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ABSTRACT

Genetic algorithm (GA) is a promising means to solve engineering optimization problems. GA is
able to perform the global search with minimal simplifying assumptions about the problem as
well as the corresponding decision space. GA faces problems like premature convergence and
slow convergence due to decreasing population diversity. To surmount this problem, we have
developed a new approach of optimal genotypic feedback (OGF). This approach generates
binary building blocks of random size from the optimal solution after each generation. The
blocks are then inserted in the subsequent generation. This new approach is successfully tested
on number of nonlinear, multimodal and non-continuous optimization problems. The results

demonstrate that the approach efficiently searches good quality solutions.

In the next step, OGF is amalgamated with hybrid GA (HGA). The resulting new HGA is
applied on six optimization problems involving characterization parameters of pulp chest and
minimum variance control. Comparisons with the old HGA indicate the equivalence of OGF
with gradient search. Furthermore, the new HGA is observed to yield results in less number of

objective function evaluations.
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1 INTRODUCTION

1.1 Optimization

The process of minimizing or maximizing an objective function is known as optimization. In our
day to day lives we encounter different optimization problems where we have to make a decision
to minimize or maximize with certain parameters known as optimization parameters. The
objective of the optimization problem is to find the optimum value of the objective function
which is either the minimum or maximum value in given search space, by satisfying the equality
and inequality constraints. Global search and optimization techniques can be broadly classified

into three categories: (I) Enumerative, (IT) Deterministic, and (III) Stochastic.

The enumerative search technique is used to find the optimum value of the objective function at
each point of the search space. But when the domain size is very large, this method becomes

inefficient and also requires more computational time for the optimum search.

The deterministic search technique is based on the gradient evaluation of the objective function.
Deterministic search technique searches the optimum solution with the initial guess (starting
point is chosen randomly). If the initial point is located far from the global solution then there is
a chance for the algorithm to be trapped inside the local optimum. Also, deterministic search
techniques may fail due to the large domain size and excessive gradient evaluations for complex

problems.

Many engineering problems are difficult to optimize because the process models are non-linear,
non-continuous or have multiple local optima. Stochastic search methods are developed to solve
these kinds of difficult problems. These techniques work with the group of the randomly chosen

solutions. The solutions are selected on the basis of the objective function value.




1.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are stochastic search techniques based on the evolutionary ideas
of natural selection and genetic. They follow the Darwin’s principal of “survival of fittest” and
generate the good solution from the randomly selected solutions. In the past few years, EAs
have received significant attention as their capability to solve the global optimization problems
in the fields of science and engineering. EAs can be classified into, (I) Genetic Algorithm,

(IT) Genetic Programming, (IIT) Evolution Strategies, and (IV) Evolutionary Programming.

All of these techniques are based on the same concept, a performance evaluation of individual
solution by the application of several natural genetic search operators such as reproduction,

crossover and mutation. Each individual is assessed on the base of its value.

1.3 Brief History of Genetic Algorithm

Genetic algorithm was invented by John Holland during the research on adaptive systems at
University of Michigan. Previous research by John Holland (1975) and his colleague are
summarized in his book “Adaptation in Natural and Artificial Systems” (Holland, 1975). The
book derived the schema theorem on which the GA’s theoretical concept is based. De Jong’s
(1975) important dissertation established the potential of GA by showing that GA could perform
well on a wide variety of test functions, including noisy, discontinuous, and multimodal search

landscapes.

These foundational works created widespread interest in evolutionary computation. By the early
to mid-1980s, genetic algorithms were being applied to a broad range of the subjects, from
abstract mathematical problems like bin-packing and graph coloring to tangible engineering
issues such as pipeline flow control, pattern recognition and classification, and structural
optimization (Goldberg, 1989a). The use of GA was increased because of the exponential growth
of computing power and the development of the Internet. Today genetic algorithms are solving
problems of everyday interest in areas of study as diverse as aerospace engineering, biochemistry

and molecular biology, and scheduling at airports, assembly lines, etc.
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1.4 What is Genetic Algorithm?

Genetic algorithm (GA) is based on the principles of natural genetics and natural selection
(Goldberg, 1989a; Holland, 1975). GA generates the robust optimum solution of objective
function. In GA, the population is made up with the chromosomes (set of character strings)
which are representing the optimization parameters of objective function. These chromosomes
(individuals) have same type of structure mechanism as our DNA structure. The individuals go
through the process of evaluation and optimally better individuals are selected for genetic
variation. These individuals are exchanged the genetic information (crossover) and changed
slightly in the structure (mutation). This new generation is very diverse community of
individuals which is the mixture of good and bad solutions which follow the Darwin’s principle

and from this performance evaluation GA gets the best result.

1.5 Thesis Organization

The thesis is divided into five sections. The contents of each chapter are as follows.

« Section 2, a detail description of genetic algorithm development is provided including the
biological background of genetic algorithm, basic terminology and the key elements of
GA like initial population, evaluation, selection, reproduction, crossover and mutation.
This section also presents the literature review of genetic algorithms.

« Section 3 defines the motivation to develop the new approach. It shows the effect of
different genetic operations on the preferred schemata. The final conclusion of the
theorem 1s documented in this section on which the GA is based. This section also
includes problems of GA like premature convergence, deception and genetic drift.

o The new genetic algorithm is developed in Section 4 to overcome the problems and
limitations of SGA (standard GA) and to get better quality solutions in less computation
work. The detail description of the new GA is explained. The new GA was applied to 34
benchmark optimization problems to check the performance of new GA. The comparison
is made between the SGA and new GA on the solution quality and the number of

objective function evaluations. Also, the new GA is tested with 90 randomly selected

3




numbers to check the robustness of the algorithm. At the end of this section, the
conclusion derived from the application of test functions.

After the successful application of the new GA on the optimization problems, it is applied
to complex chemical engineering optimization problems. GA shows slow convergence
during the local refinement of the good feasible solutions generated after genetic
operations and produces weak quality results. HGA (hybrid GA) provides a solution of
this problem by applying local search algorithm for global solution region generated by
GA. The new OGF approach is applied to HGA in section 5 to develop a new HGA.
After performing the gradient search on GA’s solution, inverse mapping is applied to
generate the decoded value of locally refine solution. On the basis of this value the
optimal genotypic is developed to apply OGF approach. This process is described by one
real tested binary coded chromosome example. Concluding remarks of the new HGA

application to optimization problems are given.

The last section 6 describes the recommendation on future work.




2 LITERATURE REVIEW

2.1 Biological Foundation of GA

All living organisms are made up with cells containing chromosomes or DNA strings, which act
as a blueprint of the organism. The chromosome can be divided into small strings or blocks of
DNA, known as genes and it represents a particular protein. The characteristics of organism like

the eye color, depends on the particular settings of the genes, called as alleles. The position of the
genes (block of DNA) is known as locus.

Figure 2.1  Image of DNA structure (source: www.turbosquid.com)

The organisms have more than one chromosome in each cell. This collection of chromosomes
called as genome and the particular set of genes is known as a genotype. This genotype
undergoes the continuous changes in successive generation and this development is represented

by the physical properties of organism like height, brain size and intelligence.




During recombination (crossover), two chromosomes (parents) worked as parent, are exchanged
the gene information to form a single chromosome (child). In mutation, single elementary bits of
DNA are changed from parent and create new child. The fitness of an organism is typically
defined as the probability that the organism will live to reproduce. Following is the notation of

GA compared to nature.

Table 2.1 Comparison of natural and GA terminology

In nature In GA
Chromosome String

Gene Feature, character or decoder
Allele Feature value
Locus String position

Genotype Structure or population

Phenotype Parameter set, alternative solution, decode

structure

2.2 Binary coding of GA

A chromosome encoding scheme is a representation of the potential solution so that the GA can
perform string manipulations and simple modification of values. The typical chromosome
encoding scheme is binary encoding, that is, every location can have only 2 options: 0 and 1. A
binary encoded chromosome requires the transformation or mapping of the chromosome value
(genotype) to problem specific data type (phenotype). The selection of the encoding scheme is
well defined by Goldberg (1989), and De Jong (1996).

Genetic algorithm is studied by De Jong (1975), Goldberg (1991, 1993) and others such as Davis
(1991), Forrest and Mitchell (1993) and Koza (1989, 1992) originally proposed GA as a general
model of adaptive processes and the technique with largest application in the optimization
domain. GA operations are explained in Appendix A with one optimization test function

example. The GA is extensively studied and modified for the better global search results.
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Following is the literature review of the GA operators and GA structure for the performance

improvement.

2.3  Selection operators

The selection operator decides the change in the population from one generation to the next.
During the change, there is a chance that we might lose the individual with the best fitness value.
This could create instability inside GA and a slower convergence problem arises. An important
aspect of selection is the selection pressure, which can overcome the arising problem of
instability and slow convergence by controlling the individual’s survival rate. It is important to
balance the selection pressure. A too high pressure usually leads to premature convergence in a
suboptimal solution and a too low pressure will create a very slow convergence. The selection
pressure is defined as probability of the best individual being selected compared to the average

probability of selection of all individuals.
2.3.1 Tournament selection (Holland, 1975; Goldberg, 1989a)

The tournament selection organized the tournament inside the population by picking up random
number of individuals, compares their fitness, and copies the individual with the best fitness to
the mating pool. Nowadays this selection method is commonly used for the GA because it is
easy to implement and produces good quality solutions with less computation time. The selection
pressure plays important role in this selection (Goldberg et al., 1993; Miller et al., 1995). By
increasing selection pressure, more individuals are allowed to take part in selection and the
tournament size is increased which leads towards the more chance to get the best individuals and
divert that individual to the mating pool. And the low selection pressure decreased the
tournament size as well as reduces the selection probability for the best solution. Typical values

are P

selection

=0.75 or 0.8. Setting P

selection

= 0.5 is equivalent to random selection.




2.3.2 Proportional selection (Holland, 1975; Goldberg, 1989a)

Proportional selection probability is depending on the ratio of the individual fitness to the sum
fitness of all individuals in the population. This method is also known as fitness proportional
selection (FPS) or roulette wheel selection method and it is well described in previous part of the
section. However it is recognized that there are some problems with this method.

« The individuals are mapped on the roulette wheel. So, if there is not that much high
difference in the fitness value, the selection will produce low pressure and at the time of
convergence, the population takes more computation time to converge in optimum
solution.

« In proportional selection, a few very good individuals can quickly take over the entire
population, because they dominate a large part of the roulette wheel and are therefore

frequently copied when the next generation is formed.

The solution of above problems is Goldberg’s sigma scaling (1989a). In this theory the
information of the mean fitness value and the standard deviation of all fitness values
incorporated inside the population by Equation (2.1). Through this approach fitness differential

of the diverse population is maintained.
f(x)=max(f(x) - (f —¢xc,),0.0) (2.1)
Where c is a constant value usually set to 2.

2.3.3 Ranking selection (De Jong, 1975)

Ranking selection is actually inspired by the drawbacks of proportional selection. In ranking
selection, the individuals are under the constant selection pressure. Rank selection first ranks the
population and then every chromosome receives fitness from this ranking. The worst
chromosome will have rank 1, second worst 2 etc. and the best will have rank N (number of
chromosomes in population). This ranking is obtained by sorting the individuals according to

their fitness. Each individual is then assigned a probability P , which is mapped by the used

selection
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ranking scheme like linear or exponential. The selection is based on ranking not on difference in
fitness value. The advantage of this method is that it can prevent best fit individuals to become a
dominant inside the population, which would reduce the population's genetic diversity. The
drawback of this method is that it can lead to slower convergence, because the best chromosomes

do not differ so much from other ones.

2.4 Crossover operator

Crossover plays very important role in GA as it has capacity to introduce genetic diversity in GA
at very large extent. After the reproduction, the population is enriched with good solutions.
Reproduction is able to make a clone of the individual not new individual, where the crossover
creates better offspring from the mating pool. As a result, intensive research has been done to on

this operator, hoping to improve the GA’s behavior (Liepins and Vose, 1992). These advance

methods are listed below.

2.4.1 Single point crossover

Single point crossover also known as classical crossover, is developed by Holland (1975). In one
point crossover the site is randomly selected on two parent strings and the bits are exchanged
next to the site only once and produce the children (Table 2.5). The drawback of this method is
that in large defining length chromosome the one-point crossover can’t keep continuity
throughout the crossover operation. Therefore, several other crossover techniques have been

developed.

2.4.2 Two-Point crossover (Eshelman et al., 1989)

This operation is like one-point crossover, except that two crossover sites are selected at random

instead of one and bits are swapped between the two cut points.




Table 2.2 Two-Point crossover

Before crossover After crossover
Parent 1: 110 | 110 | 10 110 011 10
Parent 2: 011 | 011 | 00 011 110 00

In one point crossover the head and tail of the chromosome cannot be replaced in one offspring
together. If these parts contain good genetic information none of the off springs obtained the two
good features with one-point crossover. Using a 2-point crossover avoids this drawback of
1-point crossover. As the crossover points increase in GA the performance of the algorithm is
reduced. The problem with adding additional crossover points is that building blocks (small parts

of the chromosome) are more likely to be disrupted.

2.4.3 Multi-Point crossover (N-Point crossover)

There are two ways in this crossover. One is even number of cross-sites and the other is odd
number of cross-sites. For multi-point crossover, the crossover sites either in even or odd order
number are chosen at random with no duplicates and should be in ascending order. Then, the
variables (bits) between successive crossover points are exchanged between the two parents to
produce two new offspring. The part between the first variable and the first crossover point is not
interchanged during crossover (Table 2.3). In this example the crossover sites are 2, 6 and 10.
So, the crossover happens between 2, 6 and after number 10. This type of crossover is applied for
a performance improvement in many real time applications. In this thesis this type of crossover is

used as it gives more genetic variation inside the population.

Table 2.3 Multi Point crossover

Before crossover After crossover
Parent 1: 10| 7101 | 1001 10 01101001 11
Parent2: 11| 0110 |0000 11 1101 0000 10

I<| IS
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2.4.4 Arithmetic crossover

Some arithmetic operation is performed on the two strings to create a new string. Here it is AND

operation crossover.

Table 2.4 Arithmetic crossover
Before crossover After crossover
Parent 1: 101101
Parent 2: 110110 Offspring: 100100

2.4.5 Uniform crossover (Syswerda, 1989)

In uniform crossover two parents are selected from the mating pool and one mask is randomly
generated. The bit value inside the mask decides the crossover operation. This type of crossover
is described in Table 2.5. If the bit value in the mask contain 1 then in the parent 1 the value at
same position is being transferred to child 1 and if the mask contain 0 then the value of parent 2
is being transferred to child 1. The opposite procedure follows for the child 2 generation. One-
point and two-point crossovers are more local than uniform crossover and are more likely to

preserve good features that are encoded compactly.

Table 2.5 Uniform crossover

Before crossover After crossover

Parent 1: 100101 Child 1: 100110

Parent 2: 100010 Child 2: 100001
Mask: 110100

11




2.4.6 Crossover probability

The basic parameter in crossover operation is the crossover probability ( P,). It describes, how

often crossover will be performed. If P, is 0 means no crossover and offspring are exact copies

of parents. If crossover probability is 100%, then all offspring are made by crossover. Crossover
is made in hope that new chromosomes will contain good parts of old chromosomes and
therefore the new chromosomes will be better. However, it is good to leave some part of old
population survives to next generation for the genetic diversity. Normally, the proposed setting

of the crossover probability P is 0.6 and it lies in the range of [0.75, 0.95] (Goldberg, 1989).

C

2.5 Mutation operator

During the previous operation there is chance to lose the genetic information from the good
solution. Mutation can recover the lost genetic materials. Mutation is viewed as a background
operator to maintain genetic diversity in the population (Larran et al., 1999). There are different
types of mutation methods for binary as well as real representation of the individuals. In binary, a
simple mutation method known as classical mutation is developed by Holland (1975). In

classical mutation of a bit involves flipping a bit, changing 0 to 1 and vice-versa.

2.5.1 Flipping

Flipping of a bit involves changing 0 to 1 and 1 to 0. It is described in Table 2.6.

Table 2.6 Flipping

Before mutation After mutation

Parent : 017111 Child (offspring): 010110

12



2.5.2 Interchanging

Two random positions of the string are chosen and the bits corresponding to those positions are

interchanged. This is shown in Table 2.6.

Table 2.7 Interchanging

Before mutation After mutation

Parent : 010111 Child (offspring): 011110

2.5.3 Reversing

A random position is chosen and the bits next to that position are reversed and offspring

chromosome is produced (Table 2.7).

Table 2.7 Reversing

Before mutation After mutation

Parent : 010111 Child (offspring) : 010010

2.6 Constraint handling

The main problem of GA is how to deal with constraints because genetic operators used for
manipulating chromosomes may yield infeasible solutions. A penalty function strategy is
developed for optimization problems in which solutions that are out of the feasible domain are
penalized using a penalty coefficient (Goldberg, 1989). A constrained optimization problem is
transformed to an unconstrained optimization problem by using this penalty method. In this
study the interior penalty function (Rao, 1996) is used for the gradient search. The optimum
results were periodically used by the gradient search for further improvement by minimizing the

interior penalty function.
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HX) = f(X)—(rxig,(l X)J 4

where,

#(X) = Augmented function
f(X) = Objective function
g(X) = Constrain

m = Number of constraints

r = Penalty parameter

2.7 Hybrid Genetic Algorithm (HGA)

GA has been developed as an effective and simple optimization technique. This global
optimization method is become superior due to its higher ability to perform parallel operations,
generates good quality results of global optimum and good robustness. Unlike other search
method GA gives the promises convlergence but not always optimum solution. If we run GA
several times, it converges each time. The schemata which promise convergence are actually
indicating the region in the search space where good chromosomes may be laid. Also, GA
performs well for unconstrained or simple constrained optimization problems, e.g., box
constraint; they may encounter difficulties when applied for solving heavily nonlinear
constrained optimization problems. Typically, the GA is coupled with a local search mechanism
to find the optimal chromosome in a region. So, if we use a hybrid algorithm, the local search
algorithm fine tunes the intermediate solutions region and generates the robust, high quality

results with less computation burden.

Most of the hybrid methods are followed the GA based search initially to conduct a global search
and then local search algorithm works to improve the solutions. The local search algorithm is
integrated within the GA operators in some of the hybrid methods to refine the possible good
solutions throughout the GA operation (Yen et al., 1995; Renders and Bersin, 1994). There are
three types of HGA.
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1. Sequential HGA: This is the most used HGA. In this, the global search works in

sequence with local search algorithm. This algorithm is further classified in two

types.

« First local search algorithm and then global search algorithm: In this algorithm,
local search is applied to initial population of GA which improves each solution.
Now these locally refined solutions work as an initial population for the global
search (Okamoto et al. 1998). Mathias at el. (1994) applied local search to each
generation and after the refinement the global search is initiated by GA operators.
To evaluate the local search preceding to global search in HGA, generally
becomes a weak and inefficient search procedure because the global search
algorithm searches the domain space on very wide spectrum. So, the local search

for the refinement prior to global search becomes effective.

- First global search algorithm and then local search algorithm. This method starts
with the global search in domain search space and then the local refinement is
applied to improve the solution quality. In this way, the local search method
becomes efficient method to produce the best solution from the limited solutions

and computation time is reduces.

2. Local search based HGA: Despite of using local search in sequential manner, it is
embedded within the GA operators in this HGA such that the local refinement is
worked continuously in global search operation. Xu et al. (2001) developed HGA on
this concept. Authors used the Hooke and Jeev’s method to each solution of the GA
population. This approach is shown good results at small population but with a large
population, it may be increase computation burden because of the local improvements

is applicable to each solution of the population.

Another approach is to use local search algorithm as a one of the GA operator instead of

L, crossover in GA and produces the offspring.

Sl
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Saha et al., (2008) applied HGA to find the overall kinetics parameters in pyrolysis studies of
polypropylene, waste low-density polyethylene and waste polyethylene terephthalate at different
heating rate. In this work sequential HGA is used to provide initial gauss of the kinetics triplets
for the local search algorithm by GA operation. ‘fminsearch’ used as a direct local search method
in Matlab for HGA. As a result, HGA came up with pretty good results which can predict the

experimental thermo gravimetric analysis decomposition data.

Tao and Wang (2008) proposed the HGA to overcome the problems of GA like hamming cliff in
binary encoding format, the premature convergence and weak local search capability in solving
heavily nonlinear, constrained optimization applications. Sequential Quadratic Programming
(SQP) is used as a local search refinement method for the feasible region by GA. To check the
reliability and the effectiveness of HGA, it was applied to the gasoline blend optimization
problem and the results showed no evidence of premature convergence. Also, the HGA

improved weak exploitation capability of GA due to incorporating SQP method in GA.

Guangzhu et al. (2006) proposed HGA to estimate the kinetic parameters of polysterification
between dimmer fatty acid and ethylene glycol catalyzed by P- Toluene Sulfonic acid. The
Runga Kutta method is used as a local search to integrate rate equations and concentrations of
reaction kinetic model over a time to calculate the acid value from concentration. The results
were compared with SGA and observed that the efficiency, precision and ability of local search

were better than the SGA.

Upreti and Ein-Mozaffari (2006) developed the HGA with Newton search and it was tested to
identify the discreet time characterization parameter for non ideal flow in agitated pulp chest.
The optimal parameters from HGA with disturbance showed the good agreement with

experimental dataset.
More recently, Hanna et al. (2008) developed a HGA to reduce the effect of input noise in

process output, subjected to process inequality constraints for minimum variance control of PI

controllers. This HGA applied in three industrial control loops incorporating Newton’s search
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method. The results of controller parameters reduced the effect of input noise and increased the

performance of controller in industrial applications.

2.8 General Features of GA

Comparing genetic algorithm with traditional continuous optimization methods, such as Newton

or gradient descent methods, we can state the following significant differences:

+ GA manipulates coded versions of the problem parameters that correspond to the
chromosomes in natural genetics instead of the parameters themselves.

« The objective function value corresponding to a design vector plays the role of fitness in
the natural genetics.

+ In every new generation, a new set of strings is produced by using randomized parents,
selection and crossover from the old generation with a better fitness or objective function
value.

« While almost all conventional methods search from a single point, GA always operates
on a whole population of points (strings). This contributes much to the robustness of
genetic algorithms. It improves the chance of reaching the global optimum and, vice
versa, reduces the risk of becoming trapped in a local stationary point.

« Normal genetic algorithms do not use any auxiliary information about the objective
function value such as derivatives. Therefore, they can be applied to any kind of
continuous or discrete optimization problem. The only thing to be done is to specify a
meaningful decoding function.

« GA uses probabilistic transition operators while conventional methods for continuous
optimization apply deterministic transition operators. More specifically, the way a new

generation is computed obtained.

The standard genetic algorithm is a powerful optimization search tool that can rapidly converge
to the optimum. The user is only required to provide the information of objective function and

related input parameters.
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3 MOTIVATION

3.1 Introduction

The GA is based on the schemata concept and this concept is well described in schema theorem
developed by Holland, 1975. This schema theorem is mathematical foundation for the GA. It is
documented in Appendix B.

“Short, low order and above average schemata receive exponentially growth of strings in

consecutive generation”.

This statement is the conclusion of the schema theorem. GA operations are based on this
conclusion. In next part of the section we will discuss the problems arising during the GA

operation while following the schema theorem.

3.2 Problem with GA and their solution strategy
3.2.1 Deception

The fundamental theorem is stated that the roulette wheel selection generates an exponential
increase in the quantity of superior schemata. There are mainly three problems associated with
this mathematical foundation of GA. If superior schemata don’t represent the quality of the
optimal value then the GA will diverge from optimal value. This problem is known as deception.
Goldberg (1989b) used Walsh function to analyze this problem by examining the low order

schemata.
3.2.2 Premature convergence

Premature convergence is another important concern in GA. This occurs when the population of

chromosomes reaches at the stage where crossover no longer produces offspring that can
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outperform the parents and population becomes homogeneous. It is known that the decrease of
population diversity leads directly to premature convergence. In assembly planning process,
Chen and Liu (2001) proposed technique to control genetic operator probability settings to
reduce premature convergence, and, thus, improve genetic assembly planner performance. Smith
and Smith (2002) proposed a new approach for reducing premature convergence at local minima,
based upon an analysis of genetic algorithm search properties. However, all these methods are

application base. Their effects vary with different problems.

3.1.3 Genetic drift

A GA will always be subject to stochastic errors. One such problem is that of genetic drift. Even
in the absence of any selection pressure (i.e. a constant fitness function), members of the
population will still converge to some point in the solution space. This happens simply because
of the accumulation of stochastic errors. If the ratio between superior and average schemata is
low then no particular schema is preferred for genetic operation (De Jong, 1975) and the
population is increasingly deviate from defined convergence criteria. In this situation, the
population starts to converge to an arbitrary schema. This cause a loss of best available schemata
from the original population and having a less chance to create this best schemata containing
high fitness value in new population. The schemata where the population is converged due to
genetic drift are not allowed the genetic operator to introduce the genetic variation. The solution
for this problem is same as previous problem, introduce genetic diversity. In this thesis above

mentioned problems are taken care by three efficient ways.

1. The population is scaled up by raising it to a specified power, & > 1, to favor the optimally
better members of the population during selection (Coley, 1999; Goldberg, 1989a).

2. The new GA introduced genetic diversity by using the best schemata feedback in successive
generation. This new GA is explained in detailed in following sections.

3. By alternating the mappings (Upreti, 2004), the diversity of the population under genetic
operations gets prolonged, thereby avoiding its premature stagnation. Without this measure,
the population is very likely to undergo a “genetic—drift” so that most of its member becomes

similar leading to premature convergence. Also, by introducing genetic diversity in GA
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through this method, there is less chance for the superior schemata to become predominant

inside the population and due to that the problem of deception is no longer occurred.

33 Motivation

GA has been developed rapidly since the past 20 years as an effective and simple optimization
technique. The superiority of GA lies in its high ability to perform parallel operations, good
robustness and convenience to realize global optimization. Therefore recently GAs are widely
used in scientific and technical areas, such as computer science, electronic engineering, bio-

information, etc.

When searching for the global optimum of complex problems, especially for problems with
many local optima, traditional optimization methods fail to provide reliable results. If a standard
GA (SGA) is well designed, best of the population may converge to an optimal solution to the
specified problem. Unfortunately, SGA being faced problems like a slow convergence,
premature convergence, deception, genetic drift and a lack of accuracy due to progressively
decreasing population diversity. There exist some improvements to overcome the drawbacks,
such as development advance techniques of selection and advance genetic operators and hybrid

GA, etc. But they usually have computation complexity and are not easy to be applied.

The aim of this thesis is to present new evolutionary approach in GA to exploit the benefits of
the existing genetics with developed optimal control technique by Upreti (2004) and this
algorithm is named as Advance GA (AGA) in this thesis. So as the AGA with new approach can,

1 Generate consistent, good quality results with higher precision regardless of starting
point or any other auxiliary conditions.
2 Use reasonable amount of the number of objective function evaluations which indicate

the less computation effort in global optimal generation.

In the following section whole new approach discussed. In this, the binary coded deviation

vector and control mean vector are generated randomly. The optimal vector generated by the
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means of some mapping (Upreti, 2004). Further on, this best optimum chromosome is used to
generate short binary building block (BBs). These BBs feed back in the new population and the
optimum value is generated. These features are intended to generate desirable solution with small
population size and reduced number of objective function evaluations. It also introduces genetic

variation to eliminate premature convergence.
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4 GA WITH OPTIMAL GENOTYPIC FEEDBACK
(OGF)

4.1 Introduction

In this section new optimal genotypic feedback (OGF) approach is discussed. As per the schema
theorem the optimal genotypic (schemata) is generated after the genetic operations. This
genotypic is feed backed in next population for the successive generation. The new GA is
developed by introducing the OGF in AGA. Following is the short description of AGA which

acts as a foundation work for the new GA development.

Genetic algorithm starts with the control value of optimizing parameter X, fori=0, 1,2.. N_,.
This X, is initialized randomly between the limits X, min and x;max. The binary coded deviation
vector Ax; is also randomly generated on the basis of some mapping technique. Now, genetic

operations like crossover and mutation are applied on vectors of Ax, set, AX and after all

generations the optimal vector X is calculated from X , a set of vectors of X, and AX by the

means of some mapping.

For any optimization parameter, a mapping relates the binary—coded deviation (Ax,,) and the

mean parameter value (X,) to the parameter value (x;). Thus, a mapping provides a vector (X))

corresponding to each binary—coded deviation vector (AX) in its population. The presented

optimization algorithm (Upreti, 2004) uses the following logarithmic and linear mappings.
Logarithmic Mapping

The purpose of logarithmic mapping is to emphasize relative precision (Coley, 1999) within the

elements of X . For any optimization parameter, the logarithmic mapping provides the value,
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Z
X; = b where,

b _ {(xi,max ~Xi min );if(xi,max ~Xi min )22
- z;if(xi,max _xi,min )<2 (3'1)

Z,=log, % + 0k A, (3.2)

Nowi _1

In Equation (3.1), b is the logarithmic base *;.cand ¥, are the maximum and minimum

values of the parameter, x;. In Equation (3.2), D; is the value of the domain between the limits of

Dpmin > 0 and b, and Ny is the number of representative bits for any i element of AX , 1. e.

A)c,.’2 .

Linear mapping

The linear mapping is straightforward, and is given by

B = (3.3)

xi = xi,min + Ri (xi,max - xi,min)

(3.4
Some of the novel features of this technique which makes this technique unique and efficient.

1. Before selection value of each objective function is scaled up by raising it to a specified

power, &> 1.

2. The update of mean control values X by X.
3. The alteration of size variation of control domain.
4. Alternating the mapping—avoid premature stagnation of the population under genetic

operations.
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4.2 Development of OGF in AGA

Now we can move towards the new OGF approach development. At first we have to supply
some of the information to genetic algorithm. As we know that genetic algorithm doesn’t require
the starting point or any other auxiliary information. The input information is mentioned in Table
4.2, guides the GA efficiently to search the global optimum and overcome the drawback of

standard genetic algorithm. Figure 4.1 is a graphical representation of AGA with OGF (AGA-
OGF).

Start logarithmic mapping

2 A

Objective function (/,) evaluation for each AX

!

Selection based on scaled objective function

‘ Process
continuously
works for N, in

Crossover and mutation with P. and P, respectively

one iteration and

Obtain optimal value /, = }/, —1 and find the best X repeat al gorit
‘ J for N,

itr
E Apply new OGF approach to the

best X after each generation

Figure 4.1  Flowchart of the AGA with OGF

This is very general picture of AGA—OGF. We require some more definitions to understand the
development of OGF. These definitions are generated by the random number generator and

described in Table 4.1.
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Table 4.1 Description of parameters for OGF generation process

Parameters Discription Initiallization
idxI mask[idxI] has the first 1 1
idxF mask[idxF] has the last 1 1
bbmask building block mask 000000
Submask mask used to create bbmask 111111
relP1 position of the first 1 in 2
bbmask[idxI]
relP2 position of the last 1 in 2
bbmask[idxF]

Following is the detail procedure for AGA—OGEF.

1. Best optimal value X is supplied to newly introduce function InduceBlock ( X )
2. GenerateBBs (bbchrom) function creates the building blocks from the optimal genotypic

X by doing arithmetic bit operation with mask and X at randomly selected bit position
and bbchrom is the chromosome value corresponding the best chromosome.

3. Chromosomes are selected from the population in form of oldpop [N, ] [chromsize],

op

where N, is number of chromosomes in population which finds by N, x N, and

chromsize is depending on the number of bits define for each optimization parameter.

4. Apply bit operation to selected chromosomes and generate building blocks. At the end of
this operation we get new chromosome.

5. Return back these new chromosomes in successive population and perform other genetic

operation

Repeat this algorithm after every generation in single iteration and find the global optimal

solution at end of the iteration.

Now, we will discuss each function of new algorithm in detail. Initially number of BBs (building
blocks) supplied as an input parameter. By applying the definitions for new GA, the first and last
position of the mask is generated by using pseudo random number generator and according to

that position a new mask is generated to create the BB from the source (optimal)
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chromosome X . These random size BBs are short binaries of the source chromosome. In Figure

4.2, I have given the description of this operation with an example.

Initialization: N,, =6
bitsPerUnsigned = 32 bit
best chromosome = 101010

subMask[0] <<= relP1 subMask|[ 1] >>= (bitsPerUnsigned-relP2)
111111 <<=2=111100 =111111>>=30
= Final form: 001111

v v

New bbmask =111100 &= 001111 bbmask = 000000 |=111100
=001100 . =111100
¥ v
Dummy BB= ~ (allOnes&bbMask) BB= ~ (~best&bbMask)
=111111& 001100 pr— =010101&001100
=~(001100) =~(000100)
= final form =110011 = final form: 117011

Figure 4.2  Flowchart for GenerateBBs () process

As seen from the example, BB 117011 is generated from source 107010. Now the second part of
the InduceBlock () is to select the chromosome from the population for the new generation. This
selection is on base of roulette wheel selection. Number of selected chromosomes is same as the
number of BBs generated. In third part, these generated BBs are replaced with the selected
chromosome at randomly selected position. In Figure 4.3 we have shown this replacement in

exemplary way.
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Randomly selected ™ source = 011110 ~source = 100001
chromosome

Make 00 in source where —————] New source =~ (source) & dummyBB
BB will be replaced = =100001 & 110011 = 100011

Replace chromosome |— Final source = ~(New source) & BB
=~(100011) & 111011 =011100 & 111011 =011000

Figure 4.3  Flowchart for BBs replacement process

At the end of the replacement, finally we get the replaced chromosome. These new chromosomes

are put back in the population for subsequent genetic operations.
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Start: Iteration = 1 to N, ¢ 2

v
Set Mapping: first logarithmic and then make
alteration with linear

v
Start GA: generation = 1to N, *
v
Initial population of binary coded chromosome generation
v

Selection, crossover, mutation and evaluation
Population in Generate function

v

Replace oldPop=newPop; and
find the optimum chromosome

i Provide the best chromosome in
4 i InduceBlock()

Select the chromosome from oldpop, replace BBs and
add this genotypic back in new population
_________________________ '-..____.._.__________-________l

Check the improvement in J and
record the desired parameters

v
Stop ¥ Yes Convergence? [P No

v

Figure 44  The AGA with OGF approach

This is the complete description of new approach in GA. Following are the programming steps
for the AGA-OGF.

1. Initialize,

(a) X , the vector of mean values of control function for all N . Stages using,
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X, =X 0 R (X, .. Where R; is the i random

i i,min i,max xi,min

), 0<R<1,i=0,1,..., N

number obtained from a pseudo-random number generator.
(b) A population of N,, binary-coded deviation vectors AX using the pseudo-random

number generator, where Nyop = N X Nyt

(c) The variable control domain, D; = (x; ., = X; min )/2-

i,max

2. Set logarithmic mapping for the genetic operations of selection, crossover, and mutation.

3. Carry out the following operations on the population of AX for Ny, generations:

(a) Objective function evaluation for eachAX .
(b) Selection based on scaled performance index.

(c) Crossover with probability P, .
(d) Mutation with probability Py,

4. Store the resulting optimum value of performance index J , and corresponding optimum

A

X.

A

5. Generate BBs from best the chromosome, X

6. Select the predefined quantity of AX from the population from the previous
generation.

7. Replace BBs of X in selected AX and create new AX in population

8. Replace X by X .

9. Repeat Steps 3—5 once with linear mapping.

10. Check for D = Dpin or Dpnax, if yes then apply the size-variation factor for control domain,
C=Cp ' for domain alteration with contraction and expansion.

11. Replace D = Cp. If D < Dyin, s€t D = Dpin. If D > Dyjax, set D = Dyax for the variation of
D within its limits.

12. Go to Step 2 until the specified numbers of iterations, Nj, are done.

- The AGA with OGF was tested to 34 benchmark test problems from the global optimization
literature (Eiben and Back, 1998; Deep and Thakur, 2007a, b; De Jong, 1975). These test
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functions are documented in Appendix C. The population size of binary deviation vector
(chromosomes) was reduced by allocating 10 bit to each optimization parameters. This approach
decreased the computational time and overheads. To increase the diversity of the resulting
population, high of value of 0.2 for mutation probability was chosen. The AGA-OGF and SGA
were compared. The SGA doesn’t contain mapping, domain alteration and OGF approach. The
input parameters in Table 4.2 were applied to all test functions. For the sake of comparison, input
parameters were kept same for both algorithms to investigate the effect of new development
except for crossover and mutation probability. P, is higher in SGA to introduce genetic variation
in absence of other previously mentioned techniques. The domain size for each optimization

parameter varied with the problems.

Table 4.2 Input for AGA-OGF and SGA to test benchmark optimization test functions

Inputs description Initialization
N, Depend on the test function
Number of equations Depend on the test function

Nyi; 10
Nyen 1
N 10
N, 3000

Maximum and Minimum limit Depend on the test function

for optimization parameter

No. of crossover sites 3
P, For AGA-OGF = 0.6
For SGA =0.98
Pm For AGA-OGF =0.2
For SGA =0.01
B 2
N 90

seed
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During the global optimum search three main criteria is important to evaluate the performance of

GA. Convergence and robustness or reliability. Following is the clarification on these criteria.

. Convergence

The objective of this new algorithm is to find global optimum of the objective function. To
achieve this, we have to avoid the premature convergence in local optimum. The termination
criterion Nj, = 3000 is introduced to get the converged solution for both algorithms. With this

criterion, the GA took reasonable computation time for the good quality results in comparison
with SGA.

2. Robustness

To define this word, AGA—-OGF was tested on wide range of functions include different level of
non linear, non continuous, multimodal and complex test functions. Also, the robustness of the
new algorithm was checked by applying algorithm 90 times to each problem. The algorithm was
initialized with unique random number seed to generate pseudo-random numbers for each test
functions, which were also used to carry out other genetic operations. The 90 random seeds had

varying number of digits up to nine.

4.3 Application, Results and Discussions for AGA-OGF

This new GA was coded in C++ language on Microsoft Visual C++ 6.0. The results were
obtained using personal computer (AMD Turion 64x2 dual processor with 768 MB RAM). Each
of the above mentioned criteria applied to AGA—OGF and SGA. The new algorithm presents the
robust solution for the optimization problems. The defined criteria for both GAs are quality of
the solutions require for the optimum search and the robustness of the algorithm. The results are

analyzed with two different approaches.
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4.3.1 Analysis (I)

The 34 benchmark optimization problems were tested with one random number (seed). The
results were generated from the evaluation of both algorithms and summarized in Table 4.3 - 4.5.
In Table 4.3 & 4.4 the objective function values are used to compare the quality of the solution,
where in Table 4.5, number of iteration is used to check the premature convergence problem.
The values in Table 4.3 - 4.5 are the best global optimum solutions for objective function and

corresponding iteration. The testing criteria for GA can be judged from these values.

The quality of the objective function values and number of iterations for 27 benchmark
optimization problems are listed in Table 4.3 & 4.4. The graphs of iteration verses minimum
objective function values for AGA—-OGF and SGA are plotted in Appendix D. From Table 4.3, it
is observed that the AGA—OGF is having good success rate on problems over the SGA, as far as
the quality of the solution is concerned, mainly in function number like 4, 5, 7, 11, 12, 13, 18 and
22. The results are more accurate and close to reference optimum value. As an example, the
Bohachevsky and Leon functions are plotted in Appendix D (Page 88, 96) as a graph of number
of objective function versus iteration value for each test function to show the comparison of both

GAs on quality issue.

Where in Table 4.4, the objective function value is generated by SGA for problem 24 to 27
shows that the SGA is trapped inside the sub-optimal and diverged from the optimum value. At
same time the results in AGA—OGF for these functions show convergence in the optimum value.
As an example, the optimum value for function number 26 (the Goldstein & Price function) is
approximately 80 after 848 iteration where the value generated by AGA-OGF is 3 after 128
iteration and it is also matched with the reference value. In this example SGA is trapped in
suboptimal and can’t come out from it because of lacking in genetic diversity. This behavior
described in Appendix D (Page 110). Further on, in function number 16, the AGA-OGF gives
slightly less success when comparing with the reference value. This function is very hard to
optimize. In overall picture, in all functions the AGA—OGF is completely outperforms the SGA

on quality of the solution criterion.
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In Table 4.5, represented results of the objective function values corresponding iteration were
generated from the AGA—-OGF and the SGA. The number of iterations are required by SGA is
very less compare to the AGA—OGF but the quality of the objective function value is lower in
comparison with the AGA—OGF. As an example, the number of iterations for Griewank function
is only 7 by SGA where in AGA—OGF is 2477 iterations although AGA—OGF is converged with
better quality result than the SGA. This result is well understood by graph plotted in Appendix D
(Page 114). This problem is due to the premature convergence. SGA is converged too early in
function no. 28 to 34 because of the superior chromosome presents inside the population. The
premature convergence in the SGA happens due to the lack of genetic variation in the population
where in the AGA—OGEF there is no sign of this kind of problems because of the genetic variation

introduced in GA through the OGF.

The third analysis of the results concentrates on the robustness of GA. As previously mentioned
the AGA—-OGF was tested on each of the functions with 90 different randomly generated seed
numbers and got the best optimum objective function value. The results of all objective functions
for standard deviation versus seed numbers are also mentioned in Appendix D. The overall
accuracy of 90 objective function values is quantified by their lower average value and their
precision is quantified by their low standard deviation per objective function. Table 4.6 contains
the average values and the standard deviation value of the 90 optimum results for each function.
The lower value of standard deviation from the average value indicates the more robustness.
Most of the functions show the standard deviation in lower data range from 107 to 107", It
means that the standard deviation is very low with the different seed number testing and the

robustness of the AGA—OGF is high.

In function number 2 and 24, we got a little higher value of standard deviation in comparison
with other functions. At some of the seed numbers we got a higher fitness value due to randomly
generated seed number which is also responsible for the initialization of the population
generation process. So, at the particular seed number there is a chance that the superior
chromosome generated and it may effect during the genetic operation and function evaluation
and due to this reason objective function value is not minimized. The correction is made by

removing four higher objective function value containing seeds from 90 seeds which improves
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the standard deviation results in function number 2. The function number 24 is highly non linear,

non continuous and hard to optimize and due to that reason we cannot achieve lower standard

deviation.
Table 4.3 Test functions (Comparison on quality of the solution for AGA—-OGF and SGA)
No. Function AGA with OGF SGA Without | Optimum | Comment
[Iteration] OGF value
[Iteration] from Ref.
1 Ackley 3.28848059x107"° | 1.54095358x10 0 Quality
[637] [83]
2 Beale 1.95148300x10"" | 3.11856439x10” 0 Quality
[575] [421]
3 Bird -1.07459110x10 | -1.06998916x10> | -106.76 Quality,
[89] [1132] time
4 | Bohachevsky | 6.50497433x107"" | 4.12577524x10 0 Quality,
[19] [15] time
5 Booth 3.23874260x107% | 3.41949434x107 0 Quality,
[125] [295] time
6 Branin 4.00051200x10" | 4.00093642x10"' 0.4 Quality,
[56] [106] time
7 | Dixon & Price | 5.61781954x107"° | 6.82213679x10~ 0 Quality,
[620] [408] time
8 Easom -9.99998308x10" | -9.71268947x10! -1 Quality,
[164] [866] time
9 Egg holder 959.000000x10° | 959.391223x10° | 959.64 Quality,
[1136] [1788] time
10 Giunta 1.000000002x10" | 1.00002025x10 0.1 Quality,
[104] [475] time
11 | Himmelblau | 1.06315622x107° | 2.87966944x107 0 Quality,
[1991] [243] time
12 Leon 2.20724549x107° | 1.15686372x107 0 Quality,
[1886] [1885] time
13 Levy 8 9.84101689x10"° | 6.37599653x107 0 Quality,
[614] [62] time
14 Matyas 5.08599828x10"" | 3.82215877x10° 0 Quality,
[49] [363] time
15 Paviani 4.50000000x10" | 4.50000060x10" 45.77 Quality,
[863] [2248] time
16 | Penholder | -4.87100364x107 | -4.87096597x107 | -0.963 Quality,
[44] [213] time
17 Quintic -9.99999130x10" | 4.47306386x107 -1 Quality,
[2597] [35] time
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Table 4.3 Continued

18 | Rosenbrock 8.0670x10™"" 1.68341x10™ 0 Quality,
[323] [596] time
19 Shubert -1.89999999x10” | -1.89971215x10° | -186.73 Quality,
[2105] [1654] time
20 Test tube -1.99999539x10" | -1.99963998x10° -1.087 Quality,
holder [1829] [472] time
21 | Threehump | 3.21986881x107% | 4.77775838x10~ 0 Quality,
camel back [43] [109] time
%) Zakharov 1.30235822x10" | 2.68748427x10* 0 Quality,
[43] [310] time
23 Zettle -3.79123722x10° | 1.22251032x10° -0.003 Quality,
[356] [105] time
Table 4.4 Test functions (SGA trap inside the sub optimal problem)
No. | Function AGA with OGF SGA Without Optimal | Comment
[Iteration] OGF value
from Ref.
24 Bukin 5.58388270x107 2.01655769 0 SGA trap
[101] [1215] in sub
optimal
25 | Freudenstein 1.24529142x107 | 6.315480992x10" 0 SGA trap
& Roth [620] [120] in sub
optimal
26 | Goldstein & 3.00000001 8.053121708x10" 3 SGA trap
Price [128] [848] in sub
optimal
27 | Weierstrass | -6.72317800x107 | 9.31172542x107 0 SGA trap
[181] [29] in sub
optimal
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Table 4.5 Test functions (Highlight premature convergence problem in SGA)
No. Function AGA with OGF SGA Without Optimal Comment
[Iteration] OGF value
[Iteration] from Ref.
28 | Chichinadze | -4.39999776 x10" | -4.31482235x10" | -43.315 Premature
[932] [7] Convergence
in SGA
29 | Generalized | 2.58055798x107% | 5.97426132x107 0 Premature
penalized [416] [26] Convergence
function in SGA
30 Griewank 2.55094834x107° | -9.75127566x10" 0 Premature
[2477] [7] Convergence
in SGA
31 Hump -9.99999965x10" | -9.44243948x10" | -1.032 Premature
[1010] [18] Convergence
in SGA
32 | Michalewicz | -2.00002579%10° | -1.98031835x10" | -1.801 Premature
[734] [17] Convergence
in SGA
33 | Power sum 1.61455293x107"" | 3.43994289x10° 0 Premature
[95] [6] Convergence
in SGA
34 Rastrigin 0 9.92816%10~ 0 Premature
[118] [8] Convergence
in SGA
Table 4.6 Test functions (Standard deviation for AGA—OGF)
No. Function Average Standard Deviation
1 Ackley 2.25333422x107 1.64823704x107°
7 Beale 1.62272000x10" 1.56033000x107"2
3 Bird -1.07459000% 10* 2.06882000%10"
4 Bohachevsky 0 0
5 Booth 4.59507567x107" 3.43290764x10™""
6 Branin 4.00000000%10™" 6.22572456x107"
7 Dixon & Price 6.29123123x107" 4.93384285%107" "
8 Easom 6.29123123x107 4.93384285x107"
9 Egg holder -9.99999515%10"! 5.59172351x107
10 Giunta 1.00000000% 10" 3.76284468x10™
11 Himmelblau 1.85524000x107" 1.75035000% 107"
12 Leon 3.47831094x107° 3.83375340x107°
13 Levy 8 1.25189000x10 " 1.16991000x 107"
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Table 4.6 Continued
14 Matyas 2.18027003%10™"" 2.61841696x10™" "
15 Paviani 4.50000000% 10" 9.44627000%10~
16 Pen holder -9.64890933%10 1.41738345x10"°
17 Quintic -9.99996442x10 8.04693590%10°
18 Rosenbrock 2.25399980%10™° 2.21061208%10"°
19 Shubert -1.90000000% 107 2.52612000 x10°°
20 Test tube holder -2.00000000%x10% 9.86082000%107
21 Three hump camel 1.96071948x10™"" 2.66793459x107"
back
22 Zakharov 2.67952376x107" 2.67706087x107"
23 Zettle -3.79123717x10°> 3.01124960%107!
24 Bukin 2.64507000% 107 1.45015000x 107
25 Freudenstein & Roth | 3.27393144x10° 4.36353978x107°
26 Goldstein & Price 3.00000000 2.67998821x10
27 Weierstrass -6.63739097x10° 6.02121495x10™
28 Chichinadze -4.40000000% 10" 1.26725000%107
29 Generalized penalized | 4.10775018x107 3.24698230x107"
function
30 Griewank -9.99999861x10 1.43644561x107
31 Hump -9.9999996x 10! 5.66497273%10°°
32 Michalewicz -2.00003 x10™ 6.58177 201x107"!
33 Power sum 2.89464057x107 2.80778073x10™"
34 Rastrigin 3.20422996x107"" 2.94954761x10™"

4.3.2 Analysis (IT)

In this part of the discussion, each function was tested with 90 different random seed numbers
with and without OGF approach in AGA and SGA. The results are documented in Table 4.7.
These results are the minimum objective function value among all 90 random initialization
number applications. Each function was tested with four algorithms, (I) AGA with OGF
(AGA-OGF), (II) AGA without OGF, (III) SGA with OGF (SGA-OGF), and (IV) SGA without

OGF. The comparison of the results is divided in four parts.

In first part of the discussion is held on the performance of OGF approach inside the SGA. Most
of the functions show better quality value of objective function in SGA-OGF algorithm than
SGA without OGF. But the main difference in results is the number of objective function
evaluations. The objective function evaluation is reduced by more than 200% in function number

1-3, 6-10, 13, 22, 24, 26, 28-30, 32 and 34 in SGA—-OGF. It means that the computation effort
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decreases in this algorithm due to this new approach. Nearly half of the functions show the better
results in with OGF algorithm which indicates the superiority of the new algorithm. The
remaining functions also show the improvement in number of evaluations but in less number of
percentage compare to previous ones. In function number 11, 17, 19, 21, 31, the number of

objective function evaluations is higher but the solution quality is improved.

Now we compare the SGA algorithms to the AGA without OGF approach. The results show very
good quality of the solutions in the AGA without OGF although some of the functions have high
number of function evaluations. AGA is one of the powerful global search techniques which
include methods like logarithmic mapping and domain alteration for genetic diversity to avoid
the premature convergence and due to that we can get better results than SGA algorithms. The
AGA without OGF shows better result in SGA without OGF algorithm but when we compare it
with the SGA-OGF algorithm the results indicate that the number of objective function
evaluations is decreased in SGA although the quality of the solution is improved in the AGA
which clearly point out the effect of OGF in SGA.

Now for the next part of discussion, the AGA—OGF and the SGA algorithms are compared. The
results show that the quality of objective function value is improved with less number of function
evaluations, i.e. Leon function gets an improvement in objective function by order 10" and in
objective function evaluation more than 200%. The number of objective function evaluations is
higher in some of the functions but when we compare the quality data, the AGA-OGF remains
best among both GA algorithms, as an example Himmelblau function takes 49060 evaluations in
the AGA—OGF where the SGA algorithm with and without OGF take 460 and 80 evaluations but
when we see the quality of the solution, the AGA—OGF gets a highest minimum objective
function value in order of 10™'* where the SGA algorithms get the value in order of 10® and 10°

corresponding to OGF inclusion or exclusion in the SGA.

In the end, we compare the AGA—-OGF to the AGA without OGF. The results indicate that the
AGA-OGF has better results than the without OGF option. When we compare the objective
function value, the AGA-OGF gets better edge or same value of objective function than the

without OGF approach but when the comparison comes on the number of objective function

38




evaluations part, with OGF option gets clearly a better position. As an example, in Quintic
function the improvement in objective function value is only 1.7x107'° but the function
evaluation is improved by approximately 180%. This example indicate that the AGA-OGF takes
less iteration and less computation time to find the global optimum for Quintic function than the
AGA without OGF. In Hump function, the global optimum is searched by both algorithms is
similar but the evaluations in with OGF option are reduced by 213%, which shows the benefit of
OGF. In some of the function like Rosenbrock function the improvement in objective function
value by AGA-OGF is only 6.88x10'* and the evaluation is increased by 13% but this type of

results are only in function 9, 28 to 30 and 32 among 34 problems.

Table 4.7 Test functions (Comparison between AGA-OGF, AGA, SGA-OGF, SGA-OGF)

Function AGA-OGF AGA without | SGA-OGF | SGA without | Optimal
[Objective OGF [Objective OGF value
function [Objective function [Objective from
evaluations] function evaluations] function Ref.
evaluations] evaluations]
Ackley 1.94095x107 | 1.95222x107 | 2.54636x107 | 2.54636x10° 0
[23720] [50120] [400] [1380]
Beale 1.79856x10™ | 1.35447x10™ | 4.04149x10° | 4.04149x10° 0
[24120] [25300] [3940] [18140]
Bird -1.06999x10° | -1.06999x10% | -1.06999x10% | -1.06999x10% | -106.76
[35740] [57040] [200] [6220]
Bohachevsky 0 0 8.95142 x107 | 8.95142x107 0
[2420] [2540] [7460] [8840]
Booth 6.70575x10™ | 3.37508x10™ | 6.23618x10° | 6.23618x10° 0
[2560] [51820] [2320] [2100]
Branin 4.00000x10™" 4.00000x10" | 4.00001x10" | 4.00001x10" 4
[7360] [56560] [300] [1860]
Bukin 3.67079 x10° | 5.73399x10° | 1.56073x107 | 1.18716x107 0
[32080] [32500] [2460] [40220]
Chichinadze | -4.49999 x10" | -4.49999x10" | -4.49995x10" | -4.49995x10" | -43.315
[2680] [2740] [7580] [16280]
Dixon & 3.55271x10"° | 2.44249x10™ | 5.88572x10° | 1.00161x107 0
Price [46720] [26920] [80] [4820]
Easom -9.99998x10" | -9.99998x107 | -9.99913x107 | -9.99913x10 w]
[26500] [26560] [120] [580]
Egg holder 9.59000%10? 9.59000x10° | 9.59000x10° | 9.59000x10> | 959.64
[16300] [29140] [23540] [13420]
Freudenstein | 1.67199x10" | 2.76001x10™"° | 4.44994 x10™ | 4.44994x107 0
& Roth [17200] [51880] [40] [40]
Generalized | 3.55271x10" | 3.90798x10"™ | 1.41764x10° | 3.98987x10° 0
[41860] [46900] [15400] [35560]
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Table 4.7 Continued

14 | Goldstein & 3 3 3.00061x10° | 3.00061x10° 3
Price [22360] [56560] [6940] [18940]

15 Giunta 1.00000x10" | 1.00000x10" | 1.00000x10" | 1.00000x10" 0.1
[37780] [45400] [260] [5880]

16 Griewank 0 3.08185x10™ | 7.64081x10° | 4.45971x10° 0
[260] [3820] [24040] [57060]

17 | Himmelblau | 8.48210x10" | 7.12763x10™ | 6.83005x10° | 1.34398x10” 0
[49060] [50620] [460] [80]

18 Hump -9.99999x10" | -9.99999x107" | - 9.99982x10" | -9.99978x10" | -1.032
[11140] [34900] [30720] [37240]

19 Leon 5.48006x10"° | 4.53859x10"° | -2.02400x10" | -2.01773x10 0
[2200] [6040] [16160] [10120]

20 Levy 8 6.66133x10"° | 1.11022x10"° | 4.93959x107 | 8.82102x10” 0
[46420] [56800] [8020] [620]

21 Matyas 1.60448x107 0 5.89560x10° | 8.31847 x10® 0
[1220] [1400] [52100] [480]

22 | Michalewicz | -1.80002x10° | -1.80002x10° | -1.80002x10° | -1.80002x10° | -1.801
[25840] [53860] [1280] [24960]

23 | Power sum 0 0 1.35185 x10” | 1.35185 x10~ 0
[3680] [35920] [80] [40]

24 | Pen holder -4.87104x10" | -4.87104x10" | -4.87104x10" | -4.87104x10" | -0.963
[7540] [46780] [200] [2480]

25 Paviani 45 45 45 45 45.77
[281900] [284000] [24700] [62100]

26 Quintic 2.43179x107 | 4.14077x10™ | 6.30330x10° | 6.30330x10° -1
[20240] [56800] [100] [2000]

27 Rastrigin 0 0 4.74332x107 | 4.74332x10” 0
[1820] [2000] [5000] [5040]

28 | Rosenbrock | 6.10622x10™ | 1.29896x10" | 1.09669x10* | 1.74255.x10™ 0
[36760] [31960] [5440] [19560]

29 Shubert -1.864 49x10% | -1.8649x10%> | -1.86499x10%> | -1.86499x10° | -186.73
[26980] [2440] [5440] [10620]

30 Test tube -9.99999x107 | -9.99999x107 | -9.99990x107 [ -9.99931x107 | -1.087
holder [46840] [7180] [5080] [10440]

31 | Three-hump 0 0 5.01536 x107 | 1.19403 x10° 0
camel back [1580] [1760] [16520] [160]

32 | Weierstrass 1.30763x10° | 1.30763x10° | -6.23493x107 | -6.23493x10™ 0
[16280] [12680] [9920] [50000]

33 Zakharov 0 0 1.97784x107 | 1.97784 x10” 0
[1580] [1760] [100] [140]

34 Zettle -3.79123x10° | -3.79123x10° | -3.79115x10° | -3.79115x10° | -0.003
[20680] [47800] [1640] [6020]
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4.4 Conclusion for AGA-OGF

The AGA-OGF provides robust solution for the optimization of non linear, non continuous and
multimodal function. The idea behind the development of the OGF approach is to introduce the
genetic diversity by using the best solution in successive generation. The efficiency of the
AGA-OGF is established by evaluating its performance with 34 benchmark optimization
problems. There are two types of analyses done on the basis of reliability, accuracy and
efficiency of the GA.

From the analysis (I and II) it is concluded that

. AGA-OGF generates good qualitative results relative to SGA.

. AGA-OGF takes less computation time for objective function evaluation and reduces the
computation overheads.

. There is no sign of premature convergence, trap inside the local optima or slow
convergence rate.

. AGA-OGF is more reliable than SGA as the test functions got the lower standard
deviation values from the average value of the functions and that proves the new GA is
more robust.

. SGA-OGF produces better results in terms of quality as well as function evaluations.

. AGA without OGF gives the minimum value of objective function than the SGA
algorithms but with high number of evaluations. These results concluded as the AGA is
also a good global optimum search technique but the OGF is effective tool to reduce the
computation burden with little lower quality value in SGA.

. AGA-OGF gives the best results among all algorithms. This conclusion tells that the
AGA-OGF immerges as a better global search algorithm than others because of the
improvement in quality and decrement in computation efforts by using less number of
objective function evaluations.

. In some of the functions, AGA-OGF gives similar objective function value as in without
OGF algorithm but it takes less time to achieve this minimum value. Also, if the

AGA-OGEF takes more time than it always improves the global minimum value.
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From these conclusions we can say that the AGA—OGF outperforms the AGA without OGF and
SGA algorithms. This outcome clearly shows the impact of newly developed OGF approach. It is

an effective for the complex optimization problems.
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S APPLICATION OF OGF TO HYBRID GA

5.1 Introduction

As found earlier, the genetic variation introduced by the OGF approach makes GA work more
efficiently to find the good solutions. However, GA produces weak results during the optimum

search in the vicinity of the good feasible solutions for the complex optimization problems. To

address this issue, we apply OGF to HGA.
5.2 Development of OGF in AHGA

The development of OGF in HGA is covered in two steps. First, include the gradient search
algorithm in GA and in second step, incorporate this gradient search technique in previously

mentioned new GA algorithm.

The Newton’s search method is used as a local search algorithm in Upreti and Ein-Mozaffari
(2006). It is documented in Appendix E. The GA efficiently searches optimal solution and then
gradient search method is used for fine tuned the intermediate solutions. Upreti and Ein-
Mozaffari (2006) has incorporated the gradient search method in GA by using following
programming steps.

1. Store the resulting optimal value of performance index (J ), and corresponding optimal

control vector ( X ) and I , generated so far using genetic operators. Set the counter, i = 0.
SetX® = X and I"\=1,
. For gradient search, developed the augmented objective function based on the interior

penalty function method (Rao, 1996) i.e. Equation (5.14). Find the derivatives required

for the gradient search and set » = 1 in this step.

Set the gradient search counter, j = 0. Set X’ = X, and [, = [, . Calculate the

corresponding augmented objective function (f 2” ") for the gradient search.
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4. Calculate the vector of the partial derivatives of/,"’. Check

I, " =0. If yes

apply X" = X and move to Step 9.
5. Calculate X“*" by using the steepest descent method as follows:
I/(j)
-2

XU =y —a”X(”Hx
2

Calculate the corresponding / 2” L

6. Check 1,""">1,"" Ifyes then apply X" = X, 1,Y""=1," and move to Step 9.

7. Checkll—]z(”/lzu“) <e&. If yes then apply XV = XU 1 =7 U*) and move to

Step 9.

8. Increase the gradient search counter by j = j +1, and move to Step 4.
9. Calculate 1,"*"  corresponding to X" . If 1,"">1" then changel, =1,",
and X = X”; and move to Step 12 for the application of new approach.

10. Replace/, = 1,""” |, and X = X" and check|l—11(i)/11(i+])

<g, or r <g. If yes then

move to Step 12 for the application of new approach.
11. Reduce the r value in augmented function by setting r =C, xr. Set i =i + 1, and go to

calculate gradient again for the augmented function in Step 3.

12. Store the resulting optimal value of objective function I . » and the corresponding optimal

vector ()A( ). Go to step 5 in section 4.2 (programming steps for AGA—OGF)

In this thesis, the gradient search algorithm from Upreti and Ein-Mozaffari (2006) is used for the
application of newly developed OGF approach. The HGA developed in Upreti and Ein-
Mozaffari (2006) is named Advance HGA (AHGA) for this thesis.

The OGF approach is introduced in HGA after the gradient evaluation of the objective function

evaluation. The best optimal value X is received from the GetOptimum() function which

searches the optimum parameters in good feasible region generated by GA. In GA programming

the X value enters in gradient search algorithm which searches the local optimum in vicinity of
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the global optimum X and finds new optimum X . The new value X is a real value of
optimization parameter which doesn’t have a history of chromosome encoding and chrom value.
This value is supplied to newly introduced function InduceBlock (). The procedure for the OGF

application inside the HGA is mentioned below.

The chrom value (value that gives the information of chromosome encoding) is required to

generate building block from the new optimum X . This conversion is accomplished in two

separate functions in programming.

« First function is InverseMap(). In this function, the optimum X is supplied to get the
integer value (decoded value of chromosome that depends on the bit size). If logarithmic
mapping is mentioned as a input parameter, then the inverse of logarithmic mapping

applied on X and if linear mapping is activated then inverse of linear mapping is done in

InverseMap() function.

« And the second function is SetBinVarStr (). This function converts the integer value to

chrom value and generates the binary string for an optimum chromosome.X . This
function initially checks the sign of integer value for positive or negative. If negative then
this function turned back the last bit of the binary known as sign bit from 0 to 1. If the bit
value at last bit position is O then the binary presents the positive integer value. It is

shown below by an example.

Mask = 00000000000000000000001000000000

Cor D

intVal = 00000000000000000000000000001111

4L

New intVal = 00000000000000000000001000001111

Figure 5.1 Schematic for the sign bit activation process
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Here we get the modified integer value and our objective is to get chrom value and representing
binary from the optimum chromosome for building block generation in GenerateBBs function.
For this purpose some arithmetic bit operation is applied on this new intVal. The process is

described in following figure with example.

Element (mask, allones)=11111111111111111111111111111111

bitsPer
Unsigned = 32 60@
And

Stop=N,,=10 | Intermidiate element = element >>= (bitsPerUnsigned-stop)
=00000000000000000000001111111111

J L

New element 1 =11111111111111111111110000000000

>

Arbitary chrom value = 11001101110011011100110111001101

JL

New element 2=11001101110011011100110000000000

Cor )

New intVal = 00000000000000000000001000001111

JL

Final Binary =11001101110011011100111000001111

intVal after
making +ve

Figure 5.2 Schematic for optimum binary and chrom value generation

This final binary goes for the building block generation in GenerateBBs () mentioned in previous

section 4. Following is the complete schematic of AHGA with OGF (AHGA-OGF).
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Start: Iteration=1to N, D

Set Mapping: first loga!ithmic and then make
alteration with linear

!

Start GA: generation=1to N,

§

Initial population of binary coded chromosome generation

v

Selection, crossover, mutation and evaluation
Population in Generate function

Apply gradient search and ‘
received best locally refine é Replace oldPop = newPop; and
chromosome find the optimum chromosome

Get real integer value and binary b Provide the best chromosome
coding of the optimum - InduceBlock () and
chromosome through inverse P ; """""""""

mapping

Select the chromosome from oldpop, replace BBs and
add this genotypic back in new population

___________________________ R e
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Figure 5.3  Flowchart of the AHGA-OGF

Now this AHGA—-OGEF is tested with two chemical engineering optimization problem. The brief

description of the testing problem and models are given in next section.

47




5.3 Application, Results and Discussions for AHGA-OGF

The presented AHGA—OGF was applied to the two problems

1. Agitated pulp chest mixing problem

2. Minimum variance controller problem

The optimization of these processes has been attempted by Upreti and Ein-Mozaffari (2006) and
Hanna et al. (2008). For the sake of comparison, the number of control stages and number of
building blocks were taken to be same as in previous studies. The AHGA-OGF is applied to
each problem eight times to examine the robustness of solutions statistically. Each time the
problem is initialized with a new random seed by the pseudo random number generator and used
this seed to carry out genetic operations. These eight random seeds had a varying number of
digits up to nine. Since the application of the presented AHGA-OGF cannot be allowed to run

forever, a deterministic termination criterion of N._= 10000 was used.

1itr

5.3.1 Optimization Problem description

5.3.1.1 Characterization of agitated pulp chest optimal parameter

Upreti and Ein-Mozaffari (2006) optimally determined discrete-time characterization parameters
in the pulp chest model developed by Ein-Mozaffari et al. (2003). This model describes the
dynamic non-ideal flow behavior in agitated chest pulp. The combined transfer function
representing the short circuit zone and mixing zone is transformed into discrete time equivalent

transfer function. Below mentioned function is used to generate output signal ( ).

yexp‘o = u() i< 0
(=PeYiei = P1Yics = PsYid, = PoYi-dy
Y, = : N (51)
T PU_g T Pl T Pillig, T Pl
+ Pstly_g g, iz2L20uN, —]
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where,
d, :1+%;i=1,2. d <d,

) P =—a,p
P =f(1_al) pz _ _azpl
py=(1-f)1-R)1-a,) Lo
p=—R-a)i-ay) TN
P, =aa Py =—R(l-a,)

7 1222 ai =e—tx/r,-’l~=1,2

Py =—a, g

The optimization problem for pulp suspension model is to minimize following objective function

i=N,-1

L= Y0 -ye) (5.2)
i=0

This objective function is constrained as follow

d=12,..d .. i=12 dy <djy (5.3)
0<a, <l i=12 a, <a, (5.4)
0<f<1 0<R<I1 (5.5
where,

d,,d,,a,,a,, f and R are optimization parameters.

The performance index is measured by

Y = L (5.6)
1+1, '

5.3.1.2 Minimum variance control for PI controller

Processes that are difficult to control require the effective assessment of control loop
performance. Minimum variance is one of the tools for this purpose. Hanna (2007) developed a
new strategy to determine the minimum variance control of proportional-integral (PI) controllers

in the presence of input stochastic noise, and subject to process inequality constraints.
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The derivation of open loop discrete transfer function and controller discrete transfer function
gives closed loop discrete transfer function. The inversion of ( z ) transform provides the process

output at any k™ sampling instant defined as

Ve =Sfvat vt Sy + f4yk—(L+2) + [V + glNik,(m) + gzNik-(L+2) + gsN,-Hug) (5.7)
where,

fi=F+1

fo=—F

f,=-GK, F=er

fi=-(GK, +K1,)+GK,)  and G =K(-e™") (5.8)
fs= —Gz(— K, +K,.ts) G, =K(e™* —eT")

g =G

g =G, -G,

g, =-G,

In above model, K is a steady-state gain, input stochastic noise » and process output?,. L is

that part of the time delay (Z) which is an integral multiple of the sampling time, 7 and m is

the other part of A which is a fraction of 7. Equation (5.7) is the process output, which is

constrained as follows:

Vooin < Vi < Vooaw VK 5.9
Kp,min < Kp < Kp,max (510)
Kl,min <K1 <Kl,max (511)

Equation (5.9) provides the output constraints, where Equations (5.10) and (5.11) provide the
constraints on the controller parameters. These constraints ensure that under minimum variance

condition, the output is within the specified bounds corresponding to the optimal K, and
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K, values chosen from their prescribed domains. The variance in the process output over

N samples is given by

1 N-1 9
V =—— 5.12
y N_lkz.;yk ( )

The objective is to minimize V,, which is equivalent to the maximization of the following

performance index,

=2 (5.13)

The model described by Equations (5.7) to (5.13), the problem is non-linear and discontinuous. It

was solved using hybrid genetic algorithms, which offer robust solutions for such problems.

Where V), is the variance of the input stochastic noise and following equation is the objective

function incorporating constrained by using penalty function which is to be minimized in the
AHGA-OGF.

I=1-

limrﬁ:l+1_l_l+l+1 (5.14)
o i=l \ VYmin — Vi Vi ™ Vinax Kp_K i Ki_K K,-K K'_K'max

Pmin

In this work, the AHGA—-OGEF is incorporating the Newton’s search method for a fine tuning of
the intermediate solution generated by the GA during the minimization of objective function. To
use Newton’s search gradient based algorithm, it is required to compute the first and second

derivatives of 7, and use these derivatives to make an improvement in K, and K, by Newton

search given by following Equation (5.15)
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&1, &1, al,
K, | _ |K, | | K, KK, K,
K | K | | o1, @&l o,
i j+1 T dj —_—
KoK,  oOK; oK,

(5.15)

The hybrid optimization algorithm developed in this section was applied to the optimization

problems described in previous part of this section. The common parameters used by the

AHGA-OGEF for two problems, are listed in Table 5.1.

Table 5.1 Common AHGA—-OGF parameters used in both optimization problems
Parameter Value Parameter Value
N 10000 N, Z:‘ Ny,
o 10 Dhin 10°
P, 0.2 CpC; 0.75
». 0.98 € 10*

5.3.2 Results for optimization problem in 5.3.1.1

The first application is to determine discrete-time characterization parameters for non-ideal flows

in agitated pulp chests. The model for the dynamic non-ideal flow in agitated pulp chests is

represented by Equations (5.1) to (5.6). The values of various parameters used in this application

are listed in Table 5.2 (as an input for HGA-mixing). The algorithm was tested by applying it to

three sets of experimental plant data (Ein-Mozaffari, 2002), i.e., experimental data sets 4, 5 and

6. The results of this application are provided below.
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Table 5.2 Limits of the optimization variables supply as an inputs to the algorithm
(Optimization problem 5.3.1.1)

Parameter Value Parameter Value
dymini=12 1 d, o 5%x10°
5 e 10° i =12 10°
i man 1 = 1,2 (1-10% | £, 0
P 1 Nyia i=12 10
Ny q i=12 7 Ny s
N, 10 N 2
N, 2 a 10
NBB 3 1

For each data set, the algorithm was applied with different random seeds for the GA
initialization. It is found that the results are independent of seed value. The algorithm reduced the
objective function value (/;), and was terminated at the point where the iterative change in /; was
of the order 10™ or less. The algorithm took around 10000 iterations to reach this level of
convergence. The motivation behind the application of AHGA—-OGEF to these tested diverse data
sets by Upreti and Ein-Mozaffari (2006) was to check its ability to find the better quality of
optimal results in less number of objective function evaluations. The comparison is made on the
number of objective function evaluations and optimal root mean square fractional error between
the calculated and experimental output (Equation 5.16) to study the performance of newly

developed AHGA—OGF and the AHGA by Upreti and Ein-Mozaffari (2006).

i=N-1 ? (5.16)
Irms = Z i 1— Ymod
i=0 N yexp

Three different algorithms were tested to the simulated data sets. First one is AHGA-OGEF (with

gradient search), second one is AHGA without OGF (with gradient search), and last one is
AGA-OGF from previous section (without gradient search). The values of fraction error (F)
were found to be of order 107 and less, are provided in Table 5.3 with the corresponding number

of objective function evaluations. These values are derived from the application of the algorithms
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on eight different random seed numbers for GA initialization. These global minimum results
were found by the application of the algorithms for all seed numbers. Through these results we
can discuss the impact of newly created OGF approach with or without gradient search. The

discussions on tabulated results in Table 5.3 are composed of two parts.

In first part, the comparison is done between the algorithms with AHGA and AGA-OGF. The
fraction error (E) obtained by AHGA is similar in magnitude to those obtained with AGA-OGF
except for experiment 4. The maximum absolute fractional error difference in experiment 4
might be around 0.01%. Furthermore, this similarity suggests that the use of OGF alone in HGA
could yield results similar to gradient search but without involving complexity of the gradient

evaluation.

The gradient search finds the local optimum by evaluating the gradient of the objective function.
In OGF we use the optimal genotypic from the GA operation in the form of building blocks for
each successive generation. The OGF approach provides the optimal steps to search global
optimum and due to this approach, we get the right optimal steps in the direction of global
optimum search after every generation without evaluating the gradient. This way both approach
finds the global optimum but the OGF requires less computation efforts due to no gradient
evaluation and from the results we can confirm that the results are similar. So, we can use OGF

instead of using the gradient search.

In the next part of the discussion, the comparison is made between AHGA-OGF and AHGA.
The fractional minimum error is minimized more effectively when we include OGF because the
approach has an ability to search global optimum more effectively by introducing the genetic
diversity inside the population, thereby avoiding its premature stagnation. The fractional error is
decreased in each experiment except experiment 4. The error (E) is improved by AHGA-OGF in
experiment 6 by 0.06% and the number of objective function evaluations is decreased by 68% in
comparison with AHGA. Thus, the AHGA—OGF reduces the computation burden and time. In
experiment 5 the error is minimized by 0.03% but the number of objective function evaluations
is increased by 11% where in experiment 4 the quality value is remain similar to other

algorithms. Better quality solutions are achieved through the AHGA—OGF by introducing OGF
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with less number of objective function evaluations. If the number of objective function

evaluations is more than the AHGA-OGF provides good quality solutions.

Table 5.3

Results for mixing in pulp chest problem for all experiment datasets

Experiment 4

AHGA-OGF

AHGA

AGA—-OGEF (Gradient

(Gradient search: yes (Gradient search: yes) search: no
y y

E value 1.68787x10 1.68787x10 1.68806x10~
Number of objective 1065343 1034410 1067256
function evaluations

d 9 9 9
d 28 28 27
a 8.227707x107 8.227639x10" 8.121923x10"
a 9.928995%10™ 9.928994x10 9.929098x10"
f 1.848849x10" 1.848846x10" 1.796235x107"
Experiment 5 AHGA-OGF AHGA AGA-OGEF (Gradient
(Gradient search: yes) | (Gradient search: yes) search: no)

E value 2.65234x107 2.65330%10™ 2.65330x10
Number of objective 1734374 1528347 1294662
function evaluations

d 9 9 9

d 38 38 38

aj 7.128597x107" 7.142029%10 7.142088%10"

a 9.936492x10 9.936603x10 9.936603x10"

Fi 5.179999x10"" 5.183089x10" 5.183071x10""
Experiment 6 AHGA-OGF AHGA AGA-OGF

(Gradient search: yes) | (Gradient search: yes) (Gradient search:
no)

E value 2.79228x107 2.79387x107 2.79387x107
Number of objective 635199 1071160 1452108
function evaluations

d 10 10 10
d 19 18 18
a 4.896894x10 4.749037x10" 4.748997x10"
@ 9.946559x10™ 9.946615%10™" 9.946614x10"
f 2.797227x10" 2.761970x10 2.761969x10"

Figures 5.1 to 5.3 support the conclusion derived from above discussion. These figures are

developed on the base of the data produced by all three algorithms. The data are the minimum
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value of the objective function achieved at all seeds. The figures show better performance of the
AHGA-OGF over other two algorithms for both performance evaluation criteria except for few
seeds. The AHGA—OGF shows good results in experiment 4 with 6 seed, in experiment 5 with 5
seeds and in experiment 6 with 6 seeds out of 8 seeds. It means that the success rate of this
algorithm to give best result is nearly 75% which indicates the good robustness quality of the
algorithm. The AGA—OGF gives the similar or the better results than the AHGA gives.

0.01710

0.01705 |
0.01700 4
0.01695

0.01690

0.01685 |

Minimum objective function value

0.01680

0.01675

Seed number

L- AHGA - OGF m AHGA 0O AGA - OGF ‘

Figure 5.4  Comparison of AHGA-OGF, AHGA, AGA—OGF for Experiment 4
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Figure 5.5

Comparison of AHGA-OGF, AHGA, AGA-OGF for Experiment 5
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:.e Figure 5.6 Comparison of AHGA-OGF, AHGA, AGA-OGF for Experiment 6
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5.3.3 Results for optimization problem in 5.3.1.2

The second application is to develop the strategy to design a PI feedback regulatory controller
that can minimize the output variance of process, and reduce the effect of the input stochastic
noise, subject to process inequality constraints. The HGA developed by Hanna et al. (2008) is
named as Advance HGA (AHGA) for this optimization problem in this thesis and application of
the OGF approach in AHGA is defined as AHGA—OGF. The AHGA-OGF is applied to find the
optimum parameters of three different control loops named, (I) Roaster blower loop, (II) Roaster

feed loop and (IIT) Montcalm loop

The model described by Equations (5.7) to (5.15), is non-linear and discontinuous for these
controller loops and the AHGA-OGF was applied to determine the optimal values of the
controller parameters that would result in the minimum variance of the process output. The

model parameters are listed in Table 5.4. Table 5.5 lists the limits on the parameters constraints.

Table 5.4 The process and controller parameters for the three control loops
Parameter Montcalm loop Roaster blower loop Roaster feed loop
Gain 12.9 1 0.67
Time constant 24.75 35 7
Time delay (s) 28 8.5 11
Table 5.5 Limits imposed on optimal controller parameters

Limits Control loop
Montcalm loop Roaster blower loop Roaster feed loop
Controller—parameter constraints
- 0.001 0.001 0.001
. 10 10 10
S 0.001 0.001 0.001
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Table 5.5 Continued

Ki,max 1 1 l
Output constraints

y -4.5 -0.7 -0.4

Voo 4.5 0.7 0.4

The application of the AHGA-OGF yielded the optimal, minimum variance controller
parameters as shown in Table 5.6. As described in previous application, these results are also

discussed in two parts.

The first part is the comparison of the AGA-OGF and AHGA by Hanna et al. (2008). In this
problem the performance index (PI) is to be maximized for all controller problems. The optimum
performance index for all problems is higher for AGA—OGF than AHGA which shows a superior
performance of AGA-OGF for a global maximum search. AGA-OGF produces the better
quality results in less number of objective function evaluations for Roster feed loop and
Montcalm loop. These results conclude that the AGA-OGF creates less complexity in
computation and decreased the convergence time for the global optimum search. In case of roster
blower loop problem, the performance index is same for both algorithm but the number of
objective function evaluations is increased for AGA—OGF by only 0.0006% which is very less

and acceptable.

The second part of the comparison is done between the AHGA—-OGF and AHGA. The results are
more encouraging for new development. The PI value is higher and the number of objective
function evaluations is less for the AHGA—OGF. The evolutions are higher by very negligible

percentage in roster blower loop.

59



Table 5.6

The results for minimum variance controller problem for different controller loop

Mont calm loop AHGA-OGF AHGA AGA-OGF (Gradient
(Gradient search: yes) | (Gradient search: yes) search: no)
I 2.64912x10™ 2.64907x10" 2.64912x10"
Number of 3435976415 3435977737 3435976391
objective function
evaluations

Proportional gain

3.73961x10™

3.73980x10

3.73961x10

Integral gain

1.00004x10

1.00012x10°°

1.00004x107

Roster blower AHGA-OGF AHGA AGA-OGF
loop (Gradient search: yes) | (Gradient search: yes) | (Gradient search: no)
1 8.01276 8.01276 8.01276
Number of 3436008380 3435987948 3436008344
objective function
evaluations
Proportional gain 6.85754x107 6.85755x10~ 6.85754x10~

Integral gain

1.00001x10

1.00000x107

1.00004x10~

Roster feed loop AHGA-OGF AHGA AGA-OGF
(Gradient search: yes) | (Gradient search: yes) | (Gradient search: no)
1 32.03596 32.03595 32.03596
Number of 3435983238 3436069545 3435983210
objective function
evaluations
Proportional gain 3.341061x10" 3.34107x10" 3.341061x10"

Integral gain

1.00006x10

1.00011x107

1.00006x10

Figures 5.4-5.6 present the results generated by all three algorithms. The data are the maximum

value of the objective function at eight different random seeds for each algorithm. The figures

indicate improved performance of the AHGA-OGF over other two algorithms. The

AHGA-OGF algorithm shows good results in Montcalm loop with 5 seed, in roster feed with 6

seeds and in roster blower loop with 3 seeds out of 8 seeds. This conclusion points towards the

impressive robustness of the algorithm.
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Figure 5.7  Comparison of AHGA-OGF, AHGA, AGA-OGF for Montcalm loop
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Figure 5.9  Comparison of AHGA-OGF, AHGA, AGA-OGF for Roster blower loop

5.4 Conclusion for AHGA-OGF

The final conclusion derived from these two optimization problem is

1. OGF provides results similar to gradient search.

2. AHGA-OGF gives better results than AHGA or AGA—OGF. The results confirm that
the quality of desired solution is increasing with less number of objective function
evaluations. In the cases when the evaluations are higher than other algorithms, the
quality is improved except for the experiential 4 and roster blower loop cases for

previously discussed models.
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6 FUTURE WORK

The first recommendation for future work can be the utilization of the great potential of the HGA
with optimal genotypic feedback approach by applying to optimal control problems. The HGA
has to go through more complex computation as the problems involved integration and
computation burden is increased. In this case, this new approach is expected to be very useful to

produce the better qualitative results with less computation effort.

The second recommendation is to use this new approach (OGF) with meta GA. In meta GA a
GA works inside another GA. The inner GA works to find the parameter value after the genetic
operation, while the outer GA works with determination of the probability for the individual in
genetic operation. The main drawback of meta GA is computation time. In this case, if we use

the new approach than the new GA could produce better quality results in fewer iterations.
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Appendix A

In this appendix the standard genetic algorithm (SGA) operation is defined.
A.1 Pseudo code for SGA

An initial population of individuals is randomly generated. Every evolutionary step, known as a
generation, the individuals in the current binary population are decoded and evaluated at the
objective function according to some predefined quality criterion. The value receives after
objective function evaluation referred to as the fitness. The selection is performed on the
population as per the fitness values and the new individuals are generated by genetically-inspired
operators; crossover and mutation. These operators change the genetic information of the
chromosome and generate new population. This population is evaluated on the basis of their
fitness value and inserted into population. At the end, if solutions are reached at user defined
criteria then stop, otherwise start with new population for second iteration. The pseudo code for

GA 1s mentioned below.

Start GA
Iteration =1; Iteration <Maximum Iteration; Iteration ++;

{

Generation=1; Generation< Maximum Generation; Generation++
{

Rand (); //Initial population generation (named old population)
Map (); // mapping for decode the chrome value in actual value
Getfitness (); / oldpop evaluation with objective function and generates fitness  value
Checkconstraint (); / set fitness = 0 for the chromosome, who violets the constraints
Selection (); // select the parents on the base of the fitness value
Crossover (); / genetic operation with P, probability

Mutation (); //genetic operation with Pm probability
Getfitness (); // newpop evaluation with objective function and generates fitness value
Getoptimum (); // find the optimum solution among the new population
Check (); // check the convergence criteria
If (convergence criteria meet) {Exit () ;}
}

}
Figure A.1  Pseudo-code of the standard GA
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In the next sections, we will discuss each step of the pseudo code.

A.2 Initial population generation

The GA starts with the initial population of strings made up with the small blocks of genes and
represented by binary coding. At each location of binary string bit, there is a chance of getting
value either O or 1. The fair coin toss principal is used to generate this random value with 50% of
the probability. This way the randomly generated bit’s value creates the chromosome or string in

initial population.

Now for the better explanation on the features of GA, one optimization test function for the

minimization is presented.

S (x5x,) = (x, _7)2 +(x, _3)2 (2.1)

Domain limit: 0<x,x, <7.

At the first, the chromosome is binary encoded by the random number for the initial population
generation. The six bits are allocated to each optimization parameter x; and x,. In Table A.1 it
shows the initial population with four binary chromosomes and first 3 bits are allocated to x; and

last are to x».

Table A.1 Example of initial population generation for SGA

No. String (x,,x,) value
1 101100 (% =5,% =4)
2 001101 (x, =Lx, =95)
3 011011 (x, =3,x, =3)
4 110001 (x, =6,x, =1)
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A.3 Evaluation

After initial population generation, every individual needs to be evaluated, so that it is possible to
identify good and bad individuals. This can be done by mapping of the objective function to a
fitness function, a non-negative integer. Through this mapping method the chromosome binary
value is converted in actual value of the particular individual. GA is inherently maximizing the
function. So, after the evaluation we get the performance index J = Objective function value. But
in the case of minimization, the objective function value = 1/J-1 is used. Due to that in mapping
process on the objective function is applied without the consideration of the maximization or

minimization. In this example we want to find minimum. The fitness values of four strings are

Table A.2  Example of fitness evaluation for SGA

No. String (x,,x,) value Fitness value
1 101100 (x,=5,x,=4) 5
2 001101 (x =%, =5) 40
3 011011 (x, =3,x,=3) 16
4 110001 (x, =6,x, =1) 3

A.4 Reproduction

An important thing is to decide which individual is to get selected for the reproduction operation.
So, before any of the genetic operation, selection comes first. In the selection the individuals
from the initial population is selected on the basis of their evaluated fitness value and move to
the mating pool where the genetic operations are applied. The most popular selection scheme is
Fitness Proportional Selection (FPS) also called Roulette Wheel Selection which based on the
stochastic sampling with replacement (Holland, 1975) where an individual is selected
stochastically from the population for genetic operation and it replaced back into the population

for the next generation.
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In this method, the member is chosen proportionally to the ratio of its fitness value to the total
fitness of the population. A roulette wheel is divided into the equally spaced N parts and the
population is mapped onto a roulette wheel (Baker, 1987) where the section of the wheel for a
better solution is larger than for a poorer solution. Now during the spinning of the wheel, the
individual gets higher chance to reproduce itself which has more fitness ratio. After
reproduction, the intermediate population is generated in mating pool and the crossover and

mutation are introduced on this population.

In this example we spin the weighted wheel four times as the population size is four. Figure A.2
shows the distribution of individuals on the wheel as per their fitness value and the reproduction

occurred after the spinning of the wheel.

No Fitness
1 13
1 2 57
13%
4 3 2
4 50
50%
Spin
3 1
0,
2% 2 3 4
Mating Pool

Figure A.2  Roulette Wheel Selection

In Table A.3 the fitness value of every individual is reported. Now we can find the expected
count of every individual by dividing an individual's fitness value with the average of all fitness
values. The average of all the fitness values of this example is 16.5, so the expected count of
individual one is 5/16.5 = 0.30. In Table 2.4 other expected counts and the normalized fitness
values are shown. These normalized values achieved through the division of the fitness value of

the individual with the sum fitness value of all individuals (66 in our example), multiplied by
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100%. The normalized fitness provides the chance of an individual to be chosen as a parent. A

sum function is used to select an individual as a parent, mentioned as,

8, =>.1 (22)

This gives the sum of all fitness values from individual one to i™ individual. An integer between
0 and the sum of all fitness values is randomly and uniformly chosen. The S, values are shown in
Table A.3. For example, suppose the randomly chosen number is 35 then individual 2 will be
chosen as a parent because 40 is the first value that approaches 35. This routine will be repeated

until we have 4 parents. The parents are also shown in Table A.3.

Table A.3 The population after reproduction operation in SGA

No. String x,y) Fitness | Normalized Si Expected | Actual
count
1 101100 | (x, =5, %,—4) 3 7.57% 5 0.30 0
2 001101 | (x, =1,x, =5) 40 60.60% 45 2.42 3
3 011011 | (x, =3,x,=3) 16 24.24% 61 0.969 0
4 110001 | (x, =6,x, =1) 5 7,57% 66 0.30 1

A.5 Recombination or Crossover

After reproduction, the new individuals or chromosomes accumulated in mating pool, where two
parents have been selected. Then, the genetic algorithm combines them to create two new
chromosomes. For the crossover, a crossover site is randomly selected between starting bit

position in binary to the maximum binary length[l,/—1]. Two new strings are created by

swapping all characters between the crossover site and /, see Table A 4.
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Table A.4 Crossover operator (k = 3) for SGA

Before crossover After crossover Before crossover
110 101 110 010 110 101
100 010 100 101 100 010

The crossover is performed with a probability P, to decide whether or not crossover occurs. The

crossover is the prime factor of a GA to introduce a major diversification inside the population
which is very much necessary for global optimum search and differentiate the GA from other

optimization algorithms.

A.6 Mutation

The last genetic operation in the GA is the mutation. The mutation is trying to reintroduce
diversity into an early converging population. In the later generation of a GA run it is a chance to
converge the algorithm into local maximum. By mutating some chromosomes we again
introduce the genetic variation in GA and may find a possibility to past over this local maximum
(Parker, 1992; Goldberg et al., 1991). It works as a safety net to recover good string which may

be vanished during the genetic operation like selection and crossover.

The possibility for the mutation operation depends on the P_(which is very small). In mutation,

the mutation site can be decided by applying P_ at each bit location and the change in the bit

value from 1 to 0 and vice verse where mutation is decided (Holland, 1975), In Table A.5 the

mutation operation is described.

Table A.5  Mutation operator for SGA

Before Mutation After Mutation

101100 100100
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Now after crossover and mutation, we can see new population in following table.

Table A.6  New Population after crossover and mutation operation in SGA
No. Selected Old Old Actual After After New
parents Fitness crossover | mutation fitness
1 101100 5 0 001100 001100 37
2 001101 40 3 101101 101101 8
3 011011 16 1 011011 001001 40
4 110001 5 0 110001 100011 9

As we can see, a new string with high fitness has appeared. The sum of the fitness values has
increased from 66 to 94 and the average has increased from 16.5 to 23.5. Following the
reproduction, crossover and mutation, we see that of the initial population, strings 4 was selected
ones (average fitness), string 1 and 4 were not selected (low fitness) and string 2 was selected
thrice (high fitness). Crossover provided us the high-fitness string (001100) (string 1) where
string 2 becomes the lowest fitness string which was the highest one in before crossover. The

low-fitness string (011071) (string 3) in which a mutation took place which increased the fitness.
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Appendix B
B.1 The schema theorem

The schema theorem is the basis of GA which is first mentioned by Holland (1975). Here is the
short description of the theorem. A genetic algorithm requires population to proceed. A
population is made up with the chromosomes. The population is defined by P and each

chromosome defined by P.. Each chromosome has number of characters called alleles. Now in
each P, number of alleles is 1. So, we can say that ;™ allele in P;" chromosome is P, where

I<i<mandl<; <.

In first generation the chromosome are generated randomly and made a population. This
population is parent (P°). Then parents are mated and undergo several genetic changes and
generate children. In next generation, the population is chosen from the original population and

children from the previous generation. After 7 generation the population becomes P(7 +1).

With these definitions for the terms, it is possible to define schema. A schema is a similarity
template describing a subset of strings with similarities at certain string positions. It can be
represented in binary form with 0, 1 and x. Here we have introduced new parameter X means
“don’t care”. So, in the string when this x encounter, that means at this position parameter have a

value either 0 or 1. As an example x00000 schema can match two strings, 000000 or 100000.

The notion schema is used to describe the superior group of values from generation to
generation. Schemata have two characteristics. The order of schema is number of fixed symbols
(No x) in schema and defining length is length between first and last position. Thus 1xx01

schema has a third order and defining length is 4.

These properties are important tool to discuss string similarities and it is useful to justify the

superior schemata development during the crossover and reproduction operation.
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Suppose at time ¢ we have a m example of H schema in A (¢) population defined by m(H,?).

Reproduction operation is depending on the fitness value of any string 4, with n population size,

the probability is defined by P =L. Here, we have a m(H,t) samples which are going

2

through reproduction. So, at 7+1 time reproductive schema

can be defined by m(H,t+1)=m(H,t)x f(7H) B.1

Where f(H)= average fitness of the strings represents the H schema.

7 =average fitness of n population (%)

Now in Equation (B.1) schema H remains above average by ¢x f (¢ isa constant). So, at 7 =0

Equation (B.1) becomes m(H,t) = m(H,0)x (1+¢)", which is the discreet analog of exponential

form.

After reproduction, crossover is the next genetic operation to perform. In crossover, the
information exchanged at randomly selected locus and creates a new structure. The survival

probability for schema after crossover is defined by

Ple—ch%@ B.2

Where, 6(H) = defining length

[ = length of string

With reproduction operation,

m(H,t+1)=m(H,t)x%|:l—ch%:| B.3
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From Equation (B.2) we can say that the schemata which have above average fitness and short

defining length are going to be sampled at exponential increment.

Last operation is mutation, in which single position of the string altered at P, probability. The

survival probability P after mutation is

N

F 21-0(H)xP, B.4

o(H) = order of schema

Therefore, after all genetic operation the number of copies the schema receive are defined by

m(H,t+l)=m(H,t)x%|:1_P x@

X7 1 —O(H)me:| B.5

From this equation we can derive our final conclusion

“Short, low order and above average schemata receive exponentially increasing strings in

consecutive generation”. This statement is known as Schema Theorem (Goldberg, 1989)
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Appendix C
Following are the 34 benchmark functions used to test newly developed OGF in this thesis.

C.1  Ackley function

£(x) = —20exp(~0.02 %ixf ) exp[%icos@nxi)} +20+e

i=l1 i=1

~-30<x, <30, i=1.2.

C.2  Beale function

Fx)=(15-x+x%)" +(2.25-x +xx,° ) +(2.625—x, + x,x,’)’
—45<x, <45, i=12.

C3 Bird function

- 2 o 2
[(1=cos(x; ) ]+cos(x2)exp[(] sin(x,)) ]+ (xl _x2)2

/(x) =sin(x )exp
-2 ex s dn.i=12,

C.4  Bohachevsky functions

£1(x)=x" +2x,> —0.3cos(3xx,) — 0.4 cos(4xx, ) +0.7
f,(x)=x"+2x,"-03 cos(3mx, ) cos(4mx,)+0.3

£3(x) = x,” +2x,> —0.3cos(3mx, +47mx,)+0.3
~100 < x, <100, i=1,2.

C.5 Booth function
fx)=(x, +2x, —7)2 +(2x;, +x, -5)*

~10<x <10, i=12.
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C.6 Branin function

2

Sx,

S(x)=(x, ——2+£)2 +10(1-87) " cos(x,) +10
4= 1—-6

— 3£ % £10and 0 <x, £15

C.7 Bukin function

() =100,x, ~0.01x[ +0.01]x, +10]

—15<€% =5 and 3<%, 53

C.8  Chichinadze function
FO)=x"+2x +11+ 10cos(%) +8sin(57mx,) — (%)0.5 exp 30205

~30<x, <30, i=12.

C.9 Dixon & Price function
FG)=(x -1+ i2x" - x,,)’
=2

~10<x, <10, i=1.2.
C.10 Easom function
f(x) =—cos(x,)cos(x, ) exp[—(x, — 7)* — (x, — 7)°]
~100< x, <100, i =1,2.

C.11 Egg holder function

X,y + X, 12+ 47)) +sin(y|x, - (x,,, +47))(=x,))

()= 3 (5 +4Tysin

~512<x, <512, i=12.
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C.12 Freudenstein & Roth function
F) =[-13+x, +((5-x,)x, =2)x,1* +[-29 +x, + ((x, + Dx, —14)x, ]’
~10<x, <10, i=12.

C.13  Generalized penalized function No. 2

f(x)=0.1(sin* (37x,) + "i(x,. —D)2[1+sin’* (37, )]+ (x, —1)*[1+sin’ (27, )]) + Zn:u(xi,lo,l 00,4)

i=1 i=l1

—-30<x,£50, i=12, n=2,

where,
kx(x—a)" if x > a,
u(x,a,k,m)=<-kx(x-a)" if x < -—a,
0 otherwise

C.14 Goldstein & Price function

Jx)=(/12)

where,

fi=[+(x, +x, +1)>(19-14x, +3x,”> —14x, + 6x,x, +3x,")]
fr =[30+(2x, —3x,)> (18 = 32x, +12x,> +48x, —36x,x, + 27x,")]

-10=<x, £10,i=1,2.
C.15 Giunta function

16 . 2 16 1 16
—x, =) +sin*(—x, —1) + —sin(4(—x, — 1
5% ) (15x' ) ((ISx' )]

f(x)=0.6 + > [sin( =

i=1

-12x, 51,i=1,2.
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C.16 Griewank function

2

N X _ - X
f(x)—§(4000) HCOS(J;)+1

i
—600 < x, <600, i=12.

C.17 Himmelblau function

F) =0, +x," =T + (x> +x, =117 +0.1[(x, —=3)> + (x, —2)*]
—6<x,<6,i=12.

C.18 Hump function
X 6
f(x)=4x’-2.1x" + ? 3 = A" e A

~5<x,<5,i=12.
C.19 Leon function
F(x)=100(x, - x°)* +(1 - x,)*
~1.2<x<12,i=12.

C.20 Levy function No. 8

£ =sin® () + 3 (v, ~1)2[1+10sin* (9] + (v, ~1)?

p
where,

y,=1+(x,—=1)/4, =10< x, <10, i=1,2.
C.21 Matyas function

£(x)=026(x,” + x,”) — 0.48x, x,

~10<x,<10,i=12.
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C.22 Michalewicz function

2p

2 . 2
f(x) == sin(x)(sin(=)

O0<x; =@ p=10,i=12.

C.23 Power sum function
2 d k12
f)=1b - x"]
k=1 i=1

0<x, <4, b =8b =18b =44,b, =114, i=123 4.

C.24 Pen holder function

-1

N (X12 +x22 )0.5
s

J(x) = —exp[—{cos(x,)cos(x,)exp ]

~11<x <11,i=12.

C.25 Paviani function

0.2

(=Y 0" (x, ~2) +1n* 10~ x)]~[[ T ]

2<x,<10,i=12..10
C.26  Quintic function
4

%

2
X X, X
%) = el 70
/) 4 2 10 2

~10<x, <10, i=12.
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C.27 Rastrigin function
S(x)=10m+ Z[x,.2 - lOcos(2mcl.)]
i=l

~5.12<x, <512, i=12, m=2.

C.28 Rosenbrock function
m—1

f(x)= Z[lOO(xlz —x, =1 +(x, = 1)*]
i=1

~5<x <10, i=12.

C.29 Shubert function

f(x)= ﬁi[icos((i +Dx; +1)]

j=1 i=l
~10<x,<10,i=12.

C.30 Test tube holder function

200

cos[—(x’2 )’ )}

f(x) =—4sin(x,) cos(x, ) exp

-95<x,<94 and -109<x, <10.9

C.31 Three-hump camel back function
X 6
fx)=2x"-1.05x" + ? Xy By

~5<x, <5, i=12.
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C.32 Weierstrass function

f(x)= Zm:i[ak cos(27b* (x; +0.5))] - mzk:[ak cos(270* 0.5)]

i=1 k=0
=0.55% <05 =12, m=2, a=0.5,6=3%,k=20.

C.33 Zakharov function

-5<x;,<10, i=12.
C.34 Zettle function

f(x)=(x, +x,° —2x,)> +0.25x,

83



Appendix D

In this appendix, results for new GA and SGA comparison are plotted. The first and second
graph with title of “New GA” and “SGA” are the objective function value versus iteration
graphs. The data are generated by respective algorithm during the testing of 34 benchmark
optimization function. Where the third graph titled “90 random seed testing for new GA” is the
graph for the objective function value versus seed number. This graph is developed from the
results of 90 random seed application on each test function during the new GA performance
evaluation process.
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Beale function
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Bird function
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Bohachevsky function
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Booth function
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Branin function
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Dixon & Price function
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Easom function
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Egg holder function
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Giunta function
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Paviani function
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Quintic function
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Rosenbrock function
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Shubert function
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Three hump camel back function
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Zettle function
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Freudenstein & Roth function
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Goldsteine & Price function
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Weierstrass function
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Generalized function
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Griewank function
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Hump function
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Michalewicz function
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Power sum function
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Rastrigin function
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Appendix E

E.1 Gradient Search Algorithm

Newton's method is an efficient algorithm for finding approximations to optimization of a real-
valued function. The scheme of this technique can be described as: an initial value is selected to
start with a value which is logically close to the true zero of the first derivative, then substitutes
the function by its tangent which can be derived from an explicit function by the basic principles
of calculus. Then the zero of the second derivative can be computed (which is simply done with
basic algebra). This zero of the second derivative will typically be a better approximation to the

first derivative zero, and the method can be iterated.

Suppose f: (a, b) — R is a differentiable function defined on the interval (a, b) with values in the
real numbers R. We start with an arbitrary value x¢ (the closer to the zero of the first derivative

the better) and then define for each natural number n,

E.1

where, /' denotes the first derivative and /" denotes the second derivative of the function f

respectively.

We can prove that, if /' is continuous, and if the unknown zero x is isolated then there exists a
neighborhood of x such that for all starting values x, in that neighborhood, the sequence {x,} will
converge towards x. Furthermore, if f'(x) # 0, then the convergence is quadratic, which

intuitively means that the number of correct digits roughly doubles in every step.

In general, the convergence is quadratic: the error is squared at each step (that is, the number of
exact digits doubles in each step). There are some cautions to be considered when programming
this method. The penalty function should be used to avoid convergence to zero, which is another

disadvantage of Newton's method convergence.
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To carry out Newton's Method along the steepest descent in step 5 (Page 44) of the algorithm,
the interior penalty function - Upreti (2004) - method was used. It incorporates the inequality

constraints, into the augmented objective function given by

N
€ = 123{11 —Z%{gi}}, g, <0 Vi EZ

i=1

where, g; is inequality constraint and r is the interior penalty function coefficient. Upreti (2004)
has incorporated the gradient search method in GA by using programming steps defined in

section 5.2 (Page 42).
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