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Abstract

Capacity Optimization For Radio Resource Allocation In

Cognitive Networks

c⃝ Mohamed Elalem, 2013

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University

With the rapid development of wireless services and applications, the currently radio spec-

trum is becoming more crowded. How to accommodate more wireless services and applica-

tions within the limited radio spectrum becomes a big challenge faced by modern society.

Cognitive radio (CR) is proposed as a promising technology to tackle this challenge by in-

troducing secondary users (SUs) to opportunistically or concurrently access the spectrum

allocated to primary users (PUs). Currently, there are two prevalent CR models: the spec-

trum sharing model and the opportunistic spectrum access model. In the spectrum sharing

model, the SUs are allowed to coexist with the PUs as long as the interferences from SUs

do not degrade the quality of service (QoS) of PUs to an unacceptable level. In the op-

portunistic spectrum access model, SUs are allowed to access the spectrum only if the PUs

are detected to be inactive. These two models known as underlay and overlay schemes,

respectively.

This thesis studies a number of topics in CR networks under the framework of these two

schemes. First, studied cognitive radio transmissions under QoS delay constraints. Initially,

we focused on the concept: effective capacity for cognitive radio channels in order to identify

the performance in the presence of QoS constraints. Both underlay and overlay schemes

are studied taking into consideration the activity of primary users, and assuming the gen-

eral case of channel fading as Gamma distribution. For this setting, we further proposed a
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selection criterion by which the cognitive radio network can choose the adequate mode of

operation. Then, we studied the cognitive radio transmissions focusing on Rayleigh fading

channel and assumed that no prior channel knowledge is available at the transmitter and

the receiver. We investigated the performance of pilot-assisted transmission strategies. In

particular, we analyzed the channel estimation using minimum mean-square-error (MMSE)

estimation, and analyzed efficient resource allocation strategies. In both cases, power alloca-

tions and effective capacity optimization were obtained. Effective capacity and interference

constraint were analyzed in both single-band and multi-band spectrum sensing settings. Fi-

nally, we studied optimal access probabilities for cognitive radio network using Markov model

to achieve maximum throughput for both CR schemes.
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Chapter 1

Introduction

Wireless communication has become an integral part of human life. Recent exponential

growth in the use of wireless phones has been attributed to the advances in device technology

and applications development in addition to various communication technologies. One of

them is the advent of cognitive radio technology.

1.1 Cognitive Radio Models

The term “cognitive radio” was first coined by Joseph Mitola in [1], in which the possibility

of enhancing the flexibility of personal wireless services through cognitive radio techniques

was discussed. Then, the idea of cognitive radio was further expanded and a conceptual

overview of cognitive radio was presented in Mitola’s PhD dissertation. Cognitive radio is

described as a fully reconfigurable wireless device that is sufficiently intelligent about its

environment (e.g., radio resources and channel fading states) and is able to automatically

change its operating parameters (e.g., transmit power, operating frequency, and modulation

strategy) in response to environment changes. Later, Simon Haykin proposed the concept

of interference temperature in [2], and characterized this concept as a main constraint in

cognitive radio operation. This paves the path for today’s spectrum sharing model.
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Nowadays, cognitive radio operation models can generally be classified into two cate-

gories: opportunistic spectrum access and spectrum sharing. In the opportunistic spectrum

access model, cognitive users or better known as secondary users have to sense the surround-

ing radio environment first, then transmit in vacant or intermittently unused spectrum with-

out causing interference to the spectrum licensees known as primary users. In the spectrum

sharing model, secondary user is allowed to transmit concurrently with primary user over

the same frequency band provided that the primary user’s performance degradation caused

by secondary user’s transmission is tolerable. This is realized by imposing an interference

power constraint on secondary user’s transmission, i.e., the interference power received at

primary user’s receiver must be constrained below a certain prescribed threshold. In the

following, brief introductions of these two cognitive radio operation models are presented.

1.1.1 The Opportunistic Spectrum Access Model

In opportunistic spectrum access model, secondary user first does spectrum sensing to detect

the ON/OFF status of the primary user. If the primary user is detected to be OFF , then

the secondary user can transmit over the spectrum; otherwise, the secondary user has to keep

sensing until it finds a vacant spectrum band. A key feature for this model is listen-before

talk [3]. This model is known as overlay scheme. On this basis, spectrum sensing plays a

significant role, since the sensing result directly decides whether the target spectrum can be

used by the secondary user or not. Two key concepts associated with spectrum sharing are

probability of detection and probability of false alarm. Probability of detection is defined

as the probability of correctly detecting the presence of the primary user when it is active;

while probability of false alarm is defined as the probability of falsely declaring the presence

of the primary user when it is actually inactive.

A lot of effort has been put into the design of sensing schemes. Basically, there are three

main types of spectrum sensing schemes: energy detection [4–6], matched filter detection [7],
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and cyclostationary feature detection [8]. Energy detection is the most widely used spectrum

sensing scheme due to its low computationally complexity. It only needs to measure the

power of the received signal, non prior knowledge about the primary user is required (non-

coherent detector). Energy detection has a good resistance against the fast time varying

radio channels.

In matched filter detection (or coherent detection), prior knowledge of the primary user’s

signal such as modulation scheme, pulse shape or packet format is required. This knowledge

is not always easy to obtain in practice. Coherent detection can achieve maximum signal-to-

noise ratio (SNR). The number of samples required for optimal detection is O(1/SNR) [6].

Exploiting the feature that noise has very low correlation, while any man-made signals

have some higher degree of correlation, cyclostationary feature detection achieves the best

performance even in the worst-case scenario of large power level uncertainty of noise. How-

ever, the minimum number of samples required for detection are much more than that for

energy detection and matched filter detection. It is reported that the longer the duration

of the sensing slot is, the better the sensing result is. However, longer sensing slot leads to

shorter transmission time, and thus results in a lower secondary user’s throughput. This is

known as the sensing throughput tradeoff problem, and this problem was first defined and

investigated in [9, 10].

1.1.2 The Spectrum Sharing Model

In spectrum sharing model, the secondary user is allowed to transmit simultaneously with

the primary user within the same frequency band on condition that the interference from the

former to latter will be kept below a prescribed threshold. This model of operation is know

as underlay scheme. From this definition, it is easy to see that there are three key features

of underlay model. First, no spectrum sensing is needed at the secondary user. This greatly

relieves the complexity of the transceiver design. Secondly, the secondary user can start its
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transmission at any time without waiting for the spectrum holes. This gives the secondary

user the potential to achieve a higher long-term capacity. Thirdly, the interference power

from the secondary user to the primary user should be kept below a prescribed threshold.

This, as a demerit, will scale down the underlay performance.

1.2 Transmission Power Control

Power control is an essential radio resource management strategy. It aims to control the

transmission power levels in such a way that acceptable (QoS) for the users is guaranteed

with lowest possible transmission powers. All users benefit from the minimized interference

and the preserved signal qualities. Transmission power control is also an efficient technique to

mitigate the effect of interference under fading conditions and combat the near-far problem.

Power control which has been employed for improving the link performance in cellular

networks can also be applied to CRN. However, power control of cognitive radio networks

is more complex, in which it should not only consider the QoS requirements of the sec-

ondary users but also protect the primary user communication link who has priority over

the secondary user communication. Thus, secondary users should always check the estimated

interference at the primary receiver when/after determining their transmission power.

Choosing an appropriate power control algorithm is of prime importance in CRNs, as it

should aim at increasing the overall efficiency of the system.

1.3 Pilot-Aided Transmission

Pilot-Aided Transmission (PAT ) multiplexes known training signals with the data signals.

PAT can be used for channel estimation, receiver adaptation, and optimal decoding. An

overview of pilot-aided wireless transmission techniques is presented in [11]. Earlier study

has been conducted in [12], where an analytical approach to the design of PATs is presented.
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The more pilot symbols are transmitted and the more power is allocated to the pilot symbols,

the better estimation quality we have. The price is then the less in transmission efficiency.

1.4 Literature Review

The work related to resource allocation and capacity analysis for CRNs are reviewed in this

section.

Since extensive research has been done in these areas, we do not even try to cover all

previous research in this field. Instead, we review some of the most relevant work and cite

these papers.

Power-control algorithms, as radio resource management, have gained extensive study

since the early 1960s. Initially, these studies were proposed for satellite communication

systems and later were applied to the cellular systems. Many algorithms with different

configurations were proposed for GSM , CDMA and WCDMA systems, where centralized

algorithms based on balancing of the received power levels were initially proposed. Since the

centralized algorithms were not practically realizable, distributed algorithms, also aiming at

balancing the power levels, have been substituted. To match the demanding QoS require-

ments, many more algorithms were proposed with different criteria, with multiple and fixed

step power control.

Recently, the power control approach is also applied for cognitive radio networks to avoid

harmful impacts on the primary user’s quality of service. Hence, extensive studies have been

done to enhance the overall network performance.

In [13], an Orthogonal Frequency Division Multiplexing (OFDM) scheme was considered

as a candidate for cognitive radio. The authors proposed two approaches in order to mit-

igate the mutual interference. The performance of these approaches have been validated

by simulation. The study tried to reduce the interference, but the main objective of power
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control was not taken into consideration and no clear explanation has been given about how

to implement such dynamic system to deactivate the subcarriers.

The power control scheme reported in [14] gave an example of a power control rule which

allows secondary users to aggressively increase their transmit powers while still guaranteeing

an acceptable level of aggregate interference at the primary receivers. A coherent detection

was considered assuming that the licensed transmitter transmits a perfectly known pilot

signal or training sequence to aid detection. The algorithm also dealt with the primary

user’s QoS satisfaction, but not the QoS of the secondary users. We argue that the QoS of

the secondary users is also very important to be considered.

A transmission power control using Fuzzy Logic System (FLS) was proposed in [15].

With the built-in fuzzy power controller, the secondary user is able to dynamically adjust

its transmission power in response to the changes of the interference level caused by the

secondary user to the primary user. The authors modified the reliability of their algorithm

by using a preceding knowledge of transmit power control obtained from a group of network

experts which was listed in tables. Simulation results showed that using the proposed scheme

leads to decreased average transmit power consumption and lower average outage probability

compared with the traditional fixed-step power control scheme. The study depends mainly

on data obtained from preceding network measurements and it does not give a mathematical

model for the proposed algorithm.

In [16, 17], power control for one pair of secondary users coexisting with one pair of

primary users has been considered. The use of soft sensing information for optimal power

control was explored in [16] to maximize the capacity and SNR of the secondary user under

a peak power constraint at the secondary transmitter. In [17], the secondary transmitter

adjusts its transmission power to maximize its data rate without increasing the outage

probability at the primary receiver. It was assumed in [17] that the channel gain between

the primary transmitter and its receiver is known to the secondary user.

6



In [18], the authors presented power control strategy to protect the primary user’s com-

munication from the interference of the cognitive user’s transmissions in fading wireless

channels and to optimize the achievable rate of cognitive user while guaranteeing the out-

age probability of the primary user not to be degraded. A protection gap is introduced

to enhance the robustness of the algorithm. The paper has studied initially the subject

on the fundamental performance limit of a wireless network with cognitive radios from an

information theory perspective.

Depending on whether a centralized controller exists, the power control considered in the

existing literature for cognitive radio networks can be further divided into two categories:

distributed power control and centralized power control.

The distributed power control is based on the local link gain measurements. Each user

measures its local parameters; like gain and SNR to control the power in that link. This

type of power control is practically realizable since it does not involve complex signaling and

is easier to be implemented.

According to the methods to solve the power control problem in distributed cognitive

network, current methods could be classified into two types. The first type is based on parallel

and distributed computation. In [19], the authors formulated a power control problem

for the cognitive radio network and proposed distributed solutions by using parallel and

distributed method and applied it to the cognitive radio ad hoc network. However, no

discussion was given about how the proposed distributed power control could be implemented

in the cognitive radio ad hoc network.

The second type is based on game theory. In [20], the authors proposed a non-cooperative

power control game with exponential pricing by considering the interference to the primary

users. But the proposed method could not always ensure that the interference to the primary

users was below the interference constraint. And the SINR requirements of cognitive users

were ignored.
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Although in [21] the authors considered the SINR requirements, they did not discuss

the divergence problem of power control. Additionally, the authors proposed a joint power

and channel allocation based on game theory with the objective to maximize the capacity,

but SINR requirement and protection for primary users were still ignored.

On the other hand, centralized power control is a mechanism with a central controller

having the information of all link gains of the system. These link gains are utilized to find

the optimal solution to control the power in all the links simultaneously. This type of power

control is practically un-realizable, since the equipment is complex and the bandwidth is

wasted due to the extreme signaling between base stations and mobile users. Most current

studies aiming at centralized power control focus on allocating resources jointly, such as

combined allocation of channels and transmitted powers.

The time-varying nature of the channel conditions due to mobility and changing physical

environment is one of the key characteristics of wireless communications that greatly impacts

system design and performance. A considerable amount of effort has been spent in the study

of cases in which the perfect channel state information (CSI) is assumed to be available at

either receiver or transmitter or both. With the perfect CSI available at the receiver, the

authors in [22,23] studied the capacity of fading channels.

The effective capacity is firstly defined in [24] as the maximum constant arrival rate

that a given time-varying service process can support while meeting the QoS requirements.

Effective capacity is realized as a dual concept to effective bandwidth which characterizes the

minimum amount of constant transmission rate required to support a time-varying source in

the presence of statistical QoS limitations. In [25], a methodology to determine the value of

QoS exponent was described. The authors provided numerical and simulation results that

demonstrate how the effective capacity formulation can be used to solve a resource allocation

problem in audio and video applications to satisfy given QoS requirements.

The application and analysis of effective capacity in various settings have attracted much
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interest [25–32], where the authors focused on the problem of resource allocation in the pres-

ence of statistical QoS constraints. In [29], energy efficiency was investigated under QoS

constraints by analyzing the normalized effective capacity in the low-power and wideband

regimes. The authors in [28] studied the effective capacity of a class of multiple-antenna

wireless systems subject to Rayleigh flat fading. They suggested that multi-antenna config-

urations are helpful for delay-sensitive communication over wireless systems.

The paper [30] investigated the case in which the secondary transmitter communicates

with its receiver through a relay node under a delay QoS constraint. The authors concluded

that secondary users benefit from an intermediate relay node. They extended the study for

multiple relay nodes case. They also stated that in systems with loose QoS constraints, the

capacity benefits tremendously by increasing the number of relaying terminals.

In [31], tradeoff between average rate and average delay was studied using the notion

of effective capacity. The optimal transmit strategy including optimal power allocation was

also studied. Illustrations of average queue length compared to average transmission rate

were provided to show the impact of the QoS exponent on the system.

The paper [32] analyzed the effective capacity of cognitive radio channels in order to

identify the performance levels and to determine the interactions between throughput and

channel sensing parameters in the presence of QoS constraints. A state-transition model

for cognitive transmission was constructed and an expression for the effective capacity was

obtained. The analysis was conducted under the assumption that only the receiver knows

the channel realizations and the transmitter, in the absence of such knowledge, transmits

the information at two different fixed rate and power levels, chosen according to the presence

or absence of the primary users.

The different features of underlay and overlay approaches may have their respective ad-

vantages under diverse propagation environment and system parameters. In [33], analytical

formulation of Dynamic Spectrum Access (DSA) with imperfect spectrum sensing has been
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presented, only the case of the same priority for all the subscribers has been considered.

In [34], the authors assumed that primary users and secondary users cannot operate simul-

taneously on the same spectrum band, then a Continuous Time Markov Chain (CTMC) was

proposed to model the interactions between these different users. They analyzed the trade-

off between spectrum efficiency and fairness. An optimal access probability with different

criteria was given in [35] for pure underlay scheme. The papers [36, 37] introduced a mixed

access strategy: when the channel is being used by the primary user, the secondary users

access the channel with a probability in underlay manner. When the channel is idle, they

choose to access in overlay manner.

1.5 Thesis Contribution

The key contributions of this thesis can be summarized as follows:

• First, we study the effective capacity of cognitive radio channels in order to identify

the performance in the presence of statistical QoS constraints. Both underlay and

overlay schemes are studied taking into consideration the activity of primary users

and assuming the availability of perfect knowledge of channel fading coefficients at

the receivers. For both schemes, power allocations and effective capacity optimization

are obtained for Gamma fading channel environment. Then we propose a selection

criterion that allows us to choose the best mode of operation.

• Thereafter, we extend this approach for the case of imperfect knowledge of channel

fading coefficients. Initially, we focus on a time-varying Rayleigh fading channel and

assume that no prior channel knowledge is available at the transmitter and the receiver.

We investigate the performance of pilot-assisted wireless transmission strategies. We

analyze the channel estimation using minimum mean-square-error (MMSE) estima-

tion, and analyze efficient resource allocation strategies. We identify a state-transition
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model by comparing transmission rates with instantaneous channel capacity values.

We determine the effective capacity of cognitive radio transmission by incorporating

channel sensing results.

• Later, we analyze the effective capacity and interference constraint in both single-

band and multi-band spectrum sensing settings. Cognitive user is assumed to perform

sensing in multiple channels and then select a single channel for transmission with rate

and power that depend on both sensing outcomes and fading distribution. Interference

constraint is statistically analyzed and formulated. Maximum throughput formulas

for the cognitive user is obtained. Selection criterion that maximizes the capacity

is proposed for arbitrary channel fading. Then we apply it for two different fading

distributions. The optimal power allocation strategies are also determined. To the best

of our knowledge, effective capacity has not been studied for multichannel spectrum

sensing case in CR networks.

• Finally, we propose a mixed overlay and underlay access scheme. The secondary users

access the channel with an optimal probability in the underlay scheme when the spec-

trum is occupied by a primary user. While when the spectrum is idle, the secondary

users access the channel in the overlay manner. This approach can maximize the total

average throughput for the secondary users and limit the interference to the primary

user. The proposed optimized access strategy introduces new optimized parameters

to determine the best access probability for each user to achieve the highest through-

put. We study the capacity of cognitive users using Markov model and develop new

optimal parameters to access the spectrum. By deriving access probabilities for the

secondary users, maximum capacity can be achieved for each user for both cognitive

radio schemes.
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Most of the works reported in this dissertation can be found in peer reviewed research

publications [38–47].

1.6 Thesis Organization

The remainder of the thesis is organized as follows:

In Chapter 2, the concept of effective capacity as a measure of the channel throughput is

introduced. This concept allows us to take the delay requirement into consideration. System

model and general assumptions used through this study are briefly introduced.

In Chapter 3, the effective capacity of the cognitive network is applied instead of ergodic

capacity. The general case of Gamma distribution is assumed for the channel fading. Both

underlay and overlay schemes are studied individually. Optimal power policies and maxi-

mum effective capacity formulas are obtained. For the underlay base, the PUs’ spectrum-

occupancy probability is taken into consideration. Since in the underlay case, the cognitive

user does not preform spectrum sensing, it is not possible to differentiate the states of idle

or busy. Hence, we impose the cognitive user to operate in the state that provides higher

capacity. For the overlay strategy, we consider the spectrum sensing errors and all possible

states are investigated. The transmit power and interference power of both underlay and

overlay strategies as a function of primary user activities are investigated. To benefit from

underlay and overlay approaches in diverse propagation environment and system parame-

ters, a selection criterion is introduced to make the cognitive network dynamically choose

the DSA strategy under different environment. This chapter, as a journal paper, has been

submitted to EURASIP Journal on Wireless Communications and Networking for the sec-

ond round review [39], and, as conference papers, to appear in Proceedings of IEEE ICNC

in 2013 [40] and IEEE WCNC in 2013 [41].

In Chapter 4, we study the effective capacity of cognitive radio assuming imperfect and/or
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no prior channel knowledge available at the cognitive transceiver. Following channel sensing,

the secondary user is assumed to perform channel estimation to learn the channel conditions

using MMSE estimator via pilot aided transmission. Then, it transmits the data at two

different average power levels depending on the sensing outcomes. Due to interactions and

interdependencies between channel sensing and estimation, a challenging scenario may be

faced. Hence, not reliable detection of the primary users’ activities can lead to degradations

in the estimation of the channel conditions, i.e., if the primary users are active but detected

as idle, the quality of the channel estimate will deteriorate. After performing the sensing

and estimation tasks, the secondary user initiates the data transmission phase. The activity

of the primary users is modeled as a two-state Markov process. In this setting, we jointly

optimize the training symbol power, data symbol power and transmission rates. This chapter

as a journal paper [47] is recently accepted.

In Chapter 5, the effective capacity of cognitive radio channels is studied where the cog-

nitive radio detects the activity of the primary users in a multichannel environment and

then performs data transmission in one of the transmission channels. We consider a scenario

in which the cognitive system employs multichannel sensing and uses one channel for data

transmission thereby decreasing the probability of interference to the primary users. We

determine the effective capacity of the cognitive channel under limitations on the average

interference power experienced by the primary receiver. Optimal criterion to select the trans-

mission channel out of the available channels is obtained. Optimal power adaptation policies

that maximize the effective capacity are derived. We analyze the interactions between the

effective capacity, QoS constraints, channel sensing duration, channel detection threshold,

detection and false alarm probabilities through numerical techniques. This chapter, as a

conference paper, will appear in IEEE WCNC in 2013 [42], and as a journal paper [43] has

been accepted for publishing in Journal of Communications and Network.

Chapter 6, proposes an optimized access strategy combining overlay and underlay schemes
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for the cognitive radio. We model the service state of the system as a continuous-time Markov

model. Based on the service state, the overlay manner or/and the underlay manner can be

used by the secondary users. When the primary user is not transmitting and only one

secondary user has the requirement to transmit, the secondary system adopts the overlay

manner. When the primary user is transmitting and the secondary users want to transmit

simultaneously, an underlay scheme with an access probability is adopted. First, the access

probability is assumed to be the same for both users. Then the work is extended for the

case in which each user has its own probability. We obtain the optimal access probabilities

as well as the maximum capacity in closed forms. This chapter, as conference papers, will

partly appear in IEEE WCNC in 2013 [44] and partly appeared in IEEE ICUE in 2012 [46],

and as a journal paper [45], will be published in Journal of Communications and Network.

Figure 1.1 summerizes the organization of the thesis work. In this thesis, we introduce

extensive capacity analysis and resource allocation for different cognitive radio systems and

different access schemes that improve the overall system performance.
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Chapter 2

System Model and Assumptions

The maximum throughput achieved in wireless systems operating under statistical QoS

constraints can be identified through the concept of effective capacity. The effective capacity

is defined as the maximum constant arrival rate that a given time-varying service process

can support while meeting the QoS requirements [24]. The application and analysis of

effective capacity in various settings have attracted much interest [26,27,30–32,48]. In these

literatures, we focused on the problem of resource allocation in the presence of statistical

QoS constraints.

The rest of this chapter is organized as follows. In Section 2.1, we introduce the effective

capacity concept and illustrate its usage in cognitive radio networks. Related details such as

the QoS constraint as an important criteria in time varying channels, the difference between

effective capacity and Shannon capacity, delay violation, and effective capacity formulation

are presented in subsequent subsections. Gamma distribution as a general case to model the

channel fading is presented in Section 2.2. In Section 2.3, we briefly introduce the system

model and general assumptions used through this thesis.
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2.1 Effective Capacity

The effective capacity approach is particularly convenient for analyzing the statistical QoS

performance of wireless transmissions where the service process is driven by the time-varying

wireless channel.

2.1.1 Quality of Service Constraints in CRNs

Providing certain QoS in many wireless communication systems is crucial in order to provide

acceptable performance and quality. However, this is a challenging task in wireless systems

due to random variations experienced in channel conditions and random fluctuations in re-

ceived power levels and supported data rates. Hence, in wireless systems, generally statistical

rather than deterministic QoS guarantees can be provided.

In CRNs, the situation is further exacerbated in which access to a channel can be in-

termittent or transmission occurs at lower power levels depending on the activity of the

primary users. Furthermore, cognitive radio can suffer from errors in channel sensing in the

form of false alarms. Hence, it is more important to analyze the performance of cognitive

radio systems in the presence of QoS limitations in the form of delay or buffer constraints.

As described before, issues regarding channel sensing, spectrum sharing and throughput

in cognitive radio networks have been extensively studied recently. However, critical con-

cerns of providing QoS guarantees over cognitive radio channels have not been sufficiently

addressed yet.

2.1.2 Effective Capacity vs Shannon Capacity

QoS guarantee in terms of delay constraint plays a critically important role in modern

wireless networks. Non-real-time services such as data, aim at maximizing the throughput

with a loose delay constraint. While for real-time services, such as multimedia and video
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conference, the QoS requirement needs a stringent delay-bound to achieve high spectral

efficiency. Some other services falling in between such as web browsing and paging system,

which are delay-sensitive but the delay QoS requirements are not as stringent as those of real-

time services. Therefore, the diverse services impose totally different delay QoS constraints,

which bring great challenges to the design of future wireless networks.

In wireless communications, the most scarce radio resources are power and spectral band-

width. As a result, extensive research has been devoted to the techniques that can enhance

the spectral efficiency of wireless systems. These techniques use the concept of Shannon

capacity based on the information theory [49]. Power and rate adaptation has been widely

considered as one of the key solutions to improve the spectral efficiency. Water-filling algo-

rithm is one of well known schemes that maximizes spectral efficiency [50], in which more

power is assigned to a channel which is in good condition and less power when the chan-

nel becomes worse. When the channel quality is below a certain threshold, no power is

allocated. Additionally, total channel inversion algorithm has a different idea of power and

rate adaptation [50], in which more power is assigned to a channel that combats with deep

fading and less power for the good channel. This is to keep a constant signal-to-noise ratio,

such that a constant rate service process can be obtained. Apparently, water-filling is better

than total channel inversion since the former provides higher spectral efficiency [25]. It is

important to note that Shannon theory does not place any restrictions on complexity and

delay. However, a natural question is whether the former is also better than the latter in

terms of QoS guarantees. In order to answer the above question, it is necessary to take the

QoS metrics into account when applying power and rate adaptation.

The dual concepts of effective bandwidth and effective capacity give us a powerful ap-

proach to evaluate the statistical QoS performance from the networking perspective. The

effective-bandwidth theory has been extensively studied in the early 90s with the emphasis on

wired asynchronous transfer mode (ATM) networks [51]. This theory enables us to analyze
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network statistics such as queue distributions, buffer overflow probabilities, and delay-bound

violation probabilities, which are important for statistical QoS guarantees. In [24], the au-

thors proposed an interesting concept, namely effective capacity.

By integrating information theory with the effective capacity, we investigate the impact

of QoS constraint on the power and rate adaptation over cognitive radio networks. The prob-

lem is how to maximize the capacity subject to a given delay QoS constraint. There exists

a tradeoff between the capacity and the QoS requirement. The higher capacity gain comes

at the price of sacrificing QoS provisioning, and vice versa. When the QoS constraint be-

comes loose, the optimal power control converges to the water-filling scheme, where Shannon

(ergodic) capacity can be achieved. On the other hand, when the QoS constraint becomes

stringent, the optimal power-control converges to the total channel inversion such that the

system operates at a constant service rate.

2.1.3 Queue Length and Delay Violation

The authors in [24,52] showed that the probability of the queue length of the transmit buffer

exceeding a certain threshold q decays exponentially as a function of q. If we define Q as

the stationary queue length, then the delay rate of the tail distribution of the queue length

Q can be written as

θ = − lim
q→∞

loge Pr(Q ≥ q)

q
. (2.1)

For large threshold (say qth ), the following approximation for the buffer violation probability

can be made

Pr(Q ≥ qth) ≃ e−θ qth , (2.2)

where 0 < θ < ∞ is a constant called QoS exponent, (see [24] for details).

The above equation states that the probability of the queue length exceeding a certain

threshold qth decays exponentially fast as the threshold qth increases.
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Furthermore, when the focus is on delay-bound violation probability, an expression sim-

ilar to the above equation can be obtained as [26]

Pr(D ≥ dth) ≃ e−θεdth , (2.3)

where D and dth denote the delay and delay bound, respectively, and ε is the source arrival

rate determined as ε = qth/dth [28]. The effective bandwidth function intersects with the

effective capacity function at the value of ε (see [26] for details).

From Eqs. (2.2) and (2.3), we can see that the parameter θ plays an important role for

the statistical QoS guarantees, which indicates the decaying-rate of the QoS violation prob-

ability. In practical applications, the value of θ depends on the statistical characterization

of the arrival and service processes, bounds on delay or buffer lengths, and target values of

the delay or buffer length violation probabilities.

A smaller θ corresponds to a slower decay rate, which implies that the system can only

provide a looser QoS guarantee, while a larger θ leads to a faster decay rate, which means

that a more stringent QoS requirement can be supported. In particular, when θ → 0, the

system can tolerate an arbitrarily long delay, which corresponds to the scenario studied in

information theory. On the other hand, when θ → ∞, the system cannot tolerate any delay,

which corresponds to an extremely stringent delay-bound. Due to its close relationship with

statistical QoS demands, θ is called the QoS exponent [24].

2.1.4 Effective Capacity Formulation

Based on the concept of QoS exponent, the effective capacity is defined as the maximum

constant arrival rate that a given service process can support for which the QoS exponent θ

is fulfilled. Analytically, the effective capacity can be formally expressed as follows.

Let the sequence {R[i], i = 1, 2, · · · } denote a discrete-time stationary and ergodic

stochastic service process and S[t] ,
∑t

i=1R[i] be the sum of the service process over time
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sequence of i = 1, 2, · · · , t. Then, the effective capacity of the service process, denoted by

EC(θ), where θ > 0, is defined as [24]

EC(θ) = − lim
t→∞

1

θt
loge E[e−θS[t]], (2.4)

where E[·] denotes the expectation. When the sequence {R[i], i = 1, 2, · · · } is an uncorrelated

process, the effective capacity formula turns to

EC(θ) = −1

θ
loge E[e−θR[i]]. (2.5)

Actually, the performance measure of EC(θ) is a generalization of the common perfor-

mance measures: ergodic capacity. For θ → 0, the effective capacity converges to the ergodic

capacity. This can be shown using L’Hopital’s rule in calculus. For θ → 0, the numerator

of the effective capacity formula converges to the ergodic capacity while the denominator

converges to one. This case corresponds to less stringent delay-constraints.

On the other hand, for θ → ∞, the effective capacity in Eq. (2.4) converges to the delay-

limited-capacity defined in [53]. Therefore, the effective capacity represents an interesting

measure which considers non-stringent delay constraints (for finite values of delay exponent

θ).

2.2 Gamma Distribution as Channel Fading Model

Among different channel fading models, Gamma distribution is found to be an adequate

model to characterize wireless channel fading such as slow fading (shadowing) or even fast

fading [54, 55]. Gamma distribution fits the experimental data [54] and it is considered

as a general case of most distributions. The probability density function (pdf) of Gamma

distribution is given as

fG(x) =
2vx2vm−1

ϕmΓ(m)
exp

[
−
(
x

ϕ

)2v
]
, (2.6)

wherem, v, and ϕ are fading parameter, shape parameter, and scaling parameter respectively.
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With proper choice of these parameters, m; v; ϕ, we may have:

• Exponential distribution (m = 1, v = 1
2
)

• Rayleigh distribution(m = v = 1)

• Weibull distribution(m = 1)

• Log-Normal distribution(m → ∞, v = 0)

• AWGN distribution(m → ∞, v = 1)

• Rice distribution(m ≃ (k+1)2

2k+1
, v = 1)

Figure 2.1 shows the pdf of Gamma distribution for different m.
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Figure 2.1: Probability density function for Gamma distribution for different fading param-
eters (v = 1

2
and ϕ = 2).

Statistically, if we have two independent Gamma distributions X and Y , then the ratio

Z = X
Y

will have Beta prime distribution [56]. The random variables X and Y should be

independent but not necessary to be identically distributed. So the channel coefficients may

have different fading and shape parameters.
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2.3 System Model and Assumptions

System models adapted in this study have different settings and assumptions. In each

chapter, detailed description of the relevant model will be introduced. This section gives the

general depiction of the used models and assumptions.

2.3.1 Cognitive radio Network

A typical CRN [36] model is assumed, in which a cognitive wireless network coexists with

a primary wireless network by sharing B Hz spectrum band as shown in Figure 2.2. The

cognitive network includes a secondary transmitter TS and a secondary receiver RS. The

primary network includes a primary transmitter TP and a primary receiver RP .

P 
 

 

 

 

TP RP 

TS  RS  

gpp 

gss 

 

gsp 

 

gps 

S S 

 P

Figure 2.2: The main interference channels for a pair of primary and cognitive links.

The system gain gij shown in Figure 2.2 represents the channel power gain from the

transmitter i to the receiver j, where i, j ∈ {s, p}.

The primary transmitter adjusts its transmit power Sp based only on its own transmission

requirement. The secondary transmitter transmits with variable power Ss which should not

exceed a maximum value of Sm
s .
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2.3.2 Underlay Scheme

Even though the concurrent transmission is allowed in underlay cognitive radio system,

interference threshold to the primary receiver is highly respected. In this scheme, cognitive

users generally transmit at low power. When the cognitive radio applies the underlay scheme,

the spectrum sensing is not needed. The secondary user can use the whole frame duration for

transmission with adjusted transmit power no matter whether the primary network occupies

the spectrum or not.

2.3.3 Overlay Scheme

When applying the overlay scheme, the secondary users need to utilize the spectrum sensing

to identify the spectrum occupancy status before accessing the spectrum and can only use

the vacant spectrum for transmissions. Therefore, for a frame of T seconds duration, the

first τ seconds will be used to sense the channel, and the remaining (T − τ) seconds will be

exploited for data transmission.

The spectrum occupation status can be determined between the following two hypothe-

ses [36]:

detected as idle : y(i) = n(i) i = 1, 2 · · · τB,

detected as busy : y(i) = n(i) + np(i) i = 1, 2 · · · τB,
(2.7)

where y(i) is the received signal at the detector input of the cognitive transmitter, np(i) is

the received signal generated by the primary user.

2.3.3.1 Sensing Process

Among different spectrum sensing schemes for reliably identifying the spectrum holes, Energy

Detection incurs a very low implementation cost and is hence widely used [4]. It has a good

resistance against dynamic radio environment where none a priori knowledge about the
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primary user is available (non-coherent detector). In order to identify the presence of primary

user with unknown frequency locations, energy detector serves as the optimal sensing scheme

since it only needs to measure the power of the received signal. Figure 2.3 is a block diagram

of an energy detector, where the bandpass filter is to limit the bandwidth of the input signal,

followed by a squaring device to measure the received energy and the integrator determining

the observation interval T . After the integrator is a threshold device, which compares the

output of the integrator with a predetermined threshold to decide whether the signal is

present or not.

Decide 

Ho or H1
y(t)

Threshold Device

Y

 
T

0

NLD

(...)
2

BPF

Figure 2.3: Block diagram of a simple energy detector

Two terms associated with spectrum sensing are probability of detection and probability

of false alarm which are previously defined in Subsection 1.1.1.

2.4 General Assumptions

For all system models used through this thesis, the following assumptions are applied. Other

assumptions may occur in each individual chapter.

• All channel power gains are assumed to be stationary and ergodic independent random

processes.

• Information of interference channel gains can be obtained by direct feedback from

the primary receiver or indirect feedback from a third-party such as a band manager
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which interposes between the primary and cognitive users [57]. It can also be obtained

through periodic sensing of pilot signal from the primary receiver assuming channel

reciprocity. The case of imperfect information of channel coefficients will be separately

analyzed.

• The background noise at the secondary and primary receivers are modeled as AWGN

independent Circularly Symmetric Complex Gaussian (CSCG) random variable with

zero-mean and variance σ2
s and σ2

p, respectively.

• The maximum interference at the primary receiver I th is assumed to be known to

cognitive user.

• Small scale variations are assumed in all settings. Other variations such as distance

path loss dependent or shadowing impacts are considered as background noise or/and

interference.

• A block-fading channel model is assumed in which the fading coefficients stay constant

in the frame, and they may change from one block to another independently. When

spectrum sensing is used, the sensing process is assumed to be the same within the

frame and it may change between frames.

• The probability of the channel being occupied by the primary users is equal to Pb, it

is assumed to be known to the cognitive user. It represents the existence activity of

the primary user.

• When using markov model, the state transitions between states are assumed to occur

every frame and they may change between frames.

• Single transceiver for each network is assumed. Multiple user case is suggested as a

future work.
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2.4.1 Symbolism in the Thesis

For the abbreviations used in the thesis, the common subscripts s and p refer to the secondary

user and primary user respectively. The superscripts u, o, {0, 1} and ∗ refer to the underlay,

overlay, state number and optimal value respectively. The upper limit of a quantity is always

written with superscripts (e.g., I th, Sm, Eopt
c ). The power is denoted by capital S, while the

channel power gain is given the letter g with two subscribes ij which refer to the channel

power gain from the transmitter i to the receiver j.
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Chapter 3

Effective Capacity Analysis for CRNs

and Selection Criteria

Recently, satisfaction of QoS demands for secondary users has attracted great attention.

The secondary user can not only discover the transmission opportunities, but also cogni-

tively adapts the dynamic spectrum access strategies to its own QoS requirement and the

environment variations. In this chapter, we study how the delay QoS requirement affects the

strategy on network performance. We first treat the delay-QoS in interference constrained

CRN by applying the effective capacity concept, focusing on the two dominantDSA schemes:

underlay and overlay. We obtain the effective capacity of the secondary network and deter-

mine the power allocation policies that maximize the throughput. The underlay and overlay

approaches may have their respective advantages under diverse propagation environment

and system parameters. If the cognitive network can dynamically choose the DSA strategy

under different environment, its performance could be further improved. We propose a selec-

tion criterion to determine whether to use underlay or overlay scheme under the given QoS

constraint and the primary users’ spectrum-occupancy probability. Thus, the throughput of

the CRN could be increased.
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The functions of cognitive radio networks have been broadened such that the cognitive

users can not only detect the transmission opportunities under the specific DSA approach,

but also cognitively adapt the dynamic spectrum access strategies to the QoS requirement

and the channel variations. In this chapter, we focus on the QoS driven underlay and overlay

schemes by introducing the concept of effective capacity proposed in [24]. We present a

systematic approach which suggests the best access scheme for a given system requirement.

The mixed strategy proposed in this chapter is similar in spirit to the sensing-based spectrum

sharing proposed in [36] except that, in our study, the effective capacity is adopted instead

of ergodic capacity and the general case of Gamma distribution is assumed for the channel

fading. Also in [36], just overlay scheme is analyzed. In this study, both DSA schemes are

studied. We further introduce a new selection criterion to obtain the best access scheme.

The rest of this chapter is organized as follows. The system model and assumptions are

introduced in Section 3.1. In Section 3.2, the effective capacity optimization and optimal

resource allocation for the underlay scheme are studied. In Section 3.3, spectrum sensing,

effective capacity, and power allocation for the overlay case are studied in three subsequent

subsections. Then, we propose an access strategy selection criterion in Section 3.4. Perfor-

mance analysis and numerical results are presented in Section 3.5. Section 3.6 summarizes

this chapter.

3.1 System Model and Assumptions

A typical CRN [36] model is assumed as shown in Figure 2.2. In which a cognitive wireless

network coexists with a primary wireless network by sharing B Hz spectrum band. The

cognitive network includes a secondary transmitter TS and a secondary receiver RS. The

primary network includes a primary transmitter TP and a primary receiver RP .

All channel power gains are assumed to be stationary and ergodic independent random
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processes. These system gains are grouped in the vector G = [gss, gsp, gpp, gps] for a specific

realization as shown in Figure 2.2. All channel power gains are assumed to be independent

and identically distributed (i.i.d.), and follow Gamma distribution since it considered as a

general case. It is also assumed that the cognitive transmitter has perfect information of

interference channel gains. The case of imperfect information of the channel coefficients will

be analyzed in Chapter 4.

The probability density functions (pdf)s of fgss , fgsp , fgpp , and fgps , are given as

fX(x) =
xµ−1e−x/ϕ

Γ(µ)ϕµ
; x ≥ 0, (3.1)

where Γ(·) is the Gamma function which is defined in Appendix A, µ is known as the shape

parameter of the distribution, and ϕ is the scale parameter. The average E[X] = µϕ, and

Var[X] = µϕ2. Without loss of generality, we assume the parameter ϕ = 1. The background

noise at the secondary and primary receivers are modeled as AWGN independent Circularly

Symmetric Complex Gaussian (CSCG) random variable with zero-mean and variance σ2
s and

σ2
p respectively.

The maximum interference at the primary receiver should be kept below a threshold value

I th. This value is a system parameter which can be specified by the primary network operator

or by the spectrum regulator. Small scale variations are assumed in this chapter where other

variations such as distance path loss dependent or shadowing impacts are considered as

background noise or/and interference.

As mentioned above, in the underlay scheme, the secondary user is required to always

satisfy the interference constraint. Therefore, even in circumstances when the primary user

is not transmitting, the cognitive user has to adjust its transmission power based on the

interference threshold constraint. Consequently, the derived resource allocation schemes

should not be only a function of system gain vector G, but also will be varied with different

QoS requirement. In order to clearly illustrate our concept, we assume that each frame at

the data link layer (DLL) of the cognitive transmitter has the same time duration. The
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frames are stored at the transmit buffer and split into bit-streams at the physical layer

(PHY ). The cognitive transmitter employs adaptive modulation and power control based

on the statistical QoS constraint and the system gain vector G.

The factors that impact the resource allocation of the cognitive network include:

1. the average transmit and interference power constraints;

2. the statistical delay QoS requirement;

3. the primary network activities;

4. the DSA strategy used by the cognitive network; and

5. the interference caused by the primary transmitter on the cognitive network.

The existing literatures studied only the underlay strategy, and the primary network

activities are ignored. In this chapter, the primary users spectrum-occupancy probability

will be taken into consideration even for the underlay strategy. It is assumed that the

primary network will choose whether to use the spectrum or not at the beginning of each

frame. As the spectrum-occupancy status of the primary network can be viewed as the two

hypothesis tests from the cognitive user’s perspective, we denote the probability that the

primary network does not occupy the spectrum as Pi (idle probability), and the probability

that the spectrum is occupied as Pb (busy probability). We assumed that these probabilities

will not change during the frame interval.

3.2 Optimal Resource Allocation For Underlay Scheme

In this section, we aim at obtaining the optimal resource allocation which can maximize the

throughput of the cognitive network under a given statistical delay QoS guarantee deter-

mined by QoS exponent θ.
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When the cognitive radio applies the underlay scheme, the spectrum sensing is not

needed. The secondary user can use the whole frame duration for transmission with ad-

justed transmit power no matter whether the primary network occupies the spectrum or

not. The cognitive network with the underlay scheme has two system states for each frame,

which are listed as follows:

• State 0: The channel is idle, i.e., it is not occupied by the primary network, with a
probability Pi.

• State 1: The channel is busy, i.e., it is currently used by the primary network, with a
probability Pb.

We denote the service rates of these two states as Ru,i and Ru,b at secondary user,

respectively. Based on Shannon information theory, the achievable service rates of the two

system states can be written as

Ru,i = TBPi log2

(
1 +

gssS
u,i
s

σ2
s

)
, and Ru,b = TBPb log2

(
1 +

gssS
u,b
s

gpsSp + σ2
s

)
, (3.2)

where Su,i
s and Su,b

s are two transmit power levels of the cognitive transmitter when the

spectrum is idle and busy, respectively. The effective capacity formula of the cognitive

network for each state mentioned above can be written as

Eu,i
C (θ) = −1

θ
loge

(
Egss [e

−θRu,i

]
)

(3.3)

Eu,b
C (θ) = −1

θ
loge

(
Ez[e

−θRu,b

]
)
, (3.4)

where Egss is the expectation over the random variable gss, and Ez is the expectation operator

over the ratio of the random variables gss and gps which will be discussed shortly.

Since in the underlay case, the cognitive user does not preform spectrum sensing, it is

not possible to differentiate state 0 or state 1. Hence, we can impose the cognitive user

to operate in the state that provides higher capacity. Therefore, the aim now is to solve

Eq. (3.3) and Eq. (3.4) individually, and make the cognitive user to choose a power level

that provides better performance.
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The effective capacity Eq. (3.3) can be written as

Eu,i
C (θ) = −1

θ
loge

(
Egss

[
e
−TBPiθ log2

(
1+

gssS
u,i
s

σ2
s

)])

= −1

θ
loge

(
Egss

[(
1 +

gssS
u,i
s

σ2
s

)−αu,i ])
, (3.5)

where the term αu,i = (TBPiθ/ ln 2) can be named as the normalized QoS exponent. It can

characterize the statistical delay QoS requirement since it is only a function of θ.

Eq. (3.5) can be evaluated by taking the expectation over the random variable gss which

has the pdf given in Eq. (3.1), and by evaluating the integration, the following formula can

be obtained (see also the derivation in Appendix B)

Eu,i
C = −1

θ
loge

[(
Γ(αu,i − µ1)

Γ(αu,i)
(γu)µ 1F1

(
µ1; 1 + µ1 − αu,i; γu

)
+

Γ(µ1 − αu,i)

Γ(µ1)
(γu)α

u,i

1F1

(
αu,i; 1 + αu,i − µ1; γ

u
))]

,

(3.6)

where γu = σ2
s

Su,i
s
, µ1 = µ, and the function 1F1 is called Confluent Hypergeometric function

of first kind, defined in Appendix A.

To evaluate Eq. (3.4), we refer to the statistical fact that says: the ratio of two independent

Gamma distributed random variables with shape parameters µ1 and µ2, respectively is Beta

Prime distributed random variable with parameters µ1 and µ2 [58]. Let us define the random

variables X and Y as X = gss, and Y = (gpsSp + σ2
s)/S

u,b
s . Since power channel fading is

assumed to be Gamma distributed, Y is also Gamma distributed with mean µ2. The pdf of

Y can be expressed as

fY (y) =
yµ2−1e−y

Γ(µ2)
, (3.7)

where µ2 = (µ1Sp+σ2
s)

Su,b
s

. Then, the pdf of the ratio random variable Z = X
Y

has the following

Beta Prime distribution

fZ(z) =
zµ1−1(1 + z)−µ1−µ2

β(µ1, µ2)
. (3.8)

Here, µ1 = µ is the expected value of power channel fading. In Eq. (3.8), β(µ1, µ2) is the
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Beta function which is related to Gamma function as β(µ1, µ2) = Γ(µ1)Γ(µ2)
Γ(µ1+µ2)

. Substituting

Ru,b defined in Eq. (3.2) into Eq. (3.4), we get

Eu,b
C (θ) = −1

θ
loge

(
Ez

[
e
−TBPbθ log2

(
1+

gssS
u,b
s

gpsSp+σ2
s

)])

= −1

θ
loge

[
Ez

[
(1 + z)−αu,b

]]
, (3.9)

where αu,b = TBPbθ/ ln 2.

Eq. (3.9) can be evaluated by taking the expectation over the random variable z which

has the pdf given in Eq. (3.8). By evaluating the integration using the symbolic integration

provided by MapleSoft-12 software, the following formula can be obtained

Eu,b
C = −1

θ
loge

[(
Γ(αu,b + µ2)Γ(µ1 + µ2)

Γ(αu,b + µ1 + µ2)Γ(µ2)

)]
. (3.10)

The effective capacity formula Eq. (3.6) and Eq. (3.10) are derived using the properties of

gamma and hypergeometric functions listed in Appendix A.

In Figure 3.1, we plot Eqs. (3.6) and (3.10) as a function of Pi in which we allocate the

powers in fixed manner depending on how the channel is busy or idle (i.e., Su,i
s = PiS

m and

Su,b
s = PbS

m). The figure shows that, depending on the probabilities of spectrum activity,

the maximum achieved effective capacity may vary from a state to another. As a result

of nonexistence of sensing information in underlay base, it is not easy for the cognitive

transmitter to know what power should be used to perform transmission. For this reason,

the following algorithm is proposed to notify the transmitter which power level has to be

used to achieve optimal performance.

Now, the main objective is to find the optimal power allocation for the two power lev-

els {Su,i
s , Su,b

s } = {σ2
s

γu ,
µ1Sp+σ2

s

µ2
} to maximize the effective capacity of the cognitive network

subject to the upper bounded transmit and interference powers. From Eq. (3.6), we can

formulate an expression for the optimal effective capacity for the cognitive network channel
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Figure 3.1: Effective capacity versus probability of idle for idle and busy states. Sp =
Sm=10 dBw, B=1 KHz, T=50 ms, σ2 = 1.

in the state 0, and write the optimization problem as follows

max
γu

−1

θ
loge

[(
Γ(αu,i − µ1)

Γ(αu,i)
(γu)µ 1F1

(
µ1; 1 + µ1 − αu,i; γu

)
+
Γ(µ1 − αu,i)

Γ(µ1)
(γu)α

u,i

1F1

(
αu,i; 1 + αu,i − µ1; γ

u
))]

,

S.t. 0 ≤ Su,i
s ≤ Sm

s ,

E[gspSu,i
s ] ≤ I th.

(3.11)

The cognitive transmitter should satisfy transmit power constraint, which appears in the first

constraint in Eq. (3.11). At the same time, since the transmissions of the cognitive network

will interfere the primary network, in order to protect the QoS of the primary network, the

average interference power constraint is imposed in the second constraint of Eq. (3.11).

Using the fact that log(·) is a monotonically increasing function, the solution to the
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maximization problem Eq. (3.11) can be mapped to the following minimization problem

min
γu

(
Γ(αu,i − µ1)

Γ(αu,i)
(γu)µ 1F1

(
µ1; 1 + µ1 − αu,i; γu

)
+
Γ(µ1 − αu,i)

Γ(µ1)
(γu)α

u,i

1F1

(
αu,i; 1 + αu,i − µ1; γ

u
))

,

S.t. 0 ≤ Su,i
s ≤ Sm

s ,

E[gspSu,i
s ] ≤ I th.

(3.12)

By studying the behavior of the function 1F1 through its properties given in Appendix A,

it can be shown that the objective function of the above optimization problem is convex

function. Also the constraints are linear with respect to the optimized variable Su,i. As a

result, we can conclude that the problem in Eq. (3.12) has no more than one minimum. This

global minimum can be found by taking the first derivative of the above objective function

and equating it to zero. So the corresponding optimal power allocation is the solution of the

following equation[
Cu

1µ1 (γ
∗u)µ1

(
1F1(µ1; 1 + µ1 − αu,i; γ∗u) +

γ∗u
1F1(1 + µ1; 2 + µ1 − αu,i; γ∗u)

1 + µ1 − αu,i

)
+Cu

2α
u,i (γ∗u)α

u,i

(
1F1(α

u,i; 1 + αu,i − µ1; γ
∗u) +

γ∗u
1F1(1 + αu,i; 2 + αu,i − µ1; γ

∗u)

1 + αu,i − µ1

)]
= 0,

(3.13)

where Cu
1 = Γ(αu,i − µ1)/Γ(α

u,i), Cu
2 = Γ(µ1 − αu,i)/Γ(µ1).

Eq. (3.13) can be solved numerically in the domain
[
0 ≤ S∗u,i

s ≤ min{ Ith

µ1
, Sm}

]
, where

S∗u,i
s = σ2

s

γ∗u .

Similar to the work done in the state 0, the optimization problem to adapt Su,b
s can be

formulated to the following minimization problem

min
µ2

Γ(αu,b + µ2)Γ(µ1 + µ2)

Γ(αu,b + µ1 + µ2)Γ(µ2)
,

S.t. 0 ≤ Su,b
s ≤ Sm

s ,

E[gspSu,b
s ] ≤ I th,

(3.14)
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and the corresponding optimal power allocation of the state 1 is the solution of the following

equation

Ψ
(
αu,b + µ∗

2

)
+Ψ(µ1 + µ∗

2)−Ψ
(
αu,b + µ1 + µ∗

2

)
−Ψ(µ∗

2) = 0 (3.15)

in the domain
[
0 ≤ S∗u,b

s ≤ min{Sm, I
th

µ1
}
]
. We use the property of Γ(x) ̸= 0, ∀x ∈ R to

simplify Eq. (3.15). Note that the optimal value µ∗
2 is the value of µ2 corresponding to S∗u,b

s ,

i.e., µ∗
2 = (µ1Sp + σ2

s)/S
∗u,b
s . The function Ψ in Eq. (3.15) is known as Polygamma function

defined as [59]

Ψ(z) =

∫ ∞

0

tme−zt

et − 1
dt = −γ0

∞∑
k=0

1

k + 1
− 1

k + z
z ̸= 0,−1,−2, · · · , (3.16)

where γ0 ≃ 0.57721 is the Euler-Mascheroni constant.

The cognitive transmitter will be allocated the power that maximizes the effective capac-

ity. The optimal power allocation for the underlay cognitive radio S∗u
s ∈ {S∗u,i

s , S∗u,b
s } which

optimizes the effective capacity can be determined by

S∗u
s = argmax

S∗u,i
s ,S∗u,b

s

(
Eu,i

C

(
S∗u,i
s

)
, Eu,b

C

(
S∗u,b
s

))
. (3.17)

As a result, the optimal effective capacity of the underlay scheme is

Eu,opt
C (θ, S∗u

s ) = max
(
Eu,i

C (θ, S∗u
s ), Eu,b

C (θ, S∗u
s )
)
. (3.18)

3.3 Optimal Resource Allocation For Overlay Scheme

In this section, we aim at deriving optimal resource allocation strategy for the overlay scheme.

As discussed previously, while applying the overlay scheme, the secondary users need to

utilize the spectrum sensing to identify the spectrum occupancy status before accessing the

spectrum and can only use the vacant spectrum for transmissions. Therefore, for a frame of

T seconds duration, the first τ seconds will be used to sense the channel, and the remaining

(T − τ) seconds will be exploited for data transmission. The resulting frame structure is

shown in Figure 3.2.
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Figure 3.2: The transmission frame structure.

3.3.1 Spectrum Sensing Model

According to [5, 9, 36], the spectrum occupation status can be determined between the fol-

lowing two hypotheses:

detected as idle : y(i) = n(i) i = 1, 2 · · · τB,

detected as busy : y(i) = n(i) + np(i) i = 1, 2 · · · τB,
(3.19)

where y(i) is the received signal at the detector input of the cognitive transmitter, np(i) is

the received signal generated by the primary user. Since the bandwidth is B, we assume that

the symbol rate is B complex symbols per second. So we have τB symbols in a duration of

τ seconds (for simplicity, we assume that τB is an integer). Assuming that {np(i)} samples

are i.i.d. signal and modeled as zero-mean Gaussian distributed with variance of σ2
np
. The

optimal detector response for this hypothesis problem is given in [60] as

Y =
1

τB

τB∑
i=1

|yi|2 ≶idle
busy δ, (3.20)

where δ is a pre-designed threshold. The cognitive radio assumes that the primary system

is in operation if Y ≥ δ. Otherwise, it is idle. Assuming τB is sufficiently high, Y can be

approximated, using Central Limit Theorem [61], as a Gaussian random variable with mean

and variance

E[Y ] =

{
σ2
s if PU is inactive

σ2
s + σ2

np
if PU is active,

(3.21)

and

σ2
Y =

 σ4
s/(τB) if PU is inactive(
E[ |np|4] + σ4

s + 2σ2
np
σ2
s − σ2

np

)
/(τB) if PU is active,

(3.22)
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respectively, where E[|np|4] is the forth moment of the received signal np. Note that E[|ns|4] =

2σ2
s for the CSCG assumption [10]. The probability of false alarm of the energy detector is

given as follows

Pf = Pr{Y > δ|Pi} = Q

(
δ − σ2

s√
σ4
s/(τB)

)
, (3.23)

where Q(·) is the complementary cumulative distribution function of the standard Gaus-

sian. If we assume that the primary signal np has complex-valued PSK waveform [10], the

probability of detection of the energy detector can be written as

Pd = Pr{Y > δ|Pb} = Q

(
δ−σ2

np
−σ2

s

σs

√
(2σ2

np
+σ2

s)/(τB)

)
, (3.24)

Due to the unavoidable sensing errors, the cognitive network has four states, which are

listed as follows:

1. State 0 : Channel is idle, detected as idle, with probability: (1− Pf )Pi

2. State 1 : Channel is busy, detected as idle, with probability: (1−Pd)Pb

3. State 2 : Channel is idle, detected as busy, with probability: PfPi

4. State 3 : Channel is busy, detected as busy, with probability: PdPb

As defined in the overlay strategy, the cognitive network can access the spectrum only

when the channel is sensed as idle. Therefore, the service rates of the cognitive network for

the first two states, denoted by Ro,i, Ro,b are

Ro,i = (T − τ)B(1− Pf )Pi log2

(
1 +

gssS
o,i
s

σ2
s

)
,

and, Ro,b = (T − τ)B(1− Pd)Pb log2

(
1 +

gssS
o,b
s

gpsSp + σ2
s

)
,

(3.25)

where So,i
s and So,b

s are two transmit power levels for the state 0 and 1, respectively. While

the service rates of the last two states are zero because the channel has been detected as

busy and no transmission is allowed in this case.

The cognitive user in both states 0 and 1 detects the spectrum as idle, but due to possible

sensing errors, the channel is actually idle as in state 0 (correct detection event) and it is
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actually busy as in state 1 (false-alarm event). The cognitive user can not differentiate

between state 0 and state 1 in each of them the channel is sensed as idle.

The effective capacity of the overlay scheme for states 0 and 1 can be written as

Eo,i
C (θ) = −1

θ
loge

(
E[e−θRo,i

]
)

and, Eo,b
C (θ) = −1

θ
loge

(
E[e−θRo,b

]
)
.

(3.26)

Using the same idea presented in the underlay case, Eq. (3.26) can be expanded as

Eo,i
C (θ) = −1

θ
loge

(
Egss

[
e
−(T−τ)B(1−Pf )Piθ log2

(
1+

gssS
o,i
s

σ2
s

)])

and, Eo,b
C (θ) = −1

θ
loge

(
Ew

[
e
−(T−τ)B(1−Pd)Pbθ log2

(
1+

gssS
o,b
s

gpsSp+σ2
s

)])
,

(3.27)

where Ew is the expectation over the ratio gssS
o,b
s

gpsSp+σ2
s
.

Let αo,i = (T − τ)B(1−Pf )Piθ/ ln 2, and αo,b = (T − τ)B(1−Pd)Pbθ/ ln 2 as the normalized

QoS exponent for each state. These parameters can characterize the statistical delay QoS

requirement, since at certain sensing time it is only a function of θ. Eqs. (3.27) can be

written as

Eo,i
C (θ) = −1

θ
loge

(
Egss

[(
1 +

gssS
o,i
s

σ2
s

)−αo,i ])
and, Eo,i

C (θ) = −1

θ
loge

(
Ew

[
(1 + w)−αo,b

])
·

(3.28)

Similar to the work done in Eq. (3.9), Eqs. (3.28) can be evaluated, a solution for each case

can be obtained as

Eo,i
C =− 1

θ
loge

(
Γ (αo,i − µ1)

Γ (αo,i)
(γo)µ 1F1

(
µ1; 1 + µ1 − αo,i; γo

)
+

Γ (µ1 − αo,i)

Γ (µ1)
(γo)α

o,i

1F1

(
αo,i; 1 + αo,i − µ1; γ

o
))

,

and, Eo,b
C =− 1

θ
loge

(
Γ
(
αo,b + µ3

)
Γ (µ1 + µ3)

Γ (αo,b + µ1 + µ3) Γ (µ3)

)
,

(3.29)

where γo = σ2
s

So,i
s
, and µ3 = (µ1Sp+σ2

s)

So,b
s

. The derivation is similar to the underlay case of

Eq. (3.6) and Eq. (3.10). See Appendix B for details.

Depending on the factors (1− Pf )Pi and (1− Pd)Pb, the capacity that can be achieved
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from each state might vary. Figure 3.3 illustrates the impact of these probabilities on the

effective capacity in each state. As it can be seen from Eq. (3.25), even though, the state 0

with power level So,i
s is most likely to be chosen, but in some cases, transmission using the

power level So,b
s which refers to state 1 may get better, especially for lower probability of idle

as depicted in Figure 3.3. Thus, an algorithm which will be able to notify the cognitive user

to select one of these states (whether 0 or 1) is needed. The cognitive user will be forced to

transmit with a power that attains more capacity while satisfying the power and interference

constraints. The cognitive user does not necessarily know what the state is (0 or 1), the

algorithm will compromise between two levels of power (referred as So,i
s and So,b

s ).
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Figure 3.3: The impact of sensing probabilities on effective capacity for states 0 and 1 in
overlay scheme.

3.3.2 Optimal Power Allocation for Overlay Scheme

The power allocation of the cognitive radio network, {So,i
s , So,b

s } should be carefully assigned

to optimize the overall capacity of the channel. Furthermore, the sensing period τ , which

plays a great role on the system performance, should also be considered in this optimization

process.
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The cognitive network needs to meet transmit power constraint, this can be expressed as

state 0 : T−τ
T

So,i
s ≤ Sm

s , (3.30)

state 1 : T−τ
T

So,b
s ≤ Sm

s . (3.31)

Similarly, the interference from the cognitive transmitter to the primary should also meet

the following interference constraint

state 0 : T−τ
T

E[gspSo,i
s ] ≤ I th, (3.32)

state 1 : T−τ
T

E[gspSo,b
s ] ≤ I th. (3.33)

Our objective is to derive the optimal resource allocation {So,i
s , So,b

s , τ} to maximize the

effective capacity under the transmit and interference power constraints in Eqs. (3.30)-(3.33).

The optimization problem of the state 0 can be formulated as

max
γo, τ

−1

θ
loge

[ (
Co

1(γ
o)µ 1F1

(
µ1; 1 + µ1 − αo,i; γo

)
+ Co

2(γ
o)α

o,i

1F1

(
αo,i; 1 + αo,i − µ1; γ

o
))

S.t. Eq. (3.30) & Eq. (3.32) hold, and 0 < τ < T/2,

(3.34)

With the same manner, the optimization problem of the state 1 can be formulated as

max
µ3, τ

Γ(αo,b + µ3)Γ(µ1 + µ3)

Γ(αo,b + µ1 + µ3)Γ(µ3)

]
S.t. Eq. (3.31) & Eq. (3.33) hold, and 0 < τ < T/2,

(3.35)

where Co
1 and Co

2 in (3.34) are defined as Co
1 = Γ(αo,i − µ1)/Γ(α

o,i), Co
2 = Γ(µ1 − αo,i)/Γ(µ1).

The variables γo and µ3 are related to the original optimized variables So,i
s and So,b

s as

γo = σ2
s

So,i
s

and µ3 = (µ1Sp + σ2
s)/S

o,b
s respectively. The optimized sensing period variable τ

is embedded in the variables αo,i and αo,b. Furthermore, we assume that the sensing time

should not last more than half of the frame period T . The authors in [10] conclude that

for multi slot spectrum sensing, in all cases, the optimal throughput is obtained when the

sensing period is less than T/8.

The problems in Eqs. (3.34) and (3.35) can be solved by two steps. In the first step, we

try to obtain the optimal power allocation under a given sensing time τ . In the second step,
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we can obtain the optimal sensing time by exhaustive search given the power allocation.

Similar to the underlay case, the solution of the above maximization problems can be

mapped to the following minimization problems

min
γo, τ

[ (
Co

1(γ
o)µ 1F1

(
µ1; 1 + µ1 − αo,i; γo

)
+ Co

2(γ
o)α

o,i

1F1

(
αo,i; 1 + αo,i − µ1; γ

o
))

S.t. 0 ≤ T − τ

T
So,i
s ≤ Sm

s and
T − τ

T
µ1S

o,i
s ≤ I th.

(3.36)

min
µ3, τ

Γ
(
αo,b + µ3

)
Γ (µ1 + µ3)

Γ (αo,b + µ1 + µ3) Γ (µ3)

]
S.t. 0 ≤ T − τ

T
So,b
s ≤ Sm

s and
T − τ

T
µ1S

o,b
s ≤ I th.

(3.37)

The corresponding optimal power allocation in the state 0 for a given τ can be derived by

differentiating the objective function in Eq. (3.36) and equating it to zero, beneficial from

the convexity of the confluent hypergeometric function 1F1. So the following solution can be

obtained

Co
1µ1 (γ

∗o)µ1

(
1F1(µ1; 1 + µ1 − αo,i; γ∗o) +

γ∗o
1F1(1 + µ1; 2 + µ1 − αo,i; γ∗o)

1 + µ1 − αo,i

)
+Co

i α
o,i (γ∗o)α

o,i

(
1F1(α

o,i; 1 + αo,i − µ1; γ
∗o) +

γ∗o
1F1(1 + αo,i; 2 + αo,i − µ1; γ

∗o)

1 + αo,i − µ1

)
= 0

(3.38)

in the domain
[
0 ≤ S∗o,i

s ≤ min{ TSm

(T−τ)
, TIth

(T−τ)µ1
}
]
. Similar to the above, the optimal power

allocation in the state 1 for a given τ is the solution of the following equation(
Ψ(αo,b + µ∗

3) + Ψ(µ1 + µ∗
3)−Ψ(αo,b + µ1 + µ∗

3)−Ψ(µ∗
3)

)
= 0, (3.39)

in the domain
[
0 ≤ S∗o,b

s ≤ min{ TSm

(T−τ)
, TIth

(T−τ)µ1
}
]
. The term γ∗o in Eq. (3.38) is γ∗o = σ2

s

S∗o,i
s

,

and µ∗
3 in Eq. (3.39) is the value of µ3 corresponding to S∗o,b

s , i.e., µ∗
3 = (µ1Sp + σ2

s)/S
∗o,b
s .

Different sensing time will result in different performance. Thus, determining the optimal

sensing time is a critically important task in the resource allocation scheme. Therefore, after

deriving the optimal power allocation scheme at any given τ , the optimal sensing time,

denoted by τ ∗, can be found by exact line search method [62].

Among two candidate power levels, the cognitive transmitter will be allocated the power
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that maximizes the effective capacity. The optimal power allocation for the overlay scheme

S∗o
s ∈ {S∗o,i

s , S∗o,b
s } can be obtained as

S∗o
s = argmax

S∗o,i
s ,S∗o,b

s

(
Eo,i

C

(
S∗o,i
s

)
, Eo,b

C

(
S∗o,b
s

))
. (3.40)

As a result, the optimal effective capacity in the overlay strategy is

Eo,opt
C (θ) = Eo

C(θ, S
∗o,i
s , S∗o,b

s , τ ∗). (3.41)

3.4 Underlay-Overlay Selection Criterion

In the previous sections, we have obtained optimal power allocation for both underlay and

overlay schemes. However, underlay and overlay schemes have different features. For exam-

ple, the underlay strategy does not need to perform spectrum sensing but the interference

power constraint should be satisfied all the time. While a portion of time is assigned to sens-

ing process for the overlay case, the cognitive network only needs to meet the interference

power requirement when the primary user is detected to be active. Therefore, the under-

lay and overlay approaches may have their respective advantages under diverse propagation

environment and system parameters. If the cognitive network can dynamically choose the

DSA strategies, the performance of the whole network could be further improved.

In this section, we aim to develop a selection criterion for the cognitive network based

on the two most important parameters: the probability of the primary users activity and

the QoS requirement. The primary users’ traffic load affects the spectrum access activity

of the primary network and thus the performance of the cognitive network. The heavier

traffic load will cause higher spectrum-occupancy probability and vice versa. Moreover, the

QoS guarantee is critically important to the wireless communication system and especially

for the cognitive networks. As different applications and services may have diverse QoS

requirement, it should also be taken into consideration.

Now, we first take a closer look at the relationship between the QoS requirement and the
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QoS exponent. For a given discrete service rate process, the effective capacity EC can be

calculated from Eq. (2.5). The corresponding constraints for queue length-bound violation

and delay-bound probabilities are determined from Eq. (2.2) and Eq. (2.3) by

Pr{Q > qth} ≈ e−θqth ≤ PQ, (3.42)

and Pr{D > dth} ≈ e−θεdth ≤ PD, (3.43)

where PQ and PD are the maximum queue length-bound violation and delay probabilities

that are allowed by the system, respectively.

The QoS requirements depend on the type of service, for example for audio, dth = 50 ms

and the violation probability PD = 10−2, while for video communication dth = 150 ms and

PD = 10−3 [26]. According to these requirements, the limits of the value of θ can be specified.

Consequently, the QoS exponent θ should satisfy

θ ≥ − lnPQ

qth
, and θ ≥ − lnPd

εdth
. (3.44)

Note that ε is defined in Subsection 2.1.3.

Substituting the optimal resource allocation schemes
{
S∗u,i
s , S∗u,b

s

}
and

{
S∗o,i
s , S∗o,b

s , τ ∗
}

for the underlay and overlay schemes given in Eqs. (3.18), (3.41), respectively, we can obtain

the maximum effective capacity for the DSA schemes.

The methodology of theDSA selection criterion can be summarized by considering a two-

dimensional plane, where the x-axis represents the QoS exponent θ and the y-axis denotes

the idle probability Pi. Then, we can divide the plane into two regions, denoted by Ru and

Ro, respectively. The point
(
θ, Pi) in Ru satisfies Eu,opt

C (θ) ≥ Eo,opt
C (θ), and the point (θ, Pi)

in Ro satisfies Eo,opt
C (θ) ≥ Eu,opt

C (θ). Given the delay bound and its violation probability,

the corresponding QoS exponent θ can be calculated. If the point
(
θ, Pi) falls into Ru, the

cognitive network should choose the underlay scheme. On the other hand, if
(
θ, Pi

)
falls into

Ro, the cognitive network should select the overlay scheme.
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3.5 Numerical Results and Performance Analysis

In this section, numerical results are presented to evaluate the performance of the proposed

power allocation strategies for both underlay and overlay schemes. In the calculation, the

frame duration is set to T = 50 ms, the sampling frequency is 100 K samples/s. Unless

otherwise is stated, the probability of the channel to be idle is set to Pi = 0.4. Other

parameters are listed in the corresponding figures.

Figure 3.4 presents the normalized effective capacity (which is defined as the effective

capacity divided by TB and thus has the unit of “bits/sec/Hz”) of both schemes as a func-

tion of the QoS exponent θ. In Figure 3.4(a), we can observe that, in underlay scheme,

the QoS exponent θ plays a critically important role in the maximum throughput of the

cognitive network. When θ is small (i.e., the QoS constraint is loose), the cognitive network

can realize higher throughput. On the contrary, when θ is large (i.e., the QoS constraint is

stringent), the cognitive network can only support lower arrival rates. Figure 3.4(b) illus-

trates the normalized effective capacity as a function of delay exponent and the impact of

the probability of the channel being idle, Pi for the overlay scheme. We can observe that the

effective capacity is a decreasing function of θ and is an increasing function of the probability

Pi. In loosely QoS constraint system, the effective capacity variation is insignificant, while

for more stringent QoS constraint, the capacity degrade is dramatically.

Higher Pi means the cognitive transmitter assumes that the channel is idle with a higher

probability. The secondary user exploits the situation and transmits with a higher power

level, which in turn, gains more capacity. While at lower Pi, the cognitive transmitter

assumes the channel is busy with a higher probability (since Pb = 1 − Pi) and thus, it

reduces the transmit power to comply with the interference constraint.

To compare the effective capacities for the proposed adaptive with non adaptive schemes,

Figure 3.5 shows the effective capacity as a function of QoS exponent θ for adaptive and

non-adaptive schemes. Solid curves show the result for adaptive scheme and dashed curves

46



10
−3

10
−2

10
−1

10
0

0.8

1

1.2

1.4

1.6

Delay exponent, θ (1/bit)

N
o

rm
a

li
z
e

d
 E

ff
e

c
ti
v
e

 C
a

p
a

c
it
y
 (

b
it
/s

e
c
/H

z
)

 

 
Ith=  5dB

Ith= 0 dB

Ith= − 5 dB

(a) Underlay scheme

10
−3

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

3

3.5

Delay exponnet θ (1/bit)

N
o

rm
a

liz
e

d
 E

ff
e

ct
iv

e
 C

a
p

a
ci

ty

 

 
P

i
=0.2

P
i
=0.4

P
i
=0.6

P
i
=0.8

(b) Overlay scheme

Figure 3.4: Normalized effective capacity versus exponent delay θ.

for non-adaptive scheme.
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Figure 3.5: Normalized effective capacity versus QoS exponent θ for adaptive and non adap-
tive power policies.

It is shown that the effective capacities under the adaptive schemes are always higher than

the fixed allocated power policies. Moreover, it can be noticed that the rate of performance

degradation in the adaptive algorithms is faster than that of the non adaptive algorithm. This

means that the adaptive algorithm is more sensitive to the QoS delay exponent variation.

The transmit power of the primary network Sp is another critical parameter that affects
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the performance of the cognitive network. Figure 3.6 shows the effective capacity versus Sp

for both schemes and for different QoS exponent θ. We can observe that the performance
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Figure 3.6: Normalized effective capacity versus primary transmit power with different θ,
Pi = 0.4.

of the cognitive network degrades as Sp increases. This phenomenon can be explained as

a larger Sp will cause more severe interference to the cognitive receiver. This causes the

cognitive transmitter need more power to overcome the negative impact brought by the

interference of the primary sender. However, as shown in Figure 3.6, when the QoS exponent

is small (i.e., θ = 10−3), the performance loss of the underlay cognitive network is not

obvious. On the contrary, the performance of the cognitive network degrades more obvious

when the QoS exponent is large (i.e., θ = 0.1). The reason for this observation is that a

small θ denotes loose QoS requirement and the power allocation becomes water-filling as

we explained in Subsection 2.1.2, thus the power resource can be more efficiently utilized.

However, large θ means stringent QoS requirement, which results the cognitive network

transmit with constant rate. Therefore, more power is used to overcome the more serious

interference caused by larger Sp and the upper bounded power resource is less efficiently

utilized.

Figure 3.7 shows the effective capacity versus sensing time τ for different Pi. We can
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observe that the effective capacity is a concave function with respect to τ . In addition, it

is also noticed that the optimal sensing time for each curve changes with Pi. The cognitive

user needs more sensing time to achieve optimal capacity when Pi is low.

( )

Figure 3.7: Effective capacity of the overlay scheme versus sensing time for different Pi,
θ=0.1(1/bit).

In Figure 3.8, each curve divides the plane into two regions. The region below the curve

is Ru , where the point
(
θ, Pi) satisfies E

u,opt
C (θ) ≥ Eo,opt

C (θ), and the region above the curve

is Ro, where the point
(
θ, Pi) satisfies E

o,opt
C (θ) ≥ Eu,opt

C (θ). Based on the figure, the access

strategy selection criterion proposed above can be performed. If the point
(
θ, Pi) falls below

the curved border, the cognitive network should choose the underlay scheme, otherwise,

the cognitive network should choose the overlay strategy. If the point falls exactly on the

border, which means Eo,opt
C = Eu,opt

C , it gives the same effective capacity for both schemes.

Considering the higher implementation complexity of the overlay scheme, the preferred choice

is then the underlay scheme.

Furthermore, Figure 3.8 presents the border curves under different interference thresh-

olds. We can observe from the figure that the area of the region Ru increases when the
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interference threshold I th becomes larger. Generally, from the analysis and the comparison

of the two different DSA schemes, it can be deduced that the selection of the efficient strat-

egy depends on several factors. It is a function of the channel occupancy probability, as well

as a function of the interference threshold allowed. The choice of the scheme has also to be

compromised between complexity and the achievable performance. By observing the above

analysis and results, we can notice that the less busy the primary channel with loose QoS

requirement (i.e., high Pi and small θ), it is preferred to use the overlay scheme for higher

achievable capacity. On the other side, when the system is more harsh (i.e., low Pi and large

θ), underlay scheme is preferred to maintain the achievable capacity performance.

3.6 Chapter Summary

In this chapter, we integrated the concept of effective capacity into information theory and

developed the optimal resource allocation for both underlay and overlay DSA schemes. We

studied the impact of the delay-QoS constraint on the network performance, and consid-

ered the primary users’ spectrum-occupancy probability. Analytical results for the effective
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capacity for both schemes were derived. Optimal power allocations to achieve maximum

effective capacity were also obtained. We propose a selection criterion to determine whether

to employ underlay or overlay scheme under the given QoS constraint and the primary users’

spectrum-occupancy probability. Thus, the capacity of the CRN might be increased.
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Chapter 4

Effective Capacity Based on Pilot

Aided Transmissions over Imperfect

Channel Information in CRNs

The main challenge for the secondary users is to control their interference levels not to

exceed the limit where it may introduce harmful impact to the primary user. For this

reason, interference should be carefully controlled under the assumption of imperfect channel

estimation and under the probabilities of getting false alarms and/or misdetections in channel

sensing process. The secondary user should also guarantee its own QoS requirements by

transmitting at certain power for desired rates and by limiting the delay encountered by the

transmission in the buffers [29].

Wireless channel conditions vary over time due to changing environment and mobility.

The imperfect channel fading coefficients are possibly estimated through training techniques,

but this is considered as critical for the successful deployment of cognitive radio systems in

practice.

In addition to channel estimation, activities of primary users should be detected through
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channel sensing. Hence, more challenging scenario may face the developers. There are certain

interdependencies between these tasks of channel estimation and sensing. A mistake in

channel sensing may lead to errors in the estimation of the channel coefficients. If the primary

users are in the network but not detected, the channel estimate may be worse. Studying

the transmission performance of cognitive radio in a practical scenario in which secondary

users perform channel sensing, channel estimation, and operate under QoS requirements is

the main motivation for recent research.

Some early research in the channel estimation was studied by an analytical approach to

the design of pilot-assisted techniques [12]. Pilot-Assisted Transmission (PAT), in which a

known training symbol is multiplexed with the data symbols, may be used to estimate the

channel state and to adapt the receiver parameters accordingly [11,63].

In this chapter, the transmission performance in cognitive radio networks is studied as-

suming imperfect channel estimation and by adopting again the concept of effective capacity

introduced in Chapter 2.

The cognitive radio initially performs channel sensing, then the channel fading coeffi-

cients are estimated in the training phase of the transmission. Finally, data transmission

is performed. The activity of the primary user is modeled by a Markov process. In this

work, we jointly evaluate and optimize the training symbol and data symbol powers and

transmission rates of the secondary users.

The rest of the chapter is organized as follows. In Section 4.1, the cognitive channel

model is given and channel sensing expressions are formulated. Section 4.2 discusses the

channel training with pilot symbols and derives the MMSE channel estimation technique.

In Section 4.3, data transmission phase and its performance is studied. A state transition

model for cognitive radio transmission is also analyzed. In Section 4.4, we use the effective

capacity concept to formulate the optimum throughput that the secondary user can achieve.

We provide numerical results in Section 4.5, and summarize the chapter in Section 4.6.
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4.1 Channel Model and Spectrum Sensing

Figure 4.1 depicts the proposed frame model for the cognitive transmission. Initially, the

secondary user performs channel sensing which lasts τ seconds of a frame of total duration T

seconds. We assume that pilot symbols are employed in the system to facilitate the sensing

of channel fading coefficients. This will make the receiver able to track the time-varying

channel. Since the MMSE estimate depends only on the training energy and not on the

training duration [64], it can be claimed that transmission of a single pilot at every T seconds

is enough and optimal [64,65]. Instead of increasing number of pilot symbols, a single symbol

with relatively high power is used as a pilot. With this, a decrease in the duration of the

data transmission can be avoided. Consequently, it is assumed that the transmission is over

flat fading channel in which fading remains constant in each frame. Both powers of pilot

 

 

    SENSING                                                                             DATA 

P
IL

O
T

 

  

                              DATA 

Figure 4.1: Transmission frame model consisting of channel sensing, a single symbol as a
pilot, and data transmission.

and data symbols, and transmission rates are related to the channel sensing results. Let Sb

and rb be the average transmission power and rate if the primary user is detected as busy,

respectively, while, they are Sd and rd, if the channel is detected as idle. The input-output

relation between the cognitive transmitter and receiver in the ith symbol duration can be

expressed as

yi =

{
hix1i + ni, if PU is inactive,

hix2i + ni + npi, if PU is active,
(4.1)

where x1i and x2i are the secondary transmitted signal when the channel is idle and busy

respectively. yi denotes the channel output signal, hi represents the fading coefficient between

the cognitive transmitter and receiver, modeled as Rayleigh random distribution with rms
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value of α. The statistical values of the Rayleigh distribution are [66]:{
E[h] = α

√
π
2

σ2
h = α2(2− π

2
).

(4.2)

The term {ni} in Eq. (4.1) is zero-mean Gaussian distributed random noise samples at the

cognitive receiver with variance σ2
n for all i. The term npi represents the sum of the active

primary users’ signals received at the cognitive receiver with a variance of σ2
np
.

By performing spectrum sensing for reliably identifying the spectrum holes, and using the

Energy Detection described in Chapter 3, Section 3.3.1, the probabilities of detection, false,

and miss-detection can be obtained. The decision can be made according to the following

two hypotheses: H0 : zi = ni i = 1, 2 · · · τB,

H1 : zi = ni + npi i = 1, 2 · · · τB.

Since the symbol rate is B, we have τB symbols in a duration of τ seconds.

Regarding the channel sensing result, the cognitive radio network has the following four

cases:

1. Correct detection: with two possible cases

• Channel is busy, detected as busy, (BB).

• Channel is idle, detected as idle, (DD).

2. Miss-detection: channel is busy, detected as idle(BD).

3. False alarm: Channel is idle, detected as busy (DB).

4.2 Pilot Power Analysis

In Pilot Aided (or Assisted) Transmission (PAT), a known symbol is embedded in the data

transmitted stream to facilitate the receiver to estimate the channel fading coefficients [67].

The cognitive transmitter sends one pilot symbol after the processing of channel sensing to

make the receiver able to estimate the channel coefficients. Obviously, this estimation will

be affected by channel sensing results.
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As mentioned in Section 4.1, with the assumption of constant fading within a frame, one

pilot symbol is adequate to provide estimations. The first τ seconds of a frame with duration

T is reserved for sensing process, while sending a single pilot with relatively high power is

optimal [65]. This increases the duration of the data transmission. After channel sensing

and pilot symbol transmission phases, the rest ((T − τ)B − 1) symbols are devoted for data

transmitting. The average input power in each frame can be written as

Sl =
TB∑

i=τB+1

E
[
|xli|2

]
; i = 0, 1, · · · , l = 1, 2. (4.3)

where xli is defined in Eq. (4.1). The total power assigned to the pilot and data symbols in

a frame is limited by Sb when the channel is sensed as busy, or by Sd when the channel is

sensed as idle. For the possible two cases mentioned above in which the channel is busy (i.e.,

BB and BD), the cognitive transmitter transmits with an average power Sb for the case of

BB. While for the case of BD, the cognitive transmitter transmits with an average power

Sd, making the active primary user suffer from interference introduced by the secondary

user. Depending on the capabilities of the transmitters and the energy resources they are

equipped with, there exists peak constraints on both average powers, say: Sm, the following

constraint on Sb and Sd must be imposed:

PdSb + PmSd ≤ Sm, (4.4)

where Pd and Pm = (1 − Pd) are the detection and miss-detection probabilities defined in

Eqs. (3.23) and (3.24). Additionally, the average interference experienced by the primary

user can be expressed as

E{PdSb|hsp|2 + PmSd|hsp|2} = (PdSb + PmSd)E{|hsp|2} ≤ I th, (4.5)

where hsp denotes the fading coefficient between the secondary transmitter and primary

receiver, and I th is the average interference constraint. Note that hsp is not known at the

cognitive transmitter and hence the cognitive transmitter cannot adapt its transmission

according to it. However, if the statistics of this coefficient (E[|hsp|2]) is known, then in
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order to satisfy Eq. (4.5), the cognitive transmitter can choose Sm = Ith

E{|hsp|2} .

The pilot symbol power is also related to the sensing result. Let the power of the pilot

symbol be Spb = fbSb if the primary user is detected, while, it is Spd = fdSd when primary

user is not detected, where fb and fd are the fractions of the total power assigned to the pilot

symbol and data when channel is detected as busy and idle, respectively. Since we assume

that the fading coefficients {hi} be constant within each frame, the index i will be omitted.

The received signal in the pilot phase in a certain frame (i.e., yp), can be written as

yp =


h(Spb)

1/2 + n+ np for BB case

h (Spd)
1/2 + n for DD case

h (Spd)
1/2 + n+ np for BD case

h (Spb)
1/2 + n for DB case.

(4.6)

If the receiver employs minimum mean-square error (MMSE) estimator to estimate the

fading coefficients, then the estimates can be found as [65,68]

ĥ =


√

Spbσ
2
h

Spbσ
2
h+σ2

n+σ2
np
yp for BB and DB cases

√
Spdσ

2
h

Spdσ
2
h+σ2

n
yp for BD and DD cases.

(4.7)

It is essentially to know that the MMSE estimates given above are related to the channel

sensing results. Appendix C provides the derivations of MMSE technique and its relations

with the probabilities of the channel occupancy. ĥ in Eq. (4.7) is the estimated channel

fading, which is a circularly symmetric complex Gaussian random variable with zero mean

and variance σ2
ĥ
(i.e., ĥ ∼ CN (0, σ2

ĥ
)). It can be expressed as ĥ = σĥw, where w is a standard

complex Gaussian random variable, (i.e., w ∼ CN (0, 1)). Thus the fading coefficient can

now be expressed as follows [17]

ĥ = h+ ϵ, (4.8)

where ϵ is the estimate error in the fading coefficient h, and ϵ ∼ CN (0, σ2
ϵ ) [12,17,28].

Now, the input-output relationship for data phase in Eq. (4.1) can be rewritten as

ŷ =

{
ĥx1 + n+ np if channel is busy,

ĥx2 + n if channel is idle,
(4.9)
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The estimation of the channel variance is [67]

σ2
ĥ
=



Spbσ
4
h

Spbσ
2
h+σ2

n+σ2
np

for BB case

Spdσ
4
h

Spdσ
2
h+σ2

n
for DD case

Spdσ
4
h

(Spdσ
2
h+σ2

n)
2 (Spdσ

2
h + σ2

n + σ2
np
) for BD case

Spbσ
4
h

(Spbσ
2
h+σ2

n+σ2
np

)2
(Spbσ

2
h + σ2

n) for DB case,

(4.10)

Using Eq. (4.2) and Eq. (4.8), the variance of the estimation error σ2
ϵ can be found as

σ2
ϵ = σ2

ĥ
+ α2(1 +

π

2
), (4.11)

by assuming that there is no correlation between the error and its estimation.

4.3 Data Transmission Phase

Finding the capacity of the channel in Eq. (4.9) is not an easy task. A lower bound capacity

is generally obtained by considering the estimate error ϵ as another source of Gaussian

noise, i.e., by considering the term (ϵ xl + n); l = 1, 2, in Eq. (4.9) as Gaussian distributed

noise uncorrelated with the input [29].

The channel can be modeled as a two Morkov chain states (i.e., ON and OFF ), for the

state when target transmission rate is greater than or less than the instantaneous rate that

the channel can support, respectively. These two states are possible in each of the four cases

discussed in Section 4.1 in page (54). Hence, totally there are eight states (2× 4).

The lower bound instantaneous channel capacities in a frame for the four scenarios de-

scribed above can be written as

C l
k = Co log2(1 + ηk|w|2), k = 1, 2, 3, 4 (4.12)

where Co =
(T−τ)B−1

T
, and
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ηk =



Sdbσ
2
ĥ

Sdbσ2
ϵ+σ2

n+σ2
np

k = 1 ;BB case
Sddσ

2
ĥ

Sddσ2
ϵ+σ2

n
k = 2 ;DD case

Sddσ
2
ĥ

Sddσ2
ϵ+σ2

n+σ2
np

k = 3 ;BD case
Sdbσ

2
ĥ

Sdbσ2
ϵ+σ2

n
k = 4 ;DB case,

(4.13)

C l
k is the frame’s lower band capacity of each scenario k, which is obtained by assuming the

factors {ϵ · x} and {np} in Eq. (4.9) as worst case noise whereas it is considered as Gaussian

distributed [64]. Sdb is the data symbol power when the channel is detected as busy, while

Sdd is the data symbol power when the channel is detected as idle. These two powers are

related to the cognitive average powers, as Sdb = Sb(1−fb)/TCo = Sb(1−fb)/((T −τ)B−1),

and Sdd = Sd(1− fd)/((T − τ)B − 1).

Since w ∼ CN (0, 1), the magnitude |w| will have the Rayleigh distribution and the

squared magnitude |w|2 will have Exponential distribution [69].

We assume that the transmitter will send its data at fixed rate rb if the channel is sensed

as busy, and at rd if it is sensed as idle. If these rates are below the instantaneous capacity

values, i.e., when rb < C l
1, C

l
4 or rd < C l

2, C
l
3, the transmission can be assessed to be in the

ON state and, so, the target rates can be achieved. While , if rb ≥ C l
1, C

l
4 or rd ≥ C l

2, C
l
3,

the channel is in the OFF state, where reliable communication can not be achieved.

The activity of the primary user between the frames can also be modeled as a two-state

Markov model. Busy state indicates that the primary user occupied the channel, and iDle

state indicates the absent of the primary user in the channel, as can be seen in Figure 4.2.

Switching from busy state to idle state and from idle state to busy state is with probability

b and d, respectively. The state transition is assumed to occur every T seconds. Taking

into account the four possible cases related to the channel sensing results jointly with the

reliability of the transmissions states, the cognitive radio transmission can be represented by
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Figure 4.2: Primary user activity between two states: Busy and iDle

state transition model as P(8×8) transition matrix denoted as

P =



p1 p2 p3 p4 p5 p6 p7 p8

p1 p2 p3 p4 p5 p6 p7 p8

ṕ1 ṕ2 ṕ3 ṕ4 ṕ5 ṕ6 ṕ7 ṕ8

ṕ1 ṕ2 ṕ3 ṕ4 ṕ5 ṕ6 ṕ7 ṕ8

p1 p2 p3 p4 p5 p6 p7 p8

p1 p2 p3 p4 p5 p6 p7 p8

ṕ1 ṕ2 ṕ3 ṕ4 ṕ5 ṕ6 ṕ7 ṕ8

ṕ1 ṕ2 ṕ3 ṕ4 ṕ5 ṕ6 ṕ7 ṕ8


(4.14)

The transition probabilities depend on channel coefficients, sensing probabilities, trans-

mission rates, and the two state Markov model in Figure 4.2. Table (4.1) summarizes the

entries of the matrix P, where φk in the table is defined as:

φk =

{
1
ηi

(
2(rb/Co) − 1

)
, k = 1, 4;

1
ηi

(
2(rd/Co) − 1

)
, k = 2, 3.

(4.15)

The details to calculate these transition probabilities are provided in Appendix D.

Table 4.1: The transition probabilities of Matrix P

l = 1, 2, 5, 6 n = 3, 4, 7, 8

pl1 = (1− b)Pde
−φ1 =p1 pn1 = dPde

−φ1 =ṕ1

pl2 = (1− b)Pd(1− e−φ1) =p2 pn2 = dPd(1− e−φ1) =ṕ2

pl3 = b(1− Pf )e
−φ2 =p3 pn3 = (1− d)(1− Pf )e

−φ2 =ṕ3

pl4 = b(1− Pf )(1− e−φ2) =p4 pn4 = (1− d)(1− Pf )(1− e−φ2) =ṕ4

pl5 = (1− b)Pme
−φ3 =p5 pn5 = dPme

−φ3 =ṕ5

pl6 = (1− b)Pm(1− e−φ3) =p6 pn6 = dPm(1− e−φ3) =ṕ6

pl7 = bPfe
−φ4 =p7 pn7 = (1− d)Pfe

−φ4 =ṕ7

pl8 = bPf (1− e−φ4) =p8 pn8 = (1− d)Pf (1− e−φ4) =ṕ8
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According to the entries of the matrix P listed in Table (4.1), the rank of this matrix is 2.

4.4 Effective Capacity Optimization for Cognitive User

The Effective Capacity (EC) theory introduced in Chapter 2, is a powerful approach to

evaluate the capability of a wireless channel to support data transmissions with diverse

statistical QoS guarantees.

We aim here, to analyze the maximum capacity that the cognitive radio channel can

achieve under the constraints specified by the QoS exponent (i.e., Effective capacity instead

of ergodic capcity).

The effective capacity for a given θ is defined in Eq. 2.5 as

Ec = − lim
t→∞

1

θt
logE(exp(−θR(t))), (4.16)

where R(t) =
∑t

i=1 r(i) is the time-accumulated service process. Here we assume that r(i) is

discrete time stationary and ergodic stochastic service process. E(·) is the expectation with

respect to r.

It can be noticed that the service rate per frame is r(i) = rbT if the secondary user

is in the state ON1 or ON7 at time i (the subscript number under the state refers to the

state number). Similarly, the service rate is r(i) = rdT in the states ON3 and ON5. For

the remaining states (OFFj, j = 2, 4, 6, 8), the target transmission rate is greater than the

instantaneous channel capacities and, so, communication can not be achieved. This leads to

vanish all the service rates in these four even states.

Eq. (4.16) can be solved using the technique given in [70] as follows

Ec = −1

θ
log ρ(M) = −1

θ
log ρ(D ·P), (4.17)

where ρ(M) function is the spectral radius of the matrix M, D = diag(d1(θ), · · · , dN(θ)) is

a diagonal matrix with elements equal to the moment generating functions of the processes

in the N states [70] (here, we have 8 states). Spectral radius of a matrix is the maximum
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of the absolute values of its eigenvalues, i.e., ρ(A)
def
= max

i
(|ωi|), ωi’s are the eigenvalues of

the matrix A. P in Eq. (4.17) is the transition matrix given in Eq. (4.14). Note that in our

assumptions, the transmission rates are deterministic and constants in each state, thus, the

possible rates are: Trb, Trd, and 0 for which the moment generating functions are eTθrb , eTθrd

and 1 respectively. Therefore, D = diag(eTθrb , 1, eTθrd , 1, eTθrd , 1, eTθrb , 1). As a result, the

matrix M can be filled as

M = (D ·P) =



mbp1 mbp2 mbp3 mbp4 mbp5 mbp6 mbp7 mbp8

p1 p2 p3 p4 p5 p6 p7 p8

mdṕ1 mdṕ2 mdṕ3 mdṕ4 mdṕ5 mdṕ6 mdṕ7 mdṕ8

ṕ1 ṕ2 ṕ3 ṕ4 ṕ5 ṕ6 ṕ7 ṕ8

mdp1 mdp2 mdp3 mdp4 mdp5 mdp6 mdp7 mdp8

p1 p2 p3 p4 p5 p6 p7 p8

mbṕ1 mbṕ2 mbṕ3 mbṕ4 mbṕ5 mbṕ6 mbṕ7 mbṕ8

ṕ1 ṕ2 ṕ3 ṕ4 ṕ5 ṕ6 ṕ7 ṕ8



, (4.18)

where mb = eTθrb , and md = eTθrd are the moment generating functions of the possible rates

when the channel is busy and idle respectively.

It is easy to note that the matrix M has also a rank of 2. The characteristic polynomial

of the matrix can be written as (See Appendix E for details.):

Q(ω) = ω2 − C7ω + C6, (4.19)

where the nonzero-eigenvalues ω can be found by solving the above quadratic equation.

The effective capacity in Eq. (4.16) can be optimized by choosing the maximum values

of rb and rd. This maximization is done by choosing the maximum value of the eigenvalue

of the matrix (D ·P) which maximizes the function ρ(M) in Eq. (4.17).

We formulate a general optimization problem for effective capacity in Eq (4.20).
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Eopt
c = max

0<Sb,Sd≤Sm

0<fb,fd≤1
rb,rd≥0

− 1

θTB
log

{
1

2

(
mb(p1 + ṕ7 ) +md(p5 + ṕ3 ) + p2 + p6 + ṕ4 + ṕ8

)

+
1

2

((
mb(p1 + ṕ7 ) +md(p5 + ṕ3 ) + p2 + p6 + ṕ4 + ṕ8

)2
−4

(
m2

b(ṕ7 p1 − ṕ1 p7 ) +m2
d (p5 ṕ3 − p3 ṕ5 ) +mb(ṕ7 p2 + ṕ7 p6 − ṕ1 p4

−ṕ2 p7 − ṕ5 p7 − ṕ6 p7 − ṕ1 p8 + ṕ8 p1 ) +md(ṕ3 p2 − ṕ2 p3 − p4 ṕ5

+p5 ṕ4 − p3 ṕ6 + p6 ṕ3 − ṕ5 p8 + ṕ8 p5 ) +mbmd(ṕ3 p1 + ṕ7 p5 − ṕ1 p3 )

−ṕ2 p4 + ṕ4 p2 + ṕ4 p1 − p4 ṕ6 + p6 ṕ4 − ṕ2 p8 − ṕ6 p8 + ṕ8 p6 + ṕ8 p2

)) 1
2
}

S.t. PdSb + PmSd ≤ Sm and (PdSb + PmSd)E(|hsp|2) ≤ Im

(4.20)

The effective capacity expression in Eq. (4.20) is obtained by choosing the largest value

of the eigenvalues of the matrix M for a given sensing duration τ , detection threshold δ, and

QoS exponent θ. One can note that if the sensing results are perfect with no errors, i.e.,

the probability of detection Pd = 1, and so (Pm = Pf = 0), the transition probabilities in

matrix P, p5 = p6 = p7 = p8 = ṕ5 = ṕ6 = ṕ7 = ṕ8 = 0.

An analytical optimized solution for the problem Eq. (4.20) is possible whenever the gen-

erating function has an analytical expression [62,71]. In the following section, we investigate

the impact of several parameters on the effective capacity through numerical results.

4.5 Numerical Results

In this section, numerical results are presented to illustrate the impact of the sensing dura-

tion τ , detection threshold δ, and other factors on the effective capacity. Without loss of

generality, we set all variances to unity (σh = σn = σnp = 1). We also assume the symbol rate

B=10 K symbol/s, and the frame duration T=0.25 s. This means there are 2500 symbols in
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the frame. Unless they are not variable, time allocated for sensing is set to 5 ms, and QoS

exponent θ is assumed to be 0.1. The maximum power constraint Sm=20 dBm. The fraction

assigned to the pilot symbol is 10% whether the channel is busy or idle (i.e., fb = fd = 0.1).

To simplify the objective function of the effective capacity, we set the transition probabilities

of the two-state Markov model in Figure 4.2: b and d, such that b = 1− d.

In Figure 4.3, the normalized effective capacity (which is defined as the effective capacity

divided by TB) is plotted versus the delay QoS exponent θ for various interference limit

values. We observe that the capacity increases as θ decreases. The figure shows that in the

case with loose QoS restrictions (i.e., lower values of θ), the capacity benefits significantly,

whereas in the case with higher values of θ (i.e., θ= 10 (1/bit)), about 70 % reduction in

the capacity is seen.
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Figure 4.3: Effective capacity versus delay QoS exponents, for various interference-limit.

Figure 4.4 illustrates the effective capacity of the secondary user versus the interference

limit I th for various QoS exponent values. This figure reveals that the capacity gain that

can be achieved under strict peak interference constraint is much lower than the one under

released interference constraint. Also, similar to the conclusion in Figure 4.3, for specific I th

value, the capacity increases as θ becomes lower which means loose QoS restrictions.

Figure 4.5 studies the effect of the channel sensing duration τ . It can be seen that for a

short time reserved for sensing process, the secondary user is more likely to get a false alarm
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Figure 4.4: Effective capacity versus Interference-limit for various θ.

detecting the primary user, whereas the probability of detection approaches to one for long

sensing duration.
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Figure 4.5: Probabilities of sensing (Pd & Pf ) versus channel sensing duration τ .

In Figure 4.6, we display the effective capacity (normalized value) as a function of the

probability of detection for different values of Sm. As expected, with increasing Sm, the

effective capacity value increases, more power means more relax constraints, which leads to

more capacity. The effective capacity increases with probability of detection due to the fact

that more reliable detection of the activity primary users leads to fewer miss-detection.

In Figure 4.7, we plot the normalized effective capacity as a function of the ratio of the

power allocated to the pilot symbol to the total power when the channel is sensed as busy
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fb (here, we assume fb=fd ). We consider two different interference thresholds. The optimal
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Figure 4.7: Normalized effective capacity versus the ratio of power pilot symbol to the total
power allocated for two different values of I th.

ratio occurs at fb = fd ≃ 10%. As the interference constraint increases which means more

allowance to the secondary user to transmit, the effective capacity increases. This can be

intuitively understood. More fb (or fd) means more power allocated to the pilot symbol and

less power allocated to data transmission, which in turns reduces the capacity.
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4.6 Chapter Summary

In this chapter, the effective capacity of cognitive radio channels has been analyzed taking

into account QoS constraints, imperfect channel information, and transmission power limita-

tions. First, a system model is introduced in which the cognitive transmitter initially senses

the channel in order to detect the activity of the primary user. It then sends a pilot symbol

for channel estimation followed by data transmission. The estimation of the channel fading

coefficients is performed through pilot transmission in the training phase. The minimum

mean square error estimator MMSE is assumed to be employed at the receiver. Through

the study, the interrelation between channel sensing and estimation has been investigated.

We have observed that degradation in the channel estimation is a result of faulty sensing.

The cognitive transmitter is assumed to transmit data at fixed powers and rates according to

the channel sensing results. For the secondary user, we have constructed a state-transition

model taking into account the reliability of the transmission, channel sensing results, and

the primary user activity in the channel. We have formulated the transition probabilities for

this model. A closed form for the effective capacity is obtained as a function of exponent

delay constraint. Numerical results are provided to examine the impact of delay constraint,

interference limit, channel sensing duration, threshold, · · · etc, on the effective capacity.

Many insightful observations and investigations are presented.
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Chapter 5

Effective Capacity and Interference

Analysis in Multichannel Sensing

In this chapter, the performance of multichannel transmission in cognitive radio is studied.

Both QoS constraints and interference limitations are considered. The activities of the

primary users are initially detected by cognitive user who performs sensing process over

multiple channels. The cognitive user transmits in a single channel at variable power and

rates depending on the channel sensing decisions and the fading environment. The cognitive

operation is modeled as a state transition model in which all possible scenarios are studied.

The QoS constraint of the cognitive user is investigated through comprehensive statistical

analysis. The effective capacity of the cognitive radio channel is found in a closed form, taking

into account the interference caused on the primary users and the required QoS constraints.

Optimal power allocation and optimal channel selection criterion are obtained. Impact of

several parameters on the transmission performance, as channel sensing parameters, number

of available channels, fading and other, are identified through numerical example.
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5.1 Introduction

In cognitive radio systems, challenges in providing QoS assurances increase due to the fact

that cognitive user should operate under constraints on the interference levels that they

produce to primary users. For the secondary user, these interference constraints lead to

variations in transmit power levels and channel accesses. This discontinuity in accessing the

channels due to the activity of the primary users make it difficult for the cognitive user to

satisfy their own QoS requirement. The authors in [72] proposed a QoS constrained power

and rate allocation scheme for spectrum sharing systems in which a minimum-rate to the

primary user for a certain percentage of time was guaranteed. The same authors, in [73],

considered variable-rate variable-power modulation employed under delay QoS constraints

over spectrum-sharing channels.

In this chapter, the effective capacity of cognitive radio channels are studied where the

cognitive radio detects the activity of the primary users in a multichannel case, and performs

data transmission in one of these channels using both rate and power adaptation that depends

on the channel conditions and the activity of the primary users. An average interference

constraint on the cognitive user is formulated. Maximum throughput formula is obtained

through the effective capacity approach. Optimal power allocation is derived and investigated

through numerical results.

The rest of the chapter is organized as follows. In Section 5.2, the system model and

assumptions are given. Channel capacity and state transition model are formulated and

constructed in Section 5.3. Section 5.4 discusses outage constraints and interference limit.

In Section 5.5, the effective capacity equation for the cognitive user channel is formulated.

Channel selection criterion is proposed in Section 5.6. Numerical results are provided in

Section 5.7, and the chapter is summarized in Section 5.8.
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5.2 System Model and Assumptions

The considered system model consists of cognitive radio network in which the cognitive user

senses L channels with a bandwidth Bl for each, where l = 1, 2, · · · , L. Among these bands,

the cognitive user chooses a channel for data transmission. The channel sensing and data

transmission are performed in frames of duration T . It is assumed that τ seconds is allocated

for channel sensing while the remaining (T − τ) seconds are allocated for data transmission.

The primary user activity influences the transmission power and rate levels. If all of the

channels are detected as busy, the cognitive transmitter selects one channel with a certain

criterion, and sets the transmission power and rate to Sb,l(i) and rb,l(i), respectively, where

i = 1, 2, · · · denotes the time index in the transmission frame. On the contrary, if at least

one channel is sensed to be idle, data transmission is sent with power Sd,l(i) at rate rd,l(i). In

the case of multiple channels are detected as idle, one idle channel can be selected according

to a certain policy explained later in Section 5.6.

The input-output relation between the cognitive transmitter and receiver in the ith symbol

duration in the lth channel can be expressed as

yl(i) =

{
hssl(i)xl(i) + nl(i), if no PU is active,

hssl(i)xl(i) + nl(i) + npl(i), if at least one PU is active,
(5.1)

where xl(i) and yl(i) denote the input and output complex-valued channel, respectively. The

term, hssl(i), is the channel fading coefficient between the cognitive transmitter and receiver

with an arbitrary distribution. It is defined gssl(i) = |hssl(i)|2 as power fading coefficient. A

block-fading channel model is assumed in which the fading coefficients stay constant in the

frame, and they may change from one block to another independently in each channel. In

Eq. (5.1), npl(i) denotes the active primary user’s signal arriving at the cognitive receiver in

the lth channel, and it is assumed to have zero mean and a variance σ2
npl

. Finally, nl(i) in

Eq. (5.1) represents the AWGN at the receiver which is modeled as a zero-mean, circularly

symmetric, complex Gaussian random variable with variance σ2
nl
, ∀l.
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In order to identify the presence of primary user with unknown frequency locations,

energy detector serves as the optimal sensing scheme since it only needs to measure the

power of the received signal.

The channel sensing can be modeled as a hypothesis test between the noise nl(i) and the

signal npl(i) in noise. In a duration of τ seconds, there are τBl complex symbols in each

channel with bandwidth Bl, this model can be expressed as

Hd,l : zl(i) = nl(i), i = 1, 2 · · · τBl,

Hb,l : zl(i) = nl(i) + npl(i), i = 1, 2 · · · τBl. (5.2)

By the assumption that npl(i) signal samples are i.i.d., the optimal detector response for

this hypothesis problem is similar to the model given in Eqs. (3.20) - (3.24), and it can be

rewritten as

Zl =
1

τBl

τBl∑
i=1

|zl(i)|2 ≶Hd,l

Hb,l
δl, (5.3)

where δl is a pre-designed threshold. Assuming (τBl) is sufficiently high, Zl can be ap-

proximated, using Central Limit Theorem, as a Gaussian random variable with mean and

variance

E[Zl] =

{
σ2
nl

if PU is inactive

σ2
npl

+ σ2
nl

if PU is active,
(5.4)

σ2
Zl

=


σ4
nl

τBl
if PU is inactive(

E[ |npl|4] + σ4
nl
+ 2σ2

npl
σ2
nl
− σ2

npl

)
/(τBl) if PU is active,

(5.5)

respectively, where E[ |npl |4] is the forth moment of the received signal npl . Note that

E[|n|4] = 2σ2
n for the CSCG assumption.

If we assume that the primary signal npl has complex-valued PSK waveform, the prob-

abilities of detection and false alarm are given, respectively, as follows [10]

Pd,l = Pr{Y > δ|Pb} = Q

 δ − σ2
npl

− σ2
nl

σnl

√(
2σ2

npl
+ σ2

nl

)
/ (τB)

 , (5.6)
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Pf,l =Pr{Zl > δl|Hl,d} = Q

 δl − σ2
nl√

σ4
nl
/(τBl)

 . (5.7)

The probability of miss-detection occurs when the primary user is in operation but the

cognitive radio fails to detect it, thus Pmiss,l = 1− Pd,l.

In Figure 5.1, the probability of detection and the probability of false alarm are illustrated

as a function of energy detection threshold δ for different values of channel sensing duration.

The bandwidth is set to B = 10 kHz and the frame duration is T = 100 ms. We can see

that when the detection threshold is low, both Pd and Pf tend to be 1, which means that

the secondary user, always assuming the existence of an active primary user, transmits with

power Sb(i) and rate rb(i).
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Figure 5.1: Probability of detection Pd and false alarm Pf versus detection threshold δ for
different sensing times.

On the other hand, when the detection threshold is high, Pd and Pf are close to zero,

which means that the secondary user, being unable to detect the activity of the primary users,
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always transmits with power Sd(i) and rate rd(i), possibly causing significant interference.

The main purpose is to keep Pd as close to 1 as possible and Pf as close to 0 as possible.

Therefore, we have to keep the detection threshold in a reasonable interval. Note that the

duration of sensing τ is also important since increasing the number of channel samples used

for sensing improves the quality of channel detection, but on the other hand degrades the

transmission time which in turns decreases the throughput.

5.3 Channel Capacity and State Transition Model

Perfect Channel State Information (CSI) is assumed at each receiver. It is further assumed

that each channel has a bandwidth that is equal to the coherence bandwidth Bc. Coherence

bandwidth is a statistical measurement of the range of frequencies over which the channel

can be considered to be flat. In other words it is the approximate maximum bandwidth over

which two frequencies of a signal are likely to experience comparable or correlated amplitude

fading. With this assumption, it can be supposed that independent flat fading is experienced

in each channel.

In order to further simplify the setting, it is considered a symmetric model in which fading

coefficients are identically distributed in different channels. Moreover, the background noise

and primary users’ signals are also assumed to be identically distributed in different channels

and hence their variances σ2
n and σ2

np
do not depend on l. So the subscript l in the subsequent

expressions will be dropped for the sake of brevity. The probability of each channel being

occupied by the primary users is assumed to be the same and equal to Pb. In channel sensing

process, the same energy threshold δ is assumed in each channel. Due to possible error in

channel sensing, we have the following possible cases

• Cbb: All bands are sensed as busy, and the selected channel is actually busy.

• Cbd: All bands are sensed as busy, and the selected channel is actually idle.
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• Cdb: At least one band is sensed as idle, and the selected channel is actually busy.

• Cdd: At least one band is sensed as idle, and the selected channel is actually idle.

Finding expressions of the probabilities of being in each of these cases is very important

for the subsequent analysis. By the assumption that the state transitions occur every frame

and they may change between frames, the probability that the channel is detected as busy

can be written as

ρ , (PbPd + (1− Pb)Pf ) (5.8)

The probabilities of being in each of the above cases can be formulated as follows:

Pbb , Pr{being in the case Cbb} = ρL−1PbPd, (5.9)

Pbd , Pr{being in the case Cbd} = ρL−1(1− Pb)Pd, (5.10)

Pdb , Pr{being in the case db}

= Pr{at least one ch is detected as idle}

× Pr{the ch chosen is busy | it is detected as idle}

=
L∑
l=1

(
L

l

)
ρL−l(1− ρ)l × Pb(1− Pd)

1− ρ
=

(1− ρL)Pb(1− Pd)

1− ρ
. (5.11)

Similarly for the forth case

Pdd ,Pr{being in the case dd} =
(1− ρL)(1− Pb)(1− Pf )

1− ρ
, (5.12)

Table 5.1 summarizes these probabilities.

Table 5.1: The Probability of being in each four cases

Case Probability being in this case

Case bb ρL−1PbPd

Case bd ρL−1(1− Pb)Pf

Case db (1−ρL)Pb(1−Pd)
1−ρ

Case dd
(1−ρL)(1−Pb)(1−Pf )

1−ρ
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These probabilities are plotted in Figure 5.2 as a function of the probability of detection

for two cases in which the number of channels is L = 1 and L = 5. As expected, Pbb and Pbd

decrease with increasing the number of channels. It can also be seen that Pdb and Pdd have

small values when the probability of detection is high.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

L=1

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

L=5

Probability of detection (P
d
)

P
ro

b
a
b
ili

ty
 o

f 
th

e
 4

 c
a
se

s

 

 

P
bb

P
bd

P
db

P
dd

Figure 5.2: Probability of being in each of the four cases vs. probability of detection.

In each of the above cases, we have two states, namely either ON state in which the

instantaneous transmission rate exceeds the instantaneous channel capacity, or OFF state

if it does not. Assuming the interference caused by the primary users np(i) as additional

Gaussian noise, the instantaneous channel capacities for the above four cases can be expressed

as follows

Rl(i) = Bc log2(1 + γl(i)), (5.13)

where l ∈ {bb, bd, db, dd} refers to the possible case and γl(i) represents the SINR for the
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corresponding case in the ith channel which is given by

γbb(i) =
Sb(i)gss(i)

Nb

, γbd(i) =
Sb(i)gss(i)

Nd

γdb(i) =
Sd(i)gss(i)

Nb

, γdd(i) =
Sd(i)gss(i)

Nd

,

(5.14)

where Nb = (σ2
n + σ2

np
) and Nd = σ2

n represent the total noise when a channel is busy and

idle respectively.

It can be seen that in the cases Cbb and Cbd, the cognitive transmitter detects all channels

as busy and transmits with rate

rb(i) = Bc log2(1 + γbb(i)). (5.15)

While for the cases Cdb and Cdd, at least one channel is sensed as idle and the transmission

rate is

rd(i) = Bc log2(1 + γdd(i)), (5.16)

since the transmitter assumes the channel as idle, it sets the power level to Sd(i) and expects

that no interference from the primary transmissions will be produced as seen by the absence

of σ2
np

in the denominator of γdd in Eq. (5.14).

The transmission rate for the cases Cbb and Cbd is less than or equal to the instantaneous

channel capacity. Hence, reliable transmission at rate rb(i) is attained and channel is in the

ON state. Similarly, the channel is in the ON state in the case Cdd in which the transmission

rate is rd(i). While in the case Cdb, transmission rate exceeds the instantaneous channel

capacity (i.e., rd(i) > Rdb(i)) due to mis-detection. In this case, reliable communication

cannot be established, and the channel is assumed to be in the OFF state. The effective

transmission rate in this state is zero.

Referring to the above discussion, the cognitive transmission model can be constructed

as depicted in Figure 5.3. We have (L + 1) ON states and 1 OFF state. The first ON

state is a combined version of the ON states in the cases Cbb and Cbd in both of which

the transmission power and rate are Sb(i) and rb(i) respectively. All channels are sensed

as busy in this first ON state. The remaining ON states labeled 2 through (L + 1) in the
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figure can be represented as the expansion of the ON state in the cases Cdd in which at

least one channel is sensed as idle and the selected channel for transmission is really idle.

More specifically, the lth ON state for l = 2, 3, · · · , (L+ 1) is the ON state in which (l− 1)

channels are sensed as idle and the channel selected for transmission is actually idle. The

transmission power and rate for these states are Sd(i) and rd(i) respectively.

The single OFF state labeled (L+2) in the figure represents the case Cdb in which trans-

mission rate exceeds the instantaneous channel capacity. Reliable communication cannot be

established in this state.

To characterize the state transition probabilities, the probability of staying in the first

ON state in which all channels are sensed as busy can be easily expressed as

p11 = (PbPd + (1− Pb)Pf )
L = ρL (5.17)

It is important to note that the transition probability in Eq. (5.17) is obtained under

the assumptions that the primary user activity is independent among the channels and also

from one frame to another as mentioned above. By this assumption of independence over

the frames, the state transition probabilities are independent on the originating state, so the

transition probabilities pl1, l = 1, 2, · · · , (L+ 2) can be expressed as

p1 , p11 = p21 = · · · = p(L+1)1 = p(L+2)1 = ρL (5.18)

For l = 2, 3, · · · , L+ 1,, we can obtain

pl , p1l = p2l = · · · p(L+1)l = p(L+2)l

= Pr{(l − 1) out of L channels are sensed as idle}

× Pr{the selected channel is idle | it is sensed as idle}

=

(
L

l − 1

)
ρL−l+1(1− ρ)l−1 × (1− Pb)(1− Pf )

1− ρ

= C(L, l − 1)ρL−l+1(1− ρ)l−2(1− Pb)(1− Pf ),

where C(k, l) = k!
l!(k−l)1

is the Binomial coefficient.
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Figure 5.3: (L+ 1) ON States and one OFF state for the cognitive radio channel and their
corresponding state transition probabilities.

The transition probabilities for the OFF state are

pL+2 , p1(L+2) = p2(L+2) = · · · = p(L+1)(L+2) = p(L+2)(L+2) (5.19)

= 1−
L+1∑
l=1

p1l =
L∑
l=1

C(L, l)ρL−l(1− ρ)l−1Pb(1− Pd) =
1− ρL

1− ρ
Pb(1− Pd).

In Eq. (5.11) and Eq. (5.19), we use the series relations in [74,75] as

L∑
l=1

L!

(L− l)! l!
aL−l (1− a)l−1 =

1− aL

1− a

From the above definitions, it can be seen that the state transition probability matrix

is (L + 2) × (L + 2) with rank of 1. Note that in each frame, there are rb(l)(T − τ) bits

transmitted and received in state 1, and rd(l)(T − τ) bits are transmitted and received in

states 2 through (L+1), while in state (L+2), the transmitted bits are assumed to be zero.
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5.4 Outage Constraints and Interference Limit

To adapt the transmission powers of the cognitive user and ensuring not producing any harm-

ful impact on the primary users, interference power constraints is considered and analyzed

in this section.

From the above discussions, it can be concluded that the interference to the primary

users is caused only in the cases Cbb and Cdb. In the case Cbb, the channel is actually busy,

and the cognitive user, detecting the channel as busy, transmits at power level Sb. The

instantaneous interference power introduced on the primary user is (Sb gsp), where gsp is

the fading coefficient of the channel between the secondary transmitter and the primary

user. While, for the case Cdb, although the channel is actually busy, the secondary user,

detecting the channel as idle, transmits at power Sd . The instantaneous interference power

is (Sd gsp) in this case. Since power adaption is considered, transmission power levels Sb and

Sd in general vary with gsp and gss, which is the power of the fading coefficient between the

secondary transmitter and secondary receiver in the chosen transmission channel.

On the other hand, it is important to note that increasing L always brings a benefit to

the primary users in the form of decreased probability of interference. In order to quan-

tify this type of gain, we consider below the probability that the channel being selected

for transmission is actually busy and hence, the primary user in this channel experiences

interference:

PI = Pr

{(
ch selected

is actually

busy

)
AND

(
all chs are

detected as

busy

)}
+ Pr

{(
ch selected

is actually

busy

)
AND

(
at least one

is detected

as idle

)}

= Pbb + Pdb = Pb
1− ρL − Pd(1− ρL−1)

1− ρ
(5.20)

Clearly that PI depends on Pd and Pf (through ρ in Eq. (5.8)). It can be seen in Figure 5.4

that this interference probability decreases with increasing the number of channels L.
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Figure 5.4: Probability of primary user being in interference versus probability of detection
for different L, Pb = 0.2.

For large L, lim
L→∞

PI = Pb
(1− Pd)

1− ρ
. In this asymptotic regime, PI becomes zero with perfect

detection. Note that the cognitive user transmits even when all channels are detected as

busy. As L grows up, the probability of such an event vanishes. Having perfect detection

makes the cognitive user to avoid the third case Cdb. Hence, the primary user will be avoided

to experience interference.

In the cases: Cbb and Cdb described above, the instantaneous interference power levels

depend on both gsp and gss whose distributions depend on the criterion with which the

transmission channel is chosen and the number of available channels from which the selection

is performed. For this reason, it is necessary in the case Cdb to separately consider the

individual cases with different number of idle-detected channels. There are L such cases.

For instance, in the lth case for l = 1, 2, · · · , L, there are l channels detected as idle and the

channel chosen out of these l channels is actually busy.

According to the above considerations, and using Eqs. (5.9), (5.11), the average interfer-
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ence has to be constrained to the value I thl . This can be expressed as

I thl >Pr{being in Cbb}× average interference in Cbb

+Pr{being in lth channel in Cdb}× average interference in Cdb.

This yeilds to: I thl >

[
ρL−1PbPd × E[Sbgsp] +

(1− ρL)(1− Pb)(1− pf )

1− ρ
× El[Sdgsp]

]
.

(5.21)

The expectations should be taken over the distribution gsp and over the probabilities of

different cases. The term El[Sdgsp] in Eq. (5.21) depends on the number of idle-detected

channels, l.

It can be assumed that the interference constraints of all channels are the same i.e.,

I th = I th1 = I th2 = · · · = I thL , regardless of which case is being realized. In general, and for

more strict requirements on the interference, the following individual interference constraints

can be imposed:
E[Sbgsp] < I th, and El[Sdgsp] < I thl . (5.22)

As considered in [72], by appropriately choosing the values of I th and I thl in Eq. (5.22),

primary users can be provided a minimum rate guarantee for a certain percentage of the

time through the following outage constraints

Pr
{
log2

(
1 +

Spgpp(i)

Sb(i)gsp(i) + σ2
n

)
≤ Rmin

}
≤ P out

b , (5.23)

Pr
{
log2

(
1 +

Spgpp(i)

Sd(i)gsp(i) + σ2
n

)
≤ Rmin

}
≤ P out

d , (5.24)

where Sp is the transmission power of the primary user, Rmin is the required minimum

transmission rate to be provided to the primary users with specific outage probabilities.

P out
b and Pout

d in Eqs. (5.23), (5.24) are the outage constraints in the cases Cbb and Cdb,

respectively. gpp(i) is the power fading of the channel between the primary transmitter and

primary receiver and σ2
n is the variance the thermal noise at the primary receiver.

In a Rayleigh fading channel between the primary transmitter and receiver, gpp is an
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exponential random variable. The outage probability in Eq. (5.23) can be evaluated as

Pr
{
log2

(
1 +

Spgpp(i)

Sb(i)gsp(i) + σ2
n

)
≤ Rmin

}
= Pr

{
gpp ≤

2Rmin − 1

Sp

(
Sb(i)gsp(i) + σ2

n

)}
thus P out

b ≥ E
[
1− e

− 2Rmin
Sp

(Sb(i)gsp(i)+σ2
n)
]

(5.25)

where we perform the integration with respect to the probability density function of gpp in

the evaluation of the probability expression in Eq. (5.25). The expectation in Eq. (5.25) is

with respect to the remaining random gsp. By calling the Jensens inequality [76] and making

use of concavity of the function (1− e−x), the right hand side of Eq. (5.25) can be written as

E
[
1− e

− 2Rmin
Sp

(Sb(i)gsp(i)+σ2
n)
]
≤ 1− e

− 2Rmin
Sp

E[Sb(i)gsp(i)]+σ2
n (5.26)

From this inequality, if the following condition

0 ≤ E[Sbgsp] ≤
Sp

2Rmin − 1

∣∣ loge(1− P out
b )
∣∣− σ2

n (5.27)

is imposed, then the constraint in Eq. (5.23) will be satisfied. A similar analysis can be done

for the constraint in Eq. (5.24).

5.5 Effective Capacity for Cognitive User

As a powerful approach to evaluate the capability of a wireless channel to support data trans-

missions with diverse statistical quality of service QoS guarantees, the Effective Capacity

(EC) term introduced in Section 2.1 of Chapter 2 is again studied here.

It can be noticed that the service rate in our current model is r(l) = rb(l)(T − τ) if the

cognitive user is in state 1 at the channel l. Similarly, the service rate is r(l) = rd(T − τ) in

states between 2 and (L+ 1). In the remaining state (i.e., OFF state), reliable connection

can not be achieved because the instantaneous transmission rate exceeds the instantaneous

channel capacities, so the service rates in this state is zero.

The normalized effective capacity defined as the effective capacity divided by TB (in
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bits/sec/Hz or 1/nat) under the average interference power constraint Eq. (5.21) can be

formulated as the following optimization problem

Ec = − 1

θTBc

max
rb,rd>0
Sb,Sd>0

loge

(
p1E[e−(T−τ)θrb ] +

L∑
l=1

pl+1El[e
−(T−τ)θrd ] + pL+2

)
,

s.t. Eq. (5.21) holds, (5.28)

where pl for l = 1, 2, · · · , L + 2 are the state transition probabilities defined in Section 5.3.

The maximization operator should be taken with respect to the power adaptations Sb and

Sd.

Note that the expectation E[e−(T−τ)θrb ] in the objective function and E[Sbgsp] in the

constraint of the above optimization problem are with respect to the joint distribution of

(gss, gsp) of the channel selected for transmission when all channels are sensed busy. The

expectations El[e
−(T−τ)θrd ] and El[Sdgsp] are with respect to the joint distribution of (gss, gsp)

of the channel selected for transmission when l channels are sensed as idle.

To identify the optimal power allocation that the cognitive user should employ, the prob-

lem Eq. (5.28) can be converted to a minimization problem using the fact that logarithmic

function is a monotonic function.

Ec = min
rb,rd>0
Sb,Sd>0

p1E[e−(T−τ)θrb ] +
L∑
l=1

pm+1El[e
−(T−τ)θrd ] + pL+2

s.t. Eq. (5.21) holds

(5.29)

Above, f(gss, gsp) denotes the joint distribution of (gss, gsp) of the channel selected for trans-

mission when all channels are detected busy. Hence, in this case, the transmission channel

is chosen among L channels. Similarly, fl(gss, gsp) denotes the joint distribution when (l)

channels are detected idle, and the transmission channel is selected out of these l channels.

The objective function in Eq. (5.29) is strictly convex and the constraint function in

Eq. (5.21) is linear with respect to Sb and Sd. This can be concluded from the fact that

strict convexity follows from the strict concavity of rb and rd in Eq. (5.15) and Eq. (5.16)
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with respect to Sb and Sd respectively, strict convexity of the exponential function, and the

fact that the nonnegative weighted sum of strictly convex functions is strictly convex [62,71].

Lagrangian method for solve convex optimization problems is an efficient approach [38,

62]. By inserting Lagrange multiplier (ν), the problem can be converted from a constraint

into an unconstrained optimization problem. First, we construct the Lagrange function (or

Lagrangian) defined by

Λ(Sb, Sd, ν) = p1E[e−(T−τ)θrb ] +
L∑
l=1

pm+1El[e
−(T−τ)θrd ] + pL+2 (5.30)

+ ν

(
ρL−1PbPd × E[Sbgsp] +

(1− ρL)(1− Pb)(1− pf )

1− ρ
× El[Sdgsp]− I thl

)
Taking the partial derivative of the above function for each variable and setting the deriva-

tives of the Lagrangian with respect to Sb and Sd equal to zero, we obtain:[νPbPdgsp
ρ

− αgss
Nb

(
1 +

gssSb

(σ2
n + σ2

np
)

)−α−1 ]
× ρLf(gss, gsp) = 0 (5.31)

and [
νPb(1− Pd)gsp −

α(1− Pb)(1− Pf )gss
Nd

(
1 +

gssSd

σ2
n

)−α−1 ]
×

L∑
l=1

ρL−l(1− ρ)l−1C(L, l)fl(gss, gsp) = 0,

(5.32)

The multiplier ν can be found numerically by satisfying the constraint Eq. (5.21) with

equality. Algorithm 5.1 presented below illustrates the pseudocode to find the optimal

Lagrange multiplier ν.

Solving Eq. (5.31) and Eq. (5.32) for Sb and Sd, we get the optimal power as

S∗
b =


Nb

gss

((
z
wb

) 1
α+1 − 1

)
, z

wb
≥ 1;

0, otherwise,

(5.33)

S∗
d =


Nd

gss

((
z
wd

) 1
α+1 − 1

)
, z

wd
≥ 1;

0, otherwise,

(5.34)

where z = gss
gsp

, α = Bc(T−τ)θ
log 2

, wb =
NbPbPd

αρ
ν, and wd =

NdPb(1−Pd)
α(1−Pb)(1−Pf )

ν
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Algorithm 5.1 The pseudocode to determine the optimal Lagrange multiplier.
Initialization: νi

REPEAT · · ·
(1)- Compute: Si

b and Si
d by Eq. (5.33) and Eq. (5.34)

(2)- Compute: subgradient of νi by substituting Si
b and Si

d calculated above in:

SG(νi) = ρL−1PbPd × E[Si
bgsp] +

(1−ρL)(1−Pb)(1−pf )
1−ρ × El[S

i
dgsp]− Ithl .

(3)- Update: νi+1 by:
νi+1 = νi + ϵ · SG(νi)

UNTIL νi converges.
The parameter ϵ is the stepsize to update the multiplier. It has been chosen to equal to (1 + c)/(a+ c),
where c is some adaptive constant and a is the number of iteration. This variable stepsize is shown
to give a fast convergence [38,71]. See Figure 5.5.

Using these optimal transmission powers, the effective capacity in Eq. (5.29) can be

expressed as

Eopt
c = − 1

θTBc

loge

[
p1

∫ ∞

wb

(
z

wb

) −α
α+1

f(z)dz+
L∑
l=1

pl+1

∫ ∞

wd

(
z

wd

) −α
α+1

fl(z)dz+pL+2

]
(5.35)

5.6 Channel Selection Criterion

The task in this section is to propose a certain criterion by which the transmission channel

is selected from a set of available channels. If a function g(z) is a monotonically decreasing

functions of z, then
[
− log g(z)

]
is an increasing function. Since the terms (z/wb)

−α
α+1 and

(z/wd)
−α
α+1 in Eq. (5.35) are monotonically decreasing functions of z, it can be observed

from Eq. (5.35) that the effective capacity depends only on the channel power ratio z, and

it is increasing with increasing this power ratio. Therefore, the criterion for choosing the

transmission band among multiple busy bands unless there is no idle band detected, or

among multiple idle bands if there are idle bands detected should be based on this ratio of

the channel gains. Clearly, the policy that maximizes the effective capacity is to choose the

channel with the highest ratio of z. This also intuitively leads to a result that as we want to

maximize gss to improve the secondary transmission and at the same time minimize gsp to

diminish the interference caused to the primary users. Maximizing z provides us the problem

key in the channel selection algorithm.
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Let w = max{zl}, ∀l = 1, · · · , L, where zl =
gssl
gspl

is the ratio of the gains in the lth

channel. It is assumed here that all these ratios are independent and identical distributed.

By using the statistical fact that states: if Y = max (X1, · · · , XL), where Xl are inde-

pendent and identically distributed random variables with probability density function (pdf)

of fx(x), then the cumulative density function (cdf) and pdf of Y are given as [Theo-

rem 5.7 in [61] ] respectively as

FY (y) = [FX(y)]
L and thus, fY (y) =

dFY (y)

dy
= LfX(y)[FX(y)]

L−1 (5.36)

Using this fact, we can express the pdf of w as

f(w) = Lfz(w) (Fz(w))
L−1 , (5.37)

where fz and Fz are the pdf and cdf of the gain ratio z in one channel, respectively.

Now, the first integral in Eq. (5.35) can be evaluated with respect to this distribution.

Similarly, let wl = max{zj}, ∀j = 1, · · · , l. The pdf of wl can be expressed as follows:

fl(w) = lfz(w) (Fz(w))
l−1 , l = 1, 2, · · · , L. (5.38)

The second integral of Eq. (5.35) can be evaluated using this distribution, and by using the

power series property [74]:

L∑
l=1

l L!

(L− l)!
ρL−l (1− ρ)l−1 xl−1 = L ((1− ρ)x+ ρ)L−1 .

In the following two subsections we apply this criterion for the case where the channels

have Rayleigh fading distribution and for the more general case where the channels have

Gamma fading distribution respectively.

5.6.1 Effective Capacity in Rayleigh Fading Channel

The analysis in the preceding sections apply for arbitrary joint distributions of gss and gsp

under the assumption that they have finite means (i.e., fading has finite average power).
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In this subsection, a Rayleigh fading is assumed in which the power gains gss and gsp are

exponentially distributed. We assume that these fading are mutually independent and each

has unit-mean. The ratio of two independent exponentially distributed variables has the pdf

fz(z) =
1

(z + 1)2
, z ≥ 0 (5.39)

(See the proof in Appendix F).

Thus, the pdf of w in Eq. (5.37) and Eq. (5.38) can be expressed, respectively, as

f(w) = L
1

(w + 1)2

(
w

w + 1

)L−1

(5.40)

fl(w) = l
1

(w + 1)2

(
w

w + 1

)l−1

. (5.41)

Using Eqs. (5.35), (5.18), (5.19) and Eqs. (5.40), (5.41), the effective capacity formula for

Rayleigh fading channel can be written as in Eq. (5.42), where α1 = α/(α + 1), α2 =

(2α+ 1)/(α+ 1), and the superscript R refers to Rayleigh.

ER
c =− 1

θTBc

loge

[
LρLwα1

b

∫ ∞

wb

w−α2+L

(
1

w + 1

)L+1

dw

+ (1− Pb)(1−Pf )w
α1
d

L∑
l=1

lC(L, l)ρL−l(1− ρ)l−1

∫ ∞

wd

w−α2+l

(
1

w + 1

)l+1

dw + pL+2

]
.

(5.42)

5.6.2 Effective Capacity in Gamma Fading Channel

The Gamma distribution has been considered as an adequate model to characterize wireless

channel fading such as slow fading (shadowing) or even fast fading [54, 55]. It has been

observed that this distribution fits the experimental data [54].

The pdf of Gamma distribution is given in Eq. 3.1 as

fX(x) =
xµ−1e−x/k

Γ(µ)kµ
; x ≥ 0, (5.43)

where µ is known as the shape parameter of the distribution, and k is the scale parameter.

Note that for a=1, Gamma distribution reduces to exponential distribution. So Gamma
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distribution is a general case of exponential distribution, and it closely approximates the

log-normal distribution.

As demonstrated in Chapter 2, the ratio of two independent Gamma distributed ran-

dom variables with parameters µ1 and µ2 is Beta Prime distributed random variable with

parameters µ1 and µ2 [56, 58].

The pdf and cdf of the channel power ratio z = gss/gsp have the following Beta Prime

distribution functions

fz(z) =
zµ1−1

β(µ1, µ2)(z + 1)µ1+µ2
, and Fz(z) = I z

z+1
(µ1, µ2), (5.44)

where β(µ1, µ2) is the Beta function defined in Appendix A, and Ix(a, b) is known as Regu-

larized Beta function defined as [77]

Ix(a, b) =
β(x; a, b)

β(a, b)
=

1

β(a, b)

∫ x

0

ta−1(1− t)b−1dt. (5.45)

The cdf can also be written in terms of Hypergeometric function 2F1 [75] as

Fz(z) =
zµ1

2F1(µ1, µ1 + µ2, µ1 + 1,−z)

β(µ1, µ2)
. (5.46)

Now, the pdf of w in Eqs. (5.37) - (5.38) can be expressed as

f(w) = L
wµ1−1

β(µ1, µ2)(w + 1)µ1+µ2

[
I w

w+1
(µ1, µ2)

]L−1
, (5.47)

and fl(w) = l
wµ1−1

β(µ1, µ2)(w + 1)µ1+µ2

[
I w

w+1
(µ1, µ2)

]l−1
, (5.48)

Similarly as in Rayleigh, the effective capacity formula for Gamma fading channel can be

written as in Eq. (5.49), where the superscript G refers to Gamma.

EG
c = − 1

θTBc

loge

[
LρLwα1

b

β(µ1, µ2)

∫ ∞

wb

wα2+µ1

(
1

w + 1

)µ1+µ2 (
I w

w+1
(µ1, µ2)

)L−1

dw

+
(1− Pb)(1− Pf )w

α1
d

β(µ1, µ2)

L∑
l=1

lC(L, l)ρL−l(1− ρ)l−1

×
∫ ∞

wd

wα2+µ1

(
1

w + 1

)µ1+µ2 (
I w

w+1
(µ1, µ2)

)l−1

dw + pL+2

]
.

(5.49)

The impact of several parameters on the effective capacity is investigated through the
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following numerical example.

5.7 Numerical Results

In this section, several numerical analysis for the obtained effective capacity expressions will

be investigated. The impact of channel sensing parameters and the average interference

constraint are illustrated. Throughout this numerical example, it is assumed that QoS

parameter is θ =0.1. The frame duration is T = 100 ms with 10% of this time is conserved

for sensing process. The prior probability of the channel being busy is the same for all

channels. All variances are set to unity. The channel bandwidth is B=10 KHz.

First, we evaluate the convergency of our algorithm. Figure. 5.5 shows the iterative algo-

rithm for determining the optimal Lagrange multiplier. The maximum secondary transmit

power is set to 10 dBw. The interference threshold and the primary transmit power are set

to 0 dBw, and Sp=10 dBw, respectively. As shown in Fig. 5.5, the Lagrange multiplier can

quickly converge to its optimal value when choosing a dynamic step size stated in Algorithm

5.1.
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Figure 5.5: Tracking the optimal Lagrange multiplier.

Figure 5.6, shows the effective capacity versus probability of detection for different num-

ber of channels when the interference constraint is normalized by the noise power, i.e.,

I th = σ2
n.
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Figure 5.6: Effective capacity vs. probability of detection for different number of channels.

As Pd increases, the effective capacity increases due to the fact that more reliable de-

tection of the activity of the primary users leads to fewer miss-detection and hence the

probability of the case Cdb effectively diminishes. It can also be seen that the highest effec-

tive capacity is attained when L = 1. Hence, the cognitive user does not benefit from the

availability of multiple channels. This is especially pronounced for high values of Pd. We

can further observe that several parameters affect the value of the effective capacity. One

explanation for this observation is that the probabilities of the cases Cbb and Cbd, in which

the cognitive user transmits with power Sb, decrease with increasing L; while the probabili-

ties of the cases Cdb and Cdd in which the cognitive user transmits with power Sd, increase

as can be seen in Table 5.1. Note that in the case Cdb, no reliable communication is possible.

In Figure 5.7, the effect of the primary user’s occupancy Pb on the effective capacity is

investigated for different number of sensed channels. This effect is observable for probability

of detection less than 0.8.

Figure 5.8 examines the impact of the QoS exponent values, θ for L=5. This figure

confirms that significant capacity gains can be achieved for lossy QoS constraints (i.e., small

θ). While the capacity decreases dramatically for highly strength QoS constraints.

In Figure 5.9, the effective capacity is plotted versus the interference threshold I th for

different number of channels for the case of Rayleigh fading channel. The probability of
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Figure 5.7: Effective capacity vs. probability of detection for different L and different busy
probabilities Pb, θ = 0.1. Dashed curves represent the Pb = 0.4 case and solid curves
represent the Pb = 0.2 case for relevant colors.

detection is sit at Pd=0.8. The figure shows that as the interference gets more strict (i.e., I th

becomes smaller), a higher number of channels is needed to maximize the effective capacity.

As an example, if the interference threshold I th <-15 dB, then five channels are needed

to reach maximum capacity; while if the interference threshold I th < 2 dB, one channel is

enough to get the highest throughput. As it is mentioned before, increasing the number of

available channels from which the transmission channel is selected provides no benefit or can

even degrade the performance of the cognitive user. On the other hand, it always provides

benefits to the primary users in the sense of lowering the probability of interference as it is

discussed and drawn in Section 5.4, Eq. (5.20), and in Figure 5.4.

In Figure 5.10, the effective capacity is plotted versus the interference threshold I th for

different number of channels for the case of Gamma fading channel. Similar results and

conclusions can be observed. Higher capacity is obtained by sensing more than one channel

in the presence of strict interference constraints.
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Figure 5.8: Normalized effective capacity vs. probability of detection for different QoS
exponent delay θ, L = 5, Pb = 0.2.
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Figure 5.9: Effective capacity vs. I th for different number of channels in the Rayleigh fading
channel, Pd = 0.8, Pb = 0.2, θ = 0.1.
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Figure 5.10: Effective capacity vs. I th for different number of channels in the Gamma fading
channel, Pd = 0.8, Pb = 0.2, θ = 0.1.
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5.8 Chapter Summary

The performance of cognitive transmission under QoS constraints and interference limita-

tions is studied. Cognitive user is assumed to perform sensing in multiple channels and then

select a single channel for transmission with rate and power that depend on both sensing

outcomes and fading distribution. A state transition model for this cognitive operation has

been constructed . All possible cases and states are considered and analyzed. These states

are functions of sensing probabilities, channels being busy or idle, and transmission rates

being smaller or greater than the instantaneous channel capacity. Interference constraint

is statistically analyzed and formulated. Maximum throughput formulas for the cognitive

user is obtained. Selection criterion that maximizes the capacity is proposed for arbitrary

channel fading then we apply it for two different fading distributions. The optimal power

allocation are also determined.

Increasing the number of available channels from which the transmission channel is se-

lected provides no benefit or can even degrade the performance of the cognitive user. It

is found that sensing multiple channels is beneficial only under relatively strict interference

constraints. On the other hand, it always provides benefits to the primary users in the sense

of decreased probability of interference
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Chapter 6

Optimal Access Strategies for

Throughput Optimization in CRN

This chapter proposes an optimized access strategy combining overlay and underlay schemes

for the cognitive radio. We model the service state of the system as a continuous-time

Markov model. Based on the service state, the overlay manner or/and the underlay manner

is/are used by the secondary users. When the primary user is not transmitting and only one

secondary user has the requirement to transmit, the secondary system adopts the overlay

base. When the primary user is transmitting and the secondary users want to transmit

simultaneously, an underlay scheme with optimal access probabilities is adopted. We obtain

these access probabilities in a closed form which maximizes the overall system throughput.

6.1 Introduction

As it is now well known, that in spectrum sharing systems, the secondary user can adopt

two types of access schemes: overlay scheme and underlay scheme. In underlay scheme, the

licensed spectrum band can be accessed without considering the primary user’s activities,

but with strict power constraint. In overlay scheme, the secondary user senses the spectrum
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bands and accesses the unused spectrum spots. The secondary users must stop its transmis-

sion when the primary user appears in the band and resume when the primary user finishes

its service.

The different features of these two schemes enable them to make up with each other.

In [36, 37], the papers give a mixed access strategy. When the channel is being used by

the primary user, the secondary users access the channel with a probability in underlay

manner; when the channel is idle, they choose to access in overlay manner. However, the

optimal access probability is not a precise value. An optimal access probability with different

criteria is given in [35] for pure underlay scheme. Based on [35], this chapter proposes a

mixed overlay and underlay access scheme. The secondary users access the channel with an

optimal probability in an underlay scheme when the spectrum is occupied by the primary

user. While, when the spectrum is idle, the secondary users access the channel in an overlay

manner. This approach can maximize the total average throughput for the secondary users

and limit the interference on the primary user.

The optimized access strategy proposed in this chapter shares some similarities to the

work done in [35]. We further introduce a new optimized parameter ρ to determine the

best access probability to achieve the highest throughput. In this work, closed forms for the

achieved capacity are provided as well as the optimized access parameters.

The rest of this chapter is organized as follows. Section 6.2 introduces the system model

and assumptions. In Section 6.3, the maximal throughput expressions for the two schemes

are given. The optimal access strategy for equiprobability case is introduced in Section 6.4.

While Section 6.5 introduces the case of unlike access probability. Performance analysis and

simulation results are given in Section 6.6. Finally, the chapter is summarized in Section 6.7.
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6.2 System Model And Assumptions

Figure 6.1 illustrates the system model which consists of a primary user (P ) and two cognitive

users {A,B} sharing a B Hz wireless channel. It is assumed that both cognitive users can

sense the primary user perfectly. A cognitive base station is assumed to make the cognitive

users exchange their information among them. An example of these information is the

real-time service state. The service state indicates a user’s requirement for transmitting at

specific time. The primary user can employ the channel without considering secondary users’

service state.

Figure 6.1: The additive interference channel for a pair of primary and cognitive links with
channel gain coefficients: gpp, gss, gps, gsp.

The traffic pattern of the primary and the two secondary users is modeled as indepen-

dent Poisson processes with arrival rates (in packet/s) λP , λA and λB, respectively. The

service times are assumed to be exponentially distributed with rates 1/µP , 1/µA and 1/µB

in seconds, respectively. The service state of the system is defined as the sum service state of

all the users in the system at a moment. Based on the individual’s service state, we get the

service state set for the system as S ∈ {0, P, A,B,AB, PA, PB, PAB}. State ‘0’ represents

there is no user tends to transmit on the channel; State ‘P ’ represents only the primary

user is transmitting on the channel; State ‘A’ represents only user A wants to transmit on
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the channel; State ‘B’ represents only user B wants to transmit on the channel; State ‘AB’

represents both cognitive users want to transmit on the channel at the same time; State

‘PA’ represents user A wants to transmit on the channel while the primary is transmitting;

State ‘PB’ represents user B wants to transmit on the channel while the primary user is

transmitting; State ‘PAB’ represents both A and B want to transmit on the channel while

the primary user is transmitting.

These states in the cognitive radio system can be modeled as an eight-state continuous

time Markov model, as shown in Figure 6.2 [35].

The rate at which transitions take place out of state si equals to the rate at which

transitions take place into state si. The normalization equations governing this flow balance

can be written as
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Figure 6.2: The continuous time Markov model of the service state and the flow balance.
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π0(λP + λA + λB) = πPµP + πAµA + πBµB

πP (λA + λB + µP ) = π0λP + πPAµA + πPBµB

πA(λP + λB + µA) = π0λA + πABµB + πPAµP

πB(λP + λA + µB) = π0λB + πABµA + πPBµP (6.1)

πAB(λP + µA + µB) = πAλB + πBλA + πPABµP

πPA(λB + µP + µA) = πAλP + πPλA + πPABµB

πPB(λA + µP + µB) = πBµP + πPλB + πPABµA

πPAB(µP + µA + µB) = πPAλB + πPBλA + πABλP ,

where πsi represents the steady-state probability of being in state si and si ∈ S. Also we

have
Σsiπsi = π0 + πP + πA + πB + πAB + πPA + πPB + πPAB = 1. (6.2)

The steady state probabilities for all the states can be found by solving the set of the linear

equations Eqs. (6.1) and (6.2).

6.3 Secondary User’s Maximal Throughput

6.3.1 Maximal Throughput for Overlay Scheme

In the overlay scheme, the secondary users can only access the spectrum hole which is

currently not used by the primary user. They can not co-exist on the same spectrum band.

If one secondary user is transmitting, the only interference is the background noise. The

user A or B accesses the channel with power So
s . Since in the overlay manner, only one user
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can transmit, the maximal data rate for each of them individually is

Ro
A = B log2

(
1 +

gaaS
o
s

σ2
s

)
Ro

B = B log2

(
1 +

gbbS
o
s

σ2
s

) (6.3)

where σ2
s is noise power. These rates can be achievable with the following corresponding

probabilities:

P o,(A) = πA and P o,(B) = πB respectively.

6.3.2 Maximal Throughput for Underlay Scheme

Unlike the overlay scheme, in the underlay system, secondary users are allowed to share the

channel simultaneously with the primary user pledging not to violate the limits of interfer-

ence.

Since the secondary users A and B can get the service state of the system with the

help of their base station, A and B make access decision based on the service state of

the system. Here, we have two possible service state sets. When the service state is

si ∈ S1 = {A,B}, which indicates the primary user P is not transmitting and only one

secondary user has the requirement to transmit. The other case is when the service state

si ∈ S2 = {PA,PB, PAB,AB}, which indicates that the primary user is transmitting or

both secondary users want to transmit at the same time. User A and B have to adopt their

powers Su
s to access the channel with probability ρA = ρB = ρ in the underlay scheme. In

order to protect the primary user and decrease the mutual interference between secondary

users, we assume that Su
s satisfies the minimum SINR requirement.

The probability ρ determines the sum throughput of the secondary users and the inter-

ference on the primary user. When ρ is large, the sum throughput may be large and the

chance to coexist with primary user is large, too. Our goal is to obtain an optimal access

probability ρ to maximize the sum throughput, while limit the interference on the primary
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user. The service state set of the system in the underlay manner is S2. Hence the actual

access state set is S3 ∈ {A,B, PA, PB, PAB,AB}. The users’ maximal date rate under

each state in the underlay manner is given as

R
u,(PA)
A = B log2

(
1 + gaaSu

Spgpa+σ2
s

)
; R

u,(PB)
B = B log2

(
1 + gbbS

u

Spgpb+σ2
s

)
R

u,(A)
A = B log2

(
1 + gaaSu

σ2
s

)
; R

u,(A)
B = B log2

(
1 + gbbS

u

σ2
s

)
R

u,(AB)
A = B log2

(
1 + gaaSu

Sugba+σ2
s

)
; R

u,(AB)
B = B log2

(
1 + gbbS

u

Sugab+σ2
s

)
R

u,(PAB)
A = B log2

(
1 + gaaSu

Spgpa+Sugba+σ2
s

)
; R

u,(PAB)
B = B log2

(
1 + gbbS

u

Spgpb+Sugab+σ2
s

)
,

(6.4)

where R
u,(s)
i , i ∈ {A,B}, s ∈ S3 denotes the i’s maximal data rate for the underlay case. The

term gij, i, j ∈ {p, a, b} is the channel power gain between the transmitter of the user i and

the receiver j as shown in Figure 6.1. Sp is the transmit power of the primary user. The

corresponding probabilities of these rates are:

P u,(PA) = ρπPA + ρ(1− ρ)πPAB (6.5.a)

P u,(PB) = ρπPB + ρ(1− ρ)πPAB (6.5.b)

P u,(A) = ρ(1− ρ)πAB (6.5.c)

P u,(B) = ρ(1− ρ)πAB (6.5.d)

P u,(AB) = ρ2πAB (6.5.e)

P u,(PAB) = ρ2πPAB (6.5.f)

6.4 Equiprobability Optimal Access Strategy

In this section we introduce an optimal access strategy which makes the cognitive network

to operate in both schemes. During primary user’s idle periods, the network employs the

overlay scheme; while in primary user’s busy periods, the network permits the secondary

users to use the channel with probability ρ subject to satisfying the interference threshold

constraint. The parameter ρ is a secondary service parameter which has to be adjusted

based on the spectrum status to achieve maximum throughput.
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Based on Eq. (6.3) to Eq. (6.4), we can get the average throughput for the secondary

users as

RA = Ro
AP

o,(A) +R
u,(PA)
A P u,(PA) +R

u,(A)
A P u,(A) +R

u,(AB)
A P u,(AB) +R

u,(PAB)
A P u,(PAB)

RB = Ro
BP

o,(B) +R
u,(PB)
B P u,(PB) +R

u,(B)
B P u,(B) +R

u,(AB)
B P u,(AB) +R

u,(PAB)
B P u,(PAB)

(6.6)

The total throughput of the cognitive network is

Rs = RA +RB (6.7)

Using Eqs. (6.5) - (6.6), Rs can be written in the quadrature form as

Rs(ρ) = β1ρ
2 + β2ρ+ β3, (6.8)

where β1, β2 and β3 are given as follows

β1 = πAB

(
R

u,(AB)
A +R

u,(AB)
B −

(
R

u,(A)
A +R

u,(B)
B

))
+πPAB

(
R

u,(PAB)
A +R

u,(PAB)
B −

(
R

u,(PA)
A +R

u,(PB)
B

))
,

β2 = πAB

(
(R

u,(A)
A +R

u,(B)
B )

)
+ πPAB

(
R

u,(PA)
A +R

u,(PB)
B

)
+πPAR

u,(PA)
A + πPBR

u,(PB)
B ,

β3 = πAR
o
A + πBR

o
B

(6.9)

To maximize the throughput of the secondary users, we take the first derivative of Rs with

respect to ρ and equate it to zero. Solving for ρ leads to the optimal access probability,

∂Rs(ρ)

∂ρ
= 2β1ρ+ β2 = 0 ⇒ ρopt = − β2

2β1

(6.10)

An expression for ρopt can be written as

ρopt = −β2/2β1

=
πAB

(
(R

u,(A)
A +R

u,(B)
B )

)
+ πPAB

(
R

u,(PA)
A +R

u,(PB)
B

)
+ πPAR

u,(PA)
A + πPBR

u,(PB)
B

2

[
πAB

(
R

u,(A)
A +R

u,(B)
B −

(
R

u,(AB)
A +R

u,(AB)
B

))
+ πPAB

(
R

u,(PA)
A +R

u,(PB)
B −

(
R

u,(PAB)
A +R

u,(PAB)
B

))]
(6.11)

We can note from Eq. (6.9) that β2 is always positive. Since ρ is a probability value (i.e., ρopt ∈
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[0, 1]), the value of β1 is always negative. The throughput function of the secondary network in

Eq. (6.8) is concave down. Thus it must have a unique maximum value, it can be expressed as

Ropt
s = β3 +

β2
2

4|β1|
, (6.12)

where | · | denotes the absolute value.

6.5 Diverse Access Probabilities Strategy

In this section, a similar approach will be followed as in the previous section except that it is

assumed that each user A and B has its own access probability (ρA and ρB) respectively. The

goal here is to optimize these parameters. So the best access probability for each secondary user is

found to achieve the highest possible throughput.

User A and B have to adopt their powers Su
s to access the channel with probabilities ρA,

and ρB, respectively in the underlay scheme. In order to protect the primary user and decrease

the mutual interference between secondary users, we assume again that Su
s satisfies the minimum

SINR requirement.

These probabilities ρA and ρB determine the sum throughput of the secondary users and the

interference on the primary user. When ρA and/or ρB are large, the sum throughput may be

large and the chance to coexist with primary user is large, too. Our goal is to obtain optimal

access probabilities to maximize the total secondary throughput, while limit the interference on

the primary user.

Same service state set S3 ∈ {A,B, PA, PB, PAB,AB} exists. The users’ maximal date rate

under each state in the underlay manner is given in Eq. (6.4). The corresponding probabilities of
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these rates given in Eq. (6.5) can be written now as

P u,(PA) = ρAπPA + ρA(1− ρB)πPAB (6.13.a)

P u,(PB) = ρBπPB + (1− ρA)ρBπPAB (6.13.b)

P u,(A) = ρA(1− ρB)πAB (6.13.c)

P u,(B) = (1− ρA)ρBπAB (6.13.d)

P u,(AB) = ρAρBπAB (6.13.e)

P u,(PAB) = ρAρBπPAB (6.13.f)

Using Eqs. (6.6) and (6.13)), Rs can be written in a nonlinear equation form as

Rs(ρA, ρB) = β́1ρAρB + β́2ρA + β́3ρA + β́4, (6.14)

where β́i, i = 1, · · · , 4 is given as follows

β́1 =−
[
πAB

(
R

u,(A)
A +R

u,(B)
B −

(
R

u,(AB)
A +R

u,(AB)
B

))
+πPAB

(
R

u,(PA)
A +R

u,(PB)
B −

(
R

u,(PAB)
A +R

u,(PAB)
B

)) ]
β́2 =(πPA + πPAB)R

u,(PA)
A + πABR

u,(A)
A ,

β́3 =(πPB + πPAB)R
u,(PB)
B + πABR

u,(B)
B ,

β́4 =πAR
o
A + πBR

o
B

(6.15)

To find an optimization solution for Eq. (6.14), we bring up the following theorem [75].

Theorem 1 Let f be a function with two variables with continuous second order partial derivatives

fxx, fyy and fxy at a critical point (a, b). Let D is the determinant of the Hessian matrix of the
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function f , i.e., D = fxx(a, b)fyy(a, b)− f2
xy(a, b), thus


If D > 0 and fxx(a, b) > 0, then f(a, b) is a relative minimum ;

If D > 0 and fxx(a, b) < 0, then f(a, b) is a relative maximum ;

If D < 0, then f(a, b) is a saddle value;

If D = 0, then no conclusion can be drawn.

(6.16)

Using Theorem 1, it is forward to conclude that the possible maximum of the utility function

Rs (i.e., Eq. (6.14)) occurs at the saddle point of this function which appears at (ρ∗A, ρ
∗
B) =

(−β3

β1
,−β2

β1
). Then the maximum throughput of the secondary users can be found by substituting

this point into Eq. (6.14), this yields

Ropt
s = β́4 +

β́2β́3

|β́1|
, (6.17)

6.6 Simulation Results

In this section, we will carry a simulation example to illustrate the proposed algorithm. The follow-

ing powers are set: So
s=5 mw and Sp = Su

s=10 mw. The arrival rates are set as λP=80 packets/ms,

λA=110 packets/ms and 100 ≤ λB ≤ 120 with equal average times 1/µγ=10 s, γ ∈ {A,B, P}.

The wireless channel bandwidth B=100 KHz. It is assumed that the loss of power in propagation

follows the exponential propagation law with exponent loss 3.5. The position of the primary user’s

transmitter and receiver are (300, 0) and (0, 0) respectively. The user A’s transmitter and receiver

locations are at (600, 0) and (700, 0). User B’s transmitter and receiver are located at (450, 0) and

(500, 0).

In Figure 6.3, the normalized throughput (which is defined as the throughput divided by B) for

user A , B are shown. Clearly, user B’s throughput is larger than that of A. This is because B’s

transmitter and receiver are located closer than those of A. As the arrival rate of B increases, the

throughput of B gets better, which can be understood intuitively. The throughput of A decreases

because the user B transmitting creates more interference to it.

In Figure 6.4, the performance of the optimized access strategy, the pure overlay strategy,
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Figure 6.3: Normalized throughput of the secondary system users, A and B.

the pure underlay strategy and the overall throughput of the secondary network are compared.

Note that the underlay strategy can obtain more throughput than the overlay strategy because we
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Figure 6.4: Throughput of the secondary system comparison with different access schemes.

assigned more power for Su
s . It should be remembered that the overlay strategy avoids the coexisting

time with the primary user, which has the least influence on the primary user. Our optimized access

strategy maximizes the total throughput and has limited interference on the primary user.

In Figure 6.5, the normalized throughput for the pure underlay and the proposed underlay
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strategies versus the access probability is shown. The value of the arrival rate of the user B is

fixed at 115/ms. As mentioned in Section 6.4, there is an unique optimal access probability that

maximize the throughput.
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Figure 6.5: Normalized throughput of the secondary system versus the access probability ρ.

In Figure 6.6, the throughput is plotted versus the two access probabilities. When ρA = ρB = 0,

the throughput is at the worst case which equivalent to the overlay throughput.

Accessibility of user A enhances the throughput more than that of user B. This is because user

A creates less interference on the primary user. The small circle on the graph shows the optimized

value of Rs = 9.78, note that (ρA > ρB).

To study the effect of changing the arrival rate of the far user A, λB is fixed at 110 packets/ms

while λA is varied in Figure 6.7. Because of the shorter distance of user B where the probability

to introduce interference on the primary is hight, ρB is always less than ρA. As λA increases, both

access probabilities decrease to mitigate the interference on the primary user. This degradation is

more for the closed user B.
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6.7 Chapter Summary

The two dominant access schemes in the cognitive radio architecture, underlay and overlay, are

studied. It is found by some literatures that these two schemes can make up with each other to

enhance the system performance. This chapter proposes a mixed access strategy combining these

two schemes. It is assumed that the secondary users access the spectrum with a certain access

probability. The focus is on the service state of the two schemes. The service state of the system

is modeled as a continuous-time Markov chain. Finally, optimal access probabilities for this mixed

strategy are obtained in closed forms which maximize the overall throughput of the network. The

simulation results show that the proposed underlay can achieve much better performance for the

secondary uses, compared with the overlay cognitive radio system.
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Chapter 7

Conclusions and Future work

This dissertation is mainly focused on power control and capacity issues in cognitive radio networks.

The main contributions and proposed future work of this study are summarized in this chapter.

7.1 Conclusion

The concept of effective capacity as a metric of QoS delay satisfaction, rather than Shannon

channel capacity, was applied. We developed optimal resource allocations for both underlay and

overlay DSA schemes. Modeling the channels as general Gamma distribution, assuming hybrid DSA

schemes, and proposing selection criterion to dynamically choose the best access scheme, were the

main contributions compared to the existing literatures. The underlay and overlay approaches may

have their respective advantages under diverse propagation environment and system parameters.

If the cognitive network can dynamically choose the DSA strategy under different environment, its

performance could be further improved. The impacts of different network performance, such as

primary users activity, power and interference constraints, required sensing time, delay restrictions,

etc, were analyzed and investigated.

Then, the study was extended to estimate the channel information via MMSE technique

for the case of imperfect information of the channel coefficients. In which, the cognitive radio

initially performs channel sensing, then the channel fading coefficients are estimated in the training
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phase using Pilot Aided Transmission technique followed by data transmission. The activity of the

primary user was considered and modeled in each case. We jointly evaluated and optimized the

training symbol and data symbol powers and transmission rates of the cognitive user.

We further studied the case where the cognitive user is assumed to perform sensing in multiple

frequency channels and then a single channel was selected for transmission. The applied rate and

power depend on both sensing outcomes and fading distribution. A state transition model for this

cognitive operation was constructed. All possible cases and states were considered through extensive

statistical analysis. These states are functions of sensing probabilities, channels being busy or

idle, and transmission rates being smaller or greater than the instantaneous channel capacity.

Interference constraint was statistically analyzed and formulated. Maximum throughput formulas

for the cognitive users were obtained. Selection criterion that maximizes the capacity was proposed

for arbitrary channel fading then we applied it for two different fading distributions. Optimal

power allocations were also determined. We concluded that increasing the number of available

channels from which the transmission channel is selected provides no benefit or can even degrade

the performance of the cognitive users. It was found that sensing multiple channels is beneficial

only under relatively strict interference constraints. On the other hand, it always provides benefits

to the primary users in the sense of decreased probability of interference.

Finally, we proposed a mixed access strategy combining the two dominate DSA schemes to

maximize the overall throughput of the cognitive network. It was assumed that the secondary users

can use the spectrum with certain access probabilities. Then we optimized these probability values

by modeling the service state of the system as a continuous-time Markov chain. Closed forms

for these probabilities, which significantly improve the throughput of channel, were analytically

derived.

Extensive numerical and simulation results were provided to examine the proposed algorithms.

Many insightful observations and investigations were presented.
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7.2 Future Work

As future studies, a number of research topics to be explored in the field of cognitive radio resource

management are listed here

• In most of the chapters in this thesis, we analyzed the environment with single-user and single-

network assumptions. When multiple users and/or network coexist(s) in a cellular network,

resource management and capacity analysis become more critical but complicated. Studying

these imperative cases is very important to get a global view of the system requirements.

• The objective functions studied in this thesis examine only secondary user transmit power

based on given transmission rate requirement for traffic. Extension to objective functions is

possible by considering more network figures, like supporting variable rate traffic, providing

the users with a certain requirements like fairness, considering user mobility, etc.

• Although this study considers the case of multichannel sensing in Chapter 5 in which the user

senses more than one channel at a time and selects the more suitable one, the scheme might

be extended toward more recent effective sensing techniques. As an example, cooperative

spectrum sensing is a good candidate to reduce the probability of false alarm and miss

detection.

• QoS delay satisfaction based on effective capacity concept is considered in this work as

an important metric in time variant wireless network. The work does not consider other

QoS factors such as throughput, FER, which depends mainly on the modulation schemes.

Extending the study jointly with all these QoS requirements might be a good motivation as

a future work.

112



Appendix A

Gamma & Hypergeometric functions

In this Appendix, we illustrate some mathematical definitions and properties of Gamma and Hy-

pergeometric functions [59, 74, 77, 78] which we used to simplify the expected values of the service

rates.

A.1 Gamma Function

In mathematics, Gamma function is an extension of the factorial function, with its argument shifted

down by 1

Γ(z) =

 (z − 1)! =
z−1∏
i=1

i, if z is positive integer;∫∞
0 e−ttz−1dt, if z is real or complex.

, (A.1)

The function Γ(z) is undefined for negative integers where the function has poles. Using inte-

gration by parts in the relation (A.1), Gamma function satisfies the functional equation

Γ(z + 1) = zΓ(z). (A.2)
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Other important functional equation for Gamma function is

Γ(z)Γ(1− z) =
π

sinπz
. (A.3)

Sitting z = 0.5 in (A.3), we get the best-known value of Gamma function Γ(12) =
√
π.

The derivative of Gamma function can be expressed in terms of Polygamma function as:

∂

∂z
Γ(z) = Γ(z)Ψ(z), (A.4)

where, we previously defined Ψ(z) in (3.16).

Another important special case of Gamma function is that of Beta function

β(x, y) = β(y, x) =

∫ 1

0
(1− t)y−1tx−1dt =

Γ(x)Γ(y)

Γ(x+ y)
(A.5)

The derivative of Beta function can be expressed in terms of Beta and Polygamma functions as:

∂

∂x
(β(x, y)) = β(x, y)(Ψ(x)−Ψ(x+ y)) (A.6)

A.2 Hypergeometric Function

The general Hypergeometric function pFq is defined as

pFq(a1, · · · , ap; b1, · · · , bq; z) =
∞∑
n=0

(a1)n, · · · , (ap)n
(b1)n, · · · , (bq)n

zn

n!
; (A.7)

where (υ)n is known as rising factorial, defined as

(υ)n =

 υ(υ + 1)(υ + 2) · · · (υ + n− 1), n ̸= 0;

1, n = 0.
(A.8)
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A confluent hypergeometric function 1F1(a, b, z) is the first kind of pFq:

1F1(a, b, z) =
∞∑
n=0

(a)n
(b)n

zn

n!
; (A.9)

and its a solution of a confluent hypergeometric differential equation

z
d2x

dz2
+ (b− z)

dx

dz
− ax = 0. (A.10)

There are several common standard forms of confluent hypergeometric functions, Kummer function

M(a; b; z) is the common form.

The nth derivative of the general hypergeometric function (A.7) is given by [74,79]

∂n

∂zn
pFq (a1, · · · , ap; b1, · · · , bq; z) (A.11)

=
(a1)n, · · · , (ap)n
(b1)n, · · · , (bq)n

× pFq(a1 + n, · · · , ap + n; b1 + n, · · · , bq + n; z).

Hypergeometric function 1F1 is related to MapleSoft Laguerre function as

La
b (z) =

Γ(a+ b+ 1)

Γ(a+ 1)Γ(b+ 1)
1F1(−a; b+ 1; z) (A.12)

There are very useful relations especially, when deriving the expected value of (3.9), these relations

are needed to simplify the integration.

Some important properties of 1F1

• It converges for any z, it is defined for any a and b, (b ̸= 0).

• M(a; b; 0) = 1 for any a and b, (b ̸= 0).

• M(a; a; z) = ez.

• M(a; b; z) = ezM(a− b; b; z).

• M(12 ;
3
2 ;−z2) = π

2z erf(z).
♠
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Appendix B

Proof of Eq. (3.5) Solution

In Underlay case, for the state 0, to evaluate the expectation term in Eq. (3.5) using the distribution

Eq. (3.1), we get

I =
1

Γ(µ)

∫ ∞

0
(1 + cz)−α · zµ−1 ezdz (B.1)

Using the change of variable, let u = 1
1+cz , then du = −c

(1+cz)2
= −cu2, and zu = (1 − u)/c. The

integration can be simplified as

I =
c−µ

Γ(µ)

∫ 1

0
uα−µ−1(1− u)µ−1e−

(1−u)
cu du (B.2)

By using the integration by part and making use of the following definition of 1F1

1F1(a, b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
ezuua−1(1− u)b−a−1du, (B.3)

and the definition of Gamma function Γ(z) =
∫∞
0 e−ttz−1dt = Γ(1 + z)/z, the formula in Eq. (3.6)

can be obtained. The proof for the state 0 term in Eq. (3.29) is similar to the above.

While for the state 1 in both schemes, we use Wolfram Mathematica services which are the

extensive mathematics resources in the Web [75] and by properties of the power series functions

illustrated in [59,77,78].
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The integrations are also verified using two different symbolic integration softwares (MapleSoft-

12 and MatLab R2012a), similar results are obtained.
♠
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Appendix C

MMSE Derivation and Relations

The signal received by the cognitive receiver in the training phase is

y =


√

Spth+ n if PUs are inactive(channel is idle)√
Spth+ n+ np if PUs are active(channel is busy)

(C.1)

Spt represents the pilot’s power, which is equal to Spb if sensing result is busy and equal to Spd if

sensing result is idle. It is assumed that n and np are zero mean independent Gaussian random

variables with variances σ2
n and σ2

np
, respectively. Hence, the overall variance of the noise is σ2

n or

σ2
n + σ2

np
depending the sensing results. Noticing that the cognitive receiver does not have exact

information about the occupancy status of the PU, but it has predictions via sensing probabilities,

the inclusive noise variance, σ2, is randomly taking these two values.

The Minimum Mean-Squared Error (MMSE) estimator of a parameter is defined as the con-

ditional expected value of the parameter given the observations [60, 80]. The MMSE to estimate
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h in (C.1) can be expressed as follows:

ĥ = E[h|y] = Pr(σ2 = σ2
n + σ2

np
|y)E[h|y, σ2 = σ2

n + σ2
np
]

+ Pr(σ2 = σ2
n|y)E[h|y, σ2 = σ2

n] (C.2)

= Pr(σ2 = σ2
n + σ2

np
|y)

√
Sptσ

2
h

Sptσ2
h + σ2

n + σ2
np

y

+ Pr(σ2 = σn|y)
√

Sptσ
2
h

Sptσ2
h + σ2

n

y (C.3)

Here, we use the property of conditional expectation [76] E[A|B] = E[E[A|B,C]|B], where the outer

expectation on the right-hand side is with respect to the conditional distribution of C given B. In

our setting, C is the noise variance. Hence, the above formulation indicates that we can find the

MMSE estimate by evaluating the average of the MMSE estimates with fixed noise variances

with respect to the conditional distribution of the noise variance given the observation. This is

indeed what is done in (C.2). (C.3) is obtained by noting that the noise variance is fixed.

Using Bayes’ rule the conditional probabilities expressions are as follow

Pr(σ2 = σ2
n + σ2

np
|y) =

Pr(σ2 = σ2
n + σ2

np
)f(y|σ2 = σ2

n + σ2
np
)

f(y)
(C.4)

Pr(σ2 = σ2
n|y) =

Pr(σ2 = σ2
n)f(y|σ2 = σ2

n)

f(y)

y is conditionally Gaussian distributed with zero mean and variance σ2 as the relations (C.4) points.

The conditional distribution function of y, i.e., f(y) is defined as [23]

f(y|σ2 = σ2
n) =

1

π(Sptσ2
h + σ2

n)
e
− |y|2

Sptσ
2
h
+σ2

n (C.5)

f(y|σ2 = σ2
n + σ2

np
) =

1

π(Sptσ2
h + σ2

n + σ2
np
)
e
− |y|2

Sptσ
2
h
+σ2

n+σ2
np . (C.6)

The noise variance is related to the channel sensing result. Let us assume that the channel is sensed

as busy, so, Pr(σ2 = σ2
n) means that there is no PU in the channel and hence channel is idle. Since

our assumption, channel is sensed as busy. Therefore, Pr(σ2 = σ2
n) is equal to the conditional
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probability Pr
(
Ch is
idle

)
|
(

Ch is
sensed busy

)
. See the derivations from (C.7) to (C.9).

Pr(σ2 = σ2
n) = Pr

(
ch is

idle

)∣∣( ch is

sensed busy

)
=

Pr
(
ch is
idle

)
Pr
((

ch is
sensed busy

)∣∣(ch is
idle

))
Pr
(

ch is
sensed busy

)

=

Pr
(
ch is
idle

) false detection︷ ︸︸ ︷
Pr

(
ch is

sensed busy

)∣∣(ch is

idle

)
Pr
(
ch is
idle

)
Pr

((
ch is

sensed busy

)∣∣(ch is

idle

))
︸ ︷︷ ︸

false detection

+Pr
(
ch is
busy

)
Pr

((
ch is

sensed busy

)∣∣(ch is

busy

))
︸ ︷︷ ︸

correct detection

=
b

b+dPf

b
b+dPf + d

b+dPd

=
bPf

bPf + dPd
Channel is sensed busy (C.7)

Using a similar approach, we can obtain the other cases:

Pr(σ2 = σ2
n) =

b(1−Pf )
b(1−Pf )+dPm

Channel is sensed idle

Pr(σ2 = σ2
n + σ2

np
) = dPd

bPf+dPd
Channel is sensed busy

Pr(σ2 = σ2
n + σ2

np
) = dPm

b(1−Pf )+dPm
Channel is sensed idle

(C.8)

Note that the probability of the channel state can be derived easily from the transition matrix of

the two-state Markov chain of Figure 4.2.

Pr(channel in state i) =

 d
b+d , i is busy

b
b+d , i is idle

(C.9)

♠
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Appendix D

Transition Probabilities

Let p1 = Pr
{
the channel is being busy and it is detected as busy and rb < C l

1(k) in the kth frame

given that the channel is being busy and it is detected as busy and rb < C l
1(k − 1) in the (k − 1)th

frame}

The chain rule in probability theorem states that if there are four events: A1, A2, A3 and A4, then

Pr(A1, A2, A3|A4) = Pr(A1 ∩A2 ∩A3|A4)

= Pr(A1|A4) · Pr(A2|A1 ∩A4) · Pr(A3|A1 ∩A2 ∩A4) (D.1)

Thus

p11 = Pr
{
ch is busy in ith frame

∣∣ch is busy in (i− 1)th}

· Pr
{
ch is busy in ith frame

∣∣ ch is busy in (i)th} · Pr
{
rb < C l

1(i)|rb < C l
1(i− 1)}

= (1− b)PdPr{rb < C l
1(i)|rb < C l

i−1(i− 1)}

= (1− b)PdPr{zi > φ1|zi−1 > φ1}

= (1− b)PdPr{zi > φ1} = (1− b)PdPr{z > φ1} = p1 (D.2)

We omitted the index i in zi due to the fact that zi and zi−1 are independent due to the block

fading assumption.
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By the same manner , the transition probabilities from any state to state 1 can be expressed as

pl1 = p11 = p21 = p31 = p41 =(1− b)PdPr{z > φ1} =(1− b)Pde
−φ1 = p1

pn1 = p51 = p61 = p71 = p81 = dPdPr{z > φ1} = dPde
−φ1 =ṕ1

(D.3)

Using the same modality, the full transition probabilities can be obtained as listed in Table 4.1.♠
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Appendix E

Eigenvalue Maximization

Let A be an n× n matrix, the eigenvalues (ω)s of the matrix A are the zeroes of its characteristic

polynomial, det(ωI −A), which can be written as

Q(ω) = ωn − Cn−1ω
n−1 + Cn−2ω

n−2 − · · · (−1)nC0 (E.1)

It is well known that the coefficients Cn−1 and C0 are, respectively, the trace(A) (the sum of its

diagonal entries) and the det(A). All other coefficients Cn−k, k = 1, 2, · · · , can be expressed by the

sum of the k−rowed principle minors of A. A k-rowed principal minor of an n× n matrix A is the

determinant of a k×k submatrix of A whose entries, aij , have indices i and j that are the elements

of the same k−element subset of 1, 2, · · · , n.

With rank (the dimension of the largest square submatrix of A with nonzero determinant) r,

where, r < n. All nonzero eigenvalues of A are among the zeros of the polynomial [81]

Q(ω) = ωr − Cn−1ω
r−1 + · · · (−1)rCn−r (E.2)

ω2 −
(
+ ṕ8 + τbṕ7 + p6 + τdp5 + ṕ4 + τdṕ3 + p2 + τbp1

)
ω

+
(
τdṕ3p2 + τbτdṕ3p1 + τbṕ7p2 + τbṕ7p6 + τbτdṕ7p5 − τbṕ1p4 − τbτdṕ1p3 τdṕ2 − p3 + τ2b ṕ7p1

− ṕ2p4 + ṕ4p2 ṕ4p1 − τ2dp3 ṕ5 − τdp4 ṕ5 + τdp5 ṕ4 + τ2dp5 ṕ3 − τdp3 ṕ6 − p4 ṕ6 + p6 ṕ4 + τdp6 ṕ3

− τ2b ṕ1p7 − τbṕ2p7 − τbṕ5p7 − τbṕ6p7 − τbṕ1p8 − ṕ2p8 − τdṕ5p8 − ṕ6p8 + ṕ8p6 + τdṕ8p5 + ṕ8p2

+ τbṕ8p1
)
= 0 (E.3)
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The solution for the maximum eigenvalue of (E.3) is

ω =
1

2

(
ṕ8 + τbṕ7 + p6 + τdp5 + ṕ4 + τdṕ3 + p2 + τbp1

)
+

1

2

[(
ṕ8 + τbṕ7 + p6 + τdp5 + ṕ4 + τdṕ3

+ p2 + τbp1
)2 − 4

(
τdṕ3 p2 + τbτdṕ3 p1 + τbṕ7 p2 + τbṕ7 p6 + τbτdṕ7 p5 − τbṕ1 p4 − τbτdṕ1 p3

− τdṕ2 p3 + τ2b ṕ7 p1 − ṕ2 p4 + ṕ4 p2 + ṕ4 p1 − τ2dp3 ṕ5 − τdp4 ṕ5 + τdp5 ṕ4 + τ2dp5 ṕ3 − τdp3 ṕ6

− p4 ṕ6 + p6 ṕ4 + τdp6 ṕ3 − τ2b ṕ1 p7 − τbṕ2 p7 − τbṕ5 p7 − τbṕ6 p7 − τbṕ1 p8 − ṕ2 p8 − τdṕ5 p8

− ṕ6 p8 + ṕ8 p6 + τdṕ8 p5 + ṕ8 p2 + τbṕ8 p1

)] 1
2

(E.4)

♠
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Appendix F

Ratio of Exponential distributions

The random variable X is exponentially distributed with rate α if and only if Pr(X ≥ x) = e−αx

for every x ≥ 0. Similarly, the random variable Y is exponentially distributed with rate β if and

only if Pr(Y ≥ y) = e−βy for every y ≥ 0. Let Z = X/Y and t ≥ 0. Conditioning on X and

applying our characterization to y = X/t, one gets

Pr(Z ≤ t) = Pr(Y ≤ X/t) = E[e−βx/t, ]

hence for every γ ≥ 0,

E[e−γX ] =

∫ ∞

0
αe−(α+γ)xdx =

α

α+ γ

[
e−(α+γ)

]∞
0

=
α

α+ γ

Substituting γ = β/t, we have

FZ(t) =
α

β/t+ α

and hence the (pdf) of Z is

fZ(t) =
dFZ(t)

dt
=

αβ

(αt+ β)2

For unity mean of the both random variable (i.e., α = β = 1), the above pdf eliminates to (5.39).

♠
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