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ABSTRACT

Performance Analysis of Solar-Powered
Wireless Visual Sensor Network and Its Applications

© Xiaoming Fan 2007

Master of Applied Science
Department of Electrical and Computer Engineering

Ryerson University

This thesis discusses the performance of a solar-powered wireless visual sensor network
and its visual applications. We examine the performance of a layered clustering model in
sparing communication energy consumption and prolonging the system lifetime. The
experimental result illustrates that the system can transmit the same amount of video
packets with less energy consumption when video quality is at achievable minimum
distortion rate. Therefore, the visual sensor network may achieve higher performance by
applying rechargeable solar cell and layered clustering. After receiving all the video data,
the sink may be applied with advanced post-processing techniques. We propose an
innovative post-processing algorithm, Parallel Self-Organizing Tree Map (PSOTM) that
can be implemented in the sink. By means of processing visual data in parallel, PSOTM

may achieve faster image segmentation with insignificant impacts on the visual quality.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives

Ih the past several decades, advances to information technology (IT) have provided much
support to economic growth around the world. Recently, in the IT field, wireless visual
sensor networks (WVSNs) and their visual applications, such as, video surveillance,
sensing rooms, smart conference rooms, environmental monitoring, military application,
disaster management, image segmentation, video processing, etc, have drawn a lot of
attention [1][2]. WVSNs are often deployed in unattended environments or open areas
like national parks and battlefields, thus leaving the sensors requiring self-management.
Due to the limited dimensions of the sensor nodes, the capabilities of most deployed
nodes are restricted, especially in processing unit and battery energy. At present, many
researchers put emphasis on either prolonging the system lifetime or improving the
capability of the sensor nodes, especially central processing unit (CPU). However,
improving the capability of the sensor nodes generally leads to the increase of their
energy consumption. Hence, the lifetimes of sensor nodes are shortened in the case of
equal energy capacity, vice versa. To sum up, only improving one aspect is often at the
expense of solving the deadlock between increasing the capability of the sensor nodes

and lengthening the system lifetime.

In this thesis, our research focuses on a heterogeneous solar-powered wireless visual

sensor networks (HSPWVSNs). Typically, the normal HSPWVSNs are composed of
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three components: normal visual sensor node, cluster head node, and base station.
" Normal visual sensor nodes are equipped with surveillance cameras. Once visual sensor
nodes are activated by certain events, the cameras module will be initialized to capture
visual signal, encode and transmit video data to the cluster heads. In addition to the
function of capturing the video data, the cluster head nodes also have the functions of
aggregating, encoding the data from the visual sensor nodes, and forwarding to the base
‘station. Genérally, the base stations have larger energy capaéity, faster computing speed
and more communication resources. They act as a gateway between sensor nodes and the
end user. The visual data gathered from the wireless visual sensor network is saved in the
sink. The sink can process the video data with post-processing algorithm. The algorithm
we proposed in this thesis is Parallel Self-Organizing Tree Map (PSOTM). In this work,

we put our focus on:

e How to prolong the system lifetime and improve visual quality of WVSNs at the

same time?
e How to improve the image processing performance of the sink in WVSNs?
To solve the above questions, in this thesis:

e We examined the performance of layered clustering and data aggregation models
in the solar-powered WVSNs. We also applied video distortion and solar cell

modules to the system model of sensor nodes.

e We proposed a novel post-processing image segmentation algorithm4 PSOTM to

improve image processing performance of the sink.



1.2 Thesis Organization

The thesis is composed of five chapters and the rest four chapters are organized as below.
Followed the introduction on Chapter 1, Chapter 2 introduces the related work of WSNs,
WVSNSs, and image processing techniques, SOM and SOTM.

Chapter 3 examines the performance of a layered clustering model in the WVSNs. Since
the energy requirement of visual sensor nodes in WVSNs are much higher than that in
VSNs, we applied layered clustering model and rechargeable solar cell unit to the
WVSNs. The experiments are implemented under considerations of visual quality and
solar cell recharging. The experimental result proves that the layered clustering model

can prolong the system lifetime of solar-powered WVSNs in most situations.

Chapter 4 proposes a novel post-processing image segmentation algorithm, PSOTM,
- which can be applied in the sink. Through processing image in parallel, the algorithm can
dramatically improve the image segmentation efficiency with insignificant impact on the

image segmentation results.

Chapter 5 provides conclusions and directions for the future work. We first summarize
and list our contributions in the thesis. Then future work on the homogeneous and

heterogeneous solar-powered WVSNss is provided.



CHAPTER 2

RELATED WORK

This chapter introduces the related work of WSNs, WVSNs, SOM, and SOTM. The

remainder of this chapter is organized as follows,

Section 2.1 introduces related work of WSNs. It includes five sub-sections:
solar cell, routing improvement, lifetime and topology, quality of

service, and energy and routing.

Section 2.2 introduces related work of WVSNSs. It includes two sub-sections:

visual quality, and energy and topology.

Section 2.3 introduces related work of image processing techniques. It includes

two sub-sections: SOM, and SOTM.

2.1 Wireless Sensor Networks

WSNs consist of numerous spatially distributed autonomous tiny sensors that
communicate with wireless [75][76]. They are used to capture the signals, such as
temperature, humidity, sound, wind speed, vibration, air pressure, motion detection, and
pollutants strength, at different locations. The military application such as battlefield
surveillance is the original motivation of the sensor network [79]. Later, the applications

of wireless sensor networks are employed in many civilian application areas, including
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atmosphere and home monitoring, healthcare applications, house automation, traffic
organization, distance areas monitoring, industrial product monitoring, inventory

managing, monitoring patients, assisting disabled patients, virtual keyboard, finding the

parking space, smart office, Global Positioning System and etc [77].

Generally, a wireless sensor node is composed of sensing unit, transceiver unit,
processing unit, and power unit. According to each node’s role and the area size of the
WSNs, the dimension of sensor nodes can vary from dust size to book size. The cost of
the nodes also varies from several cents to thousands dollars. Consequently, the
constraints on the node’s cost and size lead to the constraints on the node’s components,

such as, processing speed, energy capacity, memory size, and the wireless availability.

Station

Satellite

Sensor
Field

Task Manageri Sink Sensor
Node \. Image Post-processing Nodes
Server g

Figure 2.1 Wireless Sensor Networks Architecture



Location Finding Unit Mobilizer Unit

Sensing Unit Processing Unit Transceiver Unit

Transceiver

Storage

Figure 2.2 Sensor Node Components [81]

WSNs can be classified into two broad types: homogeneous and heterogeneous sensor
networks [16][18]. In the homogeneous sensor networks, all the sensor nodes are
identical in terms of processing speed, battery capacity and hardware complexity. In the
heterogeneous sensor networks, two or more different types of nodes with different
energy capacities and functions are used [78]. In general, a heterogeneous WSN is made
up of numerous wireless sensor nodes that are randomly distributed in an open area. As
illustrated in Figure 2.1, normal sensor nodes are responsible for capturing and generating
the signal, processing data and communicating with the other nodes or the base station.
The sensors are supposed to own the capabilities of self-organizing, event-detection, even
event-activation. Commonly, in a clustering heterogeneous WVSN, base station and

cluster heads have relatively stronger processing capability. For a normal sensor node in



WSNs, it has a CPU, memory and short-range wire/wireless communication facility and
it is universally powered by battery, wall-outlet or solar cell. Figure 2.2 illustrates the

structure of a typical visual sensor node [81]. The function descriptions of all the units in

the sensor nodes can be found in the Table 2.1.

Unit Name Function Description
Sensing Unit Sensor captures and generates data. The data of visual sensor
(Sensor, ADC) also includes visual signals.

ADC (Analog-to-Digital Converter) converts analog data to

digital data.

Processing Unit Processor processes and encapsulates the data from the sensing

(Processor, Storage) unit. Instead of Microcontroller, visual sensors may need

digital signal processor (DSP) to process the image or video.

Storage stores the operating system of the sensors and data

generated by sensing unit or received from other nodes.

Power Unit Provides the energy to all the units in sensors, the power

sources can be battery, solar cell, wall outlet, etc.

Transceiver Unit Communicates with the other sensors. It includes the

components for transmitting, such as antenna, receiver.
Mobilizer Unit Let the sensors move in the open area.

Location Finder Unit  Let the sensors find their location.

Table 2.1 Wireless Sensor Nodes Components



Compared to the ad-hoc wireless networks, the number of sensor nodes in a sensor
network can be several orders of magnitude higher than the nodes in an ad-hoc network.
In addition, the topology of a sensor network may change much more frequently. Thirdly,
sensor nodes mainly use a broadcast communication paradigm, whereas, most ad-hoc
networks are based on point-to-point communications. Fourth, sensor nodes are limited in
power capacity, computing speed and memory size. Last, sensor nodes might not have

global ID because of the large amount of sensors.

In WSNs, there are five common issues: (1) energy unit that is recharged by solar panel;
(2) routing improvement; (3) system lifetime extension and topology revision; (4) quality
of service; and (5) energy and routing. We will discuss the related work on these five

issues in the following sections.

2.1.1 Solar Cell

Among the energy sources available for scavenging, solar radiation is one of the most
profuse energy sources. Solar cell is also one of the very common natural power choices.
Moreover, it is compact and compatible with our other energy sources. Compared to
other energy harvesting techniques, it is also a well-developed technology. There are
numerous prior researchers having worked on advancing solar cell techniques.
Particularly, the question of how to avoid false terminating the solar cell recharging
procedure is one of common issues. Specifically, for the recharging systems that detect
overcharging only by immoderate decline of the charging current or voltage, sometimes
the solar panels will cease charging even when the solar cells have not hit their maximum
capacities. Abnormal climates, such as thunderstorms, rain, cloudy, or a shade on the

solar panel, may cause a dramatically decrease of charging voltage or current that might



lead to a false termination of recharging procedure. Boico ef al. proposed a method to
inhibit the end of solar cell recharging procedure under conditions where the solar cell

has not hit its maximum energy capacity [3].

Warneke et al. put forward a compact autonomous design of solar-powered sensor node
whose dimension is smaller than 16mm?® [4]. The signal of sensor can be transmitted over
a bi-direction long distance optical link, which allows it to be used in a one-to-many
network configuration. Raghunathan er al. further developed a prototype of wireless
embedded system that is powered by solar cell and presented four key issues arise from
the system design [5]. The four issues are: (1) the solar energy supply is not stable and
charging time varies due to the various weathers; (2) battery self-discharge and round trip
efficiency; (3) the different solar cell’s voltage-current characteristics; (4) the question of
how to modulate system’s power consumption by selectively deactivating some
sub-components. The authors investigated the key issues in the design of solar-powered
wireless sensors and embedded systems. Both of the papers discussed the solar-powered
sensor node designs and gave the charging rate of solar cell under the conditions of

outdoor bright sunlight and indoor illumination.

Since different cities are located in different geographical locations, their daytime tables
are also varying. The daytime tables of all main cities around the world in a year can be
found on the website [6]. In the thesis, we studied the performance of solar-powered
wireless visual sensors in different locations by applying their daytime tables.
Furthermore, in the experiment, we also discussed the false termination of recharging
procedure. By applying the method of Boico ef al. [3], the solar cell recharging model is
modulated under an ideal condition that is exclusive of false termination in charging

procedure.



2.1.2 Routing Improvement

In WSNs, numerous researchers evaluate the performance of routing protocols by
employing the existing routing protocols under the same conditions. Mohan ef al.
evaluated the performance of the multi-hop routing protocols in a testbed where the
sensors are densely spaced. The authors concluded that HSN DSDV and Reliable Time
Sync can achieve higher performance than the other routing protocols in the testbed [7].
Pham et al. also presented a comparison of four other wireless sensor network protocols:
MultiHopRouter, TinyAODV (Ad-hoc On-demand Distance-Vector), GF (Greedy
Forwarding), and GF-RSSI (Greedy Forward with Received Signal Strength Indication)
[8]. Performance measurement is conducted on a wireless sensor network testbed for
medical application research. Based on the measurements, GF-RSSI performs well in
various operating conditions. Especially, it shows a high success rate of packet delivery

and moderate energy consumption.

Some researchers improve the system performance by revising the existing routing
protocols, such as, AODV and Pulse. Some specific values or weights, such as, path value,
and location information have been applied to the existing routing protocols. Gwalani et
al. proposed AODV-PA, AODV with path accumulation [12]. By evaluating AODV-PA,
DSR, and AODV protocols in packet delivery ratio, normalized routing load, and
end-to-end delay of data packets, the authors conclude that AODV-PA has a higher
performance in most cases, especially in high load scenarios. In addition to the work of
Gwalani, Ooi et al. proposed AODV-bis, a path accumulation AODV with location
information [9]. The difference between AODV and AODV-bis is that AODV-bis uses
location information in route discovery. That means the source nodes only forward RREQ
to the nodes that are closer than the destination nodes. Compared with transmitting

packets from the source nodes to the destination nodes, only sending the packets to the
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closer nodes consumes less energy. Thus, the revised protocol spares the transmission

energy and bandwidth when the source nodes periodically update their routing tables.

The sensors at standby state can save substantial energy than that at active state.
Awerbuch et al. proposed an amended Pulse routing protocol by applying periodic pulse
routing updating and letting the sensor periodically wakeup [13]. Such a protocol can
increase delivery rate and save energy at the same time. For those large-scale networks,
the recurrent routing updating consumes the most bandwidth. Zheng ef al. proposed
AODV-Clustering, which is AODV based clustering routing protocol [14]. The clustering
algorithm can solve the scalable problem for AODV in the large mobile networks.
AODV-Clustering performs better than AODV in the Average Route Acquisition Latency,
Quick Route Discovery Mechanism and reduces the RREQ flooding at the cases of large

quantity of nodes and heavy load.

Some researchers improve system performance by applying two routing protocols to
different segments of a hierarchical sensor network. Bai e al. proposed a hierarchical
routing model, WPR(Way Point Routing) [10]. The inter-segment routing is DSR and the
intra-segment routing is AODV. The advantage of applying these two routing protocols is
explained as follows. If an intermediate sensor is malfunctioned or a link is broken,
instead of updating all the links in the network, the routing algorithm only updates the
segment that has the malfunctioned sensor or broken link. Thus, the algorithm can spare
the energy of sensors that are functional and with normal wireless links. This model is
especially efficient in the dense wireless networks, for example, over 1000 nodes. In the
paper, the authors also proved the protocol has better performance than the other flat
routing protocols, such as DSR and AODV, and hierarchical routing protocols, such as

CGSR and ZRP, in the large networks.

Some researchers proposed new routing protocols to improve the performance of wireless
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sensor network. Yuasa ef al. proposed a sustainable routing protocol considering easy
node exchangeability. [11]. The experimental result shows that the system lifetime can be
prolonged with the routing protocol. Marwaha et al. also proposed an original routing
scheme, Ant-AODV that is the combination of a distributed topology discovery
mechanism and AODV routing protocol [15]. The experimental result shows that

Ant-AODV can provide better performance than AODV.

2.1.3 Topology and Lifetime

There are also numerous papers discussed on the question of how to prolong system
lifetime by improving the network topology in WSNs. Some researchers proposed to
generate the system topology by the capabilities of sensors. Chan et al. discussed the
hierarchical routing protocols in terms of the energy usage, packet latency, and security at
the presence of node compromise attacks [16]. The authors also proposed a method to
design the network with particular energy, latency and security demands. Yong et al.
further investigated the generation of a hub-spoke heterogeneous network topology that is
adaptively formed according to the resources of the sensor nodes [17]. A protocol named
Resource Oriented Protocol (ROP) was developed to build the network topology. This
protocol chiefly divides the network operation into topology formation phase and
topology update phase. The network is composed of three types of sensors, SRC (Small
Resource Capacity), MRC (Medium Resource Capacity), or LRC (Large Resource
Capacity).

In heterogeneous wireless sensor networks, the sensors with higher capability can work
as cluster heads or base station; the sensors with lower capability can work as normal

sensors or range sensor. Du et al. proposed a heterogeneous design, incorporating a
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mixture of sensors with widely varying capabilities [18]. In the design, a small number of
powerful high-end sensors, and a large number of low-end sensors were deployed. The
authors also proposed a Cluster Head Relay (CHR) routing protocol for the
heterogeneous sensor network. CHR proves its better performance by comparing with
two popular sensor network routing protocols: Directed Diffusion and SWR [29].
Additionally, Madan ef al. analyzed the network lifetime by applying partially and fully
distribution algorithm [19]. Under the consideration of limited node energy, the
experimental result deduces that the partially distributed algorithm is faster than fully
distributed algorithm in rate of convergence. An unequal clustering model that can be
applied to the sensor network is proposed by Soro et al. [22]. The areas of the layers are
derived from the energy functions of the cluster heads in the different layers. By varying
the areas of the clusters, the numbers of sensor nodes in the clusters also varies. The
authors concluded that with the proposed model, the energy of all the cluster heads can be

exhausted synchronously.

Some researchers proposed to divide the network into different segments and assign the
sensors different functions or statuses. Vaidya ef al. developed an innovative video sensor
network framework [20]. It is made up of several zones. Each zone includes event-driven
sensors, sonar sensors, and visual sensors. Based on the computation of direction and
speed of the mobile object, the intelligent sensor management system can activate the

cameras in the corresponding area. The system structure is depicted as follows.
e Layer 1: Gateway. A sensor node with more computational power and resources.

e Layer 2: Event driven sensors. This layer is responsible for activating

corresponding layer 3’s sensors.

o Layer 3: Range sensors. Sonar sensors are responsible for detecting object’s

position. The sonar sensors can only get the radial distance between object and
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sonar sensor.
e Layer 4: Camera and acoustic sensors.

Instead of assigning the heterogeneous sensor nodes into different zone, Yamasaki et al.
presented an energy-efficient WSN with three models: i) censoring sensors, ii) on-off
sensors, and iii) censoring and on-off sensors [21]. For energy saving purpose, the
authors recommended the model iii. Proved by the experiment in the paper, the authors

can design very energy-efficient WSNs by using censoring and on-off sensors.

2.1.4 Quality of Service

In WSNs, many applications of wireless sensor network require the sensor nodes deliver
signal content with a certain level of quality of service (QoS). In the research field on
wireless sensor network, the topic on minimizing the energy consumption has attracted
many researchers so far. However, the question of how to efficiently deliver
application-level QoS, and the question of how to map their wireless transmission
requirements to the metrics such as latency and jitter become primary concerns in
mainstream research on sensor networks. Biagioni et al. proposed a reliability layer that
is based on the protocol, MOR (multipath on-demand routing) [23][85]. It incorporates a
redundant routing in every node, where the redundant routing can be correlated, not like
MDSR [82], AOMDYV [83]. Compared with AODV and DSR, the proposed model, MOR
that is applied with reliability layer, proves to have better performance in delivering the
same quantity data. By applying the QoS value to the existing protocols, it is easy to let
them have QoS function. In order to solve the errors that arise from unreliable and poor
communication, Mansouri et al. proposed Simple Transport Protocol for Wireless sensor

network (STPW) [26]. It consists of two parts, one is transport layer method, which is
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used to overcome the poor wireless communication, and other is path redundancy, which

is used to guarantee the packets delivery.

On the other hand, some researchers enhance the existing routing protocols by adding the
QoS weight. Gerasimov er al. proposed an end-to-end QoS enhanced AODV routing
protocol [24]. By comparing the QoS-AODV with other two similar AODV protocols,
the authors concluded that QoS-AODV is more likely to find QoS end-to-end route in the
wireless network. Similarly, Zhang ef al. proposed a routing protocol, QS-AODV, which
is the combination of the AODV and QoS value [25]. Comparing with AODV, it can
dramatically improve the packet delivery rate in a heavy-traffic MANET with a slight

delay.

2.1.5 Energy and Routing

In WSNs, due to restricted dimension of the sensor, the limited energy capacity of the
sensor nodes is always the bottleneck on prolonging the system lifetime. Nevertheless,
discovering the most reasonable route is an energy consuming task for every wireless
sensor node. Many researchers try to find the most efficient way to establish a finest route
between normal sensor node and base station. Gomes et al. proposed OPER (On-Demand
Power-Efficient Routing) that is improved from AODV [27]. OPER-PE (Path Energy)
and OPER-NE (Node Energy) are two route selection parameters. Compared with some
existing routing protocols, such as, MAER, MBCR, Direct Diffusion, AODV, the
proposed routing protocol can spares the energy in finding routes. Moreover, Heeseok et
al. proposed a routing protocol by applying energy-aware and multipath routing on
Nano-Qplus Platform [28]. In the proposed routing protocol, the nodes with higher

energy value can be selected during establishing a routing path from source node to

15



destination node. Energy efficiency is improved and data transmission rate is promoted.
‘Furthermore, Tian et al. proposed SWR (single path with repair) that can automatically
find an alternative route when there is a break in the single path route [29]. The authors
also proved the SWR had better performance than the existing protocols, such as, SWOR,

DISJ2, MESH in the delivery rate and average energy consumption per data delivery.

Some researchers implement the routing protocol with energy aware value. Tan ef al.
proposed PAW-AODV (Power-Aware) routing protocol [30]. The authors proved the
protocol can deliver more data packets than AODV in the same experiment setup.
Additionally, Kim et al. proposed an enhanced AODV protocol by applying the energy
value [31]. By implementing AODV and enhanced AODYV, the system applied later
routing protocol proves to have a longer network lifetime than the system applied former
routing protocol. Hong et al. also proposed an energy-aware routing protocol that is
applied in the space exploration [32]. The energy value is regarded as a reference value in
the multi-path routing protocol. The result proves the energy-aware load balance routing

had the best performance in extending the system lifetime.

2.2 Wireless Visual Sensor Networks

Generally, a WVSN is made up of numerous sensors equipped with visual data collection
modules. For a visual sensor node, the sensing unit can capture the visual data; the
process unit may need DSP to process the visual data; the power unit has stronger power
supply to provide the energy for the visual facility. Besides the functions that WSNs

already have, WVSNs have the visual applications, such as:

e Security: WVSNs can be the residence surveillance systems. For example, visual

sensor nodes can be placed close to the driveway, monitoring and recording the
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pedestrians, transmitting the video and audio data to the sink. The data can

provide the critical clue on the criminal investigation.

Industry Control Monitoring: In the noxious environments, such as the

automobile painting, visual sensors can gather visual data on the painting quality.

Traffic monitoring: In highway area, wireless visual sensors can monitor the real

time highway traffic; help drivers avoid the traffic congestion.

Remote Medicine: In a desolate area, sensors can transmit the images or video of
the patients to the doctors who are in the city. By analyzing the visual data and
monitoring the patient on heart beat, pulse, body temperature, blood pressure,

doctors can provide the emergency cure and give the prescription [84].

Climate Monitoring: Sensors can continually provide the video data on the

climate, such as, cloud, sunrise, sunset, moon, thunderstorm, and rain.

Battlefield Surveillance: For battlefield surveillance, visual sensors can monitor
the moving of enemy; provide the location of attack targets, and even the status of

battles in a big picture.

Shopping Mall: In the shopping mall, visual sensors can be placed at the entrance.
They provide manager of the mall the video data for customer statistic on the

shopping habits.

Airport Surveillance: Monitor the registration desk, luggage delivery, plane
arrival or departure, and customer density; help the operator to run the airport

smoothly.
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2.2.1 Visual Quality

In wireless visual sensor networks, the visual appllcatlons are the key issue of the normal
sensors. Sparmg the energy consumptron on the one hand and yet guaranteemg the image
qualrty that system requires on the other hand, are two vital facts for wireless visual
sensor network. Based on the Rate-Distortion (R-D) model, He et al. 'deveIOped the
Power-Rate-Distortion (P-R-D) analysis framework by extending the power value to the
R-D model [34]. The power consumption is divided into two parts power consumption of
data transmlss1on (Py) and power consumption of vrdeo codrng (Ps). The model has been
applied in two scenarlos small and large delay video systems. He et al. also introduced
concept accumulatlve v1sual 1nformat10n (AV]) to measure the amount of visual
information collected in the VSNs [35]. Be51des the entropy, it includes the image
distortion, encoding efficiency and energy consumption. Since the old rate-distortion is
evolved from the wired network, it can not be applied to WVSNs. He ef al. proposed a
model that includes integrated resource-dlstortlon analy51s framework by consrdenng the
new resource constraints, such as transmission bandwrdth and storage space [36] By
applymg the new R-D model the overall performance of the system can be promoted.
Besides the work of He et al., Chow et al. also 1nvest1gated the relatlonshlp between
image quality and energy consumption [37]. It shows that in the case of long-distance N
(many hops) transmission, it is better to.aggregate the overlapping part of images to
decrease the packet’s size. However, in the case of short-distance transmission, it might

not work so effectively.

2.2.2 Energy and Topology

Numerous researchers put focus on energy economization by optimizing the sensor
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location, video flow, and system layout. Kim et al. developed a cooperative relaying
architecture that reduces the transmitting and receiving energy [39]. The system is made
up of three layers, sensor, cluster head and base station. The video sensors are organized
as cluster and the cluster heads aggregate the video in the cluster. This prépbsal is
working pe;'fgct in high rate video sensor networks. On the other hand, Pan et al. believed
that theA loéation of base station plays an important role in prolonging the lifetime of
sensor networks [41]. Since the communication distances between the sensors and base
station are related with energy consumption, the éuthors proposed two schemes, one is a
centralized location-based scheme, and the other is distributed AoA-based scheme. In
additional, Chu et al. proposed a distributed attention mechanism [42]. It is made up of
three layers, pre-attentive, attentive and cognitive layer. The lower level image processing
is running on the pre-attentive layer, the attentive layer can be regarded as tracking layer.
Furthermore, Obraczka et al. investigated on the question of how to manage ‘the

information flow in the WVSNs [40].

2.3 SOM/SOTM

2.3.1 Self-Organizing Map

Curfehtly, there are two common topicé in the image field, one is image segmentation and
the 6ther.ri5»image -recognition. Researchers have taken great efforts to develop ﬁew
technologies for image segmentation and recognition [43][44][45]. In early years, only
human beinés'were ccapable of doing most image segmentation projects. However, the

high expense and low efficiency of such manual work are always issues in image
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processing. The questions of how to segment a picture intelligently and how to improve
the efficiency of segmentation software synchronously are two most popular issues.
Recent research has made for suitable self-driven image segmentation technologies to be

available in the near future.

T. Kohonen briefly introduces the Self-Organizing Map (SOM) and the applications in
his survey paper [47]. Recently, SOM has been used in speech recognition, robotics,
process control, and telecommunications applications. However, it performs poorly in

various pattern recognition tasks unless manual supervision is possible.

The SOM can also be applied in data visualization and exploration. After considering the
different clustering SOM approaches, Vesanto et al. proposed a hierarchical
agglomerative and partition-based clustering using k-means [48]. In a two-stage
procedure, the second stage uses the prototypes generated by the first stage. Accordingly,

the proposed algorithm may achieve good performance and shortened processing time.

Dittenbach et al. proposed a novel neural network model, growing hierarchical
self-organizing map [49]. During an unsupervised training process, the neural network
model can migrate into a hierarchical structure. Through application scenarios from the

information retrieval area, the proposed algorithm proves to be extremely useful.

2.3.2 Self-Organizing Tree Map

H. Kong, J. Randall, and L. Guan ef al. investigated the Self-Organizing Tree Map
(SOTM) that is a special algorithm derived from SOM with tree building hierarchy
[46][33]. SOTM automates the process of determining the correct number of centroids.

SOTM maps from a high dimensional Euclidean space [50] onto a finite set of prototypes,

20



and this technique has been applied on various image processing applications, such as
restoration, compression, and segmentation [51]. Furthermore, in image segmentation,
the SOTM computing method is employed to attain not only the feature points, but also
the centre vectors of feature points. It has proved its classification abilities in performing

image segmentation and feature point grouping in the image processing.

SOTM has been applied in many applications. The SOTM has been used for grey level
image segmentation and two dimensional data mapping, demonstrating its ability to
perform unsupervised data clustering [33]. Moreover, the SOTM has also been applied

into automated interactive retrieval tasks in order to minimize user participation [38].

SOTM has sprouted several derived algorithms for applications on content based image
retrieval and biofilm image analysis. In CBIR systems, Jarrah ef al. used the invariance
properties of Hu's seven moment invariants for relevance identification [52]. Based on
their simulation, an innovative ranking function in the structure of the SOTM is also
proposed. Furthermore, Kyan et al. investigated use of the self-organizing feature map
(SOFM) with different combinations of other image statistics [80]. The authors applied
the model to 3-D microscope image data to automatically enhance and extract
biomaterials of interest. In a sample application, this technique allowed for improved
level of detail and clear isolation of chromosomes from their background. In further work
applied to the area of biofilm segmentation, the SOTM was further enhanced by Kyan et
al by refining the competitive search strategy. This move made the SOTM more sensitive
to the regional associations of different microbial matter thereby improving the
segmentation algorithm [53][54]. In this work, Kyan et al also proposed a criterion of
refined stop. Consequently, the dynamically generated number of classes becomes more

data dependant.
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CHAPTER 3

WIRELESS VISUAL SENSOR NETWORKS

This chapter first introduces the background knowledge of WVSNs. Then, layered

clustering model and its experiment are illustrated respectively. The remainder of this

chapter is arranged as follows,

Section 3.1

Section 3.2

Section 3.3

Section 3.4

introduces the background knowledge of WVSNs.

presents system model, which is made up of five units, solar cell unit,
event trigger unit, energy consumption unit, layered clustering unit, and

video distortion unit;

shows the experiments of the layered clustering model under the

considerations of visual quality and solar cell recharging.

summarizes the layered clustering model for the solar-powered WVSNs.

3.1 Background

Recently, WSNs have drawn a lot of attention in environmental monitoring, military

applications, disaster management, etc [1][2]. Due to the restricted item size of the

normal sensors, the capabilities of most deployed sensors are limited, typically in

processing unit and nodes energy.
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In WSNs, a sensor node generates, transmits and relays signal among neighbors. For
those somewhat “simple” sensors that merely capture temperature, pressure, the energy
consumed on data gathering is minor and the transmission energy is dominant in energy
consumption. Conversely, the “complex™ visual sensors, such as, video surveillance
sensors, which are deployed in open areas, for example, shopping malls, airports, national
parks and campuses, need relatively higher power for data gathering, analysis and codec.
In WVSNS, visual sensors also encode and trans-code the raw video data captured by
their visual facility. Specifically, visual nodes can capture video signal; encode or
trans-code the raw video to mpeg2/4 video clips; aggregate the duplicated videos; and
send them to the cluster heads or the base station. Consequently, the energy consumed by
visual nodes is comparatively higher than the sensors without visual facility and energy
consumed by wireless communication is not the only dominant energy consumption any
more. In some conventional sensor networks, the sensors have continuous power supply
and wired communication. However, in the wide-open outdoor areas, it is unrealistic and
luxurious to connect the sensors with power and communication cables. Namely, only
limited bandwidth and energy can be used by each wireless battery-powered visual node.
Like the other WSNss, the limited energy capacity and wireless bandwidth are also the
overriding constraints of WVSNs. We provide two approaches, one is reducing the
number of transmission video packets and decrease the wireless transmission distance by
applying the layered clustering model with video data aggregation, the other is promoting

the energy capacity of system by applying rechargeable solar cell to the WVSNSs.

3.2 System Setup

The heterogeneous Solar-Powered WVSNs (SPWVSNSs) investigated in this thesis has

three kinds of sensor nodes, visual sensor nodes, cluster head nodes, and base stations.
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The energy capacities of sensor nodes are corresponding to the functions they possessed.
Some sensors, such as base stations powered by wall outlet have almost limitless energy
capacity; the cluster head nodes have a bigger size solar panel and higher energy capacity;
other normal visual sensors recharged by a smaller solar panel have lower energy
capacities. The visual sensors, cluster heads and base station are dispersed in several

layers; each layer has a number of clusters; each cluster has only one cluster head.

The functions of cluster heads are relaying, encoding, trans-coding and aggregating the
raw video data received from visual sensors in its cluster. The number of normal visual
sensors in each cluster is proportional to the area of the cluster. The functions of normal
visual sensors are generating and sending the raw video data. In our model, the normal
visual sensors are only one hop to the cluster heads; the normal visual sensors do not
relay the video signals among the neighbors. Furthermore, by applying rechargeable solar
cell to the system, solar panel can recharge the sensor cell in daytime when it is not at the
maximum energy capacity and the battery overcharging is not detected. For the visual
nodes powered by solar cell, when the battery capacity is higher than the energy
requirement of visual data generation and transmission, nodes can initialize themselves,

capture or send the video signals.

We compare the results in terms of total video packets sent by all the visual nodes with
the different cluster numbers in each layer. After applying the layered clustering and solar
cell to the WVSNs under the consideration of video quality, we validate that system
lifetime is prolonged and performance is improved. In this section, we illustrate the
system model that applied in the solar-powered WVSNs. The system model includes
solar cell unit, event trigger unit, energy consumption unit, layered clustering unit, and

video distortion unit. The definition of system performance evaluation is also given.
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Layer 2 Layer 1 Base station

Figure 3.1 Solar-Powered Layered Clustering Wireless Visual Sensor Networks

These five units and definition are employed to formulate the system model and evaluate
the performance improvement of SPWVSNs in the following sub-sections. In SPWVSNs,
the energy required by wireless transmission from sender to receiver is exponentially
proportional to the distance between two nodes [65]. By assigning the network into
several segments, a hierarchical network topology can significantly reduce the
transmission distance between the distant nodes [10][16]. Hence, the system can
significantly reduce the energy exhausted on the long distance transmission by
maintaining a hierarchical network structure. In a layered clustering system, the cluster
heads take more responsibility. Besides the energy consumed on the long distance
wireless communication among cluster heads and base station, the cluster heads also need
additional energy in generating video data, trans-coding and aggregating the video data
that received from the normal visual sensors in its cluster. Consequently, the cluster head

usually requests a higher energy capacity than the normal visual sensors. In the layered
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clustering system, normal visual nodes only capture raw video data and send to the
cluster heads. This negates the need to relay or send the video data to some distant nodes
or the need to encode the video data. Therefore, energy consumption is saved for energy
constrained normal visual sensors, which extends the lifetime of the WVSNss in full-scale.

The layered clustering SPWVSN is illustrated in Figure 3.1.

3.2.1 Solar Cell Unit

Raghunathan et al. developed a prototype of wireless embedded micro-systems that are
powered by the solar cell [5]. Our solar cell unit is derived from the system of
Raghunathan. The detection of false termination in solar cell charging procedure comes
from [3]. The charging power rate at the conditions of outdoor bright sunlight and indoor
illumination comes from [4]. On [6], it shows the daytime of the different cities that are
located all over the world. In this thesis, we analyze the system performance with the

daytime table of Toronto.

For the autonomous solar-powered node, the direct light on the solar panel can only
recharge solar cell in daytime. We list the daytime lengths of several cities in Table 3.1
and make use of daytime table of Toronto in the simulation. In Toronto area, the regular
shortest daytime is from 07:48 to 18:14; the daytime length (Ts) is 10:26 hours a day. We
also assume that full activity time of the WVSNs is daytime, and the solar cell can be
recharged by solar panel that directly faces sun in daytime. During T, the solar panel
recharges solar energy (Es) into the solar cell. In the other time, since the illumination

intensity of light is minor, Es can be regarded as zero.
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Location Sunrise Sunset Daytime length (hours)

Toronto 07:48 18:14 10:26
Los Angeles 07:09 18:04 10:55
Shanghai 06:07 17:09 11:02
London 06:46 16:42 9:56

Tokyo 06:26 16:29 10:03
Berlin 07:43 16:03 8:20

Sydney 06:57 17:06 10:09

Table 3.1 Daytime Table

Solar illumination can yield around 1mW/mm’ (1J/day/mm’) in full sunlight or

1 xW/mm® under bright indoor illumination and the solar cells are about 10-12%
efficient [4]. For autonomous solar-powered wireless visual sensor, the total recharged
solar energy (E;) is the product of the solar cells efficiency, the solar illumination, the size
of solar panel, and the recharging time. For normal solar-powered visual sensors, we
assume that the sizes of the solar panel are equal. In our experiment, the sensors are
scattered in an outdoor environment. Hence, the indoor bright situation is not considered
in the equation. Equation (1) illustrates the solar cell recharging function for the
solar-powered visual sensor.

)

S

E T-p,;-S-At, VE<E, VAteT,
- 0, others

If the energy recharged by solar panel (Es) is specified, solar panel size (S) can be worked

out from equation. Table 3.2 lists parameters used in the equation (1).
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Parameter Description

t=10% Solar cell efficiency
pa=1mW/mm®  Solar illumination in daytime

Ts=10:26 hours  Daytime

Table 3.2 Solar Function Parameters

3.2.2 Event Trigger Unit

Yong et al. provided an event trigger unit for heterogeneous sensor networks [17]. First,
an independent packet streams with Poisson distribution in the clustering sensor network
is given. Then, according to probability theory, the expectations of total packets generated
by sensor nodes are calculated. In this thesis, we revise the energy functions by adopting

the event trigger unit.

A static WVSN can be modeled as S(N;, W;), where N; is the set of visual sensors and W;
is the set of directed wireless links from the sensors to the cluster heads. In this thesis, we
assume that the visual sensors only capture and transmit the raw video data to the cluster
heads, do not relay the data among the normal visual sensors. The cluster heads in
outskirt layer receive, encode, aggregate the raw video data and send the encoded data to
the cluster heads in the inner layer. The cluster heads in the inner layer receive, trans-code,
aggregate the video data from the visual nodes in their clusters; and relay the encoded

data from the cluster heads in the outskirt layer to the base station.

Given an example, N visual nodes are randomly spread in an area with L layers. Layer i
has C; clusters and one cluster head in each cluster; each cluster has Ny; normal visual
sensors that only connect their cluster heads directly; C; layer 1 cluster heads connect

base station (N, = 1). Therefore, the total nodes number of a two layers SPWVSN can be
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represented in equation (2). Table 3.3 lists the descriptions of the parameters in equation

2.

N=C,-(N,, +1)+C,- (N, +1)+1 )

Parameter  Description

i i-th layer

G Number of clusters in i-th layer

Nvi Number of normal visual sensors in each i-th layer cluster
Np Number of base station

Table 3.3 Nodes Number Parameters

In this work, we assume that in layer i, the cluster head i communicates with N,; visual
sensor nodes. Further, all the visual sensors in cluster i have identical independent packet

streams with Poisson distribution [17], the video packets for cluster head i are also

Poisson process. Denote A, as the packets generated by visual node j and A, as the

packets generated by cluster head. If all packet generation rates of visual nodes in cluster

i are same (V4,=4,=A4), the cluster head’s video packet arrival rate function is

denoted as follows,
NV
A=Ayt D 4 =(N,+1)i, VA, =4,=2 3)
Jj=1

According to probability theory, the expectation value of a visual node is A¢ and the

expectation value of a cluster head’s video arrival packets X,(¢) is

XO=(N,+DA, VA, =4,=2 )
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3.2.3 Energy Consumption Unit

In terms of an energy consumption function, let E, be the energy of a visual sensor, which
is composed of three parts: energy consumption of transmission (E), energy recharged by
solar panel (E;), and energy consumption of video processing (E,). The energy
consumption of solar-powered visual node is illustrated in Figure 3.2. The procedure
starts from a visual node with maximum energy capacity. Each time when an event is
triggered, the visual node checks its energy capacity. If it is higher than the required
energy of processing action, the visual node can capture, generate visual packets and send
them to the cluster head. If the time slot between two events is in daytime, the solar panel
will recharge the energy into the solar cell. If the overcharging of the solar cell is detected,
the energy capacity of the visual node will keep at maximum energy capacity (Eo). If not,
the energy capacity of the sensor is the sum of E,.; and Eg, then minus E; and E,. If the
time slot is not in daytime, Es can be neglected. The sensor energy is deducted by E; and

E,. Equation (5) is the energy function of solar-powered visual sensor in WVSN.

E, ,—-E-E+E, VteT, VY0<E, <E,

5 B VteT, VE, 2E, )
" |E_ -E-E,, VieT, YO<E, <E,
0, VteT,, VE, <0

It is well known that transmission energy is the sum of the sending energy (E) and the
receiving energy (Ey), Ei = E + Eyr. Eis is proportional to the n-th power of the distance
between the visual nodes and their cluster heads, as shown in equation (6) [34]. The

parameter n is the path loss exponent.

E,=pB+ud", Vne{2345} (6)
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Figure 3.2 Power Consumption of Solar-Powered Wireless Visual Sensor
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With sufficiently large time t, the actual event number occurred is very close to its
expectation value. Thus, this expectation value is used to calculate the sending energy

consumption of visual nodes and cluster heads. The sending energy consumption of a
visual node during t is (ﬁ + ud ”)- At . The cluster heads aggregate data received from the

visual nodes, then send it out. The aggregation parameter (o) varies from 0 to 1, where 0
means that all packets received by the cluster heads have been dropped; 1 means that all
the packets received by the cluster heads will be send out without any aggregation. Thus,

the sending energy of a cluster head during t is represented in equation (7).

E, =a-(f+ud") X0 =a-(p+pd")-(N,+ 1)

Vn e {2,3,4,5), (M
VA, =4, =2

3.2.4 Layered Clustering Unit

The energy functions of the heterogeneous wireless sensors and an unequal layered
clustering model are given in [22]. The wireless sensors are deployed in a wireless sensor
network that is composed of a various number of clusters and several layers. The radiuses
of the layers are calculated out by the energy functions of cluster heads in the different
layers. However, the energy functions do not include the energy consumption of video
processing and the energy recharged by solar panel. Moreover, the system’s lifetime is
also calculated based on the non-rechargeable battery. We modify the energy function of
the layered clustering model by adding a renewable energy supply and video processing
energy consumption. Thus, we convert the energy function of the wireless sensors to the
energy function of solar-powered visual sensors. The system performance is evaluated by

total transmitted packets of the WVSNs.
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Both equal and unequal layered clustering models of WSNs are discussed in [22]. In the
equal layered clustering model, the areas of all clusters are equal. Because the number of
nodes in a cluster is proportional to area of the cluster, each cluster in the equal layered
clustering algorithm has the same number of nodes. In unequal layered clustering model,
the radiuses of inner layer relate to the energy consumption of cluster heads in all layers.
The energy consumption of the cluster heads includes the energy consumption of
transmission and video processing. We assume that all the cluster heads are identical and
have the same initial energy value. In an ideal condition, each cluster head consumes the
same amount of energy in a set time (Ech; = Echz = ... = Ehi). The energy consumption of
the cluster heads in layer 2 (Ecnp) includes the energy consumption of encoding,
aggregating, and trans-coding the raw video data received from all the nodes in the
clusters; the energy consumption of capturing video data; the energy consumption of
transmitting data from the cluster heads in layer 2 to the cluster heads in layer 1. In this
work, the aggregation rate can vary from 0 to 1. For example, if the aggregation rate is
0.1, which means that every 10 packets received by the cluster heads, only 1 packet will
be sent out after aggregation. For layer 1 cluster heads, the energy consumption includes
the energy consumption of receiving, aggregating and trans-coding the video data
received from all the nodes in the clusters; the energy consumption of relaying the video
data from the cluster heads in layer 2; the energy consumption of capturing video data;
and the energy consumption of transmitting data from the cluster heads in layer 1 to base

station.

In our solar-powered wireless visual sensor network, we modify the energy functions of
the cluster heads in the layer 1 and 2 by adding the video processing energy (E,), which is
composed of encoding energy (Eve) and capturing energy (E,.), and transform to new

energy equations, which are listed in Table 3.4.
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Layer 1 Layer 2

Echl =E,+ Evl = Elsl + Em +E, E,,= E:z + EvZ =E,+ E

tr2 + Ev2

E,=a ‘(ﬁ"'/‘dln)'(Nvl +N,, +2)'/1t E,, =a-(ﬁ+,ud2")-(Nv2 +1)"1t

E,=E,(aN,,+a+N,)- it E,=E, -N,-At

E,=(E (N, +1)+E,) At E,=(E. (N +)+E,) &
VN, = clfig N, VN,, = %Nv

Vn e {2,3,4,5} Vn e {2,3,4,5}

VA=A, =24 VA=A, =7

Table 3.4 Layered Clustering Equations

3.2.5 Video Distortion Unit

Several video distortion models that are based on Power-Rate model have been
developed [34][36][64]. The Power-Rate-Distortion (P-R-D) model is given in the

performance analysis of WVSNs. The authors also demonstrate the solution to allocate
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resource when the visual quality is at Achievable Minimum Distortion (AMD) in WVSNs.

The different simulation results are illustrated when the distortion rate of visual quality

varies.

In the experiment, we apply the Power-Rate-Distortion [34][64] to evaluate the lifetime
and performance of SPWVSNs when the distortion rate is at AMD (Achievable
Minimum Distortion). The equation of distortion model is given in equation (8). Table 3.5

lists the parameters used in the equation.

D=D,(R,E,)= 2o MRe8E) ©

Parameter Description

g(E,)=(E,)*”  Energy consumption model

E, €[0,E,] Energy consumption of video processing
R >0 Bit rate

y=11.54 Model parameter related to encoding

6° =350 Input variance

Table 3.5 Power-Rate-Distortion Parameters

For the cluster heads in layer 2 and layer 1, the distortion function D can be transformed

to an equation of Ry and E,. Moreover, when EE .E, B, ut,A are given, the

intermediate parameters R and E, only include the two variables: Ny and d. Table 3.6
shows the Power-Rate-Distortion Equations for the solar-powered wireless visual sensor

networks.

35



Layer 1

Layer 2

D] = DSl(RslaEv]) = ()'23_7}{:1‘8(1:“,,)

D2 = Ds (Rs2’Ev2) = O"ze—}'R"2 *8(E2)

=D3(N"]’dl) =Ds(Nv2’d2)
EO_Evl Eo—Evz

Rsl = 2= g1
B+ pd, B+ ud,

Evl = (Eve(Nvl + 1)+ Evc). /It

Ev2 = (Eve : (Nv2 + 1)+ Evc). /1t

E, €[0,E,] E, €[0,E,]
Vn e {2,3,4,5} Vn e {2,3,4,5}
VA =2, =2 VA, =4, =24
2 2 _p2
VN, = chlez N, VN,, = Ré'—RIf‘N”
14%2 272

Table 3.6 Power-Rate-Distortion Equations

In the experiment, the encoding energy consumption changes in accordance with the
different code formats, such as, mpeg2 or mpeg4. Thus, the energy values consumed by
video coding are different. Normally, for using mpeg4 codec, we need spend more energy

in the video coding than using mpeg2 codec. Thus, the distortion values of the video data

are also varied.

3.3 Experiment

3.3.1 Experiment Setup

The network simulation setup is illustrated in Figure 3.3. It is a circle area with 400

meters radius (R, =400m) and 100 visual nodes are randomly distributed in the area. The
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Figure 3.3 Experiment Setup

radius of inner layer (R;) can be worked out by the system energy equations of E,; and

Ech2. The number (N;) of visual sensor nodes in each cluster i is proportional to the area

of cluster i. Totally, N, visual sensors are randomly deployed in the round area. In the

experiment, we simulate SPWVSN in the area by changing the number of clusters in each

layer. The system is composed of 5-20 clusters in layerl and 6-30 clusters in layer2.

Figure 3.3 shows one experiment setup, which includes 8 clusters in layer 1, 12 clusters

in layer 2. The red “+” tags represent the cluster heads, the blue “x” tags represent the

visual sensors, and the base station is placed in the centre of the area.

3.3.2 Layered Clustering Analysis

There are two kinds of layered clustering algorithms, equal layered clustering and
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unequal layered clustering in the paper [22]. In order to find the better algorithm for
SPWVSNSs, we also evaluate both of them in the experiment. After implementing the
layered clustering topology in the SPWVSN, we obtain the experimental results by
varying cluster numbers in layer 1 and layer 2. The ratios of the nodes number in layer 1
and layer 2 are illustrated in the Figure 3.4. It is evident that the nodes number in layer 1
is always less than that in layer 2. Because layer 1 cluster heads need to relay the video
data received from layer 2 cluster heads, the transmission energy consumption of layer 1
cluster heads is much heavier than that of layer 2 cluster heads. Consequently, layer 1
cluster heads can only support fewer nodes in their clusters. Figure 3.4 shows the ratios
of the nodes number in layerl and layer2 when the aggregation rates are 0.1, 0.4, 0.7 and
1. The Y-axis represents the layer 1 cluster number varying from 5 to 20 and the X-axis
represents the layer 2 cluster number varying from 6 to 30. As the aggregation rate
increases from 0.1 to 1, the range of nodes number ratio decreases from 0.75-0.55 to
0.5-0.2. This is because the layer 1 cluster heads need additional energy to send more
packets with the increase of aggregation rate. Consequently, layer 1 cluster heads support

fewer nodes in their clusters.

We also compare the energy consumption of the unequal layered clustering model with
the equal layered clustering model in Figure 3.5. Figure 3.5 shows the energy ratio of the
unequal cluster to the equal cluster as the aggregation rates are 0.1, 0.4, 0.7 and 1. The
Y-axis represents the layer 1 cluster number varying from 5 to 20 and the X-axis
represents the layer 2 cluster number varying from 6 to 30. As the aggregation rate
increases from 0.1 to 1, most of energy consumption ratio of the unequal to equal layered
clustering models are always less than 0.8. Specifically, the energy consumption of the
unequal layered clustering is always less than the equal layered clustering. From the
above simulations, we can conclude that the unequal layered clustering has better

performance than the equal layered clustering in energy consumption.
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Figure 3.6 AMD Analysis

3.3.3 Distortion Rate Analysis

In the experiment, we evaluate the system performance of SPWVSNs by letting the
distortion rate at achievable minimum distortion (AMD) of P-R-D model. Figure 3.6(a) is
the figure of system minimum distortion values when initial battery energy (Eo) is from 0
to 1.0 Joule. Figure 3.6(b) is the video distortion curve of the system figure when Eq = 0.3

Joule. It shows the system can reach AMD when the video processing energy (Ey) is

about 45% of initial sensor energy (Ep) in our experiment.

Figure 3.7 shows the distortion figures of the WVSNs system as different amounts of
clusters in two layers. X-axis is the amount of clusters from 6 to 30 in layer 2, Y-axis is
the amount of clusters in layer 1 from 5 to 20 and Z-axis is distortion value. Figure 3.7(a),
(b), (c) show the distortion figures when video processing energy (E,) of visual nodes
consumes 10%, 45% and 95% of nodes initial energy (Ey). We observe that the distortion

values of nodes are higher when the nodes consume 10% or 95% Ey in video processing.
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It is because when the visual nodes spend less energy in video processing (Ey |), the
distortion rate is going up (D 1); When the visual nodes spend more energy in video
processing (Ey 1), the energy consumption of transmission is going down (E; }), the
distortion value in transmission is going up (D 1). It is easy to conclude that when video
processing energy (E,) of visual nodes takes about 45% E, the video quality can reach

achievable minimum distortion.

3.3.4 Initial Power Analysis

A normal visual sensor node with a restricted capacitor or battery starts to wake up after
the energy level of solar cell reaches GE (Gate Energy), which is the minimum operating
energy level for the processor and wireless transmission [66]. However, in WVSNSs,
initializing sensor modules, capturing raw video and writing to memory require higher
energy supply than WSNs without visual functions. The system enforces the sensor to

wake up the rest of unit when the energy capacity of the sensor has risen over GE.

In the experiment, we define four GEs (10% Ey, 20% Ey, 30% Eq and 40% E,), which is
sufficient to power up the visual sensors, capture/encode the raw video data and write to
the memory. In Figure 3.8, we set the layer 2 cluster number in X-axis and the layer 1
cluster numbers in Y-axis. From the diagram, the total transmitted packet number keeps
higher than the others in most cases when GE is 10% E,. We can conclude that in the

SPWVSNSs, the system performance is improved when it has a less GE value.
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3.3.5 System Performance Analysis

In some military fields, the standard visual sensors are scattered by airdrop and the
energy capacities of these uniform visual sensors are equal. Through experiment, we
simulate this situation by randomly generating the locations of all normal visual sensors.
For example, in simulation, N visual sensors are randomly distributed in the area.
However, for those randomly distributed sensors in each cluster, their distances to the
cluster head are different. Usually, visual nodes that are closer to cluster heads need less
energy to send the same quantity data than those further away nodes. We simulate this
problem by letting transmission energy consumption of each node correspond to the
distance from its location to cluster head. Video packets are sent T (T = 1000) times and
the T times are randomly selected from 24 hours. It illustrates that each node captures and
sends T video packets in one day. At each selected time stamp, the sensor begins to
capture video data and transmits one packet, whose size is 15kbits. Because the 100
nodes are randomly scattered in the area, the distances between nodes and cluster heads
are different. Correspondingly, the energy consumed by transmitting a video packet
varies. In the case of all the normal visual nodes have same initial energy, the remained
energy of sensors that are closer to the cluster heads is higher than the further ones after
sending the same amount of packets. For each node, if the remained energy of battery or
solar cell is less than the energy needed by transmitting packet, it means the energy of
node battery has consumed. The sensor thus begins to drop the packets. With solar cell,
the sensor can be recharged from solar panel in daytime. During the recharging time, the
visual nodes can capture, encode and transmit packets after the battery energy reaches GE.
In the experiment, the total number of generated and transmitted packets can be obtained
successively. Figure 3.9 shows the total transmitted packets of all the visual nodes in

SPWVSNs during one day when the video distortion is at AMD.
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3.4 Summary

In this thesis, we examine the performance of heterogeneous solar-powered WVSNs with
the unequal layered clustering model when the video distortion rate is at achievable
minimum distortion. When we vary the number of clusters in layer 1 and layer 2, the total
energy consumption of all the sensors in the unequal layered clustering model is less than
that of the equal layered clustering model in most cases. To sum up, the unequal layered
clustering sensor networks prove to be a better solution than the equal layered clustering
sensor networks in the sparing energy consumption and enhancing successive delivery
rate. Furthermore, we also make the experiment by applying different charging GE values
of solar-powered system. The simulation shows that the system may achieve a longer
lifetime when it has a less GE value. Through the experiments on our solar-powered
dual-layer clustering WVSNSs, the system performance can be improved by applying

rechargeable solar cell, unequal layered clustering model and a less GE value.
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CHAPTER 4

VISUAL APPLICATIONS

This chapter first introduces the background knowledge of a post-processing image

segmentation technique, PSOTM that can be implemented in the sinks of WVSNs. Then

the PSOTM algorithm is presented and the analysis of experimental result are illustrated

respectively. The remainder of this chapter is organized as follows,

Section 4.1

Section 4.2

Section 4.3

Section 4.4

Section 4.5

introduces the background knowledge PSOTM.
presents the PSOTM algorithm.

shows the error measurement, GCE/LCE, which is used in analyzing the

experimental result.

presents PSOTM experimental results of two comparisons, one is the
comparison between the SOTM segmentation and PSOTM
segmentation, the other is comparison between PSOTM segmentation

and manual segmentation.

summarizes the chapter.

41 Background

In WVSNs, we can apply some post-processing techniques, such as image segmentation
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and image aggregation to the sink. Because image segmentation demands highly
sophisticated algorithms in computational intelligence, image segmentation is usually
performed by human beings. However, the high expense and low efficiency of manual
work represents the major bottleneck for image segmentations. Segmenting an image in

an unsupervised way and improving the efficiency are thus, two major objectives.

Recent research brings forward several suitable self-driven image segmentation
techniques that make unsupervised image segmentation possible. Self-Organizing Tree
Map (SOTM) is one such unsupervised solution for image segmentation. The SOTM is a
special algorithm derived from the Self-Organizing Map (SOM). With the addition of a
tree building hierarchy, the SOTM automates the process of determining the correct
number of centroids. Furthermore, in image segmentation, the computing method, SOTM,
is employed to attain not only the feature points, but also the centre vectors of feature
points. It has proved its clustering abilities in performing image segmentation and feature

point grouping in the image processing.

The SOTM can be regarded as a mapping from a high dimensional Euclidean space onto
a finite set of prototypes. The novel approach has proved to be a potential method to
minimize the human beings participation in image processing and automatic
segmentation of images. Although the SOTM was extensively studied for minimizing the
human beings involvement in image segmentation, SOTM suffers from two constraints.
First, it is still a time-consuming approach. Second, the computing hardware demand is
relatively high. How can we improve the efficiency of the SOTM while retaining its
advantages? At present, SOTM processes tasks in sequence, thus only one SOTM process
is running at a time. In this work, we propose parallel SOTM, or PSOTM, to execute
multiple SOTM processes in parallel. The major objective of applying PSOTM is to

improve the performance efficiency for image processing.
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4.2 PSOTM Algorithm

At present, the SOTM processes tasks in sequence, thus only one SOTM process is
running at a time. In this thesis, we propose “Parallel Self-Organizing Tree Map
(PSOTM)”, which aims to improve the processing speed of SOTM. It uses parallel

processes to provide a quick segmentation in image processing.

There are two major differences between PSOTM and SOTM. First, PSOTM performs
image segmentation in parallel. Precisely, at the beginning of each image segmentation
procedure, PSOTM divides the feature points of each image into several clusters, and
assigns each cluster to a SOTM process. Therefore, each process only deals with a subset
of the original data. At the end of the procedure, the centre points of each cluster are
generated by SOTM. PSOTM gathers the results from all the clusters, and generates the
final centre points. Secondly, the learning rates [67] in PSOTM are different from those
in SOTM. In SOTM, there are two phases in the learning rule, one is the locating phase
and the other is the convergence phase. The learning rate is controlled by an adaptation
parameter o(t), which decreases with time as weight vectors approach the group centers
[46][56]. It generally adapts with a linear function or an exponential function. Thus, a(t)
gives a rough weighting, which cannot represent the number of the feature points that
have been processed. In PSOTM, the weighting of each centre point is the size of its
feature points in the cluster instead of a(t). It represents the weight much more precisely

than the adaptation parameter of SOTM.

In the first step of the experiment, the features extracted from the raw image file consist
of the Luminance and Chrominance components [68] in HSV domain, and the same
values of the image undertake low-pass filters [69] using 3x3 window blocks. Thus, a
six-dimension vector is generated for each pixel in the image. To reduce the dimension of

the input data, these vectors are pre-processed using Principle Component Analysis (PCA)
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[55]. PCA has proved to be a useful statistical technique in face recognition and image
compression. The variance of the principle components also can be captured by PCA.

Thus, the three-dimensional vectors regenerated from PCA serves as the input data to the

PSOTM process.

PSOTM contains the following four stages: stage 1, image pre-processing; stage 2,
feature points distribution; stage 3, centre points generation; and stage 4, final centre
points generation. In stage 1, the system obtains the feature data by pre-processing the
image with a low-pass filter and the Principle Component Analysis (PCA) for reducing
the feature dimensions. In stage 2, the system assigns the feature data to several
independent processes. In stage 3, each process obtains the centre points and its
corresponding weighting factor using the SOTM algorithm. In stage 4, PSOTM collects

the results from these independent processes, and generates the final centre points.

Figure 4.1 shows the procedure of image processing by PSOTM algorithm. Initially, 689
feature points have been extracted and are used as the input [70] for three parallel SOTM
processes. In stage 1, PSOTM assigns 689 feature points into three clusters. In stage 2,
each SOTM processes about 230 feature points in each cluster and obtains 20 centre
points. In stage 3, PSOTM collects 60 (20*3) centre points from three clusters. Finally, in

stage 4, PSOTM processes these 60 centre points, and generates 10 final centre points.

In Stage 1-2, the neuron update process is denoted in equation (9). c(n) denotes the centre
point of the first n feature points, c(n+1) denotes the centre point of (n+1) feature points
and v(n+1) denotes the (n+1)-th feature point. Then, c(n+1) is updated by c(n) and v(n+1)

as shown in equation (9).
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c(n)-n+v(n+1)

n -Il- 1 )
= c(n)+ —[v(n +1)— c(n)]
n+1

c(n+1)

In Figure 4.1, one third of the feature points are assigned into one of three clusters

separately. In stage 2, each cluster processes the feature points with SOTM.

The update process in Stage 3-4 can be regarded as a weighted SOTM, and it is expressed
in equation (10). c(n+1) denotes the (n+1)-th centre point; cg,e(i) denotes the size of the
i-th centre point; cg,(n+1) denotes the size of the (n+1)-th centre point; f(n) denotes the
final centre point of the first n centre points and f(n+1) denotes the final centre point of
the (n+1) centre points. Therefore, equation (10) shows that f(n+1) is the centre of

weighted f(n) and weighted c(n+1).

F0)-Y e () +e(nr)-c, (n 1)
f(n+]) = T
chize(i)

Sy D )= () 4 (10)

Z csi:e (i)
Cye(n+1)

S+ e(n+1)- £ (n)]
Z csize (l)

The same algorithm described above can be used for SOTM by setting cgie(i)=1 in

equation (10), which can be simplified as shown in equation (11).

£ () e(nil) e, (n+1)
i=1

f(n+1) = : n+l
chi:e (l) (1 1)
_ f(n)-n+c(n-'l—=l1)
B n+l
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In stage 3 of Figure 4.1, each cluster generates 20 centres points. Hence, 60 centre points
are generated from the three clusters. In stage 4, the system acquires 10 final centre

points by processing these 60 centre points with PSOTM algorithm.

Figure 4.2, 4.3 show the pseudo codes of SOTM and PSOTM algorithms. Let d(x,y)
denote the Euclidean distance between point x and y. Let H(t) denote the hierarchy
control function at iteration t, which determines whether a current centroid will be

updated or a new centroid will be created.

4.3 Error Measurement

Even for a same image, human beings perceive different levels of image detail [71]. In
order to evaluate the discrepancies between different clustering algorithms, an error
measure to quantify the overlapping regions of two segmentation results is required. The
error measurements with region differencing are adopted in this experiment. Two precise
measurements, Global Consistency Error (GCE) and Local Consistency Error (LCE) [72],
are used in this work. These measurements allow labeling refinement in either or both

directions.

Let \ and ||-|| denote set difference and cardinality, respectively. Let R(S, p;) represent the
set of pixels corresponding to the region in segmentation S that contains pixel p;. The
local refinement error (LRE) is defined by below equation.

LRE(SI,Sz’p,)="R(Shpt)\R(SZ’pl)" (12)

R(S,. p)|

The Global Consistency Error (GCE) and Local Consistency Error (LCE) are defined by

below equations.
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SOTM(feature_point_x, max_iteration, max_centroid)

ek
.

N = = e e e e e e e e
S v ®» N AN N A WD = o

0 ® N »n ok w D

FOR each root node of all centroid nodes
IF Min(w) > d(feature_point_x, centroid)
THEN Min(w) = d(feature_point_x, centroid)
ENDIF

IF d(x,centroid) < H(t)
THEN
winning_centroid = the reinforced_learning_rule
ELSE
new_centroid_node = x
INCREMENT Count
ENDIF

IF Max(d(x,centroid)) > max_distance
or iteration > max_iteration
or centroid > max_centroid
THEN
RETURN centroid
ENDIF
End FOR

Figure 4.2 Pseudo Code of the SOTM Algorithm
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PSOTM(center_point_x, max_iteration, max_centroid)

Pk
.

FOR each cluster of all clusters

2. IF Min(w) > d(center_point_x, centroid)
3. THEN Min(w) = d(center_point_x, centroid)
4. ENDIF
5.
6. IF d(x,centroid) < H(t)
7. THEN
8. winning_centroid = the reinforced learning_rule
9. ELSE
10. new_final centroid_node = x
11. INCREMENT Count
12. ENDIF
13.
14. IF Max(d(x,centroid)) > max_distance
15. or iteration > max_iteration
16. or centroid > max_centroid
17. THEN
18. RETURN final_centroid
19. ENDIF
20. End FOR

Figure 4.3 Pseudo Code of the PSOTM Algorithm
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NS ok

10.
11.
12.
13.

% Define the LRE
LRE_ sl_s2_p=size original image;

LRE_s2_sl_p =size compared image;

% Calculate LRE

For j=1:size sl

LRE sl _s2 =difference original compared /

size_row_original;

LRE s2_sl =difference original compared / size_row_compared;

End

% Calculate GCE and LCE
GCE = 1/size(s1,2) * min( sum(LRE sl _s2 p), sum(LRE s2 sl p));
LCE = 1/size(s1,2) * sum( min(LRE sl _s2 p, LRE s2 sl p));

Figure 4.4 Pseudo Code of GCE/LCE

1 .
GCHS,,S,) = ;mm{ZLRE(Sl ,S,, D, ),ZLRE(SZ,S, . D; )} (13)
LCE(S,,S,) = lz min{LRE(S,,S,, p,),LRE(S,,S,, p;)} (14)
nwT;

The GCE/LCE can be interpreted by pseudo code in Figure 4.4.

4.4 Experiment

The computer environment of experiment is made up of one Pentium 4 3.0GHz CPU,

1GB memory, 80 GB hard drive, windows XP operating system, and the simulation
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software is MATLAB 7. Two comparison models, one is comparison between the SOTM
segmentation and PSOTM segmentation, the other is comparison between the
SOTM/PSOTM segmentation and manual segmentation, are employed in the experiment.
The system takes around one day to finish the image processing with SOTM algorithm.
However, it spends much less time in processing image by PSOTM (N=2...5) algorithm
in same computer environment. In the two models’ experiments, the error values
(GCE/LCE values) of SOTM and PSOTM are always in the same level. Moreover,
comparing with SOTM, PSOTM not only improves the efficiency of image processing by
increasing the number of parallel processes but also retains a minor impact on the image

quality.

4.4.1 SOTM and PSOTM Segmentation

In this comparison model, five experiments are implemented in five setups with different
cluster numbers, SOTM (cluster number N=1) and PSOTM (N=2...5). After the image is
segmented by the SOTM or PSOTM, we compare the results of each PSOTM (N=2...5)
with the result of SOTM (N=1). The results of experiment are measured with GCE and
LCE. House image and Ping-Pong image are processed by SOTM and PSOTM in this
experiment. Figure 4.5 shows the segmentation results of the House image. Figure 4.5(a)
is the original image, Figure 4.5(b) is generated by SOTM, and Figure 4.5(c.d,e.f) are
generated by PSOTM with SOTM cluster number N=2 to 5 respectively. Comparing with
original image, Figure 4.5(b), processed by SOTM, becomes less detailed, but more
clear-cut. The visual qualities of Figure 4.5(c,d,e,f), which are generated by PSOTM
(N=2...5), are comparable with the quality of Figure 4.5(b). The walls and shadow of the
house, the trees around the house are almost the same. In the experiment, the effect of

parallel SOTM on the image quality is limited. However, there are also some differences
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between Figure 4.5(b) and Figure 4.5(c,d,e,f). Several detail points are only showed in
Figure 4.5(c,d,e,f), and the frames of the windows in Figure 4.5(c,d,e,f) are much clearer
than those in Figure 4.5(b). In Table 4.1, GCE and LCE values of PSOTM (N=2...5) are
in the same level, varying from 0.1 to 0.2. The increments of GCE and LCE values are

not proportional to the number of processes in the PSOTM.

PSOTM N=2 N=3 N=4 N=5

LCE 0.15 0.15 0.1 0.18
GCE 0.16 0.16 0.12 0.2

Table 4.1 GCE/LCE Values of House Image

The other image used in the experiment is Ping-Pong image. Figure 4.6(a) is the original
image. Figure 4.6(b,c,d,e,f) are results generated by SOTM and PSOTM (N=2...5)
respectively. Since the Ping-Pong image has less detail and simple content, we observe
insignificant differences between the results of SOTM and PSOTM. The GCE and LCE
values of N (N=2...5) parallel SOTM are also showed in Table 4.2. All the GCE/LCE
values of experiment are in the limited range of 0.0124-0.0408. After comparing the
GCE/LCE values, it is easy to conclude that the error ranges between the image
segmentation results of different parallel processes and SOTM are in the same level. The
increments of GCE and LCE values are not proportional to the number of processes in

the PSOTM.

PSOTM  N=2 N=3 N=4 N=5

LCE 0.0124 0.0221 0.0340 0.0325
GCE 0.0170 0.0291 0.0408 0.0356

Table 4.2 GCE/LCE Values of Ping-Pong Image
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(a) Original (b) SOTM (N=1)

() PSOTM (N=4) (f) PSOTM (N=5)

Figure 4.5 Segmentation Results for House Image
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(a) Original (b) SOTM (N=1)

‘,
X

(c) PSOTM (V=2) (d) PSOTM (N=3)

() PSOTM (N=4) (f) PSOTM (N=5)

Figure 4.6 Segmentation Results for Ping-Pong Image
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4.4.2 SOTM/PSOTM and Manual Segmentation

In this subsection, the experiment is built on the comparison between the unsupervised
image segmentation and manual image segmentation. We use the image dataset from
Berkeley University [73][74]. In the manual segmentation file of the dataset, the
segmentation part has four columns: the first is segmentation number, followed with row
number, start column number, end column number. The segmentation file ends with

".seg". The overall structure of the file is shown in the Figure 4.7 [73][74].

The file is begun with the header, which is mainly ascii text. The comments can also be
included in the head. The comments are begun with a character, ‘#’. The header is
separated from the data with a line containing the literal text “data”. The header can
contain the following information, in any order. The {width, height, segments} lines are
required. Others are optional. In the data line, we can use ‘*’ to be the default value. The
format of the data section of the file is described in the format line. 'ascii cr' (cr =
compressed row) is the default and recommended format. The other formats are
superfluous. Each line in the data section contains 4 integers, <s> <r> <c1> <c2>, and all

values start counting at 0.

Variable Description

<s> Segment number

<r> Row number

<cl> Leftmost column number of the segment
<c2> Rightmost column number of the segment

Table 4.3 Segment File Variables
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—
.

<header>

2. format {*ascii|binary} {*crjmap}

3. date <date string>

4, image <int> # image ID number

5. user <int> # user ID number

6. width <int> # width of image

7. height <int> # height of image

8. segments <int> # number of segments

9. gray {*0|1} # image presented in grayscale?

10. invert {*0[1} # image presented with pixel values
11. # inverted?

12. flipflop {*0|1} # image presented upside-down and
13. # backwards?

14. </header>

15. <data>

16. <s> <> <¢l><¢2>

17. </data>

18. <end>

Figure 4.7 Manual Segment File Format

The line means that columns [<c1>..<c2>] of row <r> belong to segment <s>. Lines of
this sort can appear in any order, and can be reordered with no harm. The only rule is that

each pixel must be named only once.

At the beginning of the experiment, a manual segment image is generated by filling up
the image with the segment id (id=1 to m) from the leftmost column to rightmost column
of each segment. Thus, this manual segment image shows the segments with the segment

number from 1 to m. Figure 4.8 and Figure 4.9 show 6 manual segment images.
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(a) Original (b) Manual (c) Created by the segment file

Figure 4.8 Manual Segment Images

The original images are showed in Column (a); the manual segment images are showed

in Column (b); the images created by the segment files are showed in Column (c).

Then, we use two manual segment images: Church image and Eagle image. Each image
compares with its SOTM/PSOTM segment image respectively. In the manual segment
file of Church image, the segment number is 13. The manual segment image is created
with segment id from 1 to 13. Figure 4.10(a) is the original image, Figure 4.10(b) shows
the manual segment image and the images processed by SOTM/PSOTM are listed in
Figure 4.10(c.d,e,f,g). The error values (GCE/LCE) of comparison between
SOTM/PSOTM segment and the manual segment of Church image are showed in Table
4.4.
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(a) Original (b) Manual (c) Created by the segment file

Figure 4.9 Manual Segment Images

PSOTM N=1 N=2 N=3 N=4 N=5

LCE 013 0.12 0.14 0.14 0.14
GCE 015 0.14 017 0.17 0.17

Table 4.4 GCE/LCE Values of Church Image

For Eagle image, its segment number is 5. The manual segment image is generated with
segment id from 1 to 5. Figure 4.11(a) is original image; Figure 4.11(b) is the manual
segment image; and the images processed by SOTM/PSOTM are showed in the Figure
4.11(c,d,e.f,g). The error values (GCE/LCE) of comparison between SOTM/PSOTM

segment and the manual segment of Eagle image are in Table 4.5.
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() PSOTM (N=4) (2) Parallel SOTM (N=5)

Figure 4.10 Segmentation Results for Church Image
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(a) Original

(b) Manual (c) SOTM (N=1)

(d) PSOTM (N=2) (e) PSOTM N=3)

(f) PSOTM (N=4) (2) Parallel SOTM (N=5)

Figure 4.11 Segmentation Results for Eagle Image
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PSOTM N=1 N=2 N=3 N=4 N=5

LCE 0.044 0.037 0.055 0.039 0.044
GCE 0.046 0.041 0.057 0.042 0.047
Table 4.5 GCE/LCE Values of Eagle Image

Table 4.4, 4.5 show the error values (GCE/LCE) of SOTM (N=1)/PSOTM (N=2...5)
segmentation compared with the manual segmentation separately. The error measurement
(GCE/LCE) values of Church image are in the range of 0.12-0.17 and the error
measurement values of Eagle image are in the range of 0.037-0.057. It shows that with
the PSOTM method, even the number of SOTM processes increases, the results of image
segmentation are always in the same error range. It proves that the image segmentation

efficiency can be improved by increasing the number of processes.

Besides the images previous mentioned, some images, such as, animal, boat, human,
sports, ocean, island, which have been processed with SOTM/PSOTM are listed in Table
4.6 and 4.7. Their GCE/LCE values of the comparison between the manual segmentation
files and SOTM/PSOTM segmentation files are listed under the images. After checking

their GCE/LCE values, we found that most of these values are at the same level also.

4.5 Summary

In this work, we proposed a post-processing image technique, PSOTM and examined its
performance in segmenting image. PSOTM divides a complex process into multiple
independent sub-processes, such that these sub-processes may be computed by multiple

machines. Thus, a significant performance gain can be achieved.

We observed that SOTM and PSOTM yield similar segmentation outputs with minor

difference. Comparing with manual segmentation results, we observed insignificant
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differences between the image segmentations of SOTM and PSOTM. We conclude that
the proposed post-processing technique, PSOTM, can reduce the computational time with

insignificant impact on the segmentation results.
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GCE 0.25-0.28
LCE 0.15-0.19

GCE 0.26-0.27
LCE 0.17-0.2

GCE 0.22-0.23
LCE 0.12-0.14

GCE 0.29-0.31
LCE 0.22-0.24

3

GCE 0.22-0.26
LCE 0.16-0.2

Table 4.6 Segmentation Results for Other Images
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GCE 0.21-0.22 GCE 0.12-0.16
LCE 0.16-0.18 LCE 0.11-0.15

GCE 0.037-0.045 GCE 0.12-0.13
LCE 0.03-0.038 LCE 0.076-0.095

GCE 0.17-0.23 GCE 0.045-0.046
LCE 0.1-0.15 LCE 0.04-0.043

Table 4.7 Segmentation Results for Other Images
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the work addressed in this thesis, and introduces prospects for
future work. We study a solar-powered WVSN and its post-processing image

segmentation application, PSOTM.

In WVSNSs, due to restricted dimension of the sensor nodes, the limited energy capacity
of normal visual sensors is limited. However, energy requirements of their
communication and visual facility are much high. Thus, the energy constraint is more
critical in WVSNSs. By arranging sensors into different layers and clusters, the layered
clustering model can dramatically shorten the communication distance. Instead of
sending video packets to distant nodes, the layered clustering model lets the sensor nodes
only send raw video data to the cluster heads. Then the cluster heads aggregate, and relay
the encoded visual data to the base station. The communication energy is thus saved by

the shortened distance.

After receiving all the encoded video data from the cluster heads, the sink can process the
video data with a post-processing algorithm, PSOTM. Instead of processing the image in
series, PSOTM makes use of several parallel SOTM processes in the image segmentation.
The experimental result demonstrates that PSOTM improves the efficiency of the image
segmentation without significant sacrificing the segmentation performance. The

contribution of this thesis is summarized as below:
e We examined the capability of a layered clustering model in transmitting the
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video data and saving energy consumption among the heterogeneous
solar-powered wireless visual sensor nodes when the video data distortion rates
are at different values. We applied the rechargeable solar cell module, the energy
consumption module, and the event trigger module to the WVSNSs. In the visual
quality analysis, the Power-Rate-Distortion model was applied to the WVSNs.
With the layered clustering model, we analyzed the experimental results of ratio
of total nodes in the different layers and the quantity of total transmitted video
packets at the different distortion rates. We concluded that the layered clustering
model can dramatically increasing the performance of WVSNs in communication

and energy consumption.

A novel post-processing image segmentation algorithm, Parallel Self-Organizing
Tree Map (PSOTM), has been proposed to process the image segmentation in the
sink. We adopted GCE and LCE as our error measurements, and evaluated the
image segmentation result of PSOTM by comparing it with the results of SOTM
and the manual image segmentation. Compared to the SOTM image segmentation
algorithm and manual image segmentation, PSOTM can process the image in
parallel with insignificantly impact on the image segmentation result. We

concluded that PSOTM can improve performance in image segmentation.

For the future work, some aspects are worth further investigating, such as:

In heterogeneous solar-powered WVSNs that are applied with layered clustering
algorithm, the energy consumption and the total transmitted packets number could

be examined in the scenario when the sensor nodes are mobile.

In homogeneous solar-powered WVSNSs that are applied with layered clustering
algorithm, the system lifetime can be prolonged by rotating the cluster heads

based on the evaluation of their remained energy. That means the cluster heads are
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not static or predefined, and the dynamic cluster heads can be elected periodically

by comparing the remained energy.

We will also focus our research on performance analysis of solar-powered
WVSNs under the considerations of the view coverage of visual sensor and error

estimation in wireless transmission.
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