spatial-temporal mutual feedback scheme for faces detection and 

tracking. The prediction model and the observation model were generated from two 

consecutive frames and the templates were updated through Kalman filter and 

hypodissertation test. V. Pallavi et al [70] constructed a directed weighted graph to detect 

and track players in videos. Directed Graph Construction linked candidates in a frame 
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with the candidates in next consecutive frames, and then Trajectory Estimation was 

applied to find the specific trajectory for each player. However, their works need 

initialize manually. 

On the other hand, most of the automatic face detection algorithms are implemented in 

such a way that at the initial step, a pyramid of downscaled copies of the given input 

image is produced. Then, a sliding window scans each of the downscaled images and 

finally a classifier is applied on all possible window locations to decide whether the 

region covered by the window contains a face object or not. Practically, the number of 

windows or equivalently the number of times the classification will be processed is 

typically in the tens of thousands depending on the image size and demagnification 

factor. Adaboost algorithm, suggested by Viola and Jones [71] originally in 2001, 

employed this method in a fast and robust way and has been widely investigated in video 

face detection systems such as face tracking or video surveillance. This algorithm is 

based on the observation that the presence probability of face objects in a scene is 

substantially smaller compared to that of non-face objects or, in other words, the fraction 

of non-face region in an input frame is relatively much larger than that of faces. The key 

point is that fast, but less discriminating classifiers can reliably reject most of the 

windows containing non-face objects while passing the windows containing the maybe-
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face objects to a second level classifier, this is slower than the previous one but has 

higher discriminating power. This procedure iteratively continues rejecting windows 

containing non-face and passing the windows containing maybe-face objects to a higher-

level classifier. Such an iterative process can provide high detection performance with 

much less computational expense. This approach combines a set of efficient classifiers in 

a cascaded structure to achieve fast front face detection, but has not been investigated on 

images in changing illumination conditions or under occlusions. 

Since illumination is one of the most important factors that determine success or 

failure in face detection, many approaches have been proposed to handle the illumination 

problem. Such approaches include illumination insensitive representations, modeling of 

illumination variations and illumination normalization to a canonical form. From the 

theory of illumination-reflectance model, an image can be expressed in terms of its 

illumination and reflectance components. Most algorithms of face detection presume that 

the illumination variation is uniform or lighting must be controlled. X. Tan and B. Triggs 

[72] provided a system under uncontrolled lighting based on robust preprocessing and an 

extension of the local binary pattern (LBP) local texture descriptor. Georghiades et al. 

[73] demonstrated that face images with the same pose, under different illumination 

conditions, form a convex cone, the illumination cone. Ramamoorthi [74] and Basri and 
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Jacobs [75] independently used spherical harmonic representation to explain the low 

dimensionality of face images under different illumination conditions. 

Li et al [76] presented a method for indoor, cooperative-user applications, including 

active near infrared (NIR) imaging hardware, algorithms, and system design, to overcome 

the problem of illumination variation: an illumination invariant face representation is 

obtained by extracting LBP features from NIR images. However, their solution is 

developed for cooperative user applications indoor and is not yet suitable for 

uncooperative user applications such as face recognition in video surveillance, nor is it 

suitable for outdoor use. W. Chen et al [77] proposed an illumination normalization 

approach using a discrete cosine transform (DCT) to compensate for illumination 

variations in the logarithm domain. Since illumination variations mainly lie in the low-

frequency band, an appropriate number of DCT coefficients are truncated to minimize 

variations under different lighting conditions. Moreover, the advantage of their approach 

is that it does not require any modeling steps and can be easily implemented in a real-

time face recognition system. Nevertheless, the shadowing and specularity problems are 

not sufficiently addressed because they lie in the same frequency band as some facial 

features. Furthermore, higher frequency facial features are more difficult to extract while 

poses and expressions change.  
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As a conclusion, the illumination component of an image varies a great deal, often 

more than the reflectance component. The non-uniform illumination will change the rules 

of human face gray level distribution, and the edge of face will be blurred and detection 

rates commonly drop quickly under this condition. In order to achieve advanced 

illumination invariant face detection in complex conditions, more robust and fast methods 

are required. Moreover, most previous face recognition and detection systems imposed 

strict restrictions on the input data and worked with the assumption that the location of 

the face within a frame is known. Although their works obtained good detection results, 

the requirement for calibrated multi-cameras and only being used for certain specific 

applications are two main limitations of these systems. 

4.2 Methodology 

The key step of this work is the incorporation of local normalization with OAC technique 

to conventional classifier for automatic face detection on video sequences. Each frame of 

the input video sequences is first extracted and regularized by local normalization. Face 

candidate regions are then roughly located by OAC. The Gabor wavelets filters are 

applied for local feature extraction after preprocessing. In the final step, the face region is 
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detected through a cascade classifier consisting of detectors with Adaboost algorithm. 

The system diagram of this work is shown in the Figure 4.1. 

 

Figure 4.1 Face Region Detection (a) Video/Webcam Input, (b) Image from frame extraction, (c) 

Normalized image by local normalization, (d) Feature Extraction, (e) Classification, (f) Final face detection 

results 

4.2.1 Local Normalization 

Due to the fact that variant light condition definitely causes low detection rates and can 

be eliminated by illumination normalization, normalization techniques should be well 

considered in an automatic face detection system.  The system‟s resistance can be 

evaluated to the most common classes of natural illumination variations. Most methods 

explored were typically characterized by relatively low spatial frequencies. We use local 

normalization in this important step in order to keep all the useful information in 

illumination invariant form. This facilitates accurate and robust feature extraction and 

face detection. 
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Illumination Compensation  

Illumination compensation consists of several stages, including gamma intensity 

correction (GIC), difference of Gaussian (DoG), local histogram matching (LHM) and 

local normal distribution (LND).  

    The gamma correction of an image is a nonlinear gray-level transformation that 

replaces the input image s  with its exponentiation s . GIC, as mentioned in [78], corrects 

the overall brightness variation of the input image s  to best match a predefined 

canonically illuminated image 0s . The predefined image 0s  is lighted under normal 

lighting condition. Given an input image ),( yxs , its GIC corrected image ),(' yxs is 

computed by transforming the input image over its position ),( yx  pixel by pixel with an 

optimal Gamma coefficient
*  

));,((),(' *yxsGyxs                                                (4.1) 

where ),());,(( /1 yxscyxsG   , c is a gray stretch parameter, and 
* can be 

computed as  
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,
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* )],());,(([minarg  
yx

yxsyxsG 


                       (4.2) 

where ),(0 yxs  represents the predefined image. GIC can enhance the local dynamic 

range of the face in dark or shadowed regions, compress in bright regions and at 

highlights, and compensates for global brightness changes of an image. In our 
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implementation of GIC, 
* is approximated using the golden section search with 

parabolic interpolation proposed in [78].   

    The intensity gradients such as shading effects are removed through a DoG filter [79], 

which is a popular method to obtain the resulting bandpass behavior for images and is 

defined as  
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where L  is the Guassian function and 
1D and

2D are the deviations of inner and outer 

Gaussians respectively. The selected values of smaller or inner Gaussians 
1D are 

typically quite narrow so the detailed spatial information in high frequency is kept, while 

the outer ones 
2D might have more contents for low frequency. 

We then apply LHM after GIC and DoG. Histogram matching, also known as 

histogram fitting or histogram specification, is the generalization of histogram 

equalization. The main idea of LHM is to produce an image with desired distributed 

brightness levels over local windows.  

The gray levels of the input image ks is firstly equalized by (4.4) 
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where T  denotes equalization function, n  is the total number of pixels, 
jn  is the number 

of pixels with gray level 
jr , and l  is the number of discrete gray levels. The histogram 

distribution function )(zE  for the local window can be obtained by 

k
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n
zpzE  

00

)()(                                           (4.5) 

where )(zpz
represents the specified desirable probability density function (PDF) of local 

window. The inverse transformation function )(1 sEz   is applied to the levels obtained 

in (4.5). The new, revised version of the original image consists of gray levels 

characterized by the specified density )(zpz
is then given by 

  )(1 sEz  or )]([  1 rTEz                                             (4.6) 

    Finally, LND is applied on the resulting image from (4.6) by assuming the gray values 

drawn form a normal distribution. The output image ),( yxc is normalized using (4.7) 
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 )(
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                                                      (4.7)  

where i and i are the mean and standard deviation of )]([1 rTE 
 over the whole image. 

This illumination compensation procedure can count the effects of illumination 

variations, local shadowing and highlights in the original image, which may preserve the 

essential elements for detection of visual appearances. 

Candidates Selection 
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After illumination compensation, we propose to apply OAC technique [80] on the 

normalized images ),( yxc to quickly locate face candidates. Compared with common 

automatic face detection algorithm, this method does not need to use the pyramid of 

downscaled copies of the input image and thus speeds up the processing. 

A normalized image has similar power spectra and can be efficiently implemented in 

the spatial domain of a running window that approximately meets the requirements of the 

OAC process. The suggested algorithm is adaptive to the input normalized image, and 

designed to complete the segmentation in a single iteration in Hilbert space F , through 

the kennel transformation function. The transformation of the normalized image in F

becomes a correlation image with normalized values ranging from zero to one. The OAC 

detector examines and segments this image according to the range of correlation values. 

The image is then split into two segments after correlation test that correspond to face 

candidates and background regions, which can be used conveniently by the later fine 

classifier with Gabor and Adaboost algorithm.  

Assume we have a normalized image ),( yxc with a multiple faces part ),( yxc f
and a 

complex background part ),( yxcb that 

),(),(),( yxcyxcyxc bf                                          (4.8) 
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the face part 
fc and background part bc can be modulated as uncorrelated independent 

signals, so we have 

),(),(),(
1

yxcyxcyxc b

l

k

f

k 


                                (4.9) 

where the face part 
fc is now composed by  the average face template

fc  (or the 

egienface) though gain mapping matrix , and l  is the number of faces.  

    The OAC transform for the entire image is  

2
),(/),(),( YXCYXCYXH b

T

fC                                (4.10) 

where 
fC and bC  are the  nonlinear mapping response in F  of 

fc and bc  respectively, T  

denotes the complex conjugate operation,  and YX ,  are the two-dimensional transform 

domain indices. The labeled graph (LG) generated by this transformation is the adaptive 

ratio of target (face) signal peak height to standard deviation of clutter (non-face) 

background of the image.  

   Since the background power spectrum 
2

),( YXCb
 is unknown, we instead estimate it 

from the spectrum of the entire image. Equation (3.10) then can be rewritten as 

2
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                                             (4.11) 

where ),( YXC T

f is the  nonlinear mapping response in F of 
fc . Now we can calculate 

the adaptive priori for a given image. 
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    The OAC detector is defined as  

2
),(),( YXCgYXD T                                              (4.12) 

where g  is a m x m matrix and m=5 is assumed in this work. 

    We then use KCCA to get the nonlinear correlation between ),( YXD  and ),( YXH : 

to find a pair of directions 
D  and 

H , such that the correlation ),( HD  between the 

two projections 
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D and 
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H  is maximized, where 
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    Assume )(D  is the diagonal of D in F so the correlation function in F  can be 

formulated as 
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    Therefore, to roughly locate face candidates is equivalent to finding a pair directions 

)(D  and 
H  that maximizes 

H

TT

D YD  )()( 
under the constraints 
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D HHDD                         (4.15) 

where )]()...(),([)( 21 NDDDD  in the kennel space.  

    Let t

iH
i

D
i

1)( )},{(   be the t pair directions of OAC, and t ,...1  the t  corresponding 

correlation values. Let ia  and ib  be the projections of the variables )(D  and H onto 
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the projection vectors )(D
i
 and H

i respectively. Thus, we get 
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where ti ,...,1 , ia  and ib  are approximately linearly correlated and both are centered 

projections, so that 

KPDaaa T

D

Tt

DD

t   )(],......,[],...[ )(

1

)(

1   

HPHbbb T

H

Tt

HH

t  ],......,[],...[ 11                                         (4.17) 

where  

])(,......,)[( )(

1

)(

Tt

D

T

DDP    

)())(( DDK T  

],......,[ 1 t

HHHP   

    For a given normalized image, we can estimate the face candidates in the segmented 

image by the OAC value of ),( YXD  and ),( YXH  in term of ia  and ib   

)/max(arg ii baC                                                (4.18) 

    The segmentation image mask ),( yxM  for the original image ),( yxs  is then 

generated from the correlation image ),( yxc  as 
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where 
y)c(x,Th  is the thresholds parameter for pixels corresponding to the face candidates.  

Local normalization with nonlinear histogram equalization is used by taking into account 

histogram distribution over local window and combining it with global histogram 

distribution. Examples of the local normalization filtered results of the original images 

are shown in Figure 4.2. 

  

(a)                             (b) 

 

(c)                                                  (d) 

Figure 4.2 Samples of local normalizations for video sequences (a) Input images from video sequences, (b) 

Corresponding locally normalized images, (c) Histograms of original images, (d) Histograms of 

corresponding locally normalized images. 
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    Figure 4.2 shows that the histograms of all input images are widely spread to cover the 

entire gray scale by local normalization, and the distribution of pixels is not too far from 

uniform. As a result, dark images, the histogram components of which are concentrated 

on the low side of the gray scales, bright images, the histogram components of which are 

biased toward the high side, and low contrast images, the histogram components of which 

are narrow and centered toward the middle of the gray scale, are much enhanced to have 

an appearance of high contrast. By applying local normalization, the system resistance to 

the natural illumination variations is improved. 

4.2.2 Feature Extraction and Classification  

The face detection stage of this step consists of two main components: Gabor wavelets 

feature extractions and Adaboost detection algorithms. Gabor wavelets demonstrate two 

desirable characteristics, spatial locality and orientation selectivity. Compared with other 

popular transformations, such as Fourier transform, DCT and various wavelets, the Gabor 

wavelets transform has shown its effectiveness in automatic face detection and 

recognition, and has been widely used by many researchers.  

Gabor wavelet filters are applied for feature extraction. To design Gabor filter banks, 

we use 4 different scales and 8 orientations of Gaussian wavelets. The filter bank has 32 

Gabor kernels with }7,...,0{k  and }3,...,0{s , here k represents orientation and s 
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represents scale. For training the original detector, a total of 15599 subjects (8754 

positives and 6845 negatives) are used, and each set has 54x48x32=82,944 Gabor kernel 

features. All the features are trained through cascade Adaboost classifiers.  

Boost algorithm has been proposed to reduce the redundancies of the high dimensional 

feature space and computational cost. The Adaboost algorithm by Viola and Jones4 for 

face detection is a typically successful example as it has a very low false positive rate and 

can detect faces in real time. It can be trained for different levels of computational 

complexity, speed and detection rate which are suitable for specific applications.  

          

(a)                                                                                   (b) 

Figure 4.3 Samples of face images and non-face images (a) face images, (b) non-face images. 

 

For the training of the original face detector, we collect face images and non-face 

images from the publicly available face detection databases with large illumination 

variations: Extended Yale Database and Carnegie Mellon University (CMU) Database. 
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Figure 4.3 shows some samples of the training images. The original detector is trained to 

detect a face centered in a standard window with size of 54x48, and all training images 

are resized to 54x48 pixels. 

 

Figure 4.4 Test rates from three Adaboost algorithms 

The performances of RealAdaboost [81], GentleAdaboost [82] and ModestAdaboost 

[83] for face detection are compared in our work based on video sequences using GML 

AdaBoost Matlab Toolbox [84]. RealAdaboost is the generalization of a basic Adaboost 

algorithm and treated as a fundamental boosting algorithm. GentleAdaboost is a more 

robust and stable version of RealAdaboost. It is identified that GentleAdaboost performs 

slightly better than RealAdaboost on regular data, and is considerably better on noisy data. 
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It is also much more resistant to outliers. ModestAdaboost is regularized tradeoff of 

Adaboost, it is mostly aimed for better generalization capability and resistance for certain 

specific sets of training data. RealAdaboost, GentleAdaboost and ModestAdaboost are 

compared for error checks with 200 boosting iterations (shown in Figure 4.4). 

GentleAdaboost returns better face detection rate in our work, and is selected as the 

detection algorithm for our system. 

4.3 Experiment and Results 

In this section, we evaluate the performance of the proposed method for human face 

detection and segmentation on two video datasets with different illumination conditions. 

One test video dataset is recorded under good brightness condition. It includes eight 

subjects and 520 video clips in total. All samples are running at 30 frames per second on 

images of 320x240 resolutions. Another dataset (647 clips in total) are from commercial 

films and videos available on the Web under complex illumination conditions. Videos in 

this dataset also contain single or multiple faces occurring at different sizes, in different 

poses, and at various positions with respect to each other. Note, the videos with good 

light conditions were collected for the purpose of human emotion recognition. Each 

human subject showed the six fundamental human emotional states: happiness, sadness, 
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anger, disgust, fear and surprise. The variations among the emotional states make the face 

detection task more challenging since the training images were essentially photographed 

in the neutral state. 

Table 4.1 Comparison of parameters used in experiments 

 

We performed the face detection with two different sets of parameters, listed in table 

4.1. We first demonstrate the overall performance of the system in term of receiver 

operating curves (ROC) as shown in Figure 4.5.  

From Figure 4.5 we can see that good detection results are obtained by setting the 

window size of the local normalization to 5x5. We perform detections using Gabor 

wavelets (GW) features only and then we use the combined features of GW and local 

normalization (LN). In each figure, GW and LN+GW methods are also compared by 

correct detection rates vs. false positives in different illumination conditions. The 

experiment results demonstrated that the face detection accuracy is considerably 

Parameters Set I Set II 

Local window size 5x5 8x8 

GIC γ=0.23 γ=0.25 

DoG 2,1 21  DD  3,1 21  DD  

LHM K=255 K=255 

LND 1.0,8  ii   1.0,10  ii   
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improved by about 10 to 15 percent by incorporating local normalization in the critical 

regions of detection rate vs. false positives. At the same time, the false detection rates are 

dropped by approximately 15 percent. 

 

(a)                                                                              

 

(b) 

Figure 4.5 The ROC curves of face detection results with local normalization (a) shows detection result 

with parameter set I, (b) shows detection result with parameter set II. 
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Figure 4.6 Sample sequences from the test videos under good illumination condition, trained face detector 

with local normalization are applied on each frame. The frame numbers are marked above. 

 

 

 

 

 

 

Figure 4.7 Sample sequences from the test videos under bad illumination condition 

We then present some representative cases. Figures 4.6 and 4.7 show the face detection 

results by applying the proposed detectors to each frame of video sequences under good 

illumination conditions and bad illumination conditions. The size of the bounding box is 

1289 1286 1278 1271 1260 

1459 1452 1328 1320 1296 

800 794 789 783 773 769 

830 825 820 815 810 805 

860 855 850 845 840 835 
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determined using the scale of the detected face on the image. From the results we can see 

that a face is actually detected even under varying illumination condition. 

The results are carried out through pixel-based illumination normalization and are 

sensitive to optimal threshold 
y)c(x,Th  of the local normalization, which was computed 

through (4.19). For a threshold higher than 
y)c(x,Th , some of the faces in the sequences 

will not be detected, and on the other hand, much lower thresholds will lead to some 

spurious faces. Next we evaluate our method on the video sequences with rotating pose 

and varying sizes, the results are shown in Figure 4.8. 

 

 

 

 

 

 

 

Figure 4.8 Sample sequences with changing size and head rotation 

     

2255 2252 2248 2245 2240 2231 

2269 2267 2264 2261 2259 2257 

2296 2290 2287 2284 2279 2274 
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Figure 4.9 Sample sequences with head rotating after profile data are trained  

     

 

 

 

 

Figure 4.10 Face Detections applied on sample sequences with multiple subjects 

    In Figure 4.8 we can see the face is lost after frame 2248 when a frontal face is rotating 

to a profile view.  From frame 2284 and onward, the face is found again when the frontal 

face reappeared. This happened because, so far, we only trained our detectors using 

2255 2252 2248 2245 2240 2231 

2269 2267 2264 2261 2259 2257 

2296 2290 2287 2284 2279 2274 

18259 18255 18249 18244 18241 

18310 18295 18275 18270 18265 
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frontal face images. To solve this problem, we added a wider range of face pose samples 

to the training database in order to improve the performance of the detectors. The 

improved result is shown in Figure 4. 9In Figure 4.10, we show the results of applying 

the proposed detectors in a sequence in which various faces appeared.     

Table 4.2 Final detection rates for testing databases 

 

 

 

 

 

 

 

Two faces are in the center of the frames with slight movement and rotation. The third 

face first appeared on the left side of frame 18249, and then moves close to the faces in 

the center, stays a while, and leaves the scene in frame 18295 and onward. Our detectors 

are able to detect almost every face without dramatic movement and rotation, such as 

those in the center of all the frames in Figure 4.10. For the intensely varying objects, such 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

I (348) II (427) III (249) IV (143)
GW 87.50% 75.25% 72.49% 70.14%

LN+GW 93.74% 85.69% 89.06% 81.38%
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as the third face in frames 18249 to 18275, missing detection does occur as seen in frame 

18265. However, it is redetected after a few frames. This example shows the robustness 

of our method to the various faces detection. 

The final detection rates for different condition are given in table 4.2. Columns I, II, III, 

IV indicate video sequences with good illumination conditions, bad conditions, changing 

head poses/sizes and various faces, respectively; GW and LN+GW denote detection 

results using Gabor wavelets features only and those using combined features, 

respectively. As a result, the average face detection rate is considerably improved to 

about 10 percent by incorporating the proposed local normalization technique. 

4.4 Chapter Summary 

In this Chapter, we presented an effective and robust method for detecting faces in video 

sequences based on a coarse-to-fine strategy. Local normalization technique is 

incorporated into a conventional face detector to alleviate illumination variation problem. 

It is demonstrated that the method can improve the face detection rate and reduce the 

processing time. Compared with face detection without local normalization, our method 

has following advantages: 

1. alleviate illumination variation problems in general face detection systems, 
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2. decrease computing time by candidates localization with optimal adaptive correlation  

techniques,  

3. locate faces automatically on single frame and make it possible to eliminate the 

manual initiation step from head/face tracking algorithm, and 

4. be able to deal with detecting various faces reliably  
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Chapter 5 

Fiducial Point Detection and Tracking 

 

FIDUCIAL points are a set of facial salient points, usually located on the corners, tips or 

mid points of the facial components. To be able to reasonably recognize the emotional 

expressions, the current appearance of the facial features must first be detected. To do so, 

one promising approach is to detect and track a set of fiducial points, the locations of 

which alter as the current appearance of the facial features changes with the facial 

expression. Due to high computing complexity, fiducial point techniques were not well 

studied. Automatically detecting and tracking fiducial points can extract the prominent 

characteristics of facial expressions with the distances between points and the relative 

sizes of the facial components to form the feature vector. On the other hand, finding 

feature points appropriately on the face can best represent the most important 

characteristics of the expressions and extract features more easily. 

    We choose 26 fiducial points on the face region, which are shown in Figure 5.1. The 

26 fiducial points are selected according to the anthropometric measurement with the 
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maximum movement of the facial components during expressions. Table 5.1 gives the 

descriptions of these fiducial points. The fiducial points are detected in each fixed facial 

region by scale invariant feature based detectors, and tracked using multiple DE-MC 

particle filters with kernel correlation techniques.  

 

Figure 5.1 Selected 26 Fiducial Points 

Table 5.1 Description of the 26 fiducial points  

Fiducial Points Description  

1 Top of the head 14 Top of the left eyebrow 

2 Tip of the chin 15 Left eyebrow outer corner 

3 Left of the head 16 Right eyebrow inner corner 

4 Right of the head 17 Top of the right eyebrow 

5 Left eye inner corner 18 Right eyebrow outer corner 

6 Top of the left eye 19 Top of the nose 

7 Left eye outer corner 20 Left nose corner 

8 Bottom of the left eye 21 The medial point between left and right nostril centres 

9 Right eye inner corner 22 Right nose corner 

10 Top of the right eye 23 Left corner of the mouth 

11 Right eye outer corner 24 Top of the upper lip 

12 Bottom of the right eye 25 Right corner of the mouth 

13 Left eyebrow inner corner 26 Bottom of the lower lip 
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5.1 Fiducial Point Detector 

Automatically detecting fiducial points successfully in facial region plays an important 

role in numerous facial image interpretation tasks. We propose an automatic and robust 

fiducial point detection method using the scale invariant feature and the Adaboost 

algorithm for classification in this step. After the facial region is located from the face 

detection step, candidate points are selected over the facial region using local scale space 

extrema detection. The scale invariant feature of each candidate point is extracted for 

examination. We build the fiducial point detectors with Adaboost classifiers. All the 

candidate points in the facial region are examined through these detectors, and the 26 

fiducial points can be detected. 

    Using fiducial points for facial expressions recognition is a challenge in computer 

vision systems. Most of the automatic feature point detection algorithms are implemented 

in such a way that every pixel in the input image is examined through feature detectors 

one by one to construct the feature vectors. Then the classifications are applied to the 

feature vectors to perform the feature point detection. Practically, the number of feature 

points, or equivalently, the number of times the classification will be processed, is 

typically in the tens of thousands, depending on the image size and demagnification 
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factor. We propose to use the scale space extrema method to efficiently detect the 

locations of candidate points in the facial region from the face detection step. Compared 

with common automatic feature point detection algorithm, our proposed method does not 

need to classify every pixel of the input image and thus speeds up the processing.  

5.1.1 Candidate Selection 

The scale space extrema can be detected using the Gaussian convolution kernel function 

convolved with the input image. The description function L (x, y) of the input image in 

different scale space is expressed as: 

                                         (5.1) 

L(x, y, σ) is the spatial scale image, where s(x, y) indicates input image of the facial 

region, and G(x, y, σ) is the Gaussian convolution kernel function that: 

                                  (5.2) 

σ is the scale factor. The image zooms with the change of σ, and then a series of scale 

images could be obtained. The scale space extrema are computed by the DoG function of 

the input image, which calculates the difference of two nearby scales separated by a 

constant multiplicative factor k  

 

                                                   (5.3) 
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where D(x, y, σ) is the DoG function of the input image. Each pixel in the DoG image is 

compared to its eight neighbors on the same scale, and each of its nine neighbors one 

scale up and down. The pixels with the local maximal or minimal values are chosen as 

candidate points, including the adjacent scale, the position and scale of the local extreme 

points. The points are generally the feature points of the image, located on contours, 

corners and edges.  

 5.1.2 Feature Vector Generation 

After the position and scale σ of the candidate points are determined from the input 

image, a gradient orientation histogram is calculated for the direction of each interest 

point in its neighborhood. The gradient magnitude m (x, y) and orientation θ(x, y) are 

computed using pixel differences as: 

         (5.4) 

]
),1(),1(

)1,()1,(
arctan[),(

yxLyxL
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yx




                                                           (5.5) 

where, L is the scale feature of the images. By choosing a neighborhood, F, the center of 

each interest point and calculating the directions of points in F, we can obtain the 

direction distribution and the statistical histogram. The gradient magnitude orientation is 

divided into 36 portions so as to be convenient in obtaining the direction distribution. The 

22 )]1,()1,([)],1(),1([),(  yxLyxLyxLyxLyxm
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direction of the candidate point is the maximal component of the 36 phases in the 

statistical histogram.  

5.1.3 Fiducial Point Detector 

To detect the fiducial points from the candidate points, a set of fiducial point detectors, 

with the feature description for the gradient orientation histogram of the input images, are 

constructed. 

    At the centre of each fiducial point, a 16×16 pixel neighborhood window - F is 

selected and divided into 16 subregions by 4×4. Using (5.4) and (5.5), the directions and 

amplitudes for all pixels in the subregions are obtained, and then accumulated into 

orientation histograms summarizing the contents over 4×4 subregions. These are eight 

direction distributions in the ranges of (0,π/4,π/2,3π/4,π,5π/4,3π/2,7π/4,2π) with their 

lengths corresponding to the sum of the gradient magnitudes near that direction within 

the region. The amplitude and Gaussian function are also applied to the eight direction 

distributions to create the direction statistical histogram of subfields.  The feature 

descriptor of each fiducial point is obtained by connecting the direction descriptions of all 

subfields. The total of the direction descriptions is 16, so the length of a fiducial point 

detector is 128=16×8, and should be normalized in order to ensure the illumination 

invariance. 
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5.2 Multiple Points Tracker 

We use multiple DE-MC particle filters, which were first introduced by Du and Guan in 

[85], to track the fiducial points depending on the locations of the current appearance of 

the spatially sampled features which are automatically located in the initial step. Due to 

its generic nature, the DE-MC particle filter leads to a more reasonable approximation to 

the proposal distribution and hence considerably improves accuracy for tracking by 

building a path connecting a sampling with measurement.  

    A novel kernel correlation based observation likelihood is proposed for fiducial points 

with robust colour histograms. This likelihood attempts to deal with changes in the 

appearance of the face due to facial expressions. Furthermore, the fiducial points are 

tracked by utilizing prior knowledge on the facial feature configurations. We show how 

prior knowledge can be incorporated in our multiple DE-MC particle filter scheme. 

5.2.1 The State of the Art 

Automatically detecting and tracking fiducial points can extract the prominent 

characteristics of facial expression with the distances between points and the relative 

sizes of the facial components to form the feature vector. Due to high computing 
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complexity, automatic fiducial points‟ detecting and tracking for facial expression 

analysis have not been well studied in the past. 

Cohn et al. in [86] presented an optical flow based approach, which automatically 

tracks the selected facial features with a hierarchical algorithm for estimating the optical 

flow. Maghami et al. [87] selected facial feature points from the first frame to the last 

using a maximum cross-correlation algorithm followed by a Kalman filter. The extracted 

feature vector was then given to different classifiers to classify the facial expressions 

within six basic emotions. The results showed that a Bayes optimal classifier can reach 

the average correct classification rate of 93.72% by this method. Lai et al. [88] proposed 

to use the integral optical density (IOD) to detect the fiducial points for near frontal face 

images and showed that the proposed algorithm was insensitive to the facial expression, 

small rotation, different types of glasses and hairstyle. Ersi and Kiana [89] presented a 

feature-based hybrid method to analyze local facial features located by a meta-version of 

the specification algorithm in the context of a LFA (Local Feature Analysis) technique. 

Fiducial points were determined based on genetic algorithm and the output points were 

decorrelated as much as possible. Michel Valstar and Maja Pantic [90] built an automatic 

facial expression recognition system from face video. Twenty fiducial points were 

detected by a localization method using individual feature GentleBoost templates. Then, 
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a particle filtering scheme was exploited to track the facial points. The AUs displayed in 

the input video and their temporal segments were recognized finally by Support Vector 

Machines (SVM). They achieved a 90.2% average recognition rate. 

The particle filter, also known as a condensation or sequential Monte Carlo, is 

regarded as a powerful tool for computing posterior distributions and has been reported to 

have a better performance than the Kalman filter (KF) for multiple objects‟ tracking by 

some research groups [91-95, 100]. Many approaches have been investigated in multiple 

objects‟ tracking using particle filters [91]. Particle filters take a lot of forms across a 

variety of literature. Sminchisescu and Triggs [92] developed a proposal density based on 

uncertainty of local parameter estimation. The unscented particle filter (UPF) [93] drew 

samples from a proposal distribution which was determined by the calculation result of 

the unscented Kalman filter (UKF). In [94] the simulating annealing algorithm and the 

genetic algorithm (GA) together constituted the foundation of the annealed particle filter 

(APF). Particle filters are also applied for multiple targets or ambiguities when the 

posterior is multimodal. Hue, et al [95] developed a system for multiple targets tracking 

by expanding the state dimension to include component information. The Bayesian 

Multiple-BLob tracker [96] has an automatic object detection system that relies on 

modeling a fixed background. They used this model to identify foreground targets. 
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Vermaak, et al [97] introduced a mixture particle filter, where each component was 

modeled with an individual particle filter that formed part of the mixture particle filter.  

Despite the successes in various applications, some difficulties still remain in fiducial 

point tracking tasks for particle filter techniques: the high dimensionality of the state 

space associated with the activities of facial expressions, high non-linear and non-

Gaussian distributions of the observation models and targets. Moreover, when the object 

is small in appearance, cluttered background and occlusion lead to severe ambiguity. 

Meanwhile reliable detection is often unaffordable due to deficient features extracted 

from the object‟s small region in the image. It is observed that a traditional particle filter 

does not perform well when the dynamic system has a very small process noise, or if the 

observation noise has very small variance. In these cases, the particle set quickly 

collapses to one single point in the state space and the filter performance is severely 

affected.  

To surmount these difficulties, in this step, multiple DE-MC particle filters are applied 

for fiducial point tracking and a kernel correlation analysis approach is proposed to 

improve the efficiency of sampling. Minimal amount computation is introduced by 

making use of the intermediate results obtained in particle allocation. From experimental 

results, our proposed method demonstrates impressive performance. 
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5.2.2 DE-MC Particle Filter 

A particle filter provides a robust Bayesian framework for the visual tracking problem. It 

maintains a particle based representation of the a posteriori probability )( :1 kk YXp of the 

state kX given all the observations },...,,{ 21:1 kk YYYY   up to and including the current time 

k  instance, according to  

11:111:1 )()()()(  kkkkkkkkkk dXYXpXXpXYpYXp                            (5.6) 

    In (5.4), the state kX  is the location of a fiducial point while the observation set kY :1 is 

the set of image frames up to the current time instant. k is a normalization constant that 

is independent of kX . )( 1kk XXp  is the motion model that is conditioned directly on the 

immediate preceding state and independent of the earlier history if the motion dynamics 

are assumed to form a temporal Markov chain. The distribution is represented by discrete 

samples N through particle filtering. The N samples (particles) are drawn from a proposed 
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selected with a higher probability. Then, applying a constant velocity dynamical model to 

the samples yields:  

1

)()( ˆ


  k

i

k

i

k VXX                                                    (5.7) 

where 1kV  is the velocity vector computed in time step k-1. The particle set N
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then acts as the initial population for a T-iteration DE-MC processing. Then the weights 

of particles are subject to update by the DE-MC. At the end of this step, we take the 

output population as the particle set of current the time step N
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Figure 5.2 DE-MC Particle Filter 

    We then estimate the state at time step k as:  

)(maxarg )(

,...,1;
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kNiXk XwX i
k 

                                       (5.8) 

and we update the velocity vector of current time step 1 kkk XXV . The step size of 

random jumping for current DE-MC iteration is reduced if the survival rate of the last 

DE-MC iteration is high or inflated otherwise. The algorithm of the DE-MC particle filter 

is shown in Figure 5.2. 
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5.2.3 Kernel Correlation Based Observation Likelihood 

The kernel correlation based on HSV colour histograms is used to estimate the 

observation likelihood and measure the correctness of particles, since HSV decouples the 

intensity (value) from colour (hue and saturation) and corresponds more naturally to 

human perception. We set each feature point at the centre of a 16x16 pixel neighborhood 

window as the observation model. The kernel density estimate (KDE) )( kXK  for the 

colour distribution of the object kX  at time step k is given as 
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                                               (5.9) 

where the )( )(i

kXc  indicates candidate region within a search region R centred at 
kX of 

40×40 pixels at time step k, which is sufficiently large to reach the maximum facial point 

movement without overlapping with any neighboring windows. )(rc  is a target region 

with r  position translation in the search region R.   is a normalizing constant that 

ensures );( rXK k
 to be a probability distribution, 1);(

1
 

N

i k rXK . The kernel width xi
d  

is used to scale the KDE );( rXK k
, and the optimal solution for kernel width xi

d  that 

minimizes the Mean Integrated Square Error (MISE) is given by 
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where  xi  is the given particle set at time k  and 
optd denotes the optimal solution for 

kernel width xi
d . If we denote );(* rXK k

as the reference region model and );( rXK k
as a 
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candidate region model, we can measure the data likelihood to track the facial points‟ 

movements by considering the maximum value of the correlation coefficient between the 

colour histograms in this region and in a target region. The correlation coefficient 

);( )( rX i

k  is calculated as   
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where ));(( rXKE k
 and ));(( * rXKE k

are the means of the vectors );( rXK k
and

);(* rXK k
, the average intensities of the colour model, respectively. Finally, we define 

the observation likelihood of the colour measurement distribution using the correlation 

coefficient );( rX k as: 
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where
i is a scaling parameter, which helps the result evaluated by (5.12) more 

reasonably be distributed in the range of (0,1). 

5.2.4 Fiducial Point Tracking 

In this section, we present the use of multiple DE-MC particle filters for fiducial point 

tracking over time. Once the observation model is defined we need to model the 

transition density and to specify the scheme for reweighting the particles. A single 
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particle filter weights particles based on a likelihood score and then propagates these 

weighted particles according to a motion model. Simply running particle filters for 

multiple fiducial point tracking needs a complex motion model for the identity between 

targets. Such an approach suffers from exponential complexity in the number of tracked 

targets. In contrast to traditional methods, our approach addresses the multi-target 

tracking problem of combining the colour based kernel correlation technique for the 

observation likelihood with a DE-MC particle filtering distribution. A set of weighted 

particles is used to approximate a density function corresponding to the probability of the 

location of the target given observations.  

    To avoid sampling from a complicated distribution, the M-component non-parametric 

mixture model is adopted for the posterior distribution over the state 
kX of the all targets 

M according to: 
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where 26M , )( :1kkj YXp is the a posteriori probability of the fiducial points with the 

M-component non-parametric mixture model, and Pi is the mixture weights satisfying

1
1 ,  

M

m kmPi . The likelihood )( kk XYp  is the measurement model and expresses the 

probability of observation
kY . We utilize training data to learn the interdependencies 

between the positions of the fiducial points for the reweighting scheme. The motion 
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model )( 1kk XXp predicts the state 
kX  given the previous state

1kX .  Using the 

filtering distribution computed from (5.13), the predictive distribution becomes: 
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where
11:1111:1 )()()(   kkkjkkkkj dXYXpXXpYXp . Hence, the updated posterior 

mixture takes the form 
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where the new weights are given by: 
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    When tracking the multiple modalities, multiple trackers start with a mode-seeking 

procedure, the posterior modes are subsequently detected through the HSV colour 

histograms based kernel correlation analysis. Using a trained color-based observation 

model allows us to track different fiducial points. Here, we have M different likelihood 

distributions. At time k  we sample candidate particles from an appropriate proposal 

distribution N
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and weight these particles according to the 

probability proportional: 
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    In our work, scaling is normalized by person-related scaling factors that are estimated 

from the positions of the facial features at the first frame, such as the dimensions of the 

mouth. This scheme simply processes with the prior knowledge by sampling from the 

transition priors and updating the particles using importance weights derived from (5.17). 

5.3 Experiment and Results 

5.3.1 Detecting Result 

In this section, we evaluate the performance of the proposed fiducial point detecting 

method using two video datasets, Cohn-Kanade database [98] and Mind Reading 

database [99]. The Cohn-Kanade database consists of approximately 2000 image 

sequences in nearly frontal view from over 200 subjects, who are 18 to 50 years old; 69 

% female and 31 % male; and 81 % Caucasian, 13 % African, and 6 % other groups. 

Each video pictures a single facial expression and ends at the apex of that expression 

while the first frame of every video sequence shows a neutral face. Image sequences from 

neutral to target display are digitized into 640×480 pixel arrays with either 8-bit gray-

scale or 24-bit colour values. The Mind Reading database is an interactive computer-

based resource for face emotional expressions, developed by Cohen and his psychologist 
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team. It consists of 2472 faces, 2472 voices and 2472 stories. Each video pictures the 

frontal face with a single facial expression of one actor (30 actors in total) of varying age 

ranges and ethnic origins. All the videos are recorded at 30 frames per second, last 

between 5 to 8 seconds, and the resolution is 320×240. 360 image sequences of 100 

subjects from the Cohn-Kanade database and 120 image sequences of 20 subjects from 

the Mind Reading database are selected randomly for our work, which constitute a total 

of 480 image sequences of 120 subjects.  

 

(a)  

 

(b) 

Figure 5.3 Test rates from Adaboost algorithms, a) 40 boosting iterations, b) 200 boosting iterations 



97 

 

Table 5.2 Detection Rate of the 26 Fiducial Points 

 

 

 

 

 

 

 

 

 

 

 

 

     We divide all the 480 image sequences into training and testing subsets containing 240 

sequences each. For the training of the 26 fiducial point detectors, the representative sets 

of positive and negative samples are selected from the facial region. We use 10 frames 

from each training sequence and manually label each fiducial point on the face region. 

We get 10×240 positive samples for each detector. We also choose another five arbitrary 

points in the same frame and get 5×10×240 negative samples, and in total have 14400 

samples for each detector. As discussed in 5.1, the feature length of each one of the 

detectors is 128, so we have a 128×6 size feature vectors from one frame and a 768×2400 
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feature matrix for each training detector. The representation of features is highly 

redundant and computing the complete set is computationally expensive. Thus, we apply 

the Adaboost algorithms for the dimensionality reduction and detector classification. 

RealAdaboost, GentleAdaboost and ModestAdaboost are compared for error checks 

with 40 and 200 boosting iterations, shown in Figure 5.3. GentleAdaboost returns the best 

detection rates from the results, and is selected as the classification algorithm for our 

system.  

 

Figure 5.4 Sample sequences from the test videos for facial point detection 
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We compare the automatically located fiducial points with the manually located points 

to evaluate the performance of the detection method. In general, the detecting and 

tracking methods usually are regarded as SUCCESS if the bias of automatic labeling 

result to the manual labeling result is less than 30% of the true inter-ocular distance. 

However, this is unacceptable in the case of facial expression analysis. To follow the 

subtle changes in the facial feature appearance, we define a SUCCESS case if the bias of 

a detected point to the true facial point is less than 10% of inter-ocular distance in the test 

image. The overall detection rates for each point are shown in Table 5.2. And the 

proposed method achieves 90.69% average detection rate for the fiducial point detection. 

We illustrate some representative cases in Figure 5.4. The proposed method is applied 

on each frame of the input video sequences, and the 26 fiducial points are automatically 

detected.  We can also see that the detection is actually successful even under varying 

illumination conditions.  

5.3.2 Tracking Result 

System Criteria 

The performances of the proposed method are conducted with the system missing rates 

and false alarms by comparison between the output and the ground truth. We use recall 
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and precision as the performance measures to evaluate our proposed method and these 

are defined as: 

%100Pr

%100Re











falsetruth

truth

misstruth

truth

NN

N
ecision

NN

N
call

                                 (5.18) 

where truthN stands for the number of ground-truth for detections and tracking, m issN  

stands for the number of missed detections and tracking, and 
falseN  stands for the number 

of false alarms. The sum misstruth NN  is the total number of each fiducial point in the 

entire video sequence.  

System Performances  

Two facial expression video datasets are considered for checking the performances of the 

proposed tracking method: Mind Reading database [99] and RML Emotion database [25]. 

The RML Emotion database was originally recorded for language and context 

independent emotional recognition with the six fundamental emotional states: happiness, 

sadness, anger, disgust, fear and surprise. It includes eight subjects in nearly frontal view 

(2 Italian, 2 Chinese, 2 Pakistani, 1 Persian, and 1 Canadian) and 520 video sequences in 

total. Each video pictures a single emotional expression and ends at the apex of that 

expression while the first frame of every video sequence shows a neutral face. Video 
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sequences from neutral to target display are digitized into 320×340 pixel arrays with 24-

bit color values. 

Table 5.3 Tracking Results on Databases   

D = Total Detected Points, R = Recall, P = Precision 

 

180 image sequences of six subjects from the RML Emotion database and 240 video 

sequences of 20 subjects from the Mind Reading database are selected for experiment, 

which constitute a total of 420 sequences of 26 subjects with six emotions. We list the 
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final experiment results in Table 5.3 based on the two databases. As explained above, we 

also consider that a tracked point displaced in any direction less than 10% of inter-ocular 

distance from the true point is regarded as a SUCCESS point in the final results. 

 

Figure 5.5 Recall and precision against false alarm rate for the test databases 
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The overall performance of the system in terms of false alarm rate is illustrated in 

Figure 5.5. From this figure, we can see that the precision is decreasing and recall is 

increasing with the increment of false alarms. Note, in the graph, a system performance 

of recall 92.45% and precision 90.93% is achieved simultaneously.  

Tracking Result 

In this section, we present some representative cases using the proposed method, 

exploring various practical aspects for fiducial point detection and tracking. Figures 5.6 

and 5.7 summarize the experimental results for two different emotional expressions. 

    The fiducial points are first initialized by the point detectors in the first frame and then 

tracked by the kernel correlation based multiple DE-MC particle filters. For all figures, 

the white dots represent the positions of the fiducial points to be detected and tracked, 

which are all labeled with the associate numbers. In Figure 5.6, the subject exhibits a set 

of sadness expression from a neutral face at the beginning and ends at the apex of that 

expression. Figure 5.7 shows an anger expression while talking at the same time. As 

expected, all the points are tracked reliably for all of the whole sequences. Since the 

motions of the faces are not intensive and the facial appearances are not heavily changed, 

the features extracted from consecutive frames are highly correlated and the results 

achieve a very impressive tracking rate. 
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Figure 5.6 Sample sequences for facial expression: Sadness.  The frame numbers are marked below. 

 

Figure 5.7 Sample sequences for facial expression: Anger with talking simultaneously. The frame numbers 

are marked below 

    We then apply the proposed method to the zoomed case, as shown in Figure 5.8. When 

the camera zooms, the factors assigned with the colour-based kernel correlation keep 

changing and descending, as a result of (5.9) and (5.10) which can be seen from frame 
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63. But the fiducial points can still be tracked with the updating weights 
kjPi ,
from (5.17), 

as we keep track of the points from the previous frame. It shows the fact that the use of 

the priors for the multiple filters provides constraints that are sufficient for the reliable 

tracking of the points at the presence of the facial appearances. 

 

Figure 5.8 Sample sequences for the zoomed case. The frame numbers are marked below 

    While performing the experiments, we also consider the cases with the head‟s rotation 

or being occluded, as shown in Figure 5.9. In Figure 5.9 we can see the points 3, 7, 15, 20 

and 23 are lost after frame 78 when a frontal face is rotating to a profile view. So far, the 

multiple detectors and trackers are based on different configurations of colour intense 

regions. If both detectors and particle trackers fail for several consecutive frames, the 

proposed approach will eventually fail.  
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Figure 5.9 Sample sequences for the head‟s rotation case. The frame numbers are marked below 

 

Figure 5.10 The improved case for the head‟s rotation sample sequence 

    To solve this problem, we execute a conservative way to update the trackers 

temporally with the response distribution [101] for the next n  frames when the missing 
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points firstly occurred. This step length n  can be changed by the user and should not be 

crucial to the system. If the trackers respond correctly after a few frames, the trackers are 

able to recover due to the accumulation of probabilities. However, when the step length 

n  continues to grow, due to incorrect responses of the detector, the colour correlation of 

the observation likelihood drops and the trackers will begin to lose track. After that, 

“point lost” will be declared. We then stop estimating its motion 
kV  and discard the 

motion likelihood term. The trackers will be reinitialized by the point detectors in the 

following frames. All the 26 points can be detected with a new set of parameters if the 

facial region appears again in the scene. The improved result is shown in Figure 5.10 that 

reinitialization executes and all fiducial points are found again after frame 183. 

5.3.3 Comparison with the State Of The Art 

A comparison of the detection rates and tracking performances achieved by feature point-

based methods, with automatic initialization for facial expression recognition, is depicted 

at Table 5.4. It shows that the proposed method has achieved the best detection rate 

among state-of-the-art. Moreover, the proposed method has demonstrated its ability to 

handle pose variations problems and can be used for both image and video based facial 

expression recognition. Computationally, the proposed method has the advantages of 
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automatic initialization by using the scale invariant features extraction over the other 

methods that examine pixels one by one. 

Table 5.4 Comparison of Feature Point Tracking Methods 

 

 

 

    Note that the method proposed in [91] achieved a better overall recognition rate 

(93.72%). However, this method is only tested on perfect manually aligned image 

sequences and no experiments in fully automatic conditions were reported. In addition, 

only 13 sequences were experimented on in [91]. Therefore, the result is far from 

conclusive. 

5.4 Chapter Summary 

Automatic fiducial point detecting and tracking is a challenging task in facial expression 

analysis. In this Chapter, we proposed an automatic approach to detect and track fiducial 

points for varying facial expressions. We first constructed a set of fiducial point detectors 

with a scale invariant feature. Locating feature points automatically on a single frame 

makes it possible to eliminate the manual initiation step from tracking algorithms. We 

Ref. Sequences Features Tracker DR 

The Proposed 480 Scale Invariant Feature DE-MC PF 90.69% 

[90] 300 Gabor Particle Filter 90.2% 

[86] 504 Optical Flow Optical Flow 87.3% 

[92] 743 Color and Edge NA 86% 

[93] 400 Gabor wavelet NA 87% 
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also presented multiple DE-MC particle filters for the fiducial point tracking. This 

approach combines colour based kernel correlation techniques for the observation 

likelihood with DE-MC particle filtering distribution for multiple point tracking. 

Effective tracking performance is achieved by forming the proposal distribution for the 

particle filter from a mixture of the kernel correlation in the current frame and the 

dynamic model predicted from the previous step. Different from simply applying the 

single DE-MC particle filter for multiple point tracking, we adopt the M-component non-

parametric mixture model for the multiple DE-MC particle filter posterior distribution 

over the states of all the target points. 
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Chapter 6 

3D EBS Based Recognition 

 

IN this Chapter, the 3D EBS based emotion recognition method is proposed using a 

physical face model with D-Isomap for classification. We synthesize emotional facial 

expressions with the generic mesh model based on the fiducial points obtained in Chapter 

5 as the landmarked control points. Function as physics based interpolation 

transformation, EBS is applied on the 3D mesh model to generate a smooth warp that 

reflects control point correspondences and to extract the deformation feature of realistic 

expressions. The corresponding intrinsic geometries of the facial expression can be 

generated and interpreted as the emotional space. D-Isomap based classification is used 

to embed the deformable facial expressions into the low dimensional manifold with seven 

class centers, which span in a face space with 6 emotions and one neutral state.  

    The main contribution of this work is using the EBS based method for automatic 

human emotion recognition from video sequences with the active deformation feature 

extraction depending on the 3D generic face model, which is driven by the key fiducial 
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points, and thus to make it possible to generate the intrinsic geometries of the emotional 

space. 

6.1 3D Face Modeling 

Presently, state-of-the-art of 3D face modeling is by the physically-based modeling 

paradigm, which will be a key research of emotion recognition for the next-generation 

HCII [102]. These models can be categorized into two major classes: one is based on the 

finite element method (FEM) and the other is the deformable mesh (DM) based method. 

The FEM is a numerical approach to approximate the physics of the 3D face [103]. It 

implicitly defines interpolation functions between nodes for the physical properties of the 

face with the solution of the inherent finite differential equations. The FEM equations are 

complex and their solutions are computationally expensive. The FEM based approach has 

more utility in applications where a very high accuracy of the tissue movement is 

required such as surgery simulation, simulation of the tongue and simulation of skin 

closure. In contrast, the DM based method is better suited to facial expressions 

recognition due to the fact that the simple formulation is easily implementable and 

supports topological and geometric flexibility through the local geometric operations. In 

addition, the DM model is easy and quick to render, easy to modify with existing editors 
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and easy to represent. The computational cost of a DM model is proportional to the size 

and complexity of the face for emotion recognition.  

Platt and Badler [104] presented a 3D facial model with muscles represented as 

collections of functional blocks in defined regions of the facial structure. Forces applied 

to elastic meshes, through muscle arcs, generate realistic facial expressions. Cootes et al. 

[105] proposed an active appearance model for matching statistical models of appearance 

to images, by employing interactive algorithms. Peyras et al. [106] presented a method of 

fitting active appearance models for unseen faces. The method allows variations in poses 

and expressions solved by active appearance models. Song et al. [107] introduced a 

generic facial expression analogy technique to transfer facial expressions between 

arbitrary 3D face models, as well as between 2D face images. Hu et al. [27] proposed a 

work on the non-frontal-view facial expression analysis by generating multi-views from 

3D data. Chin et al. [108] introduced an emotional intensity-based facial expression 

modeling process by generating a 3D customized face and facial expressions.  

There are several issues with the DM face models that are still not properly addressed. 

The number of vertices of a DM model should be selected to get the most from the trade-

off: being neither too large to complicate the model nor too small to exclude useful 

microstructure information. It is worth considering carefully how to select the minimal 
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facial features and the corresponding topological structure of the DM face model with 

geometric knowledge which fully cooperates with each other. In addition, developing a 

complete feature set which can be automatically and easily manipulated is extremely 

difficult [109]. 

In light of the above problems, this Chapter presents an EBS based method for 

automatic face modeling. The goal of this step is to generate facial expressions using a 

physically-based mesh modeling approach. This can be done according to the input video 

sequence from the deformable feature perspective, and executing with the control points 

in an acceptable time, for emotion recognition applications. Merits of this proposed 

approach are:  

a) we propose a physically-based model of human face with fiducial points for driving 

the deformation of the face according to the muscle movement parameterization. The 

face can be modeled as an elastic body that is deformed under a tension force field. 

Muscles are interpreted as forces deforming the polygonal mesh of the face. The factors 

affecting the deformation are tension of the muscles, elasticity of the skin and zone of 

influence. Higher-level parameterizations that are easier to use for emotional expressions 

can be defined in terms of low-level parameters. 

b) We extend the DM face model by a set of well-designed polygons with an EBS 
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structure which can be efficiently modified to establish the facial expression model. A 3D 

face is decomposed into area or volume elements, each endowed with physical 

parameters embedded in the EBS model according to the surface curvature. The 

deformable element relationships are computed by integrating the piecewise components 

over the entire face. 

c) The control points are predefined by the landmarked fiducial points. The number of 

control points is small and the control points can be identified robustly and automatically. 

Once the control points are adjusted, the emotional face model can be established using 

the transform function of the EBS and can be extended to obtain expression parameters 

for final recognition. 

 

Figure 6.1 The proposed 3D mesh model with 26 fiducial points and 28 characteristic points 
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Our generic face model is actually a mesh wireframe model consisting of characteristic 

feature points and deformable polygons with the EBS structure. We can deform the 

wireframe model to best fit a human face without or with any expressions. The 3D affine 

transformation realizes the facial expressions by imitating the facial muscular actions. It 

formulates the deforming rules according to the FACS coding system by the 26 fiducial 

points as the control points. Figure 6.1 shows the proposed model based on this 

standardized coding system.                                                                          

In practical applications, not all feature points in the model can be easily detected from 

the input sequences [110], so we use 54 characteristic feature points for facial expression 

parameterization. Characteristic feature points include: a) the 26 significant fiducial 

point-based control points, and b) 28 dependent points which are determined by the 

fiducial points. We also assume that the physical property of the EBS structure is the 

same within the facial region. The EBS deformation analysis is presented in the following 

section. 

6.2 EBS Parameterization 

EBS is applied for generating different facial expressions with a generic face model from 

a neutral face. By varying the position of control points, EBS mathematically describes 
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the equilibrium displacement of the facial expressions subjected to muscular forces using 

a Navier partial differential equation (PDE). The deformable face model equations can be 

expressed in 3D vector form with the interpolation spline relating the set of 

corresponding control points. Let ),...,2,1(][ 321 NiXXXX T

iiii   denote a set of N  

control points in the 3D face model of neutral face, T

iiii YYYY ][ 321  be the 

corresponding control points with expressions, and  )(xL  be the displacement of all points 

within the face model from the original position (neutral face). The displacement between 

the feature points sets are iii XYL  . To find an appropriate physical property for an 

expressional model, muscular forces are assumed to be distributed on the homogeneous 

isotropic elastic body of the face model to obtain smooth deformation. Solving the PDEs, 

we can form the splines as linear combination of translated versions of the solution. The 

coefficients of the spline are determined from points iX , the displacements of the control 

points sets iL . The spline relaxes to an affine transformation as the distance from the point 

approaches infinity.  

    We have the Navier equilibrium PDE as: 

0)()]([)()(2  xFxLxL                                        (6.1) 

where )(xF is the muscular force field being applied on the face,    and   are the Lamé 

coefficients to describe the physical properties of the face, 2 and  denote the Laplacian 
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and gradient operation, respectively, and )(xL is the divergence of )(xL . To obtain 

smooth deformation of the face model, the muscular force field )(xF  can be formulated 

as external forces that: 

)()( xWdxF                                                             (6.2) 

where 
2/1

2

3

2

2

2

1)( xxxxxd  , and TwwwW ],,[ 321  is the strength of the force field.  

    So, the PDE‟s solutions of (6.1) can be computed as: 

WxExL )()(                                                            (6.3) 

and )(]3)([)( 2 xdxxIxdxE T                                     (6.4) 

where )/()511(   is the Poisson‟s ratio, I is a 33  identity matrix, and Txx

is an outer product. Using linear combination of the PDE‟s solution in (6.3), we can 

calculate the EBS that represents all the displacements of an expressional face with the 

translated version: 

 bxAWXxExL
N

i

iiEBS 
1

)()(                                     (6.5) 

bxA   is the affine portion of the EBS, ],,[ 321 aaaA  is a 33  matrix. The summation 

in (6.5) can be expressed in the matrix-vector form as 

 TTTTTT

N

TT

MEBSMEBS

baaaWWW

LHE

32121

_

1

_



 

        
 (6.6) 

where 
MEBSE _

is a 1)123( N vector with all the EBS coefficients. 
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MEBSL _
is defined as a vector with all the displacements and augmented by zeros that

 TTT

N

TT

MEBS OLLLL 121_  , 
1O is a column vector of 12 zeros, and H  is the 

transfers function that: 

)123()123(2 
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2O is a 1212 matrix of zeros, and 
jiij XX  . 

    We have 26 control points, so 26N  in our system. The control point positions iX , iY  

and the displacements of the control point sets iL are obtained from the detection and 

tracking steps in Chapters 4 and 5. We solve (6.6) from the requirements that the spline 

displacements equal the control point displacements with a constant Poisson‟s ratio   all 

over the face region. The flatness constraints which are expressed in terms of second or 

higher order (e.g. 2

iX ,
2

jX  or
ji XX ) are set to zero that enforce the conservation of linear 

and angular momenta for an equilibrium solution. These constraints cause the force field 
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to be balanced so that the EBS face model is stationary. The spline coefficient
MEBSE _

, the 

spline basis function H  and the control point locations
 iX  can be used in (6.5) to compute 

the value of the spline for the 28 nonsignificant points. 

    The muscular force field )(xF  in (6.2) is calculated from the solution of EBS that: 

)(][)(
1

321 i

N

i

T

iii XxdwwwxF 


                                 (6.8) 

    By the principle of superposition for an elastic body, the external forces must be 

minimized according to the roughness measurement constraints [111]. This ensures that 

the forces are optimally smooth and sufficient to deform the elastic material so that the 

EBS equals the given displacements at the control point locations. By varying the values 

of Poisson‟s ratio in (6.3), we can calculate each corresponding muscular force field 

respectively. To find the minimum muscular force field, 
min

)(xF , we obtain the 

appropriate physical property '  and the associate EBS coefficients
MEBSE _

. We then 

construct the deformable visual feature 
df

 
for classification with ' and

MEBSE _
. The 

deformation feature extraction step is summarized as follows. 

1. Initialize the control point positions iX  in the 3D face model for neutral face 

according to the detection results for the 26 fiducial points 

2. Set the Poisson‟s ratio  for facial region as 0.01  
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3. Update the corresponding control point positions iY  in the expressional face model 

subject to the tracking results  

4. Calculate the displacements of the control point sets iL  in the facial region 

5. Solving the EBS in (6.5) and obtain associate spline coefficient
MEBSE _

 

6. Compute the position of nonsignificant points in the facial region based on the 

EBS‟s solution in the previous step 

7. Calculate the muscular force field )(xF  in (6.2) from the solution of the EBS 

8. Sweep the Poisson‟s ratio from 0.02, 0.03, …, to 0.5 and repeat steps 5, 6 and 7 to 

obtain the new muscular force fields 

9. Find the minimum muscular force field
min

)(xF , fix the Poisson‟s ratio '  and 

the EBS coefficients
MEBSE _

 

10. Construct the deformable visual feature 
df  for classification with ' and

MEBSE _
 

6.3 D-Isomap Based Classifier 

Once the deformable facial features have been established with the EBS, we use D-

Isomap based method for emotion classification. Isomap was proposed by Tenenbaum 

[112], and is one of the most popular manifold learning techniques for promising 

nonlinear dimensionality reduction. It attempted to learn complex embedding manifolds 
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using local geometric metrics within a single global coordinate system. The Isomap 

algorithm uses geodesic distances between points instead of simply taking Euclidean 

distances, thus encoding the manifold structure of the input space into distances. The 

geodesic distances are computed by constructing a sparse graph in which each node is 

connected only to its closest neighbors. The geodesic distance between each pair of nodes 

is taken to be the length of the shortest path in the graph that connects them. These 

approximated geodesic distances are then used as input to classical multidimensional 

scaling (MDS). 

    Yang proposed a face recognition method based on Extended Isomap [113]. In his 

work, an extended Isomap method for face recognition that utilized Fisher Linear 

Discriminant (FLD) was introduced. The main difference between this method and the 

original Isomap method is that after a geodesic distance is obtained, the extended Isomap 

algorithm uses FLD to achieve the low dimensional embedding while the original Isomap 

algorithm uses MDS to achieve the embedding. X. Geng [114] proposed an improved 

version of Isomap to guide the procedure of nonlinear dimensionality reduction. The 

neighborhood graph of the input data is constructed according to a certain kind of 

dissimilarity between data points, which is specially designed to integrate the class 

information. 
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The Isomap algorithm generally has three steps: Construct neighborhood graph, 

Compute shortest paths, and Construct D-dimensional embedding. Classical MDS is 

applied to the matrix of graph distances to obtain a low-dimensional embedding of the 

data. Thus the prime difference between MDS and Isomap is the use of geodesic 

distances in Isomap. However, since the original prototype Isomap does not discriminate 

data acquired from different classes, when concerned with multi-class data, several 

isolated sub-graphs will result in undesirable embedding. On the other hand, the 

Extended Isomap [113] can only be used when handling the problem in which the 

number of the classes is less than three. When the number of classes becomes larger, the 

classes may construct their own spatially intrinsic structure. The Extended Isomap and 

improved version cannot recover the classes' intrinsic structures of the high-dimensional 

data. 

In order to cope with such problems, in this section, we adopt a discriminative Isomap 

[115] based method for emotion classification. The discriminative information of facial 

feature is considered so that it can reflect successfully the discriminative structures of the 

emotional space on the manifold. The discriminative Isomap has the capability of 

discovering nonlinear degrees of freedom and finding the globally optimal solution 

guaranteed to converge for each manifold [116, 117]. 
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The EBS feature 
df
 
for each emotional face model can be seen as one point in a high 

dimensional space. As the result from the last step, there are 54 characteristic feature 

points in the 3D face model, and every feature has 175 dimensions. Given the variations 

of facial configurations during emotional expressions, these points can be embedded in a 

lower dimensional space.  We define high dimensional facial EBS feature set 

  Mn

i RfF original as the input data, ni ,...,1  is the input sample number, 175M  is the 

dimensionality of the original data. Let   mn

iIsomap RyY  denote the embedding space of 

originalF  into a low dimensional manifold with dimension of m , which preserves the 

manifold‟s estimated intrinsic geometry [118].  

We compute Euclidean distance  
ijd  between any pairwise points in input space 

originalF

with discriminative weight factor )10(  that: 
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where )( ifL denotes the class label which the input data if belongs to. For pairwise 

points with the same class label, the Euclidean distance is shortened by weight factor . 

The parameters of the compacting and expanding are needed to be empirically defined 

for discriminative matrix [119]. We construct a neighborhood graphG  according to the 

distance between the points. A point is a neighbor of any other point if it lies within a 
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fixed radius or is one of the closest points to it. The neighboring graph G is constructed 

by connecting point pairs with edges equal to the distance between the points. The 

distances between all point pairs are computed based on the chosen distance metric. We 

then calculate geodesic distance matrix GD  between all pairwise points by computing the 

shortest paths in the neighborhood graphG : 
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where 
ijP denote the set of all paths connecting if and

jf , 
ijPp  is a path that is acquired 

by adding up a sequence of edges between two neighboring points. To make sure the 

matrix is symmetric the geodesic distance matrix VD between all points is set as:  

),min( GG

T

GDDD 
                                              (6.11) 

    To convert the distance matrix to inner
 
products of matrix, we need to construct a 

translation map t ransD  that: 

2

2

trans

HHD
D V

                                                 (6.12) 

where H  is the cantering matrix, given by 
Tee

N
IH

1
 , and 

MT Re  ]1,..,1[ . 

Compute the largest eigenvalue and the top m eigenvectors of t ransD , we obtain the 
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eigenvector matrix mnRE  and the eigenvalue matrix mmRM  . The embedding matrix 

IsomapU in low dimensional space can be calculated that: 

T

Isomap EMU 2/1
                                      

          (6.13) 

    The discriminative Isomap can discover the discriminative structure on the manifold, 

and provides a simple way to obtain the low dimensional embedding as well [119]. A 

labeled class center  
liu  for an emotional space is calculated depending on the result 

from discriminative Isomap: 
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                                 (6.14) 

where 7l  is the emotional space for labeling, k is the sample number in one emotional 

space. ][ iV represents the ith-element of the eigenvector matrix.  

We use Nearest Class Center (NCC) algorithm to determine the emotion class of a test 

data. Compute the class centers for the test data that 
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u
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'                                                   (6.15) 

where i is number of data in class iu  and 'u  is the center coordinates of class lC . Using 

the nearest class center Clu by Euclidean distance, we can obtain the class label Cl  for the 

test data. 

  )),'((minarg
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                                    (6.16) 
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6.4 Experiment and Results 

To evaluate the performance of our proposed emotion recognition method, we implement 

experiments on a Pentium IV 2.8 GHz PC with 3.25 GB memory, under the Windows XP 

operating system, and all are coded in MATLAB. Two facial expression video datasets 

are used for experiment: RML Emotion database and Mind Reading DVD database. 

The positions of 26 fiducial points are obtained from detecting and tracking step and 

for calculating the positions of 28 dependent points. These positions are 2D data in the 

video sequences and cannot be applied with the 3D EBS analysis directly. All the fiducial 

points need to be aligned to our 3D model first in this work. We use a flexible generic 

face modeling (FGFM) algorithm [120] for fitting each face image to the 3D mesh 

model. To remove the individual differences in the facial expressions, each face shape 

from the video sequences is normalized to the same scale. We use the length (distance 

between fiducial point 1‟ and 2‟) and width (distance between fiducial point 3‟ and 4‟) of 

neutral face for scale normalization. The 26 control points on the 3D face model are 

initially estimated by the fiducial points using the back projection technique with the set 

of predefined unified depth values. The original dependent points are also predefined in 

the model. A classified FGPFM ratio features is selected with a minimal Euclidean 
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distance between the estimated and the codebook-like ratios database. The depth values 

of control points and curvature parameters are obtained for reconstructing the EBS face 

model from the selected ratio features classifier. 

 

 

 

Figure 6.2 Emotional EBS model construction, (a-e) anger faces (f-j) disgust faces (k-o) fear faces 
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Figure 6.2 shows some representative sample results for emotional model construction 

with our proposed method. Our objective here is to find the positions of dependent points 

after emotional facial deformation under the availability of the fiducial point‟s position. 

The basic six emotions are analyzed in this experiment, i.e. happiness, sadness, anger, 

fear, surprise, and disgust. The best-fit mesh model of a given face is estimated from the 

first input frame with neutral emotion. Based on the known tracking information, the 

positions of all characteristic feature points are calculated and the EBS model is 

reconstructed with any particular expressions. From the experimental results we can see 

that our method provides good construction results following the variations of the control 

points.  

We provide more experiment results in Figure 6.3 to verify the consistency of the 

proposed method. Figure 6.3 presents the results of emotional face model for different 

peoples. The Poisson‟s ratio is assumed to be constant for the whole facial region and 

determined under the condition of minimum muscular force field generation. Figure 6.3 

(a-d) shows the results when Poisson‟s ratio is set to 0.27, 0.41, 0.31 and 0.25 

respectively. Subjectively, the proposed method provides a good face model under 

different peoples and facial expressions.  
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Figure 6.3 EBS face model constructions with different Poisson‟s ratio (a) a male anger face (b) a female 

sadness face (c) a female anger face (d) a male happiness face 

Using EBS transform can interpolate the positions of characteristic feature points such 

that the 3D face model of an expressive expression can be generated from the input video 

frame. Based on the arrangement of facial muscle fiber, our EBS model calculates elastic 

characteristics for each emotional face by modeling the facial muscle fiber as elastic 

body. The affine or rigid elastic body coordinate transformation is fitted to the 

displacements of the facial expression with the continuity condition. The spline obtained 

by this method is mathematically identical to computed coefficients from the original 

displacements of the control points directly. Moreover, the resulting spline is added to the 
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initial mesh of the elastic body transformation to give the overall coordinate 

transformation. Simulation results show that the face model generated by our method 

demonstrates good performance under the availability of control points‟ positions. 

D-Isomap Based Classification 

In this section, 280 video sequences of 8 subjects from RML Emotion database and 420 

video sequences of 12 subjects from Mind Reading DVD database are randomly selected 

for D-Isomap based classifier evaluation, which constitutes a total of 700 sequences of 20 

subjects with six emotions and neutral faces.  

The facial EBS feature for every frame is extracted from the last step and to construct a 

175 dimensional vector. It is too large to manipulate directly. We use D-Isomap 

algorithm for dimensionality reduction. Since each feature vector can be seen as one 

point in a 175 dimensional space, the D-Isomap is utilized to finds the embedding 

manifold in a low-dimensional space to represent the original data. These representations 

should cover most of the variances of the observation based on the continuous variations 

of facial configurations during emotional expressions. In our system, the low-dimensional 

space structures are extracted to facilitate the manifold‟s estimated intrinsic geometry due 

to the D-Isomap‟s capability of nonlinear analysis and the convergence of globally 

optimal solution.  
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(a)                                                                    (b) 

    

(c)                                                                            (d) 

Figure 6.4 Distance matrix graph with different weight factor, higher values are shown in red, lower values 

in blue, that (a) 1.0 (b) 25.0 (c) 5.0 (d) 75.0  

The geodesic distance graph from (6.12) is used for D-Isomap based embedding. 

Figure 6.4 shows examples of distance matrix with discriminative weight factor   for 7 

emotional expressions of randomly selected subjects. The distance graph reflects the 

intrinsic similarity of the original expression data and consequently is considered for 

determining true embedding in our system. From Figure 6.4 we can see, by applying the 
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weight factor, the points from the same cluster can be projected closer in low dimensional 

space, thus the distance is compacted. On the other hand, the distance between different 

clusters could be expanded by the weight factor. 

Increasing the dimension of the embedding space, we can calculate the residual 

variance for the original data. The true dimension of data can be found out by considering 

the trend of decrease in the residual value. The embedding results using Isomap and 

adopted D-Isomap with different clusters k are presented in Figure 6.5.  Figure 6.5 (a)–(f) 

shows the results when cluster k is set to be 7, 12, and 20, respectively. From the results 

we see that our proposed method achieves an average of 10% improvement comparing 

with the original Isomap. The best performance can be obtained when cluster k is 12 and 

the dimension of embedded space is reduced to 20, which covers more than 95% 

variances of the observation from the input data. Therefore, these 20 dimensional 

components are used here to represent facial expressions in the input videos.  

    We also provide expressional configurations to show emotional apparent variation in 

Figure 6.6 with the sample numbers of 700 and 7000 respectively. By applying NCC 

algorithm to the embedding results from the D-Isomap using (6.15), we can determine the 

emotion class for a test video. We label the emotion class centers on the embedded 

feature space, which are shown in Figure 6.6. 
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(a)                                                            (b) 

 

(c)                                                          (d) 

 

(e)                                                         (f) 

Figure 6.5 Dimensionality reduction using Isomap and D-Isomap, (a) (c) (e) shows the results using 

Isomap with k is 7, 12, and 20 respectively, (b) (d) (f) shows the results using discriminative Isomap 
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(a) 

 

(b) 

Figure 6.6 Labeled class centers in a 2D space based on the embedding results (a) shows the results using 

700 samples (b) shows the results using 7000 samples 
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    To evaluate the performance of our proposed method, we randomly divide these 700 

sequences into 2 subsets containing 350 sequences each for training and testing.  Training 

and testing procedure are repeated 5 times. Each time one of the 2 subsets was used as a 

test set and the other was used as a training set.  The recognition accuracy is calculated as 

the ratio of the number of correctly classified samples and the total number of samples in 

the data set. 

Table 6.1 Emotion recognition confusion matrix 

 Detected 

Desired Neutral Angry Disgust Fear Happiness Sadness Surprise 

Neutral 82.93 0.97 2.71 2.38 4.04 5.32 1.65 

Angry 1.03 89.68 1.66 2.77 1.23 1.52 2.11 

Disgust 3.56 1.55 75.32 7.74 1.92 4.95 4.96 

Fear 4.21 0.99 4.22 79.61 1.14 5.37 4.46 

Happiness 2.79 1.01 2.36 1.89 88.92 1.37 1.66 

Sadness 2.34 1.05 3.43 3.12 1.08 85.27 3.71 

Surprise 4.69 1.06 3.76 7.66 1.37 4.21 77.25 

    We list the confusion matrix for emotion recognition with numbers representing 

correct percentages in Table 6.1. From the results we can see that features representing 

different expressions exhibit great diversity since the distances between different 

emotions are relatively high. On the other hand, the same expressions collected from 

different subjects are very similar due to the short distances within the same class. The 

overall recognition rate using proposed method is about 82.7%. 
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Figure 6.7 Recognition results of different classifiers 

 

We conduct extensive experiments using different classification schemes, i.e., PCA, 

Gaussian Mixture Model (GMM), NN and Fisher's Linear Discriminant Analysis 

(FLDA). In PCA, the dimensionality is reduced by eliminating less significant features 

with smaller eigenvalues in the transformed domain. K-nearest neighbors (K-NN) is then 

used for the classification. Compared with PCA, D-Isomap can generate a smaller 

number of resulting clusters in the embedded space. So the intrinsic structures of the 

original data are recovered with lower computing costs. The GMM classifier is 

implemented in a modular architecture. A separate GMM is trained for each individual 

class. The parameters including the weights, mean and standard deviation of each 

Anger Disgust Fear Happiness Sadness Surprise Overall

DIsomap 89.68 75.32 79.61 88.92 85.27 77.25 82.68

PCA 73.28 68.45 62.27 72.46 55.67 74.15 67.71

GMM 78.94 66.49 67.78 61.64 61.88 72.33 68.18

NN 66.80 62.90 71.27 85.21 71.96 70.16 71.38

FLDA 86.46 79.85 66.73 85.44 78.86 79.57 79.49
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component are estimated by the Expectation Maximization (EM) algorithm. In out 

experiments, we try a range of k values, so that the distribution of the data can be 

modeled as the sum of k Gaussian functions. In NN classification, a three-layer feed-

forward NN is investigated. The number of input layer neurons is equal to the dimension 

of the input feature set, while the output neurons correspond to the six emotion classes. 

Back-propagation algorithm is used to train the network. A new input is labeled the class 

that produces maximum output value. The applied FLDA classifier has six outputs 

corresponding to the six emotions. An input signal is labeled the class that gives the 

maximum output value. The experimental results for the performance comparison with 

the same dataset are drawn in Figure 6.7. From the figure we can see our proposed 

method achieves the best results for the final emotion recognition. 

We also compare our proposed D-Isomap classifier with other two Isomap classifiers, 

i.e. Original Isomap and Extended Isomap. Since K-NN clustering computes Euclidean 

distances between all pairs of points, it is chosen for evaluating the classifiers. The 

parameters are empirically determined to achieve the lowest error rate by each method. In 

the original Isomap, the value of cluster k  is 12. In the extended Isomap, the value of 

nearest neighbor kw  used in within-class matrix is 5. The test results are summarized in 

Table 6.2. 
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Table 6.2 Comparison between three Isomap methods 

 Parameters Reduced Dimension Standard Deviation Recognition Results 

Original Isomap 12k  40 18.3% 62.8% 

Extended Isomap 5kw  35 11.7% 75.7% 

D-Isomap 12k  20 9.2% 82.7% 

    We compute the reduced dimension of the embedding space, standard deviation and 

average rate of emotion recognition between three Isomap methods. Table 6.2 indicates 

that the proposed algorithm achieves better performance than the original Isomap and 

extended Isomap. The fact that the D-Isomap outperforms the other two is that this 

method can compact the data points from the same cluster on a high-dimension manifold 

to make them closer in the low-dimension space, and increase the distance between the 

data points from the different clusters. This ability could be beneficial in preserving the 

homogeneous characteristics for emotion classification. 

6.5. Chapter Summary 

In this Chapter we present a 3D EBS based emotion recognition system using active 

deformable information from video sequences. The overall accuracy of the system is 

about 82.7%. From experimental results we find that the significant features to 

distinguish one individual emotion from the other emotions are different. Some of the 
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features selected in a global scenario are redundant, and some of the other features might 

contribute to the classification of a specific emotion. Another observation is that there is 

not even a single feature which is significant for all the classes. This actually reveals that 

the nature of human emotion, which means that there are no sharp boundaries between 

emotions. One emotion might have similar patterns with some of the other emotions, and 

different patterns from the others. The human perception on emotion is based on the 

integration of different patterns. 
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Chapter 7 

Conclusion and Future Work 

 

7.1 Conclusion 

In the emotion recognition field, current techniques for the detection and tracking of 

facial expressions are sensitive to head pose, clutter, and variations in lighting conditions. 

These issues can potentially be addressed effectively by 3D face modeling and analysis, 

which has not been widely studied with respect to human facial emotion recognition. The 

methods and algorithms developed in this dissertation attempt to solve such problems by 

using Gabor filtering and EBS based methods. Real 3D visual feature extraction using the 

3D Gabor library and active deformation extraction from video sequences using the 3D 

EBS are introduced. These methods benefit from the advancement of computer vision 

techniques and applications in communication and information technology. The merits of 

this work are summarized below. 

1) For the 3D Gabor feature based method, we employ the 3D Gabor library to extract the 

visual feature vector from expressional faces, which is the first attempt using such visual 
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features for face analysis. The filter‟s scale, orientation, and shape are specified 

according to the geometric pattern of the 3D facial expressions. The Gabor library is 

convolved with each set of the 3D data to extract the feature vector by combining the 

frequency and orientation information from the library at each voxel. For each training 

sample, the semantic ratings describing the facial expressions are constructed into a seven 

dimensional semantic expression vector. The IKCCA is used for learning the correlation 

between the testing sample feature vector and the semantic expression vector. According 

to this correlation, we calculate the associated semantic expression vector and perform 

the classification. 

2) Face regions are automatically detected from input video sequences using local 

normalization technique and a coarse-to-fine classification strategy, which can alleviate a 

common problem in conventional detection and tracking methods: inconsistent 

performance due to sensitivity to variation illuminations such as local shadowing, noise 

and occlusion. Our method decreases computing time by candidate‟s localization with 

optimal adaptive correlation techniques and locates faces automatically on a single frame 

to make it possible to eliminate the manual initiation step from the head/face tracking 

algorithm. 
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3) Using a fiducial point detector and tracker, facial expressions can be detected and 

tracked automatically in real time. For detecting the fiducial point, we construct a set of 

26 fiducial point detectors with the scale invariant feature. For the tracking part, we 

combine colour-based kernel correlation technique for the observation likelihood with 

DE-MC particle filtering distribution for multiple point tracking. It is achieved by 

forming the proposal distribution for the particle filter from a mixture of the kernel 

correlation in the current frame and the dynamic model predicted from the previous step. 

We use the M-component non-parametric mixture model for the multiple DE-MC 

particle filters' posterior distribution over the states of all the target points. We also adopt 

an adaptive modification that can reinitialize the position when point loss occurs. It 

improves the performance of the trackers to cope with the occlusion or disappearance 

cases. 

4) Using elastic body modeling of the face to exhibit different facial expressions with 

elastic characteristics. Based on the continuity condition, the elastic property of each 

facial expression is found, and a complete wireframe face model is generated with the 

availability of some limited feature point positions. An adaptive partition of polygons is 

embedded in the EBS according to the surface curvature through the characteristic feature 

points. The subtle structural information can be expressed without giving complicated 
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facial features. The generic 3D face model is established so that the good parameters of 

the EBS can be used for emotion recognition, e.g. the appropriate physical characteristics 

for face deformations, control points. The D-Isomap is introduced to emotion 

classification due to the fact that this method can compact the data points from the same 

emotion class on a high-dimension manifold to make them closer in the low-dimension 

space, and makes the data points further from the different clusters as well. It results in a 

high recognition rate compared with other Isomap methods 

7.2 Future Work 

We perform emotion analysis on six basic emotions. However, human emotional states 

do not have a sharp boundary. Some of the emotions are a combination of different 

emotions. For instance, humans can express different kinds of surprise, sometimes 

combined with happiness, and sometimes with fear. For a natural human computer 

interface, the computer needs to recognize and analyze these situations. One proposal is 

to categorize emotion into a wide range of classes. Another might be giving different 

weights to the basic emotional elements, and humans can understand the potential 

components of an expression.  
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The emotion analysis is performed on a video signal that has only one emotion. In real 

life applications, the user's emotions are changing frequently. A scheme needs to be 

proposed to separate the variations of human emotion in one continuous interaction. 

Furthermore, the system should be capable of detecting the presence of the user 

automatically. To further improve detection accuracy, the bounding box should be 

smoothed and more accurately attached to the detected face. It can be achieved using 

overall averages of a fixed number of frames from the video sequences. Moreover, the 

processing time for each frame is about 0.6 second in our work by using a PC (Pentium4, 

3 GHz, 2GB RAM) with Matlab 2008a, much higher than general video display time (30 

frames per second). We will investigate a proper face tracking method to reduce the total 

computation time. 

In [25], it is shown that combining prosodic audio features and static visual cues leads 

to a good emotion recognition rate. Since we have demonstrated, in this dissertation, that 

visual emotion recognition using the EBS-based method with dynamic features markedly 

outperformed the method using static visual features. Fusing dynamic visual features and 

the prosodic audio features can potentially yield further improved system performance 

significantly. So the fusion of the dynamic audio and visual features for emotion 

recognition will be one research topic worth conducting. 
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We use one classifier for all the six emotions. However, different classes might have 

different classification algorithms that can better model the data. An investigation based 

on these scenarios will help to improve the effectiveness of the system. 
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