Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2007
Simultaneous approximation of images
applications to image and video compression

Ariel Juan Bernal
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Bernal, Ariel Juan, "Simultaneous approximation of images applications to image and video compression” (2007). Theses and
dissertations. Paper 334.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/334?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

294953

&S

« BusS
Dco')
SIMULTANEOUS
APPROXIMATION OF IMAGES
APPLICATIONS TO IMAGE
AND VIDEO COMPRESSION

ARIEL JUAN BERNAL

BSc., CAECE University,
Mar del Plata, Argentina, 2003

A thesis presented to Ryerson University
in partial fulfillment of the requirement
for the degree of Master of Applied Science
in the Program of
Electrical and Computer Engineering.

Toronto, Ontario, Canada, 2007
(© Ariel J. Bernal, 2007

PRNPERTY OF
RYERSON UNIVERSITY LIBRARY

UMI Number: EC53719

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colo.red or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53719
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Author’s Declaration

I hereby declare that I am the sole author of this thesis.
I authorize Ryerson University to lend this thesis to other institutions or individuals
for the purpose of scholarly research.

Signature -

4

~—

I further authorize Ryerson University to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

Signature

ii

Instructions on Borrowers

Ryerson University requires the signatures of all persons using or photocopying this
thesis. Please sign below, and give address and date.

iii

Abstract

Title of Thesis:

SIMULTANEOUS APPROXIMATION OF IMAGES.
APPLICATIONS TO IMAGE AND VIDEO COMPRESSION.

Ariel J. Bernal, Master of Applied Science, 2007

Department of Electrical and Computer Engineering,
School of Graduate Studies, Ryerson University

Given a set of images we propose an algorithm that approximates all images simul-
taneously. The algorithm finds the best common partition of the images’ domain at
each step, this is accomplished by maximizing an appropriate inner product. The
algorithm is a pursuit algorithm constrained to build a tree, the optimization is done
over a large dictionary of wavelet-like functions. The approximations are given by
vector valued discrete martingales that converge to the input set of images. Sev-
eral computational and mathematical techniques are developed in order to encode
the information needed for the reconstruction. Properties of the algorithm are illus-
trated through many examples, comparisons with JPEG2000 and MPEG4-3 are also

provided.

iv

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Sebastian Ferrando,
who guided me along the way. Without his help and advice it would not have been
possible to complete this project.

I would also like to thank my family for their constant support during my time at
Ryerson University.

Contents

1 Introduction

1.1

Organization of the Thesis

2 Technical Overview of The Thesis and Notation

2.1
2.2

3.1

3.2

3.3

3.4

3.5
3.6

3.7

Tree Structured Pursuit Algorithm
Bit Encoding of the VGS Approximation

Mathematical Framework

General Notation and Definitions | .
Formal Description of the VGS Algorithm
Inner Product Maximization Using the Bathtub Theorem
3.3.1 [Iterative Optimization for ¥’
Full Bathtub Case: Wo=1la—p1 ..
341 HaarCase v v v v i v ittt e e e e e e
Martingale Differences Case
Children of Atoms v v v v i e e e
36.1 HaarCase . . . v v v v v v e it et e e e e e e e
3.6.2 FullBathtubCase,
3.6.3 Martingale Differences Case
Adding More VGS Functions ataNode
3.7.1 Scalar VGS Functions

vi

3.8 Vector and Scalar Approximationo 39

3.8.1 Types of Data Needed to be Stored at Active nodes 41
Formulation for Software Implementation 42
41 Haar Case . . o v v v v vt e e e e e e 43

4.1.1 Discrete Restricted Bathtub 43

4.1.2 Inner Supremum: Best Split Algorithm 44

4.1.3 Outer Supremum: b’ Optimization Algorithm 46

41.4 General Description of the Algorithm 48
4.2 Martingale Differences oo ... 92

4.2.1 Discrete Bottom-up Bathtub 52

4.2.2 Inner Supremum: Best Split Algorithm 53

4.2.3 Outer Supremum: b’ Optimization Algorithm 54

4.2.4 General Algorithm Description 95
4.3 FullBathtubCase on 57

4.3.1 Discrete Full Bathtub [57

4.3.2 Inner Supremum: Best Split Algorithm 57

4.3.3 Outer Supremum: b’ Optimization Algorithm 59

4.34 General Algorithm Description 59
4.4 Optimization Techniques e 62

4.4.1 Random Optimization Technique 62

4.4.2 Quadratic Optimization Technique 63

4.4.3 Simulated Annealing Optimization Technique 64

4.4.4 Tterative optimization for &' 65
Application to Image Compression 67
5.1 Notation and Definitions L o o oo 70
5.2 Partition Map (M) - -« « v o v v e 71

vii

5.3

5.4

5.5

5.6

5.2.1 Reordering Partition Values 73

5.2.2 Entropy encoding T3
5.2.3 Spatial correlation a e 74
Significance Map (M) . - - v v o v v oo e 77
5.3.1 Entropyencoding« 80
Quantization Map (Mg) . . .« - v o v o 82
54.1 Quantizationo 82
5.4.2 Entropy Encoding. oo 83
Haar Case: Scalar Approximation, 85
5.5.1 Indices information oo 85
5.5.2 Total Cost for the Scalar Haar Approximation 86
Haar Case: Vector Approximation 87

5.6.1 Quantization Map for the Vector Haar Approximation 87

5.6.2 Total Cost for the Vector Haar Approximation 88
5.7 Martingales Difference (MD): Scalar Case Approximation &9
5.7.1 Indices information oo 89
5.7.2 Total Cost for the Scalar MD Approximation 90
5.8 Full Bathtub Approximationo 92
5.9 Leaves Average Approximation 93
59.1 Entropyencodingo 93
5.9.2 Quantizationo oo e 95
5.9.3 Framecorrelation oo oo e e 97
Related Techniques 99
6.1 Embedded Image Coding Using Zerotrees of Wavelet Coefficients (EZW)100

6.1.1 Embedded coding e 100
6.1.2 Discrete wavelet transform o0 100
6.1.3 Zerotrees and wavelets coefficientso 102

viii

6.14 Results. e e
6.2 Geometric Wavelets (GW) J
6.2.1 Binary Space Partitioning (BSP)
6.2.2 Geometric Wavelets (GW)
623 GWENCOAING . . o v v v v v v oo e e

6.2.4 GW sparse representation and encoding

7 Results _
7.1 Results Illustrating Properties of the Algorithm
7.1.1 The Algorithm Step by Step
7.1.2 The Haar Approximation. e e e
7.1.3 Counting Bits e e e e e
7.1.4 Selecting the Best Case
7.1.5 The Outer Supremum: '
7.2 COMPATISONS . « « « v v v v o v v v e s
792.1 JPEG2000 Static Comparison
722 MPEG4-3 Comparisons« . .« .« . .-

8 Conclusions
A Bathtub Theorem
B Measure of Quality

C Convergence Proof
C.1 Convergence of Vector Greedy Splitting Approximation
C.2 Reduction to Scalarcase
C.3 Properties of bestSplit
C.4 New Formulas for Alternative VGS

ix

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

135

137

139

Bibliography 152

List of Figures

1.1 Two geometrical IMages« v v v v v - 3
1.2 Approximating Tree o oo 4
2.1 Left: set of input images, Right: Linear combination 10
2.2 Facesset R I L 14
2.3 Average Cyy, and average Ciq, + Crqs Dlotted against d.. 14
24 Videosequence set it e e e e 15
2.5 Average Cry; and average Cuq,, + Caqg plotted against d. 15
4.1 Boundaries constraints Haar Bathtub o vttt 44
4.2 Flow chart Bathtub algorithm S 45
4.3 Optimization Flow chart 47
4.4 Haar Tree Description 48
4.5 a) VGS Initialization - b) VGS Running iteration 49
4.6 Boundaries constraints a) Case I, b) Case II, c) Haar Case 53
4.7 Flow chart Bathtub algorithm 53
4.8 MD Tree Description e 55
4.9 Boundaries constraints a) Case I, b) Case II, ¢c) Haar Case 58
4.10 Flow chart Bathtub algorithm 58
4.11MD'IkeeDescription......................;.... 60
4.12 Local maximum iterative optimization 65

xi

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

6.1

Typical lossy encoder 68
Full tree with selectednodes 71

a) Partition using the full tree, b) Partition using the compressed tree 72

a) Barbara & Lena, b) Reordered Partition Map 74
Relative frequency o e 75
Relative frequency using spatial correlation 75
Fulltree i i e e e e e 77
Compressed tTee . . .« . v v v v e e e e e e 7
Encoded string 79
Equivalent decoded tree 79
Equivalent decoded tree 82
Scalar inner products distributiono L. 83
PSNR vs. ¢, Minimum distortion 84
Haar case tree for the scalar approximation. e 85
a) Binary encode, b) Indexing encode, c) Special character 86
Relative frequency of the quantized difference of the expected values . 88
MD Tree for the scalar approximation. 89
a)Binary encode b) Header encode c) Special null character 90
Full Bathtub scalar approximation 92
Encoding Flowchart, 93
Relative frequency of the average coefficients for each input 94
Relative frequency of the average coefficients for the input vector. . . 93
Left: number of bits per symbol vs. c. Right: Total PSNR vs. ¢c. .. 96
Histogram the average coefficients for the video sequence 98

Histogram of the difference of the average coeflicients for the video
SEQUENICE . « & ¢ v v v v et e e e e e e e e e e e e e e e e e 98

Two-dimensional, four-band filter bank 101

xii

6.2
6.3
6.4
6.5
6.6

6.7

6.8
6.9
6.10

7.1
7.2

7.3

74
7.5
7.6
(4

7.8

7.9
7.10

7.11

Two-dimensional image filter 101

Two-scale wavelet decomposition e 101
Octave-band representationo 102
Scanning order of the subbandso o 103
Detail of Lena, a) JPEG2000 PSNR = 34.70db, b) JPEG PSNR =
21.89dD . . . e e e e e e e 104
Godzilla vs. Robot, a) JPEG2000 PSNR = 38.51db, b) JPEG PSNR =
35.71dD . . . e e e e e e e e e e e e e 105
Two partition levels using bisecing lines. 106
BSP tree representationo 107
Bisecting line e 109
Test Set 6 . v v v v o e e e e e e e e e e e e e e e e e e 112
Scalar Haar Approximations using, Top left: one component, Top

right: two components, Bottom left: three components, Bottom right:
TCOMPONENtS . . v v v v v i e e e e e e e e e e e e e 112

Martingale Difference Approximations using, Top left: one component,
Top right: two components, Bottom left: three components, Bottom

right: 7components. e 113
Test Set 2« o i e e e e e e e 114
Scalar Haar Approximation, 0.611bpp and PSNR=22 114
Scalar Haar Approximation, 1.008 bpp and PSNR=28 115

Detail of the middle image, Top left: Original, top right: | PSNR=22
and 0.611bpp, bottom left: PSNR=34 and 1.617bpp, bottom right:
PSNR=40and 2.633bpp« « « ¢« i i 115

Mapping cost per image vs. number of images, Top left: PSNR=30db
, top right: PSNR=40db, bottom left: PSNR=45db and bottom right:
PSNR=50db.« oo e e e 116

Significant map/quantization map ratio, ratio vs. number of images . 118

Video sequence: length 1 second, frame size: 128 x 128, color depth:
8bpp, 25 fps (frames persecond) 119
Average mapping cost per image comparative for a PSNR=30db . . . 120

xiii

7.12 Average mapping cost per image comparatives for PSNR=35db, 40db,

45dband 50db 120
7.13 Detail of Cpmg, + Cpmg average perimageo 121
7.14 4 Images: size 128 x 128 each one, color depth: 8bpp 122
7.15 Worst case: size 128 x 128 each one, color depth: 8bpp 122
7.16 Godzilla vs. Robot: size 128 x 128 each one, color depth: 8bpp. . . . 123
7.17 Total bit costs for the 4 images set vs distortion .-. 124
7.18 Total bit costs for the worst set vs distortion 124
7.19 Total bit costs for the video sequence set vs distortion 125
7.20 Total bit costs for Godezilla vs. Robot set vs distortion 125
7.21 Total bit cost vs. distortion for 10,100 and 1000 iterations 127
7.22 Bit cost vs. distortion per image for JPEG2000, VGS-HAAR and

VGS-HAAR-LZ o e e 128
7.23 Original Video sequence: Hand, frame size:128 x 128, 15fps(frames per

second), color depth: 24bits, . 129
7.24 VGS Video Hand approximation PSNR=36.79db 130

7.25 Video Hand approximation detail, a) Input, b) MPEG4-3 approxima- ‘
tion PSNR=36.417, ¢c) HAAR-AVG LZ approximation PSNR=36.79 . 130

7.26 Original Video sequence: Doll, frame size:128 x 128, 15fps(frames per
second), color depth: 24bits 131

7.27 Original Video sequence: Doll 2, frame size:128 x 128, 15fps(frames per
second), color depth: 24bits 132

7.28 Video Doll2 approximation detail, a) Input, b) HAAR-AVG LZ ap-
proximation PSNR=38.97, c) MPEG4-3 approximation PSNR=34.93 132

7.29 Original Video sequence: Princess, frame size:128 x 128, 15fps(frames
per second), color depth: 24bits 133

7.30 Video Princess approximation detail, a) Input, b) HAAR-AVG LZ ap-
proximation PSNR=33.88, c) MPEG4-3 approximation PSNR=36.67 133

List of Tables

7.1 Numerical bit cost vs. distortion comparison 128

7.2 Video compression comparison, Haar-AVG LZ vs. MPEG4-3, the costs
are measured in bytes and the distortion (PSNR) in decibels (db). . . 134

Xv

Chapter 1

Introduction

In image processing we usually make a distinction between two different aspects of
images, the first group is called “trends” represented by areas of high statistical spatial
correlation; and the second group called “anomalies” represented by edges or object
boundaries. Although an image could take any state of all possible states, defined as
all possible pixel combinations, human vision seems to have evolved to differentiate
these two groups.

Normally, most of the image area is represented by the first group; however the
perceptual significance of the second group is far greater than their numerical energy
contribution. This effect can be explained in the same way as many others where the
brain tends to capture changes and to eliminate constant states due to the fact that
they do not contribute new information for the current state (e.g., a constant tone
for ear, or in a cornea injury where rays or dots are constantly seen; after a period of
time the brain partially eliminates those constant states).

The thesis describes a new algorithm for the simultaneous approximation of a given
collection of images defined on a common domain §2. The new algorithm is based
on an optimized construction of basis functions adapted to arbitrary geometrical
“anomalies“ of this input set of images. A natural application of the algorithm is the
case when the collection of images is given by a sequence of frames from a video. The
algorithm constructs a tree which is associated to a partition of (more precisely: a
sequence of partitions). In several instances in this Introduction we may speak loosely
and will not distinguish between the tree and the associated partition. Elements of a
partition of © will be called atoms.

This thesis is based on an algorithm to approximate several images at the same time
and a natural application is to image compression. Therefore, we describe some com-
parisons with existing algorithms in this field, the reader should keep in mind that we
do not provide a thorough comparison as we have not developed our algorithm up to

the standards of a commercial software application. We provide a chapter describing
a literature review for image compression techniques related to our algorithm. The
present thesis describes an algorithm that has been studied previously in different
contexts and with different aims in [14] and [2].

Several algorithms in the image compression field have been developed during the
last twenty years, using different technics like the discrete cosine transform (DCT) or
wavelets transform. References [22], [1], [9] and [19] provide examples of adaptive trees
for image compression. In general, the tree construction is associated to a partition
of the base domain which in turn is dependent on a given single input image. It
follows that it is critical to keep the storage cost of the partition low as it adds to
the total storage cost of the compressed image. Therefore, algorithms which partition
a given image domain, with the purpose of compressing an image, need to impose
strong geometrical constraints on the partition atoms. In particular, [1] only allows
atoms which are polyhedra, further partitions of these atoms can only be done using
line cuts. The reference [9] presents a global optimization algorithm which restricts
the partition’s atoms to be rectangles.

Analyzing these algorithms in terms of the partition cost it is possible to classify the
Zero-tree algorithm [22] in one extremum, where there is no need to store a partition
information, and our algorithm in the other extremum, where we have to store the
partition completely. The geometric wavelets algorithm [1] is somewhere in between.

As an alternative to the above described situation, the approach introduced in this
thesis allows for arbitrary partitioning of a given image domain and, hence, we deal
with arbitrary atoms. In order to offset the relatively high cost of the resulting
adapted partition we consider the case where we have a collection of d images, defined
on a common domain §. This creates a trade-off as, on the one hand, the relative
cost of storing the partition diminishes when we increase d and, on the other hand,
the quality of the approximation degrades as d is increased.

The present thesis describes a construction (which we will call the Vector Greedy
Splitting Algorithm, VGS for short) of an adapted partition of €2, this partition is
common to the given collection of images. Given a certain amount of similarity
among the images in this collection our construction provides associated compression
improvements when the common adapted partition is used to compress the collection
of images as a single entity.

Despite the fact that the VGS algorithm deals with arbitrary geometrical regions it is
a computational efficient algorithm. The reason for this is that the atoms processed by
the algorithm are level sets of the input data and they can be efficiently manipulated
with a computational cost proportional to the size of the range of values of the data.
Details on computational costs are provided in Chapter 4.

Next we will describe the fundamental steps of the algorithm by using a simple

example: Figure 1.1 shows two images containing geometrical objects. Notice that

Figure 1.1: Two geometrical Images

there exists some common information between these images namely where both
images are constat.

The algorithm starts constructing a partition based on this common information by
maximizing the inner product with our wavelets functions [12]. Figure 1.2 shows the
first partition in the top of the tree, it is possible to observe that both images are
constant in the right child, therefore it should not be subdivided. In the left child
the images are not constant then this child is subdivided again in two children, this
process is continued (in the present case only a single extra step is needed) until both
images are constant in the final partition.

Another important aspect of the algorithm is the tree structure that is possible to
observe from the procedure. Finally the associated partition to this tree is also
obtained. The number of atoms (or possible final values) in this partition is related
to the possible combinations of the values taken by the original images. Usually
the number of possible combinations increases with the number of different images
and also as the complexity of the final partition increases, the number of coefficients
needed to represent such combination increases too, this is related to the trade-off,
mentioned above in this Introduction.

1.1 Organization of the Thesis

For the reader’s convenience, Chapter 2 describes with technical details the main con-
struction of the thesis for a special case (Haar case). We also take the opportunity
to introduce some of the notation to be used in the remainder of the thesis. Chapter
3 presents the mathematical setup and describes the optimization problem solved
in this thesis. This optimization is used to define the VGS algorithm. Chapter 3
also describes many possible variations in the setup and describes the different ways

3

kA

o
b
D (AN

cresciopn g

Figure 1.2: Approximating Tree

(vector and scalar) in which the VGS can be interpreted when it is being applied to
image compression. Chapter 4 specializes the setup in Chapter 3 to a discrete setup
and hence prepares the way for a software implementation. In fact, Chapter 4 does
provide several details on the software implementation and describes the associated
computational costs. Chapter 5 describes in detail the different steps to encode the
VGS approximation in a way that a decoder can reconstruct the VGS approximation.
Different quantization techniques are introduced and discussed in the context of the
cases treated in this thesis (Haar case, Full Bathtub Case and Martingale Differences
case). Chapter 6 describes some related techniques in the existing literature. Chapter
7 provides many results obtained by applying the VGS algorithm to a variety of data
sets. Some examples are introduced to illustrate the workings of the VGS algorithm
and other examples are considered in order to compare the compression qualities
of the new approach with respect to existing techniques. In particular we present
comparisons for still images with JPEG2000 and for video sequences we provide com-
parisons with MPEG. Chapter 8 summarizes the thesis and provides suggestions for
future work. Appendix A states the Bathtub Theorem. Appendix B provides several
equations for the different error measures. Appendix C provides a detailed proof of
convergence for the VGS approximation, at the same time the work in that Appendix
justifies several constructions used in previous chapters. Appendix C also lists all the
properties satisfied by bestSplit a main routine used by the VGS algorithm.

We indicate that, given the length of the manuscript, a good amount of repetition
has been built into it. This allows some sections to be read quite independently of
the remainder sections and also, it is expected, that it should help the reader while
working through the thesis.

Finally, the thesis assumes some basic knowledge on Hilbert spaces and on prob-
ability theory. The book [3] provides background knowledge on this last topic as well
as a formal definition of entropy and some of its computational properties.

Chapter 2

Technical Overview of The Thesis
and ‘Notation |

2.1 Tree Structured Pursuit Algorithm

It is useful to review first the Matching Pursuit algorithm as it will be used to motivate
our main construction. The reader can consult [17], [18] and [7] for references on the

Matching Pursuit algorithm.

Consider X € L?(Q,R?) with an inner product [,], also assume a given subset
D C L*(Q,RY) is given. Define R°X = X and the 1—residue by R'X = X—[X, po] to
where uo € D, ||nol| = 1, satisfies
X, = swp (X9 (2.1.1)
YED,|IY]|=1
Continue inductively defining the nth. — residue by R*'X = R"X — [R"X, ttn] pin,
where pu,, satisfies

[R"X,u,) = sup [R"X,9]. (2.1.2)
YED,||¥|1=1 '
Notice that .
X =Y [R*X, mlu + R™X ' (2.1.3)
k=0

and
|IR™1X| |2 = [|R*X|]* = [[X, ma] .

Lossy transform compression is based on retaining a few terms in the first term of
the right hand side of (2.1.3) (and dropping the remainder term R™1X). For the

6

dictionary D that will be considered in the present thesis the cost of storing each
element pj in the pursuit expansion will be too high and for this reason we will
impose a tree structure on the pursuit. This type of approach can be considered as a
constrained non-linear approximation as described in [4]. As we will show later, one
consequence of the tree structure is that [u;, u;] = 0 for ¢ # j, this will imply

[R"X, pn] = [X, ptn]-

Therefore, in our thesis, the pursuit algorithm can be described by indicating that it
maximizes |[X, ,]|?, or equivalently, it minimizes ||R"X|[?, under the constraint of
constructing a tree. The maximization in (2.1.2) is greedy because it is only one look
ahead, namely it searches for one function at a time. In general, unless D has a special
structure, it is expected that the maximization of |[X, un]|? requires an impractically
large number of computations. A main contribution of the construction described
in this thesis is a practical and insightful approach to handle (2.1.2) for a very large
dictionary D.

In this thesis we will use the following setup, consider a collection of d given images
Xli], i = 1,...,d. We will treat them as random variables X[i] : @ — R on a
probability space (2,4, P). We collect the d images into a vector valued random
variable X : @ — R¢, and will consider the following inner product for Y,Z €.
L?(Q,RY)

v, 2] = /ﬂ ¥ (w), Z(w)) dP(w),

with '(Y(w), Z(w)) = L, Y[i](w) Z[i)(w). Notice that in the case of d = 1 we have
X,Y] = /Q X ()Y (w) dP(w) (2.1.4)

so the notation [, | does not indicate the value of d explicitly, therefore, readers will
need to determine it from the context. In some cases, to emphasize the fact that
d = 1, we will write (of course, in this case X and Y are scalar random variables)
[X,Y]1 to denote the right hand side of (C.1.2).

Consider the following dictionary of vector valued functions

C={y: thereexists 0< p; <1, =12 a,be Ry =ap, +bps, (2.1.5)

and [w(w) dPw) =0, [W) dP@w) =1}

A moments’ reflection indicates this is a a very large collection of functions. If we ex-
pand X over this dictionary using a pursuit algorithm, we would obtain a normalized
sequence {uo, t1,--.} € C in such a way that || X — > 7 (X, px]]| = 0asn— oo
whenever [, X (w) dP(w) = 0. If the intent is to compress the information in X by

7

storing some of the y;, functions, it follows that encoding each function uy can be too
costly.

To avoid this difficulty we define below a pursuit algorithm constrained by a tree
structure, storing the tree information will allow us to reproduce the approximating
functions py in an efficient way.

First, we refine (2.1.5) as follows, consider A € A and

Cqs={t: thereexists 0 <1 <1, or(w) =0if w¢ A, p2=14— 1, a,beRY,
(2.1.6)

¥ = apy + bips, end / (w) dP(w) =0, /Q [(w)|? dP(w) = 1}.

Let u; = fQ ¢; dP, we will further restrict the elements ¢ € Ca even more by
assuming ||b|| = [|b]|(u1,uz). The resulting restricted dictionary will be denoted by

Ca.

We indicate that we can solve the following key step to define the pursuit algo-
rithm. :

Proposition 1. Under general conditions on X, there ezists ¢§f’ € G, so that

1X,99] = sup [X,],
PYeCa

and the functions z,bg)) take only a finite number of distinct values. Moreover, under
the hypothesis that X has a continuous cumulative distribution the functions ¢§§” take
only two non-zero different values on A.

Remark 1. The functions 1/Jff) will be called best functions (at A) their explicit form
will be given later. In this chapter, the notation z/)ff) will be reserved for the functions
in Proposition 1. The use of the superscript in 1&9) will be needed later in the thesis,
during the present Chapter it can be ignored.

Remark 2. For simplicity, on this Chapter only, we will assume X has a continuous
cumulative distribution (this will give us what later in this thesis we will call the Haar
case). In later chapters of the thesis we will deal with the general case namely, the
continuity hypothesis will be removed and @2 will be required only to satisfy 0 < g2 < 1.

Instead of starting with (2.1.1), our vector approximations are always initialized
as follows

8

and

/Q X[i] dP
- -
J; (/QX[k] dP)

X, 37 937 /X[z] dP. (2.1.7)

cfi] =

Therefore

We need to introduce the following notation. For the range of a random variable
Y (scalar valued) on the set A

Ra(Y)={y:3w € A such that Y(w)=y}.

As noted, the functions 1/{5{” take only two values for a given A; in order to
completely specify 1&&” =ap; + b(1as—1) (¢§{’) as given in Proposition 1) it is
enough to provide ¢; explicitly.

1(w) = Lizxpp)(z)<y) (w) wWhere

X[V')(z) = (X(z),b') for some b € S¢ and some y € Ra(X[t]),

moreover b = ||b|| V' (the expression for |[b]| is provided in (3.4.12)). The quantities
b’ and y = y(b') are obtained by an optimization procedure as described in [2] (and
also explained later in this thesis). X [b] can be considered as an average image as
illustrated in Figure 2.1.

Notice that the two different (non-zero) values taken by d)ﬁf) on A are a and b.
We will then define its best children by

Ao={weA: v,b(o)(w) =a}, Ai={weA: w(o)(w) = b}.

Next we define the VGS algorithm, we will indicate how the algorithm constructs a
sequence of partitions II,, indexed by n = 0,1,2,.... The index n will be referred
as the n—th. iteration of VGS. The partitions are defined recursively as indicated
next. Start by setting Il = {Q,0} (notice that we explicitly include @ in IIo, this
will include 1/15,0) in all our approximations) and assume, inductively, that IIx, £k < n
(IIx € A) have been constructed and are finite. Now we describe how to generate
II,,+1. Consider A* € II,, such that it satisfies

11X, > 11X,)| for all A € TL,. | (2.1.8)

9

Figure 2.1: Left: set of input images, Right: Linear combination

In the case that :
X, v =0,

the algorithm VGS terminates and II, = II, for all p > n. Otherwise, i.e. X, ¢g).) | #

0, we set :
Moy = IL\{A*} Ug=o1 {43}

where, as indicate previously, the sets Aj are the best children of A*.

Define the tree 7, as follows

It follows easily from the construction (shown formally in later chapters) that [1/Jffl) , ¢ff2)]
if Ay # Ay, A; €7,

We then define the associated approximation by

Xr,= S IX 99 . (2.1.9)
A€T,

Requiring the appropriate conditions, it can be proven that
lim Xz, (w) =X (w) for almost all w € Q.
n—oo

The above limit will actually be finite if X is a simple function, namely if X takes a
finite number of values. Full details are provided in Appendix C.

Returning to the expansion (2.1.9), once the tree is built, it is possible to insert
nodes into a priority queue (which will be denoted with Q4 and introduced later in

10

this thesis) and order the queue by the absolute value of the inner products [X, v,b(o)]
This allows to set to zero the smallest nodes and reconstruct the original signal
allowing some distortion, of course this method will only provide a lossy compression
algorithm.

Setting to zero the smallest inner products is equivalent to calculate the n-term
approximation, this is accomplished by re-labeling the elements 1) A) in the expansion
(2.1.9) and denote them with Bhk) (where h is a re-ordering function) in such a way
that:

n—1

Xn(w) =Y (X, un) ey where |[X, pno)ll = 11X,]| = ... (2.1.10)
k=0

In this thesis we will refer many times to the VGS approzimation, most of the
times this will mean the expression given by (2.1.9) but, depending of the context
it may as well refer to expression (2.1.10). For the sake of precision, one may call
(2.1.10) the optimized VGS approzimation.

The error, or distortion, committed by the n-term approximation can be calculated
using different methods, one is the Mean Square Error (MSE) defined as follows

MSE,, = /Q X () = Xn(w)]2 dP(w).

In the image compression field the standard measure of error used is the Peak Noise
to Signal Ratio (PSNR). It is not the best method due to the fact that to images
with a low PSNR. could be close with respect to the human vision system. Although
several techniques were developed in this area, in general there is no perfect method
to measure the distortion of an approximating image.

2.2 Bit Encoding of the VGS Approximation

We will, given a certain error level ¢ > 0, define the associated approximation X,, =
D ore 0[X Ih(k)) k), Where n = n(e) is the smallest integer such that ||X — X,|| < e.

The corresponding n nodes Ay, which satisfy 1/1(k) = (k) are called the active nodes
for the given e.

Notice that retaining only the active nodes from the full VGS tree (this process is
called pruning the tree) results into a data structure which is not a tree. Therefore,
in order to reconstruct X, while storing a minimal amount of bits, we need to store
the 1nformat10n about which nodes are active and at each of these nodes A}, we need
to keep [X, 1,b A] and the corresponding &’. We also need to keep enough of the tree

11

information in order to evaluate gbf: (w) at different points w € Q. In particular, this
information will contain the relevant children-parent relationship. This information
will be called the significance map and denoted with Ms. TIts actual encoding is
technically challenging as our approach only deals with the actives nodes (i.e. we -
do not complete with the missing nodes in order to obtain a tree). Besides of the
information contained in the significance map, we also need to know how active
atoms are made up of Q points. This information will be called the partition map,
and denoted My, and consists on encoding the partition associated to the active
nodes only.

In this Chapter, when reporting bit values of the significance map we will be
actually reporting the bit cost of encoding quantized values [X, ¢,(40,2] and the corre-
sponding quantized values for &'. When we report bit values of the partition map we
will be reporting the bit cost of encoding a lossless compressed version of the corre-
sponding data structure (we have found that the partition map is very sensitive to
quantization). :

In a more detailed analysis, which is performed in Chapter 5, a third map, the
quantization map Mg, will be introduced. Therefore, in effect, in the present Chapter
the bit cost of Mg includes the bit cost of M.

We need some notation that indicates that we have run VGS on d inputs, so
Cg[i)(d) will mean that we have run VGS for d inputs and the component ¢ has
a significance cost of Cuys[i](d) bits. Whenever d = 1 we will write Cms1 as
Cas(1). In short, Crg(1) represents the (quantized) significance map cost of en-
coding the output of VGS (ezcluding the partition cost) and VGS was executed on
a single image. We use similar notation for the partition map cost but we will as-
sume the partition cost is independent of i. Therefore the notation Can (d) denotes
the number of bits needed to store the partition map when VGS was executed on d
images.

We expect Ci,[i](d) to deteriorate as d increases (for any), and we also expect
C,(1) to be of best quality, i.e. Cius(1) << Cm;li](d) for all i and d. We also note
that C (d) has a uniform upper bound (i.e. the upper bound is independent of d)

which depends solely on the size of 2.

Let us use CrizedBasis t0 denote the cost of encoding a given image by a certain
method with fixed basis (in particular it could be JPEG, JPEG2000, Haar basis,
etc.). If there are d images we will consider that CrizedBasis|i] denotes the cost, of the
method, for image i. We expect that Cas(1) << C FizedBasis|1]-

We introduce next a useful quantity to quantify the quality of VGS’s approxima-

12

tion

Clearly, the optimal d* is the one that minimizes y(d). It is clear that there is a
tension between how large d has to be so 9”1‘1}-(-'2 is small enough and at the same

d .
time we want =L Cg” B 45 remain small but we know that C s[](d) deteriorates
as d growths.

Notice that VGS will outperform the cost of the fixed basis method, namely

CFi:cedBasis if

d R
’)’(d) < Zi:] CF:;:edBaszs [Z])

As an illustration, Figure 2.2 shows a set of images; technical characteristics on
this set of images are discussed in Chapter 7. We have run VGS on increasingly
larger subsets of this collection of images by adding one image at a time to the
previous subset. In this way we were able to compute «y(d) for d = 1,...,9. The

results are plotted in Figure 2.3, the term C—Mg@ in (2.2.1) (average cost for Partition

d .
Map) is denoted PM (Partition Map) in the Figure, and the term Lizt 024 UG

(2.2.1) (average total cost for Quantization Map and Significance Map) is denoted by
QM + SM.

As another illustration, Figure 2.2 shows a set of images taken from a video
sequence; technical characteristics on this set of images are discussed in Chapter 7.
We have run VGS on increasingly larger subsets of this collection of images by adding
one image at a time to the previous subset. In this way we were able to compute
v(d) for d = 1,...,20. The results are plotted in Figure 2.5, the same explanations
supplied for the previous Figure also apply to the present Figure.

13

Figure 2.2: Faces set

90000 PSNR = 45db
80000

70000

60000

50000

bits

40000

30000
20000 e — !
)

10000
-

0 ¢

1 2 3 4 5 6 7 8 9
images

—4=QM+SM =—8=PM =—0—QM+5M+PM

Figure 2.3: Average Cay and average Cumq + Cqg plotted against d.

14

Figure 2.4: Video sequence set

60000 T T T T T T T
PSNR=45db
50000 \
40000 \ —
—
" &qk\ k3T | |
£ 30000 \\ <]
20000 \\ :///B/
/E)—? |
10000 ~ R
/B/
0 I
2 345 6 7 8 910111213141516 17181920
images
——PM —8—-QM+SM —¥—TOTAL

Figure 2.5: Average Cay, and average Cu, + Cums plotted against d.

15

Chapter 3

Mathematical Framework

This chapter contains the fundamental framework needed to understand the following
chapters. It introduces the general notation and the description of the algorithm from
a mathematical point of view.

Motivated by the Matching Pursuit algorithm [18] the VGS algorithm is described
in terms of maximizing an inner product under the constraint of constructing a tree.
Using an interesting dictionary (given by the VGS functions) and under general hy-
pothesis, the problem can be solved using the Bathtub principle, which plays an
important role in the development of the algorithm. Different setup variations ap-
* plied to the general case provide the special cases considered in the thesis (many
more cases are also possible but not developed in the thesis). We label these cases as
follows: Full Bathtub case, Haar case and Martingale Differences case. These cases
are analyzed in this Chapter after we complete the general description of the VGS
algorithm.

3.1 General Notation and Definitions

Given a set of inputs signals, we consider each such a set as a vector valued random
variable in a Hilbert space L?(, R%) associated to the probability space (£, A, P).
A is a given o-algebra and in the case when 1 is finite, we may take A to be the
‘collection of all subsets of namely A = P(Q2) where P is the power set of Q. The
only requirement is that o(X) C A. Elements from L%(Q,R?) are vector valued
random variables X : — R¢, X (w) = (X1(w), ..., Xa(w)), the components X; will
be the given input signals. From now on, in order to avoid confusions with the use
of subscripts, instead of using X; to describe the i-th scalar component of the vector

X, we will use X[].

16

The inner product in L?(Q2, R?), for two vector valued random variables X and
Y, is given by

X, Y] = /Q (X (w),Y (w)) dP(w),

where (,) is the Euclidean inner product in R¢, defined by,

d
(X (w),Y () =Y X[il(w) Y[i)(w).

i=1

Notice that for any constant vector b € R¢, any A C 2 and any vector valued (i.e.
any R9-valued function) random variable X, the following equality holds

0, [X(w) dPw) = [¢, Xw) dP(w),
Q Q
where the left hand side is computationally more efficient.

Also we will use the following notation for the characteristic functions:

_J 1 ifweA
La(w) —{ 0 otherwise.

This definition leads immediately to two main properties of characteristic functions:
14-14 =14,
14-15 =0, if AnB=40.

Definition 1. A set A is called an “event” if A € A. In special cases, introduced
later, events will be called atoms.

Definition 2. A collection of events II(A) = {Ay,...,A,} where A; € A and i =
1,...,n is called a finite “Partition” of A if satisfies

UA,-=A where n € N
i=1

and
AiNA;=0 forall i#j.

Definition 3. Given A € A, P(A) > 0, a function v is called a (vector valued) “Haar
function” on A if there exist Ag,A; € A, Ag, A1 CA, AgNA; =0, A= AygUA,,
Y =a 1a, +b 1a,, where a,b € R¢ and

E() = /Q W(w) dP(w) = 0, (3.1.1)
and

12 = [l = / ((w), p(w)) dPw) = 1. (3.1.2)

17

Using the last definition we can find the values for a and b, actually (3.1.1) gives

—b P(A1)
= —_—— 3.1.3
0= (313)
and replacing (3.1.3) in (3.1.2) gives
P(Ao)
bl = 4 | ————t— 3.14
6=+ Bty Pean (614
also, if ¥/ = —b— we obtain
el

’ P(AO)
b=b ,/P—(A—)?(A—l) (3.1.5)

where b’ € R and ||b'|| = 1 then b’ belongs to the d-dimensional sphere S¢ defined by

i=1

; d
§¢ = {m = (21, %a,...,24) € R*: ||z]* = Z T = 1} . (3.1.6)

A more general class of functions than the Haar functions can be defined as follows

Definition 4. A function ¢4 : Q — R? is called a “VGS function” if for a given
A € A the following conditions are satisfied

PYa(w) = a p1(w) +b pa(w) YweQ, (3.1.7)

where a,b € R? and ¢; : 2 — R defined by

0<piw)<1l Vwed, i=1,2 - (3.1.8)
and |
pi(w)=0 VwgA, i=12 (3.1.9)
also, we require
/ Pa(w) dP(w) =0 (3.1.10)
Q
[Watw)l? aP@w) = 1. (3.1.11)

Notice that the two equations (3.1.10) and (3.1.11) are incompatible if ¢; = @2
as this equality gives ¢ = 0. Equations (3.1.10) and (3.1.11) will implicitly rule out

Y1 = pa.

18

Remark 3. For the special case d =1, 14 will be called a scalar VGS function.

Remark 4. Notice that as 1 and @, are zero outside A then Ya(w) =0 if w € A.
Also whenever A is understood we will avoid the use of the subscript by writing
instead Y 4.

Definition 5. Let C4 C L? be the collection of all possible VGS functions on A € A
then
Ca={t:v satisfies (3.1.7) to (3.1.11)}.

Remark 5. We assume that there exist a routine called bestSplit such that for a
given A € A provides a finite number of best functions ¢g) €Ca,1=0,...,14—-1,
and a partition of A into a finite number of best children Ay € A, k=0,...,14. We

will also require o
W%, %% = 0 whenever i # j.

Actually, 1&9) will be the function that optimizes the inner product and the remaining
functions gbf,;) are constructed to be orthonormal to z/)ff). Also gbf;) (w)y=0ifwgA

We refer the reader to the end of Appendix C for a complete listing of all the properties
satisfied by bestSplit and an indication how bestSplit is actually constructed in
this thesis. The key step is given by the construction of 1/)9, the rest of the needed
constructions follow from it. wﬁf) is characterized in (3.3.13) and the different cases
leading towards ¢ff) are detailed in the remainder of the present Chapter. Further
details are also provided in Chapter 4.

Remark 6. We will always have Iy = 1 and will use the notation g = '(ﬁ(go).

Remark 7. We also assume that the functions zﬁﬁ) take a finite number of values.

For the three cases considered in the thesis the functions dzﬁ) take exactly I4 + 1
different non-zero values. Set

RA(¢(0)) = {7'0,’['1, R ,TIA}

to be the range of values taken by wf) (w) when evaluated at points w € A. Then the
best children are defined by

Ai={we A:9Ow) =n}. (3.1.12)

In short, best children are given as pre-images of constant values of @, We will
also require that the same children are obtained as pre-images of constant values of
¥® for i > 0; details are provided in (C.3.3)

Given the above notions, we will say that A splits into its best children A;.

19

3.2 Formal Description of the VGS Algorithm

The VGS algorithm, builds a sequence of partitions II, on Q indexed by n =1,2,...;
this index will be referred as the n-th iteration of the VGS algorithm. The partitions

are defined recursively:

o Let Ho = {Q, (Z)}

e Assuming that II,, has been created, then Il 41 is generated as follows:
Consider A* € II,, such that it satisfies

11,91 > 11X, 9P| for all A € I (3:2.1)
Now, if
X, 93] =0,

the algorithm VGS terminates and II, = II, for all p > n. Otherwise, i.e.
[X7 ¢A'] 7é 0) we set

Mo = LA} A0}

i=0
where, as indicated previously (3.1.12), the sets A} are the best children of A*.

Remark 8. Events, i.e. elements from A, that belong to any of the partitions I,
constructed by the VGS algorithm, will be called atoms.

The VGS algorithm builds a tree 7 where its nodes are atoms from the partitions
I1,,. The formal definition is given by:

T = G 1, . (3.2.2)

n=0

also we can define the n-term tree as
n
T,=J I
o

The parent-children relationship is given by the split relationship mentioned in the
previous Section. '

We will define an increasing sequence of orthonormal systems H,, for n > 0
corresponding to the n-th. iteration of the VGS algorithm, as follows: Ho = {po =
Yo} also, assume, recursively that H, = {uo,- - -, Mk, } has been constructed. We then
let,

20

I4-1

Hn+1 = H U {"p(t)

=0

where A* is the set in (3.2.1), also set pk, +it1 = zpﬁ;'Z fori =0,...,14 — 1. We also
set
H =] Ha (3.2.3)
n>0

The following basic Proposition proves that H is an orthonormal system.

Proposition 2. The set of VGS functions H built by the VGS algorithm is an or-
thonormal system.

Proof. In order to prove the theorem the following equation should be satisfied

w}(k) (z)] 0, if i#j or k#I;
Ai 1, if i=35 and k=1;.

It is possible to observe that by deﬁmtlon we require that ||1/)(k) |2 = [1/1(16.) , ili(k)]
Also by the constraint imposed to zp 4, With k>0, [1/11(4’“), ﬁ{’] =0forallk#1€]N .

The next step is to check the orthogonality condition.

It remains only to check the orthogonality condition for the case i # j.

1. w(k) is not a descendant or an ancestor of ¥ A), this means that they are defined

in two disjoint atoms, and as z/) A () =0 if w ¢ A; then the inner product

W) = [@), v w) dPw)
- / W), 9 w) aPw)+ [@ w9 w) dPw)
0

(W® (w), 0) dP(w) + /A | (0,45 (w)) dP(w)

2. if ¢§{? is an ancestor of 1/)&3,, as in the first case it is assumed that 1&2? (w)=0if
w & A;. Also Aj C A;, but the atom A; is partitioned where 1/)&3) takes constant

21

values then also z/)ﬁ? takes constant values on A;, therefore ¢§,’? (w) = c for all
w € Aj, then

W00 = [0Pw), v w) P
= [@) v w) aPtw) + [vy dpw)
A ;

[w0 apw)+ [evo) dpw)
A; :

Aj
= ¢ ¥w) dPw)

=0
because by definition of the VGS functions we require E(z,bﬁz) =0.

a

The VGS algorithm stops partitioning an atom A when X (w) is constant in A
and if X (w) is constant then the inner product [X,¢] = 0 for all ¥ € Ca. Recall
that X (w) is a vector valued random variable, then X (w) is constant if the i-th.
components X [i](w) is constant for alli =1,...,d.

Although there are no constraints on the set €2, the input set X (w) should take
a finite number of values in order for the algorithm to stop in a finite number of
steps. Intuitively if X (w) takes a finite number of distinct (vector) values N, the
total number of elements in the final partition should be less or equal than N. This
is proven in Appendix C.

Given a tree 7, with n > 0 then the associated VGS approzimation is defined by
the following equation :

Is4—1
Xr,= Y Y Xy ef. (3.2.4)
A€T, 1=0 '

Clearly, the outer summation in (3.2.4) can be rewritten recursively as follows, start-
ing with the first iteration,

. Iq—1))
Xz =X, 00l vo+ Y X, 8] v (3.2.5)
1=0

where ¥y = ¢ 1g and

/Q X[i] dP

Jz([dP)z_'

22

cfi] =

Then
Ige—1

Xgn=Xn+ Y X939 02
=0

In general
IA* “‘l

X = X1, + Z [X,zﬁ(iZ] ¢(i2-

=0

Under appropriate conditions Appendix C shows that

lim Xz, (w)=X(w) foralmostall we Q.

In fact if X takes only a finite number of distinct values the above limit will actually
be finite, therefore, there exists N such that Xz, (w) = X (w) for almost all w € Q.

3.3 Inner Product Maximization Using the Bath-
tub Theorem

The goal of this section is to setup for computation the quantity [X,] for the case
when 1) € C4 (C4 as defined in Definition 5). To this end we introduce the following
notation

u = E(p1), uz=E(p2), us=E(¢?), us=E(¥3), us =E(p192), (3.3.1)

clearly (3.1.10) gives

—b Ug
a=— (3.3.2)
and (3.1.11) implies
1= |la|* uz + ||b]|* us + (a,b) us. (3.3.3)
Using (3.3.2) in (3.3.3) gives
o _ uj [b]?
1
and also blI2
(a,b) = =22 oI, (3.3.5)
Uui :
finally,
2
lelf? = ! (3.3.6)

u% Uz + Uy uf—-2u5 U2 ul'

It is important to point that from equations (3.3.1) and (3.1.8) , u; € [0, P(4)] i=
1...5 and uz < u; and ug < us.

23

For a given set of input signals X and a given A € .4 we would like to compute

sup [X,1], where, we recall, the inner product is defined as follows:
YEC, ’

X9l = [(X(w),b(w) dPlw), (33.7)
Q
then replacing the definition of 9 in equation (3.3.7) we obtain

X, 9] = b]] us (i [X)) palw) aPlw) - - [@) g dP(w)) ,

| (33.8)
where "y
bl = (3.3.9)
ol Vuduz + uqu? — 2ususuy
and b
=
1]

moreover, b’ € S¢ is an independent variable. We can interpret b’ as the weights of
all input components and (X (w), ') the weighted average signal.

Equation (3.3.8) implies that the inner product depends only on the variables
b, uy, ug, us, ug, us, ¥1, and ps. Then the supremum depends only on the same
list of variables and can be written as iterated suprema as follows

sup [X,w]=sup[sup (sup [X,1/1]>]. (3.3.10)

PYeCa b U1,u2,U3,U4,U5 P1.p2

Recall that we simplify the notation avoiding to write the sets where the different
variables are defined, then ¥’ € S%, 0 < u; < P(A) i =1,2 and ¢; i = 1,2 satisfy
(3.1.8), (3.1.9) and (3.3.1).

In order to be able to simplify the above optimizations, we will need to restrict
the general class of functions in C4 as follows: we will assume

[1bl] = 16| (u1, u2), (3.3.11)

i.e. the norm of b depends only on u; and us. From the above formulas this is
equivalent to assuming that:

up = ug(ug, uz) for all k=3,4,5.

In short, we are restricting to functions ¢; such that their second moments and
correlation depend on only both of their means.

Remark 9. Such restricted class will be denoted C, from now on.

24

Under this constraint the iterated suprema depends only on ¥, us, us, ¢1, and ¢,
and can be written as

sup [X,] = sup [sup (sup [X, ¢]>] : (3.3.12)

PeCy u3,u2 P1,2

In the form (3.3.12) we can already solve the inner supremum via the Bathtub
Theorem (see Apendix A).

Remark 10. A comment is needed at this point, notice that (3.3.12) provides a
potentially larger supremum than the one obtained by imposing (8.8.11). It turns out
that restricting (3.8.12) with (8.8.11) does not change the the value given in (3.3.12).
The reason for this is that the solutions will be given by @1 and @2 from Appendiz A
which satisfy (3.3.12).

We will denote with wﬁ{” the function in éA which satisfies,

X, 9] = sup [X,¢). (3.3.13)
PECH

As we have indicated before, 1/),(40) , the solution to (3.3.13), is the key step to define
bestSplit which in turn is at the heart of the VGS algorithm. The rest of the present
Chapter details how to construct wﬁlo). Appendix C explains how to completely define

bestSplit using 1/)540) .

As it will be seen in the following sections, we will impose even further constraints
to (3.3.12) so as to have faster optimizations.

3.3.1 Iterative Optimization for ¥’

At this point in the developments it is reasonable to describe a practical way to
perform a fast local optimization on . It will be used throughout the thesis and it -
applies to all the different cases (this can be seen easily given the generality of the
argument presented below). The expression of b’ that we will write is also crucial to
attain convergence of the VGS approximation, this can be seen from he developments
in Appendix C.

A necessary condition at a global maxima for sup,ec, [X,%] can be obtained by
conditioning in given functions ¢; and ¢,. A simple inspection then indicates that
we obtain a linear functional on b’ constrained to ¥ € S¢. This can be solved by

25

Lagrange multipliers, if we denote with b’ the resulting optimal value we then have:

1 .
b = Uz Ja U1 J4 , (3.3.14)

' ¢ /4 1 2
E:(— / X[k] p2dP — — / X[H] saldp)
=1 \U2.J4 Ui J4

where, as it was defined previously, u; = [, @:idP.

In practice the functions ; will not be known independently of &' and hence
the above formula can not beé used directly. In fact, the Bathtub Theorem provides
explicit solutions (up to a one-dimensional optimization in the variables u;) for the
functions ; conditional on knowing b'. This remarks indicate that one can iteratively
compute the optimal b’ and then, conditional on this b, compute the optimal pair ¢;
etc. This iterative optimization is a local optimization as it requires a starting pair
of functions ¢; or it does require an starting value for &'.

To address this problem, we need to supply a global optimization algorithm to
run jointly with the above described local optimization. For a discussion of the global
optimization techniques used in this thesis, we refer the reader to Section 4.4.

26

3.4 Full Bathtub Case: w3 =14 — ¢

In order to simplify the optimization in (3.3.12) we will first consider the special case
2 = 14 — 1. Under this constraints, Definition 4 is satisfied and equation (3.1.7)
can be written as

Y(w)=a p1(w)+b (14— p1(w)) Vwe Q. (3.4.1)
Then equation (3.3.8) becomes
el =0l ([000, 0) (= n(w) dPw) = 2 [(X()0)) dP (),

and

0= bl ([(X)) dP) - 222 [(x(w)) pu(w) iP(w)), (342

Then as we have defined in (3.3.1)
w=E(p) = [o) aPw) = [i(w) aP(w)
in the same way
s = E(ipg) = /Q 14 — 1 (w) dP(w) = P(A) — uy.
Also, as indicated previously, we have assumed that uz depends only on u;.
wr=B(ed) = | ¢iw) dP(w) = ua(us),

and
us = () = / (14 — 91 (w))2(w) dP(w) = P(A) + ua(w) — 2 s,

and
us = By 2) = /Q o1(w) (1 — p1(w))) dP(w) = uy — us(us).

Then equation (3.3.9) becomes

V' P(A)? ug(u) — P(A) u?

llell =

Focusing into the inner product (3.4.2), the equation can be rewritten as follows:

27

u? P(A) 1) 1 ,
0] = \/ P (s [y ap) - - [, o ap).
(3.4.3)
It is important to remark that the inner product [X,] depends only on b, u; and
¢1, (the value of uz depends only on u;. Now let us define

P(bla U, 901) = [Xa ¢],

then we compute the supremum as

sup'[X,w]=sup[sup (sup F(b',ul,sal)ﬂ-

YeCa b'eSe | 0<ui<P(A) 0<¢p1 (w)<1

In order to compute the inner supremum, we can see in (3.4.3) that there is only
one term affected because the first factor and the first term in the second factor are
fixed, therefore to find the supremum of (3.4.3) we have to compute the infimum of
the second term of the second factor.

sup F(bl,uh%) = 2
¥1

— VP(A) ua(ur) — *

1 , l o) " ol .
[WA—)/A<X,b)dP(w)—u1 Salf AO(X,b)<p1() dP(w) (3.4.4)

To find this infimum we use the Bathtub principle (Appendix A) that gives us the
best ¢ for a given u; and b'. The Bathtub solution for ¢; is the following

01 = Lweaxp)w)<y} T € Lwea:xp)w)=mn}

then
L =/Q ¢1(w)dP(w) =/Q (L{wea:xp)(w)<u} ¢ 1{w€A:X[b’](w)=y1}) dP(w),

and
up = P{X[V] <y} N A) +c PUX] =wm} N A),

solving for c gives (XD \)
_Uup— PHXIV] < Y1t N A
CTERBI=wnA) (349

28

now we can see that
wa = us(w) = [@w)iP(w) = PUXY] < w} 14) +¢* PUXE] =y} 0 4)

From equation (3.4.5) it is clear that there are two different cases, the case ¢ = 0 and
the case ¢ # 0.

CaseI: ¢c=0
¢1 = Lweaxp)w)<nb (3.4.6)
Y2 = Liyea:xp|w)>nh (3.4.7)
u; = P{X[t'] < y1} N A4),
up = P(A) — u,
uz = uy,
uy =P (A) - Uz,
ug = 0.
Case II: c#0
1 = Lweaxpw)<u} T ¢ Lwea:Xp)w)=y:}s
02 = Liweaxpiw)>n} + (1 — ¢) Lweaxplwy=n),
u; = P{X[V] < ;i} N A) +c P{X[t'] =y} N A) (3.4.8)
up = P(A) —uy
ug = P{X V'] <y} NA)+c* P{X[] =3} N A)
ug = P(A) +uz —uy
Us = U] — U3.

Then the inner product [X,] can be calculated using these two cases.

Casel: ¢c=0

0] =yt [[ey ap(w) - o [(X)t) o dp)].

Case II: c#0
8] = 4| ol [s [o)) ap) - o- [(K(w)¥) o1 dPw)]

29

3.4.1 Haar Case

Under the assumption that

PUX[¥]=y})=0 forall y1 €R andall ¥ €S? (3.4.9)
it follows that
01 = L{wea:Xp)(w)<y1} (3.4.10)
and
P2 = 14 — Liweaxp)w)<v} = LweaXpw)zn} - (34.11)
also

up = /Q o1 dP = PUX[Y] < 1} N A),

up = P(A) —uy,
Uz = Ui,

uy = P(A) — uy,
us =10

Remark 11. We note that it can be proven that (8.4.9) follows if we assume that the
cumulative distribution function of X is continuous. This explains why we mentioned
the Haar case in connection with this last condition during Chapter 2.

Remark 12. Notice that the Full Bathtub case contains the Haar case as a special
case.

The norm of b, expressed in (3.3.9), under the conditions assumed above, becomes

Uy

= \ 5oy =y

also equation (3.4.2) can be written as

(3.4.12)

, 1 ,
S P [xXw),») ap@) [xe#) dP(w)].

o
(3.4.13)

Again for this case it is important to remark that the inner product [X, 4] depends
only on &', u; and ;. Now let us define

T, u1, 1) = [X, 9],

30

then the supremum is calculated as

sup [X,9]= sup[sup (sup F(b',ul,sﬁl))],

N beSd | 0<ui<P(A) 0<¢p1 (w)<1

where

P(A)
sup I'(t',u1,1) = U A
o PO) =\ By

[73_(1-5 /A (X(2),) aP(w) - o inf /A (X(w),¥) o1 dP(w)] . (34.19)

31

3.5 Martingale Differences Case

This case is a generalization of the Haar case (and so it contains it as a special case)
and there is no constraint for the form of ¢; and .. As in the Haar case we will
require that

PUX[])=w}) =0 forall yy€R andall ¥ €S (3.5.1)

Recall that, in general, we have assumed
ug = ug(ug, u2), kK =3,4,5, i (3.5.2)

and we will keep u; and u, fixed, therefore (3.5.2) implies that uz,uq and us are
also fixed. As indicated, we will actually solve an optimization problem over the ¢;’s
under less stringent constraints, namely only their first moments will be fixed. So the
inner supremum is actually computed over a larger set, therefore, we need to check
a posteriori if the obtained solution satisfies (3.5.2); if it does, we are then proving
that the solution obtained over the larger set will be equal to the one obtained with
more constraints.

Analyzing equation (3.3.8) it is possible to appreciate that the supremum of the inner
product can be computed finding a supremum of the first term and an infimum of
the second term. Defining

[X, ’f’] = ”b” Uz F(bl,ul,uz,sﬂl,(ﬁz),

then for a fixed b, u; and u, we can write

sup T(in, 1) = Zsup [(X(w),8) palw) aP(w)-2-inf [(X(u)¥) ¢r(w) dPw),
' (3.5.3)

To calculate the supremum of the first term of equation (3.5.3) the dual version of
Theorem 1 in Appendix A is needed. This dual version is described in Corollary 1 in
Appendix A and shows that the supremum is realized at

©1 = LiweA:Xp)(w)<u} (3.5.4)

and
2 = Lwea:X[p)(w)>y2} (3.5.5)

now
us = E(p}) = w1

us = E(p3) = ug

32

and
us = E(p1 ¢2) = P{w € A: X[V)(w) Sy} N {w e A: X[Y](w) > 32})
then

ur +ug, ify1 >y
Then the condition (3.5.2) is satisfied.

i <
U5={ 0, lfyl_y21

Recall that taking y; = y» implies that us = 0 and we get the usual Haar functions
that we have been using before.

33

3.6 Children of Atoms

In previous sections we have assumed a function called bestSplit which for a given
atom A € A, provides a finite number of best functions and a partition of A into a
finite number of best children called A; € A. Now we are going to explain how to
obtain such children depending on the case selected.

3.6.1 Haar Case

Let us start with the simplest case, the Haar Case:

Equations (3.4.10) and (3.4.11) show that for a given atom A € A
zbf) = a Lwea:xp)w)<n} T b Lweaxp)w)zun} (3.6.1)

where the first and second terms are disjoint, therefore wff) takes only two poséible
values, one in each partition, the constant value a when X[V'](w) < y; and the
constant value b when X [V'](w) > y;. In the Haar case there is only one VGS function
then

wA = ,(f))
and so the best children are given by:

Ao={we A: X[V)(w) < y1} with Ya(w)=a forall we A

and
Ar={we A: X[V])(w) >y} with Ya(w)=10 forall we A

Equation (3.6.1) can be written as follows
Ya=aly, +b1ly,.
And the moments can be obtained easily
1= 14,, ur= P(Ao)
@2 =14, uz=P(A).

3.6.2 Full Bathtub Case

From equations (3.4.6) and (3.4.7)
Y = a (Lweaxww)<u) + € Lweaxpiw=n)) + |
+b (Lweaxpiw>nt + (1 =€) Lweaxpiw=n)) (3:6:2)

34

then

il)ﬁ)) = @ L{weA:X)(w)<u} Tb Lwea:xp)w)>n) +(+c(@—b)) Lweaxpw)=p)) (3-6.3)

and is possible to observe two different cases

CaseI: c=0
f) = a lweaxp)w)<un} T Lweaxpiw)>u} + b Lwea:xp)w)=y}

= a 1{w€A:X[b’](w)<y1} +b l{wEA:X[b’](w)zyl}

then
Ap={we A: X[V](w) <y} with ¢ff)(w) =a forall we A

Ar={we A: X[)(w) >y} with ¥ (w)=b forall we A,
Case IL: c#0
Ag={we A: X[t)(w) <y} with ¥P(w)=a forall we 4,
Av={we A: X[V)(w) >y} with ¥Q(w)=b for all we 4,
Ar={we A: X[V](w) =y} with ¢ff)(w) =b+cla—0b) forall we A,

Remark 13. Whenever ¢ = 0 we obtain back the Haar case and hence only two
children are obtained. In the case ¢ # 0 an special optimization for the Bathtub
algorithm is needed. Also another important result is the fact that @ takes three
different values in Case II, then (as indicated in Appendiz C) an extra function %)
1s required.

Equation (3.6.3) can be written as follows

(O)= a1A0+b1A17 if c=0
A alp+bla, +b+cla—0b)1s, if c#0.

3.6.3 Martingale Differences Case

From equations (3.5.4) and (3.5.5)

¥ = a Lineaxpiwycu) + b Lweax i) (3.6.4)
and is possible to observe two different cases

Case I: y1 <y,
Ao={we A: X[V](w) <y} with wff)(w) =a forall we A

35

Ay={we Ay, < X[b'|(w)} with 'gbﬁ))(w) =b forall we A,
Ay={we Ay < XP)(w) <yp} with $P(w) =0 forall we A,

Case II: y; > y»
A= {we A: X[V](w) £ y2} with wﬁf)(w) =a forall we A

Ai={we A:y < X[V](w)} with QW) =b forall we A
Ay={we A:y, < X[V](w) <y} with wﬁf)(w) =a+b forall we A,

Remark 14. The atom A, satisfies P(Az) = 0, and hence it can be ignored, only
when y; = y,, this condition provides the Haar case as a special instance of the present
case. In the discreet case, considered in Chapter 4, the Haar case becomes a special
case of the Martingale Differences case when y1 = 1y and Yz = Tk-1 because then
Ay={w € A:rp < X[V')(w) < i} =0.

Equation (3.6.4) can be written as follows

(O)= a1A0+b1A17 if 0 SyZ
A a1A0+b 1A1+(a+b) 1A2; if Y1 > Ya2.

Remark 15. In both cases ¥© takes three different values (unless y1» = y2) and
whenever y, > yo the third value on A® s equal to a + b then again an extra func-
tion ¥ 4s required in order to obtain the mean values in the leaves (and hence the
approzimation will converge to the input vector signal).

36

3.7 Adding More VGS Functions at a Node

So far we have described how to construct zpﬁf) at a given atom A. Notice that
depending on the case (Haar, Full Bathtub or Martingale Differences) we will have
I, = 1 (Haar case) or I4 = 2 (the remaining two cases). It follows from the proof
presented in Appendix C (more specifically from the condition in (C.2.34)) that we
need to have I, VGS functions at each node A in order to achieve convergence. This
implies that, for the Full Bathtub and Martmgale Differences cases, we need to specify
a new function which we have been denoting w 4 - According to our VGS algorithm,
this function needs to satisfy some basic properties listed in the bestSplit routine
which is detailed at the end of Appendix C.

The functions 9 could be constructed in several ways. Moreover, notlce that
the decision, taken by VGS, on how to split a given atom, is based solely in w 4 - One

may also decide how to split an atom based on both functions 1,0 , ¢ = 0,1, this is
suggested in (C.4.1).

Below, we describe a canonical construction of zpfj) which depends on knowing
z/)ff) beforehand. It relies on introducing scalar VGS functions which are important
in its own right, for this reason we dedicate the followmg Section to this topic. As
noted, we only need to provide the construction of 1/) 4~ for the cases Full Bathtub and
Martingale Differences. Therefore, we may assume without loss of generality that A
splits into three children.

3.7.1 Scalar VGS Functions

Starting with a vector valued VGS function 1/) = ayp + by, at node A we will show

how to construct '(/} A . To describe this construction we need to introduce scalar VGS
functions at a given node A. As we have done before, we will write 1nstead of Y4
once the atom A is understood.

If Y4 =1 = ap; + by, is a vector valued VGS function, we will use the following
notation for the associated scalar function

Ya,s = Ps = d1py + dopa,

which should satisfy,

/Q ¥s(w) dP(w) =0, (3.7.1)

/Q YZ(w) dP(w) = 1. (3.7.2)

37

This allows us to write the scalar basis function as follows

w2 Y1
Yy =dy 1+ da 2 =da us (u2 u1>

Idgl U d’2 (ﬂ - ﬁ) .
Uog (751
Where dj = dy/|d2] € {—1,1}. Notice also that

|da| = [lb]]- © (3.7.3)

Therefore

B = [[ol] uz d (” _ ﬁ) .

’U_z Uy
In short (@ specifies %) uniquely.

As it was indicated above, we only need to describe the construction of @ for
the case when A splits into three children Ag, A1, A2 (so A;N4; = 0 whenever i # j
and U?_jA; = A). This means we may assume we are given

’pg),)s = aoly, + a114, +a2la,. (3.7.4)

We will now describe how to construct a function z,bﬁ,l,)s = ¢§1) which will be the one

used to construct 1/),(41).

We set
’(/JS) = 601,40 + 611A1 + 621A2,

where the e; € R. We will impose the following constraints :

1= [y = [p0, p]: = e P(Ao) +] P(A1) +e; P(A2),

0= /A'l,b‘gl) dP(w) =€ P(Ao) +e P(Al) =+ €9 P(Ag),

and ,
0= [, vP]; = ag eo P(Ag) + a1 e1 P(A1) + az ez P(As).

It is easy to find the solution to the above system of equations:

- — €9 P(Ao) (a1 —ao)
: P(4;) (a1 —a2)

— €g P(Ao) (a2 - ao)
P(A;) (a2—a1)

€1 =

38

and
2 = P(A1) P(4,) (a2 — a1)’®
0™ P(Ap) [P(A1)P(A;)(az — a1)? + P(Ag)P(As)(az2 — a0)? + P(Ag)P (A1) (a1 — ag)?]’

Finally we define ¢S) as follows:
X0 v 9 w)
VLX), B

This function satisfies all the required properties required by bestSpht these results
are presented in Appendix C.

PO [i](w) = (3.7.5)

3.8 Vector and Scalar Approximation

At this point in this Chapter we have completed the description of an orthonormal
system H = {u} (see formal deﬁmtlon in (3.2.3). Elements from H are vector

valued VGS functions of the type ¢ 4, 1 =0,1. As we have done before elements in
‘H will be labelled uk Note that the construction in the previous Section provides
an scalar function %% A’s associated to each function) 4 - Clearly, this defines an
orthonormal system of scalar valued VGS functions, we will label this system with G.
Elements from G = {uy} are labelled u; (see Appendix C). From the construction
in the previous Section, there is a natural association between elements from H and
elements from G and we will assume wuy, is the element in G naturally associated with

K.

The results in Appendix C show that for any finite index set I/ C IN we have the
fundamental identity

Z[X, p) (i) = Z[X[i],uk]l ug forall i=1,...,d.
kel kel

This is a basic result and shows, along with the convergence result in Appendix
C, that one could use the vector valued orthonormal system H to approximate X
or one could use the scalar valued orthonormal system G to approximate each X[i],
i=1,...,d.

The two systems, H and G, are not equivalent when one considers the optimized
expansions as we explain next.

Let h : N — IN be a re-ordering function for H in such a way that

I1X, pro)ll 2 |[X pa]l 2 - - -

39

We then have the n-term VGS optimized approximation given by

n—1

Xn= Z[X s Brk)] By (3.8.1)
k=0

In practice, the integer n is chosen to satisfy some error criteria, say an vector error
level ¢, is given so we can find n = n(e,) so that
[|X - Xall £ €.

As a side remark, we mention that the software implementation works with the set
of inner products

A= { =X, pwl}
and inserts them in a priority queue Q4 (ordered by the sizes of the inner products
| Ak])
One can define the same notions for the orthonormal system G, let g; : N — IN one
such re-ordering function for each i =1,...,d, so that
|[X[i]’u9i(0)]1| 2 |[X[i]?ugi(1)]1| 2

We then define the n-term VGS optimized approximation by

n—1

X[iln = _[X[d], unwlr vace)- (38.2)
k=0

(a caution to the reader: please do not confuse the i-th. component of the n-term vec-
tor approximation X, [¢] with the n-term approximation of the scalar i-th. component

Xliln)-

Then, given an scalar error level €; we will find integers n; such that

11X[5] = X[ilual| = v/IXT = XliJoe X = Xk < € forall i=1,...,d.

Therefore, we have two optimized approximations, the. optimized VGS approxi-
mation given by (3.8.1) (which we call the vector approzimation) and the d optimized
scalar VGS approximations given by (3.8.2) (which we call the scalar approzimations).
Given these two types of approximations, we will prune the tree by keeping only the
active nodes for further processing. The pruning in each case will give rise to two
different set of active nodes. Given a vector error level ¢,, after pruning the tree we
will need to store information related to n = n(e,) active nodes in the tree. In the
scalar case, given an scalar error level ¢,, each component X [é] requires n; = n;(es)
nodes. Of course, many of these nodes are common to several signals. In any case,
the final collection of active nodes for the scalar case can be quite different than for
the vector case.

40

3.8.1 Types of Data Needed to be Stored at Active nodes

We have called active nodes to those nodes that remain after pruning. Depending if
we are performing a scalar or a vector approximation we will need to store different
data types so that the reconstruction (by the decoder) of the approximation can be
performed. A

In general, the type of data to be stored for each type of approximation, i.e.
scalar or vector, is quite different. In the vector case one needs to store the followmg
information at the active nodes: numbers of the form [X, 9! A 9 and/or [X, ! N V] and
a corresponding vector b,. In the scalar case one needs to store some (or all) of the
following numbers: [X [z],z,b,(‘,,s]l and/or [X [z],z/)(l)] i =1,...,d. These matters are
considered with some detail in Chapter 5.

41

Chapter 4

Formulation for Software
Implementation

In this chapter we will describe the software implementation of the different variants
of the VGS algorithm that we have described in Chapter 3. A description of the algo-
rithm in terms of a discrete setup is also developed. This discrete setup is motivated
by the analysis of discrete signals that have been discretized and quantized.

This chapter is subdivided in four sections, the first three sections describe the three
different methods, the first one describes the Haar case, the second one shows the
software implementation of the Martingale Differences case and in the third Section
the Full Bathtub software implementation is provided. A final section describes global
optimization techniques.

The main problem is to solve the iterated supremum introduced by equation (3.3.12).
For each case we provide the solution in three steps: computation of the inner supre-
mum, the computation of the outer supremum and a general description of the al-
gorithm. The solution of the outer supremum makes use of a common optimization
technique over the values of ¥', that is described in Section 4.4.

While describing the different computational steps we also provide the computational
costs of the associated algorithms.

42

4.1 Haar Case

4.1.1 Discrete Restricted Bathtub

This case was introduced in Section 3.4.1 and the Bathtub principle (Appendix A)
is used to find the infimum of the following expression, notice that now ¥ : @ — R
is a one dimensional random variable (in the actual applications we will specialize to
X[V'] where X is the input vector).

[=in / Y (w) o(w) dP(w), (4.1.1)
p€EDy Q
where
(P(w) = 1{w€A:Y(w)<y} +c 1{w€A:Y(w)=y} (4.1.2)
and
/ o(w)dP(w) = u, (4.1.3)
Q
but for the Haar case we are assuming that P({Y = y}) = 0 then
QO('LU) = 1{wEA:Y(w)<y}7 : (414)
and so
[= / Y (w) dP(w). (4.1.5)
{weA:Y (w)<y}

At this point it is interesting to describe the Bathtub algorithm for the discrete setup.
Recall that in this special case there is only one parameter to be optimized, namely
- u, and is related to Ap, actually u = P({Y < y}), where y is a value in the range of
the function Y.

Next we introduce some useful notation, let Ro(Y') = {ro,...,7n—1} be a complete
ordering 79 < ... < r,—; of all values Y (w), w € A and P({Y =r}) # 0 for all such
rt. Recall that R4(Y’) is the range of Y (w). Then

vk ERAY), and yr=rry1, with k=0,...,n—2 (4.1.6)
As it is possible to observe in equation (4.1.6), there exists boundary constraints that

should be satisfied in order to avoid some undesirable particular cases. Figure. 4.1
shows these constraints and the associated partition.

Note that as we have previously introduced in Section 3.6.1, the children (for a given
yk) can be obtained as follows:

Ao={we A:Y(w) <y} (4.1.7)

43

rO n
C A
L AO 9[Al 7

Figure 4.1: Boundaries constraints Haar Bathtub

={we A:Y(w) >y} (4.1.8)
Let us call uy the value of u associated with y,. Then
wp = PUY <)) = PUY <)) =P{Y <n}) = Fr(r) (419

then for a given u it is possible to find the corresponding 7y as follows
Fy(’l‘k) <u< Fy(Tk_H) (4110)

but as we will check in next section, for the Haar case the best way to iterate over
the values of u is to iterate over 7.

Remark 16. In order to speed up the computations we pre-calculate the probabilities,
the cumulative distribution function and the ezpected values. The cumulative function
1s defined as follows

k
Fy(ry) = Zpi (4.1.11)
i=0
where p; = P({Y =r;}) then
Fy(rk+1) = Fy(?’k) +pry1 and Fy(To) = Po- (4.1.12)

and the expectations E(Y|Y < 1)

E(YY <) Zp; Yi (4.1.13)

then
E(Yly < rk+1) = E(YIY < T'k) + Dk+1 Tk+1 and E(Yly < ’I”o) = DPo To- (4114)

Notice that E(Y|Y < 7‘0) can be different from zero if the function does not take the
zero value.

4.1.2 Inner Supremum: Best Split Algorithm

In practical terms the bestSplit calculates the best partition of a vector random
variable X[V'] = (X,V') in an atom A € A for a given ', by maximizing the inner

44

product [X,14]. In order to find the supremum of the inner product calculated in
(3.4.14), the Bathtub principle should be applied once for each value on the range.
Now let }

A(V') = sup T(V, uy, 01) (4.1.15)

u1,p1
then the bestSplit should return the best inner product and the best partition, but
in order to calculate the children, the value of the range r is needed.

Remark 17. Recall that u; € (0, P(A)), but it is faster to evaluate uy = Fyp(ry)
and apply the Bathtub theorem for each ry withk =1,...,n — 2, a finite set, rather
than inspect the real interval (0, P(A)).

The following picture shows the flow of this function. and the pseudo-code for the

X[b’], A) 2, b,
LA, bestSplit g

Figure 4.2: Flow chart Bathtub algorithm

bestSplit algorithm in the Haar case

Function bestSplit(X[b’])

Calc_CDF(X[b’]) //Calculate the cumulative
Calc_Exp(X[b’]) //Calculate the expectation
For each ri in R(X[b’]) //Covering the range of x[b’]
ui=CDF (ri) //Calculate ui
I1=E(ri) v //Calculate the expectation for the last term
Calc_Lambda(ui,I1) //Calculate the value of lambda
If (lambda>lambda_max) //Find the maximum value of lambda
lambda_max=lambda //Store the maximum value of lambda and ri
r_max=ri
End If
End For

Return(r_max, lambda_max) //Return ri and lambda maxima
End Function

We have to precalculate X [V'] before it is processed by the bestSplit function. From
the pseudo-code it is possible to see that the algorithm’s order is O(n) where n is
the number of different values that X [b'] takes on A. Assuming that the input images
X [4] take integer values in the following interval [0,v], then as b’ € S¢ where d is the
number of input signals. Then

=1

—v Vd < X[V)(w) = i X[i)(w) bi) < v Vd (4.1.16)

45

then
n<2vVd (4.1.17)

in case of 256 gray-levels images and 16 images n could be at most 1024.

4.1.3 Outer Supremum: b’ Optimization Algorithm

Once we have found the best 14 for a given ¥’ the idea is to propose different values
of ¥ such that the inner product [X, 4] achieves a maximum value. As ||| = 1 then
Y € 5S¢, the d-unit sphere, there are different techniques that can be applied in order
to solve this optimization problem. These techniques are described in Section 4.4.

Outer Supremum: b Optimization Algorithm

We construct a function called bestVectorSplit that finds the best partition of a
vector valued random variable X for given atom A € A . As we have mentioned
before

b = |¥=1, (4.1.18)

b

1ol
and then V' € S¢. Figure 4.3 shows the flow chart of the optimization algorithm.
At first the algorithm fixes a value for ¥ and calculates X [b'] = (X, V) then X V'] is
passed to the bestSplit function that returns the best partition and the maximum
inner product for a given ¥'. This is iterated until a stopping criteria is reached; this
iteration is performed by a global optimization procedure. Different procedures for
global optimization are described in Section 4.4.

Function bestVectorSplit(X, A)// X: input vector, A: current atom

lambda_max = 0 // max inner product set to O
While(condition) // loop on b’
b’= Create() // propose a b’
X[b’] = CreateLC(X,b’) // construct the linear combination
lambda = bestSplit(X[b’]) // find the bestSplit on A of X[b’]
If (1ambda>lambda_max) // evaluate the maximum
lambda_max = lambda // actualize the maximum
End If
Evaluate(condition) // evaluate the stop criteria
End While

Return(r_max, lambda_max, bp_max) //Return r, lambda and b’ maxima

End Function

46

lA €A
7 pestVectorSplit T

¥

Fix b’

X[b]

bestSplit

Yy,

y

Maximum
\ - Y

2b T

Figure 4.3: Optimization Flow chart

47

— — _— —

The algorithm returns the best , the best X and the best ¥'.

From the pseudo-code it is possible to see that the computational order of the algo-
rithm to calculate sup [X,4] is O(k n) where k is the total number of iterations

Ya€la
of the while loop, and n was explained at (4.1.17). Depending on the method selected

the value of k is not always possible to be determined a priori.

4.1.4 General Description of the Algorithm

The previous VGS algorithm description gives us the background for the next step.
Once the algorithm is applied to a given atom the bestVectorSplit returns the best
partition for all inputs at the same time in the given atom. This partition defines the
atom’s children and the following step is to decide which atom should be split next.
It seems to be a good method to select the largest inner product. The only way to
know the inner product at an specific child is-to apply the bestVectorSplit to each
child.

Ag M B Ao A B

oA v rsy AV PV RV B

Figure 4.4: Haar Tree Description

Figure 4.4 shows the tree generated by the algorithm in three steps, and it shows
the node structure composed by the inner product A, the partition A and A, the
b and associated r . Now, let us consider the tree 7 introduced in (3.2.2), but in

48

this case from the computational point of view. These nodes vy, are composed by the
inner product A, the vector &' and the corresponding r which are used to obtain the
children Aq and A4,.

19 getNode N
bestVectorSplit
bestVectorSplit bestVectorSplit
createNode 1 l
l createNode createNode
k insertNode l l
insertNode insertNode
removeFather
No
emptyQueue ?
K Yes)
T

Figure 4.5: a) VGS Initialization - b) VGS Running iteration

The first step of the algorithm consists in applying bestVectorSplit to the vector
X on the entire domain Q and storing the best parameters in a node called root in
both Q4 (please refer to Section 3.8 for a formal presentation of Qy) and the tree
T, this procedure is called initializeVGS, Figure.4.5a shows the flowchart of this
procedure. Then, as there is only one node corresponding to the entire partition € in
Qa, this node is selected and the bestVectorSplit is applied over the children A,
and A;, and the first node is removed from Q, , the two new nodes are created and
stored in the queue and in the tree. The algorithm now selects the node in Qp with
greatest inner product and again applies bestVectorSplit over its children, then it
removes this node from the queue and inserts its children; it continues recursively
iterating until some criteria is reached or until there are no atoms left. This iterative
process is called iterateVGS and Figure 4.5b graphically shows this process. When
the iterateVGS finishes the full tree 7 is obtained.

Figure 4.5 shows secondary procedures that are important to mention.

49

PROPERTY OF
AYERSON UNIVERSTTY LIBRARY

e The procedure getNode, looks into the queue for the next atom to split.

e The procedure createNode based on the parameters obtained from the bestVectorSplit,
creates a new node.

The procedure insertNode inserts the new node in both the queue and the
tree.

The procedure removeFather removes the former atom from the queue.

e The function emptyQueue checks if there is a node left in the queue.
The pseudo code for the initializeVGS procedure is defined as:

Function initializeVGS(X) // X: input vector

// the best split of X in Omega

lambda_max,r_max, bp_max=bestVectorSplit (X,0mega)

v = createNode(lambda_max,r_max, bp_max)

insertNode(v) //insert node v into the queue
End Function

and the pseudo code for the iterateVGS procedure is described next

Function iterateVGS(X) // X: input vector
While(!emptyQueue)q{
// the best split of X in the children AO of A
lambda_max,r_max, bp_max = bestVectorSplit (X,v->A0)
v0 = createNode(lambda_max,r_max, bp_max) '
insertNode (v0) //insert node vO into the queue and the tree
// the best split of X in the children Al of A
lambda_max,r_max, bp_max = bestVectorSplit(X,v->A1)
vl = createNode(lambda_max,r_max, bp_max)

insertNode(v1) //insert node vl into the queue and the tree
removeFather(4) - //remove father A only from the queue
End While

End Function

Remark 18. Notice that T in this case is a finite binary tree and we insert a new
node in the tree only if the function is not not constant in that node. Therefore when
considering the full tree, X is constant in the leaves’ children (note the children are
not included in the tree). The number of leaves’ children is not larger than the number
of samples in the input vector, then if N, is the number of samples, the mazimum
number of nodes in tree is Ny — 1.

50

Remark 19. In general the total number of different vector values taken by the input
vector is given by

N, =|{ve{0,...,255}% : Jw € Q and X (w) =v}|. (4.1.19)

The number of samples depends on the resolution selected and could be expressed as
Ny =W x H, where W and H are the corresponding image’s width and height . Note
that N, < N;.

Analyzing the pseudo-code of the procedure iterateVGS, it is possible to see that the
order of the algorithm to obtain the full tree is given by

O(N, k n) (4.1.20)

where k is the total number of iterations done by the procedure bestVectorSplit,
and n was explained at (4.1.17). ‘

At this point the reader would be interested to know the order of the algorithm
in a real example. Assuming we are working with nine 256-gray level images of
128 x 128 = 16384 samples each one, then N, = 16384, the total number of different
values N, =~ 13000 (=~ 80% of N;), n =~ 256 and k = 100 then the total number of
operations is ~ 300E6.

51

4.2 Martingale Differences

4.2.1 Discrete Bottom-up Bathtub

Introduced in Section 3.5 the Martingale Differences (MD) algorithm assumes that
and there is no constraint for the form of ¢; and ¢, but it requires P({X[b'] =c}) =0
and also

ur, = ug(ug, u2), kK =3,4,5, - (4.2.1)

This case considers the possibility to solve the Bathtub principle and its Dual version
at once. Assume that the range of an scalar input X is R4(X) = {ro, ...,"n—1}. Then
we consider y;,y2 € Ra(X), and the children defined as

Case I: y; < y»

Ap={we A: X[p)(w) <wn} (4.2.2)
Ar={we A ya < X[b)(w)} (4.2.3)
Ar={we Ay < X[P)(w) <y} (4.24)
Case II: y; > yo
Ao={we A: X[](w) < y2} (4.2.5)
A= {we Ay < XP)(w)} (4.2.6)
As={we A:y, < X[V])(w) < 1} (4.2.7)

There are several cases that are potentially confusing, it is crucial to keep the following
key ideas in mind in order to resolve some special cases. Recall that the sets {w :
X[< 1} {w: X[t'] > y2} can not have probability equal to 0 (i.e. w1 > 0 and
up > 0, in particular they are not empty.) In the present discrete setting this means
that we will require

To <Y <Y <Th1 and 7To<Ya <y <Tpo (4.2.8)

Figure. 4.9 shows these constraints and the associated partition, defining the two
subsets as {w : X[t'] < »1} {w : X[¥'] > y2} in case a) for a given y1,y2 € Ra(X)
where y; < y» there is no intersection between both then clearly it is possible to define
three non empty sets Ag, A1, A2. Case b) y; > y» means that there is an intersection
between them and also the intersection defines three subsets, also it is interesting to
stress case c) that is equivalent to the Haar case where Ay = () due to there is no
values in R4(X) that could satisfy the constraints.

52

) Y1 Y> T
a) [) (:’1 Y15Y,
Ay A A
2 1
0 Y2 Y1 r
b) C n'd NC . Y1>Ys
- A AR A
rO YZ yl rn
C a.C . Y1>Y2
¢ b A T
0 M T 1

Figure 4.6: Boundaries constraints a) Case I, b) Case II, c) Haar Case

4.2.2 Inner Supremum: Best Split Algorithm

The bestSplit for the MD case calculates the best partition of a vector random
variable X in an atom A € A for a given I/, by maximizing the inner product [X, 4],
but now the number of children could be more than two, recall that we require the
number of children to be greater than one, otherwise there is no split. Then the
bestSplit should return the best inner product and the best partition, but in order
to calculate the children, the values y; and y, are also needed.

The following picture shows the flow of this function. and the pseudo-code for the

X[b'], A 9., b, s,
LY bestSplit [——d Y2

Figure 4.7: Flow chart Bathtub algorithm

bestSplit algorithm in the MD case

Function bestSplit(X[b’])

Calc_CDF(X[b’]) : //Calculate the cumulative

Calc_Exp(X[b’]) //Calculate the expectation

For each ri in {r0,..,rn-2} //Covering the range of x[b’]
u2=1-CDF (ri) //Calculate ul

I2=E(rn-1)-E(ri) //Calculate the expectation for the last term
For each rj in {ril,..,rn-1} //Covering the range of x[b’]
ul=CDF(rj) //Calculate ul
I1=E(rj) //Calculate the expectation for the last term
Calc_Lambda(ul, u2 , I1, I2) //Calculate the value of lambda
If (lambda>lambda_max) //Find the maximum value of lambda

53

lambda_max=lambda //Store the maximum value of lambda, yl, y2
yl=ri
y2=rj
End If
End For
End For
Return(yl,y2 , lambda_max) //Return y1,y2 and lambda maxima
End Function

From the pseudo-code it is possible to see that the algorithm’s order is O(n?)
where n is the number of different values taken by X [b'] explained at (4.1.17).

4.2.3 Outer Supremum: b’ Optimization Algorithm

Practically, this algorithm is the same as the Haar version, the only difference remains
in the values that algorithm returns, now as there exist two different values used to
split the range, the best split returns both.

Function bestVectorSplit(X, A)// X: input vector, A: current atom

lambda_max = 0 // max inner product set to O
While(condition) // loop on b’
b’= Create() // propose a b’
X[b’] = CreateLC(X,b’) // construct the linear combination
lambda = bestSplit(X[b’]) // find the bestSplit on A of X[b’]
If (lambda>lambda_max) // evaluate the maximum
lambda_max = lambda // actualize the maximum
End If
Evaluate(condition) // evaluate the stop criteria
End While

Return(yl,y2, lambda_max, bp_max) //Return y1, y2, lambda and b’ maxima
End Function

The algorithm returns the best 91, §iz2,the best) and the best b

Again from the pseudo-code is possible to see that the order of the algorithm to
calculate sup [X,v4] in the MD case is O(k n®) where k is the total number of

. $a€Ca
iterations, and n was explained at (4.1.17).

54

4.2.4 General Algorithm Description |

The difference between this case and the Haar case resides in the tree structure, in
the MD case the number of children could be greater than 2. Then it is a 3-ary tree.

CASANATAVAY, www

Figure 4.8: MD Tree Description

Figure 4.11 shows the tree generated by the algorithm in three steps, and it shows
the node structure composed by the inner product A, the partition Ay, A; and A,
the ¥'.

The first step consists in applying bestVectorSplit to the vector X on the entire
partition {2 and storing the best parameters in a node called root in both Q4 and the
tree 7, this procedure is called initializeVGS, Figure.4.5a shows the flowchart of
this procedure. Then as there is only one node corresponding to the entire partition
in Q4, this node is selected and the bestVectorSplit is applied over the children Ay,
A; and A,, and the first node is removed from Q4 , then two new nodes are created
and stored in the queue and in the tree, now the difference between this algorithm
and the Haar version, if A, # () another node is created an inserted in both the queue
and the tree. The algorithm now selects the node in Q4 with greatest inner product
and again applies bestVectorSplit over its children, removes this node from the
queue and inserts its children; it continues recursively iterating until some criteria is
reached or until there are no atoms left. This iterative process is called iterateVGS
and Figure 4.5b graphically shows this process. When the iterateVGS finishes the
full tree 7T is obtained.

55

and the pseudo code for the iterateVGS procedure in the MD case is described

Function iterateVGS(X) // X: input vector
While(!emptyQueue){
// the best split of X in the children AO of A
lambda_max,r_max, bp_max = bestVectorSplit (X,v->A0)
v0 = createNode (lambda_max,yl,y2, bp_max) :
insertNode (v0) //insert node vO into the queue and the tree
// the best split of X in the children Al of A
lambda_max,r_max, bp_max = bestVectorSplit(X,v->A1)
vl = createNode(lambda_max,yl,y2, bp_max)

insertNode(v1) //insert node vl into the queue and the tree
If (1v->A2=0)
v2 = createNode(lambda_max,yl,y2, bp_max)
insertNode (v2) //insert node vl into the queue and the tree
End If
removeFather (4) //remove father A only from the queue
End While

End Function

Analyzing the pseudo-code of the procedure iterateVGS is possible to see that
the order of the algorithm to obtain the full tree is given by

O(N, k n?) (4.2.9)

where N, is obtained in (4.1.19), k is the total number of iterations done by the
procedure bestVectorSplit, and n was explained at (4.1.17).

56

4.3 Full Bathtub Case

4.3.1 Discrete Full Bathtub

This case, introduced in Section 3.4 requires that ¢3 = 14 — 1 and uses the Bathtub
principle without any constraint. Assume that the range of an scalar input X is

Ra(X) = {ro,...,rn—1}. Then we consider y;,y, € Ra(X), and the children defined
as

Case L: y; < 9o

Ap={we A: X[t](w) <y} (4.3.1)

Ai={we Ay < X[t|(w)} (4.3.2)

Ar={weA:y < X[)(w) <o} (4.3.3)

Case II: y; >y ‘
Av={we A: X[V]|(w) < y2} (4.3.4)

Ai={wed:y < X[P)(w)} (4.3.5)

Ar={we Ay, < X[V](w) <1} (4.3.6)

There are several cases that are potentially confusing, it is crucial to keep the following
key ideas in mind in order to resolve some special cases. Recall that the sets {w :
X[b'] < 1} {w : X[t'] > y2} can not have probability equal to 0 (i.e. u; > 0 and
ug > 0, in particular they are not empty.) In the present discrete setting this means
that we will require

o<y Sy2<mp1 and 1oLy <y STy (4.3.7)

Figure. 4.9 shows these constraints and the associated partition, defining the two
subsets as {w : X[t'] < y1} {w : X[t'] > yo} in case a) for a given y;,y2 € Ra(X)
where y; <y there is no intersection between both then clearly it is possible to define
three non empty sets Ag, A1, A2. Case b) y; > y, means that there is an intersection
between them and also the intersection defines three subsets, also it is interesting to
stress case c) that is equivalent to the Haar case where A, = @) due to there is no
values in R4(X) that could satisfy the constraints.

4.3.2 Inner Supremum: Best Split Algorithm

The bestSplit for the MD case calculates the best partition of a vector random
variable X in an atom A € A for a given b’, by maximizing the inner product [X, 4],

57

o Y1 2 Tha
a) {_‘) (1. Y15Y2
A A, A,

o YY1 T
9 E 1r 1 Vi>Y
| A J A
0 e N1 1

Figure 4.9: Boundaries constraints a) Case I, b) Case II, c) Haar Case

but now the number of children could be more than two, recall that we require the
number of children to be greater than one, otherwise there is no split. Then the
bestSplit should return the best inner product and the best partition, but in order
to calculate the children, the values y; and y» are also needed.

The following picture shows the flow of this function. and the pseudo-cbde for the

X[b'], A . 2,0, yq,
LALY bestSplit 2 2 Yo Vo

Figure 4.10: Flow chart Bathtub algorithm

bestSplit algorithm in the MD case

Function bestSplit(X[b’]) :
Calc_CDF(X[b’]) //Calculate the cumulative

Calc_Exp(X[b’]) //Calculate the expectation
For each ri in {r0,..,rn-2} //Covering the range of x[b’]
u2=1-CDF (ri) //Calculate ul
I2=E(rn-1)-E(ri) //Calculate the expectation for the last term
For each rj in {rl,..,rn-1} //Covering the range of x[b’]
u1=CDF (rj) : //Calculate ul
I1=E(rj) //Calculate the expectation for the last term
Calc_Lambda(ul, u2 , I1, I2) //Calculate the value of lambda
If (lambda>lambda_max) //Find the maximum value of lambda
lambda_max=1lambda //Store the maximum value of lambda, yi1, y2
yl=ri
y2=r]j
End If
End For

58

End For

Return(yl,y2 , lambda_max) //Return yl,y2 and lambda maxima
End Function

From the pseudo-code is possible to see that the algorithm’s order is O(n2?) where
n is the number of different values taken by X [b'] explained at (4.1.17).

4.3.3 Outer Supremum: b’ Optimization Algorithm

Practically, this algorithm is the same as the Haar version, the only difference remains
in the values that algorithm returns, now as there exist two different values used to
split the range, the best split returns both.

Function bestVectorSplit(X, A)// X: input vector, A: current atom

lambda_max = 0 // max inner product set to 0
While(condition) // loop on b’
b’= Create() // propose a b’

X[b’] = CreateLC(X,b’) // construct the linear combination
lambda = bestSplit(X[b’]) // find the bestSplit on A of X[b’]

If (lambda>lambda_max) // evaluate the maximum
lambda_max = lambda // actualize the maximum
bp_max=b’

End If

Evaluate(condition) // evaluate the stop criteria

End While

Return(yl,y2, lambda_max, bp_max) //Return yi1, y2, lambda and b’ maxima
End Function

The algorithm returns the best g, §2,the best X and the best ¥'.

From the pseudo-code is possible to see that the order of the algorithm to calculate

sup [X,14] in the MD case is O(k n?) where k is the total number of iterations,
Ya€Ca
and n was explained at (4.1.17).

4.3.4 General Algorithm Description

The difference between this case and the Haar case resides in the tree structure, in
the MD case the number of children could be greater than 2. Then it is a 3-ary tree.

59

Aoo» 7‘V7 b' Aop A Aoz» ?", b‘ Azm 7% b, Azp 7"3 b’

SAIUNATSATRNATAVATY

Figure 4.11: MD Tree Description

Figure 4.11 shows the tree generated by the algorithm in three steps, and it shows
the node structure composed by the inner product A, the partition Ay, A; and Ag,
the b'.

The first step consists in applying bestVectorSplit to the vector X on the entire
partition © and storing the best parameters in a node called root in both Qp and the
tree 7, this procedure is called initializeVGS, Figure.4.5a shows the flowchart of
this procedure. Then as there is only one node corresponding to the entire partition £2
in Q,, this node is selected and the bestVectorSplit is applied over the children Ay,
A; and A,, and the first node is removed from Q4 , then two new nodes are created
and stored in the queue and in the tree, now the difference between this algorithm
and the Haar version, if A, # () another node is created an inserted in both the queue
and the tree. The algorithm now selects the node in Q4 with greatest inner product
and again applies bestVectorSplit over its children, removes this node from the
queue and inserts its children; it continues recursively iterating until some criteria is
reached or until there are no atoms left. This iterative process is called iterateVGS
and Figure 4.5b graphically shows this process. When the iterateVGS finishes the
full tree 7 is obtained.

and the pseudo code for the iterateVGS procedure in the MD case is described
Function iterateVGS (X) // X: input vector

60

While(!emptyQueue){
// the best split of X in the children AO of A
lambda_max,r_max, bp_max = bestVectorSplit (X,v->A0)
v0 = createNode(lambda_max,yl,y2, bp_max)
insertNode (v0) //insert node vO into the queue and the tree
// the best split of X in the children Al of A
lambda_max,r_max, bp_max = bestVectorSplit(X,v->A1)
vl = createNode(lambda_max,yl,y2, bp_max)

insertNode(v1) //insert node vl into the queue and the tree
If (1v->A2=0)
v2 = createNode (lambda_max,yl,y2, bp_max)
insertNode (v2) //insert node vl into the queue and the tree
End If
removeFather (A) //remove father A only from the queue
End While

End Function

Analyzing the pseudo-code of the procedure iterateVGS is possible to see that
the order of the algorithm to obtain the full tree is given by

O(N, k n?) (4.3.8)

where N, is obtained in (4.1.19), k is the total number of iterations done by the
procedure bestVectorSplit, and n was explained at (4.1.17).

61

— e —

4.4 Optimization Techniques

As we have introduced in (3.3.13) we need to find the best b’ in the d-dimensional
sphere (3.1.6). In order to solve the outer supremum problem we propose four different
algorithms.

1. Random Optimization, the initial reason of this method was to find the range
of values taken by the cost function. But finally this method worked as well as
the others.

2. Quadratic Optimization, using a fixed perturbation on each direction.
3. Standard Simulated Annealing Optimization was implemented.

4. Tterative optimization for b'.

4.4.1 Random Optimization Technique

This algorithm generates random vectors in the unit d-dimensional sphere, by using

normal random variables in each direction and normalizing the vector, as we can see in

equation (4.4.1) where N; are random values with normal distribution (1 = 0,0 = 1).
, 1

V¥ = ——— (N1, No, .., Ng) (4.4.1)

VY N?

The algorithm iterates a number of times and each time we evaluate the cost
function and we take the value if it is greater than the maximum. Here is the pseudo
code:

Function bestVectorSplit(X, A, NI)// X: input vector, A: current atom
// NI: Iterations

lambda_max = 0 // max inner product set to O
For k = 0 To NI // loop on b’
b’ = uniform_rd() : // propose a b’
X[b’] = CreateLC(X,b’) // construct the linear combination
lambda = bestSplit(X[b’]) // find the bestSplit on A of X[b’]
If (lambda>lambda_max) // evaluate the maximum
lambda_max = lambda // actualize the maximum
bp_max=b’
End If
End For

62

Return(yl,y2, lambda_max, bp_max) //Return yl, y2, lambda and b’ maxima
End Function

4.4.2 Quadratic Optimization Technique

This algorithm uses a quadratic approximation of the cost function in order to maxi-
mize the outer supremum of the inner product. We use b’ = (1,0,0,0) as initial guess
and fixing the all components except the first we can write the following

21 = F(z1) = azi + bz, + ¢

zp=F(z2) = azi +bry +c
23 = F(z3) = az3 + bzs + ¢

and
z = b —«
T = bll
T3 = b+

where b} is the first scalar component of ¥’ and « is a fix constant perturbation.
We can find a, b, ¢ solving the equation system. Once we have calculated a,b we can

compute the optimum z* = —2_:; and z* = F'(z*) then using these values we continue
with the next component by,.

The pseudo code for this method is described below:

Function bestVectorSplit(X, A, NI, alpha)// X: input vector, A: current atom
// NI: Iterations, alpha: perturbation
lambda_max = 0 // max inner product set to 0
b’=(1,0,0,0,...)
For j =0 To NI
For i = 0 To d

x1 = b’[i] - alpha //perturbations on b’

x2 = b’ [i]

x3 = b’ [i] + alpha

X[xi] = CreateLC(X,xi) // construct the linear combinations
z1 = bestSplit(X[x1])

z2 = bestSplit(X[x2])

z3 = bestSplit(X[x3])

Find(A, B, C) //solve the linear equations

63

xopt = - B / (2xA)
X[xopt] = CreateLC(X,xopt) // construct the linear combination
zopt = bestSplit(X[xoptl) :
if zopt < z1 then zopt=zl and xopt=x1
if zopt < z2 then zopt=z2 and xopt=x2
if zopt < z3 then zopt=z3 and xopt=x3
b’ [i]= xopt
if zopt>lmax)
lambda_max=zopt;
bp_max=b’
End
End
End

Where the input parameters are X the input vector, A the actual atom, NI the
number of iterations and o a constant perturbation . Recall that d is the number of
inputs.

4.4.3 Simulated Annealing Optimization Technique

The Simulated Annealing Technique [15] was implemented as an alternative method
to find the maximum value of the outer supremum of the inner product. The pseudo
code is shown below. Notice that, as in any heuristic algorithm we keep track of
the best solution obtained by the algorithm so far. Although it is computationally
intensive for some parameters, the results are better than the results obtained by the
- previous methods, also with less number of iterations.

Function bestVectorSplit(X, A, NI)// X: input vector, A: current atom
// NI: Iterations
lambda_max = 0 // max inner product set to O
b’=(1,0,0,0,...)
X[b’] = CreateLC(X,b’) // construct the linear combination
lambda = bestSplit(X[b’])
e=1/ (1+ lambda)
k=0
While(k < NI and e > emax)
b’0 = neighbor(b’) //find a neighbor
X[b’0] = CreateLC(X,b’0) '// construct the linear combination
lambda = bestSplit(X[b’0])
en =1/ (1 + lambda)

64

If (lambda > lambda_max) //tracking of the maximum value
lambda_max = lambda
bpmax = b’0

End

T=temp (k/NI) //compute the temperature for a given time ratio

If (random() < exp((e - en)/T)) or en < e) //aceptance probability
b’ = b’0
e = en;

End

k=k+1;

End

The function Neighbor (b’) finds a neighbor for a given b’ and temp(k/NI) com-
putes the temperature for a given fraction of the time that has been expended.

4.4.4 Iterative optimization for b’

Introduced in (3.3.1) the optimum value of &’ that maximizes [X,] for a given func-
tions ¢; is described in equation (3.3.14). The key idea is to iteratively compute the
best b’ and then, based on the result, to calculate the optimal ¢; until some criteria
is reached. Figure 4.12 shows a flowchart of this procedure.

a

Initialize Calculate Calculate

b’ @, b’

Figure 4.12: Local maximum iterative optimization

We have experimentally verified that this optimization gives rise to a local maximum,
and the inner product is always increasing while moving towards this local maximum.
Also we have checked that the average number of iterations needed for the inner
products to stabilize is three iterations and the maximum number of iterations is less
than 20.

Taking advantage of this local optimization, it is possible to address the global op-
timization problem by using it jointly with any of the previously defined techniques.
Actually we are using the random technique presented in Section 4.4.1 but we under-
stand that using Simulated Annealing could be a great improvement for the quality
of the maximum. The pseudo code is shown below:

65

Function bestVectorSplit(X, A, NI)// X: input vector, A: current atom

lambda_max = 0
lambda_local=0
For k = 0 To NI
b’ = uniform_rd()
X[b’] = CreateLC(X,b’)
lambda = bestSplit(X[b’])
If (lambda>lambda_max)
lambda_max = lambda
bp_max=b’
End If
If (lambda>lambda_local)
lambda_local=lambda
bestBp(Ai)
Else
lambda_loca=0
b’ = uniform_rd()
End
End For

// NI: Iterations

// max inner product set to O

// local maximum set to O

// loop on b’

// propose a b’

// construct the linear combination
// find the bestSplit on A of X[b’]
// evaluate the maximum

// keep track of the maximum

// evaluate the local maximum

//Ai obtained from bestSplit

// propose a new b’

Return(yl,y2, lambda_max, bp_max) //Return y1, y2, lambda and b’ maxima

End Function

This method is the best, comparing quality and speed, with respect to the others.
For a review of the performance of the algorithm see Section 7.1.5.

66

Chapter 5

Application to Image Compression

Up to the present Chapter we have analyzed the VGS algorithm from different points
of view: mathematical, discrete representation and software implementation. We will
now describe the VGS algorithm for a specific application, the VGS algorithm will
be used to perform image compression.

An important property of most images is that there exist a spatial correlation among
nearby pixels. From the Human Visual System (HSV) there is some irrelevant infor-
mation related to the high frequencies or to the color response that can be removed
or reduced such that a person may not notice the difference.

There is also another important correlation, the temporal correlation that occurs
between two consecutive frames in a video sequence, in order to be a continuous
smooth video the number of frames per second should be high enough to capture
most of the events in typical recording situations. Therefore the difference between
two consecutive frames will be practically negligible.

A typical encoder is composed of an encoding transform, a quantization block and
an entropy encoding block as is shown in Figure 5.1

The redundancy correlation corresponding to the spatial and temporal correlations,
in some algorithms, can be performed by the encoder transform, therefore it could
appear before the quantization block. The role of the encoder function is to transform
the information into a space where the information could be better classified from
the relevant point of view. The quantizer reduces the number of bits needed to
encode the transformed coefficients, it can be applied to each single coefficient (scalar
quantization) or on a group (vector quantization). Finally the entropy encoder block
encodes the quantized coefficients using Huffman [10] or arithmetic code. The decoder
performs the same operations as the encoder but in reverse order.

Assuming that we have applied the VGS algorithm using a specific input vector,

67

Encoder Quantization
Transform
Uncompressed
Image
Redundancy
Correlation —
Enbrooy Compressed
Encoder e i

Figure 5.1: Typical lossy encoder

a full tree 7 and the associated partition II7(2) are obtained. Denoting with x
the vector approximation to X given by this deep VGS tree, we have [[X — X || =

\/ (X — ik A A] = 0. The next step is to perform a transform compression, this
involves pruning the tree nodes until some stopping criteria is reached. To perform
this task several different approaches could be used.

There are two different approaches to pruning used in this thesis. On the one hand,
for a fixed vector error level €y, we can approximate X up to the error ey. This
approximation is a vector approximation as it uses the norm in the space L?(Q,RY).
If X, denotes the approximation obtained pruning the full tree, we then will have
[|X — X,|| < ey, this vector approximation will provide a certain error level for the
components i.e. || X[i] — X,[i]|| (notice that, in this second instance || || denotes the
norm in L2(2,R)) . On the other hand, for a fixed scalar error level €g, it is possible
to generate scalar approximations X, [i], where now n = n(i, €5), for each component
X[i] in such a way that || X[i] — X,[i]|| < es for each i =1,...,d.

These two different points of view will be called the Vector approzimation and the
Scalar approzimation, they are explained with some detail in Section 3.8. To sum-
marize:

Vector approzimation: this approach uses the largest inner products [X,). It
does include as many of them k = 0,...,n — 1 as is necessary to obtain the desired
error level || X — SSRo[X, px) pel] < ev

Scalar approzimation: this approach uses the largest scalar inner products [X[i], ¥a,sh,
wherei = 1,...,d, Aranges over all the nodes in the tree and the subscript S indicates
that we are dealing with a scalar VGS function. All these numbers [X[i],¥a,s)1 are
sorted and the largest are kept until the criteria || X[i] — Z(zi())_l[X[i], ¥a,.s1 Yagsll <
€s are satisfied for all i = 1,...,d.

68

Once the pruning has been done we can keep the relevant information at each node.
There also exists another approach described in Section 5.9. It is based on the leaves
information and it is called Leaves average approrimation, this approach uses the
information on the leaves after the tree has been pruned.

In order to describe these methods we will need at some point a measure of quality
and some criteria to define a cost associated to the bits used to encode the images.
We will start defining some common aspect related to the information needed by the
decoder to reconstruct the approximation to a given set of images.

Partition Map

As we have indicated previously, the partition constructed by VGS is data dependent
and it needs to be encoded entirely. This information is called the “Partition Map”
(PM). The partition map is described in Section 5.2.

Significance Map

The tree structure required to reconstruct the input vector is called the “Significance
Map” (SM), it contains the information on the number of children and depending on
the method selected also contains the vector inner product, the scalar inner products
or the average values. We will analyze this map in Section 5.3.

Quantization Map

The inner products stored or the average values in each tree node should be quantized
in order to reduce the number of bits needed to store them. This information is called
the “Quantization Map” and is described in Section 5.4.

69

5.1 Notation and Definitions

In chapter 3 we have introduced the notation £ as the sample space associated to the
probability space (2, .4, P) and we have assumed that P is uniform on A, and we set
A=P(Q).

Definition 6. An “Image” is defined as a function I : Q@ — N such that I(z,y) =v
and v € IN where

Q=UxV, where U=1{0,...,N=1} and V ={0,...,M—1} N,MeN (5.1.1)

Practically the VGS algorithm has no restriction on the size of the images, but for
simplicity we will consider N = M. Also, we will just consider with 256-gray scale
images with 8 bits/pixel.

Let us consider a vector valued random variable X : Q — IN¢ where X[i] (the i-th
scalar component of X) is an image. Notice that all input images share the same
domain (Q, in particular all images have the same size.

Recall that the VGS algorithm has no restriction about the geometry of the input
vector, in particular the algorithm can be applied to images by using the following
transformation

H (u) = I(z,y) where u=z+N [i (5.1.2)

v)

where [] is the integer part function, and H : W — N and W = {0,..., M X N -1}
The inverse is also possible '

I(x,y) = H(u) where y= [%] —1 and z=u mod (N +1) (5.1.3)

The Greek letter A will be used throughout this Chapter to denote i 1nner products.
Depending on the context, these inner products will be of the form [X, Pt N]or (X, 1/)(1)]

or [X[q], 1/),%0,1]1 or [XTi], 1/1(1,)3]1. Variations on this type of notation, mainly used in the
diagrams, should be self explanatory.

70

5.2 Partition Map (M)

Definition 7. A function My : Q@ — N is called a “Partition Map” if satisfies
Mr[(w) =v VwEA, Ai€ H(Q) and k=1,...,n (5.2.1)

and

if k#j = vy (5.2.2)
where v € N, Il = II(Q) is a finite partition of Q and n = |I[I(Q)| is the number of
elements in the partition. Also Q = U Ag

i=1

The Partition Map is created using the tree T after compressTree is applied, as
follows: if a node is included then the atom associated with this node should be split
in two or more children, otherwise it remains without change. To illustrate see Figure
5.2, it is a full tree obtained after three iterations, the partition associated to the full
tree is shown in Figure 5.3a), but if we only select a few nodes, in this case {1,3,6}

Figure 5.2: Full tree with selected nodes

the resulting partition is shown in Figure 5.3b).

71

a)

A 8
) 2 R EYAN 13
5 12
3 11 15
7 14
b)
. 1 1] 1 13
12
3
3 3

Figure 5.3: a) Partition using the full tree, b) Partition using the compressed tree

Notice that although nodes 12 and 13 are not included in the tree, they are the split
of atom A in Ajgo and A;g; where the input signals are constant, this is the reason of
why we take those atoms in consideration when we construct the common partition.
Also notice that node 2 is not included in the selection then node 1 is not split in this
region, unless a descendant of node 2 were included.

Remark 20. The partition map share the same domain as the input images, and
the mazimum number of atoms is equal to the number of pizels. Then if images has
256 x 256 = 65536 pizels the mazimum size of the partition map is 65536 values,
but now the range of this values is not anymore [0,255], it is [0,65535] therefore the
mazimum number of bits (without compression) is 16 bits twice the number of bits
needed to encode 256 values. Therefore, the mazimum number of bits to store the
partition map, (for a given set of images) is bounded from above by the bit cost of
encoding two images. :

Next we will describe the pseudo code for the partitionMap procedure, which is a
recursive function that visits nodes using the preorder traversal method. It starts with
Mnp(w) =0 YV w € Q, TreeNode is initialized to the root node of 7 and iNode=1.

Procedure partitionMap(PM, TreeNode, iNode)
IF(TreeNode->Selected)
For w In TreeNode->A
PM(w) = iNode

72

End For
End If
partitionMap(PM, TreeNode->A0, iNode+1)
partitionMap(PM, TreeNode->Al, iNode+2)
End Procedure

5.2.1 Reordering Partition Values

The partition map could be interpreted as an image even though the values assigned
to the atoms are not related. Technically, it is not an image because the values in
the range of the partition map could be greater than 256. Although it seems to be
difficult to reduce the number of values without losing information, there exists the
possibility to reorder the values of the atoms in the partition map in such a way that
if the distance between two different atoms is small then its corresponding values
should be near too; then we need to find a way to measure a distance between atoms.
There are different methods to carry out this task. The following is one such method:

For a given atom A € II(Q) we compute the average of the input set in this atom

Ve =+ l 7 Z > Xlil(w), (5.2.3)

1=0 w€Ax

now using Vj is possible to reorder the values associated to each A;. Defining the
sorted set

{Vhys Vhgs+ -y Va,} suchthat Vi, <V, <--- <V, (5.2.4)
where n the number of elements in II(Q2), then
Mn(w)=k Vwed,, k=1,...,n (5.2.5)

Figure 5.4a) shows a set of two images of 128x128 pixels, Barbara and Lena, where
the VGS algorithm was applied, and the reorder of the resulting partition is shown
in Figure 5.4b), of course the number of atoms in the partition was equal to 256.

5.2.2 Entropy encoding

A first approach to compress the partition map is using lossless methods like Huffman
or arithmetic code directly without taking into account any geometric relationship.

We will call “symbol” to the value assigned to each atom in II(2). Then the average
number of bits needed to encode each symbol is given by

n
A;
Hupy = "Z p; log, p; where p; = ITﬁil (5.2.6)

=0

73

Figure 5.4: a) Barbara & Lena, b) Reordered Partition Map

and N, = |Q]| is the number of pixels in Q and then p; becomes the relative frequency
of each symbol.

The theoretical cost associated to the partition is given by -

CMn = HMn X Ns (5.2.7)

Using the previous example shown in Figure 5.4 and an approximation with a PSNR
= 38.38 db and using the reorder of the partition, the relative frequency of the symbols
is shown in Figure 5.5, where Hy, = 7.83 bpp and Caq, = 16384 x 7.83 = 128439.67
bits, approximately 97.99% of the maximum when Hq, = log, 256 = 8.

The previous result shows that there is no compression at all, and it becomes obvious
when we check in Figure 5.5 that the relative frequency of the symbols is quasi
uniform.

5.2.3 Spatial correlation
There are several approaches to take advantage of any spatial correlation; we have
found that one of the best techniques is the following:

We suppose that there is a spatial correlation between pixels by assuming that one
column is similar to the next, if w = (z,y) then

Mn(z + 1,y) — Mn(z,y) ~ 0, (5.2.8)

the relation between lines is also true. Then, it is advantageous to store the difference
of the columns instead of the original values.

Going back to the same example as before, shown in Figure 5.4, but now considering

74

rehtive frquency

relative frquency

0.012

0.01

0.008

0.006 -

0.004

0.002

018

0.16

0.14

0.12

01

0.08

0.06

0.04

0.02

0 50 100 150 200 250
symbols
Figure 5.5: Relative frequency
-207 125 75 -25 25 75 125 204
symbols

Figure 5.6: Relative frequency

75

using spatial correlation

the differences. The relative frequency of the symbols is shown in Figure 5.6, where
it is possible to appreciate that most of the symbols are equal to zero.

The results now are better than before, Hpg, = 6.8 bpp and Cay, = 16384 x 6.8 =
111423.84 bits, approximately 85.03% of the maximum when H, = log, 256 = 8§, it
means a 15% of compression.

Although it seems to be not a good compression rate, we have to take in consideration
that it is lossless compression, and also if you apply the JPG2000 to the partition
image, with a PSNR = 45 db, the size will be approximately equal to the 60% of the
image. Therefore the lossless compression using differences seems to work well.

There exists also the possibility to apply a lossy compression algorithm to the par-
tition, but the results showed that the algorithm is very sensible to a change in the
partition values. Therefore because the distortion has to be very small, the compres-.
sion rate for a lossy method is practically the same as the lossless method.

76

5.3 Significance Map (M)

For a given tree, as in Figure 5.7, we assume in general that we have a function called
compressTree that selects a number of nodes based on some criteria, a typical result
is shown in Figure 5.8.

Figure 5.8: Compressed tree

The scalar approximation and the vector approximation need a tree for the recon-
struction.

The significance map stores the tree information and each node contains the infor-
mation associated to the approximation on each atom, e.g. inner products, ¥'.

Notice that the significance map also needs to include links from nodes to the partition
encoded by the partition map. This is the main difference with other methods that
use trees to encode inner products. This case is much more difficult due to the fact
that the encoder should encode the inner products and the links to the atoms at the
same time.

As we can see in Figure 5.8, if a node is selected we do not require the ancestors to
be included. Most approaches at this point [1], [19] , assume that in sparse isotropic

7

wavelet representation, with high probability a significance node does not have any
significance children nodes, using the zero-trees proposed by [22]. Of course we agree
with the previous statement, but in our vector case the extension of that proposition
is not clear and also the problem to include a node and not its ancestors can be solved
without including much more extra information or introducing any extra computa-
tional cost. Due to the complexity of the algorithm, we will describe it by means of
an example.

We propose three different types of symbols to encode the tree, and they will be
used to create a string of symbols (this string will be called the significant string and
denoted with S). These symbols are:

e Q : Active node

e V : Link to the partition

e D : Dummy node
We start visiting tree nodes using a preorder traversal method.
1. Node 1 is visited an as it is selected we label it with a “Q” and 2 because of its

2 children.

2. Node 2 is visited, it is not selected and it can not cover the right branch, leaded
by node 5, then we label it with a “V”, also with 2 children.

3. Node 4 is visited and labeled with a “Q”, because it is a selected node with 2
children.

4. Node 8 is visited, neither it is selected nor its descendant, the we introduce a
“V” and we stop descending.

5. Node 9 is visited and and labeled with a “Q”, because it is a selected node with
2 children.

6. Node 18 is visited and labeled with a “V”.

7. Node 19 is visited and labeled with a “Q”, because it is a selected node with 2
children, and as there is no children two extra symbols “V” are included. This
node could be see as a terminator symbol.

The algorithm continues until the following string is constructed

Figure 5.9 shows the encoded string and Figure 5.10 shows the decoded tree that is
equivalent for reconstruction to the original tree. The number of symbols proposed

78

afv

alv

QZlVlV afv|v|o alv|v]e

@|v]|v

4

9

19 23 3 6 7

Figure 5.9: Encoded string

Figure 5.10: Equivalent decoded tree

79

15

is three, but if we associate the number of children to the symbol we can check
that the sequence of symbols “{Q2, V, V}” has a high probability then we can
introduce another new symbol called Q2VV, this is the analogous of the zero tree
symbol introduced in [22]. Also we can go one step further and check the histogram
of the symbols to find the best number of symbols needed to encode the string.

5.3.1 Entropy encoding

Recall that the total number of different symbols (for our present model) that could be
included in the encoded string are given in the following list: {Q2,Q3,V,V2,V3, D2, D3}
and also we suggest the possibility to add the Q2VV and Q3VVV as symbols with
high probablhty

Definition 8. A function Mg :S — Z is called a “Significance Map”

and
Si={s€S: Ms(s)=k and ke Z} (5.3.1)

also we define the symbol set Js

Ts=1{S. C §: 8 # 0} (5.3.2)

Using entropy encoding we find that

S
Hus=— Y pelogs pi where py = '-lsil' | (5.3.9)
Sk€Ts
where py, is the relative frequency of each symbol.

The theoretical cost associated to the significance map is given by

Cmg = Hptg % |S] (5.3.4)

For the example above using the encoded string in Figure 5.9,
S={Q2,V2,Q2,V,Q2,V,Q2VV,Q2VV,D2,Q2VV,Q2,Q2VV,Q2VV} (5.3.5)

The average number of bits Hag = 2.038 bits per symbol and the theoretical total
cost is equal to Cpg = 26.49 bits, using the standard coding without taking in
consideration the entropy, is equal to 30.18 bits it means that we have saved 12.3%.
In a real application the number of nodes in a compressed tree are near to 1000 then
the number of bits needed to store such a tree is close to 2000.

80

We remark that the cost associated to the significance map is, relatively speaking, the
lowest cost when compared with cost to encode the partition map or the quantization
map. In some instances the cost of the significance map does increase (as we elaborate
latter).

Remark 21. For some cases like the scalar Haar case approzimation, extra informa-
tion is needed, the symbol Q represents a link between the node and the information
needed for the reconstruction. We will describe this problem separately in Section

(5.5).

81

5.4 Quantization Map (My)

The quantization map stores the information (quantized) needed for the reconstruc-
tion in each node. Different cases need different information, the idea is to quantize
this information and then to use an entropy encoding algorithm to store it with
minimum number of bits.

We will describe the special Haar case using a scalar approximation to, exemplify,
but each case has its own quantization map and will be described in the corresponding
section.

Haar Case: scalar approximation

The information needed in this specific case at each node was introduced in Section
3.8.1 and it consists of the scalar inner products [X,1]; and the partition that is
encoded by the partition map. Therefore, the information to be encoded is composed
by d real numbers, where d is the number of input images. It could be encoded using
4 bytes for each component but the idea is to reduce the number of bits used to
encode this information.

We propose the following scheme in order to minimize the number of bits to be
encoded. As we are working with real numbers, it is not possible to use entropy

Entropy
Encoder

Quantization

Figure 5.11: Equivalent decoded tree

encoding without previously using a quantization method. The two techniques can
‘be combined and performed simultaneously as in the case of the arithmetic coding,
see [22], [21].

Let us call A = [X[i],%4,s)1 to the largest inner products kept after pruning a full
tree by means of the scalar approximation.

5.4.1 Quantization

We have verified that the best quantization technique for our algorithm is the uniform
quantization defined as follows

C

V() = [&-J xc and ¢>0 (5.4.1)

82

In a real application (from the video image set using a full tree) Ax € (0.0001, 200),
Figure 5.12 shows the values of A sorted by |Ax|

70

|

50

40

[FA]
30

20

10

i T
| -

> + + + + T
1 21 41 {23 81 101 121 141 151 181 201 221 241 261
components

0

Figure 5.12: Scalar inner products distribution

5.4.2 Entropy Encoding

As we have mentioned before in order to apply the entropy encoding we have to use
the quantization function defined in (5.4.1). Now defining

Q={V(\): X € Qn}, (5.4.2)
we can define the quantization map as follows

Definition 9. A function Mg : Q — Z is called o “Quantization Map”

Also we can define the set of al values of @ equal to &k as

Qr={9€Q: Mp(g) =k and ke Z} (5.4.3)
and then defining the symbol set as
Jo={QrCQ:Qx#0}, (5.4.4)
we can use entropy encoding to find the average bit per symbol
Hpyg =— Z pr log, pr where pp = @ (5.4.5)
QkxEJQ |Q| .

83

where py, is the relative frequency of each symbol in Jg. Then the theoretical total
cost associated with the quantization map can be computed as follows .

In order to illustrate the performance of our algorithm using a uniform quantiza-
tion, we compare the distortion produced using different values of ¢ and a full tree
taken from the video image set. Figure 5.13 shows and the relation PSNR and ¢, on
the video test set. The PSNR is calculated using the maximum number of components
different from zero.

S0
55 //’ —
50 : //
g, pd
4 . v
“ / /
N
30 L
4 8 16 32 64 128 256 512
C

Figure 5.13: PSNR vs. ¢, Minimum distortion

84

5.5 Haar Case: Scalar Approximation

In this section we will describe the cost, in term of bits, associated with the scalar
approximation for the Haar case. As we have seen before Section 3.8.1 the information
needed for the reconstruction in this special case is: the scalar inner products, the
partition and the tree.

Figure 5.14: Haar case tree for the scalar approximation

Figure 5.14 shows the information of each node, the compressTree algorithm
selects a node if at least one scalar product); is needed in the node. Such information
is needed for reconstruction. Therefore, it is crucial to store this information using
an efficient algorithm.

5.5.1 Indices information

The indexing information can be encoded using three different approaches. The first
approach uses d bits to encode whether a inner product is included or not. The
second approach uses an index header for each inner product included and the third
approach uses a special null character to identify when a scalar inner product is not
included. Figure 5.15 shows examples of these three approaches for a given sequence
of scalar inner products {1, A2, A3, Ay, As} where only {);, \4} are needed. Then for
a given node n the associated cost of each model is calculated as follows

e Case a)
Cr,=d+k Hpm, (5.5.1)

-85

ols|x|s|x]|s

Figure 5.15: a) Binary encode, b) Indexing encode, c) Special character

e Case b)
Cr, =k logyd+k Hp 5.5.2
Q

e Case c) We assume that the special null character has H, bits

Cr. =d Hpm, (5.5.3)

where d is, as usual, the number of inputs, H,, is the average bits per scalar inner
product, and % is the number inner products being used at node n. It is possible to
evaluate a priori which method is the best for each node and then adding two bits to
the header of the node so the decoder can use the correct method. Then

Cr=Y Ci, (5.5.4)

This data seems to be superfluous but in the following example we can see that plays
an important role, suppose Huq, = 4 bits, and a given input set with 16 elements,
using case b), the indices takes 4 bits that is the same as the information needed to
encode the inner products.

5.5.2 Total Cost for the Scalar Haar Approximation

The total cost Cr for this case is calculated as

Cr=Cpmy + Cmg + Cr (5.5.5)

Where Cyyy, is the cost associated with the partition, Cm;, is the cost associated
with the tree, and C; is the indexing cost. The cost associated with the quantized
coefficients Cry, (see section 5.4), is included in Cy. We will see several examples in
Chapter 7, related to the behavior of the algorithm and the theoretical number of
bits needed to store the approximation.

86

5.6 Haar Case: Vector Approximation

The vector approximation for the Haar case uses the best &' (see (3.3.1) and ()), the
vector inner product and the partition information to perform the approximation.
The best b’ is a vector defined by the following equation:

L [%) ealw) aP) - - [Xi(whpstw) ap(w)
A Uy Ja

R
\lkz; <uiz/AXk(w) po(w)dP(w) — Ul1/,4Xk(w) ‘Pl(w)dp(w)>2

where in this case ¢; = 14, (A1 = A\ Ao) and @2 = 14, and u; = P(Ap) and
ug = P(A;). Then

(5.6.1)

1 1
L / Xi(w) ¢r(w) dP(w) = ——— / Xi(w) dP(w) = Bay(X:), (5.6.2)
Uy Ja P(AO) Ao
which is the expected value of X relative to the atom Ag. Similarly,
1
- /A Xi(w) @a(w) dP(w) = Eq, (Xo). (5.6.3)

Therefore, the value of the best B: is given by the normalized difference of two expected
values E 4, (X;) — E4,(X;). In order to store the values of the best b}, we only need to
store the result of such difference because the normalization can be done a posteriori.
Now let us define

A; = Eg, (X;) — Ea(X5) (5.6.4)

then N
b= — (5.6.5)

A l > o [Ay?

5.6.1 Quantization Map for the Vector Haar Approximation

The quantization technique used for this special case is just the integer part of the
difference of the expected values defined before,

V(A) = |Ai+05] (5.6.6)

87

005

0045

004 k
0035 /v \ i
003 I “
0.025 : / \
, []

0015 \1
001)/ \\
- M Av "\M\v\w

-127 -52 -31 . -11 9 29 49 20
quantized expected difference

rehtive frquency

o
o
N
o™

Figure 5.16: Relative frequency of the quantized difference of the expected values

Figure 5.16 shows and example of the relative frequency of the quantized differences
A,;. The Faces set was used with a PSNR=40. As we have done previously in this
Chapter (see Section 5.4.2) the average bits per symbol is given by
_ | Qxl
Hpg = — Z pr. log, pr where py = T@-, (5.6.7)
Qr€JQ

where p, is the relative frequency of each symbol in Jq. Then the ‘theoretical total
cost associated with the quantization map can be computed as follows

Cmg = Hmo % |Q| (5.6.8)

5.6.2 Total Cost for the Vector Haar Approximation

The total cost Cr for this case is calculated as
Cr = Cmy + Cms + Cmyg, (5.6.9)

where C)ry; is the cost associated with the partition, Cy, is the cost associated with
the tree, Cu,, is the cost associated with the quantized coefficients. Examples of this

approximation method are provided in Chapter 7.

88

5.7 Martingales Difference (MD): Scalar Case Ap-
proximation

The MD scalar case approximation is similar to the Haar scalar case approximation,
but in this case there could exist two inner products in each node, corresponding to
¥© and @, also we need the information of the partition and the information of
whether y, > y; (see Section 3.6.3). Figure 5.17 shows the tree structure for this

bt ...
aatPat

o]

Figure 5.17: MD Tree for the scalar approximation

case, recall that there exist two sets of scalar inner products, {A?, A3, 23, A,...} and
{ML, A4, A8, AL, ... }, the encoding scheme is similar to the one we have seen in section
(5.5.1), but in the present case we need extra information to decide whether an inner
product belongs to the first set or to the second set.

5.7.1 Indices information

The indexing information for this case can be encoded using three different ap-
proaches. The first approach uses d bits to encode whether a inner product is included
or not for each set of inner products. The second approach uses an index header for
each inner product included, where the first header’s bit indicates the corresponding
set. And the third approach uses a special null character to identify when a scalar
inner product is not included. Figure 5.18 shows the different models for the sets

89

a)| 01100 |A0|n,°| 10101

b) [1100[x,1|0010{A;0{0011 [A,2[1011 [A;1| 1111 | A5

Figure 5.18: a)Binary encode b) Header encode c) Special null character

{29, 29, X2, A%, A2} and {A}, A, A}, A}, AL} where {A3, A3} and {A],A3, At} are needed
for the approximation, it is possible to evaluate a priori which model is the best, in
terms of the minimum number of bits, to store the inner products in each node.

Then for a given node n the associated cost of each model is calculated as follows

e Case a)
Cr, =2d+ (ko + k1) HMQ (5.7.1)

e Case b)
Cr, = (ko + k1) (logad + 1) + (ko + k1) Hag (5.7.2)

e Case c) We assume that the special null character has Ha, bits

Cr.=2d Humg (5.7.3)

where d is the number of inputs, ko and k; the number of inner products of each set
included in the representation, Haq, is the average numbers of bits needed to store
the inner products. Then

Cr=>Y (Cr.+1), (5.7.4)

recall that we add 1 bit to each node, this bit indicates whether y2 > y1.

5.7.2 Total Cost for the Scalar MD Approximation

The total cost Cr for this case is calculated as
Cr=Cmy + CMS + Cy (5.7.5)

90

Where C)yy, is the cost associated with the partition, Casg is the cost associated
with the tree, and Cj is the indexing cost. The cost associated with the quantized
coefficients Cuy,, (see section 5.4), is included in C7. We will see several examples in
Chapter 7, related to the behavior of the algorithm and the theoretical number of
bits needed to store the approximation. '

91

|

5.8 Full Bathtub Approximation

This particular case solved by the full bathtub algorithm also would need an extra
function 9@ en each node, to be convergent. The information required for this
case is the scalar inner products corresponding a each VGS functions, the partition
associated and the tree structure. Also we need the value of ¢ in order to calculate
the value of b. The cost associated with this particular case is similar to the cost

3,200 ...

Figure 5.19: Full Bathtub scalar approximation ’

obtained in the previous Section 5.7.1, the only difference is in equation (5.7.4) that

in this case is written as
Cr= z (Cr,. +6), (5.8.1)

n

recall that we add 6 bits to each node, this bits represent the ¢ value that is a real
number encoded quantized and encoded.

92

5.9 Leaves Average Approximation

For this specific approximation, we assume that the VGS algorithm was applied to
an input set and at some point a partition is obtained. Then for a given partition
II(Q2) we compute the integer part of the average of each input image over each atom.

Xy = IT}JT S X[i(w)| and A; € 1) (5.9.1)
wEA;
where \;; € Z. Now defining
A={)\; forall i=1,...,d and j=1,...,n} (5.9.2)
where n = |II(Q)| and d is the number of input images, then |[A| =n x d.
The approximation Xy is given by

Xr[(w) = ()\1]',)\2]', “en ,)\dj) YVwe AJ (593)

then we define the total cost associated to this approximation as the cost associated
to the partition, that is given, plus the cost Cj associated to encode A. Then

C'Tota.l = CMn + CA (59.4)

Now in order to encode A with minimum amount of bits, we apply the following
scheme, shown in Figure 5.20, that consist of two different parts:

Lo Frames Entropy I——
D ——
Quantization Correlation Encoder

Figure 5.20: Encoding Flowchart

Any of the blocks in Figure 5.20 could included or not,with different results.
We will start describing the last block because it is required in order to check the
performance of the previous blocks.

5.9.1 Entropy encoding

Let us define Ay, as the set of all values \;; equal to k
Ak = {/\ij € A . /\ij = k}, (595)

93

and also define the symbol set Ja
JIr={Ae CA: Ap #0} (5.9.6)

Using entropy encoding we find that

A
Hy=-— Z pr, log, pr where pp = [A] (5.9.7)

Ax€IA IAI .
where p, is the relative frequency of each symbol. Recall that [Sy| < n X d where d
is the number of input images.

The theoretical cost associated to the set of averages is given by
CA=HA XxnXxXd (598)

Using a set of four images formed by {Barbara, Lena, Boats, Peppers} see Chapter
7, of size 128 x 128 pixels, the VGS algorithm in a Haar mode was run until PSNR
= 40, and the partition obtained contains 6983 atoms.

Barbara

a0
(321
Fow
% 002
% o018
w1
°”’IWWVW A M{
LI 4 P + LN,
¥ * » % ”» 116
awerage cocdients
2
Boats
pote
aate P ,...W.m,
o814
i i
1 oo
. . mJN/
s 108 LR 3 348 68 ki) L] 2 40 0 t] 100 1@ M3 W I W0 Im
avesage coclnients vereqe coeficients

Figure 5.21: Relative frequency of the average coefficients for each input

Figure 5.21 shows the histograms of each input image, it is possible to appreciate that
there exists a slight common structure, that is shown in Figure 5.24. Notice that the

94

range of the images is given by [0, 255] therefore the worst case can be encoded with
Hj =log, 256 = 8 bpp and the maximum cost Cy = 8 x 6983 x 4 = 223456 bits.

0.016

0.014

0.012

=]
Q
P>
e—.
s

relative frquency
°
b=
&
P T—
P——

0.006 1

0.004 r ¥
0.002 ' “\‘ |

0 20 40 60 80 100 120 140 160 180 200 220
average coeficients

Figure 5.22: Relative frequency of the average coefficients for the input vector

The values obtained for this particular case are where Hy = 7.499 bpp and C =
209479.22 bits, approximately a compression of about 6.25%. Again from Figure 5.22
it is possible to observe that the values in the mid-range should be encoded with less
bits than the values in the extrema.

5.9.2 Quantization

A quantization over this values means a quantization over the range of values taken
by the image, i.e. a reduction of the gray levels of the image. The mean values of the
images could be changed. Although the algorithm seem to be not so sensible to this
quantization, in terms of the image degradation, the effects, specially on the smooth
parts are not desirable.

The idea is to find a quantization function V : Z — Z that once applied to the
Aij’s the distortion remains small enough. A quantization can be done using many
different approaches, but the best results were obtained using a uniform quantization
algorithm described below:

Uniform quantizétion

95

_— e —— e —

The uniform quantization function affects all values alike.
>\i' ’
V(Aij) = H—CiJ X CJ and A; € II(Q) (5.9.9)

and ¢ > 0.

In order to verify the performance of the uniform quantization, we used the image set
previously used, with an original PSNR=40, then by applying the algorithm and the
uniform quantization we can see the distortion produced by the quantization. Figure
5.23 shows two charts, the left one shows the relation between the average number
of bits needed to store the each average value versus the constant c; and the right
chart shows the Total PSNR, obtained once the reconstruction was done, versus the
constant ¢. It is important to check both charts at the same time, because although
for ¢ = 40, the number of bits is 2.32 per average value, the PSNR=22, and this is
not an acceptable result. '

s Ity
\ | |
? © \ i :
H
. \ i " : :
s \\ Low §
i ERY
g £ |
: . 3 |
3
\\\ 5 :
H : i
E bt i
:
Lo ;
° - ; 1 i ° i
©

o s 13 18 20 3 30 35] s 10 1%] b4 33 3
3 <

Figure 5.23: Left: number of bits per symbol vs. c. Right: Total PSNR vs. c.

There exists other types of quantization but the results were not as good as the
uniform quantization model. : :

Square root size quantization

Intuitively atoms with less number of pixels could be more affected than pixels that
belongs to large atoms. The size of an atom is given by |4;]

V() = A w R g 4 e) (5.9.10)
= 451
J

Logarithmic size quantization

96

V(i) =~ - (“‘ﬁ‘,{jﬁ,‘j’”)) X (ln (E’%j—f&) +1> and A; € II(Q)

(5.9.11)

5.9.3 Frame correlation

It is very common in video applications to use the fact that consecutive frames are
similar, then some algorithms take the difference between those frames, this method
reach to a cumulative error, then after a few frames most algorithms restart encoding
again. We use this property too, but with different meaning. If two frames are similar
the the average value in a given atom should be similar too. Then

)‘ij ~ ’\i+1 j (5912)
then we define the difference average values as
Qi1 5 =)\,’j - /\i+1 3j and Qp; =)\0]' (5913)

Then the ;;’s are now the new input symbols for the entropy encoding block.

The results over the image set, without using quantization, are not good; the reason of
this is because those images have nothing in common, considering the set as a video
sequence. But using the first 9 images of the video sequence (see Chapter 7) the
results are quite impressive. Again we are using a good approximation of the video
sequence with a PSNR=40, the partition has 673 atoms. Using equation (5.9.8), we
find that the maximum cost associated to store the average information is equal to
in this case Hy =8, n =673 and d =9 then Cp = 8 x 673 x 9 = 48456.

In order to show the contrast we present first the results without using frame cor-
relation. The theoretical average number of bits to store each average value is 7.76.
Figure 5.24 shows the relative frequencies histogram. The cost associated to this is
equal to Cp = 7.76 x 673 x 9 = 47002 approximately a 3% of compression.

Now using the image correlation information the the average number of bits is
4.93. Figure (5.25) shows the histogram and it becomes obviously that most of the
values are zeros. The cost for this case is equal to Cy = 4.93 X 673 x 9 = 29861, what
is close to the 39%.

97

- —— L —

_— e e~ — - —

0.014

0.012

001 l

19
¢ 0.008
B
E
£ 1 I
3 0.006
2 M\ Al
0.004 l" ft l
0.002] LS v
0 ,..’,,'.'1iivivivﬁ,i,i!.‘-!-!i!!!::::L
0 32 52 ‘72 92 . 112 132 152 172 192 212 232

average coefidents

Figure 5.24: Histogram the average coefficients for the video sequence

0.4

035

03

o
N
1t

rehtive frquency
o
Y

015

0.1

0.05
AJL e bt

I B v -
| e e s s s e s mae B gt Sngt it RS S0 SR S B A e B LA

Q ettt

-187 -133 -107 -86 -66 -46
average coeficients

Figure 5.25: Histogram of the difference of the average coefficients for the video

sequence

98

Chapter 6

Related Techniques

The interplay between the three components of any image coder cannot be over-
emphasized since a properly designed quantizer and entropy encoder are absolutely
necessary along with an optimum signal transformation to get the best possible com-
pression.

From the point of view of the human vision system HVS, many enhancements have
been made to the standard quantizers and encoders using wavelets transforms, [5] and
[6]. A number of more sophisticated variations of the standard entropy encoders like
the arithmetic code have also been developed. Those advances combined have resulted
in a better image distortion for a specific bit rate, [23].

A variety of novel and sophisticated wavelet-based image coding schemes have
been developed during the last years. These include EZW [22] , SPIHT [20], EBCOT
[24], GW Geometric wavelets [1]. This list is no exhaustive and many more techniques
have been developed and are being developed. We will briefly discuss only two of these
interesting algorithms here because they are specially related to this thesis.

99

e ——_— . —

R —

6.1 Embedded Image Coding Using Zerotrees o
Wavelet Coefficients (EZW) |

One of the most significant advances in the image compression field has been devel-
oped by J.M Shapiro [22]. He focused into the main two problems, the first is to
obtain the best image quality for a given target rate or distortion, and the second to

use and embedded code.

6.1.1 Embedded coding

The idea of an embedded code is such that all encodings of the same image at a lower
bite rates are embedded at the beginning of the stream for a target bit rate.

An embedded code contains the most significant coefficients encoded first, then it is
possible for the encoder to stop the encoding at a rate or distortion, by monitoring
these quantities during the process. Similarly, the decoder based on a continuous
measurement of the target rate or distortion, can stop the decoding.

6.1.2 Discrete wavelet transform

Over the last years, the wavelet transform has been successfully applied to many
problems in signal processing, and in image compression in particular. Many appli-
cations using wavelets outperform other coding schemes like the one based on DCT.
Because wavelets basis have variable length there is no need to subdivide the input
image in blocks, then the blocking artifacts are avoided at higher compression rates.
As the code can be embedded it is also suitable for transmissions environments.

Figure 6.2 shows and example of the subband filter applied to an image.

The wavelet transform used in [22] is based on the hierarchical subband system, where
the subbands are logarithmically spaced in frequency using an octave band decom-
position. Figure 6.1 shows a two-dimensional four-band filter for image encoding.
In a two-scale wavelet decomposition, the image is divided into four subbands using
separable filters, Figure 6.3 shows an example of this decomposition. The subbands
are called LL: Low row-column subband, LH: Low rows - High columns, HL: High
rows - Low columns, HH: High row-columns subbands.

100

Low-pass filter ho(n) | 2} —
—>{ Ho(m) > 21 Columns
Rows h(n) > 2l }—
X(n,m) —
High-pass filter ho(n) > 2| f—
> h,(m) > 21 Columns
Rows hy(n) > 21 —>

Columns

Figure 6.1: Two-dimensional, four-band filter bank

Original Image

Downsample
Columns by 2

Downsample Filter Columns

Rows by 2

Figure 6.2: Two-dimensional image filter

Figure 6.3: Two-scale wavelet decomposition

101

6.1.3 Zerotrees and wavelets coeflicients

In octave-band wavelet decomposition, shown in Figure 77, each coefficient in the
high-pass bands of the wavelet transform has four coefficients corresponding to its
spatial position in the octave band above in frequency. Because of this very structure
of the decomposition there is a tree-like data structure to represent the coefficients of

the octave decomposition.

HL

::,/.
L]

Figure 6.4: Octave-band representation

According to [22] a large fraction of the budget is spent on encoding the significant
map, defined as the binary decision of whether a quantized coefficient is zero or not.

The total cost is defined by
Total Cost = Cost of Significant Map + Cost of nonzero values, (6.1.1)

the cost associated to the significant map represents a large portion of the budget at
low bit rates and is likely to increase as the rate decreases.

The zerotree notation introduced by Shapiro is based on the hypothesis that with
a high probability, if a node in the coefficient tree is insignificant with respect to a
given threshold then all nodes below in the same branch are insignificant too, i.e. if a
wavelet coefficient at a coarse scale is insignificant then in the same spatial location at
a finer scale with a high probability the coefficients are also insignificant. Therefore
as the tree grows as powers of four, many insignificant coefficients are not considered
by the encoder.

This representation uses a tree structure where the coarse coefficient are called parents
and all coefficients in the same spatial location at a finer scale are called children,
also the coefficients in the same branch are called descendants.

102

The significant map in EZW can be encoded using a 3-symbol alphabet: 1) Zerotree
root, 2) Isolated zero and 3) Positive significant. But it has been checked that adding
a new symbol in order to encode the sign of the significant coefficients achieved
better results. Then instead of using just positive significant symbol, the following
two symbols are added: 3) Positive significant and 4) Negative significant.

One of the reasons of why the zerotrees outperforms the DCT is that using EZW
many coefficients are predicted at a coarse scale, specially in smooth areas where the
DCT, due to the block size restriction, can not compete.

In order to visit the most significant coefficients first the following scheme is proposed:
The parents must be scanned before children, also all positions in a given subband are
scanned before the scan moves to the next subband, Figure 6.5 shows the scanning
scheme.

2
R

pd R

/

A\

Figure 6.5: Scanning order of the subbands

To perform the embedded coding a successive approximation quantization is applied.
Several passes are done over the coefficient identifying the zerotrees using different
thresholds. The coefficients are quantized using a binary alphabet with a “1” indicat-
ing that the true value falls in the upper half and a “0” symbol indicating the lower
half. Then using this procedure the encoder can terminate the sequence at any point.
This is one of the most important aspects of the algorithm.

The arithmetic code plays an important role to encode the significant map and allows
the entropy coder to incorporate learning into the bit stream itself.

103

6.1.4 Results

Figure 6.6 shows some impressive results, where Lena (size 512 x 512 and 8bpp) is
encoded using the (a) JPEG2000 with PSNR = 34.70db and at the same bit rate
the standard (b)JPEG has a PSNR = 21.89db. It is possible to appreciate the
blocking artifacts in the JPEG. Lena was encoded with the JPEG2000 at the bit rate

0.03125 =1: 32.

b)

Figure 6.6: Detail of Lena, a) JPEG2000 PSNR = 34.70db, b) JPEG PSNR =
21.89db

Another impressive result is shown in Figure 6.7 (256 x 256 pixels and 8bpp)
where the JPEG2000 (a) with a PSN R = 38.51db, outperforms the. JPEG (b) with a
PSNR = 35.71db. Again from the picture it is possible to appreciate the undesirable
blocking artifacts.

104

Figure 6.7: Godzilla vs. Robot, a) JPEG2000 PSNR = 38.51db, b) JPEG PSNR =
35.71db '

6.2 Geometric Wavelets (GW)

Geometric wavelets use a BSP (Binary Space Partition) technique and a Geomet-
ric Wavelet (GW) approximation, once the sparse representation is found, several
techniques are used to encode the data.

This method is applied to 8 bits gray scale images but it could be extended to
color images in the same way the JPEG2000 has been applied to different types of
images (i.e. 8bits/pixel, 24bits/pixel). Usually a YV12 or YUV12 is used in order to
compress a 24bits/pixel color images in a 12 bits/pixel of chrominance and luminance

6.2.1 Binary Space Partitioning (BSP)

The BSP can be summarized as follows:

e given an image f in Q@ C R%and Q = [0, 1]?

e the algorithm subdivides § into two subsets € and §2; using a bisecting line
and minimizing a given functional

e the algorithm continues partitioning each region recursively until it reaches a
given measure or there is no enough pixels to subdivide.

105

- — —— gt ——"——— — ———— — it — —— e -

e —— e ™ .] —m —— | —— . — e« = — —

e the algorithm constructs a binary tree with the partitioning information

To approximate the image f at any region £2; they use two bivariate linear poly-
nomials defined by:

Qo, = Aiz+ Biy+Ci (6.2.1)
The functional used to find the best subdivision for a given region is the following:
F(Q0,) = arg min [|f — Qaollt, + If — Qe I, - (6.2.2)

Where € and Q; represent the subsets resulting from the subdivision of 2, with the
constraints Q = Qo U Q; and Qo N Q1 = 0 (this constraints are obviously satisfied
in this case). Notice that for simplicity the subindexes related with each step were
omitted and this is a general step in the recursive algorithm then € and 2, should
be consider as children for a given region 2 which is called the father.

L L L
o) 3 o
Q L,
L
Q, Q,
L L

Figure 6.8: Two partition levels using bisecing lines

Figure (6.8) shows the steps of the BSP algorithm, first is subdivided by L in
two sub-domains Qo and 4, then Qq is subdivided by Lo in Qo and Qg after that it
continues subdividing € in Q9 and €2;;, and so on. Then it is possible to represent
this in a tree structure as it is shown in Figure (6.9).

Basically the algorithm needs to encode the information of the geometry, in this
case the line that cuts each sub-domain, and the approximation function in each
sub-domain, that is represented by the polynomial coefficients.

106

/\
/\ /\

= 01 Q10

Figure 6.9: BSP tree representation

The polynomial interpolation is obtained using the least square method, comput-
ing the difference between the image and the polynomial at a defined region 2, then
given n pixels (z;, i, 2z = f(zi,¥:)) € Q we need to minimize the following:

I = Z (zi,4:) — (A + By + O)) (6.2.3)

and taking the the partial derivatives dII/9A = 0, 9II/0B = 0 and 9I1/0C = 0
we can solve the following linear equations.

Zzl—An+BZw,+C’Zy,

i=1

Zx, 2= AZ:L'1+BZ$ +CZ:1:z Yi

i=1
n n n n
dwizn=AY yi+BY ziu+C) Y
i=1 i=1 i=1 i=1

Both [1] and [19] used the same approach to approximate the function in each
region, but in [19] the procedure is applicable to the whole image, then the cost to
apply the algorithm is very high.

6.2.2 Geometric Wavelets (GW)

In [1] they use the local difference to define the geometric wavelets. The local
difference computes the difference between the actual partition and the previous one
giving us an idea of the degree of change, if the difference is large then the new

107

partition is capturing new details, and if the difference is small, the new partition
does not add new information. The GW is defined as follows: :

Yo (f) 2 10ao(Qa, — Qo) (6.2.4)

Where 1g, is the characteristic function that gives 1 in Qg and 0 in the rest. o
here means one of the children.

They show that it is possible to reconstruct the function f using GW due to the
term cancelations.

F=> valf) (6.2.5)
Q;

But using the BSP tree we can compute the norm of each g, (f), which is a measure
of the degree of change, then sorting these numbers it is possible to approximate the

function by the n-term geometric wavelet sum defined as

fr ankj (f) (6.2.6)

6.2.3 GW Encoding

An important concept not mentioned in [1], is the fact that by cutting each convex
polygon using a bisecting line, two convex polygons are obtained. An this is one of
the reasons of why it is only needed to store the bisecting line information.

Since is not possible to find an analytic solution of (6.2.2), a quantization schema
over the bisecting lines is required in order to compute in a reasonable time each step.
Both in [1] and [19] they use the normal line representation instead of the standard
Cartesian representation (slope, y = mz +b) as it is shown in Figure (6.10).

p=z cos(G) +y sin(0) (6.2.7)

Using this representation is supposed to reduce the number of trials to find the min-
imum using a brut force algorithm over the 'quantized (p, 6) space.

The idea is to add each step a new set of pixels, they state in Section (2.1) in [1],
that this is possible using determined Ap and Af.

108

-
AR

Figure 6.10: Bisecting line

The range of this parameters defined in [1] is § € [-7/2,7] and p > 0 while in .

[19] they allow p < 0 to be negative, the first approach is better due to they do not
need to encode negative values, it means that it is a save of one bit.

Due to the quantized schema 6 and p can be determined by the index of #, what
it means for a given ; we can find fixed numbers jnsz and jmin of p;; and therefore
it is possible to give a general index k to encode 6; and p;;.

6.2.4 GW sparse representation and encoding

Once the BSP tree is generated the next step is to use (6.2.6) to prune the tree and
discard irrelevant information by computing [|¢q,, (f)]-

Due to the fact that the leaves are necessary for the reconstruction, in [1] they im-
pose the requirement that if a child appears in the tree then father has to appear too.
But it is not necessary that both children appear in the tree, if one is no significant

enough, could be excluded from the sparse representation, then all its descendant -

should be excluded too. This is an improvement with respect to [19] due to there if a
partition is done both children appears in the tree independent of whether one child
is significant or not.

Actually they do not use the this approach to prune the tree, they apply a rate-
distortion (R-D) [?] optimization which is supposed to increases de peak signal to
noise ratio (PSNR) by 0.1 dB in some cases.

109

After the tree is pruned it is encoded using the following information:

Tree-structure information

— Number of children
— Information to distinguish each child node.

The quantized coefficients Qq

The bisecting line information of each £ if it has a child.

Header information

The tree-structure is encoded using the fact that with a high probability a significant
node does not have a significant child, in a similar way like ‘zero-trees’ [?] . There-
fore using Huffman code [10] to encode the three different values (Zero-children="1’,
One-Child=‘01", Two-Children="00’) it is possible to save in some cases 1 bit, due to
normally it is necessary 2 bit to encode 3 different states.

The quantized coefficient Qq that represent the wavelet polynomials are deter-
mined by three real numbers (A;, Bi, C;) that can be stored with 12 bytes using the
standard 4-bytes float representation. But in [1] they show an algorithm to store at
a rate of 1.5 bytes per polynomial on average, using the standard Graham-Schmidt
method to obtain the orthonormal base representation. This could be the greatest
improvement with respect to [19].

The bisecting line is encoded using the fact that A6 and Ap are determined by the
size of the region Q, then it is only necessary to store an integer index k to reconstruct
the values of 6; and p;;. The decoder has enough information to restore these values.

In order to deal with the time consuming algorithm in [1] they tile the image
in squares of 128 x 128 and they apply the BSP algorithm on each tile. The main
disadvantage of doing this is that blocking artifacts appears at the tiles’ boundaries.
Another disadvantage is that connected areas could be disconnected missing the pos-
sibility to improve the approximation.

110

Chapter 7

- Results

7.1 Results Illustrating Properties of the Algorithm

We present a collection of test cases to illustrate, test and compare the VGS algo-
rithm to some current techniques. The results also indicate advantages and some
shortcomings of the VGS (at least in its present form).

The reader will note that only scalar approximations are discussed, i.e. no results
on vector approximations are presented. The reason for this is that results are quite
similar in some cases and it will take us too long to describe.

When reporting distortion values (based on PSNR) for a sequence of images
(equivalently: a video sequence, or ”vector” input set) we make use of a global mea-
sure of error. More precisely, we use (B.0.7) from Appendix B.

7.1.1 The Algorithm Step by Step

In order to illustrate the algorithm we introduce an example where geometric figures
were used to show how the algorithm converges. The simple four(so d = 4) geometrical
images take a reduced number of gray levels. Figure 7.1 shows the original 256 gray-
levels images of 128 x 128 pixels. In this test we will not perform compression and
the approximations are steps of the algorithm constructing the full tree.

Figure 7.2 shows the VGS approximation using the scalar Haar case approxima-
tion at different stages of convergence. The first approximation (top left) shows the
approximation with only one component and clearly the algorithm splits the domain
in two atoms in each image, the number of gray-levels is two for this first step under
this particular case. The second approximation (top right) shows the approximation

111

S

Figure 7.1: Test Set 6

with two components, it is possible to see that the top images are approximated us-
ing a partition associated with the bottom images. The third approximation (bottom
left) shows that the bottom left image is completely approximated and the top images
have almost converged. The last approximation (bottom right) is the approximation
using 7 components and it is almost a perfect reconstruction but the algorithm needs
one more iteration to complete the bottom right image.

Figure 7.2: Scalar Haar Approximations using, Top left: one component, Top right:
two components, Bottom left: three components, Bottom right: 7 components

Figure 7.3 shows the VGS approximation using the scalar Martingale Difference

112

case at different stages of convergence. The first approximation (top left) shows
the approximation with only one component, the difference between this method
and the previous one, is that the approximating functions ¢ in this case can take 3
values in each node. It is clear that in this case the bottom images were selected
to approximates the whole image, and in the second and third approximations it is
possible to appreciate how the algorithm tries to approximate the top images based on
the bottom images. The last approximation shows almost a complete reconstruction
with only 7 components, each taking three different values at each node.

Figure 7.3: Martingale Difference Approximations using, Top left: one component,
Top right: two components, Bottom left: three components, Bottom right: 7 compo-
nents

7.1.2 The Haar Approximation

A set of images was specifically created with the objective of verifying the behavior
of the algorithm under the situation where different images are composed basically of
trends represented by areas of high statistical spatial correlation associated with low
frequencies bands. Faces are situated in the middle of the images but almost use the
entire area. Although images seem to be very similar, the smooth variations of them
make the vector take many values. Figure 7.4 shows the original set composed of 256
gray-levels images of size 128 x 128 pixels.

The VGS approximation using the scalar Haar case with a PSNR=22 is shown in
Figure 7.5, the number of bits used to encode the 9 images is 90237, but recall that
the total number of bits is equal to 16384 x 9 x 8 = 1179648 then the compression is
92.3% with approximately 0.611 bpp. It is possible to appreciate how the algorithm

113

Figure 7.4: Test Set 2

manages to capture the information of all images simultaneously.

Figure 7.5: Scalar Haar Approximation, 0.611bpp and PSNR=22

Figure 7.6 shows the approximation with PSNR=28 and 1.008bpp, at this point
some details become more clear, specially the high frequencies that seems to be well

captured by this algorithm.

In Figure 7.7 a detail of the middle image using different approximations is shown,
it is clear that the algorithm performs better with edges rather than smooth areas.
These last regions are captured using almost the full tree while edges are captured in

the first iterations of the algorithm.

114

Figure 7.6: Scalar Haar Approximation, 1.008 bpp and PSNR=28

Figure 7.7: Detail of the middle image, Top left: Original, top right: PSNR=22
and 0.611bpp, bottom left: PSNR=34 and 1.617bpp, bottom right: PSNR=40 and
2.633bpp

115

7.1.3 Counting Bits

Focusing in the compression application one interesting test is to compare the cost
of the different maps using a variable number of images, then we will show how the
cost of storing each map is affected when the number of images increases from one
to nine (for the Test Set 2). Applying the VGS-Haar case algorithm using the faces
set, previously used, as the input set, Figure 7.8 shows the comparison between the
cost associated with different maps per image vs. the number of images for many
distortion values: PSNR=30db, PSNR=40db and PSNR=>50db.

45000 ; T ; T 70000 T y T
NN 1 psnr=30db [|| sooeo , PSNR=40db1
35000 1\ 50000 \\
30000 \ —
40000
25000 -
20000 - 30000 \s\!
15000 .
20000 —
10000 |
5000 10000
0 o
i1 2 3 &4 5 6 1 8 9 1 2 3 &4 5 6 7 8 9
images images
——QM#SM —B=PM ——QM+SM4PM ——QMASM —B—PM == QM+SM+PM
50000 i 120000 }
[} PSNR=45db l ; PSNR=50db
80000 g - “
100000
70000 .i;'\,
60000 £0000
. 50000 ’ . S T
£ £ 50000 e
40000 et P
30000 . 40000
20000 // 20000 / i\s\g
10000 /" /
0 & o
1 2 3 4 s & 1 8 9 1 2 3 4 s 6 7 &8 9
images images
o QM$SM —B—PM = QM#+SM+PM —e—QM4SM —E—=PM —8—QM+5SM+PM

Figure 7.8: Mapping cost per image vs. number of images, Top left: PSNR=30db ,
top right: PSNR=40db, bottom left: PSNR=45db and bottom right: PSNR=>50db

Where “QM”, “SM” and “PM” are shorthand notations to denote the costs associated
with the quantization map C,, the cost of the significant map Cums and the cost
of the partition map Cu,; respectively. We would like to emphasize the fact that the
cost shown is the average cost per image and is calculated as the specific total cost
divided by the number of images (this point is introduced and discussed in Chapter

116

2. Note that the comparison is done using the partition map My and the sum of the
significant map and the quantization map Mg+ Mg. The reaso for combining tehse
two costs into a single number is that the significant map is approximately 10% of
the quantization map and it is not large enough to be compared with the partition
map in the same graph.

The top left chart in Figure 7.8 shows that for a low PSNR, the cost consists mostly
of the partition map and although it should be decreasing asymptotically to zero as
the number of images increases to infinity, the number of images selected in this set
is not large enough to appreciate this property.

Remark 22. The mazimum cost associated to the partition map My is fired and
equal to the cost of storing two images.

The top right chart in Figure 7.8 begins to show that at some point the quantization
map and the significant map require at least the same number of bits as the partition
map using 9 images. Also it is possible to see that there is an optimum value for the
total cost per image for a given distortion.

The bottom left chart with a PSN R = 45, clearly shows that there exist a number of
images for what the number of bits is minimum for this given distortion, unfortunately
it seems to be bigger that 9 images.

In the bottom right chart, it is possible to observe that practically there is no min-
imum value for the total cost per image. This pattern follows from the fact that
the significant and quantization maps’ costs are increasing very fast in terms of the
number of images. In turn, this happens as the required PSRN value is relative high
and requires many components to be included in order to achieve such high quality
reconstruction.

We have assumed that the significant map is small enough and then it is possible
to add it to the quantization map. Figure 7.9 shows that the significant map is
approximately the 10% (average) of the quantization map, and this ratio decreases
when the number of images increases.

Considering that a video sequence could be an optimal situation for our algorithm,
we propose the following test set shown in Figure 7.10.

This test set was down-sampled from 640 x 480 pixels to 128 x 128 using bi-cubic
interpolation. Now we will show the behavior of the VGS-Haar case algorithm for
the video sequence using a variable number of images.

Figure 7.11 shows the comparative between the different costs per image for a fixed
PSNR = 30db. Where, as we have done before, the “TOTAL” is equal to Cmq +
Cms + Cpy- Recall that we are using the average cost per image, instead of using
the total cost. This not only allow. us to determine the optimal number of images for

117

e e

e e

SM/QMm

0.4

0.35

0.3

PR

0.25

« 0.2

015 \m: <]
0.1 *QN_Q_

0.05 —

1 2 3 4 5 6 7 8 9
images
—6=—50db —8=--40db —e—30db

Figure 7.9: Significant map/quantization map ratio, ratio vs. number of images

which VGS will deliver best compression performance but also provides a reasonable
bit- scale to compare with other methods (the is discussed in Chapter 2.)

It is possible to see that there is a minimum for 16 images but for this low quality the
cost of the quantization map increases so slowly that the total cost is practically a
constant value. Now increasing the PSNR we can appreciate in detail the minimum
number of images needed to achieve the minimum number of bits.

Figure 7.12 shows that for different distortion values of PSNR, we can find a minimum
cost using different numbers of images. The top left chart of Figure 7.12 shows that
this minimum is located at 12 images and for the rest of the charts the minimum is
found at 9 images. Also in the bottom left and the bottom right charts (45db and
50db), it is possible to see that the cost associated to partition map Cumy, decreases
in both at the same rate, but the cost associated to the quantization map C, rises
almost at twice for 50db.

There is another important aspect we can infer from these charts, if we observe in
detail the cost associated to the quantization map plus the cost associated to the
significance map Cpqq + Crts We can appreciate that there are two local minima one
at 9 and the other at 12. The reason of this can be explained because in a video
sequence the number of frames per second (fps) is selected to ensure that most of the
common life activities are captured in the video. Sometimes the action is slower than
the number of frames per second and the result is, practically, a sequence of two or

more equal frames.

Adding a new image identical to a previous one in the original set, almost does not
increase the encoding cost, just a few bits in the indexing map. Therefore, as a result

118

Figure 7.10: Video sequence: length 1 second, frame size: 128 X 128, color depth:
8bpp, 25 fps (frames per second)

119

50000.00
45020.00 1 PSNR=30db *
40000.00
35000.00 \
30000.00
25000.00
20000.00 \
15000.00 <
100600.00 -
5000.00 - ; i + ' e
000 B—p-l-8 SR e s W W i {

12345678 9101112131415161718192021222324252627282930
images
—o—PM —8-QM+SM —»—TOTAL

bits

Figure 7.11: Average mapping cost per image comparative for a PSNR=30db

40000 T 50000 '. T
35000 l PSNR=35db |- 45000 1 PSNR=40db ‘—
40000
30000 \
\ 25000
25000 30000 \
£ 200 ! F .}
= 00 3 & 25000 =y -
™~ 20000 I N
15000 =~ - Nn
\Q""t" N 15000 < — z
10000 — e L&~
e R 10000 —an
5000 — a ;
LA S 5000 L~]
& - i
0 [
2 3456 7 8 910111218141516171819 20 28456 7 5 91011121314151617181920
images images
—+—PM ~E5-QM+SM —#~TOTAL —4—PM —EQM+SM —%—TOTAL
60000 et 90000 v oy
PSNR=45db ' 80000 ! PSNR=50db I-
50000 :
\ 70000
40000 60000
. P
- e bamph ¥ . 50000
£ 30000 ~5 — = \ I e
N A 40000 e
N St | s
20000 < 30000 5
s 20000
1000 o /GH?‘ = A oS S
10000
A] /n(y
o =H - [
2 3456 7 8 910111213141516 17181920 23456 7 8 91011121314 151617181920
images Images
~o—PM —E—QM+5M —H—TOTAL —+—PM ~E-QM+SM —*—TOTAL

Figure 7.12: Average mapping cost per image comparatives for PSNR=35db, 40db,
45db and 50db

120

4000 T //,/
3500 -} PSNR=35db /{

3000 7
2500

2000

bits

1500
7

P

2 3 4 5 6 7 8 S 10 1 12 13 14 15
images

—E—-0M+5M

Figure 7.13: Detail of Cp, + Crmg average per image

of this phenomena, the total cost per image is less than the cost without including
this new image, because the partition map cost Cpy, decreases asymptotically with
the number of images. Figure 7.13 shows a detail of the steps described above.

Comparing the result obtained for the faces test Figure 7.8 and the results obtained
with the video sequence Figure 7.12, it is clear that the algorithm needs half of the
bits or less (it depends on the distortion) to encode the video sequence compared

with the faces. .

7.1.4 Selecting the Best Case

In order to compare the performance of the different cases (Haar, Full Bathtub and
Martingales Difference) proposed in this thesis, we have used four different sets: the
first contains four completely different images from real life, the second is formed by
four images designed to take all possible different vector values, the third is composed
of 9 images from a video sequence Figure 7.10, and the last is a set of 16 images
designed to simulate a video sequence.

The first two sets expose the algorithm to a difficult situation where practically there
is no common information among the images.

The first set is shown in Figure 7.14 is composed of “Lena”, “Barbara”, “Boats” and
“Peppers”.

Figure 7.15 shows the second test called “the worst case” because it was designed
to be the worst case for our algorithm because the combination of the images takes
all possible values, therefore the partition associated to the full tree takes 128 x 128
different values.

121

Figure 7.14: 4VImages: size 128 x 128 each one, color depth: 8bpp

A

Figure 7.15: Worst case: size 128 x 128 each one, color depth: 8bpp

122

The last set “Godzilla vs. Robot” shown in Figure 7.16, was designed to simulate a
video sequence where the frames are different.

Yo

AL

¥
3
H

Figure 7.16: Godzilla vs. Robot: size 128 x 128 each one, color depth: 8bpp

We will compare four different VGS cases, the Haar scalar approximation case (HAAR),
the Martingales Difference scalar approximation case (MD), the Full Bathtub scalar
approximation case (FB) and the Leaves Average case (AVG). Notice that the com-
parison will be done using the Total number of bits, it means that is the total cost,
not the the cost per image. The results are discussed next.

Figure 7.17 shows the comparisons on the first set, the best method on this set is
the MD algorithm, the HAAR case is performing well too, the FB is not as good as
the others, but definitely the AVG case is the worst case, specially for low distortion
levels.

The results on the second set are shown in Figure 7.17, this case the difference between
the MD and the HAAR case is much more notorious, and the same as in Figure 7.17,
the worst case is the Haar case, specially for high quality approximations.

Figure 7.17 shows the comparison chart for the video sequence set, in this case as
before the FB and the HAAR case have a similar behavior, but the AVG approxima-
tion case outperforms the others by ~ 20%. Also the FB case seems to be the worst
case for this set.

The results for the last set are shown in the chart in Figure 7.20. Here the advantage
of the AVG approximation case is not obvious, it seems to be the best method for
high quality approximations and to perform badly for low quality approximations.

There is a possible explanation for the behavior of the AVG case, the AVG algorithm

123

550000

500000

450000

400000

£350000

300000

250000

200000 T//
150000 l

30 31 32 33 34 35 36 37 38 35 40 41 42 43 44 25 46 47 48 49 50
PSNR(db}

== H3dr =MD =—e=FE = AVG

Figure 7.17: Total bit costs for the 4 images set vs distortion

550000

500000

450000

400000

£ 350000

A\
\

300000

L

W
250000 iﬁ =
200000 2]

150000
30 31 32 33 84 35 36 37 3B 39 40 41 42 43 44 45 46 47 48 49 SO
PSNR(db}

e Hpdr EbweMD B e AVG

Figure 7.18: Total bit costs for the worst set vs distortion

124

415000 7/
W
365000 77
315000 /’ //)
= 265000 ,/ yya
£ P e
.t
215000
v
e

165000

115000

=

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 49 SO
PSNR({db)

65000

~&=Haar =8=MD =~e—FB —2=AVG

Figure 7.19: Total bit costs for the video sequence set vs distortion

(see Section 5.9) is built on a given partition and the encoding is done taking the
difference between the values of two consecutive images in the same atom (see Section
??) due to the images’ similarity. In the 4 images set and the worst set there is no
similarity at all, furthermore they were specially created with this objective in mind.
Therefore it is understandable that the AVG algorithm can not perform well under
those conditions. The video is the ideal case where there is a high correlation between
frames, and although the last set is not a video there exist a relative correlation
between frames, specially the background that remains practically constant.

1375000

1175000

975000

X 775000

R
AN

575000

375000

/5
175000 E=

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 456 47 48 49 SO
PSNR{db)
—tmHaar —=E=MD —@—F8 =—M=AVG

Figure 7.20: Total bit costs for Godzilla vs. Robot set vs distortion

125

A possible explanation of why the MD case performs better, in almost all cases, than
the FB and the HAAR case is the following: MD uses three values to approximate the
input vector in a node one for each child, the third value is fixed and it seems to be
close to the original value that is the average in this child, therefore the scalar inner
product due to the second VGS function (1), that is added to the node in order for
the algorithm to be convergent, is smaller than the inner product due to 1. Then
the closer this third value is to the average value in the child the smaller the second
inner product is stored, and then it could be eliminated by the quantization. This
third value seems to be far from the average value in the FB case, then the second
inner product is not smaller than the MD case and needs more bits to encode them.

A similar explanation could be done with respect to the HAAR case, considering the
case MD takes three values and the third value is close to the average value in the
child, then the MD could approximate three values (not always) with only one inner
product, while the HAAR needs at least two inner products to approximate three
different values.

7.1.5 The Outer Supremum: b’

In this section we will evaluate the performance of the optimization algorithm intro-
duced in Section 3.3.1. We study the relation between the number of bits gained using
more iterations for the optimization of the vector &’. We will apply the VGS-Haar
scalar approximation to the video sequence set (see Figure 7.10) and use different
number of iterations to construct different approximations.

Figure 7.21 shows that more iterations helps to find a better approximation. It is
possible to appreciate in the chart that for a fixed bit budget the distortion is about
~ 1db when using 10 iterations instead of 1000 iterations, specially at the high quality
rate. Moreover, for a fixed distortion the compression using 1000 iterations is ~ 10%
of the compression using 10 iterations. But using a 100 number of iterations is similar
to 1000, then for reasons of speed we will use 100 iterations for almost every test in
this thesis.

Notice that this improvement using more iterations in order to find a better ¥’ is
telling us that there exists more structure that is not captured by the algorithm due
to the greediness and a global optimization could be a solution for this problem.

126

126000 /

116000
/

i
Rz
Ny 4
v

PSNR (db)
—»—10 —e—100 —4&— 1000

106000

“
=
=3

96000

Figure 7.21: Total bit cost vs. distortion for 10,100 and 1000 iterations

7.2 Comparisons

7.2.1 JPEG2000 Static Comparison

In this section we will compare the JPEG2000 ([13], [11]) and our algorithm in a
static environment using the video sequence set from Figure 7.10. When we say
“static” we mean that JPEG2000 does not make use of any temporal correlation
among frames (this temporal correlation will be accounted for when we compare with
MPEG). Nonetheless, we have run JPEG200 in the most favorable situation, namely
we have collected the input set into a single larger image.

Due to the fact that 9 images is the best number of images for the VGS algorithm,
we will use d = 9; also we will use the VGS-AVG (Leaves Average Approximation,
see Chapter 5) algorithm that seems to be the best for video images. There are
two versions of our algorithm and both outperform the JPEG2000 results. The first
version is the standard VGS-AVG approximation and the second one is the VGS-
AVG approximation using the Lempel-Ziv algorithm to encode the partition and the
quantization map (lossless compression).

Figure 7.22 shows the total bit cost vs distortion, comparing the JPEG2000 with
our algorithms. It is clear from the figure that the VGS-AVG using the Lempel-Ziv

127

e ——————— i e it e et - o el e —® —

50000 T
B
45000 - [
. | N
40000 -] _ ,
35000 | \ . \2 / A
| ‘ < N
suooo-’ - ? 1 / /
: 3 / /
£ 25000 -
’ e R R TR ///
20000 — ' / -
15000 A /:/
W
10000
g—-E /
5000
4
0
283 299 326 350 3838 417 46.3 50.3
PSNR({db)
—&—J2K-A —¢—Haar-AVG LZ —8—Haar-AVG

Figure 7.22: Bit cost vs. distortion per image for JPEG2000, VGS-HAAR and VGS-
HAAR-LZ

encoding algorithm outperforms the others for this special video sequence. Table 7.2.1
shows numerically the same information as in Figure 7.22. The bit cost for a given
distortion and the last column contains the difference between the JPEG2000 and
the VGS-Haar-AVG LZ, it is possible to see that the VGS-Haar-AVG LZ is within
20% — 35% better than JPEG2000 for this case.

PSNR(db) | JPEG2000 Haar-AVG Haar-AVG LZ | DIFF
28.3 4096 6888 3209 22%
29.9 5461 7650 3779 31%
32.6 8192 9103 5135 3%
35.0 10922 10758 7088 35%
38.8 16384 14260 11143 32%
41.7 21837 18325 15719 28%
46.3 32768 27277 24981 24%
50.3 43686 37131 33740 23%

Table 7.1: Numerical bit cost vs. distortion comparison

7.2.2 MPEG4-3 Comparisons

The video sequences have been sampled at a slow rate of 15fps (frames per second)
and this is not the standard sampling rate which is at least 30fps. This means that

128

our video sequences have more variation among the frames. Clearly this represents a
disadvantageous comparison situation for the VGS algorithm.

Hand Video Sequence

Figure 7.23 shows the original video sequence for this example, it was down sampled
from 640 x 480 pixels to 128 x 128 using bi-cubic interpolation, the uncompressed
video size is 450, 796 bytes

Figure 7.23: Original Video sequence: Hand, frame size:128 x 128, 15fps(frames per
second), color depth: 24bits

Different values of PSNR and compressed sizes are shown in Table 7.2.2 for the
VGS approximation and for the MPEG4 algorithm. Notice that in the present case
(hand video sequence) the VGS compares favorably in terms of the PSNR. We remark,
that the image quality (once sufficiently amplified) seems to be better in the MPEG4-3

approximation.
Figure 7.24 shows the VGS approximation with a PSNR = 36.79db
Figure 7.25 shows in detail the comparison between the MPEG4 and the VGS ap-

proximation.

129

Figure 7.24: VGS Video Hand approximation PSNR=36.79db

<)

Figure 7.25: Video Hand approximation detail, a) Input, b) MPEG4-3 approximation
PSNR=36.417, ¢c) HAAR-AVG LZ approximation PSNR=36.79

130

More Examples of Video Sequences

Next we provide several more examples of different video sequences. The information
displayed is the same than the one displayed for the previous hand video sequence
and hence should be self-explanatory.

Notice that the videos sequences: Doll and Doll 2 are slow varying videos and VGS
outperforms MPEG. The remaining example, Princess, is a faster paced video an
therefore there is more variation among the frames. The performance of the VGS
algorithm degrades accordingly for this example.

u gamps . EEEpTR
e i et

3 ETEREPTY

Figure 7.26: Original Video sequence: Doll, frame size:128 x 128, 15fps(frames per
second), color depth: 24bits

131

o ’5§5
T O

K
%4

Figure 7.27: Original Video sequence: Doll 2, frame size:128 x 128, 15fps(frames per
second), color depth: 24bits

Figure 7.28: Video Doll2 approximation detail, a) Input, b) HAAR-AVG LZ approx-
imation PSNR=38.97, ¢) MPEG4-3 approximation PSNR=34.93

132

Figure 7.29: Original Video sequence: Princess, frame size:128 x 128, 15fps(frames
per second), color depth: 24bits

Figure 7.30: Video Princess approximation detail, a) Input, b) HAAR-AVG LZ ap-
proximation PSNR=33.88, ¢c) MPEG4-3 approximation PSNR=36.67

133

Video HAAR-AVG LZ MPEG4-3 Diff % | YCbCr PSNR
PSNR Cumy; COwm, Total | PSNR Total Y Cr Cb

Hand | 36.79 13721 4003 17724 | 36.417 19422 | 8.74% [39 45 45
37.36 14390 4654 19044 | 36.417 19422 | 1.95% |40 45 45
36.48 14581 4746 19327 | 36.417 19422 [0.49% |41 42 42
37.9 15474 5476 20950 | 36.417 19422 | -7.87% |41 45 45

Doll 37.46 15492 3363 18855 | 35.29 19245| 2.03% |42 45 45

Doll2 | 38.97 12714 3538 16252 | 34.93 20302 | 19.95% |42 42 42
40.79 14510 5058 19568 | 34.93 20302 | 3.62% |45 45 45

Princess | 33.88 19189 23145 42334 | 36.67 34460 |-22.85% | 37 45 45

Table 7.2: Video compression comparison, Haar-AVG LZ vs. MPEG4-3, the costs
are measured in bytes and the distortion (PSNR) in decibels (db).

134

Chapter 8

Conclusions

The Vector Greedy Splitting algorithm is a new technique, this thesis is a first attempt
to a systematic study of the algorithm. Many more mathematical and computational
possibilities could be explored in the future.

We believe the VGS algorithm could be applied directly or jointly with other meth-
ods, in different applications like image compression, pattern recognition and image
segmentation.

The optimal elements % constructed by the VGS algorithm cronstructs approxi-
mations with well defined edges. They adapt to any given particular geometry of
the edges present in the input vector. Of course, the combination of possibilities
in spatial variation among the input vectors is problematic (mostly because of the
combinatorial number of possibilities and the associated optimization problems). We
have observed that the optimal VGS functions %(® do not handle well smooth regions.
This can be explained as follows. The optimization is carried over a large dictionary
C 4 which does not impose any smooth constraints on its member functions. This fact
and the use of the Bathtub theorem implies that the optimal functions chosen, %(©,
are not smooth. In the future, one could explore the following options to alleviate this
problem: ™ may be chosen with some smooth constraints, this is possible as the
function takes more than two values, smooth constraints are imposed by minimizing
higher moments of the function. One could also explore the possibility of a global
optimization or different ways of splitting a given atom A as suggested in Appendix
C in Section C.4.

The comparison with the JPEG and JPEG2000 suggests that there are instances
(given by certain type of generic video sequences) where the VGS algorithm can be
successfully applied in the image compression field. The performance of the algorithm
basically is related to the common information among the images.

135

Even though the algorithm is computationally intensive in its present form, it is
comparable to some of the techniques used today for video compression.

The main conclusion of this thesis is that VGS is worthwhile, and may be considered
as a possible tool for image processing.

136

Appendix A

Bathtub Theorem

Theorem 1. Bathtub Principle. For a given number u and X (w), a real valued
measurable function, defined on Q (a general measure space), set:

Dy, ={p:0<p(w) <1 forall w and /Qtp(w) dP(w) = u }. (A.0.1)

Then the minimization problem

I= ‘pienvfu/nX(w) o(w) dP(w), (A.0.2)
1s solved by
©1(w) = 1xw)<y} (W) + ¢ Lix(wy=y,} (W), (A.0.3)
and
I= / X (w) dP(w) + 1 P(X =). (A.0.4)
X(w)<u1
Where
Yy = Sl:p{P(X <t)<u}, (A.0.5)
and c; satisfies
a PX=y)=u — P(X <) (A.0.6)

Notice that when when F is continuous, y; satisfies Fix(y;) = u;. The above theorem
is introduced an discussed in [16].

In the thesis we also need the dual version of Theorem 1, we present this result in
the following Corollary.

137

Corollary 1.
problem

is solved by

and

Where

and

Notice that when when F is continubus, 1o satisfies Fx (yo2) =1 — .

Assume the same hypothesis as Theorem 1, then the mazimization

I= sup / X(w) ow) dP(w),

PEDu,

P2(w) = X(x>y2} (W) + €2 X{x=y0) (W),

I= X (w) dP(w) + ¢ca P(X = ya).

X>y2

yp = inf{t : P(X >t) < us},

Ca P(X=y2)=U2—P(X>y2)

138

(A.0.7)

Appendix B

Measure of Quality

MSE[i] = Z (X[- XE)? (B.0.1)

S wen

where N, is the number of samples in Q (considering 2 finite). Then the total
MSE is defined by

d
MSEr =) = MSE] (B.0.2)
i=1
it is possible to check that the summation is over {2 then defining the error in a given
atom A

MSE[i]4 = Z X] - X[i])? (B.0.3)
then -
MSE[i] = —: > > (X - X[E)? (B.0.4)
and of course o
MSE; = jvl— D f; (X[i] - X[i])? (B.0.5)

° A€A weA i=1
defining recursively the split step for a given A € A

MSE}! = MSE}: — MSE# -+ MSEZ° + MSE#* (B.0.6)
then
V2

139

Appendix C

Convergence Proof

C.1 Convergence of Vector Greedy Splitting Ap-
proximation

In this Appendix we prove the convergence to X of the approximation Xz (w) for
almost all points w € Q as n — co. We keep the base domain (2 arbitrary and will
assume, for the main results, that X takes a finite number of distinct values. We have
provided some of the arguments in a more general setting than the one used in the
rest of the thesis. The reason for doing so is to isolate the minimal hypothesis for the
corresponding proof. Moreover, some of the notation used is only meaningful for this
Appendix as may conflict similar notions used throughout the rest of the thesis. As
a final remark, we indicate that several notions defined elsewhere in the thesis have
been repeated here, this is done to make this Appendix as self contained as possible
and provide an easier reading of the result (as otherwise the reader may have to chase
the definitions all over the manuscript).

Assume o (X) C A; after several general results on the VGS algorithm, the vector
case will be tackled by reducing it to the scalar case. Recall the definition

X,Y) = [(Xw),Y @) dP() CER)
Q
where X,Y are Ré-valued random variables, notice that in the case of d = 1 we have
X,Y] = / X (W)Y (w) dP(w) (C.12)
Q

so the notation [,] does not indicate the value of d explicitly, therefore, readers will
need to determine it from the context. In some cases, to emphasize the fact that
d = 1, we will write [X,Y]; in the case of (C.1.2).

140

For a given A € A we will consider a generic collection of functions satisfying the
following conditions

D= {v:vw)=0 if w¢ A,/sz dP = o,/Q [W2dP=1}. (C.13)

We will assume there is available a routine, which we will call bestSplit, such that for
a given A € A provides a finite number of best functions ng) €Dy,i1=0,...,14—-1,
and a partition of A into a finite number of best children Ay € A, k=0,...,I4 (this
notation is meant to convey the fact that the integer value J4 will depend on A). We
will also require

[w®,§)] = 0 whenever i # . (C.1.4)

More properties of bestSplit will be specified as they are needed in later develop-
ments.

Our vector approximations are always initialized as follows

) =c1g (C.1.5)
and
/ X1i] dP
cli] = y 2 =. (C.1.6)
\jz (/Q X k] dP)
Therefore |
X, 9] 4O = /n X1i] dP. (C.1.7)

Remark 23. In practice we will have I4 =1, for all A, in the Haar case and I4 < 2,
for all A, for the full bathtub and top - bottom bathtub cases. Also Iy =1 for all cases.

Definition 10. We will say that such D4 is admissible (for a given A € A) if the
best function zpff) € D, satisfies:

if X isnot constant on A then and [X, wff)] # 0. (C.1.8)
Remark 24. Notice that if X is constant on A then
X, 99 =0, (C.1.9)
this last equation follows from (C.1.8).

141

From now on we will assume the given collections D4, A € A are admissible. We
will impose further conditions on D, whenever they are needed.

Lets define the VGS algorithm, we will indicate how the algorithm constructs a se-
quence of partitions II,, indexed by n = 0,1,2,.... The index n will be referred
as the n—th. iteration of VGS. The partitions are defined recursively as indicated
next. Start by setting ITo = {2,0} (notice that we explicitly include @ in IIo, this
will include 1y in all our approximations) and assume, inductively, that IIx, k < n
(Il € A) have been constructed and are finite. Now we describe how to generate
II,..1. Consider A* € II, such that it satisfies

11X, v @) > |[X, 9] for all A €L, (C.1.10)
Now, if
X, 93] =0, (C.1.11)

the algorithm VGS terminates and II, = II,, for all p > n. Otherwise, i.e. [X,v4.] #
0, we set

Mpt1 = I \{A"} Uk=o,.,14 {AL} (C.1.12)

where, as indicate previously, the sets A} are the best children of A*.

Remark 25. Notice that all partitions defined above are finite. Assume the number
of best children is uniformly bounded by a number M, then

o] < | + M. (C.1.13)

Define the tree 7,, as follows
T = Upoll. (C.1.14)

We then define the associated approximation by

= Sx e 8. (C.1.15)

A€T, i=0

Therefore, the approximation given by the VGS algorithm at iteration n uses the
best functions associated to the partltlons created up to, and including, iteration n,
more explicitly, we use the functions ¢ o with A € Ujo,..nI1;. Notice that, by our

previous conventions, we are including ¢(0) in all VGS approximations.

Remark 26. It follows from our definitions that if A € II,, and X restricted to A is
constant then A will never be best split by VGS at iterations p > n.

142

Requiring the appropriate conditions, we will prove a series of results that taken
together will prove

lim X7, (w) = X(w) for almost all w € Q. (C.1.16)

The above limit will actually be finite if X is a simple function, namely if X takes a
finite number of values. For a given X consider its range of valueson A € A

Ra(X) = {X(w) : w € A}. | (C.1.17)

Therefore X is simple if [Rq(X)| < oo, for some results we will need to assume that
X is simple; whenever this hypothesis is needed, it will be indicated explicitly.

We will define an increasing sequence of orthonormal systems H,,, for n > 0 corre-
sponding to the n-th. iteration of the VGS algorithm, as follows: Hg = {uo = 1,%0)}
also, assume, recursively that H, = {uo,. .., ux,} has been constructed. We then let,

Hps1 = Hn Uio, 1., {98} (C.1.18)
where A* is the set in (C.1.10), also set pg,4+i41 = AZ fori=0,...,14 — 1.

Lemma 1. Given A € Q,, and if X restricted to A is not constant, then there exists
ny > ng such that VGS splits A before or at iteration n,.

Proof. From
> X w? < 11X, (C.1.19)
=0,...
it follows
klim [X,ux) =0. (C.1.20)
— 00

By hypothesis |[X, wﬁ))]l > 0, then using (C.1.20) find n, such that [X, ux]| < |[X, ¥4]|
for all & > ny; by the definition of VGS we then know that VGS will best split A
before or at iteration n;. O

To proceed further we need to introduce some more assumptions, namely we will
consider only the cases when the best functions) u take only J4 4 1 values and if

Ra (1/),(5)) ={rj0,Tj1y--->Tja}> 3 =0,...,14 — 1 then define
Ar={we A:p0 =ry), (C.1.21)
and also assume
Ar={weA: 9P =r; }forall j=0,...,]4—1 (C.1.22)

143

notice that Ay # (). Moreover, we also assume the best children Ay are only of the
following form (where ¢; and ¢, are arbitrary constants):

Ar={w € A: ¢ < X[V](w) < cp} for some V' € S (C.1.23)

Remark 27. Equation (C.1.28) could be replaced by the weaker hypothesis Ay €
a(X).

Under these last assumptions we then have the following.

Corollary 2. If X is a simple function that takes q distinct values, then VGS termi-
nates in a finite number of steps N which satisfies N < q < |Q].

Proof. Let Rq(X) = {z1,...,z,} be the finite set of the range values of X on Q.
Also define the generating sets C,, = {w € Q : X(w) = z;} fori = 1,...,¢. It is
easy to see that any A € II,, where n > 0 is arbitrary, can be written as a finite
union of generating sets. It then follows that each best split.of a given A € II,, will
produce best children which can be written as union of a strictly smaller number of
generating sets. From Lemma 1 this process will continue until the remaining atoms
are made up of a single generating set or X is constant on all these atoms. In any
of these cases X will be constant for all the given atoms and hence VGS terminates.
If we let N denote the smallest integer such that II, = IIy for all n > N, a simple
counting argument proves that N < q. a

The argument used in the proof of Corollary 2 also proves the following corollary.

Corollary 3. Let X be a simple function and denote with Ily the terminating (i.e.
IT, =y for all n > N) partition, which exists by Corollary 2, then:

X restricted to each A € Iy is constant. (C.1.24)

In the next section we will provide general conditions under which

Xz, (w) = —Iﬁ /A X(w) dP(w) for all A€Il, and foralln >0, (C.1.25)

holds.
Clearly (C.1.25) and Corollary 3 will prove the following theorem.

Theorem 2. Assume X is a simple function, then under the hypothesis for which
(C.1.25) holds we will have

X1y (w) = X(w) a.e. in Q. (C.1.26)

144

C.2 Reduction to Scalar case

The aim of this section is to prove (C.1.25). To achieve this goal we will go through a
series of results and notation. We will also need to introduce more specific properties
of bestSplit.

We assume, as usual, that an event A € A is fixed and, for simplicity, remove it
from the notation. In particular ¥4 will be written as 1.

At this point we need to specify the routine bestSplit even further; for this we
will assume that the best function ¥ is given by

@ =a o1 +b @ (C.2.1)

for two fized densities ¢;, i = 1, 2. Moreover, we also have b = ||b|| b where ¥’ is the
optimal ¥’ given by

1 |
—/XMWW—i/MWMP
U2 J A Uy Ja

Jk}; (%Z/AX[H sozdP—uil/AX[k] wldP>2 |

where, as usual, u; = [, ¢idP. Also, an expression for ||b]| is provided in Chapter II.

b= (C.2.2)

We will have to distinguish between a given vector valued random variable 3 and
the associated scalar basis vector 9. So if ¥4 = 1 = ap; + by, we will use the
following notation for the associated scalar function

Ya,s = Ps = dip1 + dappz, (C.2.3)
of course,
[) dP) =0, (C.2.4)
Q
/ w2 (w) dP(w) = 1. (C.2.5)
Q
Proposition 3. Fiz an atom A and everything will be relative to this atom. Then
X, 4] pOfi|(w) = [X[i], @), vO(w) ae. inQ. (C.2.6)

Proof. The proof follows, essentially, by plugging the expression (C.2.2) into the left
hand side of (C.2.6) and comparing with the right hand side of (C.2.6). Computing

we obtain, :
1 -, 1 5,
(X, @] = [|b]] ug (— / X[b] o2 dP — — / X[t o1 dP) = (C.2.7)
U2 Ja Uy Ja

145

(C.2.8)

o] [zb (i [X102 dP - =~ [Xt e dp)

then using (C.2.2) in this last expression we obtain

[X, @] = ||b]] uz\j (/X[k] p2dP — —/ X k] goldP>2 (C.2.9)

k=

Now, in order to write [X, @] ¥©[i] we do the following manipulations

—b
1!,(0) = ap + b902 = (M +b‘,02> —_ ”b” Us b/ ((pZ ﬁ)) (0210)
Ui Uo Uy
Therefore
WO = 1l s By (2 - 2y, (C.2.11)
U9 (751

Using (C.2.9) and (C.2.1'1) we obtain

600 9O = P o (22 - 2) (2 [xtlvear - [xie aP).
(C.2.12)

We concentrate now on the right hand side of (C.2.6). Let dj = ; d 1 S0 dy € {-1,1}
and write the scalar basis function as follows

'(,bs = dl Y1 + d2 Y2 = d2 U2 (f‘z- - ﬁ) = (0213)
Uo Uux
|d2| U9 d’2 (ﬂ - ﬂ)
U2 Uui
Notice now that ‘
|da| = [[b]]- (C.2.14)
Therefore
O = [|b]| us d (5”—2 - ﬁ) . (C.2.15)
U9 Uy
Moreover
1 1
(X[, 6O = da s (- / X[i] ¢a dP — = / X[i] 1 dP) = (C216)
U2 JA Ui Ja

X 9O = bl uz & (= [XE g2 aP = o= [X ar).

146

Therefore, (notice that d = 1)

XEL 690 = (bl ? (2= 2 (& [X e dP - [X0 1 aP) =

(C.2.17)
1 1
B |2 2 (ﬁ—f—l) (—/X' dP——/Xi dP).
bl o (2-2) (- [XilpadP- - [Xiwn
We just checked that (C.2.17) is equal to (C.2.12). O
Using (C.1.7) and Proposition 3 we obtain
Proposition 4.
S99 vl w) = > X[90 v w). (C.2.18)

A€T, AeT,

We need to prove a similar result for the case when we add more functions to
the node, we will only consider the case of '¢ , i.e. will consider only those nodes
for which I, < 2; in fact if J4 = 1 there is no function ¢ @) and so we may assume
I4 = 2 without loss of generality, this restriction W111 cover all the cases considered
in this thesis. From our hypothesis, it follows that 1) 4 (as well as y A 1) takes only
three distinct values. In particular we can write the scalar function as follows

2

PO =" arla,. (C.2.19)
k=0
Consider now \
P = exla, (C.2.20)
k=0

to be the unique function satisfying the following three conditions

@) =1, / YOdPw) =0, D, O] =0. (C.2.21)

In the present scalar case it is easy to find the solution to the above system of
equations. Here is the explicit solution:

o = — € P(AO) (a’l '—a0)
? P(Az) (a1 —ag) '’

_ — eq P(Ap) (a2 — ao)
= P(Al) (az —01) ’

(C.2.22)

(C.2.23)

147

and

2= P(A1) P(42) (a2 — a1)?
°7 P(Ao) [P(A1)P(Az2)(az — a1)® + P(A0)P(Az2)(az — ao)® + P(AO)P(Al)((aé —202))2]‘
2.
Therefore taking ey = =£+/¢2 and using the above equations gives a solution (the +
sign does not affect the scalar components, i.e. the inner product times the basis
element).

Define now ¥ as follows

(X 1i), v 98P (w) (C.2.25)

YOliw) = =
VEL X[, vR

Proposition 5. The constructed vector valued function ¢f41) is 0 outside A and it
takes three distinct values on A, the pre-images of these constant values are ezactly
the best children of A, namely the sets A k =0,1,2. Moreover,

P =0, [w®]=1 (C.2.26)

and

(X, v D] pO](w) = [X[i], p{V]1 ¥ (w) (C.2.27)

Proof. The fact that the best children of A are given as pre-images of constant values
of ¥ follows directly from (C.2.20) and (C.2.25). From the definition (C.2.25) it
follows that in order to prove (C.2.27) it is enough to prove the following equality

d

[X, WP = X [i],). (C.2.28)

i=1

This last equation as well as the other properties follow from simple computations. U

The previous definitions and arguments prove the following.

Proposition 6.

Tp-1 I4-1
Xnlkw)= Y S wPEw) = > S IXEL Ok viw).
A€eT, =0 AeT, i=0

(C.2.29)

Therefore, in order to prove (C.1.25) it is enough to prove the following identity

148

T4-1
S Y (K,] w8) = s [X ') aP@) (C230)
A€T, i=0 (
for almost all w € A and for all A €II,, and for all n > 0.

Equation (C.2.30) will follow from the general result, for scalar expansions, provided
below. We will need the analogous definition to the one in (C.2.31) but for the scalar
case.

We will define an increasing sequence of orthonormal systems G,, for n > 0 corre-
sponding to the n-th. iteration of the VGS algorithm, as follows: Gy = {uo = 1a}

also, assume, recursively that G, = {uo,...,u,} has been constructed. We then let,
Gni1 = Gn Ui=o,.... 14, {1/J(l) s} (C.2.31)
where A* is the set in (C.1.10), also set ug,+i+1 = z/)A.,s fori=0,...,14« — 1.

For the scalar case equation (C.2.30) (and so (C.1.25 is also true) follows from the
following proposition

Proposition 7. Let G, = {uo, ..., Uk, }, also define

Vi, = span {u € o(uo,...,ur)}, (C.2.32)
and
U, = span G,. (C.2.33)
Assume,
dim U, = dim V, (C.2.34)
then for a given random variable X (i.e. real valued measurable function) we have
kn
E(X|u,.. . uk,) = Pu, X =Y _[X, w1 w. (C.2.35)
i=0

Proof. From the definition of conditional expectations we have
E(Xluo, ce ,ukn) = PVnX, (0236)

where Py, X denotes the projection of X onto the closed subspace V;,. Notice that
Gn C V,, therefore (C.2.34) implies that G, is an orthonormal basis for V,,, the result
then follows. _ -0

To complete the scalar case, it then only remains to establish (C.2.34) for the
three cases studied in this thesis, namely Haar, MD and Full Bathtub, this is done
through the following proposition.

149

PROPERTY of
RYERSON UNIVERSITY LIBRARY

Proposition 8. The VGS algorithm satisfies (C.2.84).

Proof. Notice that for for n = 0 we are taking ky = 0 and up = 1lq therefore
dimUy = 1, clearly we also have dimVy = 1. We will proceed by induction, so
assume (C.2.34) holds for n and we will prove it holds for n + 1. Consider the case
that X is constant for all A € II,, we have Vi, =V, for all k > n, therefore the results
holds from the inductive hypothesis. Otherwise, i.e. X is not constant on II,, it then
follows from (C.3.2) and (C.3.3) that dimV,;; = dimV,, + I4 but we also have from
construction, namely (C.2.31), dim Up41 = dim U, + I4. O

C.3 Properties of bestSplit

In this section we will write the complete properties satisfied by bestSplit as used
in VGS and connect its properties with the development of the present Appendix.

Let C4 denote the collection of VGS functions for the given event A, notice that

C,4 is admissible. The routine bestSplit provides a finite number of best functions

ﬁ;” €Cp,i=0,...,I4—1, and a partition of A into a finite number of best children
Are A, k=0,...,14. We will also require

[, ﬁ')] = 0 whenever i #1'. (C.3.1)

Moreover, the best functions wﬁ) take only J4+1 values and if R4 (¥9) = {rj 0,71, - TiIa >
j=0,...,14 — 1 then define

Ar={we A: 9O =ryl, : (C.3.2)

also,

Ar={weA: pU) = rjxy forall j=0,...,14—1 (C.3.3)
notice that Ay # 0. The best children Ay are only of the following form (where ¢;
and c, are arbitrary constants):

Ar={we A:c < X[V)(w) < c2}. (C.34)

Finally, best split also satisfies (for a definition of € the reader should refer to (3.3.13)
and Remark 9)
X, 9] = sup [X, . (C.3.5)
YeCa

Remark 28. In reality, (C.8.5) as described is not the full story as, for each of the
three cases (Haar case, Full Bathtub and MD case) we require some conditions and/or
special constraints.

150

R S R R
L nn et S
woe '

The construction of ¢§{’) is fully described in Chapter 3. Therefore, in order to
completely specify bestSplit (for the cases considered in the thesis), it remains only

to describe the construction of wf:), this is done by (C.2.25).
Given the above properties of bestSplit we can prove the following proposition.
Proposition 9. [X, @bff)] =0 if and only if X restricted to A is constant.

Remark 29. If A is a given atom in a VGS partition, notice that the above proposition
proves that VGS does not split A any further if and only of X restricted to A is
constant.

Proof. Assume first that [X, 1/&))] = 0 and that X restricted to A is not constant, this
implies that there exists ¢ € C4 such that [X,] # 0. Without loss of generality we
may assume [X, 9] > 0, given (C.3.5), this contradicts our assumption.

Conversely, assume that X restricted to A is constant, then the fact that E(y®)
implies [X, ¢ff)] =0. O

C.4 New Formulas for Alternative VGS

So far the VGS algorithm runs by optimizing [X, 1/] which gives the best VGS function
40, a-posteriori we obtain 11, it is reasonable to directly optimize the functional

X9 OP + [X, p 02 (C.4.1)

by proposing the Bathtub solutions for 4(®) and for each of this proposed functions
computing ¥® using (C.2.25). Notice that [X,9®]? can be computed via (C.2.28).

151

Bibliography

[1] D. Alani, A. Averbuch and S. Dekel, “Image coding with geometric wavelets”,
IEEE Transactions on Image Processing, Vol.16, No.1, pp. 69-77, 2007.

[2] P.J. Catuogno, S.E. Ferrando, A.L. Gonzalez “Adaptive martingale approzima-
tions.”, in press (2007).

[3] Heon Ho Choe “Computational Ergodic Theory”. Springer Verlag (2005).

[4] A. Cohen, W. Dahmen, I. Daoubechies and R. De Vore “Tree approzimation and
and optimal encoding”, Applied and Computational Harmonical Analysis, Vol.
11,pp. 192-226, 2001.

[5] Geoff Davis and Aria Nosratinia, “Wavelet-based image coding: an overview”,
Applied and Computational Control, Signals, and Circuits, Vol. 1, No. 1, Spring
1998.

[6] D.L. Donoho, M. Vetterli, R.A. DeVore and I. Daubechies, “Data compression
and harmonic analysis.”, IEEE Transaction on Information Theory, Vol 44, No.6,
pp. 2435-2476, 1998.

[7] S.E.Ferrando, E.J. Doolittle, A.J.Bernal, L.J.Bernal. “Probabilistic matching
pursuit with gabor dictionaries”, Signal Processing, Vol. 80, Issue 10, pp. 2099-
2120, 2000.

[8] R. Gonzalez, R. Woods, “Digital Image Processing”, Second Edition, Printice
Hall, pp. 282-510, 2003.

[9] Y. Huang, L. Pollak, M.N. Do, and C.A. Bouman. “Fast search for best represen-
tations in multitree dictionaries.” IEEE Transactions on Image Processing, Vol.
15, No. 7, pp. 1779-1793, July 2006.

[10] Huffman, D.A. “A method for the construction of minimum redundancy codes.”
In Proceedings IRE, Vol. 40, pp. 1098-1101, 1962.

[11] “Independent JPEG Group”, [Online]. Available: http://www.ijg.org/.,

152

[12] A. Jensen and A. la Cour-Harbo “Ripples in Mathematics. The Discrete Wavelet
Transform”. Springer (2001).

[13] “The JPEG Committee”, [Online]. Available: http://www.jpeg.org/.

[14] Evgeny Klavir “Adaptive Vector Greedy Splitting Algorithm” Ryerson University,
M.Eng. Thesis, 2007.

[15] S. Kirkpatrick, C. D. Gelatt ans M. P. Vecchi, “Optimization by simulated an-
nealing” Science, Vol. 220, No. 4598, pp. 671-680, 1983.

[16] E.H. Lieb and M. Loss. “Analysis”, 2nd. edition. Graduate Studies in Mathe-
matics, Volume 14. American Mathematical Society (2001).

[17] S. Mallat and Z. Zhang (1993). “Matching pursuits with time-frequency dictio-
naries”. IEEE Transactions of Signal Processing, Vol. 41, pp. 3397-3415.

[18] S. Mallat. “A Wavelet Tour of Signal Processing”. Academic Press, second edi-
tion (1999)

[19] H. Radha, M. Vetterli and R. Leonardi “Image compression using binary space
partitioning trees”, IEEE Transactions on Image Processing, Vol. 5, No. 12, pp.
1610-1624, 1996.

[20] A. Said and W. Pearlman, “A new, fast, and efficient image codec based on set
partitioning in hierarchical trees”, IEEE Transactions on Circuits and Systems
For Video Technology, Vol. 6, No. 3, pp. 243-250, 1996.

[21] A. Said and W. Pearlman, “An image multiresolution representation for lossless

and lossy compression”, IEEE Transaction on Image Processing, Vol. 5, No.9, .

pp. 1303-1310, 1996.

[22] J.M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients”,
IEEE Transactions on Signal Processing, Vol.41 - No.12, pp.3445-3462, 1993.

[23] R. Shukla, L. Dragotti, M.N. D and M. Vetterli, “Rate-distortion optimized
tree-structured compression algorithms for piecewise polynomial images”, IEEE
Transactions on Image Processing, Vol. 14, No.3, pp. 343-359, 2005.

[24] Taubman, D. “High performance scalable image compression with EBCOT?,
IEEE Transactions on Image Processing, Vol. 9, No.7, pp. 1158 - 1170, 2000.

153

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2007

	Simultaneous approximation of images applications to image and video compression
	Ariel Juan Bernal
	Recommended Citation

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156
	00157
	00158
	00159
	00160
	00161
	00162
	00163
	00164
	00165
	00166
	00167
	00168
	00169

