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ABSTRACT 

Robotic Tooling Calibration Based on Linear and Nonlinear Formulations 

Mohamed Helal 

A thesis of the degree of 

Masters of Applied Science, 2015 

Department of Aerospace Engineering, Ryerson University 

 

Industrial robot calibration packages, such as ABB CalibWare, are developed only for 

robot calibration. As a result, the robotic tooling systems designed and fabricated by the user are 

often calibrated in an ad-hoc fashion. In this thesis, a systematic way for robotic tooling 

calibration is presented in order to overcome this problem. The idea is to include the tooling 

system as an extended body in the robot kinematic model, from which two error models are 

established. The first error model is associated with the robot, while the second error model is 

associated with the tooling. Once the robot is fully calibrated, the first error will be reduced to 

the required accuracy. Thus, the method is focused on the second error model. For the tool error 

calibration, two formulations were used. The first is a linear formulation based on conventional 

calibration as well as self-calibration methods while the second is a nonlinear formulation. The 

conventional linear formulation was extensively investigated and implemented while the self-

calibration was proven to be inadequate for the tooling calibration. Moreover, the nonlinear 

formulation was demonstrated to be very effective and accurate through experimental result. The 

end-effector position estimation as well as the tool pose estimation were obtained using a 3D 

vision system as an off-line error measurement technique.  
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CHAPTER 1:  INTRODUCTION 

Presented in this thesis is a development of a novel method for robotic manipulator tool 

center point calibration. This chapter is composed of two main sections that provide a full and 

quick overview of the topics discussed in the following thesis. 

The first section of this chapter provides a general overview of the thesis background 

regarding multiple topics. It starts by a brief history of the industrial automation development 

during the last few decades. It also provides a complete description of the robotic manipulators 

and their characteristics as well as their advantages and disadvantages. It progresses by 

discussing the main disadvantages focusing on the lack of accuracy of its main sources and 

potential solutions available. Subsequently, an introduction to the calibration process steps is 

discussed. Calibration process is also introduced from a mathematical point of view as an 

optimization problem and its possible solutions. The user problem regarding tool center point 

determination is also explained. Finally, this section ends by listing all the assumptions taken 

into consideration as well as the objectives and contributions of the thesis. 

The second section of this chapter includes a full outline of the thesis and a brief 

explanation of each of the following chapters.   
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1.1 Background and Objectives 

Major industries such as aerospace and automotive industries are mainly focusing on 

increasing their productivity rates by increasing the efficiency of their industrial processes. As a 

result, the main trend is directed towards the automation of most of these processes. Since the 

use of the first automated robotic system in the early 1960s and until the current date, industrial 

automation using robotic systems has been rapidly developed and perfected to perform several 

production tasks [1]. Spray painting, welding, assembly and material handling are some 

examples of the tasks that could be performed by industrial robots today.  

The development of industrial robotic systems is a result of the progress in several 

disciplines such as mechanical, electrical, programming and control sciences. An industrial robot 

is a mechanically actuated mechanism that is controlled by a means of a computer system. 

Unfortunately, an exact definition of an industrial robot is not clearly provided as it is 

occasionally disputed amongst specialists [2]. In general, an industrial robot is a multipurpose 

mechanical system that can be programmed to execute various tasks. They are also characterized 

by operating in wide workspace compared to the volume they occupy. For example a computer 

numerical controlled (CNC) machine is not considered to be an industrial robot because it is 

specifically built for performing particular tasks. Their volumetric space is also much larger than 

their workspace field [1].     

Industrial robotic manipulator is a mechanical structure that resembles the human arm. It 

consists of a series of links connected together with joints. It is fixed at the base on one end and 

at the other side it ends with an end-effector or tool. The movement of the robotic manipulator is 

being actuated at each axis of motion such as rotational and/or translational axis. The position 
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and the velocity of each of the robot’s joints are being determined by a means of internal sensors 

and encoders. The information determined by the sensors and encoders are fed back to the 

robot’s controller which in turn calculates the predicted position and orientation of the end-

effector. The controller then commands the actuators to implement the identified program under 

the guidance of a human control to drive the end-effector to reach the intended position and 

orientation. Due to several sources of inaccuracies, there is always a discrepancy between the 

actual end-effector’s pose and the intended pose.           

There are two main terms that are considered to be an attribute of the performance of 

robotic manipulators; accuracy and repeatability. The understanding of these two terms is mainly 

dependent on the understanding of the different error types. Errors can be divided into two main 

types; random errors and systematic errors. Random errors are due to unpredictable sources and 

they tend to vary the measurements uniformly around a true value. While the systematic errors 

sometimes called biases is the deviation of the mean value away from the true value. The 

repeatability of a robotic manipulator is the measurement of the precision or randomness of 

achieving the same pose of the robot’s end-effector multiples of times under the exact same 

conditions. The accuracy of the robot’s end-effector is the measurement of the closeness of the 

actual pose to the required pose, which is a direct representation of the system systematic errors 

[3]. In general, industrial robotic manipulators are characterized by their high repeatability which 

usually varies between the values of 0.1 to 0.03 mm. On the other hand, the accuracy values of 

industrial manipulators are considered to be significantly worse than their repeatability values 

which usually lie in the order of 1 mm [4].  
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Robotic manipulator’s accuracy is an important factor in various industry applications. 

Welding, drilling and machining are some applications that require high accuracy systems to be 

performed. The position/pose of the end-effector with respect to the base of the robot or to an 

external frame of reference has to be accurate enough for performing these jobs. The 

inaccuracies encountered in any robotic manipulator could be divided into two main sources, 

geometric and non-geometric. First, geometric errors are a result of the robotic geometric 

parameters. Second, the non-geometric sources could be mapped to different factors such as 

gears backlash, encoders’ accuracy, links flexibility and errors due to thermal and wear effects 

[5]. 

Any robotic manipulator could be mathematically represented as a non-linear function of 

the robot geometric parameters and joint variables. The robot geometric parameters are the 

parameters that represent the geometry of the links and their connection together. However, the 

joint variables are the representation of the joints displacements, for example, a revolute joint 

would be presented by an angle and a prismatic joint would be presented by a length.  Hence, 

there are two main approaches investigated by researchers and used by industry to significantly 

increase the accuracy of robotic manipulators. The first approach is called calibration which is 

mainly concerned by adjusting the geometric parameters of the non-linear function to eliminate 

the end-effector errors. The second approach is called compensation which focuses on correcting 

the tip errors by changing the joint variables of the robot, in other words, controlling the 

displacements of joints of the robotic arm.  

As a result of the inherent convenience of the calibration approach with respect to the 

compensation techniques, calibration became the main focus of researchers for further 
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development during the last few decades. Many techniques and algorithms have been developed 

to improve the accuracy of robotic manipulators. Furthermore, many software packages were 

created by robotic manufacturers such as ABB CalibWare which provide an easy and quick tool 

for calibration.  

Calibration process is divided into four main steps which are kinematic modeling, 

measurement, identification and finally implementation. Kinematic modeling is the very first 

step that is required for the calibration process. Kinematic modeling is basically formulating a 

mathematical model that represents the robotic manipulator as a function of its geometric 

parameters and joint variables. The second step is the measurement system which provides 

sufficient information of the robot’s hand position and orientation corresponding to multiple 

configurations of the manipulator. The third step is called the identification step which is mainly 

concerned with using the kinematic model and the measurement information to estimate the 

parameters that reduces the tip errors. Finally, implementation or correction is the step that 

investigates the usage of the estimated robot’s parameters to physically increase the robot’s 

accuracy [5, 16].        

The main objective of any calibration problem is finding the geometric parameters that 

drive the residual errors towards zero. Calibration is an iterative process that starts with an initial 

guess which is close to the actual value, where the initial guess is the robot’s nominal geometric 

parameters based on the robot’s CAD models. In an essence, any calibration process is 

considered to be multivariable nonlinear optimization problem [16]. There are many ways for 

solving an optimization problem depending on the nature of the problem. The solutions could be 

divided into two main categories, namely linear and non-linear. The first approach is done by 
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approximating the whole system with a linear model and then solving it. The second approach 

deals with the system as a non-linear problem using multiple ways for finding good estimates. As 

a result of the advancements in computer and computational fields, search methods became a 

popular non-linear approach for many researchers. One of the main advantages of the linear 

approach is having a fast convergence rate towards parameters estimates. On the other hand, 

linear approach exhibits many difficulties in certain conditions such as matrix singularities. This 

could be avoided using non-linear approaches which are characterized by a relatively slow 

convergence rate. 

Robots manufacturers usually provide their customers with software programs or services 

as an easy to use calibration packages. Since robotic arms have several applications, users 

customize the robot for serving their needs by designing different tools and gadgets which are 

mounted on the robot’s end-effector. Due to manufacturing and assembly errors encountered in 

attaching an extra tool link to the robot, the overall accuracy of the robot reduces significantly. 

This forces users to perform a secondary calibration process to correct the errors of the tool link. 

The calibration of the tool link is done in an ad-hoc fashion, in other words, case by case 

scenario. It is also usually done for specific axes, which are most relevant to the application and 

not for the full pose. This is a tedious, time and money consuming process which also lacks any 

systematic approach and heavily depends on the skill level of the technician performing the 

calibration.         

The main topic presented in the following thesis is focusing on developing a new 

systematic calibration method for correcting the geometric parameters errors of the robotic 

mounted-tools. The method in this thesis is developed based on the following assumptions: 
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- The geometric parameters errors of the robotic manipulator have to be calibrated to a 

sufficient accuracy. In accordance to that condition the robotic manipulator was 

considered to be perfectly accurate with zero errors. The following assumption is 

important as the transformation vector from the robot’s end-effector flange to the 

robot’s base should be perfectly known. 

- The intrinsic parameters of the 3D vision system as well as the camera system have to 

be determined and calibrated. The vision system and camera have to be calibrated so 

they could accurately capture tip errors.   

The main objectives of this thesis are summarized and listed below in the following 

points: 

- Develop a new robotic tool center point (TCP) calibration algorithm based on linear 

and nonlinear approaches. There are two linear approaches; the first approach is 

based on the conventional calibration technique using least squares while the second 

approach is based on the technique developed by Gong et al. [53] for calibrating a 

robotic manipulator system. The non-linear approach would be based on a widely 

used computer search algorithm called genetic algorithm (GA).  

- Investigate both the linear and the nonlinear formulations and determine their 

limitations, advantages, disadvantages and effectiveness.  

- Use a 3D vision system as well as the camera system for developing multiple 

techniques for the robot’s end-effector position estimation and the tool orientation 

estimation.  
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- Verify the developed techniques via computer simulations and determine the 

limitations and conditions for conducting experiments. 

- Finally, conduct an experiment to validate the simulation results and the overall 

designed calibration formulation.     

1.2 Thesis Organization 

This thesis is divided into six main chapters in addition to the introduction. In this section 

the organization and a complete outline of the thesis is provided as well as a concise description 

of the contents of each section. 

Chapter 2 is a complete survey that covers all of the topics introduced in this chapter. The 

chapter starts with the four main steps of the calibration process, which are modeling, 

measurement, identification and implementation. In addition, a complete section was fully 

dedicated to discuss the self-calibration methods and techniques. Finally, the last two sections 

provide an overview of the differences between the tool center point (TCP) calibration and the 

hand-eye calibration. 

Chapter 3 discusses the very first step of building a calibration model which is creating a 

forward kinematic model for the given system. The problem of calibration is discussed and the 

basis of the kinematic model would be introduced. Then, a full system description is provided. 

Finally, an error model is created to describe the relation between the tip pose errors and the 

links geometric errors.  

Chapter 4 presents the process of building a calibration formulation based on the 

system’s kinematics and error models derived in chapter 3. The first calibration model is based 
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on the commonly used approach of linearizing the forward kinematic model of the system using 

the conventional calibration as well as the self-calibration algorithms. Afterwards, a nonlinear 

formulation is developed using genetic algorithm as a search method for determining the 

geometric errors. A comparison between different measurement techniques for the different 

calibration formulations is discussed. 

Chapter 5 starts with introducing the measurement system used for the calibration process 

developed in this thesis. Then multiple techniques of tool pose estimation and end-effector 

position estimation will be presented and simulated. The simulations in this chapter provide the 

limitations and conditions that must be taken into consideration for performing the experiments.  

Chapter 6 provides the experimental set-up for the end-effector position estimation as 

well as for the tool pose estimation. The calibration algorithms are then applied and the results 

obtained are presented and discussed.  

Chapter 7 presents the final conclusion of the thesis, the contributions as well as the 

proposed future work.   
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CHAPTER 2:  LITERATURE REVIEW 

This chapter includes a general coverage of the different topics that were introduced in 

this thesis as well as the previous research that was conducted on each of these topics. The 

literature review will cover the following topics. The first topic is a brief description of the 

kinematic models that were developed specifically for the purpose of calibration procedure. The 

second section of this chapter is divided into multiple parts that introduce different measurement 

technologies and techniques for the calibration process. The third topic will summarize the 

methods developed for solving the calibration formulation using linear and non-linear 

approaches. Following this section is an explanation of the implementation methods used for 

achieving a complete calibration procedure. Afterwards, a whole section is dedicated for 

providing a quick glimpse of the importance of the self-calibration methods and some of the 

techniques used by different researchers. This Chapter ends with two sections that are mainly 

concerned by clarifying the differences between tooling calibration and hand-eye calibration 

techniques. There is also a full coverage of all the techniques developed for tooling calibration 

and the most famous hand-eye calibration methods.  
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2.1 Kinematic Modeling for Manipulator Calibration 

There are two main types of models for any robotic manipulator which are the forward 

model also known as Direct Geometric Model (DGM) and inverse model or Inverse Geometric 

Model (IGM). The first is the Direct Geometric Model (DGM), its main purpose is to 

mathematically relate the output of the joints movements to the final end-effector position and 

orientation. The second is the Inverse Geometric Model (IGM) which aims at using the 

knowledge of the end-effector position and orientation to find all the corresponding joints 

movements. Any calibration process can be divided into four main steps that start with kinematic 

modeling. Kinematic modeling for calibration is mainly concerned with the first type which is 

the Direct Geometric Model (DGM). 

 Any robotic manipulator is composed of a combination of links connected together by 

one of two types of joints. These joints are the revolute joint and the prismatic joint. Any other 

complex type of joint could be expressed as a compound of these two types of joints with no 

links in between [5]. Both joints are characterized by having one degree of freedom as the 

revolute joint provides a rotation around a fixed axis, while the prismatic joint provides a 

translation along a fixed axis.  

There are multiple methods that could be found in literature regarding the development of 

kinematic models for calibration purposes. The effectiveness of each of these models can be 

described based on three main factors which are completeness, equivalence and proportionality 

[6].  First is completeness of the model which denotes the availability of enough variable 

parameters that fully describe the motion of the manipulator. Second is the model equivalence 

which means the ability of conversion from one complete model to another. The Third and last 
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factor is the model proportionality which means that any variation in the robot should be 

proportionally represented by a variation in the model. The lack of model proportionality with 

the actual model may lead to a numerical instability during the calibration process.  

The robotic system/workspace is composed of multiple objects moving in space in 

relation to each other. The basic problem is the ability of expressing the position and orientation 

of all the workspace objects and their relation to each other. Kinematics is a field of classical 

mechanics that is concerned with describing the relative position, orientation and motion of 

different bodies with each other. A robotic manipulator can be described as a series of links 

connected with joints and can be expressed mathematically by attaching frames to each link. The 

relation between the frames can be described using several techniques and approaches. The most 

famous approach is the Denavit-Hartenberg parameters representation [7].  

Using the four DH parameters that express the relation between the two links, a 

homogeneous transformation matrix can be constructed to transform from one frame to the other. 

An expression of the robot manipulator can be attained by combining all the homogeneous 

transformations from the base all the way to the robot’s end-effector. The final transformation 

form is the relation between the robot’s end-effector as a function of all the robot’s joints which 

is known as the Direct Geometric Model (DGM). Many researchers have used the DH 

parameters method for kinematic modeling for their calibration problems such as Perriera [9], 

Wu [10, 11], Zhen [12] and Payannet et al. [13].  

Although being a successful method at the beginning, the Denavit-Hartenberg parameters 

approach was discovered later to have some major deficiencies especially for the calibration 

purposes. The major drawback of the DH parameters representation was discovered and 
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discussed by Mooring [14] and Hayati [15]. It was discovered that there is a major discrepancy 

experienced by the applying the method in the special case of a robot designed with two or 

several parallel revolute joints. The general case, where there is a unique common normal 

between the two revolute joints. The uniqueness of the common normal does not exist when the 

revolute joints are parallel and it could be chosen anywhere. As a result of the calibration 

process, if the revolute joints axes were discovered to be slightly off their parallelism, at that 

instance the axes must have a unique common normal which might be in a totally different 

position from the assumption made at the beginning. Other problems such as the lack of the base 

frame location choice and the manipulator “zero position” were also considered as limitations of 

the DH parameters method [16].  

The limitations and weaknesses of the Denavit-Hartenberg model was determined and 

carefully studied by many researchers. Many researchers have introduced some modifications to 

the DH parameters representations to avoid the undesirable discontinuity due to parallel revolute 

axes. Hayati et al. [17] have proposed a method that replaces the common normal with a plane 

perpendicular to the first joint axis and includes the origin of its frame. The point where the plane 

intersects with the second joint axis is the origin of the second joint frame. The direction of the 

x-axis of the second frame is determined by the direction of the line connecting the origins of the 

two frames. Other methods were also developed to solve the DH parameters method such as 

Ibarra and Perreira [9] by using an error matrix and Hayati [15] by introducing a method to 

describe the error of the axes that are not parallel. The modified DH model was used by a 

number of author in different applications is such as Gatla et al. [24] and Ligtca et al. [25]. 
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Another model was formulated by Stone et al. [18] is called the S Model. A frame is 

attached at each joint and then related to each other using 6 parameters as a modified version of 

the DH parameters model. This model is considered to be incomplete since the base frame could 

not be arbitrarily located [19]. More complex models were developed later with more sets of 

parameters to provide a complete description of the manipulator. As a consequence parameters 

identifiablility methods were developed for reducing the number of parameters to avoid the 

Jacobian matrix singularity [16].      

A method that does not demand the need of the manipulator’s geometry and does not 

provide inconsistent results in special cases such as the DH parameters model was discussed by 

Mooring [14]. The method uses six parameters to represent the relation between each of the 

frames attached to each link. The six-parameter model uses three parameters as a vector to locate 

the position of one frame with respect to another one. It also uses three more parameters to 

express the orientation of the frames with respect to each other. There are different methods of 

describing the orientation of frames such as the Roll, Pitch, Yaw method or Euler angles method 

[2]. The six-parameter model was used for robot calibration modeling by several researchers 

such as Whitney et al. [21], Hollerbach [22] and Chen et al. [23].      

2.2 Measurement Tools 

The robotic manipulator is a system that could be described by an input-output 

relationship. The robot’s end-effector pose is the output of the combination of several links/joints 

geometries and displacements inputs [26]. The kinematic model of the robot manipulator 

covered in the previous section relates the end-effector pose output to the joints inputs. By 

determining the actual output of the system through measurements and comparing it to the 
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expected output, the errors could be mapped to the corresponding inputs. Mapping techniques to 

find the actual inputs is the topic of the third step of the calibration process covered in the 

following section.   

As mentioned in the introduction of this thesis that the calibration is a process that is 

divided into four main steps in which measurement comes as the second step. The measurement 

step for the calibration process is mainly concerned by determining the full pose or a partial pose 

data of the end-effector given a combination of the joints configurations. Usually multiple 

measurements are needed for performing any calibration process for two main reasons. The first 

reason is to eliminate the measurement noise or the random errors. The second reason is to find 

the best set of parameters that minimizes the errors in, preferably, all the possible configurations 

within the workspace. The measurement process is usually done by exciting the robot’s joints to 

reach a certain configuration. The joints’ displacements are recorded and the robot’s end-effector 

pose is measured. The process is repeated for multiple robot configurations to gather enough 

measurement data [16, 27].  

The two main elements that affect the measurement process are the chosen measurement 

system itself and the measurement technique. There are different measurement-systems that will 

be introduced and discussed in brief in this section, in depth knowledge of these systems are 

found in [28]. The measurement system should satisfy certain criteria regarding the calibration 

process such as accuracy, repeatability, effectiveness and easiness. In this section the six most 

famous measurement systems would be introduced, these systems are the laser trackers, laser 

interferometers, Coordinate Measuring Machines (CMMs), cameras, theodolites and wire-draw 
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encoders. There are also other systems such as inclinometers, ball-bars, short range and time of 

flight devices that will not be discussed.  

2.2.1 Laser Tracking Systems 

The laser tracking system is considered to be one of the most advanced measurement 

tools as it has a high accuracy of 0.1 mm or even less over a range of few meters. Shown in 

Figure 2-1 below, is a diagram of the basic concept of the laser tracking system operation. The 

system is composed of two receiver units T1 and T2 and a retroreflector target. The receiver 

shoots a laser beam at the retroreflector target mounted on the robot’s end-effector. The beam 

gets reflected back to the receiver which uses the polar and azimuth angles to calculate the 

position of the end-effector. There are more advanced laser tracker systems that use absolute 

distance measurements in addition to the two angles such as utilized by Yurtagul [26], Gong et 

al. [29] and Meng et al. [31]. 

 

 

 

 

2.2.2 Laser Interferometers 

Laser interferometers are devices that measure the linear distance of an object with 

respect to its position. The basic principle of the laser interferometer operation is based on light 

Figure 2-1: Laser Tracking Concept Diagram [5]. 
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interference phenomena. The basic structure of a laser interferometer is shown below in Figure 

2-2. It is composed of a laser device that emits a laser beam through a beam splitter which splits 

it into two beams and then recombines them on the surface of a photodetector. The interference 

between the original beam and the reflected one creates a pattern which enables the measurement 

of the distance. In some modern devices the laser interferometer is combined with the laser 

tracker in one unit that measures the distance and the angles and determines the position of the 

target.  

 

 

 

 

 

A laser interferometer and an optical sensor were used by Majarena et al. [30] to calibrate 

a parallel mechanism. The laser interferometer used is considered to be a very accurate linear 

displacement device with an accuracy of 0.02 μm. It was used for calibrating non-geometric 

errors such as gear backlash of an order 53 μm.  

2.2.3 Coordinate Measuring Machines (CMMs) 

Coordinate measuring machines (CMMs) are very precise and accurate mechanical 

machines that could determine the location of a point in the space. CMMs could reach very low 

Figure 2-2: Laser Interferometer Concept Diagram [16]  
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accuracies on the order of 0.01 mm. Usually CMMS are large expensive mechanical machines, 

shown in Figure 2-3, which are not considered to be a convenient measurement device in an 

industrial environment. Some portable CMMs were developed for higher convenience but with 

much lower accuracy. CMMs are usually used in lab experiment set-ups rather than being used 

for industrial purposes.     

 

 

 

 

 

 

 

The positioning accuracy of PA10-6CE was significantly reduced from 1.8/2.45 mm to 

0.33/0.71 mm by Lightcap et al. [25]. An aluminum frame was attached at the Robot’s end-

effector which ends with three spheres. A CMM machine was used to take multiple 

measurements of the surface of each sphere and the least square method was used to determine 

the center of the spheres.  

Mooring and Padavala [33] used a small CMM machine with a repeatability of 0.1 mm 

and accuracy of 0.1 mm to develop a pose measuring system. The system was used to collect 

Figure 2-3: Modern CMM Machine [32] 
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data for 90 poses to determine the parameters of five different models for their PUMA 560 

robotic manipulator.     

2.2.4 Camera Type Devices 

Another device of a great interest to researchers for robotic manipulator calibration is the 

charged couple device (CCD) camera. The camera system is composed of a lens and a 2D light 

sensitive array that is a structure of number of pixels. The more the number of pixels in the array, 

the better the resolution of the camera is and hence a better accuracy. A camera with 512 × 480 

pixels resolution was used by Zuhuang et al. [34] for developing a kinematic calibration model 

for PUMA robotic arm.  

    

 

 

 

There are two main camera setups used by researchers which are the moving camera 

setup and the fixed camera setup. The first setup, shown in Figure 2-4, is the moving camera 

setup which is done by mounting a single or a stereo camera system on a robotic arm end-

effector. The second setup, shown in Figure 2-5, is the fixed camera setup which is done by 

fixing a camera on the workspace of the robot. The second approach has a major disadvantage 

which is the need of a high resolution camera with a large field of view. These two conditions 

are usually hard to combine since one is complimentary to the other. On the other hand the first 

Figure 2-5: Fixed Camera Setup [38] Figure 2-4: Moving Camera Setup [36]  
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approach is considered to be more efficient than the second approach since the camera system 

has to only detect the calibration pattern rather than the whole workspace.  

A camera feedback system was used by Gatla and Lumia [24] to detect the laser point 

controlled by a robot on an arbitrary plane. The system was also used to change the robot 

configurations to move the laser point to the required position. The resolution of the camera 

system used was 0.05 mm which corresponds to 1 pixel.  

A CCD camera system mounted on the robot’s end-effector was used by Motta et al. [37] 

to develop a calibration algorithm based on 3D vision based measurement system. The method 

developed was proved to achieve an accuracy that ranges from 0.2 mm to 0.4 mm. The 

calibration process was experimentally applied on two robotic systems which are the ABB IRB-

2400 and the PUMA-500 robots.    

2.2.5 Theodolites 

Theodolite, shown in Figure 2-6, is basically a small telescope which is mounted on two 

rotary axes as the laser tracker receiver. The line of sight could be determined accurately using 

two angles which are the polar and azimuth angles. Using two units such as shown in the 

diagram in Figure 2-7, the position of a certain target could be accurately determined. The 

accuracy range of the theodolite is very good and has the order of 0.02 mm. Old versions of the 

theodolites were operated manually and the data were calculated and stored by the means of a 

computer. The modern theodolites were designed to be fully automated to track a lighting object 

mounted on the target intended to be measured. A detailed description and explanation of 

modern theodolites could be found in Cooper [35].   
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Chen and Chao [23] have used three theodolites with stereo-triangular technique for their 

measurements. The three theodolites were operated manually and the data were collected and 

calculated by a computer. The accuracy of their measurements was fully verified to be in the 

order of 0.02 mm within 1 m. these measurements were used for developing a calibration 

algorithm for reducing the position errors of the PUMA 760 robotic arm from 5.9 mm to 0.28 

mm.  

Whitney et al. [21] have also used theodolites measurements to develop a calibration 

algorithm for serial link manipulators. They have used theodolites to measure the tool position in 

addition to the robot’s joint encoders. The calibrated technique used was verified to reduce the 

manipulator’s error for as low as 0.3 mm. 

2.2.6 Wire-Draw Encoders      

A robot tracking system called (ROBOTRAK) used by McMaster et al. [71] for robot 

calibration and tracking. ROBOTRAK, shown in Figure 2-8 below, is a system that uses three 

Figure 2-6: Theodolite [16] Figure 2-7: Theodolite System Diagram [5] 
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wire-draw encoders which are connected to the robot tip via three wires. The system operates 

based on triangulation method. The encoders are located in known locations in space and 

continuously measure the length of the three wires.  The robot tip position could be easily 

calculated using the relative positions of the encoders in addition to the wires lengths. 

 

 

 

 

 

 

 

The absolute accuracy of the robot track system was determined to be 0.5 mm in a range 

of 2m×2m×0.7m. The system is also capable of performing robot tip path measurements, 

dynamic analysis and recording the tip velocity and acceleration.       

2.3 Identification 

 Identification of the robot’s kinematic model parameters is the third step of the 

calibration process after modeling the robotic manipulator and gathering a set of measurement 

data. The main objective of the identification process is finding a set of geometric parameters 

Figure 2-8: ROBOTRAK Measurement System [71] 
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that minimizes the errors between the model’s predicted values and the measured data. The 

identification step has three basic requirements; first, a mathematical model of the robotic 

manipulator. Second, undetermined variables that requires estimation which are usually the 

unknown parameters given in the mathematical model. Third requirement is a set of 

measurements that relates the output to the input of the mathematical model [16]. 

As mentioned in the thesis introduction, the calibration problem is mathematically 

considered to be a multivariable nonlinear optimization problem. Identification methods could be 

divided into three main categories. First, linear approach and nonlinear approach where linear 

approach is mainly determined by linearizing the robot’s mathematical model or leave it as a 

nonlinear problem. Second, recursive method or non-recursive method where the first requires a 

set of parameters that has to be updated through an iterative process and the second is just a 

direct estimation of the set of parameters. Third, deterministic and stochastic techniques which 

depend on the treatment approach of the measurement noises in the developed model. [16] 

The two main approaches for parameter identification are the linear and the nonlinear 

approaches which have their own advantages and disadvantages. As observed by Pathre et al. 

[39] that the linear approach leads to convergence of the errors approximately ten times faster 

than that of the nonlinear approach. Even though the linear approach leads to a faster 

convergence, the nonlinear approach is considered to be more robust than the linear approach in 

determining large errors. Linearizing the robot’s kinematic model is essentially done by using 

Taylor expansion and ignoring the higher order terms which leads to the determination of the 

Jacobian matrix. This is basically what is known as the error model which could be solved using 

linear least-square methods. Using a linearized model in addition to an ordinary least squares 
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technique in an iterative approach is known as Gauss-Newton algorithm. Gauss-Newton 

algorithm leads to a fast convergence under two main conditions; starting with good initial 

values such as the robot’s nominal geometric parameters and the model should not exhibit any 

severe nonlinearity [40].  

A modified algorithm of the Gauss-Newton technique was introduced by Levenberg [41] 

and Marquardt [42] and was named after them as the Levenberg-Marquardt algorithm. This 

algorithm was developed to solve Gauss-Newton technique limitations as it does not provide 

parameters estimation in case of singular matrices. It was noted that Levenberg-Marquardt 

algorithm performs well in all conditions even for large errors but with a slow convergence rate 

[16]. This algorithm was used by Chao and Yang [43] to prove the validity of the method by 

applying it on the data presented by Chen and Chao [23] and yielding the same results.   

Researchers have used different techniques for the parameters identification problem to 

improve the efficiency of the calibration processes. A linear Cartesian error model was used by 

Wu [10] to generate Cartesian error envelopes which could be minimized. Another method was 

proposed by Yahui and Xianzhong [45] which basically depends on representing the rotation 

matrices by quaternions and then using Levenberg-Marquardt method to solve the nonlinear 

equation. Wand et al. [46] presented a method that uses screw axis identification (SAI) method 

based on the product of exponentials (POE) model. It was used for calibrating a robotic 

manipulator with a stereo-camera vision system. A two-level nonlinear optimization using 

Levenberg-Marqardt approach was used by Lightcap et al. [25] to improve the positioning 

accuracy of the PA10-6CE Robot.  
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There are other popular nonlinear approaches that have been widely used as a result of 

the advancements in the computation techniques and computers. Search algorithms are 

considered to be a reliable and effective type of techniques. Genetic algorithm is a search 

algorithm that was used by multiple researchers for calibration purposes. Lin et al. [47] have 

used genetic algorithm combined with Monte Carlo simulation for the calibration of modular 

reconfigurable robots (MRRs). Even though genetic algorithm is a reliable technique and usually 

leads to convergence, one major disadvantage of search methods in general is their relatively 

slow rate of convergence.    

The main focus that is of a great concern at this stage of the calibration process is the set 

of data measurements acquired. The identification process of the parameters could be greatly 

affected by the measurement noises in addition to the unmodeled errors. As a result, the 

reduction of measurement noises is an important aspect of the parameters identification process. 

The main defined problem is determining the minimum set of robot configurations during the 

measurement process that reduces the measurement noises. The optimal set of robot 

configurations could be easily done by using simulation experiments to perform an observability 

analysis as presented in Joubair et al. [27], Zhuang et al. [48] and Sun and Hollerbach [49]. The 

observability analysis is usually performed using one of two methods which are singular value 

decomposition (SVD) or QR decomposition of the Jacobian matrix. The SVD could be used to 

maximize the values of what is known by the observability indices. Joubair et al. [27] used the 

SVD approach to compare between two calibration algorithms for six-axis industrial robot. 

Another approach is the analysis of the condition number of the Jacobian matrix which was 

proved to be related to the observability indices by Driels and Pathre [50]. The condition number 

analysis was used by Watanabe et al. [51] to determine the set of required measurements and it 
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was concluded that the condition number is a good indication of the stability and effectiveness of 

the identification process. Khalil et al. [52] used the QR decomposition technique for 

determining the parameters identifiability and concluded that a random set of robot 

configurations provide a good condition number.           

2.4 Implementation 

Implementation or sometimes called “verification and correction” is considered to be the 

last and final step of any calibration process. This step is mainly concerned with using the 

calculated information of the robot’s parameters to actually improve the accuracy of the robot 

manipulator. There are two basic approaches for correcting the manipulator’s parameters. First 

method is the correction of the robotic manipulator’s parameters inside the controller. 

Unfortunately, there are two main problems that are of great importance which are the 

modifiability of the controller’s software and the type of the model saved in the controller. There 

are some controllers that do not allow the adjustment of the model’s nominal parameters. There 

are also some controllers that include only a geometric model type of the manipulator and do not 

include the non-geometric parameters. So as a solution of the modifiability problem, the second 

method is to adjust the targets positions in the controller instead of adjusting the robot’s 

parameters. Adjusting the positions of the targets is called creating fake targets. [26]    

There are two important robotic applications which are the off-line programming 

application and the teaching application. The off-line programming application is a modern 

method that uses a simulation of the robotic manipulator from a CAD or CAM program to 

control the actual robot on the workshop floor. The teaching application is the method of directly 

programming the robot’s joints to do perform a certain moves. Unlike off-line programming 
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application, teaching application does not require the knowledge of the robot’s kinematic model. 

For the off-line programming application the inverse kinematic model is an essential requirement 

for the calculation of the joint’s angles. Therefore, the implementation step is absolutely 

necessary for an accurate inverse model. Implementation is also necessary for teaching 

application in case of changing robots which requires an algorithm that adjusts the joints angles 

at each instant [16].     

2.5 Self-Calibration 

As mentioned in the previous sections of the literature review, there are many methods 

and techniques that were developed for performing a complete robotic manipulator calibration. 

Various measurement techniques were presented in the measurement section such as Coordinate 

Measuring Machines (CMMs), Laser trackers, theodolites and Cameras. Unfortunately, most of 

the calibration techniques developed and the measurement systems used are difficult and 

expensive to be applied on the workshop floor. As a result, researchers have been investigating a 

type of manipulator calibration that is easy to be implemented on the manufacturing floor known 

as self-calibration. The main advantage of the self-calibration techniques is that they do not 

require external measurement devices and systems.  

A self-calibration algorithm was developed by Gong at al. [53] for the calibration of 

serial manipulators. The method requires a light sensor to be mounted at the robot’s end-effector 

which has the ability to find the center a hole. Using a calibration jig with multiple holes, the 

sensor is guided using the robot to find the center of each of the holes. Then using an algorithm 

that was derived based on the relation of the holes with respect to the robot configuration, the 

robot parameters could be identified through an iterative process. Another method was 
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developed by Gatla et al. [24] using only the robot joint sensors and encoders and since there are 

no external measurement systems used for this algorithm, it is considered to be a self-calibration 

method. In this method a laser pointer mounted at the robot’s end-effector which points to a 

constant arbitrary location. Then using the joint encoders the robot parameters could be 

effectively determined. There are different types of the self-calibration method which mainly 

depend on the constraints. The first method is using location or position constraint. A different 

type is using a distance measurement such as used by Gatla et al. [24]. Another type is using a 

plane constraint such as the method used by Zhuang et al. [54].           

2.6 Tool Center Point (TCP) Localization 

As clearly mentioned in the introduction, the main objective presented in this thesis is 

developing a systematic calibration algorithm targeting the robot tool center point. A lot of 

attention was directed towards the calibration of the robotic manipulator itself without any 

concern of the application. As a result, many calibration techniques have been developed to 

increase the accuracy of robotic manipulators. In other words, the calibration techniques 

developed mainly focused on increasing the accuracy of the robot’s end-effector position with 

respect to the robot’s base frame. There are also many calibration software programs that were 

developed for facilitating the calibration of these robotic manipulators such as ABB CalibWare. 

The main problem manifests itself as the manufacturers of such manipulators ship them to the 

users. Each user uses the robotic manipulator for a different application which requires a 

different tool to be mounted on the robot’s end-effector. Although the robot could be fully 

calibrated by the manufacturer or by any calibration software, the user experiences significant tip 

inaccuracies. Manufacturing tolerances and assembly errors of the tool mounted by the user 
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affect the overall accuracy of the system. This problem leads the users to perform a secondary 

calibration to correct the errors created by the mounted tool. Users tend to perform this 

calibration in an ad-hoc fashion or on an axis by axis basis. This approach is a time and money 

consuming method as well as it depends on the skill of the workers performing the calibration. It 

is also considered to be an ineffective method in certain cases such as in the case of a tool 

exchanger mechanism or in applications that require the calibration of all the axes. 

 

 

 

 

The calibration of the robotic tool center point using a camera system is sometimes 

referred to as hand-eye calibration. There are many papers found regarding hand-eye calibration 

techniques such as (partial list) [56], [57] and [58]. Only few were found to clearly mention the 

distinction between the robot’s hand (end-effector) and the mounted tool such as mentioned by 

Dornaika and Horaud [55] and shown in Figure 2-9. 

The latest techniques used for robotic tool center point calibration could be divided into 

two main approaches. The first approach was presented by Hallenberg [59] for industrial usage 

and by Ayadi et al. [60] for medical applications. The second approach was developed by Cheng 

[61] for industrial application.  

 

Figure 2-9: Hand-Tool vs. Hand-Eye Diagram [55] 
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 Hallenberg [59] proposed a system that is composed of a robotic manipulator with an 

industrial tool mounted at its end-effector. A single camera is used for the calibration procedure 

in addition to a computer with the developed algorithm. The robotic manipulator was assumed to 

be calibrated to a reasonable accuracy, so that the transformation from the robot’s base to the 

end-effector is accurately known. The main idea starts by calibrating the camera’s intrinsic 

parameters and then taking an image of the tool mounted on the robot’s end-effector. Using a 

few image processing techniques and algorithms on the image captured, the tool tip position 

could be easily extracted from the image. The next step is formulating the problem as T2X1=X2T1 

as shown in Figure 2-10, where T1 is the base - end-effector transformation, T2 is the camera – 

tool tip transformation, X1 is the tool tip – end-effector transformation, X2 is the camera – base 

transformation.  The equation could then be solved for X1 which is the tool-hand transformation. 

Ayadi et al. [60] focused on applying the same technique for robotic-assisted puncture on 

small animals. The technique was used to find the relative position of a needle mounted on a 

robot with respect to the robot’s end-effector. A stereoscopic camera system was used to 

Figure 2-10: Tool Center Point Calibration Setup [59] 
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determine the needle tip pose instead of a single camera system. The technique used in this 

research was proven to reduce the tool errors to less than 0.35 mm. 

Cheng [61] proposed a totally different approach for the calibration of robotic tool tip. He 

introduced an external measurement system that uses a cable device that locates the tool tip with 

respect to a specific frame. Using multiple robot configurations as shown in Figure 2-11 below 

and specifically developed software, the robot’s TCP errors could be significantly reduced.   

 

  

 

 

 

 

2.7 Hand-Eye Calibration 

Hand-eye calibration is a well-known problem that was completely identified and 

considered by researchers since 1989. Hand-eye calibration is mainly concerned by a camera 

system which is mounted on the robot’s end-effector and correcting the errors between the 

camera frame and the robot’s end-effector frame. Due to assembly and manufacturing errors the 

position and orientation of the camera frame cannot be accurately determined with respect to the 

robot’s hand (end-effector) frame.  

Figure 2-11: Multiple Robot Configurations [61] 
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The calibration nature of this problem is slightly different from the conventional robotic 

manipulator calibration. The main difference lies in the fact that the transformation between the 

camera frame and the robot’s hand frame is fixed and does not change. In contrast, a traditional 

robotic manipulator calibration problem has different transformations from the robot’s base to 

the robot’s hand which corresponds to different robot configurations.  As a result, it is clearly 

noticed from the previous researches that researchers do not approach the hand-eye calibration 

using the traditional calibration approach. The traditional calibration approach is divided into 

four main steps which were explained in details in the previous sections, these steps are 

modeling, measurement, identification and implementation. The Hand-eye calibration is usually 

determined as a one-step accurate transformation and not as determining the errors for each 

single parameter.  

 

 

 

 

 

A really well-known formulation that was proposed by Shiu and Ahmad [62] and 

developed later by many researches such as Park and Bryan [63], Zhuang and Shiu [64] and 

Daniilidis [65] is in the form of AX =XB shown in Figure 2-12., where A is the transformation 

between the robot’s end-effector (hand) in two different configurations, B is the transformation 

Figure 2-12: Hand-Eye Calibration Diagram [62] 
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between the sensor’s frames (Camera frame) in two different configurations and X is the 

transformation between the robot’s hand and the camera’s frame.  

In this chapter the basics of the robotic manipulator’s calibration process were 

introduced. Multiple measurement techniques and tools for conducting the calibration process 

were covered. Finally, different error identification techniques were discussed in addition to 

multiple calibration system set-ups.       
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CHAPTER 3:  KINEMATIC AND ERROR MODELLING 

The very first step of building a calibration model for our system is by laying the basis of 

creating a forward kinematic model for the system. There are several approaches for building a 

kinematic model for a robotic arm manipulator discussed in different number of papers and texts 

such as [11,12] and [15-18]. One of the main approaches that are widely used is the four 

Denavit–Hartenberg parameters. Another approach is the six-parameter model that describes any 

robotic link in terms of three position vectors and three rotation angles. Since the DH parameters 

model was proven to exhibit several problems such as the violation of the proportionality 

requirement; the six-parameter model will be used to express the kinematic model in this thesis.  

Creating a forward kinematic model for a robotic arm manipulator is essentially 

describing the position and orientation of the end-effector link as a function of the robot’s 

geometric parameters and joints variable sets as described in Equation 3.1 below,  

              (   ) (3.1) 

where   is the vector that describes the pose of the end-effect with respect to the base frame.   is 

composed of two vectors which are   and  , where              
  is the position vector from 

the base frame to the end-effector frame and              
  is the vector of angles defining the 

orientation of the end-effector with respect to the base frame.   is a vector which expresses the 

joints variables set such as rotational angles for revolute joints and translational displacements 

for prismatic joints, while   is a vector of the geometric parameters set of the links.  

The main problem is that the forward kinematic model does not describe the actual pose 

of the end-effector accurately due to several error factors such as manufacturing errors, assembly 
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errors and other sources of errors. This means that the nominal kinematic parameters model 

predicts that the pose of the end-effector is given by    while due to error sources, the pose of 

the actual end-effector is given by   . Then the difference    between the nominal pose and the 

actual measured pose shown in Equation 3.2 below is the kinematic parameters errors reflected 

at the tip pose. 

           (3.2) 

There are two main methods for correcting the forward kinematic model to provide us 

with a better tip pose approximation. The first method is called compensation which is using the 

control aspect of the robot to correct the errors; that is correcting the tip pose errors by adjusting 

the joints variables as shown in Equation 3.3 below.  

    (        ) (3.3) 

where    is the set of robot’s nominal joint variables and    is the set of the compensation 

errors. 

The second method which is the topic of this thesis is known as calibration. The 

calibration method corrects the robotic manipulator tip pose by correcting the links geometrical 

parameters in the kinematic model as shown in Equation 3.4 below.  

    (        ) (3.4) 

where    is the set of the robot’s nominal geometric parameters and    is the set of geometric 

errors of the robot. 
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The kinematic modeling basis will be discussed in the following sections of this chapter. 

Then a full robotic tooling – vision system description will be provided which will help in 

building the final kinematic model for the calibration technique developed in this thesis. 

3.1 System Description 

A complete description of the system that was utilized for developing the calibration 

process is provided in this section. The system that was used as a test bed for verifying the 

calibration algorithm developed in this thesis is an automated percussive riveting system 

developed at Ryerson University [69]. The system consists of a 6 DOF ABB IRB4400 Robotic 

manipulator, a BIG 3D CREATOR vision system, a pneumatic rivet gun mounted on the robot’s 

end-effector and finally a riveting jig. The rivet gun tool is mounted on the end-effector via a tool 

mount as shown in Figure 3-1 and 3-2 below. The robot system is also equipped with a camera 

system which is directly mounted on the robot’s end-effector via a camera mount. 

 

 

 

 

 

 

 

ABB IRB4400 

Robotic Arm BIG 3D CREATOR 

Vision System 

Riveting Jig Rivet Gun 

Figure 3-1: Automated Percussive Riveting System 

Camera 
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Multiple frames have to be defined to describe the whole riveting system. As shown in 

Figure 3-3, there are four frames that describe the main system. The first frame is the frame 

associated with the 3D vision system where the positive Y axis points towards the ground and 

the positive Z axis points towards the opposite direction of the CCD sensors. The rest of the 

frames are associated with the robot system where there is a robot base frame, end-effector 

frame, camera frame and tool frame. Both the camera and the tool tip frame have the same 

orientation as the end-effector frame. 
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Figure 3-2: Robotic System with Frames 
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3.2 Robot Kinematic Modelling with Tool 

3.2.1 Position and Orientation 

Any general point given in space could be described with respect to a predetermined 

frame in form of a position vector as shown in Figure 3-4. The position vector is a 3×1 column 

vector that has the coordinates’ information of a point with respect to the origin of coordinate 

frame.  

 

 

 

 

 Figure 3-4: Position Vector 

Rivet Gun 

Tool Mount 

End-Effector 

Figure 3-3: Robot Tool System 

Camera 
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The position vector does not contain enough information to describe the pose of the body 

in space. The missing information is the orientation of the body in space with respect to a 

predetermined frame. By attaching a coordinate frame to the body in a known configuration, the 

orientation of that frame could be expressed in terms of another frame using a rotation matrix. 

Rotation matrix is a 3×3 matrix that has the projection of each of the three axes of one frame on 

the three axes of the other frame. 

Two of the main methods for explaining the orientation of one frame with respect to 

another frame will be explained. The first method using Euler angles which is a sequence of 

three successive rotations such that no two successive rotations are about the same axis. The 

second method using fixed axis rotation angles which is a sequence of three rotations about a 

fixed frame. The method which is going to be used in this thesis is Euler angles in the ZYX 

sequence. 

The physical rotation of frame 1 to frame 2 is equivalent to the rotational matrix 

transformation from frame 2 to frame 1. The following equations show the derivation of the 

rotation matrix from frame 2 to frame 1 in details. 

 

 (  )   [
              
             

   

] (3.5) 

 

 (  )   [
             

   
              

] (3.6) 

 

 (  )   [
   
               
             

] (3.7) 
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   (  ) (  ) (  ) (3.8) 

 

  
   [

                          
                          
           

] (3.9) 

where C and S stand for Cosine and Sine while Z, Y and X stand for θZ, θY, θX respectively. 

The position vector describes the position of one frame with respect to another; while, the 

rotation matrix describes the orientation of one frame with respect to another. Combined together 

we have a full pose description of a body with respect to a predetermined frame. The 

homogeneous transformation is a 4×4 matrix that is constructed by combining the rotation matrix 

with the position vector as shown in Equation 3.10 below, 

   
  [

  
 
   

    

     
] (3.10) 

   

3.2.2 Calibration System Kinematic Modeling  

The kinematic model could be developed for the described system by relating each of the 

of the system’s components to each other as shown in Figure 3-5 below. The first step of creating 

the kinematic model is by attaching frames to each component. The next step is determining the 

homogeneous transformations between the different components.  
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The pose of the end-effector as well as the pose of the tool (rivet gun) frame will be 

measured with respect to the 3D vision system using multiple fitting techniques which will be 

discussed in details in the following chapters. The nominal pose of the tool frame with respect to 

the end-effector frame could be easily determined from the design CAD models.  

The tool (rivet gun) calibration will be the focus of this thesis. The tool could be 

described in terms of the robot’s end-effector frame based on Figure 3-5 using Equations 3.11, 

3.12. 

The homogeneous transformations shown in Figure 3-5 are defined as following, 

-     
 : The homogeneous transformation from the tool tip frame to the 3D vision system frame 

which can be determined by the 3D vision system. 

Figure 3-5: Robot - 3D Vision System Diagram 
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-   
 : The homogeneous transformation from the end-effector frame to the 3D vision system 

frame which can be determined by the 3D vision system. 

-     
 : The homogeneous transformation from the tool tip frame to the end-effector frame 

which can be determined based on the      
  and    

 transformations. 

-   
 : The homogeneous transformation from the 3D vision system frame to the base frame 

which can be obtained through alignment. 

-   
 : The homogeneous transformation from the end-effector frame to the base frame which 

can be determined via the robot’s controller (refer to Appendix D). 

     
     

     
  (3.11) 

     
  (  

 )
  

    
  (3.12) 

It could be also described in terms of the robot base frame using the following equation, 

     
     

     
  (3.13) 

     
     

     
  (3.14) 

Combining both Equations 3.13 and 3.14, 

   
     

     
     

  (3.15) 

where the right-hand side of Equation 3.15 corresponds to the measured tip pose, while the left-

hand side corresponds to the calibrated tip pose.   

The transformation from the tool tip frame to the end-effector frame is the transformation 

which requires the calibration. The transformation from the end-effector frame to the vision 
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system frame is known using the end-effector position estimation technique as described in 

Chapter 5 section 2. The transformation from the tool frame to the end-effector frame is also 

known using tool orientation estimation technique as described in Chapter 5 section 3.  

3.3 Error Modelling 

In this section, a model that relates the tip pose errors to the geometric links errors will be 

formulated. The formulated error model will be used in the next chapter to map the errors from 

the tip pose back to identifying the geometric links errors. The mapping methods will include 

both linear and nonlinear approaches.  

As previously discussed, the tip pose   could be expressed as a nonlinear function of the 

links geometric parameters as well as the joint variables. In case of mounting a tool on the 

robot’s end-effector, the tool tip pose is considered as an extension of the robot kinematic model. 

The tool tip pose could also be expressed as a nonlinear function of the robot joint variables, the 

robot’s geometric parameters and the tool geometric parameters. Since the tool is mounted on the 

end-effector via a tool mount which is static, the tool would not include any joint variables. The 

following equation presents this relation, 

    
  (        ) (3.16) 

where    
 is the nominal tool tip pose,   is the robot’s joint variables,    is the nominal robot 

geometric parameters and    is the nominal tool geometric parameters. 

The forward kinematic model of the robot in addition to the mounted tool does not 

predict the precise position and orientation of the tool. The discrepancy between the actual tool 
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pose and the kinematic tool pose is due to; first, the robot’s links geometric errors; second, the 

tool/tool mount geometric errors as shown in the following equation, 

    
  (                  ) (3.17) 

Where    
 is the measured tool tip pose,     is the set of robot geometric link errors and     is 

the set of the tool/tool mount geometric link errors.  

Using both Equations 3.16 and 3.17, the tip pose errors could be determined by 

subtracting both equations. Equation 3.19 below shows that the tool tip position and orientation 

errors are a function of both the robot’s geometric link errors and the tool’s geometric link errors.  

         
      (3.18) 

       (   ̂          )    (   ̂     ) (3.19) 

By assuming that the robotic manipulator was calibrated before the user attempts to 

mount the tool on the end-effector, the term         is replaced by  ̂  which is the calibrated 

robot geometric parameters. 
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CHAPTER 4:  CALIBRATION ALGORITHM 

In the previous chapter, the system set up including the robotic manipulator, tool and the 

measurement system was described in details. Also in the previous chapter, an error model that 

describes the tool geometric errors as well as the tool pose errors captured by the measurement 

system was provided.  

In this chapter, the methods of mapping the tip errors captured by the measurement 

system to the tool geometric errors will be presented. There are two approaches for mapping the 

tip errors to the tool geometric errors which are the linear approach and the nonlinear approach. 

The first section of this chapter discusses the linear approach and its validity for the tool 

calibration application. The non-linear formulation is subsequently presented in the second 

section of this chapter.     

4.1 Linear Formulation 

 As explained in the previous chapters, the robot’s end-effector position and orientation 

could be described as a function of the robotic manipulator geometric parameters   as well as the 

joint variables   as expressed in Equation 3.1. 

Multiple methods could be used for producing the forward kinematics model for the 

robotic manipulator such as the Denavit-Hartenberg (DH) method or the six-parameter method 

as used in this thesis. The next step is the determination of the end-effector or tip infinitesimal 

pose change as a function of the infinitesimal change of the geometric parameters. This could be 

done by applying Taylor expansion as described by the following equation, 
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  (   ̂     )    (   ̂     )   
  (   ̂     )

   
  (       )    (4.1) 

Ignoring the higher order terms   in the previous equation and reordering the terms will lead to 

the following, 

              (4.2) 

where         
     is the difference between the actual (measured)    

 

  (   ̂     ) and nominal tip pose       (   ̂     ) which is the tip pose error. 

               is the difference between the actual and nominal manipulator geometric 

parameters. 

     
  (   ̂     )

   
 is the partial differentiation of the function with respect to the geometric 

parameters which is known as the robot’s Jacobian matrix. 

Equation 4.2 describes the relation between the tool geometric errors and the tip pose 

errors in a linear form. The mapping from the geometric errors to the tip errors is taking place 

through the Jacobian matrix. Hence, it is called the error mapping matrix. Furthermore, the 

calibration takes place by measuring the tip pose error and then mapping it back to the geometric 

tool errors. This could be achieved using the pseudo inverse of the Jacobian matrix also known 

as the Moore-Penrose formulation shown in the following equation, 

           (4.3) 

where     = (   
    )

      
 
 is the Jacobian pseudo inverse for an over-determined case. 
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The calibration process starts by measuring the tip pose errors of the robot in multiple 

configurations (greater than the number of unknowns) and then calculating the pseudo inverse of 

the Jacobian matrix to determine the geometric tool errors. 

4.1.1 Eye-to-Hand vs. Eye-in-Hand 

There are two set-ups that could be used for determining the tip errors    . The first set-

up is when the measurement device is fixed on the workshop floor (space fixed frame) and 

totally separate from the manipulator that requires calibration. The manipulator arm has to be 

within the range of the measurement device capability such that the measurement device could 

accurately sense the robot tip pose errors. Contrary to the first set-up, the second set-up is when 

the measurement device is mounted on the manipulator arm (body fixed frame) which requires 

calibration. In this set-up the measurement device is not static but reflects the movement of the 

robot. The robot tip pose errors are captured by comparing the errors reflected in the 

measurements against an external known element. The first set-up is called eye-to-hand while the 

second set-up is called eye-in-hand. 

The robotic system presented above includes both set-ups. The camera mounted on the 

robotic arm is an example of the second set-up which is the eye-in-hand. The eye-in-hand set-up 

is being used in the robotic tooling self-calibration algorithm developed and discussed in section 

4.4.2. However, the 3D vision device is an example of the first set-up which is the eye-to-hand. 

This set-up is the focus of the technique developed in this thesis. 
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4.1.2 Geometric Errors 

There are six geometric errors parameters expressed by    in the following equation. 

The first three errors   ,    and    are the position errors. The last three errors   ,    and    

are the orientation (angles) errors.  

                         (4.4) 

 

 

 

 

 

 

 

Referring to Figure 4-1, the actual transformation from the tool frame to the end-effector 

frame could be expressed by, 
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] (4.5) 

The transformation from the tool tip frame to the end-effector frame could be divided into 

two transformations as expressed using the following equations, 
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Figure 4-1: Tool - End-Effector Relation 
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] (4.7) 

By equating Equation 4.5 and Equation 4.7, 

     
     

     
                

     
     

     
  (4.8) 

where the orientation errors   ,    and    are introduced in the rotation matrix   
  while the 

position errors   ,    and    are introduced in the position vector   
 .  

As noticed from Equation 4.8 that the rotation matrix     
  is solely affected by the 

orientation errors. On the other hand, the position vector     
  is affected by both the orientation 

errors introduced in   
   in addition to the position errors introduced in   

 .  

4.1.3 Jacobian Matrix  

The Jacobian matrix is driven from the homogeneous transformation of the tool tip frame 

to the end-effector frame as expressed in the following equations, 

     
   [

    
     

 

  
] (4.9) 

   
           (4.10) 

where              are the columns of the rotation matrix. Then the Jacobian matrix for one 

link (i.e. two links in the robotic tooling self-calibration algorithm), 
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] 
(4.11) 

Since everything has to be expressed in terms of the robot’s base frame, the tool to end-

effector transformation has to be multiplied by the end-effector to the base transformation as 

shown in the following equations,  

     
     

     
  (4.12) 

By expanding and multiplying both transformations,   
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] (4.13) 
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] (4.14) 

From Equations 4.12, 4.13, 4.14 above, the Jacobian matrix expressed in terms of the base frame 

could be shown as following, 
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] 
(4.15) 

   can be factorized into the following matrices, 

    [
  

  

   
 ]    (4.16) 

        (  
 )    (4.17) 

For the sake of notation simplification, the following notation is used, 
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       (  

 ) (4.18) 

By substituting Equation 4.18 in equation 4.2 for n number of measurements, 
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     (4.19) 

     

[
 
 
 
 
  

 
 
  

  
 
 
  

 
  

 
 
  ]
 
 
 
 

     (4.20) 

where     is the augmented tip errors. Since    is always constant regardless of the robot pose 

because the tool/tool mount are fixed, the following simplification could be done, 
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       (4.21) 

   is a 6x6 matrix and   is a 6nx6 matrix of   
  for n measurements. where n is the number of 

measurements. Substitute into Equation 4.3, 
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       (4.22) 

where       .  

     (  
   )       (  )     (4.23) 
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As shown in Equations 4.23, the Jacobian matrix could be full rank since the size of the 

matrix is 6×6. Hence, the whole set of the tool geometric parameters could be identified. The 

next analysis step is checking the sensitivity of the Jacobian matrix to the input parameters while 

mapping the errors to the output parameters. In other words, a check of how the Jacobian matrix 

is prone to the measurement noise for determining the tool link parameters.        

The condition number of the Jacobian matrix is a measure of the sensitivity or impact of a 

small change in the input parameters on the output parameters. The condition number value is 

limited to have a value greater or equal one. A matrix with a small condition number is known as 

a well-conditioned matrix where it is more robust and less sensitive to the noise. On the other 

hand, a matrix with large condition number is known as an ill-conditioned matrix where it is 

more prone to the noise.  

From Equation 4.12 above, the Jacobian matrix driven is based on the homogeneous 

transformation from the end-effector frame to the tool tip frame. Since the three frames in Figure 

4-1 have the same orientation; the Jacobian matrix is expected to be a sparse matrix in which 

most of its elements are zero. Moreover, the tool tip frame is merely a translation from the tool 

frame by the tool length value in the Z direction. Hence, the cross multiplication portion of the 

Jacobian matrix will lead to a Jacobian matrix with most of its elements are zero and few 

elements with a large value (tool length) (refer to Appendix E). Given the tool parameters, the 

condition number for the given Jacobian matrix is in the order of 10
5
.  

A scaling factor is introduced for calculating the Jacobian matrix in order to minimize the 

value of the condition number. The scaling factor used is the normalization of the position vector 

used for the cross multiplication as shown in the equation below, 
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(4.24) 

By normalizing the position vector, the condition number of the Jacobian matrix was 

reduced from the order of 10
5 

to the approximate value of 2.6. 

4.2 Nonlinear Formulation 

Contrary to the linear formulation, the nonlinear formulation uses the forward kinematics 

model for the robot directly. The tool geometric errors are estimated and inserted in the forward 

kinematics equation to determine the tip pose. Using the difference between the estimated pose 

and the measured pose, the links geometric errors are adjusted for the subsequent iterations to 

approach the measured pose as given in the equation below, 

     (   ̂          )      
 (4.25) 

The estimation of the geometric link errors is achieved in this thesis using a search 

algorithm technique. Genetic Algorithm was used as the search technique for determining the 

geometric link errors based on the difference between the estimated pose and the actual 

(measured) pose as a fitness function. The GA’s objective is to minimize the fitness function to 

approach zero and derive the accuracy of the estimated values below the required value.  

 ‖   
     

‖
 
    (4.26) 

Where, ‖   
     

‖
 
 is the Euclidean norm of the pose error and e is the required accuracy.  
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4.2.1 Genetic Algorithm 

Genetic Algorithm is an optimization technique which is traced back to the biological 

theory of natural evolution. Genetic Algorithm was first introduced by Holland in his book 

“Adaptation in natural and artificial systems” [70]. He explained the method of using the natural 

selection principals in optimization problems and constructed the first Genetic Algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Genetic Algorithm is a stochastic search method for optimization of multivariable non-

linear systems. Genetic Algorithm is considered to a very popular search technique due to its 

Figure 4-2: Genetic Algorithm 
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robustness in finding an optimal solution. GA is a very simple and effective technique that uses 

the concept of “survival of the fittest” to optimize the results obtained at each generation. 

The GA is process is shown in the flowchart in Figure 4-2 above. The algorithm starts by 

generating a random population for a specific number of individuals set by the user. The 

population is evaluated using a fitness function designed by the user to be minimized or 

maximized. The next step determines the elimination process of the least fit individuals of the 

population by applying the selection operation based on the fitness values. The fitness values act 

as a weighting factor for each individual which determines the likelihood of the selection of 

individuals for next generation. The following step is applying three operations to the selected 

individuals from previous population which are crossover, mutation and inheritance/migration. 

The three operations create a new population with better qualities than the previous population. 

The evolved population is used as another generation which will be evaluated using the fitness 

function. The termination condition of the algorithm depends on the number of generations 

determined by the user or by the best fit (optimal solution) value. 

 Fitness Function 4.2.1.1

Formulating the fitness function is the crucial step which determines the success of the 

GA in finding an optimal solution. The fitness function must provide a result or a cost for 

comparing between multiple individual. Regarding the calibration problem, the fitness function 

should minimize the errors between the full pose of the tool based on the kinematic model and 

the measured full pose. The kinematic model provides the nominal pose of the tool which 

requires correction to be as close as possible to the measured pose as expressed in the equations, 
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     ( ( )) (4.27) 
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where    
 is the measured tool pose and    

 is the nominal tool pose. The Euclidean norm of 

the difference between the measured pose and the nominal pose is the fitness function which is 

required to be minimized. The tool pose could be expressed by the following equation, 
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 (4.29) 

where ‖   
     

‖
 
 is the Euclidean norm of the difference between the measured and 

nominal position vectors, while ‖   
     

‖
 
is the Euclidean norm of the difference between 

the measured and nominal rotation matrices. 

There are three main approaches for performing the calibration process which are the 

position only calibration, the orientation only calibration and the full pose calibration. The fitness 

function was slightly adjusted for being reduced into a position only fitness function or an 

orientation only fitness function. This was achieved by adding weighting factors to each part of 

the equation as shown below, 
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 (4.30) 

The weighting factors could either take the value of one or zero. If the weighting factor 

    is set to one while the weighting factor    is set to zero, the fitness function will be reduced 

to a position only fitness function and will completely exclude the orientation part. However, if 

the    is set to zero and    is set to one, the fitness function represents an orientation only 
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problem. If both    and    are set to one, the fitness function incorporates both position and 

orientation calibration. 

4.3 Calibration Formulation 

For each generation in the GA, the nominal position vector and rotation matrix will be 

updated by the value of the estimated geometric errors as expressed in the following equation, 

    
  (   ̂          ) (4.31) 

The updated nominal pose    
 will then be inserted into the fitness function for 

evaluating each individual within the population. A generation of a new population will be 

evolved by applying the GA operations.  

A tool calibration process has been developed based on the kinematic model developed in 

this chapter which is described by the flowchart shown in Figure 4-3 below. The calibration 

process starts by obtaining the robot’s end-effector circular shaped data points as well as the tool 

(rivet gun) cylinder shaped data points which are described in details in Chapter 5. The second 

step is determining the position of the end-effector and the orientation of the rivet gun. The 

homogeneous transformation from the end-effector frame to the 3D vision system frame is 

calculated. The following step is the calculation of the transformation from the gun frame to the 

end-effector frame based on the measurements as well as the nominal parameters. Finally, the 

GA will estimate the errors via the fitness function.  
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Figure 4-3: Calibration Algorithm 
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4.4 On-line vs. Off-line Error Measurement 

A robotic manipulators job is to repeatedly perform specific tasks on the workshop floor. 

There are two main methods for obtaining the tool tip errors    . The first is the on-line error 

measurement technique while the second is the off-line error measurement.  

The on-line error measurement requires the movement of the robot for the formulation of 

the error model against pre-measured targets such as holes. In other words, the errors are only 

determined when the robot changes its pose via an eye-in-hand set-up. However, the off-line 

method does not require the movement of the robot for formulating the error model. The error 

could be determined based on a static robot pose via an eye-to-hand set-up.  

4.4.1 On-line Error Measurement for Robots 

The root idea of the self-calibration formulation in which the robotic tooling calibration is 

based on is setting the robot in multiple configurations. By moving the robot to multiple 

configurations to measure the distances between holes, the Jacobian matrices will be different. 

Different Jacobian matrices used in the formulation will allow the mapping of the distances 

errors to the geometric links errors.  

For the calibration process to take place, the robot has to be moved such that each hole on 

the jig is within the field of vision of the measuring device (i.e. camera). Hence, the errors 

measurements have to be obtained while the robot is in operation. In this scenario, the errors 

measurements is said to be on-line since the robot is operating/on-line.     
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According to the self-calibration model proposed by Gong et al. [53] the whole model is 

based on the concept that the robot should have different configurations for measuring multiple 

targets. The purpose behind this idea is having different Jacobian matrices as following, 

            (4.32) 

where     is the set of sensor (camera) position errors,     is the set of links geometric errors.  

By measuring two different targets the equation above could be written as follows, 

    
      

          (4.33) 

    
      

          (4.34) 

where  

-     is the first target measured position 

-    
 is the second target measured position 

-    
  is the first target actual position 

-    
  is the second target actual position 

By subtracting Equations 4.33 and 4.34, the following equation could be obtained, 

    
      

      
     

 (        )    (4.35) 

By squaring both sides of the equation, 
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Assuming     is small, and then we could ignore the second order term of    , 
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Comparing this to the following form, 
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where 
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where ‖   
      

 ‖
 

 is the actual distance between the two targets measured accurately using 

CMM and ‖   
     

‖
 

 is the calculated distance between the two targets using on-line 

measurement technique via the robot-mounted camera. 

Solving for the unknowns (links parameters errors), 

         
       

 (4.41) 

where    
 

 is the pseudo-inverse of    , 
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  (   )      (4.42) 

4.4.2 On-line Error Measurement for Robotic Tooling Calibration 

The self-calibration model developed by Gong et al. [53] is the core technique used in the 

tooling self-calibration algorithm. The self-calibration system set up is composed of a robotic 

arm which requires calibration, an end-effector mounted sensor and a jig with number of holes. 

The sensor mounted on the end-effector can determine the center of any hole within its field of 

vision. The robotic arm places the sensor in front of the hole where the center’s position is 

measured with respect to the robot’s base frame. The process is repeated for all the holes on the 

jig. The distances between the holes’ centers are accurately measured using a CMM machine. An 

error formulation is developed to compare the distances calculated using the robot – sensor 

system and the distances obtained using the CMM machine. The error formulation is used to 

calibrate the geometric parameters of the robot’s links. 

The same method was implemented in the robotic tooling self-calibration paper [74]; 

however, it was only used for calibrating the tool mounted on the robot instead of calibrating the 

robot itself. A new formulation had to be developed for applying the self-calibration technique 

for calibrating the tool. The system used for performing the robotic tooling self-calibration 

process is shown in Figure 4-4 below.      

 

 

 



63 

Figure 4-5: Superimposed Theoretical Robotic Links 

 

 

 

 

 

 

The main idea of the new developed formulation is treating the tool as well as the camera 

as an extension of the kinematic model of the robotic arm. The theoretical model shown in 

Figure 4-5 was converted to the model shown in the diagram in Figure 4-6. 

 

 

 

 

 

The conversion from the model in Figure 4-5 to the model in Figure 4-6 is based on the 

transformation vector diagram of the system. It was concluded that the errors in the camera link 

will be eminently reflected through the tool link and the introduced virtual link. That led to the 

Figure 4-4: Robot Tool-Camera System CAD Model 
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elimination of the camera link and achieving a two link extension of the robotic arm as shown in 

Figure 4-6. 

 

 

 

 

 

The diagram shown in Figure 4-6 above is an extension of the robotic manipulator model. 

By considering that the manipulator was calibrated before the tooling calibration is performed, 

the errors at the tip are therefore due to the last two links. The self-calibration algorithm could 

then be applied to the robotic manipulator in addition to the tool and camera extension. The 

   in this case is a 12 x 1 vector since there are two links with six geometric errors for each. 

The robotic tooling self-calibration algorithm is a technique where the measurement 

device (camera) is being held by the manipulator that requires calibration. This set-up is called 

eye-in-hand as discussed in the previous chapter. The errors due to the extension links are 

captured in the camera measurements of the holes distances which are compared against the 

actual holes distances.  

An analysis of the limitations of the robotic tooling self-calibration could be verified and 

completely described by combining Equation 4.18 with Equation 4.41, 

Figure 4-6: Final Theoretical model diagram. 



65 

       (   
     

)
 

(  
 
 
       

 
 
   ) (4.43) 

       (   
     

)
 

(  
 
 
    

 
 
)    (4.44) 

For multiple measurements, 
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Since, 

           
 (4.46) 

Determining the pseudo inverse of   by combining the Equation 4.45 and Equation 4.42, 
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(4.48) 

By simplifying the previous equation, 

         
         (4.49) 

where   is a 3 x 3 matrix of the measurements as described in Equation 4.48 and     is a 3 x 12 

Jacobian matrix. Then the following condition must be true, 

      (  
       )    (4.50) 

The root cause of the limitations of the self-calibration algorithm could be traced back to 

Equation 4.50. As illustrated using this equation, the rank of the     which is the invertible 

portion of the pseudo inverse has a maximum rank of 3 while the size of the matrix is 12×12. 

Since the invertible portion is rank deficient (singular) given multiple measurements, the self-

calibration formulation is proven to be in adequate approach for the determination of the tool – 

camera geometric errors.  
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4.4.3 Off-line Error Measurement for Non-linear Tool Calibration formulation 

The robotic tooling self-calibration algorithm is formulated such that the robotic 

manipulator has to be moved to different locations in the workspace. The movement is necessary 

for the determination of the distances between the holes on the mounted jig. Hence, the robot has 

to be operating/on-line during acquiring the measurements for performing the calibration 

process.  

Contrary to the robotic tooling self-calibration algorithm, the nonlinear tool calibration 

formulation developed in section 4.3 has the advantage of being an off-line error measurement 

technique. The nonlinear tool calibration algorithm is formulated such that all the measurements 

could be acquired using the 3D vision system without moving the robotic manipulator. The 

measurements related to the end-effector position as well as the measurements related to the tool 

orientation are obtained while the robot is fully static/off-line.  

The advantage of the off-line error measurement against the on-line error measurement is 

focused in the simplicity of its application. For the tool calibration, the required set-up is limited 

to the 3D vision system for digitizing the shapes required in addition to a computer. The data 

could be obtained by the user and fed into the calibration algorithm developed for determining 

the errors in each axis. The user can then correct the axes that require calibration based on the 

tool application. This process could be performed on the workshop floor for multiple robotic 

systems with a very short manufacturing down time compared to the current calibration 

processes that take a significant time and skill to be performed.    
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CHAPTER 5:  MEASUREMENTS SIMULATIONS 

This chapter includes all the necessary simulations regarding every aspect of the 

measurement process. The simulations in this chapter are not only used to validate the developed 

approaches but also for determining the limitations and provide guidance for performing the final 

experiments. The first section of this chapter discusses the measurement system which will be 

used for obtaining the experimental data. The second and the third sections present the circle 

fitting and cylinder fitting methods which will be implemented for performing the tool 

calibration. The last two sections of this chapter provide the methodology for determining the 

minimum number of data points required during the experiment for achieving the required 

accuracy.    

5.1 Measurement System 

The measurement system used for the experiments is a 3D vision system which is capable 

of digitizing any point in the space within its field of vision. The system is 3D Creator FP7000 

from Boulder Innovation Group. The system is capable of digitizing any point within 10 meters 

field of view with an RMS error of 100 microns. The 3D Creator behaves similar to a Coordinate 

Measurement Machine (CMM) but with the advantage of freedom of movement.  

The measurement system is composed of two main parts. The first and the main part is 

the camera unit, shown in Figure 5-1 below, which includes three line CCD sensors. The second 

part accompanied with the system is the hand-held device, shown in Figure 5-2 below. The CCD 

line sensors receive infrared light from multiple LED’s located on the hand-held device.  
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The measurement system operates by pointing the red sphere of the hand-held device to 

the required point. On pressing the button on the hand-held gun the point is digitized and 

captured by the camera unit. The camera unit uses a triangulation method based on the infrared 

LEDs and the three CCD sensors for the determination of the point. The point digitized is always 

located at the center of the red sphere of the hand-held gun and not at the surface of the sphere. 

The 3D vision system specifications are included in Appendix F.  

 

 

  

Figure 5-2: Hand-Held Digitizer Gun 
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Figure 5-1: Camera Unit 
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5.2 End-Effector Position Estimation 

The first step of position calibration is the determination of the location of the center of 

the robot’s end-effector. The robot’s end-effector shown in Figure 5-3 below is a circular shaped 

disk that is designed for mounting the required tool. Using the 3D vision system to determine the 

center of the robot’s end-effector, the following process was used.  

 

 

 

 

 

 

 

During the last few decades, there was a need for developing circle fitting methods and 

techniques for solving a range of problems in different fields. Physicists use circle fitting 

approaches for determining the energy of particles in an accelerator based on diameter of the 

circular path of the particles. Recently, in the field of robotics and mobile robotics, it was 

necessary to develop algorithms to detect circular objects using the aid of advanced circular laser 

systems. The determination of complex curves in computer vision is based on adding multiple 

circular arcs together which required developing circle fitting techniques [67].   

X 

Y 

Z 

Z 

X 

Y 

End-Effector 

Figure 5-3: Robot's End-Effector 
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Many circle fitting techniques were developed which could be mainly divided into two 

categories. The first category is the geometric circle fits while the second is the algebraic circle 

fits. Unlike the algebraic fits, all the geometric fits use an iterative procedure approach for 

improving the fitting accuracy. For complex applications, the normal approach followed for 

circle fitting is using an algebraic fit method to determine a good initial guess which is then 

followed by using an iterative geometric fit method to improve the accuracy. In general, the 

techniques used are mainly dependant on the application and the limitations of the problem. 

Algebraic circle fitting techniques are usually simple, reliable and as accurate as 

geometric techniques if used under certain conditions. Two algebraic fit techniques were 

investigated for determining the center of the robot’s end-effector with respect to the camera 

frame. The first technique is a method developed by Bullock [68] called “Least-Squares Circle 

Fit”. The method is based on acquiring number of 2D points around the circumference of a circle 

in one frame followed by a transformation to different coordinates for solving a minimization 

problem. Finally, the solution has to be transformed back into the original coordinates. 

The second technique is a simple algebraic fit technique called “Kasa method” [67]. Kasa 

method is considered to be the simplest algebraic method for circle fitting. Similar to the 

previous method, the Kasa method approach is to minimize the objective function given below, 

    ∑  
  (5.1) 

where 

     (    )  (    )     (5.2) 
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The following step is taking the derivative of the objective function with respect to each 

of a, b and r parameters to minimize the errors between the acquired points and the circle 

parameters. The derivative of the objective function will lead to nonlinear equations which could 

be linearized using simple mathematical manipulation as explained in Appendix B.   

The main advantage of the Kasa method in addition to its simplicity and reliability is that 

it is capable of determining the exact circle instantly if the measured points lie on the circle. 

There are some conditions that need to be taken into consideration for obtaining accurate results 

using the Kasa method: 

1. The Kasa method was proven to be as accurate as any geometric method if the data 

points were taken along the circumference of a full circle. And it was determined to 

be significantly inaccurate if the data was taken along a small arc.  

2.  The data points acquired have to be located very close to the circle. In other words, 

the noise in the data points must be very small. The method was proven to provide an 

exact geometric results if the noise standard deviation is equal or less than 0.1. 

Both methods were tested by generating multiple simulations with different conditions. 

The first method was proven to be very sensitive to the location of the data points along the 

circle. The second method was proven to be very accurate and adequate for the experiment 

conditions. The results for both fitting techniques are shown in the following figures. 
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Table 5-1: Circle Fitting Methods Results 

   

 

 

 

 

 

 

Both of the methods described above require 2D data points for determining the best fit 

circle parameters. However, the measurement system described in the previous section provides 

the 3D coordinates of any point within its field of vision. As a consequence, an algorithm has to 

be developed for fitting a circle in 3D space instead of 2D space.  

An algorithm for fitting a circle in 3D space is shown in Figure 5-5. The algorithm starts 

by processing 3D data points obtained from the 3D vision system which resemble the shape of a 

circle in 3D space. The next step is generating a best fit plane by minimizing the perpendicular 

distances between all the points and the plane as explained in Appendix A.  

 X Y R 

Actual Values 3 4 5 

Least Square Method 2.9438 4.397 4.988 

Kasa Method 2.9999 4.000 4.999 

Figure 5-4: Circle Fitting using Kasa Method vs. Least Square Method 
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Afterwards, the 3D points are projected on the best fit plane and an arbitrary frame 

attached to the plane is created. The transformation from the camera frame to the plane frame is 

determined. Using the transformation, the projected points are transformed from the camera 

frame in which the points are 3D to the plane frame in which the points are 2D. The circle fitting 

method (Kasa) is used for determining the best fit circle radius and center. Finally, the circle 

center is transformed back to the camera frame.  

Figure 5-5: 3D Space Circle Fitting Algorithm 



75 

The 3D circle fitting algorithm developed above along with Kasa method for 2D circle 

fitting were verified by simulation. As shown in Figure 5-6 below, circle data point generator 

was used to generate multiple data points generally oriented in 3D space. The data points are 

shown in Figure 5-6 as blue circular-shaped points. The points were used to generate the best fit 

plane which is then used for projecting the points on to it. The projected points are shown as the 

blue cross-shaped figures. The circle center was determined and transformed back to the 3D 

vision frame as represented by the large red cross-shaped figure. 

 

 

 

 

 

 

 

 

5.3 Tool Pose Estimation 

For performing a full pose tooling calibration, the orientation of the tool must be known. 

The tool used in this robot set up as explained in the previous chapters is a pneumatic riveting 

Figure 5-6: Simulated 3D Circle Fitting Algorithm 
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gun as shown in Figure 5-7. The main problem is the determination of the orientation of the rivet 

gun. The first simple approach that could be used for determining the tool orientation is by 

obtaining only two points on the axis of the tool. The two points suggested were the end-effector 

center point and the tool center point (TCP). This approach was dismissed because of the 

following reasons: 

1. The end-effector center point is definitely not on the tool axis due to the position 

errors of the tool mount assembly and manufacturing. 

2. The tool center point (TCP) is very difficult to be determined accurately since the tool 

tip is movable and not rigid. 

 

 

 

 

 

The second approach which is guaranteed to provide the tool orientation is fitting a 

cylinder to the cylindrical shaped rivet gun barrel. Determining the orientation axis of the fitted 

cylinder is the same as determining the orientation of the tool. The main idea is to use the 3D 

vision system to digitize multiple points on the surface of the rivet gun barrel. Afterwards, an 

optimization technique would be used to fit a cylinder shape to the obtained data points. The 

Figure 5-7: Pneumatic Rivet Gun 
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orientation of the cylinder axis with respect to the camera represents the orientation of the tool 

with respect to the camera. 

Cylinder fitting algorithms were researched extensively for determining a simple cylinder 

fitting approach. Unfortunately, the problem of fitting a cylinder shape to 3D data points is 

considered to be a complicated problem due to the nonlinearity of the cylinder equations in 

general orientation in the space. A new method was formulated for cylinder fitting using genetic 

algorithm as a search method for determining the best fit cylinder parameters. 

5.3.1 Fitness Function 

The first step of using genetic algorithm for optimizing the cylinder parameters for 

obtaining the best fit cylinder is designing the fitness function. The fitness function is the cost 

function which will be minimized by the genetic algorithm by estimating the optimized 

parameters.  

A generally oriented cylinder in the space could be completely described by seven 

parameters. Three parameters of which are used for describing the position of any point on the 

cylinder axis. Three more parameters are used for describing the orientation of the axis of the 

cylinder. The last parameter is used for describing the radius of the cylinder. The following 

assumptions were used for reducing the number of parameters to five,    

1. The orientation of the cylinder axis will be described using the spherical coordinates. 

The spherical coordinate system uses only two angles which are the polar and 

azimuth angles. Using these two angles, the orientation of the cylinder axis could be 

easily determined. 
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2. The axis of the cylinder is assumed to be in a general orientation in the space. Hence, 

the axis intersects the XY plane as shown in Figure 5-8. As a result, an easy point that 

lies on the axis of the cylinder is the intersection point with the XY plane where Z is 

equal to zero.  

 

 

 

 

 

 

 

The equations that fully describe a cylinder which is generally oriented in space are given 

in Appendix C. The fitness function formulation is based on minimizing the errors between the 

radius of the cylinder and the distance from the axis to data points as described by the following 

equations, 

     ( ( )) (5.3) 
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where    is the radius of the cylinder and    and    are given using the following equations, 

    (      )    ( )    ( )  (      )    ( )    ( )       ( ) (5.5) 

     (      )    ( )  (      )    ( ) (5.6) 
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Cylinder Axis

Intersection Point

Figure 5-8: Cylinder in General Orientation 
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The developed cylinder fitting algorithm was verified by simulating 3D point cloud of a 

cylinder generally oriented in space as shown in Figure 5-9 below. The parameters of the 

generated data points are given in Table 5-2. The generated data points were used in the GA for 

estimating the best fit cylinder parameters.  The best fitness value is 1.29647 x 10
-5

, shown in 

Figure 5-10, given the GA was set to 500 generations and 500 population size. The GA cylinder 

estimated results are tabulated in Table 5-3 below. 

 

 

 

 

 

 

 

 

Table 5-2: Simulated Cylinder Data Points Parameters 

X (mm) Y(mm) Radius (mm) θ (deg) ϕ (deg) 

2.60802492 6.12454604 5 30 20 

Figure 5-9: Generated Point Cloud and Best Fit Cylinder 
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Table 5-3: Estimated GA Cylinder Parameters 

X (mm) Y(mm) Radius (mm) θ (deg) ϕ (deg) 

2.60802498 6.12454605 5 30.000012 19.9999937 

 

 

 

 

 

 

 

5.4 End-Effector Simulation 

A circular data point generator was created to simulate the measurement data points 

around the circumference of the end-effector disk. The simulation requires the number of data 

points needed by the user, the circle range which varies from 0 to 2π, the radius of the circle, the 

center of the circle before applying any transformation and finally the rotation matrix to 

transform the circle to an arbitrary position. 

Figure 5-10: Cylinder Fitting GA with 500 Generations and 500 Population 

Size 
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The main purpose of this simulation is to test the effect of the number of data points, 

obtained randomly around the circumference of the end-effector, on the accuracy of the center 

location of the end-effector using the Kasa method for circle fitting. The generator was set to 

impose normally distributed noise with a variance of 0.1 to the data points. The variance was 

chosen to represent a system with less accuracy than the current used system. The graph in 

Figure 5-12 shows the effect of the number of points on the positional accuracy of the circle 

center location. The figure clearly shows that the errors drop from approximately 0.24 at 3 points 

to less than 0.05 at roughly 15 points. 

It is concluded from this simulation that the minimum number of measurement points 

required for locating the center of the end-effector disk using the digitizer is 15 points.       

Figure 5-11: Circle Simualtion Data Points 
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5.5 Tool Simulation 

A cylinder data point generator was created to simulate the 3D point cloud obtained by 

the 3D vision system. The generator could simulate a point cloud of a cylinder in a general 

orientation in the space. Multiple parameters could be specified using the generator such as the 

intersection of the axis of the cylinder with the X and Y plane before rotation. Other parameters 

include the radius of the cylinder, the range of the points generated around the cylinder’s 

circumference as well as the range along the cylinder’s axis. Also the number of points desired 

by the user and the rotation matrix for general placing the cylinder in a general orientation. A 

cylinder point cloud shown in Figure 5-13 was generated using 1000 points in a general 

orientation, a circumference range of 2π, an axis range from 0 to 5 units and a radius of 5 units. 

Normally distributed errors with variance of 0.1 were imposed on the data points to simulate the 

inaccuracies of the measurement system.        

 

Figure 5-12: Circle Center Accuracy vs. Number of Points 
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The 3D point was simulated using two different random generators. The first generator is 

used to simulate the points around the circumference of the cylinder as well as along its axis. 

This random generator must depict the operation of randomly registering points using the 3D 

vision system by a user. The generator used for this purpose uses a uniform distribution function. 

The second generator is used to create noise for each point of the data cloud. The noise must be 

simulated to replicate the accuracy of the 3D vision system. The generator used for creating the 

noise uses a normally distributed function. The difference between the two types of generators is 

shown in Figure 5-14 below. 

The simulation was used to test the number of data points required for acquiring an 

accurate cylinder fit using genetic algorithm. The data point generator was used to create a point 

cloud for a randomly oriented cylinder. The following step was the execution of genetic 

algorithm multiple times for different numbers of data points. 

Figure 5-13: Cylinder Point Cloud with Noise 
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The genetic algorithm was tested multiple times before determining the best set of 

parameters for the most accurate optimization results. The following results were obtained using 

the following set of genetic algorithm parameters which are a population size of 500 and 1000 

generations and a stall limit of 1000 generations as well. Three main criteria were used for 

verifying the results of the fitting process which are, first the position errors, second is the 

orientation errors and finally radius errors. The position errors were determined by computing 

the Root Mean Square Position Error (RMSPE) of the point of intersection of the cylinder axis 

with the XY plane obtained from the fitting process and from the generated cylinder data points. 

The orientation errors were computed by determining the Root Mean Square Orientation Error 

(RMSOE) using the two spherical coordinates’ angles θ and ϕ. The radius error was computed 

for each set of number of points.  

Figure 5-14: Normal Distribution and Uniform Distribution 
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The RMSPE versus the number of points determined from the simulation was plotted as 

shown in the Figure 5-15 below,   

  

 

 

 

 

 

The RMSPE were noticed to be 0.07 by having only 5 data points. As shown in the 

figure, the RMSPE declines to less than 0.01 by increasing the number of data points to about 

250 or 300 points and its average stays almost constant up to 1000 points. 

 

 

 

 

 

Figure 5-15: RMSPE vs. Number of Points 

Figure 5-16: RMSOE vs. Number of Points 
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The second criterion which is the RMSOE versus the number of points was plotted as 

shown in Figure 5-16. 

The RMSOE was noticed to be above 30 with only 5 data points and it dropped sharply 

to less than 5 by increasing the data points to 20. It gradually decreases to less than 1 by 

increasing the number of points to about 200. 

Finally the radius error was plotted versus the number of points as shown in Figure 5-17 

below. Similar to the RMSPE trend, the radius sharply reduced from 0.2 to less than 0.02 by 

increasing the number of data points from 5 to approximately 250 or 300 points. 

 

 

 

 

 

 

The simulation in this section was used to determine the minimum number of data points 

required by the user using the 3D vision system to obtain the optimum cylinder fit using genetic 

algorithm. A minimum number of 300 data points is required by the user to derive the errors to 

zero.   

Figure 5-17: Radius Error vs. Number of Points 
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CHAPTER 6:  EXPERIMENTS 

This chapter is dedicated to present and analyze the experimental application of the 

techniques developed in this thesis. The chapter is divided into five sections, two of which 

discuss the circle and cylinder fitting techniques while the other three discuss the position, 

orientation and full pose calibration respectively. The experiment was conducted based on the 

results and conclusions determined from the simulations presented in the previous chapter.    

6.1 End-Effector Pose Estimation 

The first step performed in the calibration process is locating the robot’s end-effector 

position with respect to the camera frame. The process of determining the end-effector’s frame 

starts by digitizing the circular end-effector plate. The camera’s hand-held gun was used to 

determine multiple data points along the circumference of the end-effector. It was estimated 

based on the end-effector position estimation section that the minimum number of points 

required for fitting a circle to a number of points uniformly distributed on the circle is 15 points. 

For the experiment 58 points were used for ensuring better accuracy circle fitting, hence, better 

end-effector position estimation with respect to the camera frame. The data points were plotted 

and shown in Figure 6-1 below,      
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The circle fitting algorithm was applied on the experimental data points to determine the 

center of the circle. A plane was fitted to the data points; next the points were projected onto the 

plane. Finally, a circle that best fits the projected plane points was generated using Kasa method. 

The location of the circle center was then transformed back into the camera’s frame. The location 

of the end-effector position with respect to the camera frame was tabulated in Table 6-1 below, 

Table 6-1: End-Effector Location with Respect to the Camera Frame 

X(mm) Y(mm) Z(mm) 

0.050797 × 10
3 

0.006385 × 10
3
 -1.80183 × 10

3
 

According to the circle fitting algorithm described in the previous chapter, a frame has to 

be randomly constructed on the plane for transforming the data points from the camera frame to 

the plane frame. After the fitting process is complete, another frame has to be constructed which 

resembles the end-effector’s frame. As explained in chapter 4, the robot’s tool coordinates has its 

Figure 6-1: Experimental Circle Data Points (mm) 
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origin at the center of the end-effector plate. The Z axis is perpendicular to the end-effector’s 

frame and the X axis is pointing downwards. Since only the center of the end-effector which is 

the origin of the frame was determined, an extra point is required for aligning the frame with the 

end-effector.    

An alignment point located on the X axis of the end-effector’s frame was obtained using 

the digitizer. Multiple measurements were taken for the point and an average was obtained. The 

X axis was then determined using the origin and the alignment point. Finally, the end-effector 

frame was constructed as shown in Figure 6-2 below,  

 

  

  

 

 

 

 

 

 

 

 

 

  

End-Effector Frame Arbitrary Frame 

Figure 6-2: End-Effector Center and Frame Determination 
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6.2 Tool Pose Estimation 

The following step for performing the calibration process is the determination of the tool 

axis orientation and the tool center point location. The tool axis orientation is determined by 

obtaining a point cloud of the tool cylinder shape using the digitizer. It was concluded from the 

cylinder simulation that the minimum number of points required for obtaining the best cylinder 

fit is 300 points. The best cylinder fit was determined based on three criteria which are the 

position, orientation and the radius of the cylinder. For the experiment, a point cloud of 549 

points, shown in Figure 6-3, were obtained for reducing the effect of noise on the optimization 

process.  

 

 

 

 

 

 

 

The next step is using genetic algorithm for optimizing the cylinder parameters for a best 

fit to the point cloud. The GA was set to 1000 generations and 500 population size. The results 

were obtained and compared to the actual cylinder parameters. The GA did not succeed in 

Figure 6-3: Experimental Cylinder Data Points (mm) 
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determining the best fit cylinder for the point cloud. The reason was found to be due to the 

position and orientation of the actual cylinder with respect to the camera frame. It was noticed 

that the position of the actual cylinder is very far from the camera frame compared to the 

simulation. It was also noticed that the cylinder axis orientation with respect to the camera’s XY 

plane is close to being parallel. This is contrary to assumptions used for modelling the cylinder 

which states that the axis of the cylinder must not be parallel to the XY plane and that axis must 

intersect it. It was also verified using the simulation, that the GA does not return acceptable 

cylinder parameters values if the position of the cylinder is shifted to beyond 50 mm in any 

direction.  

A proposed method for solving the given problem is to introduce an intermediate frame 

which is close to the data points and creates a better orientation angle with the cylinder axis. As 

shown in Figure 6-4, the Intermediate frame is a frame which is closer and better oriented with 

respect to the points. The points will be transformed to the intermediate frame where the cylinder 

fitting takes place. After the actual frame tool (rivet gun) frame is determined using the best fit 

cylinder parameters, the gun frame could be determined with respect to the camera frame using 

the following equation,    
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P 

Figure 6-4: Introducing an Intermediate Frame Diagram 
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  (5.7) 

The intermediate frame position was determined by averaging all the cylinder data points 

and using the position of the averaged point as a position vector to the intermediate frame. The 

orientation was set to have the same orientation as the end-effector frame with respect to the 

camera frame. Genetic Algorithm was used again for fitting a cylinder to the data points with 

respect to the intermediate frame. For determining the best fit cylinder, the GA parameters were 

experimented with multiple times using 500 generations and different population sizes. The 

results could be found in Table 6-2 below, 

Table 6-2: Cylinder GA Results with respect to the Intermediate Frame 

Population Size X (mm) Y(mm) Radius (mm) θ(deg) ϕ (deg) 

100 2.9975 1.7335 17.4392 1.3776 -0.05501 

200 2.9976 1.7335 17.4393 0.1932 -0.04609 

300 2.9976 1.7334 17.4392 1.9190 -0.06084 

400 2.9976 1.7335 17.4393 0.96771 -0.05299 

500 2.9976 1.7336 17.4393 -0.11928 -0.04365 

The best fitness obtained is 131.784 using 500 Generations and 500 Population size 

shown in Figure 6-5. It was noticed that the fitness value does not change using more generations 

or bigger population sizes. 
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By observing the results obtained in Table 6-2, it is clearly noticeable that the X and Y 

position as well as the Radius are stable and consistent given different population sizes. Unlike 

the X, Y and Radius, the angles θ and φ are fluctuating.  

 

 

 

 

 

 

 

For acquiring a stable set of results for the angles, Monte Carlo estimate has to be applied 

for stabilizing the angles values. Monte Carlo estimate is a simple averaging method where the 

mean value of the estimated parameters is computed over multiple number of GA iterations as 

expressed in the following equation, 

   ̃( )   
 

 
 ∑ (  )

 

   

 (5.8) 

 

Figure 6-5: Cylinder Fitting GA with 500 Generations and 500 Population Size. 
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Table 6-3: Monte Carlo Simulation Results 

X Y Radius (mm) θ (deg) ϕ (deg) 

2.997638 1.733515 17.439245 1.314285 -0.017301 

As shown in Figure 6-6, the obtained values were used to plot the cylinder and the 

experimental data points with respect to the intermediate frame.   

 

 

 

 

 

 

 

 

The cylinder parameters were used to determine the orientation of the tool (rivet gun) 

frame with respect to the end-effector. As shown in Figure 6-7, the diagram explains the camera, 

end-effector, gun set up with respect to each other. The orientation of the gun frame was 

determined with respect to the intermediate frame. The orientation of the end-effector frame was 

also determined with respect to the camera frame in the previous section. Using the following set 

Figure 6-6: Cylinder Fitting Experimental Point Cloud 
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of equations, the gun frame orientation could be easily determined with respect to the end-

effector frame. 

   
   

     
   

  (5.9) 

   
     

  
  

   
  (5.10) 

  

 

 

 

 

 

 

 

 

 As described previously, the nominal orientation of the rivet gun frame perfectly 

matches the orientation of the end-effector frame based on the design CAD models. The 

orientation and position of both the measured frame and the nominal frame of the rivet gun with 

respect to the end-effector was compared and presented in Table 6-4.  

Table 6-4: Measured and Nominal Rotation Matrices and Position Vectors 

 Rotation Matrix Position Vector (mm) 

Measured 

0.99973901 0.02287969 0.00313807 50.71440250 

0.01369228 -0.49987496 0.86606358 331.20808750 

Figure 6-7: Camera, End-Effector and Gun Set-up Diagram  

{3D Vision} 

{Intermediate} 

{End-Effector} 

{Gun} 
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0.01864527 -0.86578654 -0.49992601 -1980.231250 

Nominal 

0.99963924 0.02683525 0.00171706 51.433657 

0.01393145 -0.48241207 0.87586855 330.970868 

0.02296312 -0.87552865 -0.48254672 -1980.661388 

 

6.3 Linear Full Pose Calibration 

By determining the tip pose errors using the nominal and the measured transformation of 

the tool frame with respect to the end-effector frame, the linear formulation for full pose 

calibration can be applied. As shown in Figure 6-8, the root mean square error (RMSE) 

converges from the value of approximately 3 to 1 × 10
-4

 in only 4 iterations. The tool position 

and orientation geometric error is presented in Table 6-5.  The calibrated rotation matrix and the 

position vector is also presented in Table 6-6 below. 

 

 

 

 

 

 

 

 Figure 6-8: Linear Calibration RMSE vs. Number of Iterations 
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Table 6-5: Linear Formulation Estimated Geometric Errors 

Δx(mm) Δy(mm) Δz(mm) δx(deg) δy (deg) δz(deg) 

-0.705815564 -0.510370452 0.000462561 -1.144895889 0.055203477 0.223368453 

 

Table 6-6: Calibrated Tool Pose Rotation Matrix and Position Vector 

 Rotation Matrix Position Vector (mm) 

Calibrated 

0.998908940 0.046707348 -0.001020997 51.040929326 

0.025909742 -0.481775206 0.875946652 331.237715206 

0.039052347 -0.875044604 -0.482390830 -1980.175216802 

6.4 Nonlinear Position Calibration 

Using the measured and the nominal rivet gun frames results determined in the last 

section, the first nonlinear calibration process that will be applied is the position only calibration. 

The aim of this calibration is to correct the errors related to the position by excluding the 

orientation parameters from the fitness function.   

The GA parameters were set to have 500 Generations and 100 Population size. The best 

fitness value determined under these conditions as shown in Figure 6-9 is 1.54239 × 10
-7

. The 

position errors determined from the calibration process are tabulated in Table 6-7.    

Table 6-7: Position Errors 

ΔX (mm) ΔY (mm) ΔZ (mm) 

-0.705815507 -0.51034175499 0.00097941593 
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The position error was added to the nominal position vector to obtain the calibrated 

position vector presented in Table 6-8 below. 

 

 

 

 

 

 

 

Table 6-8: Calibrated Position 

X (mm) Y (mm) Z (mm) 

50.714403336 331.2080880877 -1980.231250049 

6.5 Nonlinear Orientation Calibration 

The next calibration process if the orientation only calibration which will be performed 

based on the nominal and measured rotation matrices of the rivet gun frame with respect to the 

camera’s frame. By setting the weight factor of the position to zero and the weight factor of the 

orientation to one, the algorithm excludes the position parameters from the fitness function.  

Figure 6-9: Position Only Calibration with 500 Generations and 100 Population 

Size 
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The genetic algorithm parameters were set to multiple values for determining the best 

performance. The first trial was to assign the GA to run for 500 Generations and use a population 

size of 100. The fitness value determined based on these conditions is 0.00141989 as shown in 

Figure 6-10 below.   

 

 

 

 

 

 

 

The orientation errors δx, δy and δz values obtained from this calibration process are 

presented in Table 6-9 below, 

Table 6-9: Orientation Errors for 500 Generations and 100 Population Size 

δx (deg) δy(deg) δz(deg) 

-1.14584428 -0.02608992 0.22273761 

Figure 6-10: Orientation Only Calibration with 500 Generations and 100 

Population Size 
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Using the orientation errors in the Table above, the calibrated rotation matrix was 

calculated and tabulated in Table 6-10 below along with the measured and the nominal rotation 

matrices for comparison.  

Table 6-10: Measured, Nominal and Calibrated Rotation Matrices with respect to the Camera frame 

 
Rotation Matrix 

Measured 

0.99973901 0.02287969 0.00313807 

0.01369228 -0.49987496 0.86606358 

0.01864527 -0.86578654 -0.49992601 

Nominal 

0.99963924 0.02683525 0.00171706 

0.01393145 -0.48241207 0.87586855 

0.02296312 -0.87552865 -0.48254672 

Calibrated 

0.99973669 0.02291913 0.00172049 

0.01245480 -0.49988111 0.86603981 

0.01933960 -0.86578634 -0.49996905 

Since the rivet gun frame was designed to be perfectly aligned with the end-effector’s 

frame with nominal angles of zeros, the calibrated values is the summation of the nominal values 

and the orientation errors presented in Table 6-10 above. As a result the calibrated angles are the 

same as the orientation errors. 

The second trial of the orientation calibration was performed by increasing the number of 

the population size to 300 while maintaining the same number of 500 generations. It was 

observed that the best fitness value is the same as the previous trial and it stays constant as 

shown in Figure 6-11, even in the case of increasing the population size or the number of 
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generations.  The orientation errors obtained from the second calibration trial was tabulated in 

Table 6-11 below. 

 

 

 

 

 

 

 

 

Table 6-11: Errors with 500 Generations and 300 Population Size 

δx (deg) δy (deg) δz (deg) 

-1.14556673 0.03267025 -1.53282557 

 

6.6 Nonlinear Full Pose Calibration 

The final calibration process is the full pose calibration of the rivet gun. The full pose 

calibration was performed by setting the weight factor of the position parameters as well as the 

weight factor of the orientation parameters to one. This will include both the orientation and 

position parameters in the fitness function.  

Figure 6-11: Orientation Only Calibration with 500 Generations and 300 

Population Size 
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Multiple trials were performed for obtaining the best full pose calibration performance. 

The GA parameters were set to 500 Generations and 100, 300 and 500 population sizes. The best 

fitness values corresponding to each of the population sizes are 0.00172163, 0.00142031 and 

0.00141994 respectively. The results are shown in Figures 6-12, 6-13 and 6-14 below. 

 

 

 

 

 

 

 

The position and orientation errors as well as the calibrated rotation matrix and the 

position vector are tabulated in Tables 6-12 and 6-13. 

Table 6-12: Position and Orientation Errors Based on 500 Generations and 100 Population Size 

Δx(mm) Δy(mm) Δz(mm) δx(deg) δy (deg) δz(deg) 

-0.70577135 -0.51034633 0.00101015 -1.11740481 -0.03275695 0.24175341 

 

Figure 6-12: Full Pose Calibration with 500 Generations and 100 Population Size 
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Table 6-13: Calibrated Rotation Matrix and Position Vector Based on 500 Generations and 100 Population size 

 Rotation Matrix Position Vector 

Calibrated 

0.99974439 0.02259051 0.00158633 50.71444665 

0.01239659 -0.49945512 0.86628639 331.20811731 

0.01899284 -0.86604080 -0.49954145 -1980.23125971 

 

 

 

 

 

 

 

 

Table 6-14: Position and Orientation Errors with 500 Generations and 300 Population Size 

Δx(mm) Δy(mm) Δz(mm) δx(deg) δy (deg) δz(deg) 

-0.70581548 -0.51034168 0.00097945 -1.14641395 -0.02608559 0.22055166 

 

 

Figure 6-13: Full Pose Calibration with 500 Generations and 300 Population Size 
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Table 6-15: Calibrated Rotation Matrix and Position Vector Based on 500 Generations and 300 Population Size 

 Rotation Matrix Position Vector 

Calibrated 

0.99973581 0.02295725 0.00172156 50.71440262 

0.01247314 -0.49988926 0.86603485 331.20808756 

0.01937304 -0.86578062 -0.49997766 -1980.23124998 

 

   

 

 

 

 

 

 

Table 6-16: Position and Orientation Errors with 500 Generations and 500 Population Size 

Δx(mm) Δy(mm) Δz(mm) δx(deg) δy (deg) δz(deg) 

-0.70581560 -0.51034164 0.00097941 -1.14692394 -0.02608552 0.22104372 

 

Figure 6-14: Full Pose Calibration with 500 Generations and 500 Population Size 
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Table 6-17: Calibrated Rotation Matrix and Position Vector Based on 500 Generations and 500 Population Size 

 Rotation Matrix Position Vector 

Calibrated 

0.99973601 0.02294865 0.00172159 50.71440250 

0.01246900 -0.49989707 0.86603040 331.20808750 

0.01936553 -0.86577634 -0.49998537 -1980.23125000 

It was observed that the best fitness does not decrease below 0.00141994 by increasing 

the population sizes above 500 neither by increasing the number of generations above 500.  
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CHAPTER 7:  CONCLUSION, CONTRIBUTIONS AND FUTURE WORK 

7.1 Conclusion 

Robotic Tooling Calibration is a very critical step in the automation process of 

manufacturing especially during the tasks that require high level of accuracy. Different tool 

calibration methods were investigated and developed in this thesis. First, the system required for 

the calibration method was designed for considering more than one calibration approach. The 

first formulation considered for the tooling calibration is the linear formulation. The linear 

formulation was extensively studied by developing two approaches; the first is based on the 

conventional calibration using least squares, while the second is based on self-calibration 

formulation. The linear method based on self-calibration was analyzed and proven to be an 

unsuccessful approach for tool calibration due to Jacobian rank deficiency. The conventional 

calibration formulation was analyzed and implemented on the experimental data. The second 

formulation for determining the errors as well as calibrating the tool is the nonlinear approach. A 

nonlinear formulation was developed in this thesis using genetic algorithm as a search method 

for determining the tool errors. The method was simulated and the limitations regarding the end-

effector position and the tool orientation estimation were determined. The method was applied 

on the experimental data obtained from the actual robot system set-up and the errors were 

identified and the tool geometric parameters were calibrated.         

7.2 Contributions 

The contributions that were provided in this thesis could be summarized in the following points, 
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1. A robotic tooling calibration approach was developed based on a nonlinear approach 

using genetic algorithm. The developed method is robust and simple to apply in a 

manufacturing environment. The method uses an off-line error measurement 

approach which does not require any robot movements and reduces the down time of 

the manufacturing line. 

2. The linear formulation based on the self-calibration formulation was analyzed. The 

root causes of the ineffectiveness of the linear formulation based on self-calibration 

algorithm was determined and discussed. The causes are traced back to the Jacobian 

rank deficiency.  

3. The Linear formulation based on the conventional calibration, using least squares, 

was analyzed and implemented on the experimental data. 

4. A tool orientation estimation method was developed in this thesis to accurately 

measure the tool orientation. The method was developed by formulating a cylinder 

fitting algorithm which uses genetic algorithm for determining all the cylinder’s 

parameters. 

7.3 Future Work 

Robotic tooling calibration is a crucial topic which requires a lot of research for covering 

all of its different aspects. Several recommendations are provided below based on the research 

conducted in this thesis for future work.   

 



108 

First, the tool geometric errors obtained from both the linear formulation approach as 

well as the nonlinear formulation should be implemented for tool calibration. In other words, the 

errors determined should be inserted into the robot’s controller. Multiple tests have to be 

conducted to determine whether the robot can be commanded to successfully insert a rivet into a 

predetermined hole.  

Second, the robot was considered to be calibrated before tool calibration takes place. 

However, the effects of the tool weight on the accuracy of the robotic manipulator are eminent 

and should be extensively studied. A tool calibration model should be developed to account for 

the robot manipulator errors due to the tool weight. 

Third, the method developed in this thesis could be expanded to include the calibration of 

the robotic manipulator as well. By locating the tool tip pose and the vision system location with 

respect to the base frame, a formulation could be developed for including the robot geometric 

parameters errors. Also a study has to be conducted to determine the effects and contribution of 

the robot geometric errors to the tool tip errors. 

Fourth, the orientation estimation of different tool shapes must be considered. Different 

shapes fitting techniques must be developed for determining the location of different types of 

tools. Also, a laser scanner measurement tool is considered to be more appropriate for 

determining more complex shapes. For accurately determining the shape of a cylinder, around 

300 points were required. Using a laser scanner could significantly provide a lot of points in a 

short period of time. 
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LIST OF APPENDICES 

APPENDIX A – PLANE FITTING 

The equation of a plane could be described using the following equations, 

              (A.A.1) 

By reordering the terms,  

           (A.A.2) 

Minimizing the distance between the plane and the points using the following equations, 

       (       ) (A.A.3) 

    ∑(   (       ))  (A.A.4) 

 

 

 

 

 

 

 

Figure A-1: Best Fit Plane Generated for Multiple Points 
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APPENDIX B – KASA METHOD 

A circle in a 2D plane could be expressed using the following equation,  

 (    )
  (     )

      (A.B.1) 

By minimizing the errors between the points and the edge of the circle given the following 

equation, 

    (     )
  (      )

      (A.B.2) 

By taking the derivative of the function above and linearizing the parameters using the 

following, 

                      
     

      (A.B.3) 

By expanding Equation A.6 and substituting the values in Equation A.7, 

       
     

            
     

             (A.B.4) 

     (  
      

 )             (A.B.5) 

                  (A.B.6) 

    (∑  )  (A.B.7) 

Equation (A.B.7) is done by taking the differentiation with respect to B, C and D and then 

solving the system of equations. The parameters of the circle could be easily obtained using the 

following equations, 

      
 

 
      

 

 
   

√        

 
  (A.B.8) 
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APPENDIX C– CYLINDER EQUATIONS 

A cylinder that has its axis aligned with the Z-axis of a frame 2 could be expressed using 

the following equations, 

       ( ) (A.C.1) 

       ( ) (A.C.2) 

     (A.C.3) 

For expressing a general orientation cylinder the following sequence of rotations must be 

applied as shown in Figure A-2 and described in the following equations, 

   
       (A.C.4) 

where 

 

  ( )   [
            
           
   

] (A.C.5) 

 

  ( )   [
           

   
            

] (A.C.6) 

 

  
     ( )  ( )  [

           
          
      

] 
(A.C.7) 

The cylinder equations expressed above could be transformed using the following equation, 
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  [
 
 
 
]  (A.C.8) 
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       ( )    ( )      ( )    ( )      ( ) (A.C.10) 

        ( )      ( ) (A.C.11) 

        ( )    ( )      ( )    ( )       ( ) (A.C.12) 
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Figure A-2: Cylinder Rotation Sequence 
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APPENDIX D – ROBOT END-EFFECTOR IN BASE FRAME 

The robot’s end-effector pose with respect to the base frame could be easily obtained 

from the robot’s controller as presented in Table A-1 below. Using the parameters obtained from 

the controller, the homogeneous transformation from the end-effector to the base frame could be 

calculated as presented in Table A-2 below. 

Table A-1: End-Effector Parameters with respect to the Base Frame 

X Y Z EZ EY EX 

1150.8 28.7 1324.9 0 90 0 

Table A-2: Rotation Matrix and Position Vector of the End-Effector with respect to the Base Frame 

Rotation Matrix 
Position Vector 

(mm) 

0 1 0 1150.8 

0 0 1 28.7 

-1 0 0 1324.9 

 

APPENDIX E – JACOBIAN MATRIX 

The calculated Jacobian Matrix   , 

    

[
 
 
 
 
 
          
           
      
      
      
      ]
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APPENDIX F – 3D VISION SYSTEM 
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