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Abstract

Non Linear Estimation of Returns on Hedge Funds with Scarce
Observations

Master of Science 2011
Akram Samarikhalaj
Applied Mathematics
Ryerson University

Explaining the behavior of a financial portfolio like a Hedge Fund is challenging
for many reasons, one of those reasons is scarce observations. One possibility to
circumvent these issues is to find simple relationships between the portfolio and fi-
nancial factors. These factors are observed more frequently so it is valid to assume
that one can estimate not only the conditional expectation with respect to single
factors, but also the joint law of all the underlying factors. The problem, then, is
to recover the conditional expectation of the portfolio’s return given all the fac-
tors.The author of the paper,”Measuring Risk With Scarce Observation” prescribes
a reasonable criteria which provides existence and uniqueness to this problem also
characterizes the solution under the assumption of Gaussian distribution among
the factors( Independent factors). In our thesis, we present a solution for the case
when the joint law of factors is a multivariate t-student distribution.
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1 Introduction:

Our interest is a special type of investment companies called hedge funds. These
are loosely regulated companies which could invest in a variety of complicated
products, making their performance different to that of common stocks. These
companies report returns (Y ) on a monthly basis leading to scarce data bases
therefore making statistical analysis more challenging. In general, investments are
interested in many financial objectives related to hedge funds. For example, they
may want to measure the risk of a Hedge fund and therefore trying to explain the
returns (Y ) and the variation in Y in terms of the variations of a set of variables
X which could represent macroeconomic variables, fundamentals of a company or
simple stocks and indexes. In general these variables are called factors for simplic-
ity. Note that to measure the risk of a financial product with scarce observation,
the simplest way is to relate it to the values of certain financial factors which are
more popular or stable therefore leading to a more robust analysis. They also may
want to find ways to hedge the performance of hedge funds companies on which
they may have large investment allocations. This hedging exercise protect them,
in particular, against downward movements of the returns of the hedge funds com-
panies in their portfolios. A hedging exercise could be created by investing on
common stocks, indexes (X) or even on financial derivatives (f(X)), the later are
basically nonlinear functions on the underlying stocks and therefore can be seen as
quadratic or higher order functions. This means that these investment companies
would like to know how to combine allocations on polynomial functions of separate
stocks (g (f1(X1), ..., fN(XN))) in order to hedge the hedge fund returns (Y ).

The mathematical problem would be easily solvable via regression analysis assum-
ing enough data is available not only for the factors (X) to be used in the hedging
but also for the hedge funds to be hedged. This later conditions is the one that
fails as there are only dozens of data points available from hedge funds companies
which come from based monthly performances (Y ). On the other hand stocks or
indexes are pretty much available on a daily or even intra-day basis making the
analysis of their relationships (X = (X1, ..., XN)) easier to describe as opposed to
describing the relationship between the hedge funds and the stocks (Y = g(X)).

In this context a recent paper: ”Measuring Risk With Scarce Observation” [1],
proposed an alternative approach to standard regression analysis with the purpose
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of building an optimal multidimensional function g. The method proposed by the
authors uses strongly the joint probability distribution of the factors X and put
forward a new concept of optimality based on a two steps approach: it first finds
the best relationship between each marginal factor (Xi) and the dependent vari-
able Y , this is achieved via standard regression analysis therefore minimizing the
fitting error. In a second step it looks for the multivariate function g with min-
imum variance such that the marginal fittings are satisfied. The requirement of
minimum variance, is a way of finding a reasonably well behaved multidimensional
function among all possible candidates avoiding at the same time the use of the
joint distribution of X and the scarce variable Y .

This thesis studies in detail the paper by [1] and the statistical relationships and
methods provided in there. It covers the topic of regression (linear and non-linear),
which is one of the steps in the targeted methodology. In this case the regression
could be performed between some financial factors and the returns of hedge fund
companies. The statistical relationship between the factors altogether and a set of
given hedge fund returns will be studied using the second step in [1]. Even though
the authors provide some theoretical results about this two steps procedure, they
fail to completely provide a methodology that could be used beyond the two simple
cases they managed in their examples. The cases they used as examples were those
when the factors X follow a multivariate Gaussian distribution (also a multivari-
ate Gaussian Copula or dependence structure was studied) and the case where the
factors were assumed independent.

In finance and economics Gaussian assumptions among variables are extremely
unrealistic. This is due to the presence of asymmetries (skewness), high proba-
bility of extreme events (fat tails) and the presence of tail dependence as a non
Gaussian copula feature. One of the most popular non-Gaussian random variable is
the t-student, this is because the distribution satisfies some of the previously men-
tioned stylized facts on its univariate and multivariate variants. In order to adapt
the aforementioned paper [1] to a context beyond Gaussian, several changes were
performed. Among them, finding polynomials that has orthogonality relationship
under a given measure can be a first step. This leads to some drawbacks in terms
of the family of functions in which the optimal solution is found as well as on the
possible marginal regression fittings that were compatible with the methodology.
This modified analysis was then applied to the case of a univariate and therefore a
multivariate extension of the t-student distribution. Some other possible families
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of probability measures and the associated orthogonal polynomials were also men-
tioned.

The thesis is organized as follows: the next section provides an overview of hedge
funds and regression techniques (linear and nonlinear). Chapter 2 reviews the most
important results from [1] with emphasis on the results that will be extended or
modified. Chapter 3 provides the novel results in the thesis, starting with Section
3.1 and the modifications to the existing framework as well as the methodology
to build solutions. In Section 3.2, the application of the results from the previous
section are developed. This involves defining the orthogonal polynomials under a
t-student distribution, then selecting an appropriate multivariate t-student distri-
bution and considering inner products under this measure. After that, we study in
detail three particular cases which correspond to the smallest degrees of freedom,
and therefore, representing the cases farther away from the Gaussian measure. We
also consider the general case of any given number of degrees of freedom. Section
3.3 motivates some other measures and orthogonal functions for future research.
Chapter 4 concludes.

1.1 Hedge Funds

A hedge fund is a fund that can take both long and short positions, look for ar-
bitrage opportunities, buy and sell undervalued securities, trade options or bonds,
and invest in almost any opportunity in any market where it foresees impressive
gain at reduced risk. The primary aim of most hedge funds is to reduce risk while
attempting to preserve capital and deliver positive returns under all market condi-
tions.
Hedge funds are investment vehicles that explicitly pursue absolute returns on their
underlying investments. The description ”Absolute Return Fund” would be more
accurate, since not all hedge funds contain an explicit hedge on their portfolio
of investments. However the ”Hedge Fund” definition has come to incorporate,
any absolute return fund investing within the financial markets (stocks, bonds,
commodities, currencies, derivatives, etc) and/or applying non-traditional portfo-
lio management techniques including, but not restricted to, shorting, leveraging,
arbitrage, swaps, etc. Hedge funds can invest in any number of strategies. These
are perhaps identifiable by their structure, a limited partnership (the manager
acting as the general partner and investors acting as the limited partners) with
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performance related fees, high minimum investment requirements and restrictions
on types of investors and entry and exit periods [6].

Investors decide to allocate funds to hedge funds for several reasons:

1. To increase the return on the portfolio.

Many hedge funds have performed well in both absolute and relative return
to aggregate stock and bond returns which is enough to make them appealing
to many investors.

2. To diversify the returns of assets within the portfolio.

Diversification involves a statistic called correlation. Correlation is a single
number that describes the degree of relationship between two or more vari-
ables. For example, A correlation of one means that the two numbers related
and if one grows so does the other. Two assets in the same industry provide
less risk reduction from diversification than a combination of unrelated com-
panies. A well diversified portfolio combines the returns of many assets often
with some effort devoted to identifying returns that are not correlated.

3. To reduce risk.

Many hedge fund have lower risk than traditional assets [15].

Note that the return of the hedge fund is published monthly and it reduces
the size of the sample to estimate. For example if there are two years history of a
hedge fund then there are two dozen observations. The confidence (or prediction)
interval is an estimate of an interval in which future observations will fall and often
used in regression analysis. It is used to indicate the reliability of an estimate. A
major factor determining the length of the confidence interval is the size of the
sample used in the estimation procedure. For a smaller confidence interval more
precise results will be obtained. The greater the sample size the smaller the size of
confidence interval and the greater the number of variable the greater the size of
confidence interval. In hedge fund analysis the size of the sample is small as the
return is monthly and we have small data.
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1.2 Regression Analysis

In statistics, regression analysis includes any technique used for modeling and ana-
lyzing several variables when the focus is on the relationship between a dependent
variable and one or more independent variables. The relationship is expressed in
the form of an equation or a model connecting the response or dependent variable
and one or more explanatory or predictor variables. Regression analysis estimates
the conditional expectation of the dependent variable given the independent vari-
ables. The conditional expectation is the average value of the dependent variable
when the independent variables are held fixed. The estimation target is a function
of the independent variables called the regression function[16].

A large body of techniques for carrying out regression analysis has been developed.
Familiar methods such as linear regression and ordinary least squares regression
are parametric. This means that a regression function is defined in terms of a finite
number of unknown parameters that are estimated from the data. Nonparametric
regression refers to techniques that allow the regression function to lie in a specified
set of functions, which may be infinite-dimensional.

The performance of regression analysis methods in practice depends on the form
of the data-generating process, and how it relates to the regression approach being
used. Since the true form of the data-generating process is not known, regression
analysis depends to some extent on making assumptions about this process. These
assumptions are sometimes (but not always) testable if a large amount of data is
available. Regression models for prediction are often useful even when the assump-
tions are moderately violated, even though they may not perform optimally. In
many applications, especially with small effects or questions of causality based on
observational data, regression methods give misleading results[20].

Regression models involve the following terms:

1 - The unknown parameters, β. It can be a scalar or a vector.

2 - The independent variables, X.
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3 - The dependent variable, Y.

A regression model relates Y to a function of X and β.

Y ≈ f(X, β)

The approximation is usually formalized as E(Y |X) = f(X, β). To carry out para-
metric regression analysis, the form of the function f must be specified. Sometimes
the form of this function is based on knowledge about the relationship between Y
and X that does not rely on the data. If no such knowledge is available, a flexible
or convenient form for f is chosen.

Assume now that the vector of unknown parameters β is of length k. In order
to perform a regression analysis the user must provide information about the de-
pendent variable Y:

- If n data points of the form (Y,X) are observed, where n < k, most classical
approaches to regression analysis cannot be performed, since the system of equa-
tions defining the regression model is undetermined, there is not enough data to
recover β.

- If exactly n = k data points are observed, and the function f is linear, the
equations Y = f(X, β) can be solved exactly rather than approximately. This re-
duces to solving a set of N equations with N unknowns (the elements of β) , which
has a unique solution as long as the X are linearly independent. If f is nonlinear,
a solution may not exist, or many solutions may exist.

- The most common situation is where n > k data points are observed. In this
case, there is enough information in the data to estimate a unique value for β that
best fits the data in some sense.

In the last case, the regression analysis provides the tools for:

Finding a solution for unknown parameters β that will, for example, minimize
the distance between the measured and predicted values of the dependent variable
Y (also known as method of least squares).
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Under certain statistical assumptions, regression analysis uses the surplus of in-
formation to provide statistical information about the unknown parameters β and
predicted values of the dependent variable Y [20].

Decomposition property: Any random variable y can be expressed as

y = E(y|x) + ε

where E(y|x) is the expected value of y for given values of random variable X and
ε is a random variable satisfying

i) E(ε|x) = 0
ii)E(εh(x)) = 0 where h(.) is any function of x.

This means any variable can be decomposed in two parts: conditional expectation
and orthogonal error term.

Prediction property:

Let m(x) be any function of x. Then

E(y|x) = argminm(x)E[(y −m(x))2]

intuition : the conditional expectation is the best prediction where ’ best ’ means
minimum mean squared error.

Proof 1.1 (y − m(x))2 = [(y − E(y|x)) − (E(y|x) − m(x))]2 = (y − E(y|x))2 +
(E(y|x)−m(x))2 − 2(y − E(y|x))(E(y|x)−m(x))

• The first term is not affected by the choice of m(x).

• The third term (y−E(y|x))(E(y|x)−m(x)) = ε(x)h(x) and E(ε(x)h(x)) = 0
by the decomposition property.

Hence the whole expression is minimized if m(x) = E(y|x) see [18].
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1.2.1 Linear Regression:

In linear regression, data is modeled using linear functions, and unknown model
parameters are estimated from the data.

Given a data set {yi, xi1, . . . , xik}ni=1 of n statistical units, a linear regression model
assumes that the relationship between the dependent variable yi and the k-vector
of independent variables xi is linear.

This relationship is modeled through a term εi, an unobserved random variable
that adds noise to the linear relationship between the dependent variable and in-
dependent variables. Thus the model takes form:

yi = β1xi1 + · · ·+ βpxik + εi = x′iβ + εi, i = 1, . . . , n,

where x
′
i is the ith. (row) vector of predictors for n observation and β is the vector

of regression parameters to be estimated and εi is a random error. ′ denotes the
transpose, so that x′iβ is the inner product between vectors xi and β.

Some remarks on general use:

• yi, is called dependent variable.

• The decision as to which a variable in a data set is modeled as the dependent
variable and which are modeled as the independent variables may be based on
a presumption that the value of one of the variables is caused by, or directly
influenced by the other variables. Alternatively, there may be an operational
reason to model one of the variables in terms of the others, in which case
there need be no presumption of causality.

• xi, are called predictor variables, or independent variables.

• Usually a constant is included as one of the independent variables. For ex-
ample we can take xi1 = 1 for i = 1, ..., n. The corresponding element of β is
called the intercept. Many statistical inference procedures for linear models
require an intercept to be present, so it is often included even if theoretical
considerations suggest that its value should be zero.
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• Sometimes one of the independent variables can be a non-linear function of
another independent variables or of the data, as in polynomial regression and
segmented regression. The model remains linear as long as it is linear in the
parameter vector β.

• The independent variables xi may be viewed either as random variables,
which we simply observe, or they can be considered as predetermined fixed
values which we can choose.

• β, is a k-dimensional parameter vector. Its elements are also called regression
coefficients. εi, is called the error term, or noise. This variable captures
all other factors which influence the dependent variable y other than the
independent variables xi.The relationship between the error term and the
independent variables, for example whether they are correlated, is a crucial
step in formulating a linear regression model, as it will determine the method
to use for estimation [13].

Assumptions of linear regression:

There are some principal assumptions which justify the use of linear regression
models for purposes of prediction:

(1) Linearity of the relationship between dependent and independent variables
(linearity on the parameters).

Violations of linearity are extremely serious if we fit a linear model to data
which are nonlinearly related, our predictions are likely to be seriously in error,
especially when we extrapolate beyond the range of the sample data.

(2) Independence of the errors (no serial correlation).

The errors also assumed to be uncorrelated across observations, so that for two
observations i and j, the covariance between εi and εj is zero.
Violations of independence are also very serious in time series regression models:
serial correlation in the residuals means that there is room for improvement in the
model, and extreme serial correlation is often a symptom of a badly miss-specified
model. Serial correlation is also sometimes a by-product of a violation of the lin-
earity assumption–as in the case of a simple (i.e., straight) trend line fitted to data
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which are growing exponentially over time.

(3) Homoscedasticity (constant variance) of the errors.
The errors are assumed to be homoscedastic, which means that for a given x,

the errors have a constant variance. Formally ,

V ar(εi|xi) = σ2 for all i.

When the variance differs across observations, the errors are heteroscedastic and
V ar(εi|xi) = σ2

i for all i
Violations of homoscedasticity make it difficult to gauge the true standard de-

viation of the forecast errors, usually resulting in confidence intervals that are too
wide or too narrow. In particular, if the variance of the errors is increasing over
time, confidence intervals for out-of-sample predictions will tend to be unrealisti-
cally narrow. Heteroscedasticity may also have the effect of giving too much weight
to small subset of the data (namely the subset where the error variance was largest)
when estimating coefficients.

(4) Normality of the error distribution.

Violations of normality compromise the estimation of coefficients and the calcu-
lation of confidence intervals. Sometimes the error distribution is ”skewed” by the
presence of a few large outliers. Since parameter estimation is based on the mini-
mization of squared error, a few extreme observations can exert a disproportionate
influence on parameter estimates. Calculation of confidence intervals and various
significance tests for coefficients are all based on the assumptions of normally dis-
tributed errors. If the error distribution is significantly non-normal, confidence
intervals may be too wide or too narrow.

(5) Zero Condition Mean of ε.

E(εi|xi) = 0.

(6) The x’s are linearly independent.
This means that none of the x’s is a linear combination of remaining x’s.
If any of these assumptions is violated (i.e., if there is nonlinearity, serial corre-
lation, heteroscedasticity, and/or non-normality), then the forecasts, confidence
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intervals, and economic insights yielded by a regression model may be (at best)
inefficient or (at worst) seriously biased or misleading [13].

1.2.2 Non-Linear Regression:

The basic idea of nonlinear regression is the same as that of linear regression. Non-
linear regression is characterized by the fact that the prediction equation depends
nonlinearly on one or more unknown parameters. Whereas linear regression is often
used for building a purely empirical model, nonlinear regression usually arises when
there are physical reasons for believing that the relationship between the response
and the predictors follows a particular functional form.
In the more general normal nonlinear regression model, the function f(.) relating
the response to the predictors is not necessarily linear:

yi = f(xi, β) + ri

As in linear model, β is a vector of parameters and xi is a vector of predictors
(but in the nonlinear regression model, these are not generally of the same dimen-
sion)and the ri are random errors.

In nonlinear regression the data is fitted by a method of successive approxima-
tion [13].

Assumptions of nonlinear regression:
There are some principal assumptions which justify the use of non-linear regression
models for purposes of prediction:

(1) The model is correct. Nonlinear regression adjusts the variables in the equa-
tion you chose to minimize the sum-of-squares. It does not attempt to find a better
equation.
(2) The variability of values around the curve follow a Gaussian distribution. Even
though no biological variable follows a Gaussian distribution exactly, it is sufficient
that the variation be approximately Gaussian.
(3) Homoscedasticity (constant variance) of the errors.
The errors are assumed to be homoscedastic, which means that for a given x, the
errors have a constant variance. Formally ,
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V ar(εi|xi) = σ2 for all i.

It means the SD (standard deviation) of the variability is the same everywhere,
regardless of the value of X. The assumption is termed homoscedasticity. If the SD
is not constant but rather is proportional to the value of Y, you should weight the
data to minimize the sum-of-squares of the relative distances.
(4) The model assumes that you know X exactly. This is rarely the case, but it is
sufficient to assume that any imprecision in measuring X is very small compared
to the variability in Y.
(5) The errors are independent. The deviation of each value from the curve should
be random, and should not be correlated with the deviation of the previous or next
point. If there is any carryover from one sample to the next, this assumption will
be violated [13].

1.2.3 Least Squares

The method of least squares is a standard approach to the approximate solution of
overdetermined systems, i.e. sets of equations in which there are more equations
than unknowns. ”Least squares” means that the overall solution minimizes the
sum of the squares of the errors made in solving every single equation.
The most important application is in data fitting. The best fit in the least-squares
sense minimizes the sum of squared residuals, a residual being the difference be-
tween an observed value and the fitted value provided by a model. Least squares
problems fall into two categories: linear or ordinary least squares and non-linear
least squares, depending on whether or not the residuals are linear in all unknowns.
The linear least-squares problem occurs in statistical regression analysis. The non-
linear problem has no closed-form solution and is usually solved by iterative refine-
ment; at each iteration the system is approximated by a linear one, thus the core
calculation is similar in both cases.
The method of least squares assumes that the best-fit curve of a given type is the
curve that has the minimal sum of the deviations squared (least square error) from
a given set of data.
Suppose that the data points are (x1, y1), ..., (xn, yn) where x is the independent
variable and y is the dependent variable. The fitting curve f(x) has the error d
for each data point, i.e. d1 = y1 − f(x1), d2 = y2 − f(x2), ..., dn = yn − f(xn).
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According to the method of least squares, the best fitting curve has the property
that:

Π = d2
1 + d2

2 + ...+ d2
n =

n∑
i=1

d2
1 =

n∑
i=1

[yi − f(xi)]
2 → min

Polynomials are one of the most commonly used curves in regression. When using
an mth degree polynomial

y = a0 + a1x+ a2x
2 + ...+ amx

m

to approximate the given set of data, (x1, y1), ..., (xn, yn), where n ≥ m + 1, the
best fitting curve f(x) has the least square error, i.e.,

Π =
n∑
i=1

[yi − f(xi)]
2 =

n∑
i=1

[yi − (a0 + a1xi + a2x
2
i + ...+ amx

m
i )]2 = min

Note that a0, a1, ..., am are unknown coefficients while all xi and yi are given. The
unknown coefficients can be obtained by solving linear equations below [11].

∂Π/∂aj = 0 j = 1, ...,m

Solving linear least square Problem:
The general problem: Consider a system

n∑
j=1

Xijβj = yi, (i = 1, 2, ...,m)

of m linear equations in n unknown coefficients β1, β2, ..., βn , with m > n. This
can be written in matrix form as

Xβ = Y

The goal is to find the coefficients β which fit the equations ”best” in the sense of
solving the quadratic minimization problem

β̂ = argminS(β)
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where the objective function S is given by

S(β) =
∑m

i=1 |yi −
∑n

j=1Xijβj|2 = ||y −Xβ||2.

where || . || is the standard L2-norm in the n-dimensional Euclidean space Rn.
A justification for choosing this criterion is given in properties below. This mini-
mization problem has a unique solution, provided that the n columns of the matrix
X are linearly independent, given by solving the normal equations

(X
′
X)β̂ = X

′
y.

Define the ith residual to be

ri = yi −
n∑
j=1

Xijβj.

Then S(β) can be rewritten

S(β) =
m∑
i=1

r2
i

S is minimized when its gradient vector is zero. The elements of the gradient vector
are the partial derivatives of S with respect to the parameters:

∂S

∂βj
= 2

m∑
i=1

ri
∂ri
∂βj

(j = 1, 2, ..., n).

The derivatives are

∂ri
∂βj

= −Xij.

Substitution of the expressions for the residuals and the derivatives into the gradi-
ent equations gives

∂S

∂βj
= 2

m∑
i=1

(
yi −

n∑
k=1

Xikβk

)
(−Xij) (j = 1, 2, ..., n).
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Thus if β̂ minimizes S, we have

2
m∑
i=1

(
yi −

n∑
k=1

Xikβ̂k

)
(−Xij) = 0 (j = 1, 2, ..., n).

Upon rearrangement, we obtain the normal equations:

m∑
i=1

n∑
k=1

XijXikβ̂k =
m∑
i=1

Xijyi (j = 1, 2, ..., n).

The normal equations are written in matrix notation as

(X
′
X)β̂ = X

′
y.

The solution of the normal equations yields the vector β̂ of the optimal parameter
values [12].

Properties of the least-squares estimators:
The gradient equations at the minimum can be written as

(y −Xβ̂)X = 0

The vector of residuals, y −Xβ̂ is orthogonal to the column space of X, since the
dot product (y −Xβ̂).X is equal to zero. This means that y −Xβ̂ is the shortest
of all possible vectors y−Xβ̂, that is, the variance of the residuals is the minimum
possible[19].
The Gauss Markov theorem states that in a linear regression model in which the
errors have expectation zero and are uncorrelated and have equal vari-
ances , the best linear unbiased estimator of the coefficients is given by the ordi-
nary least squares estimator. Here ”best” means giving the lowest possible mean
squared error of the estimate. The errors need not be normal, nor independent and
identically distributed (only uncorrelated and homoscedastic).see [21]
Limitations and Alternatives:
The independent variable, x, is free of error.
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In practice, the errors on the measurements of the independent variable are usu-
ally much smaller than the errors on the dependent variable and can therefore be
ignored. When this is not the case, total least squares also known as errors-in-
variables models, or rigorous least squares, should be used. This can be done by
adjusting the weighting scheme to take into account errors on both the dependent
and independent variables and then following the standard procedure.
In some cases the (weighted) normal equations matrix is ill-conditioned.
When fitting polynomials the normal equations matrix is a Vandermonde matrix.
Vandermode matrices become increasingly ill-conditioned as the order of the ma-
trix increases. In these cases, the least squares estimate amplifies the measurement
noise and may be grossly inaccurate. Various regularization techniques can be ap-
plied in such cases, the most common of which is called ridge regression. If further
information about the parameters is known, for example, a range of possible values
of β, then various techniques can be used to increase the stability of the solution.
Another drawback of the least squares estimator is the fact that the norm of the
residuals, ||y −Xβ|| is minimized, whereas in some cases one is truly interested in
obtaining small error in the parameter β, e.g. , a small value of ||β− β̂||. However,
since β is unknown, this quantity cannot be directly minimized. The least squares
method is often applied when no prior is known. Surprisingly, when several param-
eters are being estimated jointly, better estimators can be constructed, an effect
known as Stein’s phenomenon.
Solving Nonlinear least squares Problem

Non-linear least squares is the form of least squares analysis which is used to fit
a set of m observations with a model that is non-linear in n unknown parameters
(m1 > n1). It is used in some forms of non-linear regression.

Consider a set of m data points, (x1, y1), (x2, y2), ..., (xm1 , ym1), and a curve
(model function) y = f(x, β), that in addition to the variable x also depends on n
parameters, β = (β1, β2, ..., βn1), with m1 ≥ n1. It is desired to find the vectorβ of
parameters such that the curve fits best the given data in the least squares sense,
that is, the sum of squares:

S =

m1∑
i=1

r2
i

is minimized, where the residuals (errors) ri are given by

ri = yi − f(xi, β) i = 1, 2, ...,m1

16



The minimum value of S occurs when the gradient is zero. Since the model contains
n parameters there are n gradient equations:

∂S

∂βj
= 2

∑
i

ri
∂ri
∂βj

= 0 (j = 1, . . . , n1).

In a non-linear system, the derivatives ∂ri
∂βj

are functions of both the independent

variable and the parameters, so these gradient equations do not have a closed
solution. Instead, initial values must be chosen for the parameters. Then, the
parameters are refined iteratively, that is, the values are obtained by successive
approximation,

βj ≈ βk+1
j = βkj + ∆βj.

Here, k is an iteration number and the vector of increments, ∆β, is known as
the shift vector. At each iteration the model is linearized by approximation to a
first-order Taylor series expansion about βk

f(xi, β) ≈ f(xi, β
k) +

∑
j
∂f(xi,β

k)
∂βj

(
βj − βkj

)
≈ f(xi, β

k) +
∑

j Jij∆βj.

Where Jij = ∂f(xi,β
k)

∂βj
is the first-order partial derivatives of a function f(xi, β

k)

with respect to βj where i = 1, 2, ...,m1 and j = 1, . . . , n1 and k is an iteration
number,so J is a function of the independent variable and the parameters, so it
changes from one iteration to the next. Thus, in terms of the linearized model,
∂ri
∂βj

= −Jijand the residuals are given by:

ri = ∆yi −
n1∑
s=1

Jis∆βs; ∆yi = yi − f(xi, β
k)

Substituting these expressions into the gradient equations, they become

−2

m1∑
i=1

Jij

(
∆yi −

n1∑
s=1

Jis∆βs

)
= 0

which, on rearrangement, become n simultaneous linear equations, the normal
equations

m1∑
i=1

n1∑
s=1

JijJis∆βs =

m1∑
i=1

Jij∆yi (j = 1, . . . , n1).

The normal equations are written in matrix notation as (see [12]):(
JTJ

)
∆β = JT∆y.

17



Differences between LLSQ (linear least squares) and NLLSQ (non-linear
least squares):
(1) The model function, f, in LLSQ (linear least squares) is a linear combination
of parameters of the form f = Xi1β1 + Xi2β2 + · · · The model may represent a
straight line, a parabola or any other linear combination of functions. In NLLSQ
the parameters appear as functions, such as β2, eβx and so forth. If the derivatives
∂f/∂βj are either constant or depend only on the values of the independent vari-
able, the model is linear in the parameters. Otherwise the model is non-linear.
(2) Algorithms for finding the solution to a NLLSQ problem require initial values
for the parameters, LLSQ does not. Like LLSQ, solution algorithms for NLLSQ
often require that the Jacobian be calculated. Analytical expressions for the partial
derivatives can be complicated. If analytical expressions are impossible to obtain
either the partial derivatives must be calculated by numerical approximation or an
estimate must be made of the Jacobian.
(3) In NLLSQ non-convergence (failure of the algorithm to find a minimum) is a
common phenomenon whereas the LLSQ is globally concave so non-convergence is
not an issue.
(4) NLLSQ is usually an iterative process. The iterative process has to be termi-
nated when a convergence criterion is satisfied. LLSQ solutions can be computed
using direct methods.
(5) In LLSQ the solution is unique, but in NLLSQ there may be multiple minima in
the sum of squares. Under the condition that the errors are uncorrelated with the
predictor variables, LLSQ yields unbiased estimates, but even under that condition
NLLSQ estimates are generally biased[21].
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2 Cherny’s Framework

2.1 Problem and General Solution

In Cherny’s et al [1], the authors considered the problem of measuring the risk of
a hedge fund with scarce observations. The simplest way of doing so is by tak-
ing the empirical distribution but with scarce data this could be challenging. A
more advanced procedure, proposed by the authors, consist in relating the return
of the hedge fund to the values of certain financial factors, like the price of the
oil or macroeconomic factors. These factors are observed more frequently so it is
assumed that one can estimate the joint law of all factors from the available data.
Moreover, if the marginal conditional expectation of the hedge fund with respect
to each of the factors separately are known, like in a regression, then the problem
become that of recovering the conditional expectation of the hedge fund’s return
given all financial factors from the joint law and the marginal conditional expecta-
tion.
For a fixed time period [0, T ], let R denote the return of the hedge fund over this
period and let (X1, X2, ..., XN) be the returns of the factors over this period. In
general, one useful mathematical problem linking R to (X1, X2, ..., XN) would be
to estimate the conditional distribution P (R|X1, X2, ..., XN).

If the joint law (probability) of (X1, X2, .., XN) is known, then the above prob-
lem is equivalent to estimating the joint law of (R,X1, X2, .., XN). If the hedge
fund has a two year history, then there are only two dozen observation of R.
This may be sufficient to estimate R and the joint distribution Law(R,Xn) for
n = 1, ..., N but the data would be too scarce to try to estimate Law(R,Xi, Xj) or
the Law of more than three variables simultaneously. A simpler problem would be
to recover Law(R,X1, X2, .., XN) from the knowledge of Law(X1, X2, .., XN) and
Law(R,Xn) n = 1, 2, .., N but this is still a challenging problem.

A simpler mathematical problem is that of recovering the conditional expecta-
tion E(R|X1 = x1, X2 = x2, ..., XN = xn) instead of the Law(R|X1 = x1, X2 =
x2, ..., XN = xN). For that, the authors use the Law(X1, X2, ..., XN) and the
marginal conditional expectation E(R|Xn = x) instead of the Law(R,Xn).
Here, we present their framework in the most general way. Details are provided
next:
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Let us assume a measure P on RN (this is the law of (X1, X2, ..., XN)) and
the functions φn : R → R [φn means E(R|Xn = x)] are given. The prob-
lem is to find a function φ : RN → R (φ(x1, x2, .., xN) which has the mean-
ing of E(R|X1 = x1, X2 = x2, .., XN = xn)) such that:

E(φ(X1, X2, ..., XN)|Xn) = φn(Xn) n = 1, 2, .., N (1)

Here Xn denotes the n-th coordinate projection of RN on R. In order to obtain a
unique solution Cherny [1] imposed additional conditions on the function φ. They
proposed to look for the solution which is the most moderate one as measured by
its variance.{

Minimize var φ(X1, X2, .., XN)
E(φ(X1, X2, ..., XN)|Xn) = φn(Xn) n = 1, 2, .., N,

(2)

where var denotes the variance and the minimization is performed with respect to
a family of integrable functions φ which is defined according to a given measure P
on the factors.

2.2 General Setup

In this section, we will study problem for an arbitrary measure P . Let us set

Φ = {(φ1, φ2, ..., φN) : Eφ2
n(Xn) <∞ and Eφn(Xn) = 0 ∀n = 1, ..., n}

Let PrE denote the orthogonal projection on a space E and ||.|| the L2 − norm.
The following lemma sheds light on the structure of the solutions. In page 11 of [1],
the solution of the case when the distribution between of the factors is Gaussian,
the application of next Lemma completed the proof.

Lemma 2.1 Let (φ1, φ2, ..., φN) ∈ Φ and suppose that ψn : < −→ < are measur-
able functions with Eψ2

n(Xn) <∞ such that the function

φ(x1, ..., xN) =
N∑
n=1

ψn(xn) (3)

satisfies (1); then it is the unique solution of (2).
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The following proof is a more detailed version of the proof in the paper.

Proof 2.2 Denote

En = {ξ ∈ L2 : ξ is Xn −measurable, Eξ = 0}

Note Xn is a random variable define in a probability space (Ω∗,F,P), therefore the
function ξ is Xn-measurable iff ξ = g(Xn) for some g such that the preimage of
each measurable set (on the Borel Algebra on R) is in F (so g is a measurable
function).
Let us assume φ̃ satisfies (1) , this means that

E(φ̃ |Xn) = φn(Xn) = E(φ|Xn)

As E(φ|Xn) is the projection of φ onto En then for any Y ∈ En:

< Y, φ− E(φ|Xn) >=

∫
Y (φ− E(φ|Xn))dP = 0

To see this,∫
Y (φ− E(φ|Xn))dp = E(Y φ)− E(Y E(φ|Xn))

= E(Y φ)− E(E(Y φ|Xn)) (sinceY ∈ En)

= E(Y φ)− E(Y φ)

Therefore

PrEnφ̃ = φn(Xn) = PrEnφ

This implies that

PrEnφ̃− PrEnφ = PrEn(φ̃− φ) = 0

n = 1, ..., N

So (φ̃− φ) is orthogonal to En for n = 1, ..., N

< φ̃− φ, ξn >= 0,∀, ξn ∈ En
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as φ ∈ E1 +E2 + ...+EN (which is the space of sums ξ1 + ...+ ξN where ξi ∈ Ei )
so φ = ξ1 + ...+ ξN we can imply φ̃− φ is orthogonal to φ.

To see this:

< φ̃− φ, φ >=< φ̃− φ,ΣN
i=1ξi >= ΣN

i=1 < φ̃− φ, ξi >= 0

This implies ||φ̃|| ≥ ||φ||, which is a direct result from the following equations:

φ̃ = φ− (φ− φ̃)

||φ̃||2 = ||φ||2 + ||(φ− φ̃)||2

Hence
||φ̃||2 ≥ ||φ||2

and the equality is possible only if φ̃ =φ. This allows us to conclude that the linear
combination minimizes the norm.

The differences between non-linear regression and Cherny’s et al solution is
explained next. According to [1], R is the return of the hedge fund over a fixed
period, X1, X2, ...XN are the returns of the factors over this period. The problem
is to estimate the conditional expectation

E(R|X1, ..., XN)

from the marginal conditional expectations E(R|Xn = x) n = 1, ..., N and the
joint probability for (X1, . . . , XN).

The authors assumed that R,X1, X2, ...XN are random variables with mean zero
and E(Xn)2 = 1, with R a dependent variable and X1, X2, ...XN the independent
variables. In general a linear or nonlinear regression of R on each Xn , n = 1, ..., N
would lead to:

R = φi(Xi) + εi i = 1, ..., N

where ε′is are errors. By the method of least square, the best-fit is the curve that
has a minimal sum of the deviations squared (least square error) from Xn. So, the
best φn(Xn) n = 1, ..., N leads to a minimum value for

E(R− φn(Xn))2
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As regression analysis estimates the conditional expectation of the dependent vari-
able given the independent variables that is, the average value of the dependent
variable when the independent variables are held fixed:

φn(x) = E(R|Xn = x).

After finding the best fitted curves, [1] found a E(R|X1, ..., XN) which is a function
φ : <N → < and φ(X1, ..., XN) = E(R|X1, ..., XN) such thatE(φ(X1, ..., XN)|Xn) =
φn(Xn).

The differences between [1] and a linear/nonlinear regression of R on X1, ..., XN

is that the former selects φ with the minimun variance among a wide family
of possible choices. On the other hand regression minimizes the error E(R −
φ(X1, X2, ..., XN))2 based on a least square method for a specific set of parametric
fucntions φ.

In other words, note that in a regression the error and the X variables are as-
sumed independent (uncorrelated), hence from the expression:

R = φ(X1, ..., XN) + ε

we could see that:

V ar(R) = V ar(φ(X1, ..., XN) + ε)

= V ar(φ(X1, ..., XN)) + V ar(ε)

Therefore by minimizing the V ar(φ(X1, ..., XN)) (the target in [1]) the V ar(ε) will
be maximized as variance of R is fixed, while in regression φ is chosen such that
V ar(ε) is minimum.

V ar(ε) = E([R− φ(X1, ..., XN)]2).

Concluding, the objectives are different between regression and [1], the former
minimizes error within a narrow set of functions, while the later selects the solu-
tion among a wide set of possible fitting functions by requiring to have minimum
variance.
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2.3 Solution for Gaussian and Independent Measures

The solution of (2) for the case when the distribution between the financial factors
is Gaussian has the form:

φ(X1, X2, ..., XN) =
N∑
n=1

∞∑
m=1

αnmHm(Xn) , xn ∈ <

where αnm are found through solving certain N-dimensional linear system and
Hm(Xn) are Hermite polynomials as Hermite polynomials have orthogonality rela-
tionship under gaussian measure.
One way to define Hermite polynomials is as follows:

f(a) = exp{ax− a2

2
}

Hm(x) =
1√
m!

∂m

∂am
|a=0 f(a) x ∈ <

An an example,
H0(x) = 1

H1(x) = x

H2(x) =
(x2 − 1)√

2

H3(x) =
(x3 − 3x)√

6

Denote
amn = E[φn(xn)Hm(xn)]

where the expectation is with respect to the Gaussian Measure with density func-

tion f(x) = 1√
2π

∫
R
e
−x2

2 dx so

amn =
1√
2π

∫
R

φn(x)Hm(x)e
−x2

2 dx

n = 1, 2, ..., N,m ∈ N
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Denote by C the covariance matrix of (X1, X2, ..., XN) and Cm its m-th componen-
twise power. Each Cm is symmetric, positively definite, and non-degenerate. For
each m ∈ ℵ, the vector  α1m

...
αNm

 = C−1

 a1m
...
aNm


is well defined. (the proof is in [1] page 11). Suppose that X1, X2, ..., XN are

independent under P then the solution of (2) is given by:

φ(X1, X2, ..., XN) =
N∑
n=1

φn(Xn)

(the proof is in [1] page 10).
Independent components (special case of Gaussian). One special case of Gaus-

sian is when X1, ..., XN are Gaussian and independent. In this case E(XY ) =
E(X)E(Y ) = 0 then ρ = 0 so according to lemma A.1 of [1] 〈Hm(X), Hk(Y )〉 = 0
and also

〈Hm(X), Hk(X)〉 =

{
1 if m = k
0 if m 6= k

In page 11 of [1] we have

φn(Xn) =
∞∑
m=1

(
∞∑
s=1

N∑
k=1

αks〈Hs(Xk), Hm(Xn)〉)Hm(Xn)

=
∞∑
m=1

(αnm)Hm(Xn)

In the solution of the Gaussian case when we substitute φn(Xn) =
∑∞

m=1(αnm)Hm(Xn)
then we have

φ(X1, X2, ..., XN) =
N∑
n=1

φn(Xn)

which is equal to the solution of (4.1) of [1].
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3 Alternative Mathematical Framework

As seen in the previous section, where a summary of the results in [1] was provided,
their method is applied to two simple joint measures, the independent measure and
the multivariate Gaussian measure. The authors also explore the case of a Gaussian
dependence structure, therefore a Gaussian Copula (see [1]). These examples are
too simplistic for their targeted applications, which are financial variables. It is
well known that financial instruments like stock prices, company’s fundamentals
and macroeconomic variables show non-gaussian features like fat tails (Kurtosis)
in the marginals as well as tail dependence on the joint. One of the most popular
distribution in the world of finance and economics, that allows for fat tails and
tail dependence is the t-student and their multidimensional counterparts. This is
why our main objective is to explore the applicability of the work developed by the
previous authors beyond normality and in particular for a t-student case.

The mathematical setting used in [1] has several limitations which become clear
once the method is applied to non gaussian measures like that of the t-student.
For example, even though the authors show existence of the solution, they do
not provide a methodology to build this solution given a probability measure,
some hints can be extracted from their applications and this is one of the new
developments in our thesis. Moreover, their main results strongly use the space of
L2 functions under the given probability measure, while the applications described
[1] make use of a basis under this measure.

The theory and applications come together very conveniently under a Gaussian
measure (PG) as the well known Hermitian polynomials are not only orthogonal
with respect to PG but also they represent a basis of the space of L2(PG) func-
tions. This is unfortunately too much to ask when a different probability measure
is selected leading to two further challenges, first the need to search of a set of
orthogonal functions under the given measure P and secondly the shrinkage of the
space L2(P ) to a subspace in which the orthogonal functions become a basis. The
latest have the strongest implications as it cut short the space of functions used
for matching the marginal functions (conditional expectations) obtained from a
regression between the dependent variable y and each of the independent variables
X.

In this section we first explore changes on the setting developed in [1] in order
to accommodate for non-Gaussian measures. In a second step a methodology to
build a solution under a measure P is provided. This is based on the knowledge of
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a basis of orthogonal functions, and their corresponding space Ω, under the fixed
measure as well as a set of marginal functions, which are assumed elements of this
space Ω. Then a solution for the case when the distribution between the factors
is a multivariate t-student is developed. To accomplish that we describe a class
of hypergeometric orthogonal polynomial which has the orthogonality relationship
under the t-student measure. The space set up to solve the problem is therefore
different from the Gaussian case.

In our approach the parameters of the chosen measure plays a role on the space
under analysis and therefore on the set of suitable marginal functions. This is not
the case for the Gaussian measure as the space is always that generated by the
Hermitian polynomials regardless of the correlations, covariances of the underlying
variables. This is why we also provide details of the problem for different degrees
freedom starting from 4, 5 and 6 to conclude with a general solution.

3.1 Modified Setup

In this section we set up a new space which is a variation of that of ([1]) and
suitable for our purpose in Theorem 3.4. The new space is a subspace of L2(p)
such that we can obtain a set of orthogonal functions {pm(X) }Zm=1 under a given
measure P (i.e.

∫
pn(x)pk(x)dP (x) = 0 iff n 6= k) and therefore a basis for this

subspace.

Let Ωn be the space generated by, a possible infinite, set of orthogonal polynomials
under a unidimensional probability measure P on variableXn (span{(pm(Xn))Zm=1}).
Let us define Φ = {(φ1, ..., φN), φn ∈ Ωn, Eφn(xn) = 0 n = 1, ..., N} . Note
Ωn ⊂ L2(P ) so elements in Ωn are L2 integrable under the probability mea-
sure P . And finally the space of multivariate functions suitable to our purposes:

Ω = H
⋂
L2(P (N)), where H =

{
N∏
n=1

φn(xn) | (φ1, ..., φN) ∈ Φ

}
. In this new set-

ting, the space Ω represents all functions L2 integrable under a given N -dimensional
measure P (N) that can be written as a product of elements in Ωn.

Remark 3.1 For clarity, we can think of the case where P (N) is a N-dimensional
gaussian measure then Ω plays the role of all L2(P (N)) functions. This is due to
the fact that the product of the spaces Ωn generated by the Hermitian polynomials
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(denoted space H) form a basis of all multivariate polynomials and therefore of all
L2(P (N)) functions (H = L2(P (N))).

Note also H plays an important role in our setting as it is basically the space
of functions from which the optimal solution to problem (2) will be obtained. The
richer this space this space the stronger and more general the result would be.

Next we extend Lemma 2.1 to show uniqueness of the solution to problem (2) on
this modified space Ω. Recall that we use PrE to denote the orthogonal projection
on a space E and ‖.‖ the L2(P (N)) norm.

Lemma 3.2 Assume φ̂ and φ satisfy (1) and are elements in Ω with

φ =
N∑
n=1

ψn(xn)

then ‖φ‖ ≤
∥∥∥φ̂∥∥∥.

Proof 3.3 The proof follows similarly to that of Lemma 2.1 but using a different
space: Denote

En = {ξ ∈
(

Ωn

⋂
L2(P )

)
: ξ is Xn −measurable, Eξ = 0}

Let us assume φ̃ satisfies (1) , this means:

E(φ̃ |Xn) = φn(Xn) = E(φ|Xn)

or alternatively
PrEnφ̃ = φn = PrEnφ

which implies

PrEnφ̃− PrEnφ = PrEn(φ̃− φ) = 0

n = 1, ..., N

Hence (φ̃− φ) is orthogonal to En for n = 1, ..., N and all ξn ∈ En:

〈φ̃− φ, ξn〉 = 0
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As φ ∈ E1 +E2 + ...+EN (which is the space of sums ξ1 + ...+ ξN where ξi ∈ Ei )
so φ = ξ1 + ... + ξN so we can imply φ̃ − φ is orthogonal to φ using the linearity
of expectation (scalar product):

〈φ̃− φ, φ〉 = 〈φ̃− φ,ΣN
i=1ξi〉 = ΣN

i=1〈φ̃− φ, ξi〉 = 0

This implies ||φ̃|| ≥ ||φ||, which follows easily from the Pythagorean theorem:

||φ̃|| = ||φ||+ ||(φ− φ̃)||

and the equality is possible only if φ̃ =φ.

Now we present the main theorem of this section which provides a methodology
to build the minimum variance solution (problem (2)) given the following inputs:

• A marginal probability measure P and a set of orthogonal functions under
this measure: {pm(X) }Zm=1.

• A multivariate probability measure P (N) with marginals P .

• A set of marginal conditional expectations (1): {ϕn(Xn)}Nn=1. These are
obtained by, for example, marginal regressions (linear or nonlinear) between
Y and each of the variables Xn. The functions ϕn(Xn) must be in the space
Ωn = span{(pm(Xn))Zm=1}.

Theorem 3.4 Let P (N) be a probability measure in <N with equal marginal P . Let
pm(X) , m = 1, .., Z (may be infinite) be a set of orthogonal polynomial under the
probability measure P . A set of functions ϕn(xn), n = 1, .., N which are elements
of Ωn the vector space spanned by {pm(X) }Zm=1 with coefficients {anm}Zm=1. Then
the solution of (2) is given by the series:

φ(X1, X2, ..., XN) =
N∑
n=1

Z∑
m=1

αnmpm(Xn) , Xn ∈ <

whenever the series converges in L2(P (N)). Here αnm are scalars solutions of:

anm =
N∑
n=1

Z∑
m=1

αksC
sm
kn (4)
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and Csm
kn is defined in terms of a scalar product:

Csm
kn = 〈ps(Xk), pm(Xn)〉

where
n, k = 1, ..., N and m, s = 1, ..., Z

Proof 3.5 Thanks to our previous lemma, we only need to show that φ satisfies
condition (1):

E(φ(x1, x2, ..., xN | xn) = ϕn(xn) n = 1, ..., N

consider the spaces En which is defined in proof 3.3.
Using the fact that each ϕn(xn) belongs Ωn:

E[φ|xn] = PrEnφ =
Z∑

m=1

〈φ, pm(xn)〉pm(xn)

We next substitute our guess solution:

E[φ|xn] =
Z∑

m=1

〈
Z∑
s=1

N∑
k=1

αksps(xk), pm(xn)〉pm(xn)

=
Z∑

m=1

(
Z∑
s=1

N∑
k=1

αks〈ps(xk), pm(xn)〉pm(xn))

=
Z∑

m=1

(

N,Z∑
k,s=1

αksC
sm
kn )pm(xn) =

Z∑
m=1

anmpm(xn)

= ϕn(xn) , n = 1, ..., N

An application of Lemma (2.1) completes the proof.

Remark 3.6 Note the meaning of the coefficients anm in our framework:

anm = 〈ϕn, pm(xn)〉

therefore

ϕn(xn) =
Z∑

m=1

anmpm(xn)

In order to gain better intuition about the solution and how it connects to the
one found in [1] we show similarities between both approaches in the next section.
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3.1.1 Gaussian and Independent Measures in our Framework

If we assume that P is a Gaussian distribution in Theorem 3.4 then pm(X) becomes
the Hermitian polynomials Hm(X), because the Hermite polynomials have an or-
thogonality relationship under a Gaussian measure and they are L2 integrable.
Hn(x) nth-degree polynomials for n = 0, 1, 2, 3, .... These polynomials are orthogo-
nal with respect to the weight function (measure)

w(x) = e−x2/2

i.e., we have ∫ ∞
−∞

Hm(x)Hn(x)w(x) dx = 0

when m is not equal to n. Furthermore,∫ ∞
−∞

Hm(x)Hn(x)w(x) dx =
√

2πn!δnm

Therefore we have that Z = ∞ and the solution of (2) is given by the L2 −
convergent series

φ(X1, ..., XN) =

N,∞∑
n,m=1

αnmHm(Xn)

where

anm =
N∑
k=1

αkmC
m
kn

and Cm
kn is defined, as before, in terms of a scalar product under the multivariate

Gaussian measure:

Cm
kn = 〈Hm(Xk), Hm(Xn)〉

In this case 〈Hm(Xk), Hk(Xn)〉 = 0 from Lemma A.1 from [1] simplifies the
solution significantly.
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Note that if the multivariate measure is an independent measure and therefore
is the product of univariate probability distributions we will have:

〈ps(xk), pm(xn)〉 = 0 if {n 6= k} ∩ {m 6= s}

which leads to the following simplification:

anm =

N,Z∑
k,s=1

αksC
sm
kn

= 〈ϕn(xn), pm(xn)〉

meaning the solution φ(X1, X2, ..., XN) is:

φ(X1, X2, ..., XN) =
N∑
n1

ϕn(Xn),

which reproduces the findings in [1]. The advantage of reaching this same conclu-
sion using Theorem 3.4 is that it becomes clear what type of functions would be
best to use as ϕn(Xn) candidates (those in Ωn). If a set of orthogonal functions
under P is known then we could build ϕn(Xn) using elements in Ωn in the regres-
sion analysis. On the other hand functions on the larger set L2(P ) may be difficult
to identify requiring trial and error on the type of functions ϕn(Xn) to be used for
the marginal regressions.

3.2 Results Under a t-Student Measure

This section focuses on an application of Theorem 3.4 that goes beyond the Gaus-
sian probability measure and its multivariate generalization. We explore the case
of the univariate t-student and one of the few bivariate t-student generalizations
from [7], that allows for univariate t-student marginals. In general multivariate
distributions may not give marginals from the same family, this is unfortunately
the case of the t-student, and even though there are many proposed multivariate
generalizations (see [9]) few of them have the standard univariate t-student as their
marginal counterpart.

Some well known properties about the moments of the t-student are provided
next. After that, a set of orthogonal polynomials under this measure is presented

32



together with the particularities about the orthogonality relationship and some
implications from them.

Suppose that P is a t-student non degenerate distribution. We will assume that
E(Xn) = 0 and v stands for the parameters, the degree of freedom with v > 3.
The student’s t-distribution has the probability density function

f(x) = (
Γ(v+1

2
)√

vπΓ(v
2
)
)(1 +

x2

v
)−

1
2

(1+v)

The moments of the t-distribution are given as follow:

E(xk) =


0 if k odd ,0 < k < v

1√
πΓ(v/2)

[Γ(k+1
2

)Γ(v−k
2

)vk/2 if k even ,0 < k < v

undefined if k odd ,0 < v ≤ k
∞ if k even ,0 < v ≤ k.

3.2.1 Orthogonal Polynomials and Properties

Orthogonal functions under a given probability measure is a key component of The-
orem 3.4. Here we present a set of orthogonal polynomials under the univariate
t-student distribution (see [14]). Consider the third finite class of classical hyper-
geometric orthogonal polynomials Ipn(x), n = 0, 1, 2, ... One way to define them is
as follows:

Ipn(x) = n!

[n
2

]∑
k=0

(−1)k
(
p− 1
n− k

)(
n− k
k

)
(2x)n−2k

which is equivalent to:

Ipn(x) =
(−2)n(p− n)n
(2p− 2n− 1)n

(1 + x2)p−1/2d
n((1 + x2)n−(p−1/2))

dxn
n = 0, 1, 2, ...

where
(a)n = a(a+ 1)(a+ 2)...(a+ n− 1)

A third way of defining them is as follows:

Ipn(x) =
1√
m!

∂m

∂am
|a=0(1 + 2ax− a2)p−1
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Each definition provides a useful tool when manipulating these polynomials. The
expression for the first 4 polynomials are:

Ip0 (x) = 1

Ip1 (x) = 2(p− 1)x

Ip2 (x) = 4(p− 2)(p− 1)x2 − 2(p− 1)

Ip3 (x) = 8(p− 3)(p− 2)(p− 1)x3 − 12(p− 2)(p− 1)x

The subindex means the degree of the polynomial and the supraindex is the
parameter of the measure in which they are orthogonal: Ipn(x) is nth-degree poly-
nomial for n = 0, 1, ... with parameter p. These polynomials are orthogonal with
respect to the weight function

ρ(x, p) = (1 + x2)−(p−1/2).

In general we have the following orthogonality relationship:∫ ∞
−∞

ρ(x, p)Ipn(x)Ipm(x)dx = (
n!2(2n−1)

√
πΓ2(p)Γ(2p− 2n)

(p− n− 1)Γ(p− n)Γ(p− n+ 1/2)Γ(2p− n− 1)
)δn,m

This equation holds if and only if m,n = 0, 1, 2, ..., N < p−1 and N = max{m,n}:

∫ ∞
−∞

ρ(x, p)Ipn(x)Ipm(x)dx =

 0 if m = n

( n!2(2n−1)√πΓ2(p)Γ(2p−2n)
(p−n−1)Γ(p−n)Γ(p−n+1/2)Γ(2p−n−1)

if m 6= n

In particular when m = n:

(
(p− n− 1)Γ(p− n)Γ(p− n+ 1/2)Γ(2p− n− 1)

n!2(2n−1)
√
πΓ2(p)Γ(2p− 2n)

)

∫ ∞
−∞

ρ(x, p)(Ipn(x))2dx = 1

which means the functions are not orthonormal but just orthogonal.

The weight function of the orthogonality relation above is related to the uni-
variate t-student distribution as follows:
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T (x; v) = ( Γ(v+1)/2√
vπΓ(v/2)

)ρ( x√
v
; v/2 + 1)) −∞ < x <∞.

Therefore the orthogonality relationship in terms of a t-student with v degrees
of freedom becomes:

∫ ∞
−∞

T (x; v)Iv/2+1
n (x)Iv/2+1

m (x)dx

= (
Γ(v+1

2
)n!2(2n−1)Γ2(v/2 + 1)Γ(v + 2− 2n)

Γ(v
2
)(v/2− n)Γ(v/2 + 1− n)Γ(v/2− n+ 3/2)Γ(v − n+ 1)

)δn,m

= A(v, n)δn,m

if and only if m,n = 0, 1, 2, ..., Z < p − 1 therefore using the relation p = v/2 + 1
we have the following constraints for the number of orthogonal polynomials under
this measure (Z)

Z =

{
v
2
− 1 v

2
∈ N

[v
2
] v

2
/∈ N

We could orthonormalize these polynomials by simply dividing by the function
A(v, n). The first four orthonormalized polynomials would look as follow:

I0(x) =

√
(
(v/2)Γ(v/2 + 1)Γ(v/2 + 3/2)Γ(v + 1)Γ(v/2)

2!2(−1)Γ((v + 1)/2)Γ2(v/2 + 1)Γ(v + 2)
).1

I1(x) =

√
(
(v/2− 1)Γ(v/2)Γ(v/2 + 1/2)Γ(v/2)

2!Γ((v + 1)/2)Γ2(v/2 + 1)
).(v)

x√
(v)

I2(x) =

√
(
(v/2− 2)Γ(v/2− 1)Γ(v/2− 1/2)Γ(v − 1)Γ(v/2)

2!2(3)Γ((v + 1)/2)Γ2(v/2 + 1)Γ(v − 2)
.[(v − 2)x2 − v]

I3(x) =

√
(
(v/2− 3)Γ(v/2− 2)Γ(v/2− 3/2)Γ((v − 2)Γ(v/2)

3!2(5)Γ((v + 1)/2)Γ2(v/2 + 1)Γ(v − 4)
)[(v−4)(v−2)

x3

√
v
−3(v−2)(v)

x√
v

]

An important difference with the Gaussian case described before is the finiteness
of the number of orthogonal polynomials under the t-student probability measure
for a given degree of freedom v, this results from the upper limit for Z.
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Remark 3.7 For example, if v = 4 then Z = 1 so there are only two orthogonal
polynomials under this t-student. Curiously if v = 5 or 6, then Z = 2 so we will
have three orthogonal polynomials or those two cases (same number per case). On
the other hand if the degrees of freedom increases to infinity then the number of
polynomials also increases and not only the t-student becomes a Gaussian distribu-
tion but also the hypergeometric orthogonal polynomials converges to the Hermitian
polynomials (see [14]).

3.2.2 Multivariate t-Student

As mentioned before, most multivariate t-students are not built to imply univariate
t-students on their marginals, this is why we are constrained to a very specific family
of bivariate t-students which does have this condition, see [7]. Even though the
chosen family has not been extended beyond two dimensions, we can still use it
within the context of Theorem 3.4. The reason for this is that in order to apply
Theorem 3.4, we only need to compute bivariate moments coming from the scalar
products in matrix Cms

kn (〈pm(Xk), ps(Xn)〉) and a bivariate distribution is all the
requirement to do so. Still a multivariate distribution is needed for lemma 4.1
to ensure existence and uniqueness of the solution, so we make use of a theory
still in its origins which blend univariate, bivariate and lower order dimensional
distributions into a multivariate distribution of any dimension. This theory is that
of Frechet classes ([8]).

Frechet classes or classes of multivariate distributions with some given marginals
is one of the concepts that allows to combine the chosen bivariate into a N -
dimensional multivariate distribution. The most popular Frechet classes are the
classes of copulas. Copulas combine univariate distributions into a feasible mul-
tivariate probability measure. Another Frechet class is the class of multivariate
distribution in which trivariate marginals are given. The idea is extended to any
lower dimensional distribution. In our case we assume there is a multivariate t-
distribution that can be obtained, using Frechet classes and properties, from a set
of bivariate distribution.[8]. In other words, for the variables (X1, ...., XN) and for
a given set of bivariate distributions {Pij(Xi, Xj)}Ni,j=1 , in this case the bivariate
t-student [7], we assume a multivariate probability measure P (X1, ...., XN) that
can be built satisfying the given bivariate marginals. Conditions for this multivari-
ate to exist are under study in the mathematical literature as it remains an open
problem. The only fully solve case is when the marginals are univariate (the case
of Copulas mentioned before).
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Remark 3.8 It should be pointed out that there are sufficient conditions available
for the existence of N-dimensional probability distributions from a given set of 2-
dimensional marginals. This, in a worst case scenario, would only mean additional
constraints on the parametric space for the selected bivariate distributions.

The next remark is about the implications that result from using only bivariate
to the space of functions H from which the optimal function solving problem (2)
is obtained.

Remark 3.9 Note that in a worst case scenario, where the implied multivariate
distribution has few L2(P (N)) integrable elements we would still have functions of
the type {pm(Xk)ps(Xn)}Zm,s=1 for all n, k = 1, .., N due to the existence of the joint
moments from our chosen bivariate marginal to be described later.

The bivariate t-distribution we selected, was derived in [7] as a sampling dis-
tribution from the bivariate normal distribution and chi-square distribution. The
joint probability density function is given by the following expression:

f(X1, X2; v, ρ) =
(1− ρ2)

2π
(1 +

X2
1 +X2

2 − 2ρX1X2

(1− ρ2)v
)−(v+2)/2

where v represents the degrees of freedom in the one dimensional marginals and ρ
is the dependence parameter with happens to coincide with the Pearson correlation
between the variables.

Therefore, in principle we assume that the joint probability measure P (X1, ...., XN)
is such that every bivariate (Xi, Xj) with i, j = 1, ..., N follows a two-dimensional
t-student with parameters (v, ρij).

The joint moments of this bivariate t-distribution are given in general by a
recursive system as:

µ(a, b; v) = (a+b−1)ρµ(a−1, b−1)γ2+(a−1)(b−1)(1−ρ2)µ(a−2, b−2)γ4 if v > 4

For even and odd joint moments the expression can be simplified to:

µ(2a, 2b; v) = (2a)!(2b)!
2a+b

∑min(a,b)
j=0

(2ρ)2j

(a−j)!(b−j)!(2j)!γ2a+2b if v > 2a+ 2b

µ(2a+ 1, 2b+ 1; v) = (2a+1)!(2b+1)!
2a+b ρ

∑min(a,b)
j=0

(2ρ)2j

(a−j)!(b−j)!(2j+1)!
γ2a+2b+2 if v > 2a+ 2b+ 2

µ(2a, 2b+ 1; v) = µ(2a+ 1, 2b; v) = 0,
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where µ(a, b; v) = E(xa1x
b
2), and σ1 = σ2 = 1 and γa is the a-th moment of new

distribution defined by the authors as ”T” (see [7], Theorem in page 7).

T is a random variable with an inverted chi-square distribution given by The-
orem 1.1 in [7]. The a-th moment of T is given by:



γa = E(T a) = (v/2)a/2Γ(v/2−a/2)
Γ(v/2)

for v > a

γ−2a = E(T−2a) = (v/2)−a(v/2)(v/2 + 1) · · · (v/2 + a− 1) if v > 2a

γ2a = E(T 2a) = (v/2)a

(v/2−1)(v/2−2)···(v/2−a)
for v > 2a

Note γ2 = v
v−2

and therefore v > 2 (see [7] Corollary 1.1, page 2).
In order to provide a bit more of insight regarding this bivariate t-distribution

we will show the connection to the bivariate Gaussian distribution. Recall the raw
product moments of the bivariate normal distribution with pdf:

f(x1, x2) =
(1− ρ)−1/2

2πσ1σ2

exp(
−q(x1, x2)

2
)

(1− ρ2)q(x1, x2) = (
x1 − µ1

σ1

+
x2 − µ2

σ2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

)

are given by

µ(a, b) = σa1σ
b
2λ(a, b)

where in general there is a recursive expression for λ(a, b):

λ(a, b) = (a+ b− 1)ρλ(a− 1, b− 1) + (a− 1, b− 1)(1− ρ2)σ2
1σ

2
2µ(a− 2, b− 2)

38



which is solvable for odd and even joint moments as:
λ(2a, 2b) = (2a)!(2b)!

2a+b

∑min(a,b)
j=0

(2ρ)2j

(a−j)!(b−j)!(2j)!

λ(2a+ 1, 2b+ 1) = (2a+1)!(2b+1)!
2a+b ρ

∑min(a,b)
j=0

(2ρ)2j

(a−j)!(b−j)!(2j+1)!

λ(2a, 2b+ 1) = λ(2a+ 1, 2b) = 0

(see [7] page 2, Theorem 3.1)

These equations help us realize that when v → ∞, the pdf of the bivariate t-
distribution converges to the one of a bivariate normal distribution. This is a plus
for the chosen bivariate t-student selected as it is a natural extension not only of a
univariate gaussian but also of its bivariate counterpart.

Note that in setting the stage for the application of Theorem 3.4 to the t-student
case, we also need the scalar product of the orthogonal functions under a bivariate
t-student probability measure, this is the matrix Cms

kn = 〈pm(Xk), ps(Xn)〉. The
next result gives the values for this matrix:

Lemma 3.10 The inner product with respect to the joint t-student of the orthog-
onal polynomials is:

Cms
kn = 〈Ips (xk), I

p
m(xn)〉

= m!s!

[m/2]∑
a=0

[s/2]∑
b=0

(−1)a+b2s+m−2a−2bµ(s− 2b,m− 2a; v)(p−1
s−b )(

s−b
b )(p−1

m−a)(
m−a
a )

Where µ(a, b; v) was previously defined.

Proof 3.11 The proof follows easily from the joint moments under the bivariate
t-student distribution.

At this point we have all the inputs needed to use Theorem 3.4 and therefore
to present the solution for the t-student case. Still due to the richness of cases
implied by the dependence of the solution to the degrees of freedom we will then
developed three particular cases as a first step in the next section.
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3.2.3 Solution for a t-Student. Three Particular Cases

We started with 4 degrees of freedom which is the most nongaussian case of all
because when v <= 3 then Z = 0 and there is no basis for the space so v => 4
and when v → ∞, the pdf of the bivariate t-distribution converges to the one of
a bivariate normal distribution. We provide the results for the case of 5 and 6
degrees of freedom. The reason behind developing both the v = 5 and the v = 6 is
to show that even though the numbers of polynomials are the same we still obtain
different solutions to our main problem (2) from Theorem 3.4.

Solution for v=4 Let us assume the N variables (X1, .., XN) follow a multivari-
ate t-student distribution such that every pair (Xi, Xj) follows a bivariate t-student
as defined previously with parameters (v, ρij).

When the degree of freedom is 4 we have v
2

= 2 so Z = v/2 − 1 = 1. The
condition of zero expected value for the input functions ϕn(X) implies that we do
not need or use the orthogonal function I0 = 1.

Therefore I1 is the only orthogonal basis in the space En, the vector solution
from Theorem 3.4 would then be: α11

...
αN1

 = C−1

 a11
...
aN1


where

an1 = E(ϕn(Xn)I1(Xn))

=

∫
<
ϕn(X)I1(X)dP (X) n = 1, 2, ..., N.

and P (X) is the univariate t-student measure.
The degree of ϕn must be 1 because ϕn ∈ span{I1} and I1 is a polynomial of

degree one. The matrix C is as follows:

C(i, j) =
(
〈I1(xi), I1(xj)〉

)
which corresponds to

C = a.R
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R =


1 ρ21 ... ρN1

ρ12 1 ... ρN2
...
ρ1N ρ2N ... 1


a is a constant and R is the correlation matrix. The determinant of the correlation
matrix will equal 1 only if all correlations equal 0, otherwise the determinant will
be less than 1. It is not zero either since the factors are different Xi 6= Xj when
i, j = 1, ..., N (non degenerated distribution) so C is invertible therefore the vector
α is well defined. The solution of (2) is given by

φ(X1, X2, ..., XN) =
N∑
n=1

αn1I1(Xn) , Xn ∈ <

Solution for v=5 We uses the same setting as in the case v = 4. Here when
degree of freedom is 5 then we have v

2
= 2.5 so Z = [2.5] = 2 therefore I1 and I2 are

the orthogonal elements in the space En. Using Theorem 3.4, the vector solution
would be: 

α11
...
αN1

α12
...
αN2


= C−1



a11
...
aN1

a12
...
aN2


where

anm = E(ϕn(Xn)Im(Xn))

=

∫
<
ϕn(X)Im(X)f(X)dX

n = 1, 2, ..., N m = 1, 2
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and f(X) is the probability density function of the t-student:

f(x) = (
Γ(v+1

2
)√

vπΓ(v
2
)
)(1 +

x2

v
)−

1
2

(1+v)

The degree of polynomial ϕn can be 1 or 2 because ϕn ∈ span{I1, I2}, I1 is a
polynomial of degree one and I2 is a polynomial of degree two.

From the orthogonality relationship of hypergeometric polynomials we obtained
the following form for C:

Cmn
ji = 〈Im(xj), In(xi)〉 =

{
0 if m 6= n
〈Im(xj), Im(xi)〉 if m = n

which can be simplified further and C becomes a block diagonal matrix:

C =


C11

11 . C11
N1 0 . 0

.
C11

1N . C11
NN 0 . 0

0 0 0 C22
11 . C22

N1

.
0 0 0 C22

1N . C22
NN


Therefore for each m = 1, 2 we can write: α1m

...
αNm

 = B−1
m

 a1m
...
aNm


where

Bm(i, j) = Cmn
ji =

(
〈Im(xi), Im(xi)〉

)
In the case of m = 1, we have:

B1 = b.R

where b is a constant and R is the correlation matrix hence B1 is invertible. For
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m = 2:

B2 =


22 7 + 15ρ2

21 ... 7 + 15ρ2
N1

7 + 15ρ2
12 22 ... 7 + 15ρ2

N2
...
7 + 15ρ2

1N 7 + 15ρ2
2N ... 22



Proposition 3.12 The determinant of the matrix B2 is nonzero if the matrix Σ =

(ρij) is nondegenerated and
N∑

j=1, 6=i
ρij < 1 for all i.

Proof 3.13 Note the determinant of the matrix is B2 zero if ρ2
21 = ... = ρ2

NN−1 = 1
which is not possible (the factors are not equal) but this is only a sufficient condition.

In general B2 can be written as B2 = aO + bΣ∗ where a and b are scalars (7
and 15), O is a matrix of ones and Σ∗ is a nondegenerated covariance matrix, this
last statement comes from using Σ = (ρij) is nondegenerated and realizing that a
matrix with square correlations can be obtained using factor analysis (see [2]) as
follows (for simplicity we show only in dimension 3):

W1 = ρ12M1 + ρ13M2 +
√

1− ρ2
12 − ρ2

13Z1

W2 = ρ12M1 + ρ23M3 +
√

1− ρ2
12 − ρ2

23Z2

W3 = ρ13M2 + ρ23M3 +
√

1− ρ2
13 − ρ2

23Z3

where M and Z are uncorrelated therefore the resulting covariance matrix is
well defined (the argument in the square roots are positive) and nondegenerated.
Moreover B2 can be interpreted as representing the covariance matrix of a vector
Z∗ in a separate factor model Z∗Nx1 = aM∗

1x1 + bWNx1, where M∗ and W are
independent with unit variance and W has covariance matrix Σ, factors models
lead to nondegenerated matrixes (see [2]). Therefore B2 is invertible.

The solution from Theorem 3.4 and v = 5 would be:

φ(X1, X2, ..., XN) =

N,2∑
n,m=1

αnmIm(Xn) , Xn ∈ <

43



Solution for v=6 Using the same setting as before, the solution for v = 6 is
similar to the case of v = 5. When the degree of freedom is 6 then we have v

2
= 3

so Z = 2 (same as for v = 5). The vectors I1 and I2 are the only elements in the
orthogonal basis of En and the vector solution would be:

α11
...
αN1

α12
...
αN2


= C−1



a11
...
aN1

a12
...
aN2



The degree of polynomial ϕn is again either 1 or 2 and C has a similar form
as in the case v = 5:

Cmn
ji = 〈Im(xj), In(xi)〉 =

{
0 if m 6= n
〈Im(xj), Im(xi)〉 if m = n

which can be written as a block diagonal. Therefore for each m = 1, 2 we can
state:

 α1m
...
αNm

 = B−1
m

 a1m
...
aNm


where

Bm(i, j) =
(
〈Im(xi), Im(xj)〉

)
In particular, for m = 1 we have the same expression as for v = 5:

B1 = b.R
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so B1 is invertible. But for m = 2 the solution differs from that found in the v = 5
case:

B2 =


204 60 + 144ρ2

21 ... 60 + 144ρ2
N1

60 + 144ρ2
12 204 ... 60 + 144ρ2

N2
...
60 + 144ρ2

1N 60 + 144ρ2
2N ... 204


The reason for this is that scalar products depend on the probability measure,
under a measure with 6 degrees of freedom are different that under a measure with
5 degrees of freedom. B2 is still invertible using similar arguments as in the case
v = 5. The solution of (2) using Theorem 3.4 for v = 6 is

φ(X1, X2, ..., XN) =

N,2∑
n,m=1

αnmIm(Xn) , Xn ∈ <

Once again note that even though the solutions look similar for v = 5 and v = 6
they do not give exactly the same optimal solutions.

3.2.4 Solution for a t-Student. General Case

In this section we target the solution for any degrees of freedom of the multivariate
t-student introduced before. The key condition in order to reach a solution based on
Theorem 3.4 is invertibility of the matrix Cmn

ji (〈Im(xj), In(xi)〉). If this is proved
then the values α can be obtained from a given set of a’s.

Let us write C as a column matrix C = (a1a2...aQ) therefore ai is defined as:

a′i =
(
E(yiy1) ... E(yiyQ)

)
Here E(yiyj) =

∫ ∫
yiyjf(xl, xm)dxldxm where f(xl, xm) is the probability density

function of the 2-dimensional t-student distribution of xl and xm, l,m = 1, .., N .
In our case the vector y is related to the Z orthogonal polynomials and N variables
as follows (Q = Z ·N)

y = (y1, y2, ..., yQ)

= (I1(X1), ..., I1(XN), I2(X1), ..., I2(XN), ..., Iz(X1), ..., Iz(XN))
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In the next theorem we show that the invertibility of C can be implied from the
linear independence of the y.

Theorem 3.14 The determinant of matrix C is zero iff one of the y is a linear
combination of the other y′s.

Proof 3.15 Without losing generality we will show the proof for the case yQ =

ΣQ−1
i=1 biyi. (⇐)

From
yQ = ΣQ−1

i=1 biyi

we can says that:
EpN [y.yQ] = ΣQ−1

i=1 biEpN [y.yi]

or
E(yQyj) = ΣQ−1

i=1 biE(yiyj) for j = 1, ..., Q

Hence,  E(yQy1)
.
E(yQyQ)

 = b1

 E(y1y1)
.

E(y1yQ)

+ b2

 E(y2y1)
.

E(y2yQ)

+ ...

Therefore aQ = ΣQ−1
i=1 biai since one column of matrix C is a linear combination of

the other columns of matrix C the determinant of C is zero.
(⇒)

detC = 0

It means that one of the column of matrix C is a linear combination of other
columns of matrix C. Therefore

an = ΣQ−1
i=1 biai with bi 6= 0 for i = 1, ..., Q− 1

Hence
E(ykyQ) = ΣQ−1

i=1 biE(ykyi) for k = 1, ..., Q

This implies:

ΣQ−1
i=1 biE(ykyi)− E(ykyQ) = E(yk(Σ

Q−1
i=1 biyi − yQ))) = 0 for k = 1, ..., Q

Now let z = (ΣQ−1
i=1 biyi)− yQ = ΣQ

i=1biyi when bQ = −1 then

E(yk(Σ
Q−1
i=1 biyi − yQ))) = E(ykz) = 0 for k = 1, ..., Q
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0 =

∫
...

∫
ykzf(x1, ..., xN)dx1...dxN , k = 1, ..., Q

Hence ∫
...

∫
z2f(x1, ..., xN)dx1...dxN = 0

As a result
||z||2 = 0

which implies:
yQ = ΣQ−1

i=1 biyi.

The next remark shows that the previous result holds for the matrix C in our
framework.

Remark 3.16 As the hypergeometric polynomials are linearly independent then
none of the polynomials for a fixed variable xj can be written as a linear combination
of the remaining polynomials, for simplicity:

IZ(xj) 6=
Z−1∑
i=1

ciIi(xj)

with j = 1, .., N . This is obvious due to the degree of the polynomials. Note
moreover that the variables themselves are linearly independent from each other
for any power (for simplicity Ii(xN) 6=

∑N−1
j=1 bjIi(xj) for any i), this comes from

assuming a non singular covariance matrix for the variables x and therefore a non-
degenerated multivariate probability measure for the vector (x1, ..., xN). Then we
can conclude that C is invertible.

The application of Theorem 3.4 to the case of the t-student is presented in the
next corollary.

Corollary 3.16.1 The solution of (2) for the case when the distribution between
the x (financial factors) is the joint t-student and (Im(Xn)Zm=1 forms an orthogonal
basis in Ωn then the solution has the form:

φ(X1, X2, ..., XN) =

N,Z∑
n,m=1

αnmIm(Xn) , Xn ∈ <
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where αnm is the solution of

anm =

N,Z∑
k,s=1

αksC
sm
kn

Z =

{
v
2
− 1 v

2
∈ N

[v
2
] v

2
/∈ N

anm = E(ϕn(Xn)Im(Xn)) =

∫
<
ϕn(X)Im(X)f(X)dX

n = 1, 2, ..., N m = 1, 2, ..., Z

and ϕn ∈ span{I1, I2, ..., IZ}.

Some details about the solution are provided next: Let us rewrite matrix C (a
square ZN matrix) as follows:

C =


B11 B12 . B1Z

B21 B22 . B2Z

B31 B32 . B3Z

.
BZ1 BZ2 . BZZ


where each Bij is a N ×N matrix such that:

Bij =


Cij

11 Cij
21 . Cij

N1

Cij
12 Cij

22 . Cij
N2

.

Cij
1N Cij

2N . Cij
NN


therefore

Bij(m,n) = 〈Ii(xn), Ij(xm)〉, m, n = 1, 2, ..., N

Note that 〈Ii(xn), Ij(xm)〉 = 0 if i + j is odd (µ(1, 0; v) = µ(1, 2; v) = ... =
µ(i, j; v) = 0 when i+ j = odd) so matrix C becomes:

C =


B11 0 B13 0 .
0 B22 0 B24 .
B31 0 B33 0 .
.


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C is invertible therefore the vector solution of α would then be defined as:
α11

.
α1Z

α2Z

.
αNZ

 = C−1


a11

.
a1Z

a2Z

.
aNZ


so the solution of (2) for any v is:

φ(X1, X2, ..., XN) =

N,Z∑
n,m=1

αnmIm(Xn) , Xn ∈ <.

3.3 Other Probability Measures

The analysis presented in this chapter could be extended to other distributions and
orthogonal functions. Some examples are given below:

Laguerre Polynomials (Ln) under an exponential probability measure (P ). Here
Ln is the solution of a second-order linear differential equation:

xL′′n(x) + (1− x)L′n(x) + nLn(x) = 0

P (x) = e−x

There are many multivariate generalizations of the exponential distribution, see
[9] so there is plenty of room for exploring our setting under this measure.

Associated Laguerre Polynomials (LAn) under a Gamma probability measure
(P ). Here LAn is also the solution of a second-order linear differential equation:

xLA′′n(x) + (α + 1− x)LA′n(x) + nLAn(x) = 0

P (x) = xαe−x

There are only few multivariate variants of the Gamma distribution (see [9])
which could be worth exploring under our setting.

These last two cases are defined in (0,∞) so they apply better to positive
relationships between financial variables as those observed between stock prices
and index values.
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4 Conclusions

The work in this thesis tackles an important problem in financial mathematics,
which is that of explaining a given variable, like a stock price, using a vector of
other financial/economical variables like Fundamentals, Indexes or Factors under
few observations. Finding relationships between a single dependent variable and a
set of independent variables is a standard problem of Regression analysis. It is well
known that Regression leads to reliable results in the presence of medium to large
sample sizes. Unfortunately there are several cases in applications were the data
available is only of few dozen observations and the number of variables of interest
is almost 50% of the number of observations, this is the case of Hedgefund data.

A recently published paper, [1], tried to overcome this lack of data and the short-
falls of regression by providing an alternative method that uses the joint distribu-
tion of the independent variables (P (N)) on a kind of non-parametric construction
of the best fit function between the dependent and indepedendent variables. This
optimal fit function is obtained as the one with minimum overall variance among
all L2 integrable N -dimensional functions under the given multivariate probability
measure P (N). His work is applied to the case of an independent measure and the
multivariate Gaussian measure.

Our work focuses on the shortfalls of [1] and provides two main outcomes: it first
makes the results in [1] more flexible by slightly modifying the type of functions on
which the optimality is found. This modification allows for an explicit construction
of the optimal solution based on a given univariate probability measure, a set of
orthogonal functions under this measure and a multivariate probability measure
that has given univariate as marginals. The second component of our thesis is the
application of the first result on a specific measure, the t-student distribution. This
distribution has fat tails and tail dependence, therefore it represents a more realistic
probability measure for economic/financial factors. These two contributions could
be used mainly in the context of risk management (as [1]), in particular it should
approximate better the true relationship between returns and economical factors
and therefore allow for building hedge portfolios closer to the targeted assets. The
alternative approach of nonlinear regression should lead to unreliable estimators
due to small sample sizes making our suggestion more appealing to practitioners.
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