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Abstract 

 

A Study on Radial and Axial Temperature Effects on the Growth of Bulk Single 

Crystal of SixGe1-x in Bridgman Setting  

 

 

Doctor of Philosophy 

MEHDI M. SHEMIRANI 

Mechanical Engineering 

Ryerson University 

2012 

 

This research explores simulation of the growth of large diameter single bulk crystals of 

silicon and germanium alloy from its melt utilizing Bridgman method. Producing 

homogeneous single bulk crystals requires a good understanding of the thermo-solutal 

behavior in the solvent region. This study also suggests certain fundamental scientific 

aspects of this alloy system which are not well considered to date, and which underlie 

both the homogeneity and obtaining relatively flat solid liquid interface of the SixGe1-x 

alloy. These aspects are the diffusion and transport of silicon and germanium in the 

molten alloy. Both three and two dimensional numerical simulations of thermo-solutal 

convection in solvent region were examined. The whole simulation scheme was applied 

to a cylindrical model representing the sample to investigate the aforementioned 

phenomena in the entire process. It was found that the application of axial magnetic field 

had no significant effect on the buoyancy driven convection in the solvent region. 

However, conducting the microgravity environment simulation has shown that the 

removal of the gravitational force on the solvent region would result in a homogeneous 
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solidification. As an alternative, this study has found that both axial and radial 

temperature gradients play a role in the solidification process. Controlling this 

phenomenon, along with two other factors such as applied uniform temperature and 

reduced pulling rate, would help achieve a homogeneous single bulk crystal with more 

uniform silicon distribution in the solvent region, more specifically near the solid liquid 

interface and produce a flat shape interface which is most desired shape in industry.  
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CHAPTER ONE 
 

Introduction  

 
 

Crystal  growth  of  multi-component  alloys  like  SixGe1-x  is  an  inherently  

complex process since  it involves coupled and non-linear  interactions of fluid flow, heat 

and mass transport, phase diagrams, phase changes, surface and interface phenomena, and 

other micro-  and macro-level interactions. Most of these are affected by the presence of 

gravity. Particularly, the convective heat, momentum and mass transport processes in the 

melt result in significant uncertainties in the experimental measurement of physical 

parameters such as diffusion coefficients, and affect the evolution of the growth interface, 

crystal composition uniformity, impurity and inclusions, interface kinetics, surface 

curvature, etc. Such information is essential for the optimization of crystal growth systems 

for commercial applications.   

An  extensive  research  has been  carried  out  on  heat and  mass transport  in  

semiconductor melts  of  the  silicon-germanium  (Si-Ge)  system. The interplay of 

diffusion, structure, and thermodynamics in this system is important and is of great interest. 

The  availability  of  new  knowledge  in  these  areas  will  open  new  horizons  in the 

development of needed devices for human use and for addressing the environmental issues 

such as renewal energy conversion and climate change, and others like medical and 

security applications.  The proposed research will be carried out in two main parts: a) the 

study of silicon distribution in the melt under diffusion-dominated conditions, and  b)  the  

investigation  of  the  role  of  mass  transport  and  gravity  in  single  crystal growth  of  
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bulk  SixGe1-x  alloys.  Experiments were carried out in terrestrial condition in order to 

validate those of the numerical simulations. 

 

1.0 Research Objectives 

The available microgravity platforms on the orbiters will be utilized for the study of 

fundamental and technical issues related to diffusion mass transport in semiconductor 

systems with the aim of developing new knowledge in this field and of making it available 

for the use of the relevant industry for optimization. In this regard, there were few 

questions needed to be responded to such as; can buoyancy driven convection in the 

solvent region be suppressed by the external forces such as axial magnetic field? What is 

the role of the gravity force on mass transport and silicon distribution in the solvent region 

of the model? Which one of the applied linear or non-linear temperature profile generates 

better results? And what is the interplay between the axial and radial temperature during 

the solidification process? The research has the following objectives: 

• To suppress the buoyancy driven convection in the solvent region by an external force 

    such as axial magnetic field. 

• To observe the role of the gravity force on mass transport and silicon distribution in the 

    solvent region of the model under this study. 

• To study the behavior and the effect of the axial temperature during the solidification 

    process. 

• To study the behavior and the effect of the radial temperature gradient during the 

    solidification process.  
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• To simulate the growth of a large diameter single bulk crystals with the selected 

    method. 

• For optimization and verification of the process parameters involved in the selected   

   crystal growth technique, sophisticated modeling and numerical simulations are 

   necessary and will be carried out.   

• The data obtained from microgravity simulations will be compared to the ground-based 

   (terrestrial) results. 

  

1.1  Motivation and Need for this Research 

The choice of SiGe is motivated by two considerations: first, SiGe represents a class 

of pseudo-binary materials with non-isothermal growth interface, second, there is an 

increasing interest in the bulk growth of this material which is not produced with 

satisfactory compositional and crystalline quality to-date. Although researches and studies 

on the SixGe1-x alloy system date back to as early as 1954 [1], an extensive body of 

research associated with the growth of high quality SixGe1-x bulk single crystals, epitaxial 

techniques leading to thin SixGe1-x layers, and methods relating to SixGe1-x-based 

microelectronic semiconductor devices began to emerge about two decades ago. The 

SixGe1-x alloy system offers very  promising features since  the  band  structure  and  thus  

the  effective  mass  and  mobility  of electrons and  holes are significantly  affected  by 

alloy composition, temperature and strain. For instance, the incorporation of a small 

amount of Si into Ge considerably increases carrier mobility, hence leading to the 

possibility of creating devices with improved frequency and computational speeds. Most 
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importantly, the material composition can be tailored to afford the desired electrical or 

optical properties in accordance with the performance specifications of the targeted device 

application. Furthermore, the SixGe1-x alloy system offers a feasible integration into the 

well-developed, long-established silicon-based technologies. These features make the 

SixGe1-x system a very promising candidate to support a variety of micro-electronics and 

opto-electronic device applications.  

These applications include the use of SixGe1-x: 

i) As a base in Si/SiGe hetero-junction bipolar transistors (HBT) [1-3] and high electron-

mobility field-effect transistors [4],  

ii) For photo-detector [5-6] and solar cell applications [7-11] because of its superior light 

sensitivity and high solar cell response in the infrared region of the solar spectrum,   

iii) As  a  substrate  to  fabricate  perfectly lattice-matched GaAs/SiGe hetero-structures, 

thereby enabling higher  efficiency  solar  cell  applications,  and   

iv) In thermoelectric power generators [12-13], tunable neutron and X-ray mono-

chromators [14], high-speed temperature sensors in the range of 20-400
o
C, and X-ray 

detectors [15]. SixGe1-x single crystal substrates of a specific composition (x) are required 

for these applications.  

Due to difficulties associated with band-gap engineering techniques, the growth of bulk 

crystals with desired compositions is necessary. However, it is very difficult to grow 

SixGe1-x single crystals  of uniform compositions and low defect densities since SixGe1-x 

has a large miscibility gap, and its components (Si and Ge) have significant differences in 

their physical properties (density, and melting temperature). Because of the large 
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miscibility gap, any small changes in the solidification rate lead to significant composition 

variations, and growth striations [16-19]. In addition, in crystal growth while it is necessary 

to establish a high axial temperature gradient to prevent constitutional under-cooling, a low 

radial temperature gradient must be maintained for crystal perfection. Any curvature of the 

liquid-solid interface leads to very large radial chemical heterogeneity [20-21]. Modeling 

crystal  growth  of  the  alloy  Ge-Si system  requires  accurate  diffusion coefficient values  

in  the  melt  and  the  understanding  of  fundamental  relations  between  diffusive  mass 

transport, nucleation, and crystal growth. The lack of diffusion data in Ge-Si  melts yields 

to an insufficient  description,  for  instance  as  observed  in  the  phase  field  models  

developed  for  the Czochralski  crystal  growth  process  [22-24].  

 

1.2  Importance of Microgravity Application 

        Crystal growth of multi-component systems is an inherently complex process since it 

involves coupled and non-linear interactions of fluid flow, heat and mass transport, phase 

diagrams, and other micro- and macro-level interactions. Most of these are affected by the 

presence of gravity. During the crystallization processes mentioned earlier there are many 

issues that require microgravity experimentation for a better understanding of these 

processes. For instance, gravity driven convection in the melt causes fluctuation in the 

crystal composition [25]. When the component concentrations are equal, crystal lattice 

parameter fluctuations occur and consequently crystal quality (perfection) and its range of 

applications are reduced [26]. Furthermore, the effect of convective flow on the evolution 

of the growth interface, crystal composition uniformity, impurity and inclusions, interface 
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kinetics, surface curvature, etc must be studied. Under microgravity conditions the 

chemical segregation, the solvent inclusions and their interaction with the moving 

crystallization front can be studied under almost purely diffusive transport conditions. 

Controlled convective conditions can be achieved by the usage of time-dependent magnetic 

fields under microgravity conditions where available; leading to crucial information on the  

effect  of  convection on  the incorporation  of  inclusions  and  their  distribution  in  the 

grown crystals. Although to a certain degree the use of strong static magnetic fields may 

lead to satisfactory results in some systems, the microgravity environment is still the most 

viable option to obtain accurate results for the optimization of many crystal growth 

techniques for commercialization [27]. 

 

1.3  Complications and Defects 

The reliability of the aforementioned products is highly depending on the performance 

of the semiconductors being used in them. This reliance is based on the consistency of 

internal arrangement of atoms of three dimensional crystal structure and the characteristics 

such as uniformity and purity of bulk single crystal. Every crystal structure consists of 

single unit cell which can be classified as the smallest configuration of arranged atoms 

which makes each material’s distinguishable characteristics. The specific arrangement of 

these unit cells in an array format creates the crystal lattice. The ultimate goal is to achieve 

a high level of purity, uniformity, homogeneity and a perfect crystalline. These crystals, of 

course should be produced under specific circumstances in order to ensure high quality and 

satisfy the ever growing demand. There are many different methods and techniques for 
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crystal growth. Among those, the crystallization from the melt is the most practiced one. 

Inevitably, this way of crystal growth has some complications which baffle the process of 

obtaining a perfect arrangement of molecules or atoms of crystals as mentioned above. It 

should be noted that these complications are generally known as the growth defects. 

Growth defects as shown by Muller et al [28] can be categorized as; substitutions which is 

a replacement of an atom with the atom of the crystal lattice, grain boundaries which 

happens when two small grains of crystal have different crystallographic orientations, 

vacancies which refers to the missing atom in the crystal lattice, dislocations which is 

referring to misalignment of the crystal lattice, and interstitial which happens when an atom 

is being squeezed into the crystal lattice and stacking which is a disturbance in the 

regularity of the arrangement of the plane of atoms in a crystal lattice.  

Voronkov [29] showed that grown-in micro-defects in dislocation-free silicon are 

distributed in banded patterns that result from a spatial variation in the type and 

concentration of the incorporated point defects; vacancies (at V/G larger than some critical 

value) or self-interstitials otherwise (V is the growth rate, G is the axial temperature 

gradient). The incorporated point defects agglomerate into micro-defects upon lowering the 

temperature; particularly the vacancies are agglomerated into voids. However, it should be 

noted that oxygen plays an important role in the Czochralski crystals by assisting the void 

formation, by producing joint vacancy-oxygen agglomerates (oxide particles) and by 

trapping vacancies into vacancy-oxygen species. The critical ratio depends on the point 

defect parameters taken at Tm as expressed by Voronkov. The dependency of the micro-

defect type on V/G was explained by Voronkov assuming that the vacancy (V) and self-
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interstitial (I) in silicon coexist, at the crystallization temperature (Tm) in comparable 

equilibrium concentrations. Another essential point is that the recombination rate of (V) and 

(I) is sufficiently high, at least close to (Tm), to support the product CV CI of the two actual 

concentrations close to the equilibrium value. This product decreases very fast upon 

lowering temperature (T) (By moving away from the crystal-melt interface, into the crystal 

bulk). Therefore, either only one type of the defects, V or I can survive at a lower T while 

the concentration of the partener defect will be reduced to a negligible value. Voronkov 

also concluded that at V/G exceeding the critical value, the incorporated point defects are 

mainly vacancies. And at V/G below the critical value, the incorporated point defects are 

self-interstitials and the incorporated concentration increases upon reducing V/G. 

Necking technique is one way to overcome the dislocation in silicon single crystals. 

Dash [30] has shown  how necking, which was one of the problems to deal with at the 

beginning of the silicon single crystal-growing era, can help reduce dislocations. However, 

it was discovered that the dislocation-free crystals are not all perfect; they contained some 

grown-in micro-defects as addressed by Plaskett [31] and Abe et al. [32].  

 The gravity has a great influence on the growth process since it is the major cause 

of the buoyancy force, which in turn affects on the mass and heat transport mechanisms in 

each system (melt) of crystal growth. It is a known fact that under the terrestrial (on the 

earth surface or ground-based) condition, the hot fluid with less density in the crystal melt 

rises and the denser cool fluid falls down. This obviously, known as convective flow, 

causes the irregular distribution of the dopant and into a larger extent affects on the 

perfection of the crystal growth. Many attempts have been made to minimize or overcome 
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this problem, such as the use of either axial or rotating magnetic field, the rotating crucible 

and under the microgravity condition. 

 

1.4  Dissertation Organization 

This work consists of six chapters and three appendices. Chapter one is a detailed 

introduction, research objectives, motivation, need for the research, importance of 

microgravity application, complications and defects in crystal growth. Chapter two would 

present a comprehensive literature review, methods and techniques. In chapter three, 

governing equations, mesh sensitivity, solution techniques along with model geometry and 

boundary conditions would be discussed in detail. Chapter four presents two and three 

dimensional modeling with different heating profiles and applied different magnetic field 

intensities. Chapter five would show the effect of axial and radial temperature gradient 

results and discussions. Finally, Chapter six presents the summary, and conclusions of this 

study along with the recommendations and future works. All the additional information 

such as necessary tabulated data, non-dimensional equations, and sample of CFD input 

programs would be presented in Appendices A, B, and C. 
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CHAPTER TWO 
 

 

Literature Review 

 
2.0 Introduction 

 Since this study is focusing on the growth of the bulk single crystals of SiGe alloy, 

it is inevitable to look into each component of this alloy and the chosen combination of this 

alloy which is Si0.25Ge0.75 in more details. 

    

 2.0.1 Silicon (Si) 

 Silicon with atomic number of 14 is the second most abundant element (after 

oxygen) in the earth crust, making up 25.7% of the crust by mass. Silicon crystal structure 

is cubic diamond. Silicon has many industrial uses. It is the principal component 

of most semiconductor devices, most importantly integrated circuits or microchips. 

Silicon is widely used in semiconductors. In its crystalline form, pure silicon has a 

gray color and a metallic luster. It is similar to glass in that it is rather strong, very 

brittle, and prone to chipping [33]. Pure silicon is used to produce ultra-pure silicon wafers 

used in the semiconductor industry, in electronics and in photovoltaic 

applications. Ultra-pure silicon can be doped with other elements to adjust its 

electrical response by controlling the number and charge (positive or negative) of 

current carriers. Such control is necessary for transistors, solar cells, semiconductor 

detectors and other semiconductor devices which are used in electronics and other 

high-tech applications, and of large-area, low-cost thin-film solar cells [34]. Most 

http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Integrated_circuits
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Wafer_(electronics)
http://en.wikipedia.org/wiki/Semiconductor_industry
http://en.wikipedia.org/wiki/Photovoltaic
http://en.wikipedia.org/wiki/Doping_(semiconductors)
http://en.wikipedia.org/wiki/Electron_hole
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Solar_cell
http://en.wikipedia.org/wiki/Semiconductor_detector
http://en.wikipedia.org/wiki/Semiconductor_detector
http://en.wikipedia.org/wiki/Semiconductor_device
http://en.wikipedia.org/wiki/Solar_cells
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 notable physical properties of silicon for this study are as follow; Density (2329 

 kg/m
3
), Thermal expansion coefficient (2.6 x 10

-6
/K), Melting temperature 

 (1687.15 K), Boiling temperature (3538.15 K), Thermal conductivity (148 W/m K), 

 and Heat capacity (705 J/kg.K).  

  

     2.0.2 Germanium (Ge) 

 Germanium with atomic number of 32 is a hard, grayish-white element that has a 

metallic luster and the same crystal structure as diamond. Germanium is a semiconductor, 

with electrical properties between those of a metal and an insulator. In its pure state, this 

metalloid is crystalline, brittle and retains its luster in air at room temperature. Germanium 

crystal structure is also cubic diamond. The development of the germanium transistor 

opened the door to countless applications of solid-state electronics.  From 1950 through the 

early 1970's, this era provided an increasing market for germanium, but then high purity 

silicon began replacing germanium in transistors, diodes, and rectifiers.   Meanwhile, 

demand for germanium in fiber optics communication networks, infrared night vision 

systems, and polymerization catalysts increased dramatically. The recent rise in energy cost 

has improved the economics of solar panels, a potential major new use of germanium. 

Germanium is also a good substrate of the wafers for high-efficiency multi-junction photo-

voltaic cells for space applications [35]. Because germanium is transparent in the infrared it 

is a very important infrared optical material, that can be readily cut and polished into lenses 

and windows. It is especially used as the front optic in thermal imaging cameras working in 

the 8 to 14 micron wavelength range for passive thermal imaging and for hot-spot detection 

http://en.wikipedia.org/wiki/Diamond
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Lustre_%28mineralogy%29
http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Thermographic_camera
http://en.wikipedia.org/wiki/Micrometre
http://en.wikipedia.org/wiki/Wavelength
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in military, night vision system in cars, and fire fighting applications [36]. Germanium is 

also used in infrared spectroscopes and other optical equipment which require extremely 

sensitive infrared detectors [37]. Physical properties of germanium which have been taken 

into the consideration are as follow; density (5323 kg/m
3
), thermal expansion coefficient 

(5.9 x 10 
-6

 /K), melting temperature (1214.4-K), boiling temperature (3106.15 K), thermal 

conductivity (59.9 W/m.K), and Heat capacity (320 J/kg.K).  

 

2.0.3 Bulk Single Crystal of Si0.25Ge0.75  

 Silicon-germanium alloys are rapidly becoming an important semiconductor 

material, for use in high speed integrated circuits. Circuits utilizing the properties of SiGe 

junctions can be much faster than those using silicon alone. Silicon-germanium is 

beginning to replace gallium arsenide (GaAs) in wireless communications devices. The 

SiGe chips, with high-speed properties, can be made. One of the purposes of this study is to 

find a proper condition in which SiGe chips can be obtained from a defect free single 

crystal of SiGe. Although the pure silicon and germanium are chemically similar, 

crystallize in the same lattice structure, and are completely miscible in the solid and liquid 

phase, the growth of mixed crystals is very complicated because of the differences in some 

physical properties especially when the combination is in the wider range in the phase 

diagram [38]. The chosen combination of silicon and germanium under this study is 

benefiting of the large amount of silicon which enhances the performance of the 

semiconductors at the same time utilizes the large amount of germanium which carries a lot 

of aforementioned characteristics.  

http://en.wikipedia.org/wiki/Night_vision
http://en.wikipedia.org/wiki/Spectroscope
http://en.wikipedia.org/wiki/Infrared_photography
http://en.wikipedia.org/wiki/Silicon-germanium
http://en.wikipedia.org/wiki/Gallium_arsenide
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                                      Figure 2.1 SixGe1-x phase diagram [38] 

Table -2.1 represents the employed physical properties of the mixture used in this study. 

The comprehensive list of physical properties can be found in Appendix ―A‖ 

                                        

                Table 2.1 Physical properties of the SiGe in the Solvent Region 
  

         Physical Properties of Si0.25Ge0.75   

Description Symbol Values                                   Units 

Melting  Temperature Tm 1057.5                                                ºC 

Density ρ 4.843                                                  g /cm
3
 

Mass Diffusivity αc 1.65 x 10 
- 4

                                        cm
2
 /s 

Kinematic Viscosity v 8.8 x 10 
– 4                                                              

cm
2
 /s 

Solutal Expansion Coeff. βc 0.0051                                              / at% Si 

Thermal Conductivity  κ 0.294                                                W/cm/K 

Thermal Expansion Coeff. βT 5.075 x 10 
- 6

                                     1/ ºC 

Dynamic Viscosity μ 4.3 x 10 
– 3                                                             

g/cm.s 

Electrical Conductivity  ζ 2.5 x 10 
4                                                                

S/cm 

Specific Heat  cp 0.4145                                               J/g.K 
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2.1 Methods or Techniques 

There are many different methods and techniques which have been used for the 

crystal growth purposes, from early twentieth century, among which the four most 

practiced ones are; Czochralski technique (Cz), Bridgman method, Floating zone technique 

(FZ) and traveling solvent method (TSM) also known as traveling heater method (THM). 

Each method or technique tries to achieve and fulfill the need of a homogeneous purified 

single crystal growth. The Cz  and FZ methods due to their limitations for this type of 

semiconductor alloys is not of our interest and TSM has been utilized and discussed in my 

masters research [39], therefore in this study, the emphasis is on the Bridgman method. 

 

  2.1.1 Bridgman Method 

This method uses a tubular furnace, which has three zones, Figures 2.1-2.2. Each 

heated at a different temperature. The "hot" zone is held at a temperature above the melting 

point of the material, while the "cold" zone is kept at a temperature below the melting 

point. The sample material is usually placed in a container made of an inert material (such 

as quartz).  

Once a region of the sample is melted, the sample is slowly moved, and directional 

solidification takes place. The interface between the liquid and solid material, the 

solidification front, is particularly interesting to scientists. It is here that the flows in the 

molten material affect the final composition and structure of the solid and its properties. 
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                 Figure 2.2 Schematic view of a vertical Bridgman method [40]   

      

               

               Figure 2.3 Schematic view of a horizontal Bridgman method [41] 
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The ampoule contains the melt which moves through the axial temperature gradient in a 

furnace. This ampoule is necessary to support the melt, because in contrast to the float-zone 

method, the completely feed material (feed-rod) is molten as shown by Helmers et al. [40]. 

This method has its own advantages such as; simplicity, containers can be evacuated and 

sealed, control of shape and size of crystals and stabilized thermal gradients. Disadvantages 

are such as; confinement, thermal expansion of container versus the crystals, can handle 

small melt volume and process is not visible. Helmers et al. [40] conducted a Bridgman 

growth of non-dilute SixGe1-x mixed crystals and reported four samples of different 

composition. Fluctuations of growth rate and or composition result in strong striation 

patterns. The spacing of the striae is found to be similar for all melt volumes, compositions 

and thermal environments used in this experiment. The crystal quality is generally poor. All 

samples show the grain structure. It was found that if the seed is of higher Si content than 

the first part of the grown crystal, formation of grain is considerably reduced. It was shown 

in the phase diagram that an increase of the Si content in the solid changes the equilibrium 

temperature at the phase boundary during solidification up to 10K/at%. 

Schilz et al. [41] in a review of this method state that in contrast to Czochralski 

technique, directional solidification, i.e. mostly the Bridgman process, can handle only a 

small melt volume, since heat flow should always be perpendicular to the phase boundary.  

Because of this problem and also due to the inevitability of the non-uniform composition 

profile after solidification, the Bridgman method has neither ever been applied for the 

growth of technically exploitable Si-Ge semiconductor material, nor has been a subject to 

intense research in this field. Experiment suggested that in bottom-seeded vertical 
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Bridgman growth, the damping power of the solute field is predominant over the thermal 

influence. Also, observed segregation profiles exhibit a typical diffusion controlled shape. 

Considering the fixed thermal field of a Bridgman facility, a changing Si 

concentration will move the position of the solid/liquid interface with respect to the 

furnace, and the growth rate differs from the velocity at which the cartridge passes through 

the heater. Thus, the monotonic decrease of Si concentration is accompanied by a slowing 

down of the growth velocity. The thermal environment can cause the striae only if the 

temperature accidentally fluctuates with the same frequency as presented by Dold et al. 

[42]. 

Dold et al. utilized the Bridgman method in a radiation heated mirror furnace. The 

growth velocity was 1.3mm/h. GeSi crystal in a range (Si <= 15 at %) grown on a seed 

crystal with the diameter of 9mm and length from 30 to 40 mm. Si-concentration was 

restricted for the given set-up to about 10-15 at%. Axial and radial macro-segregation 

measured by X-ray (EDAX). The average Electrophoretic deposition (EPD) was in the 

range 6x10
4
 to 1x10

5 
and was enhanced at the seed/crystal interface and in the part grown 

in the vicinity of the container wall. The full-width at half-maximum (FWHM) values of 

20-40 arcsec obtained via Bartel’s five crystal diffractometer of the (111) peak is best result 

reported up until this experiment. Although the quartz crucible is the best container for 

single crystal growth but the interaction between the silicon and the ampoule wall leads to 

sticking of the crystal to the wall. During the cool down process, the grown crystal is 

subjected to heavy mechanical stress. Together with tension because of lattice mismatch 
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due to concentration gradients, this might lead to cracking of the crystal or the ampoule 

wall.  

Walker [43] carried out an experiment utilizing the Bridgman method for crystal 

growth with a strong, low-frequency, rotating magnetic field. The study shows the motion 

of the melt driven by a low-frequency, spatially uniform, rotating magnetic field that is 

perpendicular to the axis of a cylindrical Bridgman ampoule. Since the magnetic force is so 

strong, the inertial effects are negligible and that viscous effects are confined to thin 

boundary layers which are adjacent to the ampoule surfaces and the crystal-melt interface. 

Outside the boundary layers, the melt nearly rotates as a rigid body with the angular 

velocity of the rotating magnetic field. Because of non-electrical conductivity, the static 

crystal acts as a generator in the rotating magnetic field and drives electric currents through 

the crystal-melt interface boundary layer, these currents from the slightly conducting 

crystal interact with the magnetic field to accelerate the azimuthally velocity. A strong, low 

frequency, rotating magnetic field would produce poor crystals with severe rotational 

striations. They conclude that a rotating magnetic field may produce beneficial mixing, but 

it may also produce potentially deleterious (harmful) deviations from axisymmetry in the 

melt motion. With a rotational magnetic field, it is not appropriate to treat the crystal as an 

electrical insulator. The importance of the nonaxisymmetric radial and axial velocities 

inside the interface layer lies in their potential effects on the mass transport of dopants or 

species. Walker also showed in his study that constitutional super-cooling and a high 

silicon concentration increase at the growth beginning due to the use of Germanium seed-

crystal could not be avoided. 
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Feonychev et al. [44] also studied the Bridgman method by showing that the flow 

arising in a conducting liquid under the effect of a rotating magnetic field as well as under 

its interaction with gravitational and thermo-capillary convection, region of mixed flows, in 

which the impurity in crystal growth were found. Application of magnetic fields in 

semiconductor crystal growth is an efficient solution to control the convection in the liquid, 

the micro and macro segregation, and to improve the material quality. Nowadays, growth 

installations can be equipped with different magnetic field configurations. Transverse, axial 

and cusp static magnetic fields are used to eliminate thermal fluctuations and to damp 

thermal convection in the liquid in order to obtain stable transport regimes as shown by 

Okano et al. [45]. It has been observed that the intensity of the melt convection has a 

significant influence on both radial and axial segregation of species and interface shape 

during crystal growth. Studies of natural convection in the melt demonstrated that the 

magnitude of radial segregation is lower than the axial one and is due to either; a) 

diffusion-controlled growth such as convection free or b) intense mixing in the melt as 

shown by Martinez-Tomas et al. [46] and Labrie et al. [47]. The radial segregation reaches 

a maximum for intermediate values of flow intensity, which results in relatively thick 

solute boundary layers that have a non-uniform thickness Labrie et al. [48]. When crystals 

are grown in the Bridgman configuration, forced convection is difficult to produce, because 

the crystal cannot be moved relative to the ampoule. The intensity of the natural convection 

which cannot be avoided scales with the Grashof (thermal) number. It is obvious that the 

intensity of the buoyancy driven convection depends highly on the melt height and thus 

changes as the melt is depleted as studied by Makriyannis et al. [49]. In the vertical 
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Bridgman configuration for crystal growth, the interface shape is a factor that greatly 

influences the yield of single crystals. The shape of the interface is mainly determined by 

the temperature field near the interface and the level of natural convection in the melt as 

shown by Saghir et al. [50]. The shape of the interface can range from concave to convex. 

Slightly convex interface shape is most desirable because it eliminates most problems with 

spontaneous nucleation at the crucible wall and improves grain selection which results in 

higher yield of single crystals. However, the efforts of obtaining convex interface shapes in 

growth experiments have been of limited success as stated by Lan et al. [51]. A planar 

interface shape has the beneficial effect of minimizing thermal stresses and the intention of 

the present work is to establish a desirable interface shape by controlling the convection in 

the melt and the directional heat flux near the interface by means of the static magnetic 

field.  

Yeckel et al. [52] in their study which is a three-dimensional simulation of the flow 

induced by transient acceleration (g-jitter) in microgravity crystal growth, showed the 

effect of g-jitter in both axial and transverse directions in a vertical Bridgman setting. It 

was also presented the effects of applying steady magnetic field oscillations, but for 

transverse jitter at intermediate frequencies, flow oscillations are increased. This counter-

intuitive effect is a dynamic one, in which boundary layer formation under the influence of 

a magnetic field shortens the time scale of momentum transfer, allowing the flow to 

respond more quickly to the time variation of acceleration. The effect of the magnetic field 

on an enclosed flow with electrically insulating boundary conditions is to preferentially 

suppress the velocity component tangential to the magnetic field. The ability to filter a 
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single component by application of a specified magnetic field could be useful for 

simultaneously improving both axial and radial segregation in semiconductor crystal 

growth as shown by Saghir et al. [53]. 

Yesilyurt et al. [54] conducted a study to investigate the effect of thermo-

electromagnetic convection (TEMC) on the Bridgman growth of SixGe1-x in which they 

have shown that the thermoelectric currents at the growth interface of GeSi during 

Bridgman growth technique, promote convection when a low-intensity axial magnetic field 

is applied. TEMC, typically, is characterized by a meridional flow driven by the rotation of 

the fluid. Meridional convection alters the composition of the melt, and the shape of the 

growth interface substantially. TEMC effect is more important in micro-gravity 

environment than the terrestrial one, and can be used to control convection during 

directional solidification of GeSi. TEMC is based on the principle that in any material a 

temperature gradient, T , produces a Seebeck electromotive forces ST where S is the 

thermoelectric power of the material. If the gradients of S and T are not parallel, then a 

thermoelectric current is generated in the system. They have also shown that the following 

points should be met in order to have strong enough thermoelectric currents to create 

TEMC:  

1) In systems where the melt and solid have different thermoelectric powers, and the solid-

melt interface is not isothermal; e.g. binaries and pseudo-binaries such as GeSi and 

HgCdTe.  

2) In systems where the thermoelectric power is a function of the liquid-phase composition 

which is non-uniform due to segregation at the growth interface.  
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3) In systems where the melt and the container have different thermoelectric powers, and 

melt-container interface is not isothermal (e.g. the Bridgman growth of Ge in a graphite 

crucible). As per their findings two remarks should be pointed out; 

 i) the azimuthal velocity does not influence the composition directly, and  

ii) meridional flows can only be sustained at low magnetic field strengths, typically of the 

order of 10-100mT and the Lorentz force, u x B weakens the meridional flow as the field 

strength is increased further. Lehoczky et al. [55] showed that the thermo electromagnetic 

is also a function of the square of the difference of the thermoelectric powers of the melt 

and crystal, which is assumed to be 1µV/K. For semiconductors, this value varies between 

1 and 100µV/K as shown by Muller et al. [56].  

Marin et al. [57] worked on a 6 cm diameter Ga-doped Si0.02Ge0.98 crystal by 

utilizing the vertical Bridgman method with a submerged baffle in which they removed the 

baffle after 3 cm of growth and let the solidification continue. By using the baffle in 

vertical Bridgman setting, axially uniform concentration of Si and Ge in Si0.02Ge0.98 alloy 

was obtained. In contrast, non-uniform segregation typical of full mixing was obtained 

when the baffle was removed from the melt. Li et al. [58] shown that the baffle has reduced 

the extent of micro-segregation. 

Mitric et al. [59] in their experimental study of the Alternating Magnetic Field 

(AMF) effect on the crystal growth by vertical Bridgman technique showed that a 

modification of classical growth set-up is required. A preliminary evaluation of the 

appropriate parameters for an efficient electromagnetic stirring with minimum of heat 

released in the sample was performed. The estimation of both magnetic field frequency and 
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intensity (approximately B=30T) was achieved by both experimental and theoretical 

approaches. The thermal field modification in the sample due to the additional quantity of 

heat released by induction in the melt, near the solid-liquid interface and by Joule effect 

(when an alternating electrical current is applied to the inductor, heat dissipation by Joule 

effect occurs in the coil as well as in the molten sample due to the eddy currents) in the coil 

was calculated. In their experiment a 50K/cm temperature gradient was also used. The 

solidification interface shape is at the origin of the thermal convection in the liquid and, in 

consequence, will have an influence on the solutal distribution. The knowledge of the 

interface deflection allows a first estimation of the flow intensity order of magnitude, 

which is important for the further choice of AMF values. The interface shape is the result 

of thermal, latent heat and solutal condition. In their experiment (GaInSb sample), it was 

found that the diffusive layer (δD = has approximately 1 cm thickness) and the viscous 

layer (δv = reaches approximately 400 µm). For an interface deflection of 1mm and a 

thermal gradient of 50K/cm, an AMF with an intensity of 3mT and a frequency around 

8000Hz was found to be sufficient for an efficient mixing of the liquid. 

The solid-liquid interface curvature results from differences of the thermal 

conductivity of semiconductor alloys in the liquid and solid state, and depends also on the 

geometry and conductivity of the crucible as stated by Naumann et al. [60]. 

Meyer et al. [61] have shown the application of the submerged heater method 

(SHM) in a vertical Bridgman configuration to grow Ge single crystals doped with Ga. It 

was found that when SHM is used without rotation, the submerged heater drastically 

reduces convection at the solid-liquid interface. When SHM is set into rotation or 
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oscillatory rotation, it acts as a centrifugal viscous pump, inducing forced convection 

(radial-inward flow) along the interface. The flow produced by a rotation and oscillatory 

rotation of the submerged heater was visualized using a 1:1 scale model. They have shown 

that the vigorous mixing produced by the oscillatory rotation creates a nearly perfect stirred 

melt, and yields a uniform lateral distribution of the dopant. The crystals were free of 

unintentionally produced striae. It was also mentioned that the intensity of the natural 

convection, which cannot be avoided, scales with the dimensionless Grashof number which 

describes the aforementioned intensity, depends strongly on the melt height, and thus 

changes as the melt is depleted. Therefore, the electrical and optical properties of the 

crystals grown from unstirred Bridgman melts are expected to change axially and radially. 

They also found that the Grashof number (Gr) of the zone was approximately 50,000 which 

was three orders of magnitude lower than the (Gr) of the conventional vertical Bridgman. 

Meyer et al. also showed that when crystals are grown in the Bridgman configuration, 

forced convection is difficult to produce, because the crystal cannot be moved relative to 

the ampoule. 

Ruiz et al. [62] studied the impact of the g-pulses on the semiconductor solid 

segregation in a generic µg Bridgman growth arrangement in a computational point of view 

with the help of a time-dependent computer code. It was pointed out that the present 

calculations indicate that segregation is weakly dependent on the geometry of the pulse if 

the g-dose, at equal activity time is the same. However, solid dopant patterns as well as the 

magnitude of the relative variation with regard to a basic state are different for each 

semiconductor (Ge with Ga-doped, GaAs with Se-doped, Sn with Bi-doped) analyzed. 
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They used a 2D transient model in which all the walls of the ampoule stay at rest except the 

solidification front, defined as a flat moving interface. Ermakov et al. [63] showed that 

liquid phases at high temperature have been defined as Boussinesq Newtonian ones and the 

transport of mass, momentum and heat has been considered to be time-dependent because 

of the continuous decreasing of melt volume and the built-up of solute caused by the 

continuous decreasing length of the ampoule. They have concluded that longitudinal 

segregation profiles are practically independent of the pulse shape, rectangular or half-

sinusoidal applied and simplified their analysis by only taking into account the g-dose 

applied to the growth system. Depending on the magnitude of this g-dose, the axial 

segregation remains practically constant along the crystal but not the radial one, knowing 

that by its definition, radial segregation is the most sensitive parameter against this kind of 

external impulsive force. In addition, it has been clearly stated that the dynamic and 

thermal responses are dependent on the shape of the external impulsive force. 

Volz et al. [64] have grown a series of (1 0 0)-oriented Gallium-doped Ge crystals 

by the vertical Bridgman method and under the influence of a rotating magnetic field 

(RMF). They have found that the time-dependent flow instabilities occur when the critical 

magnetic Taylor number (T
c
m) is exceeded, and this can be observed by noting the 

appearance of striations in the grown crystals. (T
c
m) decreases as the aspect ratio of the melt 

increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional 

interface demarcations introduced by switching the RMF on and off. The RMF has a 

marked effect on the interface shape, changing it from concave to nearly flat as the RMF 

strength is increased. They have stressed that the key issue is that of stability, since 
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unstable melt flow during the growth of doped semiconductors and semiconductor alloys 

will lead to striations and compositionally inhomogeneous material. If the magnetic field 

strength is too large, the RMF itself will cause unstable flow. The critical value for 

instability will depend on the aspect ratio of the melt and coupling to buoyancy-induced 

flows. They also observed in their study that without the RMF, there is a concave shape at 

the interface, this concavity results primarily from the heat flow, which is determined by 

the differences in thermal conductivity between the melt, solid, and the ampoule. However, 

this concave shape changed to convex shape near the end of the growth. Finally they have 

stated that it might be difficult to use RMF to both control the interface shape and at the 

same time maintain time-dependent melt flow with the Bridgman technique. 

Duhanian et al. [65] have shown, in their experimental study, the solid-liquid 

interface dynamics and chemical segregation in concentrated semiconductor alloy in a 

vertical Bridgman setting (in the advanced gradient heating facility, AGHF, of the 

European Space Agency) which incorporated three samples of Ga1-xInxSb with 

compositions of x=0.04, 0.1, and 0.2. The position and shape of the solid-liquid interface 

has been marked by electrical pulses all along the growth direction and revealed by 

subsequent metallographic procedure. The axial and radial segregation of the (In) has been 

measured by chemical analysis of the solid. The result show that the effect of the chemical 

segregation, coupled to thermo-solutal convection, leads to huge deformations of the solid-

liquid interface, with interface curvature even larger than the sample diameter. They 

observed a sharp increase of the chemical composition as well in the most concentrated 

samples and interface destabilization occurred quickly. Bulk crystal growth experiments 
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began with Wagner [66] on GaAs-InAs, and by Plaskett et al. [67] on GaSb-InSb, and by 

Capper et al. [68] on HgTe-CdTe, then extended to numerous other alloys. Comprehensive 

surveys of the experimental difficulties and resulting properties were published by Foster et 

al. [69] and Lendvay [70] and it appeared that the main problems in the growth of 

semiconductors crystals were related to the conjunction of high concentration and wide 

liquidus-solidus interval in the phase diagram. This leads to strong axial and radial 

chemical segregations, with large lattice parameter variations and associated with 

mechanical stress, so that the sample are generally heterogeneous and cracked. However, 

some other times as shown by Andrews et al. [71] and Cobb et al. [72], the crystals were 

found unexpectedly homogeneous. It should be noted here that several technical methods 

and attempts have been developed, such as micro-gravity condition and application of 

magnetic field to deal with aforementioned problems. It should also be pointed out that in 

every crystal growth procedure, aside from the main materials of the alloys, the size and the 

pulling rate or solidification rate are those of the importance. Duhanian et al. utilized the 

same setting for their experiment as in [73-75], the furnace pulling rate of 1.1 μm/s (which 

is approximately 4mm/h, this is almost 8 times faster than that of the conditions used in this 

study) and thermal gradient of 60K/cm in the adiabatic zone of the furnace. The diameter 

of their sample was 12mm, the length of the seed was 63mm, and the length of the feed 

was 152mm. 

Corriel et al. [76] and Barat et al. [77] showed that this setting was compromised 

between several constraints, including interface stability, end effects and measurable 

interface curvature. It was also concluded by Duhanian et al. [65] that from structural point 
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of view, the samples were of rather good quality with grain sizes in the millimeter and 

centimeter range, except of course where some destabilization occurred. They also 

mentioned that the quality immediately improved compared to the seed. The grain 

boundaries are roughly perpendicular to the interface. At some grain boundaries, the 

interface demarcation line is strongly distorted. With a 60K/cm thermal gradient, the 

difference in under-cooling from one grain boundary to other can reach 6K. The fact that 

was observed in the diluted alloy as well suggests that it is due to surface orientation effect 

rather than to a different segregation coefficient and then to liquid composition variations 

along the interface. They also found and listed the following findings: 

i)  There is a strong correlation between the interface curvature and the radial segregation 

     along the interface. 

ii) Interface curvature is directly related to the concentration variation on its surface, 

      obviously through the liquidus slope in the phase diagram. 

iii) The interface velocity decreases when the concentration increases, especially on 

       the crucible axis. And finally, 

iv) The radial effects are of primary importance in compare with those of the axial. 

Detached solidification is one of the characteristic of vertical Bridgman crystal 

growth. This is referred to where the melt forms a meniscus between the crucible wall and 

the solid-liquid interface making the crystal grow without contact with the crucible wall. 

Duffar et al. [78] in their study focused on the equilibrium at the meniscus between the 

crystal-melt interface and the crucible wall under terrestrial conditions. The principle is to 

impose a gas pressure at the cold part (seed side) of the crucible, approximately equal to the 
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hydrostatic pressure of the molten sample, in order to get a small liquid meniscus between 

the solid-liquid interface and the crucible wall. A first-order capillary stability analysis 

shows that stable conditions can be reached for the growth of semiconductors by this 

technique. Dewetting is the specific phenomenon, originally observed under micro-gravity 

conditions, which generates a thin and constant gap between a crystal and the container in 

which it has been grown. This leads to a dramatic increase of crystal structure quality, due 

to the absence of thermal and mechanical interactions between the solid and the crucible. 

The classical explanation of the mechanism involves wetting considerations, hydrostatic 

pressure and gas pressures. A number of developments of this theory have been published 

in the last few years. Some experiments under micro-gravity conditions also permitted a 

better understanding of the physical phenomena involved in the dewetting process. 

Following these developments, the way of obtaining dewetting on the earth has been found 

and successfully applied to the growth of III-V and II-VI semiconductor crystals. Duffar 

[79] stressed that one point should be kept in mind that stability of dewetted growth is of 

the importance. Once dewetting is obtained, it is necessary to insure that the growth 

conditions, including the gap thickness, will remain constant all along the solidification. 

 Palosz et al. [80] in their experimental studies on detached growth of germanium 

(Ge) under controlled pressure condition, examined the conditions of detached 

solidification in an uncoated graphite crucible as well as in a BN-coated silica and pBN  

ampoule. Detached and partly detached growth was achieved in pBN and BN-coated 

crucibles respectively. The results of their experiment are based on the Duffar’s theory 

which states the key factors in detached solidification are the growth and contact angles. 
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Palosz et al. theoretically calculated the dependency of the gap width on the pressure 

differential across the meniscus by the following formula; ΔPm = Pcold -  Phot – Phydro where 

ΔPm is the pressure differential, Pcold  and  Phot are the gas pressure in the inner and outer 

chamber, respectively and Phydro is the hydrostatic pressure rate at the crystal-liquid 

junction. They indicated that the stable growth is possible only below ΔPm = -1 mbar. 

Under this condition the gap width is normally more than 100 μm wide which easily leads 

to melt run-down in terrestrial condition. 

 Steian et al. [81] by utilizing numerical simulation studied the thermosolutal 

convection during vertical Bridgman directional solidification of Ga1-xInxSb alloys. From 

the transient modeling of the heat, momentum and species transport it is found that, in the 

case of vertical Bridgman configuration, the heavier InSb solute rejected at the interface 

leads to a continuous damping of the thermally driven convection. The modeling of low-

doped alloy solidification shows that the solutal effect cannot be neglected for high pulling 

rates. They reminded that the morphological interface stability criterion allows great values 

of the pulling rate for low-doped alloys (as for example Vmax   10 μm/s for a Ga0.99In0.01Sb 

alloy solidified in a thermal gradient GT   50K/cm). However, they warned that the use of 

such high rates is not advisable for the experiments because, after the damping of the melt 

convection, the poor mixing of solute at the interface leads to a strong increase of the radial 

and axial chemical segregations in the samples grown in such conditions. They concluded 

that in the case of concentrated alloys solidified at V=1.0 μm/s, this effect becomes 

dramatic because of the dependency of the melting point on the interface composition 

which produces a significant increase of interface curvature. They also proposed an 
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analytical expression to compute a critical value of the growth rate Vcr for which the 

thermosolutal effect must be considered. Because the damping of the thermally driven 

convection has undesirable effects on the crystals quality, this phenomenon can be avoided 

if the condition V<Vcr is respected. Steian et al in their modeling performed for the 

horizontal Bridgman solidification of concentrated GaInSb alloys under microgravity 

conditions showed an inverse but lower solutal effect on the melt convection, leading to a 

small increase of the flow intensity during the solidification. The solute distribution in the 

sample and the interface shape are essentially affected by the thermal convection, which 

depends on the gravity level. From the numerical simulation, they found that a modification 

of g values between 2 x 10
-6

 and 2 x 10
-5  , which is the gravity level measured onboard 

Spacelab during STS 78/LMS mission, has no significant influence on the chemical 

segregations in the solidified sample, and residual accelerations lower than 10
-7   are 

necessary to get diffusive conditions. 

 Ruiz [82] studied the impact of short impulsive forces on the semiconductor 

segregation patterns inside a generic μg Bridgman growth arrangement with the help of a 

time-dependent 2D numerical scheme. Impulses applied parallel to the growth interface, 

equivalently, orthogonal to the external thermal gradient. The present results indicate that 

for each one of the three semiconductors ( GeGa, GaAsSe, SnBi) considered, the reduced 

longitudinal and radial segregation are practically insensitive to the pulse (impulse) shape, 

rectangular or half-sinusoidal. The reduced longitudinal segregation only depends on the 

growth velocity for constant g-dose impulses. The reduced radial segregation depends on 

both the interface growth velocity and very weakly on the activity time of the constant g-
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dose impulse externally applied. The thermal flux across the interface is shape-dependent 

and does not act synchronically with half-sinusoidal external impulses. Ruiz also 

mentioned that as before, this flux depends on the activity time and on the growth velocity 

for constant g-dose impulses. 

 Li et al. [83] presented a full three dimensional (3D) transient finite element 

analysis of the complex fluid and heat and mass transfer phenomena in a simplified 

Bridgman crystal growth configuration under the influence of g-jitter perturbations and 

magnetic field to grow Ga-doped germanium single crystal in space. Numerical results and 

findings showed that g-jitter drives a complex, 3D, time-dependent thermal convection and 

that velocity spikes in response to real g-jitter disturbances in space flights, resulting in 

irregular solute concentration distributions. An applied magnetic field provides an effective 

means to suppress the deleterious convection effects caused by g-jitter. Based on the 

simulations with applied magnetic fields of various strength and orientations, the magnetic 

field aligned with the thermal gradient provides an optimal damping effect, and the 

stronger magnetic field is more effective in suppressing the g-jitter induced convection. 

Magnetic damping of the motion of an electrically conducting fluid stems from the 

interaction between the convection and an applied magnetic field, which generates an 

opposing Lorentz force to suppress the flow. The intensity of the natural convection which 

cannot be avoided scales with the Grashof (thermal) number. It is obvious that the intensity 

of the buoyancy driven convection depends highly on the melt height and thus changes as 

the melt is depleted. Hoshikawa [84] showed that for higher Rayleigh number (       ) 

stronger axial static magnetic fields are needed to eliminate thermal fluctuations and to 
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suppress convection and reach to a symmetric flow. Nikitin et al. [85] conducted a 

mathematical simulation of impurity distribution in crystals prepared under microgravity 

condition and found since            , the motion in the melt produces practically no 

effect on the temperature field.  Chang et al. [86] showed in their studies the influence of 

natural convection in the melt/solid interface on radial dopant segregation (gallium-doped 

germanium) in a vertical Bridgman crystal growth system. When the crystal diameter is 

large and the velocity field is similar along the radius of the melt/solid interface, convection 

only alters the concentration field perpendicular to the interface. Burton et al. [87] states 

that the radial segregation reaches a maximum for intermediate values of flow intensity, 

which results in relatively thick solute boundary layers that have a non-uniform thickness. 

Fu et al. [88] expressed that in the vertical Bridgman configuration for crystal growth, the 

interface shape is a factor that greatly influences the yield of single crystals. The shape of 

the interface is mainly determined by the temperature field near the interface and the level 

of natural convection in the melt. The shape of the interface can range from concave to 

convex. Slightly convex interface shape is most desirable because it eliminates most 

problems with spontaneous nucleation at the crucible wall and improves grain selection, 

which results in higher yield of single crystals. However, as Jasinsky et al. [89] showed, the 

efforts of obtaining convex interface shapes in growth experiments have been of limited 

success. 
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CHAPTER THREE 

 
Theoretical Approach and Numerical Solution 

 
 

3.0 Introduction 

 
The model is cylindrical; therefore all the equations are considered in cylindrical 

coordinates and introduced in a transient condition. This chapter presents the numerical 

solution technique and the governing equations and boundary conditions by using Finite 

Element Analysis which will be used in the computer simulations. The discretized form 

which is utilized in Finite Volume also has been used for computer simulations. The 

calculation of the flow field by utilizing ―Semi-Implicit Method for Pressure-Linked 

Equations‖ (SIMPLE) [90], which is a Finite Volume method, is incorporated to verify 

those of Finite Element results. Model description, and mesh sensitivity analysis will be 

discussed as well. 

 

3.1 Numerical Solution Technique 

            Since this study focuses on the solution zone (solvent region), the full non-linear 

Navier-Stokes equations for laminar (since Reynolds number (Re) = 340), incompressible 

Newtonian flows in transient condition are solved, by taking the Boussinesq approximation 

Equation 3.1 into the   consideration. Convective heat and mass transfer along with the 

external forces such as axial magnetic field in terrestrial and microgravity condition are 

also taken into the consideration. The applied axial temperature is calculated by utilizing 
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the experimental field temperature, done by Dalhousie University, for this model along 

with the radial temperature. There are some assumptions which put forward into the input 

files for the computational simulations. The input files for several cases are presented in 

Appendix-C. The aforementioned assumptions are as follow: 

1. The flow is laminar 

2. The fluid is Newtonian 

3. The flow is viscous 

4. The solvent is electrically conductive 

5. Except density, all other thermo-physical properties are constant 

6. Ampoule’s translational speed is set to very minimal speed 

7. Non-slip condition for velocity on the side walls and dissolution boundaries 

 

3.1.1 Boussinesq Approximation 

The Boussinesq approximation, Equation 3.1, states that the fluid density is a linear 

function of the temperature and concentration. This approximation can only be applied 

where the product of the coefficient of thermal expansion (βT) and temperature difference 

(∆T) is much less than 1 (βT . ∆T<<1), in this study the aforementioned product equates to 

0.0063 which perfectly satisfies the requirement. 

                                                                                      (3.1) 

Where;       
 

  
 
  

  
 
 
                    

 

  
 
  

  
 
 

   while the norm |°| indicates the 

reference value on density, temperature and concentration respectively. 
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3.1.2  Finite Element Analysis (FEA) 

            Solving the governing equations for the purpose of modeling and simulation can be 

carried out with several methods such as control volume or better known as Finite Volume 

Analysis (FVA) and Finite Element Analysis (FEA). In this study, FEA is utilized which is 

very effective and accurate for solving all kinds of partial differential equations. By 

applying FEA, we try to minimize the infinite number of degrees of freedom (DoF) in a 

given problem to a manageable finite number of DoF by a system of algebraic equations. A 

model under study and analysis is then divided into smaller areas known as elements. Each 

element is defined by a finite number of points known as nodes by which all the variables 

in the analysis, such as velocity, concentration, pressure and temperature to name a few, 

can be evaluated and analyzed. In the model under study for this thesis, which has over 

fourteen thousand nodes, the Galerkin finite element method approximation [91] has been 

employed for silicon concentration and velocity in the solvent region along three axes (u, v, 

w and C) as well as the solvent temperature and pressure (T and P). This was done to 

reduce partial differential equations and boundary conditions to a set of algebraic 

equations, as mentioned above. This is completed by using the segregated algorithm to 

solve those equations [91].   

            A commercial software (GAMBIT) has been used to make a three dimensional 

geometry of the model under this study. Once the eight-node hexahedron elements 

produced via meshing the model, the geometry and the associated mesh are exported to 

another commercial software which is computational fluid dynamics (CFD), FIDAP and 

FLUENT software and runs on the Finite Element Analysis and is used to numerically 
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model the crystal growth of Ge0.75 Si0.25 in this study [91]. Along with the finite element 

analysis, the author of this study has utilized the Finite Volume Analysis in order to 

validate the accuracy of the results obtained by Finite Element Analysis; the outcome of the 

Finite Volume Analysis conform those of the Finite Element Analysis and is presented in 

the Appendix-C. The Figure 3.1 depicts the geometry and finite mesh of the model in this 

study. 

 

 

                       Figure 3.1 Bridgman model, solvent region under investigation 

                                    a)  Model geometry 

                                    b)  Meshed Model 
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3.2 Dimensional Governing Equations 

         3.2.1  Navier-Stokes Equations: 

          The full set of Navier-Stokes equations for laminar, transient condition 

incompressible Newtonian flows, by taking the Boussinesq approximation is defined for 

radial, circumferential and vertical axis respectively as: 

r-component: 

  
  

  
  

  

  
 

 

 

  

  
  

  

  
 

  

 
   

  

  
       

 

  
 

 

  

  

  
    

  

                                                                                                      (3.2) 

 

φ-component: 

  
  

  
  

  

  
 

 

 

  

  
  

  

  
 

  

 
   

 

 

  

  
       

 

  
 

 

  

  

  
    

  

                                                                                                      (3.3) 

 

z-component: 

  
  

  
  

  

  
 
 

 

  

  
  

  

  
   

                 
  

  
          

                                                   (3.4)                                                                     

 

Where the Laplacian (del) operator is defined as: 

    
 

 

 

  
  

 

  
  

 

  

  

   
 

  

   
                                                                                            (3.5)  



42 

 

The melt temperature (T0) of Germanium (Ge) and the Silicon (Si) concentration (c0) are 

used as the reference temperature and concentration respectively. Equations (3.2), (3.3) and 

(3.4) satisfy the momentum equations (Navier-Stokes) in the solvent region in all three 

directions of radial (r), angular (φ) and axial (z) respectively. Three external forces      
    

   
 , and   

  represent the magnetic body force components along the r, φ and z direction 

respectively and are defined as;  

  
      

  ,   
      

  , and   
    [92], [93], and Appendix-B. It is clear that the 

magnetic body force components, acting on the solvent region, are only effective in the 

radial and angular directions respectively. 

 

      3.2.2  Energy Equation: 

      Energy equation for the solvent region (liquid phase) is presented as: 

    
  

  
  

  

  
 

 

 

  

  
  

  

  
    

 

 

 

  
  

  

  
  

 

  

   

   
 

   

   
                            (3.6) 

         

Where  cp   and  κ  are specific heat and thermal conductivity of the solvent respectively. 

     

      3.2.3  Continuity (mass conservation) Equation: 

      The continuity equation is expressed as: 

 

 

  

  
 

 

 

 

  
     

 

 

  

  
 

  

  
                                                                                    (3.7)  
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      3.2.4  Mass Transport Equation: 

  

  
  

  

  
 

 

 

  

  
  

  

  
    

 

 

 

  
  

  

  
  

 

  

   

   
 

   

   
                                         (3.8)  

 

Where  c   and  αc   are silicon concentration and solutal diffusivity respectively.  

 

      

      3.2.5  Latent Heat Equation: 

      The model also utilizes the latent heat of the material and the continuity of the 

velocities and temperature to be exchanged along the solid-liquid interface and is described 

by: 

               
  

  
    

   

  
                                                                    (3.9) 

Where, Lf is the latent heat and ―  ” is the axial velocity along the vertical axis of the 

solvent region and        is the axial velocity of the solid-liquid interface. 

       

       3.2.6  Growth Velocity Equation: 

      The growth velocity (the interface displacement rate) is a modified version of Helmers 

et al. [94] which is computed by solving the mass balance equation coupled with the GeSi 

binary phase diagram.  

 

     
  

 
    

   

  
 
   

  
 
    

 
  

                                                                (3.10) 
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Where vz is the pulling rate (same as     in equation 3.9),     is the dimensionless 

concentration gradient,  
   

  
 
    

 is the slope of the liquidus,    is the dimensionless 

temperature gradient. For this study, the typical values give            , considering the 

pulling rate is set to 0.25mm per hour (0.069 µm/s). This is well below (1/4
th

) of the 

Helmers et al. study.  

 

3.3 Dimensional Analysis 

            Dimensional analysis, simply put, is another useful tool of modern fluid mechanics. 

It is basically the mathematics of dimensions of quantities [93]. This method is used to 

reduce the number and complexity of experimental variables which affect a given physical 

phenomenon, by using a kind of compacting technique [94]. Reynolds number, Prandtl 

number and Grashof number are a few examples of dimensionless parameters which are 

used in this study as shown in Table-3.1. All the non-dimensionalization steps are 

presented in Appendix-B. 

 

 

          3.3.1 Dimensionless Variables 

          The dimensionless variables are used to achieve the aforementioned goals. They are 

used to help make all the governing equations such as Navier-Stokes equations to become 

non-dimensional which further on enhance and expedite the computation processes.  
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These variables can be defined as follow; 
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Where R and Z are considered as non-dimensional radial and axial coordinates, 

respectively. U, V and W are dimensionless radial, angular and axial velocity, respectively. 

θ (theta) is the non-dimensional temperature, T0  is the reference temperature (melt 

temperature of Si0.25Ge0.75), C is the dimensionless solute concentration, P is dimensionless 

hydrodynamic pressure, B
* 

is dimensionless variable of magnetic field induction, and   is 

referred to the dimensionless variable of time (t).   

 

The reference velocity (u0) is defined as;            

Where g is the earth gravity, L is the characteristic (reference) length,    is the coefficient 

of the thermal expansion, and T  is set equal to one for simplicity. 
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Table 3.1 Some dimensionless parameters, excerpted from [95]. 

Parameter Definition Qualitative Ratio Application 

Reynolds Number     
    

 
 

       

         
 Almost Always 

Schmidt Number     
 

  
 

       

                   
 Mass transfer 

Prandtl Number     
   

 
 

           

                    
 Heat Convection 

Peclet Number 

 (Thermal) 
       

  

 
        

       

                   
 

F.E.A 

Heat transfer 

 

Peclet Number 

 (Diffusion) 
       

  

 
        

       

                
 

F.E.A 

Fluid Flow 

Hartmann Number 
           

 

 
 

              

             
 

Magnetic field 

effect 

Grashof (Thermal)           
      

   

  
 

        

         
 Natural Convection 

Grashof (Solutal) 
       

      
   

  
 

        

         
 Natural Convection 

 

 

3.4 Finite Volume Analysis (FVA)      

 As mentioned earlier, discretized equations for two dimensional models in Finite 

Volume Analysis have been employed for verification of the result shown by the Finite 

Element Analysis. Input programs for velocities, temperature, concentrations (species), and 
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pressure would be presented in Appendix ―C‖. In control volume the calculation domain is 

divided into a number of non-overlapping control volumes such that there is one control 

volume surrounding each grid points. The differential equation is integrated over each 

control volume. Piecewise profiles expressing the variation of Ø (which is referring to any 

variable under evaluation such as; velocity, temperature, etc. in the formulas) between the 

grid points are used to evaluate the required integrals. The result is the discretization 

equation containing the values of Ø for a group of grid points [90]. The discretization 

equation obtained in this manner expresses the conservation principle for Ø for the finite 

control volume, just as the differential equation expresses it for an infinitesimal control 

volume; Appendix-B shows the set up for the grids.  

For the seed or solid section (which only was used in preliminary model) the energy 

equation is defined as: 

  
  

  
  

 

  
  

  

  
  

 

  
  

  

  
                                                                             (3.21) 

And can be turned into discretization equation as follow: 

                                                                                     (3.22) 

Where 

   
    

     
 ,      

    

     
 ,      

    

     
 ,      

    

     
 ,              

   
 , and 

                 
          in which    

  
         

  
  It should be noted 

that the product of       is the volume of the control volume in which the z value is 

considered as the unity. 
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3.4.1 Momentum Equation: 

 

  
     

 

  
      

  

  
  

 

  
      

  

  
    

  

  
                               (3.23) 

Where the terms       
  

  
    and      

  

  
    are the flux in x and y direction 

respectively. Equation (3.23) then can be written in discretized form as: 

 

        
   

  
      

  
         

    
                                        (3.24) 

Where  
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3.4.2 Continuity Equation 

  

  
  

 

  
     

 

  
                                                                                              (3.25) 

This in discretized form becomes: 

      
  

      

  
         

    
                                                                    (3.26) 

Where 

            ;               ;         
          ;            

            

 

3.4.3 Energy Equation 

 

  
     

 

  
      

 

  
      

 

  
  

  

  
  

 

  
  

  

  
                                        (3.27) 

Where;    S=0    , and          
 

  
  

The discretized form reads as: 
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                                                                     (3.28) 

where 

    
   

   ;         
   

  
     

  
     ,       and                

     
    

     
     

   

 

By considering Power-Law scheme for    when          , (   is the local Peclet 

number), We have  
  

  
          

  , again the details can be found in Appendix-B.     

 

3.4.4  Mass Transport (Species) Equation 

 

  
       

 

  
        

 

  
      

  
 

  
       

  

  
    

  

  
    

 

  
       

  

  
    

  

  
                        

 

And by integrating in transient mode, we will have; 

 
 

  
              

 

  
              

    

 

 
 

  
              

    

 

    

 

 

 
 

  
      

  

  
        

    

 

  
 

  
     

  

  
         

    

 
 

 

  
     

  

  
          

    

 

  
 

  
     

  

  
          

    

 
                                                                 (3.30)                                                   
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3.5 Model Geometrics and Boundary Conditions 

The model consists of a fixed cylindrical coordinate system of (r, φ, z) with its origin 

located at the center of the solid section (seed). The model is 11.5 cm long with a uniform 

diameter of 2.5 cm and consists of two segments as; seed (Silicon) 2.5 cm, the solvent 

region 9.0 cm which is a mixture of silicon (Si) and germanium (Ge) initially set as Ge0.75 

Si0.25, the solvent region is the upper segment. The model in this study is focusing only on 

the solvent region. The vertical Bridgman method is the technique being chosen for this 

study. Both sections, introduced earlier in model description, are held in a quartz ampoule 

(the ampoule is neither shown nor modeled).  

A linear temperature gradient with minimal temperature difference between top and 

the bottom of the model is applied on the outer face of the crucible. Since the melt 

temperature of the solvent region is much lower than that of the quartz, therefore there 

would be no oxygen penetration from quartz into the melt and consequently no 

contamination or impurity occurs which is a great advantage of low temperature gradient in 

this technique. Figure 3.2 depicts the meshed model of the solvent region in this study.  

                              
                       

                                   Figure 3.2 Solvent region meshed model 
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Boundary Conditions 
 

In this model, the boundary conditions associated with the governing equations are: 

  a) At the ampoule side wall (solid); 

       u=0, v=0 and w =0 (Non-slip condition), and  
  

  
     

  b) Silicon concentration at the dissolution interface which is on the top horizontal plane: 

       c=c1= 0 (Chapter Four) and (Proposed 0.34 for Chapter Five) 

  c) Silicon concentration in the solvent region and facing the growth interface is: 

       c=c2= 0.75 (Chapter Four) and (Proposed 0.25 for Chapter Five) 

  d) Silicon concentration in the substrate (seed which is Si-rich and used in the  

       preliminary model) is: c=1.0 

 

Where c1 and c2 are representing the silicon concentration at the dissolution, in the solvent 

region, and seed interface respectively. These values for the silicon concentration are 

obtained from the phase diagram [38].  

As for the temperature, the boundary conditions are defined as follow;  

a) At the external surface of the quartz ampoule (not shown in the Figure 3.1) a non-

linear temperature distribution, Figure 3.3, is applied in the axial direction. This 

temperature profile is computed based on the measured profile which was 

experimented at Dalhousie University. 

  

b) At the bottom horizontal plane of the model T = To = Tm =1057.5 °C  

 

c) and at the top horizontal plane of the model T = TH =1100 °C 
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It should be noted that these boundary conditions for temperature (both non-linear and 

linear) are only for Chapter four of this research. Later on different linear temperature 

gradients were applied in Chapter Five of this research. 

 

   

  Figure 3.3 Non-linear temperature profile, data acquired from Professor Labrie at D.U.  

  

3.6 Mesh Sensitivity and Solution Technique 

In order to have the best and most reliable results, an optimum number of nodes and 

elements should be defined, therefore, mesh sensitivity analysis was carried out and ideal 

numbers of nodes on both circumferential and axial edges were selected based on the heat 

flux across the dissolution interface in solvent region. As it can be read from the Figure 3.4, 

and Table-3.2 a mesh with 1 to 2 aspect ratio of circumferential to axial nodes is made 

where heat flux does not change across the dissolution interface as the mesh becomes finer. 

For this reason and the aforementioned reasons, the 40 x 288 mesh combination reasonably 

meets the computational need and simulation becomes satisfactory for the analysis in this 
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study on the solvent region only. It should be noted that this mesh configuration was 

applied for Finite Element Analysis. 

              

           Figure 3.4 Mesh densities vs. heat flux at dissolution interface 

        

 

Table 3.2 Mesh Sensitivity analysis  

 

It
em

 Mesh Density (Grids) 

 

(circumferential     x      Axial) 

Average Heat Flux 

Dimensionless Values 

From FIDAP 

1 10    x    288 20.8806 

2 20    x    288 20.7635 

3 30    x    288 20.6014 

4 40    x    288 20.4918 

5 50    x    288 20.4909 

6 60    x    288 20.4940 

7 70    x    288 20.4978 

8 80    x    288 20.4956 

 

Finite element method is utilized and the model is divided into elements and subsequently 

nodes by which all the variables, which are the three velocities, concentration, pressure and 
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the temperature can be evaluated and analyzed. In this model, which has over fourteen 

thousands nodes, the Galerkin finite element method approximation has been employed for 

silicon concentration and velocity in the solvent region along three axes (u, v, w). The 

governing equations then solved simultaneously and criteria for the convergence 

considered for the aforementioned variables. For convergence checking between two 

successive time steps the following equations are set to be met; u
i

u

u



  , 1 iii uuu  

and F
i

R

R


0

 are used where ―ui― represents the pressure, temperature, velocities and 

silicon concentration, along ―r, φ and z‖ directions for each node and ―R0― is reference 

vector, typically R(ui) which is the residual force vector. εu is the convergence tolerance 

based on the relative error and εF is the residual convergence tolerance for each variable at 

each iteration. Since both Δui and R(ui) tend to zero near the solution therefore problem is 

assumed converged when system satisfies the above criteria which was specified as 10
-4

 for 

both solution vector and residual force vector. For our study the maximum number of 

nonlinear iterations for both fluid and structural problem is set to 450. The norm is a root 

mean square norm summed overall the equations for the model [91].   
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CHAPTER FOUR 
 

Two and Three Dimensional Modeling with Different Heating Profile and 

Applied Axial Magnetic Field 

 

4.0 Introduction 

 As mentioned earlier on the main purpose of growing single bulk crystals is to 

control and to have the uniformity of solution-zone composition in the growth process, 

since the quality of the single bulk crystal is essentially affected by the fluid flow strength 

and characteristics, the silicon distribution in the solvent region along with the flow 

velocity are studied. To achieve the aforementioned uniformity, it is required to have no 

convection in the solvent region. One proven method is to eliminate the effect of gravity 

force. This can be and have been shown in the microgravity condition where gravity vector 

(g) is set to (10
-6 

g0). Another way to suppress the effect of the gravity force is to apply 

magnetic force. This chapter presents the results obtained with non-linear temperature 

profile (a polynomial of sixth-order) which experimentally obtained by Professor Labrie at 

Dalhousie University, and linear temperature profile when applied to the model in different 

conditions. These are; terrestrial, microgravity and terrestrial with different applied axial 

magnetic field and under two temperature profile regimes, linear and non-linear, using 

Vertical Bridgman Method (VBM). The VBM process of Si0.25Ge0.75 is considered utilizing 

the physical properties which are presented in Appendix ―A‖. All the results are obtained 

through numerical simulation by applying Finite Element Analysis (FEA) and in order to 

verify these results, they were compared with both the results obtained through simulation 
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by volume control analysis known as Finite Volume Analysis (FVA) and those of obtained 

through experimental settings.  

4.1 3-D Model under Non-Linear Temperature Profile in Terrestrial Condition 

 A polynomial of the sixth order temperature profile is used in the terrestrial 

condition where the gravity (g0) is not suppressed. All the figures shown in this study are 

representing the end of the solidification real time which is t = 360 hours or 15 days and the 

time steps are set for every 12 minutes with a total of 1800 time steps. Figure 4.1 represents 

the flow velocity in the solvent region, where Figure 4.1-a, is the vertical cross section of 

the model and Figure 4.1-b is the horizontal cross section at 1 millimeter above the growth 

interface. It is clear to see that the flow is creating almost three distinct areas, but in terms 

of the flow speed near the growth interface, two distinct areas marked as ―e‖ and ―f‖ with 

0.82 mm/s and 2.17 mm/s respectively and ―d‖ with 0.15 mm/s. These velocities have an 

impact on the shape of the interface ultimately and result in not having nearly flat shape of 

the interface which is desired and sought after. The flow velocities are induced due to the 

buoyancy driven convection effect. Figure 4.1-a also reveals that there is a stronger flow 

cell in the middle of the region near the interface along with two weaker cells near the wall 

of the model. Figure 4.2 represents the flow velocity plotline along the vertical axis passing 

through the center of the model. It shows that there is a strong flow cell near the growth 

interface. Figure 4.3-a reveals the temperature distribution in the solvent region which is 

under a non-linear polynomial temperature applied on the outer surface of the model. 

Figure 4.3 which shows an increment of 1.42 °C describes the temperature contour lines. 

The purpose of heating the model is to create a mushy zone known as solvent region which 
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is hot enough to obtain a mixture of the two semiconductors but at the same time not too 

hot so the seed, which is not shown is being melted. 

                                                             

            Figure 4.1 Flow velocities in solvent region under terrestrial condition 

a- Vertical cross section passing through the centre of the model 

b- Horizontal cross section at 1 mm above growth interface 

c- 3-D view of horizontal cross section 

d- 3-D view of the vertical cross section 

 

 

          Figure 4.2 Flow velocities along vertical axis under terrestrial condition 
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The idea is to diffuse the silicon into the solvent zone. By having such a temperature 

profile, it might be expected to have a convection pattern with hot molten particle moving 

to the top of the model and the cold particles down from the center of the solvent region. 

Figure 4.3-b shows the temperature distribution in the solvent region at 1 millimeter above 

the growth interface. It can be seen that there is a radial temperature gradient; however the 

variation is small because the heat transfer process in the semiconductor materials is 

dominated by conduction more than the convection. This has also been addressed by [97] 

and [98].  

Since the material (alloy, for the solvent region) used in this study is a mixture of 

silicon and germanium and both are semiconductors and has a relatively low Prandtl 

number (6.06E-3). Therefore, for these materials, natural convection is not strong enough 

to have any impact on the temperature distribution. Generally speaking, in materials with 

low Prandtl number, the effects of convection heat transfer on temperature distribution and 

on the thermally-driven buoyant convection are very weak, and therefore, negligible [99]. 

As can be seen in Figure 4.3-a, which is in the vertical cross section plane passing through 

the center of the model. Temperature variations, based on the applied non-linear 

temperature profile as shown in Figure 4.4, are from as low as 1058.6 °C shown in ―g‖ to 

―h‖ zone with 1077.9 °C and as high as 1100 °C shown in ―i‖ in the solvent region. This 

temperature profile reveals that there is a steep gradient at the first three centimeter on the 

vertical axis of the model. Also this temperature profile generates a thermal Grashof 

number (GrT) of the order of approximately 150k which is a typical value for the vertical 

Bridgman setting and reveals a natural convection in the system as well [61].    
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    Figure 4.3 Temperature distributions in solvent region under terrestrial condition 

a- Vertical cross section passing through the centre of the model 

b- Horizontal cross section at 1 mm above growth interface 

c- 3-D view of horizontal cross section 

d- 3-D view of the vertical cross section 

 

      

             Figure 4.4 Non-linear temperature profile under terrestrial condition 



60 

 

As mentioned earlier on this model is a mimic of the experimental setting in which the 

silicon concentration at growth interface was measured to be 62.3%. Figure 4.5 shows the 

silicon distribution in the solvent region. It can be observed from Fig. 4.5-a that the silicon 

distribution contours are not uniformly parallel to the growth interface and show a concave 

in the middle of the model from just above the interface where it is marked with ―l‖ to 

upper middle part of the model marked with ―k‖. This is as a direct influence of the flow 

pattern in the solvent region under the flow velocity. 

   

       Figure 4.5 Silicon distributions in solvent region under Terrestrial condition 

a- Vertical cross section passing through the centre of the model 

b- Horizontal cross section at 1 mm above growth interface 

c- 3-D view of horizontal cross section 

d- 3-D view of the vertical cross section 

 

Figure 4.6 shows the silicon distribution along the vertical axis of the model. This is shown 

to purely have a comparison with the results obtained experimentally, which are also being 
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shown Figure 4.8 in the next section, and those obtained by FEA. The results are in a good 

agreement with each other since the difference is 0.0003% this is shown by ―R‖ squared 

value. This difference can be due to the reading off the sample in the experiment. Figure 

4.7 depicts the results on silicon distribution in FEA. Figure 4.7-a, shows the silicon 

composition across the diameter of the model (radially) on three different positions on the 

vertical axis of the model. Figure 4.7-b presents the silicon distribution along the vertical 

plane passing through the center of the model. It is clear that there are also good 

agreements between the simulation results shown in Figure 4.7 and that of shown in Figure 

4.8 and Figure 4.9 which were shown in the experiment. 

    

    Figure 4.6 Silicon distributions along the vertical axis of the model, a comparison 

                      between simulation by FEA and experiment, terrestrial condition.   
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   Figure 4.7 Radial and axial silicon compositions, under terrestrial condition 

(a)  Radial silicon concentration at three different level on the vertical axis 

(b)  Axial Silicon concentration along the vertical axis of the model   

 

4.2 Experimental results under Non-Linear Temperature Profile 

These results obtained through the experiments done at Dalhousie University 

(D.U.), the model was set under the non-linear temperature profile and ran for 15 days to 

complete the solidification process for the entire 90 millimeter length of the model. Figure 

4.8 represents the compositional distribution of silicon at the center of the model along with 

the vertical axis of the model passing through the center.  
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Figure 4.9 represents the silicon distribution in both horizontal (radial) and vertical (axial) 

directions at interfaces in different axial position of the model. It is obvious that the pattern 

resembles a parabolic curve. These distributions define the concavity of the interface shape 

in the solidification process.  

 

     
 

     Figure 4.8 Axial silicon compositions, experimental data by Professor Labrie at D.U. 

        

            Figure 4.9 Silicon distributions at different axial level, experimental data 

(1) Schematic view of the solvent region in vertical plane 

(2) Closer view of the silicon distribution at three different levels  
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4.3  Three Dimensional Model under Non-linear Temperature Profile in 

         Microgravity Condition, by simulation in (FEA) 

 

 Microgravity is referred to the condition where the gravity force is extremely 

minimized; and the model is practically under no external forces so the flow phenomenon 

within the solution region can be observed differently. Figure 4.10 shows the flow 

behavior, the flow velocity is in the range of the nanometer per second and as it can be seen 

in Figure 4.10-b the velocity contours near the interface (1 mm above the growth interface) 

are uniform. Again this low speed causes no impact on the temperature distribution within 

the solvent. 

 

         Figure 4.10 Flow velocities in solvent region in microgravity condition 
a- Vertical cross section passing through the centre of the model 

b- Horizontal cross section at 1 mm above growth interface 

c- 3-D view of horizontal cross section 

d- 3-D view of the vertical cross section 
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It can be seen in Figure 4.10-a that there is a stronger flow, although in the nanometer 

range, cell in the middle of the region near the interface along with two weaker cells near 

the wall of the model. This is nothing but the effect of a residual gravity force pushing the 

flow downward. Figure 4.11 represents line plot of the flow velocity along the vertical 

plane passing through the center of the solvent region.  

 

   

          Figure 4.11 Flow velocities along vertical axis in microgravity condition 

 

Figure 4.12 shows the temperature distribution in the solvent region, again the temperature 

has been distributed the same way as seen in the terrestrial condition and clearly can be 

seen that the flow has not disrupted the temperature contours. The symmetrical patterns 

evolved in the solvent region for flow, temperature and silicon concentration respectively. 

It should be noted that this happens as a direct result of the uniform heating which is also 

reported by other researchers such as that reported in [100]. This effect was also seen in the 

terrestrial condition.   
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 Figure 4.12 Temperature distributions in solvent region under microgravity condition 

a- Vertical cross section passing through the centre of the model 

b- Horizontal cross section at 1 mm above growth interface 

c- 3-D view of horizontal cross section 

d- 3-D view of the vertical cross section 

 

 

Figure 4.13 displays silicon concentration contours in microgravity condition. It is clear 

that the uniform and perfect flat concentration contours are formed which is an indication 

of the absence of buoyancy convection. Figure 4.13-b depicts no variation of concentration 

at the horizontal plane cut 1 millimeter above the growth interface. With this condition, the 

perfect parallel concentration contour lines reveals that the convective motion has 

diminished and the growth is convection free and the diffusion has the dominant effect in 

the process. 



67 

 

     

     Figure 4.13 Silicon distributions in solvent region in microgravity condition 

a- Vertical cross section passing through the centre of the model 

b- Horizontal cross section at 1 mm above growth interface 

c- 3-D view of horizontal cross section 

d- 3-D view of the vertical cross section 
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4.4  Two Dimensional Axisymmetric Model under Non-Linear Temperature 

         Profile in Microgravity Condition, by simulation in (FEA) 

  

Since the model is a cylindrical model, an axi-symmetrical model has been utilized 

to investigate the solidification processes. This step was taken to account for the sole 

purpose of comparison with that of made through Finite Volume Analysis. In this setting, 

the results were presented by Shemirani et al. at IAC-09 conference [101].  

Figure 4-14 shows flow velocities, temperature distribution, and the silicon 

composition in the solvent region of the model. These results not only are in good 

agreement with those of the three dimensional model but also are backed by those of the 

finite volume control model which are to be presented in the next section. 

       

         Figure 4.14 Results of the axi-symmetric model in microgravity condition 

a- Flow velocities in vertical plane through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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4.5 Two Dimensional Axisymmetric Model under Non-Linear Temperature Profile 

        in Micro-gravity Condition, by simulation in (FVA) 

 
 The results obtained through simulation by finite volume control which is 

temperature distribution, silicon composition and flow condition of the model are presented 

in Figures 4.15 to 4.17. It is clear that these results support those obtained by Finite 

Element Analysis. The input files for this analysis can be found in Appendix ―C‖.  

   

   Figure 4.15 Temperature distribution, finite volume simulation, microgravity condition 

                       (a) By contour lines 

                       (b) By color variations 
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          Figure 4.16 Silicon composition, finite volume, microgravity condition 
                              a-  By contour lines 

                                 b- By color variations 

 

         

           Figure 4.17 Flow velocity, finite volume, microgravity condition 
                                  a-  By contour lines 

                                  b-  By color variations 
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4.6  Two Dimensional Model under Non-Linear Temperature Profile in Terrestrial 

         Condition, by simulation in (FEA) 

 
 Since it has been shown that results obtained through two dimensional axi-

symmetric model are extremely close to those of three dimensional and those of achieved 

by finite control model, from this point on in this study, the focus would be on the two 

dimensional full model, this had tremendously saved time of computation. Figure 4.18 

shows three vertical planes passing through the center of the model. Figure 4.18-a 

represents flow pattern in the solvent region, again the flow velocity varies from 0.1 

millimeter per second to as high as 2.18 millimeter per second at the lower middle central 

flow cell along with two weaker flow cells near the wall. All are relatively close to the 

growth interface. Figure 14.18-b depicts the temperature distribution throughout the solvent 

region. 

  
    

  Figure 4.18 Full 2-D model, non-linear temperature profile and terrestrial condition 

a-   Flow velocities in vertical plane passing through the centre of the model 

b-   Temperature distribution 

c-   Silicon composition 
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       Again as it is seen, the contour lines are formed uniformly with a minor flatten part in 

the lower level, this is as a result of a minimal convection due to the buoyancy.  Figure 

4.18-c which displays the silicon concentration distribution also shows the concavity in the 

middle of the contours for the aforementioned reasons.  

 

Figure 4.19 displays three line plots of; a) flow velocity, b) temperature distribution, 

and c) silicon composition along the vertical axis passing through the center of the solvent 

region. The maximum flow velocity happens at 19 mm above interface. Figure 4.19-b, 

reflects the applied non-linear temperature profile in the center line of the model. Figure 

4.19-c, shows the silicon composition along the vertical axis of the model. This 

concentration distribution is extremely similar to that of obtained by the three dimensional 

model. Figure 4.20 represents the three line plots of; a) flow velocity, b) temperature 

distribution, and c) silicon composition at the horizontal plane cut through the model at 1 

millimeter above the interface in the solvent region. It can be seen that the flow velocity 

corresponds to those flow cells that was shown in Figure 4.18. The speed variation in radial 

flow is approximately 0.5 mm/s, this clearly defines the instability of the solvent especially 

near the interface which is not desirable in solidification process. Figure 4.20-b reveals an 

approximately 1°C/cm temperature distribution radially. The silicon composition variation 

shows about 0.12% difference between center and near the wall of the model.  
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        Figure 4.19 Line plots, with non-linear temperature profile terrestrial condition 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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         Figure 4.20 Radial line plots, non-linear temperature, terrestrial condition 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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4.7 Applied Axial Magnetic Field under Non-Linear Temperature Profile, (FEA)  

The application of magnetic field as an external force on the solvent region has 

been widely practiced for producing single bulk crystals of the semiconductor alloys. It has 

been reported that the presence of the axial magnetic field smoothen the concentration 

profile [102]. Some have shown that the magnetic field had a significant influence on the 

flow structure and can also damp and or enhance the mixing process so it can be a tool for 

tuning the melt flow [103]. Other researchers have stated that there has been an improved 

stability as far as the dissolution interface when static magnetic field was utilized [104].  

 

In this section, different static magnetic field intensities (from 1milli-Tesla to 1 

Tesla, which is translated to the non-dimensional Hartmann numbers from 21.7 to 

21700.93) are examined and the effects would be presented. The purpose is to see the effect 

of this external body force on the fluid flow since this body force supposedly works in the 

opposite direction to the buoyancy convection in the solvent region of the model. The goal 

is to find the acceptable level of applied axial static magnetic field for an alternative to the 

microgravity condition with vertical Bridgman technique. It should be noted that there have 

been many variation of intensities utilized in this study, but only these four distinguished 

levels are presented here. They are getting 20, 10, 5 times larger in each setting 

respectively. Figure 4.21 displays a comparison of flow velocities line plots along the 

vertical plane passing through the central axis of the model. It is noticeable that in spite of a 

slight difference in the maximum velocities, but generally speaking there is not a 

significant effect of applied static magnetic field.  
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Figure 4.22 displays the effect of the applied magnetic field on the flow velocity, 

temperature, and silicon concentration on the plane cut at 1 millimeter above the interface. 

It is clear that this intensity is not strong enough and the results are almost the same as 

those obtained without the magnetic field being applied. Figure 4.23 shows the result of the 

applied axial static magnetic field with 20 milli-Tesla intensity. The flow velocity, Figure 

4.23-a, has been reduced only by less than 0.05 mm/s which is not significant. As for the 

temperature variation and silicon concentration, the results remain unchanged. As it is 

revealed in Figure 4.24, the results are not significantly different from those which obtained 

in previous cases, in spite of increase in magnetic force. Figure 4.25 displays the result of 

applied 1 Tesla axial static magnetic field and once again, it is not showing any significant 

changes with respect to those discussed in previous cases. The results of this section have 

been shown by Shemirani et al. in both CHMT-09 conference [105], and HEFAT-2011 

conference [106]. 
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   Figure 4.21 Flow velocities along vertical axis, under different magnetic intensities,  

a- B= 1mTesla, or  Ha= 21.70 

b- B= 20mTesla, or Ha= 434.02 

c- B= 200mTesla, or Ha= 4340.19 

d- B= 1Tesla, or Ha= 21700.93 
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           Figure 4.22 Radial line plots, under B=1mT axial static magnetic field 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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             Figure 4.23 Radial line plots, under B=20mT axial static magnetic field 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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     Figure 4.24 Radial line plots, under B=200mT axial static magnetic field 

a- Flow Velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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           Figure 4.25 Radial line plots, under B=1Tesla axial static magnetic field 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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4.8 Two Dimensional Model under Linear Temperature Profile in Terrestrial 

         Condition, by simulation in (FEA) 

 

After examining the role and effects of the non-linear temperature profile on the 

model, now the study would take on the application of a linear temperature profile. 

Knowing that in this study the crystal pulling rate is set to 0.25 mm/h which is well below 

the critical growth rate suggested by the Tiller criterion or Mullins-Sekerka [108] and [109] 

in which both criteria evaluate to approximately 10 mm/h for silicon concentration of 15 

at% and temperature gradient of 50K/cm. With pulling rate and low temperature profile set 

in this study, it should be sufficient to avoid constitutional under cooling and to keep the 

growth stable in front of the interface. As it can be observed from Figure 4.26-a, under the 

linear temperature applied on the model the flow pattern is different from that of with non-

linear, however the formation of a relatively strong flow cell in the middle and two weaker 

flow cell on the side of it, near the wall, is the same. It has only shifted upward. As for the 

intensity of it, in this setting, the flow speed is generally weaker. The flow velocity is 

nearly one tenth of that of the one obtained with non-linear temperature profile. In regards 

to the temperature distribution as it is shown in Figure 4.26-b, it is fairly uniform and has a 

minor deflection in the middle of the model due to the minimal convection generated by the 

flow. Silicon composition as seen in Figure 4.26-c is well uniform. These results are better 

seen in Figure 4.27 which displays the line plots of the region. Silicon composition line 

plot, although seems to show a linear pattern, but follows a parabolic curve; however it is a 

shallow curve, Figure 4.27-c shows the line equation as well.  
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        Figure 4.26 Full two dimensional model with linear temperature profile,  

                          under terrestrial condition 

 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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   Figure 4.27 Line plots, with linear temperature profile, under terrestrial condition 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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Figure 4.28, shows that the flow velocity is in micrometer range in radial direction and a 

temperature difference of about 0.001 degree along with less than 0.001% of silicon 

composition variation, which is a relatively stable condition for a homogeneous 

solidification. 

       

      Figure 4.28 Radial line plots, linear temperature under terrestrial condition 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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4.9 Applied Axial Magnetic Field under Linear Temperature Profile in Terrestrial   

       Condition, (FEA) 

 

 In this part of the study, the effect of axial static magnetic field with different 

intensities would be discussed. These intensities are the same as those applied in section 

4.7 of this chapter. Figure 4.29 represents the flow velocities plot lines for all four magnetic 

field variations. It is evident that the flow velocities have been reduced only fractionally 

from 0.23 mm/s in case B=1mT down to 0.186 mm/s in the case of B= 1T. In fact the lower 

intensity (1mT) has a better effect on the flow distribution since the pattern follows a 

smoother curve along the axial plane in the solvent region.  

In Figures 4.30 to 4.34 which show the radial plot lines of the flow velocity, 

temperature, and silicon composition respectively under the influence of the applied axial 

static field, there are not much of differences. It can be concluded that, in spite of wide 

range of application of axial static magnetic field in the process of some semiconductor 

crystal growth by other researchers who achieved some good results, in this study was not 

the case. This in general can be due to the size of the model (the diameter), since none of 

the research in literature review to the best of the author knowledge, had this diameter and 

combination of semiconductor alloys. Figure 4.30 displays the effect of magnetic field with 

intensity of 1 mT on the solvent region in radial direction on a plane cut through 1mm 

above the growth interface. Figure 4.31 shows the effect of magnetic field with intensity of 

20 mT on the solvent region in radial direction on a plane cut through 1mm above the 

growth interface. Figure 4.32 reveals the effect of magnetic field with intensity of 200 mT 

on the solvent region in radial direction on a plane cut through 1mm above the growth 

interface. These results were shown by Shemirani et al. at ICTE-09 conference [110]. 
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 Figure 4.29 Flow velocities, under different magnetic intensities with linear temperature 

a) B= 1mTesla, or Ha = 21.70                 b)  B= 20mTesla, or Ha = 434.02 

c) B= 200mTesla, or Ha = 4340.19          d)  B=1Tesla, or Ha = 21700.93 
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            Figure 4.30 Radial line plots, under B=1mT axial static magnetic field 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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       Figure 4.31 Radial line plots, under B=20mT axial static magnetic field 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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       Figure 4.32 Radial line plots, under B=200mT axial static magnetic field 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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           Figure 4.33 Radial line plots, under B=1T axial static magnetic field 

a- Flow velocities in horizontal plane at 1 mm above interface 

b- Temperature distribution 

c- Silicon composition 
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CHAPTER FIVE 
 

The Effect of Axial and Radial Temperature Gradient  

 

 

5.0  Introduction 

As discussed, in order to grow crystals with better quality, precise control of heat and 

solute field is essential. Silicon segregation can be minimized by suppressing the melt 

convection. Given the chemical composition of the solvent region, the pulling rate, and 

thermal gradient both axially and radially are also playing a strong role in the process of 

crystal growth [20].  

It was observed, in Chapter four, that the application of linear temperature profile 

provides better results. It was also shown that in the process of crystal growth, there are 

some challenges such as mixing the two components, supercooling, and homogeneity of 

grown crystal, to be overcome. As it has been shown by other researchers such as [2], [75], 

and [76] that they have used 60K/cm axial thermal gradient.  In this chapter, the author 

would present an alternative approach to grow a single bulk crystal in Bridgman setting by 

studying different cases, with different temperature gradients, which address the 

aforementioned concerns.  

 

5.1 Application of different Axial Temperature Gradient in Terrestrial Condition, 

       by simulation in (FEA) 

 
In this section different axial temperature gradients from 60K/cm to 30K/cm, where 

non-dimensional thermal Grashof (   ) numbers are ranging from 230,000 down to 

115,000 respectively, are presented and discussed. Figure 5.1 shows the results when    
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 Gr = 2.3E+05. Figure-5.1-a represents the flow velocity in solvent region, in which the 

region has two distinct patterns, upper portion with a few stronger cells with as high as 

0.243 mm/s and the lower region with a very weak flow with 0.013 mm/s. Figure 5.1-c 

shows the silicon concentration which clearly shows that the concentration near the 

interface (the bottom edge of the figure) is nearly 1% more than the desired level which is 

25%. Figure 5.2-c, which depicts the silicon concentration, clearly shows that due to the 

strong convection in the region there is a relatively strong concentration gradient in the 

model and concentration has exceeded the desired 25% level right after the interface. 

Figure 5.3 represents results where Gr = 1.9E+05, in this case the reduction of the flow 

velocity, as shown in Figure 5.3-a, noticeably is reduced to a maximum of 0.167 mm/s, but 

still the solvent region flow is appearing into two distinct zones, upper zone with few flow 

cells and lower zone with a weaker flow. The concentration gradient, as it can be seen in 

Figure 5.4-c, is still relatively high and quickly increasing near the interface. 

  

Since the reduction of the axial temperature gradient in the previous case resulted in 

less velocity in the solvent region, the next case is where Gr = 1.5E+05. Figure 5.5-a, shows 

that the flow velocity, now is divided into some vertical and relatively strong and a few 

horizontal with much less intense flow cells. As it can be seen in both Figure 5.5-a and 5.6-

a, the flow velocity is from as low as 7µm/s to 92µm/s. This temperature gradient has 

shown that the silicon distribution is much more uniformly distributed in the region, 

however, it is not to the desired level especially near the interface area (near the bottom of 

the model), as it can be seen in Figure 5.6-c. The next temperature gradient setting would 
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result in Gr = 1.3E+05. As Figure 5.7-a, shows the flow velocity is ranged between 2µm/s 

in the area marked as ―d‖ to 55µm/s in the area marked as ―f‖. This setting has caused the 

region be divided into two noticeable zones, the ―d‖ zone which is dominated area in the 

solvent region and two flow cells near the side walls. The presence of a relatively large and 

dominant area with the weak, approximately (2µm/s) flow well defines that the flow 

regime is mostly governed by diffusion which is promising.   Figure 5.7-c shows that lower 

portion of the solvent region has a 25% silicon concentration for nearly the first 20mm 

above the interface, this can be better seen in Figure 5.8-c. In order to see if the trend 

continues to enhance the situation or not, the next step is to lowering down the axial 

temperature gradient which is described by dimensionless number of thermal Grashof 

further more to Gr = 1.22E+05 as shown in Figure 5.9, it can be observed that the flow 

velocity in the solvent region is becoming relatively faster in the lower zone than the last 

case.  

 

Figure 5.9-a, shows that the solvent region again contains three distinct flow cells with 

the stronger cell with 49µm/s velocity in the middle and two weaker cells on its side in the 

upper zone of the model. Figure 5.9-c, shows that this setting has a counter effect on the 

silicon distribution in the solvent region. This means that there is a non-uniform 

distribution of silicon in the solvent. Even for the first 30 mm, where it is marked by ―k‖ 

and ―j‖, the concentration is quickly changing from 25.9% to 24.2%. The concentration is 

higher than desired level of 25% near the interface which is not desirable at all. This can be 

presented better by plot line in Figure 5.10-c. In order to see if this imperfection is a trend 
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by lowering the axial temperature gradient or not, the next two cases which are                 

Gr = 1.18E+05 and Gr = 1.15E+05 are being examined. As shown in Figure 5.11-a, the flow 

patterns remain the same (three cells) as previous case (Gr = 1.22E+05) even though the 

flow velocity is in a lower range from 2 - 44µm/s. As for the silicon concentration, this 

setting does not show a good result, both Figures 5.11-c and 5.12-c shows that there is a 

relatively high reduction in concentration. This time, the concentration at interface level is 

even less than 25% and continues to be lowered up to approximately the first 70mm of the 

model. Figure 5.13 and Figure 5.14 represent the results of the Gr = 1.15E+05 setting. This 

case is even worst by showing silicon distribution in the solvent region, even though the 

flow velocity has been reduced to as low as 44µm/s, the silicon concentration and its 

distribution is unstable and non-uniform. This shows that in order to control the silicon 

concentration, the control of the axial temperature gradient is important and for the model 

under this study, the condition with Gr = 1.3E+05, results in a consistent and uniform 

silicon distribution along the vertical axis of the model as well as the radial position.  
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        Figure 5.1 Contour plots with             , terrestrial conditions 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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      Figure 5.2 Line plots with             , terrestrial conditions 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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          Figure 5.3 Contour plots with             , terrestrial conditions 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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            Figure 5.4 Line plots with             , terrestrial conditions 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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       Figure 5.5 Contour plots with             , terrestrial conditions 
a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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     Figure 5.6 Line plots with             , terrestrial conditions  

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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       Figure 5.7 Contour plots with             , terrestrial conditions 
a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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           Figure 5.8 Line plots with             , terrestrial conditions 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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         Figure 5.9 Contour plots with             , terrestrial conditions 
a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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       Figure 5.10 Line plots with             , terrestrial conditions 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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          Figure 5.11 Contour plots with             , terrestrial conditions 
a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 

 



108 

 

                    

          Figure 5.12 Line plots with             , terrestrial conditions 
a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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          Figure 5.13 Contour plots with             , terrestrial conditions 
a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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         Figure 5.14 Line plots with             , terrestrial conditions 

a- Flow velocities in vertical plane passing through the centre of the model 

b- Temperature distribution 

c- Silicon composition 
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5.2 Detail Analysis of 35K/cm Axial Temperature Gradient Case  

In order to investigate the solvent thermal conditions; both axial and radial 

temperature distribution, the model is dissected into different levels in the axial direction. 

As shown in Figure 5.15, the temperature distribution in the solvent region with axial 

position marker on the left and indicated radial temperature difference for each 

corresponding level on the right. 

   

 
 
      Figure 5.15 Schematic of solvent region under 35K/cm axial temperature gradient  

a- Axial position   

b- Temperature distribution contour in solvent region 

c- Radial ΔT 
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Figure 5.16 shows the two zones of the solvent region under the influence of the 

35k/cm where              . Table 5.1 and Figure 5.17 represent the radial 

temperature gradient in this setting for the first 5mm of the model at an interval of 1mm in 

the axial direction. As it can be seen in Figure 5.17-a, to 5.17-e, the radial temperature 

difference from ΔT = 0.002 at 1 mm to ΔT = 0.009 at 5 mm above the interface. Figure 

5.18 shows the interval from 10 mm to 50 mm above the interface with the radial 

temperature difference from ΔT = 0.019 at 10 mm to ΔT = 0.075 at 40 mm and start to 

decline to ΔT = 0.060 at 50 mm. As it can be seen in Figure 5.19, the radial temperature 

difference continues to become lower in higher intervals from as high as ΔT = 0.045 at 60 

mm down to ΔT = 0.001 at 89 mm. So it is clear that the highest difference is at 40 mm 

above interface. 

      

      Table 5.1 Radial temperature gradient at different axial position 

 

Item Axial Position (mm) Radial ∆T 

1 0 0.000 

2 1 0.002 

3 2 0.004 

4 3 0.006 

5 4 0.008 

6 5 0.009 

7 10 0.019 

8 20 0.038 

9 30 0.056 

10 40 0.075 

11 50 0.060 

12 60 0.045 

13 70 0.030 

14 80 0.015 

15 85 0.007 

16 89 0.001 

17 90 0.000 



113 

 

The low radial temperature difference at lower level of the model helps the silicon 

distribution be more uniform and due to both low axial and radial temperature gradient in 

this segment of the model the undercooling will not happen. As it was shown earlier, up to 

20 mm above interface, the silicon concentration remains at nearly 25% level. This trend is 

perceived to be continued as the solidification process continues and helps to achieve a 

uniform bulk single crystal. From the practical point of view, the low radial temperature 

gradient less than 1K/cm which is within the thermocouples accuracy in experimental 

settings [98] is desirable for crystal growth. In this study, this was shown to be 0.06K/cm 

which is very promising. 

In order to get a mathematical model for the radial temperature with respect to the 

vertical axis of the model, a bilinear interpolation for two dimensional models (for three 

dimensional, a polar interpolation, Appendix-B) is applied for the two zones which were 

described earlier;  

a) From solidification interface up to 40 mm level which had the highest radial ΔT, and  

b) Above 40 mm up to the dissolution interface can be read as (5.1) and (5.2) formulas 

respectively, in which ―r‖ and ―z‖ are dimensionless values in radial and axial position. 

These two are formulated and derived from the simulation results obtained in the 

case of 35 K/cm axial linear temperature gradient or              was applied. 
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               Figure 5.16 Two zones of radial temperature gradient variations  

                                     in solvent region (35K/cm axial thermal gradient case)       

 

For a); 

                                                                                                                            

 

And for b); 
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      Figure 5.17 Radial temperature difference (ΔT) at the first 5 mm above interface   

a) 1mm,  b)  2mm,  c)  3mm,  d)  4mm,  e)  5mm 
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    Figure 5.18 Radial temperature difference (ΔT) from10 to 50 mm above interface   

a) 10mm,  b)  20mm,  c)  30mm,  d)  40mm,  e)  50mm 
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   Figure 5.19 Radial temperature difference (ΔT) from60 to 89 mm above interface   

a) 60mm,  b)  70mm,  c)  80mm,  d)  85mm,  e)  89mm 
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Figure 5.20 represents the radial distribution of silicon in the solvent region from solid 

liquid interface up to 20 mm above the interface. It is clearly shown that the distribution is 

extremely uniform and consistent and in the desired level of 25%. This is a good indication 

of the absence of the strong radial temperature distribution since the excess of heat will 

produce the ring straie [61]. The profile is nearly flat with negligible convex in the center is 

the most desirable formation which also reflects the interface shape.  

    
        

          Figure 5.20 Silicon radial distributions in               (35K/cm case). 

(a) 20mm above interface 

(b) 10mm above interface 

(c) 5 mm above interface 

(d) 1 mm above interface 
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CHAPTER SIX 
 

Summary, Conclusion, and Future Work 

 

 

6.0 Summary 

 
 This research was focused on the growth of the single bulk crystals of Silicon 

Germanium using Bridgman technique. The experimental part was conducted at Dalhousie 

University and my role was first to conduct an extensive numerical modeling simulation 

both based on Finite Element Analysis and Finite Volume Analysis and second to compare 

the results; such as silicon distribution in the solvent region and the resulting interface 

shape with those released by professor Labrie at Dalhousie University. In addition, the 

focus was on finding the ultimate method or technique along with  employing means, such 

as applying magnetic field, to grow large diameter single bulk crystals of silicon and 

germanium which not only can produce single bulk crystals but also with a reasonable 

physical size and timely fashioned method. The above studies point to some fundamental 

scientific aspects of this alloy system which are not understood to date and which underlie 

both the homogeneous and single crystal growth of the SixGe1-x alloy. These aspects were 

the diffusion and transport of silicon and germanium in the molten alloy, and the true 

segregation coefficient (k = 2.45) of silicon (Si) in germanium (Ge) in the solvent.  

On the numerical aspect, the two and three dimensional numerical simulation of 

thermo-solutal convection in solvent region was examined. The whole simulation scheme 

was applied to a cylindrical model representing the sample to investigate the 

aforementioned phenomena in the entire process. All the models were analyzed by Finite 
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Element Method simulation. One FEA model was checked with that of done by FVA for 

comparison purposes under the micro-gravity condition. 

 

6.1 Conclusion 

 
The intensity of the natural convection, which cannot be avoided, can be described 

with dimensionless thermal Grashof number      . The Grashof number for mass transfer 

      was found to be from few hundreds to nearly a thousand times larger than the 

Grashof number for heat transfer       as discussed in Chapter five. This is a good 

evidence of the predominance of concentration-induced natural convection. As for the 

effects of axial magnetic field, it was found that the application of axial magnetic field, 

within the range of dimensionless Hartmann number      of 21.7 up to 21700, had no 

significant effect on the buoyancy driven convection in the solvent region, this as 

discussed, can mainly be the role of the large diameter of the model. All findings on this 

matter has been submitted to well known conferences, such as IAC-09 and are listed in the 

reference of this thesis. As for microgravity condition, experiment done by other 

researchers and also with simulation in this study by the author, the microgravity 

environment has shown that the removal of the gravitational force on the solvent region 

would result in a homogeneous solidification.  Under the microgravity condition, the 

buoyancy effect due to concentration difference (i.e. density) was minimized; and hence, 

the concentration gradient in the radial direction was eliminated. As an alternative, this 

study has found that the radial temperature gradient plays a role (i.e the low non-

dimensional thermal Grashof number equal to 1.34E+5 for the proposed alternative, as 
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shown in Chapter five)  in the solidification process, therefore controlling this parameter, 

along with other factors such as applied uniform temperature and considering a very 

minimal pulling rate, would help achieve a homogeneous single bulk crystal with more 

uniform silicon distribution in the solvent region, more specifically near the solid liquid 

interface and produce a flat shape interface which is most desired. This was clearly shown 

that the application of 35K/cm axial temperature gradient is bearing a 0.06K/cm radial 

temperature gradient at most at 40 mm level above the interface line in the solvent region 

which is outstanding.  

As it was observed in both Chapter four and Chapter five, when a linear 

temperature gradient is applied the flow regime in the solvent region is slower, this has a 

markedly effect on silicon distribution. The buoyancy driven convection along with the 

excess temperature which causes convection as well definitely contributes to one of the 

major factors in presence of grain boundaries which is not desirable in the process of 

crystal growth. As a result in this study, the control of the applied temperature gradient 

along with the reduction of the pulling rate and minimizing the radial temperature is and 

can be a good alternative to microgravity condition. Considering the fact that although, 

microgravity creates one of the best conditions, but from the practical point of view and 

also economical scale of it, is not easy to achieve at least with today’s technology. 

Therefore, the author believes that the findings in this study can be considered as a new 

approach, at least, for this setting which is Si0.25Ge0.75 alloy with large diameter (25mm). It 

should be admitted that production rate is relatively slow and can be considered as a 

disadvantage point for this proposed alternative. However, once the cost of conducting the 
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experiment in the space laboratory, which is tremendously high, is taken into the account, 

then this alternative reveals its advantage over the microgravity condition. As for the 

application of high magnetic field,  which has been utilized by some researchers (as 

discussed in Chapter two, literature review) in some cases has shown good results. 

However,  from the practical point of view either the magnetic field is not readily available 

(e.g. to create a magnetic field with intensity of 1 Tesla and more, there is a need of a 

generator as small as a basketball court to as large as a football field) or it is extremely 

expensive. Therefore the drawback of slowing down the pulling rate which elongates the 

production process is still comparatively more attractive than the other two aforementioned 

routes.  
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6.2 Future Work 

 
All the findings in this research will open up new possibilities for the future works; 

the author would recommend and hope the following points to be pursued by himself or 

any other researchers at Ryerson University: 

 

 To examine the same research utilizing Float Zone (FZ) technique. 

 To acquire a furnace to conduct the experimental part in Ryerson Micro-gravity 

Laboratory. 

 To apply the formulated result of this study on the sample in the above furnace.  

 To explore the diffusion phenomenon in the process of crystal growth with even 

larger diameter of single bulk crystals. 

 To investigate the residual gravity (g-jitters) effects on the solvent region in Micro-

gravity condition. 
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APPENDIX - A 
 
   Table- A.1 Physical Properties of Silicon, Germanium and the Binary Mixture of Si 0.25 Ge 0.75 

Item Variables Description Units Silicon Germanium Si 0.25 Ge 0.75 

 

1 

 

ρ(Liquid) Density g/cm
3
 2.57 5.6 4.843 

2 ρ(Solid) Density g/cm
3
 2.329 5.323 4.575 

3 βC 

Solutal 

Expansion 

Coefficient 

1/at % Si 0.005 --- 0.005 

4 βT 

Thermal 

Expansion 

Coefficient 

1 /   C 2.6E-6 5.9E-6 5.075E-6 

5 k (solid) 
Thermal 

Conductivity 
W/cm.  K 0.15 0.06 0.083 

6 k (liquid) 
Thermal 

Conductivity 
W/cm.  K 0.426 0.25 0.294 

7 αC    (D) 
Mass 

Diffusivity 
cm

2
/s 3.6E-4 1E-4 1.65E-4 

8 αT 
Thermal 

Diffusivity 
cm

2
/s 0.85 0.36 0.44 

9 Tm 
Melt 

Temperature 
°C 1413 939 1057.5 

10 ν 
Kinematic 

Viscosity 
cm

2
/s 3.42E-3 0.50E-3 8.88E-4 

11 μL 
Dynamic 

Viscosity 
g/cm. s 8.8E-3 2.8E-3 4.3E-3 

12 
Cp 

(Liquid) 

Specific 

Heat 
J/g. K 0.71 0.3157 0.4145 

13 Cp (solid) 
Specific 

Heat 
J/g. K 0.644 0.32 0.401 

 

    Ryerson University,  Microgravity Lab                                              Summer 2008 
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Table-A.2  Silicon atomic %, Density, Segregation Coefficient, Melt Temperature 
 

Atomic 
% (Si) 

Density 
(g/cm3) 

Tmelt Solidus 
% (Si) 

k (Si in Ge 
or Ge in Si) 

Delta S/Δ T Delta L/Δ T Delta S/Delta Si 
composition 

0 5.325 938 0.00         

0.5 5.312 946.97 3.54 7.08 0.395 0.0557 7.08 

1 5.299 955.39 6.75 6.75 0.381 0.0594 6.41 

1.5 5.286 963.34 9.67 6.45 0.368 0.0629 5.85 

2 5.273 970.89 12.36 6.18 0.356 0.0662 5.38 

2.5 5.259 978.08 14.85 5.94 0.346 0.0695 4.97 

3 5.246 984.95 17.16 5.72 0.336 0.0728 4.62 

3.5 5.233 991.54 19.32 5.52 0.328 0.0759 4.32 

4 5.220 997.86 21.34 5.33 0.320 0.0791 4.04 

4.5 5.206 1003.95 23.24 5.16 0.312 0.0821 3.80 

5 5.193 1009.83 25.03 5.01 0.305 0.0850 3.59 

5.5 5.180 1015.51 26.73 4.86 0.299 0.0880 3.40 

6 5.166 1021.01 28.35 4.72 0.293 0.0909 3.22 

6.5 5.153 1026.34 29.88 4.60 0.288 0.0938 3.07 

7 5.140 1031.52 31.34 4.48 0.282 0.0965 2.92 

7.5 5.126 1036.56 32.74 4.37 0.277 0.0992 2.80 

8 5.113 1041.45 34.07 4.26 0.273 0.1022 2.67 

8.5 5.100 1046.23 35.35 4.16 0.268 0.1046 2.57 

9 5.086 1050.88 36.58 4.06 0.264 0.1075 2.46 

9.5 5.073 1055.42 37.76 3.98 0.260 0.1101 2.36 

10 5.059 1059.86 38.90 3.89 0.257 0.1126 2.28 

10.5 5.046 1064.19 40.00 3.81 0.253 0.1155 2.19 

11 5.032 1068.44 41.06 3.73 0.249 0.1176 2.12 

11.5 5.019 1072.59 42.08 3.66 0.246 0.1205 2.04 

12 5.005 1076.66 43.07 3.59 0.243 0.1229 1.98 

12.5 4.992 1080.65 44.03 3.52 0.240 0.1253 1.92 

13 4.978 1084.56 44.95 3.46 0.237 0.1279 1.86 

13.5 4.964 1088.4 45.86 3.40 0.235 0.1302 1.80 

14 4.951 1092.17 46.73 3.34 0.232 0.1326 1.75 

14.5 4.937 1095.87 47.58 3.28 0.229 0.1351 1.70 

15 4.924 1099.51 48.40 3.23 0.227 0.1374 1.65 

16 4.896 1106.6 49.99 3.12 0.223 0.1410 1.58 

17 4.869 1113.47 51.49 3.03 0.219 0.1456 1.51 

18 4.841 1120.12 52.92 2.94 0.215 0.1504 1.43 

19 4.814 1126.59 54.29 2.86 0.211 0.1546 1.37 

20 4.786 1132.87 55.60 2.78 0.208 0.1592 1.31 

21 4.759 1138.98 56.85 2.71 0.204 0.1637 1.25 

22 4.731 1144.93 58.04 2.64 0.201 0.1681 1.20 

23 4.703 1150.74 59.20 2.57 0.198 0.1721 1.15 

24 4.675 1156.41 60.31 2.51 0.196 0.1764 1.11 

25 4.647 1161.94 61.37 2.45 0.193 0.1808 1.07 

30 4.506 1187.86 66.20 2.21 0.186 0.1929 0.96 

35 4.363 1211.37 70.34 2.01 0.176 0.2127 0.83 

40 4.219 1232.94 73.97 1.85 0.168 0.2318 0.73 

45 4.072 1252.92 77.20 1.72 0.162 0.2503 0.65 

50 3.924 1271.58 80.12 1.60 0.156 0.2680 0.58 

 

 Experimental Data released by: Dr. D. Labrie        **     Dalhousie University       **         Fall 2008               
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APPENDIX - B 

 

Non_Dimensionalization 

 
 

B.0 Introduction 

 
As described in chapter three, the dimensionless forms of the governing equations 

are more suitable for the computing purposes where and when the time is of the essence. 

B.1 Dimensionless form of Governing Equations 

The detailed and step by step non-dimensionalization of all the governing equations 

is discussed as follow. Since both finite element and finite volume analysis have been 

utilized in this study, following would represent the non-dimensionalization steps. 

B.1 Finite element 

B.1.1 Navier-Stokes Equations 

The dimensionless transient Navier-Stokes equation for r, φ and z directions are 

presented respectively as follow: 

r-component: 

Taking equation 3.2 into the consideration and applying the aforementioned dimensionless 

variables which are defined by scaling length (in this study is equal to the model diameter), 

velocity, pressure, time, concentration, electric potential and electric current in it, for L-

Side, we get; 

  
    

 
  

  

    
    

   
 
   

  

    

  
    

    

   
 

     
 

  
                              (B.1) 

 

And for R-side, we get; 
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                                                                                     (B.2)   
 

Multiplying both sides by  
  

   
  , and simplifying further and by equating common factors to 

a known dimensionless number (Table-1) such as Reynolds number, we get; 

   
  

  
  

  

  
 

 

 

  

  
  

  

  
 

  

 
   

  

  
 
   

   
 

 

  
   

   
 

   

   
 

 

  
 

 

  
  

  
  

 

 
     

    
      

  
  

      

  
                                                                                                        (B.3)                                                           

φ-component: 

 

Taking equation 3.3 into the consideration and applying the aforementioned dimensionless 

variables in it, again for L-Side, we get; 

  
    

 
  

  

    
    

   
 
   

  

    

  
    

    

   
 
      

     
                             (B.4)  

And for R-side, we get; 

 

 
 

  

 
    
 

  
   

 

  

 

   
   

    
   

  
     
   

 
     
      

 
 

  
    
  

  

 

 
 

 
   

                                                                                         (B.5)     

 

Again, multiplying both sides by  
  

   
  , and simplifying further and by equating common 

factors to a known dimensionless number (Table 3.1) such as Hartman number, we get; 

 



135 

 

   
  

  
  

  

  
 
 

 

  

  
  

  

  
 
  

 
   

 
 

 

  

  
 
   

   
 

 

  
   

   
 

   

   
 

 

  
 

 

  
  

  
  

 

 
     

    
      

  
 

      

  
                                                                                               

z-component: 

And taking equation 3.4 and following the same procedure, for the L-side we will have; 

  
    

 
  

  

    
    

   
 
   

  

    

  
    

    

   
                                          (B.7) 

And for R-side, we get; 

 

 
 
    
 

   
   

 

  

 

   
   

    
   

  
 

     
 
     
   

 
     
      

     

                                                                                                                                              (B.8)  

Again, multiplying both sides by  
  

   
  , and simplifying further and by equating common 

factors to a known dimensionless number (Table-1) such as Grashof number, we get; 

 

   
  

  
  

  

  
 

 

 

  

  
  

  

  
   

  

  
       

      

  
  

      

  
                             

It should be noted that the magnetic field has no effect (external force) on the ―z‖ 

component [3.4].            

B.1.2  Energy Equation 

When the dimensionless variables, as discussed earlier on, are introduced into the 

dimensional form of energy equation and after simplification, we get the following 

dimensionless equation in which the inverse of the product of Reynolds and Prandtl 

numbers represent the effect of density , specific heat and coefficient of heat conduction; 
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B.1.3  Continuity Equation 

And for the dimensionless form of the continuity equation we will have;  
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B.1.4  Mass Transport Equation 

Once the dimensionless variables applied and required simplification done, the non-

dimensional form of the mass transport equation becomes as follow; 

  
  

  
  

  

  
 
 

 

  

  
  

  

  
  

 

     
 
   

   
 

 

  
   

   
 

   

   
                                     

Were the inverse product of Reynolds number and Schmidt number represent the 

coefficient of solutal expansion. 

 

 B.1.5  Latent Heat Equation 

 

  
  

   
   

   

  
  

  

  

   

  
                                                                                                                                                                                      

 

Where, the term ―Pr/Ste” is the non-dimensional value for the latent heat and ―V” is the 

axial velocity of the solid-liquid interface.  



137 

 

B.2 Finite/Control Volume Analysis 

 As mentioned earlier, discretized equations for two dimensional models has been 

employed for verification of the result shown by the finite element purposes, programs for 

velocities, temperature, concentrations (species), and pressure is presented in appendix 

―C‖. In control volume the calculation domain is divided into a number of non-overlapping 

control volumes such that there is one control volume surrounding each grid points. The 

differential equation is integrated over each control volume. Piecewise profiles expressing 

the variation of Ø between the grid points are used to evaluate the required integrals. The 

result is the discretization equation containing the values of Ø for a group of grid points. 

The discretization equation obtained in this manner expresses the conservation principle for 

Ø for the finite control volume, just as the differential equation expresses it for an 

infinitesimal control volume. There are four basic rules that discretization equations should 

obey to ensure physical realism and overall balance, they are; 1) Consistency at control-

volume faces which states when a face is common to two adjacent control volumes, the 

flux across it must be represented by the same expression in the discretization equations for 

the two control volumes. 2) Positive coefficients, which states all coefficients (ap and 

neighbor coefficient anb) must always be positive. 3) Negative-slope linearization of the 

source term which states when the source term is linearized as            , the 

coefficient SP must always be less than or equal to zero. It should be noted that for 

computational success, the principle of negative SP is essential. 4) Sum of the neighbor 

coefficients, this rule states that         for situations where the differential equation 

continues to remain satisfied after a constant is added to the dependent variable. The 
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differential equation for a portion of a two-dimensional grid as shown in Figures B.1 and 

B.2 is written as: 

 

           Figure B.1 Control volume grid for two dimensional models [89] 

 

 

 
                                            

                  Figure B.2 Location of the control volume in the grids [89] 
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                                                                                (B.14) 

And can be turned into discretization equation as follow: 

                                                                                          (B.15) 

Where 
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 , and                  
          it should be noted 

that the product of       is the volume of the control volume in which the z value is 

considered as the unity. 

B.2.1 Momentum Equation: 
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Where the terms       
  

  
    and      

  

  
    are the flux in x and y direction 

respectively. The equation 3.23 then can be written in discretized form as: 
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Where 
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B.2.2 Continuity Equation 

  

  
  

 

  
     

 

  
                                                                                             (B.18) 

This in discretized form becomes: 
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Where 

            ;               ;         
          ;            

            

 

B.2.3 Energy Equation 
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Where;    S=0    , and          
 

  
  

The discretized form reads as: 
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where 
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By considering Power-Law scheme for    when          ,  

We have;          
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Where;          
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B.2.4  Mass Transport (Species) Equation 

 

  
       

 

  
        

 

  
      

  
 

  
       

  

  
    

  

  
    

 

  
       

  

  
    

  

  
                      

 

And by integrating in transient mode, we will have; 

 
 

  
              

 

  
              

    

 

 
 

  
              

    

 

    

 

 

 
 

  
      

  

  
        

    

 

  
 

  
     

  

  
         

    

 
 

 

  
     

  

  
          

    

 

  
 

  
     

  

  
          

    

 
                                                                (B.23)                                                   
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B.3 Two-Dimensional Interpolation 

Referring to chapter five, figure 5.16, the two zones of the solvent region for interpolation 

are shown in figure B.3  

 

            Figure B.3 Nodes for Bilinear interpolation, (dimensionless values shown) 

 

For lower zone; 

         
    

      
            

    

      
                                                                 (B.24) 

For upper zone; 

         
    

      
           

    

      
                                                                  (B.25) 
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B.4 Three-Dimensional Interpolation 

Considering a point in the cylindrical coordinate such as;      θ       ,  

Where; 

                  

                                   Figure B.4 Cylindrical coordinate system 

And                         0≤ i ≤ ni   ,     0≤ j ≤ nj    ,    0≤ k ≤ nk   ,    ni = nj = nk  

 
We have: 

 

                                                                               (B.26)  

 
With; 
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and        p ≠ i     ,      p ≠ j    ,     p ≠ k                                      
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B.5 Magnetic Field Vectors 

The orientation of the applied magnetic force vectors in the coordinate system is shown in 

Figure B.5 below. 

  

 

     Figure B.5 Magnetic field vectors orientation  
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APPENDIX - C 

 
 

C.1 Finite Element Input Files For Three Dimensional Model in Terrestrial Condition 

The input files are revised as per application, as follow; 

1. Three Dimensional Model in Terrestrial Condition under non-linear heating profile 

2. Three Dimensional Model in Microgravity ( g = 10
-6

 g0 ) under non-linear heating 

profile 

3. Axi-symmetric Model under non-linear heating profile 

4. Two Dimensional Model in Terrestrial Condition under non-linear heating profile 

5.  Two Dimensional Model in Terrestrial Condition under linear heating profile 

 

C.1.1 

CONVERSION OF NEUTRAL FILE TO FIDAP Database 

/ 

FICONV( NEUTRAL ) 

INPUT( FILE="3dnlt.FDNEUT" ) 

OUTPUT( DELETE ) 

END 

/ 

TITLE 

3d9nlt-(3-D, full cylinder 9cm melt section) 

/ 

FIPREP 

/          PROBLEM SETUP 

/ 

PROBLEM (3-D, LAMINAR, NONLINEAR, BUOYANCY, BUOYANCY=1, 

TRANSIENT) 

EXECUTION( NEWJOB ) 

PRINTOUT( NONE ) 

DATAPRINT( CONTROL ) 

/ 

/          CONTINUUM ENTITIES 

/ 

ENTITY ( NAME = "solvent", FLUID, PROPERTY = "solvent" ) 
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/ 

/          BOUNDARY ENTITIES 

/ 

ENTITY ( NAME = "bot", PLOT ) 

ENTITY ( NAME = "skin", SHELL ) 

ENTITY ( NAME = "dis", PLOT ) 

/ 

/          LOCAL COORDINATE SYSTEMS DEFINED 

/ 

/COORDINATE ( SYSTEM = 2, MATRIX,CARTESIAN ) 

/ 

/          SOLUTION PARAMETERS 

/ 

SOLUTION( SEGREGATED = 450 ) 

PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 

/RELAX( HYBRID ) 

OPTIONS( UPWINDING) 

UPWIND(1STO) 

/SCALE( VALUE = 1 ) 

TIMEINT(BACK, dt=0.002, FIXED, nsteps=1800, tend= 3.6) 

/POSTPROCESS( NBLOCKS =  ) 

/ 

/          MATERIAL PROPERTIES 

/ 

/ Partial list of Material Properties data 

/ 

DENSITY( SET = "solvent", CONSTANT = 314.13,TYP2, TEMPERATURE, 

SPECIES =1 ) 

VISCOSITY( SET = "solvent", CONSTANT = 1 ) 

CONDUCTIVITY( SET = "solvent", CONSTANT = 1 ) 

SPECIFICHEAT( SET = "solvent", CONSTANT = 6.06E-3, LATENT=12.12, 

TMELT=0 ) 

VOLUMEXPANSION(SET = "solvent", CONSTANT = 1, TEMPERATURE) 

GRAVITY(MAGNITUDE = 1) 

/ 

/ 

SEGREGATIONCOEFFICIENT(SET = "bot", CONSTANT = 2.45) 

/ 

/          INITIAL AND BOUNDARY CONDITIONS 

/ 

/ICNODE( SPECIES =1, CONSTANT = 0.25, ENTITY = "solvent" ) 

/ 

BCNODE( SPECIES =1, CONSTANT = 0.75, ENTITY = "bot" ) 

BCNODE( SPECIES =1, CONSTANT = 0.0, ENTITY = "dis" ) 
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/BCNODE( , CONSTANT = 0, ENTITY = "bot" ) 

/BCNODE( , CONSTANT = 0, ENTITY = "dis" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "skin" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "dis" ) 

/ 

BCNODE( TEMPERATURE, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( TEMPERATURE, CONSTANT = 42.5, ENTITY = "dis" ) 

BCNODE( TEMPERATURE, POLYNOMIAL = 6, ENTITY = "skin" ) 

1.4255 66.017 0 0 1 -92.161 0 0 2 67.826 0 0 3 -27.247 0 0 4 5.586 0 0 5 -0.4548 0 0 6 

/ 

END 

/ 

CREATE( FIPREP,DELETE ) 

PARAMETER( LIST ) 

CREATE( FISOLV ) 

/RUN( FISOLV, FOREGROUND ) 

 

C.1.2 

FICONV( NEUTRAL ) 

INPUT( FILE="3dmgnlt.FDNEUT" ) 

OUTPUT( DELETE ) 

END 

/ 

TITLE 

3dmgnlt 

/ 

/(3-D, full cylinder, 9cm melt section, microgravity) 

/ 

FIPREP 

/ 

/          PROBLEM SETUP 

/ 

PROBLEM (3-D, LAMINAR, NONLINEAR, BUOYANCY, BUOYANCY=1, 

TRANSIENT) 

EXECUTION( NEWJOB ) 

PRINTOUT( NONE ) 

DATAPRINT( CONTROL ) 

/ 

/          CONTINUUM ENTITIES 

/ 

ENTITY ( NAME = "solvent", FLUID, PROPERTY = "solvent" ) 

/ 
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/          BOUNDARY ENTITIES 

/ 

ENTITY ( NAME = "bot", PLOT ) 

ENTITY ( NAME = "skin", SHELL ) 

ENTITY ( NAME = "dis", PLOT ) 

/ 

/          LOCAL COORDINATE SYSTEMS DEFINED 

/ 

/COORDINATE ( SYSTEM = 2, MATRIX,CARTESIAN ) 

/ 

/ 

/          SOLUTION PARAMETERS 

/ 

SOLUTION( SEGREGATED = 450 ) 

PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 

/RELAX( HYBRID ) 

OPTIONS( UPWINDING) 

UPWIND(1STO) 

/SCALE( VALUE = 1 ) 

TIMEINT(BACK, dt=0.002, FIXED, nsteps=1800, tend= 3.6) 

/POSTPROCESS( NBLOCKS =  ) 

/ 

/          MATERIAL PROPERTIES 

/ 

/ Partial list of Material Properties data 

/ 

DENSITY( SET = "solvent", CONSTANT = 314.13,TYP2, TEMPERATURE, 

SPECIES =1 ) 

VISCOSITY( SET = "solvent", CONSTANT = 1 ) 

CONDUCTIVITY( SET = "solvent", CONSTANT = 1 ) 

SPECIFICHEAT( SET = "solvent", CONSTANT = 6.06E-3, LATENT=12.12, 

TMELT=0 ) 

VOLUMEXPANSION(SET = "solvent", CONSTANT = 1, TEMPERATURE) 

GRAVITY(MAGNITUDE = 1E-6) 

/ 

/ 

SEGREGATIONCOEFFICIENT(SET = "bot", CONSTANT = 2.45) 

/ 

/          INITIAL AND BOUNDARY CONDITIONS 

/ 

/ICNODE( SPECIES =1, CONSTANT = 0.25, ENTITY = "solvent" ) 

/ 

BCNODE( SPECIES =1, CONSTANT = 0.75, ENTITY = "bot" ) 

BCNODE( SPECIES =1, CONSTANT = 0.0, ENTITY = "dis" ) 
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/BCNODE( , CONSTANT = 0, ENTITY = "bot" ) 

/BCNODE( , CONSTANT = 0, ENTITY = "dis" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "skin" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "dis" ) 

/ 

BCNODE( TEMPERATURE, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( TEMPERATURE, CONSTANT = 42.5, ENTITY = "dis" ) 

BCNODE( TEMPERATURE, POLYNOMIAL = 6, ENTITY = "skin" ) 

1.4255 66.017 0 0 1 -92.161 0 0 2 67.826 0 0 3 -27.247 0 0 4 5.586 0 0 5 -0.4548 0 0 6 

/ 

/ 

END 

/ 

CREATE( FIPREP,DELETE ) 

PARAMETER( LIST ) 

CREATE( FISOLV ) 

/RUN( FISOLV, FOREGROUND ) 

 

 

C.1.3 

FICONV( NEUTRAL ) 

INPUT( FILE="ax2d9.FDNEUT" ) 

OUTPUT( DELETE ) 

END 

/ 

TITLE 

ax2d9-(Axi-Symmetric, 9cm melt section, non-linear temp.,Micro-gravity) 

/ 

FIPREP 

/ 

/ 

/          PROBLEM SETUP 

/ 

PROBLEM (AXI-SYMMETRIC, LAMINAR, NONLINEAR, BUOYANCY, 

BUOYANCY=1, TRANSIENT) 

EXECUTION( NEWJOB ) 

PRINTOUT( NONE ) 

DATAPRINT( CONTROL ) 

/ 

/          CONTINUUM ENTITIES 

/ 

ENTITY ( NAME = "solvent", FLUID, PROPERTY = "solvent" ) 

/ 
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/          BOUNDARY ENTITIES 

/ 

ENTITY ( NAME = "bot", PLOT ) 

ENTITY ( NAME = "rskin", PLOT ) 

ENTITY ( NAME = "dis", PLOT ) 

ENTITY ( NAME = "symm", PLOT ) 

/ 

/          LOCAL COORDINATE SYSTEMS DEFINED 

/ 

/COORDINATE ( SYSTEM = 2, MATRIX,CARTESIAN ) 

/ 

/ 

/          SOLUTION PARAMETERS 

/ 

SOLUTION( SEGREGATED = 450 ) 

PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 

/RELAX( HYBRID ) 

OPTIONS( UPWINDING) 

UPWIND(1STO) 

/SCALE( VALUE = 1 ) 

TIMEINT(BACK, dt=0.002, FIXED, nsteps=1800, tend= 3.6) 

/POSTPROCESS( NBLOCKS =  ) 

/ 

/          MATERIAL PROPERTIES 

/ 

/ Partial list of Material Properties data 

/ 

DENSITY( SET = "solvent", CONSTANT = 314.13,TYP2, TEMPERATURE, 

SPECIES =1 ) 

VISCOSITY( SET = "solvent", CONSTANT = 1 ) 

CONDUCTIVITY( SET = "solvent", CONSTANT = 1 ) 

SPECIFICHEAT( SET = "solvent", CONSTANT = 6.06E-3, LATENT=12.12, 

TMELT=0 ) 

VOLUMEXPANSION(SET = "solvent", CONSTANT = 1, TEMPERATURE) 

GRAVITY(MAGNITUDE = 1E-6) 

/ 

/ 

SEGREGATIONCOEFFICIENT(SET = "bot", CONSTANT = 2.45) 

/ 

/          INITIAL AND BOUNDARY CONDITIONS 

/ 

/ICNODE( , CONSTANT = 0, ALL ) 

/ 

BCNODE( SPECIES =1, CONSTANT = 0.75, ENTITY = "bot" ) 
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BCNODE( SPECIES =1, CONSTANT = 0.0, ENTITY = "dis" ) 

/ 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "rskin" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "dis" ) 

/ 

BCNODE( TEMPERATURE, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( TEMPERATURE, CONSTANT = 42.5, ENTITY = "dis" ) 

BCNODE( TEMPERATURE, POLYNOMIAL = 6, ENTITY = "rskin" ) 

0.0344 140.52 0 1 0 -193.9 0 2 0 140.04 0 3 0 -54.837 0 4 0 10.951 0 5 0 -0.8706 0 6 0 

/ 

/ 

END 

/ 

CREATE( FIPREP,DELETE ) 

PARAMETER( LIST ) 

CREATE( FISOLV ) 

/RUN( FISOLV, FOREGROUND ) 

 

 

C.1.4 

FICONV( NEUTRAL ) 

INPUT( FILE="2d9nlt.FDNEUT" ) 

OUTPUT( DELETE ) 

END 

/ 

TITLE 

2d9nlt-(2-D, full cylinder, 9cm melt section,non-linear-Temp) 

/ 

/ 

FIPREP 

/ 

/          PROBLEM SETUP 

/ 

PROBLEM (2-D, LAMINAR, NONLINEAR, BUOYANCY,BUOYANCY=1, 

TRANSIENT) 

EXECUTION( NEWJOB ) 

PRINTOUT( NONE ) 

DATAPRINT( CONTROL ) 

/ 

/          CONTINUUM ENTITIES 

/ 

ENTITY ( NAME = "solvent", FLUID, PROPERTY = "solvent" ) 

/ 
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/          BOUNDARY ENTITIES 

/ 

ENTITY ( NAME = "bot", PLOT ) 

ENTITY ( NAME = "rskin", PLOT ) 

ENTITY ( NAME = "dis", PLOT ) 

ENTITY ( NAME = "lskin", PLOT ) 

/ 

/          LOCAL COORDINATE SYSTEMS DEFINED 

/ 

/COORDINATE (SYSTEM = 2, MATRIX, CARTESIAN ) 

/ 

/ 

/          SOLUTION PARAMETERS 

/ 

SOLUTION( SEGREGATED = 450 ) 

PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 

/RELAX( HYBRID ) 

OPTIONS( UPWINDING) 

UPWIND(1STO) 

/SCALE( VALUE = 1 ) 

TIMEINT(BACK, dt=0.002, FIXED, nsteps=1800, tend= 3.6) 

/POSTPROCESS( NBLOCKS =  ) 

/ 

/          MATERIAL PROPERTIES 

/ 

/ Partial list of Material Properties data 

/ 

DENSITY( SET = "solvent", CONSTANT = 314.13,TYP2, TEMPERATURE, 

SPECIES =1 ) 

VISCOSITY( SET = "solvent", CONSTANT = 1 ) 

CONDUCTIVITY( SET = "solvent", CONSTANT = 1 ) 

SPECIFICHEAT( SET = "solvent", CONSTANT = 6.06E-3, LATENT=12.12, 

TMELT=0 ) 

VOLUMEXPANSION(SET = "solvent", CONSTANT = 1, TEMPERATURE) 

GRAVITY(MAGNITUDE = 1) 

/ 

/ 

SEGREGATIONCOEFFICIENT(SET = "bot", CONSTANT = 2.45) 

/ 

/          INITIAL AND BOUNDARY CONDITIONS 

/ 

/ICNODE( , CONSTANT = 0, ALL ) 

/ 

BCNODE( SPECIES =1, CONSTANT = 0.75, ENTITY = "bot" ) 
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BCNODE( SPECIES =1, CONSTANT = 0.0, ENTITY = "dis" ) 

/ 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "rskin" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "dis" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "lskin" ) 

/ 

BCNODE( TEMPERATURE, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( TEMPERATURE, CONSTANT = 42.5, ENTITY = "dis" ) 

BCNODE( TEMPERATURE, POLYNOMIAL = 6, ENTITY = "rskin" ) 

0.0344 140.52 0 1 0 -193.9 0 2 0 140.04 0 3 0 -54.837 0 4 0 10.951 0 5 0 -0.8706 0 6 0 

BCNODE( TEMPERATURE, POLYNOMIAL = 6, ENTITY = "lskin" ) 

0.0344 140.52 0 1 0 -193.9 0 2 0 140.04 0 3 0 -54.837 0 4 0 10.951 0 5 0 -0.8706 0 6 0 

/ 

/ 

END 

/ 

CREATE( FIPREP,DELETE ) 

PARAMETER( LIST ) 

CREATE( FISOLV ) 

/RUN( FISOLV, FOREGROUND ) 

 

 

 

C.1.5 

FICONV( NEUTRAL ) 

INPUT( FILE="2d9lt.FDNEUT" ) 

OUTPUT( DELETE ) 

END 

/ 

TITLE 

2d9lt-(2-D, full cylinder, 9cm melt section, LINEAR-Temp) 

/ 

/ 

FIPREP 

/ 

/          PROBLEM SETUP 

/ 

PROBLEM (2-D, LAMINAR, NONLINEAR, BUOYANCY,BUOYANCY=1, 

TRANSIENT) 

EXECUTION( NEWJOB ) 

PRINTOUT( NONE ) 

DATAPRINT( CONTROL ) 

/ 
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/          CONTINUUM ENTITIES 

/ 

ENTITY ( NAME = "solvent", FLUID, PROPERTY = "solvent" ) 

/ 

/          BOUNDARY ENTITIES 

/ 

ENTITY ( NAME = "bot", PLOT ) 

ENTITY ( NAME = "rskin", PLOT ) 

ENTITY ( NAME = "dis", PLOT ) 

ENTITY ( NAME = "lskin", PLOT ) 

/ 

/          LOCAL COORDINATE SYSTEMS DEFINED 

/ 

/COORDINATE ( SYSTEM = 2, MATRIX,CARTESIAN ) 

/ 

/ 

/          SOLUTION PARAMETERS 

/ 

SOLUTION( SEGREGATED = 450 ) 

PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 

/RELAX( HYBRID ) 

OPTIONS( UPWINDING) 

UPWIND(1STO) 

/SCALE( VALUE = 1 ) 

TIMEINT(BACK, dt=0.002, FIXED, nsteps=1800, tend= 3.6) 

/ 

/POSTPROCESS( NBLOCKS =  ) 

/ 

/          MATERIAL PROPERTIES 

/ 

/ Partial list of Material Properties data 

/ 

DENSITY( SET = "solvent", CONSTANT = 314.13,TYP2, TEMPERATURE, 

SPECIES =1 ) 

VISCOSITY( SET = "solvent", CONSTANT = 1 ) 

CONDUCTIVITY( SET = "solvent", CONSTANT = 1 ) 

SPECIFICHEAT( SET = "solvent", CONSTANT = 6.06E-3, LATENT=12.12, 

TMELT=0 ) 

VOLUMEXPANSION(SET = "solvent", CONSTANT = 1, TEMPERATURE) 

GRAVITY(MAGNITUDE = 1) 

/ 

/ 

SEGREGATIONCOEFFICIENT(SET = "bot", CONSTANT = 2.45) 

/ 
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/          INITIAL AND BOUNDARY CONDITIONS 

/ 

/ 

/ICNODE( , CONSTANT = 0, ALL ) 

/ 

BCNODE( SPECIES =1, CONSTANT = 0.75, ENTITY = "bot" ) 

BCNODE( SPECIES =1, CONSTANT = 0.0, ENTITY = "dis" ) 

/ 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "rskin" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "dis" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "lskin" ) 

/ 

BCNODE( TEMPERATURE, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( TEMPERATURE, CONSTANT = 42.5, ENTITY = "dis" ) 

BCNODE( TEMPERATURE, POLYNOMIAL = 1, ENTITY = "rskin" ) 

0 11.806 0 1 0  

BCNODE( TEMPERATURE, POLYNOMIAL = 1, ENTITY = "lskin" ) 

0 11.806 0 1 0 

/ 

/ 

END 

/ 

CREATE( FIPREP,DELETE ) 

PARAMETER( LIST ) 

CREATE( FISOLV ) 

/RUN( FISOLV, FOREGROUND ) 

 

 

 

C.2 Finite Element Input Files For Applied Magnetic Field in Terrestrial Condition 
 

The input files are adjusted as per application in Terrestrial Condition, as follow; 

1. Two Dimensional Model under non-linear temperature & Various Applied 

Magnetic Field 

2. Two Dimensional Model under linear temperature & Various Applied Magnetic 

Field 

(All magnetic fields revised accordingly, here two samples are shown)  
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C.2.1 

FICONV( NEUTRAL ) 

INPUT( FILE="2dnlt1mT.FDNEUT" ) 

OUTPUT( DELETE ) 

END 

/ 

TITLE 

2dnlt1mT-(2-D, full cylinder, 9cm melt section, non-linear temp., B=1mT) 

/ 

/ 

FIPREP 

/ 

/          PROBLEM SETUP 

/ 

PROBLEM (2-D, LAMINAR, NONLINEAR, BUOYANCY,BUOYANCY=1, 

TRANSIENT) 

EXECUTION( NEWJOB ) 

PRINTOUT( NONE ) 

DATAPRINT( CONTROL ) 

/ 

/          CONTINUUM ENTITIES 

/ 

ENTITY ( NAME = "solvent", FLUID, PROPERTY = "solvent" ) 

/ 

/          BOUNDARY ENTITIES 

/ 

ENTITY ( NAME = "bot", PLOT ) 

ENTITY ( NAME = "rskin", PLOT ) 

ENTITY ( NAME = "dis", PLOT ) 

ENTITY ( NAME = "lskin", PLOT ) 

/ 

/          LOCAL COORDINATE SYSTEMS DEFINED 

/ 

/COORDINATE ( SYSTEM = 2, MATRIX,CARTESIAN ) 

/ 

/ 

/          SOLUTION PARAMETERS 

/ 

SOLUTION( SEGREGATED = 450 ) 

PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 

/RELAX( HYBRID ) 

OPTIONS( UPWINDING) 

UPWIND(1STO) 

/SCALE( VALUE = 1 ) 
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TIMEINT(BACK, dt=0.002, FIXED, nsteps=1800, tend= 3.6) 

/POSTPROCESS( NBLOCKS =  ) 

/ 

/          MATERIAL PROPERTIES 

/ 

/ Partial list of Material Properties data 

/ 

DENSITY( SET = "solvent", CONSTANT = 314.13,TYP2, TEMPERATURE, 

SPECIES =1 ) 

VISCOSITY( SET = "solvent", CONSTANT = 1 ) 

CONDUCTIVITY( SET = "solvent", CONSTANT = 1 ) 

SPECIFICHEAT( SET = "solvent", CONSTANT = 6.06E-3, LATENT=12.12, 

TMELT=0 ) 

VOLUMEXPANSION(SET = "solvent", CONSTANT = 1, TEMPERATURE) 

GRAVITY(MAGNITUDE = 1) 

/ 

/ 

SEGREGATIONCOEFFICIENT(SET = "bot", CONSTANT = 2.45) 

/ 

/ 

BODYFORCE(ENTITY = "solvent", LORENTZ = 2, VXB=1, FRC=2.907) 

/ 

/          INITIAL AND BOUNDARY CONDITIONS 

/ 

/ICNODE( , CONSTANT = 0, ALL ) 

/ 

BCNODE( SPECIES =1, CONSTANT = 0.75, ENTITY = "bot" ) 

BCNODE( SPECIES =1, CONSTANT = 0.0, ENTITY = "dis" ) 

/ 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "rskin" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "dis" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "lskin" ) 

/ 

BCNODE( TEMPERATURE, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( TEMPERATURE, CONSTANT = 42.5, ENTITY = "dis" ) 

BCNODE( TEMPERATURE, POLYNOMIAL = 6, ENTITY = "rskin" ) 

0.0344 140.52 0 1 0 -193.9 0 2 0 140.04 0 3 0 -54.837 0 4 0 10.951 0 5 0 -0.8706 0 6 0 

BCNODE( TEMPERATURE, POLYNOMIAL = 6, ENTITY = "lskin" ) 

0.0344 140.52 0 1 0 -193.9 0 2 0 140.04 0 3 0 -54.837 0 4 0 10.951 0 5 0 -0.8706 0 6 0 

/ 

/ 

END 

/ 
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CREATE( FIPREP,DELETE ) 

PARAMETER( LIST ) 

CREATE( FISOLV ) 

/RUN( FISOLV, FOREGROUND ) 

 

 

 

C.2.2 

FICONV( NEUTRAL ) 

INPUT( FILE="2dlt1mT.FDNEUT" ) 

OUTPUT( DELETE ) 

END 

/ 

TITLE 

2dlt1mT-(2-D, full cylinder, 9cm melt section, linear-Temp-B=1mT) 

/ 

/ 

FIPREP 

/ 

/          PROBLEM SETUP 

/ 

PROBLEM (2-D, LAMINAR, NONLINEAR, BUOYANCY, BUOYANCY=1, 

TRANSIENT) 

EXECUTION( NEWJOB ) 

PRINTOUT( NONE ) 

DATAPRINT( CONTROL ) 

/ 

/          CONTINUUM ENTITIES 

/ 

ENTITY ( NAME = "solvent", FLUID, PROPERTY = "solvent" ) 

/ 

/          BOUNDARY ENTITIES 

/ 

ENTITY ( NAME = "bot", PLOT ) 

ENTITY ( NAME = "rskin", PLOT ) 

ENTITY ( NAME = "dis", PLOT ) 

ENTITY ( NAME = "lskin", PLOT ) 

/ 

/          LOCAL COORDINATE SYSTEMS DEFINED 

/ 

/COORDINATE ( SYSTEM = 2, MATRIX,CARTESIAN ) 

/ 

/ 
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/          SOLUTION PARAMETERS 

/ 

SOLUTION( SEGREGATED = 450 ) 

PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 

/RELAX( HYBRID ) 

OPTIONS( UPWINDING) 

UPWIND(1STO) 

/SCALE( VALUE = 1 ) 

TIMEINT(BACK, dt=0.002, FIXED, nsteps=1800, tend= 3.6) 

/ 

/POSTPROCESS( NBLOCKS =  ) 

/ 

/          MATERIAL PROPERTIES 

/ 

/ Partial list of Material Properties data 

/ 

DENSITY( SET ="solvent",CONSTANT =314.13,TYP2,TEMPERATURE, SPECIES 

=1) 

VISCOSITY( SET = "solvent", CONSTANT = 1 ) 

CONDUCTIVITY( SET = "solvent", CONSTANT = 1 ) 

SPECIFICHEAT( SET = "solvent", CONSTANT = 6.06E-3, LATENT=12.12, 

TMELT=0 ) 

VOLUMEXPANSION(SET = "solvent", CONSTANT = 1, TEMPERATURE) 

GRAVITY(MAGNITUDE = 1) 

/ 

/ 

SEGREGATIONCOEFFICIENT(SET = "bot", CONSTANT = 2.45) 

/ 

/          INITIAL AND BOUNDARY CONDITIONS 

/ 

/ 

BODYFORCE(ENTITY = "solvent", LORENTZ = 2, VXB=1, FRC=2.907) 

/ 

/ICNODE( , CONSTANT = 0, ALL ) 

/ 

BCNODE( SPECIES =1, CONSTANT = 0.75, ENTITY = "bot" ) 

BCNODE( SPECIES =1, CONSTANT = 0.0, ENTITY = "dis" ) 

/ 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "rskin" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "dis" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "lskin" ) 

/ 

BCNODE( TEMPERATURE, CONSTANT = 0, ENTITY = "bot" ) 
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BCNODE( TEMPERATURE, CONSTANT = 42.5, ENTITY = "dis" ) 

BCNODE( TEMPERATURE, POLYNOMIAL = 1, ENTITY = "rskin" ) 

0 11.806 0 1 0  

BCNODE( TEMPERATURE, POLYNOMIAL = 1, ENTITY = "lskin" ) 

0 11.806 0 1 0 

/ 

/ 

END 

/ 

CREATE( FIPREP,DELETE ) 

PARAMETER( LIST ) 

CREATE( FISOLV ) 

/RUN( FISOLV, FOREGROUND ) 

 

 

C.3 Finite Element Input Files for Alternative approach in Terrestrial Condition 
 

FICONV( NEUTRAL ) 

INPUT( FILE="2dlt35k.FDNEUT" ) 

OUTPUT( DELETE ) 

END 

/ 

TITLE 

2dlt35k/(2-D,full cylinder,9cm melt,**LINEAR-Temp,Δθ=35K) 

/ 

/ 

FIPREP 

/ 

/          PROBLEM SETUP 

/ 

PROBLEM (2-D, LAMINAR, NONLINEAR, BUOYANCY, BUOYANCY=1, 

TRANSIENT) 

EXECUTION( NEWJOB ) 

PRINTOUT( NONE ) 

DATAPRINT( CONTROL ) 

/ 

/          CONTINUUM ENTITIES 

/ 

ENTITY ( NAME = "solvent", FLUID, PROPERTY = "solvent" ) 

/ 

/          BOUNDARY ENTITIES 

/ 

ENTITY ( NAME = "bot", PLOT ) 
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ENTITY ( NAME = "rskin", PLOT ) 

ENTITY ( NAME = "dis", PLOT ) 

ENTITY ( NAME = "lskin", PLOT ) 

/ 

/          LOCAL COORDINATE SYSTEMS DEFINED 

/ 

/COORDINATE ( SYSTEM = 2, MATRIX,CARTESIAN ) 

/ 

/ 

/          SOLUTION PARAMETERS 

/ 

SOLUTION( SEGREGATED = 450 ) 

PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 

/RELAX( HYBRID ) 

OPTIONS( UPWINDING) 

UPWIND(1STO) 

/SCALE( VALUE = 1 ) 

TIMEINT(BACK, dt=0.002, VARI, NOFIXED=20, nsteps=1800, tend= 3.6) 

/ 

/ 

/          MATERIAL PROPERTIES 

/ 

/ Partial list of Material Properties data 

/ 

DENSITY( SET = "solvent", CONSTANT = 314.13,TYP2, TEMPERATURE, 

SPECIES =1 ) 

VISCOSITY( SET = "solvent", CONSTANT = 1 ) 

CONDUCTIVITY( SET = "solvent", CONSTANT = 1 ) 

SPECIFICHEAT( SET = "solvent", CONSTANT = 6.06E-3, LATENT=12.12, 

TMELT=0 ) 

VOLUMEXPANSION(SET = "solvent", CONSTANT = 1, TEMPERATURE) 

GRAVITY(MAGNITUDE = 1) 

/ 

/ 

/SEGREGATIONCOEFFICIENT(SET = "bot", CONSTANT = 2.45) 

/ 

/          INITIAL AND BOUNDARY CONDITIONS 

/ 

/ 

/BODYFORCE(ENTITY = "solvent", LORENTZ = 1, VXB=1, FX=145350) 

/ 

/ICNODE( , CONSTANT = 0, ALL ) 

/ 

BCNODE( SPECIES =1, CONSTANT = 0.25, ENTITY = "bot" ) 
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BCNODE( SPECIES =1, CONSTANT = 0.34, ENTITY = "dis" ) 

/ 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "rskin" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "dis" ) 

BCNODE( VELOCITY, CONSTANT = 0, ENTITY = "lskin" ) 

/ 

BCNODE( TEMPERATURE, CONSTANT = 0, ENTITY = "bot" ) 

BCNODE( TEMPERATURE, CONSTANT = 41.85, ENTITY = "dis" ) 

BCNODE( TEMPERATURE, POLYNOMIAL = 1, ENTITY = "rskin" ) 

0 11.625 0 1 0  

BCNODE( TEMPERATURE, POLYNOMIAL = 1, ENTITY = "lskin" ) 

0 11.625 0 1 0 

/ 

/ 

END 

/ 

CREATE( FIPREP,DELETE ) 

PARAMETER( LIST ) 

CREATE( FISOLV ) 

/RUN( FISOLV, FOREGROUND ) 

 

 

 

 

 

 

 

 

 

C.4 Finite Volume Input Files under Non-linear Temperature in Microgravity 

       Condition 

 

*********************************************************************** 

0  /* Initia  1: existing restart file, 0: none 

0  /* I_THERMAL 1: Thermodiff accounted for; 0: not ! 
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0  /* I_BARODIFF 1: Barodiff accounted for; 0: not ! 

 

10  /* N. of time steps -MTM- or load steps 

1.0d+03   /* Time step or load step - DT (steady state: t=75000s) 

 

1  /* Impression sur disque - NIMP 

0  /* ISORTIE en 1: mass fraction, 0: molar fraction 

1  /* Impression sur ecran - LIMP 

5000  /* Maximum number of iterations per time step - MAX_ITER 

1.0d-06  /* Convergence criterion - Epsilon (min (relative errors 

(u,v,p,T,c) from iteration 1 to 2)<=Epsilon) 

 

0.0d0   /* Horizontal temperature gradient (K/m) 

0.0d0  /* Verical temperature gradient (K/m) 

 

0.00625d+00  0.045d+00  1330.65d+00 /* X0_T, Z0_T, T0 (X0_T,Z0_T) T0(K) 

0.00625d+00  0.045d+00  0.0d+06  /* X0_P, Z0_P, P0 (X0_P,Z0_P) P0(Pa) 

 

2  /* number of components/pseudocomponents 

 

0.0d+00  0.0d+00 0.00625d+00  0.045d+00 /* X0_C, Z0_C at the reference point 

 

0.623d0  /* Si molar fraction 

0.377d0  /* Ge molar fraction 

 

0.1d0  /* permeability (m**2, 1darc=0.987 10**-12) 

1.d0  /* porosity (dimensionless) 

 

0.0d0  0.0d0 1.0d0  0.1d0 /* radiation (1:yes, 0:no radiation) emissivity 

0.0d0  0.0d0 /* convection(1:yes, 0: no convection) convective heat coeff. 

 

303.15d0   /* environment temperature 

1.d0  /* temp relaxation factor(=1: no relaxation):relaxtemp 

 

0.5d0    /*velocity relaxation factor (=1: no relaxation):relaxvel 

0.8d0  /*pressure relaxation factor (=1: no relaxation):relaxp 

 

1.d0  /*concentration relaxation factor (=1: no relaxation):relaxconc 

1.0d0    /*density relaxation factor (=1: no relaxation):relaxdens 

 

0.d0 1.d0 /* g: gravity acceleration (used to activate g_exp=g*gexp) 

9.81d0 0.d0 /* gravs: static gravity (residual-g) 

0.d0  /* gravi: g-jitter amplitude 

0.d0  /* alpha (deg.): angle of orientation of gravs relative to negative z 
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0.d0  /* theta (deg.): angle of orientation of gravi relative to negative z 

0.d0  /* freq: frequency of the g-jitter 

 

414.5D0  /* reference specific heat (J/kg-K) 

29.4D0  /* reference thermal conductivity (W/m-K) 

 

1444.8407D0 /* temperature on the hot wall (K) 

1444.8407D0 /* temperature on the cold wall (K) 

 

 

***********************************************************************  

*****************  Comments on data.in   *************************  

*********************************************************************** 

  

/* INITIA=0 ==> homogeneous composition as intial guess 

 INITIA=1 ==> inital guess from a previous run; one should copy, 

                     in this case field.out in field.in 

 

/* T0(X0_T,Z0_T)=Temperature (X0_C,Z0_C) 

/* P0(X0_P,Z0_P)=Pressure (X0_C,Z0_C) 

 

/* I_THERMAL = 0  <==> no thermal diffusion 

 I_THERMAL = 1  <==> with thermal diffusion 

 

/* Permeability=0 <==> convection-free 

 

/* Horizontal temperature gradient (K/m) : >0 ==> the left side is colder than 

          the right side 

 

/* Verical temperature gradient (K/m): <0 ==> higher temperature in the bottom 

 

/* relaxation factor 0 < relax < 1 : underrelaxation 

 

/* advised relaxation: pressure 0.8  velocity 0.5 

 

C********************************************************************** 

      SUBROUTINE COINIT(V_X, V_Z, C, P, T, C0, P0, T0, RHO_MOLE, 

     &   X0_C, Z0_C, X0_P, Z0_P, 

     &   I0_C, K0_C, I0_P, K0_P, 

     &   TDE,TDN,X0_T,Z0_T, 

     &   N_COMP,N_MAX, 

     &   XC,ZC,LM,NM,KX,KZ) 

C********************************************************************** 
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      PARAMETER(JRED=20) 

      IMPLICIT REAL*8(A-H,O-Z) 

 

      COMMON /INIT/ INITIA  

      COMMON /TIME_STEP/ DT,DT0 

      COMMON /TOTAL_TIME/ TIME 

      COMMON /TEMP_WALLS/ THOT, TCOLD 

      COMMON /MEAN_DENSITY/ RHO_MEAN,RHO_MOLE_MEAN 

      COMMON /PROP_MEAN/ CP_MEAN, TK_MEAN, VISC_MEAN 

      COMMON /MEAN_TEMP/ T_MEAN 

               

      DIMENSION P(0:KX,0:KZ) 

      DIMENSION V_X(0:KX,0:KZ),V_Z(0:KX,0:KZ) 

      DIMENSION T(0:KX,0:KZ),C(N_MAX,0:KX,0:KZ) 

      DIMENSION C0(N_MAX)   

      DIMENSION RHO_MOLE(0:KX,0:KZ)       

      DIMENSION XC(0:KX),ZC(0:KZ) 

            

       

C     TSTART=(THOT+TCOLD)/2.0D0 

      TSTART=T_MEAN 

 

C----- CONDITION FOR READING INITIAL FIELD ----------------------------  

 

      I0_T=0 

      I0_P=0 

      I0_C=0 

 

      K0_T=0 

      K0_P=0 

      K0_C=0 

 

      DO I=0,LM+1 

  IF(XC(I).LE.X0_T) I0_T=I 

  IF(XC(I).LE.X0_P) I0_P=I 

  IF(XC(I).LE.X0_C) I0_C=I 

      ENDDO 

  

 

      DO K=0,NM+1 

  IF(ZC(K).LE.Z0_T) K0_T=K 

  IF(ZC(K).LE.Z0_P) K0_P=K 

  IF(ZC(K).LE.Z0_C) K0_C=K 

      ENDDO 
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      IF (INITIA.EQ.0) THEN 

  DO I=0,LM+1 

   DO K=0,NM+1 

    P(I,K)=P0 

    V_X(I,K)=1.0D-20 !0.0D0 

    V_Z(I,K)=1.0D-20 !0.0D0 

   ENDDO 

  ENDDO 

 

  DO I=0,LM+1 

   DO K=0,NM+1 

            DO II=1,N_COMP-1             

     C(II,I,K)=C0(II)/2. 

c     C(II,I,K)=.0 

                 ENDDO 

           ENDDO 

  ENDDO 

 

C ---- CONDITIONS AT TOP AND BOTTOM ENDS 

C========================================================= 

  DO I=0,LM+1 

   DO II=1,N_COMP-1             

    C(II,I,0)=0.623 

             ENDDO 

  ENDDO 

  

 

  DO I=0,LM+1 

           DO II=1,N_COMP-1             

     C(II,I,NM+1)=0.0 

            ENDDO 

  ENDDO 

C========================================================= 

   

      ENDIF  

 

      DO I=0,LM+1 

       DO K=0,NM+1 

        T(I,K)=TSTART 

       ENDDO 

      ENDDO 
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C ************ BC on top and bottom walls *************** 

 

 DO i=0,LM+1 

c  T(i,0)= 1162.6 + 273.15 

c  T(i,nm+1)= 1181.8 + 273.15 

  T(i,0)= 1162.4 + 273.15 

  T(i,nm+1)= 1180.9814 + 273.15 

 ENDDO 

 

c goto 002 

c-------- bc on outer shell -----------  

 

       DO K=1,NM 

   Z1=ZC(K)*100 

   Z2=Z1*Z1 

   Z3=Z2*Z1 

   Z4=Z3*Z1 

   Z5=Z4*Z1 

   Z6=Z5*Z1 

c my profile 

c   T(LM+1,K)=0.0069*Z5 - 0.1835*Z4 + 1.8781*Z3 + 

c     &   - 9.2281*Z2 + 21.492*Z1 + 1162.4 + 273.15  

 

 

 

 

c1   T(LM+1,K)=0.0069*Z5 - 0.1835*Z4 + 1.8781*Z3 + 

c1     &    - 9.2281*Z2 + 21.492*Z1 + 1162.4 + 273.15  

 

c2   T(LM+1,K)=-0.0019*Z6 + 0.0572*Z5 - 0.6975*Z4 + 4.3409* 

c2     &    Z3 - 14.746*Z2 + 26.407*Z1 + 1161.4 + 273.15  

 

 

c-------mehdi #1------------------------------------------------------------------- 

 

c     T(LM+1,K)=-(2e+9)*Z6 + (6e+8)*Z5 - (7e+7)*Z4 + (5e+6)* 

c3     &    Z3 - 152387*Z2 + 2699.9*Z1 + 1162.6 + 273.15  

 

c------------------------------------------------------------------------------------ 

 

c-------mehdi #2------------------------------------------------------------------- 

 

 

c     T(LM+1,K)=-(2E-9)*Z6 + (5E-7)*Z5 - (6E-5)*Z4 + 0.0041* 
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c     &     Z3 - 0.1434*Z2 + 2.6345*Z1 + 1160.4 +273.15 

 

c------------------------------------------------------------------------------------ 

 

 

 

c-------mehdi #3------------------------------------------------------------------- 

 

     T(LM+1,K)=-(4E-9)*Z6 + (1E-6)*Z5 - 0.0001*Z4 + 0.009* 

     &     Z3 - 0.3102*Z2 + 5.621*Z1 + 1057.5 + 273.15  

c------------------------------------------------------------------------------------ 

 

 

 

 

c print*, xc(lm+1),'  ', zc(k),'   ', T(LM+1,K)-273.15 

 

       ENDDO 

c----------------------------------------       

002 continue 

      

      IF (INITIA.EQ.1) THEN          

  OPEN(UNIT=JRED,FILE='field.in',STATUS='UNKNOWN') 

  REWIND JRED 

  READ(JRED,*) TIME,DT0,T_MEAN,P0,RHO_MEAN 

  READ(JRED,*) 

RHO_MOLE_MEAN,CP_MEAN,TK_MEAN,VISC_MEAN 

  READ(JRED,*) ((V_X(I,K),I=0,LM+1),K=0,NM+1) 

  READ(JRED,*) ((V_Z(I,K),I=0,LM+1),K=0,NM+1) 

  READ(JRED,*) ((P(I,K),I=0,LM+1),K=0,NM+1) 

  READ(JRED,*) ((T(I,K),I=0,LM+1),K=0,NM+1) 

 

  DO II=1,N_COMP-1 

   READ(JRED,*) ((C(II,I,K),I=0,LM+1),K=0,NM+1) 

  ENDDO 

           

  CLOSE(JRED) 

           

      ENDIF  

       

      DO I=0,LM+1 

       DO K=0,NM+1           

   C(N_COMP,I,K)=1.0D0 

   DO II=1,N_COMP-1           
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    C(N_COMP,I,K)=C(N_COMP,I,K)-C(II,I,K) 

   ENDDO 

       ENDDO 

      ENDDO 

 

      RETURN 

      END 

 

 

 

 

 

 

C********************************************************************** 

      SUBROUTINE ZVELOCITY(V_X, V_Z, P, VISC, RHO, RHO_0, 

     &   I0_C, K0_C, C0, 

     &   XWEST, XEST, CENTRE, ZSUD, ZNORD, SM, 

     &   DXC, DXG, DZC, DZG, XC, XG, ZC, ZG, 

     &   II, N_MAX, N_COMP, KX, KZ, LM, NM, 

     &   V_Z0,RELAXVEL,T,Z,C_MEAN) 

C********************************************************************** 

  

      PARAMETER(NN1=101) 

       

      IMPLICIT REAL*8(A-H,O-Z) 

 

      DIMENSION T(0:KX,0:KZ),Z(N_MAX,0:KX,0:KZ) 

 

 

      DIMENSION V_X(0:KX,0:KZ) 

      DIMENSION V_Z(0:KX,0:KZ), V_Z0(0:KX,0:KZ) 

 

      DIMENSION P(0:KX,0:KZ) 

 

      DIMENSION RHO(0:KX,0:KZ), RHO_0(0:KX,0:KZ)  

 

      DIMENSION VISC(0:KX,0:KZ), C0(N_MAX) 

       

      DIMENSION XWEST(0:KX,0:KZ),XEST(0:KX,0:KZ) 

      DIMENSION CENTRE(0:KX,0:KZ),SM(0:KX,0:KZ) 

      DIMENSION ZSUD(0:KX,0:KZ),ZNORD(0:KX,0:KZ) 

 

      DIMENSION DXC(0:KX),DXG(0:KX),XC(0:KX),XG(0:KX) 

      DIMENSION DZC(0:KZ),DZG(0:KZ),ZC(0:KZ),ZG(0:KZ) 
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      COMMON /TIME_STEP/ DT,DT0 

      COMMON /TOTAL_TIME/TIME 

      COMMON /GRAVITY/G, GRAVS, GRAVI, ALPHA, THETA, FREQ 

      COMMON /MEAN_DENSITY/ RHO_MEAN,RHO_MOLE_MEAN 

      COMMON /MEAN_TEMP/ T_MEAN 

 

 

      COMMON /FOURIER_COEF1/ AX(NN1),AY(NN1),AZ(NN1) 

      COMMON /FOURIER_COEF2/ BX(NN1),BY(NN1),BZ(NN1) 

      COMMON /FOURIER_FREQ/ FX(NN1),FY(NN1),FZ(NN1) 

      COMMON /NUMBER_COEF/ KK1 

 

       

 

    PI=DACOS(-1.D0) 

 BETAT=5.075d-6 

 BETAC=0.005 

 

 

C ** boundary conditions ******     

C ** ***************** ******     

 

      DO I=0,LM+1 

         DO K=0,NM+1 

            XWEST(I,K)=0.0d0 

            XEST(I,K)=0.0d0 

            CENTRE(I,K)=1.0d0 

            ZSUD(I,K)=0.0d0 

            ZNORD(I,K)=0.0d0 

            SM(I,K)=V_Z0(I,K) 

         ENDDO 

      ENDDO 

C 

C ------------ Gravity z-component ----------- 

C *****************************************************    

 

 

  GZ = -GRAVS*DCOS(ALPHA) +  

     &      -GRAVI*DCOS(THETA)*DSIN(2.D0*PI*FREQ*TIME) 

  

 

C **********************************************************    
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      DO I=1,LM 

    DO K=1,NM-1 

 

C ************* interpolation coeff ************************   

 

   deltax = dxg(i) 

   delz = dzc(k+1)   

c ------ 

   deltaz_s = dzg(k) 

   deltaz_n = dzg(k+1) 

c ------ 

   delx_w = dxc(i) 

   delx_e = dxc(i+1) 

 

   fw = (xg(i)-xc(i-1))/dxc(i) 

   fe = (xc(i+1)-xg(i+1))/dxc(i+1) 

   fs = (zg(k)-zc(k-1))/dzc(k) 

   fn = (zc(k+1)-zg(k+1))/dzc(k+1) 

 

   f_S = (zc(k)-zg(k))/dzg(k) 

   f_N = (zg(k+2)-zc(k+1))/dzg(k+1) 

 

   x_E=xc(i) 

   x_W=xc(i-1) 

   x_Mean = (x_E + x_W)/2. 

 

C  ----------------   

   RHO_S  = RHO(I,K) 

   RHO_N  = RHO(I,K+1) 

   RHO_WS = RHO(I,K)*fw + RHO(I-1,K)*(1.d0-fw) 

   RHO_WN = RHO(I,K+1)*fw + RHO(I-1,K+1)*(1.d0-fw) 

   RHO_W  = RHO_WS*fn + RHO_WN*(1.d0-fn) 

   RHO_ES = RHO(I,K)*fe + RHO(I+1,K)*(1.d0-fe) 

   RHO_EN = RHO(I,K+1)*fe + RHO(I+1,K+1)*(1.d0-fe) 

   RHO_E  = RHO_ES*fn + RHO_EN*(1.d0-fn) 

 

C  ----------------    

   rho0n=rho(i,k)*fn + rho(i,k+1)*(1.d0-fn) 

C   rho0n=rho_0(i,k)*fn + rho_0(i,k+1)*(1.d0-fn)  

 

   temp = t(i,k)*fn + t(i,k+1)*(1.d0-fn)    

   c_ij = z(1,i,k)*fn + z(1,i,k+1)*(1.d0-fn) 
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C  ----------------  

   VISC_S  = VISC(I,K) 

   VISC_N  = VISC(I,K+1) 

   VISC_WS = VISC(I,K)*fw + VISC(I-1,K)*(1.d0-fw) 

   VISC_WN = VISC(I,K+1)*fw + VISC(I-1,K+1)*(1.d0-fw) 

   VISC_W  = VISC_WS*fn + VISC_WN*(1.d0-fn) 

   VISC_ES = VISC(I,K)*fe + VISC(I+1,K)*(1.d0-fe) 

   VISC_EN = VISC(I,K+1)*fe + VISC(I+1,K+1)*(1.d0-fe) 

   VISC_E  = VISC_ES*fn + VISC_EN*(1.d0-fn) 

C  ----------------  

   diffcond_n = visc_n*deltax/deltaz_n 

     &          

 *x_Mean 

   diffcond_s = visc_s*deltax/deltaz_s 

     &          

 *x_Mean 

   diffcond_e = visc_e*delz/delx_e 

     &           *x_E 

   diffcond_w = visc_w*delz/delx_w 

     &           *x_W 

c ------ 

   v_n = v_z(i,k)*f_N + v_z(i,k+1)*(1.d0-f_N)  

   v_s = v_z(i,k)*f_S + v_z(i,k-1)*(1.d0-f_S) 

   u_e = v_x(i,k)*fn + v_x(i,k+1)*(1.d0-fn) 

   u_w = v_x(i-1,k)*fn + v_x(i-1,k+1)*(1.d0-fn) 

c ------ 

   flowrate_w = rho_w*u_w*delz 

     &         *x_W 

   flowrate_e = rho_e*u_e*delz 

     &         *x_E 

   flowrate_s = rho_s*v_s*deltax 

     &         *x_Mean 

   flowrate_n = rho_n*v_n*deltax 

     &         *x_Mean 

c ------ 

   reynolds_w = flowrate_w/diffcond_w  

   reynolds_e = flowrate_e/diffcond_e  

   reynolds_s = flowrate_s/diffcond_s  

   reynolds_n = flowrate_n/diffcond_n  

C **********************************************************           

C ** PARTIE DES COEFFICIENTS DUE AUX TERME NON LINEAIRE **** 

C 

   TNL_W = dmax1(flowrate_w,0.d0) 
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   TNL_E = dmax1(-flowrate_e,0.d0) 

   TNL_S = dmax1(flowrate_s,0.d0) 

   TNL_N = dmax1(-flowrate_n,0.d0) 

         

 

C **********************************************************           

C ** PARTIE DES COEFFICIENTS DUE AU TERME VISQUEUX ********* 

   

   TV_W = diffcond_w*dmax1(0.d0, 

     &        (1.d0-

0.1d0*dabs(reynolds_w))**5.) 

   TV_E = diffcond_e*dmax1(0.d0, 

     &        (1.d0-

0.1d0*dabs(reynolds_e))**5.)   

   TV_S = diffcond_s*dmax1(0.d0, 

     &        (1.d0-

0.1d0*dabs(reynolds_s))**5.) 

   TV_N = diffcond_n*dmax1(0.d0, 

     &        (1.d0-

0.1d0*dabs(reynolds_n))**5.) 

         

C **********************************************************           

C ** Second Member  **************************************** 

 

c   SM_P = (P(I,K)-P(I,K+1))*deltax  

c     &         *x_Mean 

 

   SM_P = 0.0  

 

   XWEST(I,K) = -(TNL_W + TV_W)    

   XEST(I,K) =  -(TNL_E + TV_E)   

   ZSUD(I,K) = -(TNL_S + TV_S) 

   ZNORD(I,K) = -(TNL_N + TV_N) 

 

   A0P = RHO_0(I,K)*DELTAX*DELZ/DT  

     &         *x_Mean 

 

         CENTRE(I,K) =(-(XWEST(I,K)+ XEST(I,K)+  

     &       + ZSUD(I,K) 

+ZNORD(I,K))+A0P)/RELAXVEL 

 

   SM(I,K) = A0P*V_Z0(I,K) + SM_P + 

     &      + CENTRE(I,K)*(1.0D0-RELAXVEL)*V_Z(I,K)  

     &      + GZ*DELZ*DELTAX*(RHO0N) 
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     &      * (-BETAT*(TEMP-T_MEAN)+  

     &        BETAC*(C_IJ-C_MEAN)  

     &              

)*x_Mean 

 

    

    ENDDO 

 ENDDO 

 

c------ bc on axis ------------------- 

 

  DO k=0,NM+1 

   i=0  

   v_z(i,k)=v_z(i+1,k) 

c   centre(i,k)=1.0d0 

   sm(i,k)=v_z(i+1,k) 

  ENDDO 

c-------------------------------------- bc on axis end  

 

c DT=DT1 

 

 RETURN  

 END    

 

 

C******************************************************************* 

      SUBROUTINE TEMPERATURE(T, T_0, V_X, V_Z, TK, CP, 

     &  I0_C, K0_C, C0, RHO, RHO_0, 

     &  XWEST, XEST, CENTRE, ZSUD, ZNORD, SM, 

     &  DXC, DXG, DZC, DZG, xc, xg, zc, zg, 

     &  II, N_MAX, N_COMP, KX, KZ, LM, NM, 

     &  TENV, RAY, CONV, EMISS, HC,RELAXT) 

C******************************************************************* 

      IMPLICIT REAL*8(A-H,O-Z) 

 

      DIMENSION V_X(0:KX,0:KZ) 

      DIMENSION V_Z(0:KX,0:KZ) 

 

      DIMENSION RHO(0:KX,0:KZ)  

      DIMENSION RHO_0(0:KX,0:KZ)  

 

      DIMENSION T_0(0:KX,0:KZ),T(0:KX,0:KZ)  

 

      DIMENSION TK(0:KX,0:KZ) 
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      DIMENSION CP(0:KX,0:KZ) 

       

 Data sb/5.67d-08/  ! Stefan-Boltzmann constant (W.m-2.K-4) 

 

       DO I=0,LM+1 

         DO K=0,NM+1 

            XWEST(I,K)=0.0d0 

            XEST(I,K)=0.0d0 

            CENTRE(I,K)=1.0d0 

            ZSUD(I,K)=0.0d0 

            ZNORD(I,K)=0.0d0 

            SM(I,K)=T(I,K) 

         ENDDO 

      ENDDO 

C ***************************************************************       

      DO I=1,LM 

    DO K=1,NM 

C ************* interpolation coeff *****************************  

  

  deltax = dxg(i) 

  deltaz = dzg(k) 

c ------ 

  delx_w = dxc(i) 

  delx_e = dxc(i+1) 

  delz_s = dzc(k) 

  delz_n = dzc(k+1) 

 

c ------ 

  fw = (xg(i)-xc(i-1))/dxc(i) 

  fe = (xc(i+1)-xg(i+1))/dxc(i+1) 

  fs = (zg(k)-zc(k-1))/dzc(k) 

  fn = (zc(k+1)-zg(k+1))/dzc(k+1) 

  

  xe=xg(i+1) 

  xw=xg(i) 

  xmean = (xe + xw)/2. 

 

c print*,i, k, xe, xmean 

C----------------   

C  ----------------  

  RHO_W = RHO(I,K)*fw + RHO(I-1,K)*(1.d0-fw) 

  RHO_E = RHO(I,K)*fe + RHO(I+1,K)*(1.d0-fe) 

  RHO_S = RHO(I,K)*fs + RHO(I,K-1)*(1.d0-fs) 

  RHO_N = RHO(I,K)*fn + RHO(I,K+1)*(1.d0-fn) 
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C  ----------------  

C---------------- 

 GOTO 30 

  TK_w = 1.d0/((1.d0-fw)/TK(I,K) + fw/TK(I-1,K)) 

  TK_e = 1.d0/((1.d0-fe)/TK(I,K) + fe/TK(I+1,K)) 

  TK_s = 1.d0/((1.d0-fs)/TK(I,K) + fs/TK(I,K-1)) 

  TK_n = 1.d0/((1.d0-fn)/TK(I,K) + fn/TK(I,K+1))     

C---------------- 

  CP_w = 1.d0/((1.d0-fw)/CP(I,K) + fw/CP(I-1,K)) 

  CP_e = 1.d0/((1.d0-fe)/CP(I,K) + fe/CP(I+1,K)) 

  CP_s = 1.d0/((1.d0-fs)/CP(I,K) + fs/CP(I,K-1)) 

  CP_n = 1.d0/((1.d0-fn)/CP(I,K) + fn/CP(I,K+1))     

C----------------  

  diffcond_w = (TK_w/cp_w)*(deltaz/delx_w) 

  diffcond_e = (TK_e/cp_e)*(deltaz/delx_e) 

  diffcond_s = (TK_s/cp_s)*(deltax/delz_s) 

  diffcond_n = (TK_n/cp_n)*(deltax/delz_n) 

c ------ 

30 CONTINUE 

  TKoverCP_w = 1.d0/((1.d0-fw)/(TK(I,K)/CP(I,K)) +  

     &       fw/(TK(I-1,K)/CP(I-1,K))) 

  TKoverCP_e = 1.d0/((1.d0-fe)/(TK(I,K)/CP(I,K)) +  

     &       fe/(TK(I+1,K)/CP(I+1,K))) 

  TKoverCP_s = 1.d0/((1.d0-fs)/(TK(I,K)/CP(I,K)) +  

     &       fs/(TK(I,K-1)/CP(I,K-1))) 

  TKoverCP_n = 1.d0/((1.d0-fn)/(TK(I,K)/CP(I,K)) +  

     &       fn/(TK(I,K+1)/CP(I,K+1)))   

  

C---------------- 

  diffcond_w = TKoverCP_w*(deltaz/delx_w)*xw 

       diffcond_e = TKoverCP_e*(deltaz/delx_e)*xe 

  diffcond_s = TKoverCP_s*(deltax/delz_s)*xmean 

  diffcond_n = TKoverCP_n*(deltax/delz_n)*xmean 

c ------ 

  flowrate_w = rho_w*v_x(i-1,k)*deltaz*xw 

  flowrate_e = rho_e*v_x(i,k)*deltaz *xe 

  flowrate_s = rho_s*v_z(i,k-1)*deltax *xmean 

  flowrate_n = rho_n*v_z(i,k)*deltax*xmean 

c ------ 

  peclet_w = flowrate_w/diffcond_w  

  peclet_e = flowrate_e/diffcond_e  

  peclet_s = flowrate_s/diffcond_s  

  peclet_n = flowrate_n/diffcond_n  

 



179 

 

C 

  TNL_W = dmax1(flowrate_w,0.d0) 

  TNL_E = dmax1(-flowrate_e,0.d0) 

  TNL_S = dmax1(flowrate_s,0.d0) 

  TNL_N = dmax1(-flowrate_n,0.d0) 

 

  TV_W = diffcond_w*dmax1(0.d0,(1.d0-0.1d0*dabs(peclet_w))**5.) 

  TV_E = diffcond_e*dmax1(0.d0,(1.d0-0.1d0*dabs(peclet_e))**5.) 

  

  TV_S = diffcond_s*dmax1(0.d0,(1.d0-0.1d0*dabs(peclet_s))**5.) 

  TV_N = diffcond_n*dmax1(0.d0,(1.d0-0.1d0*dabs(peclet_n))**5.) 

C 

   RHO_W = RHO(I,K)*fw + RHO(I-1,K)*(1.0d0-fw) 

   RHO_E = RHO(I,K)*fe + RHO(I+1,K)*(1.0d0-fe) 

   RHO_S = RHO(I,K)*fs + RHO(I,K-1)*(1.0d0-fs) 

   RHO_N = RHO(I,K)*fn + RHO(I,K+1)*(1.0d0-fn) 

c ------ 

   diffcond_w = rho_w*d_w*deltaz/delx_w 

     &                                             *xw 

   diffcond_e = rho_e*d_e*deltaz/delx_e 

     &                                             *xe 

   diffcond_s = rho_s*d_s*deltax/delz_s 

     &                                             *xmean 

   diffcond_n = rho_n*d_n*deltax/delz_n 

     &                                             *xmean 

c ------ 

   flowrate_w = rho_w*v_x(i-1,k)*deltaz 

     &                                             *xw 

   flowrate_e = rho_e*v_x(i,k)*deltaz  

     &                                             *xe 

   flowrate_s = rho_s*v_z(i,k-1)*deltax  

     &                                             *xmean 

   flowrate_n = rho_n*v_z(i,k)*deltax 

     &                                             *xmean 

 

C 

  XWEST(I,K) = -(TNL_W + TV_W)    

  XEST(I,K) =  -(TNL_E + TV_E) 

  ZSUD(I,K) = -(TNL_S + TV_S) 

  ZNORD(I,K) = -(TNL_N + TV_N) 

 

  a0p = RHO_0(I,K)*deltax*deltaz/DT  

     &                                       *xmean 
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  CENTRE(I,K) = (-(XWEST(I,K)+ XEST(I,K) +  

     &    ZSUD(I,K) + ZNORD(I,K)) + a0p)*(1.d0/relaxt) 

 

  SM(I,K) =a0p*T_0(I,K) +  

     &   (1.d0-relaxt)*centre(i,k)*T(I,K) 

                            

c print* 

c print*,'i k xw xe xm=',i, k, xw, xe, xmean 

c print*,'w e s n=',XWEST(I,K),XEST(I,K),ZSUD(I,K),ZNORD(I,K) 

c print*,'a0 centre sm t_0=',A0P,CENTRE(I,K),SM(I,K), T_0(I,K) 

c print* 

c read* 

 

    ENDDO 

 ENDDO 

 goto 001 

C ****************** BC on axis and skin *********************** 

  DO k=1,NM 

   i=0   

   fe = (xc(i+1)-xg(i+1))/dxc(i+1) 

   delx_e = dxc(i+1) 

   deltaz = dzg(k) 

 

c  xe=xg(i) 

c  xmean = (xg(i) + xg(i-1))/2. 

 

  xe=xg(i+1) 

  xmean = (xg(i) + xg(i+1))/2. 

 

c print*, k, xe, xmean 

C ------   

   RHO_E = RHO(I,K)*fe + RHO(I+1,K)*(1.d0-fe) 

   TKoverCP_e = 1.d0/((1.d0-fe)/(TK(I,K)/CP(I,K)) +  

     &       fe/(TK(I+1,K)/CP(I+1,K))) 

 

   diffcond_e = TKoverCP_e*(deltaz/delx_e) 

     &                                           *xe 

 

   flowrate_e = rho_e*v_x(i,k)*deltaz  

     &                                           *xe 

   peclet_e = flowrate_e/diffcond_e  

c goto 002 

C  PRINT*, XC(0), zc(0), T(0,0)-273.15 

  DO k=1,NM 
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   T(0,K) = T(1,K) 

   SM(0,K)= T(1,K) 

 

C PRINT*, XC(0), zc(k), T(0,k)-273.15 

 

  ENDDO ! K=1,NM 

C PRINT*, XC(0), zc(nm+1), T(0,nm+1)-273.15 

002 continue 

 

 goto 003 

c-------- bc on outer shell -----------  

 

       DO K=0,NM+1 

   Z1=ZC(K)*100 

   Z2=Z1*Z1 

   Z3=Z2*Z1 

   Z4=Z3*Z1 

   Z5=Z4*Z1 

   Z6=Z5*Z1 

   T(LM+1,K)=0.0069*Z5 - 0.1835*Z4 + 1.8781*Z3 + 

     &    - 9.2281*Z2 + 21.492*Z1 + 1162.4 + 273.15  

c   T(LM+1,K)=-0.0019*Z6 + 0.0572*Z5 - 0.6975*Z4 + 4.3409* 

c     &    Z3 - 14.746*Z2 + 26.407*Z1 + 1161.4 + 273.15  

   SM(LM+1,K)= T(LM+1,K) 

       ENDDO 

003 continue 

004 continue          

 RETURN 

 END    

 

C********************************************************************** 

      SUBROUTINE CONCENTRATION (CHI, T, P, V_X, V_Z, 

     &   D, D_P, D_T, 

     &   I0_C, K0_C, C0, 

     &   RHO_MOLE, RHO_MOLE_0, RHO, RHO_0, 

     &   XWEST, XEST, CENTRE, ZSUD, ZNORD,SM, 

     &   DXC, DXG, DZC, DZG, XC, XG, ZC, ZG, 

     &   II, N_MAX, N_COMP, KX, KZ, LM, NM, 

     &   ZN,RELAXCONC) 

C********************************************************************** 

C ATTENTION: SI HARMONIC INTERPOLATION EMPLOYED 

C********************************************************************** 

       

      IMPLICIT REAL*8(A-H,O-Z) 



182 

 

 

      DIMENSION CHI(N_MAX,0:KX,0:KZ) 

      DIMENSION ZN(N_MAX,0:KX,0:KZ) 

 

      DIMENSION V_X(0:KX,0:KZ) 

      DIMENSION V_Z(0:KX,0:KZ) 

 

      DIMENSION RHO_MOLE(0:KX,0:KZ) 

      DIMENSION RHO_MOLE_0(0:KX,0:KZ) 

 

      DIMENSION RHO(0:KX,0:KZ), RHO_0(0:KX,0:KZ)  

 

      DIMENSION P(0:KX,0:KZ),T(0:KX,0:KZ)  

 

      DIMENSION D(N_MAX,N_MAX,0:KX,0:KZ) 

      DIMENSION D_P(N_MAX,0:KX,0:KZ) 

      DIMENSION D_T(N_MAX,0:KX,0:KZ) 

       

      DIMENSION XWEST(0:KX,0:KZ),XEST(0:KX,0:KZ) 

      DIMENSION CENTRE(0:KX,0:KZ),SM(0:KX,0:KZ) 

      DIMENSION ZSUD(0:KX,0:KZ),ZNORD(0:KX,0:KZ) 

 

      DIMENSION DXC(0:KX),DXG(0:KX),XC(0:KX),XG(0:KX) 

      DIMENSION DZC(0:KZ),DZG(0:KZ),ZC(0:KZ),ZG(0:KZ) 

            

      COMMON /TIME_STEP/ DT,DT0 

 

C      COMMON /PARA/ PERME, PORO    

     

c print*,'cv coeff Calc:  hit [Enter]/[Return] to continue' 

c read* 

 

      DO I=0,LM+1 

  DO K=0,NM+1 

   XWEST(I,K)=0.0d0 

   XEST(I,K)=0.0d0 

   CENTRE(I,K)=1.0d0 

   ZSUD(I,K)=0.0d0 

   ZNORD(I,K)=0.0d0 

c   SM(I,K)=CHI(II,I,K) 

   SM(I,K)=ZN(II,I,K) 

  ENDDO 

      ENDDO 
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C ***************************************************************       

      DO I=1,LM 

  DO K=1,NM 

 

C ************* interpolation coeff *****************************  

   deltax = dxg(i) 

   deltaz = dzg(k)   

c ------ 

   delx_w = dxc(i) 

   delx_e = dxc(i+1) 

   delz_s = dzc(k) 

   delz_n = dzc(k+1) 

c ------ 

   fe = (xc(i+1)-xg(i+1))/dxc(i+1) 

   fw = (xg(i)-xc(i-1))/dxc(i) 

   fs = (zg(k)-zc(k-1))/dzc(k) 

   fn = (zc(k+1)-zg(k+1))/dzc(k+1) 

 

 

c  xe=xg(i) 

c  xw=xg(i-1) 

c  xmean = (xg(i) + xg(i-1))/2. 

 

  xe=xg(i+1) 

  xw=xg(i) 

  xmean = (xe + xw)/2. 

 

c ------ 

   D_W = D(II,II,I,K)*fw + D(II,II,I-1,K)*(1.0d0-fw) 

   D_E = D(II,II,I,K)*fe + D(II,II,I+1,K)*(1.0d0-fe) 

   D_S = D(II,II,I,K)*fs + D(II,II,I,K-1)*(1.0d0-fs) 

   D_N = D(II,II,I,K)*fn + D(II,II,I,K+1)*(1.0d0-fn) 

 

c print*,'i k xw xe xm=',i, k, xw, xe, xmean 

c print*,'fw fe fs fn=',fw,fe,fs,fn 

c print*,'d_w d_e d_s d_n=',d_w,d_e,d_s,d_n 

c read* 

 

 

 

c ------ 

   DT_W = D_T(II,I,K)*fw + D_T(II,I-1,K)*(1.0d0-fw) 

   DT_E = D_T(II,I,K)*fe + D_T(II,I+1,K)*(1.0d0-fe) 

   DT_S = D_T(II,I,K)*fs + D_T(II,I,K-1)*(1.0d0-fs) 
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   DT_N = D_T(II,I,K)*fn + D_T(II,I,K+1)*(1.0d0-fn) 

c ------ 

   DP_W = D_P(II,I,K)*fw + D_P(II,I-1,K)*(1.0d0-fw) 

   DP_E = D_P(II,I,K)*fe + D_P(II,I+1,K)*(1.0d0-fe) 

   DP_S = D_P(II,I,K)*fs + D_P(II,I,K-1)*(1.0d0-fs) 

   DP_N = D_P(II,I,K)*fn + D_P(II,I,K+1)*(1.0d0-fn) 

c ------ 

   RHO_W = RHO(I,K)*fw + RHO(I-1,K)*(1.0d0-fw) 

   RHO_E = RHO(I,K)*fe + RHO(I+1,K)*(1.0d0-fe) 

   RHO_S = RHO(I,K)*fs + RHO(I,K-1)*(1.0d0-fs) 

   RHO_N = RHO(I,K)*fn + RHO(I,K+1)*(1.0d0-fn) 

c ------ 

   diffcond_w = rho_w*d_w*deltaz/delx_w 

     &                                             *xw 

   diffcond_e = rho_e*d_e*deltaz/delx_e 

     &                                             *xe 

   diffcond_s = rho_s*d_s*deltax/delz_s 

     &                                             *xmean 

   diffcond_n = rho_n*d_n*deltax/delz_n 

     &                                             *xmean 

c ------ 

   flowrate_w = rho_w*v_x(i-1,k)*deltaz 

     &                                             *xw 

   flowrate_e = rho_e*v_x(i,k)*deltaz  

     &                                             *xe 

   flowrate_s = rho_s*v_z(i,k-1)*deltax  

     &                                             *xmean 

   flowrate_n = rho_n*v_z(i,k)*deltax 

     &                                             *xmean 

 

c ------ 

   peclet_w = flowrate_w/diffcond_w  

   peclet_e = flowrate_e/diffcond_e  

   peclet_s = flowrate_s/diffcond_s  

   peclet_n = flowrate_n/diffcond_n  

 

C **********************************************************           

C ** PART OF COEFFICIENTS DUE TO THE NONLINEAR TERM **** 

C 

   TNL_W = dmax1(flowrate_w,0.0d0) 

   TNL_E = dmax1(-flowrate_e,0.0d0) 

   TNL_S = dmax1(flowrate_s,0.0d0) 

   TNL_N = dmax1(-flowrate_n,0.0d0) 
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C **********************************************************           

C ** PART OF COEFFICIENTS DUE TO THE VISCOUS TERM ********** 

   

   TV_W = diffcond_w*dmax1(0.0d0,(1.0d0- 

     &         

 0.1d0*dabs(peclet_w))**5.) 

   TV_E = diffcond_e*dmax1(0.0d0,(1.0d0- 

     &         

 0.1d0*dabs(peclet_e))**5.)   

   TV_S = diffcond_s*dmax1(0.0d0,(1.0d0- 

     &         

 0.1d0*dabs(peclet_s))**5.) 

   TV_N = diffcond_n*dmax1(0.0d0,(1.0d0- 

     &         

 0.1d0*dabs(peclet_n))**5.) 

         

c print*,'i k xw xe xm=',i, k, xw, xe, xmean 

c print*,'fw fe fs fn=',fw,fe,fs,fn 

c print*,'tv_w tv_e tv_s tv_n=',tv_w,tv_e,tv_s,tv_n 

c read* 

 

C **********************************************************           

C ** Second Member  **************************************** 

 

   SM_T_W = - RHO_W*DT_W*(T(I,K)-T(I-1,K))*deltaz/delx_w

        

     &                                                          *xw 

   SM_T_E = + RHO_E*DT_E*(T(I+1,K)-T(I,K))*deltaz/delx_e 

     &            

    *xe 

   SM_T_S = - RHO_S*DT_S*(T(I,K)-T(I,K-1))*deltax/delz_s 

     &            

    *xmean 

   SM_T_N = + RHO_N*DT_N*(T(I,K+1)-T(I,K))*deltax/delz_n 

     &            

       *xmean 

c --------------- 

   SM_P_W = - RHO_W*DP_W*(P(I,K)-P(I-1,K))*deltaz/delx_w 

     &            

    *xw 

   SM_P_E = + RHO_E*DP_E*(P(I+1,K)-P(I,K))*deltaz/delx_e 

     &            

    *xe 

   SM_P_S = - RHO_S*DP_S*(P(I,K)-P(I,K-1))*deltax/delz_s 
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     &            

    *xmean 

   SM_P_N = + RHO_N*DP_N*(P(I,K+1)-P(I,K))*deltax/delz_n 

     &            

    *xmean 

  

C --- Cross Diffusion --- 

 

   SM_X_W=0.0D0 

   SM_X_E=0.0D0 

   SM_X_S=0.0D0 

   SM_X_N=0.0D0 

   SM_X_C=0.0D0 

 

   DO KK=1,N_COMP-1 

    IF(KK.NE.II) THEN 

     D_W =(D(II,KK,I,K)*fw + D(II,KK,I-1,K)*(1.0d0-

fw)) 

     &                                             *xw 

     D_E =(D(II,KK,I,K)*fe + D(II,KK,I+1,K)*(1.0d0-

fe)) 

     &                                             *xe 

     D_S =(D(II,KK,I,K)*fs + D(II,KK,I,K-1)*(1.0d0-

fs)) 

     &                                             *xmean 

     D_N =(D(II,KK,I,K)*fn + D(II,KK,I,K+1)*(1.0d0-

fn)) 

     &                                             *xmean 

     SM_X_W = SM_X_W - RHO_W*D_W* 

     &      (CHI(KK,I,K)-CHI(KK,I-

1,K))*deltaz/delx_w 

     SM_X_E = SM_X_E + RHO_E*D_E* 

     &      (CHI(KK,I+1,K)-

CHI(KK,I,K))*deltaz/delx_e 

     SM_X_S = SM_X_S - RHO_S*D_S* 

     &      (CHI(KK,I,K)-CHI(KK,I,K-

1))*deltax/delz_s 

     SM_X_N = SM_X_N + RHO_N*D_N* 

     &      (CHI(KK,I,K+1)-

CHI(KK,I,K))*deltax/delz_n 

    ENDIF 

   ENDDO 

 

   XWEST(I,K) = -(TNL_W + TV_W)    
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   XEST(I,K) =  -(TNL_E + TV_E)   

   ZSUD(I,K) = -(TNL_S + TV_S)   

   ZNORD(I,K) = -(TNL_N + TV_N) 

 

   A0P = RHO_0(I,K)*DELTAX*DELTAZ/DT 

     &                                         *xmean 

 

   CENTRE(I,K)=(1.d0/RELAXCONC)*(-

(XWEST(I,K)+XEST(I,K)+ 

     &        + ZSUD(I,K) + ZNORD(I,K)) 

+ A0P) 

   SM(I,K)=A0P*ZN(II,I,K)+ 

     &     + SM_T_W + SM_T_E + SM_T_S + SM_T_N + 

     &     + SM_X_W + SM_X_E + SM_X_S + SM_X_N + 

     &     + (SM_P_W + SM_P_E + SM_P_S + SM_P_N)+ 

     &     + (1.0d0-

RELAXCONC)*CENTRE(I,K)*CHI(II,I,K) 

 

c print*,'i k xw xe xm=',i, k, xw, xe, xmean 

c print*,'w e s n=',XWEST(I,K),XEST(I,K),ZSUD(I,K),ZNORD(I,K) 

c print*,'a0 centre sm zmn=',A0P,CENTRE(I,K),SM(I,K), ZN(II,I,K) 

c read* 

 

  ENDDO 

 ENDDO 

 

 

C ************ BC on (the axis and) the right wall ************ 

 

 DO K=1,NM 

 

 

C ------ wall     

========================================================== 

 

  i=lm+1     

  fw = (xg(i)-xc(i-1))/dxc(i) 

  delx_w = dxc(i) 

  deltaz = dzg(k) 

 

  xw=xg(i-1) 

  xmean = (xg(i) + xg(i-1))/2. 

 

C ------   



188 

 

 

  D_W=D(II,II,I,K)*fw+D(II,II,I-1,K)*(1.0d0-fw) 

  DP_W = D_P(II,I,K)*fw+D_P(II,I-1,K)*(1.0d0-fw) 

  DT_W = D_T(II,I,K)*fw+D_T(II,I-1,K)*(1.0d0-fw) 

  RHO_W = RHO(I,K)*fw + RHO(I-1,K)*(1.0d0-fw) 

 

  diffcond_w = rho_w*d_w*deltaz/delx_w 

     &                                        *xw 

 

 

c ------   

   flowrate_w = rho_w*v_x(i-1,k)*deltaz 

     &                                             *xw 

c ------ 

   peclet_w = flowrate_w/diffcond_w  

 

 

  TNL_W = 0.0d0 

  TV_W = diffcond_w 

 

 

C **********************************************************           

C ** Second Member  **************************************** 

 

   SM_T_W = - RHO_W*DT_W*(T(I,K)-T(I-1,K))*deltaz/delx_w

        

     &                                                          *xw 

c --------------- 

   SM_P_W = - RHO_W*DP_W*(P(I,K)-P(I-1,K))*deltaz/delx_w 

     &                                                          *xw 

 

C --- Cross Diffusion --- 

 

  SM_X_W=0.0D0 

  DO KK=1,N_COMP-1 

 

   IF(KK.NE.II) THEN 

    D_W =(D(II,KK,I,K)*fw + D(II,KK,I-1,K)*(1.0d0-fw)) 

     &                                        *xw 

    SM_X_W = SM_X_W - RHO_W*D_W* 

     &      (CHI(KK,I,K)-CHI(KK,I-

1,K))*deltaz/delx_w 

   ENDIF    

  ENDDO 
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  XWEST(I,K) = -(TNL_W + TV_W)  

  A0P = 0.0  

  

  CENTRE(I,K)=(1.d0/RELAXCONC)*(-(XWEST(I,K)+XEST(I,K)+  

     &        + ZSUD(I,K) + ZNORD(I,K)) 

+ a0p) 

   

  SM(I,K)=a0p*ZN(II,I,K)  + SM_T_W + SM_X_W +SM_P_W + 

     &      (1.0d0-

RELAXCONC)*CENTRE(I,K)*CHI(II,I,K) 

 ENDDO ! k=1,nm 

 

 goto 001 

C ********************************************************** 

 

C ---- CONDITIONS AT TOP AND BOTTOM ENDS 

C========================================================= 

  DO I=0,LM+1 

   K=0 

c            DO II=1,N_COMP-1             

     CHI(II,I,K)=ZN(II,I,K) 

     SM(I,K)= ZN(II,I,K) 

c              ENDDO 

  ENDDO 

  

 

  DO I=0,LM+1 

   K=NM+1 

c            DO II=1,N_COMP-1             

     CHI(II,I,K)=ZN(II,I,K) 

     SM(I,K)= ZN(II,I,K) 

c             ENDDO 

  ENDDO 

001 continue 

 

C======================== BC AT THE AXIS ================== 

 

  DO K=1,NM 

c            DO II=1,N_COMP-1             

c     CHI(II,0,K)=CHI(II,1,K) 

     SM(0,K)=CHI(II,1,K) 

c              ENDDO 

  ENDDO 
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C========================================================= 

c print*,'cv coeff Calc- END:  hit [Enter]/[Return] to continue' 

c read* 

 

 RETURN 

 END  
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