
STATISTICAL MODELS FOR THE 

DYNAMICS OF BRAND EQUITY 

Chengliang Huang 

Bachelor of Science, Electronic Engineering,  

Fudan University, Shanghai, 1990 

Master of Business Administration 

Beijing Jiaotong University, Beijing, 2007 

Master of Applied Science, Electrical and Computer Engineering,  

Ryerson University, Toronto, 2009 

A dissertation 

presented to Ryerson University 

in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

in the Program of 

Electrical and Computer Engineering 

Toronto, Ontario, Canada, 2017 

© Chengliang Huang 2017 



 ii 

AUTHOR'S DECLARATION FOR ELECTRONIC 

SUBMISSION OF A DISSERTATION 

 

I hereby declare that I am the sole author of this dissertation. This is a true copy of the 

dissertation, including any required final revisions, as accepted by my examiners. 

I authorize Ryerson University to lend this dissertation to other institutions or individuals 

for the purpose of scholarly research. 

I further authorize Ryerson University to reproduce this dissertation by photocopying or 

by other means, in total or in part, at the request of other institutions or individuals for the 

purpose of scholarly research. 

I understand that my dissertation may be made electronically available to the public. 

 



 iii 

Statistical models for the dynamics of brand equity, 2017, Chengliang Huang, Electrical 

and Computer Engineering, Ryerson University 

Abstract 

The purpose of this research is to propose statistical models, develop certain 

procedures/approaches needed to estimate these models, and when marketing data are 

available, provide insights about brand equity dynamics in marketing practice, especially 

firm-based brand equity. In this dissertation, two categories of models are explored. In 

Chapter II, autoregressive models with exogeneous inputs (ARX) are proposed for brand 

structural analysis. These models are useful when brand values are known, and the sample 

size is relatively small. Another category of models, state space models, are proposed when 

brand values are unavailable. In Chapter III and IV, an approach or a procedure is proposed 

or designed to guess initial parameter values for a certain iteration algorithm. Moreover, 

mathematical optimization methods are introduced and integrated to estimate unknown 

parameters of the models for brand equity dynamics. There are at least two important 

findings. Firstly, the implementation of brand value structure analysis can be realized 

through the application of an ARX model and the assessment of a firm’s brand 

management performance is possible. Secondly, innovative approaches must be developed 

to guess the starting values for iterations and to estimate parameter values of different state 

space models. These findings are from this innovative and contributive research. Through 
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brand structure analysis, a novel effort in research on brand equity dynamics, brand 

financial performance outcome is linked with brand equity sources, while long-term brand 

value is distinguished from short-term performance. The analysis helps brand managers to 

obtain the insights into the brand performance and the ability to focus on long-term 

outcomes of marketing campaigns. Moreover, innovative approaches are proposed in 

applying state space models for brand equity dynamics analysis. Weight least square 

method is used in guessing the initial parameter values for a state space model with one 

input series and one state series. For a state space model with two input series and two state 

series, as well as nonlinear constraints, a procedure is designed to guess the initial 

parameter values. Moreover, nonlinear mathematical optimization methods are introduced 

and integrated to estimate the parameter values during the implementation of the 

expectation-maximization algorithm.  
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Notation List 

∙ ̂ the guessed or estimated value of a certain variable. 

α a transfer coefficient in an ARX model, in a linear dynamic model or in 

the process equation of a simple state space model; 

a component of transfer matrix in a state space model (Sect. 4.1.1). 

𝛼̂ the estimate of α. 

β an investment effectiveness coefficient in ARX model; 

a component of transfer matrix in a state space model (Sect. 4.1.1). 

𝛶 an input coefficient in a state space model (Eq. 3.1). 

𝛾1 a component in the output matrix in a state space model. 

𝛾2 a component in the output matrix in a state space model. 

𝛾𝜀
(ℎ)

 the hth order of the auto-covariance of 𝜀𝑡. 

γζ the covariance of the error item of the output 𝑦𝑡. 

𝛶𝜂 the covariance or auto-covariance of 𝜂𝑡. 

𝛾𝜂
(ℎ)

 the hth autocovariance of 𝜂𝑡. 

𝛾𝜈1
(ℎ)

 the hth order covariance of 𝜈1,𝑡. 

𝛾𝜈2
(ℎ)

 the hth order covariance of 𝜈2,𝑡. 

𝛾𝜉
(ℎ)

 the hth order autocovariance of 𝜉𝑡. 

𝛾𝑚 the effect of the mean of output, 𝑦𝑡. 

𝛾𝑢 the effect of the autoregressive component of the output, 𝑦𝑡. 
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𝛾𝑢 the estimate of 𝛾𝑢. 

𝛾𝑢
(1)

 the first order covariance of 𝑢̂𝑡. 

𝛾𝑢1𝑦
(−1)

 the -1st order cross covariance between 𝑦𝑡 and 𝑢1,t. 

γ𝑢2𝑦
(−1)

 the -1st order cross covariance between yt and u2,t. 

𝛶𝑦 the covariance or autocovariance of 𝑦𝑡. 

γ𝑦
(ℎ)

 the hth order of the auto-covariance of 𝑦𝑡. 

𝛤 the input matrix of a state space model (Eq. 4.1.1). 

𝜀𝑡 the linear combination of ζ1,t，ζ2,t，ηt and wt (Eq. 4.5.21). 

𝜁𝑡 the sum of weighted error series and observation noise in a state space 

model (Eq. 3.9). 

𝜁𝑡 the estimate of 𝜁𝑡. 

ζ1,𝑡 the Guassian distributed stimuli component of 𝑢1,𝑡. 

ζ2,𝑡 the Guassian distributed stimuli component of 𝑢2,𝑡. 

𝜂𝑡 the weighted sum of the error term, 𝑒𝑡 (Sect. 4.5.2). 

𝜂𝑡 the sum of 𝜉𝑡 and 𝑒2,t. 

𝜽 an unknown vector of parameters to be estimated through nonlinear 

optimization. 

θ1      the regression parameter for 𝑢1,t−1(Eq. 4.5.22). 

θ2      the regression parameter for 𝑢2,t−1(Eq. 4.5.22). 

𝜆𝑖 the ith Lagrange multiplier (Eq. 4.4.3). 

𝜇0 the mean of initial state in a state space model (Eq.3.1). 
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𝝁𝟎 the mean of initial states in a state space model. 

𝜇10  the first component of the mean of the initial state 𝒙0. 

𝜇20  the second component of the mean of the initial state 𝒙0. 

𝜇𝑦 the mean of 𝑦𝑡. 

𝜈 the covariance of the states (Eq. 4.21a-g). 

𝜈1,𝑡 the weighted sum of ζ1,𝑡. 

𝜈2,𝑡 the weighted sum of ζ2,𝑡. 

𝜉𝑡 the noise component of 𝑢𝑡. 

𝜉𝑡 the weighted sum of 𝑒1,𝑡 and 𝑒2,𝑡 (Eq. 4.5.8). 

π the ratio of a circle's circumference to its diameter. 

ρ  an autoregressive coefficient. 

𝜌1 the first order autocorrelation coefficients of 𝑢1,𝑡. 

𝜌2 the second order autocorrelation coefficients of 𝑢2,𝑡. 

𝜎0
2 the variance of 𝑥0. 

σ𝑒
2 the variance of error item, et, in an ARX model or a dynamic linear model. 

σ𝜁̂
2 the variance of 𝜁𝑡. 

σ𝑢
2  the variance of 𝑢̂𝑡. 

𝜎𝑤
2  the variance of 𝑤𝑡. 

𝜱  the transfer matrix of a state space model (Eq. 4.1.1). 

𝝍 the vector of parameters of a state space model to be estimate. 

𝝍(𝑗) the parameter values estimated in the jth iteration of EM algorithm. 
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𝛺(𝜳) a Lagrange function (Eq. 4.6.14) . 

𝛺0(𝜳) the negative log-likelihood of the initial state. 

𝛺1(𝜳) the negative log-likelihood of the states other than the initial state. 

𝛺2(𝜳) the negative log-likelihood of the states other than the initial state. 

𝑎 an intermediate variable (Eq. 4.5.40) in initial guessing.   

Adv advertising expense. 

b an intermediate variable (Eq. 4.5.41) in initial guessing.  

𝐵𝐿𝑉 brand label value. 

𝐵𝑂𝑉 brand operation value. 

BP brand performance. 

BV brand value. 

c a constant in an ARX model; 

 an intermediate variable (Eq. 4.5.42) in initial guessing.  

𝐷𝒚(𝝍)  the doubled negative loglikelihood as a function of the parameters to be 

estimated based on incomplete data, 𝒚1:𝑇. 

𝐷𝒙,𝒚(𝝍)  the doubled negative loglikelihood as a function of the parameters to be 

estimated based on incomplete data, 𝒙0:𝑇 and 𝒚0:𝑇. 

𝐸(𝛺) the sum of 𝐸(𝛺0), 𝐸(𝛺1) and 𝐸(𝛺2) and possibly other items. 

𝐸(𝛺0) the log-likelihood estimated from the initial state of a state space model. 

𝐸(𝛺1) the log-likelihood estimated from the other states of a state space model. 

𝐸(𝛺2) the log-likelihood estimated from the output of a state space model. 
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et the error item in an ARX model or in a linear dynamic model, or the 

process error in a state space model. 

𝒆𝑡 the vector of process noises in a state space model (Eq. 4.1.1). 

𝑒1,t the first component of the err vector,𝒆𝑡. 

𝑒2,t the second component of the err vector,𝒆𝑡. 

𝑯 the design matrix or observation matrix of a state space model (Eq. 4.1.2). 

ℎ𝑖(𝝍) the constraint to the parameters to be estimated. 

I an identity matrix.  

𝑗 an intermediate variate used for backward recursion in Kalman smoothing 

(Eq. 3.22). 

J an intermediate matrix used for backward recursion in Kalman smoothing 

(Eq. 4.2.8). 

𝑘 the Kalman gain (Eq. 3.21a-g). 

𝑘1 equals β/(1 − 𝛼) (Eq. 4.5.7). 

𝑘2 a constant. 

𝐿𝒙,𝒚 the Lagrange function based on complete data. 

𝑀 the sum of the product of estimated states and inputs of a state space 

model. 

𝑚1 an intermediate variable (Eq. 4.5.34) in initial guessing. 

𝑚2 an intermediate variable (Eq. 4.5.35) in initial guessing. 
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𝑀1 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.32). 

𝑀𝛼 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.30). 

𝑀𝛽 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.31). 

𝑀𝜎 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.39). 

𝑀𝜎0 an intermediate variable regarding 𝑥1,𝑡 and 𝑥2,𝑡 in estimating parameters 

of a state space model (Eq. 4.6.22). 

MKT marketing spending. 

𝑁𝑅𝑀𝑆𝐷4 a “normalized” measure of the differences between the guessed or 

estimated values, of four parameters of interest. 

𝑁𝑅𝑀𝑆𝐷9 a “normalized” measure of the differences between the guessed or 

estimated values, of nine parameters of interest. 

𝑝 the correlation matrix of smoothed state. 

𝑃 the sum of the correlation between states of a state space model. 

P the correlation matric of the state vector.  

𝑝(· | ·)  a generic conditional probability density or mass function. 

𝑃1 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.29). 
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𝑃𝛼 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.27). 

𝑃𝛽 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.28). 

𝑃𝜎0 an intermediate variable regarding 𝑥1,𝑡 only in estimating parameters of a 

state space model (Eq. 4.6.21). 

𝑃𝜎 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.38). 

𝑃w an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.40). 

𝑸 the variance-covariance matrix of 𝒆𝑡 in a state space model 

𝑞1 the variance of 𝑒1,t. 

𝑞2 the variance of 𝑒2,t. 

𝑞x the covariance between 𝑒1,t and 𝑒2,t. 

𝑞(𝝍′|𝝍) a proposal for an MCMC that explores 𝑝(𝝍′|𝒚0:𝑇). 

r the variance of 𝑤𝑡. 

𝑹 the variance-covariance matrix of 𝒘𝑡 in a state space model. 

RD research and development expense. 

rperf brand performance ratio. 

𝑅𝑀𝑆𝐷4 a measure of the differences between the guessed or estimated values, of 

four parameters of interest. 
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𝑅𝑀𝑆𝐷9 a measure of the differences between the guessed or estimated values, of 

nine parameters of interest. 

𝑠 the number of constraints. 

𝑆 the weighted sum of squared residuals (Eq. 3.12). 

T the sample size. 

𝑈 the sum of the squared inputs of a state space model. 

𝑢𝑡 the input in a state space model (Eq. 3.1). 

𝒖𝑡 the vector of inputs in a state space model (Eq. 4.1.1). 

𝑢1,∞ the long term average of 𝑢1,𝑡. 

𝑢2,∞ the long term average of 𝑢2,𝑡. 

𝑢1,𝑏 the constant component of 𝑢1,𝑡(Eq. 4.5.1). 

𝑢2,𝑏 the constant component of 𝑢2,𝑡(Eq. 4.5.1). 

𝑢1,𝑡 the first component of 𝒖𝑡. 

𝑢2,𝑡 the second component of 𝒖𝑡. 

𝑈1 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.35). 

𝑈𝛾1 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.33). 

𝑈𝛾2 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.34). 
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𝑈𝜎 an intermediate variable in estimating parameters of a state space model 

(Eq. 4.6.40). 

𝑈𝜎0 an intermediate variable regarding 𝑥2,𝑡 only in estimating parameters of a 

state space model. 

𝑣10  the variance of the first component of the initial state 𝒙0. 

𝑣20  the variance of the second component of the initial state 𝒙0. 

𝑣𝜀 the variance and auto-covariance of 𝜀𝑡. 

𝑣ζ1 the variance of ζ1,𝑡. 

𝑣ζ2 the variance of ζ2,𝑡. 

𝑣𝜂 the variance of 𝜂𝑡. 

𝑣𝜉 the variance of 𝜉𝑡. 

𝑣𝑛  the difference between 𝑣𝑛 and σ𝑢
2 .  

𝑣𝑡
𝑇 the variance of the smoothed estimation of state. 

𝑣x0  the covariance of the first and the second component of the initial state 

𝒙0. 

𝑣𝑦 the variance of 𝑦𝑡. 

𝑽 the variance-covariance matrix of states in a state space model. 

𝑽𝟎 the variance-covariance matrix of initial states in a state space model. 

𝑤𝑡 observation noise in a state space model at time instant t. 

𝑊 the sum of the product of states and outputs of a state space model. 

𝒘𝑡 the vector of output (observation) noises in a state space model (Eq. 4.1.2). 
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𝑥0 initial state in state space model (Eq. 3.1). 

𝒙𝟎 the vector of initial states in a state space model. 

𝑥1,0
2̅̅ ̅̅ ̅ the correlation of 𝑥1,0. 

𝑥2,0
2̅̅ ̅̅ ̅ the correlation of 𝑥2,0. 

𝑥1,0𝑥2,0̅̅ ̅̅ ̅̅ ̅̅ ̅ the correlation between 𝑥1,0 and 𝑥2,0. 

𝑥1,0̅̅ ̅̅ ̅ the mean of 𝑥1,0. 

𝑥2,0̅̅ ̅̅ ̅ the mean of 𝑥2,0. 

xt the state in a state space model (Eq. 3.1).  

𝒙𝑡 the vector of hidden states in a state space model (Eqs. 4.1.1 and 4.1.2). 

𝑥𝑡
𝑇 the mean of the smoothed estimation of state. 

𝒙𝑡
𝑇 the state estimated through Kalman smoothing. 

𝒙𝑡:𝑇 T-t+1 samples of state 𝒙𝑡. 

𝒙−𝑡 the whole state process from 𝒙0 to 𝒙𝑇 excluding 𝒙𝑡. 

𝑌 the sum of the squared outputs of a state space model. 

𝑦𝑏 the effect of the mean of the output, 𝑦𝑡. 

𝑦̂𝑏 the estimate of 𝑦𝑏. 

𝑦𝑡 the output (observation) of a state space model. 

𝒚𝑡 the vector of outputs in a state space model (Eq. 4.1.2). 

𝒚𝑡:𝑇 T-t+1 samples of state 𝒚𝑡. 

𝑦̃𝑡 the innovation item in Kalman filtering (Eq. 3.21c). 

zt the weighted sum of input time series in a state space model. 
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Chapter I 

Introduction 

1.1 Motivation 

The American Marketing Association (AMA) [1] defines a brand as “a name, term, 

design, symbol, or any other feature that identifies one seller’s good or service as distinct 

from those of other sellers”. Brand equity refers to the value of a brand, which is created 

by the intangible qualities associated with the brand. For example, Farquhar [2] 

characterizes brand equity as the value added by the brand name to a product.  

High brand equity relates to high market recognition and added value to a product. 

Accordingly, the product becomes more profitable through brand loyalty, premium pricing, 

lower price elasticity, lower advertising/sales ratios, and trade leverage [3]. Because it is 

not easy to copy brand competitors [4], brand equity also makes a brand more robust to 

environmental and competitive threats. For instance, Aaker (p.12) [5] indicates that the 

Intel Inside campaign increased its brand equity and thus enhanced Intel’s competitive 
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position. Consequently, those computers without an Intel microprocessor had to be sold 

with a price discount. This typical example indicates that brands have become one of the 

most valuable assets that a company has [6]. Firms of any size, in any industry, and in any 

type of markets, must put brand building and management as a top priority [7].  

In recent years, the determination of the long-term effects of a firm’s investments 

on marketing and research and development (R&D) has received much attention from 

practitioners and academics. For example, Oswald Grubel, CEO of the Credit Suisse Group， 

stated that “Our priorities are quite clear: we want to generate a long-term added value for 

our shareholders by offering outstanding service to our clients and by securing a leading 

position in the industry” [8]. Brand equity, as the symbol of products and services and one 

of the components of intangible assets, is an important measure to reflect the effects of the 

long-term marking and R&D investments.  

Since brand equity has been perceived as a key strategic asset that needs to be 

monitored and nurtured for maximum long-term performance, many firms have BE 

managers who are responsible for managing brand equity to improve marketing 

productivity. For brand managers to detect signals of brand equity erosion or approve 

branding programs [9], they need both current brand equity estimates and the dynamic 

tracking of brand equity over a long period, e.g., a few years. Both, i.e., estimating and 

tracking brand equity, however, are difficult tasks.  

Our motivation in a long run is to construct dynamic mathematical models which 

are used in engineering research, appropriate to available data and marketing practice and 

able to explain brand persistence, the effect of advertising, and R&D expense.  
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1.2 Background 

A few approaches provide brand measures. Some are from the consumer 

perspective, i.e., consumer-based brand equity (CBBE)，and others are from the firm 

perspective (or product perspective), i.e., firm-based brand equity (FBBE). It is worthy of 

mentioning that, all these measurements from different approaches are, at best, 

approximations. A more complete understanding of brand equity is possible if we apply 

multiple approaches and cross-examine the results. Brand equity estimates based on store-

level data, when combined with traditional survey-based measures, as well as firm-based 

estimates, can build a brand manager’s confidence in formulating marketing programs to 

build a brand’s equity. In this research, CBBE or FBBE will be chosen based on the 

availability of data and the possible need of marketing practice. 

1.2.1 CBBE  

CBBE approaches, are based on value consumers derived from brand names. Some 

researchers have defined this added value as the positive associations, awareness, loyalty, 

and perceived quality of the brand [9], or as the differential effect of brand knowledge to 

the marketing of a firm [10], or as the price premium that consumers are willing to pay for 

the brand [11]. Srinivasan [12] and Kamakura and Russell [13] isolate brand equity as a 

component of the overall preference not explained by objectively measured attributes.  

CBBE approaches seek to map consumer minds to identify brand associations 

consumers have. These approaches seek to measure brand awareness, i.e., consumer ability 

to recall and recognize a brand, and brand image, i.e., the overall brand associations. Brands 

with high levels of awareness and strong, favorable and unique associations are high equity 
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brands [10].  Commercially, this approach is realized through consumer or expert surveys 

[5]. This is the case at EquiTrend and Brand Asset Evaluator. In the marketing literature, a 

conceptual framework for measuring CBBE using consumer surveys is offered by Keller 

[10] and a survey-based measure of CBBE is proposed by Park and Srinivasan [11]. 

Survey-based CBBE measures are less affected by market activities and other firm 

activities, thus managers can use them to track brand equity. However, this approach 

“depends on the ability of consumers to accurately report their relative brand preference”, 

as noted by Park and Srinivasan [11]. Again, providing exact measures is a difficult task 

since an accurate measurement requires both reliable measurement techniques and sound 

data.  

1.2.2 FBBE 

On the other hand, most FBBE approaches measure brands as financial assets, 

specifically intangible assets. The measurement of FBBE is a calculation on how much a 

brand is worth. For example, Neumeier [6] calculates FBBE as the residual of the 

subtraction of tangible assets and "measurable" intangible assets from the value of the firm, 

which is derived by its market capitalization. Simon and Sullivan [14] calculate FBBE as 

incremental cash flows attributable to branded versus unbranded products. Instead of 

financial market data, Mahajan et al. [15] use purchase data when a brand is sold or 

acquired. Aaker [5] [16] proposes a product level brand measurement through comparison 

between the price or market share of a no-name product to a branded product. The brand 

equity is the difference in price or market share. Ailawadi et al. [17] have advocated a 

revenue premium approach.  
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A widely recognized FBBE approach is from the Interbrand Group, a consulting 

firm. Interbrand estimates FBBE based on projected profits discounted to a present value 

[5] [10]. The discount rate is a subjective rate determined by Interbrand and Wall Street 

equity specialists and reflects the performance of a brand along different dimensions such 

as the risk profile, market leadership, stability and global reach of the brand [18].  

According to Hanssens and Dekimpe [19], appropriate brand equity metrics should 

have financial relevance. But as explained later there are few models on FBBE. 

Consequently, in the research, FBBE are mostly considered as the measure for brand equity. 

However, the models we propose, especially those models in Chapter III and Chapter IV, 

can also be used in a CBBE scenario. 

1.2.3 Brand persistence and brand equity drivers 

A. Persistence of Brand Equity  

Brand equity has its persistence, or inertia. Aaker [20] believes “a strong brand can 

withstand almost anything”. One of the causes of brand equity persistence is brand loyalty 

[21]. The common contention is that brand loyalty gradually decline over time. Pare and 

Dawes [22] point out that it not rare for a brand, as a market leader, to obtain loyalty over 

multiple years. The factors influencing brand loyalty include customers' perceived value, 

brand trust, customers' satisfaction, repeat purchase behavior, and commitment. 

B. Drivers of Brand Equity   

The factors affecting the evolution of brand value over time are ideally the causes 

of the current brand equity but not the result of brand equity. They can be classified into 

two categories: market strategy variables and market structure variables [23]. The market 



 

6 
 

strategy variables include the expenses on advertising, R&D, and even human resources. 

The market structure variables can be the concentration ratio, the different industries and 

the ages of firms. On the other hand, the effects of these drivers vary with industries and 

even countries. For example, Chen [24] finds that country, industry and firm factors will 

effectively increase the brand values.  When brand equity dynamics of a certain firm are 

investigated, the market structure variables are usually omittable. 

Advertising and Sales Promotion  

Advertising and sales promotions (A&SP) are two central elements of marketing 

communication programs. Advertising is reported to have positive association with brand 

equity in most literature. Keller [3] suggests that advertising can increase brand equity 

through favorable associations, perceived quality, and user experience. In empirical 

research, Jedidi et al. [25] find a positive relationship between advertising and brand equity, 

using household purchase data. Chu and Keh [18] find advertising expenditure has positive 

effects on brand values using firms’ financial performances. Wang et al. [26] conclude 

advertising has sustainable and even accumulative effects on intangible asset of a firm. 

Buila et al.  [27] conclude that advertising expense does not impact brand associations and 

perceived quality but improves brand awareness.   

No agreement has been achieved on the effects of promotion. Keller [3] suggests 

that the frequent use of price promotion may create or strengthen a “discount” association 

with a brand, thus diminishing its brand equity. Pauwels et al. [28] claim that price 

promotion has only short impact to an established brand. However, Ailawadi et al. [17] 

suggest that sales promotions can induce trials and thus increase penetration and brand 

equity. D’Astous and Jacob [29] find monetary sales promotions can prevent association 
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about product price from direct hurting brand equity. Buila et al. [27] also find that 

monetary promotions have a negative influence whereas non-monetary promotions have a 

positive effect on brand equity.  

When both advertising and sales promotion are considered, Low and Mohr [30] 

find that brands allocating higher budget to advertising than to sales promotion, have more 

favorable consumer attitudes and stronger brand equity. Moreover, Sedaghat et al. [31] find 

that marketing promotional mix have positive effects on brand equity dimensions including 

brand loyalty, perceived quality and brand awareness. Low and Mohr [30]’s finding is 

based on survey data collected from 165 brand managers in the USA while Sedaghat et al. 

[31]’s research involves structural equation modeling (SEM) [32] [33]. Both findings are 

not specified to certain products. 

Research & Development  

For a corporate entity, R&D is to improve existing or invent new products 

procedures or services, or even to create new knowledge to enable discovery of new 

products, procedures and services. R&D is important for some firms to upgrade and/or 

expand a firm’s operation and finally to satisfy their customers. Nowadays, R&D is of 

special importance for firms under high level of competition when they are trying to keep 

up with modern trends of technology, business and/or customer needs. “The business 

climate for R&D-active companies has continued to improve” [34]. Although R&D is often 

thought of as associated with high-tech firms which are on the cutting edge of new 

technology, many established consumer goods companies spend large sums of money on 

improving old products. For example, Gillette spends quite a bit on R&D each year in 

ongoing attempts to design a more effective shaver.  
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A few empirical researchers studied the relationship between R&D and brand 

equity. Simon and Sullivan [14] find that both patent share and R&D share have positive 

impacts on brand equity based on their research on a wide range of manufacturing 

industries with data from Compustat and NBER databases. Chu and Keh [18] find that 

R&D, together with the number of patents, has positive effects on brand values.  

1.2.4 Extant models 

 Table 1.1 Extant Statistical Models for brand equity Dynamics 

Other than using appropriate metrics, we also need to establish a statistical model 

to disentangle temporary (short-term) from persistent (long-term) effects.  There are at least 

400 articles published on brand equity since 2013, most of which, however, are still 

conceptual or about CBBE.  The statistical models using FBBE in the effort to describe 

brand equity dynamics are rare. We have to review research papers more than 10 years old. 

Typical models using FBBE are represented by Simon and Sullivan’s [14] linear regression 

model and Chu and Keh [18] ’s vector regression (VAR) model. Simon and Sullivan [14] 

select a proxy for the FBBE using Tobin’s Q [40] and developed a linear regression model 

to examine the effects of certain marketing variables, including advertising expenditures. 

Papers CBBE/FBBE Statistical Models 

Simon and Sullivan (1993) [14] FBBE Linear regression 

Dillon et al. (2001) [35] CBBE Similar with State Space Model 

Chu and Keh (2006) [18] FBBE Vector Autoregressive Model 

(Interbrand brand values are used ) 

Sriram and Manobar (2007) [36] CBBE State Space Model (Utility is used) 

Shanker et al. (2008) [37] CBBE Linear regression (Utility is used) 

Aribarg and Arora (2008) [38] CBBE State space model 

Voleti and Ghosh (2014) [39] CBBE Linear regression (Revenues are 

used) 
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To separate the market share attributable to brand factors, they regress the observed market 

share on all of the factors: 

 S = 𝑏0 + 𝑏1 ∗ 𝑜𝑟𝑑 + 𝑏2 ∗ 𝑎𝑑𝑠ℎ𝑟 + 𝑏3 ∗ 𝑝𝑎𝑡𝑠ℎ𝑟 + 𝑏4 ∗ 𝑟𝑛𝑑𝑠ℎ𝑟 + ε   (1.1) 

where they use the order of market entry (ord) and the brand’s advertising expenditures 

relative to its competitors’ (adshr) as proxies for information expenditures and positioning 

advantage. They posit that the firm’s technological advantages are related to patshr, the 

firm’s share of patents relative to competitors and rnd share, the firm’s share of R&D 

expenditures. The noise, ε, is the error term. The parameters, 𝑏0, 𝑏1, 𝑏2, 𝑏3 and 𝑏4, are to 

be estimated. By the way, it shall be mentioned that other mathematical equations are 

needed for their research. 

Unfortunately, the model can not reflect the persistence of brand equity thus is not 

able to fully represent the dynamics of brand equity. On the other hand, Chu and Keh [18], 

in their VAR model, relate advertising expense and R&D expense to the lagged brand 

valuation and others. Their model is as below: 

 ln(𝐵𝑉𝑡) = 𝛢0 + 𝛼1ln(𝐵𝑉𝑡−1) + 𝛼2ln(𝑁𝑒𝑡𝐼𝑛𝑐𝑜𝑚𝑒𝑡) + 𝛼3ln(𝐴𝑑𝑡−1) +

𝛼4ln(𝑃𝑟𝑜𝑚𝑜𝑡−1) + 𝛼5ln(𝑅&𝐷𝑡−1) + 𝛼6[ln(𝐴𝑑𝑡−1)]2 + 𝛼7[ln(𝑃𝑟𝑜𝑚𝑜𝑡−1)]2 +

𝛼8[ln(𝑅&𝐷𝑡−1)]2 + 𝑒𝑟𝑟𝑜𝑟 ,  (1.2) 

ln(𝐴𝑑𝑡) = 𝛣0 + 𝛽1ln(𝐵𝑉𝑡−1) + 𝛽2ln(𝐴𝑑𝑡−1) + 𝛽3ln(𝑃𝑟𝑜𝑚𝑜𝑡) + 𝛽4ln(𝑅&𝐷𝑡) + 𝑒𝑟𝑟𝑜𝑟, 

   (1.3) 

 ln(𝑃𝑟𝑜𝑚𝑜𝑡) = Г0 + 𝛶1ln(𝐵𝑉𝑡−1) + 𝛶2ln(𝑃𝑟𝑜𝑚𝑜𝑡−1) + 𝛶3ln(𝐴𝑑𝑡) + 𝛶4ln(𝑅&𝐷𝑡) +

𝑒𝑟𝑟𝑜𝑟 ,  (1.4) 

ln(𝑅&𝐷𝑡) = 𝛥0 + 𝛿1ln(𝐵𝑉𝑡−1) + 𝛿2ln(𝑅&𝐷𝑡−1) + 𝛿3ln(𝐴𝑑𝑡) + 𝛿4ln(𝑃𝑟𝑜𝑚𝑜𝑡) + 𝑒𝑟𝑟𝑜𝑟 ,  

  (1.5) 
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where the variables are BV for brand value, Ad for advertising expenditure, Promo for 

promotion expenditure, and R&D for research and development. NetIncome is for a firm’s 

net income. The error terms in these equations are different from each other. The 

parameters, 𝛢0, 𝛼1, 𝛼2, …, 𝛼8, 𝛣0,  𝛽1, 𝛽2, 𝛽3, 𝛽4, Г0, 𝛶1, 𝛶2, 𝛶3, 𝛶4, 𝛥0, 𝛿1, 𝛿2, 𝛿3, and 𝛿4,   

are to be estimated. 

To apply VAR, it shall be assumed that investments must be decided proportionally 

with the unknown brand value and other investments. This assumption is not reasonable in 

the decision making on a firm’s investments.  

1.3 Proposed Models 

To obtain a better representation of the dynamics of brand equity, we propose two 

types of statistical models: (1) autoregressive model with exogenous inputs (ARX), (2) 

state space models.  

When Interbrand’s brand values are used, an ARX model takes the advantages of 

both linear regression and VAR model. The model can reflect not only the effect of 

investment but also the evolvement of brand value over time.  Especially, with limited 

sample size, it is still possible to estimate the parameters of the model.  

As we know, so far state space models are used in the literature where CBBE is 

applied but not where FBBE is used. Considering that FBBE is an intangible asset and 

states in a state model are hidden values, state space model is a reasonable choice. In the 

meantime, the investment on marketing and R&D is treated as inputs while sales, or other 

brand performances, are treated as outputs.  
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However, the estimation of the parameters of such a state space model is 

challenging. In the extant literature on control engineering and time series analysis, all the 

parameters of the state space models are to be estimated while no exogenous inputs exist. 

For the identification of such a dynamic system, maximum likelihood estimation (MLE), 

often together with the expectation-maximization (EM) algorithm, is the popular solution. 

However, in marking research, the parameters of the state space models are partly known 

while the exogenous input series exist. To estimate such models, Markov chain Monte 

Carlo (MCMC) based methods are popularly used. But the MCMC based methods used in 

extant literature are usually sophisticated and need additional computation and an 

unbounded running time. To avoid additional computation while taking the advantages of 

the difference between the proposed state space model and those models in marketing 

literature, new parameter estimation approaches are intentionally to be developed based on 

MLE. Considering that the task is challenging, a state space model with one input will be 

tried first. A state space model with two exogenous inputs, partly known parameters and 

nonlinear constraints will be investigated. 

1.4 Objectives 

We treat the brand investments as exogenous inputs. The existence of exogenous 

inputs is critical in classifying a system. In a dynamic system, the current output values 

depend not only on their earlier values but also on exogenous inputs [41]. The outputs of a 

system, whose exogenous inputs are not observed, are often called time series. The task of 

system identification is to form model through data analysis using stored input series and 

output series from the system. 
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Based on what we have investigated in Sect. 1.2, when brand values are known and 

sample size is not large, we intend to apply ARX models and use Interbrand brand values 

of the global best brands to illustrate the brand value structural analysis. Autoregressive 

(AR) models are conventional models for time series analysis in economy and their 

applications are popular. However, the estimation of ARX models shall not be confused 

with the application of AR models. Firstly, time series analysis is performed based on 

output series only while the identification of system is performed based on time varying 

inputs and outputs. From the viewpoint of machine learning, if only the outputs of the 

system can be observed, the problem is unsupervised. If both inputs and outputs are 

observed, the problem becomes supervised. Therefore, our research using ARX model is 

of system identification or supervised learning while those papers based on AR models are 

of time series analysis or unsupervised learning. Secondly, in the application of a model, 

the parameters of the model are known and the purpose of the application is to obtain 

outputs from known inputs using the known model. In contrast, in the estimation of a model, 

the outputs, together with the inputs, of the model are known. The purpose of the estimation 

is to obtain the unknown parameter values from known inputs and outputs. Therefore, 

principlely the estimation of an ARX model is more complicated and challenging than the 

application of an AR model. 

On the other hand, when brand values are unknown and a much larger sample size 

is available, state space models are appropriate to model the dynamics of brand equity 

because the brand itself is a hidden measure. As to be further introduced in Chapter III and 

Chapter IV, we acknowledge that state space models have been widely used in object-

tracking, navigation, computer vision, econometrics and many more areas. However, in the 
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investigation of the dynamics of brand equity, state space models are applied to CBBE only 

in extant literature. Therefore, the intention to apply state space models to FBBE is 

innovative. Moreover, the state space models proposed, especially the models proposed in 

Chapter III and Chapter IV to represent brand equity dynamics, are models with time-

varying exogenous inputs. Such inputs are not available in the state space models in extant 

literature on time series analysis. In addition, the state space model proposed in Chapter IV 

has nonlinear constraints and partly known parameters. As we know, the estimation of such 

a model has not been presented in extant literature. 

However, the identification of state space models through parameters estimation is 

not presented yet, especially for the models with exogenous time-varying inputs, nonlinear 

constraints and partly known parameters. The estimation of state space model has been 

proved to be a task of difficulty and sophistication when the dimension of the states, the 

output and the inputs are increasing. To make the work less challenging, we need to start 

from state space models with lower dimensions of inputs, outputs and state spaces. 

However, due to the collinearity among the marketing inputs, as well as the collinearity 

among the marketing outputs, the number of dimensions of inputs, outputs and state spaces 

can be reduced during the identification of state space models. 

Moreover, the objective function formatted can usually be nonlinear thus the 

guessing of the starting value is important before the implementation of the algorithms to 

estimate the parameter values.  

In this research, we concentrate on the application of the ARX models for structural 

analysis and the method to estimate the parameters of state space models on brand equity 

dynamics. Due to unavailability of commercial data on brand performances and brand 
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investments in these years, for the research on the application of state space models, we 

propose procedures and methods to estimate these models, verify the effectiveness of these 

procedures and methods, but are not able to provide the implementation of state space 

models with real data. The empirical evidence is expected to be provided in future research. 

The objectives of the research presented in this dissertation are as below: 

1. Apply the ARX model to represent the dynamics of brand equity 

statistically to investigate brand equity dynamics and to obtain theoretical, 

managerial, and methodological implications. 

2. Try to estimate the parameters of a state space model with one input using 

MLE method, together with the EM algorithm, develop appropriate method to 

guess the initial values of the parameters. 

3. Estimate the parameters of a state space model with two inputs and 

nonlinear constraints, using MLE method, together with the EM algorithm. 

The accomplishments of the objectives are respectively presented in the following 

three chapters. Among them, Chapter II is to estimate and apply ARX models. Chapter III 

is to estimate the parameters of a state space model with one input. The greatest efforts are 

on Chapter IV where more complicated procedures or approaches are developed to guess 

the initial values and estimate the parameter values. In addition, the reason why the MLE 

method and the EM algorithm is selected is explained in this chapter. 

1.5 Contributions 

Due to the differences between marketing research and engineering research, 

marketing research can not be implemented and evaluated all the same as an engineering 
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research. To bridge different research disciplines is challenging. However, as found by 

Robert et al. [42], brand management and tools with models are the research areas where 

marketing science has the largest impact on business decisions. The problem under 

investigation in this dissertation if interesting and of great value. 

Although there are many challenges, as briefly introduced in Sect. 1.4.2. Several 

innovations and contributions are still accomplished by research.  

1.5.1 Innovations and contributions 

In Chapter II, through the application of the ARX models and the use of Interbrand 

data, a generic brand value structure analysis is performed. Brand outcome can be used for 

brand diagnostic purposes and to qualify brand long-term value and assess firm brand 

operation. Form brand structural analysis, we propose to use brand intrinsic values and 

brand performance ratios to assess brands. Theoretically, we separate the long-term effects 

and short-term effects, and recommend intrinsic brand value and performance ratio in 

brand assessment. Managerially, the decision makers will be able to understand the 

structure of brand value, recognize the difference between the effects of investments on 

advertising and R&D, make smart decisions to optimize the returns from investment. 

Principle component analysis (PCR) and generalized difference are used in order to 

estimate the parameters of an ARX model. 

In Chapter III, weighted least square (WLS) method is proposed to successfully to 

guess the initial parameter values of a simpler state space model which has only one time-

varying exogenous input, one state and one output. The application of state space model 

with exogenous inputs may be not rare in engineering, models with time-varying 

exogenous inputs are rare in econometrics and time series analysis, especially when such 
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models are to be estimated. The estimation of a model is usually much more complicated 

than the application of a model. During the application of a model all the parameters of the 

model are already known, but by contrast, during the estimation of a model all the 

parameters of the model are unknown and must be obtained form inputs and outputs of the 

system. Only after the parameters are estimated, the application of the model is possible. 

In Chapter III, we take the first step to estimate state space models with time-varying 

exogenous inputs. This step is treat as the preparation for the work in Chapter IV. 

In Chapter IV, during the estimation of a two-input state space model with 

nonlinear constraints, we design a procedure for the initial guessing of the parameter values 

and integrated optimization approaches during parameter estimation. As further introduced 

in Chapter IV, the guessing of initial parameter values is critical in the implementation of 

the EM algorithm. So the designed procedure is a great contribution to be referred by other 

researchers. In addition, the MCMC methods are usually used to estimated state space 

models with time-varying exogenous inputs and partly known parameters. We advocate 

integrating existing methods for mathematical optimization, in stead of MCMC, in order 

to estimate the unknown parameters in a state space model. As a result, both the efficiency 

and the effectiveness of the estimation are improved though significantly reduce the 

computational complexity and the number of iterations of the EM algorithm. Through 

simulation, the procedure and the integration are proved to be promising in identifying a 

state space mode with nonlinear constraints and exogenous inputs.  

1.5.2 Challenges 

The research covers the areas in signal processing, control engineering, 

econometric, time series analysis, mathematical optimization and marketing. It is 
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challenging to bridge between two domains: business and engineering. In this research, 

there are several challenges. The most significant challenges are caused by the differences 

between the research in marketing and engineering. 

In engineering, certain fundamental concepts have unique definition and 

measurement. However, in marketing research, the definitions are not unique. As 

introduced, there are a few definitions about brand equity and brand value. In extant 

literature, there are more definitions about brand value than what has been introduced. In 

the mean while, there are different measures for brand equity, not limited to those 

mentioned in Sect. 1.2.  

Consequently, there are different models to study brand equity in extant literature. 

These models are quite different with each other. As contrasted, in engineering, usually 

there is certain inheritance from an old model to a new model. Consequently, a researcher 

does not have to initiate a brand-new model and the advantages of a new model can be 

evaluated through the comparison between the old model and new model. In marketing 

research, it’s rare to compare between different models. 

Another way to evaluate a new model is to consider its application in industrial 

practice. The impact can be direct. An academic paper may be used to solve a practical 

problem. Usually, the impact is indirect. For example, contents of a paper may be 

incorporated into practitioners' tools, which then influence marketing decision making. 

However, as implicated by Roberts et al. [42], the impact of academic marketing research 

to marketing practice is not evaluated immediately, but it is in the following decades. 

An issue relevant to marketing research is that commercial data are needed but 

firms are not mandated to provide certain data needed by the research. Some firms provide 
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the data for a certain period but not providing the data for another period. Thus, it is not 

guaranteed that the data needed for the research are complete. Moreover, commercial data, 

especially those in the recent period, are usually confidential and thus not available to 

researchers. This limits the booming of marketing research based on data analysis. 

Moreover, it is rare to forecast the future application in extant marketing literature. But, by 

contrast, data for engineering research can be obtained much easier; In some cases, 

simulation data can be used. It is common to provide recommendations to improve the 

performance in the current application. 

1.6 Outline 

In Chapter I, the motivation, background, objectives, and contributions of this 

research are presented. 

In Chapter II, a generic brand value structure analysis to use brand outcome 

measures to generate further brand insights is presented. How the brand value structure 

analysis can use extant brand outcome measures to enhance brand assessment by analyzing 

fourteen top global brands is illustrated. 

In Chapter III, approaches for both initial guessing and MLE of parameters of a 

state space model are proposed. In Chapter IV, a procedure is developed for initial guessing 

of values of the parameters, and mathematical optimization methods are integrated to 

obtain the estimates of the parameters which maximize the nonlinear objective function, 

when a parsimonious state space model for brand equity dynamics is employed. The 

simulation results are provided. 

Chapter V concludes this dissertation and recommends future research directions.  
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Chapter II 

ARX Models for Brand Value 

Structure Analysis 

2.1 Brand Structure Analysis 

Brand equity measurement (i.e. assessing brand equity and value) is an important 

and basic research topic in the brand literature [43]. As the key to strategic planning and 

brand portfolio management, brand equity measurement, aligns with the tasks marketing 

executives performed and is of interest to researchers in both marketing and other business 

areas (e.g., accounting and finance respectively).  

Taking different approaches, research has proposed many brand equity measures, 

including those based on the customer mind-set, product market (or company), and 

financial market [17] [43]. Customer mind-set measures assess the consumer-based 

sources of brand equity, such as awareness, attitudes, associations, attachments, and 



20 
 

loyalties. Both product market–based and financial market–based measures are brand 

performance outcome–based measures [17] that employ brand product market or financial 

market data to determine utility or dollar values of brands. Product market–based measures 

include the revenue premium measure [17], incremental choice probability measure [12], 

and consumer utility measure [36] [44] [45]. Examples of financial market–based measures 

are Interbrand’s brand value measures [46] and residual market value measures [14]. 

Shankar et.al [37] and Srinivasan et al. [47] provide brief summaries and comparisons of 

extant brand outcome measures. 

Compared with measures based on customer mind-set, brand outcome measures 

provide a single, simple, more “complete,” objective measure of brand performance and 

are appealing to both marketing and non-marketing managers [17]. They conform with 

brand equity definitions—that is, brand equity is the value the brand adds to the product 

[48], or the marketing effects or outcomes that accrue to a product with a brand name 

compared with those that would accrue to the same product without the brand name [17]. 

However, brand outcome measures suffer from several disadvantages, which limit their 

usefulness in brand research and management.  

First, because of their focus on outcomes rather than sources of brand equity, brand 

outcome measures lack diagnostic ability [17]. They can indicate strong or weak brand 

performance outcomes but cannot explain the reasons and sources. Scholars have 

continually called for research to link brand outcome measures to sources of brand equity 

[17] [43]. However, to our knowledge, only Srinivasan et al. [12] have tried to link brand 

incremental contribution, an outcome measure, to attribute- and non-attribute-based 

sources. 
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Second, outcome measures of brand equity do not differentiate brand long-term 

value from short-term performance. A brand, at least in concept, should be relatively long 

lasting and stable. However, driven by firm short-term strategy, such as brand investments 

and marketing action, brand performance can be highly volatile. For example, according 

to Interbrand’s brand value, a financial market–based brand outcome measure, Sprite lost 

16% ($3,879 million to $3,263 million) of its brand equity from 2008 to 2009 and increased 

brand equity by 77% ($3,263 million to $5,777 million) the next year (from 2009 to 2010). 

Louis Vuitton increased its brand equity by 144% ($6,602 million to $16,077 million) from 

2004 to 2005. Sriram et al. (p. 71, Figure 2.1) [36] also show the volatility of brand outcome 

measures in their product market–based brand equity estimates. Without differentiating 

brand long-term value from short-term performance, brand outcome measures can mislead 

brand managers to be short-term focused. Ailawadi et.al [17] suggest that further research 

should quantify the long-term value of brand equity using brand outcome measures. In 

reviewing brand equity measures, Keller and Lehmann [43] suggest that research should 

separate brand impact from that of company market power and other possible determinants. 

A potential way to address the disadvantages of brand outcome measures and make 

them more useful in brand research and management is to view brand as a market asset [49] 

- [51] and distinguish brand asset value from brand performance. According to the 

resource-based theories [52], firms have various capabilities to engage the resources and 

assets to produce competitive advantages; thus, it is necessary to distinguish firm 

capabilities from resources/assets. By separating firm brand capabilities (i.e. company 

market power by Keller and Lehmann 2006 [43] from brand as a resource, brand managers 

can gain better brand diagnostic and management insights. 
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In this chapter, we propose a generic brand value structure analysis so that brand 

outcome measures can be used for brand diagnostic purposes and to quantify brand long-

term value and assess firm brand operation. Linking brand performance to brand equity 

sources on the basis of various customer brand responses, we decompose brand outcome 

measures into brand base performance, market inertia, and marketing-induced performance. 

Separating brand and brand operation in brand assessment, we identify and quantify brand 

intrinsic value (i.e. the long-term or persistent value a brand delivers without marketing 

actions) and the brand performance ratio (i.e. ratio of brand performance outcome to brand 

intrinsic value). With brand intrinsic value and performance ratio, we categorize brands 

into four types: (1) high intrinsic value, high performance ratio; (2) high intrinsic value, 

low performance ratio; (3) low intrinsic value, high performance ratio; and (4) low intrinsic 

value, low performance ratio. We suggest that brands with high intrinsic value have strong 

staying power， and brands with low intrinsic values and high performance ratios are 

operation dependent and more vulnerable to competition. Brands in different product 

markets should rely on brand loyalty and market inertia differently to build brand intrinsic 

value.  

As we know, Interbrand’s brand value can be used for academic research [18] [38] 

[53] - [57]. To illustrate the brand value structure analysis, we examine fourteen top global 

brands using Interbrand’s brand values during the 1998–2012 period as the brand outcome 

measure. We show that the brand value structure analysis can reveal in-depth brand insights 

that brand outcome measures fail to capture. For example, brand intrinsic values reveal a 

different brand ranking from Interbrand’s brand ranking. Brands like Sony should be 

ranked higher because Sony has a high intrinsic value, indicating its staying power, but 
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suffers from ineffective brand operations. Toyota, on the other hand, ranks lower because 

its outstanding brand performance is leveraged by effective brand operations. A 

comparison of Harley Davidson and HP shows that brands rely differently on brand base 

performance and market inertia to build intrinsic value. Harley Davidson relies more on 

brand base performance, i.e. a large portion of brand performance from brand loyal 

customers, and HP relies more on market popularity and network effects in branding. In 

addition to brand-level differences, our results also suggest market-level differences. 

2.2 Theoretical Conceptualization 

To understand and link brand performance outcome to brand equity sources, we 

draw on the brand loyalty literature and examine brand performance generated from 

different consumer–brand bonds or relationships. The brand loyalty literature suggests that 

not all loyal brand relationships are alike and that consumer–brand bonds or relationships 

exist with different strengths [58] - [60]. For example, using customer attitude and repeat 

patronage, Dick and Basu [21] suggest four types of loyalty relationships: loyalty (high 

attitude, high patronage), spurious loyalty or inertia (low attitude, high patronage), latent 

loyalty (high attitude, low patronage), and no loyalty (low attitude, low patronage). In 

general, brand loyalty research distinguishes inertia from loyalty on the basis of brand 

sensitivity [61] - [63]. Loyalty refers to strong brand sensitivity and commitment, and 

inertia of purchase involves low brand sensitivity and repeat purchase of a brand without a 

real motive [61]. 
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Figure 2.1: Decomposition of Brand Performance Outcomes 

 

According to the loyal, inertial, and nonloyal relationships suggested in brand 

loyalty literature [61] [64] [65], at the aggregate level of consumer behavioral results, we 

consider three components of brand performance outcomes—namely, base performance, 

market inertia, and marketing-induced performance—and propose a brand value structure 

analysis. Figure 2.1 summarizes the three brand performance sources and the proposed key 

concepts in the brand value structure analysis (i.e. brand intrinsic value and performance 

ratio).  

2.2.1 Brand value structure 

Brand base performance refers to the brand performance generated through brand 

loyal customers. These customers have high brand commitment and are the core to a brand 

Base Performance

Market Inertia

Marketing-induced 

Performance

Brand: feature and position

Customers: loyal customers naturally drawn to a brand

Key in management: brand design

Brand: market popularity and network effect

Customers: customer influenced by brand market 

acceptance, e.g. drawn by word of mouth and brand 
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Key in management: customer relationship and 

retention

Brand: marketing action/spending induced
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Key in management: marketing efficiency and 

effectiveness, new customer attraction

Brand Intrinsic Value

Performance Ratio
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because they are connected with and care about the brand [16]. Brand managers often refer 

to these customers as “true customers.” Since loyal customers like and appreciate a brand 

due to the fit between the brand’s features and positions and their needs, brand managers 

should focus on brand design, features, and positioning to increase brand base value. 

Whether the customers are hard-core loyalists who buy the brand all the time or split 

loyalists who are loyal to several brands [66], loyal customers generate stable brand 

performance outcomes. For mature brands, base performance can be modeled as a constant 

because the loyal customer group is relatively stable and purchases repeatedly with 

commitment. 

Market inertia is the portion of brand performance related to brand performance of 

the previous period, and it comprises both the inertia of repeat purchase and new purchase 

from the brand network effect. With little brand commitment, brand inertia of repeat 

purchase is unstable [67] and may be caused and influenced by various factors, such as 

situational cues (e.g., convenience, familiarity), social influence (e.g., word of mouth) [21] 

[68] [69], and customer variety-seeking behaviour [70]. On an aggregate level, brand 

inertia of repeat purchase can be modeled as a percentage of brand performance of the 

previous periods and is considered a carryover effect [71] [72]. In addition, a brand’s 

market popularity and network effect may draw new customers. Some customers value a 

brand because their friends and/or colleagues use it, and others depend on word of mouth 

as an important information source. Brands become more valuable as they gain market 

acceptance and popularity, and customer relationship management and retention are 

important to these customers. A new purchase drawn by a brand’s market popularity and 
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network effect can also be evaluated by its relationship to brand performance of the 

previous period. 

Marketing-induced performance refers to the short-term brand performance 

induced by brand marketing actions, spending, and operations, such as advertising and 

promotion. Marketing-induced performance is short-term oriented and highly fluctuating 

depending on firm short-term brand strategies and investment. The key activities in brand 

management are to improve efficiency and effectiveness of brand marketing spending and 

operation and to attract new customers. 

2.2.2 Modeling brand value structure 

According to the preceding analysis and understanding on brand base performance, 

market inertia, and marketing-induced performance, we model the brand value structure 

using an autoregressive model with exogenous inputs, considering lagged effects of market 

inertia and brand marketing actions: 

                       ,                   (2.1) 

where  is a brand outcome measure estimate at time t;  is brand base 

performance;  is the market inertia performance determined by brand 

performance of the previous periods (𝑡 − 𝑝 to 𝑡 − 1) and the inertia ratios of each period 

(also called “carryover ratio” or “autoregressor”) [36] [26], with an expected range of 

;  is the marketing-induced performances caused by 𝑛 

multiple brand marketing actions or spending ( ) (𝑖 = 1, ⋯ , 𝑛), such as advertising 
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ℎ represents lagged time period; 
 
represents a firm’s capability in transferring the type 

of brand spending to brand performance. 

We model the brand value structure using Eq. 2.1 for the following reasons: First, Eq. 2.1 

models the brand value structure with theoretical consistency and simplicity. That is, brand 

base performance is a constant, brand inertia pertains to brand performance of the previous 

periods, and brand marketing-induced performance is short-term oriented. Second, the 

reduced first-order autoregressive model of Eq. 2.1 (ℎ = 0) 

 , (2.2) 

is of the same format of the model used by brand measurement research to validate 

proposed brand outcome measures and examine brand response to marketing-mix variables 

[17] [36] [73] - [75]. 

 , (2.3) 

where C is an unexplained constant. That is, the first-order autoregressive model is 

empirically accepted in literature to model brand performance. While pervious research 

ignored the constant item (i.e. C) in analysis and focused on brand inputs (i.e. ) and 

performance relationships (i.e. the short-term oriented marketing-induced brand 

performance), we provide a theoretical brand value structure analysis addressing the 

economic meanings of all parameters. Third, methodologically, this model is a generic 
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model that can be reduced to various models used in extant brand research. For example, 

when brand inertia is not considered (i.e. ) and advertising ( ) and R&D ( ) 

spending are examined, Eq. 2.1 reduces to  

 ,  (2.4) 

a commonly used regression model to examine brand drivers [76] [75]. Eq. 2.1 also covers 

the lag models used in extant literature [18] [14] [75]to examine the lagged effects of 

marketing inputs, such as advertising and R&D. Thus, the brand value structure described 

in Figure 2.1 and Eq. 2.1 is conceptually supported and methodologically simple and 

powerful in investigating brand dynamics. 

2.2.3 Brand intrinsic value 

By examining the brand value structure using Eq. 2.1, we quantify brand intrinsic value 

(i.e. the persistent value a brand delivers without any brand marketing action or spending) 

and brand performance ratio (i.e. brand performance in relation to brand intrinsic value). 

To identify brand intrinsic value, we follow Ailawaid et al. [17]’s suggestions and 

investigate the brand performance dynamics when a firm stops brand spending: 

                                               .                                    (2.5) 

For an easy illustration of the brand intrinsic value concept, consider the first-order 

model Eq. 2.2, where  
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When  and a firm stops brand spending, brand performance outcomes can be 

broken down into two parts: The 
 
part is increasing at a decreasing rate, 

reflecting reinforced brand performance through customer purchase and repurchase 

experiences, and the  part is decaying, reflecting the lost brand stimulation and 

support from the firm. When n → ∞, the brand performance reveals its intrinsic value—

that is, the persistent portion a brand delivers without marketing inputs: 

 .   (2.8) 

Similarly, for a general model Eq. 2.1, 

                                                   , (2.9) 

where  is expected. As Eqs. 2.8 and 2.9 reveal, brand base value and brand inertia 

ratio determine brand intrinsic value.  

    Parenthetically, 0<  and 0 < α < 1 are expected range of the values in 

marketing practice. Technically, the values of ∑ 𝛼𝑗
𝑝
𝑗=1  and α can be any real numbers. In 

principle, when  |∑ 𝛼𝑗
𝑝
𝑗=1 | < 1 or |α| < 1, without marketing investments, the time series 

of brand value is stationary. That is, any stimulus to the brand value will decay and 

disappear. On the other hand, when |∑ 𝛼𝑗
𝑝
𝑗=1 | ≥ 1 or |α| ≥ 1, even without marketing 

investments, the time series of brand value is evolving and exhibits random walk or 

excitement. Any change to the brand value will have permanent effects. That is, the 
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marketing investments will have long-lasting and permanent effects on brand value.  In 

practice, for most companies, 0<  and 0 < α < 1. In this chapter, we assume 0< 

 and 0 < α < 1. The assumptions must be verified during empirical illustration. 

In case this can not be verified to a certain firm, further investigation can be performed on 

this firm. 

2.2.4 Brand performance ratio 

Brand performance ratio evaluates brand performance in relation to brand intrinsic 

value. We define it as follows:  

 
Figure 2.2: Brand and Brand Performance 
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 𝑟𝑝𝑒𝑟𝑓 =
𝐵𝑉𝑡

𝐵𝑉𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐
 .  (2.10) 

Brand performance ratio reflects the overall effectiveness of brand strategies and firm 

brand value delivery capabilities. When , firms’ overall brand investments create 

positive brand value; conversely,  indicates ineffective brand operation and 

investments, which result when brand performance is lower than its intrinsic value. In 

general, we expect that . When , immediate attention is needed to adjust 

brand short-term operation and investment strategies. 

2.2.5 Implications from the brand value structure analysis 

The brand value structure analysis links brand performance to brand equity sources 

on the basis of various consumer–brand relationships. By examining the three components 

of brand performance (i.e. base performance, market inertia, and marketing-induced 

performance) and a pair of brand evaluation measures (i.e. brand intrinsic value and 

performance ratio), we can draw several brand evaluation and management insights. First, 

brand intrinsic value and performance ratio are a pair of brand evaluation measures that are 

derived from brand outcome measures but effectively separate brand long-term value from 

short-term performance. Contrary to the volatile estimates of brand outcome measures, 

brand intrinsic value is stable during a period in which Eq. 2.1 holds unchanged. The brand 

performance ratio indicates the effectiveness of brand short-term operation and firm brand 

investment. As Figure 2.2 shows, brand intrinsic value and performance ratio provide a 

foundation to evaluate brand asset value and firm capability according to the resource-

based theories [52]. 
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Second, as Table 2.1 shows, depending on brand intrinsic value and performance 

ratio, we can categorize brand management into four types: (1) high intrinsic value, high 

performance ratio; (2) high intrinsic value, low performance ratio; (3) low intrinsic value, 

high performance ratio; and (4) low intrinsic value, low performance ratio. While 

apparently high-high is a desirable condition and low-low undesirable, in the other two 

combinations, high intrinsic value with low performance ratio is better than low intrinsic 

value with high performance ratio for brand management. Brands with high intrinsic values 

have a strong loyal customer base and staying power, and brands with low intrinsic values 

and high performance ratios are operation dependent and more vulnerable to competition. 

Table 2.1: Four types of brand management scenarios 

 

 Brand Intrinsic Value 

High Low 

Brand 

Performance Ratio 

High 

Good brand, 

good brand operation: a 

desirable condition 

Poor brand,  

good brand operation: 

Operational brands, 

vulnerable and low 

staying power  

Low 

Good brand,  

poor operation: relatively 

high staying power 

Poor brand, 

poor operation 

 

 

Third, brand intrinsic value is determined by brand base value and market inertia 

ratio, not performance-driven brand spending. Thus, brand base value and inertia ratios are 

the most important elements in brand benchmarking and evaluation (i.e. building a loyal 

customer base and increasing brand market inertia ratio are important tasks). Two 

benchmarks can be performed. One is to benchmark brands with the best brand in the 

product market to identify gaps and perform what-if analysis to guide future brand strategy. 

The second is to compare the best brands in different product markets to identify the 
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effectiveness in using the loyal customer base and brand market inertia as brand-building 

tools in different product markets. Some markets may feature a high portion of loyal 

customers, while others may feature high market inertia. 

2.3 Empirical Illustrations 

To illustrate the brand value structure analysis, we analyze top global brands during 

the 1998–2012 period. Note that these empirical illustrations are not intended as a 

comprehensive empirical investigation of the performance of these brands; rather, they are 

employed to demonstrate the concepts we discussed. We use publicly available data to 

facilitate replication studies and theory verification. 

2.3.1 Data  

The main data sources available for use in this research are annual ranking of the 

best global brands released by Interbrand and Compustat provided by Standard and Poor 

(S&P). In case there are missing/wrong financial/marketing data for certain companies, 

especially in Compustat, annual 10-k reports or other government filings must be referred. 

Data from Yahoo! Finance and other resource are also considered for industrial 

classification (IC). 

Interbrand is the first brand consulting company that meets the requirements of the 

ISO 10668 standard of monetary brand valuations. In addition, Interbrand started to release 

the list of top brands earlier than other organizations such as BrandZ, thus more brand value 

data are available from Interbrand. Interbrand estimates brand values using a discounted 

cash flow model and has been publishing annually its “Top 100 Global Brands” lists in 

Financial World during 1992-1997 (for brand values of 1991-1996) and then in 
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BusinessWeek since 1999. Interbrand’s brand values have drawn much media and industry 

attention, and been used in marketing and accounting research to evaluate brand 

performance and examine brand response to marketing variables [24] [18] [75] [77] - [79]. 

In this chapter, we use brand values published in Interbrand’s annual “Top 100 Global 

Brands” lists as the brand outcome measure in our illustration. 

We limit our analysis to the 1998-2012 period to avoid potential problems of the 

unpublished 1997 brand values by Interbrand and valuation changes between Interbrand’s 

publications in Financial World and BusinessWeek. We select only corporate brands, i.e.  

brands bearing the corporate names and accounting for the major part of firm revenues, to 

avoid potential problems when matching with firm brand investment data [78]. 

We use advertising and R&D expenses as two types of brand spending in the 

illustration and retrieve advertising and R&D expenditure data from Compustat. 

Compustat is a database of financial, statistical and market information on active and 

inactive global companies throughout the world. In Compustat, because data items such as 

the advertising expenditures (XAD), the R&D expenditures (XRD), and staff expenditures 

(XLR or XSF) are available only in the North America Fundamentals Annual database, 

this database is used in this research. It is a database of U.S. and Canadian fundamental 

and market information on active and inactive publicly held companies. It provides more 

than 300 annual income statement and 100 quarterly income statement, balance sheet, 

statement of cash flows, and supplemental data items. It also contains information on 

aggregates, industry segments, banks, market prices, dividends, and earnings. XAD 

represents the cost of advertising media (i.e. radio, television, and periodicals) and 

promotional expenses. 
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Table 2.2: Descriptive statistics and correlations 

Brands Variables 
M 

(in B$) 
SD 

Brand Value 

(BV) 

Advertising 

(ADV) 

R&D 

(RD) 

Accenture 

BV 7.33 1.26 1   

ADV .08 .01 .41 1  

RD .35 .11 .89*** .30 1 

Amazon 

BV 7.98 6.27 1   

ADV .48 .57 1.00*** 1  

RD 1.06 1.26 .99*** 1.00*** 1 

Canon 

BV 9.93 1.78 1   

ADV .95 .22 .72*** 1  

RD 2.97 .81 .86*** .81*** 1 

Dell 

BV 9.97 1.90 1   

ADV .64 .21 .02 1  

RD .57 .21 -.57** .70*** 1 

Ford 

BV 14.16 9.09 1   

ADV 3.79 .93 -.62** 1  

RD 6.76 1.08 .31 .07 1 

Harley 

Davidson 

BV 5.95 1.82 1   

ADV 0.07 .01 -.62** 1  

RD 0.15 .03 .30 .39 1 

Hewlett-

Packard 

BV 22.33 3.57 1   

ADV 1.18 .30 -.45 1  

RD 3.2 .50 .05 .43 1 

Honda 

BV 17.25 1.58 1   

ADV 2.37 .44 .62** 1  

RD 4.95 1.08 .78*** .70** 1 

Intel 

BV 33.84 3.07 1   

ADV 1.92 .30 .08 1  

RD 5.57 1.83 .37 .23 1 

Microsoft 

BV 59.94 2.61 1   

ADV 1.32 .28 -.06 1  

RD 7.15 1.94 -.62** .52* 1 

Philips 

BV 7.03 1.96 1   

ADV 1.18 .14 .61** 1  

RD 2.63 .49 -.80*** -.54* 1 

Sony 

BV 11.71 1.76 1   

ADV 4.07 0.55 -.42 1  

RD 4.70 0.64 -.63** .81*** 1 

Toyota 

BV 27.75 5.13 1   

ADV 3.55 .61 .82*** 1  

RD 7.86 1.91 .79*** .77*** 1 

Yahoo 

BV 4.94 .87 1   

ADV .16 .05 .30 1  

RD .62 .46 .12 .80*** 1 

***p-value < .01. **p-value < .05. *p-value < .10. 

 



36 
 

 

The brands under investigation must meet a few requirements. Firstly, a company’s 

brand shall be the only brand or the dominant brand. Secondly, the brand shall be in 

Interbrand’s top 100 ranking during the years from 2001 to 2010. Thirdly, this firm shall 

be in Compustat’s North America Fundamentals Annual. Fourthly, the brands/companies 

selected shall have data for advertising expenditures and R&D expenditures during the 

years from 2001 to 2010. Since these data are optional in companies’ forms 10-K and other 

filings with the U.S. Securities and Exchange Commission (SEC), we must further check 

if these data items retrieved from Compustat are available and sufficient.  Those companies 

or brands that cannot meet the requirements must be excluded from further investigation.  

In addition, most data items we needed and obtained from Compustat are based on 

fiscal years, mainly because the annual data are from sources such as companies’ annual 

reports and 10-k forms. On the contrast, brand value data is based on calendar. There is a 

need for time matching for data from these two resources. In this research, we performed 

some adjustments to the data items when the FYR (fiscal yearend month of the data), which 

identifies the month in which a company ends its fiscal year, is not December. Take the 

A&SP expense as an example, if the we have the FYEAR (fiscal year), and the FYR, then 

to synchronize the fiscal year data from Compustat data with the data from Interbrand, we 

can obtain the data in calendar following below equations:                                         

𝐴𝑆𝑃𝑌𝐸𝐴𝑅 = 𝐴𝑆𝑃𝐹𝑌𝐸𝐴𝑅×(12 − 𝐹𝑌𝑅)/12 +  𝐴𝑆𝑃𝐹𝑌𝐸𝐴𝑅 − 1×𝐹𝑌𝑅/12, 𝑖𝑓 𝐹𝑌𝑅 ≤ 5 , 

  (2.11)                                      

𝐴𝑆𝑃𝑌𝐸𝐴𝑅 = 𝐴𝑆𝑃𝐹𝑌𝐸𝐴𝑅×𝐹𝑌𝑅/12 +  𝐴𝑆𝑃𝐹𝑌𝐸𝐴𝑅 + 1× (12 − 𝐹𝑌𝑅)/12, 𝑖𝑓 𝐹𝑌𝑅 ≥ 6 .  

  (2.12)   
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Similar adjustments are performed to RD. The cumulative adjustment factor allows us to 

evaluate market data on a comparable basis. 

Finally, we identify 14 brands that have 15 years of reported advertising, R&D and 

brand values for analysis. They are Accenture, Amazon, Canon, Dell, Ford, Harley 

Davidson, Hewlett-Packard, Honda, Intel, Microsoft, Philips, Sony, Toyota, and Yahoo. 

Table 2.2 reports data descriptive statistics and correlations. In some cases, the correlations 

among brand value, advertising and R&D expenditures are high. 

2.3.2 Procedures 

We employ the following first-order autoregressive model as the empirical model 

for testing: 

          𝐵𝑉𝑡 = 𝐵𝑉𝑏𝑎𝑠𝑒 + 𝛼𝐵𝑉𝑡−1 + 𝛽𝑎𝑑𝑣,−1𝐴𝐷𝑉𝑡−1 + 𝛽𝑟𝑑𝑅𝐷𝑡 + 𝛽𝑟𝑑,−1𝑅𝐷𝑡−1 + 𝑒𝑡 
.
    (2.13) 

Multicollinearity is observed between explanatory variables in Eq. 2.13. One cause 

of the multicollinearity is the lag effect of ADV and RD respectively. The other cause is a 

certain degree of correlation between ADV and RD. The existence of multicolinearity 

makes it difficult to identify the exact effect of a certain explanatory variable. 

We intend to reduce the multicolinearity. However, there are no minor variables to 

be deleted, no additional constraints to delete a certain variable indirectly. The model shall 

neither be transformed. All in all, traditional approaches to solve the multicolinearity issues 

are not applicable in the research. Incidentally, reshuffling the data will not solve the 

problem because the data will be applied in regression.  Consequently, principal component 

regression (PCR) [80] [81], in which principal component analysis (PCA) is used to 

mitigate multicollinearity among explanatory variables, shall be applied. 
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PCA is a multivariate data analysis technique applicable to models with 

multicollinearity. The essence of PCA is to use an orthogonal transformation to convert a 

set of observations of possibly correlated variables into a set of values of linearly 

uncorrelated variables called principal components. These principal components 

independently represent the effects of the explanatory variables. The number of principal 

components is less than or equal to the number of original explanatory variables. An 

important property of the principal components is that the first principal components has 

the largest possible variance and each succeeding principal component in turn has the 

highest variance possible under the constraint that it be orthogonal to the preceding 

components. Therefore, the first principal component accounts for as much of the 

variability in the data as possible. The issue of multicollinearity can be solved through the 

selection of only a certain number of principal components whose cumulative variance is 

large enough to represent the whole variance of the original data set. The dependent 

variables can be explained by these selected principal components through linear 

regression. Through the relationship between the principal components and original 

explanatory variables, the original model regarding the dependent variable and original 

explanatory variables can be found. In such a model found, the impact of an explanatory 

variable is separated from the impact of another explanatory variable because PCA can be 

thought of as revealing the internal structure of the data in a way that best explains the 

variance in the data. In the process of PCA, the dimensionality of the transformed data is 

reduced thus the issue of multicollineary can be solved. In addition, in order to remove the 

possible autocorrelation of the residue series generated from PCR, generalized difference 

is applied as a step during the proceeding of PCR.  
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The steps of PCA usually are  

(1) Standardize the original data set because PCA is sensitive to the scaling of the 

variables;  

(2) Calculate the eigenvalues and eigenvectors of the covariance matrix of the 

explanatory variables;  

(3) Normalize dependent variable (ZBV in this research), denote them as Z1, Z2,…, 

in sequence, find the relationship between principal components and original variables;  

(4) Perform regression on ZBV to principal components, check the autocorrelation 

and heteroscedasticity of the model;  

(5) Implement generalized difference estimation if necessary till the model with 

normalized variables is finalized;  

(6) Obtain the linear regression model regarding original variables using the 

relationship between the normalized variables and original variables 

In this empirical illustration, PCA generates around two principal components for 

each of 14 regressions. Because the number of principal components used in regressions is 

less than the original explanatory variables in Eq. 2.13, PCA reduces the sample size 

requirement for acceptable prediction. Our sample sizes of around 12, which are 

determined by the number of years investigated, satisfy the sample size requirement for 

models using two principal components [82]. Based on principal component regression 

results, we calculate the brand intrinsic value and brand performance ratio for each brand 

according to Eqs. 2.8 and 2.10.  
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2.3.3 Endogeneity 

To test for endogeneity (i.e. reverse causality between firm advertising and R&D 

expenditures and brand values), we follow Sriram et al. [36] and use log-transformed 

lagged values of advertising and lagged R&D as instruments. We then perform the 

Hausman–Wu test [83] [84]. Using a significant level of p-value < 0.05, the tests reveal no 

violation of the assumed exogeneity of advertising and R&D in our regression model. 

2.3.4 Results 

In econometrics, conventionally, the coefficient of determination, R2 (or adjusted 

R2), is widely accepted measure of how well observed outcomes are replicated by the 

model. R2 is a number that indicates the proportion of the variance in the dependent variable 

that is predictable from the explanatory variable(s). Usually, R2 ranges between 0 and 1. 

The regression model is good when R2 is near 1. On the other hand, the quality of regression 

model cannot be directly measured by the mean square error of et. For the same mean 

square error of et, if the signal levels are different, the quality of regression is different. 

Table 2.3 reports the principal component regression results. The regression model 

of Eq. 2.13 achieved a good fit, with all adjusted R2 values higher than 0.39 and eleven out 

of fourteen higher than 0.60. Most parameter estimations are significant with p-values less 

than 0.10 (The p-value is a number between 0 and 1 and interpreted in the following way: 

A small p-value, typically smaller than 0.05, indicates strong evidence against the null 

hypothesis, so the null hypothesis is rejected). The brand base performance estimations 

range from 1.61 (Amazon) to 39.18 (Microsoft), all in billion dollars. The reported brand 

inertia ratios range from 0.18 (Honda) to 0.78 (Sony). 
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Table 2.3: Principal component regression analysis results 

 
 

Brands BVbase α     Adj. R2 

Accenture 3.16** .37*** 26.84** -35.83** 3.01*** 3.89*** .96 

Amazon 1.61*** .28*** 2.18*** 3.31*** 1.00*** 1.61*** .98 

Canon 2.87** .19*** 1.45*** 1.38*** .49*** .40*** .85 

Dell 5.43*** .67*** 1.41** .38 -2.38*** -3.92*** .87 

Ford 9.83** .24** -1.95** -2.05** 1.17** .96** .77 

Harley Davidson 6.56*** .36*** -39.17*** -48.22*** 21.52*** -2.52*** .87 

Hewlett-Packard 3.43 .66*** -2.64** -4.16** 1.39* 2.40** .88 

Honda 9.04*** .18** .53** .53** .30** .27** .54 

Intel 19.50** .47** .14 -3.55* .45** .38* .63 

Microsoft 39.18** .34* .60 2.06 -.28* -.25* .39 

Philips 4.29** .26*** 2.28*** 2.63*** -.91*** -.85*** .85 

Sony 5.40 .78** .26 .14 -.44* -.60* .69 

Toyota 4.19* .21** 1.49** 1.47** .54** .47** .69 

Yahoo 1.80* .47* 4.89** -.68 .02 -.12 .42 

***p-value≤ .01; **p-value ≤ .05; *p-value ≤ .10.

Adv RD b
Adv, t-1

b
RD, t-1
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Table 2.4: Brand analysis 
 

Brands 

Proposed Brand 

Measures 
MBV 

(Interbrand) 

Brand Ranking 

based on Brand Characteristics 

BVintrinsic rperf BVintrinsic MBV 

Accenture 5.01 1.46 7.33 11 11 A good brand with effective brand operation 

Amazon 2.24 3.57 7.98 14 10 
Brand performance far exceeding brand intrinsic value, very 

effective brand operation 

Canon 3.57 2.78 9.92 12 9 
Brand performance far exceeding brand intrinsic value, very 

effective brand operation; low market inertia. 

Dell 16.43 .61 9.96 4 8 
Ineffective brand operation, high brand potential; high market 

inertia. 

Ford 12.86 1.10 14.16 5 5 A good brand with effective brand operation; low market inertia. 

Harley 

Davidson 
10.29 .58 5.95 7 13 

High brand intrinsic value, ineffective brand operation, high 

brand potential 

Hewlett-

Packard 
10.08 2.21 22.33 8 4 

Highest brand intrinsic value, ineffective brand value delivery; 

high market inertia. 

Honda 10.96 1.57 17.25 6 6 
High brand intrinsic value, effective brand operation; low 

market inertia. 

Intel 37.05 .91 33.84 2 2 
Highest brand intrinsic value caused by both high brand base 

value and high market inertia but ineffective brand operation, 

high brand potential. 

Microsoft 59.77 1.00 59.94 1 1 
Highest brand intrinsic value caused by both high brand base 

value and high market inertia. 

Philips 5.82 1.21 7.03 9 12 A good brand with effective brand operation 

Sony 24.80 .47 11.70 3 7 
Very high brand intrinsic value, but ineffective brand operation, 

high brand potential and staying power; high market inertia. 

Toyota 5.30 5.23 27.73 10 3 
Brand performance far exceeding brand intrinsic value, very 

effective brand operation; low market inertia. 

Yahoo 3.39 1.46 4.94 13 14 A good brand with effective brand operation 
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Table 2.4 provides brand analysis based on regression results, including estimates of 

the proposed brand intrinsic values (𝐵𝑉𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐) and brand performance ratios ( ), brand 

rankings (in the 14 brands analyzed) based on 𝐵𝑉𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 and average Interbrand brand values 

during 1998-2012 (MBV), respectively, and summaries of brand characteristics. The brand 

intrinsic values range from 2.24 (Amazon) to 59.77 (Microsoft), all in billion dollars, and the 

brand performance ratios range from 0.47 (Sony) to 5.23 (Toyota).  

To illustrate several different brand performance scenarios, we plot the Interbrand’s 

brand value estimates ( 𝐵𝑉𝑡 ), brand intrinsic values ( 𝐵𝑉𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 ), advertising and R&D 

spending of four brands, i.e. Dell, Microsoft, Philips, and Yahoo, in Figure 2.3. In the case of 

Dell, brand intrinsic value is higher than brand (performance outcome) value. Microsoft 

demonstrates that the brand performance outcome approximately equals the brand intrinsic 

value. Philips’ brand performance improves significantly over years. Yahoo’s brand 

performance is consistently higher than the brand intrinsic value. To illustrate the ability of the 

empirical model (Eq. 2.13) to represent the sample data, we also plot predicted brand value 

(𝐵𝑉𝐸𝑠𝑡). The predicted brand values closely track the actual Interbrand brand values.   

As our results show, brand value structure analysis reveals brand insights that brand 

outcome measures fail to capture. By extracting brand intrinsic value and brand performance 

ratios from brand outcome performance (i.e. Interbrand’s brand value), we evaluate brand and 

firm brand operations separately. First, shown in Table 2.4, brand ranking based on brand 

intrinsic value estimations is different from that of Interbrand’s brand values. For example, 

Toyota’s ranking in the fourteen brands decreases from number 3 based on Interbrand’s value 

to number 10 based on brand intrinsic value; on the other hand, Sony’s ranking increases from 

number 7 to 3. 

perfr
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Second, firms have different market power and brand operation effectiveness to 

leverage brand performance. Some brands, i.e. Harley Davidson, Intel and Sony, show 

ineffective brand operation with brand performance ratios less than one and need to improve 

their advertising and R&D strategies to fully explore brand potentials. Consider Sony as an 

example of a reputable and well-established brand. It is recognized and respected by customers 

as reliable and of high quality and has a high staying power. However, the rise of numerous 

competitors from countries such as South Korea and China has caused severe competition and 

saturated consumer electronics markets in the past decade, leading to decreased product 

differentiation and ineffective, and sometimes duplicated, R&D efforts among competitors. 

Sony has been losing its leadership in key categories, and needs to be more adaptable to 

customer needs and market competitions [46]. Our brand value structure analysis indicates that 

Sony needs to revitalize its brand operation through better brand strategies and management to 

deliver its intrinsic value. This insight is in line with Sony’s focus on comeback strategies in 

practice in these years. 

On the other hand, some brands such as Amazon, Canon, HP and Toyota benefit from 

highly effective brand operation through high brand investments and positive market response 

to brand investment, achieving high brand performance ratios (𝑟𝑝𝑒𝑟𝑓 ≥ 2). Consider Toyota as 

an example. Toyota’s brand value ($27.73B on average) is higher than that of Honda ($17.25B 

on average), its close competitor. However, our brand value structure analysis suggests that 

Toyota ranks lower than Honda in brand intrinsic values, but operates on a much higher brand 

performance ratio. Toyota’s brand suffered significantly from the 2009-11 vehicle recalls [85], 

which were widely covered by medias and followed by consumers. Several competitors, such 

as General Motors, Ford, Chrysler and Hyundai, took advantages of the Toyota crisis to steal  
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Figure 2.3: Brand Value, Brand Intrinsic Value, and Brand Marketing Spending  
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its loyal customers by offering cash rebates targeted toward Toyota owners. As a result, it is 

no surprising to find the lower brand intrinsic value of Toyota than Honda in our results. 

However, as the high brand performance ratio indicates, Toyota has strong market power. It 

continuously invests in brand advertising and R&D, higher than Honda’s brand investments 

(see Table 2.2), and engages with customers [46]. The brand operation is successful, leading 

Toyota to quickly reclaim its global sales leadership position. 

Third, brands rely differently on brand base performance and market inertia to build 

intrinsic value. For example, both Harley Davidson and HP have similar brand intrinsic values, 

i.e. $10.29B and $10.08B, respectively. However, a perusal of their brand value structure 

reveals important differences. Harley Davidson features a higher brand base performance than 

HP, and HP’s market inertia ratio is about twice as high as Harley Davidson. This difference 

reflects the fact that comparing to HP, an IT supply and services brand, Harley Davidson relies 

more on its core loyal customers. Motocycle buyers are a special group and Harley Davidson 

connects with its customers through a large and active brand community, which consists of 

clubs, events, and a museum. Harley Davidson supplies to many American police motorcycle 

fleets [86] and its logo licensing accounts for about 5% of total net revenue. 

 In addition to the brand-level difference, our results point to market-level differences. 

For example, the market inertia ratios of automobile brands, i.e. Ford (α=0.24), Honda (0.18), 

and Toyota (0.21), are consistently lower than that of IT services brands, i.e. Accenture (0.37), 

Dell (0.67), HP (0.66) and Intel (0.47), in our brand sample. This suggests that comparing to 

the automobile market, word of mouth and brand popularity are even more important in the IT 

services market. Due to the high competition, quick product innovation, and short purchase 

cycle, customers of the IT services are highly sensitive to brand market acceptance. Situational  
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cues (e.g., familiarity) and social influence (e.g., word of mouth) [21] are often used in 

customer brand choice decisions.  

2.4 General Discussion 

Developing better measures of brand equity has been a research focus in the past two 

decades, and various brand outcome measures have been proposed [17] [47] [38]. These 

measures enable brand managers to track brand performance changes and investigate the 

effectiveness of brand marketing actions. However, because brand outcome measures focus on 

performance outcomes and do not link performance to brand equity sources, they lack 

explanatory power and diagnostic ability. In addition, because they do not distinguish brand 

long-term value from short-term performance, they can mislead brand managers to be short-

term focused. Thus, determining how to use brand outcome measures to gain brand 

performance insights and quantify long-term value is an important research topic [17] [43]. 

This research proposes a generic brand value structure analysis to interpret estimates 

of existing brand outcome measures to gain further brand insights. The brand value structure 

analysis takes into account consumer–brand relationships as brand equity sources and 

decomposes brand performance measured by outcome measures into base performance, market 

inertia, and marketing-induced performance. Then, brand intrinsic value and brand 

performance ratio are defined and quantified to assess brand and brand operation, respectively.  

2.4.1 Theoretical contributions 

The brand value structure analysis and its derived measures contribute to literature on 

marketing research in the following ways: First, the analysis is one of few efforts in brand 

research to link brand performance outcomes to brand equity sources, enabling brand outcome 
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measures to be used for diagnostic purposes and become more useful in brand management. 

In contrast with Srinivasan et al. [47]’s work, which links brand incremental contribution to 

brand attribute- and non-attribute-based sources and requires additional survey data, our 

analyses borrow from brand loyalty research and use consumer–brand relationships as brand 

performance sources to interpret brand performance outcomes, limiting the need for further 

data collection. Brands that have similar performance outcomes may differ in the components 

of brand base performance, market inertia, and marketing-induced performance. A high portion 

of brand base performance is desirable because it represents a large loyal customer base. 

 Second, we quantify and distinguish long-term brand value from short-term 

performance. The brand value structure analysis provides economic explanation to an 

autoregressive model and suggests that brand intrinsic value is determined by brand base 

performance and market inertia ratio. This quantification is different from that of Ailawadi et 

al. [17], who estimate long-term brand value by the carryover coefficient (i.e. market inertia 

ratio) and discount rate and ignore brand base performance.  

Third, we separate brand and brand operation in brand assessment and suggest that 

brand intrinsic value and performance ratio should be used to evaluate brand asset value and 

firm brand operation capability. To our knowledge, this is the first response in brand research 

to the suggestion of distinguishing firm capabilities from resources/assets in the resource-based 

theories [52] and the call to separate brand impact from that of company market power and 

other possible determinants [43]. Rather than focusing on brand performance outcomes, brand 

managers should categorize brands into four types on the basis of brand intrinsic value and 

performance ratio: (1) high intrinsic value, high performance ratio; (2) high intrinsic value, low 

performance ratio; (3) low intrinsic value, high performance ratio; and (4) low intrinsic value, 
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low performance ratio. Brands with high intrinsic values have strong staying power, and brands 

with low intrinsic values and high performance ratios are operation dependent and more 

vulnerable to competition. When , a firm suffers from ineffective brand operation and 

fails to deliver brand intrinsic value. 

Fourth, the generic brand value structure analysis can be applied to various brand 

outcome measures to gain brand insights. Ailawadi et al. [17] and Sriram et al. [38] use a 

similar model to Eq. 2.3 to validate their proposed revenue premium and consumer utility based 

brand equity measures and examine brand response to marketing-mix inputs. While we use the 

Interbrand’s brand values to illustrate the brand value structure analysis, this generic brand 

value structure analysis can be applied to various brand outcome measures, which brand 

managers have on hand.  

To demonstrate the brand value structure analysis and key measures proposed, we 

provide empirical illustrations by analyzing 14 top global brands in the recent 15 years and 

gain substantive results. By analyzing and comparing brand intrinsic values, two intrinsic value 

determinants (i.e. brand base value and market inertia), and performance ratio, we illustrate 

that (1) brand ranking based on the intrinsic value is different from that based on brand 

(performance outcome) value; As shown by Sony and Toyota, which brand value rankings 

differ significantly from brand intrinsic value rankings, focusing on brand performance 

outcomes without distinguishing brand from firm brand management can be misleading; (2) 

firms have different market power and brand operation effectiveness to leverage brand 

performance; in some cases (eg. Sony), firms fail to deliver brand intrinsic value and need 

short-term strategic adjustments; (3) brands rely differently on brand base performance and 

market inertia to build intrinsic value. For example, Harley Davidson and HP have similar 

1perfr
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brand intrinsic values, but Harley Davidson relies more on brand base performance, i.e. a large 

portion of brand performance from brand loyal customers, and HP has a higher market intertia 

ratio, i.e. market popularity and network effects are prominent factors in branding; and (4) 

demonstrated by market inertia ratios of automobile and IT services brands, market-level 

differences may exist. 

2.4.2 Managerial contributions 

Brand managers continually monitor brand inputs and outputs and are equipped with 

various brand performance outcome measures. Traditionally, brand managers have used these 

measures to track brand performance changes, which often leads them to focus on short-term 

outcomes. For example, a reputable brand with lower market share may have lower value by 

brand outcome measures than a poor brand with higher market share. A brand may lose a 

significant share of its brand value evaluated by brand earnings when initiating a costly 

advertising campaign.   

The brand structure analysis proposed herein enables brand managers to better use 

available brand outcome measures to understand brand performance structure (base 

performance, market inertia, and marketing-induced performance), features of consumer–

brand relationships (loyal customers, less brand sensitive customers, nonloyal customers), and 

the importance of brand design and operation features (brand design, brand market effect, and 

marketing actions). With an in-depth understanding, what-if analysis can be carried out before 

brand planning and decisions are made. Brand managers can distinguish brand long-term value 

from short-term performance and evaluate overall operation success by examining brand 

intrinsic value and performance ratio. They can employ the brand structure analysis to 
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benchmark brands in the same product market to identify gaps or to compare the best brands 

in different product markets to understand market differences. 

Our approach is simple and easy to use and does not require additional data collection 

efforts from managers. Brand managers already have the brand inputs and outputs data needed 

in this analysis. Although we use Interbrand’s brand values as the brand outcome measure in 

our empirical illustrations, brand managers in practice can use other and likely better or more 

suitable brand outcome measures. We consider advertising and R&D expenditures in the 

empirical illustrations, but brand managers can consider other brand drivers. Although the true 

brand intrinsic value needs to be derived through consideration of a complete set of brand 

performance drivers, based on brand strategic analysis needs, focused analysis can be 

performed by considering a selective set of brand drivers. By assuming that the effect of other 

drivers remains stable, the focused analysis can reveal brand value structure information with 

respect to the brand drivers under study. Managers can also impose various conditions, such 

as budgeting constraints, to the model to suit their needs. Finally, we use annual data in the 

empirical illustration, but brand managers can use data with shorter intervals.  

2.4.3 Methodological contributions 

Due to the lag effects of ADV and RD, as well as the correlation between ADV and RD, 

Multicollinearity is observed between explanatory variables in Eq. 2.13. The existence of 

multicolinearity can greatly weaken the ARX model’s ability to identify the exact effect of a 

certain explanatory variable. 

Since conventional approaches to alleviate the multicolinearity issues are not 

applicable. PCR is performed to remove multicollinearity among explanatory variables 

through the selection of less number of principal components. 
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Moreover, generalized difference method is applied to mitigate the autocorrelation of 

the residue of the regression. 

These methods are rarely used in extant study on the dynamics of brand equity. 

2.4.4 Limitations and opportunities for further research 

Many brand outcome measures have been proposed and validated in the brand research 

literature. However, no single measure satisfies all criteria of good brand measures [17]. Thus, 

comparing and choosing from available measures becomes important in both academic 

research and brand management practice. The presented brand value structure analysis 

provides a potential way to evaluate and compare brand outcome measures. Brand value 

structure analysis can be conducted using different brand outcome measures. The brand 

performance structure revealed through the analysis can be examined and compared with 

consumer–brand relationship survey data to validate brand outcome measures. 

As the first step to decipher the brand value structure, we model a fixed brand intrinsic 

value (i.e. brand intrinsic value remains stable over an observation period) in Eq. 2.1. To use 

this method to achieve good estimations on brand value structure, we assume that brand 

intrinsic value stays relatively stable in the observation period. In practice, brand intrinsic value 

may change over time (e.g., in response to market changes and brand investments). Further 

research could model a changing brand intrinsic value, in response to market inputs and brand 

performance, using advanced modeling techniques. 

For the purpose of demonstrating and explaining the proposed brand value structure 

analysis and the brand intrinsic value and performance ratio concepts, we analyze annual 

performance of 14 top global brands of the recent 15 years in our empirical illustration and 

gain substantive brand insights. This empirical illustration is not intended as a comprehensive 
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empirical study. The brand results can be further examined and validated in comprehensive 

empirical research with large sample size, short-interval brand performance data and more 

brand marketing input variables. For example, if a company has its monthly brand value data, 

which are measured and recorded by the company or provided by another company such as 

Interbrand, a close monitoring of the evolvement of brand equity and the effects of marketing 

activities is possible. Consequently, the effect of certain marketing campaign, such as recent 

Pepsi’s Kendall Jenner commercial, can be estimated in time. 

It shall be mentioned that the results of this research are applicable for the company 

itself only. Technically, each company or brand must implement ARX modeling with 

Interbrand BV data to find their own results. In the case that a company is in the same category 

with one of these 14 companies, the company shall only treat the results from the other 

company as references. 

2.5 Chapter Summary 

Performance outcome measures of brand equity have limited diagnostic ability and do 

not enable marketing managers to disentangle brand from brand operation. In this chapter, a 

generic brand value structure analysis is presented to use brand outcome measures to generate 

further brand insights. The brand value structure analysis (1) decomposes brand performance 

into base performance, market inertia, and marketing-induced performance and (2) defines and 

quantifies brand intrinsic value (i.e. the persistent value a brand delivers without marketing 

actions) and brand performance ratio (i.e. ratio of brand performance outcome to brand 

intrinsic value) to assess brand and brand operation, respectively. Brands with high intrinsic 

values have a strong loyal customer base and staying power while brands with low intrinsic 
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values and high performance ratios are operation dependent and more vulnerable to 

competition. Some brands fail to deliver intrinsic value because of ineffective brand strategy 

and investments. How the brand value structure analysis can use extant brand outcome 

measures to enhance brand assessment is illustrated by analyzing fourteen top global brands. 

In addition, it shall be emphasized that the application of PCR method and generalized 

difference are critical to guarantee the success of the research in this chapter. 
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Chapter III 

A State Space Model and Its 

Maximum Likelihood Estimation  

Form this chapter we work on the estimation of state space models which are 

expected to represent the dynamics of brand equity. As stated in Chapter I, the task to 

estimate a state space model is challenging. In order to fulfill the task step by step, in this 

chapter, we estimate a state space model which is relatively simpler than the model to be 

proposed in Chapter IV. The research in this chapter is to prepare for the more difficult 

research in the next chapter. 

3.1 A State Space Model and MLE   

One of the advantages of the state space models for linear dynamic systems is their 

ability to fit more parsimonious structures with fewer parameters to describe a multivariate 
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time series. As a result, the application of state space models is not limited to engineering 

practice.  

For example, in market research, the dynamics of the brand equity of a firm can be 

represented by a state space model,  

 {
𝑥𝑡 = α𝑥𝑡−1 + 𝛾𝑢t + 𝑒t

𝑦𝑡 = 𝑥𝑡 + 𝑤𝑡
, (3.1) 

where 𝑥𝑡 is the invisible brand equity, 𝑢t is the investment, the exogenous input, 𝑦𝑡 is the 

brand performance, the output, at a certain step 𝑡. The transition coefficient, α, and the 

input coefficient, 𝛾 , are parameters of interest. We assume that |α|<1 as explained in 

Chapter II. The observation noise,  𝑤𝑡, the process noise, 𝑒𝑡, and the initial state, 𝑥0, at each 

step {x0, 𝑒1 , ..., 𝑒t , 𝑤1  ... 𝑤𝑡 } are all assumed to be mutually independent, where 

𝑤𝑡~𝑁(0, 𝜎𝑤
2), 𝑒𝑡~𝑁(0, 𝜎𝑒

2), and 𝑥0~𝑁(𝜇0, 𝜎0
2).  

This state space mode has an exogenous input. For marketing research, there may 

be more than one input. However, in some special market, there may only be one type of 

investment. Moreover, in the cases when there are two or more types of investments, it is 

common that the time series of these types of investments are collinear. After applying 

PCA, only one principle component is kept. As a result, a state space model with only one 

exogenous input is appropriate to investigate the BE dynamics of a firm with certain type 

of investments. 

It shall be noticed that the state space models used in this chapter, as well as Chapter 

IV, are different from typical discrete-time state space models in the time argument for the 

input which should normally be the same as the state in the right-hand side of the equation 

(t-1 instead of t) [41] (pp. 93-104). The typical discrete-time state space models are evolved 
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from continuous-time models for physical systems. However, in areas other than 

engineering, untypical discrete-time state space models are also used, because those models 

are not constrained by the requirements physically. For instance, in an economic system, a 

current input may affect a current state because the investigation is usually based on periods 

of a week, a month, and even a year. Therefore, it is reasonable to use untypical state space 

model. In extant literature, both Van Heerde et al. [97] and Ataman et al. [98] used such 

untypical models. 

Maximum likelihood estimation (MLE) [87] is used to obtain the time-invariant 

parameters of a state space model with known time series about input, 𝑢t, and the output, 

𝑦𝑡. Because the Kalman filter for the state space model operates recursively on streams of 

noisy input data to produce a statistically optimal estimate of the underlying system state, 

the mathematical optimization problem is a problem of nonlinear global optimization, 

where the objective function has a large number of local minima and maxima.  Classical 

methods to find maximum likelihood estimates, such as gradient descent, conjugate 

gradient or variations of the Gauss–Newton method, which typically require the evaluation 

of first and/or second derivatives of the likelihood function, are often trapped at one of 

many local optima, especially when the sample size is large. Moreover, symbolic 

(analytical) methods are frequently not applicable, and the use of numerical solution 

strategies often leads to very complex challenges. Consequently, expectation-

maximization (EM) algorithm [88], an iterative method, is used to complete MLE of 

parameters in state space models. 
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Typical approaches for the implementation of the EM algorithm in the MLE of 

linear state space model are delivered by Ghahramani and Hinton [89], Shumway and 

Stoffer [90] and Holmes [91]. However, estimation approaches for state space models with 

time-varying exogenous inputs are not provided in extant literature. Although in [91], [92] 

and [94], the inputs in the state space mode are either constant or not affecting the hidden 

variables. 

Our research in this chapter is to find appropriate methods for the supervised 

problem: using the EM algorithm for the MLE of those state space models which have 

exogenous inputs. Considering the complexity of the issue of state space model estimation, 

the research is a preparatory attempt to estimate more complicated state space models such 

as the model in Chapter IV. 

In this chapter, we use the model represented by Eq. 3.1 as an example of the models 

with exogenous inputs. Our target is to estimate the parameters, α, 𝛾, 𝜎𝑒, 𝜎𝑤, 𝜇0 and 𝜎0. 

Our work is carried out mainly in two phases: initial guessing and EM estimating with 

approaches different from ones in extant literature. Moreover, if the sample size is large, 

we use the asymptotic variances of the estimated parameters to check the accuracy of the 

estimation. If the sample size is small, we introduced bootstrapping to examine of the 

distribution of the estimated parameters. 

3. 2 Initial Guessing 

The initial guessing is performed through two steps. Firstly, the system parameter 

𝛼 and the variances 𝜎𝑒, 𝜎𝑤 and 𝜎0 are guessed using autocovariance of the observations. 
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Then the initial state mean 𝜇0 and control parameter γ are guessed using weighted linear 

square (WLS). 

3.2.1 Initial guessing of the system parameter and the variances  

Denote 𝜂𝑡 = ∑ 𝛼𝑖𝑒𝑡−𝑖
∞
𝑖=0 , from Eq. 3.1 we have 

 𝑥𝑡 =
𝛾𝑢t

1−𝛼
+ 𝜂𝑡 .      (3.2) 

For ℎ = 0,1,2……, we can obtain both the covariance (when ℎ = 0) and autocovariance 

(when ℎ > 0) of 𝜂𝑡 as 

 𝛾𝜂
(ℎ) =

σe
2𝛼ℎ

1−𝛼2
,  (3.3) 

while it is obvious that 

 σ0
2 =

σe
2

1−α2
,  (3.4) 

which means that we do not have to estimate 𝜎𝑒 and 𝜎0 separately. 

Moreover, we have the variance of 𝑦t 

 𝛾𝑦
(0) = 𝜎0

2 + 𝜎𝑤
2 ,  (3.5) 

and the covariance of 𝑦t when ℎ = 1, 2, 3 ⋯,  

 𝛾𝑦
(ℎ) = 𝛾𝜂

(ℎ).  (3.6) 

Hence we can obtain the initial guess for 𝛼, 𝜎𝑒 and 𝜎𝑤 

 

{
 
 

 
 𝛼 =

𝛾𝑦
(2)

𝛾𝑦
(1)

𝜎𝑒
2 =

(1−α2)𝛾𝑦
(1)

α

𝜎𝑤
2 = 𝛾𝑦

(0) −
𝜎𝑒
2

1−α2

   .  (3.7) 
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where 𝛾𝑦(1) , instead of 𝛾𝑦(0), is used to calculate 𝛼 and 𝜎𝑒
2 because of the deference in 

the calculation of 𝛾𝑦(0) (Eq. 3.5) and 𝛾𝑦(0) (Eq. 3.6). 

3.2.2 Initial state mean and control parameter 

Denoting 

  𝑧𝑡 = ∑ αt−i𝑢i
𝑡
𝑖=1 , (3.8) 

and 

 𝜁𝑡 = ∑ αt−i𝑒i
𝑡
𝑖=1 + 𝑤𝑡,  (3.9) 

we have, 

 𝑦𝑡 = α
t𝜇0 + 𝛾𝑧𝑡 + 𝜁𝑡,  (3.10) 

where  𝜁𝑡~𝑁(0, 𝜎𝜁
2) and   

 𝜎𝜁
2 =

1−α2t

1−α2
𝜎𝑒
2 + 𝜎𝑤

2 .  (3.11) 

In order to estimate 𝜇0  and 𝛾 , we perform linear regression between 𝑦𝑡 , as 

dependent variable, and αt and 𝑧𝑡, as independent variables, using T sample of 𝑢𝑡 and 𝑦𝑡. 

Since 𝜁𝑡 is heteroscadestical, we apply WLS, which finds its optimum when the weighted 

sum, S, of squared residuals is minimized where  

 𝑆 =  ∑
(𝑦𝑡−α

t𝜇0−𝛾𝑧𝑡)
2

1−α2t

1−α2
𝜎𝑒
2+𝜎𝑤

2

𝑇
𝑡=1 .  (3.12) 

Denote 𝑣𝑡 = (1 − α2t)𝜎𝑒
2 + (1 − α2)𝜎𝑤

2 , we solve the gradient equation (regarding 

𝜇0 and 𝛾 respectively) for the sum of squares 

 {
∑

αt(𝑦𝑡−α
t𝜇0−𝛾𝑧𝑡)(1−α

2)

𝑣𝑡

𝑇
𝑡=1 = 0

∑
𝑧𝑡(𝑦𝑡−α

t𝜇0−𝛾𝑧𝑡)(1−α
2)

𝑣𝑡

𝑇
𝑡=1 = 0

 .  (3.13) 
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Therefore, we will have initial guess about 𝜇0 and 𝛾 as below: 

  

{
 
 

 
 𝛾 =

∑
α2t

𝑣𝑡

𝑇
𝑡=1 ∑

𝑧𝑡𝑦𝑡
𝑣𝑡

𝑇
𝑡=1 −∑

αt𝑦𝑡
𝑣𝑡

𝑇
𝑡=1 ∑

αt𝑧𝑡
𝑣𝑡

𝑇
𝑡=1

∑
α2t

𝑣𝑡

𝑇
𝑡=1 ∑

𝑧𝑡
2

𝑣𝑡

𝑇
𝑡=1 −∑

αt𝑧𝑡
𝑣𝑡

𝑇
𝑡=1 ∑

αt𝑧𝑡
𝑣𝑡

𝑇
𝑡=1

𝜇0 =
∑

αt𝑦𝑡
𝑣𝑡

𝑇
𝑡=1 ∑

𝑧𝑡
2

𝑣𝑡

𝑇
𝑡=1 −∑

αt𝑧𝑡
𝑣𝑡

𝑇
𝑡=1 ∑

𝑦𝑡𝑧𝑡
𝑣𝑡

𝑇
𝑡=1

∑
α2t

𝑣𝑡

𝑇
𝑡=1 ∑

𝑧𝑡
2

𝑣𝑡

𝑇
𝑡=1 −∑

αt𝑧𝑡
𝑣𝑡

𝑇
𝑡=1 ∑

αt𝑧𝑡
𝑣𝑡

𝑇
𝑡=1

.  (3.14) 

3.3 Estimation Using the EM Algorithm 

We can write the conditional density for the states and outputs,  

 𝑃(𝑥𝑡|𝑥𝑡−1) =
1

𝜎𝑒√2𝜋
𝑒𝑥𝑝 [−

(𝑥𝑡−α𝑥𝑡−1−𝛾𝑢𝑡)
2

2𝜎𝑒
2 ],  (3.15) 

 𝑃(𝑦𝑡|𝑥𝑡) =
1

𝜎𝑤√2𝜋
𝑒𝑥𝑝 [−

(𝑦𝑡−𝑥𝑡)
2

2𝜎𝑤
2 ].  (3.16) 

Assuming a Gaussian initial state density 

 𝑃(𝑥0) =
1

𝜎0√2𝜋
𝑒𝑥𝑝 [−

(𝑥0−𝜇0)
2

2𝜎0
2 ],  (3.17) 

By the Markov property implicit in this model, we calculate the joint probability, not the 

partial probability used by Shumway and Stoffer [90], regarding all T samples of 𝑥𝑡 and 

𝑦𝑡, denoted as {𝑥} and {𝑦} respectively: 

                  𝑃({𝑥}, {𝑦}) = 𝑃(𝑥0)∏ 𝑃(𝑥𝑡|𝑥𝑡−1)
𝑇
𝑡=1 ∏ 𝑃(𝑦𝑡|𝑦𝑡−1)

𝑇
𝑡=1         (3.18) 

We denote the joint log probability as  

 𝛺 = log𝑃({𝑥}, {𝑦}).  (3.19) 

According to Eq. 3.4, we only need to estimate the parameter set, 𝛹 = {α, 𝛾, 𝜎𝑒 , 𝜎𝑤 , 𝜇0}, 

through maximizing the objective function:   
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 𝛺(α, 𝛾, 𝜎𝑒 , 𝜎𝑤, 𝜇0) = −
(1−α2)(𝑥0−𝜇0)

2

2𝜎𝑒
2 −

1

2
ln

𝜎𝑒
2

1−α2
− ∑

(𝑥𝑡−α𝑥𝑡−1−𝛾𝑢𝑡)
2

2𝜎𝑒
2

𝑇
𝑡=1 −

1

2
𝑇ln𝜎𝑒

2 −

∑
(𝑦𝑡−𝑥𝑡)

2

2𝜎𝑤
2

𝑇
𝑡=1 −

1

2
𝑇ln𝜎𝑤

2 −
2𝑇+1

2
ln(2𝜋).   (3.20) 

3.3.1. The EM algorithm 

Since the objective function given above depends on the unobserved data series, 𝑥𝑡, 

𝑡 = 1, 2, …𝑇, we consider applying the EM algorithm conditionally with respect to the 

observed output series 𝑦1, 𝑦2, …, 𝑦𝑇. Different from the EM algorithm for linear dynamic 

systems proposed by Shumway and Stoffer [90], the objective function expressed in Eq. 

3.20 has the inputs thus the input coefficient must be estimated.  

In the E Step of the EM algorithm, the parameters are assumed known, the hidden 

states and their variance are estimated over all the samples, and then the likelihood function 

constructed from joint probability is calculated.  

For the M step in the EM algorithm, we must find the parameter set 𝛹̂(𝑘) =

{α(𝑘), 𝛾(𝑘), 𝜎𝑒(𝑘), 𝜎𝑤(𝑘), 𝜇0(𝑘)} during the kth counts of the recursions by maximizing 

the conditional expectation, or the objective function as in Eq. 3.20. 

The overall procedure for the estimation is as below: 

(i) Initialize the procedure by selecting the guessed values as starting values for the 

parameters. 

On iteration k, (𝑘 = 1, 2, …) 

(ii) Compute the log-likelihood (optional). 

(iii) Use the parameters, obtain the smoothed values of the hidden states and their 

correlations, for 𝑡 =  1,2, … , 𝑇.  
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(iv) Use the smoothed values to calculate the updated parameters. 

(v) Repeat steps (ii) – (iv) to convergence. 

The EM algorithm always increase the likelihood and is guaranteed convergence to 

a stationary point for an exponential family [93].  

We mainly perform two sub-steps in the E step of the EM algorithm: Kalman 

filtering and Kalman smoothing. 

3.3.2 Kalman filtering and smoothing 

Assuming that we already know the parameter set {  α ,  𝛾 , 

𝜎𝑒 ,  𝜎𝑤 ,  𝜇0 ,  𝜎0 }(𝑥0~𝑁(𝜇0, 𝜎0
2) ), and the observations 𝑦𝑡  and inputs 𝑢𝑡 , we have the 

estimation of the hidden states, as well as the variances estimated based on the observations 

for the period 1 to t. 

 𝑥𝑡|𝑡−1 = α𝑥𝑡−1|𝑡−1 + 𝛾𝑢𝑡,  (3.21a) 

 𝑣𝑡|𝑡−1 = α2𝑣𝑡−1|𝑡−1 + 𝜎𝑒
2,  (3.21b) 

 𝑦𝑡̃ = 𝑦𝑡 − 𝑥𝑡|𝑡−1,  (3.21c) 

 𝑠𝑡 = 𝑣𝑡|𝑡−1 + 𝑣𝑤,  (3.21d) 

 𝑘𝑡 = 𝑣𝑡|𝑡−1𝑠𝑡
−1,  (3.21e) 

 𝑥𝑡
𝑡 = 𝑥𝑡|𝑡−1 + 𝑘𝑡𝑦𝑡̃,  (3.21f) 

 𝑣𝑡
𝑡 = (1 − 𝑘𝑡)𝑣𝑡|𝑡−1,  (3.21g) 

where 𝑥0|0 = 𝜇0 and 𝑣0|0 = 𝜎0
2. 

According to Shumway and Stoffer [90], to compute 𝐸[𝑥𝑡|{𝑦, 𝑢}] ≡ 𝑥𝑡
𝑇  and the 

correlation matrices 𝑝𝑡 ≡ 𝑣𝑡
𝑇 + 𝑥𝑡

𝑇(𝑥𝑡
𝑇)′ one performs a set of backward recursions using 
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 𝑗𝑡−1 = α
𝑣𝑡−1|𝑡−1

𝑣𝑡|𝑡−1
, (3.22) 

 𝑥𝑡−1
𝑇 = 𝑥𝑡−1|𝑡−1 + 𝑗𝑡−1(𝑥𝑡

𝑇 − α𝑥𝑡−1|𝑡−1 − 𝛾𝑢𝑡),  (3.23) 

 𝑣𝑡−1
𝑇 = 𝑣𝑡−1|𝑡−1 + 𝑗𝑡−1(𝑣𝑡

𝑇 − 𝑣𝑡|𝑡−1)𝑗𝑡−1
′ , (3.24) 

where 𝑥𝑇
𝑇 = 𝑥𝑇|𝑇 and 𝑣𝑇

𝑇 = 𝑣𝑇|𝑇. We also have 𝑝𝑡,𝑡−1 ≡ 𝑣𝑡,𝑡−1
𝑇 + 𝑥𝑡

𝑇(𝑥𝑡−1
𝑇 )′, where 𝑣𝑡,𝑡−1

𝑇  

can be obtained through the backward recursions 

 𝑣𝑡−1,𝑡−2
𝑇 = 𝑣𝑡−1|𝑡−1𝑗𝑡−2

′ + 𝑗𝑡−1(𝑣𝑡,𝑡−1
𝑇 − α𝑣𝑡−1|𝑡−1)𝑗𝑡−2

′ , (3.25) 

which is initialized using 𝑣𝑇,𝑇−1
𝑇 = α(1 − 𝑘𝑇)𝑣𝑇−1

𝑇−1. 

Note that the state estimate, 𝑥𝑡
𝑇, differs from that computed by the Kalman filter in 

that it is the minimum mean square error smoothed estimator of 𝑥𝑡 based on all observed 

data (and input data), i.e. it depends on past and future observations; the Kalman filter 

estimates 𝐸[𝑥𝑡|{𝑦}1
𝑡 ] are the estimators based on past and future observations.  

3.3.3 Expected log-likelihood formulation 

After we have got the expected values for 𝑥0  and 𝑥𝑡  as 𝑥0
𝑇 ≡   𝐸[𝑥0|{𝑦, 𝑢}] and 

𝑥𝑡
𝑇 ≡ 𝐸[𝑥𝑡|{𝑦, 𝑢}] respectively, we can calculate the expectation of the log-likelihood 

 𝐸(𝛺) = 𝐸[ln𝑃({𝑥}, {𝑦})].   (3.26) 

Applying Eq. 3.1, 𝐸(𝛺) becomes  

  𝐸(𝛺) = −
1

2
𝐸(𝛺0) −

1

2
𝐸(𝛺1) −

1

2
𝐸(𝛺2) −

2𝑇+1

2
ln(2𝜋) , (3.27) 

where 

𝛺0 =
(𝑥0−𝜇0)

2

𝑣0
+ ln𝑣0, 

𝛺1 = ∑
(𝑥𝑡−α𝑥𝑡−1)

2

𝑣𝑒

𝑇
𝑡=1 + 𝑇ln𝑣𝑒, 

𝛺2 = ∑
(𝑦𝑡−𝑥𝑡)

2

𝑣𝑤

𝑇
𝑡=1 + 𝑇ln𝑣𝑤, 
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Denote  

 {

𝑃𝑡−1
𝑇 = ∑ 𝐸[𝑥𝑡−1𝑥𝑡−1

′ |{𝑦}]𝑇
𝑡=1

𝑃𝑡
𝑇 = ∑ 𝐸[𝑥𝑡𝑥𝑡

′|{𝑦}]𝑇
𝑡=1

𝑃𝑡,𝑡−1
𝑇 = ∑ 𝐸[𝑥𝑡𝑥𝑡−1

′ |{𝑦}]𝑇
𝑡=1

,  

 {

𝑀𝑡−1
𝑇 = ∑ 𝐸(𝑥𝑡−1𝑢𝑡)

𝑇
𝑡=1

𝑀𝑡
𝑇 = ∑ 𝐸(𝑥𝑡𝑢𝑡)

𝑇
𝑡=1

𝑈𝑡
𝑇 = ∑ 𝑢𝑡

2𝑇
𝑡=1

 ,  

and  

 {

𝑊𝑡−1
𝑇 = ∑ 𝐸(𝑥𝑡−1𝑦𝑡)

𝑇
𝑡=1

𝑊𝑡
𝑇 = ∑ 𝐸(𝑥𝑡𝑦𝑡)

𝑇
𝑡=1

𝑌𝑡
𝑇 = ∑ 𝑦𝑡

2𝑇
𝑡=1

,  

we have  

 𝐸(𝛺0) =
1−α2

𝜎𝑒
2 [𝑣0

𝑇 + (𝑥0
𝑇 − 𝜇0)

2] + ln
𝜎𝑒
2

1−α2
,  (3.27a) 

 𝐸(𝛺1) = 𝜎𝑒
−2(𝑃𝑡

𝑇 + α2𝑃𝑡−1
𝑇 + 𝛾2𝑈𝑡

𝑇 − 2α𝑃𝑡,𝑡−1
𝑇 − 2𝛾𝑀𝑡

𝑇 + 2α𝛾𝑀𝑡−1
𝑇 ) + 𝑇ln𝜎𝑒

2,   (3.27b) 

 𝐸(𝛺2) = 𝜎𝑤
−2(𝑌𝑡

𝑇 + 𝑃𝑡
𝑇 − 2𝑊𝑡

𝑇) + 𝑇ln𝜎𝑤
2 .  (3.27c) 

3.3.4 Estimation of the parameters 

We use the first order conditions on partial derivatives of 𝐸(𝛺)  to individual 

parameters to obtain the gradient and then the values of individual parameters. This method 

is not the multivariate regression approach used by Shumway and Stoffer [90]. The 

parameters are chosen such that the objective function is maximized, i.e., the gradients, i.e. 

the first order partial derivatives, are all zero., i.e. 
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{
 
 
 
 

 
 
 
 
𝛿𝐸(𝛺)

𝛿𝜇0
= 0

𝛿𝐸(𝛺)

𝛿α
= 0

𝛿𝐸(𝛺)

𝛿𝛾
= 0

𝛿𝐸(𝛺)

𝛿𝜎𝑒
= 0

𝛿𝐸(𝛺)

𝛿𝜎𝑤
= 0

. 

Considering Eq. 3.27, we have, 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝛿𝐸(𝛺0)

𝛿𝜇0
=

2(𝑥0
𝑇−𝜇0)

𝜎0
2 = 0

𝛿𝐸(𝛺1)

𝛿α
= 2𝜎𝑒

−2(α𝑃𝑡−1
𝑇 − 𝑃𝑡,𝑡−1

𝑇 + 𝛾𝑀𝑡−1
𝑇 ) = 0

𝛿𝐸(𝛺1)

𝛿γ
= 2𝜎𝑒

−2(𝛾𝑈𝑡
𝑇 −𝑀𝑡

𝑇 + α𝑀𝑡−1
𝑇 )  = 0

𝛿𝐸(𝛺1)

𝛿𝜎𝑒
+
𝛿𝐸(𝛺0)

𝛿𝜎𝑒
                                                                                                                                    

= −2
𝑃𝑡
𝑇+α2𝑃𝑡−1

𝑇 +𝛾2𝑈𝑡
𝑇−2α𝑃𝑡,𝑡−1

𝑇 −2𝛾𝑀𝑡
𝑇+2α𝛾𝑀𝑡−1

𝑇 +(1−α2)[𝑣0
𝑇+(𝑥0

𝑇−𝜇0)
2
]

𝜎𝑒
3

               

                                                                                                                          +2
T+1−α2

𝜎𝑒
= 0

𝛿𝐸(𝛺2)

𝛿𝜎𝑤
= −2𝜎𝑤

−3(𝑌𝑡
𝑇 + 𝑃𝑡

𝑇 − 2𝑊𝑡
𝑇) + 2𝑇𝜎𝑤

−1 = 0

. 

The estimate of α, 𝛾, 𝜎𝑒
2, 𝜎𝑤

2  and 𝜇0 are from below five equations 

 α(1 − α2)𝑣0
𝑇 − α𝜎𝑒

2 − α(1 − α2)𝑃𝑡−1
𝑇 + (1 − α2)𝑃𝑡,𝑡−1

𝑇 − 𝛾(1 − α2)𝑀𝑡−1
𝑇 = 0 , 

  (3.28a) 

 𝛾𝑈𝑡
𝑇 −𝑀𝑡

𝑇 + α𝑀𝑡−1
𝑇 = 0,  (3.28b) 

 (1 − α2)𝑣0
𝑇 − (1 + 𝑇)𝜎𝑒

2 + 𝑃𝑡
𝑇 + α2𝑃𝑡−1

𝑇 + 𝛾2𝑈𝑡
𝑇 − 2α𝑃𝑡,𝑡−1

𝑇 − 2𝛾𝑀𝑡
𝑇 + 2α𝛾𝑀𝑡−1

𝑇 = 0,  

  (3.28c) 

  𝜎𝑤
2 =

1

𝑇
(𝑌𝑡

𝑇 + 𝑃𝑡
𝑇 − 2𝑊𝑡

𝑇),  (3.28d) 

 𝜇0 = 𝑥0
𝑇.  (3.28e) 
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Moreover, we use the second order partial derivatives of 𝐸(𝛺) to calculate the 

information matrix. Most of them are zero except those listed below: 

 
𝜕2𝐸(𝛺)

𝜕𝛼2
=

𝑣0
𝑇+(𝑥0

𝑇−𝜇0)
2
−𝑃𝑡−1

𝑇

𝜎𝑒
2 −

1+α2

(1−α2)2
,  (3.29) 

 
𝜕2𝐸(𝛺)

𝜕𝛾𝜕𝛼
=

𝜕2𝐸(𝛺)

𝜕𝛼𝜕𝛾
= −

𝑀𝑡−1
𝑇

𝜎𝑒
2  ,  (3.30) 

 
𝜕2𝐸(𝛺)

𝜕𝜎𝑒𝜕𝛼
=

𝜕2𝐸(𝛺)

𝜕𝛼𝜕𝜎𝑒
=

2(α𝑃𝑡−1
𝑇 −𝑃𝑡,𝑡−1

𝑇 +𝛾𝑀𝑡−1
𝑇 )−2α[𝑣0

𝑇+(𝑥0
𝑇−𝜇0)

2
]

𝜎𝑒
3 ,   (3.31) 

 
𝜕2𝐸(𝛺)

𝜕𝛾2
= −

𝑈𝑡
𝑇

𝜎𝑒
2  ,  (3.32) 

 
𝜕2𝐸(𝛺)

𝜕𝜎𝑒𝜕𝛾
=

𝜕2𝐸(𝛺)

𝜕𝛾𝜕𝜎𝑒
=

2(𝛾𝑈𝑡
𝑇−𝑀𝑡

𝑇+α𝑀𝑡−1
𝑇 )

𝜎𝑒
3 ,  (3.33) 

 
𝜕2𝐸(𝛺)

𝜕𝜎𝑒
2 =

𝑇+1

𝜎𝑒
2 −

3(1−α2)[𝑣0
𝑇+(𝑥0

𝑇−𝜇0)
2
]

𝜎𝑒
4 − 

3(𝑃𝑡
𝑇+α2𝑃𝑡−1

𝑇 +𝛾2𝑈𝑡
𝑇−2α𝑃𝑡,𝑡−1

𝑇 −2𝛾𝑀𝑡
𝑇+2α𝛾𝑀𝑡−1

𝑇 )

𝜎𝑒
4 ,  

  (3.34) 

 
𝜕2𝐸(𝛺)

𝜕𝜎𝑤
2 =

𝑇

𝜎𝑤
2 −

3(𝑌𝑡
𝑇+𝑃𝑡

𝑇−2𝑊𝑡
𝑇)

𝜎𝑤
4  ,  (3.35) 

 
𝜕2𝐸(𝛺)

𝜕𝜇0
2 = −

1−α2

𝜎𝑒
2  .  (3.36) 

In addition, when all the first order derivatives equal zero, the likelihood is 

optimized as， 

 𝐸(𝛺) = −[ln𝜎0 + 𝑇ln𝜎𝑒 + 𝑇ln𝜎𝑤 + (𝑇 + 0.5)(ln2𝜋 + 1)]. (3.37) 

Therefore, the value of likelihood is mainly decided by sample size, process noises 

and observation noises. When 𝑇 is large enough, we can assume 

 lim
𝑇→∞

𝐸(𝛺)

𝑇
= −ln𝜎𝑒 − ln𝜎𝑤 − ln2𝜋. (3.38) 
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lim
𝑇→∞

𝐸(𝛺)

𝑇
 can be treated as the average joint likelihood for each time instant with input and 

output sample set of the time instant. The absolute value of the likelihood will be almost 

proportional to the sample size T. 

As we know, the variance of an maximum likelihood estimator, 𝛹  or 𝛹̂ML , is 

calculated by the inverse of the information matrix, 𝐼(𝛹), which is the inverse of the 

negative of the expected value of the Hessian matrix:  

 𝐻(𝛹) =
𝜕2log𝑃({𝒙},{𝒚})

𝜕𝛹𝜕𝛹′
. (3.39) 

The variance-covariance matrix of 𝛷̂ML is  

 𝑉𝑎𝑟(𝛹) = [𝐼(𝛹)]−1 = −(𝐸[𝐻(𝛹)])−1 = (−𝐸 [
𝜕2log𝑃({𝒙},{𝒚})

𝜕𝛹𝜕𝛹′
])
−1

 . (3.40) 

As we’ll see shortly, the standard errors of the estimator, 𝛹̂ML,  are just the square roots of 

the diagonal terms in the variance-covariance matrix. 

According to Cramer-Rao theorem, the MLE is an efficient estimate. When the 

sample size is large enough, the asymptotic variances of the estimates can be considered as 

the metric of the accuracy of the estimation. The vector of the asymptotic variances of the 

estimates is 

[
 
 
 
 
 
 
 
 

(𝑇 + 1)(α2 − 1)2𝑈𝜎𝑒
2

(𝑇+1)(1−α2 )2(P0𝑈−𝑈𝜎0
2 −M0

2)+( 1+𝑇−α2+𝑇α2)𝑈𝜎𝑒
2

[(1 +𝑇)(1− α2)
2
(P0−𝜎0

2)+ (1+ 𝑇− α2+ 𝑇α2)𝜎𝑒
2]𝜎𝑒

2

(𝑇+1)(1−α2 )2(P0𝑈−𝑈𝜎0
2 −M0

2)+( 1+𝑇−α2+𝑇α2)𝑈𝜎𝑒
2

[(1− α2)
2
(P0𝑈−M0

2−𝑈𝜎0
2)+( 1+ α2)𝑈𝜎𝑒

2]𝜎𝑒
2

(𝑇+1)(1−α2 )2(P0𝑈−𝑈𝜎0
2 −M0

2)+( 1+𝑇−α2+𝑇α2)𝑈𝜎𝑒
2

𝜎𝑤
2

2𝑇

𝜎0
2 ]

 
 
 
 
 
 
 
 

. 
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When T is large than 1, as shown below, the estimation accuracy for 𝜇0 will not 

change, while the accuracy for 𝜎𝑒 and 𝜎𝑤 will be improving. For  α and γ, the changing 

of the accuracy depends on stationary of the time series. 

[
 
 
 
 
 
 
 
 

(α2 − 1)2Uve

(1−α2 )2(P0𝑈−𝑈v0 −M0
2)+(1 +α2)𝑈ve

[(1− α2)
2
(P0−v0)+ ( 1+ α

2)ve]ve

(1−α2 )2(P0𝑈−𝑈v0 −M0
2)+(1 +α2)𝑈ve

[(1− α2)
2
(P0U−M0

2−Uv0)+( 1+ α
2)Uve]ve

𝑇(1−α2 )2(P0𝑈−𝑈v0 −M0
2)+(1 +α2)𝑈ve

𝜎𝑤
2

2𝑇

𝜎0
2 ]

 
 
 
 
 
 
 
 

. 

Per Cramer-Rao Theorem, given certain regularity conditions concerning the 

distribution, the variance of any unbiased estimator of a parameter, 𝛷, must satisfy: 

𝑉𝑎𝑟(𝛹) ≥ −(𝐸[𝐻(𝛹)])−1. 

This means that any unbiased estimator that achieves this lower bound is efficient and no 

better unbiased estimator is possible. Since, 𝑉𝑎𝑟(𝛹) = −(𝐸[𝐻(𝛹)])−1, i. e., no consistent 

estimator has lower asymptotic mean squared error (MSE) than the of the MLE, MLE is 

an efficient estimator. 

If the sample size is small, we introduce boot-strapping procedure where the 

estimates are obtained from likelihood constructed from re-sampled standardized 

innovation, 𝑦𝑡̃, in Eq. 3.21c. Moreover, the mean squared errors of the state variables which 

is estimated from Eqs. 3.21a-g using estimated parameters are also estimated. 
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3.4 Data Generation and Simulation Results 

The output data is generated through presetting the input signal and the values of the 

parameters. We implement the initial guess, the EM algorithm and so on, and finally obtain the 

estimates of the parameters. This makes it easy to evaluate our work by comparing the actual values 

with the estimated values, or by checking the standard deviation of the estimates. 

3.4.1 Data generation 

We generate data from the state space model described as Eq. 3.1. We assume α = 0.8, 

γ = 1.5, and 𝜇0 = 0. Moreover, the process noises, 𝑒t, and observation noise, 𝑤𝑡, are generated 

independently where 𝑒t~𝑁(0, 1.1
2) and 𝑤t~𝑁(0, 0.9

2). We assume that the input, 𝑢𝑡, is a slow 

changing periodical square wave signal whose period is 10 time units.  The standard deviation of 

initial state, 𝜎0, is not needed during the data generation but can be calculated according to Eq. 3.2. 

The expected log-likelihood can be calculated using Eq. 3.27. Both are treated as “actual” values 

to be compared with guessed values and estimated values. 

We performed our simulation using two different sample sizes: the large size of 1000 and 

the small size of 50. When the sample size is small, we apply the bootstrapping method to estimate 

the accuracy of the estimates. 

3.4.2 Results 

We provide the results of the simulation with the small sample size of 50 in Table 

3.1, and the results of the simulation with the large sample size of 1000 in Table 3.2.  

In Table 3.1 and Table 3.2, we display the actual values, the guessed values, the 

estimated values and the standard deviations of the estimated values for transition 

coefficient, α, input coefficient, γ, standard deviation of process errors, σe, standard 
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Table 3.1: The parameters obtained after three iterations (Sample Size: 50) 

Parameters Actual Guessed Estimated Std. Dev. 

α 0.8 0.879 0.801 0.023 

γ 1.5 1.075 1.438 0.104 

σe 1.1 1.400 0.708 0.158 

σw 0.9 0.922 0.862 0.193 

μ0 0 0.992 2.143 1.231 

σ0 1.83 3.811 1.183 0.252 

 

Table 3.2: The parameters estimated with large sample size (Sample Size: 1000) 

Parameters Actual Guessed Estimated Std. Dev. 

α 0.8 0.879 0.800 0.0001 

γ 1.5 1.276 1.424 0.0012 

σe 1.1 2.024 1.033 0.0011 

σw 0.9 0.533 0.971 0.0005 

μ0 0 2.459 1.667 2.9614 

σ0 1.83 4.250 1.721 NA 

deviation of observation errors, σw, mean of initial state, μ0, and standard deviation of initial 

state, σ0. The standard deviations in Table 3.1 are from the bootstrapped distribution while 

the standard deviations in Table 3.2 are from the asymptotic variances. In general, the 

guessed values are near the ‘actual” values while the estimated values are much closer to 

the “actual” values than the guessed ones, especially for the parameters of interest: α and 
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γ. It is worth noting that the deviations of the estimated values are larger than the asymptotic 

ones due to the imperfect generated data. 

3.5 Conclusions 

The purpose of this study in this chapter is to try new methods in the application of 

the EM algorithm in the MLE of a constrained dynamic linear system with exogenous 

input. There are three main contributions in this chapter. Firstly, we realize that the stand 

σ0 and σe has the relationship expressed by Eq. 3.4 thus we don’t have to estimate them 

during the implementation of the EM algorithm. Accordingly, the likelihood function in 

Eq. 3.27 is not like those provided by previous researchers who overlooked the relationship. 

Secondly, in initial guess of the value of control coefficient and the mean of initial state, 

we introduce weighted least square for the guess of control coefficient, γ, and the mean of 

the initial state, μ0. Thirdly, since the estimation of a state space model with exogenous 

time-varying inputs are not found in time series analysis and econometrics, the research is 

this chapter is an important attempt. The success in the estimation means that we are ready 

to estimate state space models which are more complicated than the model proposed in this 

chapter. 

It is obvious that more techniques must be found for both the initial guessing and 

the estimating based on the initial guess, especially during the implementation of the M 

step of the EM algorithm. The approaches we proposed can be a new start point for the 

future research on the estimation of dynamic systems with higher dimensions of exogenous 

inputs, hidden states and observations. Some of these ideas will be used in Chapter IV. 
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3.6 Chapter Summary 

The EM algorithm is popularly used in maximum likelihood estimation of 

parameters for state space models. However, extant approaches for the realization of the 

EM algorithm are still not able to fulfill the task of identification dynamic systems which 

have exogenous inputs. In this chapter, for the state space model representing a system with 

an exogenous input series, we propose new approaches for the initial guessing of parameter 

values and the MLE of these values. Using WLS for the initial guessing and the partial 

differentiation of the joint log-likelihood function for the EM algorithm, we not only 

estimated the parameters but also compared the estimated values with the “actual” values, 

which are set to generate simulation data. Moreover, asymptotic variances of the estimated 

parameters are calculated when the sample size is large, while distributions of the estimated 

parameters are obtained through bootstrapping when the sample size is small. The results 

show that the estimated values are close to the “actual” values. This indicates the 

approaches used are promising in MLE of a state space model with a exogenous input 

series. 
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Chapter IV 

The Estimation of a State Space 

Model with Partly Known 

Parameters and Nonlinear 

Constraints 

In this chapter, we continue to apply state space models to model the dynamics of 

brand equity. Compared with the ARX models used in Chapter II when sample size is small 

and the brand values are unknown, state space models are proposed when the sample size 

is large and brand values are unknown. Compared with the state space model used in 

Chapter III, the state space model proposed in this chapter has two time-varying inputs and 

nonlinear constraints, thus is useful to explain a system about brand equity and to study the 
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effects of different components in this system. However, we must recognize that it is much 

more challenging to estimate such models then to estimate the model used in Chapter III. 

As a result, we will concentrate on the design and development of new approaches and the 

application of existing methods used in areas other than marketing one. As mentioned in 

Chapter I, the application of the proposed model to empirical study will be future work to 

be completed when enough data about a firm’s brand performance, expenditures on 

advertising and R&D are available. 

4.1 A State Space Model for Brand Equity Dynamics 

State space models are widely used in various applications. In economics, a 

financial model assumes that the trend, seasonal and cycles are hidden stochastic processes 

and the observations are produced through their integration [95]. In environmental research, 

a linear Gaussian state space model is applied to sea surface temperature [96]. In marketing 

research, a state space model is employed to investigate sales response in a certain good 

category [97] to show how marketing activities can be important in building new brands 

and in managing existing brands [98], or to investigate the dynamic effects of advertising 

and word of mouth on the demand for a new product [99].  

  Denote 𝒖𝑡 as the vector of inputs, 𝒙𝑡 as the vector of hidden states, and 𝒚𝑡 as the 

vector of outputs at time 𝑡.  A state space model is described with the process equation 

(4.1.1) and the observation equation (4.1.2):  

  𝒙𝑡 = 𝜱𝒕𝒙𝑡−1 + 𝜞𝑡𝒖𝑡 + 𝒆t, (4.1.1)  

   𝒚𝑡 = 𝑯𝑡𝒙𝑡 +𝒘t, (4.1.2) 
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where 𝒆𝑡 is the vector of process noises assumed to be normally distributed with mean, 𝟎, 

and covariance, 𝑸𝑡, i.e., 𝒆𝑡~𝑁(𝟎,𝑸𝑡). 𝒘𝑡 is the vector of observation noises assumed to 

be normally distributed with mean, 𝟎, and covariance, 𝑹𝒕, i.e., 𝒘𝑡~𝑁(𝟎, 𝑹𝒕). Moreover, 

𝜱𝒕  is the state transition matrix; 𝜞𝑡  is the input matrix; 𝑯𝒕  is the design matrix or 

observation matrix. Furthermore, the initial state, 𝒙0~𝑁(𝝁0, 𝑽0), and the noise vectors at 

each step, { 𝒆1, 𝒆2, … , 𝒆𝑡 }  and {  𝒘1, 𝒘2, … ,𝒘𝑡} , are all assumed to be mutually 

independent.  

The hidden states can be estimated through Kalman filtering [100] and Kalman 

smoothing in Sect. 4.2. 

4.1.1 A state space model for brand equity dynamics 

 An application of state space model is on the structural analysis of brand 

performance [101] [102] through brand label and brand operation. Brand label is an 

important firm asset associated with customer brand recognition and perception. Brand 

label and its associate customer knowledge have value, which we call brand label value 

(BLV). This value contributes to brand performance value, but is more persistent than 

brand performance. Brands generate performance through brand operation, which involves 

the key role of an organization. A brand will generate more earnings if the organization 

allows better market space, distribution, brand synergy and other infrastructure supports. 

We call the value generated through brand leverage brand operation value (BOV) and 

examine BOV through firm investments and its capabilities to leverage these investments. 

 In the dynamic of brand performance, we define the observation matrix as known, 

i.e., 𝐻 = [1 1]T. The components in system matrix and the input matrix are partly known, 
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i.e., 𝛷 = [
 𝛼 𝛽
0 0

]  and 𝛤 = [
 0 0
𝛾1 𝛾2

] . The observation covariance matrix is actually 

degenerated as a scalar, 𝑹 = 𝑟. In addition, regarding the initial state, 𝒙𝟎, we define its 

mean as, 𝝁0 = [
𝜇10
𝜇20

], and its covariance as,  𝑽0 = [
𝑣10 𝑣x0
𝑣x0 𝑣20

]. Moreover, we further define, 

at time 𝑡, 

 𝒚𝑡 = 𝐵𝑃𝑡, where tBP  is the brand performance; 

 𝒙𝑡 = [
𝐵𝐿𝑉𝑡
𝐵𝑂𝑉𝑡

] , where 𝐵𝐿𝑉𝑡  and 𝐵𝑂𝑉𝑡   are brand label value and brand 

operation value respectively; 

 𝒖𝑡 = [
𝐴𝑑𝑣𝑡
𝑅𝐷𝑡

] , where 𝐴𝑑𝑣𝑡  and 𝑅𝐷𝑡  are advertising expenses and R&D 

expenses respectively; 

 𝒆𝑡 = [
𝑒1,t
𝑒2,t
]  where 𝑒1,t  and 𝑒1,t  are the process noises with the variance-

covariance matrix 𝑸, 𝑸 = [
𝑞1 𝑞x
𝑞x 𝑞2

]； 

 𝒘t = 𝑤t where 𝑤t is the observation noise with variance 𝑟. 

From the above brand dynamic formulation, we have the scaler form of the BE dynamic 

model: 

 tttt eBOVBLVBLV 111    , (4.1.3) 

  tttt eRDAdvBOV 221   , (4.1.4) 

 tttt wBOVBLVBP   ,    (4.1.5)  

i.e., BOV is created through firm’s investments, and its capabilities to leverage these 

investments. Brand operation will contribute to BLV through brand performance. 
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In order to be distinguished from the general state space model as described in Eqs. 

4.1.1 and 4.1.2, we call the model with its defined matrices, 𝜱, 𝑯, 𝜞, 𝑸 and 𝑹, 𝝁0 and 𝑽0, 

as a parsimonious state space model. 

 In this research, we intend to estimate the unknown elements of the matrices, 𝜱, 𝑯, 

𝜞, 𝑸 and 𝑹, 𝝁0 and 𝑽0. Since the values of theses matrices are partly known, our task is to 

estimate the vector,  𝝍，or 𝝍13  in this section, which is from a set of 13 unknown 

parameters, or elements of these matrices:  

 𝝍 = 𝝍13 = [α, β, 𝛾1, 𝛾2, 𝑞1, 𝑞x, 𝑞2, 𝑟, 𝜇10, 𝜇20, 𝑣10, 𝑣x0, 𝑣20]. (4.1.6) 

 These parameters are constrained by certain linear or nonlinear equations, such as 

Eq. 4. 5.15 in Sect. 4.5. Generally, we denote the 𝑖th constraint as:  

 ℎ𝑖(𝝍) = 0 . (4.1.7) 

In practice, α, β, 𝛾1  and 𝛾2  are usually the parameters of interest among all 13 

parameters. This implies that the accuracy of the estimates of these four parameters is often 

emphasized. Therefore, we expect accurate estimation on these four parameters. When 

necessary, it is acceptable to sacrifice the accuracy of the estimated values of other 

parameters to guarantee the accuracy of the estimates of the parameters of the interest. 

4.1.2 Characteristics of the parsimonious model 

The parsimonious state space model has four characteristics: (1) linear Gaussian 

model, (2) time-variant exogenous input series, (3) partly known parameters, (4) nonlinear 

constraints to components of matrices. 

Firstly, without considering nonlinear constraints, the parsimonious model is linear 

Gaussian. The estimation of linear state space model has been studied several researchers 

[103] [89] [104] [105] and the estimation of nonlinear state space model has been studied 
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by Schon et al. [106] and Kokkala et al. [107]. However, the models studied in these papers 

do not have the characteristics of this parsimonious model. For example, all those models 

are fully parameterized. 

Secondly, the model includes time-variant exogenous inputs while some elements 

of the input matrix must be estimated. In previous works [95] [96] [103] [89] [107], linear 

state space models without inputs are estimated. Although Ghahramani and Hinton [89] 

mention the possibility of inputs in the model and state that the extension is straightforward, 

only Gibson and Ninness [105] propose an estimation method to fully parametrized state 

space models of linear dynamic systems with exogenous input series. 

Thirdly, the model is not fully parameterized. Some or all elements in the system 

matrix, 𝜱𝒕, the input matrix, 𝜞𝑡, and the design matrix, 𝑯𝒕, of the state space model are 

known. In contrast, most state space models, such as those used by many authors [89] [103] 

- [107], to be estimated are fully parametrized models where all elements of all matrices 

are unconstrained. Fully parametrized state space models provide a very general, compact 

and simple framework to represent finite-dimensional multivariable systems [105]. 

However, those methods are not applicable to identify a dynamic system [106] represented 

by state space models, as in [95] - [99], where some of the parameters are known. The 

estimation methods for such models must be developed. 

Fourthly, there are nonlinear constraints to certain parameters, especially to the 

components of matrices for the parsimonious model. Linear constraints to the transition 

matrix, 𝜱, are investigated [103] [104]. However, as we know, the state space models with 

nonlinear constraints have not been investigated in the extant literature. 
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 In this chapter, we intend to identify a state space model with the above four 

characteristics. To limit the complexity of our research, we assume the matrices for the 

state apace model are time-invariant.  In other words, our purpose is to find the unknown 

elements of the matrices, 𝜱, 𝜞, 𝑯, 𝑸 and 𝑹, 𝝁0 and 𝑽0.  

In extant literature, as we know, no methods have been provided to estimate the 

parameters of a dynamic system with all four characteristics. However, some proposed 

approaches in extant literature are available to a dynamic system with some of these four 

characteristics. Roughly, these methods can be sorted into two categories. The first 

category is based on maximum likelihood estimation (MLE) [108] while the second 

category is based on Markov chain Monte Carlo (MCMC) [109] [110]. They have their 

own advantages and disadvantages. In the following two sections, we will introduce two 

popular methods to estimate the parameter of a state space model: MLE and MCMC. We 

intend to develop our proposed method after comparing these two. 

 This chapter is organized as follows. In Sect. 4.2 and Sect. 4.3, we respectively 

introduce the two categories of methods: MLE and MCMC (through literature review). In 

Sect. 4.4, we compare these two categories of methods and propose our approach for 

guessing and estimating the parameters of a dynamic system. Our proposal emphasizes two 

crucial steps: the guessing of starting value and the integration of methods for nonlinear 

optimization.  The procedure to guess the starting values for the EM algorithm is detailed 

in Sect. 4.5. The integration of methods for nonlinear optimization in the M step of the EM 

algorithm is presented in Sect. 4.6. The simulation and its results are presented in Sect. 4.7. 

Finally, the discussion, conclusion and future work are given in Sect. 4.8. 
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4.2 Existing Methods：MLE 

In statistics, MLE is a method of estimating the parameters of a statistical model 

given observations, by finding the parameter values that maximize the likelihood of making 

the observations given the parameters. To introduce the application of MLE in the 

estimation of state space models, we need to introduce the Kalman filter and the Kalman 

smoother first. 

4.2.1 Kalman filter and Kalman smoother 

Assuming we already know the parameter values from the (k-1)th iteration, or the 

starting values of these parameters, as well as the observations, 𝑦𝑡, and inputs, 𝒖𝑡, we can 

estimate the hidden states and their variances at time t based on the observations from steps 

1 to t using the Kalman filtering algorithm as shown though Eqs. 4.2.1 - 4.2.7, where the 

parameter values are those from k-1th iteration, or the starting value when 𝑘 = 1.  

  𝒙𝑡|𝑡−1 = 𝜱𝑥𝑡−1|𝑡−1 + 𝜞𝒖𝑡,  (4.2.1) 

  𝑽𝑡|𝑡−1 = 𝜱𝑣𝑡−1|𝑡−1𝜱
′ + 𝑸,  (4.2.2) 

  𝑦𝑡̃ = 𝑦𝑡 −𝑯𝒙𝑡|𝑡−1,  (4.2.3) 

  𝚺 𝑡 = 𝑯𝑽𝑡|𝑡−1𝑯
′ + 𝑹, (4.2.4) 

  𝑲𝑡 = 𝑽𝑡|𝑡−1𝑯
′𝑠𝑡
−1, (4.2.5) 

  𝒙𝑡|𝑡 = 𝒙𝑡|𝑡−1 +𝑲𝑡𝑦𝑡̃, (4.2.6) 

  𝑽𝑡|𝑡 = (1 − 𝑲𝑡)𝑽𝑡|𝑡−1, (4.2.7) 

where 𝒙0|0 = 𝝁0 = [
𝜇1,0
𝜇2,0

 ] and 𝑽0|0 = 𝑽0. 𝑦𝑡̃ is called as “innovation”. 
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 We extend the algorithm proposed by Shumway and Soffer [103] to a dynamic 

model with input 𝒖(𝑡), to compute the expectation 𝐸[𝒙𝑡|{𝑦, 𝑢}1
𝑇] ≡ 𝒙𝑡

𝑇 and the correlation 

matrices 𝑷𝑡 ≡ 𝑽𝑡
𝑇 + 𝒙𝑡

𝑇(𝒙𝑡
𝑇)′ based on past and future observation data and input. A set of 

backward recursions is performed using Eqs. 4.2.8 - 4.2.11: 

  𝑱𝑡−1 = 𝑽𝑡−1|𝑡−1𝜱
′[𝑽𝑡|𝑡−1]

−1
, (4.2.8) 

  𝒙𝑡−1
𝑇 = 𝒙𝑡−1|𝑡−1 + 𝑱𝑡−1(𝒙𝑡

𝑇 − 𝒙𝑡−1|𝑡), (4.2.9) 

 𝑽𝑡−1
𝑇 = 𝑽𝑡−1|𝑡−1 + 𝑱𝑡−1(𝑽𝑡

𝑇 − 𝑽𝑡|𝑡−1)𝑱𝑡−1
′ , (4.2.10) 

where 𝒙𝑇
𝑇 = 𝒙𝑇|𝑇 and 𝑽𝑇

𝑇 = 𝑽𝑇|𝑇. 

 We also have 𝑷𝑡,𝑡−1 ≡ 𝑽𝑡,𝑡−1
𝑇 + 𝒙𝑡

𝑇(𝒙𝑡−1
𝑇 )′ , which can be obtained through the 

backward recursions 

 𝑽𝑡−1|𝑡−2
𝑇 = 𝑽𝑡−1|𝑡−1𝑱𝑡−2

′ + 𝑱𝑡−1(𝑽𝑡|𝑡−1
𝑇 −𝜱𝑽𝑡−1|𝑡−1)𝑱𝑡−2

′ , (4.2.11) 

where 𝑽𝑡−1|𝑡−2
𝑇  is initialized using 𝑽𝑇|𝑇−1

𝑇 = (𝑰 − 𝑲𝑇𝑯)𝜱𝑽𝑇−1|𝑇−1. 

4.2.2 Mathematical optimization problem 

The estimation of the parameters of the state space model, as in Eqs. 4.1.1 and 4.1.2, 

is quite complicated. We use 𝝍13  to represent the vector of parameters containing the 

elements of the initial mean and covariance µ10 , µ20 , 𝜈10 , 𝜈20 , and 𝜈x0 , the transition 

coefficients, α and β, the input components 𝛶1 and 𝛶2, and the elements, 𝑞1, 𝑞2, 𝜈10, 𝑞x,  of 

the state and observation covariance matrices Q and R. We use maximum likelihood under 

the assumption that the initial state is normal, 𝑥0  ∼  N(𝝁0, 𝐕0), and the errors 𝑤1,..., 𝑤𝑛 

and 𝜈1,..., 𝜈𝑛 are jointly normal and uncorrelated vector variables. We continue to assume, 

for simplicity, that{ 𝑤𝑡} and {𝜈𝑡} are uncorrelated.  
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The value of the log likelihood function can be calculated at each stage using the 

“innovations” form, i.e., Eq. 4.2.3.   

The innovations form of the likelihood function proceeds by noting the innovations 

are independent Gaussian random vectors with zero means and, covariance matrices as 

shown in Eq. 4.2.4. 

Hence, ignoring a constant and multiplying a number -2, we may write the doubled 

negative log likelihood, 𝐷𝒚(𝝍), as 

 𝐷𝒚(𝝍) = log|𝑽𝑡| + ∑ ln(𝒚𝑡 −𝑯𝑡𝒙𝑡|𝑡−1)𝑽𝑡
−1(𝒚𝑡 −𝑯𝑡𝒙𝑡|𝑡−1)

𝑇
𝑡=1 , (4.2.12) 

where we have emphasized the dependence of the innovations on the parameters 𝝍 .  

Accordingly, the mathematical optimization problem is 

 max
𝝍
−𝐷𝒚(𝝍) , (4.2.13) 

or 

 min
𝝍
𝐷𝒚(𝝍).  (4.2.14) 

4.2.3 Algorithm for MLE: Newton-Raphson 

𝐷𝒚(𝝍) is a highly nonlinear and complicated function of the unknown parameters. 

The usual procedure is to fix 𝒙0 and then develop a set of recursions for 𝐷𝒚(𝝍) and its first 

two derivatives. Then, a Newton–Raphson algorithm can be applied repeatedly to update 

the parameter values until 𝐷𝒚(𝝍)  is minimized. The steps involved in performing a 

Newton–Raphson estimation procedure are as follows. 

(i) Select starting values, 𝝍(0),  for the parameters.  
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(ii) Run the Kalman filter, Eq. 4.2.1 - 4.2.7, using the starting parameter values, 

𝝍(0), to obtain a set of innovations and error covariances, {𝑦𝑡̃
 (0) 

; t = 1,...,T} 

and {𝑽t
(0)
  ;  𝑡 =  1, . . . , 𝑇}.  

(iii) Run one iteration of a Newton–Raphson procedure with 𝐷𝒚(𝝍)  as the 

criterion function, to obtain a new set of estimates, say 𝝍(1).  

(iv) At iteration 𝑖 (𝑖 =  1,2, . ..), repeat step (ii) using 𝝍(𝑖) in place of 𝝍(𝑖−1) to 

obtain a new set of innovation values { 𝑦𝑡̃
 (0) 

; 𝑡 =  1, . . . , 𝑇  } and 

{𝑽t
(i)
  ;  𝑡 =  1, . . . , 𝑇 }. Then repeat step 3 to obtain a new estimate 𝝍(𝑖+1). 

(v) Stop when the estimates or the likelihood stabilize; for example, stop when 

the values of 𝝍(𝑖+1) differ from 𝝍(𝑖), or when − log 𝐿( 𝝍(𝑖+1)) differs from 

− log 𝐿( 𝝍(𝑖)), by some predetermined, but small amount. 

4.2.4 Algorithm for MLE: EM 

Generally, the MLE methods have a few undesired features which can be avoided 

using the EM (Expectation-Maximization) algorithm [88]. Firstly, the calculation of the 

inverse of the matrix of second order partials can be fairly large if there is a noticeable 

number of parameters. As a result, the corrections in the successive iterations is generally 

quite involved. Secondly, it is not guaranteed that the successive steps in Newton-Raphson 

algorithm will decrease 𝐷𝒚(𝝍). Sometimes, if an extremely large step is encountered, 

𝐷𝒚(𝝍) may even increase. 

On the other hand, the EM steps always decrease 𝐷𝒚(𝝍). For an exponent family, 

convergence to a stationary point is guaranteed. Depending on the shape of 𝐷𝒚(𝝍), a local 

or global minimum can be found. In contrast to the highly nonlinear appearance of the 
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Newton-Raphson expressions, the EM equations usually have a simple heuristically 

appealing form. When there are no inputs in the model in the form of Eqs. 4.1.1 and 4.1.2. 

The basic idea is that if we could observe the states at time 𝑡, 𝒙𝑡:𝑇 = {𝑥0, 𝑥1, . . . , 𝑥𝑇}, in 

addition to the observations, 𝒚𝑡:𝑇 = {𝑦0, 𝑦1, . . . , 𝑦𝑇},  then we would consider {𝒙𝑡:𝑇 , 𝒚𝑡:𝑇} 

as the complete data, with the joint density 

 𝑓𝝍(𝒙𝑡:𝑇 , 𝒚𝑡:𝑇)  =  fµ0,𝑽0(𝒙0)∏ f𝝍,𝑄(𝒙𝑡|𝒙𝑡−1)
𝑇
𝑡=1 ∏ fR(𝒚𝑡|𝒙𝑡)

𝑇
𝑡=1  . (4.2.15) 

Under the Gaussian assumption and ignoring constants, the doubled negative log-

likelihood from Eq. 4.2.15 with complete data {𝒙𝑡, 𝒚𝑡}, can be written as  

 𝑫𝒙,𝒚(𝝍) =  ln|𝑽0| +  (𝒙0 − 𝝁𝟎)
′𝑽0
−1  (𝒙0  − 𝝁𝟎)  +  𝑇ln|𝑸| + ∑ (𝒙𝑡 −

𝑇
𝑡=1

𝜱𝒙𝑡−1)
′𝑸−1(𝒙𝑡  − 𝜱𝒙𝑡−1)  +  𝑇ln|𝑹| + ∑ (𝒚𝑡  − 𝑯𝒕𝒙𝑡−1)

′𝑹−1(𝒚𝑡  − 𝑯𝒕𝒙𝑡−1)
𝑇
𝑡=1  . 

  (4.2.16)  

Since we actually do not have the complete data, we apply the EM algorithm, an 

iterative method, to find the MLEs of 𝝍 based on the incomplete data, 𝒀𝑇, by successively 

maximizing the conditional expectation of 𝑫𝒙,𝒚(𝝍).  

To implement the EM algorithm, we denote, at iteration 𝑖, (𝑖 =  1,2, . ..),  

 𝐺( 𝝍(𝒊)|  𝝍(𝑖−1)) =  𝐸{𝑫𝒙,𝒚(𝝍)| {𝒚𝒕},𝝍
(𝑖−1)}.  (4.2.17)  

Calculation of Eq. 4.2.17 is the expectation step. Given the current value of the parameters, 

𝝍(𝑗−1), we can apply the Kalman smoothing (Eqs. 4.2.8 - 4.2.11) and then obtain the 

desired conditional expectations. We have  

 𝐺(𝝍(𝒊)|𝝍(𝑖−1)) =  ln|𝑽0| +  tr{𝑽0
−1  [ 𝑷0

𝑇 + (𝒙0
𝑇 − 𝝁𝟎)(𝒙0

𝑇 − 𝝁𝟎)
′]} +  𝑇ln|𝑸| +

 tr{𝑸−1[𝑺11 − 𝐒10Φ
′ −𝚽𝑺10

′  +  𝚽𝐒00
′ 𝚽′]} +  𝑇ln|𝑹|  +  tr{𝑹−1∑ [(𝒚𝑡  −

𝑇
𝑡=1

𝑨𝑡𝒙𝑡
𝑇)(𝒚𝑡 − 𝑨𝑡𝒙𝑡

𝑇)′ + 𝑨t𝑷𝑡
𝑇𝑨𝑡

′ ] },   (4.2.18) 

where  
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 𝑺11 = ∑ (𝒙𝑡
𝑇𝒙𝑡

𝑇′ + 𝑷𝑡
𝑇)𝑇

𝑡=1 ,  (4.2.19) 

 𝑺10  = ∑ (𝒙𝑡
𝑇𝒙𝑡−1

𝑇 ′
+ 𝑷𝑡,𝑡−1

𝑇 )𝑇
𝑡=1   ,  (4.2.20) 

and 

 𝑺00 = ∑ (𝒙𝑡−1
𝑇 𝒙𝑡−1

𝑇 ′
+ 𝑷𝑡−1

𝑇 )𝑇
𝑡=1 .  (4.2.21) 

Minimizing Eq. 4.2.18 with respect to the parameters, at iteration 𝑖 , is the 

maximization step of the EM algorithm, which yields the updated estimates 

 𝜱(𝑖) = 𝑺10𝑺00
−1,  (4.2.22)  

 𝑸(𝑖) = 𝑇−1(𝑺11  − 𝑺10𝑺 00
−1 𝑺10

′ ),  (4.2.23) 

and  

 𝑹(𝑖) = 𝑇−1∑ [(𝒚𝑡  − 𝑨𝑡𝒙𝑡
𝑇)(𝒚𝑡  − 𝑨𝑡𝒙𝑡

𝑇)′  + 𝑨𝑡𝑷𝑡
𝑇𝑨𝑡

′ ]𝑇
𝑡=1 .  (4.2.24)  

The updates for the initial mean and variance–covariance matrix are  

 𝝁𝟎
(𝑖) = 𝒙 0

𝑇 , (4.2.25) 

and  

 𝑽 0
(𝑖)
= 𝑷0

𝑇 . (4.2.26) 

obtained from minimizing Eq. 4.2.18.  

The iterative procedure of the EM algorithm is as follows. 

(i) Initialize the procedure by selecting starting values for the parameters 𝝍(0)  =

 {𝝁𝟎, 𝑽0, 𝜱, 𝑸, 𝑹}.  

On iteration 𝑖, (𝑖 =  1, 2, ……)：  

(ii) Compute the incomplete-data likelihood, 𝐷𝒚(𝝍
(𝑖−1)); see Eq. 4.2.12.  
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(iii) Perform the E Step. Obtain the smoothed values 𝒙𝑡
𝑇, 𝑷𝑡

𝑇  and 𝑷𝑡,𝑡−1
𝑇 , for 𝑡 =

 1, . . . , 𝑇, using the parameters 𝝍(𝑖−1). Use the smoothed values to calculate 𝑺11, 

𝑺10, 𝑺00 given in Eqs. 4.2.19 - 4.2.21.  

(iv) Perform the M Step. Update the estimates, {𝝁𝟎, 𝑽0, 𝜱, 𝑸, 𝑹} using Eqs. 4.2.22 

- 4.2.26, to obtain 𝝍(𝑖).  

(v) Repeat steps (ii) – (iv) to convergence. 

4.3 Existing Method: Markov Chain Monte Carlo 

 In statistics, MCMC methods are a class of sampling algorithms for a probability 

distribution. The sampling algorithm is based on constructing a Markov chain. And the 

Markov chain has the expected distribution as its equilibrium distribution. After a number 

of steps, the state of the chain (not the state of a state space model) is then used as a sample 

of the expected distribution. MCMC based methods are recommended in parameter 

estimation of various mathematical models, including those state space models with time-

variant exogenous input series.  

In this section, we assume that a state space model has the structure described by 

Eqs. 4.1.1 and 4.2.2. This structure is a generalized format of the state space model: 

 𝒙𝑡|{𝒙0:𝑡−1, 𝒚0:𝑡−1}~𝑝(𝒙𝑡|𝒙𝑡−1, 𝝍),  (4.3.1) 

 𝒚𝑡|{𝒙0:𝑡, 𝒚0:𝑡−1} ∼  𝑝(𝒚𝑡|𝒙𝑡, 𝝍).  (4.3.2)  

Throughout this subsection, we denote 𝒙0:𝑡 = (𝒙0, . . . , 𝒙𝑡), and write 𝑝(· | ·) for a 

generic conditional probability density or mass function. Moreover, we specify p(𝒙0|𝝍) 

as an initial distribution. The model is dependent on an unknown multi-dimensional 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_chain#Steady-state_analysis_and_limiting_distributions
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parameter 𝝍. Conditional on the parameter 𝝍, we assume that the state model is Markov, 

and the observation 𝒚𝑡 only depends on the state at that time, 𝒙𝑡, at time instant 𝑡. 

In this section, our intention is to introduce how to perform Bayesian inference for 

a state space model given data 𝒚1:𝑇. Assuming a prior for the parameters, 𝑝(𝝍), has been 

specified, the posterior of the parameters 𝑝(𝝍 |𝒚0:𝑇), or in some cases the joint distribution 

of the state and the parameters, 𝑝(𝝍, 𝒙0:𝑇|𝒚0:𝑇) will be obtained. From these posterior 

distributions, we can design an MCMC algorithm using data augmentation [111]. The key 

to the MCMC algorithm is to design a Markov chain whose state is (𝝍, 𝒙0:𝑇), and whose 

stationary distribution is 𝑝(𝝍, 𝒙0:𝑇| 𝒙0:𝑇), considering that the stationary distribution of the 

MCMC algorithm is available up to proportionality:  

 𝑝(𝝍,  𝒙0:𝑇 |𝒚0:𝑇)  ∝  𝑝(𝝍)𝑝(𝒙0 | 𝝍) ∏ 𝑝(𝒙𝑡| 𝒙𝑡−1, 𝝍)
𝑇
𝑡=1 ∏ 𝑝(𝒚𝑡| 𝒙𝑡, 𝝍)

𝑇
𝑡=0 .  

  (4.3.3)  

 Usually moves are designed to update 𝝍 conditional on the current values of 𝒙1:𝑇 

and then update 𝒙1:𝑇  conditional on 𝝍. In Sect. 4.3.1 and Sec. 4.3.2, we introduce the 

problem of updating the state and then move to update the parameters.               

4.3.1 Update the state of a state space model 

The simplest approach is called a single-site update, i.e., to update the state 𝒙0:𝑇 is 

to update components of 𝒙0:𝑇 one at a time. This move is easy to implement. However, if 

there is strong temporal dependence in the state process, the moves may lead to slow 

mixing. In these scenarios, people tend to update blocks of state components, 𝒙𝑡:𝑠, or the 

whole state process 𝒙0:𝑇 in a single move. 
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A. Single-site updates of the state 

During single-site updates, an MCMC move will update a single value of the state, 

𝒙𝑡, conditional on all other values of the state process (and on 𝝍). The whole state process 

is updated through repeatedly applying this move for 𝑡 =  0, . . . , 𝑇. 

Denoting that 𝒙−𝑡  =  (𝒙0, . . . , 𝒙𝑡−1, 𝒙𝑡+1, . . . , 𝒙𝑇)  as the whole state process 

excluding 𝒙𝑡 , a single-site update will update 𝒙𝑡  for fixed 𝒙−𝑡 , 𝝍.. Due to the Markov 

structure of the model (Eq. 4.3.1 and 4.3.2), the target distribution of such a move, which 

is the full-conditional distribution 𝑝(𝒙𝑡|𝒙−𝑡, 𝝍, 𝒚0:𝑡)  , can be simplified to 

𝑝(𝒙𝑡|𝒙𝑡−1, 𝒙𝑡+1, 𝝍, y𝑡)  for 𝑡 =  1, . . . , 𝑇 − 1 , 𝑝(𝒙0|𝒙1, 𝝍, 𝒚0)  for 𝑡 =  0  and 

𝑝(𝒙𝑇|𝒙𝑇−1, 𝝍, 𝑦𝑇) for 𝑡 =  𝑇.  

B.  Block updates for the state 

If there is strong dependence in the state-process, the resulting MCMC algorithms 

can mix slowly. Accordingly, block updates are introduced to update the state at more than 

one time-point in a single move. Ideally the whole state process would be updated in one 

move, and in some cases it turns out that this is possible to do from the full-conditional, so 

that moves are always accepted.  

Independence proposal can be possibly used to update jointly a block of state values 

when it is not possible to update the whole state process from its full conditional. Good 

independence proposals are possibly available for general state-models. However, 

particularly for high-dimensional states and models with strong nonlinearities, 

independence proposals can become challenging. 
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4.3.2 Updating the parameters 

Within the MCMC algorithm, the usual approach to update the parameter, 𝝍, is to 

update it conditional on the current value of the state path 𝒙0:𝑇. This is often simple to 

complete under two cases. The first case is that the conjugate priors for 𝝍 can be chosen 

so that the sampling can be started directly from 𝑝(𝝍 |𝑥0:𝑇, 𝑦0:𝑇). The second case is that 

𝝍 is of sufficiently low-dimension that efficient independence proposals can be used. In 

some cases, components or blocks of 𝝍 are updated at a time, rather than updating the 

whole parameter vector in one attempt. 

However, if there is strong correlation between 𝝍 and 𝒙0:𝑇, the overall efficiency 

of the MCMC algorithm can still be poor even if the sampling can be executed from the 

full-conditional 𝑝(𝝍 |𝒙0:𝑇 , 𝒚0:𝑇). 

When there is strong dependence between 𝝍 and 𝒙0:𝑇, there are two techniques to 

avoid mixing. The first is to consider a different parameterization. This new 

parameterization is expected to reduce dependence between the state and the parameter. 

The second is to use moves that jointly update 𝝍 and 𝒙0:𝑇.  

For state space models, two possible general parameterizations originally for 

hierarchical models [112] can be used. The one is centered parameterizations, which is 

defined by a model where 𝑝(𝝍 |𝒙0:𝑇 , 𝒚0:𝑇) = 𝑝(𝝍 |𝒙0:𝑇). The second one is non-centered 

parameterizations where a priori 𝝍 and 𝒙0:𝑇 are independent.  

For those models which can be simulated directly from 𝑝(𝒙0:𝑇| 𝝍, 𝒚0:𝑇), jointly 

updating of 𝝍  and 𝒙1:𝑇  is most easily and commonly implemented through choosing 

𝑞(𝒙0:𝑇
′ | 𝝍′)  =  𝑝(𝒙0:𝑇

′ | 𝝍′, 𝒚0:𝑇). The resulting acceptance ratio then simplifies to:  
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 𝑚𝑖𝑛 {1,
𝑞(𝝍 | 𝝍′)p(𝝍′|𝒚0:𝑇)

q(𝝍′|𝝍)p(𝝍 |𝒚0:𝑇)
} .  (4.3.4) 

This acceptance ratio does not depend on 𝒙0:𝑇  or 𝒙0:𝑇
′ . The marginal chain for 𝝍  is 

equivalent to a MCMC chain for 𝑝(𝝍 |𝒚0:𝑇) with proposal distribution 𝑞(𝝍′|𝝍). Provided 

that an efficient proposal 𝑞(𝝍′|𝝍) can be found, such an MCMC algorithm will always be 

more efficient than one that updates 𝝍 and 𝒙1:𝑇  independently. However, the difficulty 

with implementing this idea is how to choose 𝑞(𝝍′|𝝍).  

If there is an efficient independence proposal for 𝒙0:𝑇 given 𝝍, a simple extension 

of this joint updating idea is possible because this proposal could be used as 𝑞(𝒙0:𝑇
′ | 𝝍′). 

The efficiency of the resulting algorithm will depend on both the efficiency of 𝑞(𝝍′|𝝍) as 

a proposal for an MCMC that explores 𝑝(𝝍′|𝒚0:𝑇), and also the closeness of 𝑞(𝒙0:𝑇
′ | 𝝍′) 

to 𝑝(𝒙0:𝑇
′ | 𝝍′, 𝒚0:𝑇).  

4.3.3 Particle algorithm 

When the state space model is nonlinear and/or non-Gaussian, MCMC methods can 

obviously be used for off-line inference as described in Sect. 4.3.1 and Sect. 4.3.2, but they 

are impractical for online inference. Even for off-line inference, it can be difficult to build 

efficient high-dimensional proposal distributions for such algorithms. Consequently, for 

nonlinear non-Gaussian state space models, particle algorithms are becoming the most 

successful and popular. The popularity is because (1) they are easy to implement, suitable 

for parallel implementation [113] and (2) more importantly, have been demonstrated in 

numerous settings to yield more accurate estimates than the standard alternatives [114] 

[115]. 
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In most applications, including our research, obtaining the latent state of the state 

space model of interest also depends on unknown static parameters that need to be 

estimated from the available data of outputs and, in our research, inputs. In fact, inferring 

the parameter 𝝍 is often the primary problem of interest. In this context, standard particle 

methods fail and it is necessary to rely on more sophisticated algorithms.  

Nowadays most particle algorithms proposed to estimate parameters in general 

state space models are inefficient in computation because of the degeneracy problem [114]. 

Several approaches have been proposed to deal with the degeneracy problem by either 

adding an artificial dynamic on the parameters [116] or introducing a fixed-lag 

approximation [117] [118]. These methods can work very well in practice, but it remains 

unfortunately difficult or impossible to quantify the bias introduced in most realistic 

applications.  

4.3.4 Summary 

In Sect. 4.3, we have given an introduction to MCMC methods and particle 

algorithms for general state space models. Three main issues have been covered. Firstly, if 

there is strong, or long-range, dependence in the state space model, then an efficient 

MCMC algorithm will need to update blocks of the state process in a single move. 

Secondly, strong correlation between the parameters and the state process can lead to slow 

mixing of MCMC algorithm. To improve mixing, either re-parameterization of the model, 

or joint updates of the state and the parameters will be needed. Thirdly, it is still difficult 

or even impossible for recent particle algorithms to assess the bias introduced in most 

realistic applications. 
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4.4 Proposed Approach 

In this section, we look for a solution appropriate to estimate the parameters of the 

state space model described in Chapter I. We compare The MLE method and the MCMC 

method first and make choice between them. Then we provide the mathematical problem 

to be solved in this research and finally emphasize the importance of the guessing of 

starting values for the EM algorithm. 

4.4.1 MLE vs. MCMC 

The dynamic systems under investigation in these papers listed in Table 4.1 have 

features described below, which are at odd with the parsimonious state space model. 

(1) No exogenous inputs, not to say time-variant inputs. Deng and Shen [104] 

studied a state space model with exogenous inputs. However, those inputs are 

actually time-invariant parameters to be estimated. 

(2) Fully parametrized. All the components in the matrices, 𝜱, 𝜞, 𝑯, 𝑸 and 𝑹, are 

unknown parameters to be estimated. The components of the matrices, 𝝁0 and 

𝑽0, are usually unknown, but was assumed to be known [104] [107]. 

(3) No extra constraints. As an option, there can exist linear constraints [103], to 

the transition matrix, 𝜱 . However, state space models with nonlinear 

constraints to certain parameters are not studied in extant literature, as we know. 

On the other hand, MCMC based methods are proposed in parameters estimation 

of the state space models with time-variant exogenous input series. Table 4.2 lists the 

published papers where MCMC based methods are used. The dynamic systems under 

investigation in these papers have the following features which are similar with the 
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parsimonious state space model, except that the parsimonious model has extra constraints: 

(1) Linear, (2) Time-variant input series, (3) Partly known parameters, (4) No extra 

constraints. 

It seems that, with some modification, MCMC based methods might be able to be 

applied to the estimation of parsimonious model. However, because there are always some 

residual effects of the starting position, MCMC sampling typically can only approximate 

the target distribution. More sophisticated MCMC-based algorithms, such as Gibbs 

sampling, can produce exact samples, at the cost of additional computation and an 

unbounded running time [119]. Regarding linear dynamic systems, we can take, dynamic 

linear model (DLM), as an example. DLMs are derived from the state space models.  

MCMC based approaches with variations are used to estimate DLMS. According 

to Leeflang et al. [120], the estimation needs a high computational cost, and may take 

several hours or days, depending on the dimensionality of the problem. Regarding 

nonlinear dynamic systems, Kokkala et al. [107] concludes that particle filter, or sequential 

Monte Carlo, and sigma-point filtering, are of higher computational complexity and 

theoretical exactness than the extended Kalman filter based direct likelihood 

approximation. 

On the other hand, after comparing inference between using the EM algorithm and 

Gibbs sampling in hidden Markov models (HMM) of different degrees of complexity 

regarding model structure, Ryden [121] concludes that, if only a point estimate is needed 

and if for comparing between the models their maximal likelihood are used only, the EM 

algorithm is generally the simplest and quickest method.
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Table 4.1: State space models estimated using MLE and EM in extant literature 

Papers Models Initial guessing 

Authors (Year) Linearity Existence of 
Exogenous Inputs? 

Fully 
Parametrized? 

Existence of Extra 
Constraints 

Initial States and their 
variance as parameters? 

Shumway and 
Stoffer (1982) [103] 

Linear No  Yes Optional Unknown parameters  Examine 
different sets 

Ghahraman and 
Hilton (1996) [89] 

Linear No  Yes No Unknown parameters Not mentioned 

Deng and Shen 
(1997) [104] 

Linear Constants Yes No Known constants Just set the 
values 

Gibson and Ninness 
(2005) [105] 

Linear Yes Yes No Unknown parameters Subspace-
based  

Schon et al. [106] Nonlinear  Yes Yes No  Unknown parameters Choose 
randomly  

Kokkala et al. 
(2014)[107] 

Nonlinear No Yes No Known parameters Choose 
arbitrarily 

 

 

Table 4.2: State space models estimated using methods based on MCMC in extant literature 

Papers Models  Estimation Methods 
 Authors (Year) Linearity Existence of 

Exogenous Inputs? 
Fully Parametrized? Existence of Extra 

Constraints? 
Initial States and 
their variance 

Van Heerde et 
al. (2004) [97] 

Linear  Yes Partly parametrized No Not mentioned Gibbs sampling 

Ataman et al. 
(2007) [98] 

Linear  Yes Observation Matrix 
is known 

No Not mentioned Gibbs sampling and random walk 
Metropolis-Hastings algorithm 

Bruce and Foutz 
(2007) [99] 

Linear  Yes Partly parametrized No Not mentioned MCMC combing with Kalman 
filtering and smoothing 
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 In the research on BE dynamics, only the point estimate of the parameters of a state 

space model, a special type of HMM, is needed. Therefore, to reduce the computational 

complexity and time-consumption, we aim to apply the MLE method and the EM algorithm, 

instead of MCMC based methods, in the identification of a dynamic system with time-

varying exogenous inputs and partly known matrices. The Kalman filtering and the Kalman 

smoothing will be applied in the M step of the EM algorithm. 

4.4.2  Mathematical problem and its characteristics 

Since the model for BE dynamics is linear Gaussian, we use the state space model 

to illustrate our proposal. 

As mentioned in Sect. 4.1, our proposed system has constraints, which reshapes the 

mathematical optimization problem as below. 

Considering 𝑠 constraints, the mathematical optimization problem formulated is: 

 min
𝝍
𝐷𝒚(𝝍) (4.4.1) 

subjected to  

 {

ℎ1(𝝍) = 0

ℎ2(𝝍) = 0
⋯

ℎ𝑠(𝝍) = 0

. (4.4.2) 

Applying the method of Lagrange multipliers, the mathematical optimization problem 

becomes 

 min
𝝍,𝝀

𝐷𝒚(𝝍) + ∑ 𝜆𝑖ℎ𝑖(𝝍)
𝑠
𝑖=1 , (4.4.3) 

where 𝝀 = {𝜆1, … 𝜆𝑖, … , 𝜆𝑠}, are 𝑠 Lagrange multipliers, while 𝝍 is the parameters to be 

estimated for the state space model we are investigating.  
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4.4.3  The EM algorithm and starting values 

Since some of the elements of the matrices, 𝜱, 𝜞, 𝑯, 𝑸 and 𝑹, 𝝁𝟎  and 𝑽𝟎 , are 

assumed to be known, when MLE is applied, the objective function formed from log 

likelihood and the derivatives of the objective functions, for the M step of the EM algorithm, 

must be expressed with unknown parameters only, i.e., with some of elements of these 

matrices. Consequently, the objective function in our research is nonlinear, neither convex 

nor concave. By contrast, the constructed objective functions [89] [103] - [107] are concave 

because the mathematical derivations are performed with respect to the whole matrices, 𝜱, 

𝜞 , 𝑯 , 𝑸  and 𝑹 , 𝝁𝟎  and 𝑽𝟎 , not elements of them. Moreover, the constraints to the 

mathematical optimization problem are nonlinear. Consequently, in the frame of the MLE 

method and the EM algorithm, the optimization methods proposed by us in this chapter 

must adopt methods other than those proposed [89] [103] - [107].  

Nevertheless, the general EM algorithm has problems including slow convergence, 

the need for an appropriate stopping rule that can sense if the algorithm has reached the 

maximum, and the choice of starting values in order to reach the global maximum in a 

smaller number of iterations. Many algorithms aiming to speed up the convergence of EM 

while preserving its simplicity have been proposed [122] - [126]. The problem of choosing 

an appropriate stopping rule has also obtained much attention in the literature. Several 

criteria have been recommended and the effect of stopping early has been scrutinized [127]. 

The third significant problem of the EM algorithm is that sub-optimal MLEs, 

usually local optima, can be produced because its solution likely relies on its starting values. 

Slow convergence and dependence on stating values, can be correlated in practice. It is 

possible that starting from some values leads to a slower convergence rate for the EM 
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algorithm and that the EM algorithm is terminated before reaching a sensible value of the 

objective function. 

Hence, it is critical to choose the starting values of the parameters properly because 

the starting value can seriously affect the speed of convergence of the EM algorithm and 

its capability to locate the global maximum [128]. In the algorithm-based literature, 

methods such as grid search and moment method have been recommended. These methods 

are feasible when the size of parameter space is small. However, when the size of the 

parameter space is large, the speed of convergence is slow [128]. 

To avoid the third problem, it is critical to find an appropriate method to choose the 

starting values of the parameters. Unfortunately, in extant literature on parameter 

estimation, probably the most employed way of initiating the EM algorithm consists of 

initializing it from random values. Guessing of the starting values of the parameters are 

usually ignored, as shown in Table 4.1. Most starting values of the parameters, ever all of 

them [104] [106], are randomly chosen. The only exception is that the initial transition 

parameter value of the state space model is guessed by examining the observed output 

series [103]. In this chapter, we develop a procedure to guess the starting values of the 

parameters to be estimated. With low computational cost, the advantage of the guessing 

procedure develop is its ability to provide relatively accurate starting values for the EM 

algorithm than random initialization. 

Simple random initialization is often outperformed by other strategies, such as grid 

search and methods of moments (MOM). Grid search is simply an exhaustive 

searching through a manually specified subset of the hyperparameter space of a learning 

algorithm. Grid search is employed to set the initial values to estimate a VSTAR (vector 
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smooth transition autoregressive) model [129]. Overall, the grid search needs another 

algorithm to obtain a better, hopefully global, optimum. Moreover, grid search suffers from 

the curse of dimensionality, and is often embarrassingly parallel because typically the 

hyperparameter settings it evaluates are independent of each other [130]. MOM [131] is 

introduced to determine starting values for Gaussian mixture model [132]. MOM is also 

used [96] in choosing staring values of three parameters of a model based on Ornstein-

Uhlenbeck process [133]. These methods are feasible when the size of parameter space is 

small: less than four unknown parameters in extant literature. However, when the size of 

the parameter space is large, there will be more equations formed from moments. 

Accordingly, the speed of convergence will be slow. 

For mixture models, Biernacki. et al. [134] and Karlis and Xekalaki [128] 

investigated or recommended methods to choose starting values for the EM algorithm. In 

contrast, for state space models, there is no such published survey or review on how to 

determine the starting values of the parameters of these models as mentioned earlier.  

Therefore, in this chapter, our emphases are on (1) guessing the starting values of 

the parameters to be estimated and (2) integrating mathematical optimization methods to 

estimate the values of the parameters during the application of the MLE method and the 

EM algorithm. The procedure to guess the starting values and the way to integrate the 

optimization methods are elaborated in Sect. 4.5 and Sect. 4.6 respectively. 

4.5 Guessing of the Starting Values of the Parameters 

 In this section, we introduce our procedure to guess the starting values of the 

parameters to be estimated (𝝍13) from the input series, {𝑢1,𝑡} = {𝑢1,1, 𝑢1,2, … , 𝑢1,𝑇} and 
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{𝑢2,𝑡} = {𝑢21, 𝑢22, … , 𝑢2𝑇}, and the output series, {𝑦𝑡} = {𝑦1, 𝑦2, … , 𝑦𝑇}, where 𝑇 is the 

length of these data series. In extant literature, only statistical indices of the output series 

are used to guess the initial value of a certain parameter [103]. In this section, we use not 

only the statistical indices of input series and output series respectively, but also the cross 

covariance between the input series and the output series. Moreover, we apply linear 

regression between the output series and the lagged input series, which is not seen in extant 

literature. 

 The development of the guessing procedure is based on mathematical analysis to 

the parsimonious state space model and the statistical models for the inputs. In the 

following subsections, we firstly investigate the input series and the hidden states of the 

dynamics system in Sect. 4.5.1. Next, in Sect. 4.5.2, we model the relationship between the 

output series and the two lagged input series with linear regression, and the cross 

covariance between the output series and the two-input series. Then, in Sect. 4.5.3, we 

apply what we have obtained from Sects. 4.5.1 and 4.5.2 in guessing the unknown 

parameters. Finally, to avoid confusion caused by the difference between two procedures: 

one for the mathematical analysis and the other for the guessing of the unknown parameters, 

we explain the steps of the guessing procedure in Sect. 4.5.4.  

4.5.1 Investigation on the input series and the hidden states 

The investigation on the input series is the first step for the mathematical analysis. 

We assume that the input series for our model are orthogonal and autoregressive as shown 

in Eqs. 4. 5.1 and 4.5.2, 

 𝑢1,𝑡 = 𝑢1,𝑏 + 𝜌1𝑢1,𝑡−1 + ζ1,𝑡, (4.5.1) 

 𝑢2,𝑡 = 𝑢2,𝑏 + 𝜌2𝑢2,𝑡−1 + ζ2,𝑡, (4.5.2) 
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where 𝑢1,𝑏 and 𝑢2,𝑏 are constants, 𝜌1and 𝜌2 are the 1st order autocorrelation coefficients, 

while ζ1,t and ζ2,t are Guassian distributed stimuli with ζ1,t~N(0, 𝑣ζ1) and ζ2,t~N(0, 𝑣ζ2) . 

The means of 𝑢1,t  and 𝑢2,t  are 𝑢1,∞ =
𝑢1,𝑏

1−𝜌1
 , and 𝑢2,∞ =

𝑢2,𝑏

1−𝜌2
 , respectively. Moreover, 

denoting 𝜈1,𝑡 = ∑ 𝜌1
𝑖 ζ1,t−i

∞
𝑖=0  and 𝜈2,𝑡 = ∑ 𝜌2

𝑖 ζ2,t−i
∞
𝑖=0 , we have the variances (when the 

integer, ℎ = 0) and the autocovariances (when ℎ > 0) of 𝜈1,𝑡 and 𝜈2,𝑡: 

 𝛾𝜈1
(ℎ)
= 𝜌1

ℎ𝑣ζ1/(1 − 𝜌1
2),  (4.5.3) 

 𝛾𝜈2
(ℎ)
= 𝜌2

ℎ𝑣ζ2/(1 − 𝜌2
2).  (4.5.4) 

  On the other hand, from the parsimonious state space model, we have 

  𝑥1,𝑡 = 𝑘1(𝛾1𝑢1,t−1 + 𝛾2𝑢2,t−1) + 𝜉𝑡 , (4.5.5)  

  𝑥2,𝑡 = 𝛾1𝑢1,t + 𝛾2𝑢2,t + 𝑒2,t,  (4.5.6) 

where 

 𝑘1 = β/(1 − 𝛼), (4.5.7) 

 𝜉𝑡 = ∑ 𝛼𝑖(β𝑒2,t−i−2 + 𝑒1,t−i−1)
∞
𝑖=0   (4.5.8) 

with 𝜉𝑡’s, or 𝑥1,𝑡’s variance and autocovariance,  

 𝑣𝜉 = (𝑞1 + 2𝛼β𝑞x + β
2𝑞2)/(1 − 𝛼

2),  (4.5.9) 

 𝛾𝜉
(ℎ)
= 𝑣𝜉𝛼

ℎ, (ℎ > 0) .  (4.5.10) 

 Moreover, applying Eqs. 4.5.5 and 4.5.6, we obtain the covariance between 𝑥1,𝑡 and 

𝑥2,𝑡 as 0 and the variance of 𝑥2,𝑡 as 𝑞2. Assuming the statistical indices of the hidden states, 

𝑥1,𝑡 and 𝑥2,𝑡, are time-invariant, we can obtain the variances and covariance of the initial 

states from the variances of process noise series:  

 𝑣10 = 𝑣𝜉,  (4.5.11) 

 𝑣x0 = 0.  (4.5.12) 
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 𝑣20 = 𝑞2  (4.5.13) 

By the way, from the parsimonious state space model, we notice that 𝜇𝑥1,𝑡 = 𝑘1𝜇𝑥2,𝑡. 

Considering that the state space model under investigation is Guassian, it is reasonable to 

assume the variance, 𝑣𝑥1,𝑡, of 𝑥1,𝑡, and the variance, 𝑣𝑥2,𝑡,  of 𝑥2,𝑡, satisfy 𝑣𝑥1,𝑡 = 𝑘1
2𝑣𝑥2,𝑡. 

Accordingly, we have 

 𝑣𝜉 = 𝑘1
2𝑞2.  (4.5.14) 

Then we have a nonlinear constraint as below: 

 (𝑞1 + 2𝛼β𝑞x + β
2𝑞2)/(1 − 𝛼

2) = β2𝑞2/(1 − 𝛼)
2.  (4.5.15) 

Such a nonlinear constraint is only one example of various constraints to the parameters. 

4.5.2 Linear regression and cross covariance between input 

series and output series 

 In this subsection, we explore the linear regression of the output series with respect 

to the two lagged input series, as well as the cross covariances between the output series 

and the two input series. 

 Denote 𝜂𝑡 = 𝜉𝑡 + 𝑒2,t, we have the variance and autocovariance of 𝜂𝑡  

  𝑣𝜂 = 𝑣𝜉 + 𝑞2,  (4.5.16) 

 𝛾𝜂
(ℎ)
= 𝛾𝜉

(ℎ)
+ β𝛼ℎ−2𝑞2 + 𝛼

ℎ−1𝑞x.  (4.5.17) 

 Denote 

 𝑦𝑏 = 𝛾1𝑢1,𝑏 + 𝛾2𝑢2,𝑏,  (4.5.18) 

  θ1 = 𝛾1(𝑘1 + 𝜌1),  (4.5.19) 

 θ2 = 𝛾2(𝑘1 + 𝜌2),  (4.5.20)  

  𝜀𝑡 = 𝛾1ζ1,t + 𝛾2ζ2,t + 𝜂𝑡 + 𝑤𝑡,  (4.5.21) 
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we have 𝑦𝑡  expressed in linear regression in (4.5.22) where 𝑦𝑏 , θ1  and θ2  are the 

regression parameters to be estimated 

 𝑦𝑡 = 𝑦𝑏 + θ1𝑢1,t−1 + θ2𝑢2,t−1 + 𝜀𝑡  (4.5.22) 

with the mean of 𝑦𝑡 

 𝜇𝑦 = (1 + 𝑘1)(𝛾1𝑢1,∞ + 𝛾2𝑢2,∞)  (4.5.23) 

 and the variance and autocovariance of 𝜀𝑡 are 

 𝑣𝜀 = 𝛾1
2𝑣ζ1 + 𝛾2

2𝑣ζ2 + 𝜎𝜂
2 + r,  (4.5.24) 

 𝛾𝜀
(ℎ)
= 𝛾𝜂

(ℎ)
.  (4.5.25) 

On the other hand, since the -1st order cross covariance between 𝑦𝑡 and 𝑢1,t and 𝑢2,t 

are defined as  

 𝛾𝑢1𝑦
(−1)

= 𝐸[(𝑢1,t−1 − 𝑢1,∞)(𝑦𝑡−1 − 𝜇𝑦)] , 

and  

 𝛾𝑢2𝑦
(−1)

= 𝐸[(𝑢2,t−1 − 𝑢2,∞)(𝑦𝑡−1 − 𝜇𝑦)] , 

we have 

  𝛾𝑢1𝑦
(−1)

= 𝐸[𝜈1,𝑡−1(θ1𝜈1,𝑡−2 + θ2𝜈2,𝑡−2 + 𝜀𝑡−1)],  (4.5.26) 

 𝛾𝑢2𝑦
(−1)

= 𝐸[𝜈2,𝑡−1(θ1𝜈1,𝑡−2 + θ2𝜈2,𝑡−2 + 𝜀𝑡−1)].  (4.5.27) 

Then we can obtain Eqs. 4.5.28 and 4.5.29 about θ1, θ2, 𝛾1 and 𝛾2: 

 θ1𝛾𝜈1
(1)
+ 𝛾1𝑣ζ1 = 𝛾𝑢1𝑦

(−1)
,  (4.5.28) 

 θ2𝛾𝜈2
(1)
+ 𝛾2𝑣ζ2 = 𝛾𝑢2𝑦

(−1)
.  (4.5.29) 

Applying Eqs. 4.5.18, 4.5.19 and 4.5.20 to Eqs. 4.5.28 and 4.5.29, we have equations for 

𝑘1, 𝛾1 and 𝛾2 

 𝛾1(𝑘1 + 𝜌1)𝛾𝜈1
(1)
+ 𝛾2𝑣ζ1 = 𝛾𝑢1𝑦

(−1)
,  (4.5.30) 
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 𝛾2(𝑘1 + 𝜌2)𝛾𝜈2
(1)
+ 𝛾2𝑣ζ2 = 𝛾𝑢2𝑦

(−1)
.  (4.5.31) 

Applying Eqs. 4.5.3 and 4.5.4, we can express 𝛾1 and 𝛾2 using 𝑘1, 

 𝛾1 = (𝛾𝑢1𝑦
(−1)

/𝑣ζ1)(1 − 𝜌1
2)/(1 + 𝜌1𝑘1),  (4.5.32) 

 𝛾2 = (𝛾𝑢2𝑦
(−1)

/𝑣ζ2)(1 − 𝜌2
2)/(1 + 𝜌2𝑘1).  (4.5.33) 

 Assuming 𝜇𝑦 ≠ 0 and denoting 

  𝑚1 = (1 − 𝜌1
2)(𝑢1,∞/𝜇𝑦)(𝛾𝑢1𝑦

(−1)
/𝑣ζ1),  (4.5.34) 

  𝑚2 = (1 − 𝜌2
2)(𝑢2,∞/𝜇𝑦)(𝛾𝑢2𝑦

(−1)
/𝑣ζ2),  (4.5.35) 

then applying Eqs. 4.5.32 and 4.5.33 to Eqs. 4.5.18, 4.5.19, 4.5.20 and 4.5.23, with some 

manipulation, we obtain 

   𝑦𝑏/𝜇𝑦 = 𝑚1(1 − 𝜌1)/(1 + 𝜌1𝑘1) + 𝑚2(1 − 𝜌2)/(1 + 𝜌2𝑘1), (4.5.36) 

  θ1 = 𝑚1(𝜇𝑦/𝑢1,∞)(𝑘1 + 𝜌1)/(1 + 𝜌1𝑘1),  (4.5.37) 

 θ2 = 𝑚2(𝜇𝑦/𝑢2,∞)(𝑘1 + 𝜌2)/(1 + 𝜌2𝑘1),  (4.5.38) 

  𝑚1/(1 + 𝜌1𝑘1) + 𝑚2/(1 + 𝜌2𝑘1) = 1/(1 + 𝑘1).  (4.5.39) 

Denote 

  𝑎 = 𝜌2𝑚1 + 𝜌1𝑚2 − 𝜌1𝜌2,  (4.5.40) 

 𝑏 = 𝜌2𝑚1 + 𝜌1𝑚2 +𝑚1 +𝑚2 − 𝜌1 − 𝜌2,  (4.5.41)   

  𝑐 = 𝑚1 +𝑚2 − 1,  (4.5.42) 

we can transform Eq. 4.5.39 into a quadratic equation： 

  𝑎𝑘1
2 + 𝑏𝑘1 + 𝑐 = 0.  (4.5.43) 

From Eq. 4.1.3, we assume 𝛽 > 0. Considering Eq. 4.5.7, we have 𝑘1 > 0. As one of the 

roots of Eq. 4.5.43, we have 
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 𝑘1 = (−𝑏 + √𝑏
2 − 4𝑎𝑐)/(2𝑎).  (4.5.44) 

After the value of 𝑘1 value is available, applying Eqs. 4.5.36, 4.5.37 and 4.5.38, we can 

obtain the values of 𝑦𝑏, θ1 and θ2, the parameters of the regression represented by Eq. 

4.5.22. Furthermore, applying Eqs. 4.5.19 and 4.5.20, we obtain the parameters 𝛾1 and 𝛾2: 

 𝛾1 = 𝜃1/(𝑘1 + ρ1),  (4.5.45) 

 𝛾2 = 𝜃2/(𝑘1 + ρ2).  (4.5.46) 

4.5.3 Obtaining the guessed value of the unknown parameters  

 In this subsection, we apply what we have obtained from Sects. 4.5.1 and 4.5.2 in 

guessing the unknown parameters. From the parsimonious state space model, we have 

  𝜇𝑦 = (1 + 𝑘1)(𝛾1𝑢1,∞ + 𝛾2𝑢2,∞).  (4.5.47) 

 Since assume 𝑢1,𝑡  and 𝑢2,𝑡  are orthogonal, the covariance between 𝜈1,𝑡  and 𝜈2,𝑡  is 

insignificant, considering Eqs. 4.5.21 and 4.5.22, then denoting   

 𝑣𝑢 = θ1
2𝑣𝜈1 + 𝛾1

2𝑣ζ1 + θ2
2𝑣𝜈1 + 𝛾2

2𝑣ζ2 + 2θ1θ2𝑣𝜈x ,  (4.5.48) 

we obtain the variance and the autocovariance of 𝑦𝑡: 

 𝑣𝑦 = 𝑣𝑢 + 𝑣𝜉 + 𝑞2 + r,  (4.5.49) 

 γ𝑦
(h)
= θ1

2𝛾𝜈1
(ℎ)
+ θ1𝛾1𝜌1

ℎ−1𝑣ζ1 + θ2
2𝛾𝜈2

(ℎ)
+ θ2𝛾2𝜌2

ℎ−1𝑣ζ2 + 𝛾𝜀
(ℎ)

. (4.5.50) 

When the inputs 𝑢1,𝑡 and 𝑢2,𝑡 are neither autoregressive nor correlative, we have 𝜌1 and 𝜌2 

equal to zero,  

 γ𝑦
(1)
= θ1𝛾1𝑣ζ1 + θ2𝛾2𝑣ζ2 + 𝛾𝜀

(1)
,  (4.5.51) 

 γ𝑦
(ℎ)
= 𝛾𝜀

(ℎ)
   (ℎ > 1).  (4.5.52) 

Applying Eqs. 4.5.10 and 4.5.17, we can guess the value of 𝛼 from the autocovariance of 

the output series 
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 𝛼 = γ𝑦
(3)
/γ𝑦

(2)
.  (4.5.53) 

Applying Eq. 4.5.7, we can further guess the value for β,  

 β = 𝑘1(1 − 𝛼).  (4.5.54) 

 After the values for 𝑘1, 𝑦𝑏, θ1 and θ2, 𝛼 and β are obtained, we can further guess 

the variances for the process noises and the observation noise.  Assuming 𝑞x = 0, and 𝑟 =

𝑘2
2𝑞2, then applying Eqs. 4.5.7, 4.5.14 and 4.5.49, we have: 

 𝑞1 = [(1 − 𝛼
2)𝑘1

2 − β2](𝑣𝑦 − 𝑣𝑢)/(𝑘1
2 + 1 + 𝑘2

2),  (4.5.55) 

  𝑞2 = (𝑣𝑦 − 𝑣𝑢)/(𝑘1
2 + 1 + 𝑘2

2),  (4.5.56)  

  𝑟 = 𝑘2
2(𝑣𝑦 − 𝑣𝑢)/(𝑘1

2 + 1 + 𝑘2
2).  (4.5.57) 

In practice, the parameters 𝑘1 and 𝑘2 define the distribution of the overall output noises 

among the process and the observation. 

 On the other hand, using Eqs. 4.5.1 and 4.5.2, when 𝜌1 = 0 and 𝜌2 = 0, we can 

estimate 𝑢1,0  and 𝑢2,0  as 𝑢̂1,0 = 𝑢1b  and 𝑢̂2,0 = 𝑢2b . When 𝜌1 ≠ 0 and 𝜌2 ≠ 0 , we can 

estimate 𝑢1,0, 𝑢2,0 as 𝑢̂1,0 = (𝑢1,1 − 𝑢1b)/𝜌1 and 𝑢̂2,0 = (𝑢2,1 − 𝑢2b)/𝜌2. Applying to the 

parsimonious state space model, we can estimate the mean of the initial state, 𝑥2,0 as: 

 𝜇2,0 = 𝑥̂2,0 = 𝛾1𝑢1,0 + 𝛾2𝑢2,0.  (4.5.58) 

Moreover, we can further estimate the means of 𝑥2,1, 𝑥1,1 and 𝑥1,0 as below: 

  𝑥̂2,1 = 𝛾1𝑢1,1 + 𝛾2𝑢2,1 ,  (4.5.59) 

  𝑥̂1,1 = 𝑦1 − 𝑥̂2,1,  (4.5.60) 

  𝜇1,0 = 𝑥̂1,0 = (𝑥̂1,1 − β𝑥̂2,0)/α.  (4.5.61) 
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4.5.4 Steps for the guessing  

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Directed Acyclic Graph for the Guessing Steps 
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Figure 4.1 illustrates the guessing procedure proposed by us. Assuming we have  

the input series, {𝑢1,t} and {𝑢2,t}, and the output series {𝑦t}, the procedure starts from the 

calculation of the statistical indices, including 𝑢1,∞, 𝑢2,∞,  𝜌1, 𝜌2, and 𝑣𝜁1,𝑣𝜁2 of {𝑢1,t} and 

{𝑢2,t} , and 𝜇𝑦  and 𝑣𝑦  of {𝑦t} , which are used in the following major steps.Then, we 

investigate the statistical indices of regression error series, {𝜀𝑡} , from Eq. 4.5.21, obtain 

γ𝑦
(2)

 and γ𝑦
(3)

 from γ𝜀
(2)

 and γ𝜀
(3)

, applying Eq. 4.5.52, and calculate the transfer parameters,  

α and then β,  using Eq. 4.5.53 and 4.5.54 respectively. 

Furthermore, we apply constraints to obtain 𝑞1, 𝑞1, 𝑟, the parameters for the process 

noises and observation noises, using Eqs. 4.57 - 4.59, and calculate the variances and 

covariance, 𝑣10, 𝑣x0 and 𝑣20, of the initial state, using the Eqs. 4.5.9 and 4.5.11 - 4.5.13. 

Finally, the means of initial inputs, 𝑢1,0, 𝑢2,0, are estimated using Eqs. 4.5.1 and 

4.5.2. Then the means, 𝜇1 and 𝜇2, of the initial states are calculated, using Eqs. 4.5.58 - 

4.5.61. 

 Moreover, we also have proved the ergodicity of the state series, the output series, 

the noise series and the error series. As a result, we are actually using the time average of 

a series to represent the ensemble average of the same series. However, the proof about 

ergodicity is not provided so as to prevent this chapter from being lengthy. 

4.6 MLE Using the EM Algorithm 

In this section, we present how MLE is implemented through the EM algorithm to 

find the values of the unknown parameters. 

As we know from Eqs. 4.4.1 - 4.4.3, the mathematical optimization problem for our 

problem is different from the mathematical optimization problem shown in Eqs. 4.2.12-
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4.2.14. In this section, we consider two constraints represented by Eq. 4.5.15 and Eq. 4.5.49, 

denoting 𝑣𝑛 = σ𝑦
2 − σ𝑢

2 :  

  ℎ1(𝝍) = (1 − 𝛼)𝑞1 + 2𝛼(1 − 𝛼)β𝑞x − 2𝛼β
2𝑞2, (4.6.1) 

  ℎ2(𝝍) = 𝑞1 + 2𝛼β𝑞x + (1 − 𝛼
2 + β2)𝑞2 + (1 − 𝛼

2)(𝑟 − 𝑣𝑛). (4.6.2) 

The mathematical optimization problem formulated is: 

 min
𝝍

𝐷𝒚(𝝍) (4.6.3) 

subjected to  

 {
ℎ1(𝝍) = 0

ℎ2(𝝍) = 0
. (4.6.4) 

Applying the method of Lagrange multipliers, we obtain the Lagrange function as 

a new objective function: 

 L𝒚(𝝍, 𝜆1, 𝜆2) = 𝐷𝒚(𝝍) + 𝜆1ℎ1(𝝍) + 𝜆2ℎ2(𝝍), (4.6.5) 

where 𝜆1 and 𝜆2 are Lagrange multipliers. And the optimization problem become:  

 min
𝝍,𝜆1,𝜆2

L𝒚(𝝍, 𝜆1, 𝜆2). (4.6.6) 

Per Eqs. 4.5.11 - 4.5.13, the parameters, 𝑣10, 𝑣x0, 𝑣20 , about the variances and 

covariance of the initial hidden state, can be estimated from parameters, 𝑞1, 𝑞x, 𝑞2, about 

the variances and covariance of the process noises. As a result, the parameter vector 𝝍13 

can be replaced by a shorter vector 𝝍10:    

  𝝍10 = [α, β, 𝛾1, 𝛾2, 𝑞1, 𝑞x, 𝑞2, 𝑟, 𝜇10, 𝜇20]. (4.6.7) 

In Eqs. 4.6.1-4.6.2, 𝝍 = 𝝍10. 

In the kth iteration of the E step of the EM algorithm, using the parameters estimated 

in the (k-1)th iteration, we perform the Kalman filtering and the Kalman smoothing to 

estimate the means and variances about the hidden states, and calculate the conditional 
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expectation of the log likelihood based on complete data. For the first iteration, we use the 

values of parameters guessed in Sect. 4.5.3, as the starting values for the parameters： 

 𝜳10(0) = [α(0), β(0), 𝛾1(0), 𝛾2(0), 𝑞1(0), 𝑞x(0), 𝑞2(0), 𝑟(0), 𝜇1(0), 𝜇2(0) ].  

  (4.6.8) 

For the Lagrange multipliers, we assign them as zeros. During the M step of the EM 

iteration, we estimate the values of the unknown parameters, 

    𝜳10(𝑘) = [α(𝑘), β(𝑘), 𝛾1(𝑘), 𝛾2(𝑘), 𝑞1(𝑘), 𝑞x(𝑘), 𝑞2(𝑘), 𝑟(𝑘), 𝜇1(𝑘), 𝜇2(𝑘) ] ,     (4.6.9) 

 and the Lagrange multipliers, 𝝀(𝑘) = {𝜆1(𝑘), 𝜆2(𝑘)} , through the maximization of the 

conditional expectation of the log likelihood calculated using 𝜳10(𝑘 − 1) and 𝝀(𝑘), on the 

E step.   

 In the M step, from the first order necessary conditions, we apply certain features 

of the model and constraints. We directly estimate the values of four parameters first, then 

solve other simultaneous nonlinear equations obtained, employing a trust region algorithm. 

 Accordingly, in this section, in sequence, we introduce the construction of the 

expected value of the objective function based on complete data, for the E step, and then 

the first order necessary conditions and the trust region method for the M step.   

4.6.1  “Expectation” value for the E step 

In the E step, we will assume the parameters are known. For convenience of 

notation, we dropped 𝑘  in the following sections. After the Kalman filtering and the 

Kalman smothering have been implemented according to Sect. 4.2.1，we obtained the 

state, 𝒙𝑡. Then the conditional densities for output, 𝑦𝑡, and the state, 𝒙𝑡, are  

  𝑃(𝑦𝑡|𝒙𝑡) = (2𝜋|𝑹|)
−
1

2𝑒𝑥𝑝[−(𝑦𝑡 −𝑯𝒙𝑡)
2(2𝑹)−1], (4.6.10) 
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  𝑃(𝒙𝑡|𝒙𝑡−1) = (2𝜋)−1|𝑸|−
1

2𝑒𝑥𝑝 [−
1

2
(𝒙𝑡 −𝜱𝒙𝑡−1 − 𝜞𝒖𝑡)

′𝑸−𝟏(𝒙𝑡 −𝜱𝒙𝑡−1 −

𝛤𝒖𝑡)].  (4.6.11) 

Assuming a Gaussian initial state density, we have 

  𝑃(𝒙0) = (2𝜋)−1|𝑸|−
1

2𝑒𝑥𝑝 [−
1

2
(𝒙0 − 𝝁0)

′𝑸−𝟏(𝒙0 − 𝝁0)]. (4.6.12) 

By the Markov property implicated in this state space model, 

  𝑃({𝑥}, {𝑦}) = 𝑃(𝒙0)∏ 𝑃(𝒙𝑡|𝒙𝑡−1)
𝑇
𝑡=1 ∏ 𝑃(𝒚𝑡|𝒙𝑡)

𝑇
𝑡=1 . (4.6.13) 

 Denoting the expected objection function value based on complete data {𝑥} and 

{𝑦} 

  𝛺(𝜳) = −ln𝑃(𝒙𝟏:𝑻, 𝒚𝟏:𝑻) + ∑ 𝜆𝑖ℎ𝑖(𝜳)
𝑠
𝑖=1 , (4.6.14) 

and 

  𝛺0(𝜳) = (𝒙0 − 𝝁0)
′𝑸−𝟏(𝒙0 − 𝝁0) + log|𝑸| + ln 2𝜋, (4.6.15)  

  𝛺1(𝜳) =  ∑ (𝒙𝑡 −𝜱𝒙𝑡−1 − 𝜞𝒖𝑡)
′𝑸−𝟏(𝒙𝑡 −𝜱𝒙𝑡−1 − 𝛤𝒖𝑡)

𝑇
𝑡=1 + 𝑇n|𝑸| +

𝑇 ln 2𝜋 ,  (4.6.16) 

  𝛺2(𝜳) = ∑ (𝑦𝑡 −𝑯𝒙𝑡)
2/𝑹𝑇

𝑡=1 + 𝑇ln|𝑹| + 𝑇 ln 2𝜋, (4.6.17) 

we have,   

 𝛺 =
1

2
𝛺0 +

1

2
𝛺1 +

1

2
𝛺2 + ∑ 𝜆𝑖ℎ𝑖(𝜳)

𝑠
𝑖=1 . (4.6.18) 

After we obtain the expected values for 𝒙0 and 𝒙𝑡 as 𝒙0
𝑇 ≡   𝐸[𝒙0|{𝑦, 𝒖}] and 𝒙𝑡

𝑇 ≡

  𝐸[𝒙𝑡|{𝑦, 𝒖}] respectively, we can calculate the “expectation” of the objective 𝛺 for the 

kth iteration: 

 𝐸(𝛺) =
1

2
𝐸(𝛺0) +

1

2
𝐸(𝛺1) +

1

2
𝐸(𝛺2) + ∑ 𝜆𝑖ℎ𝑖(𝜳)

𝑠
𝑖=1 . (4.6.19) 

 As we have presented in Sect. 4.4, some elements of the matrices for the dynamic 

systems are already known, thus we investigate the expected value of the objective function 
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with respect to unknown elements. Conversely, the expected value of the objective function 

is traditionally investigated with respect to unknown matrices directly. This is one of the 

significant differences in our proposal to implement the EM algorithm. As a result, if it is 

possible, we attempt to find the scalar expression for the expected value of the objective 

function. In this section, we will see how far we can go to reach the goal. 

 Denoting 𝑥1,0
2̅̅ ̅̅ ̅ = 𝐸(𝑥1,0

2 ), 𝑥2,0
2̅̅ ̅̅ ̅ = 𝐸(𝑥2,0

2 ), 𝑥1,0𝑥2,0̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐸(𝑥1,0𝑥2,0) , 𝑥1,0̅̅ ̅̅ ̅ = 𝐸(𝑥1,0), 

and 𝑥2,0̅̅ ̅̅ ̅ = 𝐸(𝑥2,0), we have, 

  𝐸(𝛺0) = (𝑞1𝑞2 − 𝑞x
2)−1[𝑞2(𝑥1,0

2̅̅ ̅̅ ̅ − 2𝜇10𝑥1,0̅̅ ̅̅ ̅ + 𝜇10
2 ) − 2𝑞x(𝑥1,0𝑥2,0̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜇20𝑥1,0̅̅ ̅̅ ̅ −

𝜇10𝑥2,0̅̅ ̅̅ ̅ + 𝜇10𝜇20) + 𝑞1(𝜇20
2̅̅ ̅̅ − 2𝜇20𝑥2,0̅̅ ̅̅ ̅ + 𝜇20

2 )] + ln(𝑞1𝑞2 − 𝑞x
2). (4.6.20) 

Further, we denote  

  𝑃𝜎0 = 𝑥10
2̅̅ ̅̅ − 2𝜇10𝑥1,0̅̅ ̅̅ ̅ + 𝜇10

2 , (4.6.21) 

  𝑀𝜎0 = 𝑥10𝑥20̅̅ ̅̅ ̅̅ ̅̅ − 𝜇20𝑥1,0̅̅ ̅̅ ̅ − 𝜇10𝑥2,0̅̅ ̅̅ ̅ + 𝜇10𝜇20, (4.6.22) 

  𝑈𝜎0 = 𝑥2,0
2̅̅ ̅̅ ̅ − 2𝜇20𝑥2,0̅̅ ̅̅ ̅ + 𝜇20

2 . (4.6.23) 

Then we obtain,  

  𝐸(𝛺0) = (𝑞1𝑞2 − 𝑞x
2)−1(𝑞2𝑃𝜎0 − 2𝑞x𝑀𝜎0 + 𝑞1𝑈𝜎0) + ln(𝑞1𝑞2 − 𝑞x

2) +

ln 2𝜋 .  (4.6.24) 

Furthermore, apply Eq. 4.6.16 using the matrices for the parsimonious state space model, 

we arrive at, 

 𝐸(𝛺1) = (𝑞1𝑞2 − 𝑞x
2)−1𝐸 [∑ {𝑞2[𝑥1,𝑡 − (𝛼𝑥1,𝑡−1 + 𝛽𝑥2,𝑡−1)]

2
− 2𝑞x[𝑥2,𝑡 −

𝑇
𝑡=1

(𝛾1𝑢1,𝑡 + 𝛾2𝑢2,𝑡)][𝑥1,𝑡 − (𝛼𝑥1,𝑡−1 + 𝛽𝑥2,𝑡−1)] + 𝑞1[𝑥2,𝑡 − (𝛾1𝑢1,𝑡 + 𝛾2𝑢2,𝑡)]
2
}] +

𝑇ln(𝑞1𝑞2 − 𝑞x
2) + 𝑇 ln 2𝜋.  (4.6.25) 

Denoting 
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{
  
 

  
 

𝑃11 = ∑ 𝐸(𝑥1,𝑡
2 )𝑇

𝑡=1

𝑃12 = ∑ 𝐸(𝑥1,𝑡𝑥2,𝑡)
𝑇
𝑡=1

𝑃22 = ∑ 𝐸(𝑥2,𝑡
2 )𝑇

𝑡=1

𝑃𝑥𝑥 = ∑ 𝐸(𝑥1,𝑡−1
2 )𝑇

𝑡=1

𝑃𝑦𝑦 = ∑ 𝐸(𝑥2,𝑡−1
2 )𝑇

𝑡=1

, 

 

{
  
 

  
 
𝑃𝑥𝑦 = ∑ 𝐸(𝑥1,𝑡−1𝑥2,𝑡−1)

𝑇
𝑡=1

𝑃𝑥1 = ∑ 𝐸(𝑥1,𝑡−1𝑥1,𝑡)
𝑇
𝑡=1

𝑃𝑥2 = ∑ 𝐸(𝑥1,𝑡−1𝑥2,𝑡)
𝑇
𝑡=1

𝑃𝑦1 = ∑ 𝐸(𝑥2,𝑡−1𝑥1,𝑡)
𝑇
𝑡=1

𝑃𝑦2 = ∑ 𝐸(𝑥2,𝑡−1𝑥2,𝑡)
𝑇
𝑡=1

, 

 

{
 
 

 
 
𝑀11 = ∑ 𝐸(𝑥1,𝑡𝑢1,𝑡)

𝑇
𝑡=1

𝑀12 = ∑ 𝐸(𝑥1,𝑡𝑢2,𝑡)
𝑇
𝑡=1

𝑀21 = ∑ 𝐸(𝑥2,𝑡𝑢1,𝑡)
𝑇
𝑡=1

𝑀22 = ∑ 𝐸(𝑥2,𝑡𝑢2,𝑡)
𝑇
𝑡=1

, 

 

{
 
 

 
 
𝑀𝑥1 = ∑ 𝐸(𝑥1,𝑡−1𝑢1,𝑡)

𝑇
𝑡=1

𝑀𝑥2 = ∑ 𝐸(𝑥1,𝑡−1𝑢2,𝑡)
𝑇
𝑡=1

𝑀𝑦1 = ∑ 𝐸(𝑥2,𝑡−1𝑢1,𝑡)
𝑇
𝑡=1

𝑀𝑦2 = ∑ 𝐸(𝑥2,𝑡−1𝑢2,𝑡)
𝑇
𝑡=1

, 

and 

 {

𝑈11 = ∑ (𝑢1,𝑡
2 )𝑇

𝑡=1

𝑈22 = ∑ (𝑢2,𝑡
2 )𝑇

𝑡=1

𝑈12 = ∑ (𝑢1,𝑡𝑢2,𝑡)
𝑇
𝑡=1

, 

we obtain 

 𝐸(𝛺1) = (𝑞1𝑞2 − 𝑞x
2)−1{𝑞2[−(𝛼𝑃𝑥1 + 𝛽𝑃𝑦1 − 𝑃11) + 𝛼(𝛼𝑃𝑥𝑥 + 𝛽𝑃𝑥𝑦 − 𝑃𝑥1) +

𝛽(𝛽𝑃𝑦𝑦 + 𝛼𝑃𝑥𝑦 − 𝑃𝑦1)] − 2𝑞x[−(𝛾1𝑀11 + 𝛾2𝑀12 − 𝑃12) + 𝛼(𝛾1𝑀𝑥1 + 𝛾2𝑀𝑥2 − 𝑃𝑥2) +

𝛽(𝛾1𝑀𝑦1 + 𝛾2𝑀𝑦2 − 𝑃𝑦2)] + 𝑞1[−(𝛾1𝑀21 + 𝛾2𝑀22 − 𝑃22) + 𝛾1(𝛾1𝑈1 + 𝛾2𝑈𝑥 −𝑀21) +

𝛾2(𝛾1𝑈𝑥 + 𝛾2𝑈2 −𝑀22)]} + 𝑇ln(𝑞1𝑞2 − 𝑞x
2) + ln 2𝜋. (4.6.26) 

In addition, we denote  
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 𝑃𝛼 = 𝛼𝑃𝑥𝑥 + 𝛽𝑃𝑥𝑦 − 𝑃𝑥1,  (4.6.27) 

 𝑃𝛽 = 𝛼𝑃𝑥𝑦 + 𝛽𝑃𝑦𝑦 − 𝑃𝑦1,  (4.6.28) 

 𝑃1 = 𝛼𝑃𝑥1 + 𝛽𝑃𝑦1 − 𝑃11,  (4.6.29) 

  𝑀𝛼 = 𝛾1𝑀𝑥1 + 𝛾2𝑀𝑥2 − 𝑃𝑥2,  (4.6.30) 

  𝑀𝛽 = 𝛾1𝑀𝑦1 + 𝛾2𝑀𝑦2 − 𝑃𝑦2 , (4.6.31) 

  𝑀1 = 𝑟1 𝑀11 + 𝑟2 𝑀12 − 𝑃12,  (4.6.32) 

 𝑈𝛾1 = 𝛾1𝑈11 + 𝛾2𝑈12 − 𝑀21, (4.6.33) 

 𝑈𝛾2 = 𝛾2𝑈22 + 𝛾1𝑈12– 𝑀22, (4.6.34) 

 𝑈1 = 𝛾1𝑀21 + 𝛾2𝑀22 − 𝑃22. (4.6.35) 

Then we simplify the expression for 𝐸(𝛺1) as, 

 𝐸(𝛺1) = (𝑞1𝑞2 − 𝑞x
2)−1{𝑞2[𝛼𝑃𝛼 + 𝛽𝑃𝛽 − 𝑃1] − 2𝑞x(𝛼𝑀𝛼 + 𝛽𝑀𝛽 −𝑀1) +

𝑞1(𝛾1𝑈𝛾1 + 𝛾2𝑈𝛾2 − 𝑈1)} + 𝑇ln(𝑞1𝑞2 − 𝑞x
2) + 𝑇 ln 2𝜋. (4.6.37) 

Further, denoting 

 𝑃𝜎 = 𝛼𝑃𝛼 + 𝛽𝑃𝛽 − 𝑃1, (4.6.38) 

 𝑀𝜎 = 𝛼 𝑀𝛼  +  𝛽 𝑀𝛽 −𝑀1,  (4.6.39) 

 𝑈𝜎 = 𝛾1𝑈𝛾1 + 𝛾2𝑈𝛾2 − 𝑈1,  (4.6.40) 

we obtain a simplified expression for (𝛺1) : 

 𝐸(𝛺1) = (𝑞1𝑞2 − 𝑞x
2)−1{𝑞2𝑃𝜎 − 2𝑞x𝑀𝜎 + 𝑞1𝑈𝜎} + 𝑇ln(𝑞1𝑞2 − 𝑞x

2) +

𝑇 ln 2𝜋.  (4.6.41) 

Moreover, denoting 𝑌 = ∑ 𝑦𝑡
2𝑇

𝑡=1 , 𝑊1 = ∑ 𝑥1,𝑡𝑦𝑡
𝑇
𝑡=1 , 𝑊2 = ∑ 𝑥2,𝑡𝑦𝑡

𝑇
𝑡=1 , and  

 𝑃w = 𝑌 + 𝑃11 + 𝑃22 − 2𝑊1 − 2𝑊2 + 2𝑃12,  (4.6.42) 

we obtain 
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 𝐸(𝛺2) = 𝑟
−1𝑃w + 𝑇log𝑟 + 𝑇 ln 2𝜋.  (4.6.43) 

4.6.2 Mathematical optimization problem for the M step 

 In the M step, we assume that the parameters are unknown.  Accordingly, 𝑃𝛼, 𝑃𝛽, 

𝑃1, 𝑀𝛼, 𝑀𝛽, 𝑀1, 𝑀𝛾1, 𝑀𝛾2, 𝑈𝛾1, 𝑈𝛾2, 𝑈1, 𝑃𝜎0, 𝑀𝜎0, 𝑈𝜎0, 𝑃𝜎, 𝑀𝜎, 𝑈𝜎, 𝐸(𝛺0), 𝐸(𝛺1), 𝐸(𝛺2) 

and 𝐸(𝛺) are all the functions with respect to the unknown parameters. We attempt to 

identify the estimates of these unknown parameters, for the 𝑘 step of the EM iteration. The 

estimates are obtained when the expected value of the objective function, 𝐸(𝛺), reaches 

its maximum with these estimates, subjected to two constraints represented by Eq. 4.6.1 

and Eq. 4.6.2. The optimization problem is: 

The mathematical optimization problem formulated is: 

 min
𝝍

𝐸(𝛺(𝝍))  (4.6.44) 

where the objective function is  

 𝛺(𝝍) =
1

2
𝐸(𝛺0(𝝍)) +

1

2
𝐸(𝛺1(𝝍)) +

1

2
𝐸(𝛺2(𝝍)) + ∑ 𝜆𝑖ℎ𝑖(𝜳)

𝑠
𝑖=1 . (4.6.45) 

4.6.3 Using first order necessary conditions to estimate 𝛍𝟏𝟎, 

𝛍𝟐𝟎, 𝛄𝟏 and 𝛄𝟐 

 We notice that some unknown parameters appear only in the expression of (𝛺0) , 

𝐸(𝛺1) or 𝐸(𝛺2). For the parsimonious state space model, the means, 𝜇10 and 𝜇20, of initial 

states, are for 𝐸(𝛺0) only, while the unknown elements, 𝛾1and 𝛾2 ,of the input matrix, 𝜞, 

are for 𝐸(𝛺1) only. Moreover, all these four parameters are not constrained. With these 

considerations, we may apply first order sufficient conditions directly to obtain the 

estimates of these parameters.   
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 Applying first order sufficient conditions to 𝐸(𝛺0) with respect to 𝜇10 and 𝜇20 and 

considering that 𝑞1𝑞2 − 𝑞x
2 > 0, we have 

 𝜇10 = 𝑥1,0̅̅ ̅̅ ̅,  (4.6.46) 

 𝜇20 = 𝑥2,0̅̅ ̅̅ ̅.  (4.6.47) 

 Applying first order sufficient conditions to 𝐸(𝛺1) with respect to 𝛾1 and 𝛾2 and 

considering Eqs. 4.6.33 and 4.6.34, we can obtain 𝛾1 and 𝛾2 by solving simultaneous linear 

equations as below: 

 𝛾1𝑈11 + 𝛾2𝑈12 = 𝑀21,  (4.6.48) 

 𝛾2𝑈22 + 𝛾1𝑈12 = 𝑀22.  (4.6.49) 

 Therefore, we can estimate the values of the four parameters, 𝜇10 and 𝜇20, and 𝛾1 

and 𝛾2 , in the parsimonious state space model. By doing this, we can reduce the number 

of the unknown parameters to six before the formation of the nonlinear optimization 

problem with nonlinear constraints. 

4.6.4 Nonlinear optimization methods  

 In Sect. 4.4, we concentrate on solving the mathematical optimization problem with 

respect to a set of only six unknown parameters: 𝜣 = [α, β, 𝑞1, 𝑞𝑥, 𝑞2, 𝑟] and the Lagrange 

multipliers. 

 The M step of the EM algorithm is not completed although the values of 𝜇10, 𝜇20, 

𝛾1 and 𝛾2 have been estimated. We continue with the attempt to find the optimal value of 

six unknown parameters with the objective function represented by Eq. 4.6.19 and two 

constraints represented by Eq. 4.6.1 and Eq. 4.6.2:  

The mathematical optimization problem formulated for the M step is: 
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 min
𝜽
𝐸(𝛺) (4.6.50) 

subjected to Eqs. 4.6.4. Applying the method of Lagrange multipliers, the Lagrange 

function becomes:  

 𝐿𝒙,𝒚(𝜽, 𝜆1, 𝜆2) = 𝐸(𝛺0(𝜽)) + 𝐸(𝛺1(𝜽)) + 𝐸(𝛺1(𝜽)) + 𝜆1ℎ1(𝜽) + 𝜆2ℎ2(𝜽) , 

  (4.6.51) 

and the optimization problem becomes: 

 min
𝜽,𝜆1,𝜆2

𝐿𝒙,𝒚(𝜽, 𝜆1, 𝜆2), (4.6.52) 

where 𝜆1 and 𝜆2 are Lagrange multipliers.  

 Applying first order sufficient conditions to L(𝜽, 𝜆1, 𝜆2) with respect to 𝜽, 𝜆1, 𝜆2, 

we have below seven simultaneous nonlinear Eqs 4.6.53 - 4.6.59: 

 (𝑞2𝑃𝛼 − 𝑞x𝑀𝛼) − 𝜆1[0.5𝑞1 − (1 − 2𝛼)β𝑞x + β
2𝑞2](𝑞1𝑞2 − 𝑞x

2) + 𝜆2[β𝑞x −

𝛼(𝑞2 + 𝑟 − 𝑣𝑛)](𝑞1𝑞2 − 𝑞x
2) = 0,   (4.6.53) 

 (𝑞2𝑃𝛽 − 𝑞x𝑀𝛽) + 𝜆1[𝛼(1 − 𝛼)𝑞x − 2𝛼β𝑞2](𝑞1𝑞2 − 𝑞x
2) + 𝜆2(𝛼𝑞x + 𝛽𝑞2)(𝑞1𝑞2 −

𝑞x
2) = 0,   (4.6.54) 

 [(𝑃𝜎0 − 𝑞1 + 𝑃𝜎 − 𝑇𝑞1)𝑞2
2 − 2𝑞x𝑞2(𝑀𝜎0 +𝑀𝜎) + 𝑞x

2(𝑈𝜎0 + 𝑞2 + 𝑈𝜎 + 𝑇𝑞2)] −

𝜆1(1 − 𝛼)(𝑞1𝑞2 − 𝑞x
2)2 − 𝜆2(𝑞1𝑞2 − 𝑞x

2)2 = 0 , (4.6.55) 

 [𝑞1𝑞2(𝑀𝜎0 + 𝑞x +𝑀𝜎 + 𝑇𝑞x) − 𝑞x(𝑞2𝑃𝜎0 + 𝑞1𝑈𝜎0 + 𝑞2𝑃𝜎 + 𝑞1𝑈𝜎) +

𝑞x
2(𝑀𝜎0 − 𝑞x +𝑀𝜎 − 𝑇𝑞x)] − 2𝜆1𝛼(1 − 𝛼)β(𝑞1𝑞2 − 𝑞x

2)2 − 2𝜆2𝛼β(𝑞1𝑞2 −

𝑞x
2)2 = 0,   (4.6.56) 

 [𝑞1
2(𝑈𝜎0 − 𝑞2 + 𝑈𝜎 − 𝑇𝑞2) − 2𝑞1𝑞x(𝑀𝜎0 +𝑀𝜎) + (𝑃𝜎0 + 𝑞1 + 𝑃𝜎 + 𝑇𝑞1)𝑞x

2] +

2𝜆1𝛼β
2(𝑞1𝑞2 − 𝑞x

2)2 − 𝜆2(1 − 𝛼
2 + 𝛽2)(𝑞1𝑞2 − 𝑞x

2)2 = 0,  (4.6.57) 

 (1 − 𝛼)𝑞1 + 2𝛼(1 − 𝛼)β𝑞x − 2𝛼β
2𝑞2 = 0,  (4.6.58) 
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 𝑞1 + 2𝛼β𝑞x + (1 − 𝛼
2 + β2)𝑞2 + (1 − 𝛼

2)(𝑟 − 𝑣𝑛) = 0.  (4.6.59) 

 To solve these simultaneous nonlinear equations, line search methods and trust 

region methods are two categories of methods employed frequently. A line search method 

first finds a descent direction and then computes a step size. The descent direction can be 

computed by various methods, such as gradient descent, Newton's method and Quasi-

Newton method. Unlike line search methods, trust region methods compute a trial step by 

solving a trust region subproblem where a model function is minimized within a trust 

region. Accordingly, trust region methods improve robustness when starting far from the 

solution and handles ill-conditioned problems when Jacobian matrix used in line search is 

singular [135]. To further reduce the time spent in applying the trust region methods, 

approximation and heuristic strategies are used to restrict the trust-region subproblem to a 

two-dimensional subspace. Consequently, trust-region-reflective algorithm [136] is chosen 

to solve the simultaneous nonlinear equations in this chapter. 

4.7 Simulation, Results and Discussion 

 The simulation to evaluate our proposed approach includes three major steps. 

Firstly, we preset exact values for the statistical indices of the inputs series and the exact 

values for parameters of the parsimonious state space model, generate input series, and 

then generate output series using Eqs. 4.1 and 4.2. The sample size is 1000. Secondly we 

guess the starting values of the parameters, applying the procedure introduced in Sect. 4.4. 

Finally, we implement the MLE method and the EM algorithm where we apply the Kalman 

filtering and the Kalman smoothing during the E step to calculate the conditionally 

expected log likelihood based on complete data and then apply the Lagrangian multiplier 
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method and trust-region-reflective algorithm during the M step to obtain the new parameter 

values from the simultaneous nonlinear equations: Eqs. 4.6.53 - 4.6.59. 

Table 4.3: Statistical indices for input series 

Sample Size 𝑢1𝑏 𝜌1 𝑣ζ1 𝑢2𝑏 𝜌2 𝑣ζ2 

Exact 0 0 0.25 10 0 0.25 

Guessed 0.014 -0.023 0.248 9.989 0.003 0.238 

 

The exact values, the guessed values and the estimated values of the parameters are 

displayed in Table 4.3. In order to assess the performance of the guessing procedure and 

the estimation methods, root-mean-square deviation (RMSD) is used as a measure for the 

differences between the guessed/estimated parameter values and the exact parameter 

values. Considering that the values of different parameters are of different scales, we 

calculate the percentages of changes of the guessed/estimated values with respect to those 

of the exact values. The percentages are treated as a certain degree of normalization and 

are used to derive another metric named normalized root-mean-square deviation (NRMSD). 

4.7.1 Generating input series and output series  

 We assume that the input series,  𝑢1(𝑡)  and 𝑢2(𝑡) ,  have no autocorrelation 

respectively but are orthogonal to each other.  

Then we preset statistical indices for 𝑢1(𝑡) and 𝑢2(𝑡) as shown in the second row 

of Table 4.3. The input series are generated directly using these statistical indices.  

 To generate the output series, we need the “preset” values of parameters, yb, θ1, θ2, 

𝑣𝜀, as shown in the second row of Table 4.4, and the preset values for the elements of 𝜳10, 

except 𝑞x , as displayed in the second rows of Table 4.5 and Table 4.6 respectively. These 
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values of the regression parameters are treated as “preset” because they are calculated using 

the exact statistical indices of the input series, and the exact values of the parameters, 𝜳10, 

applying Eqs. 4.5.18 - 4.5.20. With all these parameters available and the input series 

generated, applying Eqs. 4.1 and 4.2, we can obtain the state series for hidden variables 𝑥1𝑡 

and 𝑥2𝑡, and the output series for the observation 𝑦𝑡.  

Table 4.4: Regression parameters for the two-input model 

Parameters yb θ1 θ2 𝑣𝜀 

“Preset” 12 2.4 1.92 2.168 

Guessed 11.064 2.639 2.023 3.143 

4.7.2 Guessing the parameters 

 When we are guessing the values of the parameters, we assume that we do not have 

the knowledge of the preset values of the parameters from Sect. 4.1. So firstly we must find 

the statistical indices of the input series directly from the generated input series for 𝑢1(𝑡) 

and 𝑢2(𝑡), which are shown in the third row of Table 4.3. 

 Then a critical step is to guess the values of parameters, yb, θ1, θ2, 𝑣𝜀, for the linear 

regression between the output series,  {𝑦𝑡},   and the lagged input series, {𝑢1,𝑡−1}  and 

{𝑢2,𝑡−1} , taking the advantage of cross variance between output series and input series. 

These parameters guessed using Eqs. 4.5.36 - 4.5.38 and 4.5.24 are displayed in the third 

row of Table 4.4.  

 All the values of the parameters of the parsimonious state space model can be 

guessed, continuing to follow the procedure illustrated in Figure 4.1.  

The parameter values guessed are displayed in the third rows of Table 4.5.  
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4.7.3 Estimating the parameters 

 The guessed parameter values are used as starting values for the iteration of the EM 

algorithm. In the meantime, since 𝑞x = 0, the first order sufficient conditions, i.e. Eqs. 

4.6.53 - 4.6.59, can be further simplified as: 

 𝑃𝛼 − [𝜆1(0.5𝑞1 + β2𝑞2) + 𝜆2𝛼(𝑞2 + 𝑟 − 𝑣𝑛)]𝑞1 = 0 (4.6.60) 

 𝑃𝛽 + (𝜆2 − 2𝜆1𝛼)𝛽𝑞1𝑞2 = 0 (4.6.61) 

 𝑃𝜎 + 𝑃𝜎0 − (𝑇 + 1)𝑞1 − [𝜆1(1 − 𝛼) + 𝜆2]𝑞1
2 = 0 (4.6.62) 

 𝑈𝜎 + 𝑈𝜎0 − (𝑇 + 1)𝑞2 + [2𝜆1𝛼β
2 − 𝜆2(1 − 𝛼

2 + 𝛽2)]𝑞2
2 = 0 (4.6.63) 

 𝑃w − 𝑇𝑟 − 𝜆2(1 − 𝛼
2)𝑟2 = 0 (4.6.64) 

 (1 − 𝛼)𝑞1 − 2𝛼β
2𝑞2 = 0 (4.6.65) 

 𝑞1 + (1 − 𝛼
2 + β2)𝑞2 + (1 − 𝛼

2)(𝑟 − 𝑣𝑛) = 0   (4.6.66) 

 

Table 4.5: Comparison among preset/guessed and estimated parameters 

Parameters α β γ1 γ2 𝑞1 𝑞2 r µ1 µ2 RMSD9 RMSD4 

Exact 0.5 0.8 1.5 1.2 0.32 0.25 0.64 19.2 12 0 0 

Guessed 0.62 0.70 1.44 1.09 0.45 0.27 0.70 21.82 10.92 0.90 0.10 

Change (%) 24.6 -12.3 -4.2 -9.1 39.2 9.4 9.4 13.7 -9.0 17.75 14.63 

Estimated 0.54 0.71 1.46 1.22 0.43 0.31 0.58 22.16 11.09 0.98 0.055 

Change (%) 8.52 -11.34 -2.69 1.89 34.58 22.80 -8.96 15.43 -7.57 16.00 7.28 

 

Assuming the starting value of the Lagrangian multiplier λ=0, Using the guessed 

values of the parameters and applying the trust-region-reflective algorithm, we obtain the 

estimates of the parameters, which are listed in the fifth row of Table 4.5, after 18 time of 

EM iteration.  
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Using the arbitrarily selected values, as listed in the third row of Table 4.6, of the 

parameters, we obtain the estimates of the parameters, which are listed in the fifth row of 

Table 4.6, after 28 times of EM iteration.  

Table 4.6: Comparison among preset, selected and estimated parameters 

Parameters α β γ1 γ2 𝑞1 𝑞2 r µ1 µ2 RMSD9 RMSD4 

Exact 0.5 0.8 1.5 1.2 0.32 0.25 0.64 19.2 12 0 0 

Selected 0.8 1.2 2 1.5 0.5 0.12 0.45 34 20 5.61 0.38 

Change (%) 60 50 33.3 25 56.25 52 29.7 77.1 66.7 17.56 44.25 

Estimated 0.83 0.21 1.16 1.44 0.05 0.08 0.06 15.7 15.6 1.71 0.397 

Change (%) 66 -73.8 -22.7 20 -0.844 -68 -90.6 -22.3 30 52.65 51.76 

4.7.4 RMSD and NRMSD 

 In Table 4.5, the most data in the fourth row, “change (%)”, are the changes of the 

guessed values with respect to exact values of the parameters. For the most data in the sixth 

row, “change (%)”, are for the changes of the estimated values with respect to exact values 

of the parameters. RMSD9 is about the differences between  the guessed or estimated values 

of nine parameters and the exact values of those values.  RMSD4 is about the differences 

between the guesed or estimated values, of four parameters of interest, α, β,  𝛾1 and 𝛾2, 

and the exact values of these four parameters of interest. With “∙”̂ to label the guesed or 

estimated values, the expressions for  𝑅𝑀𝑆𝐷9 and 𝑅𝑀𝑆𝐷4 are 

 𝑅𝑀𝑆𝐷9 =
1

3
[(α̂ − α)2 + (β̂ − β)

2
+ (γ1̂ − γ1)

2 + (γ2̂ − γ2)
2 + (𝑞1̂ − 𝑞1)

2 +

(𝑞2̂ − 𝑞2)
2 + (r̂ − r)2 + (𝜇1̂ − 𝜇1)

2 + (𝜇2̂ − 𝜇2)
2]
1/2

, (4.6.67) 



123 
 

 𝑅𝑀𝑆𝐷4 =
1

2
[(α̂ − α)2 + (β̂ − β)

2
+ (γ1̂ − γ1)

2 + (γ2̂ − γ2)
2]
1/2

. (4.6.68) 

 Moreover, the measures for the changes of the values of the nine parameters are 

NRMSD9 while those for the four parameters are NRMSD4: 

  𝑁𝑅𝑀𝑆𝐷9 =
1

3
[(α̂/α − 1)2 + (β̂/β − 1)

2
+ (γ1̂/γ1 − 1)

2 + (γ2̂/γ2 − 1)
2 +

(𝑞1̂/𝑞1 − 1)
2 + (𝑞2̂/𝑞2 − 1)

2 + (r̂/r − 1)2 + (𝜇1̂/𝜇1 − 1)
2 + (𝜇2̂/𝜇2 −

1)2]
1/2

 ,  (4.6.69) 

 𝑁𝑅𝑀𝑆𝐷4 =
1

2
[(α̂/α − 1)2 + (β̂/β − 1)

2
+ (γ1̂/γ1 − 1)

2 + (γ2̂/γ2 −

1)2]
1/2

.  (4.6.70) 

4.7.5 Discussion 

 We assess the performance of our proposed method based on the comparison 

among the exact values of parameters, the guessed values and the estimated values. Most 

values of the guessed parameters are near the values of the preset parameters. This means 

that the proposed procedure for the guessing of starting parameter values is promising. 

Among them, the guessed value of 𝑞1 is the least accurate, while the guessed value of the 

input parameters, γ1 and γ2, are the most accurate. 

In Table 4.5, RMSD9 for all the estimated values of the parameters are a bit larger 

than the RMSD9  for all the guessed values. This is caused mostly by less accurately 

estimated values of 𝑞1  and 𝑞2 . However, RMSD4  for estimated values is significantly 

reduced to around half of RMSD4 for guessed value. So at least the estimates of the four 

parameters of interest are more accurate than the guessed values. Through the comparison 

of the NRMSD in the fourth row and in the sixth row of Table 4.5, we can confirm that the 
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approach proposed by us is successful, not only for the four parameters of interest, α, β, 

γ1, γ2, but also for all nine parameters. 

In Table 4.6, considering most values of the parameters can be between 0 and 

infinitive, the selected values for the parameters are actually quite near the exact values. 

However, the RMSDs in Table 4.6 are significantly greater than the RMSDs in Table 4.5. 

This illustrates that the method we proposed is superior to random initialization in 

obtaining accurate estimates. 

Moreover, more times of EM iteration is need when random initialization is used. 

This means that random initialization is not only inaccurate but also slower to reach its 

local optima. 

Therefore, we can conclude that the proposed approach on the procedure for starting 

value guessing and the proposed methods for parameter estimation, is promising. The 

guessed values are around the preset values. Most of the estimated values, especially the 

values of the parameters of interest, are much nearer to the preset values than the guessed 

values are.  

Our approach not only demonstrated the accuracy of estimates but also the 

efficiency and effectiveness of estimation. Although the procedure of the guessing of the 

starting values of the unknown parameters seems complicated, but the computation is 

straightforward, no extra time needed for convergence as required by some other 

initializing methods such as grid search [128]. On the other hand, the EM algorithm is 

completed within 20 iterations, this verifies Ryden [121]’s conclusion that the EM 

algorithm is the simplest and quickest method. This also proves the integration of nonlinear 

mathematical optimization methods, the reducing of the number of unknown parameters 
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to the nonlinear simultaneous equations, are critical in lower the complexity in computation 

while saving time consumed for computation. 

4.8 Conclusion and Future Research 

In this chapter, we propose a state space model to investigate the dynamics of brand 

equity in Sect. 4.1. This model can separate brand values into two components: BLV (brand 

label values) and BOV (Brand operation values). BOV is created from a firm’s investment 

and will transfer to BLV through autoregressive process. Both BLV and BOV contribute 

to brand performance. This is a novel model which can disclose the procedure how brand 

values are generated. 

After the model is proposed, we attempt to identify a dynamic system represented 

by the state space model. Different with most systems in extant literature, the system to be 

identified has time-varying exogenous inputs. The Monte Carlo techniques used for the 

identification of such systems have the issue of residual effect and cost additional 

computation. This excites us to discover alternative approaches in fulfilling the task of 

parameter estimation for relevant state space models. 

 MLE and the EM algorithm are popularly used in parameter estimation for the state 

space models when the systems have no time-varying exogenous inputs. New approaches 

must be developed for the application of MLE and the EM algorithm in the identification 

of a dynamic system. The challenges are mostly on the guessing of the starting values of 

the parameters, as well as on the optimization in the M step of the EM algorithm, especially 

when the mathematical optimization is a non-concave nonlinear problem with nonlinear 

constraints because (1) in practice it can be common that some parameters for state space 



126 
 

model are known and (2) there can be certain nonlinear constraints with respect to the 

parameters.  

 To identify such a constrained dynamic system with time-varying exogenous inputs, 

innovations are needed in the implementation of ELM and the EM algorithm. To guess the 

starting values of the parameters, we develop a procedure employing different statistic tools 

and methods, especially the linear regression between the output and the lagged inputs, and 

the cross covariance between the output and the lagged inputs. During the M step of the 

EM algorithm, we form another objective function from the expected likelihood and 

nonlinear constraints. To fulfill the mathematical optimization of the nonlinear objective 

function with nonlinear constraints, we apply Lagrangian multiplexer method and obtain 

simultaneous nonlinear equations. Then we choose the trust-region-reflective algorithm to 

solve these equations. These methods are conventional in mathematical optimization. 

However, they have never been recommended in the estimation of state space models with 

time-varying inputs possibly because of the lack of methods to implement the MLE method 

and the EM algorithms. Therefore, it can be perceived that our innovations to the 

implementation of EM iteration are mostly on (1) the guessing of the starting value, and 

(2) the introduction and integration of methods for nonlinear optimization in the M step of 

the EM algorithm. In order to reduce the computational cost and residue errors, we choose 

the MLE method, instead of MCMC methods which are popularly chosen for state space 

models with partly known parameters and exogenous inputs. Hence the application of the 

MLE methods in state space models with exogenous time-varying inputs and partly known 

parameters is innovative. In order to apply the MLE methods, we choose the EM algorithm. 

Because the initial guessing is critical for the accuracy of the estimated parameter values, 
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the procedure to guess the initial parameter values gurantee the successful implementation 

of the EM algorithm. In addition, through the introduction and integration of (nonlinear) 

optimization methods, we finally demonstrate that the application of the MLE methods to 

obtain accurate estimates of unknown parameters of such a state space model representing 

brand equity dynamics and to significant reduce the computational complexity and 

ineffectiveness is not impossible. 

 According to the simulation results, in general, the approach proposed, especially 

the procedure for starting value guessing and the methods for parameter estimation, is 

promising. The guessed values are around the preset values. Most of the estimated values, 

especially the values of the parameters of interest, are much nearer to the preset values than 

the guessed values are. These indicate that the guessing procedure and the estimation 

methods work fine. However, further investigation on the closeness between the 

guessed/estimated values, as well as the convergence of the guessing procedure and the 

estimation methods, need to be performed with theoretical study. 

It shall be emphasized that our approach not only demonstrated on the accuracy 

estimates but also on efficiency and effectiveness. Although the procedure of the guessing 

of the starting values of the unknown parameters seems complicated, but the computation 

is straightforward, no extra time needed for convergence as required by most other 

initializing methods such as grid search [128]. On the other hand, the EM algorithm is 

completed within 20 iterations, this verifies Ryden [121]’s conclusion that the EM 

algorithm is the simplest and quickest method. This also proves the integration of nonlinear 

mathematical optimization methods, the reducing of the number of unknown parameters 
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to the nonlinear simultaneous equations, are critical in reduces the complexity of 

computation while saving time consumed for computation. 

 The approach we are proposing can be employed in future research in identification 

of dynamic systems represented by state space models, using MLE and the EM algorithm. 

Further research can be concentrated on certain specific state space models, optimization 

algorithms, metrics to evaluate the performance of an approach used and applications of 

certain state space models in practice. For example, models with higher dimensions of 

exogenous inputs, hidden states and outputs, may reflect the reality of certain applications, 

such as those in the cases of a firm’s marketing investments, brand equity and business 

success. Moreover, when both objective function and the constraints are more complicated, 

especially when inequality constraints exist, Karush–Kuhn–Tucker conditions and interior 

point method, or other methods, must be considered.  

4.9 Chapter Summary 

As we know, methods to identify state-space-modeled dynamic systems with time-

varying exogenous inputs are still limited to algorithms based on Markov chain Monte 

Carlo which has residue effect and needs additional computation. In this chapter, we intend 

to identify such dynamic systems using traditional maximum likelihood estimation. This 

method is often combined with expectation-maximization algorithm, to estimate 

parameters of state-space-modeled systems without time-varying inputs. It is challenging 

to fulfill such a task, especially when the parameters of state space models are partly known 

and the relevant nonlinear objective function constructed is subjected to non-concave 

nonlinear constraints. In this chapter, we propose an approach, which mainly includes a 
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procedure developed for initial guessing of values of the parameters, and mathematical 

optimization methods integrated to obtain the estimates of the parameters in maximize the 

nonlinear objective function, when a parsimonious state space model for brand equity 

dynamics is employed. The simulation results demonstrate that our approach, including the 

guessing procedure developed and the optimization methods integrated, is promising in 

guessing the starting values and then obtaining the estimates of the parameters. 
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Chapter V 

Conclusions and Future Work 

5.1 Conclusions 

Generally, our motivation is to construct certain mathematical dynamic models to 

describe BE dynamics, suitable to the needs of marketing applications. With enough 

sampling, certain amount of data we intend to obtain insight regarding brand persistence, 

the effects of advertising and R&D expenses, and the internal relationship among them. 

Additional attention will be paid to the brand persistence because the long-term effects of 

the investments on the brands of a firm are of great interest to both executives and managers. 

The selection of BE measures depends on application need in marketing investments. Since 

there is much less research using the FBBE categories of approaches than research using 

CBBE categories of approaches, the FBBE categories of approaches are emphasized for 

their financial relevance.  
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However, the extant mathematical models using FBBE to describe BE dynamics 

cannot reflect the persistence of brand equity. Thus these models are not able to fully 

represent the dynamics of brand equity. In order to obtain a better representation of the 

dynamics of brand equity, we propose two types of statistical models: (1) ARX models for 

the cases where the brand values are known and (2) state space models for cases where the 

brand values are unknown. Although these models are initially proposed to study the 

dynamics of FBBE, they can also be used to study the dynamics of CBBE.  

Collinearity between exogenous inputs are common in marketing practices. 

Accordingly, there is collinearity among explanatory variables of a linear regression to 

estimate an ARX model. Consequently, principal component regression is proposed so we 

can perform regression on principle components, instead of collinear explanatory variables. 

These principle components are not collinear because they are orthogonal to each other. 

Moreover, the number of principle components are significantly less than the number of 

explanatory variables. This makes it possible to perform linear regression with a limited 

sample size. Additionally, when there is autocorrelation within the residue series after 

linear regression, we can further apply the method of generalized differences during the 

implementation of PCR. 

As shown in Chapter II, the application of ARX models helps to perform brand 

structural analysis and discover insights from the marketing practices of certain firms 

whose brands are top global brands as claimed by Interbrand. However, to apply ARX 

models, the brand values must be known. If commercial brand values are not used, the 

brand values are unobservable by the nature of BE. Consequently, we must propose other 

models, such as state space models to study BE dynamics. 
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In existing literature, the identification of state space models through parameters 

estimation is not well presented yet, especially for the models with nonlinear constraints 

and exogenous time-varying inputs. The estimation of state space model has been proved 

to be a task of difficulty and sophistication when the dimension of the states, the output 

and the inputs are increasing. To make the work less challenging, we not only need break 

down the tasks, but also need to start from state space models with lower dimensions of 

inputs, outputs and states. Furthermore, the objective function formatted is usually 

nonlinear; thus, the guessing of the starting value is critical before the implementation of 

the algorithms to estimate parameter values.  

In this research, we conclude that the ARX models can be estimated using certain 

proposed approaches. However, due to the collinearity among exogenous inputs, the 

estimation though ordinary linear regression (OLS) will cause large variance inflation 

factor (VIF), i.e. the variance of estimate from OLS will become large. Through PCR and 

generalized differentiation, we can significantly reduce the variance of estimate and the 

effect of the autocorrelation of the residue errors from PCR, respectively. Consequently, 

we are able to obtain the parameters of the ARX with acceptable quality, which is measured 

by the coefficient of determination and p-values.  

The application of ARX model in brand structure analysis also helps marketing 

managers and marketing researchers to reveal more in-depth brand insights than 

conventional brand outcome measure. We discovered a different brand ranking from 

Interbrand’s brand ranking. We also classified brand management scenarios into four types 

per their brand intrinsic values and brand performance ratio. 
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On the other hand, in the estimation of state space models, we conclude that the 

estimation of state space models with one or two exogenous inputs can be realized through 

MLE, together with the EM algorithm. In addition, less computational cost is expected for 

this proposed method than MCMC-based methods. However, in order to implement the 

proposed MLE method successfully, it is critical to carefully design the procedure to guess 

the initial parameter values to be estimated and the approaches to fulfill the M step of the 

EM algorithm. Our simulation results indicate that the initial guessing procedure developed 

and mathematical optimization methods proposed are promising in estimating state space 

models. 

5.1.1 Contributions 

This research is an important attempt to identify dynamic systems represented by 

ARX models or state space models. In Chapters II，III and IV, the contributions of the 

research in each chapter have been introduced. The highlights of the contributions are 

stated as below. 

In Chapter II, through the successful application of ARX model and the use of 

Compustat and Interbrand data, an innovative generic brand value structure analysis is 

performed. Consequently, brand outcome can be used for brand diagnostic purposes and 

to qualify the long-term brand value and assess firm brand operation. Theoretically, we 

reached the target to separate the long-term effects and short-term effects. Besides, we 

recommend intrinsic brand value and performance ratio in brand assessment which are 

important to obtain a profile on the status of a firm’s brand. Managerially, through their 

understanding of the structure of brand value, firms’ decision makers are able to recognize 
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the difference among the effects of investments on advertising and R&D, in order to make 

smart decision to optimize the returns from marketing investments. 

In Chapter III, we find that there is a relationship between the variance of the initial 

state and the variance of the process noise so we don’t need to estimate both. This finding 

is used in Chapter IV with some variation, which is caused by the difference of the state 

space models used in these two chapters. Even more, the proposed the WLS method for 

the initial guessing of parameter values is innovative. The method works for a state space 

model which has only one dimension of input, state and output, respectively. 

In Chapter IV, to reduce computational complexity and cost, MLE, together with 

the EM algorithm, is proposed for the estimation of a two-input state space model with 

nonlinear constraints and time-varying exogenous inputs. Since the elements of the 

parametric matrices are partly known, we are not able to use the traditional way of treating 

whole matrices as unknown parametric matrices. Moreover, the time-varying inputs and 

nonlinear constraints greatly increased the complexity of the mathematical optimization 

problem derived from MLE. Accordingly, not only the objective function itself is nonlinear 

but also the constraints to the objective function are nonlinear.  Such an optimization 

problem to be solved by the EM algorithm is rarely seen in extant literature. In order to 

implement the EM algorithm, an innovative procedure for the initial guessing of the 

parameter values is designed and an integrated optimization approach for parameter 

estimation is developed. Through simulation, the procedure and the approach are indicated 

to be effective in obtaining the parameter values and thus estimating such a state space 

model. 
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5.2 Future Work 

In Chapter II, during the application of the ARX model, we assumed that the brand 

intrinsic value remains stable over the observation period. However, in practice, brand 

intrinsic value may change over time (e.g., in response to market changes and brand 

investments). Further research can model a changing brand intrinsic value, in response to 

market inputs and brand performance, using advanced modeling techniques. Such a model 

can also be a state space model, where the brand intrinsic value can be treated as an 

observable state which is evolving over time. 

The further research of Chapter III is performed in Chapter IV. The approaches we 

proposed in these two chapters can be employed in future research in the identification of 

dynamic systems represented by state space models, using MLE and the EM algorithm. 

Further research can be concentrated on (1) certain specific state space models for certain 

industrial applications (eg. models with higher dimensions of exogenous inputs, hidden 

states and outputs than the model used in Chapter IV, may represent the reality of certain 

applications, such as those in the case of a firm’s marketing investments, brand equity and 

business success); (2) optimization algorithms to include inequality constraints (eg., when 

both objective function and the constraints are more complicated, especially when 

inequality constraints exist, Karush–Kuhn–Tucker conditions and interior point method, or 

other methods, will be considered); (3) metrics on efficiency or convergence to carefully 

evaluate the performance of a proposed approach used, and (4) applications of certain state 

space models in practice with sufficient financing, accounting and/or customer-surveying 

data provided by a certain company. 
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Other than brand equity, customer satisfaction [137] and customer equity [138] 

[139] are the topics closely related to CBBE. Like brand equity, both are also latent 

variables in marketing research.  Analytical tools such as latent growth structural equation 

modelling (SEM) are popular to handle problems regarding customer satisfaction and 

loyalty. However, SEM is stronger in theory testing than decision making [140] - [142], so 

they are not a good alternative to state space models. In the future, the combination of SEM 

and state space model can be considered. 



137 
 

Bibliography 

    [1] AMA, (2016) Dictionary [online], available:  

https://www.ama.org/resources/pages/dictionary.aspx?dLetter=B. 

    [2] P. H. Farquhar, “Managing brand equity,” Marketing Research, vol. 1, pp. 24-33, 

September 1989. 

    [3] K. L. Keller, Strategic Brand Management, Prentice Hall, New Jersey, 1998. 

    [4] J. C. Crimmins, “Better measurement and management of brand value,” Journal of 

Advertising Research, vol. 40, no. 6, pp. 136-144, 2000. 

    [5] D. A. Aaker, Building Strong Brands, The Free Press, New York, 1996. 

    [6] M. Neumeier, The Brand Gap: How to Bridge the Distance Between Business 

Strategy and Design, Berkekley, CA: New Riders Publishing, 2006. 

    [7] K. L. Keller, “Building and managing corporate brand equity,” in The Expressive 

Organization, eds. Majken Schultz, Mary Jo Hatch, Oxford University Press, 2000. 

    [8] G. Kleisterlee, “Innovation as driver of sustainable growth,” Speech at China Central 

Party School, 2007. 

    [9] D. A. Aaker, Managing Brand Equity. The Free Press, New York, 1991. 



138 
 

  [10] K. L. Keller, “Conceptualizing measuring, and managing customer-based brand 

equity,” Journal of Marketing, vol. 57, no.1, pp. 1-22, 1993. 

  [11] C. S. Park and V. Srinivasan, “A survey-based method for measuring and 

understanding brand equity and its extendibility,” Journal of Marketing Research， 

vol. 39, no. 4, pp. 421-439, 1994. 

  [12] V. Srinivasan, C. S. Park, and D. R. Chang, “An approach to the measurement, 

analysis, and prediction of brand equity and its sources,” Management Science, vol. 

51, no. 9, pp. 1433-1448, 2005. 

  [13] W. Kamakura and G. Russell, “Measuring brand value with scan data,” International 

Journal for Research in Marketing, vol.10, no. 1, pp. 9-22, 1993. 

  [14] C. J. Simon and M. W. Sullivan, “The measurement and determinants of brand equity: 

A financial approach,” Marketing Science, vol. 12, no.1, pp. 28-52, 1993. 

  [15] V. Mahajan, S. Sharma, and R. D. Buzzell. “Assessing the  impact of competitive 

entry on market expansion and incumbent sales.” Journal of Marketing, vol. 57, pp. 

39-52, 1993. 

  [16] D. A. Aaker, “Measuring brand equity across products and markets,” California 

Management Review, vol. 38, pp. 102-120, Spring 1996. 

  [17] K. L. Ailawadi, D. R. Lehmann, and S. A. Neslin, “Revenue premium as an outcome 

measure of brand equity,” Journal of Marketing, vol. 67, pp. 1-1 7, 2003. 

  [18] S. Chu and H. T. Keh, “Brand value creation: Analysis of the Interbrand-Business 

Week brand value rankings,” Marketing Letters, vol. 17, no. 4, pp. 323-31, 2006. 



139 
 

  [19] D. M. Hanssens and M. G. Dekimpe, “Modeling the financial-performance effects 

of marketing,” in B. Wierenga (Ed.), Handbook of Marketing Decision Models, pp. 

501-523, 2008. 

  [20] D. A. Aaker, (2011), When will a damaged brand come back? [online], available: 

http://www.prophet.com/blog/aakeronbrands/45-when-will-a-damaged-brand-

come-back. 

  [21] A. S. Dick and K., Basu, “Customer loyalty: Toward an integrated conceptual 

framework,” Journal of the Academy of Marketing Science, vol. 22, no. 2, pp. 99-

113, 1994. 

  [22] V. Pare and J. Dawes, “The persistence of excess brand loyalty over multiple years,” 

Marketing Letters, vol. 23, no. 1, pp. 163-175, 2012. 

  [23] M. P. Conchar, M. R. Crask, and G. M., Zinkhan, “Market valuation models of the 

effect of advertising and promotional spending: a review and meta-analysis,” 

Journal of the Academy of Marketing Science, vol. 33, no. 4, pp. 445-460, 2005. 

  [24] Y.-M. Chen, “The persistence of brand value at country, industry, and firm levels,” 

Special Issue: Brand Equity, Branding, and Marketing Communications in 

Emerging Markets. Journal of Global Marketing, vol. 23, no.3, pp. 253-269, 2010. 

  [25] K. Jedidi, C. F. Mela, and S. Gupta, “Managing advertising and promotion for long-

run profitability,” Marketing Science, vol. 18, no. 1, pp. 1-22, 1999. 

  [26] F. Wang, X.-P. Zhang, and M. Ouyang, “Does advertising create sustained firm value? 

The capitalization of brand intangible,” Journal of the Academy of Marketing 

Science, vol. 37, no.2, pp. 130-143, 2009. 



140 
 

  [27] I., Buila, L. de Chernatony, and E. Martíneza, “Examining the role of advertising and 

sales promotions in brand equity creation,” Journal of Business Research, vol. 66, 

no.1, pp.115-122, 2013. 

  [28] K. Pauwels, D. Hanssens, and S. Siddharth, “The long-term effects of price 

promotions on category incidence, brand choice, and purchase quantity,” Journal 

of Marketing Research, vol. 39, pp. 421-439, 2002. 

  [29] A. D’Astous and I. Jacob, “Understanding consumer relations to premium-based 

promotional offers,” European Journal of Marketing, vol. 36, vol. 11/12, pp. 1277-

1287, 2002. 

  [30] G. S. Low and J. J. Mohr, “Advertising vs sales promotion: a brand management 

perspective,” Journal of Product & Brand Management, vol. 9, no. 6, pp. 389-414, 

2000. 

  [31] N. Sedaghat, M. Sedaghat, and A. K. Moakher, “The impact of promotional mix 

elements on brand equity,” American Journal of Scientific Research. vol. 43, pp. 5-

15, 2012. 

  [32] R. Kline, Principles and Practice of Structural Equation Modeling, 3rd Ed., Guilford, 

2011. 

  [33] J. C. Westland, Structural Equation Modeling: From Paths to Networks, New York: 

Springer, 2015 

  [34] NA, “World-wide R&D: Widening recognition of R&D importance,” Strategic 

Direction, vol. 22, no.3, pp.30-32, 2006. 



141 
 

  [35] W. R. Dillon, T. J. Madden, A. Kirmani, and S. Mukherjee, “Understanding what’s 

in a brand rating: A model for assessing brand and attribute effects and their 

relationship to brand equity,” Journal of Marketing Research, vol. 38, no. 4, pp. 

415-429, November 2001. 

  [36] S. Sriram, S. Balachander, and M. U. Kalwani, “Monitoring the dynamics of brand 

equity using store-level data,” Journal of Marketing, vol. 71, pp. 61-78, April 2007. 

  [37] V. Shankar, P. Azar, and M. Fuller, “BRAN*EQT: A multicategory brand equity 

model and its application at Allstate,” Marketing Science, vol. 27, no.4, pp. 567-84, 

2008. 

  [38] A. Aribarg and N. Arora, “Interbrand variant overlap: Impact on brand preference 

and portfolio profit,” Marketing Science, vol. 27, nol. 3, pp. 474-491, 2008. 

  [39] S. Voleti and P. Ghosh, “A non-parametric model of residual brand equity in 

hierarchical branding structures with application to US beer data,” Serie A, 

Statistics in Society, vol. 177, no. 1, pp. 135–152, January 2014. 

  [40] J. Tobin (1969), "A general equilibrium approach to monetary theory," Journal of 

Money, Credit and Banking, vol. 1, no. 1, pp. 15–29, 1969. 

  [41] L. Ljung, System Identification: Theory for the User, 2nd Ed., PTR Prentice Hall, 

Upper Saddle River, N.J., 1999. 

  [42] J. H. Roberts, U. Kayande, and S. Stremersch, “From academic research to marketing 

practice: Exploring the marketing science value chain,” International Journal of 

Research in Marketing, vol. 31, no. 2, pp. 127-140, 2014. 



142 
 

  [43] K. L. Keller and D. R. Lehmann, “Brands and branding: Research findings and future 

priorities,” Marketing Science, vol. 25, no. 6, pp. 740–759, 2006. 

  [44] C. Eckert, J. L. Jordan, and T. Islam, “Seeing the forest despite the trees: Brand 

effects on choice uncertainty,” International Journal of Research in Marketing, vol. 

29, no. 3, pp. 256-264, 2012. 

  [45] H. Guyon and J.-F. Petiot, “New conjoint approaches to scaling brand equity and 

optimising share of preference prediction,” International Journal of Market 

Research, vol. 57, no. 5, pp. 701-726, 2015. 

  [46] Interbrand, (2016), Best global brands 2016 [online], available ： 

http://www.interbrand.com/en/best-global-brands/2013/Best-Global-Brands-

2016.aspx, 2016. 

  [47] V. Srinivasan, C. S. Park, and D. R. Chang, “An approach to the measurement, 

analysis, and prediction of brand equity and its sources,” Management Science，

vol. 51, no.9, pp. 1433-48, 2005. 

  [48] N. S. Davcik and P. Sharma, “Impact of product differentiation, marketing 

investments and brand equity on pricing strategies: A brand level investigation,” 

European Journal of Marketing, vol. 49, no. 5/6, pp. 760-781, 2015. 

  [49] R. T. Rust, T. Ambler, G. S. Carpenter, V. Kumar, and R. K. Srivastava, “Measuring 

marketing productivity: Current knowledge and future directions,” Journal of 

Marketing, vol. 68, pp. 76-89, 2004. 



143 
 

  [50] J. L. Zaichkowsky, M. Parlee, and J. Hill, “Managing industrial brand equity: 

Developing tangible benefits for intangible assets,” Industrial Marketing 

Management, vol. 39, no. 5, pp. 776-783, 2010. 

  [51] R. N. Sinclair and K. L. Keller, “A case for brands as assets: Acquired and internally 

developed,” Journal of Brand Management, vol. 21, no. 4, pp. 286-302, 2014. 

  [52] R. Amit and P. J. H. Schoemaker, “Strategic assets and organizational rent,” Strategic 

Management Journal, vol. 14, no. 1, pp. 33-46, 1993. 

  [53] J. K. Johansson, C. V. Dimofte, and S. K. Mazvancheryl, “The performance of global 

brands in the 2008 financial crisis: A test of two brand value measures,” 

International Journal of Research in Marketing, vol. 29, no.3, pp. 235-245, 2012. 

  [54] F. J. Hsu, T. Y. Wang, and M. Y. Chen, “The Impact of brand value on financial 

performance,” Advances in Management and Applied Economics, vol. 3, no.6, pp. 

129-141, 2013. 

  [55] M., Dutordoir, F. H. M. Verbeeten, and D. De Beijer, “Stock price reactions to brand 

value announcements: Magnitude and moderators,” International Journal of 

Research in Marketing, vol. 32, no.1, pp. 34-47, 2015. 

  [56] J. Ratnatunga, and M. T. Ewing, “An ex-ante approach to brand capability valuation,” 

Journal of Business Research, vol. 62, no.3, pp.323-331, 2009. 

  [57] Y.-C. J. Wu, “Renaming effect of brand value: state-owned enterprises,” 

Management Decision, vol. 47, no.10, pp. 1555-1581, 2009. 



144 
 

  [58] E. Papista and S. Dimitriadis, “Exploring consumer-brand relationship quality and 

identification,” Qualitative Market Research: An International Journal, vol. 15, no. 

1, pp. 33-56, 2012. 

  [59] W. Fritz, B. Lorenz, and M. Kempe, “An extended search for generic consumer–

brand relationships,” Psychology & Marketing, vol. 31, no.11, pp. 976-991, 2014. 

  [60] S. Hudson, L. Huang, M. S. Roth, and T. J. Madden, “The influence of social media 

interactions on consumer–brand relationships: A three-country study of brand 

perceptions and marketing behaviors,” International Journal of Research in 

Marketing, vol. 33, no. 1, pp. 27-41, 2016. 

  [61] Y. Odin, N. Odin, and P. Valette-Florence, “Conceptual and operational aspects of 

brand loyalty: An empirical investigation,” Journal of Business Research, vol. 53, 

no. 2, pp. 75–84, 2001. 

  [62] L.-W. Wu, “Satisfaction, inertia, and customer loyalty in the varying levels of the 

zone of tolerance and alternative attractiveness,” Journal of Services Marketing, 

vol. 25, no. 5, 310-322, 2011. 

  [63] F. Jørgensen, T. A. Mathisen, and P. Hassa, “Brand loyalty among Norwegian car 

owners,” Journal of Retailing and Consumer Services, vol. 31, pp. 256-264, 2016. 

  [64] J. Kim, J. D. Morris, and J. Swait, “Antecedents of true brand loyalty,” Journal of 

Advertising, vol. 37, no. 2, pp. 99-117, 2008. 

  [65] J. Lee and H. Lee, “Does satisfaction affect brand loyalty?” Academy of Marketing 

Studies Journal, vol.17, no. 2, pp. 488-500, 2013. 

  [66] P. Kotler, Marketing Management, 7th Ed., Prentice-Hall, 1991. 



145 
 

  [67] M. R. Solomon, G. Bamossy, and S. Askegaard, Consumer Behaviour: A European 

Perspective, 2nd Ed., Harlow, Essex: Pearson Education, 2002. 

  [68] A. K. Paswan, N. Spears, and G. Ganesh, “The effects of obtaining one's preferred 

service brand on consumer satisfaction and brand loyalty,” Journal of Services 

Marketing, vol. 21, no. 2, pp. 75-87, 2007. 

  [69] H. H. Chang and L. H. Wu, “An examination of negative e-WOM adoption: Brand 

commitment as a moderator,” Decision Support Systems, vol. 59, pp. 206-218, 2014. 

  [70] K. Hung, S. Y. Li, and D. K. Tse, “Interpersonal trust and platform credibility in a 

Chinese multibrand online community: Effects on brand variety seeking and the 

time spent,” Journal of Advertising, vol. 40, no. 3, pp. 99-112, 2011. 

  [71] J.-P. Dubé, G. J. Hitsch, P. E. Rossi, “State dependence and alternative explanations 

for consumer inertia,” The RAND Journal of Economics, vol. 41, no. 3, pp. 417-

445, 2010. 

  [72] J. T. Prince, “Relating inertia and experience in technology markets: An analysis of 

households' personal computer choices,” Applied Economics, vol. 43, no. 29, 4501-

4514, 2011. 

  [73] J. Fan, P. Venkat, R. Gulati, and V. Kumar, “Marketing-mix recommendations to 

manage value growth at P&G Asia-Pacific,” Marketing Science, vol. 28, no. 4, pp. 

645-655, 2009. 

  [74] N. Brooks and L. Simkin, “Judging marketing mix effectiveness,” Marketing 

Intelligence & Planning, vol. 30, no. 5, pp. 494 - 514, 2012. 



146 
 

  [75] C. P. Kirk, I. Ray, and B. Wilson, “The impact of brand value on firm valuation: The 

moderating influence of firm type,” Journal of Brand Management, vol. 20, no. 6, 

pp. 488-500, June, 2013. 

  [76] B. J. Bronnenberg, S. K. Dhar, and J.-P. H. Dubé, “Brand history, geography, and 

the persistence of brand shares,” Journal of Political Economy, vol. 117, no. 1, pp. 

87-115, 2009 

  [77] L. L. Eng and H. T. Keh, “The effects of advertising and brand value on future 

operating and market performance,” Journal of Advertising, vol. 36, no. 4, pp. 91-

100, 2007. 

  [78] R. A. Peterson and J. Jeong, “Exploring the impact of advertising and R&D 

expenditures on corporate brand value and firm-level financial performance,” 

Journal of the Academy of Marketing Science, vol. 38, no. 6, pp. 677–690, 2010. 

  [79] A. Torres and J. A. Tribό, “Customer satisfaction and brand equity,” Journal of 

Business Research, vol. 64, no. 10, pp. 1089–1096, 2011. 

  [80] I. T. Jolliffe, “Principal component analysis,” Series: Springer Series in Statistics, 

2nd Ed., New York: Springer, 2002. 

  [81] E. R., Mansfield, “PCR: Principal component regression analysis,” Journal of 

Marketing Research, vol. 15, pp. 471-72, 1978. 

  [82] G. T. Knofczynski and D. Mundfrom, “Sample size when using multiple linear 

regression for prediction,” Educational and Psychological Measurement, vol. 68, 

pp. 431–442, June 2008. 



147 
 

  [83] S. Srinivasan, K., Pauwels, J. Silva-Risso, and D. M. Hanssens, “Product innovations, 

advertising, and stock returns,” Journal of Marketing, vol. 73, pp. 24-43, January 

2009. 

  [84] W. H. Greene, Econometric Analysis, 7th Ed., Pearson, New Jersey: Prentice Hall, 

2012. 

  [85] Consumer Reports, (2010) Survey: Toyota crisis taking its tolls on brand loyalty 

[online], available: http://www.consumerreports.org/cro/news/2010/02/survey-

toyota-crisis-taking-its-toll-on-brand-loyalty/index.htm. 

  [86] M. Kariya, (2004), Working on two wheels [online], available: 

http://www.policeone.com/police-products/vehicle-equipment/articles/79717-

Working-on-two-wheels/ accessed on Oct. 18, 2013, 2004. 

  [87] J. D. Hamilton, Time Series Analysis, Princeton University Press, Princeton, New 

Jersey, 1996. 

  [88] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from 

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society, 

Series B, vol. 39, no. 1, pp. 1-38, 1977. 

  [89] Z. Ghahramani and G. E. Hinton, “Parameter estimation for linear dynamic systems,” 

Technical report CRC-TR-96-2, Department of Computer Science, University of 

Toronto, 1996. 

  [90] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications: With R 

Examples, Springer New York, 2011. 



148 
 

  [91] E. E. Holmes, “Derivation of an EM algorithm for constrained and unconstrained 

multivariate autoregressive state-space (MARSS) models,” Technical Report, 

Northwest Fisheries Center, NOAA Fisheries, 2013. 

  [92] L. S.-Y. Wu, J. S. Pai, and J. R. M. Hosking, “An algorithm for estimating parameters 

of state-space models,” Statistics & Probability Letters, vol. 28, pp. 99-106, 1996. 

  [93] C. F. J. Wu, “On the convergence properties of the EM algorithm,” The Annals of 

Statistics, Vol. 11, No. 1, pp. 95-103. 

  [94] A. F. Zuur, R. J. Fryer, I. T. Jolliffe, R. Dekker, and J. J. Beukema, “Estimating 

common trends in multivariate time series using dynamic factor analysis,” 

Environmetrics, vol. 14, no. 7, pp. 665-685, 2003. 

  [95] A. Harvey and S. J. Koopman, “Unobserved components models in economics and 

finance,” IEEE Control Systems Magazine, vol. 29, no. 6, pp. 71-81, 2009.   

  [96] P. Tendeo, P. Ailliot, and E. Autret, “Linear Guassian state-space model with 

irregular sampling: application to sea surface temperature,” Stochastic 

Environmental Research and Risk Assessment, vol. 25, pp. 793-804, 2011. 

  [97] H. J. Van Heerde, C. Mela, and P. Manchanda, “The dynamic effect of innovation 

on market structure,” Journal of Marketing Research, vol. 41, no. 2, pp. 166-183, 

2004. 

  [98] M. B. Ataman, C. F. Mela, and H. J. Van Heerde, “Building brands,” Marketing 

Science, vol. 27, no. 6, pp. 1036-1054, 2007. 



149 
 

  [99] N. Bruce and Z. Foutz, “Dynamic advertising and word-of-mouth effectiveness in 

sequential distribution of short lifecycle products,” Marketing Dynamics 

Conference, 2007. 

[100] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal 

of Basic Engineering, vol. 82. no. 1, pp. 35–45, 1960. 

[101] M. Kotani and U. Sumita, “Structural analysis of “national brand vs. store brand” 

with stochastic demands,” International Journal of Business and Information, vol. 

8, no. 1, pp. 1-33, 2013. 

[102] P. Ostergaard, J. Hermansen, and J. Fitchett, “Structures of brand and anti-brand 

meaning: a semiotic square analysis of reflexive consumption,” Journal of Brand 

Management, vol. 22, no. 1, pp. 60-77, 2015. 

[103] R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing and 

forecasting using the EM algorithm,” Journal of Time series Analysis, vol. 3, no. 4, 

pp. 253-264, 1982. 

[104] L. Deng and X. Shen, “Maximum likelihood in statistical estimation of dynamic 

systems: decomposition algorithm and simulation results,” Signal Processing, vol. 

57, pp. 65-79, 1997. 

[105] S. Gibson and B. Ninness, “Robust maximum-likelihood estimation of multivariable 

dynamic systems,” Automatica, vol. 41, no. 10, pp. 1667-1682, 2005. 

[106] T. B. Schon, A. Wills, and B. Ninness, “Maximum likelihood nonlinear system 

estimation,” Proceedings 14th IFAC Symposium on System Identification (SYSID), 

2009. 



150 
 

[107] J. Kokkala, A. Solin, and S. Sarkka, “Expectation maximization based parameter 

estimation by sigma-point and particle smoothing,” 17th International Conference 

on Information Fusion (FUSION), 2014. 

[108] G. A. Einicke, G. Falco, M. T. Dunn, and D. C. Reid, “Iterative smoother-based 

variance estimation,” IEEE Signal Processing Letters, vol. 19, no. 5, pp. 275-278, 

2012. 

[109] C. Andrieu, N. De Freitas, and A. Doucet, “An introduction to MCMC for machine 

learning,” Machine Learning, vol. 50, pp. 5-43, 2003. 

[110] J. C. Spall, “Estimation via Markov chain Monte Carlo,” IEEE Control Systems 

Magazine, vol. 23, no. 2, pp. 34–45, April 2003. 

[111] J. Hobert, “The data augmentation algorithm,”  The Handbook of Markov Chain 

Monte Carlo,  CRC Press, 2008. 

[112] O. Papaspiliopoulos, G. O. Roberts, and M. Sköld, “A general framework for the 

parameterization of hierarchical models,” Statistical Science, vol. 22, pp. 59-73, 

2007. 

[113] A. Lee and N. Whiteley, “Variance estimation and allocation in the particle filter,” 

Working paper [online], available: https://arxiv.org/pdf/1509.00394v1.pdf, 2016. 

[114] O. Cappe, S. J. Godsill, and E. Moulines, “An overview of existing methods and 

recent advances in sequential Monte Carlo,” Proceedings of the IEEE, vol. 95, no. 

5. pp. 899-924, 2007. 



151 
 

[115] P. Del Moral and F.-K. Formulae, “Genealogical and interacting particle systems 

with applications,” Series: Probability & Applications, Springer Verlag; New York: 

Springer-Verlag, 2004. 

[116] T. Flury and N. Shephard, “Bayesian inference based only on simulated likelihood: 

particle filter analysis of dynamic economic models,” Econometric Theory, vol. 27, 

pp. 933–956, 2011. 

[117] J. Olsson, O. Cappe, R. Douc and E. Moulines, “Sequential Monte Carlo smoothing 

with application to parameter estimation in nonlinear state space models,” 

Bernoulli vol. 14, no. 1, pp. 155-179, 2008, 

[118] N. Polson, J. Stroud and P. Mueller, “Practical filtering with sequential parameter 

learning,” Journal of Royal Statistical Society, Series B (Statistical Methodology), 

vol. 70, pp. 413-128, 2008. 

[119] A. Belloni, V. Chernozhukov, “On the computational complexity of MCMC-based 

estimators in large sample,” The Annals of Statistics, vol. 37, no. 4, pp. 2011-2055, 

2009. 

[120] P. S. H. Leeflang, T. H. A. Bijmolt, J. van Doorn, D. M. Hanssens, H. J. van Heerde, 

P. C. Verhoef, and J. E. Wieringa, “Creating lift versus building the base: Current 

trends in marketing dynamics,” International Journal of Research in Marketing, 

vol. 26, no. 1, pp. 13–20, 2009. 

[121] T. Ryden, “EM versus Markov chain Monte Carlo for estimation of hidden Markov 

models: a computational perspective,” Bayesian Analysis, vol. 3, no. 4, pp. 659-

688, 2008. 



152 
 

[122] G. J. McLachlan and T. Krishnam, The EM algorithm and Extensions, Wiley, New 

York, 1997. 

[123] M. Kuroda and M. Sakakihara, “Accelerating the convergence of the EM algorithm 

using the vector ε algorithm,” Computational Statistics and Data Analysis, vol. 51, 

no. 3, pp. 1549-1561, 2006. 

[124] F.-X. Jollois and M. Nadif, “Speed-up for the expectation-maximization algorithm 

for clustering categorical data.” Journal of Global Optimization, vol. 37, no. 4, pp. 

513- 525, 2007. 

[125] A. Fanelli, M. Flammini, and L. Moscardelli, “The speed of convergence in 

congestion games under best-response dynamics,” ACM Transactions on 

Algorithms (TALG), vol. 8, no. 3, pp. 1-5, 2012. 

[126] T. Flury and N. Shephard, "Bayesian inference based only on simulated likelihood: 

particle filter analysis of dynamic economic models," Econometric Theory, 

Cambridge University Press, vol. 27, no. 5, pp. 933-956, October 2011. 

[127] W. Seidel, K. Mosler, and M. Alker, “A cautionary note on likelihood ratio tests in 

mixture models,” Annals of the Institute of Statistical Mathematics, vol. 52, pp. 

481–487, 2000. 

[128] D. Karlis and E. Xekalaki, “Choosing initial values for the EM algorithm for finite 

mixtures,” Computational Statistics and Data Analysis, vol. 41, pp. 577-590, 2003. 

[129] S. Frauke, “Finding starting-value for maximum likelihood estimation of vector 

STAR Models,” Discussion Paper No. 13-076, Center for European Economic 

Research, 2015. 



153 
 

[130] J. Bergstra, and Y. Bengio, “Random search for hyper-parameter optimization,” 

Journal of Machine Learning Research, vol. 13, pp. 281-305, 2012. 

[131] K. O. Bowman, L. R. Shenton, “Estimator: method of moments,” Encyclopedia of 

statistical sciences, Wiley, pp. 2092-2098, 1998. 

[132] W. D. Furman and B. G. Lindsay, “Measuring the relative effectiveness of moment 

estimators as starting values in maximizing likelihoods,” Computational Statistics 

and Data Analysis, vol.17, pp. 493–508, 1994. 

[133] E. Bibbona, G. Panfilo, and P. Tavella, “The Ornstein-Uhlenbeck process as a model 

of a low pass filtered white noise,” Metrologia, vol. 45, no. 6, pp. 117-126, 2008. 

[134] C. Biernackia, G. Celeux, and G. Govaert, “Choosing starting values for the EM 

algorithm for getting the highest likelihood in multivariate Gaussian mixture 

models,” Computational Statistics & Data Analysis, vol. 41, pp. 561-575, 2003. 

[135] Y.-X. Yuan, “Recent advances in trust region algorithms,” Mathematical 

Programming, vol. 151, no. 1, pp. 249-281, 2015. 

[136] M. A. Branch, T. F. Coleman, and Y. Li, “A Subspace, interior, and conjugate 

gradient method for large-scale bound-constrained minimization problems,” SIAM 

Journal on Scientific Computing, vol. 21, no. 1, pp. 1-23, 1999. 

 [137] C. Fornell, F. V. Morgeson III, and Hult, G. T. M., “An abnormally abnormal 

intangible: stock returns on customer satisfaction,” Journal of Marketing, vol. 80, 

no. 5, pp. 122-125, 2016.  

[138] R. T. Rust, J. Kim, Y. Dong, T. J. Kim, and S. Lee, “Drivers of customer 

equity,” Handbook of Research on Customer Equity in Marketing, vol. 17, 2015. 



154 
 

[139] R. T. Rust and M. H. Huang, “The service revolution and the transformation of 

marketing science,” Marketing Science, vol. 33, no. 2, pp. 206-221, 2014. 

[140] J.-B. E. M. Steenkamp and H. Baumgartner, “On the use of structural equation 

models for marketing modeling,” International Journal of Research in Marketing, 

vol. 17, pp. 195-202, 2000 

[141] R. Bagozzi, Y. Yi, “Specification, evaluation, and interpretation of structural 

equation models,” Journal of the Academy of Marketing Science, vol. 40, no. 1, pp. 

8-34, 2012. 

[142] J. C. Westland, Structural Equation Modeling: From Paths to Networks. New York: 

Springer, 2015 


